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ABSTRACT

We present a thermoelastic derivation of ultrasonic waves
propagating in a solid in which an applied homogeneous stress is super-
imposed on a nonzero initial stress. We also derive the temperature
dependence of the elastic coefficients and the linear relationship
between the applied stress and a newly defined parameter - the thermal
acoustic constant. The stress acoustic constant is defined and its
relationship to the acoustic natural velocity is discussed. Experi-
mental considerations pertinent to the ultrasonic measurement techniques
used in the investigation are described. The results of the stress-
strain and thermal strain experiments verify the predictions of the
theory. Finally, we derive an improved formula for correcting the
effects of the transducer and the transducer bonding material in
ultrasonic standing wave phase velocity measurements. The results are
verified by computer models and laboratory experiments.

ix



ULTRASONIC DETERMINATION OF THERMOELASTIC
PROPERTIES OF STRESSED SOLIDS



INTRODUCTION

From the atomic point of view, a solid is a complicated collection
of electrons and lattice particles. However, many nonlinear properties
of solids such as thermal expansion, thermal conductivity, the stress
dependence of elastic wave velocity and the temperature dependence of
elastic velocity can be determined from constants obtained by propaga-

ting an ultrasonic wave in the sample.l-3

In the Debye model of solids,4’5

the lattice vibration frequencies
are approximated by long wavelength acoustic standing wave modes of a
nondispersive elastic medium.6 To provide a complete description of
the nonlinear thermoelastic properties of solids, it is necessary to
cast the equations describing elastic wave propagation in solids in a

7,

form explicitly involving the initial stress. It is also necessary
to use finite strain parameters instead of infinitesimal strain para-
meters to describe the nonlinear effects of solids. 1In addition, in
order to characterize the adiabatic and isothermal processes, our
derivations are based on a model involving thermodynamic potential
energies, the internal energy and the Helmholtz free energy, rather than
on a material elastic energy which is entropy and temperature indepen-
dent.

It is not the purpose of this research to determine the higher
order elastic constants. Rather, we wish to examine the physical

properties of stressed solids from the experimentally determined stress

acoustic constants and the thermal acoustic constants in accordance with



10,11

recently developed ultrasonic theories7-9 and techniques.
stress acoustic constants are defined as the fractional change in the
resonant standing wave frequency of a solid per unit applied stre558

and is shown to be equal to the fractional change in the acoustic
natural velocity in the solid. Similarly, the thermal acoustic con-
stants are defined as the fractional change in the solid resonance fre-
quency per unit change in temperature.

In Chapter II, we present a thermoelastic description of ultrasonic
waves propagating in a solid having a homogeneous stress superimposed
on an initial stress. The stress acoustic constants and their relation-
ship to acoustic natural velocity are fully discussed. We also derive
the temperature dependence of elastic coefficients and the linear
relationship between the applied stress and the thermal acoustic
constants.

The experimental considerations and ultrasonic measurement
techniques used in the present investigation are described in Chapter
III. 1In Chapter IV, we present the experimental results which verify
the predictions of the theory presented in Chapter II.

Finally, in the Appendix, we present new formulas which result in
more accurate determination of acoustic velocities by correcting for
transducer and bond effects for ultrasonic standing wave phase velocity

measurements.



II. THERMOELASTIC THEORY OF STRESSED SOLIDS

1. Small amplitude elastic wave propagation in stressed solids.

The thermoelastic properties of stressed solids are strongly
related to the behavior of the lattice particles.12 Consider a solid
which consists of N 1lattice particles. From Bose-Einstein statis-
tics, the number of phonon particles in a state can be written a513

1
g < exp(ﬁws/kBT) -1 (1)

where Wy is the angular vibration frequency of s state, s
represents one of the 3N states of modal vibration, kB is Boltzmann
constant and T is temperature. The internal energy of the system can
be expressed in the adiabiatic approximation asl4

3N .

U= ®o + 321 Gs + nS) ﬁws 2)
where 2, is the thermodynamic potential energy of the system when the
lattice particles are at rest in their mean positions. Since lattice
particles move only a small amount from their equilibrium positions, we
can expand the initial energy in a Taylor's series about their equili-
brium positions in terms of deformation parameters. The harmonic
approximation is obtained by keeping only the first nonzero (quadratic)
term in the expansion. This approximation describes the linear elastic
properties of solids. To describe the anharmonic properties of solids
such as thermal expansion, ultrasonic harmonic generation, and thermal

conductivity,15 the quasiharmonic approximation is often used. In the

quasiharmonic approximation, @o and w, ~are not explicitly



temperature dependent, but indirectly temperature dependent through the
temperature dependence of the lattice dimensions. The temperature
dependence of material parameters can be obtained explicitly from the

Helmholtz free energy. The Helmholtz free energy is defined by13

e ]
i

U-TS (3
where S 1is the entropy. The Helmholtz free energy can be written as4

3N
o + kT szlzn [2 sinh (‘ﬁwS/ZkBT)] (4)

o]
1]

The internal energy U 1is used to describe adiabatic processes in which
the functional dependent variables are temperature T and the stresses;
independent variables are entropy S and coordinate parameters X.

The Helmoltz free energy is used to describe isothermal processes in
which the dependent variables are entropy S and the stresses; indep-
dent variables are temperature T and coordinate parameters X.

To derive the elastic wave equation of the solid, we first assume
the solid to be a nondispersive elastic continuum. ILet the Cartesian
coordinates of a material particle of the solid in the initial state
be a and the Cartesian coordinates of the same particle in some
stressed state at time t be ;. Since the internal energy U and
the Helmholtz free energy F depend only on the relative position of the
material particle (§), it is convenient to express the functional
dependence of U and F in terms of rotationally invariant Lagrangian

strains n and the initial particle positions (3).

i3



Hence, we may write

UGx, 8) = U@, n,, ) (5)

It is necessary to point out that equation (5) is valid when the
deformation varies significantly only over distance large compared to
the range of effective interactions in the solid. For the case of
elastic wave propagation, the wavelength must be large compared to the
range of interactions. This is the long wavelength continuum approxi-
mation., If the wavelength is too short, dispersion occurs and the
lattice dynamics theory applies.

In order to obtain the equations of adiabatic elastic wave motion,
it is convenient to expand the internal energy in a power series of the

Lagrangian strains defined by16

where aij are the usual Kronecker deltas and the transformation

coefficients aij are defined by

axi

a,, = — (7
ij Ja.

J

Here we have adopted the Einstein convention of summation over repeated

indices. Expanding the internal energy per unit volume plU (;, "ij S)
?
in terms of Lagrangian strains about the initial state (Z), we get
U (a ) = p,U (a ) + ¢ +%C
P17 18 Nyg» 20 = P17 18, O, 15 M3 7 % Migke
!
35 "ke Y3 Cogrom Mg Mt "wn T - (®



Where Py = p(z) is the initial state mass density of the material. The

coefficients Cij’ Cijkz and Cijklmn are isentropic first, second and

third order elastic constants respectively defined as

cij =0 (3U/8nij) (9)
_ 2
Cijkl =0 (3 U/anij a“kz) (10)
and
c = 0, (330/on,, an,, 3n_) (11)
ijkfmn 1 ij “'k2 “'mn

evaluated at (;). Similarly, we can expand the Helmholtz free energy
per unit volume in the initial state Py F (Z, nij’ T) in terms of
Lagrangian strains. In this case, the elastic constants are now the
isothermal elastic constants instead of isentropic elastic constants.

The first order strain derivative of p.U and plF are the tensional

1

stress components evaluated at the initial state configuration. Since

they are evaluated at thermodynamic equilibrium, we have

3 0 /onyy = (o M) /any, = oy (3 (12)

For isentropic processes, the Lagrangian L can be expressed as
L=1%p, x, 3 U (a S) (13)
pl Xi Xi - Dl a, nij:

The thermoelastic wave equation can then be obtained by substituting

equation (13) into Lagrange's equation of motion

__d_(aL.
dt 3%

) +
1 daj BaiJ axi



where x; = Bxilat, t is the time. We obtain
p.X d o a(plU) (15)
i 4 [ ik —r=— ]
h| ik

Equatipn (15) is the general isentropic elastic wave equation valid for

dissipationless solids of any symmetry. We may rewrite equation (8) as

'

8(01U).

anij

= oy B+ 0y oo e, -8 ) .. (16)

Substituting equation (16) into equation (15), we obtain the isentropic
linear wave equations
%, =lo., (@ 6, +C... ] 32xk (17)
P1 %1 TL9%0 '3 Oq T Bygre ! —
da,oda
i L
For isothermal processes, equation (17) still holds except that the
elastic constants are isothermal elastic constants.

We assume a plane solution to the linear wave equation (17) has

the form

>
u = x, - a; = A lu| cos (kj aj - wt) (18)

where u, are the particle displacements, a;, are the constant

material coordinates, Ai is the unit displacement vector, and
w = v/|ﬁ| is the angular frequency. Substituting equation (18) into
equation (17), we obtain the eigenvalue-eigenvector equations of elas-

tic wave motion

2 _ ->
Py Yy A —[cjz (a) aik + Cijkz]kj kz A (19)



This equation is equivalent to the equation obtained by Thurston and
Brugger.1 We see from equation (19) that the wave velocity Vq depends

>
on the initial state stress (a) as well as the second order

Ujl
elastic constants. The subscript q represents the propagating direc-
tion for which there are three independent eigenvalues representing one
quasi-longitudinal and two quasi-transverse polarization directions of
elastic wave propagation. For certain propagation directions of high

crystalline symmetry, the three normal modes become one pure longitudinal

and two pure transverse modes.
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2. Expansion of final state small amplitude wave propagation parameters
in terms of initial state parameters.
Consider now in addition to the initial thermodynamic stress

sz (Z), there is an externally applied homogeneous static stress on the
solids. We shall use the perturbation approach of Cantrell3 and Wallace2
to obtain the equation of motion and pertinent measurement parameters for
such a situation which brings the solid to a final homogeneous stress
state (i). The Cartesian coordinates of a material particle in the
solid whichbwés at a in the initial state now is at the coordinates
>

a in the final state. We define the transformation coefficients with

respect to the final state to be

G, = % (20)
3 %3
3

and the Lagrangian strain parameters with respect to final the state to

be

- 1 o o -
nij L (aki “kj Gij) (21)

Thus, the internal energy in the final stress state can be expanded in

terms of Lagrangian strain parameters nij with respect to the final
state ;s
z Z Z -
pZU (a, nij’ 8) = pZU (a, o, S) + Uij (a) nij +

(22)

- - -
+ 1/3! Cijumn nij Mg nm+ .« e s

% Cijice M1 M

>
where Py =P (a) 1is the mass density of the solid in the final state

and the elastic constants are defined with respect to the final state.
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Similarly, we can expand the Helmholtz free energy in terms of Langrangian
strain parameters with respect to the final state as in equation (22) with
F in place of U. Following the same procedure as in section 1, we can
obtain the eigenvalue-eigenvector equations of motion with respect to the

final state as

2
q

>
PV A = [ojg (a) 8,0 + Ciju] kj ko A (23)
where the bar denotes that the quantities are evaluated with respect to

the final state. However, we wish to express the wave equation (23) in

terms of initial state parameters. We define the transformation

>
coefficient a'ij from the initial state Z to the final state a as
o'y, = 22 (24)
J oa,
J
The Lagrangian strains from the initial state to the final state is
defined as
' = 1 v ' _
n 13 % (o K @ ” Gij) (25)
>
A plane wave propagating in the direction k 1in the homogeneous
deformed final state and in the initial state must satisfy the phase
condition
k,a, =k aa:i. a. = u k, a (26)
ii ig j i 3

where k, k, = kj k.j = 1, and the normalization constant u is defined

such that
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2 _ ) [ T 1
Wk ko= atyy ety K Ky (27

For homogeneous initial and applied stresses the waves remain parallel
to the sample surface at which waves are launched, irrespective of the

state of homogeneous stress. For this case, ki ai = 21 which can be

interpreted as the sample length of the solid in the initial state.
> =

Similarly, ki ai = 22,

state. The normalization constant p in equation (27) is then obtained

is the sample length of the solid in the final

as

p= "1 1 = 72 (28)

If we define the inverse transformation tensor B'ij such that

B'.. a',, =a',, B'.,, =86, (29)

We can write the wave vectors in final state as
k, = up'.. k, (30)
i ji ]

and the Lagrangian strains defined with respect to the final state as

- ox 9
=1 - = ' '
Ny3 = 72 (——a_k —:_{k 613') Meg By B it (31)
ai 23,

Using equations (30) and (31), the second order elastic constants
defined with respect to the final state can be expressed in terms of

the elastic constants with respect to the initial state as

2 p
= U 2 ' '
Cooryo = Py G =(—) % im % 'kp
ijke 2 aﬁijaﬂkl Py J P  4q
lc +C ' +. .. (32)

mnpq mpqrs = rs



>

Similarly, the final state stress o, (a) can be expressed in terms

of the initial state stress cij (3) and the elastic constants defined

with respect to the initial state as

= = o' > '
oij (a) Py (ani —) ( 2) ol Z[ckl (a) + Cgon "gn ¥+ ¢
(33)
Substituting equations (31), (32), and (33) into equation (23), we
obtain the equations for elastic wave velocity in the final state of

the solid in terms of initial state parameters as

-2 = 2
0, V- A, = {a'., o a) + C n' + .. .
2%q %7 (0_2) jm tnl O ¢ mnpq  pq ]
L L ' 1 )
6ik + o im ~ jn @ kp 2q [ Cmnpq mnpqrs " re
1 A
']}BersSerAk (34)

The physical measurements of the wave velocity of equation (34) depend
on changes in sample length in the direction of wave propagation as
well as changes in density at different final states. We can eliminate
the length effect by introducing the natural velocity ﬁq defined by

Thruston and Brugger1 as

(35)

The natural velocity ﬁq is a physically measurable quantity which as
we shall show in section 4 is directly proportional to the resonance
frequency of the solid. Using equation (35), we can rewrite equation

(34) as

13
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=2 > ‘ v
plwq = { [ojz (a) Gik + Cijkzl k.j k2 + [(Cmnpq k.m k.n n .

ik) + Cinpq n kp + Cmnkq n

t ]

8 im ¥ Cinqus n rs)

kn kq 11 Ki Z\k (36)

where we have used the expansion of a'ij in terms of n'ij in the

equat ion

' = ' - ' '
a',, Gij +n 1] % n ki " K + ... 37)

If we let Ai Ak = A Ak’ we can approximate the elastic wave equation

(36) to first order in the strain as

=2 2
PV = PV * (209 W A A+ (Chipopmn B A& -
2 a '
o, G AL AD K 10 (38)

where we have used equation (19). Equation (38) is the first order
correction to the natural velocity in terms of initial state para-
meters. For the case where sz (@) = 0, equation (38) may be written

>
in terms of the applied stress o (;') = oij (a) - o (Z) by using

ij 1j
the compliance tensor Si’kl defined such that
J
= =1

Si5k2 Ckomn = Cijke Skemn T % Cyp Syn * S4p Sy (39)
and writing

n',,=S§ o, (@) + (40)

ij ijke ke R

Substituting equation (40) into equation (38) and using equation (39),

we obtain
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-2 2 2
Py =P W * [2 0y Ve % % Camn * Cigram A A0 Ky ky ]
+'
Smnrs Ors (a") (41)

Equations (38) and (41) are general expressions for the natural
velocity ﬁq of a solid subjected to a superimposed stress oij(Z')
or strain n'ij' The importance of the equations is that the natural
velocity is written in terms of parameters defined with respect to the
initial state parameters. ors(g') and n'mn are defined to be posi-
tive for tensile load and negative for compressional load.

For the case of isotropic solids, we obtain the acoustic natural

velocity of the unstressed state from equation (19) as

(42)

Where L denotes longitudinal wave propagation and S denotes
shear wave propagation. In equation (42), we have used Voight con-
traction of the indices for the elastic constants.17 From the invariance
under symmetry operations, the relations of the second order elastic

1
constants for the isotropic solids are found to be

€11 = Cap = C33= 2+ 2p

Cip = C13= G5 =2
Cuag = Cg5 = Cg = ¥
All other Cij =0 (43)

Where ) and p are Lame' second order constants. Other moduli used

to describe the properties of isotropic solids such as Young's modulus



E, Poisson's ratio v, shear modulus G, and bulk modulus K can be

written in terms of Lame' constants as

E=u (32 + 2u)/(x + u)

v= A2 (A + u

G=u

K= X+ 2/3u (44)

For the case of longitudinal wave propagation in an isotropic solid
along the direction of applied uniaxial stress, we can express the

natural velocity as

powi=(2“+>‘)+( ) [A + 22 + Mu (21 + 6p + 4m)] (45)

.

32 + 2u y
where ¢, m (and n) are Murnaghan's third order elastic constants.
Hughes and Kelly18 have’derived similar equations for the true velocity
in a solid (rather than natural velocity) for different propagation
directions, propagation modes and applied stress directions. The rela-
tions between Murnaghan's third order elastic constants and Brugger's

1
third order elastic constants for isotropic solids are 9

Clp3 =28 -2m+n

Ci56 = % 0

C1a4 = Cp55 = C366 = 2%+ im

G121 = Cppp = G333 = 24+ 4m

€112 = ©23 = G133 = G113 = Cppp = Cp33 = 24

€155 = %44 = %344 = C166 = C266 = C355 ° ™

All other C,., = 0 6

ijk

16
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We will use equation (45) in the next section to express a newly
defined measurement parameter (the stress acoustic constant)20 in terms

of elastic coefficients.



18

3. Stress derivatives of acoustic natural velocity (stress acoustic
constants) and strain acoustic constants

We now consider an isolated one-dimensional stressed solid

21,22

resonator. The propagating wave model predicts that the mechanical

resonance frequency fm (m=1, 2. .. .) occurs at

>
mvV

fm = q (47)
222

2 is the

sample length in the final state. We note that the changes in mechani-

where Vq is the true wave velocity in the final state and %

cal resonance frequencies result from changes in the true wave velocity
as well as changes in sample length at each stress level. The acoustic
natural velocity ﬁq was defined by equation (35). Substituting ﬁq

into equation (47), we obtain

£f = Eﬁ& (48)
Since m is an integer and 21 is the sample length in the unstressed
state, the change in resonance frequency fm now depends only on the
change in acoustic natural velocity for different stress levels.
Differentiating equations (47) and (48), we obtain the fractional change
in mechanical resonance frequency and acoustic natural velocity in terms

of relative changes in true wave velocity and strain as

I _av .. di :
3 v T, W (49)

m q 1 q
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We define the stress acoustic constants Hrs to be the fractional

change in resonance frequency per unit change in applied stress and

obtain from equation (48)

of oW
E =L _m_1 _"q (50)
rs f 9o W 20
rs q rs

We can write the stress acoustic constants in terms of elastic constants

as
oW 5(p, W2 2
i <L Mg _ 17y 1 (20, W A A +
rs W Bors 20 WZ aors 20 qQ m n
1 1°q 1°q
>
(Cipmn + Cigromn B4 A ~ 205 (@) A A k ko1 5o DL

where the last equality follows from equation (38). We note that
equation (51) is evaluated with respect to the initial state. For zero
initial stress, i.e. cj2 (;) = 0, all the parameters are zero state
parameters. For the case of isotropic solids the stress acoustic
constant for the case of longitudinal wave propagation along the direc-
tion of applied tensile stress is calculated from equation (45) to be

Hll = [A+20+ 2 +u @2x+6u+4m] /[200 + 20) (3X + 2p) ]

u

[(Cpy = Cpp) (Cyp + 2 Cpp) + (Cpp + Cpp) (2 Gy + Cpyq) - Cpy

Cpyp01/ [2 €y (Cy - €pp) (€ + 2 Cpp)l (52)

We define the strain acoustic constants Rmn to be the fractional

change in resonance frequency per unit change in strain. Hence,

2

R = A A
g m n

mn

E_ o 1

1 1 [ 2p1W + (C
fm an Wq anmn

j 4mn

2
201Wq



20
-,
+ Cjkzmn Ay A - 203.2 (a) Am An) kj kz] (53)

where the last equality follows from equation (38). From equations (50)
and (53), we obtain the relationship between the stress acoustic con-

stants Hrs and the strain acoustic constants R.um to be

=R S (54)
rs mn - mnrs

where Smnrs is the compliance coefficients defined by equation (39).
Substituting S1111 (= S11 in Voigt notation) into equation (52), we
obtain the expression for strain acoustic constant for the case of longi-
tudinal wave propagating in an isotropic solid along the direction of

applied tensile strain as

Ry =[(Cyy = €p) (€ +2 Cp) + (Cpy + Gp) (2 Gy + Cppy) -

2.Cy Cpyp) 1702 ¢ (G + €yl (55)

We must point out that the stress and strain acoustic constants can be
obtained experimentally by simply evaluating the ratio of the change in
normalized mechanical resonance frequency and the change in applied
stress or strain, respectively.

It is of interest to note that the strain generalized Griineisen
parameters are defined?'3 as the fractional changes in the modal phonon

vibration frequencies per unit change in strain

Y:j =~ 1/ws_(.3ms;/'3nij).1. ]

n=0 (56)

If we identify the long - wavelength modal phonon vibration frequencies

with the coherent acoustic resonance frequencies, we obtain the



relationship between the strain generalized Griineisen parameter and

strain acoustic constants to be

/)]

Rin = o 67

Hence, measurements of the strain acoustic constants are tantamount to
measuring the strain generalized Griineisen parameters. The thermodyna-

mic Griineisen parameter is defined by24
Y = BB/p C, (58)

where B 1is the volume thermal expansion coefficients, Cv is the

specific heat and BT is the isothermal bulk modulus. The relatiomnship
between the thermodynamic Griineisen parameter and the strain generalized
Griineisen parameters in the Debye model is given elsewhere.6 Hence, the

strain acoustic constants are seen to be fundamentally related to the

equation of state of Debye solids.
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4. Temperature dependence of acoustic natural velocity (thermal
acoustic constants) and the stress derivative of thermal acoustic
constants,

The conjugation of thermoelastic and statistical mechanical theories
of materials have shown that the temperature dependence of material
parameters can be obtained from expansions of the Helmholtz free encigy

(equation (4)) in terms of lattice vibrational modes.zs’z6

If we adopt
the long wavelength continuum approximation and identify the material
particle (actually phonon) vibrational frequencies with the coherent

acoustic resonance frequencies, the temperature derivative of isothermal

second order elastic constants Cijkk in the high temperature limit can
be written as
T 3N a5
(acijklla:)n = -pokB E (——il (59
s=1 Bnk2 T

where Yij are strain generalized Griineisen parameters defined by

equation (56). Similarly, we can write the temperature derivative of

IT

the isothermal third order elastic constants C
ijkm

in the high

temperature limit as

T 3N azyi
(ac,, [3T) = -p T (—) (60)
ijkfmn n okB s=1 Bnkganmn T

where the superscript TT represents continuous derivations of
isothermal strains. If we express Yij in terms of elastic constants
via the theory of Thurston and Brugger1 and substitute the expression
into equations (59) and (60), we obtain the temperature derivative of
isothermal second and third order elastic constants in terms of the

mixed isothermal - isentropic initial state elastic constants. The
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relationship between isentropic and isothermal second order elastic

constants are given by7

s T

Cijra ™ Cagre = (/P8 Tiy Tip (61)
where Tij is the thermal stress tensor defined by7

t,, = (30,,./3T . 62

43 = oy /M) (62)

ij
For isotropic solids the relationship between isentropic and isothermal

second order elastic constant C11 is also given by26

S T c (63)

2
Cll - C11 = Ty po v

where the thermodynamic Griineisen parameter vy is defined by equation
(58). For a typical solid such as aluminum, Py = 2.8 g/cm? c, = 9.0

X 106 erg/g.ok, and yz = 4 at room temperature (T = 300°K), and the
difference between isentropic and isothermal constants is calculated
from equation (63) to be less than 3%. Hence, we can approximate the
temperature derivative of the C11 elastic constant from equation (59).

For example27

_ 2
3c,. /0T = Pofp . 3C1 ¥ C13 ° - 5 Gt Ching
11 5 [ ¢ )

(
Ci1 C

)] (64)
11 '

We now define the thermal acoustic constants Kq for any state of
stress Oy tO be the fractional change in acoustic natural velocity

Wq per unit change in temperature and write

W oW
[Kedo,  =[L (D] = [—L__ (o (65)
47 % W_ 9T Oy zpow2 3T " Oy,
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where the derivation is evaluated at the initial temperature To. From
equation (41), we can write the thermal acoustic constants for a state

of applied stress O s in terms of elastic constants and temperature

derivatives of elastic constants as

3¢
__1 1ik4 2
k1, 5 { L kj ky Aj A+ [20 W A A+
rs 2p°W q
q

aC,,
(CjR.mn + cijkmm A Ak) kj kz] an +[ 2 ;T]kz

oC oC, . '
kj k, A A A A +¢ ;;iy%mn + i%I;an A, Ak) kj kz]n “‘n}"rs

(66)

where we have assumed that initial state stress is zero, i.e.,

cjg (;) = 0, pow2 is evaluated at the final stress state and initial
temperature To,q "n is the strain resulting from an externally
applied stress Ors and an are the thermal strain tensor defined

by7

By = (30" /AT (67)
rs

For the specific case of longitudinal waves propagating in an isotropic
solid, we can express the thermal acoustic constants for the solids in

the zero stress state as

[K

1 = 1 *%1 _ (68)
11 oll-O,T—To [—Z—C— =T ]°11‘ O’T=To

11

where we have used the defining equation (65) and the fact that

P W2 =C

oL 11 for zero initial stress and initial temperature. Substi-
tuting equation (64), we obtain the expression for the thermal acoustic

constant in terms of initial state parameters as
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k.1 oo =P 2t G -2 Gt Can

[ G )
o 4Cjy €1 Ch ]

(69)
~where all the elastic constants in equation (69) are defined with
respect to the initial state (zero stress, initial temperature).
Experimentally, we are interested in the stress dependence of the
thermal acoustic constant. Differentiating equation (66) with respect

to applied stress T .gs We obtain

3c
1 [K 1,_ .o = 1 ijk? k, k, A A A+
= q 'T=T, 7 [2 —55 T T T
rs 20 W
q
ac, ac, .
( _‘]a'f:‘,nm + i;éllc‘lnm Ay A) kj kz] S nrs (70)

where we have assumed that the thermal strain tensor an is stress
independent to a first order approximation and have used the compliance

constants § to transform n' to o__. Substituting equations
mnrs mn rs

(59) and (60) into equation (70), we obtain

3N

]
_ P Y, .,
ac,a [Kq] T=1 " OIZB {2 Szl (aniJ)T kjsziAkAmAn +[
rs 20 W kL "o
0q
3N s 3N )
dy 9°vS,

z Lo+ () AiAk]kjkl}Smn

s=1"9n )T s=1 Bnkzan rs

mn O

= Constant - (71)

Equation (71) relates the thermal acoustic constants to the strain
generalized Griineisen parameters which are fundamental parameters of
the Debye solid. Following the theory of Garber and Granato,26 the

first strain derivatives of Yij involve fourth order elastic constants
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and the second derivatives of Yij involve fifth order elastic
constants. This result provides a potential method to measure the
fifth order elastic constants from the stress derivatives of the thermal
acoustic constants. There is currently no technique available to the
author's knowledge for such a measurement.

Equation (71) results directly from the fact that expansions of
the acoustic natural velocity with respect to temperature and stress
is adquately represented for our range of experimental conditions by

retaining only linear term.



IIT. EXPERIMENTAL TECHNIQUES

1. Measurement considerations

In order to verify the theoretical derivations, both pulse echo and
a gated continuous wave acoustic velocity measurement technique are
used. Theoretically, the time domain broadband pulse measurements are
equivalent to the frequency domain continuous wave measurements since
they are related to each other through a Fourier transformation. The
accuracy of the acoustic wave measurements is affected and limited by
such physical phenomena as wave dispersion, phase cancellation, ultra-
sonic attenuation, mode conversion, diffraction, and the effects of
bonded transducers. The principal measurement errors result from mode
conversion, diffraction, and the effects of bonded transducers. We
shall discuss each of these primary sources of error separately.
A. Mode conversion

Mode conversion results from boundary effects on the transmission
of the acoustic Wave.28 Consider the case of a longitudinal wave pro-
pagating along the axial direction of cylindrically shaped solid.
The angle measured with respect to the axial direction at which mode
conversion occurs is29

6 = sint (Vg/V;) (72)

where V, and VL are acoustic shear and longitudinal wave velocity

S

respectively. The time of arrival of the mode converted wave is

2
t=2ﬂ];+(n—1)D(V —V;)lﬁ
L Vi Vs

27



28

where m, n are integers and D 1is the diameter of the sample. In
the frequency domain, the effect of the mode converted wave is to
modulate the spectra as shown in figure 1. The minimum in the modula-
tion (cancellation) occurs whenever the coincident longitudinal wave
and mode converted wave are 7 radians out of phase. The minimum

occurs when the ultrasonic frequencies satisfy the equation

_@p+1) vV

nD(Vi - Vg)!2

£ S (74)

where p=0, 1, 2. . . . Continuous wave measurements of frequency
shifts near the cancellation points are subjected to error caused by
the superposition of the mode converted waves.

The modulation of the spectra resulting from mode conversion
nearly disappears at higher frequencies because of diminishing diffrac-
tion of the acoustic beam. The angle subtended by an acoustic beam

measured with respect to the propagation direction is

o = sin~L (1.22 M a) (75)

where a is the diameter of the transducer and )X 1is the wavelength
of the incident wave. For high frequencies, the angle decreases and
less acoustic wave energy strikes the cylinder walls to be mode con-
verted.
B. Diffraction

Because of the finite size of the transducer, the acoustic wave
radiated from the transducer spreads out into a diffraction field with
an angle ¢ described in equation (75). The diffraction effect is

especlally large for low frequencies and small transducers. The



Figure l.- Effect of mode converted waves on the spectrum

of a cylindrical resonator
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The intensity at distance d in the sample along the axis of the

transducer is shown to be30

I=1_ sin® (n/2 [(a® + )7 -a)} (76)

where Io is the maximum value of I. The response of a typical piston
source is shown as a function of intensity I and distance d in
figure 2. The spacing of the peaks increases with distance from the
transducer. The region between the transducer and the position of the
final intensity maximum occurring at approximately d = 1.05 aZ/X is
described as the Fresnel zone. Beyond the Fresnel zone lies the
Fraunhofer zone. The intensity in the Fraunhofer zone falls off with
the inverse square of the propagation distance as can be seen from

equation (76) when d »> «
Ia (1ra2/2)\d)2 an

The diffracted wave in the Fraunhofer zone contains energy removed from
the axial direction. When the diffracted wave is reflected at the
lateral boundaries of the sample back into the main beam phase cancel-
lation of the superimposed wave may be observed. Thus, the measurements
are confined to the Fresnel zone to minimize such effects.

In the Fresnel zone, the intensity variation obtained by
integrating the incident acoustic wave across the face of the receiving
transducer introduces error in pulse time-of-flight measurements of the
ultrasonic velocity. A detailed correction is given by Rogers and
Van Buren.31
C. Effect of bonded transducers

For both conventional pulse and continuous wave (CW) measurements

of acoustic wave velocity, the presence of the transducer and coupling



Figure 2.~ Variation of acoustic intensity I with

distance resulting from diffraction
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bond for solids induce errors in the velocity measurements of the sample.
For pulse techniques, the transducer and bond errors are of the order
of a few percent. The correction of the measurements are described by
Papadak1532 and McSkimin.33

For continuous wave measurements, the traﬁsducer and coupling bond
produces shifts in standing wave resonance frequencies of the solid in
a complicated manner. However, one can correct the measurements using
the theory described by Bolef and Miller,21 Ringermacher, Moerner and

Miller %3

and the improved formulas derived by Chern, Cantrell, and
Heyman,36 and Chern, Cantrell, Heyman, and Winfree.37 The detailed
derivation and experimental verification of the new correction formula
for standing wave acoustic phase velocity measurements including the
effect of the coupling bond are fully described in Appendix.

An alternative approach is the use of noncontacting driver -
capacitive receiver transducers. The capacitive system satisfied free -
free boundary conditions and no bond corrections are required. The
sample is set on the electrically grounded portion of a hollow ring
assembly. The capacitive detector button is centered in the ring
assembly and is recessed approximately 10 micrometers so that the
electrode and sample face form a parallel-plate capacitor. The elec~-
trically isolated detector electrode is dc biased at approximately
110 V. The ultrasonic vibration of the sample face varies the gap
spacing and generates an electrical signal.

In the capacitive driver, a 5-micrometer thick teflon spacer is
placed between the capacitive driver and the sample face, A pulsed
sinusoidally varying rf voltage is applied across the electrodes.

Ultrasonic waves are generated in the sample from the electrostatic
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forces acting on the sample surface. The ultrasonic wave generated in
the sample is produced at twice the frequency of the rf voltage
applied to the driver. The detailed description of the capacitive
system is given by Cantrell and Breazeale.38

A modification of the capacitive system is made by impedance
matching the capacitive detector following the suggestion of Conradi.39
The equivalent circuit of the capacitive detector and tuning circuit
is shown in figure 3. The signal voltage V across the amplifier load

resistance R 1is calculated to be

- 1 (78)
V=V R¥3 (oL - L - 1)

wC wCD

where w 1is the angular frequency, CD is the quiescent capacitance
of the detector, Vs is the signal source voltage, C is capacitance
of the tuning capacitor and L is the inductance of the tuning induc-

tor. When tuned at resonance, the signal voltage across the load R

is equal to VS.



Figure 3.~ The equivalent circuit of the capacitive

detector and tuning circuit.
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2. Measurement techniques
A. Pulse leading edge time-of-flight technique

In the pulse leading edge time-of-flight technique, one measures
the time it takes a fast rise time pulse to traverse the sample.

Since a pulse is used, this technique measures a group velocity rather
than a phase velocity and as such is strongly influenced by attenuation
and dispersion. For example, the higher frequencies of the pulse are
more highly absorbed than are the lower frequency components. Thus, for
some lossy samples, the initial start pulse may have a rise time orders
magnitude faster than the stop pulse which must travel through the
sample.

The pulse leading edge time-of-flight measurement uses a nanosecond
risetime pulser and a pulse receiver to trigger the start and stop
channels of universal time interval counter. A high risetime pulse
ensures the start channel trigger on the very leading edge of the pulse.
The receilved pulse is amplified to trigger the stop channel of the time
counter.

B. Long-pulse frequency-tracking technique (Tone-burst spectroscopy)

In long-pulse tone-burst spectroscopy, a W rf signal from a
tracking generator is sent to a transmitter gate with an on-off ratio
of 90dB. The gated rf pulse from the transmitter gate is amplified
and the signal is used to drive a piezoelectric transducer. The trans-
ducer emits an ultrasonic pulse called a tone-burst having the same
frequency as the CW source. The transmitter gate width is adjusted
such that a standing wave equilibrium condition is established in the
sample., In the equilibrium condition the wave energy input to the

sample exactly balances the wave attenuation. The receiver gate width



36

and position are adjusted by logic/timing generator such that signals
are received only after the transmitter gate is turned off. The
receiver rf signals are amplified and sent to the spectrum analyzer.
As the tracking generator sweeps through range of frequencies, the
spectrum analyzer continuously measures and displays a signal within a
selected bandwidth at each frequency point in the sweep. Such an
arrangement gives results equivalent to (W measurements without rf

cross-talk problems inherent to CW measurements.lo’21

This technique
can be used in one transducer reflection and two transducer transmission
case, The block diagrams of the long-pulse frequency tracking tone-
burst technique for reflection and transmission cases are shown in
figure 4 and figure 5. The detail description of this frequency
tracking tone-burst technique is given by Cantrell and Heyman.10
C. Pulsed phase locked loop spectrometer11

The pulsed phase locked loop spectrometer (PZIF) was developed for
measuring changes in propagation phase velocity along a determined
path length, This tecinique utilizes improvements on the basic scheme
developed by Blume.41 A gated tone-burst derived from a voltage
controlled oscillator (VCO) is applied to a transducer as shown in
figure 6. The acoustic wave generated propagates through the sample
and is converted to an electrical pulse by a second transducer (or the
same transducer for the reflection case). The signal is amplified and
phase detected. The resulting signal is a voltage pulse of duration
equal to the gate width and of amplitude determined by the phase
relationship between the oscillator and the received ultrasonic pulse

signal.
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Figure 4.- Block diagram of the frequency tracking technique (tone-burst

spectroscopy) for reflection configuration.
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Figure 5.- Block diagram of the frequency tracking technique for

transmission configuration.

38



43T AT dWH

43O0NASNHaL

J1dWHS

d3ONUSNBL

3185
43AIFD3d \\\LWW\\\\\\
33901l
3403507111350
JOLHAINTD
ONIWIL/JID0T
| W3LSAS
NOILISINOOY
gisd
31H5 J01HIND
N TOMNL d3ZAT1ENE
d311LTWSNBAL I NERVERE WNY1L33dS




Figure 6.- Block diagram of the pulsed phase locked loop.
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The voltage pulse is sampled and held on command from the logic
timing generator. A control voltage generated by signal conditioning
the sample/hold signal adjusts the rf frequency to maintain phase
quadrature between an internal VCO and the chosen received acoustic
pulse,

The acoustic phase shift ¢ which occurs in propagation through

the sample with transit time t 1is: ¢ = 27ft where f 1is the acous-

tic frequency. For the closed loop PZLZ, ¢ 1s constant so that20

d¢ = 2mw(tdf + £dt) = 0 (79)
Thus,

Af/f = -At/t (80)

The mathematical result is the same as occurs from equation (49) with
2/V replaced by t. Therefore, the PZL2 has the equivalent dimen-

sionless readout:
Af/f = =At/t = AV/V - AL/Q (81)

where f, V and £ are the initial values and t is a final value.
In contrast to the group velocity measurement of the pulse echo tech-
nique, the PZL2 measures a true phaée velocity in the absence of
velocity dispersion.

The stability and accuracy of the system requires that the sample/
hold circuit have low droop rate to maintain a constant VCO frequency
between update corrections. The feedback loop rate is limited by the
sample attenuation since the acoustic energy in the sample should decay
before a new gating sequence is begun. The measured short term

stability of the PZL? is approximately a part in 108 with temperature
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variation in the sample dominating the measured frequency variation.

For our experiments, temperature stability limited the usable resolution

to parts in 107. A detailed description of P2L2 is given elsewhere.11
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3. Laboratory experiments
A. Stress acoustic meaSurementszo’41

All samples used in the stress acoustic measurements were
cylindrically shaped polycrystalline metals including aluminum 2024-T4,
copper, phosphor bronze, titanium, mild steel, carbon steel and stain-
less steel. The samples were 2.54 cm in diameter, 30.5 cm in length
and threaded on the ends to fit the sample holder. After preparation
the samples were mounted in an MI'S-810 material test system and axially
loaded in tension incrementally from zero to 180 MPa in steps of 1 MPa.
After each incremental increase in load the strain was measured with an
MIS-632.13B extensometer placed on the sample surface midway between
the planar ends. The change in the natural velocity of the sample was
measured using the pulsed phase locked loop technique described in the
previous section. It is shown in equation (50) that the P2L2 tech-
nique allows one to measure directly the change in the natural velocity
by measuring the fractional change in the ultrasonic drive frequency.

A through-transmission leading edge time-of-flight technique is
also used in parallel with the pulsed phase locked loop technique. A
20 picosecond resolution time interval counter was used in its inter-
val statistics mode to average over several thousand pulses. Signals
were amplified to saturation in a 1000-MHz bandwidth low noise ampli-
fier to provide clean leading edges for the time interval counter.
The block diagram of the stress acoustic measurements incorporated
with thermal acoustic measurements will be presented in the next section.
B. Thermal acoustic measurements9

In order to verify the theoretical predictions in section 4 of

Chapter II, laboratory experiments were performed using both pulsed
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phase locked loop and leading edge pulse time-of-flight measuring
techniques. The sample used is a 30.462 cm long 2.54 cm diameter poly-
crystalline aluminum (2024-T4) rod. The block diagram of experimental
set up is shown in figure 7. The aluminum sample is installed in an
insulated over and is mounted in a MIS-810 material test system. An
extensometer, a solid state thermometer and thermocouples are placed
on the middle and ends of the sample surface. A 2.25 MHz gated rf
tone-burst from the VCO of the P2L2 is transmitted via a PZT trans-
ducer to the sample. The acoustic signals are reflected from the end
of the sample and received by the same transducer. As with the trans-
mission PZL? described earlier, a control voltage from the P2L2 VCo
adjusts the rf frequency maintaining phase quadrature. The acoustic
amplitude, phase signal, and the sampling position are displayed and
monitored with an oscilloscope. In addition, the rf pulse is used
to trigger the start channel of a universal time interval counter. A
second transducer is bonded on the other end of the sample to receive
the acoustic signal which is amplified and used to trigger the stop
channel of the time counter. The experiments are performed by slowly
heating up the aluminum sample from room temperature. The stress,
strain, temperature, time of flight, and normalized frequency are
recorded with a computer controlled data acquisition system. The
experiments involve propagating 2.25 MHz longitudinal waves along the
uniaxial tensile stress direction of a polycrystalline aluminum rod
over a temperature range of 25°Cf65°C and the stress range of 0-150 MPa.
The amplitude and thus the pulse leading edge arrival time is affected
by diffraction and attenuation which are functions of temperature and

stress. The resolution of the leading edge time-of-flight technique is



Figure 7.- Block diagram of the thermal stress test system
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about one part in 105 in contrast to the pulsed phase locked loop

resolution of parts in 107.
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IV. RESULTS AND DISCUSSION

l. Axial stress measurements
The determination of axial stress using ultrasonic techniques
involves material parameters shown in equation (51) combined with known
changes in Af/f. The stress acoustic constant contains elastic proper-
ties of the stressed material and varies from material to material.
Figure 8 shows a typical P2L2 stress—acoustic as well as
stress-strain and stress-true velocity measurement of an aluminum 2024-T4
sample. The variation of stress acoustic constants for various
materials is shown in figure 9. The slope of these curves represent
stress acoustic constants Hll and are determined from the figure as:
Hll aluminum = 5.38 x 10_5/MPa; H
stainless steel = 2.33 x 107> MPa;

titanium = 2.09 x IO_S/MPa; Hll

mild steel = 1.59 x 10_5/MPa.

11

B,

A factor which influences ultrasonic stress measurements is the
percentage of sample under axial load. The details of percentage
loading study is given elsewhere.20 To eliminate the nonuniform tensile
loading, the sample geometry was carefully selected without compro-
mising diffraction effects.

Temperature also plays an interesting role in the stress acoustic
measurements. TFor the case of aluminum 2024-T4, a small change in
temperature such as 5°C will produce a corresponding Af/f of 10_3 or
about 20MPa effective stress. A more subtle temperature effect involves
the adiabatic temperature decrease resulting from the thermodynamic
volume expansion. In figure 10, data are presented for temperature,
strain and Af/f as a function of time for a step loading/unloading

46



Figure 8.- Typical stress—acoustic, stress-strain and stress-true

velocity data for an aluminum sample.
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Figure 9.- Stress acoustic response for various materials.
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Figure 10.- Experimental data for temperature, strain and Af/f as a
function of time for step loading/unloading of an aluminum

sample.
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of the aiuminum sample. The temperature drop of 1°C resulted from a
125 MPa tensile stress. This result is similar to the sample expansion
of a gas and its subsequent cooling.
2. Thermal acoustic stress measurements

Typical experimental data of normalized frequency change with
respect to changes in temperature for an applied stress is shown in
figure 11. The thermal acoustic constants K11 are obtained by a
linear curve fitting routine for each thermal stress experiment. Ther-
mal measurements were obtained for six stress levels. The plot of
thermal acoustic constants as a function of stress is shown in figure
12. The sample cooled slowly until it reached equilibrium with room
temperature. The data is also linearly curve fitted to obtain the
stress derivative of the thermal acoustic constants which is the slope
of the curve. The stress derivative of the thermal acoustic constants
is found to be 7.780 x 10~ /MPa’C.

11 -
Figure 12 presents data showing a linear relationship between the

AKllle

applied stress and thermal acoustic constant. This result verifies the
theoretical assumption upon which the experiment was based.

Similar experiments performed by Salama and Ling42 also show a
linear relationship between applied stress and the thermal acoustic
constants. Table 1 presents Salama and Ling's data for compressional
stress applied perpendicular to the longitudinal wave propagation in
aluminum samples. They present data as a change in real velocity AV
per degree K for three aluminum 2024 samples. For all samples, the
application of stress decreased AV/AT with higher value of stress

producing a larger decrease.



Figure 11l.~ Typical experimental data of normalized frequency change

with respect to temperature.
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Figure 12.- Thermal acoustic constants shown as a function of material

stress.
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The present experimental results are shown in Table 2 for tensile
stress applied along the direction of wave propagation. The change in
normalized natural velocity Af/f per degree C is the measurement
parameter chosen from the theoretical results. For an aid on compari-
son with Salama and Ling's results, the values were transformed into
the representation -AV/AT. It is interesting to note that our value
for the zero stress slope of 0.927 m/sec’C is in close agreement with
that of Salama and Ling's 0.923 m/sec’K for the "A" sample. Variation
in the zero value reported by Salama and Ling may be caused by sample
differences (such as texture of residual stress).

In summary, a theoretical model has been developed predicting a
linear dependence of the slope of the thermal acoustic constants with
material stress. The experimental results confirm the model and pre-

sent new directions for further inquiry.



TABLE I

EXPERIMENTAL RESULTS OF SALAMA AND LING. COMPRESSIONAL
STRESS IS APPLIED IN THE DIRECTION PERPENDICULAR TO
WAVE PROPAGATION.

Applied -1 -1
Specimen Compressional -AV/AT (m+s “+K 7)
Stress (MPa)
A (2024-0) 0.0 0.923
21.4 0.878
B (2024-0) 0.0 0.957
37.2 0.856

C (2024-0) 0.0 1.007

44,1 0.908



TABLE 2

PRESENT EXPERIMENTAL RESULTS.

Applied Tensile

Specimen  Stress (MPa) ~(Af/£) /AT (10-4/°C)
aluminum
2024-T4 0 1.654

25 1.674

50 1.697

75 1.713

100 1.734

150 1.772

TENSILE STRESS IS APPLIED
ALONG THE DIRECTION OF WAVE PROPAGATION.

-AV/A (m-s—l'o 3

0.927
0.938
0.949
0.957
0.966

0.988
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3. Relative slope invariance of velocity-stress and strain-stress
curves

Recent studies of residual stress in materials have led us to
measure simultaneously the natural velocity and the strain in several
polycrystalline metals as a function of applied stress. We find that
the curves are approximately linear and that the ratios of the slope of
the velocity-stress curve to the slope of the strain-stress curve for
the materials cluster around = -3.5:1. The values are R = -3.5 for
aluminum 2024-T4; R = -2.9 for carbon steel; R = -3.6 for mild steel;

R = -2.9 for copper; R = -2,8 for phosphor bronzé. The difference is
surprisingly small when one considers the large variation in mechanical
properties of the material measured.

We examine the results from the thermoelastic theory in terms of
independent measurements of second and third order elastic constants.
The fractional change in the natural velocity W of a solid per unit
change in externally applied uniaxial stress of magnitude P in unit

direction n is

1 W =1 W n_n (82)
W oP W 30,

o =P n n (83)

and n, are the Cartesian components of n. Using the results of

equation (4l1), we may write

1w 1 (Cj gmn ¥ Ci5kmn A By kj ko Smrs Pr Us
W 9P 2
20 W
)
+ S A A n n (84)
mnrs m n r 8§
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where the derivative is evaluated in the zero stress configuration.
The free Young's modulus Ef in direction n of a solid is
defined as the ratio of tensile stress P to the resulting linear

strain n 1in the solid. The free modulus can be expressed in terms of

the compliance coefficients as43

- Ll -
;L._ S 1111 =n (85)
E P
£

In equation (85)

n=ng;n oo (86)

]

where ”ij are the components of the strain tensor and § 1111 is

the (1111) component of the compliance tensor defined in a (primed)
coordinate system appropriately rotated with respect to a fixed
(unprimed) coordinate system in the solid. Let the transformation from
the unprimed to the primed coordinate system be defined by the trans-

formation tensor

17273
RiJ =l m m m,
8 Ly 0g (87)
The compliance tensor transforms as
S'ijkl = Rim Rjn Rkp qu Smnpq (88)
Hence,
s' . n_n n n., (89)
1111 Ef mnpg m n p q
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If we assume the wave polarization A of applied stress, then

Ai =n, in equation (84). If we further assume pure mode propagation,

then ki =n, and the ratio R of the natural velocity-stress slope

to the strain stress slope is

E
=1 Wn _ _f
R=y% BP/P 1+ 0 W2 (szmn Spnrs By My, mpongt
o W
Cijkemn Smnrs P1 Py "k Ty Pr B¢ (90)

Using the relation of equation (39), equation (90) becomes

Be

2
ZpOW

R=1+

(L+¢C n, n n n ) (91)

ijkmn Smnrs ij "k Mg
For longitudinal waves propagating in an isotropic solid along the

direction of applied stress, equation (91) reduces to

/e, + 1+ Gy Spp (92)

283 Gy

R=1+1% C111

where we have contracted the indices of the elastic coefficients by
using Voigt notation.
Using equation (92) and the values of the elastic coefficients

44-46 we calculate R for a number of

obtained from the literature,
isotropic materials. These calculations along with the present R
values data are.listed in Table 3.

With two exceptions (Austenitic steel and fused silica) the R
value fall in the range -2.7 to -3.9 even though the elastic coeffi-
cients of those materials in that range vary more than 700%. The

reason for the unusually large negative R value for Austenitic steel

(R = ~-6.2) is not clear but may be related to the crystalline structure



TABLE 3

R VALUES OF ISOTROPIC MATERIALS CALCULATED FROM ELASTIC

COEFFICIENTS AND FROM PRESENT WORK

Material
Rail Steel
Hecla 37 Steel
Hecla 17 Steel
Hecla 138A
Rex 535
Mild Steel
Carbon Steel
Hecla ATV Austenitic
Aluminum 2024-T4
Magnesium
Molybdenum
Tungsten
Copper
Phosphor Bronze

Fused Silica

R value

-2.9
-2.8

+4.9

Reference

44
45
45
45
45
present
present
45
present
45
45
45
present
present

46

work

work

work

work

work
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of the grains. The grains of Austenitic steel have a fecc structure
whereas the grains of the other steel alloys exhibit a bec structure.
The sign of R for fused silica is positive (R = +4.9) in contrast
to the other solids listed. The positive value of R 1s directly
related to the fact that the third order elastic constants of fused
silica are dominantly positive whereas for all other materials listed
are dominantly negative. Fused silica, unlike the "quasi-isotropic"
polycrystalline metals, has an isotropic amorphous structure consisting
of a network of partly ionic-partly covalent SiO4 tetrahedra having
short-range but not long-range order. This arrangement gives rise to
a number of anomalous properties of fused silica including a largé
negative thermal expansivity at low temperature47 and a double potential
well.48 White and Birch49 suggest that such properties may be the
result of transverse vibrations associated with the oxygen atoms of
the tetrahedral network. Measurements by Cantrell and Breazeale50 of
the longitudinal mode strain generalized Griineisen parameters of fused
silica as a function of temperature give results consistent with this

assumption.



APPENDIX

Improved formula for CW measurements of ultrasonic phase velocity
using one transducer36
1. Theory

Consider a one-dimensional compound resonator consisting of a
transducer bonded to a solid sample. The properties of the compound
resonator are labeled with the subscript c¢. The subscripts s, t
and b designate the properties of the sample, transducer, and bond,
respectively. We seek to determine the velocity of sound in the
sample V_ from measured CW resonance frequencies fz (m = integer)
of the compound resonator.

Transmission line theory predicts that for lossless propagation
media, the resonance frequencies of the compound resonator occur at

. 2
the roots of the transcendental equation 1

Zs tan ks zs + Zt tan kt Qt + Zb tan kb 2b - (ZS Zt/zb)

tan kS QS tan kt %, tan k.b lb =0 (A-1)

where k is the wave number and & is the thickness of the medium.
The acoustic impedance Z = pV, where p 1is the density and V is
the sound velocity of the medium. Although equation (A-1) can be

solved numberically for Vs with the aid of a computer, we wish to

obtain an approximate but explicit solution for Vs’ which is more

accurate than previous solutions but which also lends itself to

calculation using equipment less sophisticated than a computer.
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The problem can be greatly simplified by initially neglecting the
contribution of the bond to the compound resonator. The effect of ﬁhe
bond will be considered later. Setting to zero the terms in equation

(A-1) involving the bond, we obtain the equation

Z_ tan k_ %+ Z_ tan k, % =0 (A-2)

It is convenient to rewrite equation (A-2) in a form which emphasizes
the frequency differences between adjacent mechanical resonances rather
than the resonance frequencies themselves. The mechanical resonances
of the isolated sample occur at frequencies fz = mVS/ZSZ,S (m = integer)

while the fundamental resonance of the isolated transducer occurs at

ft = Vt/22t. The frequency differences between adjacent mechanical
resonances of the compound resonator are written as Afz = f?+1 - f:

and of the isolated sample as Afz = f2+1 - fz. Although Aft varies

with the choice of m, Afz is independent of m, and we may write
AE = AT = V_[20_ = £f/m.
] s s’ “"s s

If we write equation (A-2) for each of two adjacent resonances
and employ the trigonometric identities tan (a - B) = (tan o - tan B)/
(1L + tan o tan B) and tan (a - m) = tan o, we obtain, after substantial

algebraic manipulation, the equation

(Afl:: - Bf_ =MD
tan T AT ) 3 , (A-3)
(Afs) + A
where
m1 m
A= &% (£ )2 tan "¢ tan e (A-4)
t 3 £
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nfm+1 ﬂfm
B = Gft (tan ¢ - tan c) (A-5)
ft ft
and
§ = p, sat/pS L - (A-6)

§ 1is a parameter that was originally introduced by Bolef and Menes51
and later used by Ringermacher et.al:?4 to characterize the dominant
experimentally controlled variables. It must be pointed out that §
is a function of the sample and transducer densities and lengths. In
this context changes in 6§ were assumed to result from changes in the
sample length only for a given set of densities and transducer thick-
ness.

Since the argument of the tangent function in equation (A-3) is
small, we can approximate the tangent function by its argument to

obtain

2 m m
Afs [(Afs) - (%_+ Afc) Afs ]+A Afs - A AfC =0 (A-7)

An accurate approximation to equation (A-7) can be obtained by setting
the first Af_ term in the expansion to Aflz. Making this substitu-
tion, we get
m 2 m m

Af [(Afs) - (113[_ +Af ) AMf_ ] + AAM_ - AAE =0 (A-8)
Solving equation (A-8) for Afs and using the relation Vs = 225 Afs
we obtaln an explicit expression for Vs in the form

e 0 fael _ m, -1 m m, -1,2 L
Ve = &g {A£ +B - A (MF)7" ¢ [(Af_ +B - AQAED )" + 4417}

=3
™ ™

(A-9)
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where A and B are given by equations (A-4) and (A-5). The
experiments reported here indicate that the plus sign in equation (A-9)
is used for all resonance pairs except the pair closest to the half-
resonance of the transducer. For that pair the negative sign is used.
In the next section we compare the error in sample velocity using
equation (A-9) to that obtained using the correction formulas derived
by Bolef and Menes and by Ringermacher et.al. The "1 + §" formula of

Bolef and M’enes51 is written as

-~ m S
Vs = 2£SAfS (1 + 6) (A-10)

and is often used when 6 is very small., Later, Ringermacher et-al.34

derived an equation for Vs having improved accuracy and an extended

useful range. Their formula is given by

m 2
vo=2nafh (1w s (Mo 0 M (r? 4 y7h) (a-11)
fc Af:

where
D= cos m (£/£) cos m [(ff + A/, ]
sin m (Afg/f,) (a-12)
and
T=tanw (£0/£) . (A-13)
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2. Computer simulated experiments
A, Two resonator experiments

In order to determine the accuracy of the approximate values of VS
from equation (A-9), the resonance frequencies of the exact two-resona-
tor case were found by numerically solving equation (A-2) for an
assigned value of Vs' All parameters in the equation were given
values corresponding to a typical ultrasonic experiment. The sample
was given values near those of aluminum 6.5 x 105 cm/sec for the sound
velocity of 2.5 cm for the thickness, and 2.75 g/cm3 for the density.
The transducer was assigned values corresponding to lead zirconate
titanate (PZT): 4.5 x 105 cm/sec for the sound velocity, 0.1 cm for
the thickness (corresponding to a resonance frequency of 2.25 MHz), and
7.50 g/cm3 for density. The percent error in the value of VS obtained
from equation (A-9) was calculated with respect to the assigned value
of VS and plotted as a function of the dimensionless parameter ¢
in figure 13. Also plotted in figure 13 are the percent errors using
the approximations of equation (A-10), equation (A-11l), and the uncor-
rected formula VS = 225 Aft. The mechanical resonances used for these
plots were the sixth and seventh resonance pair on the high-frequency
side of the transducer resonance. As indicated in figure 13, the pre-
sent approximation Vs generates an error which is smaller than the
error in the other approximation formulas for each value of & except
for the largest value of & shown (0.6).

The error in each of the formulas is strongly dependent on the

choice of resonance pairs. In figure 14, the percent error in the

present formula is plotted as a function of & for a choice of



Figure 13.- Percent error in the value of the velocity of sound VS,
as a function of ¢§ for various correction formulas in

one transducer reflection case.
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Figure 1l4.- Percent error in Vs as a function of & for several

pairs of mechanical resonances.
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several resonance pairs. All resonance pairs used in figure 14 are on
the high-frequency side of the transducer resonance frequency. Although
a correlation between minimum percent error and a particular resonance
pair is not apparent from figure 14, we see that the smaller values of

§ typically result in less error for a particular choice of resonance
pair.

Figure 15 shows plots of the percent errors in the four
approximation formulas as a function of frequency & = 0.109. We see
that the present approximation formula has the smallest error at each
frequency point shown except the point nearest the resonance frequency
of the transducer (2.25 Miz). There, the present approximation and the
formula of Ringermacher et. al. are roughly equal in accuracy. Note
that the minimum error for ¢ = 0.109 is of the order of a few parts

in 104.
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Figure 15.- Results of computer simulated experiments comparing percent
error in Vs as a function of frequency for 2.25 MHz PZT

transducer bonded to an aluminum sample (8 = 0.109).
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B. Bond effects

We now consider the effect of the bond which couples the transducer
to the sample surface. Bond effects on standing-wave measurements in
solids have generally been neglected in the literature because the thin
bond was thought to contribute negligibly to the measurements. We have
examined the effect of the bond on the measurements of VS by numeri-
cally solving equation (A-l) for mechanical resonance frequencies f?bs
of the transducer-bond-sample resonator and equation (A-2) for resonance
.frequencies f?s of the transducer-sample resonator. Identical para-

meters for the transducer (PZT) with 2.25 MHz resonance frequency) and

sample (aluminum) were used in equations (A-1) and (A-2). The frequency

ul

tbs for the

differences between adjacent mechanical resonance is Af
transducer-bond-sample resonator, Af?s for the transducer-sample
resonator, and Af: for the isolated sample. The error in VS was
calculated from (Afl::lbs - Af?s)/Afz at each sample resonance frequency
fz between 0 and 5 MHz.

Plots of the percent error as a function of frequency for bond
thicknesses of 1, 5, and 10 micrometers are shown in figure 16. Each
point in the figure is at a resonance frequency of the sample. The
curve is periodic with a period corresponding to the transducer
resonance frequency. At multiples of the transducer resonance fre-
quency the curves simultaneously pass through zefo and each curve again
passes through zero at nonperiodic points between the multiples. An
important feature of all the curves in that the error increases as the
frequency increases. The error also increases with increasing bond

thickness and approaches a magnitude of approximately 0.6% at the higher

frequencies.



Figure 16.- Plot of percent error for various bond thickness in one

transducer case.
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We conclude from equation (A-5) that the error due to the bond can
in some cases be larger than the error in the two-resonator approxima-
tion formulas for Vs' Further, in order to minimize the contribution
of the bond to the measurement error the bonds must be thin and the
compound resonator resonance frequencies must be chosen as near as
possible to the transducer resonance frequency.

3. Laboratory experiments

In order to test the above computer models, laboratory measurements
were made on a 2.517 cm thick polycrystalline aluminum sample using the
sampled continuous wave21 (tone-burst spectroscopy) technique. Measure-
ments were initially made with a 1.06 cm-diameter PZT transducer bonded
to the aluminum sample with castor oil. To minimize bond effects, the
first and second mechanical resonances on the high~frequency side of
the transducer resonance frequency (2.065 MHz) were used. The value of
Vs obtained from equation (A-9) were calculated to be 6.375 x 105 cm/sec.

An independent measurement of the sample velocity was obtained by
replacing the single bonded PZT transducer with capacitive transmitting
and receiving transducers. Since the capacitive transducers are non-
contacting, the sample ends vibrated with effectively free-free boundary
conditions and no transducer on bond corrections were required. Hence,
the problem reduced to that of a simple standing-wave measurement on a
single resonator - the sample.

The values of VS obtained with the capacitive transducers is
taken as the reference value for these experiments and was found to be
6.363 x 105 cm/sec. This value is 0.189% lower than the value obtained
with the bonded PZT transducer using equation (A-9). The & wvalue

for the bonded transducer measurements was calculated to be 0.115.
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According to figure 14, the error in equation (A-9) for 6 = 0.115 is
estimated to be +0.25% when the first and second resonance pair is used.
The plus sign means that the bonded transducer measurement gives a value
of Vs which is greater than the reference capacitive transducer
measurement. The sign of the error and its significance was determined
from an examination of the computer data which generated the point in
the plot of figure 14, The magnitude and sign of the error is consis-
tent with the error actually realized between the bonded transducer
measurements and the capacitive transducer measurements.

The contribution of the bond to the contacting PZT transducer
measurement error was minimized by selecting the compound resonator
resonance pair nearest the resonance frequency of the transducer

(f

£ = 2.065 MHz) and by wringing the transducer onto the sample surface
to minimize the bond thickness. The bond thickness was estimated to be
3-5 micrometers which according to figure 16 produces an error in the
measurements of approximately -0.09%. The negative sign means that

the effect of the bond is to yield a measurement of Vs with the con-
tacting PZT transducer which is less than the referénce value obtained
with the capacitive transducers. Combining the -0.09% bond error with
the +0.25% error in equation (A-9), we obtain a resulting theoretical
error of +0.16%. This theoretical error is consistent with the +0.189%
error measured experimentally.

For the particular choice of parameters used in experiments, the
contribution of the bond to the measurement error is small compared to
the error in the two-resonator expression for V_ (equation (A-9)). It
is clear from figure 16, however, that a thick bond and a poor choice
of resonance pair would have produced an error from the bond much larger

than that from equation (A-9).
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4. Conclusion

We have developed a more accurate formula for the explicit
calculation of the sample velocity from standing wave measurements of
the compound resonator. The limitations of the equation have been
explored using computer models of typical experimental conditions. The
accuracy of the formula increases with decreasing values of & and
depends on the choice of the resonance pair. Laboratory measurements
of the sample velocity using a PZT transducer bonded to a solid were
compared to measurements of the velocity using noncontacting capacitive
transducers and were found to be consistent with predictions of the
computer models using the present formula.

For a solid thickness of the order of a few centimeters, values
of & approaching 10-3 are practiably possible for frequencies of the
order of 10 MHz or above. Such values of ¢ yield theoretical
accuracies of parts in 107 when the present formula is used. However,
these accuracies are severely limited by one's ability to minimize the
error from the bond, The present computer model of the bond error
suggests that the theoretical 1limit can be approached only when the
bond thickness is minimized and when the resonance pair nearest the
transducer resonance frequency is chosen for the measurements. For
liquid samples, bond considerations are not necessary and the theoreti-
cal limits of accuracy are more easily approached.

The correction formula for standing wave phase velocity measurements
for the two transducer through transmission method is obtained using
the same approach as in the one transducer reflection case. The deri-
vation of the improved correction formula along with the computer and

laboratory verification are given in detail in reference 37.
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