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ABSTRACT

S ilicon  ia the hea rt  o f modern aemlconduetor devices. The 
dominance of Si in  a end conductor technology depends on the  superior 
quality  and properties  o f  thermally grown SiOg compared with the oxide 
th a t  can be placed on any o ther semiconductor. For th i s  reason, Si-SiO^ 
in te rface  has heen an in te re s t in g  and important research subject for 
many years .

The well es tab lished  q u as is ta tlc  and conductance methods used 
in  the study of the Si-SiO^ in terface are improved by using ( l )  an e f ­
fec tive ly  th in  composite in su la to r ,  ( i i )  low c a r r ie r  concentration 
sub stra tes , and most importantly ( i l l )  low-level il lum ination  at a 
wavelength th a t  createH electron-hole p a l re .  Accurate measurements of 
both the to t a l  density of in te rface  s ta te s  and i t s  major components as 
a function of energy in the  forbidden gap have been made over four 
decades (1011-5 -  lCr-  ̂ s ta tes/eV -em ) due to  items ( i )  and ( i i ) .  Item ( i i i )  
decreases the response time of the slow s ta te s  (those in th e  lower h a lf  
o f the band gap for n-type samples), so the  q u as is ta tic  condition is  
well s a t i s f ie d  and the conductance method can be used to  study the 
in terface s ta te s  throughout the band gap on a single sample. Without 
illum ination , the  q u a s is ta t ic  condition i s  not s a t i s f i e d  even fo r  ramp 
ra te s  on the lower side o f those used previously and complementary n- 
and p-type samples are needed for the conductance method.

The samples investigated  have a thermally grown oxide prepared 
in  dry oxygen. They were never exposed to  or H2 O at an elevated 
temperature. We speculate th a t  th is  processing provides an abrupt 
Si-Si02 in te r fa c e .  The composite gate in su la to r  was completed by having 
an e-gun deposited 250A lay er  of LaF^. The re su lt in g  in te r fa c e ,  sub­
jec ted  to  the  Improved experimental method, y ie lds  a wealth of d is t in c ­
t iv e  s truc tu re  ra th e r  than the often-reported  fea tu re less  U-shaped 
in te r fa c e -s ta te  density.

xv



IMPROVED CHARACTERIZATION OF Si-SiO£ INTERFACES



I -  INTRODUCTION

I t  1 b  well Known th a t Im purities and defec ts  can Introduce 

s ta t e s  In the forbidden energy- gap of semiconductors. The energy le v e ls  

a t  th e  In terfaces of a semi conduct or with vacuum, an In s u la to r ,  or a 

m eta l,  are strongly  perturbed from those in  bulk c r y s ta l s ,  and they are 

c a l le d  " in te rface  states"* The ones in the  forbidden band gap are  th e  

most in te rea tin g  because they Can capture and emit e lec trons  as t h e i r  

energy levels pass the Fermi le v e l  due to the applied  b ia s  vo ltage.

These s ta te s  a f fe c t  the performance of dev ices . 1 In general, they are  

almost always deleterious- S truc tu res  involving s i l i c o n  and s i l i c o n -  

dioxide are the foundation of modern semiconductor technology.

Even fo r  the in terface between s i l ic o n  and therm ally grown 

s il ico n -d io x id c , which is the most pred ic tab le  and genera lly  the bea t 

q u a l i ty  of those Investigated to  date , is  not completely understood.

This paper describes a refined experimental method to  study the prop­

e r t i e s  of s i l ic o n  and s llicon-d ioxide in te r fa c e s .  This experimental 

method and the accompanying theory can aleO be applied  to  the p ro p e r tie s  

of o ther in te rfaces .

2-UTn the  past twenty y e a r s , a host of methods has been devised

to  investiga te  the in te r fa c e -s ta te  p roperties  of semiconductors with

v a c u u m , i n s u l a t o r s ,  and m e t a l s , T h e  most productive o f  these

3 5 6methods are photoemission spectroscopy * * and various e le c t r ic a l

2
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2-U 7impedance measurement a . ’ Fhotoeatiaaion spectroscopy o f f e r s  compara­

t iv e ly  lov-reso lu tion  a ta te -dena lty  inform ation, but i t  extends over the  

e n t ire  energy range fo r  which th e re  a re  f i l l e d  s ta te s ,  This method 

y ie ld s  s ta te  d en s it ie s  fo r  cleaved semiconductor to  vacuum su rfaces , and 

for surfacea with f rac tio n a l monolayers of oxygen and o ther Im purities ,

The Impedance measurementa f a l l  in to  several broad c la sse s .  They a l l  

tend to  y ie ld  moderately h igh-reaolu tion  in te rface  information but only 

about s ta te s  with energies ly ing in  the  band gap of the bulk semiconductor. 

Doaene Of experimental methods have been devised to  deduce

2 3 7in te r face -s ta te  densit ies  and time constants from impedance measurements.*  

Because o f  th e i r  simple s tru c tu re  and advanced p lanar technology, MIS-C 

( m etal-insulator-seraiconductor-capacitors] are most widely used to  in v e s t i ­

gate in te rfaces . The two techniques which have y ie lded the most information 

on such in te rface  s ta te s  are th e  q u as is ta tic  and the conductance methods.

In the q u aa is ta tic  method, the v a r ia tio n  Of the Ultra-low frequency capa­

citance is  measured as a function of the  gate vo ltage . The conductance 

method consists  o f measuring th e  frequency dependence of the conductance 

fo r  d iffe ren t gate voltages.

Better data i s  needed in  order to  ve r ify  th e o re t ic a l  p red ic tio n s , 

discriminate among d if fe ren t th e o r ie s ,  and modify the th e o r ie s .  Three 

modifications are incorporated here Into the quasi s t a t i c  and conductance

methods to  improve these techniques. The f i r s t  i s  the use of a composite
o

in su la to r  consis ting  of th in  SiO^ followed by 25QA of baP^. The baF^ has

10 2such a large capacitance ( ^l><f/cm ) th a t  the composite in su la to r
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capacitance i s  almost e n t i re ly  due to  the SiO^, yet the composite
o

in su la to r  has fa r  lower leakage cu rren t than £50A of 310,,. Second* a 

low-bulk c a r r i e r  concentration su b s tra te  is  used, to  reduce the dep letion- 

layer capacitance. Third* low -in tens ity  l ig h t  a t  wavelength A * Q.02Qjim 

is  shone a t normal incidence on the  transparen t front Au surface o f a 

depleted MIS-C s t r u c tu r e . O thers '^  have Incorporated illum ination  in 

the study of MIS s t ru c tu re s ,  but usually  for d i f fe re n t  purposes and at 

much higher in t e n s i t i e s .  We use the l ig h t  to c rea te  electron-hole pa irs  

in the space-charge region. The e lec trons  in th i s  n-type m aterial are  

driven to  the back of the  depletion  la y e r  by the  apace-charge f ie ld s  * 

while th e  holes are driven to  the  in te r face .  The ligh t-generated  e le c ­

trons and holes reduce the  response time of any Inversion layer p resen t,  

and o f the in te rface  s ta te s  adjacent to  the valence band edge.^ The

reduction of these time constants makes i t  e a s ie r  to  s a t i s fy  the low-
o

frequency condition in  the q u a s is ta t ic  measurement, and i t  ra ise s  the  

c h a ra c te r is t ic  frequency of t h e i r  conductance (G^/nJ ) peaks in to  a 

range ( ? 20 Hz) where they can be e a s i ly  observed. The net re su l t  of 

these th ree  modifications i s  to  increase  the dynamic range of in te r fa c e -
3

s ta te  measurements from the usual two decades to over four decades. The

more accurate conductance method can be used over the whole hand gap, and
0

since the  low frequency condition is  eas ily  s a t i s f i e d  with the illum ina­

t i on,  the voltage dependence of the  surface p o te n t ia l  is  properly d e te r­

mined.

Several of the  most important methods used to  investiga te  In te r ­

face s ta te s  are reviewed in Section I I .  The q u a l i ty  and properties of
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la te rfaces  depend s e n s i t iv e ly  on the sample preparation process. For 

devices a low in t e r f a c e - s ta t e  density Is  o rd in arily  sought. This i s  

usually achieved by adding hydrogen to  the in te rface  e i th e r  by growing 

the oxide In steam or by annealing the sample in as a post deposition  

treatm ent. Our samples were prepared without hydrogen so the  nature of 

the uncontaminated Si/SiQ^ in terface could he s tud ied . In  addition  the  

SiOa layer ia t h in ,  and i t  is  l ike ly  th a t  the t ra n s i t io n  between the  Si 

and the  ia  a lso  more abrupt than those for th icker oxides. The

d e ta i ls  of the sample preparation  procedure are discussed in  Section I I I .

Section IV ia devoted to the q u as is ta tic  measurement, with and 

without ligh t. We found i t  is  almost impossible to  s a t i s f y  the q u a s i-  

s t a t i c  condition without shining l ig h t  on the sample. The kinds of e r ro rs  

th a t a re  introduced in to  the  density of s ta te s  and the surface p o te n t ia l s  

by not sa tis fy ing  the q u a s ls ta t lc  condition are presented . In a d d i t io n ,  

the properties o f  two sharp lines due to fluorine a t  the  in te rface  w i l l  

be examined in Section IV,C.

The conductance method is trea ted  in Section V. D ifferen t physical 

models are c r i t i c a l l y  reviewed and specia l a t ten tio n  is  paid  to  the shape 

of the experimental Gp/w and versus frequency curves. I t  is  demon­

s t r a te d  that th e  curves do not exactly f i t  e i th e r  the d is c re te - le v e l  o r

3 12 13the continuum model curves- A major approximation in the deriva tion  ’

of the continuum-model expressions ia that the capture cross sections and

the s ta te  d en s it ie s  vary l i t t l e  over an energy range o f  order kT about the

Fermi l e v e l N e i t h e r  of these conditions appears to  he w ell s a t i s f i e d ,

and when the complete expressions are used In place of th e  approximate
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o n e s , th e  th eo ry  pore c l o s e l y  rep rod u ces th e  ex p e r im en ta l r e s u l t s .  Moat

of our samples exhibit l i t t l e  f l a t  hand voltage s h i f t  due to  p o s it iv e
7

fixed charge and there la  no ind ica tion  of s t a t i s t i c a l  broadening.

However, in samples with p o s it iv e  fixed chargee s t a t i s t i c a l  broadening 

is  also present. Consequently, studies of th is  phenomenon are reported  

in Sections V, B and E.

Under illum ination the  conductance method allows the f a s t  and 

□low in terface s ta te s  to be resolved into  separate components. The energy 

and l ig h t  varia tion  of the in te rface  s ta te  response times is  t r e a te d  in 

Section VD. For most samples, the fas t time constants do not behave in  the 

manner predicted by the normal Shoekly-Reed-Hall (SfiM) model. A modi­

f ica tion  of the model is  suggested by the  experimental data. The only 

sample sa tisfy ing  the SRH model ia  the one exh ib iting  s t a t i s t i c a l  broaden­

ing.

Data on several samples is  presented in Section VI. Although 

there is  a la rge amount of experimetnal da ta , the th e o re t ic a l  understanding 

of the in te rface  between in su la to rs  and semiconductors Is s t i l l  ra th e r  poor.

A ten ta tive  in te rp re ta t io n  of the observed in te r fa c e -s ta te  d en s it ie s  

suggested by our data is  th a t  they are scattering-induced band t a i l s  of 

surface valence and conduction bands. Given th is  in te rp re ta t io n ,  we can 

deduce the imaginary part of the valence band A and conduction band ^  

s e l f  energies from the observations. These q uan tities  are presented in 

Section VII. F inally , Section VIII ia devoted to  concluding remarks.



I I .  PRINCIPAL FEATURES OF THE EXPERIMENTAL METHODS

Hunterous experimental methods have teen  devised to  investiga te
*

semiconductor In su la to r  in te r fa c e  s ta te  p ro p e r t ie s .  The more important 

ones are reviewed here and th e i r  p rinc ipa l fea tu res  are id e n t i f ie d .

A, Quaalatatlc method [Refs. 15-17 and discussed In d e ta i l  in  Sect. IV]

Using t h i s  method the to t a l  capacitance including the In terface 

capacitance and space charge capacitance, and the  dependence of the aur-
rj

face p o te n t ia l  on applied voltage can be obtained ’ r e la t iv e ly  simply 

over a large pa r t o f the energy gap. However, no d ire c t  information is  

provided on the nature  of these s ta te s .

B, Conductance method [Ref. 7 and discussed in d e ta i l  in Section V]

In th i s  method both th e  In terface  s ta te  density and the  ra te  

o f charge exchange [usually In the form of a time constant) with the bulk 

energy bands can be determined. I t  i s  possib le  in  p r in c ip le ,  th e re fo re , 

to  separate  the t o t a l  density o f s ta te s  in to  component p a r ts ,  each iden­

t i f i e d  by a c h a ra c te r is t ic  time constant and, qu ite  l ik e ly ,  a d iffe ren t 

physical o r ig in . However, the normal conductance method can only detect 

so -ca lled  " fas t"  in te r face  s t a t e s ,  such th a t  In ri-type (£-type) material 

the time constants o f s ta te s  in  the lower (upper) h a lf  of the band gap 

are usually  too long to  be observed. Thus complementary n_- and £-type 

samples are required to  examine the en tire  band gap, an obvious disadvantage.

7
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C. Capacltance-Voltage (C-V) method

19This method was fir&t suggested in  196? by Terman and also
2  3explained by Sze and Qoetzberger . In  th e  C-V method, the  high frequency 

( WT »  l )  capacitance v a r ia tio n  of th e  MIS s tructure  la measured as a 

function o f  bias voltage a t  a fixed tem perature■* The existence o f  in te r ­

face s ta te s  causes a s h i f t  A V of the high frequency Ideal* apace charge 

{without Inversion) associated MIG capacitance curve along the voltage

axis. The add itiona l charge AQ s to red  in the in terface s ta te s  isss

determined from  the voltage s h i f t  across the insulator capacitance;

A Qst = C o  ' AV * ( H - 1 )

Then the in te rface  s t a t e  density is given by

11 -  \ i  ®U
n » ' T T  i i v ,  < n - 2 >

where ^  1h the semiconductor surface p o ten tia l  (Fig, I I - l )  and A 13 
8

the area of the  front metal p la te .  This method provides a quick way to 

examine the general character of a sample but does not give accurate 

quantita tive  information*

Another methodT which is  s im ila r  to  Terman1 a method th a t  we have

20JuBt discussed, varies  the temperature to  s h i f t  the Fermi level* The 

gate voltage* which changes as charge i s  thermally excited out of the  

in terface s ta te s ,  ia adjusted to maintain the f l a t  band condition  ( i . e . ,  b o  

th a t  the conduction and valence bands approached the in te rface  with zero



9

slope). The charge A 4 leaving the Interface s ta te s  as they crossB B

the Fermi level la given by

(H -3)

where A Ej, 1b the temperature induced s h i f t  of the Fermi level and A V 

ia the sh if t  in  the voltage to  maintain the f l a t  band condition* Therefore 

the Interface s ta te  density  1 b

« • - 1  - J f r  .
This data reduction method assumes th a t  the  metal work function 

and the e lectron  a f f in i ty  of the semiconductor are temperature independent, 

approximations th a t  are somewhat doubtful. Also, I t  i s  assumed th a t  the 

in terface s ta te  density varies slowly over small energy ranges in  the  

forbidden gap. This condition i s  not v e i l  s a t i s f ie d  especia lly  near the 

band edges.

Gray and Brown observed maxima near the conduction and valence 

band edges which are probably an a r t i f a c t  a ris ing  from the use of a low 

ac frequency (150 KHeJ p Much higher frequency i s  required i f  Q i s  not5 E

to  c o n t r i b u t e  t o  the c a p a c i t a n c e .  Ours , and o t h e r  r e c e n t l y  r e p o r t e d  

d a t a ,  show t h e r e  is  no maxima near the band edgeE .

D. Peep level tran s ien t spectroscopy {DLTS)

Lang f i r s t  proposed the DLTS method and applied i t  to the study

22of bulk traps in  semiconductors. A collec tion  o f o ther tra n s ie n t  methods
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2 3i s  reviewed by Sah. DLTS was f i r s t  applied to  In te rface  s ta te s  in  MIS-

21*capacitors by Yamasaki, e t a l .  In th is  method a sequence o f e l e c t r i c a l

voltage pulses is  applied to  an MIS-capacitor. Suppose fo r  defin iteness 

th a t  i t  is  n-type. In the quiescent s ta te  the substra te  surface i s  kept 

in  depletion by a d. c.  gate voltage V . At t  ^ - t rt, an add itiona l po s it ive& v
voltage pulse o f amplitude i s  applied to  the MlS-capacitor tha t tem­

p o ra rily  drives the surface of the su b s tra te  into  accumulation or weak 

dep letion , then i t  drops back to  the  quiescent value. This causes some 

in terface  s ta te s  and bulk tra p s  to  cross the  Fermi leve l and become f i l l e d  

by e lec trons. When the  energy bands re tu rn  to  the quiescent s t a t e ,  those 

e lectrons above the Fermi lev e l are emitted from the in te rface  s ta te s  and 

bulk traps in to  the conduction band with c h a ra c te r is t ic  emission ra te s .  

Throughout th is  process the changes Of the capacitance a re  monitored. The 

ch a ra c te r is t ic  emission ra te  depends exponentially on temperature

e , =  *k<rB v A t )  , (11_5 )

where is  the bulk c a r r ie r  concentration in  the conduction band, v is 

the rms thermal ve loc ity  of e lec trons  In the  SI hulk, is  the e lec tro n -

capture cross sec tio n , and ^  i s  the surface p o te n t ia l .

This experimental procedure is  repeated while the sample is  

subjected to  a thermal scan. TTi I b r e s u l t s  in  the capacitance tran s ien ts  

shown schematically in  Fig. ( I I - 2 ) .  The capacitance d ifference  measured 

with a dual channel boxcar in te g ra to r  cf t ^)  -  c( t^)  &t sampling times 

and t„  goes through a maximum a t  temperature T , The maximum occurs
lllaX
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when the emission time constant approximately equals the  sampling window 

t^  -  t ^ t The emission ra te  Is re la ted  to  the sampling times through the 

equation,

Assuming the in terface s t a t e  capacitance is  much smaller than the insu la to r 

capacitance and varies  slowly with energyt the  in te rface  s ta te  density 

a t  maximum capacitance change is

and Njj(Vf) is  the shallow donor density a t  depletion  la y e r  depth W. One 

o f  the major advantages of the DLTtS method is th a t  i t  measures dynamic 

in te r fa c e  properties d ire c tly  in  a way not a ffec ted  by surface po ten tia l 

f lu c tu a tio n s ,  so time constants can be accurate ly  determined.

E. Elevated temperature method

slow in te rface  s ta tes  by elevating the temperature of samples bo they could 

study the lover h a lf  of the band gap fo r n-type samples. The measurable 

energy range includes week inversion and depletion  (0.302 eV < E K. O.TOt eV). 

However, th e i r  s e n s i t iv i ty  is low. The range of in te r fa c e  sta te  densit ies  

covered by th e i r  measurement extends over only about one decade.

( I I - 6 )

M l , * ) '  c Y t . V t r -  M t . / h )

is  the energy corresponding to  the maximum capacitance change

Cooper and Schwartz t r i e d  to  shorten the time constants of the
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I I I .  SAMPLE PREPARATION

Samples are prepared on low c a r r ie r  concentration n-type sub­

s t r a te s  which a re  300 thick. The insulators are composites consisting
o

of th in  SiO^ layers followed by £?0A of LaF^. The thin  310^ layers were 

thermally grown in dry 0^ a t 1150°C with no exposure to hydrogen or water
O

vapor a t elevated temperatures. The S10^ layers were followed by 250A

e-guti deposited LaF^ films. The LaF  ̂ film possesses very thin  dipole layers

a t  i t s  surfaces which produce large capacitances coupled by the ionic

conductivity o f the material. In these MIS structures, the composite

in su la to r  also  acts as a blocking contact to  electronic conduction as

long as the breakdown voltage of the device is  not exceeded. The effective

capacitance of the LaF  ̂ film is  Independent of the actual thickness as

long as the measurement frequency lies below a charac teris tic  value cor-
□

responding to  the  RC time constant of the For a typical 250A film

a t  room temperature, we have established that the charac teris tic  frequency 

is  well above 100 KHz. At high enough frequencies, or a t low enough

temperatures where the ionic conduction ceases, the capacitance of LaF^

10film Is expected to decrease to i t s  geometrical value. For sample Ei- 5 8

2
at room temperature, the measured net insulator capacitance ■ 139 nF/cm .

Assuming that the d ie lec tric  constant for BiÔ  ig 3-9, the theore tica l
□ p

capacitance of a 250A layer of Si°,, is 130 nF/cm , Hence the net Insulator

capacitance a r ise s  to ta l ly  from the SiO  ̂ layer. Since the d ie lec tr ic

Ih
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constant of SiO^ I s  a weak function of the impurity Ĥ O and OK content, 

the oxide fabrication  method, and the frequency, the rea l 31 Q,, d ie le c t r ic  

constant of th is  sample may d i f f e r  s l ig h t ly  from 3-9- At the  beginning 

of growth, the oxide thickness Increases lin ea r ly  with time. Then the 

growth process slows and the  thickness increases as the square root of 

time. Thus the oxide may change character depending on whether i t  i s  

grown d irec tly  to  the thickness needed, or grown too th ick  and then etched 

to  the f in a l thickness- Both types of oxides are trea ted  in  th is  study- 

^ftiese observations may account fo r some of the differences found among 

the oxides.

Table I I I - l .  Insu lator capacitance measured on Si-5& using the 

quasi s ta t ic  method a t three temperatures.

T [°K] 77 195 295

CQ [nF/cm2 ] 120 132 139

Table I I I - l  shows tha t is  311 ionic conductor a t T70K

but the capacitance is  reduced when the temperature is  lowered. The e f ­

fective capacitance of the 1*®  ̂ layer at 77°K1 assuming th a t  the oxide
2

capacitance is  temperature independent, i s  BSD nF/cra . This is  s t i l l  

very large.

The back contact of the MIS s truc tu re  consists o f an e-gun 

deposited A1 film  which is  then sintered onto the surface at the Si-Al 

eu tec tic  temperature 550°C, in flowing gas for 10 minutes. When th is
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back contact Is made properly i t  acta as an ohmic con tact. I f  there  ia  

a f in i te  a e r ie s  re s is tan ce  Introduced by the back contact i t  w ill  cause 

an ex tra  high frequency peak in the Gp/ltf versus f curve. Mo such peak 

ia observed in  well prepared samples. The metal p la te  on the front b u t -

is
face is  a 125A th ick  e-gun deposited Au film . The l ig h t  transm ission 

co e ff ic ien t  o f Au film ia  g reater than 505C. F inally , ve anneal the  sample 

in  flowing a t ^00°C fo r  20 minutes.

We observed severa l improvements of the sample a f t e r  annealing;

1. In the  q u a s is ta t ic  measurement, because the in te rface  s ta te  density

decreases, the r a t io  o f C to C , (maximum and minimum capacitancemax min

of the  capacitance curve) increases a f t e r  annealing. For example,
o o

31-96 (70A S10_/250A LuF ) has C /C . approximately 2.5 and 5 2 3 max mi n

before and a f te r  annealing, respectively . This sample ia  an extreme 

case.
2. P ositive  fixed charges are reduced because we observe the capacitance 

curve a h l f t  along the  voltage axis. For Si-TT (250A S i0 2 / 2 5 0A LaF3) 

before annealing, the  f l a t  band voltage ia V = l.^V. A fter annealing, 

the f la t-b an d  voltage moves to O.CiV. The decrease in  the in te r face  

s ta te  density  noted in  item one may also be a consequence of the 

reduction of the fixed charge.

3. In genera l,  the leakage current decreases a f te r  annealing.

A fter the samples were prepared, they were kept in a dry box 

to avoid d r i f t s  tha t o thers  have reported to  be connected with humidity. 

The s t a b i l i t y  of most of our samples wao qu ite  good.
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A de ta iled  step-by-step sample preparation procedure Is  l is te d

In Table (111-2). This was the standard preparation procedure except

Btep 3 was applied only I f  the oxide was too thick> The oxide thickness
*-

and I ts  index of re frac tio n  were measured with an Ellipeometer. Tbe 

uncertainty  is  l!S.
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Table I I I - 2

Hie wafers were n-type phosphorous eloped ^ 100^ or ^ 110^ o rien ted  

samples, with r e s i s t i v i t y  P “ 100 J1 and thickness 300 jkm.

1. Wafer cleaning procedures;

a . UgO r in s e ,  5 minutes

b. (2:l)eteh* 5 minuteB
c . Ĥ O r i n s e , 10 minutes

d. Blow dry with gas 

2* SiO,-, growth procedures;

a. K^i 5 minutes
o

b. Dry 0^ a t  1150°C for t  minutes (U minutes to  grow U5GA)

c. Nj, 10 minutes

3. SIO^ etch ing  procedure: (when required)
^ o

a. HF:H^0 ( l;10 ) for t 1 minutes (etching ra te  = lQA/sec)

b. Wethanal r i n s e ,  5 minutes

c. Running rinse*  5 minutes

d. Blow dry with 

U. Back ohmic co n tac t:

a. Mask th e  fron t surface of the wafer with black wax

b. Etch away th e  SiO^ on th e  back with ( l : l )  fo r UO sec

c. Remove black wax with tr ich io ro e th y len e

d. Acetone r in s e ,  3 minutes

e. Methanal r in s e ,  3 minutes

f. Blow dry with



19

g. Immediately deposit 300QA A1 (e-gun) on the  bach aurface 

h- S in ter a t  550aC In flowing Ng, 10 minuteB

i* Dice the  wafer in to  squares of 125 mil each side ( s 0.101 cm ) 

5* e-gun deposit LaF^, the  th in  Au metal p la te ,  and the Cr-Au front

contact dot

a. T rich loroethylene, 3 minutes

b. Acetone r in s e ,  3 minutes

c . Methanal r in s e ,  3 minutes

d. Blow dry with

e -
D

Deposit 250A LaF^ on the  front surface

f  *
2  o

Deposit 0,0^2 cm 125A Au on top o f the LaF^ film

g*
o- o 

Deposit 300A Cr then 200DA Au on a corner of

as the front contact dot

the th in  Au film

6 , Anneal the sample a t U00°C In flowing for 20 minutes.



IV, QUASISTATIC METHOD

A. Quafliatatic capacitance method

1, The measurement method

In the q u s s is ta t lc  method, a l in ea r ly  varying voltage with 

constant ramp ra te  i s  applied to  the sample. The current l [ t )  

charging the sample is  then measured. The to ta l  capacitance per unit 

area A is

I CO
C» s ‘  A ' M M  , I V - 1 )

provided tha t the ramp r a te  i s  slow enough to  maintain the sample in 

thermal equilibrium.

In thermal equilibrium the equivalent c ircu it  simplifies to 

th a t  shown in Figure (1V-1), I f  the to t a l  (depletion/accumulation plus 

inversion) space charge capacitance per un it area is  denoted by and

3  3the t o t a l  in terface s ta te  capacitance per unit area is  C , and the in­

su la to r  capacitance per u n i t  area is  Cq , then

I _ I

so

G. -+ C" + Ci . <IV-2a>

,,s$ r  (IV-2b)C ----- --------- <-*
C* -  C*s

20
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The space charge capacitance can he ca lcu la ted  th e o re t ic a l ly  

by the  following equations i f  we know the surface p o te n tia l  ^  and
2the bulk c a r r i e r  concentration  For p—type s u b s t r a te s 4 one finds

C, (IV-3a)
■*P

where

and

Fr e C ( * * * '  *  P  %  ,

*  ■ ( - W H *  . •
la  p e rm it t iv i ty  of s i l ic o n

P ■ T T  , k ia  Bolt smarm's constant

M k -  K  .

For n-type su b s tra te s  the expression changes form s l ig h t ly  so

e I
a  - -----— —----------------------  ■---------— --------— (IV-3b)

where

p i r l i -  ( e ' ^  + - 1) + ( e  -  f  V ' ) ] *
* U v  »

l * * % C  )
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Hence toy measuring C^, n^, and the gate voltage V dependence of C ^fV ), 

and ' I f  (v ) one can determine the voltage v a r ia t io n  of the to t a l  I n te r -
B

face s ta te  capacitance.

The ap p licab ili ty  of th is  method 1b l im ited  to  s truc tu res  for 

which the leakage current remains small with respect to  the charging 

cu rren t . In the presence of small leakage cu rren ts  the charging current 

Is measured re la t iv e  to  the  s t a t i c  current-V oltage (I-V) curve.

2 . The o u a s ls ta t lc  condition

In the quasi s t a t i c  measurement, although the ramp ra te  i s  a 

constan t, the  varia tion  ra te  o f  the surface p o te n t ia l  d ^ g / d t  ia not 

always a constant- I t  Is  la rg e r  In depletion and weak inversion than in 

strong inversion and accumulation (see Figure IV-it). I t  i s  the s i t e  of 

d ^  /d t  th a t  determines whether or not the system ia  in thermal equilibrium 

(see Eq. 1V-3). The formation of the inversion  la y e r ,  and the capture 

and emission of charges toy in te r fa c e  s ta te s  a l l  depend d ire c tly  on the 

surface p o te n tia l .  The c r i t e r io n  th a t  the sample remains In thermal
g

equilibrium while V changes [the q u a s is ta t ic  condition) is

~  I , <«-*>

where i s  the la rg es t  response time of any in te rface  s ta te  or space-max

charge capacitance encountered in  the measurement and ^  » e/kT. At very 

small applied volt&ges (-0 .1  to  0.1V), d T j^ /d t  is  nearly the same as the 

ramp r a te ,  while i s  l im ited  toy the time constant for the "slow"
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violence--band-side In te rface  s ta te s  ♦ 7ro» the  Conductance measurements

fo r the sample 3i-5fl discussed l a t e r ,  we have determined that T >  3 eec

fo r th ese  s ta te s  in  the  dark, so tha t (i'C ■ d /d t 1 for the slowests

ramp ra te s  we could use. In the presence o f  l ig h t ,  however, T  Is  reduced 

to  the millisecond range and the  e lec tron ic  system which Is in a ligh t 

driven steady s ta te  follows the ramped gate voltage . We shall denote 

th i s  arrangement with the phrase "the quftsfstatlc condition ia well 

s a t i s f ie d " .

The v a r ia tio n  of the low-frequency capacitance vs. bias voltage 

i s  shown in  Figure IV-2 for sample S i-56. The d ifferen t low-frequency 

curves were a l l  taken at the same ramp r a te ,  9*0̂ + mV/sec, but with d if ­

feren t l i g h t  in te n s i t i e s  at wavelength 0 , 8 2 0  shone on the front

surface . The maximum is 2.12 ^V/cm and the other two were obtained

- 1  - 2by using n eu tra l  density  f i l t e r s  o f 10 and 10 attenuation. For light

in te n s i t i e s  up to  t* 10 /*Vf/cm , there is  l i t t l e  additional change in

th e  shape of the q u as is ta t ic  curves from the n o - f i l te r  (2,12 flV /cm  ) curve.

However, fo r  in te n s i t i e s  beyond th a t ,  the 3pace-charge d is tr ibu tion  begins

to  be modified by the  l ig h t  in te n s i ty ,  and the shape changes once more.**

I t  i s  very easy to mistakenly conclude that the quasista tic

condition is  s a t i s f i e d  when in fact i t  i s  no t. One is  tempted to choose

ITa ramp ra te  by s ta r t in g  from a ty p ica l value reported before and then 

decrease i t  u n t i l  the  shape of the capacitance curve becomes independent 

Of the ramp r a t e . ^  We found th a t  the shape of the C curve in the dark 

was independent o f ramp ra te s  between 6 mV/sec and 35 mV/sec. Using this



crite r ion , we were content with a romp ra te  of 9 mV/eec. I t  was only 

a f te r  we illuminated the sample and observed the narrowing of the quasi- 

s ta t ic  curve on the long-time-constant ( in  n-type m a te r ia l) ,  valence- 

band aide o f the curve tha t the inaccuracy of th is  procedure became ap­

parent, 'Riere are evidently large ranges in ramp ra te  over which the 

shape of the capacitance voltage curve is  constant , but nevertheless for 

some s ta tes  the quas is ta tic  condition i s  not s a t is f ie d  so they do not 

respond. This happens because the d if fe re n t  major classes of s ta te s  have 

time-constant d is tr ibu tions  that are separated by many orders of magnitude.

The use of l ig h t  appears to be an excellent way to  te s t  whether 

or not the quasis ta tic  condition is  Indeed s a t i s f ie d .  However, slow 

sta tes  whose response times are l ig h t- in se n s it iv e  may s t i l l  be missed.

3, Determination of

Features of the quasista tic  C-V curve can be understood easily  

by examining the equivalent c ircu it  in  Figure (IV-1), For large negative 

gate voltages when the sample ia in inversion or for large positive

voltageB when the sample is  in accumulation then C_ C * and Eq. (lV-2a)D o
becomes

 1------- = —I— + --------- 1------------   > ---------- ( IV-5)
C*S C *  „

The value of CQ measured a t the high and low voltage extremes w ill  be 

used, In order to obtain an accurate value for Cq the bias voltage must 

be extended well in to  the inversion and accumulation ranges. Hence, good, 

lov-lesJtage insulators are needed for accurate measurements.
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In Figure (lY -2), the  apparent Cq ia increasing  fo r  the curves 

measured in  progressively  higher l i g h t  in te n s i t i e s  because except fo r  the 

no f i l t e r  case, none s a t i s f y  the q u as is ta t ic  condition . Even fo r  th e
8-3-la rg es t and sm allest voltages the e f fec t iv e  magnitudes of C + in 

Fq. (TV-5) do not become much la rg e r  than u n t i l  an in tense enough 

l ig h t  ia  shown on the sample to  s a t is fy  the q u a s is ta t ic  condition.

For comparison to other more ty p ic a l  experiments Figure (lV-2)

also shows a th e o re t ic a l  q u a s is ta t ic  curve (dashed) fo r  a sample v i th  a
o 1 6  *3th icker oxide (750A) and higher c a r r i e r  concentration (2.^ x 10 cm"" )

but v i th  our measured In te rface  s ta te  density . This oxide th ickness and

c a r r ie r  concentration are commonly used by other experimenters. With

th is  smoother curve i t  is  d i f f i c u l t  to  pick the co rrec t Cg and th e re  is

obviously le ss  reso lu tion .

. Determination of the surface p o te n tia l

What has now become the standard vay of deducing the surface

p o ten tia l  from the low-frequency capacitance was f i r s t  suggested by 

27Berglutid. The applied voltage V is  divided between the oxide and the 

space charge layer. 'Hius a small change dV is

<AV = 4  & ‘U s (TV-6)

where dVQx = dQ/C^ i s  the voltage drop across the oxide and d 'Tj' q ia  the 

change in the  surface p o te n t ia l .  The quantity  dQ is  the d i f f e r e n t ia l  

charge tran sfe rred  to  the sample front ( in su la to r  s ide) surface associated  

with the voltage change dVT so dQ = C -dV, Combining these equations,
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we get the Berglund expression fo r  the re la t io n  between the  d if fe ren t ia l  

surface p o te n t ia l  and applied voltage:

po ten tia l fo r  s u f f ic ie n t ly  sm all, can be determined by e i th e r  of two 

methods.

The f i r s t  method is  to  compare the measured quaslfltatic  curve 

with the id ea l low-frequency C-V curve. Because the quasi s t a t i c  measure­

ment y ie lds  a thermal equilibrium C-V curve and in  strong inversion and 

accumulation g  C^, the  measured quasi s ta t ic  curve should coincide 

with the ideal low-frequency C-V curve both in the strong inversion and

accumulation regions. Then one p lo ts  C__[V) as a function of /lw (V) -  (V_)QJp  ̂ s s u

Obtained from the  in tegra tion  in  Eq. (iV-Tb) and compares the  re su l t  with 

the ideal capacitance versus curve. The displacement of the ends of

the curve along the surface p o te n tia l  axis is  the additive constant

(V ]. In order to  get the id e a l  C-V curve, I t  i s  necessary to  know 

the thickness o f the oxide (or the  Insu lator capacitance) and the bulk 

c a r r ie r  concentration. The uncerta in ty  in the measurement of these 

parameters makes th is  method inaccurate .

C iv-?sO

In teg ra tin g  along the q u a s is ta t ic  curve we get

The constant ^  (V ), which ia  the maximum excursion of the  surfaceB vJ
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Hie more accurate way to  determine the constant {V ) i s  by9 (J

f i t t in g  the observed high-frequency depletion layer capacitance to  i t s  

theore tica l dependence on in the large - f r ^ .  l im it ,  C, can be•B 9

experimentally determined by removing CQ from the high frequency capaci­

tance measured with the capacitance bridge. The th e o re t ic a l  expression 

fo r the high frequency depletion layer capacitance is  found by simply 

se tt in g  the minority ca rr ie r  concentration to  aero in  the formula for 

Cp (Eq, IV-3). The minority carr ie rs  in the inversion layer do not
p

reepond to a high frequency ac signal. The experiment data points and

theore tica lly  calculated curve were Shown in Figure £ TV—3)- Considering
7

an n-type sample* the appropriate expression is :

c ? ■ e  - t -  '  -  _ ( l v - 8)

where 6  i s  the semiconductor's permittivity* and ^ ■ e/kT, Figure ClV- î)

- 2  r t i*i s  a plot of as a function of

t  *
The quantity Is determined from Eqs. (IV-7b) and (IV-9) by numerical

integration of the curves in Figure (IV-^). The aero in te rcep t and the 
_2

slope of the curve determine the maximum excursion o f the surface

poten tia l and the bulk ca rr ie r  concentration n^ , respectively .

Notice that the slopes of the curves for the d iffe ren t l ig h t  in te n s i t ie s  

are a l l  the same, but the apparent value of Oj* (V, } changes with l ig h t
1  3  ( J

in tensity .
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Hie bulk c a r r ie r  concentration can also be determined from the 

measured r e s i s t iv i ty  ^  :

where jU ^ and are the electron  and hole m obilities respec tiv e ly  and

n^ and are the bulk d en s it ie s  of e lec trons  and holes re sp ec t iv e ly .  For 

n-type m aterials p^ and the equation reduces to  the  second form in

Eq. (iV -io). The r e s i s t i v i t y  ^ v&s measured using the four-point probe

method. The value o f n^ determined th is  way agrees with the  re su l ts  from

be used to  conclude tha t the  q u as is ta tic  condition i s  s a t i s f i e d  in  a 

given experiment.

the  q u as is ta tic  condition. Figure (IV-3) ia  a plot of the  apparent sur­

face po ten tia l dependence on applied voltage for the d i f fe re n t  l ig h t  in ­

te n s i t i e s .  Only the  curve fo r  the h ighest l ig h t  in te n s i ty ,  the n o - f i l t e r  

case labeled 1 0 ° , corresponds to an instance in  which the q u as is ta t ic  

condition is  s a t i s f ie d .  The other curves a l l  correspond to  an anomalously
FT

la rge range for . Others have observed values th a t  extend over

a la rge r  range than ia physically  possible corresponding to  a surface 

Fermi energy tha t changes by more than the  band gap. These authors ascribe  

the anomalously large range to  ITa gross nonuniformity", bu t the underlying 

physical phenomenon is  never made c lea r .  As we sh a ll  demonstrate in 

Section V, the ^p/uJ vs. frequency curves display no s t a t i s t i c a l  or

the  p lo ts .  Evidently the  fact th a t  th e  correct i s  measured cannot

The apparent v a r ia t io n  of is  another a r t i f a c t  of v io la t in g
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o th er  unexpected broadening, so there  is  no p o s s ib i l i ty  of a gross non- 

uniform ity being present In our samples. Hence ve conclude th a t  the fea­

tu re s  formerly ascribed to  gross nonunifonnlty were Instead the  r e s u l t  of 

lo n g - in te r fa c e -s ta te  time con stan ts , bo the q u a s ia ta t i s  condition was not 

s a t i s f i e d  In the measurement.

Lowering the temperature increases a l l  the time con s tan ts . At 

7 T°K: I t  would be Impossible to  s a t i s fy  the q u a s is ta t ic  condition without

the help o f I llum ination , The reports  on lower temperature C-V curves

28a l l  ex h ib it  a tendency to  resemble the high frequency curve. Wot

s a t is fy in g  the q u a s is ta t ic  condition, these  curves do not y ie ld  correct

surface p o ten tia l  ranges. Our measurement in  various l ig h t  in te n s i t i e s

c le a r ly  shows th a t  a t  lower temperature th e  curve moves to  a higher to t a l

capacitance i f  the quasi s t a t i c  condition is  s a t i s f i e d .  The ^  range,s

i  , a t th ree  d if fe re n t  temperatures i s  l i s t e d  in Table ( iV -l) .flnjLX

Obviously the range of never exceeds the band gap ener®'.

Table IV-1

t E°k ] P^UW/cn^l tty [eV] sroax

298 2 . 1 2 0.667

195 2 0 , h 0*565

77 2 2 . 0 0.k98

We sha ll introduce experimental evidence in Section V th a t  

the la rg e s t  s h i f t  o f the surface p o ten tia l  caused by the b r ig h tes t  l ig h t
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ueed a t  room temperature is  Q.Q60Y, which is  small compared to  the 

apparent s h i f t  In due to  the l ig h t ,  Figure (IV-10. Thus I f  the

ramp ra te  ia  so la rge  that the quasi s t a t i c  condition i s  v io la te d ,  one 

voilld erroneously conclude th a t the surface Fermi energy

E „  a  E f  +  «  ' * «  ( i v - u )

comes c lo se r  to  th e  vslence-band edge than i t  ac tu a lly  does . This v i l l

d i s to r t  the energy dependence of the in te rface  s ta te  density  and give i t

a smoother IP-shaped character than is  proper.

The f l a t  band voltage and so the "fixed p o s it iv e  charges”*^ a t

the in te rface  are almost uneffected by the l i g h t .  Notice in  Figure {IV-M

th a t while th e  apparent surface po ten tia l excursion decreases as the l ig h t

in te n s i ty  is  decreased, the f l a t  band voltage changes by only ** 20  mV.

The measured f l a t  band voltage is  0.81Y. The work function ( to  vacuum)

difference  between the Au fron t contact and the Al back contact is  0 . 55Y.

This work function difference deduced from photoresponse is  0.9V. Hence,

the con tribu tion  to the f l a t  band voltage from the fixed p o s it iv e  charges

l i e s  between O.261V and -Q.0 9 V depending on which work function d ifference

is  appropria te  in  th is  case. I f  one ascribes the d iffe rence  between the

observed O.BlV and the vacuum work function d ifference O .^Y  to  fixed
2

p o s it iv e  charges „ then with the oxide capacitance “■ 139 nf/cm , 

one finds ^  = 3.6 j  ID  ̂ coul/cm^, or 3.3 x 10-  ̂ charges/su rface  atom.

However, because o f  the uncertain ty  in the appropriate work function d i f ­

ference i t  is  possible  th a t there is  much le ss  positive  f ixed  charge. To 

s e t t l e  th is  question unambiguously samples should he prepared using the  

same metal on the front and back contacts.
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B. Apparatus

The apparatus for a q u as is ta tic  capacitance measurement is  

depicted schematically in  Figure (IV-6 ). The voltage ramp generator 

must he capable Of producing l in ea r  ramps a t  ra te s  dV/dt from 1 to 

100 raV/sec. Except vhen the  voltage nears the  preset l im i t s ,  dV/dt is  

constant to  b e t te r  than 13! In our apparatus. A Kelthley model 602 e le c ­

trometer was used as the opera tional am p lif ie r* The Mnormal” mode was 

used to minimize  the noise. In order to  maintain the sample in  thermal 

equilibrium, a slow ramp r a te  i s  p referred . Hie minimum ramp ra te  ia  

lim ited by the signal to noise r a t io .  We use ramp ra te s  between 5 and 

50 mV/sec, with most of the  data taken around 10 mV/sec.

C, Extra features in q u as is ta t ic  C-V curve

Hiere are two subsid iary  peaks in  Figure (IV-2) th a t  appear 

near -0.5 and +0.2V. A hump can be present on the C-V curve i f  the ramp 

ra te  is  so high th a t  the sample is  driven weld away from thermal equilibrium. 

When the ramp ra te  1b positive  for n-type m ateria ls  the hump ia  caused by 

inversion charge e f fec ts .  A hump caused by th i s  mechanism usually  w il l  

not appear when a negative ramp ra te  i s  applied because the e lec tron  

mobility i s  much la rger than the hole m obility .^  We observed these two 

peaks for both positive  and negative ramps. Also, they are revealed by 

the  application of l ig h t ,  a circumstance in which the time constant o f the  

inversion layer i s  reduced. Hius the peaks we observe do not o rig ina te  

from a fa i lu re  to  sa tis fy  th e  q u as is ta tic  condition.
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These two peeks correspond to  energies in  the  Si-SiO^ system

29-31where Ion-implanted fluorine i s  known to  produce d isc re te  donor lev e ls ,

We there fo re  a sc r ib e  these features to  f luorine  ions th a t  have diffused 

from the to  th e  in te rface  during the post deposition anneal. For
O

500A SiD^ samples these  two peaks become so small tha t we can ju s t  barely 

d iscern  th e i r  p r e s e n c e  and cannot make an accurate measurement of th e ir  

density . Apparently the th ick  oxide prevents most of the fluorine ions 

from d iffus ing  to  the  in te rface .

When th e  wavelength A of l ig h t  was increased u n t i l  the photon 

energy is  smaller than the band gap energy then the two subsidiary  peaks 

disappeared. From th i s  we conclude th a t  the e f fe c t  o f the  l ig h t  ia  re ­

la ted  to  the reduction of in te rface  s t a t e  time co n s tan ts t ra th e r  than a 

d irec t photo—ex c ita t io n  of th e  d isc re te  s ta te s .

These two peaks can hardly be noticed in the dark a t room 

temperature. But they are very pronounced at l iq u id  n itrogen  temperature 

(TT°K) even without the illum ination . Under low illum ination (PQ = 1.60}*W/cs 

shone on the  sample a t 77°EC both peaks grow. But in more intense l ig h t  

(Fq -  1 6,5 ^*W/cm ) ,  the f i r s t  peak broadens and is  reduced in amplitude.

The second peak ex h ib its  the same tren d  but to  a le sse r  ex ten t. There are 

two possible causes fo r  th i s  behavior:

1* The l ig h t  increases  the number of holes in  the  inversion layer and

i t s  capacitance can fu lly  respond because i t s  time constant is  sho rt­

ened, The enhanced response o f th e  inversion layer may mask the

fluorine  l in e .
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2. The fluorine  response r a te  is  In some fashion being reduced by the 

l ig h t .  *ftie observed l ig h t  dependent broadening may simply be l i f e ­

time broadening* The second peak is  broader than the f i r s t  and so 

Is not a ffec ted  as much by the light*

These two peaks taken a t  room temperature are shown on extended 

scales and p lo tted  against the  in te rface  Fermi energy re la t iv e  to  the 

valence-tand edge (see Figures IV-T and 8 ), Both peaks have been f i t  to  

Lorentaian and Gaussian curves* The parameters of these f i t s  are presented 

in Table IV-2. Since there  is  no systematic way to pick the  base l ine  for 

these curves, the  shape function cannot be determined with certainty*

However, the  Gaussian seems to  o f f e r  a s l ig h t ly  superior f i t  in both 

cases. Several features o f  these curves a re  noteworthy.

1* The widths of both peaks (espec ia lly  the  one at 0 .2 t6  eV} are quite

narrow compared to the  energy gap.

lU 22 .  Since the density of surface atoms on the  (100) surface ia 6 . 8  x 10 cm , 

the area under the peaks (using the Gaussian shape) implies there are

3.3 x 1 0   ̂ and 1 . 8  x 10   ̂ f luorines  per in terface s i t e ,  re sp ec t iv e ly ,

con tribu ting  to the f i r s t  and second peak*

3 , For both the  Gaussian and Lorentzian shapes, the r a t io  of the area

of peak one to peak two is  1 . 8 6 .

A systematic study of these fea tures  is  required to fu lly  understand them*
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V. CONDUCTANCE METHOD

A. The method

7
This method was devised by Nieollian and Goetzberger* Much 

more detailed  in terface s ta te  density inforination, which y ie lds  insigh t 

in to  th e ir  physical o r ig in ,  can be obtained when the f u l l  frequency range 

of the MQS capacitance and conductance are measured and analyzed. The 

data collection  and reduction involved in th is  method ia a highly labor- 

intensive a c t iv i ty ,  but much more information i s  revealed,

Normally th is  method can Only be employed conveniently to study 

the in terfaces in  accumulation and depletion. Even using both n - end 

p-type materials in order to  cover a la rger energy range, very l i t t l e  

information ia gained on the behavior o f interface s ta te s  in the  midgap 

and inversion regions. Moreover there  i s  no assurance when one uses two 

samples * one n-type and the  other p-type, that th e ir  in terface s ta te  

densities  are iden tica l .  The u3e of l ig h t  in our method shortens time 

constants of the s ta te s  one encounters in weak to strong inversionT so 

the ia te rface  s ta te  p ro f i le  can be tracked throughout the band gap on 

the  same sample.
7

The "conductance method’ s t a r t s  by applying a small ac signal 

to  the MGS s truc tu re , Tfte real and imaginary parte of the impedance (or 

the to ta l  series-capacitance C and d iss ipa tion-fac to r  D) are measuredh?i

as functions of the ac signal frequency for d ifferen t fixed-bies voltages 

and temperatures.

1+3



The s u r fa c e  p o t e n t i a l  v a r ie s  In  r e sp o n se  t o  th e  ac s i g n a l

causing the  in te r fa c e  s ta te s  to  move re la t iv e  to  the Fermi le v e l ,  so 

e lectrons are captured and emitted by in te rface  s t a t e s . Thus * th e re  

is  a capacitance associa ted  with the charge s to red  In the in te r fa c e  

S ta te s , and the density  Of in te r face  States Ngg is  re la ted  to  by

the  equation

where e i s  the charge of an e lec tron  and A is  the surface area* The

The in te r fa c e  s t a t e  capacitance and response time can be ex trac ted  from 

the  measurements. A bridge , depending on the magnitudes of the  param eters, 

reads e i th e r  the to t a l  p a ra l le l  capacitance Cpp and to ta l  p a r a l le l  con­

ductance Gpp, or th e  to t a l  s e r ie s  capacitance Cg  ̂ and d is s ip a t io n  fac to r  

D which i s  defined as the r a t i o  o f the rea l p a r t of the impedance to 

imaginary p a rt of the  impedance. The re la tio n s  among these parameters 

are shown in  the in se ts  to  Figure (V -l)*

t
t V - 1 )

response time 'T o f  e lec trons  being captured or emitted by in te r fa c e  

state® Is r e la te d  to  an e f fe c t iv e  res is tance  R by

X  -  r c h ( v - 2 )

From the measured to t a l  se r ie s  capacitance C, and d is s ip a t io n

factor D ve can determine the  frequency dependence gf + C 

(see Fig. (V-2)) from the expressions:
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and

c .  t P
UJ £v-U}

In the p a s t , samples were used fo r which Cn and C

Then the accuracy of the  information deduced from C in Eq. (3) vos

lim ited  because CST d if fe r s  from CQ by only a few percent. I t  is  evi-

t io n .  Hence most experiments have re lied  on extracting information from

tlo n s ,  contain the  same information. However, there are instances In 

which the information can be ex tracted  from one more easily  than from 

the o ther. By f i t t i n g  the th eo re tica l  curves to the data points calcu­

la ted  from Eqs. CV-3) and (V-U), in terface s ta te  capacitances and time 

constants can be extracted .

B. Physical models

formulas deduced from d iffe ren t models w ill  be compared against the ex­

perimental data. The data is  su f f ic ie n t ly  accurate so i t  i s  possible to  

discriminate between the models and even to  suggest corrections to the 

standard r e s u l t s .

dent from Eq, (U) th a t  G /w does not suffer as badly from th is  limit*

, which accounts for the designation "conductance method''. In
Jr

p rin c ip le ,  G /(O and C » which are connected by the Kramers-Kronig re la

The an a ly tic a l  expressions for the frequency variation of Ĉ ( U)) 

and G [u))/0d depend on the physical model of the interface s ta te s . The



1 . D is c r e t e  model

Suppose the Interface s ta te s  are made of several components

with d ifferen t physical o rig ins , each designated by an Index J .  Consider 

f i r s t  a co llec tion  of s ing le -leve l in terface s ta tes  and assume th a t  only 

capture and emission of majority ca r r ie rs  are Important * Then fo r  n-type 

materials with an electron density n (t)  a t the surface at time t ,  the
3

capture flux of electrons is

(V-5)

n

HI la  the number of s ta tes  per un it area of type J , and f , [ t )  ia  the

Fermi function for s ta te s  J a t time t .  The emission flux Is

(V-6 )

where eJ is  the emission ra te  (un it sec ) fo r  s ta te s  j .  The surfacen
current density Is

Express f . f t )  as the sum of a dc and an ac part
J

V  SV +'J  J  J

Similarly one caji write

<V-8 >
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Substitu te  Eqa. (0} and (9) Into Eq» ( 7 ) and make the small an signal

approximation by keeping only terms l in e a r  in 6 f .  and £ n (small
J 8

signal c r i te r io n )*  Then Eq. (7) becomes

A , t - D =  z  C N . i  c j  ( ( ' - * ; . )  « » , +

C 4 , + « « j )  .

When only the dc bias 1b applied , there  ia  zero net cu rren t, eo

■
« n i  c,j 1 1  - -fj.) *s. 3  «  «,J -f j .  (v-1 1 )

S ubstitu ting  Eq* ( l l )  in to  Eq, (ID) ve get

\ - C t V  £  *  C»j [  t  I - 7 ^  3  (V-12)
J 7 j *

Since the net current density  ia

At i O - £  e < - $ “  ( v - 1 3 )
J i

we can equate Eqs* (12) and (13 )  t o  get

M l   ̂ d1 —11 
a t ‘ c« ( l" -fj.) £ 111 ” C* * * •  [ v - l k ]

v

For small s ignals  the v a r ia t io n  of Fermi function is

Vuot
= 4 , (V-15)

where f ia the  maximum value of the pertu rba tion  o r the Fermi functionJITI

for J type s ta te s  by the ac signaJL. From Eqs. (8 ) and [15) we get



1*0

A-fj
 ±- a  \

A t
* £ "fj (V-1 6 )

Next equate Eqs. (1*0 and (16} and solve fo r  £ f  ,
J

W  r  __________

J  * s* 1 1 + / c }  u * )
(V-1T)

Combining Eqe. (17) and (16) and su b s t i tu t in g  Into Eq. (13) resu lts  in the 

e3tpre3Sion

j 4 \  ^  4 IA) 9  "fj* 0
l W * ! , ---------“ — f — ,— s   (v-10J

* j C i+ iw + j,  /  d  O * * #

The instantaneous surface electron density n ( t ) p and surface potential
B

( t )  are re la te d  by the expression

n. 4*p [ p V i)]  tv-i?)

where n. i s  the in t r in s ic  c a r r ie r  concentration and V ia the potential1 D
difference between the mid gap energy and the Fermi level in the built. 

Taking the d i f f e r e n t ia l  of Eq. (19) gives

- g r ^ 3 ^  (M01
U s . '  ltt « f  (-Fr-C K i-tf*)]

Using Eq, (20), Eq. (10) becomes

; H M i i o  eI -  -  t i e  ^
' s J t T  l i + i - h . / c i  * » • )

k'f

(V-21)
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ITi I b can be w ritten  as

YSj  i %  : Ya  i %  (v -22)
J 1

where

( v - 2 3 )
u ■ ^  g* N «  *Pjd C *" 'fj*')

«  * kT C 1+ iu,-fjP /c*j nu )
p

Ŷ  is  the adjnittatice of a  s e r ie s  RC network with capacitance ob1 ^

C8 S ■ i f  NSS f JO f1  -  V  “ ' d t l “  « ™ ‘ “ t  T J * ■ r a l ° be

converted in to  a p a ra l le l  capacitance and a p a r a l l e l  conductance given by

the expressions;

«■ ^*S

r  J I + w* Tj1
(V-2 U)

and

G„ = y   <A “  Tl
1+ (V-25)w  J

The parameters Cgg, 'Tj in  Eqs, [sM , (25) can be deterndned by se le c tin g  

them to f i t  a l l  the d e ta i ls  o f  a G (̂ W )/t*J and C^(tO) data  s e t ,  or i f  

the Gp/u) curve is  a s in g le  well resolved l in e  with the  proper shape 

then i t s  peak occurs at a frequency such th a t  = atlc* tlie Pea^

height is  c ^ / 2 ,

2, Continuum model

I t  is  evident from the shape of the  measured in te r fa c e  s ta te  

densities with energy in the  band gap th a t  they vary continuously over
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I?  1 3  3 7 9
'the band gap. Lehovec 1 followed by o th e r s » * extended the d iscre te

le v e l  SRH (Shockly-Reed-Hall) model in to  what ie  now c a l led  the continuum 

model. Hie admittance fo r  the  d isc re te  le v e l  SRH model given in  Eq.. (23) 

i s  then modified by dividing the  sum over d isc re te  s ta t e s  in to  subclasses. 

I f  within a given subclass now labeled  J the  leve ls  a c tu a lly  form a con­

tinuous d is t r ib u t io n  then the number of s ta te s  per u n it area NgB is  con­

verted Into an energy density  and the sum is  converted to  an in tegral*  

so  ̂ where ^  ia  an in te r fa c e  s ta te  energy re la t iv e  to  the

valence-band edge In the bulk and ^  ) i s  the number of s ta te s  per

u n it  area per energy ( in  eV), In  th i s  case , an expression for the small- 

s ign a l admittance per unit area associa ted  with a p a r t ic u la r  class 

of in te rface  s t a t e  J has the form

Y J ( u 0  = i ( 4  _ • _ ( * * '
Y „ l < 0  i+iMTjCjM, CO

b * (v-2 6 )

=  a j  t w )  + * » > t Jr  t o

where = E - e and ES * E + E3 a re  the energies o f the valence- v v  1 e e g v

and conduction-band edges a t  the  surface r e la t iv e  to  the  valence-band 

edge in the bulk, £ = "  ̂ - E ^ i s a  in te r f a c e - s ta te  energy re la t iv e  to 

the Fermi leve l. The re la t io n s  among these energies are i l lu s t r a te d  in 

Figure ( l l - l ) .  The Fermi function for energy £ ia

4 .  ( O  = --------, \  . -----;---------- {v-27)
**p (.i /frr) + '
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The p rod u ct

-f. (  " f* ) -  “  (V-2 B)

is  sharply peaked about Ê , with width a/ kT. This leads to  the idea tha t 

over the  range fo r  £ for which fg ( l  - fg ) has a f in i te  value, one could 

approximate

by constants where E £ E + e Ol* * Doing th is  generated the continuum-r o c &
model expressions

c l ,  (**0  '  *  J -1— t a n ’ 1 u j t j F cv-30)

and

f tfc  l u r > = —i i i i S I   (  1+ w‘ T j i  )
w l u i T j i ;  . (V-31)

S ta tes  whose time constants follow the SRH model vary as

t j ’ t f )  * nt<r 5/ M r(«V kT j _ cv-3s)

Where n^ is  the bulk c a r r ie r  concentration in the conduction band, v 1b

the rms thermal veloc ity  in  the bulk, and  ̂ the electron-

capture cross section  for the s ta te s  J* The continuum-model approximation 

is  inv a lid  i f  the  capture cross section  varies rapidly  with energy ^  .

As long as i t  was thought tha t varied smoothly in a U-shaped curve,
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I t  was reasonable to  suppose that the  approximation held  Tor H , bu tL)L>

lti view of our re su lts  (see  the next sec tio n )  i t  la now ev iden t th a t  the  

approximation i s  not s a t i s f i e d  e i th e r .

Let U0 next e s tab l ish  the  expressions needed to  In v es tig a te  

the  consequences of* not invoking the  COtitinuum-mode 1 approximation. 

Combining Eqs. (26) and (26) leads to  the  expressions

i   ̂ I  N»  \ _ _ _ _ _ * i i _ _ _ _ _ _ _
c * 1 , 0  ■ * " » . !  r e ) (V-33)

and

X l£* 1

t k l '  ( '  (—*4*-^- ^ -  = eN*sfJI \  < f  J  l + w ' t j V l V ' t j f K 1 (V' 3U)
T» }

Once the varia tion  of Ngg with energy i s  e s tab lish ed  in  the  next sec tio n , 

i t s  functional form can be inserted in to  Eq3. (33) and (3*0. Then C^( t*J ) 

and <j ^ (W )/uj found from numerical in te g ra t io n  of these  equations can 

be compared against experiment.

3. S t a t i s t i c a l  broadening^

While th is  does not occur in  S i-^S , when c e r ta in  samples are 

biased in to  dep le tion , they have a broader peak than th a t  p re­

d ic ted  by Eq. (31)- Thie can be explained by assuming th e re  are s t a t i s t i c a l  

f luc tua tions  o f  the surface p o ten tia l  in  the  plane of th e  in te r fa c e  due
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to  the random d is tr ib u t io n  o f fixed charges In the  I n s u la to r , charged

in te rface  s t a t e s ,  and ionized acceptora in  the space charge region*
7

According to  Nicolli&n and Goetzberger, the fixed  b u i l t - in  charges in

th e  oxide are the main source o f the f luc tua tion  in  the  surface p o te n t ia l .

I>eclerck e t a l  (197*0 found th e i r  data can be explained only i f  negative

33and positive  surface charges are both p resent. I t  i s  more widely

accepted tha t Ziegler and Klausmann found no evidence tha t negative
3I1

fixed charges are present at the In te rface . When the sample is  in 

inversion the e ffec t o f f luctuations o f these fixed pos it ive  charges is  

reduced by the screening due to  the conducting inversion la y e r . When 

the sample is  biased to  accumulation, fixed p o s it iv e  charges a re  again 

screened. In e i th e r  case, the e ffec t o f the f lu c tu a tio n s  caused by the 

b u ild - in  charges is  reduced. In genera l, s t a t i s t i c a l  broadening can be 

observed only in the depletion region.

For s im p lic i ty ,  only the  derivation fo r  the re a l  part o f the  

admittance w il l  be presented. The derivation o f  the  imaginary pa rt is  

s im ila r . We conceptually divide the plane of the  in te r face  in to  a number 

of c h a rac te r is t ic  regions of equal area within which the surface p o te n tia l  

ie  uniform. The number of c h a ra c te r is t ic  regions d V which contain be­

tween N and N +■ dW randomly d is tr ib u te d  surface charges is

A V . p ( n ) d l N ( <v- ” >

where P[N) i s  the p ro bab ility  of finding a c h a ra c te r is t ic  region having 

M randomly d is tr ibu ted  surface charges. When the mean number N of sur­

face charges is  la rg e ,  P(N) i s  given by a Gaussian approximation to  a
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Foissoti d is tr ib u t io n

P(n)  = (aiff i)*  [ -  I n -  d f  A n J  (v-36)
*

12 - 2Thie ia  reasonable fo r  a charge density  below 10 cm where the prob­

a b i l i ty  fo r  a charged cen ter to  be loca ted  a t  a certa in  place ia inde-

33pendent of the  places where o ther charges are located. Let Q be the 

density  of surface charges T we get

fsjs *  &  / *  (V-3T)

where ot i s  the area o f  each c h a ra c te r is t ic  region. From Eq. ( 3 6 ) and

{37) we get

P(ft) Q /e )  * exp^-^A-Qj’yiefij  {v_3fl)

where Q ia  the  mean of surface charge density Q. The to ta l  charge 

density  is

f t T ~ f i s + +  &SC (V-39)

where Q i s  the in te r fa c e  s ta te  charge density , is  the fixed charge5 1

density  in  the  oxide t and Q is the  s i l ico n  space charge density . The
BC

surface charge density is

a>  a s+ Qf -  e ,  - o sc . <v-‘‘0)

Since the voltage is  d is tr ib u te d  across the oxide and the space charge
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la y e r ,  we have

v ( t )  * v, + r  v. 10 -  ^  (-t) + Ot/ c. , (v-i+i)

where the  b ias Is  decomposed Into ac and dc p a r ts  * Hie re la t io n  between

and Q,p can be found by ejtamining the de terms In Eq. (hi)

(v. -  c. = o T _ 'V- U2>
S ubstitu ting  in Eq, (h?) Into Eq, (ho) r e s u l t s  in

f t - I v . - ^ c . - f t «  _ [T- J,3>

D iffe ren tia ting  Eq, (h3), i t  becomes

- d a s  c. i'H's + c , * %  (v_uu,

=  ( c - +  w T ^ j  )  ^  .
where W{ %  ) i s  the  space charge width at the  mean surface p o te n t ia l ,  

and € Is the p e rm itt iv i ty  of s i l ic o n .  Assuming the f lu c tu a tio n  i s  sm all, 

we can replace dQ and d ^  by (Q -  Q) and ( } re sp ec t iv e ly ,
& S ^ 0

That is

- (  ft- ft) S ( c . t  )  ( \  -  \  )

Combining Eqs. (38), ( ^ , (^5) and the  transform ation

(V-U5)

p ('* ,) = - P c Q5 ~a%~ (T-1*61
where the minus sign a r ises  because increasing Q causes 'Tj/ to decrease ,s

thus
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P l ' * , )  -  ( i v r , ) " *  C - 1 ~ / i r % J  c v - u t >
I

where the standard deviation IT" o f the surface p o ten tia l  i s

5 -  =  f  f ---------V f f f i l — \  (V-liB)
‘ *  '  \  c m  { % ) + < -  /

I f  we assume th a t  both the in te r face  s ta te  density  and capture croas sec­

tion are nearly constant over an energy range of several kT, as previously 

discussed in  the  section on the continuum model, Eq. (3l) can be modified 

to the form

Ev J

“ f [ ~  c \v y  ] * * •  •

(v-ug)

A sim ilar argument yields an equation for the imaginary p a r t  of impedance

i f *

s i
*

Now we can f i t  the experimental data with the expression in

Eq. (y- 1+9) to  determine and (T . Next we in s e r t  the f i t t e dSBf J “ S
values of these three parameters in to  Eq. (V-50), and f i t  the experimental 

data to  Eq, (V-50) to  find C^( F in a l ly , the average surface
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p o te n tia l  can be determined by the r e la t io n  between the space-charges

capacitance and the  surface p o te n t ia l  In Eq. ( IV-36).

C. Apparatus

TTie s e n s i t iv i ty  of the  conductance method i s  higher than that 

o f the capacitance method. In order to  take f u l l  advantage of t h i s ,  we 

must exercise  control of the experimental parameters. The s ig n a l ia ob­

ta ined  by maximizing C^, minimizing (or the  c a r r ie r  con cen tra tion ) , 

and using illum ination .

The bloc It diagram of the  experimental arrangement i s  shown ih 

Figure (V-3). The GR1615A capacitance bridge operates over the  frequency 

range from 20 Hz to  100 KHz* Hie measured frequencies were checked 

against an HF3300 Function Generator and with an oscilloscope. The 

scope was a lso  used to  monitor the amplitude o f the ae voltage applied 

to  the sample through the bridge* The amplitude was chosen by two con­

s id e ra tio n s : i t  has to  be big enough to  provide enough s e n s i t iv i ty  for 

the measurement, but small enough so th a t  the re su l ts  were independent of 

the amplitude. We found experimentally tha t a t  room temperature for most 

frequencies the ac tual voltage across the MGS s tru c tu re  near the balance 

condition was 10 mV when the peak-to-peak amplitude at the HP3300 Function 

Generator was 500 mV. Since the ac tua l ac voltage across the sample is 

only 1 0  mV and th is  i s  smaller than kT/e a t room temperature, the small 

s ignal c r i te r io n  is  s a t i s f i e d  at room temperature. At l iq u id  nitrogen 

temperature wre found tha t a 350 mV peak-to-peak voltage from the Function
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Generator re su lted  In <+* 5 mV across the sample, and In th i s  circumstance 

the measurement was again Independent of the ac s ig n a l amplitude. A 

d ig i t a l  multimeter was used to  measure the bias vo ltage  and van discon­

nected from the  measuring c i r c u i t  before the bridge was balanced. Three 

terminal capacitance measurements vere made throughout the experiment.

The bridge has two modes: i t  can e i th e r  measure C^T and GpT*

or measure C0T and D. C^T and □ are the to ta l  p a r a l le l  capacitance 

and conductance resp ec tive ly , while is  the to t a l  equivalent ae r ie s

capacitance and D i s  the  d iss ipa tion  fac tor, When °pT ifl sm all« the 

f i r s t  mode i s  preferred  because the s e n s i t iv i ty  is  b e t t e r .  However, when 

G^, becomes so large th a t  i t  Is out of the range of the  f i r s t  mode, the  

second mode la  used to  continue the measurement. in  the  in term ediate 

range, both modes give consis ten t r e s u l t s .

The r e l i a b i l i t y  of the data ia quite good. The accuracy i s  

poorest at th e  low and high frequency ends of the spectrum. However, 

even there the  rep ro d u c ib il i ty  la within 13£.

TTie samples were s to red  in a dry box at room temperature when 

they were not being studied . Some changed in te rface  p roperties  s l ig h t ly  

a f t e r  they were f i r s t  prepared, but a f te r  about a month they s ta b i l i z e d .  

While data was being taken th e  samples were at times housed in an evacuated 

chamber, and a t  o ther times were exposed to the a m b i e n t  atmosphere. No 

systematic d iffe rences  were observed between data co llec ted  In theBe two 

arrangements.
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D. Experimental r esu lta

For the oxide thicknesses normally' used l i t t l e  accurate informa­

tion  can be extracted from measuring the imaginary part o f the Impedance.

Since our samples have Q C ./a for most bias voltages, accurate Cu d p

values can "be obtained and ve sh a l l  examine the frequency varia tion  of

both G /  U) and C .
P p

1 - Results o f the  d isc re te  model

Figure (V—h) presentH a three-dimensional plot of G^/ fj0 versus 

frequency and in te rface -e ta te  energy re la t iv e  to the valence-band edge E, 

taken in the  ligh t with no f i l t e r .  Figure (V-5) i s  a s im ilar  p lot in  the 

dark. The varia tion  o f with f and E i s  shown in Figure tV-6 ) in  the  

l ig h t  , and in  Figure (V-7) in  the dark. The curves in a l l  cases are f i t s  

to  the data using the equivalent c i r c u i t  in  Figure (V-fl). I t  consists of 

a para lle l network of five c a p a c ito r - re s ie to r  p a irs  and the depletion or 

accumulation layer capacitance a l l  in se r ie s  with the insu la to r

capacitance The parameters obtained from the f i t s  to the data are

l i s te d  in Table (V -l). These parameters w il l  be in te rp re ted  in d e ta i l  

presently. For now i t  suffices to  say tha t the indlceH I ,  V, C, f1, t 2  

stand for inversion, valence-band t a i l ,  conduction-hand t a i l ,  f luo rine- 

l in e  1, and f luorine-line  2 , respectively . The resis tance  Rj in se ries  

with each capacitance ac tua lly  a r is e s  from the f in i t e  response time of

tha t fea tu re , and is  re la ted  to T .  ty  R = 'T . /C . ,
■J J J ■]

The high-frequency features o f *“p are al ,noa  ̂ unaf­

fected by the l ig h t ,  but the low-frequency behavior is  changed dramatically.
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The high-frequency peak th a t  gTOVa fo r  E In the  upper pert o f the  gap is

id e n t i f ie d  as C , ^  (so l id  diamonds). These s ta te s  are the usualc e
’’fa s t  in te r fa c e -s ta te s "  observed in  n-type m a te r ia ls .  The low-frequency

peaks, which are fu l ly  formed only in  the  l i g h t ,  are id e n t i f ie d  os C^,

(open diamonds) and C j, Haese s ta te s  are the ^slow in te r fa e e -

S tates"  th a t  cannot be observed in  the absence Of l ig h t  because th e i r

time constants are too long.

In analysing the data i t  Is supposed th a t  the in te rface  s ta te s

near the valence-band aide exchange charge with the inversion layer

rapidly  compared to  the  response of e i th e r  to  an external s tim ulus.

Hence, in the l i g h t ,  i s  s e t  equal to  ' T j  and the low-frequency

peak height o f Gp/l>) is  equated to  (C  ̂ + C^J/2 . C-j. i s  ca lcu la ted  from

the measured Oj/ . and sub trac ted  to  a rr iv e  a t  the  C values in  Table (V-l)* i s  v

Since is  always le ss  than 10% of C for a l l  b ias  vo ltages , th i s  assump­

t io n  has l i t t l e  e f f e c t  on th e  numbers in  Table (V -l) .  The time con­

s ta n ts  in  the dark are obtained by assuming th a t  i s  l ig h t - in s e n a i t iv e * 

and f i t t i n g  the s l ig h t  curvature in the  low-frequency and data

a t each bias to  a *TV* We do not expect these  numbers to  be very 

re l ia b le  but note th a t  they are quite  long, w ell over one second. The

^ f 2  nutnbers a r is e  from the ex tra  features th a t  can be seen near the 

center o f the gap. We have not observed any sign of ^ f l

Impedance measurements, but th i s  curve is  so narrow tha t we may have 

missed it*

There i s  supposed to  be a th i rd  f lu o r in e  peak in the upper 

p a rt of the band gap. We have seen evidence th a t  i t  i s  there  but have
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not attempted to  t r a c t  i t  in  d e ta i l  - I t  appears as a. small shoulder on 

the low-frequency aide of the  high-frequency peak in

The numbers in  Table (V-l) were obtained by f i t t in g  th e  experi­

mental G /ia) and C data to  the d is c re te  model Eqs, (V-2^) and (V-25).
P P

Data points are included in Figures (V-lf, 5 , 6 ,  and 7} only fo r  the

foremost curves. Other curves with data  points can be found in reference

[36], The quality  of the f i t s  is  equally good fo r a l l  biases- The pro-
3

cedure work a because sample S i - 5 6 , unlike tnsny s tudied  by o th e rs ,  

exhibits  no s t a t i s t i c a l  broadening- Also, the corrections to  the  shape 

functions introduced by the continuum model are such that they can be 

applied when the raw data 1h In te rp re ted . This w il l  be done in th e  

next section.

2 ,  Modified continuum model

Once the data  has been f i t  to  an equivalent c i rc u i t ,  in te rface -

s ta te  densities must be ex trac ted  from i t .  The l i t e r a l  in te rp re ta t io n

of the equivalent c i r c u i t  and the r e la t io n s  in  Eqs - (V-2*0 and (v-25)
v

resu lt  from an SRH analysis for d is c re te  in te rface  s ta te s .  In t h i s  

cape, and Cc are id e n tif ie d  with in te rface  s t a t e  densities through 

the re la tions

Cj *  erJ«  , , tv-ji)

and Bince the peak value of (C*VtO ) . ia C./£P peak J

{ A . )
'  10 /
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Next we a ha ll  examine a modi Tied version of the continuum model and 

extract the corresponding re la t io n  between (G^/W and

From the observed v a ria tio n  of and Cv with E, i t  ia  evident 

th a t  the in terface  s ta te  p ro f i le  does not res  enable a co llec tio n  of d is ­

crete  s ta te s .  They are b e t te r  described as a continuum of s t a t e s .  The 

d e ta i ls  of the  shapes of the Ĉ ( IA) ) and G®( (U ) / u> curves support th is  

contention. However, some modifications to  the  simple continuum model 

are required to  f i t  the data.

The expressions, Eqs, (V-33) and (V-3M, have been in tegra ted  

numerically to  i l lu s t r a t e  the nature of the deviations from the continuum-

model approximation in  a modified continuum model (MCM), ) waB

replaced by a function that was f i t  to  the general trends o f the versus 

energy data for sample Si-56  a t  room temperature,

I  ' L» U  VI )
( i -  T

1 1.00 too s

Z M

\ - _ e u _
Loo

(V-53)

The functional form for c ( ) is  chosen to  f i t  the observed shape of

the frequency varia tion  of G /yd
P

f, 1 *  V4
T c £ V1" f > t» V )  )  

1 1 1
^ F 1.00 feV) )

I-
Efs
too t.oo f

I- 0 0

-+

(v -5*0
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The re s u l ts  o f  the numerical in teg ra tio n s  o f Eqs. (33), (34), (53), (5**) 

for Epg ■ 0,318 eV (corresponding to  V = 0,0 V), with the corresponding

d isc re te - le v e l  (Eqs. (24), (2 5 ) ) ,  and contlnuum-model (Eqs. (30), (3 l ) )

curves, are shown in  Figure (V-9)»

The d if fe re n t  models a l l  produce G^/w versus frequency curves 

fo r  fixed tha t peak for d if fe re n t  tt)T products, T  “ J l  1S pc-QJC

-ft = 1 .0 0 , 1,98, 2,35 respec tive ly  for the DM, CM, and MCM. The curves

in  Figure (V-9) are adjusted so they peak in  the same place "by p lo t t in g

Cp/eNgSF against f  = 2 * 103  - The 2 x 103 fac to r  in f  ia  the

frequency of the observed peak in  Gp/&d a t V = 0.

Several conclusions become evident immediately on inspection

o f  the  curves in Figure (V-9)> Ifte experimental Q° / 10  and C° points
P b

l i e  between the  DM and CM curves, but they are c loser to  the CM curves . 

Since the experimental G^/W points l i e  w ithin  the CM curve, no s t a t i s ­

t i c a l  broadening i s  in  evidencei a r e s u l t  consis ten t with the absence of

a p o s it iv e  fixed charge. Motice tha t the r a t i o  CC(0 ) / ( DC/U) ] , i sp p peak

** 2 .4 ,  2.00, 2.40, and 2 . 3 8  fo r  the experimental data , DM, CM, and MCM

curves respec tive ly ; s l ig h t ly  favoring the  MCM over the CM in te rp re ta t io n

and m itigating  against the DM in te rp re ta t io n .  I f  the capture cross sec tion

is  assumed to  be constant independent of energy, then the change in G /k)
P

caused by the  energy varia tion  of NgS alone (Eqs, (34), (53)) i3 to  broaden 

the l in e  re la t iv e  to  the CM, A v a r ia tio n  of the capture croee sec tion  in 

which i t  becomes la rge r  near the  band edge causes to  narrow, while

the opposite trend causes GC/W  to  broaden. The minus fourth  power 

energy dependence on Eq. (54) was se lec ted  to  f i t  the  data. Uie shape
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of the GC/tA) curves alone o ffe r  l i t t l e  d iscrim ination  between the  CM and 
P

MCM In te rp re ta t io n s  * However, the Shape of the  high frequency r o l l  off 

of G°/W , and the ra t io  C°(o)/(GC/U? ) , are more sen s it iv e  to  the
p  p  p  pCELIE

model choice.

The re la t io n  between the peak value of G /  W and the in terface
P

s ta te  density  Is model dependent, (G^/W W  ’  Bj etia s '  “here Ec ■ a -00- 

2.*i8, and 2.31 fo r  the DM, CM and MCM resp ec tiv e ly . The conductance- 

determined in te r fa c e -s ta te  d en s it ie s  l i s t e d  in Table 3 were derived From 

the  j = c , v , f2 values In Table 2 by using the re la tio n s

»ss ■ l -SU Cp/e •  a - «  (Gp/W W * ’ J - c .v  and n£ |  -  c j2/a = ^<Cp/U>)peafc 

The values determined from the q u a s is ta t ic  measurement are a l l  de­

termined from the re la tion  and C ^ /e .  These in te r fa c e -s ta te  densities ,

f lalong with one for found from the q u a s is ta t ie  measurements, are 

l i s t e d  In Table V-3 and p lo tted  together in Figure (V-10). The properties 

o f  these curves w ill  be explored In Section V ll .

3. A sample with s ta t i s t ic a l -  broadening

Most of our samples have l i t t l e  or no f l a t  band voltage sh if t

due to p o s it iv e  fixed charges and show no sign of s t a t i s t i c a l  broadening.

However, broadened G ( yj ]/ttl peaks are observed in the depletion region
o

on Sample Si-107. Si-107 has a 250A SiO^ la y e r ,  a moderately large f la t

band voltage ■ 1.20V, and a ^110} o r ie n ta t io n .  These features are

consis ten t with the existence of s t a t i s t i c a l  broadening from fluctuations 

in the lo ca tio n  o f  the positive fixed charge. Without including s t a t i s ­

t i c a l  broadening the G ( W ) /b i  curves cannot be f i t  w ell. Numerical
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Integration of Eq* CV—1*9) vas done to  f i t  th e  experimental data points* 

There are three parameters to he determined in  Eq. (V-U9): the  time

constant  ̂, the in terface s ta te  density Ngg* and the standard devia­

tion O' . v s

In order to examine the effec t on the  curve of changing the 

parameters, only one branch of in terface s ta te s  was considered* Taking 

the data a t  0.25V bias as a t r i a l ,  we found the time constant 

^   ̂ = 5*2 x 1G- 3  sec corresponding to the G (̂ CO )/«J peak* This value 

of confirms the peak occuring a t  = 2.50 as claimed in Bef. [7 ]*

However, the other two parameters can be changed continuously and s t i l l  

f i t  the data points equally v e i l .  The values of the parameters are 

l i s t e d  in Table (V-2). I t  is  evident that when s t a t i s t i c a l  broadening 

is  present, the data reduction is  much less re l ia b le .

There is  another d if f icu lty  with the s t a t i s t i c a l  broadening 

model. In th is  model, the mean number of surface charges N can be c a l­

culated from the measured f l a t  band voltage V̂ , by

N -  Vpg Cot / 2- j,

where ia the to ta l  in su la to r  capacitance of the sample. Assuming

the Gaussian approximation to  a Poisson probability  d is tr ib u t io n  of
—1 I PEq. (V-3 6 ) ,  the standard deviation can be w ritten  as T" ~ eN /Cnrp*

5  J.

l / 2Combining these equations y ie lds  (T „ = (eV ^ /C ^ )  '  . Substitu ting
□ f D  U |

the parameters for Gi-107, -  1 . 2 0V and CQT -  1+.13 nF, we get

(f* = 6 . 8  x 1 0 ~^V. This ia  much smaller than the values needed toa

f i t  the data. According to  others (T is  found to be o f the&



66

order of kT/e. However, none of these papers also quote a f l a t  band

v o ltage , but values ca lcu la ted  from th is  model are unbelievable > For

example, in  reference £32], the sample has diameter D 3  0*55 mm, and

In su la to r  capacitance per un it  area ■ 3-26 nf/cm - Assuming (T „ = KT/e
6

as ind ica ted  in  th e i r  Table 1, we find V ^ 3-0 x 1 0 ^V, which isr p

impossibly big- This argument also applies to  the more d e ta i le d  Eq- (V-U8 ) 

with 0C taken as the area o f  the device and la rg e . The d i f f i c u l ty  

ev idently  a r is e s  from the assumptions leading to  the Poisson d is tr ib u tio n -  

The Poisson d is tr ib u tio n  ia  correct i f  the p o s s ib i l i ty  for a charged 

center to  be located  in  a given position  ia  independent of th e  location 

o f the o th e r  charges. Since th is  assumption p red ic ts  r e s u l t s  grossly 

d if fe re n t  from the experiments, i t  i s  v io la ted  and the loca tions  of the 

charges a re  co rre la ted . A de ta iled  study o f  these c o rre la t io n s  would 

c o n s ti tu te  an in te re s t in g  extension to  the present work.

h - Time constant

F in a l ly , l e t  us examine the l ig h t  in te n s i ty  and energy v a r ia ­

tio n  of the time constants *T t * The  ̂ values found d ire c t lyV O  V
from the f i t s  to  the d isc re te - lev e l curves should be m u ltip lied  by JX

to  determine absolute numbers- While *~C i s  uncertain  to  within a mul-v

t i p l i e a t iv e  constant, information can nevertheless be ex trac ted  from i t s  

b ias  voltage and l ig h t  in te n s ity  variation* The SRH theory tha t re la te s  

the measured impedance to  the  in terface s t a t e  density and response time,

Eq. (V-£6 ) i s  e a s i ly  generalized to  include the e f fe c ts  of low in te n s i ty
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l i g h t .  Hie only modification Lb th a t  the time constant *T^  'becomes 

r*. .
Cy -  Cy e  (V-5 5 )

t

where i s  the  s h i f t  o f  the surface p o ten tia l  caused by th e  l ig h ts

f l u x  $  *

S / %  ‘  ( t T " )  T r  ^

assuming the  quantum effic iency  is  un ity , and rTr  ia  the e lec tron -ho le

recombination time across the space charge layer. Hie data Is  suntnarlzed

in Table [V-l*]. Table (V-5) contains parameters th a t  re su lt  from f i t t i n g

th e  data  to  Eqs. (55), (56). Notice that e AHf^/C^kT is  nearly  constan t,

and I f  th ese  numbers are m ultip lied  by the measured capacitances they

are  even more nearly  constant* e AT /kT -  6.32 + 0.^9 (F-sec) , whichr  ™
dsrkim plies T  ft 9 * 1  ms. Since should vary proportionally  to

+e ^  /kT r  v £
e B we have te s te d  th is  re la t io n  by f i t t i n g  YT- ^ar,t =■ ^ s .

The ^1/ values used (see Table V-U) are those taken from the q u a s i - s ta t ic  s

measurement in the  no f i l t e r  case. This is  done because the e r ro r  in

introduced by the fac t th a t the quasis ta tic  condition is  not s a t i s -Q

Tied m ^50 mV}* is la rg e r  than the s h i f t

caused by the  l ig h t  ( -  66 mV). Using th is  procedure one finds
flftlfl.lf

-  9.65 x 10-11 see , and -  1)0.7 (eV-1 ) with a coeffic ien t of d e te r­

mination DC  ̂ * 0-93. The -  1)0.7 feV-1} is  close to e/kT fo r  room

tem perature and tends to  confirm the model.
T

Figure (V -ll)  i s  a p lo t of ' f  = 2 . 3 5  T  as a function of

en e rgy  E. The reason fo r the SL  = 2.35 fac to r  has been d is cusE ed ,
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For comparison, the  from the SRH model deduced from parameters measured
7

"by Hicollian and Ooetzberger is  shown. Obviously the response times of

our conduction-band t a i l  s ta te s  have a d ifferen t functional dependence

and are fa s te r  than the SRH model predicts. We sha ll  address th is  quandry

in  Section VII. The in sen s it iv ity  o f X to  l ig h t  can be understood byc
examining Eq. (V-5 6 ). For the more positive surface potentials  where

is  measured is  la rg e r ,  and is  e j e c t e d  to  be sir s l i e r  since

the electrons and holes have a smaller b a r r ie r  to overcome in  order to  

recombine. Evidently for the range of surface potentials where most 

values are measured , ^ M , and
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Table V-2

J [state el 122 * 3 1  x 10 121 . 2 9  * 1 0 A* 9*52 x 1 0 11 1 . 2 6  x 1 0 12
S S F  U - c n v 2 J

og[v] 1.00 0 . 5 0 0 . 1 0 0.025
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T able V-3

E s s
**vcond
flSS

u^catid
"ss Nf 2SB

0.237 7 . 8 5  x 1 0 13

0 .2U2 2 * 2 1

0 . 2UU 1.75
0 .2 U6 1.55 8 , 5 6  x I 0i 3 2,77 x 1010

0 .21*6 1.1(7

0.250 9 * 6 2  x 1 0 13

0*263 2.57 3.3JJ

0*273 5 . 2 0

0*297 1,1*7 3.85
0.310 6 . 5 5  x 1 0 11 I*-16

0,377 5 .3 6

0-36? It. 09 5.19
1 . 1(6 x 1 0 100-397 3*75 5.1S

O.U29 2.99 5.50 1* .25

0*1+35 6 . 1 0 7.21

0*1+55 1.33 8.3 9.2li

0 . 1*6l 9*75 x 1 0 10 9 . 0 6 1 , 0 2  x 1 0 11

0 . 1*68 8 , 0 0 9-21* 1 .07

0 .U82 1-29 x 10U 1 . 0 2

0 .1+96 3*96 x ID10 1-1*9 7-39 x 1 0 10

0.532 2 . 3D 2 , 0 0 li *61

0*6 3 2 3*05 3 .8 1

0.790 1.37 X 1013

0 .01*0 12
3.29 x 10 3-37

0 . 8 6 0 3.96

0*675 7,1*1*
0*860 8-93

0,090 1.27 * 1 0 13
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Table V-U

V \ f * 1 f “2 - 1 1 \  ♦ 1cm -aec J
dart

0
l tT Z 

l.li3  x 1 0 1 ° ^ 1 11  8 . 6 0  x 10
1 0 ° 12  

a.T8 x  1 0

0 2k 2*4 1 6 1 . 0

- 0 . 1 0 250 230 87 13

-0.25 h2Q 270 130 2 2

-0.50 11*30 8 l 0 J+60 6 6
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Table V-5

V[V] dark r , Tv [msj
T o e A r , 2 ■,c îp [ tni -see] 

d

2
X V VJ

a 22.5 -132 . 0 1  x 10 J 0 . 9 S -0.1+79

- 0 . 1 1 6 6 P. 96 0.93 -0.510

-0.25 270 2.92 0.91 -0.51+1+

- a .  50 90T 3.0U 0.93 - 0 . 5 6 1
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VI* OTHER INTERESTING DATA

In addition to the  data presented in  the previous sec tions , 

measurements have been made on many other samples* The most in te res ting  

resu lts  are collected in th is  section . Results of some preliminary ex­

periments on the sample Si-53 a t  liqu id  nitrogen temperature, samples 
o

with 5GDA thick oxides, and one sample with a fllO) surface orien ta tion  

are presented* Table i VI—1) summarizes the general character of the 

samples investigated,

A* Gi- 5 0  at l iqu id  nitrogen temperature (T7 QK)

The measurements made on 01-53 at room temperature were a l l
_ P  * i *

repeated at 77 K, From the varia tion  of Cd with gJ the maximum

excursion of surface po tentia l and the ca r r ie r  concentration were deter-

.1̂ 1mined to be 0.301 V and 1*90 x 10 cm , respectively . Then we plotted 

surface po tentia l versus applied bias voltage and found V = 0 - 9 1  V,I D

Since the f l a t  band voltage fo r  th is  sample is  mostly due to the work 

function difference between the  metalE o n  the front and b a c k  surfaces, 

i t  should behave as a thermocouple and decrease when the temperature is 

lowered* This i s  the observed trend* The decrease o f the e ffec tive  

ca rr ie r  concentration reaulta  from ca r r ie r  freeze out. 'The donor energy 

tha t would produce th is  re su l t  i s  51 MeV, a ty p ica l number for donors 

In silicon*

0 5
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The 7T°K quas i s t a t i c  and conductance measurements were taken 

In l ig h t  a t  the a«ne wavelength 0 , 0 2 0  m as the room temperature data* 

but v ith  Intensity about an order of magnitude higher at 1 6 . 5  jU V/cm .

There is l i t t l e  change in the gross charac ter of the  quasis ta t le capaci-

2 2tance curve as the l ig h t  Intensity  changes from 1 , 6 0  jUH/cm to 1 6 , 5  yUV/cm . 

The major qualitative change is that th e  fluorine l in e s  are broadened by 

the higher light In tensity  and the dep le tion  layer, as determined from 

C^, is  thinned sligh tly . The peaks for s ta te s  in the valence band

t a i l  are shifted to higher frequencies and are e a s ie r  to  study under 

higher illumination le v e ls .  This is  the  principal reason the higher 

l ig h t  in tensity  was used.

llte data at 7T°K vere taken and reduced in the same fashion an 

described in Sections IV and V at room temperature. The shape of the 

conductance curves could s t i l l  be f i t  accurately by the d iscrete  level 

expressions, and then re la te d  to the continuum model in terface s ta te  

densit ies  and time constants vith the same m ultip lica tive  factors d is ­

cussed before.

The resulting in terface s ta te  densities  and the conduction band t a i l  

time constants a& functions of the energy in the band gap are i l lu s t ra te d  

in Figures (Vl-l) and (Vl-2 ). The density  of a ta tes  exhibits the s a m e  

general structure found a t  room temperature, but sh if ted  toward the 

valence band edge, A nev spectral fea tu re  appears in the energy varia tion  

of *£ . Evidently at 7 7 ^  the response times of the system can be used

to help so r t  the various contributions to  the density of s t a t e s .
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B. B l-1 0 1

a
This sample has a 5Q0A thick oxide la y e r  on a (100) su rface , 

q
followed by 2 5 QA o f  LaF^. I t  was prepared so we could examine th e  e ffec t 

of a th icker oxide layer on the in terface s ta te s  and the f lu o rin e  l in e s ,  

tfe an tic ipa ted  th a t  growing a th ick  oxide might produce a  le s s  abrupt 

t r a n s i t io n  region from the Si to  the SiO^ vhich may broaden in te r fa c e  

s ta t e  features. The area under the fluorine l in e s  were expected to de­

crease  since lesE fluorine should diffuse to  the  in te r fa c e .

The q u a s is ta t ic  capacitance measurement was conducted a t  a 

ramp ra te  of 10.3 mV/sec in the  dark and a t  two l ig h t  i n t e n s i t i e s .  The

curves are shown in Figure (V I-3). The middle curve was taken a t  l ig h t
2

in te n s i ty  ■ 1 . 6 0  ^tW/em which i s  s l ig h t ly  lower than the h ighest 

l ig h t  in tensity  used In Figure (IY-2}, The h ighest l i g h t  in te n s i ty  was 

16*5 jU W/cm . A ll the curveE  a re  sharper than those for Si-53. In part 

th i s  is  due to the near abaence of the strong f lu o r in e  l i n e s ,  and in part 

i t  i s  caused by differences In the in terface s t a t e s .  A very small shoulder 

appears on the curves at the energy of second f lu o rin e  l in e  of Figure {IV-2). 

The f i r s t  fluorine l in e  is  imperceptible. Apparently, th ick e r  oxide, 

as expected, prevents most of th e  fluorine ions from d iffu s in g  through 

i t  to  the in te rface .

Figure (VI-l*) is a p lo t  of the rec ip ro ca l of the  square of the
-2 1 *high frequency depletion layer capacitance C, versus the  quan titya 9-

defined in Eq. (IV-9). Once again ve find th a t th e  slopes of the s tra ig h t  

l i n e  portions of the curves in  d if fe re n t  l ig h t  in t e n s i t i e s  are th e  same,
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but the apparent maximum excursion of surface po ten tia l changes. Most 

of th is  sh if t  with l ig h t  i s  due to a fa i lu re  to  s a t i s f y  the low frequency 

condition Ln the quas is ta tic  capacitance Measurement in  the absence of 

the l ig h t .  The observed fla t-hand  voltage in  the high l ig h t  in ten s ity  

0.26V is sh ifted  lower than the  5.5V work function difference between 

the front Au and the back A1 contacts. The difference is  mostly a s h i f t  

caused by the l ig h t  induced thinning of the depletion layer, ThiB in ­

te rp re ta tion  is  supported by the fact tha t in th is  sample too there  is  

no s t a t i s t i c a l  broadening o f  the G / m peaks tha t one would ascribe 

to  fixed charges in  the in te rface .

The density of s ta te s  and the conduction band t a i l  time con­

stan ts  extracted from f i t t i n g  the G (̂ W )/ W curve are shown in 

Figures (VI-5) and (VI-6 ), respectively . The in te rface  s ta te  density 

curves are narrow and sharp. And again the time constants are shorter 

than suggested by the SRH model and exhibit sharp sp ec tra l  fe a tu re s .

In order to  te s t  Eq. (V-55)» we measured G (̂ t*J ) / tO at 

V = -0.25V for d iffe ren t l ig h t  in te n s i t i e s .  At th is  applied bias i t  i s  

possible to see the fu ll  peaks for most l ig h t  in te n s i t i e s ,  so the time 

constants can be accurately determined. The ligh t in te n s i t ie s  and the 

time constants are l is te d  in  Table {VI-2). These time constants T  

follow an exponential dependence on and are f i t  by the equation 

'*£ v ■ 2.7 x 10 3 exp[-0.2l7Pg), Using Eq. (V—5-6 ) the e lectron-hole 

combination time * 99 msec is  determined. This time constant is

about a factor of ten la rger than tha t for Si-50. Thus '‘F in 31-101 

is  s ig n if ican tly  more sensitive  to  l ig h t  than i t  ia in  Si-56.
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c . 31-102

A discussion o f  th is  sample is  Included because i t s  behavior 

supports the trends found in Si-lO l and a new fea tu re  was found in the  

conductance measurement * First* the quas is ta tic  C-V curves were measured 

in the dark, and with l ig h t  of in te n s i t i e s  1 . 6 0  ^W/ena^ and 1 6 . 5  f*W/c 

These curves are very sim ilar to  those for Si-101: the fluorine lines

are small, the s tructure  of in te rface  s ta t e  density is  sharp, the dark 

quas i s t a t i c  capacitance curve doea not s a t is fy  the low frequency condi­

t ion , and no fixed positive  charges are present a t  th e  in terface. Then 

we p lo tted  W ) /v i  versus frequency. Once again these curves exh ib it 

no s t a t i s t i c a l  broadening and are consis ten t with the lack of fixed 

positive  charges. However, there is a new feature in  G ( tld ) /  Ui in 

the accumulation region. Following the peak, the uJ ] / lO curves 

usually fa l l  monotonia a l ly  with frequency. In 51-102 the curves begin 

to r is e  again toward the upper end of the  frequency range of the capaci­

tance bridge. The new peak is  not reached by the upper lim it of our 

frequency range. This feature can be explained as due to a non-chadc 

back contact. This bad contact can slow the response tine of the accumu­

la tion  layer capacitance. This e ffec t can be modeled in the equivalent 

c i rc u i t  Figure (V-2) by adding a small resis tance in  series  with C^/a-

There are several p o s s ib i l i t i e s  for the cause of a bad con-
37t a c t ;

( i )  The surface of the substrate was not clean, or the oxide vae not

thoroughly removed prior to  the  deposition of the aluminum.
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( i i )  I jq the process of e - g i w  deposition of Al, the pres euro must be

kept belov 2 x 10  ̂ torr- A higji background pressure is  d isas trous , 

resu lting  in films that are very cloudy, rough and grainy.

Background pressures higher than 2 x 10""̂  t o r r  simply produce poor

ohmic contacts.

( i l l )  After deposition, i f  the sample is  not sin tered  at the correct 

temperature for the proper amount of time, the  Al film w ill not

adhere well to  the subtrate and, hence* is  not ohmic.

D, S i - I OT

This sample differs from the other because i t  has a (110) sur­

face oxidized. The two curves in Figure (VI-71 are the raw- quas is ta tic  

capacitance measurements with ramp rate  10.3 mV/sec in the dark and in 

the l ig h t .  In th is  ease the major e ffec t of the l ig h t  Is  to  introduce 

an extra peak at E -  0.50 eV. This peak l ie s  at the same energy as 

fluorine 2 found in Si-58. Since the ion implantation studies tha t 

allowed us to identify the sharp lines in S i-5S with fluorine at the 

(1 0 0 ) surface have not been performed on a ( 1 1 0 ) surface, no id e n t i f i ­

cation of th is  peak is  possible. Whatever i t s  origin* th i s  feature 

behaves like  a d iscrete  level with a time constant that is  reduced by 

l ig h t  so these s ta tes  respond to the varying gate voltage in quasis ta tic  

capacitance measurement only in the l ig h t .  Our normal data reduction 

method has been followed and the resu lting  to tal in terface s ta te  density 

is  shown in Figure (Vl-8 ). Only the peak centered a t 0,50 eV is  l ig h t  

sen s it iv e .
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The density of 31 {110) surface atoms * f* -  9-6 x lO1^J B
atoms/cm^, Is a factor of J H  higher than tha t o f the (1 0 0 ) surface. 

Henee one expects the in te rface  s ta te  densit ies  to  be higher for (110) 

surface samples. While the q u a lita t iv e  behavior of Si-107 ia as ex­

pected, the Increase in  the density o f  s ta te s  compared with Sl-50 is  

far la rge r  than a fac to r of ,J"2- Moreover f the observed s ta te s  are 

confined to  a narrower energy range and have a peak a t  0.275 eV tha t 

i s  not present in the ( 1 0 0 ) surface sample.

There are other important d ifferences between Bi-^fi and th is  

sample. Si-107 has a f in i te  positive  fixed surface charge density and 

the peak of the ]fi )/td curves are s t a t i s t i c a l l y  broadened. The 

s t a t i s t i c a l  broadening makes i t  almost impossible to ex trac t accurate 

Interface s ta te  densities  and time constants from the conductance method 

as discussed in d e ta il  in Section V. Time constants roughly determined 

from the peak positions are shown in Figure {Vl-9)* For the f i r s t  time

for one of our samples , the varia tion  of as a function of surfacec
po ten tia l follows the prediction  of the SRK model. The capture cross 

section deduced from th is  data has the reasonable value* {T = 7 . 1  x 10 - 2cm
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Table VI-2

P0 [liW/cm2] 0 . 0 0 0.0632 1 . 6 0 U.U5 7.01

T [sec]V 3 . 0  x ID- 3 2.7 * 1 0 - 3 1 .7  Jt 1 0 " 3
1 _ u

9 . x 10 6 . 0  x 10  ^



st
al

es

9**

10

19

(2
10

CI-IO

10
10

07 O.B□ 2 0  5 0.4 06

£ [ . v ]

n g .  v i - i



95

$
E

10

• DARK 
■ LIGHT

0
10

10
O O  0 1  0 .2  0 3  Q 4  0 , 5  0 ,6  0 ?  0 . 8  0 .9  1 .0  M  1 2

E[ev]

F t f l .  V I - 2



Si 
- 

10
1

96

ru
v

u

O

9

rO

£
>

l

bD•■rt

a
*

hrr
ffi

a
fO

in
<\j

O
At

irt m
d

o  ■ 
o

[ju] 3



97

Ef m N

Pi
g*

 
V

I-
it



Si ' 101

a* t £
E[*¥)

Fig * VI-5



99

J O

S i - 101

4 0

JO

s

10

OjO
0,0

J  I L
0.2

J I i L*J I I L
0.4 O S oa i.o 1-2

E [ « V ]

F i g n  V I - C



-
10

?

100

t -X
0

IA

Po Q O
N

tiIIIIII
I
1II

IIII
4tIII
1*tIIii
•II
4
■
)i
i
•
i
it
ii
<

Ni

O
>

S '

F
ig

. 
V

M



r s
ta

te
s

101

10

SI - 107 LIGHT

10

J1
10

10
0 02 0.3 0 A OS 07

E ( e V )

Vl-ft



»c

102

•4

o.a ( 006 o e 1.2

E[*V]

r i g ,  v i ~9



VII. DISCUSSION

We are now prepared to o ffe r  in te rp re ta t io n s  o f the qtiasi- 

s t a t l c  and conductance measurement re s u l ts .  The in te rp re ta t io n s  are 

based on Si- 5 8  room temperature data unless otherwise indicated, but 

they can be applied to other samples. We sha ll  speculate about a l ­

te rn a tiv e  in te rp re ta t io n s , and suggest reasons for re je c tin g  some of 

these a l te rn a t iv e s .

D e t a i l e d  theories of the in terface  s ta te s  between Si and SiO^ 

are Just beginning to appear. Since these theories are s truc tu re -  

dependent and only the gross features of the in terface s tructure  are 

known,^ the theories are not easily  te s ted . Despite the enormous e f­

fo r t  th a t bae been devoted to  the 3 tudy of the Si-SHX, in te rface  and the 

control tha t can be exercised to build good devices, the fundamental a 

are in a rudimentary s ta te .  Hence, we shall examine ours and other 

experimental information without reference to  the developing theories , 

and l a t e r  es tab lish  possible connections with them.

Good agreement i s  found between the r e s u l t s  obtained from the

q u as is ta tic  and conductance methods, so long as the continuum nature of

in te rface  s ta te  d is tr ib u tion s  i s  taken into  account in in te rp re ting  the

conductance method data. In contrast to the often-reported featureless
2 3U-shaped to ta l  density of s ta te s ,  1 our well-resolved components show 

a great deal of s tructure  with a number of prominent features:

103
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1) The two l ig h t-sen s it iv e  peaks are fluorine-'re lated  s ta te  densit ies
f l  f2

Ngg and Ngg, They are  very sharply peaked at energies E ■ 0.25 eV and

f X0 . t6  eV, re spec tive ly . The density i s  exceedingly narrow with a 

half-w idth a t  half-maxi mum of only 2.1 x 10 eV,
10 I?2) The t o t a l  area under the curve corresponds to 2.2 x 10 states/cm

—5 f 2or to  3.1+ x 10 states/atom  on the (lOO) surface. The density N , on9b

the other hand, has a half-wldth of 20 x 10 eV and corresponds to 

1,8  x 10 5 s ta tes/a tom . From these re su lts  one infers respective 

f luorine  concent ra t lone of iU ppm and 13 ppm at the in te rface , respec­

t iv e ly .

3) Near the energies 0.23 eV and 0.90 eV, labeled E and E » re s -vs cs

p ec tiv e ly , the  slopes of the curves become very la rg e t so large tha t 

they seem to  be approaching s in gu la r itie s .

h) The area  under and N^, corresponds to 7.9 x 10-J+ and

1.0 x 10*" states/atom  of the (100} surface, respectively . Most of the 

s ta te s  with energy in the band gap evidently l i e  below , or above 

Ec3 , where th e i r  density is too large to  measure,

1  V CWhile the  and N „ curves have some d is t in c tiv e  s tru c tu re ,  they
u u  b b

appear to be continuous rather than composites made of a f in i te  number 

of d isc re te  superimposed lin es ,
. V C

£j) There are Bharp features in  both N and N in the v ic in ity  of the
b  u5 b b

f 2second fluorine  peak N^g,

While the present theoretical understanding of the Si-SiO^ 

in te rface  on a microscopic level remains rudltuentary, i t  i s  of in te re s t
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to  attempt to  co rre la te  our result® w ith current idea®. The few quontum-
ii

mechanical ca lcu la tions  that have been performed on the in te r fa c e  sug­

gest the following p ic tu re  for the o r ig in  of in te rface  s ta te s .  The 

" ideal"  or In t r in s ic  surface , defined as one possessing at le an t  sh o r t-  

range order { i . e . ,  without chemical or s tru c tu ra l  d e fe c ts ) ,  has no 

s ta te s  in  the energy range of the bulk s i  bandgap. All bandgap I n te r ­

face s ta te s  are thus by-products of im perfections. Four very fundamental 

types of defects which can produce s ta te s  in the gap are [ 1 ) chemical 

im p uritie s , { l i )  bond angle d is to r t io n s  of S i-0-3 i bonds in  the oxide 

or S i-S i bonds in the s i l ic o n ,  C iii) S i-S i bonds in the oxide, and (lv) 

dangling Si bond® in the v ic in i ty  of the  in te rface . There is  c le a r ly  

considerable evidence both here, e . g . ,  f^ and fg , and elsewhere Tor 

impurity-derived s ta te s .  Defects ( i i ) ,  ( i i i ) ,  and ( iv ) ,  on the o th e r

hand, have been only recen tly  co rre la ted  with ac tu a l d e n s i ty -o f-s ta te
T.0fea tu res  by Laughlln, e t  a l .  S p e c i f ic a l ly , th ese  workers find th a t

Sl-O-Si bond-angle d is to r t io n s  give r i s e  to  a conduction band t a i l  o f

in te rface  s ta te s ,  while d is to r ted  S i-S i bonds in s i l ico n  w ill  introduce

midgap in te rface  s t a t e s ,  but dangling Si bonds or Gi-Si bonds in  the

oxide w ill  produce tra p - l ik e  s ta te s  near both band edges.

The above p ic tu re  strongly suggests, in agreement with our

mefi.3 urdmenta, th a t the  in terface density of s ta te s  w il l  normally be

made up of several d is tingu ishab le  components and, in p a r t i c u la r ,  th a t

valence- and conduction-band-slde s t a t e s  can indeed have d if fe re n t

v cphysical origins.  Our measured d e n s i t ie s  Nsg and have the expected
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shape and magnitude of band t a i l s  o f major fea tu res  to  the l e f t  of EYS

and to  the r ig h t  of E , respectively . We have noted* in fa c t ,  that•C 5
VNgg approaches E in the manner of a scattering-induced band t a i l  of

39 -y
the valence band edge * The midgap s tructure  in N and !¥„ t on thebu S3

other hand, la reminiscent o f the e ffec t on a continuum caused by a

f2strong sca tte r in g  resonance, such as N apparently rep resen to . But■b5

in any case, the actual re la tionship  between the  midgap s truc tu re  and 
f 2Ngs should be read ily  accessible to  further investiga tion  through d irec t 

control o f the fluorine content at the  interface*

Two other experimental re su l ts  about these  systems are useful 

additions to  those l i s t e d  above. F i r s t ,  in photoemission experiments^ 

in te rface  s ta te s  for cleaved Si and p a r t ia l ly  oxldlaed surfaces to vacuum 

have been id e n tif ie d ,  Some of these s ta te s  a re  found to  l i e  adjacent to 

the valence-band edge and to protrude into the band gap. The energy

reso lu tion  o f such experiments is  of order 0*1 eV and the s e n s i t iv i ty

12 2is  l im ited  to  s ta te  densit ies  greater than 10 statee/eV-cm . Second,

low-temperature surface-conductance measurements on n-channel MDSFET

struc tu res  and a complementary theory have estab lished  the existence of

39—1+1two-dimensional surface energy band s tru c tu re s .  These bands exhibit

minigaps tha t are a t tr ib u te d  to periodic su p e r la t t ic e  po ten tia ls  

es tab lished  a t the £'i-5i0^ in terface .

A consis ten t p ic tu re  that accounts for a l l  the observations, 

and a lso  have some elements in common with the new th eo ries ,  has the 

following features 5
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A, The "Ideal" SI-SIO^ Interface

The "ideal Si-SiO^ in te rface , 11 one with no chemical impuri­

t i e s ,  no fixed  charge, a  moderately abrupt t r a n s i t io n  from Si to SiO^ 

th a t  is  confined to  a few la t t i c e  spactngs, and with at l e a s t  short-

range o rder, has s ta te s  located below the erters f  E and above Evs os

Then £ and £ are the  surface—valence and conduct I on-band edges, vs os

re s p e c t iv e ly . The s ta t e s  below Evg are the ones seen in photoejolssion

and the ones above E are  the ones responsible for the n-channel con­es

duct ion p roperties  with the minigaps. The occurrence of periodic  super­

l a t t i c e  p o ten tia ls  a t  the in terface could conceivably a r is e  from imper­

f e c t io n s ,  but i t  seems much more likely th a t th is  is  a property tha t 

should be ascribed to  the  "Ideal in terface".

B. Scattering-induced band t a i l s

v cThe and curves in Figure (V-13) are the band t a i l s

of the p rinc ipa l in te rface  s ta tes described above. Using the very 

general s c a t te r in g  theory, these ta i l s  can be thought of as s ta te s  

caused by sca tte r in g  from defects in the " ideal in te rface" . The defects 

may be categorized as usual into two c lasses, imperfections and im purities , 

I t  is  a b i t  d i f f i c u l t  to identify  loiper feet ions in the in te rface  without 

f i r s t  defin ing the s tru c tu re  of the "ideal in te rface" . However, i f ,  

fo r  example, an ideal in te rface  has a ch a rac te r is t ic  sequence of bond- 

angle d is to r t io n s ,  a deviation from the ideal sequence would con s ti tu te  

an Imperfection. I f  oxygen vacancies and s ilicon  dangling bonds are
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p ar t  o f  the  Ideal in te r fa c e ,  then one located In the wrong place would 

again be an Imperfection, e tc .

In terns o f  th is  p ic tu re ,  one can th ink  of Ideal d en s it ie s  o f 

in te r fa c e  s ta te s  (E )t (e) th a t  are confined to  energies E <  E
o t a U  y O u  V is

1+2and E > E , re sp ec tiv e ly . The sca tte r in g  theory can then be InvokedC3
to  r e l a t e  the  idea l density  of s ta te s  to the obaerved band t a i l s .

M ,i l r t - f J e M m  tO (e)/t
N“ tE5' J  [«-s-Ajtiy*+*jii) , J ‘ v- C , ( ' , I I - 1)

where A and A are  the rea l and imaginary parts of the s c a t te r in g -  
J -J

induced s e l f - e n e rg ie s , I f  one examines t h i 3 expression in energy-

in te rv a ls  E far removed from the band edges - th a t i s 4 E - E, I >7 A J ,
* I Ja | J

A j  -  then Eq. {7X1-1} s im plif ies  to

r d t O  *  ~ r~ z— ~

P.  L
(VII-S)

For de fin iten ess  we have Iden tified  the remaining in te g ra l  in  Eq, (711-2} 

with f  , the density  of Si surface atoms, where f  * 6 , 8  x  10^atoms/cm^ 

fo r the (100) surface. Both the room temperature and l iq u id  nitrogen 

temperature data, ca lcu la ted  from Eq. tVII-2) are p lo t ted  in Figure (V II-l} . 

I f  the  s c a t te r in g  causing the band t a i l s  a l l  arose front s ta te s  with
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energies well away from the band edges -  e*g*, charged centers -  then

^3the A j*s would decrease monotonically from the band edges . Hie

s tructure  In A v and 4 ^ i s  a  fingerprin t of the sca tte r in g  mechanisms

contributing to the  measured in te r face -s ta te  density*

There Is  a  measure of ambiguity in  the in te rp re ta t io n  of the

gross features of the A and A behavior. F i r s t ,  the scale o f Av c  v

and A is  se t  by the assumption that the in teg ra l in Eq* (VII-2)

equals p  for both cases* This could be true for one but not the

other, or fo r  neither* Until th is  point is  s e t t l e d ,  no conclusion can

be drawn from the re la t iv e  magnitudes of A and A Using the

scale indicated leads to A  with a maximum of about 130 M  eV or a

corresponding sca tte r in g  life tim e of r = gf ” 2 *1* x l 0 ~12sec
c max

at room temperature. I f  the scale is  proper, then A c » which would

be of the same order as A is  quite small compared to  E - E over

the energr range considered, so dropping i t  la correct* However, i f

the energy scale  Is grossly d if fe ren t ,  then may not be so small

and the apparent sharp decrease In A from 0.65 to  0.90 eV (or D.U3c

to  0.70 eV a t  77°K) may be only an a r t i f a c t  of the approximation th a t  

A c is  small. Then, the major s tructure  In A c would a l l  be a part 

of the general monotonlc fa l l  of A  * On the other hand, i f  the scale 

is  properly a e t ,  then the major peak In A c around 0 . 6  eV (or 0.1+ eV 

at 7 7 °Kj must be caused by a resonance with defects s ta te s  a t that 

energy. Presumably these s ta te s  have too low a density to  be seen 

d irec tly ,  and th e i r  presence can be detected only by th e i r  e ffec t on the
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conduct Ion-’band t a l l .  Evidence to support th i s  la te r  position w il l  be 

presented sh o r tly .

Examining the curves In Figure ( V l l - l ) r i t  la evident that 

both peaks of the s e lf  energies for the conduction and valence band t a i l s  

are s h i f te d  toward the valence band side a t  17°K in comparison with those 

a t  the room temperature* Sot ice th a t not a l l  the lines sh if t  by the 

seune energy, so th is  general trend la not l ik e ly  to be Just an a r t i f a c t  

of the method. Moreover, the principal peaks narrow and become higher, 

while t h e i r  areas are nearly preserved. Since the major peaks have un­

resolved shoulders on them, they are evidently composites of l in e s  with 

d i f fe re n t  o r ig in s .  I t  w ill  be necessary to  perform controlled experi­

ments intended to modify these features one at a time i f  they are to  be 

iden tif ied*  The important point here is that th is  method of co llec ting  

and reducing data allows one to see such d e ta il-

On sample Si-101 the higher ligh t in tensity  th a t was used at 

TT°K was again used to see i f  i t  caused any a r t i f a c ts  in the data- The 

imaginary parts  of the s e l f  energies were deduced from Eq. (v li -2 )  and 

are p lo t te d  In Figure [VII-2). Their gross s tructure  le sim ilar to 

and o f  Si-59. However* both £ c and for Ci-lGl are narrower.

The peak height of £  is  about a factor of two smaller and these 

sp ec tra l  features are sh if ted  toward the conduction band re la tiv e  to 

the corresponding qu an titie s  for Si-59. Since In the higher l ig h t  in ­

tensity the trends of and for Si-lOi sh if t  in the opposite

d irec tio n  to  those in  Si*50 from rooifl temperature to TT^K, we conclude 

th a t these s h i f ts  and lin e  shape changes are not caused by the l ig h t .
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C. H ybridisation and resonant sca ttering

The sharp s tru c tu re  in N̂ 0 and N*L [and A  , A ) in  theB5 fab v c

energy range 0.25 to 0.5 eV w ill  be in te rp re ted  next. The rapid  v a r i -  

V cations of N and ?( occur near the coincidence o f  tvo effects*  Theb b bp

f i r s t  i s  tha t th i s  ia the e n e r ^  range where the  s ta te s  andL>kJ bb

meet» and as a consequence might be expected to  h ybrid ise . Second„ 

th is  i s  also near the energy of the Q.Ub-eV fluorine  peak, and i t  may 

act aa a strong resonant sca tte r in g  center fo r  the  continuum s ta t e s  in 

the valence- and conduction-band t a i l s .

The r e la t iv e  importance of these two mechanisms can be de­

termined by examining the A curve in Figure [V Il- l)  and estim atingc
some numbers* Notice in  Figure (VII-ll th a t  the re  ia a aharp peak in

^  Ju s t  at 0.1+6 eV. I f  th is  peak is  ascribed to  the fluorine  resonance

and i t s  height A c f 2 e3timated as A ^  then the e f fe c t iv e

sca tte r in g  range of th i s  feature j  ^

t t 2  * ■ — 4  A 3E 7 0  l a t t i c e  apacings ( v i I - 3 )

where v " 1+ x 1 0  ̂ cm/3ec is  the surface thermal velocity  of e lec trons  

with a free  e lec tron  mass, and f* ■ 1 . 2  x 1 0 ^  atoms/cm^ ia the 

measured fluorine  2 surface density. An e f fe c t iv e  range of 70 l a t t i c e  

Bpaclngs is a t  the upper lim it  of what might be considered reasonable 

for a s c a t te r in g  center, even one as d isruptive as f lu o rine . Two con­

clusions can be drawn from th is  re su lt :  the scale  o f  A as s e t  by Pc 1 a
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i s  not too small, a p o s s ib i l i ty  ra ised  e a r l i e r ;  and since the peaJt A  __Cl 2

i s  small and confined to a narrow energy range compared to the s truc tu re  

in A and A t the f luorine  is  not the p rincipal con tribu tor to  th is
C V

s tru c tu re .

This leaves us with hybridization as the most l ik e ly  explanation

v cof most o f the sharp features in  N and N . There i s  an add itionalDD

piece of evidence to support th is  In te rp re ta tio n . Notice tha t the main

peaks and valleys of and in the e n e r ^  range 0.25 to 0.5 eV

a n t ic o r re la te . This is  exactly what one expects in a two-band, strong-

sca tte r in g  case. The valleys a r ise  in the sca tte r in g  ra te s  because the

density of f in a l  s ta te s  Into which sca tte r in g  can occur decreases in

those energy ranges where hybridization-caused band gaps open.

While the fluorine resonance and hybridization are the most

lik e ly  explanations o f the sharp features in N̂ „ and , two otherbb 55

mechanisms have been examined. We considered the p o s s ib i l i ty  th a t  the

j+;features are van Hove s in g u la r i t ie s  in the scattering-induced band t a i l s ,

or depressions in the density of s ta te s  a r is in g  from superlattice-produced

mini gaps. Both van Hove s in g u la r i t ie s  and minigaps occur at specia l

V Cwave numbers. Hie observed sharp features in both and a l l  appearL>D Ok>

at nearly the same energy. I t  is  unlikely tha t t h i 3 energy corresponds 

to the same wave number for both band t a i l s .  The explanations that in ­

volve energy resonances are more compelling in view of the data, so we 

have te n ta t iv e ly  re jected  the a l te rn a t iv e s „

The f in a l question we wish to  address in th in  section is  the 

nature o f the observed varia tion  of with energy, shown in
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Figure (V-lV). C learly , the  variation differs s ig n if ic an tly  from the 

p red ic tio n  o f  the SRH model, which is  alao shown in Figure (v-ilt) for 

conparlson.

While we have no de ta iled  explanation of the orig in  of th is  

d if fe ren c e ,  there  a re  features of the inter face -s ta te  density th a t sug­

g es t m odifications in  the usual SRJi treatment. The high s ta te  density 

N___ in th e  energy range "between E and E can act as an electron
DDU C 3  C

re se rv o ir  for the lo ver-ly ing  states* Depending on the re la t iv e  ra te

r^ o f  e lec tro n  exchange between N̂ s and Ngs0 , the  ra te  between

and the  e lec trons  in the hulk-conduction band beyond the depletion
£

layer* and, f in a l ly ,  the ra te  r^ between 11̂  and the bulk-conduction

- 1band e lec tro n s ,  d i f fe re n t  energy variations of may occur.

Case At I f  r^ , r^ 4A  r^, then the usual SRH time constant 

r e s u l t s -  Our Si-107 sample fa lls  into th i s  class* The time 

constant measured on Sl-107 follows the prediction of the SRH model.

Case b : I f  r„  <£. r_ , r ,  , then the s ta te s  - act as a re se r-t j  1 ijBU
v o ir  and

t : « - t * , , ,  6 « ) A t J
( VII-U

S l x > o ' 4’ T i , H
A

The explanation of the observed behavior of may be tha t

fo r  E well belov E * case B holds, and is  much smaller than pre-C B C

d ie ted  by the  ordinary SRH model. However, as E approaches E , thereC 9-

are two changes. The s ta te  density N increases, and the t ra n s i t io nilu
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c cp ro b a b i l i t ie s  per -unit time from a s ta te  to  one of the s ta te s
o£5 boU1

a lso  Increase because the e n e r^ - difference i s  smaller. Hence, the 

s i tu a t io n  tends to  change From Case B to Case A, where the s ta te s  Hq_„
qdU

no longer behave as an e lec tro n  reservoir. I t  I s  impossible to turn th i s
£

Into  a q u an t i ta t iv e  theory without knowing and the enerfff dependence

of capture cross section. In addition to th e  groas trends Ju s t  d is ­

cussed, the s p e c tra l  features found in l<̂ c must also be explained. An 

understanding o f  these features v i l l  undaubtably help e s ta b l ish  the 

o r ig in  of the various con tribu tions  to the in te r fa c e  s ta te s .  The anom­

alous v a r ia tio n  o f  T* with energy is another ind ication  th a t  somec

samples, sueh as 31-5&, 51-101, d if fe rs  from those studied previously.

However, aorae o the r  samples, such as Si-1DT, do behave as p red ic ted  by

SRil model.
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VIIr. CONCLUDING REMARKS

We have made several additions to the techniques of e le c t r ic a l  

measurement used to study in te rface  s ta te s .  These are: the use of

e ffec tiv e ly  th in  composite in su la to rs ,  low c a r r ie r  concentration sub­

s t r a t e s ,  and low -in tensity  l i g h t  th a t creates  electron-hole pa irs  in 

the space-charge region. While these modifications are easy to put in to  

e f f e c t ,  they introduce su rp ris in g ly  profound differences in the experi­

mental r e s u l t s .

In the absence of the l ig h t ,  i t  would be almost impossible to 

reach the quasi s ta t ic  condition  and s t i l l  re ta in  a useful s ig n a l - to ­

rtoise ra t io  with our samples. The main consequences of not sa tis fy in g  

th is  condition are th a t the ourface-po ten tia l d is tr ib u tio n  deduced from 

the measurement ia too broad and some s ta te  densities  are underestimated. 

This causes In te r fa c e - s ta te  p ro f i le s  to seem smoother than they are in 

fa c t .  I t  can also lead to incorrect conclusions about the number of 

positive  fixed charges. In l i g h t  of these r e s u l t s ,  experiments on 

fixed charge should be re-examined. For example, some of the changes 

introduced by annealing ar by rad ia tion  e ffec ts  may be due to time- 

constant modifications ra th e r  than to actual changes in the number of 

fixed charges.

The l ig h t  a lso  allows the in te r fa c e -s ta te  density to  be mea­

sured throughout the band gap, using the c^.,luetfuu:e method. The main

11T
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advantage of the  conductance method Is tha t using i t  ve can decompose

the in te rface-fita te  density in to  p a r t ia l  contributions from d if fe ren t

o rig ins . When th i s  ia done* d is t in c tiv e  s tructure  in the in te r face -

s ta te  d en s it ie s  becomes evident*

The main in te r fa c e -s ta te  density seems to be concentrated

a t  energies in the range E E and E C E vhere they are too largevs cs

to  be observed* The features a t energies E ^  E £  E are evidentlyVs cs ^

band t a i l s  of the major d en s it ie s .  The sharp s tructure  in the midgap 

region is  probably due to  hybridization of the valence- and conduction- 

band t a i l s ,  Laughlln e t a l . ^  and Herman e t a l . ^  both predict tha t 

there  are no s ta te s  in the band gap for an "ideal" in terface. Only 

defects in the ideal arrangement produce such s ta te s ,  Laughlin e t a l .  

find a conduction band t a i l  tha t arises  from Si-0-Si botid-angle d is to r ­

tions* while Sl-Si bond d is to r t io n s  can produce a valence band t a i l .  

Dangling Si bonda in s il ico n  cause midgap s ta te s ,  while dangling Si 

bonds or S i-Si bonds in the oxide produce trap - l ik e  s ta te s  near both 

band edges. I t  i s  impossible a t present to  uniquely identify  any of the 

th eo re tica lly  predicted features with the observed ones. To do t h i s ,  

we must devise experiments designed to modify one feature at a time,

□ur oxide was grown in dry 0  ̂ and was th in , so the sample 

was maintained a t  the growth temperature for a re la tive ly  short time 

(Jt 6  min}. I t  was never in ten tionally  exposed to or Ĥ O a t an e le ­

vated temperature. Consequently, the Interface properties reported 

here may be q u a l i ta t iv e ly  d if fe ren t from those measured on th icker
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oxides, for vhich the in te rface  la  not abrupt, and those exposed to 

hydrogen * I t  Is  imperative th a t other samples, prepared in d iffe ren t 

ways, be subjected to otif Improved measurement technique.
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