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ABSTRACT

The threshold behavior of the absolute total electron detach
ment cross section for collisions of Cl with He, Ne, Ar, Kr, D^,
Op, Ng, CO and C02 has been determined in an ion beam-gas target appara
tus. The measurements were completed over a relative energy range from 
below the electron affinity of Cl to approximately 150 eV. It was found 
that the threshold for detachment is about twice the electron affinity of 
chlorine. Relative elastic and inelastic differential cross sections were 
measured for collisions of Cl with 02, N2 , CO and C02 . The above experi
ments are discussed within the framework of a local complex potential model. 
This model is based on the assumption that the process for electron detach
ment is a result of the crossing of the Cl bound state with the continuum 
of neutral atom free electron states. Semiclassical calculations, using 
this model, are presented for the total detachment cross sections of Cl 
colliding with Ne, Ar and Kr.

Relative elastic and inelastic differential cross sections have 
been determined for collisions of Cl with Na and K as well as for col
lisions of H with Na. The measurements were completed over a relative 
energy range from 5 to 100 eV in an ion beam-gas target apparatus. For 
the systems Cl + Na(K) it was found that the cross section for ion pair 
production or electron detachment is very small when compared with the 
elastic scattering cross section. A semiquantal calculation is presented 
for the elastic differential cross section. The elastic differential 
cross section for H colliding with Na exhibited behavior characteristic 
of collisional detachment. All of these reactants have large dipole mom
ents making possible bound negative molecular states; the data showed 
rainbow phenomena characteristic of scattering from bound states.
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STUDIES OF NEGATIVE ION-ATOM SCATTERING 

AT LOW COLLISION ENERGIES



I . INTRODUCTION

An experimental study has been made of collisions of negative 

ions with atoms and molecules at low relative collision energies. Abso

lute total cross sections have been measured for the process of colli- 

sionally induced electron detachment from the negative ion. Relative 

elastic and inelastic differential cross sections were also determined. 

These experiments were performed with an ion beam-gas target apparatus 

over a relative energy ranging from 2-150 eV.

The absolute total detachment cross sections were determined 

for collisions of Cl~ with He, Ne, Ar, Kr, H^, D2 , 0^, Ng, CO and CO^.

Particular emphasis was placed on the region of the energetic threshold

for electron detachment. Detailed experimental knowledge of the thresh

old region provides an essential test for collisional detachment models 

as well as for intermolecular potential calculations for negative 

molecular ions.

The differential cross sections measured were for collisions 

of Cl with Og, N^, CO, CO^, K and Na as well as H with Na.

The collisional dynamics of negative ions and atoms are not

only interesting from a purely academic viewpoint, but their inter

actions must be understood to comprehend the role of negative ions in 

many naturally occurring processes.

In the earth's ionosphere, processes leading to the formation 

and destruction of negative ions play mediating roles in the determination

2
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of concentrations of electrons and various molecular species. Negative 

ions are primarily formed by three processes:

1) three body attachment

X + M + e--* X" + M

2) radiative attachment

X + e~—• X- + hV

3) dissociative attachment

XY + e-— ► X- + Y

These reaction channels and their inverses leading to electron detach

ment, govern concentrations of electrons, positive and negative ions, 

and neutrals in the upper atmosphere. Knowledge of the cross sections 

and rate constants for these reactions leads to a better understanding

of phenomena in the ionosphere. In the solar photosphere, the absorption
2spectra of H contributes to the observed spectral distribution.

A full understanding of the plasma conductivity in Magneto-

Hydrodynamic devices must include a consideration of possible negative
3ions m  the plasma. The formation and destruction of negative ions m  

the plasma affect the electron concentrations which are the most mobile 

charge carriers in the plasma.

One of the most promising approaches for heating the plasma 

of tokamak fusion devices is by injection of high flux, high energy 

neutral beams of deuterium atoms. The earliest method used was to create 

a positive deuterium ion beam which underwent charge transfer in an 

alkali vapor collision cell, D+ + C s —*»D° + Cs+ . This technique was 

limited by low efficiences at the high energies needed for injection
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(E '■'-250 KeV). Most recent efforts have focused on the production and
kneutralization of negative hydrogen ions and beams, i.e., D + X — m 

D° + X + e“ .

In this study we have focused on the process of collisionally 

induced electron detachment from negative ions. An understanding of 

the dynamics of this inelastic reaction channel is an important step 

toward predicting the contribution of negative ions in the aforemen

tioned processes.

The collision studies presented here also include alkali tar

get systems. The alkali-halides and hydrides are interesting systems 

since the molecules have such large dipole moments. This fact has led 

to many ab initio and model calculations for the intermolecular potentials 

which predict stable negative bound states. The H - Na system is parti

cularly interesting since part of the fusion effort has lately focused 

on creating negative hydrogen ions from alkali-coated surfaces.^ The 

alkali is deposited as a mono-layer on substrates of Mo; when bombarded 

with H+ or H° some percentage of the backscattered product is in the 

form of H . This process is still under investigation and the study of 

elastic scattering of H + Na is of immediate use.

Chapter II will contain a description of the experimental 

apparatus. In Chapter III both ab initio potential calculations and 

collision model calculations will be reviewed. The absolute detachment 

cross sections determined for collisions of Cl with He, Ne, Ar and Kr 

are contained in Chapter IV. The results for the diatomic targets are 

contained in Chapter V. The experimental results for the alkali-halides
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and the alkali-hydride reactants are in Chapter VI. A summary of results 

and conclusions can be found in Chapter VII.



II. EXPERIMENTAL APPARATUS AND METHODS

In the negative ion-atom (molecule) experiments completed, two 

different apparatuses were used. Absolute total detachment cross sections 

were measured on one machine, and the relative differential cross sections 

on another. The experiments employed gas phase targets and ion beams that 

had well resolved energy and spatial distributions. We will discuss the 

details of each apparatus separately and follow with a discussion of the 

methods used in data reduction.

A. Differential Cross Section Apparatus

A schematic diagram of the relative differential cross section 

apparatus is shown in Fig. 1. The ions are extracted from the ion source, 

accelerated, and focused into a magnetic momentum analyzer. Next, they 

enter the main vacuum chamber where a series of decelerating lenses focus 

the ions into the collision region. Beyond the collision region, there 

are the following: a 127° energy selector, radio frequency mass spectro

meter, a charged particle multiplier and a neutral particle detector.

The detection system beyond the collision region is capable of detecting 

particles that are scattered between -2° to k0° relative to the incoming 

ion beam. This detector configuration makes it possible to examine the 

elastic scattering channel and the inelastic channels for both fast 

neutrals and negative ions.

6
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Figure 1,(a) ion source, (b) accelerating and focusing electrostatic 
lens system, (c) magnetic mass spectrometer, (d) retardation lens system, 
(e) collision chamber, (f) energy analyzer, (g) radio frequency mass 
spectrometer, (h) particle multiplier, (n) neutral detector. No attempt 
has been made to indicate the scale of the various elements.
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Figure 2. A cross sectional view of the duoplasmatron with a blow-up of 
the critical region showing the plasma core and negative ion sheath 
region. No scale is indicated.
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Two types of beam sources were used in the relative differen

tial cross section measurements. The H beam was produced with a duo- 

plasmatron and the Cl beam with a surface attachment source.

Duoplasmatron

The duoplasmatron shown in Fig. 2 is similar in design to one
g

described by Aberth and Peterson. The filament is constructed of a 

rolled piece of nickel mesh, coated with a triple carbinate, (CagCO^,

Ba^CO^, Sr^CO^ to lower the work function) and is mounted on a set of 

copper electrodes. The filament sits inside an intermediate (or Z) elec

trode. The Z-electrode is normally kept electrically shorted to the fila

ment but to strike an arc, it is momentarily shorted to the anode potential. 

Coaxial with the filament and Z-electrode is a coil, whose magnetic field 

provides for focusing of the arc. The anode is a copper disk with an 

aperture of approximately 0.050 inches diameter mounted just beyond the 

Z-electrode. To strike an arc and create a beam of ions, the filament is 

heated by supplying approximately l8A at 1.5 VAC. The source gas is then 

admitted by a precision leak valve into the region of the filament. When 

the Z-electrode is shorted externally to the anode potential, an arc is 

temporarily struck between the Z-electrode and the filament; the arc is 

subsequently maintained between the Z-electrode and anode. To extract a 

large current of H from the sheath of this plasma, it has been found that 

the axis of the Z-electrode should be displaced laterally from the axis of
7the cathode by approximately 0.050 inches. This offset cuts down the 

extraction of large electron currents from the source. When operating, 

the arc current is in the range from 0.15-1.5A.
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For an H- beam a source gas mixture of about 50% Ar and 50% 

is used. This combination seems to be useful for long term stability of

the arc. Typical beam currents measured at the particle detector are a

few nanoamps with an energy spread of 0.7 eV FWHM after passing through 

the momentum analyzer.

Surface Attachment Source

The phenomena associated with the creation of negative ions by

surface attachment (or "surface ionization") have been described in the
8 —literature. Fig. 3 is a schematic of the source used for the Cl beam.

At the top is an inlet for gaseous CCl^ and inside the chamber 

is a filamfent and an electrostatic lens for extracting the ions. This 

extraction lens has its entrance covered with a 95% transparent tungsten 

grid, so as to produce a strong electric field for ion extraction. The 

filament is a thoriated iridium ribbon of the type used in vacuum gauges 

(Veeco No. 1220-003).

The surface ionization technique works for systems where the 

electron affinity (E.A.) of the atom is greater than the work function of 

the cathode. The relevant pathway for the formation of Cl seems to be 

molecular decomposition of CCl^ on the hot filament, followed by an ef

fusing negative halogen ion. The filament operates with a current of 5A 

which provides a surface temperature of approximately 1200°C. Pressure 

on the inlet side of the ion source is in the range from 0.05 to 0.15 Torr.
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An energy analysis of a Cl beam was performed using a retardation 

technique on the total cross section apparatus, and the results are shown in 

Fig. U . The dots are the experimental points; to these an error function was 

fitted, the derivative of which is a gaussian function. Shown is an ion 

beam with a primary energy of 6.3 eV and a FWHM of 0.06 eV. This relatively 

narrow energy spread and the fact that the filament potential was -6.5 volts 

indicates that the Cl ions are formed in the immediate vincinity of the 

filament.

For both the dupolasmatron and the surface attachment source, the 

kinetic energy of the ion beam is controlled by the potential difference 

between the cathode and earth ground, since the ions are formed near the 

cathode and are accleerated to the collision chamber which is maintained 

at ground potential.

Ion beam currents produced in both sources range from several 

nanoamperes at high energy, to a few tenths of a nanoampere at low ion 

beam energies.

Electrostatic Lens and Momentum Analyzer

Immediately following the ion source there is a set of electro- 
9static lenses which extracts the ion beam and accelerates the ions into 

the magnetic momentum analyzer.

The momentum analyzer is a 90° X-band waveguide with a 6 inch 

radius of curvature with entrance and exit slits of dimension 0.050 x 

0.50 inches, giving an approximate resolution of 60. The magnetic field 

is provided by an electromagnet with shaped pole pieces of the same
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R e t a r d i n g  Potent i a l  (Vo l t s )

Figure 1*. Retardation analysis used to determine energy
distribution of negative ion beam. The open circles are 
experimental points and an error function which is fitted 
to these points is shown as a line. The derivative of the 
error function (a Gaussian function) gives the energy distribution 
of the primary ion beam.
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approximate radius. The resolution is such that for the well defined

energy of the surface attachment source, the spectrometer easily resol-
35 37ves the isotopes of chlorine (Cl , Cl ).

The spectrometer injects the momentum analyzed beam into the 

main vacuum chamber, where there are another series of electrostatic 

lenses. These provide deceleration and focus the beam into the colli

sion region. All of the electrostatic lenses are biased by the cathode 

power supply, so that once the ion beam is properly focused, if the 

energy is changed by raising or lowering the cathode potential, it is 

unnecessary to readjust the focusing conditions.

Collision Region

The collision region is defined by a stainless steel cylinder 

whose inside diameter is O .85 inches. The entrance aperture is 0.125 x 

0.035 inches, and the scattered product can exit by a 0.125 inch high 

slot cut from 0° to 90° relative to the primary beam. Over this cylinder 

is a coaxial rotating sleeve of brass construction which defines the lab

oratory scattering angle. It has an exit slit of 0.125 x 0.035 inches.

Two heaters, constructed of approximately ten inches of 35 

guage nichrome wire would on \ inch diameter forms of Alsimag are mounted 

in the base of the collision chamber. A thermocouple of chromel-alumel 

is mounted between the heaters to monitor the temperature of the collision 

chamber.

These heaters are connected in series to a regulated DC power 

supply. Applying approximately 12 watts to the heaters brings the colli

sion chamber to the proper temperature. By reducing the wattage slightly
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when the chamber has reached the proper temperature, the temperature can 

be stabilized. During an experiment the temperature never drifted by 

more than IK.

For all targets, the gas pressure in the collision region was 
_3kept in the range below 10 Torr. For the alkali targets this meant 

providing a temperature of ^ 0 K  for potassium and 510K for sodium."^

For the diatomic targets, a gas inlet was connected to the collision 

chamber and a precision leak valve was used to regulate gas flow.

Detection System

Following the collision region is a one inch long grounded 

drift tube, with the end farthest from the collision chamber covered 

with a 95% transparent tungsten grid. This grid eliminates electric 

fringe fields from the collision region.

The drift tube is mounted on, but electrically isolated from 

the face of an electrostatic energy selector, whose properties are well 

k n o w n . T h e  selector consists of 127° 17' coaxial cylindrical sections

with radii of 3 cm. and k cm. The entrance and exit slits each have a

dimension of 0.035 x 0.25 inches. External switching of the selector 

polarity makes it possible to pass both positive and negative ions. The

entrance slit is electrically isolated and it can be used to accelerate

or decelerate ions into the energy selector, making possible inelastic 

studies and facilitating elastic studies. During experiments, the 

energy selector is tuned to pass the primary ion beam at 0° with no scat

tering gas in the chamber. The selector is kept at the same energy setting
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since its transmission coefficient for different energies is unknown, and 

the ions are accelerated or decelerated as needed for elastic scattering 

angular profiles or inelastic spectrum studies.

After leaving the energy selector the ions enter a radio fre- 
12quency mass spectrometer (RFMS). A particle detector (Bendix 306 elec

tron multiplier) whose design and operating characteristics have been well 
13documented is mounted at the exit aperture of the RFMS. The output of 

this detector can he monitored as DC current on an electrometer or, when 

externally switched, in a pulse counting mode. In the pulse counting 

mode, the output is capacitively coupled to a charge sensitive preampli

fier, followed by a linear amplifier which also shapes the pulse, and this 

signal is fed to a single channel pulse height analyzer-scaler. After 

accumulating counts on the order of 20 seconds the scaler output is fed 

into a teletype printer system. Common background levels are a few counts 

in ten seconds.

To detect fast neutrals, a Channeltron Electron Multiplier"^ (CEM) 

is used. The CEM is mounted on the outer wall of the 127° energy selector.

A hole is drilled through this outer section such that when the CEM is 

mounted, it is in the direct primary beam line when the detection system 

is rotated to sample 0° relative to the incoming primary beam. The output 

of the multiplier (CEM) is fed into a preamplifier, then to a linear ampli- 

fier-pulse shaper, and into a scaler-analyzer. Background noise for this 

system is on the order of one or two counts in ten seconds. The absolute 

detection efficiency for neutral particles in the CEM is not known for the 

experiments reported here. Even though only relative differential cross
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section measurements were performed in the efficiency of the CEM as a

function of the neutral particle's energy may he important in some cases.
15Morgenstern et al. determined that for a 20 eV ground state He atom,

_3this detection efficiency was less than 10 ; this value was determined

relative to He+ efficiency at the same energy. They showed that from 

100 eV to 20 eV the efficiency goes down by two orders of magnitude.

Thus, at a particular energy, an angular profile of scattered fast neu

trals may have an efficiency factor which decreases with increasing 

scattering angle.

The entire detection system is mounted on a table which pivots 

about the center axis of the collision chamber. The exit slit which 

defines the scattering angle is mechanically coupled to this table such 

that the exit slit of the collision region and the entrance slit of the 

velocity selector are in parallel planes, each having a normal plane 

which bisects the center of both apertures simultaneously.

The laboratory scattering angle is determined by a potentiometer 

system. A wiper connected to the rotating table slides along a precision 

resistor wire which carries a constant current. By measuring the voltage 

between the wiper and one end of the wire the scattering angle can be 

determined to within one-tenth of a degree. The scattering cross sec

tions reported here are sampled in one-half degree steps. The nominal 

angular spread of the primary ion beam is approximately one degree FWHM.
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Vacuum System

Because well resolved low energy ion Beams are needed for the 

experiments reported here, very clean vacuum techniques are necessary.

All lenses, analyzer and entrance and exit slits are coated with Aquadag 

after very careful cleaning of the components. Aquadag is graphite which 

is applied as a colloidal suspension in alcohol. When painted on, the 

graphite apparently minimizes space charge Buildup on the lens element 

surfaces.

The apparatus vacuum system consists of two sections: a main

chamber and an ion gun chamber which are connected By the momentum analyzer 

tube. The ion source and first lens stacks are contained in an aluminum 

Box that is lit x 5 x 6 inches. This section is pumped By two 2-inch,

30 liters/sec. mercury diffusion pumps which are liquid nitrogen (LN^) 

trapped and Backed By a mechanical fore pump.

The main vacuum chamber which contains the collision region and 

detection system is housed in an aluminum cylinder with a diameter of 28 

inches and a height of 2b inches. This chamber is evacuated By a trap

ped six inch, 260 liters/sec mercury diffusion pump that is Backed By a 

mechanical fore pump. An ionization gauge monitors the pressure in this 

chamber which is 2s 10 ^ Torr when experiments are Being done.

B. Absolute Total Detachment Apparatus

The apparatus used in the absolute total electron detachment 

cross section measurements is shown in Fig. 5. The ions are extracted from 

a surface attachment source, focused through a Wien Filter and then into 

the collision region.



19

The beam source is of the surface attachment type and is identical 

to the one previously described. An extraction and three focusing electro- 

static lenses focus the beam through the Wien Filter. The device is an 

E x B field type spectrometer supplied by Colutron Corporation. The effec

tive collision region is in cup B (cylindrical brass cup 3 inches in dia

meter and 1.75 inches long). Defining the far end of the collision region 

are three parallel grids (I, II, and III) separated by .15 inches which 

are made of 95% transparent tungsten mesh. Element C is used as a Faraday 

cup to monitor the intensity of the primary beam. Around cup B are wound 

33 turns of Wo. 18 magnet wire which provides an axial magnetic field of 

about 6 gauss with an applied current of 1.5A. This provides one part 

of a trap for detached electrons, which are collected on element A.

The target gas is admitted through the top of cup B. The gas 

handling system has a two-inch oil diffusion pump which is LW^ trapped to 

pump out an intermediate holding tank. Thus, by pumping out this ballast 

tank to 10-^ Torr before filling, the target gas purity is not downgraded 

from the specifications of the manufacturer (commonly 99-99%) The gas 

is metered by a precision leak valve into a U-tube which can be immer

sed in LWg. This provides a further safeguard against contamination by 

condensible background gases. The gas flows from the U-tube directly 

into cup B.

The target gas pressure is monitored by an MKS Baraton Capaci

tance Manometer (type 1U5 BHS-1, 1 MM head). The manometer calibration
17was checked by a mercury manometer technique and found to be accurate

x8to within 5%. This is in agreement with reports in the literature
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and the manufacturer’s claim of +5% of the absolute pressure. Common
i -Utarget pressure at a constant leak rate was k x 10 Torr.

To provide for differential pumping the collision region is

separated from the ion source by a baffle plate with a 0.1 inch entrance

aperture. The ion source is pumped by a LNg trapped 6-inch oil diffusion

pump (1500 liter/sec) and the collision region is pumped by a i+-inch LNg 

trapped oil diffusion pump (800 liter/sec).

Pressure is monitored by ionization gauges at the ion source

and in the collision region. Also when pumping down the target gas hand

ling system, an ionization gauge monitors the pressure. The inlet to the 

ion source has a thermocouple gauge to monitor the leak into the source.

As stated earlier, the target gas pressure is usually in the 

range of 10 Torr during experiments; background pressure before the
Q

scattering gas is admitted is typically 10 Torr in the collision region. 

Pressure on the ion source side of the dividing baffle is 10 ^ Torr when 

the ion source is in operation.

C. Data Acquisition and Reduction

To facilitate analysis of the data it is convenient to convert 

the measurements taken in the laboratory into the center of mass (C.M.) 

coordinate system. Because the results reported here are from two entirely 

different measurements, it is convenient to discuss separately the proce

dures used in the analysis of the experiments along with estimates of 

the errors involved.
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Differential Cross Sections

Since the measurements are relative differential cross sections, we 

must insure that the scattering signal can he suitably corrected for 

any systematic signal variation with scattering angle. Also the pro

cedure for converting the experimental data to the center of mass ref

erence frame must be clearly defined.

jectile, target, detected fast product and undetected slow product, 

respectively. In such a collision the conservation of energy in the

sions where the internal energy undergoes some change, a positive value 

of 4  E is defined as exothermic and a negative change as endothermic.

The collision must also conserve linear momentum and the result 

of combining this with the conservation of energy yields:

Likewise, the energy of the scattered particle can be expres

sed in the form

In order to clarify the discussion, consider the general scat

tering equation + Mg — ♦ M^ + M^ where the subscripts denote the pro

laboratory reference frame can be expressed as, E^ + Eg + A  E = + E^,

where E^ is the relevant kinetic energy and A e  is the change in internal 

energy of the particles: A  E = + Ug - . For inelastic colli-

m3 m 1

where 0 is the laboratory scattering angle of M^.

E,3

where:
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V (M1M3 E I % 
v fMgM^ E + E J
and E is the energy in the center of mass frame of reference. A negative 

sign in the above equation corresponds to backscattering and a positive 

sign to forward scattering in the center of mass.

Earlier in discussing the velocity selector it was pointed out 

that since the transmission coefficient was not known, the elastically 

scattered particles were accelerated up to the primary beam energy.

This requires an accelerating voltage of E^ - Eg and from the equation 

for E^ the voltage can be calculated as a function of laboratory scat

tering angle.

The above discussion is strictly for binary-binary collisions, 

and is not strictly valid for all collision channels we consider. In 

the case of detachment A- + B —►A + B + e- , the outgoing channel involves 

three particles. However, the momentum carried by the electron is small 

and can be neglected, thus leading to approximately the same form for

e 3(0).

The equation relating the C.M. scattering angle (7£) to the 

laboratory scattering angle is:

tan 0  = —
0 + cos \

Differential cross sections measured in the laboratory must be 

transformed into the center of mass cross sections. The relation between 

the two is that the number of particles scattered into the laboratory 

solid angle must equal the number scattered into the corresponding center



of mass solid angle. This transformation as a function of angle takes

the form, CT' = F • (T~T , , where ’ cm lab

■p. = _______ i + y Cos x _______
(1 + ^  + 2 y  cos^C )3/2

In addition to these kinetmatic effects, account must be taken

of systematic effects in the experimental apparatus. The actual reaction

volume depends on the scattering angle. Therefore, the effective scat

tering pathlength must be known for all angles. To compute this accura

tely, the three-dimensional-primary beam intensity, slit geometry, and 

detection efficiency as a function of angle should be known. All of 

these cannot be determined in our case, but we can employ a valid approx

imation. The scattering pathlength is taken to be proportional to the 

area defined by the plane of intersection of the primary beam divergence 

and detector acceptance angle: this is illustrated in Fig. 6.

Finally, the counting statistics for detecting negative ions 

and fast neutrals are found to have a Poisson distribution. That is, 

the uncertainty in the number of counts is approximately the square root 

of that number.

Absolute Total Detachment Cross Section

To measure absolute total electron detachment cross sections 

the primary beam current Iq , detached electron current 1^ and the pres

sure must be known accurately. The total cross section is determined by 

the equation:
I,
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where n is the number of scattering centers per cubic centimeter and L 

is the scattering pathlength.

The detached electron current is collected on element A of 

Fig. 5. To insure that all of the detached electrons are collected on 

A a confining axial B field is combined with a slight negative voltage 

on grid II. Since some of the detached electrons travel twice through 

grid I before striking A, some may be attenuated by grid I. It was 

found that the electron current to A must be corrected by 2 + 2^ for 

this effect. Therefore, I. of the above equation must be changed to
xx

I = 1.02 I.', where I *  is the measured quantity.
XI XX XX

The axial B field is arranged so that the cyclotron radius of 

low energy electrons is less than the radius of element A at a field of 

5 gauss. The guard ring which extends 0.050 inches beyond element A is 

kept at a slightly negative voltage (yv-0.1 volts) to repel electrons.

All of the aforementioned fields must be maintained so as to

insure the most efficient detection of electrons without any systematic

effects. For this reason, the B field is operated in a region where
19the detected current is independent of the magnitude of B. Also the 

voltages on the guard ring and grid II are changed with primary beam 

energy to insure 1^ remains independent of field strengths.

The primary beam current is determined by placing a large 

retarding voltage on grid I and measuring the current to element A and 

B with the same electrometer as is used to measure the detached cur

rent on element A. This procedure, therefore, minimizes any instru

mental errors in determining the ratio I^/I .
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The capacitive manometer is connected "by a small tube to the 

collision region. The membrane of the manometer is kept at a constant 

temperature of 322K. Thus, the effect of thermal transpiration must be 

taken into account when determining the pressure. In this case the dia

meter of the tube is much smaller than the mean free path of the target 

atoms, thus there is effusive flow through the tube. At equilibrium the 

flow of gas in and out of each region must remain constant and this leads
B r  Rn** 20to the condition ---  = ----  where the subscripts refer to the colli-
Ter T r» i KS

sion region and the MKS manometer in this equation relating the corres

ponding temperatures and pressures. The number density can be written as:

N = 9 -6^  ■* V .5 p/ -31
(300 x 322)^ /

_3where P is expressed in units of 10 Torr and the denominator is a geo

metric temperature average which is a result of correcting for the thermal 

transpiration.

As mentioned earlier, the energy of the primary beam is deter

mined by a retardation technique. In this procedure the ion current to 

element C is monitored as a function of the retarding voltage applied to 

grids I and II. (Grids I and II are shorted together to eliminate any 

electrostatic saddle points through which the ions could pass.) The 

derivative of the curve generated in this manner is approximately gaus- 

sian function the centroid of which is taken as the primary beam energy 

(refer to Fig. b). A series of tests were done to ascertain any effect 

of surface contact potentials on the energy of the ion beam. A very

liberal estimate would be that the laboratory energy is in error by
21no more than a quarter of an eV.
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With the uncertainties enumerated above it is believed the 

total detachment cross sections are accurate to ;+ 10% and by checks made 

at later dates reproducible to +_6%.



III. THEORETICAL CONSIDERATIONS FOR NEGATIVE ION-ATOM

SCATTERING

The possible reaction channels for collisions of negative ions 

with atoms are varied; there can be elastic scattering, direct electron 

detachment, charge transfer, excitation of the negative ion to auto

detaching states, and associative detachment. The experiments reported 

here focused on direct electron detachment and elastic scattering; the 

other channels will be discussed only in the context of how these chan

nels may contribute to the experimental background when compared with 

direct electron detachment.

The chapter will be divided in two parts. In the first part, 

we wish to discuss the process of direct electron detachment in colli

sions of Cl with the rare gases and diatomic targets. The alkali tar

get systems will be discussed separately in the second part of this 

chapter.

A. Direct Electron Detachment in Collisions of Negative Ions with Atoms

In collisions of Cl with the rare gases and diatomic targets we 

concerned ourselves primarily with direct electron detachment of the 

negative ion. A review follows of some relevant collision model calcu

lations and ab initio potential calculations which will help us describe 

this collision channel.

29
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Model Calculations for Direct Electron Detachment

Model calculations have been very useful in describing the

collisional-induced electron detachment of negative ions. A few models

will be reviewed including a local complex potential model which will be

used to interpret the experimental results.

For very high incident energies (E ̂  1 KeV) a Born approxi-
22mation can be applied to the scattering problem. Sida used this approx

imation for the system H- + He and was only able to achieve order of

magnitude success in describing the electron detachment cross section.
23McDowell and Peach had similar results for the H + H system.

Various other models extended the Born approximation. Lapontseva 
2band Firsov in a perturbation calculation used a delta function for an 

effective potential to describe detachment. The bound electron is treated 

as essentially free in the incoming and outgoing channels and the colli

sion thus is equivalent to that of an electron elastically scattering from 

an inert gas atom, at a velocity equal to the relative velocity of the 

ion-atom interaction. Even at very high energies, this model did not 

predict the available experimental results and is obviously unsuited for

any low energy description.
25Demkov has taken a different approach to describe the coupling 

to the neutral states. As the negative ion-atom interaction potential dev

elops adiabatically the discrete state merges with a continuum of free 

electron neutral atom states. At this point, the ionization potential 

approaches zero and the wave function of the weakly bound electron appre

ciably overlaps regions where the effective potential is zero and detach

ment can occur. To model this effective potential at the crossing, a
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time-dependent boundary condition is introduced for the electron wave

function. This has the effect of providing a decay term for the electron-

bound state at the crossing.
2 6Devdariani has evaluated the consequences of various forms of time-

dependence and the model has been applied with limited success by Esalov 
27et al. to describe differential cross section measurements for H inert 

gas collisions.

Complex Potential Model

A local complex potential model has proven useful in describing

collisional induced electron detachment studies previously investigated 
IQ 28 29 30in this lab. ’ Lam has compiled an excellent review and discussion

of this formalism for both a classical model and the semiclassical treat-
31ment of Chen and Mizuno. Here we simply wish to contrast the results

of the classical and semiclassical models.

Since the de Broglie wavelength associated with the nuclear motion

is short, some type of semiclassical approximation is appropriate, and we

first derive a classical expression for the cross section following closely
30the development by Lam.

It is assumed that the negative ion state and the neutral state 

cross at some internuclear separation This curve crossing is sche

matically shown in Fig. 7- Following the potential curve of the quasi

molecule (AB ) we see that at Rx the state crosses into a region where 

there is a continuum of possible outgoing states (AB + e ). For collision 

energies greater than V (Rx ) this region is accessible and it is assumed
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that we can ascribe an energy-width P(R) to the ionic state (AB- ). This 

width is inversely proportional to the lifetime of the anion state.

This probability for detachment can be described by introducing 

an imaginary part to the potential,

W(R) = V(R) - i/2 r(R) (1)

An imaginary potential in this form provides for a sink of elastically 

scattered products and thus will yield a survival probability term which 

modifies the usual elastic differential cross section.

Consider the time dependent wave equation for the nuclear

motion:

[ -  h + V(R) - i / 2 P ( R ) J  (R,t) = i h ^ -[R,t) . (2)

Multiplying the above equation by [j/ and its complex conjugate by 

then subtracting, yields the continuity equation

^y**(R,t) + V -  j(R,t) = - (R,t) (3)

where / *  is the probability density and j is the probability current.

We can rewrite the current as

j = /> V .

The probability density can be constructed as a product of the elastic 

scattering probability density, /°o , times the survival probability, P, 

of the bound negative molecular state. Thus / °  is written as

/ °  • p

where y O Q satisifes the homogeneous continuity equation.
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+V-/>0V= 0. (k)
Now rewiritng Eq. 3 we have

+ V • VP = - P/iL * P <)t
or (5)

dP
dt

from which we obtain

= - r/h * p ,

P = exp s - COI-1 M
With a change of variable the survival probability may be rewritten as:

I
(6)

VR Jo

CO

Ps = exp 2/* j dR J

where Rq is the classical turning point for the real part of the potential

and V_ is the radial velocity. This function depends on the impact para- n
meter, through its dependence on the radial velocity. The differential

cross section is then given by: < r \ ( 0 )  = c r  (0) • p (0) whereel o s
CT (0 )  is in the usual form: (J~ (0 )  = . y (7)o o s m y d o
and Q  is the deflection function which is a function of the impact 

parameter.

In the classical approach only the survival probability depends

on the imaginary part of the potential; the deflection function has the

usual form and dependence on the real part of the potential. This is not
31the case in the semiclassical development of Chen in which the survival 

probability and deflection function depend on the imaginary part of the 

potential.
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The formulation by Chen et al. assumes again a complex poten

tial, but the Schroedinger equation is solved for each partial wave by a 

JWKB approximation. Thus a complex phase shift, =

obtained which depends on both the real and imaginary parts of the 

potential. In this formalism the elastic differential cross section is 

given by:

<T (0) = Ps(0) b/sin 6  j d j , (8)

where the survival probability is:

Ps = exP I”-1"! *[(8) J
and is the deflection function which is defined in terms ofJWKB
wave number k, and impact parameter, b = (l + ^)/k as

0  = £  d y  (b)
JWKB k db

Since the calculations presented will only be for total detach

ment cross sections, we now present a form for this function. In this 

model, the probability for detachment is negligible outside the crossing 

for the two states. Thus, we can construct the total detachment cross 

section by integrating the detachment probability over impact parameters 

from zero to a value corresponding to the crossing. The total detach-

X [l - Ps(b)J bdb (9)
o

where the detachment probability is P = 1 - P and b is the impact para-S X
meter at which the turning point is equal to the crossing point. To 

determine the crossing impact parameter consider the radial velocity:

VR = (2E/yU )35 • (1 - - b2/R2 )1'S. (10)

ment cross section can be written as: G"", , = 2 Jtdet
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A + B + e“(K.E.=0)

E .A

R

Figure 7. Schematic representation of the interaction potential 
for repulsive negative ion - atom states. The shaded region 
represents the decay width of the anion state as described in the 
text. Also shown is part of the continuum of free electron states.
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If the turning point corresponds to the crossing, then V,, = 0  and we
x

can solve for b : •,
X V(R ) ^
bx = Rx 11 -  - r -  > (11)

where E is the relative collision energy. The above form for the total

detachment cross section will be used in calculations presented for the

Cl + rare gas systems. The survival probability will be evaluated using
31the semi-classical formalism due to Chen and Mizuno.

The width, f"*(R), of the ionic state can be modeled by many

functions. In the present work no attempt was made to find an optimum
32form for l(R). We used a form suggested by O'Malley which depends on 

the electron's asymptotic angular momentum:

r  (R) <c (R - R)L + R <  R x x

where L is the angular momentum of the electron.

Some qualitative properties of the cross sections follow immedia

tely from the complex potential model. The total detachment cross section 

should exhibit an energy threshold approximately equal to the value of the 

potential at the crossing, V(R ). The differential cross section would 

have a depletion of the elastic scattered signal at a threshold angle, 

corresponding to impact parameters which sample the region R K. R • In 

both of these the sharpness of the threshold will depend on whether or 

not there is significant tunneling to the continuum for R >  R .X

Ab Initio Calculations for ArCl and ArCl 
33Olsen and Liu have completed a self-consistent field (SCF) 

calculation for the adiabatic potentials, V(R), of the systems ArCl 

and ArCl. The atomic basis sets for Ar, Cl and Cl- were taken from the
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3Utabulations of Clementi and Roetti, with the Ar basis set augmented
3Swith optimized i+s, Up and 3d functions of Saxon and Liu. The SCF 

method does not yield accurate absolute values of the ionic and neutral 

potential curves and they have been corrected to give the proper energy

separation at large internuclear distances. The above calculation showed
—  2 the X'2E (ArCl ) state crossing twice with the X 2E (ArCl) state. The

second or inner crossing was attributed by the authors to a correlation

between ArCl and the bound negative state or bromine in the united atom

limit. Also the calculation showed the A Tr state of ArCl to be more

repulsive than the X'2. (ArCl ) state, which leads the authors to conclude

that coupling between these states is insignificant.

The parameters which are of interest in this study are the

outer crossing distance which is 3.U-5 and the value of the potential

energy at the crossing, 10.1 eV above separated Cl- + Ar. The authors

point out that because of the relatively small basis set for the ArCl

system the theoretical potentials may overestimate the energy at the

crossing by 1-2 eV.

B. Collisions of Negative Ions with Alkali Atoms

Negative molecular ions of alkali-halides and alkali-hydrides 

have been investigated theoretically quite extensively in recent litera

ture.^^ ^  For these highly polar molecules, predictions can be made 

for the electron affinity (E.A.) of the molecule by noting a correlation 

between the E.A. and the dipole moment.
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An initial model then for these systems is that of an electron 

in the field of a dipole. We will proceed with a review of a solution of 

this simple model followed by a report on the ab initio potential calcu

lations for the systems NaH and NaCl .

The Schroedinger equation for an electron in the field of a

finite dipole is rigorously soluble and has been investigated in detail 
1+3by Wallis et al. They were able to determine the eigenfunctions and 

energies for a given charge separation of the finite dipole. The eigen

functions are determined by separation of variables, and for a given 

symmetry, there is an infinity of bound states. As the fixed charges 

are brought closer together, the bound states will vanish and there will

be a critical separation which will just be bound. Wallis and his co- 
1+3workers were not able to determine this critical dipole moment.

1+1+Wrightman made the earliest known calculation of the minimum
, 1+5separation for binding, .639 a . Mittleman and Myerscough examined

the solutions to the Schroedinger equation for the case where the total 

energy of the bound electron approaches zero. They performed a pertur

bation claculation for small changes in the charge separation. The cri

tical dipole moment for binding was found to be:
O

 ̂y  1.625D (D = Debye = 10 e.s.u.-cm)
1+6Using a different approach, Turner and Fox arrived at the same critical 

value.
1+7Crawford has made a general study of bound states of an 

electron in various dipole-like fields. A calculation of the zero energy 

solutions of a finite dipole yields a set of critical dipole moments



39

corresponding to different symmetries of the wave functions, again:

c }l.625D. These results are also applicable to an electron in the 

field of a point dipole with a repulsive central core.

The next logical step is to extend the above to the study of
U8real polar molecules. Crawford has examined this problem and drawn

some conclusions when including electronic, vibrational and rotational

motion in negative molecular ions. Beginning with a properly antisym-
!+8metenzed wave function, Crawford showed that for a molecule with its 

nuclei fixed and A  -A there exist an infinite number of discrete nega
tive ion electronic states. This result followed from simply noting the 

general eigenvalue behavior of the Schroedinger equation with the proper 

form of the wave function. When vibration is included, if the average 

dipole moment does not fall below A  the elctron still has an infinite 

number of bound states.

When including rotational motion of the molecule, it is dif

ficult to make predictions using generalized wave functions in the Scroe-
U8dinger equation. Crawford used a rigid rotor model of a dipole and 

found that at most the critical dipole moment for binding rises to 2D 

and most surely there is binding for 2.5D.

As listed in Table 1 the dipole moments of the reactants studied 

are all greater than six debye and should support bound negative molecular 

states.
h9Carlsten, Peterson and Lineberger have given direct experi

mental evidence for a bound state of LiCl . Their determination gives 

an electron affinity which is an order of magnitude below that predicted
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for an electron in a simple finite dipole field. This result is not sur

prising since the pure dipole field does not consider the effects of core 

repulsion or finite atomic sizes which are important at small internuclear 

separations.

Ab Initio Potential Calculations 
1+1Simons has compiled an extensive review of recent theoretical

studies of negative molecular ions. Ab initio potential calculations have
39 _been completed by Jordan and Wendoloski on the system NaCl and NaH

1+2and Karo, Gardner and Hiskes have investigated the NaH potential energy 

curves. Here we wish to report on the calculations which will be employed

in the later chapter to interpret experimental results.
- 39For the systems NaH and NaCl , Jordan and Wendoloski employed

a Hartree-Fock (HF) method to solve for the E.A. of the bound electron.

In this approximation a HF calculation is made for the neutral molecule

and the anion. By noting the vertical separation between these potential

curves the electron affinity of the anion can be deduced. A conventional
1+2HF self-consistent field calculation for NaH was done by KGH using a 

linear combination of atomic and molecular orbitals for the ground eigen

states of the neutral molecule and the negative ion. The two states 

appear to cross at 2.6 aQ at a value of the interaction potential which 

is less than zero.

The results of these ab initio calculations will be employed in 

an analysis of our experiments. The potentials will be fit to convenient 

analytical forms to facilitate the integrations. Listed in Table 3 are 

the equilibrium separations and potential well depths for these calculations.



IV. ABSOLUTE TOTAL DETACHMENT CROSS SECTIONS FOR

Cl ON He, Ne, Ar AND Kr

Absolute total detachment cross section measurements were made 

for the systems Cl + He, Ne, Ar and Kr for relative energies ranging 

from around threshold for detachment to approximately 150 eV. Attention 

was focused primarily on the threshold for direct electron detachment, 

which is the most important inelastic channel at these low energies.

These reactants have heen investigated previously, and we wish 

first review earlier total and differential cross section measurements. 

Following this review we will discuss broadening effects in the experi

mental data, and then present the results and analyses of the present 

measurements.

Related Cross Section Measurements

The earliest reported measurements for these systems were 

elastic differential and charge exchange cross sections for negative ions 

of chlorine and bromine with various gaseous targets. These experiments

were completed by Rosenbaum"^ over an energy range of 1-U KeV.
51Bydin and Dukel'skii reported total detachment cross sections 

for negative halide ions colliding with the rare gases and over an ion 

energy range of 0.2-2 KeV.

Integral cross sections for elastic scattering of Cl- from the
52rare gases were determined by Boerboom, Van Dop, and Los in the energy 

range of .15-^ KeV. They deduced the interaction potential for various 

potential models for their experimental results.

ill
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The energy spectrum of the detached electrons for collisions
53of halide negative ions with the rare gases was determined by Bydin.

He found that at energies above 500 eV, the energy spectra of the de

tached electrons showed a maximum around 1-2 eV with another maximum 

at 6-7 eV which was attributed to auto-detaching states. The latter

peak became significant at higher collision energies.
5I+Fayeton et al. have studied both electron detachment and

inelastic processes in collisions of Cl with the rare gases. These

studies were carried out over a laboratory energy range of 80-2000 eV.

For their low energy experiments they had success in applying a complex

model with potential parameters which had been determined experimentally
19by Champion and Doverspike for the same systems.

The results reported here are an extension of the experiments 
19of Champion and Doverspike in which the relative differential and 

absolute cross sections for Cl” colliding with the rare gases were 

measured. By using a semiclassical complex potential model, they were 

able to deduce reasonable local complex potentials which yielded cal

culated cross sections in satisfactory agreement with experimental 

results. In these total cross section experiments the threshold region 

was difficult to examine in detail because of low beam intensities and 

the rather large energy spread in the primary ion beam.
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Threshold Behavior 

The systems presented here all exhibit the same behavior: the 

cross section rises rapidly from the energy threshold (which is approxi

mately twice the electron affinity of the halogen) to a near constant 

value, if the relative energy is sufficiently high. Our main interest 

lies in the threshold region and corrections must be made for effects 

which cause the true detachment cross section to be broadened.

These are three possible sources of this broadening (l) thermal 

motion of the target gas, (2) energy spread of the primary ion beam, and 

(3) the existence of stable isotopes in either the primary ion beam or

target gas. Of these three the most important is (l) which has been dis-
55cussed in detail by Chantry. If the true detachment cross section is

E), where E is the relative energy, then the observed cross sectiono3?U.S
is a result of the convolution:

<5"', (E) = 1 G(E1 - E) (Tl (E1) dE' obs J true

where G(E' - E) is an appropriate apparatus function. If E > >  kT, then

the broadening function due to thermal motion can be represented by a
55gaussian function with a full-width-half-maximum given by

W = (11.1'X • kT • E)^

where ^  is the ratio of the projectile mass to the total mass, T is the 

temperature of the target gas, and E is taken as the threshold energy.

The laboratory energy spread of the primary ion beam is '>-0.60 eV, 

FWHM, and when converted into the C.M. frame of reference gives the width 

of the second source of the convolution.



The third source of broadening is due to the existence of iso

topes in the reactants, which causes the mapping of the laboratory data

into the C.M. frame of reference to be non-unique. For instance the
35 37Wien filter cannot resolve the two isotopes of chlorine, Cl and Cl , 

so that the average mass (35-5 amu) is used in computing the center of 

mass energy. This isotope effect, however, is rather small and for 

systems reported here, could cause broadening with a characteristic 

width W^ = 0.15 eV.

The total convolution function is taken to be a gaussian function 

with a width of
P P PW = (W + W2 + W 3 )2

where the subscripts refer to the source of broadening. The widths assoc

iated with the various reactants are given in Table 2.

To deconvolute the experimental results, a method which uses an 

iterative technique to solve for 0"^rue(E') in the integral equation was 

used. This procedure developed by Ioup^ requires uniformly spaced experi

mental data, which in our case was not available. To generate an equally 

spaced array from the experimental data, a standard numerical interpolation 

scheme (Lagrange-Aitken) was used.

To test the deconvolution scheme and the magnitude of the effects 

of thermal broadening, we have used a simple analytic function to represent 

the cross section. The form of the function chosen is that of a charging 

capacitor which switches on at E = 9 eV:



In this form the convolution integral can be performed exactly (Eq. 37 

of Ref. 55) and the results of the convolution, with = 1.26 eV, are 

shown in Fig. 7(b). It is clear that the inclusion of thermal broaden

ing will cause f° differ from G"^rue(E) only in the region

near threshold, but in that region, the effects will be important and 

their neglect could lead to a slight underestimation of E This 

point has been discussed by Chantry. ^

The numerical deconvolution was applied to the results of the 

exact convolution and, as can be seen in Fig. 7(b), the results are 

good in that the original function C"(E) is recovered.

The threshold region for the reactants, Cl + Ne, is shown in 

Fig. 8(a). The experimental results are given along with a deconvolution

and a complex potential calculation using the potential parameters obtain-
19ed by Champion and Doverspike. As can be seen, agreement between the 

calculated and deconvoluted results is excellent.

The total detachment cross section in the threshold region is 

shown for the Cl + He system in Fig. 9» Both the experimental results 

and deconvolution are presented; as in the previous case, the threshold 

for detachment is approximately twice the electron affinity of chlorine.

The results for the systems Cl + Ar, Kr are shown in Fig. 10(a). 

This cross section does not appear to approach zero at the electron af

finity of chlorine, but remain/finite for E.A. For these reactants 

of light projectiles on heavy targets, elastic backscattering in the lab

oratory reference frame is possible and this can contribute to an appar

ent cross section Q (E), which is the sum of the detachment cross section 

and the backscattering contribution:
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Figure 9» CT(E) for Cl + He.
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Figure 10. (a): The apparent cross section, Q,(E), as discussed in 
text. Triangles - Cl + Kr; open circles - Cl + Ar. (b): Corrected 
detachment cross section vhich results from subtracting the 
estimated backscattering contribution from the data given in (a). 
The dashed line is the result of deconvolution. The dot-dash line 
is a complex potential calculation for Cl” + Ar, Kr from Ref. 19.
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qa Cr ) = <r (e ) + q b s (e )

Based upon the experimental results for the previous reactants, it is

reasonable to assume that CT(e ) is approximately zero for E 7-5 eV

and that for this energy range Q.(E) ^  Q_C(E).a Ho
19Potential parameters exist for both Cl + Ar and Kr, so that 

the elastic backscattering contribution can be calculated as follows. 

Referring to Fig. 5, let us define the Z-direction as that of the primary 

ion beam with Z = 0 defining the plane of the circular element labled A. 

The elastic backscattering contribution is then given by:

< W E > ~ (L - Z ) j bo (E1 ’Z ) dzO ' cjO

where L is the total scattering pathlength, Zq is the amount by which 

the guard ring extends beyond Z = 0, and To (Z ) is determined from the 

real part of the potential by

W Z) —  © c m (El>Z) —  ©Lab*

where R^ is the radius of element A.

For the energy range from t eV to 8 eV, Q^,(E), as calculated
2above, is found to be approximately constant at Q (E) = 0.10 a whichJ3D O

is in excellent agreement with the experimental observations for Cl” + Ar.

In the case of Cl + Kr, Q, „(E) is calculated to be eV) = 2.1 a ^13b O
2and 0^0(7 eV) = 1.9 a , which is also in good agreement with the experi-Jbo O

mental results. Therefore, it is reasonable to assume that for these 

reactants, the negative current measured on element A is due entirely to 

elastic backscattering for collision energies below 7-5 eV.
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We have corrected the Cl + Ar data for the effects of elastic

backscattering and show the correction and deconvolution in Fig. 10(b);

because the effect was so large for the Cl” + Kr reactants no attempt

was made to correct the experimental results. Also shown is a calculation

for Cl + Ar and Kr which in this region is the same for both reactants.

The agreement of the calculations with the experimental results is good.

In chapter III we reported the results of an ab initio calcula- 
33tion of Olsen and Liu for the potential energy curves of ArCl and ArCl.

They found that the states cross at an internuclear separation of R^ =

3.̂ -5 aQ which agrees well with an experimental determination by Champion 
19and Doverspike of R = 3.39 a . This crossing occurs at an ab initio 

interaction potential energy of V(R ) - 10 eV. Based upon the premiseX
that the coupling of the ionic state to the neutral state should be quite

small for R >  3-b5 a , this crossing energy would appear to be about 2% eV

higher than that indicated by the experimental results of Fig. 10(b).

The complete experimental results are displayed in Fig. 11 for

Cl + He, Ne, Ar and Kr. Corrections for broadening are not observable

on such a scale and are not included. The cross sections for Cl + Ne,

Ar and Kr differ by 3% to Q% in the energy range E >  50 eV from the
19values reported earlier. The cause of this discrepancy is unclear,

but it may be due in part to the determination of the scattering gas 
57pressure.

A comparison of the cross section for Cl + He with the results 

of Bydin and Dukel'skii"^ shows the present cross section approximately 

lQ% lower for a relative energy of 1^ eV. For Ne, Ar and Kr, a reasonable
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extrapolation of the present results lies 32-38% lower than those of 

Bydin and Dukel'skii.

In summary, we have found that the onset of detachment has 

an energy threshold of approximately twice the E.A. of chlorine. More

over, a complex potential model calculation gives a satisfactory descrip

tion of the experimental observations.
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V. ELECTRON DETACHMENT IN COLLISIONS OF Cl WITH

VARIOUS MOLECULAR SPECIES

Absolute total detachment cross sections have been measured 

for relative collision energies in the range from around threshold to 

approximately 150 eV for collisions of Cl" with D^, 0^, Ng, CO and 

COg. Relative elastic differential cross section measurements were 

made for the reactants Cl + N^, CO and CO^. In addition, we have also 

measured the relative differential cross sections for "fast" Cl atoms 

produced in the detachment process for the systems Cl~+ 0^, Ng, CO and

co2.

The potential surfaces for these systems are at the present 

time unavailable, thus only a qualitative analysis of the experimental 

observations will be given. The total cross sections will be presented 

first, followed by the relative elastic and inelastic cross sections.

A. Absolute Total Detachment Cross Sections

Absolute total detachment cross sections have been determined 

and the measurements and their deconvolutions are presented in Figs. 12- 

17. The deconvolution scheme is the same as that used in the analysis 

of the Cl and rare gas experiments.

The threshold region for the systems Cl + Hg and are shown 

in Figs. 12 and 13. Again, as in the case of the rare gas targets, the 

energy threshold for detachment is weHl above the E.A. of chlorine. A 

comparison with the results of Bydin and Dukel1skii^ at 8.8 eV shows

53
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that our results are approximately 60% below their results for the 

target.

A close inspection of Figs. 12-13 reveals that, for a given 

relative energy, the cross section for H^ lies slightly above that of 

Dg. This is in direct opposition to the predictions of a local complex 

potential model if we assume that the potential surfaces are the same 

for the reactants. The complex potential model predicts an isotope 

effect which can readily be understood by considering the classical 

form of the survival probability which is a function of the collision 

velocity. At the same relative energy the heavier isotopic system will 

have a slower relative velocity and thus a longer collision time. There

fore, the system Cl” + D2 will have a larger probability for detachment 

since it spends more time in the region where detachment is energetically 

possible. One would expect the cross section of to be above that of
rO

but that was not the case. Champion et al. have studied this iso

tope effect for H~" and D- colliding with various targets and found the 

results could not always be explained by a model using a local complex 

potential. (it should be noted, however, that these arguments ignore 

the difference in the rotation and vibration of these molecules, and 

also they ignore the fact that the potentials are not spherically 

symmetric.)

For all of these molecular targets there are other channels 

which could lead to an apparent signal for electron detachment such as 

dissociative charge transfer, charge transfer, or rearrangement. The 

first two channels could result in thermal energy negative ions that 

could be collected on element A and interpreted as detached electron 

current.
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The cross sections for these rearrangement processes are largely
2unknown for these reactants. Cheung and Datz found evidence of other

detachment channels in collisions of Cl with Hg at laboratory energies

above 500 eV. In a similar experiment for Cl on Og they only detected

the simple detachment channel.

The experimental results in Fig. 15 for the system Cl and Og

show the detachment cross section rising slowly with decreasing energy
2below the predominant threshold at if. 5 eV to a value of 0.2 a^ at 1 eV. 

This value (0.2 aQ ) is in agreement with the cross section for charge 

transfer as measured by Vogt and Opiela*^ in this energy range. This 

charge transfer cross section will contribute to the background in the 

measurement of the cross section for direct electron detachment. Also, 

the process of associative detachment, Cl + 0 g — ► C10g + e- , may contri

bute to the background below if.5 eV.

The results of the measurements for the detachment cross sec

tions for Cl + Ng and CO around threshold are shown in Figs. 15 and 16 

and the cross sections are seen to continue smoothly to zero. The detach

ment cross section for Cl~ + C0g around threshold is shown in Fig. 17.

This system exhibits the same behavior as the reactants Cl + Ar(Kr; that 

is for these light projectiles on heavy targets elastic backscattering 

in the laboratory leads to an apparent cross section below the predomi

nant threshold. We can assume that the cross section below 9 eV is due 

to this backscattering effect.
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In Figs. 18-19 the cross sections are shown over the entire
6lenergy range sampled for all molecular targets. Dimov and RosyIakov 

have measured the total detachment cross section for the 0^ and CO^ 

systems at laboratory energies above 225 eV; when compared with our 

results they are found to lie 25$ and 13$ lower respectively.

B. Relative Differential Cross Sections

Relative differential cross sections for the scattering of 

Cl by Ng, 0 , CO and CO^ as well as the relative differential cross 

sections of the fast (neutral) chlorine atoms produced in collisions 

of Cl" with these molecular targets have been measured for laboratory 

collision energies in the range 50-260 eV. Selected examples of these

measurements are shown in Figs. 20-2k. The elastic results are plotted

as usual in center of mass coordinates, while we have chosen to display 

the neutral differential cross sections as functions of the reduced co

ordinate 'f- = E • 0^, where is the laboratory collision energy and 

Q  ^ the laboratory scattering angle. Over the energy and angular range 

of the present experiments, 7- never differs by more than 2.7$ from the 

corresponding center of mass 7" -values for all the scattering systems 

considered here. It is well known that the quantity 7 - is primarily
69a function of the impact parameter for small-angle forward scattering. 

Thus, any features in the scattering that occur at the same value of 

for different collision energies indicate that they are due to the same 

region of the interaction potential.
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In chapter II we have discussed the neutral particle detector 

efficiency as a function of energy. If a single endothermic process is 

responsible for the detachment of electrons, then the scattered neutrals 

will have a decreasing kinetic energy with increasing angle. However, at 

the energies reported and for the range of scattering angles investigated 

the change of kinetic energy of the scattered neutrals is at most a few 

percent and will not appreciately affect the overall shape of the measured 

differential cross section.

The cross sections for neutral production by the targets N^, 0g 

and COg all show the same basic structure. One common feature is a rela

tively small peak at 7" = 0 which is spurious. Due to detachment on slits 

etc., a large neutral signal is observed at zero degrees with no target 

gas present: this signal has been subtracted from the "gas-in" measure

ments. However, subtraction of this background signal still leaves a 

non-zero signal around >  = 0, because reactions occuring in the immediate 

vicinity outside the defining slits of the collision region give an addi

tional unwanted signal with target gas present.

For Ng, 0g and CO^ target gases, the measured neutral cross sec

tions rise rapidly at small 7" -values, reach a prominent maximum, then 

decrease more slowly with increasing 7 “ • The maximum in the CO^ cross 

section occurs at a characteristic value of in the neighborhood of 

1100 eV-deg, which is essentially independent of collision energy. How

ever, the maximum in the 0^ cross section shifts to larger values with 

increasing collision energy. There appears to be a slight trend in the 

Ng data which is opposite to that of 0^, i.e., the peak shifts to slightly 

smaller values of 7" with increasing collision energy.
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Unpublished results from this laboratory of the neutral cross 

sections for collisions of Cl~ with the rare gases Ne, Ar, Kr and Xe show 

the same general features of those found for these three molecular targets, 

and the maxima in those cross sections are located at -values that are 

essentially independent of collision energy.

The neutral results of CO, shown in Fig. 21, are strikingly dif

ferent from those of the other molecular targets. At a collision energy 

of 6b.6 eV, the cross section has a maximum at ar 900 eV-deg: the

location of this maximum shifts to slightly larger values with increasing 

collision energy. In addition, there is a second maximum at the much 

smaller value of "7* ^  200 eV-deg. Since this process (which is not 

present in the other systems) produces neutrals that are scattered at 

small angles, the contamination problem at small scattering angles is 

far more severe in the CO system. This is apparent in Fig. 21 where, 

after corrections for "no scattering gas" have been made, the peak at 

"7“ = 0 is still comparable in magnitude to the one at ^  ^  200 eV-deg. 

Measurements at energies above and below those shown in Fig. 21 show 

that the small *7“ -process is dominant at high collision energies but 

becomes small compared to the large ^  -process at the lowest collision 

energies investigated. These observations tend to support the hypothesis 

that, in the case of CO, there are two distinct processes responsible for 

the production of neutral chlorine.

Examples of the relative differential cross sections for the 

elastic scattering of Cl- by Kg, CO, and C0g are shown in Fig. 2b. The 

differential cross sections all have the same general shape: Each
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decreases smoothly, with increasing scattering angle, but shows a change

in curvature (downward) at intermediate scattering angles. This feature

is more apparent in the and CO cross sections than it is for COg, but

is not nearly as pronounced in the molecular systems as it is for the
19rare gas targets studied previously. These regions of downward curva

ture in the elastic cross sections are interpreted to be evidence for the 

onset of electron detachment which leads to the depletion of the elastic 

channel. The range of 7* -values to which the majority of neutrals are 

scattered is, in each case, in reasonable agreement with the “7“ -values 

associated with the regions of downward curvature in the elastic cross 

sections.

For those trajectories which lead to detachment, the final 

scattering angles of the neutrals are determined by the amount of elas

tic scattering incurred before detachment takes place and the subsequent 

scattering on the outgoining neutral channel. If the ionic and neutral 

interactions are comparable in strength (which is a reasonable assumption) 

then they will contribute roughly equal amounts to the scattering. In 

this case the maxima in the neutral cross sections should be located at 

approximately the same 7* -values as the apparent detachment thresholds 

in the elastic differential cross sections. This conclusion is consis

tent with the observations.

In summary, the absolute total detachment cross sections have 

been presented for Cl in collisions with various molecular species. It 

was found that the predominant energy threshold for electron detachment 

was well above the electron affinity of the negative ion, a result similar
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to the experimental observations for the rare gas targets. The relative 

elastic and inelastic differential cross sections were in qualitative 

agreement with the predictions of a simple complex potential model.
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VI. RESULTS OF THE NEGATIVE ION-ALKALI ATOM EXPERIMENTS

Low energy relative differential cross section measurements 

were completed on the systems Cl + K, Na and H~ + Na. In addition to 

measuring the elastic cross sections, attempts were made to observe 

inelastic scattering.

In part A we will examine the alkali-halides and in part B 

the system H + Na. In both presentations a discussion of the possible 

coupling between various electronic states will be followed by the 

results of experimental observations.

A. Cl + Na and K

In chapter III it was shown that the systems NaCl and KC1 have 

large dipole moments and are capable of supporting bound states for the 

negative molecular ions. With this in mind a schematic representation 

of the interaction potential can be constructed.

In Fig. 25 the interaction potentials for the anion, covalent 

and ionic states are shown. At large internuclear separations, the low

est covalent state is separated from the anion state by the E.A. of the 

halide. The covalent and the ionic state are separated by the difference 

between the ionization potential, I.P., of the alkali atom and the E.A. 

of the halide. The minimum splitting, at large internuclear separations, 

between the anion and ionic state is the ionization potential of the 

alkali atom. To note the energy separation corresponding to the lowest

7^
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Figure 25. Schematic representation of the intermolecular 
potentials of the alkali - halide systems.
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ionic state where the free electron has zero kinetic energy, minimum 

endothermicity for the reaction X + M —* X + M + + e  is defined as

Snin = I-P -(H)-
The potential curves have not been continued to small R values 

since their behavior is uncertain in this region. Following the incoming 

anion state we can enumerate a few possible outgoing channels:

a) elastic: X- + M — ► X~ + M

b) ionic inelastic: X + M — ► X + M+ + e

c ) covalent inelastic: X- + M — ► X + M + e

The molecular states for the outgoing channels (b) and (c) are known to

cross. In the asymptotic limit the ionic state M+ ('S) + X-('S) differs
2 2in energy from the covalent state M( S2 ) + X( P0/0) by the difference'S 0/ <-

between the ionization potential and electron affinity. Since I.P.>  E.A. 

for all combinations of alkali and halide atoms, the difference is always 

positive and the ionic state will cross the repulsive covalent state.

Both states have ;£ + ground molecular states, thus in the Born-Oppenheimer 

representation there is at least one avoided crossing.

The coupling between the incoming anion state and outgoing ionic 

and covalent state is unknown for the NaCl- and KC1 systems. We can, how

ever, examine the ionic-covalent pseudocrossing. To predict the branching 

ratio for inelastic channels, we must consider the transition probabilities 

between states during the collision.

The collisional dissociation of alkali-halide molecules has been
62studied experimentally by Ewing, Milstein and Berry. In a series of 

shock tube experiments they determined the branching ratios to the ionic
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and covalent states, KC1 underwent entirely ionic dissociation while 

NaCl was found to to be an immediate case, where both ionic and neutral 

products were observed.

The coupling between the ionic and covalent states at this 

avoided crossing has been investigated theoretically in recent litera

ture.^ ^  In these discussions the Landau-Zener^ model was sometimes 

employed to describe the inelastic collisions at the avoided crossings. 

We will use this model to determine the transition probabilities.
^  r7

The Landau-Zener model assumes all transitions take place in 

the region of the crossing point of the diabatic potential curves. The
/Try

transition probability is given as:

F = ex'rj [_-27, (13)

v.] (R.)where

y -

The diabatic potentials are V and an<3- the interaction potential 

is V ^ evaluated at R^; V(Rx ) is the radial velocity at the crossing

point. The values of for collisional ionization of the alkali halides
6khave been determined by Faist and Levine, for a velocity equal to the

threshold for ionization. If collisional detachment occurs then the pro

bability that the system remains on the ionic diabatic curve is found from 

the parameters of Ref. 3 to be:

P (NaCl) -v. -992 
P (KCl) -s. unity
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In the same manner we can determine the probability of making a transi

tion to the covalent curve at the crossing:

(1_P) -x. .008 (NaCl)

(l-P)"*- 3.5 x 10-10 (KCl)

Finally, any inelastic transition which takes place during the 

collision has the highest probability of exiting on the ionic channel.

The inelastically scattered Cl is expected to have a minimum endother- 

micity of 5*1 eV for the Na target and k.3 eV for the K target. We have 

performed experiments to search for three possible outgoing channels:

a) elastic

Cl" + M -•■Cl" + M ,

b) ionic inelastic

Cl + M —• Cl + M + e , and

c) neutral inelastic

Cl" + M -*» Cl + M + e".

Before examining the data, it should be noted that it was neces

sary to correct the energy scale of these experiments due to the presence 

of large contact potentials. The collision chamber was stainless steel 

and heated at the bottom; because stainless steel has a low thermal con

ductivity there existed a decreasing temperature from the bottom to the 

top of the chamber. Thus, a layer of alkali atoms condensed onto the 

surface of the chamber.

When two dissimilar metals come in contact, the Fermi levels 

will reach equilibrium giving rise to a contact potential. If the work 

functions are different [in this case, 4> (Na) <<P (S.S)] then the energy
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Figure 26. Plot of rainbow angle versus the inverse of relative collision energy for the Cl + :ia system. The dots are the 
nominal energy and the circled dots have been adjusted upward by 
. 6  eV .
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levels of the electrons in the two metals are different. Consequently, 

the electrons can tunnel from one metal to the other with the Na becom

ing more positive and the stainless steel more negative. Finally, an 

equilibrium will be established in which the two Fermi levels coincide 

as a consequence of the potential rise (for electrons) across the gap 

associated with the surface charges. The potential rise is given by^:

eV = <P (S.S) - <p (Na)

where V is the contact potential. For the alkali targets used here the 

contact potential is positive and leads to an acceleration of the nega

tive ion into the collision region; on leaving the collision chamber the 

ion is similarly decelerated. The change in ion energy is therefore not 

directly observable.

To determine the exact energy shift would require detailed 

knowledge of surface characteristics (contaminants, geometry, etc.) 

inside the collision chamber. This information is not available. How

ever, we can determine indirectly the energy shift. For these bound 

state systems, the elastic differential cross sections exhibit typical 

rainbow phenomena. It is well known that the product E times 0  ̂  is 

invariant with E. Thus we have plotted the rainbow angle, 0 r5 versus 

the inverse of the relative energy, E. This is illustrated in Fig. 26 

for the Cl + Na system. A straight line drawn through the two points 

should pass through the origin, since in this choice of parameters, the 

rainbow angle approaches zero for large energies. This was not the case 

and it was found that the laboratory energy must be adjusted upward by
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1.5 eV to correct the energy scale for the contact potential. A similar 

result was found for the system Cl- + K. This is in approximate agree

ment with estimates of the work functions for these metals.

The relative elastic differential cross sections were measured 

over a relative energy range of U—60 eV. The results are shown in Figs. 

27-28 for Cl- + Na and K respectively. The data is presented in the 

form of a reduced cross section,

^  = 0  x J" x s i n 0  ,' c.m. el w  c.m.

and a reduced scattering angle "7" = E x 0  . Smith, et al. havec.m. c.m.
shown this representation is equivalent ot an expansion in impact para-

69meter for the reduced angle. Thus any prominent feature appearing at 

some value of which is invariant with energy depends on a unique

impact parameter. The low energy experiments of Cl + Na and Cl + K 

both exhibit rainbow maxima at approximately 92 eV deg. The higher 

energy experiments show smoothly decreasing values of for > >  > -  

rainbow. If there was significant coupling to the direct electron detach

ment channel, the elastic scattered signal would be expected to show a 

distinct depletion. No such drop in the data is found; thus any coupling 

to the detachment channel is apparently small when compared to the elastic 

scattering.

A calculation was performed for the elastic differential cross

sections of these systems and is shown as the solid line in Figs. 27-28.

This calculation is the result of a partial wave analysis which uses the
70 71usual form of the scattering amplitude: ’
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f(0) = —  (2 1+1) (e2 -1) P (cos© ).
2ik l=o

At a given scattering angle, the amplitude is a sum over angular momen

tum quantum numbers, where P^(cos0 ) are the Legendre Polynomials of 

order 1, k is the wave number, and ^ is the phase shift experienced
,th .1 partial wave.

The phase shifts are obtained in the JWKB approximation and 

have the form:

J ^ - f d  + W - k r ^ k  dr

where r is the classical turning point or outermost zero of the function c

E - V(R) -
2 rc

The elastic differential cross section is defined as:

d<T (0) =
d SI | f < e  >|

The integral in the equation defining the phase shift is eval

uated by standard numerical techniques, and at least HOOO partial waves 

are required for the partial wave sum to converge. The scattering ampli

tude was calculated in one-half degree steps and the resulting differential 

cross section was convoluted by a gaussian with a width of six degrees.

This convolution removed the high frequency oscillations in the cross sec-
55tions and was an approximation to the effects of doppler broadening.

It is convenient to use an analytic form for the potential to
39carry out the phase shift calculations. Jordan and Wendoloski have 

calculated a potential for NaCl- around the region of potential miminim,
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and we have fitted their calculations with a potential of the form:
3 -d . R

V(R) = JT Ai e 1 (lU)
i=l

This potential has been made to agree with the calculation in the region

of the potential minimum, and agree with the large polariziability term

for large R. The parameters are listed in Table 3. The calculation

included in Fig. 27 and as can be seen agreement between the calculation

and experiment is excellent.

No intermolecular potential calculations exist for the KC1

system. However, this system (and others) has been studied by de Vreugd, 
72et al. over an energy range of 500-5000 eV and an angular range of

0-5 milli-randians. We have used a potential with the same form as Eg. lU
72which was determined by de Vreugd, et al. by an inversion of their scat

tering data. Their potential parameters are listed in Table 3. As can 

be seen in Fig. 28, the agreement is only fair as the calculated rainbow 

maximum is approximately 13$ higher in than the observed maximum.

A search was made for fast neutrals which would be the result 

of an inelastic transition having an exit channel along the covalent state. 

Experiments were done for laboratory energies up to 150 eV and scattering

angles from zero to forty degrees; no fast neutrals were detected. In
72the higher energy experiments of de Vreugd, et al. there was no evidence 

that fast neutrals were produced.

We have shown that if the negative ion undergoes collisional 

detachment then the final outgoing state has the highest probability of 

exiting on the ionic channel. Attempts were made to observe these
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inelastically scattered negative ions. Typical results for the two sys- 

tmes are shown in Fig. 28 where the relative intensity of scattered ions 

is plotted as a function of final kinetic energy of these ions. The 

peaks labeled Q = 0, correspond to the elastically scattered ions. The 

position of the minimum energy loss, Qm^n » which is equal to an inelastic 

transition to the lowest ionic state, is also shown. For Cl + Na no 

inelastic signal was detectable at the energy and angle illustrated or 

at any other combination of energy or angle over a laboratory range of 

10-150 eV and 0-U0 degrees. The Cl + K data does show a signal which 

is <*%.10$ of the elastic scattering peak at a position equal to an inelas

tic transition to the lowest ionic state.

In summary, for our energy range, the cross section for ion 

pair formation or collisional detachment appears to be small.

B. H~ + Na

The bound state of the negative molecular ion and the lowest 

ionic and covalent states for this alkali-hydride system can also be 

described qualitatively by Fig. 2k. The same discussion used in des

cribing the possible couplings between states of the alkali-halide 

system is applicable for collisions of H + Na, but we will see that 

only transitions to the covalent state are expected.

In Chapter III we reported on the calculation of Karo, Gardner
b2 2 +  -and Hiskes (KGH) for the anion state, (X ^  ) NaH , and the neutral,

(X^^> + ) NaH state. A reasonable extrapolation of their potentials to 

internuclear separations less than 3aQ show the two states crossing at
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R —  2.6aQ . This crossing may provide for a fairly large transition pro

bability between the anion and neutral state. The interaction between 

the anion and ionic state is unknown, but it is possible to compute the 

coupling between the ionic and covalent states for any inelastic outgoing 

channels.

The Landau-Zener model can be used to determine the transition 

probability between the ionic and covalent states. The forms of the 

diabatic curves at the crossing are unavailable for this system but we 

can estimate the difference in the slopes at the crossing. At the large 

internuclear crossing of these curves, R^ = 7-55aQ , the covalent curve 

is approximately flat and the ionic curve has a coulombic dependence 

thus the force term in the Landau-Zener formula (Eq. 13) is

d(Vll - V22} 
dR

1
R = R R 2 x x

The interaction between the diabatic states can be approximated by one- 

half the splitting between the adiabatic states and this splitting has
66 63been determined by Numrich and Truhlar and Grice and Herschbach (GH)

63to be O.56U eV and 1.5^ eV respectively. Using the GH splitting the 

diabatic transition probability at a relative collision energy of 10 eV 

is I   rf* I M \  \l I K  1 ^r - f t ( 4 v aa> y i
P-w exp I 2h V(R ) JX

With such a small diabatic transition probability, the outgoing channel 

is expected to follow almost exclusively the covalent state if collisional 

detachment occurs.
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Relative elastic differential cross section measurements were 

made for H- colliding with Na for relative collision energies around 

10 eV. The results of two experiments at 8.8 eV and 11.3 eV are shown 

in Fig. 31. Prominent rainbow maxima are observable at = 80 eV-deg.

The solid line shown below the experimental results is the result of a 

partial wave calculation which uses JWKB phase shifts as discussed in 

the previous sections.

To evaluate the JWKB phase shifts we have employed the inter-
h2 . 73molecular calculation of KGH. Starting with a Morse potential for

the NaH potential curve, the anion curve [ V “(R)J is constructed

using the equation:

V~(R) = V°(R) - Z\(R ) + 0.09 eV, (lU)

where A (  R) is the difference between the neutral and anion potential
b2curves as calculated by KGH. The constant 0.09 eV is needed to yield 

the correct electron affinity for hydrogen at infinite separation. The 

calculated points of the above potential is fitted to a function of the 

form:
J - rf.R

V(R) A e 1 , and (15)
i=l

the resulting potential parameters are contained in Table 3. The neutral

Morse potential, the calculated anion potential and the fitted form of

the anion potential are all shown in Fig. 30. Both the dissociation

energy and equilibrium separation values computed by Eq. 2 agree well
39with those calculated by Jordan, et al. As can be seen, the partial 

wave calculation is in excellent agreement with the experimental results.
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A classical deflection function calculation is included in 

Fig. 31, based on the potential of Eq. 15 and a relative collision 

energy of 10 eV. The rainbow feature is located at a reduced scat

tering angle of '’*» 95 eV-deg. The reduced angle which corresponds

to a classical turning point of 2.6aQ is found to be 150 eV-deg, which
ii2is well outside the rainbow region. As stated earlier the KGH cal

culations show the anion and neutral states merging at R ^N-2.6a , thusx o
for collisions which sample a smaller internuclear separation than this 

crossing, the collisional detachment channel may become significant.

The experimental results at 15 eV are illustrated in Fig. 31(d) 

and exhibit a break in the reduced cross section at a reduced scattering 

angle of r -  150 eV-deg. This sudden depletion of the elastic scat

tering signal is typical of systems undergoing collisional induced elec

tron detachment. No such break was observable in the lower energy experi

ments and is presumably due to the rather low signal-to-noise ratios for 

120 eV-deg. in these experiments.

Unfortunately, the neutral particle detector was not installed 

during the H + Na experiments, therefore the inelastic neutral differen

tial cross sections could not be measured. A search for inelastic ionic 

transitions undergoing a minimum energy loss of at least 5-1 eV over a 

laboratory energy range up to 70 eV and an angular range out to U0 degrees 

in the laboratory revealed no detectable signal above the normal back

ground levels. In this energy range the reaction H- + Na - ^ H - + Na+ + e~ 

is believed to have a very small cross section.
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relative collision energy of 10 eV. The abcissae are in atonic 
units.
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As mentioned earlier, the location of the calculated rainbow 

maximum is invariant with respect to the reduced angle, 'T' . We can, 

therefore estimate an upper limit for the uncertainty (due to contact 

potentials) in the collision energy:

If = En &  = (E. , + S  E) O  ,1 lexp 1 ltrue ^ 1
(16)

and = E0 Q  _ = (E0, + $  E ) 0  _' 2 2 e x p 2 2true 2

are defined as the experimentally observed rainbow maxima for two dif

ferent experiments, then the uncertainty in energy can be estimated as:

£  E= ---2 - ^ ----  (17)
e 2 -

where £  is the limiting accuracy for which the experimental rain

bow maxima can be said to be invariant with collision energy. From Fig. 

31(a) and (b)<£* E can be estimated to be approximately 1.5 eV.

Although the agreement is excellent between the experimental 

results and calculation this is only a fair test of the potential calcu

lations since the energy scale is uncertain by approximately 15% and the 

agreement may only be fortuitous.



VII. SUMMARY AM) CONCLUSION

Measurements of the absolute total detachment cross sections 

for collisions of negative ions of chlorine with the rare gases and 

various molecular targets have been presented. Particular emphasis has 

been placed on the energetic threshold for collisional detachment. For 

all of the reactants the predominant threshold for detachment was found 

to occur for relative collision energies well above the electron affinity 

of the chlorine atom. A local complex potential model has been used to 

describe the collisional detachment channel, and a calculation based on 

this model was in good agreement with the experimental results for the 

targets Ne, Ar and Kr. The qualitative features of the experimental 

results for the molecular targets were in general agreement with the 

ideas of the complex potential model except for the observed inverse 

isotope effect for the targets an<̂  Hg. The experimental results 

presented are of sufficient detail and accuracy to provide a good test 

for ab initio potential calculations of negative molecular ions as well 

as models which may be employed to describe collisional detachment.

Relative differential cross section measurements were pre

sented for collisions of negative ions of chlorine with various molec

ular targets. Both the elastic differential cross section and the 

differential cross section for the production of neutral chlorine atoms 

were in qualitative agreement with the ideas of a local complex poten

tial. The neutral spectra of the CO target exhibited evidence for two

9b
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distinct scattering channels leading to detachment; this was the only 

system exhibiting this phenomena.

Further differential cross section measurements were made for 

the systems Cl- + Na, K and H~ + Na. The large dipole moments of these 

alkali-halide and alkali-hydride molecules means that their anions form 

bound molecular states: this is evidenced by the rainbow features

observed in the elastic differential cross sections of Cl + Na(K) and 

Hf + Na.

The rainbow features observed in the elastic differential cross 

sections of Cl (H ) + Na are consistent with calculated cross sections 

based upon recent calculations of the intermolecular potentials.

A search for inelastic transitions which result from collisions 

of Cl + Na, K led to scant evidence for such transitions: in particular,

there was no evidence for detachment for 0 ^ "Y ̂  5000 eV-deg. The system 

H + Na exhibited evidence of collisional detachment in the realtive elas

tic differential cross section. It is thought that for > >  150 eV-deg, 

the collisional detachment may be significant.



TABLE I

cLDipole Moments

NaCl 9•00D

KC1 10.27D

NaH 6.96D

^Dipole moments taken from NBS, Technical Note U38, December 1967,

M. Krauss, Editor.
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TABLE II

Potential Parameters for Cl + X from Ref. 19

for a Potential of the form W(R) = V(R) - i/2r(R)
. -BR

V(B) =

r(R) =

Target A(eVao )

Kr 3062

Ar 2530

Ne 826

He

0

F(Rx - R)3 2̂ 
F(Rx - Rx )3/2

E(l/ao ) Rx (°o)

1.39 3.^6

1.37 3.39

1.39 2.6l

R > Rx
R < R < R 1 —  —  x

R < R

F(eV/a 1 ‘5) R,(a ) ______ o____  1 o

b . 6 3.00

5.^ 3.07
b.Q 2.kO

(a)Refers to width used in deconvolution of the data.

Width8,

1.08
1.30

1.U2
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NaCl

KC1-

NaH"

TABLE III

al a2 A1

:i/ao } (l/ao } (l/aQ ) (eV)

1.50 .70 .1*0 839-278

1.35 .63 .36 992.36

1.1*5 .576 .15 152.5

A2
(eV)

A3
(eV)

Rm
(a )O

D (x 1 e
(eV)

-33.01*6 -1+.899 1*. 77 1.25

-35.125 -5.6266 5,29 1.30

-11.8 -1.1*3 3.8 1.62
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