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ABSTRACT

The bumpy theta pinch magnetic confinement configuration re-
sults when the magnetic surfaces of a theta pinch equilibrium, right
circular cylinders, are modified slightly by the addition of & weak
£ = 0 helical field.

In this dissertation ideal magnetchydrostatic equilibria of
the bumpy thete pinch configuration are found via perturbetion theory;
the equilibrium magﬁetic field consists of the basic theta pinch field
plus a éubsidiary field which is determined from the numerical solution
of a linear boundary-value problem,

The stability properties of these equilibria are investigated
using the equations of ideal magnetohydrodynamics which have been linear-
ized ebout the static equilibrium, An expansion is performed on the
linearized equations and yields a system of ordinary differentiasl equa-
tions; the small deviation of the equilibrium magnetic surfaces from
right circular cylinders is the small parameter of this expansion. The
system of equations with appropriate boundary conditions constitutes an
eigenvalue problem for the growth rates or oscillation frequencies of the
normel modes. This eigenvalue problem is solved numerically. A portion
of the spectrum of eigenvalues is obtained for e variety of parameter
values, These include: &) the wavelength of the bumpy equilibrium

mégnetic field; b) the plasma beta; ¢) the position of a conducting wall

ix



relative to the plasma; d) the azimuthal wavenumber; e) the axial wave-
number of the perturbed quantities. The unstable point spectrum is
found to be non-Sturmien although Sturmian behavior sometimes occurs,
This work is & generalization of the previous treatments based
on a long wéwelength assumption. These long wavelength theories involve
two separate'asymptotic expansions in terms of two small parameters; the
wavenumber of the bumpy subsidiary field, k, is the parameter of the
primary expansion while the amplitude of the subsidiary field, 6, is
the small parameter of the secondary expansion. The long wavelength as-
sumption is not made in this work, but it can be employed at any stage
of the calculation, This finite wavelength theory may be applicable to
existing experimental configurations wheress the long wavelength theory
mey not be applicable because the explicit assumptions asbout the scaling
of the two expension parameters are almost always violated by the actual
configurations. For instance, typicel parameter values from the helical
field experiments on a three meter theta pinch at Los Alamos Scientific

Laboratory are:

k- .19, 6- .06,

B- .8, ty - 20-30 n sec.,

here to is the transit time of an Alfven weve across the plasma column,
The long wavelength theory explicitly assumes that 0 < k << § << 1; this
condition is violated by the sbove parameter wvalues. The finite wave-

length theory assumes 0 < § << 1, while k is arbitraery. If one utilizes

the long wavelength theory, nevertheless, one finds the growth rate for



the very long wevelength, m = 1 perturbations to be

5 -1
Y = 3,0 x 107 seec s

while the finite wavelength theory gives

vy =3.1x 105 sec"l .

Thus, the results of the long wavelength theory are close to the pre-

dictions of the finite wavelength theory when the wavenumber, k, is not
too large even though the ordering is violated. When the wavenumber is
not small, there are major differences between the long wavelength and
finite wavelength theories in both the equilibrium field and the normal

mode equations governing the linear perturbations.

xi
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I. INTRODUCTION

Confinement of dense, hot plasmas is a major goal of the in-
ternational programs to achieve controlled thermonuclear fusion for the
production of useful power, consequently, the physics of plasma-magnretic
field systems is of considerable interest and importance. The theoreti-
cal problem of magnetic confinement of plasmas involves studies of sys-
tems; it is not sufficient to investigate the properties of megnetized,
infinite homogeneous plasmas, or plasme with small linear gradients
since fusion reactor design entails practical geometries. The dilemma
is to choose a sufficiently accurate model of the plasma from which solu-
tions can be constructed in a nontrivial geometry., To describe these
"systems" one usually resorts to a continuum approximation of the plasma
rather than a detailed kinetic picture; one must sacrifice a substantial
portion of the physics in order to solve the mathematical problems in
the actual geometry of the fusion reactor, It is hoped that the physies
relevant to the desecription of the basic features of the plasma is not
excluded by the continuum approximation; indications are that it is not.
These approximete descriptions of plasmes which interacts with magnetic
fields of & given geometry are the "studies of systems" mentioned above,

One example of a plasme-magnetic field system is the theta
pinch equilibrium which confines a plasma by an axially symmetric magnetic
field; the megnetic field lines are straight and parallel (the natural

coordinates to describe this configuration asre the standard cylindricel



polar coordinates). The theta pinch equilibrium is an ideal configura-
tion because of its simplicity and its stability under perturbation, but,
unfortunately, it is not a confining configuration and experimental de-
vices utiligzing this configuration are plagued by severe end losses. The
compressed plasma does not diffuse rapidly across the megnetic field or
physically transgress the magnetic field, it simply flows out the ends

of the device.l A conceptual high beta (the plasma beta is the ratio

of the kinetic pressure of plasma to the total pressure, kinetic plus
magneticy for confinement, beta must be less than unity; high beta means
velues close to but less than unity) fusion reactor retains, as much as
possible, the simplicity and stability properties of the theta pinch
equilibrium, while minimizing the end loss problem., Among several schemes
conceived to reaslize this specification are: a) a large aspect ratio
toroidal theta pinch,l which eliminates the ends altogether (and, hence,
the end losses; however, the toroidal configuration is unstable); b)

very long (v kilometers) linear theta pinche52 which essentially elimi-
nate the end effects; c) combination theta pinch-magnetic mirror de-

3

vices™ in which the magnetic-mirror fields act to impede the axial flow
of the plasma. All of these configurations result from slight modifica-
tions of the theta pinch equilibrium due to the introduction of small
axial inhomogeneities in the megnetic field. In the case of the toroidal
theta pinch and the mirrored theta pinch these inhomogeneities are inten-
tional and are produced by external windings or shaping of the main com-

pression coil., The inhomogeneities in the long thete pinch are unavoidable

because of the use of discrete compression coils,



The bumpy theta pinch equilibrium and its stability properties
are of interest because of the relevence to experimental devices like
those mentioned above and also because it involves only a slightly more
complicated geometry than the ordinary theta pinch equilibrium, In this
dissertation the bumpy theta pinch equilibrium and its linear stebility
properties are examined using the equations of ideal magnetohydrodynamics
(MHD), While, if the plasma paremeters are in a certain limited regime,
the actual behavior of the real plasma may be described by equations
which resepble those of MHD,LL’5 it should be realized that ideal MHD
does not describe any resl plasma. For instance, the operation of many
devices which are modeled by MHD rely on a finite resistivity of the plasma
for Ohmic heating, while ideal MHD has zero resistivity. Idesl MHD is a
mathematical model of an idealized system, analogous to potential theory
in fluid mechanics.6 Grad's philosophy is that by studying such mathema-
tical models one is able to build up an institution ebout a basically
nonexistent fluid by the use of profound and powerful mathematical tech-
niques; in practice, one visualizes the behavior of the real fluid in
terms of deviations from this firmly established andiquantitative ideal.
This may or mey not be a fruitful exercise depending on the validity of
the model, There is a vast literature of applications of ideal MHD to
thermonuclear containment problems and little doubt about the validity
of the approximations involved. Recently, experimental data from the
SCYLLAC toroidal sector experimentsl confirmed the behavior predicted by

ideal MHD analysis.



A, The Bumpy Theta Pinch

The bumpy theta pinch configuration was first considered by

Haas end Wesson;7 their sharp boundary5

MHD calculation predicted that
the plasma was unstable but that if the plasma beta were sufficiently
high wall stebilization occurred (see Fig, 1la). They assumed that the
axial dependence of 8ll quantities wes much weaker than the radial depen-
dence, thus, the wavelength of the inhcomogeneities in the equilibrium
magnetic field is very much larger than the radius of the plasma column.
Calculations which make this assumption are termed "long wavelength".

9

Weitzner8 and, simultaneously, Freidberg and Marder” examined the case

of long wavelength bumpy fields but allowed for diffuse equilibrium pro-
files (Gaussian-like profiles only); Weitzner assumed that the magnetic
field was basically that of a theta pinch plus a very small amplitude,
long wavelength, £ = 0 helical (bumpy) field (helical fields have depen-
dence on 8 and z in the form cos(%6 - kz); Freidberg and Marder allowed

a finite amplitude, long wavelength & = 0 helical field. Weitzner calcu-
lated eigenvalues through the numerical solution of differential equa~
tions, whereas Freidberg and Marder utilized the Rayleigh-Ritz variational
method, A small difference in the computed growth rates of the unstable
modes resulted from the inclusion of finite amplitude £ = O helicel

fields as opposed to very small & = 0 fields; both celculations predicted
growth rates for unstsble modes (see Fig. 1b) comparable to those given
by Haes and Wesson only if the plasma beta was not large. Neither diffuse

profile calculation showed any high beta wall stabilization as predicted

by the sharp boundary calculation. Since a sharp boundary plaesma is &



limiting case of a diffuse profile plasma, the two theories seemed to
contradict one another.

This paradox was resolved by Freidberg, Marder, and Weitznerlo
who calculated the growth rates of unstable perturbations of the equili-
brium of theta pinch field plus very small, long wavelength, £ = 0 helical
field with relatively sharp, diffuse profile equilibrium quantities. They
found a conventional spectrum of unstable eigenvalues (see Fig. le)} when
the plasma beta was not too large; the most unsteble mode had no nodes
in the radial direction, the second most unstable had one radial node,
etc.; the growth rates of the most unstable mode agreed, to within 15%,
with those predicted by the sharp boundary theory. However, for high
beta values the spectrum was drastically altered and unconventional; the
unstable mode with no radial nodes was stabilized while a stable mode
with no radial nodes attained a finite osecillation frequency. This
rather complicated transition agrees qualitatively and gquantitatively
with the predictions of sharp boundary theory. Diffuse profile theory
predicts the existence of unstable modes for high beta values; this is
the case, but the most unstable mode exhibits one radiel node rather than
no nodes. Sharp boundary theory simply cannot account for modes other
than the gross n = 0 mode. Bince diffuse profile theory can display the
modes with more complicated nodal struecture while the sharp boundary
theory cannot, the peradox was resolved, This is one indication that
stability criterie based on sharp boundary ideal MHD may not be relieble.

In a similar diffuse profile calculation Vahalall investigated
the influence of weak shear on the stability of the long wavelength

equilibrium of the bumpy theta pinch,
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with time dependence e 14t showing a complicated transition at high B for
sharp profiles, but agreement with sharp boundary (Fig. la) predictions

(m =1, &£ = 0). The small numbers count the eigenfunction radial nodes,



In this dissertation the ideal MHD stability of an equilibrium
which consists of a theta pinch field plus a very small, finite wave-
length, % = O helical field is considered. ("Finite wavelength" means
that the wavelength of axial inhomogeneities in the equilibrium megnetic
field ig of the same order as the plasma column radius.) The first ob-
Jective is to ascertain the influence of the finite wavelength on the
equilibrium quentities and on the growth rates or oscillation frequencies
of the normal modes. The second objective is to see how the finite wave-
length affects the spectral properties of the normal mode equations. In

1,12,13 the wavelength of the bumpy field

actual experimental devices
ranges from large values to small values (AE = 40 plasma radii in SCYLLAC,

A = 2 plasma radii in ELMO bumpy torus); hence a finite wavelength theory

E
is needed.

In Chapter II, the equilibrium of an ideal MHD fluid will be
examined in general and then the specific finite wavelength bumpy theta
pinch equilibrium will be computed. In Chapter III, the normal mode
equations describing the behavior of small perturbations of the equilib-
rium quantities will be derived from the linearized equations of ideal

MHD, An eigenvalue problem will be developed and solved numerically for

the very long wavelength kink modes (very long wavelength perturbations of

the finite wavelength eguilibrium) vhich are the only experimentelly ob-

1,10 In Chapter IV, the nature of the spectrum of eigen-

served modes.
values will be inspected. In Chapter V, the treatment is extended to

the case where the bumpy field lines will be allowed to become very loosely
wound helices. The pitch of the helix will be large enough so that the

equilibrium quantities satisfy the same conditions derived in Chepter II,



but a new term will arise in the normal mode equetions which depends on
the pitch of the equilibrium magnetic field lines, Another eigenvalue
problem will be developed and solved numerically and the behavior of the
eigenfunctions described. The remainder of the present chapter will be
devoted to general properties of ideal magnetohydrodynemics. These are
extremely important to this study. It will be shown that although the
approximations severely limit the range of applicebility of the model,

it is based on a firm and elegant mathematical foundation, Because of
this, one may be certain of the resulting solutions. It will also be
shown that in a bounded domain MHD yields continuous sets of eigenvalues
and singular eigenfunctions in addition to the point eigenvalues and well
behaved eigenfunctions usually associated with the classical theory of os-
cillations. The continua of ideal MHD result from very singular features
of wave propagation that will be elucidated in what follows. First, the
gystem of equation which constitute the MHD model will be described; then
the method of characteristics will be employed to determine the mathe-
metical classification of the system and to illuminste the nature of wave
propegation in the MHD fluid. Finally, the equations of MHD will be lin~
earized about a time independent, spatiallyldependent state. The equations
which govern the equilibrium and linear ones which govern the perturbations
will be employed in later chapters to study the equilibrium and stability

properties of the bumpy thete pinch.

B. Ideal Magnetohydrodynamics

In the calculations described in this work the hot plasms is

considered to be a perfect fluid which is also a perfect electrical



conductor but which has the magnetic permeability of the wvacuum. The
time and length scales of all quantities are assumed to be such that the
displacement current in Maxwell's equations may be-ignored_with negligible
error; the electrostatic part of the Lorentz forece is also neglected.h’5’6
These assumptions, together with a thermodynemic equation of state for the
fluid, lead to a closed system of partial differential equetions which
describes the evolution of the idealized plasma-megnetic field system,
It will be shown that, mathematically, this system of equations is a con-
ventional symmetric hyperbolic type. Because of this property one is
gble to refer to theorems on the existence and uniqueness of initial-
value and boundary-value problems end thus to know the particular cirecum-
stances in which the problem is well—jposed.lh If the mathematical struc-
ture were unconventional, one could not be assured of a well-posed problem
and the attractiveness of the system would be considerably diminished.
The omission of ﬁ and qF thus yields a mathematically recognizable sys-
tem, in particular one which is Galilei-invariant, as distinguished from
the naively "more accurate" system with Maxwell's equetions and Lorentz
force intect, but with no invariance principle and no simple theory.6
Ideal magnetohydrodynamics (MHD) consists of the following set
of partial differential equations involving the fluid velocity field, u;
the mass density, p; the scalar pressure, p; the magnetic induction, Bj

the current density, J; the electric field, E; the entropy density, s;

and the electric charge density, Pe

Conservation of mess: Qﬂ + V- 605_) - O (1)
Equetion of motion: -—-I- u.-V)u --VP -l'-LJ"B -l-%(a



10

Ampere's Law: ng = _tlggb, "’% (3)
Favaey's Lav: VxE=-+38 (1)
Poisson's Equetion: VL g 4np (5)
Nonexistence of monopole: VE 0 (6)
Ohm's Law (Perfect Conductor): g + £ = wX § (7)
Conservation of Entropy: (‘gj': + Q'V) s =0 (8)

Equation of state: Pz P(f’s) or 3’“?4‘) (9)

It is convenient to chaenge the units of the electrical quantities from

cgs units to a system where the constants are unity, thus

B=#r8 . J=rzJ

Dropping the primes and eliminating the algebraic relations, one finds

the following equations for ideal MHD flow

2 4 wv)p + pTu)=0 0
f’(ﬁ + 9-7)5 = -—VP + (VxB_)X g (11)
32 = vx(xB) G

)’ + (WV)s = (13)
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V-8=0 | (1k)
P = pCp.s) (15)

On teking the divergence of Eq. (12), one finds
28 - 3 (v.8) =
V-5t =% (V8 =0

Thus, Eg. (14) must be interpreted as a constraint on the values of the
camponents of B, unless one is dealing with time independent or steedy
phenomena. Equation (1) will be used to describe the equilibrium state
but will not be used to determine the time evolution of small perturba-
tions but only as an initial condition. Using Eq. (15) one may rewrite
Eq. (10) and close the system of partial differential equations; the

closed system is

;.-'z;(};*-wV)p + Vu=0 (26)
P+ V)% -Vp +(8V)8 - V({'B’) (27)
&+9V

v = (B9)s - B) (6)

(521- + g—V)s = (19)

where ¢ is the acoustic speed in the fluid c52 = ( ) These equations

may be written in matrix form as

A%*B%*C%‘;‘*D% =0 (20)



12

where V is an eight component vector and A = D are 8 x 8 matrices., The
explicit matrices are real and symmetriec, Thus, the system is termed
Usymmetric". Care must be exercised in classifying the system, Eqs. (16)-
(19) since only seven arbitrery functions may be specified initially, p, s,
three components of u, and two components of B, the eighth, the third com-
ponent of B, being determined@ from the constraint, V'B = 0; the system of
equations with the constraint is a seventh order system of partial dif-
ferential equations,

Systems of partial differential equations are categorized ac-
cording to their characteristic surfaces., Following Jeffrey and Taniutils
one considers certein generalized surfaces or manifolds in four dimensional
space~time across which the normal derivatives of V cannot be computed,
such a manifold is defined to be a characteristic surface, If sall the
characteristic surfaces are real surfaces, then the system of partial
differential equations is hyperbolic; if all the characteristic surfaces
are complex, the system is elliptic; if some characteristic surfaces are
real and some are complex, the system is of mixed type.

Consider a surface defined by the equation

¢(¥ r*) =0 (21)

The differential equation for this surface is

Vi - dx +3Jﬁ=0=|7¢(clx,+g¥clk (22)

where (dxn, dt) is a displacement in the direction normel to the surface.
If this surface is characteristic, then the normal speed associated with

it is
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dx. _ 3¢
ax -~ ax/\vél | o @3

In a surface_like that defined by Eq. (21), one may define a new coordi-
nate system and rewrite the system of partial differential equations,

like Eq. (20), casting it in the form

oav i 3V

where the Mj are the coefficient matrices and the Ek are the new coordi-
nates in.the surface ¢ = 0, That part of Eq. (24) (as applied to Egq. (20)),

involving the normel derivetive at the surface is found to be

[Ag—f B ] | (25)

The normel derivatives cannot be computed from specified values in the

surface vhenever the determinant of the coefficient matrix vanishes;
thus, when this condition is satisfied the surface ¢ = 0 is a character-
istic surface,

The characteristic surfaces are found from the vanishing of
the determinant of the cocefficient matrix of %%-; this yields an algebraic
relation among the wvarious partial derivatives of ¢; when these are known
the normal speeds of the discontinuities can be computed by Eq. (23). To
find these discontinuities one moves off the characteristic surface
(¢ = 0) an arbitrarily smell distance, €, both parallel (call this the
+ side) and entiparellel (call this the - side) to the unit normal.

Then, if one subtracts the one form of Eg. (2h) valid on the - side from

the one valid on the + side and takes the limit as the small distance, €,
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venishes, one finds that only those terms involving the normal deriva.
tive survive since all the other derivatives are continuous across the

characteristic surface, The characteristic equation is then
24 VY.
(a3f +A- )3 -0

If V changes continuously from a value V on the - side to a value V + &V
on the + side then the jump in the normal derivetive across the charac-
teristic surface, [%%] , is proportional to the change 6V across the
surface, and the charac;eristic equation may be written in terms of

these 6V,
[A%+BJ+C p3gJsv=0 (26)

Thus for e system of partial differential equations, like Eg, (20), one
mey write down the characteristic equation by simply replacing g%-by
3¢ 8§V and §§-V by V$+6V. The 6V are the "discontinuities" that have
been mentioned.

Upon applying the above prescription to the system of MHD equa-

tions (16)-(19) and the constraint, Eq. (1k), one finds

(3 +u-08)8p + V45 =0 -
A3 +-VH)Su + V4 5p (0B + B 3H-0
(2 +4-%)3B-(B-VH)su + BEUS-Su)=0
(3 +5-v#)8s =0 )
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supplemented by the constraint

Vé-88=0 (31)

One of the cheracteristic equations is identified to be Eg. (23),

namely

(g-:-g-Vé)Ss =0 (32)
If %%-+ uw'Vp = 0, then an afbitrary discontinuity in the entropy den-
sity propagates with the speed of the fluid element. This describes the
motion of & shock, but since this work will only address wave propagation
with the entropy conserved (8s = 0) the normal speed, u (the flow velo-
city), does not occur as a root of the characteristic equation.
One finds upon scalar multiplication of Eq. (28) by V¢, and

scalar multiplication of Eq. (28) and (29) by B that the resulting equa-

tions, together with Eq. (27) form a closed system
(32 + uvi)5p +(vp.54) = 0 -
A2 + V44 35) +1V8{5p IV 58)=0 v
Pt +u%)(B-5) +(8-v#) 5p=0 -
(38 + u¢)(B-38) - (- )@ 51) + Bb-5)=0

In matrix form, these become
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d

At 0 o \[sp
wtrd o
BVé O fﬁ o

o 6°-p% %

$
&

"
C

(37)

e
o5
te

1. -
(Y]

%

The determinant of the coefficient matrix is

lpt ) Btruntlps ol repwion

if this determinant vanishes the discontinuities of Eq. (37) move with
the normal speeds determined from Eq. {23). These are the fast magneto-
sonic wave and the slow magnetosonic wave., If one regards the discon-
tinuity in the normal component of velocity, (V¢'§B), as the arbitrary
gquentity, then all the other discontinuities associated with the fast
end slow magnetosonic wave, 8p, (B+du) and (B-3B) are computed from it
by elimination in Egs. (33)-(36). Since the normal velocity component is
discontinuous at the characteristic surface, one infers from the diver-
gence theorem that the velocity field is not divergence free and hence
that the fast and slow magnetosonic waves involve compression of the
plasna, ’

Since (V¢-£B) is regerded as the fundemental quantity, the
other discontinuities being determined from it, and since Eg. (37) yields

the fast and slow megnetosonic waves which involve only the normal
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component of Qg, one may find the waves associated with the components
'of 23 which are tangent to the characteristic surface by assuming
V¢-§B = 0, By the divergence theorem these are waves which do not com-
press the plasma. Upon vector multiplication of Egs. (28) and (29) by

Vé one finds

3+ uve)(@hx8u) -(B-VEXV#xSB) =0

(3£ + u-7%)(v¢ x 3B) - (B-V#)wpxSu) = 0

these are written in matrix form as
£ g -BV# | [Wxdu
3% 3 /\vxsB

The determinant of the coefficient matrix is

f(%f +9'V9‘)2- (BW)=0

If this determinant vanishes, the discontinuities in the tangential com-

=O (38)

ponent of velocity and magnetic induction move with the normel speeds
determined by Eq. (23). The propagestion of magnetic shear is one property
of an Alfven weve,

Thus, the hydromagnetic waves result from the six roots of the
characteristic equation; this is a sixth order polynomial in %%—and Vo.
Denoting the normael speed by c = %%-/ |¥¢|, and the normal component of

velocity by u = (E-V¢)/|V¢| one cbtains the following roots

(c.-u,,)"= c; cos*0 (39)
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(C"“n)z = ‘%[(4'* ) ";/(Cf +CE)2~4-c§c§cos'0'] (10)

e-wi'= @) fErar-aadass| o

where ¢, is the Alfven speed, c> = B-/p, and 6 is the angle between the

A A
unit normal to the surface and the direction of the magnetic induction,

BV = |BI|\#{<os0

These roots can be found by direct evaluation of the characteristic de-
terminant, but then the additional informafion contained in the charac-
teristic equation (such as the facts that compressibility effects propa-
gate with the fast and slow waves and that Alfven waves do not compress
the plasma but do propagate magnetic shear) is not availeble, The most
important point is that all the normal speeds are real so that the system
of equations is hyperbolic. This guarangees that the initial-value prob-
lem is well-posed mathematically and hence that normal mode analysis s
legitimate. For visualization, one plots these roots on a normal speed
diagram, Fig. (2), which is a polar plot of speed versus orientation with
the magnetic induction. Equation (39) describes the Alfven wave and is
represented by two circles in the normael speed diagram; Eq. (4l) describes
the slow magnetosonic wave and is represented by two oval curves within
the circles corresponding to the Alfven wave; Eq, (40) describes the fast
magnetosonic wave and is represented by a single closed curve which con-
teins all the other curves. Figure (2) shows the normal speeds for the

2 2
case where cp aJEEB.
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Fig. 2. Normal speed loci for hydromagnetic waves; two circles which
touch the origin represent the Alfven wave; two ovals which touch the
origin represent the slow megnetosonic wave; the large oval vwhich
encircles the origin represent the fast magnetosonic wave.
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If one considers the equations of MHD which have been linear-
ized sbout a constant, spatially homogeneous state, then the normal
speed diagram gives the phase speed of plane waves propagating in eny
particular direction; note the singular behavior associated with propa-
gation perpendicular fo the magnetic field. The response of the fluid
to a point disturbance at the origin mey be ascertained from the diagram
by superposing all the individuel plane waves; after a time, t, the plane
wave propagating in a particular direction moves the distance from the
origin to a point on the normal speed locus; the envelope of these
plane waves form the response to the initial point disturbance. The en-
velopes are called characteristic loeci and their construction is illus-
trated in PFigs. (3)-(5).

From elementary geometry one sees that the disturbance asso-
ciated with the Alfven wave, Fig. (3), consists of two points of uncount-
able muitiplicity which propegate strictly one-dimensionally slong the
magnetic field. The slow characteristic locus, Fig. (4), consists of two
cusped, triangular shaped figures. Since the curvature of the slow nor-
mal speed locus can be approximated by a circle similar to the circle of
the Alfven normel speed locus, there are two points of infinite multipli-
city associated with the slow magnetosonic locus which propagate strictly
one dimensionally along the magnetic field (see Appendix A), these points
are the cusps located on the axis. The fast characteristic locus, Fig. (5),
is the simplest curve geometrically and it resembles the fast normal speed
locus. The fast characteristic locus becomes a circle, centered on the
origin, if the magnetic field vanishes; it corresponds to an ordinary

acoustic wave in the fluid. The Alfven and slow characteristic loel
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Fig., 3. Characteristic loci for the Afven wave. The dots are points
on the Alfven normal speed loci, The lines represent plane waves which

intersect at two single points on the magnetic field lines; these two
points propagate one dimensicnally.
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Fig. 4. Characteristic loei for the slow magnetosonic wave. The dots
are points on the slow normal speed loei; the dashed circle illustrates
that the cusp on the maegnetic field line propagates one dimensionally
as does the Alfven wave shown in Fig. 3.
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WO

Fig. 5. Characteristic locus for the fast magnetosonic wave, As the
magnetic field disappears the figure becomes less anisotropic eventuslly
becoming a cirele which represent an ordinary acoustic wave in the
fluid. Note that the scale is twice that in Fig, 3 and kL,
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degenerate into single, nonpropagating points if the magnetic field wvan-
ishes, With a nonzero magnetic field the diagram is anisotropie, the |
fast wave being flattened in the direction of the field, while the slow
vave and Alfven wave move out preferentially along the direction of the
magnetic field.

The most important aspect of these particular characteristic
loci is the very singuler behavior of the slow magnetosonic wave and
Alfven wave: they are disturbances that propagate one-dimensionally in
three dimensional space., One may consider, for instance, simple wave

propagation in the x-y plane which is governed by the partial differen-

tial equation

a3 -(3+3)=0

Now consider the case where the disturbance propagates only in the x-
direction, but where the velocity of propagation is a function of y.

If the boundary conditions ¢(0, ¥y, t) = ¢{(L, y, t) = O are imposed and
if the velocity of propagation is constant, then one finds discrete
eigenvalues. If, however, the velocity of propagation is not constent,
then the eigenvalues are continuous. The one dimensional propagation of
the Alfven wave and the cusp of the slow magnetosonic wave can be ex-
pected to have a profound influence on eigenvalue problems which are
derived from the linearized equations of ideal MHD., In fact, the exact
normal mode equations for the ordinary theta pinch exhibit both the

Alfven continuum and the cusp continuum explicitly.
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C. Linearized MHD

The linearized equations describe the development of small
deviations of the state variables from a time independent solution of

Egs. (10)-(15). Consider the state varisbles

B = By(x) + B,(x, %) (k)

P=aM) + (1) ()
p= g +p(s,2) (35)

The general form of a state variable is g = go(;_c) + gl(gg, t), where
ley| << lgyl. Substituting Eqs. (L2)-(45) into Egs. (10)-(15), one
finds terms which involve only the equilibrium quantities as well &s
terme which are linear and of higher order in the small quantities.
Equating the time independent terms and linear terms individuelly one

finds the following equations

0=-Vp, +(Vx§o)x§, (k5)
Vo§=o (L6)

B=B(5>S.) (v7)

#+w)g+ g@w) =0 e)
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du,

B5% = ~Vp+(VxB)xB, +(VxB)xB, (o)

3% = Vx(ux8,) ™
-g;‘-l-(!él‘V)S,:O | (51)

$ = sl(ﬂ’f,’i‘vﬂ,’ﬁ,) (52)

Equations (45)-(47) determine the time independent equilibrium quenti-
ties; Eqs. (L8)-(52) determine the behavior of small deviations from
these equilibrium values, This procedure is valid provided that the de-
vigtions remain small so that quadratic, and all higher degree, nonlinear
terms ere negligible compared to the linear terms.

Several important properties can be deduced from these linear-
ized equations. First, one finds that there are two formulations in
which the system, Eqs. (48)-(52), is self-asdjoint; these formulations are
the velocity formulation which results when Eq. (49) is differentiated
once with respect to time, and the displacement formulation in which one
considers the displacement, E(x, t), of the plasme from its equilibrium

position, where, £(x, t) is such that gl(g, t) = 53- Either of these

T
formulations produces the seme differential operator, but the classes of
functions on which the operator works are different, As a consequence,
the definition of an instability is complicated; for instance, a dis-
placement which increases linearly with time could be classified un-

steable in the displacement formulation, but would be classified stable

in the velocity formulation. The general question of instebility is not
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addressed in this work as only exponential growth with time will be
considered; in this case there is no difference between the two formu-
lations, The calculation will be carried out using the velocity formula-
tion of linearized ideal MHD.

The velocity formulation produces & self-adjoint differential
equation and from this one can prove that an energy integral exists, that
a variational method for computing eigenvalues and eigenfunctions exists,
that the spectrum of eigenvealues consists solely of real values, and
that any two eigenfunctions are orthogonal.l6 These general properties
are very important for the specific calculation of the eigenmodes of the

bumpy theta pinch that follows.



II, MAGNETOHYDROSTATIC EQUILIBRIA

A. General Theory

In static equilibrium the pressure, p(r), the magnetic induc-
tion, B(gz), and the current demsity, J(r), of an ideal megnetohydrodynamic

(MHD) plasma must satisfy the seven nontrivial ideal MHD equamions
V-B=0 (1)
vxg

A
vp

J (2)

,‘E; (3)

Several properties of hydromagnetic equilibria can be deduced directly

0
W

from these magnetohydrostatic equations, On taking the divergence of

Eq. (2) one finds that the current density satisfies
V-d=0 (4)
~»
Scalar multiplication of Eq. (3) by B and J gives, respectively
B'VP=0 (5)
-~
JVp=0 (6)

Equations (5) and (6) specify that the field and the current are every-
where tangent to surfaces of constant pressure; hence, J-lines and B
lines must cover constant pressure surfaces, The surfaces of constant

pressure, therefore, are also magnetic surfaces.

28
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Substituting Eq. (2) into Eq. (3) eliminates the auxiliary

veriable, J, and reduces the set (1)-(3) to four equations

V-B=0 (1)
Vp= (vxB)xB 3

It is found from the method of characteristics (see Appendix C) that this
fourth order system of partial differential equations is a mixed type,
elliptie-hyperbolic, as opposed the three standard types of equations
elliptie, parabolic, and hyperbolic. Furthermore, the cheracteristics
for this system are doubly degenerate, Theorems regarding the existence
of solutions of this complex system have not been esteablished. Thus, in
general, MHD equilibria mey not exist.

In gppendix C it is shown that the real characteristic sur-
faces which correspond to the hyperbolic pért of the system (1) and (31)
are determined by the equation

B-Vé =0

where ¢(r) = 0 defines the cheracteristic surface. This real surface is
covered by B-~lines and is, therefore, a magnetic surface which is also
a constant pressure surface. Because the magnetic surfaces are charac-
teristic, it is possible, when certein symmetries ere present, to inte-
grate away the hyperbolic part and thereby reduce the system (1) and (31)
to a standard elliptic type.

In particular, on considering MHD equilibria in cylindrical
polar coordinates which possess azimuthal symmetry - f£{r) = £(r, z),
vwhere f is any equilibrium quantity - the set of equations (1)-(3) is

found to be explicitly
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L 2 (rB,(r2)) + & B.(r2)=0 (1)

~£ By(r2) = Jp(52) (@)
2 B,(n2) - 57 B,(n2) = Jy(n2) (9)
-:,--a?-;(rB,(r',Z))f-Jz("ﬂ) (10}
%‘ pz) = JpB.~ J.B, (11)
0=J;8,-J,8B, (12)
£ pez) = J,.Bo- JoBy (13)
Also, Egs. (4) and (5) ax

r 5 (rJ,-( > )) += Jz(bz) 0 (14)
Brg,': pz) + BZ'S'E pdz) =0 (15)

By introducing two functions, Y(r, z) end x(r, z), such that
B,(,2) =+ az 2 Y(r,2) (16)
B.(r2) =~ £ 2 Y(i;2) an
Jy(rsz) =~ -',:'-32; X(rz) (18)
J:(52) = + 5= X(r,2) (19)

Equations (7) and (14) are identically satisfied. It is also evident

that Eqs, (16) and (17) imply
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E-VQJ:O (20)

Thus, B-lines lie on surfaces of constant ) - the equetion y = constant
defines magnetic surfaces which are also constant pressure surfaces and
which are characteristic. On using the definitions (16)-(19) Eq. (12)

becomes

(r ar)(:"i%) ( raz)( rg:,-’) -‘--%f;? 0O (

where g(r z) is the Jacobian of the transformation., This implies that
?

¥(r, z) and ¥(r, z) are not independent functions but that

X=X (22)

Similarly, Eq. (15) becomes

"32( )+ rar)( )__'l? 3z 0 @

and yields

|

p= P(l[l) (24)

This reiterates the facts provided by Eq. (20) - that the pressure is
constant on surfaces of constant . Equations (22) and (24) are im-
portant results; they provide two integrals of Egs. (7)-(13).

Upon using the definitions (16)~(19) one finds that Eqs. (8)-

{10) become

-53-:- B,(nz)=- r 3% 2 X(hz) (25)

z
'},‘%?,W(GZ) +3l’ r a.—) Je(r)z) (26)
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f,-g-;(rﬂa(nZ)) = -.!— 'aai" X(r,z) (27)

By inspection of Eqs. (25) and (27) one sees that

+Bo(r:2) = X(1:2) (28)
Thus, all the components of J and B are given in terms of Y and cne func-
tions of Y, X(¥). Finally, substituting Egs. (16)-(19), (26) and (28)
into Egs. (11) and (13), and using Egs. (22) and (24) one finds (primes

denoté differentiation with respect to the argument)
POZE (26 5) ++ 2 +3) -G T NEY)
pede = {330+ 316 3) R ED)

The equilibrium flux function, Y(r, z), must satisfy

2 (L24) 443 = rpW-2ADLWD)

where p{¥) and }{¢) are arbitrary functions. Thus, the original fourth
order system or partial differential equations has been reduced to a non-
linear, second order, elliptic partial differential equation, because

the assumed symmetry of the equilibria permitted integration of the hyper-
bolic part. As a consequence of the two integrations, two arbitrary
functions, p(P) and x(P), occur in the differential equation. Since

Eq. (29) is nonlinear, nonunique solutions can exist.

B. Simple Equilibria

In the special case that equilibris exhibit trenslatiocnal sym-

metry in the axial direction in addition to azimuthal symmetry solutions
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of Eg. (29) are easily determined, Since all the equilibrium quantities

are functions of r alone, Eqs. (16) and (18) immediately give

B,=0
J,-=O

and Eq. (29) is easily written
/ s o/t ') ‘ 4
($¥en)(tvin) = - (L)) per -+ ¥o)z et
Upon using Eqs. (17) end (28), Eq. (30) becomes

dlpz]=-4e] - L L[t 83

which is rewritten in the convenient form

$p+4@e) + & -0 -

Equation (31) is the well known pressure balance relation for the diffuse

linear pincth (screw pinch) configuration, the magnetic field of which is

8= Bo+Bmz (32)

One obtains the theta pinch configuration - the model system in
this work-by choosing that B9 vanish identically, i.e. specifying one of
the arbitrary functions, X{¥) = 0, Thus, for the thete pinch, the cur-
rent density is

A
= (33
J =Jo0 )
the magnetic field is
A
B=B,z (31)
4

and the pressure balance relation is
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pes]
Flp+=z821=0 (35)
Finally, it is noted that for both the theta pinch and screw pinch equi-

libria the equation
Yar) = constant

defines a family of magnetic surfaces which are right circular cylinders.

C. Bumpy Thetsa Pinch Equilibria

The properties of equilibria which are slight modifications of
the theta pinch equilibrium will now be elucidated., The equilibria are
to be axially symmetric and the magnetic surfaces which are defined by
the equation

Y(r,2) = constant
are assumed to deviate only slightly from right circular cylinders. It
is also assumed that the equilibrium magnetic field has no O-component
(i.e., choose x{¥) = 0) so that the current density lies in the 8 direc-
tion only

A
J= Jov,2) O
r

Under these circumstances the differential equation (29) becomes

(..3-,-.)4- ,.5-;=-r|o’('l’) (36)

Approximate solutions of Eg. (36) will be constructed by standard pertur-
bation analysis, but before proceeding, it is necessary to reduce (36) to
dimensionless form.

From the physical qnantitiés, r., the radius of the plasma

0’

column, Pg> the axial plasma density, and B., the magnetic induction at

0!

the surface of the plasma column, one finds a characteristiec length,
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3

L a characteristic mass, M = ryPgs and a chearacteristic time,

fl

I‘O,

T ro/(Bg/pO) (for uniform density, p(r) = Py this is the Alfven tran-

sit time across the plasma column), which are used to construct natural
units for the problem. For convenience, the conversions between the

dimensioned and dimensionless (denoted by tilde) quantities are listed

below
length: Y=, z=mlZ
magnetic induction: B(L';i) = [ﬁo] §(E,JZ)

density: P(!) = [ﬂ,] ﬁ(f)

g A =
velocity: V(!,,t) =15 lf(r,i)
time:
pressure: p(r,t)= [B:] pei.1)
magnetic flux: q,(!:) = [rozBo] ‘T’(f)
current density: :!(r) = [—?::] J (f )

Substituting these into Eq. (36) and all previous expressions gives the

desired relations among the dimensionless gquantities, for instance
& { 2 (129) , 13 a‘w [ﬂn]{ (q/)}

Hereafter, the tilde is suppressed and only dimensionless guantities are

consldered.
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Attention is now restricted to a particular class of equilibria

by assuming that the magnetic flux function has the following form
“
Yrz) = Y4y + S Y cos(kz) + O(57) (37)

where the small parameter §, 0 < § << 1, measures the deviation of the
magnetic surfaces from right circular cylinders (8 measures the bumpi-
ness of the magnetic field lines). Because of the assumed form of Y(r,z),

the differential equation for a magnetic surface is
. )]
A= 0= [4%) + ¥ cos k)] dr - [Sk¥lr sm(ke)| dz
or, equivalently

)
ta) = sk ‘f;%sm(kz) +0(5%)

Hence, the equation of a magnetic surface is

r@= -8 %’i’as(kz) +0(s?) (38)

The unit normal to a surface of constant Y is

o _v_g_i = o285k ‘2) siv(kz) +00%) ()

Assuming the above form for Y(r, z) also requires that the equilibrium

magnetic field, given by Egs, (16) and (17), have the form

B,(x2) = 8k by sin(kz) + O5%) (40)

By(x»D=0 (1)
B,(»?D)=a()+ Sccr) cos(kz) + 0(5%) (42)
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where
raqr) = - ¢y (43)
rby = -0 (1)
recr) = - ¢ (45)

In terms of these equilibrium quantities, the flux surfaces and their

unit normals are then

Kz) = k- a(s) Cos(kz) + 0O(5%) (46)
=r-2 gk sm(kz) + 0(5% (57)

Substituting the assumed form of W(r, z), Ea. (37), and the

Taylor series expansion of p' ()

P = p(y9)+§ Y eos(kz) pU ¢*”) +0(8%) e

into Eq. (36) and expanding order by order in &§, one finds

00): (LT¢2)=-rp ) (19)
0(s): (‘;-"' ""m’)"" 7‘; ‘l’“’= -r F”(‘I’“) (50)

By multiplying Eq. (49) by (1/r w(O)‘) and using Eqs. (24) and (L43), one

can rewrite Eq. (49), casting it in the form

[p+ $a2]"=0 (51)

which is recognized as the pressure balance relation for a theta pinch.
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This relation determines the basic magnetic field, a(r), for a given pres-
sure profile, p(r). An isothermal equation of state is amssumed so that‘
the plasma denisty is proportional to the plasma pressure in the equi-
librium situation. The density profice is specifieq go that (p{r)-D)op(r)
where D is the (small) density of a uniform background of c©ld plasma:
this is the experimental L’::L‘t:ual.ti.on.l8
Two gpecifie pressure profiles will be congidered here - g

Gaussian prof‘ile6 »9

2
P(r):-%ﬂexp("r ) (52)
(the perameter B is the axial plasma beta, ——&_— ) and g rela-

8 p(O) +62(0)
tively sharp profile

| ~tanh [ (r*-1)]
P(")-ZP | 4+ tanhi«d (53)

(a0 is a shaprness parameter; o = 3 is a typical valye), The plasme is
assumed to extend to a rigid perfectly conducting wg1l; however, the

hot plesma column is well separated from the well ag in the experimental
situation.18 Thus for sufficiently large values of r the plasma ig es~
sentially pressureless. Integrating Eq. (51) Yields the £irst equilib-

rium relation

The constant a(rla.rge) is unity because of the definjtion ©f the char-

acteristic magnetic field B Finelly, the besic magne'bic fielq

0.
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corresponding to the two given pressure profiles is written down for the
8,11

@) = |- pexp-r?) (55)

Gaussian profile

and for the sharp profilelo

{-tanh[=«(+*1)]
|+ tanhial

&)y =1-p

(56)

The problem that remasins is to determine subsidiary fields, b(r) and c(r).
By dividing Eq, (L49) by r and differentiasting with respect to
: 1
r, one can obtain an expression for p' (111(0)) which is cast in the con-

venient form,

-t P”(l}""’) = -A-(—-?—_-f)l (57)

Substituting Eq. (57) into the right hand side of Eq. (50) produces a
(l)(r)

second order ordinery differential equation which ¥
)
LY = [+ £ xy1¢

G ) = K+ Z(7) 1 (58)

Before turning to the gsolutions of Eq. (58), which must be found numeri

must satisfy:

cally, two other relations among the equilibrium quantities in addition
to Eq. (54) may be noted, The first one is an immediate consequence of

Eas. (44) anda (45), nemely

(rb(r))’ = redr) (59)

The second one Tresults from Eq. (58) and the definitions mentioned ebove;

it is conveniently written
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Finally, one must solve the boundary value problem for w(l)(r),

b= [s £E1Y

(

$ory=0, ¢¥w)=-x (62)

by numerical methods. The subsidiary equilibrium magnetic fields b(r)
and c(r) may then be computed from the definition (k) and (45). 'The

boundary condition w(l)

(0) = 0 results from the requirement that b(r) be
reguler at r = 0; the boundary condition w(l)'(rw) = -rw results from
specifying that the applied & = O helical field have unit value at the
conducting wall - c(rw) =1,

This fixes the wvalue of § for eny particular configuration.
The flux surface as in Eq. (38) is determined by the experimental situa-
tion, Specification of w(l)(r), as by the boundary condition w(l)(rw) =
T leaves the parameter & to be adjusted to fit the actual shape of
the bumpy surface,

If the pressure profile is a well behaved function of r, the

basic magnetic field, a{r), must also be well behaved, and have a valid

power series expansion

a(r) = a00) + 5 o)+ L aO) r’+---

(note that a(r) has a minimum at r = 0). Using this fact, one finds a

power series expansion for the function

(Y. L&), 1
a.(r)" Z ao ' t3as "+
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One sees thet the differential equation.(6l) has a regular singular point

at r = 0, thus, Frobenius' series methodlg’ao may be used to find a solu-

tion. Assuming

lp‘" o nsX

(=2 gt
n=o

and substituting into Eq. (61), one finds

o(%-2) 9o P + (@) i [ r [x(x+2) &=~ "13’0] r®
+[@+l)(a(+3)?, -faf, -%% Jo yHe.. =0
Thus
x(x~-2) o = o
&+)(*-1) §i=0
@+ g, ~ k"ga =0

The indicial equation has solutions & = 2 and o = 0, the first of which

yields a valid series solution

) 2, K. 4
4{'(!')-3,!‘ +tggorfse
This solution satisfies the boundary condition‘w(l)(O) =0, To find

a second, linearly independent solution, one uses the standard method

of variation of constants, finding

l-
) @) r‘ J e
Y= Yo (FoT

Integration by parts yields

Wiy = 4‘;‘&) In(r) +§j h, "
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This solution is eliminated by the regularity condition. Therefore,

one has for w(l)(r), b(r), and c(r)
7))
Yiry

br)

W

3,,r‘(|+ 'g*"*“'") (63)

-gar(|+-§r* ) 6w
-3,(|+-§r‘+-—-) | (65)

it

(3

]

It is expected that the first few terms are a good approximetion when r
is small.
When r is large, the differential equation (62) becomes (a(r) =

constant for large r)

= Ry

thus, w(l)(r) behaves asymptoticelly as an exponential function -
w(l) = eikr. Unfortunately, one cannot say with absolute certainty which
is the proper sign, +kr or -kr, and as the following example will show,
this is a possible seat of numericel difficulty.

An Example

Consider the initial wvalue problem

[ 7% P /,

'd""""‘d""’i 3(0)‘:0-, 3(0)=-a; 0<X<So0o  (66)
with analytic solution y(x) = ae™™, A numerical integration, because of
round off and truncation errors, always mixes in a small portion of the
other solution, ex, which will slways.dominate the solution for sufficiently

large x. Thus, one always finds a diverging solution. The same difficulty
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(1) .,

mey occur in integrating Eq. (61); one may find ¥ T when in fact

w(l) n T ig the proper solution, However, this difficulty can be
overcome,

Consider the change of variables

lj(x) =A exp U’;‘ch’) Jx’] (67)

Then y'(x) = £(x) y(x) and y''(x) = £'(x) y(x) + £°(x) y(x), and Eq. (66)

becomes
/ -4

f()‘):'. l-f(x); O =1
The solution is immediately, f(x) = -1, and is also the numerical solu-
tion since the computer evaluates f' to be zerc (there is no roundoff
because a number is subtracted from itself), Using Egq. (67), one finds
y(x) = A exp[/¥-ax] = ae X, Thus, by using the change of varisbles (67),
the second order differential equation is reduced to one of first order.

This allevistes the possibility of finding the wrong solution.

The Specific Problem

Substituting (67) into Eq. (61), one finds

) = -'fg’ ~ fFm +K+ 12(%-')' (68)

(l)(r )

while the boundary condition w = - becomes

_AI_= ‘f(")exp[j;fv)d ] | (69)

An important feature of the equilibria is evident from Eq., (69}, namely,
that at a given position, r, within the plasma colum, w(l)(r) depends

on the wall position only through the scale factor A, given by Ea. (69);
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the functional form of ¢(l)(r) is not dependent on wall position. The
asymptotic form for smell r, Eq. (63) is recovered provided that for
small r
fory~ 2

This asymptotic form provides an initial value for small which is used
as a starting point in a numerical integration of Eq. (68) to determine
£(r), This function reveals the nature of w(l)(r). The constant, A, may
then be computed from the normalization condition, Eg. (69).

Figure 6 shows the function E{%L)' for the Gaussian profile
while FPig., T shows the same function for the sharp profile. Explicitly,

this function is

Hey - PBexpCr?) |, _ BexpCr)
a

r e prpe-r?) (- Perpcr?) (70)

For the Gaussian profile; for the sharp profile, it is

) - - rrme e e (e tkla ]

T+ tahls - g + g tanh[a (=]

xS mh"[“("z -1)]
{+tanhix] - B + Stanh [x(r*1)]

Both functions are well behaved and rapidly approach zero with incressing

"

r. BEquation (68) is integrated numerically using a standard fourth order
Runge-Kutta integration subroutine, RKGS, from the IBM Scientific Subrou-
tine Package. The resulting solution is plotted in Fig. 8 for the Gaussian

profile and in Fig, 9 for the sharp profile. The most important feature
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-———— Bg,e
4 ——--p=3
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| 42 84 1.26 1.68 2.1
r |

Fig. 6. The equilibrium function r/a{a'/r)' for various values of plasma
beta plotted against r, the radius of the plasma column.for Gaussian
equilibrium profiles. The function is negligibly small for r > 3.0.
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The equilibrium function r/a(a'/r)' for various values of plasma

beta plotted against r, the radius of the plasma column for sharp equi-
librium profiles. The function is negligibly small for r > 1.6,
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Fig. 8, Numerical solution of the first order differential equatiO{l,
Eq. (68), for Gaussian equilibrium profiles with 8 = ,8, The solution
approaches the value f(r) = 1 fop large values of r.
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Fig. 9. DNumericel solution of the first order differential equation
Eq. (68), for sharp equilibrium profiles with B = .8, The gsolution
epproaches the value f{r) = 1 for large values of r.
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is that all the solution approach the value +k as r increases. Although
an answer can now be cbtained by calculating the normalization from Eq.
(69), it is convenient to return to the second order equation, Eq. (61),

after having established that the proper asymptotic form is w(l)(r) N T

21,22

The shooting method is employed to numerically solve the

boundary value problem

P = 100+ & W @
'l’%)=0 s t}f"’(r.,)=-rw (62)

The esymptotic form for small r, Eq. (63), provides two initial condi-
tions which are proportional to the unknown constant 8y This use of

Eq. (63) guerantees that the first b.c., w(l)(o) = 0, is satisfied, while
avoiding difficulties because of the singular point at r = 0. Decomposing
Eq. {61) into a pair of first order differential equations allows the

use of the subroutine RKGS of the IBM Scientific Subroutine Package for
integrating the initial value problem. The value of w(l)'(rw) now de-
pends on the initial constant &g and one may show this explicitly by

defining a function 2z
¢
Z(ws §) = hu + Y (N

When z(go) venishes, the solutions of the initial value problem and the
boundary problem are identical.

The zeroes of z(go) are found by a marching method and the
estimates are refined by interval-helving, That is, an initial guess of

the position of the zero, G, is given together with an initial increment,
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A; the integration routine yields z(rw, G), then z(rw; G + A), one of
which is & better estimate of the position of the zero. If z(rw, G+ 4)
is better, z(rw; G + 2A) is computed, ete. If z(rw, G) is the better es-
timate, z(rw; G - A) is computed, then z(rw, G -~ 2A), ete. If z(rw; G +
nd) venishes, then, of course, G + nd is the missing initial vaiue which
provides the solution of the boundary value problem., If z(rw; G + nA)
and z(rw; G + (n + 1)A) have opposite sign, then the zero lles in the
intervel between these two values. To refine this estimate, z(rw; G +
{n + 1/2)}A) is computed, This velue is either zero, of the same sign as
z(rw; G + nA), or of opposite sign. If zero, then G + (n + 1/2)A is the
desired value; if of different sign from z{(G + nA), then the zero lies in
the subinterval (G + nA, G + (n + 1/2)A); if of the same sign, the zero
lies in the other subinterval. Bisection of the appropriate subintervel
is continued until a sufficiently accurate estimate is obtained.

Two classes of bumpy theta pinch equilibria are 'considered.
Finite wave wavelength equilibria are characterized by a finite value
of wavevector k, while long wavelength equilibria (see Appendix B) are
characterized by a very small value of k. The value kX = 1 is chosen as
representative of the finite wavelength case and k = 10—5 as representa-
tive of the long wavelength cese, HKote that wavelength effects are pre-
sent in the subsidiary fields only; the primary theta pinch field, a(r)
is the same for all values of k.

Figures (10) and (11) show the pressure profile and the basic
theta pinch field, a(r) for the Gaussian profile and the sharp profile,
for typical parameter velues. In Figs. (12) and (13) the subsidiary

&

fields, b(r) and c(r), corresponding to the Gaussian pressure profile are
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T ~—SHARP PROFILE
--- GAUSSIAN PROFILE

plr)

Fig. 10. The equilibrium pressure profiles for B = ,5.
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Fig. 11. Profiles of the basic equilibrium magnetic field for B = .5,
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Fig. 12, TPypicel subsidiary equilibrium magnetic field quantities
plotted against r for the finite (k = 1) wavelength (solid curves)
and long (k = O) wavelength case (dashed curves and denoted by
asterick) for Gaussian pressure profile with B = .7 and r, = L,2,

53
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0 G

Fig. 13. Typicel subsidiary equilibrium magnetic field quantities for
finite (k = 1) wavelength (solid curves) and long (k = 0) wavelength
case (dashed curves and denoted by asterick) for Gaussian pressure pro-

file with 8 = .7 and r, = 3.0, Note that only the finite wavelength
field is affected by wall position.
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shown for the finite wavelength and long wavelength (denoted by ¥)
cases, for two wall positions, r, = 4,2 and r, = 3.0, In Figs. (14)
and (15) the subsidiary fields for the sharp profile are shown for
r, = 4.2 and r, = 1.,6. One sees that the exponential tail of w(l)(r)
predicted by Eq. (67a) strongly influences the subsidiary equilibrium
magnetic fields in the finite wavelength case (in the long wavelength
case, Eq. (62a) becomes ¢(l)'| = w(l)./r end predicts quadratic behavior).
Because of this exponentiel tail, the subsidiary fields within the plasma
depend on the position of the conducting wall in the finite wavelength
case but not in the long wavelength case. That is, the scale factor
mentioned in connection with Eq. (69) changes with wall position in the
finite wavelength case, but is constant in the long wavelength case.

These differences may be expected to affect the stability properties of

the equilibria.

D, Summggx

For axisymmetric ideal hydromagnetic equilibria the magnetic
field, (Br(r, z), 0, Bz(r, z)), is defined in terms of a magnetic flux
function, Y(r, z). Approximate solutions of the second order nonlinear
partial differential equation

A(.L?..'P +.'l...gi§.;_=.-rpl(q:) (36)

r\ror
are found under the assumption that the flux surfaces deviate slightly
from right circular cylinders. This deviation is measured by a small

parameter § in terms of which the flux function is expanded in the form:
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oo
r

Fig. 14, Typical subsidiary equilibrium magnetic field quantities plot-
ted against r for the finite (k = 1) wavelength (solid curves) and long
(x = 0) wavelength case (dashed curves and denoted by asterick) for
sharp pressure profile with f= .7 end r_ = k.2,
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Fig., 15. Typical subsidiary equilibrium megnetic field quantities plot-
ted against r for the finite (k = 1) wavelength (so0lid curves) and long
(k = 0) wavelength case (dashed curves and denoted by asterick) for
sharp pressure profile with B = ,7 and ry = 1.6, Note that only the
finite wavelength field is affected by W¥waell position.
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Ynz) = ‘I."f’r?) + $¥in cos(kz) + O(5%) (37)

A stendard perturbation expansion of Eq, (36) yields several relations

among the equilibrium quentities

po)+ L = (k)

GbY=re (59)
t’ IV 2

- 2(F)=Kb (60)

(1)(1,)

and a second order ordinary differentiasl equation for Y
(0 P4 2 of a)
Vo =146 +[R+ £E) (¥ (6n)

The numerical sclution of this equation, subject to appropriate boundary
conditions completes the determination of the equilibrium magnetic field
for given pressure profiles. Two classes of equilibria are considered -
finite wavelength equilibria with k = 1 and long wavelength equilibria
with k = 10-5. Important differences in the behavior of the subsidiary

field quantities b(r) and c¢(r) as the wall position varies sre noted.



ITI. STABILITY OF THE BUMPY THETA PINCH EQUILIBRIA

A, Linear Stability Analysis

In this chapter the stability of the equilibrium configursa-
tions which were described in the previous chapter is investigated. The
veloecity formulation of linearigzed ideal MHD is employed to study the
time evolution of small perturbations of the equilibrium gquantities, If
the small perturbations remain small as they evolve in time, then the
equilibrium configuration is said to be stabley if the small perturbation
is found to become large as the time evolution proceeds, then eventually
the assumptions that permitted linearization of the equations will be-
come invalid, in this case the equilibrium configurstion is said to be
unstable. The analysis is undertasken in the standard cylindrical polar
coordinate systemn.

For convenience the linearized equations of ideal MHD are
reproduced below in terms of the dimensionless varisbles of the previous

chapter.

3’% +u Vg +p@-w)=0 (1)
8%%"Vﬁ +(VxB)x8, +(VxB,)x B, (2)
g’%" Vx(uxB,) (3)

%-BL+wp-Buvg=0 ©

29
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The velocity formulation results when Eg, (2) is differentiated once with

respect to time, yielding

faz"‘--v—ﬁ +(Vx ')xB, -!-(Vxljo)x%% (5)

Direct substitutionlthen produces a second order partial differential
equation which must be satisfied by the perturbed velocity field, u, (x,t).
The differential equation may be interpreted as the result of action of a
linear operator operating on the velocity field; this linear operator in-
volves the equilibrium quantities as coefficients, Because of the symme-
tries of the equilibrium, i,e, the trivial invarience under infinitesimal
time translation and infinitesimal azimuthal displacement this linear op-
erator commutes, trivially, with the two linear operator, 32 and ag

Since two linear operators which commute possess simultaneous eigenfunc-
tions, the perturbed velocity field can be expanded in terms of the eigen-
-iwt im6

Bg’ namely e and e , where w

is an arbitrary parameter and single-valuedness is assured by restricting

functions of the two operators 88 and

m to be an integer. TFurthermore, each value of the two parameters, w and
m can be treated independently since Eq. (5) is a linear equation.

Upon substituting and rearranging, Eq. (5) becomes

‘f@zgl(“’:miﬂz) + VP@,m;srz) = I(‘o:mi nz) (1)

where P, the "total pressure", and T, the "tension", are given by

P= iw(p+ ByB,) (8)
~ = *"""[(E:'V)ﬁo*@o'v) B.] (9)
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The factor e'imt e:.mﬁ hes been suppressed, Various quantities are now
written down using the following notation: By = (Br’ 0, Bz); §1 = (brs
by, bz); w = (u, v, v), One finds

. _ B( Am

-Mt'br- 3z uBz WB,) - ‘U'Br (10)

. )

wbg = ‘3"":(1!'Br) + ‘%(11‘ Bz) (11)

b, =45 (-wB, ~ug? "'Bz( 2 ()4 %))

P= u’(f’+ﬁ, B) = “(Xp-l-B:) l%’-“‘-"-"v)-(Xp +B:)g—'23 (13)
B3 B 2-(wb,)-uB.3: +Br3"(“61) Ay,
T= {83 +°" +a,,,}[a,(u8 wB,)- vBr] ()
H22][+2 ,,(ma,) w2 - B {1 20) + )]
To-{B 3+ Eea.2}308)+ 2 (1rBz)]
T.= (B3 +8.2+ ) 130n8)-43 B,(-La.,(m)-l-""u)l
{ar }[ﬁ(“ﬁz‘wﬁr) """,.mvB,.]

These expressions are used in the analysis that follows,

(15)

It 1is recalled that the equilibrium megnetic field components

have the following form

B, = Skb(r)s(kz) + O(*)

2 (17)
B, = ar) +8c(r) cos(kz) + O(5%) I
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To make the expressions for P and T, Eqs. (13)-(16), explicit, a repre-
sentation for the form of the perturbed velocity field, Y s is assumed

which resembles that of magnetic flux function.

w= g o1 4 Sy cos (i) + O(5Y) o
e | ¥y + 8 10 cos(kz) +O(3 z)] (29)

w= gAML ) o 5 WPl sin(kz) + O] (o)

Here the dependence on 6 and t is shown explicitly. If m = 1 this per-
turbation is, to lowest order in §, a kink mode of wavenumber £ké (£ is
a real number). The wavenumber is small and is scaled to the small
quantity k§; the wavelength of the mode is large. In high beta theta
pinch experiments very long wavelength kink modes are the only unstable
necdes that are observed.l’12 Equation (7) will now be investigated for

modes of this type.

B. Modes with w =(9(1) in k¢

Substitution of Egs. (18)-(20) into Eqs. (13)-(16) yields
x -()’p+a"‘)( 1 4.(nt?) +4259) + 0(5°)
T=0+0

Then to lowest order in & Eq. (T) becomes

~patd? = Z—K\’P«m‘)( ;(Vlf”) +%’"‘U‘°’ )]
-fw’v‘” = -F kYP{-f)(-':' a-r(ﬂp ’ + %‘W)] (21)
~pirw® = ()
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Thus, the perturbed flow must be transverse to the basic magnetic field
a(r)g. In what follows an arrow over a quantity denotes the r - 6 com-

a(0) _ (0, (o).

ponent vector, v Equation (21) is rewritten in this

notation
po7% i) §.:99] =0

Introducing a velocity potentiael, X(r), such that

W= 4Vx

one finds that X satisfies the following differential equation

o)+ (-2} 0

Thus

' 0 MKz .,
G LY e SO

Two separate ceses must be included; first the situation with m # 0 is
considered, then m = 0 is discussed. Since this work is concerned with
kink modes with m = 1, little space is devoted to the less interesting

= 0 sausage mode.

After dividing by e>*9% if m # 0 the left hand side of Eq. (2})

is a function of r end 0 while the right hand side is a function of z;

this is possible only if the function of z is a constant, A. If one then

divides by eime the left hand side of the equation is a function of r

-imf
2

alone while the right hand side is a function of O alone, Ae this

is possible only if both the left-hand side and the right-hand side
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separately equal the same constant, B, The right-hand side of Eq, (2k)

is thus seen to give

(constant)é 7m0 _ constant

which is possible only if both constants are identicelly zero. There-
fore, the velocity potential for these modes satisfies the self-adjoint

ordinery differential equation

.E.(Px) ("P"“z )x 0 (25)

which is similar to Bessel's equation (if the primary magnetic fiéld and,
consequently, the plasma pressure and density, are constants Eq. (25) is
Bessel's equation). Appropriate boundary conditions are a) regularity
of X(r) et r = 0, and b) since the plasma is assumed to extend to a
rigid, perfectly conducting wall, the vanishing of the normal velocity

component there,

=0
o lwall

To lowest order in § this requirement becomes

uh) = o X ) =0

hence

X()=0 (26)
Here, r, is the mean position of the (bumpy) conducting wall, Equations
(25) and (26) constitute a standard eigenvalue problem of Sturm-Liouville

type. The eigenfﬁnctions form a complete set and the real eigenvalues
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form a discrete spectrum which exhibits a lower bound. The smallest
eigenvalue corresponds to an eigenfunction with no nodes, the next smal-
lest eigenvalue corresponds to an éigénfunction with one node, ete. In
the case where the equilibrium profiles aré constant, the eigenfunctions
are the Bessel;fﬁhctions and the eigenvalues are the zeroces of their
derivatives, if the wall radius is normalized to unity. It is well known
that these zeroces sre non-negative; thus, there are no unstable modes of
this type if the profiles are constants. For the diffuse profile case
the eigenvaelue problem must be solved by numerical methods,
The eigenvalue problem is solved by the shooting me't'.hoclzzl"z2
using the numerical procedure described in the previous chapter. Initial
values are obtained from an asymptotic expansion of Eq. (25) valid for
small values of r, then with a value assumed for the eigenvalue parameter,
Eq. (25) is integrated to the mean position of the conducting wall, T
If Eq. (26) is satisfied, the assumed value of the parameter is an eigen-
valuey if Eq. (26) is not satisfied, the assumed value is modified and the
procedure repeated. In Fig. (16) a portion of the computed spectrum is
shown; the eigenvalues resulting from Eq. (25) with m = 0 are also shown
in Fig. (16) although these do not represent modes of the plasma. It is
no surprise that there are no unstable modes since this portion of the
spectrum of the bumpy theta pinch is identical to that of an ordinary
linear theta pinch which is known to be MHD steble, Typical eigenfunctions
are sketched in Fig. (17).

The case with m = 0 is slightly more complicated. Unlike the

ifkdz

case for m # O, upon division by e the left-hend side of Eq. (24) is
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Fig. 16. Numerically computed eigenvalues of modes with © =@{1) in k§.
The modes are stable, The eigenvalues with m = 0 are not normsl modes
of the plasma but are necessary to compute the solutions of the m = 0
case., These are for a Gaussian pressure end density (D = .001) profile
with 8 = .5, ¥y = 5/3, and r_ = 4,2, The small nunbers refer to the num-

ber of nodes of the eigenfunctions,
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X(r) X(r)

Xt . X

Fig. 17. Typical eigenfunctions for modes with w =@(1) in k6 with m = 2
and n =0, 1, 2, 3 (n is the number of radial nodes). These are for a

Gaussien pressure and density (D = .001) profile with B = .5, v = 5/3,
and r_ = .2,
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g function of r alone while the right-hand side is a function of 0 alone,
This is possible only if each side of the equation separately equals the
same constant, A. Then upon division by the non-zero quentity (IE:E;J
one finds that the velocity potential must satisfy the inhomogeneous

equation
-—L

To solve this equation, the solutions of Eq. (25) with m = 0 are used.
It is well known that Eq. (25) procduces a complete set of orthogonal

(YOn ;?%. Thus, a Green's function can be represented
in terms of this comple:é set as can the Dirac delta function. Then by

eigenfunctions XO

Green's theorem the solution of Eq. (27) is found to be an integral of
the product of the Green's function and the inhomogeneous term, This
procedure is not carried out explicitly since the m = 0 modes have not

proven to be experimentally important in high beta theta pinches.l’lo

C. Modes with w = (’(kG)‘in k&

Again, substitution of Egqs. (18)-(20) into Egs. (13)-(16) yields

P= -(p+a?)(V-V¥) + OC3)
T=0+06)

Then, sinceé w = {)(kS) the equation of motion, Eq. (7), becomes

VP=T +065%) 2)

This immediately implies

=+ v6)) (29)
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and
VT =0 +0(%) (0)

Equation (29) yields, upon expansion in §

6["‘“?*‘“2) 63“’] =0

hence

= g
(¥p +a?) V- Vo = £8@)
Since only the kink mode is experimentally relevant, it is assumed that

m # 0; then, as in the previous section, the constants must vanish, giving

pury
v,{,’ﬂ._.o (31)
Thus the perturbed flow is incompressible to lowest order (the z varia-

tion is of higher order in 8). Equation (31) is autometically satisfied

upon introduction of & velocity stream function xo(r) such that

- imy,
W= -1,

With the condition given by Eq. (31) imposed, the total pressure, P, is
reduced from an (®(1) quentity to an @(§) quantity.
Proceeding with substitution and algebraic manipulation the

following expressions are obtained from the components of T.

T;- sk a[ adn_(c db)uuzo +4u bx; Zdb‘mx,] aa)
2)
+SEab wIsin(kz) + O(?) ?
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To=- Skza[avm'l'(bx;)l’ cx;] cos(kz) + 0(5?) (33)
T, = Skafa¥ ¥4 b P L.]sin(ke) + 8Ka [Hrbw)
bw")] cos(kz) + O(3%) o

The equilibrium relation Eq. (II-60) and Eq. {31) have been used. At
this point it is convenient to introduce the following auxiliary vari-

ables end notation:

L,,‘i,o' (35)

Il\

w;
= ad’+ blz-@-%"’)x‘, (36)

Y= ar+(bX ) - cXs (37)

Direct differentistion of Eq. (35) and the definition of Vov ¥ 1)

W= - 6 v (38)

yield

This together with Egs. (36} and (37) gives
+3z+[_(c db) (c db).'xo im -,“) (39)

Equations (32)-(34) may now be rewritten in terms of the new varisbles

Tr g4r ka[m 2% Xo] cos(lz) +SRabw?sin(kz) (o)
To=-ka$ Y= oS ("Z) (k1)
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T, - i ka |8 s Kb Jsinka) + So [LGbw i)
-2l costkz)
Expanding Ba. (30) to (8) gives:
"";'.’; kafSs Vs i bxa] sin (kz)-l-%"k‘al%(rbwﬂ)'- 9;—{-’ w"]x
eos(kz) ~Rag, sin(kz) = 0 o
-hafy- 24t X ]sin(kz) + Kabwcos (k) - = {f-,;"-' l«n:h)
[ @904 RbIsinh) + Ko [Lrbw ~ Sow]eosuc)f-0

-é[k‘mxz] cos(hke) + 4% l?a[ut,-z%’x,]m(kz)-‘%ﬂabw‘%aaa)ﬂ 45)

Since these equations are valid for all values of gz the coefficients of

sin (kz) and cos (kz) must venish independently, so, Eg. (45) gives

3§=-{E(|+%’)+—',‘,‘-f(m-z%b2’p) (46)

and

w? -0 (47)

This expansion procedure therefore leads to modes with flow transverse

to the primary magnetic field. Equations (43) and (L47) then give -

-%’t;.a“;m, E(-.-“'E-:?z-l-bx.) (18)

Finally, Egs. (44) and (48) reproduce Eq. (46).
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Equation (30) leads to the two conditions Eqs. (4%6) and (L48),
but since there are three components of the original equation of motion,
Eq. (38), there may be one additional condition which has not been ex-

3

'posed.g To reveal it the explicit forms of P and T velid to (J(§) are

written down again and Egqs. (46) and (48) ere imposed so that Eq. (30)

remains satisfied. One finds:

P=-5¥p(@-u) -85 Ka y,cos(kz) + 0(F) ()
1.=$ '-‘-rﬂ' ka(g, -2 %l-' Z,)cos (kz) + 0(%) (50)

T, = -5Kay,cos(ks) + 06%) (51)

T, = 5.5 Ray,sin(ka) + 6(5°) 2

where (V°gl)(l) is the full divergence of the perturbed velocity valid
to (§(8). When these expressions are substituted into Eq. (28) it is

easily seen that

V-u, = 0+0(5%) (53)

Thus, the perturbed flow is incompressible to f’(ﬁ).23'
The equation of motion valid to (9(8) yields the three con-
ditions, Egs. (46), (48) and (53). To proceed with the expansion these

conditions are imposed and the equation of motion is written down wvalig
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to 0(62). The three components of the equation of motion are
. P} _
~p* 2 Y, + 5P = T, + O(5°) (54)
cm 3
-faf‘x,’ +42P =T, + 0(5°) (55)

-%,_-P= T, + 0(5*) (56)

The explicit expressions for P and the three components of T involve

terms which are independent of z as well as terms proportional to sin(kaz)
and cos (kz), and sin (2kz} end cos (2kz); again, Egs. (54)-(56) are valid
for all values of z, hence the coefficients of the various Fourier com-
ponents must vanish independently; It is seen that Eq. (54)-(57) lead

fo nine separate equations, however, all except those which are relations
among the terms of P and ? that are independent of z would involve the
higher corrections to the equilibrium magnetic field compcnents and the
perturbated velocity components if a more general expansion than Eqs. (17)-
(20) were used. Since only the first order (in 8) corrections to the
equilibrium magnetic field and perturbed velocity are needed in this
enalysis, many of the nine equations are of no interest and will thus be
ignored, The relevant portions of the expressions of P and T are ex-

plicitly.

P= SCPY- 870t 42bl, - s $62) (S
_ Lebwo) ] + O(5%in (2kz)) il
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Te= S(Tr)“’-l-sz.é_p{-,lazl, + %[bl‘-:'i-z 83, + %‘,‘tl _ I:(c.-r %)/xo
_baby psbpysiably sbir p(@iam)} o0

a

T, = 81+ 6(5°cos 2k2)) o

One immediately sees that Eq. (56) is satisfied trivially, also, that

w(l) occurs only in the expression for P and it may be eliminted by sub-
stitution of Eq. (55) into Eq. (54). This yields a second order dif-
ferential equation (Eq. (61) below) which together with Egs. (39), (46),
and (L48) form a closed system of equations involving the variables Xg»

XO" ¥qs Yoo and 6-3(1). The divergence could be eliminated algebraically,
but it is more convenient to retain it for purposes of comparison with

the long wevelength theory of Weitzner.B Thus, the transverse, incom-
pressible modes with w = (k8) are governed by the fourth order system

of differential equations (the modes are three-dimensionally imcompres-

sible, but two dimensionally compressible).

Ypor- ) s - B R X = 4|~ bTRT# 18
@-%)-(c—%_bﬂtz-l- web] 2 +[3-)-2E]-Ebe-P)r]
g=Epr gt [He D) BB o
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""’(l“"")ﬂz"' r’(']u -222 ) (46)
a.r =2 -9as k"(m":,,z-l- LX,) | (48)

im

%

One feature of this system is immediately apperent from Eq. (61), namely
that the differential equation in singular at any position r such that
m2 = 22a2/p. Since a and p are monotone functions of r; there is a con-
tinuous set of values for w for which the differential equation is singu-
lar, 22(1 - B) §_m2 5_%2/D. This continuum of real frequencies is the
Alfven continuum end arises because the Alfven wave propagates one di-
mensionally along the magnetic field lines in three dimensional space
(see Appendix D for derivation of the eigenvalue problem, like Egs. (39),
(46), (48) and (61), for an ordinary theta pinch).

The equilibrium megnetic field components have valid power

series expansions, the first few terms of which are
a(r) = alo) + 4 )P+ La“©) r3 +--
b() = B r + 3O r*+---
c(r) = 26©) + S B @ r+ -

From these all the coefficients that occur in the system of differential

equations may be worked out. It is found that

/ P
‘5—‘? “” P4

(c- @) 2B©) +(3' bco)-‘f‘ﬂ(':g"’) -

dLQF-ﬁﬂb) (?ﬂ'gg!! ‘I(' %&I:&q!)p-qp..-
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Upon substitution of these forms and an assumed power series solution
into the differential equations (39), (46}, (48) end (61}, exactly four
solutions result; two solutions are regular at r = 0 and two solutions
are irregular there., The four solutions are
xo—.- rim.;....‘
pefie ]t ooy
2(12m) | &)

_ zm?_ o) MEZ
32’ 2(1tm) ac)

wnd X = GnEzm) Pra 0] 10 ) z:'.'ln_'_-“_
o= (Pt~ B 4G Emy ¥
4, = ™. (63)

32__: +m ‘;-I:I:m P

The general solution of the system of equations is a linear combination

(62)

of the four solutions but since regularity is required for a physically
meeningful fluid velocity, two of the solutions, the irregular ones, are
eliminated. Thus, two regularity conditions are imposed on the general
solution. Two additional conditions must be imposed to determine the
solution completely, these are the boundary conditions imposed at the
plasma-conducting wall interface.

The veloecity component normel to the conducting wall must
vanish.

a’%‘lwa“ =0 (64)

The equation of the conducting well and its unit normal are, from the

previous chapter
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He) = £~ 5 25 cos (k2) + 6(5%) (x2-46

e =F- g_skg(':) sin(kz) + 0(5?) (II-47)

Upon expansion in powers of §, Eq. (64) becomes

u.,r(z)zo "'D(SZ) (65)

This gives upon expansion

) + Sullh) cos(kz) “53%'; W' n) cos(k?d)=0 (66)

To lowest order in & this condition is

Py = 42 X f) =0

thus,

(1) =0 (61)

The next order in § gives

infaaecy+ by e -~ 5] 0

Thus,
4 (5 =0 (68)
The eigenvalue problem is now completely specified by the sys-—
tem of differential equations (39), (46), (L8) and (61), the two regulerity
conditions, and the two boundary conditions, Egs. (67) and (68). The

eigenfunctions must be determined numerically. This is accomplished by
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the shooting method as described in section IIIB; the problem is only
sliéhtly more complicated than the previous cne, As mentioned earlier
the general solution consists of a linear combination of four soclutions,
Two of the solutiong are eliminated because they are irrégular leaving a
linear combination of two regular solutions. It is this linear combina-
tion which must satisfy the boundary conditions at the plasma-conducting

wall interface, The condition is

qx‘:(lir) +B i:)(r.,) =0
c(j:,(rw) + ﬂf(ﬁv)-’-o

vhere o and B are constants and the superscripts identify the indepen-

(69)

dent solutions of the system of equations. As alweys, i1f there are
solutions to Eq. (69), then the determinant of the coefficient matrix

must vanish. The boundary conditions become
@ @ 0 . _
X o) 4, (1) = I(:%'w’ fhi¢rw = 0 (70)

The actual numerical procedure involves the simultaneous in-
tegration of ten differential equations., Two of these give the subsidiary
equilibrium magnetic field components, b and e¢. The fourth order system
is integrated twice for +the two sets of initial conditions given in Egs.
(62) and (63). The result of the integration is tested asgainst the con-
dition given by Eq. (70). If Eq. (70) is satisfied then the assumed
perameter value is an eigenvalue and the linear combinetion of the two
independent solutions is an eigenfunction; if Eq. (70) is not satisfied,

then the parameter is adjusted and the process repeated.
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In Figs. (18), (19), and (20) the normalized growth rate
squaregd (72) of the most unstable mode is plotted egainst plasme beta
for the Gaussian pressure profile. In Fig, (18), the conducting wall is
located at T = 4,2 and the subsidiary fields are normalized so thet
c(k.2) = 1, In Fig. (19), the wall is loceted at r, = 3.0 and the equi-
librium fields normelized so that c(3.0) = 1. In Fig, (20), the wall is
located at r = 3.0 but the fields are normalized so that c(h.2) = 1,
Thus, in Fig. (20} the equilibrium magnetic field is identical to that
of the case represented in Fig. (18), this illustrates the wall stabili-
zation predicted by very general arguments based on analysis of &W, the
energy principle of ideal MHD. Notice that the growth rates for the
finite wavelength case are substantially smaller than those of the long
wavelength case. The major reason for this is the lesg effective pene-
tration of the equilibrium magnetic field into the plasma. When the
conducting wall is located nearer the plasma the subsidiary equilibrium
fields have a smaller distance to penetrate and the growth rates increase
in the finite wavelength case, but decrease slightly in the long wave-
length case.

Figures (21) and (22) show the normalized growth rate squared
versus plasma beta for the sharp pressure profile for both long wave-
length (k = 0) end finite wavelength (k = 1) cases, In Fig. (21) the
conducting wall is located at r, = 4,2 while in Fig, (22) the wall is
at r_= 1.6, Again the finite wavelength affects the penetration of the
subsidiary fields and this has a profound effect on the growth rates of

the finite wavelength case, but not the long wavelength case.
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.OO

Fig. 18, Normelized growth rete squared versus plasma beta for least
steble mode of finite (k = 1) wavelength case (solid curve) and long
(k = 0) yavelength case (dashed curve) for Gaussian pressure and den-
sity (D = ,01) profiles with ry = k.2, Note that the eigenvalues for
the finite wavelength case are two orders of megnitude smaller than

those of the long wavelength case. (m = 1, 2 =0).
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.00}

Fig, 19. Normalized growth rate squared versus plasma beta for leest
stable mode of finite (k = 1) wavelength case (solid curve) and long

(k » 0) wavelength case (dashed curve) for Gaussian pressure and den-
sity (D = .0l) profiles with r_ = 3.0. Growth rates for the long wave-
length case are decreased slightly from those of Fig. (18) while those
of the finite wavelength case are dramatically increased. This is due
to the increased penetration of the subsidiary equilibrium magnetic
field, (m =1, £ = 0).
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Fig. 20, Seme illustration as Fig. (19) but with the subsidiary equi-~

librium magnetic field of the finite (k = 1) wavelength case renormalized
so that the field is the same as that in Fig. (18). The growth rates of
both cases are now slightly decreased in .agreement with the wall stabili-

zetion predicted by 6W enalysis, (m =1, & = 0).
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Fig. 21, Normalized growth rate squared versus plasme beta for the
finite (k = 1) wavelength cese (solid curves) end long (k x 0) wave=
length case (dashed curves) for sharp pressure and density (D = ,01)

profiles with r, = 4.2, n denotes the number of radial nodes of the
eigenfunction (m = 1, £ = 0),
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Fig., 22, Normalized growth rate squared versus plasma beta for the
finite (k = 1) wavelength case (solid curves) and long (k = 0) wave-
length case (dashed curves) for sharp pressure and density (D = ,01)
profiles with r, = 1,6. Note the high beta stabilization of the n = 0
mode for both finite and long wavelength cases, (m = 1, & = 0).



85

Before turning to the spectral properties of the system it
should be mentioned that the system of Egs. (39), (46), (48) and (61)
reduces to that derived by Weiltzner in his long wavelength theory'8 of
the bumpy theta pinch upon meking thé finité wavénﬁmbér vanishingly
small., In fact, the two dimensional divergéncé in Eq. (48) then vanishes

(1)

and the varisble u may be interpreted as a velocity stream function,
The formulation of the problem is then identical to Weitzner's formula-
tion in every detail. An important difference between the finite wvave-
length and long wavelength formulations of the problem is that the modes

are two dimensionally compressible in the finite wavelength case but are

two dimensionally incompressible in the long wavelength case,



IV. SPECTRAL PROPERTIES OF THE BUMPY THETA PINCH

A, Gederal Theory

In this chepter some features of the spectrum of eigenvalues
of the system of differential equation derived in the last chapter for
the bumpy theta pinch are investigated along lines following the earlier
work of Weitzner.lo The investigation is eassed by what is known gen-
erally about the linearized equetions of ideal MHD, The system of equa-
tions of the velocity formulation is self-adjoint so that eigenvalues
are real and eigenfunctions are orthogonel. These properties are valid
for the bumpy theta pinch configuration in particular. Other properties
of the spectrum are peculiarities of the bumpy theta pinch and reflect
the expension procedure which led to the derivation of the differential
equations.

For convenience, the system of different;al equations is re-

produced below,

y ar G k(Y. + bXo) (2)
3 S+ g+ [S6-D)- ) ]x" - F VP (2)
$=-H+ %)y + rz(b‘t -2 )
* Lpwr-La)Xa] - Elpor- o)y, = 4{-Bp 2T
o2y -[se “")-z bu]-Ehen)

r< & l"'al [~ Tr3Tv3) rTYY wy/o) T
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As previously noted, Eq. (4) is singular whenever the quantity (pwe-laaa)
vanishes at any point in the range of r, For the particular equilibrium
profiles considered in this work a continuous set of values of the param-

eter w? lead to singular differential equations, namely
2 z
L0-g) =< /D (5)

where (1 - B) is the minimum value of a?(r) and D is the minimum value
of the density. The singular solutions of Eq. (U4) which satisfy the
boundary conditions are singular eigenfunctions and the corresponding
eigenvalues belong to the continuous spectrum. As was mentioned, this
is the Alfven continuum. The continuum consists of a line segment, given
in Eq. (5), on the positive half of the resl w® axis in the complex Wl
plane for any nonvanishing wavenumber, %, It is bounded away from the
origin, w2 = 0, for all values of beta less than unity, As the wave-
number, £, vanishes, the line segment degenerates té & single point

w2 = 0. Thus, the Alfven continuum does not touch the origin in the
wa—plane except when the perturbation wavenumber vanishes and in this
case the continuum degenerates to a single isolated point.

Equations (1)-(4) also admit discrete eigenvalues; these oceur
whenever the regular solutions satisfy the boundary conditions. The reg-
ular solutions of =a system of ordinary differential equations which in-
volve a perameter in the coefficients, such as Eqs. {1)-(4)}, ere inter-
preted as analytic functions of the parameter.as The region of enalyti-
city does not include, of course, the line segments and isolated points

that meke up the continuous spectrum since the differentisl equations are
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singular there. Hence, the boundary conditions, like Eq., (III-69), for
the regular solution of Egs. (1)-(4) involve anelytic functions of e

a8 coefficients and the condition vwhat w2 be an eigenvalue is of the form

A(w®) =0

Where A(w?) is eanalytic except on the points of the previously introduced
continuous spectrum. In the regions where A(we) is analytic, A(we) can
only vanish at isolated points, otherwise it vanishes identically. It is
assumed that the system of equations generates a nontrivial eigenvalue
problem so that it is not the case that A(m2) vanishes identically; the
eigenvalues are the isolated zerces of A(m?). Furthermore, these isola-
ted zeroes may accumulate only at me = @ or at the tips of the continuous
spectrum,

A description of the spectrum of the modes of the bumpy theta
pinch is as follows., The elgenvalues are restricted to reasl values of
w2; 8 continuous set of eigenvalues occurs for positive values of me, the
corresponding eigenfunction are singular eigenfunctions. This continuum
degenerates to a single point, m2 = 0, vhen £ = 0. A point spectrum of
isolated eigenvalues also occurs for reel values of w2; the corr88pon§§ng
eigenfunctions are regular solutions of the ordinary differential equa-
tions, This point spectrum may have points of accumulation on the tips
of thé continuum or at infinity. The direction of accumulation of the
discrete eigenvalues is important as it reflects general features of

the point spectrum,
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B, Localized Mcdes

The set of Egs. (1)~(4) may admit highly locelized or rapidly

oscillating regular eigenfunctions whére
%%
g
X, X,

In this case, Egs. (2) and (3) give

<2,

and

Y, & Xo

while Eq. (L) yields

Gowr-Laz) 2, = O

This is possible only if (pm2 - £2a2)

% 0, Thus, it is concluded that
such highly localized or rapidly oscillating eigenfunctions can only
occur for eigenvalues very close to those frequencies associated with
the Alfven continuum; in the case where the axial wavenumber, £, vanishes
these rapidly varying modes occur for frequencies very close to zero.
This situation will be investigated in the rest of this chapter since it
is particularly illuminating.

To investigate the behavior of solutions with m2 very small
when the axial wavenumber, &, is identically zero consideration is given

to rapidly varying eigenfunctions localized about a point r = r A small

0"

parameter, g, which measures the localization is introduced by writing
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r-r = e&(n,r)
vhere £ is (1) in €. Then

A 4

g

and upon algebraic elimination of Eq.-(l); Eqs; (2) ana (3)‘réqpire
%ti’= (BGEJ
Y. = O)

if it is assumed that X, is O(1) in €. Then with the frequency small

-4
€

P
= €cw
Equation (4) gives to leading order in €

PO X&)+ -*‘-'3«%9 X X(E)=0

vhere the equilibrium quantity A(r) is defined

A=Y _o(n-anbo)

a(r)

Thus, XO(E) is governed by a differential equation which describes the
motion of & harmonic osecillator; in this approximetion Xo venishes out-

side the localized region sbout r,., hence, solutions of Eq,. (6) must sat-

0
isfy homogeneous boundary conditions. If A{r) > 0, then solutions of
Eq. (6) are locally oscillatory if &= > O3 if G° < O then the solutions
are locally exponentiating. Likewise if A(r) < 0, then the solutions of
Eq., (6) are locally exponentiating or oscillatory depending on the sign
of w2. Only if the solutions are oscillatory may the phase be adjusted
by slight variations in the value of &2 so as to match the réqnired

boundary conditions, Thus, the situation is summarized as follows. For
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those regions in r where A(r) > 0 there are infinitely meny steble eigen-
functions which are localized in those regions. For those regions in r
where A(r) < 0 there are infinitely many unst&blé eigenfunctions which
are localized in those regions. Thus, if Ar) > 0; then w® = 0 is an
accumulation point of a steble qiscrété spectrum, while is A(r) < O, then
w’ = 0 is en accumulation point of an unstable discrete spectrum,

In Fig. (23) A and A* (starred quentities refer to the long
wavelength case) are plotted against r for two values of plasma beta,
B=.9 and B = .95, using the sharp pressure profile, Eq., (II-53)., For
the long wavelength case one finds for B = .90 that there should be two
classes of unstable modes, one localized inside the plasma, one localized
outside the plasma, as well as one class of stable modes localized near
the surface of the plasma column. As the plasmea beta increases the un-
stable modes localized outside the plasma disseppear. For the finite
wavelength case only one class of modes, unstable modes, is found when
B < .94 vhile for B > .95 there are both externelly and internelly local-
ized unstable modes as well as one stable class of modes. In the next
three figures, figs. (24)-(26), eigenfunctioné are shown for various
values of plesma beta, the lowest beta values for the uppermost plot,
the highest beta values for the lower most graph. For the lowest beta
value, the eigenfunctions have n = 1, n = 2, and n = 3 radial nodes,
they are all unstable modes and are localized outside the plasma, As
the plasma beta increases, the trajectories, -w2(8) (as in Fig. (20)),
sre followed and one sees:

(i) (Fig. (24}) The n = 1 externelly localized mode be-

comes an n = 1 internally localized mode,
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Fig. 23a. Plot of the equilibrium function A(r) for sharp profiles with
B = .9 for finite (k = 1) and long (k = 0) wavelength cases which indi-
cates three classes of localized modes are possible in the long wave-
length case, but only one class for the finite wavelength case,

'I
-4} /
,I,""—- *(r)
-6 F “,l,
..8 -

Fig. 23b, Plot of the equilibrium function A(r) for sharp profiles with
B =..95 for finite (k = 1) and long (k = 0) wavelength cases which indi.-
cates that three classes of localized modes are possible for the finite
wavelength case and two for the long wavelength case.



x(r)

x(r)

x(r)

93

4

] "lo | >_

1 4 ) r
A

1 "lo [ m

] T [ 3 ’_r

1.0
t —— = "r

Fig. 24k, High beta dépendence of the eilgenfunction with one radial node
(top, B = .90; middle, B = .93; bottom, B = .96) showing a change in
localization of the mode from outside to inside the plasma column.
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Fig. 25. High beta dependence of the eigenfunction with two radial nodes
(top, B = .90; middle, B = .93; bottom, B = ,96) showing an inward pro-
gression of the first node. This node eventually disappears leaving an
eigenfunction with only node and with external localization. Thus, for

high beta values there are two eigenvalues which correspond to eigenfunctions
with one node, 'The spectrum of eigenvalues is, therefore, non-Sturmian.
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Fig., 26. High beta dependence of the eigenfunction with three radial
nodes (top, B = .90; middle, B = .93; bottom, B = ,96) showing an inward .
progression of the first node. This node eventuaslly disappeers leaving
an eigenfunction with only two nodes and with localization switching
~from external to internal., Note that the bottom figure has been re-

flected through the line X = 0 (the first minimum of the middle figure
becomes the first maximum of the bottom figure,
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(1) (Fig. (25)) The n = 2 externally localized mode
loses a node and becomés'an n=1 éitérnally local-
ized'modé. Thus, théré aré two classés of unstable
modes.,
(iii) (Pig. (26)}) The n = 3 externally localized mode
loses a node and becomes an n = 2 internally local-
ized mode.
Staeble eigenfunctions are found for extremely high beta values. The
mode with n = 1 nodes appears before the n = 0 mode. This behavior of

8

the steble spectrum has been reported by Freidberg, et al. in connec-

tion with the long wavelength calculation.

cC. Summggx

The eigenvalue spectrum of the bumpy theta pinch consists of
point spectra and the Alfven continuum. When the plasma beta is not too
large the computed unstsble eigenvalues exhibit Sturmien behavior. For
higher beta values, however, the discrete spectrum is complicated and
not simply Sturmien or enti-Sturmian, An unusual change takes place in
the nodal structure of the eigenfunctions giving rise to two classes of
unstable modes. Steble eigenfunctions achieve a finite oscillation fre-
quency in the high beta limit., The finite wavelength case thus exhibits
the seme features as the long wavelength case, but only at much higher
beta values., In view of the physical parameters{relevant in most high
beta theta pinch experiments one would not expect to cbserve the wall
stabilization of the n=0 mode in a finite wavelength bumpy thete pinch,

but this would be easily observed for a long wavelength theta pinch.



V. EQUILIBRIUM AND STABILITY OF THE BUMPY SCREW PINCH

In this chapter the influence of a wesk magnetic shear (i.e.
8 weak theta component of the equilibrium magnetic field) on the stabi-

lity of the bumpy theta pinch will be investigated.

A, Equilibrium

The axisymmetric equilibrium is governed by Eq. (II-29)

2(124) LTV -y~ LADXWD)  (1io)

= —- and B —"J'Q!!

where B', r BZ ’ Bg ? z r oz
The equilibrium magnetic field is assumed to have the form

B=(5kb(Isin(kz), skd(¥) , ar)+Scc) cos (kz))

-~
That is, & weak magnetic shear (i.e., By = Skda(r) # 0) is added to the
bumpy field lines of the previous problem., It is evident that the quan-
tity d(r) enters Eq. (II-29) at 0(62) since x(¢) = K8); thus, the r
and z components of the bumpy screw pinch equilibrium magnetic field are

identical to those of the bumpy theta pinech which were detailed in

Chapter I1. The theta component of the equilibrium magnetic field is an

arbitrary function of r.

B, ‘Stability

The addition of a theta component to the equilibrium magnetic

field (magnetic shear) results in slightly more complicated expressions

o7
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for P and the three components of T which occur in the equation of mo-

tion

-p* 4 +VP=T (111-2)

The four quantities for the screw pinch are

To={8, 3 + L gl 8.3} [ (uBy-v8.) - S (vBr-uB)]
-{2 —’}[31(1’3 ~wB,) ~ l(uﬂo‘vﬂr)] { }[ ¥ 3 [rx (1)
(wB,-uB:)] - (B, -wﬂo)] | |
To={82+&+ 8,8, i ;z(vﬂz-wﬂa)- —(uBe-vBJ]
+H3P +%'}[%(ue»-m)-szcwsr-usz)] +{35)x @
[—'-"-[r(wﬂr-uBz)]— im(y 8, -whs)|
T={8.5+ B + S+ 6.5 1 516h 8] - 0. w5)
+{28)[ 8, -+8,) - Z(wB,~uB2)]
P= -Gp+BZ)(20w'+2v) - (Yp+B7) 5= - ‘iﬂv-B;('—(m)’
"'az) * “89["0' BeY - (%) ]-u 3 wB, 25 4u8, 2 4oy 2
+p,{£3,+8,ﬁ-}u ¥ BO{Bra'r 8. 5w+ 3,_{3,%!;%58.%«

iP\Hf!;z}al;r

Upon explicit evaluation it is found that the differences between the

gabove expressions and the corresponding expressions for the bumpy thets
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pinch enter at 0(62). Thus the modes with w = @(1l) in k6 are identi-
cal. to those of the unsheared system discussed in Chepter III. For the

modes with w = O(kS) one again finds, exactly as in Chapter III that

4= Ly g+ [E-2)- BV - 2 9)

g2 = L+ E)y, + By, -2 L 1.) (6)
-2 .= k(5.4 + bZ.) )
‘V’(}'l =0+ 0(53) | (8)

Upon expending to 0(6 ) one finds

= 56 - 7 {Cas 24V, ;[b,, +2€ +£;.-b(c+%%
_‘.%!_?dbxo zﬁbbxo+dbb bx, b%&?’] ZJ[m
% (%) ]} +0(5"sin(22)
To= Sf%s 87(ar 24V - Y22y, + by, - 280
~284(lat+2d)7,} + O sin(zks)

Following the same procedure to eliminaete P ms described previously, one

finds the eigenvalue equation

Ylpor-(tas 2ay] ey ] - -’,’-‘l[f“"-a“"md)z]xo = gt

4@@_@)_@_@”3‘ !r‘:"i"[Zt [3(‘ <) ]Z,] (11)
"1 -<bY xa} 25 [Iaf—' +(‘F)(fa+m‘l)]x"
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Thus, the eigenvalue equations of the bumpy theta pinch are changed in
the following way: &) The fector (fa) becomes (fa + %—d) on the left
hand side; b) an additional term appears on the right hand side. This
addiﬁional term arises because of the shear end is identical to the right
hand side of the‘normal mode equation of an ordinary screw pinch (see
Appendix E). The ordinary screw pinch is known to be unstable,lT’26
hence this study examines the relative importance of terms on the right
hand side of Eq. (11) which arise solely from bumpiness and others which
arise solely from sheear.

To meke the problem explicit a profile for the theta component

of the equilibrium magnetic field must be specified. One profile is con-

sidered

dw) = d,(1- exp(—r))/a +r) (12)

Then for smell values of r
3
di) = dor(1-Z¥ +-2)

The asymptotic form of the solutions for small velues of r, are found to
differ from those of the bumpy thete pinch, Eqs. (III-49) and (III-50)
in only cne detail; that being that the factor (p(O)w2 - 2232(0)) in

Eq. (III-S50)} is replaced by the factor (p(o)m2 - (2a(0) + mdo)a).

The boundary conditions are identical to those derived for the
bumpy theta pinch. Thus, the structure of the eigenvalue problem is mod-
ified only slightly by the addition of the shear of the magnetic field
lines. These changes influence the spectrum of eigenvalues, particularly

the continuous spectrum and, consequently, the point eigenvalues which
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accumelate at the tips of the continuum, The Alfven continuum for the
bumpy theta pinch is bounded away from the origin for any nonzero wave-

number, %, and plasma beta less than unity

2
LG-p)< < £/p
While for vanishing wavenumber the continuum degenerates to a single
point at the origin. The Alfven continuum for the bumpy serew pinch

can always extend to the origin because of the cancellation which may

occur in the sum

Lawy+ —':-.‘- do)

Thus,.vhen the perturbations are helical and the pitch of the helix
matches the pitch of the field lines at anywhere in the range of r

L__do

m - tra)
the continuum hits the origin. For m = 1, negative wavenumbers are
particularly prone to instebilities since the continuum extends to the
origin and since point eigenvalue can accumulate only on the tips of
the continuum. This is the essence of the Suydam criterion25 for in-
stebility in the diffuse linear pinch (screw pinch). The esymmetry in
dependence on axial wavenumber is illustrated in Figs. (27) and (28)
vhich show normalized growth rate squared plotted against axial wave-
nunber, £, for a particular value of plasma beta, The asymmetry in &
is characteristic of a screw pinch (modes increaging unstable the smaller

the azimuthal wevenumber, m). As the magnitude of the thets component
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g=0

04 08 2 16 .20
2 -
YZ(xi0™
Fig. 27. Normaligzed growth rate squared versus axial wavenumber for

least stable modes of the bumpy screw pinch for Gaussian profiles with
. B = -5,.rw= h|2, and do =1,
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Fig, 28. Normalized growth rate squared versus exiasl wavenumber for
least stable modes of the bumpy screw pinch for Gaussian profiles with

B=.5,r = h.2, and dy = .1
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of the equilibrium magnetic field is reduced, the curves become less
asymmetric and approach the symmetric curves characteristic of a theta
pinch (modes inecreasingly ungtable the larger the azimuthal wavenumber,
m). When the theta component vanishes, the growth rates are identical

to those of the bumpy theta pinch,

C. Generslization of Four Stsbility Problems

One can easily derive all the cases discussed in this work from
general expressions like Egqs. (5)-(8) and (11). One considers the equi-

librium flux function of the form
)
Y(52) = Pl + 8\, W) cos(kz) + 67

and perturbed velocities of the form

w(0,z,£) =¢ '“»l M 2l l[lf” )+ ) I,z) + 0(32)]

and g current flux function

1) = #SkAd(®) |

Here, A.,, and Ae are srtificial parameters used to turn the various per-

1’
turbations on and off. If Aa ig unity the shear is fully on but if la
is made to vanish the shear uniformly disappears, Likewise, if ll is
unity the field lines are bumpy and the perturbed velocity resembles the

flux function., If, however, 11 venishes, then the flux surfaces uniformly
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become right circular cylinders and the perturbed velocity field re-
gains its translational invariance in the axial direction. In this form-
ulation all the equations governing both equilibrium and perturbed quan-
tities, remeain uniformly valid es the artificial parameters are varied
from unity to zero (the boundary condition, Eq. (1I-62), becomes
e @) = A,

One fin&s the eigenvelue problem is given by the following

Mg AfSy 448D - x50
“-%=ﬁ-{‘%('+%')&z+”-r—'z‘(§.-2%xo)}
avV= ak(E L.y, +bL,)

V-u, = 0+6() |
L{[pae- (fa 3 2Y] e 2] - B por-la+ Az—'.'r-'cl)‘] z.

= X[m0 e B) -2 Ny E R 2
{3 %") 28z, - -2 %) - 2,25 [?
+@) (o 42,20 |2,

If both A; and A, are unity this system is identical to that derived in
this chapter for the bumpy screw pinch. If A; is unity but 12 is made
to vanish then the system is identical to that derived in Chapter IIT
for the bumpy theta pinch, If AE is unity but Al is mede to vanish then

the system is identical to that of an ordinary screw pinch discussed in



106

Appendix E, Finally, if both Al and A2 are made to vanish then the sys-
tem is identical to that of an ordinary theta pinch discussed in Appen-
dix D.

If both parameters, ?tl and A2 vanish identically the spectrum
of eigenvalues is purely continuous, however, if either or both pertur-
bations are nonvanishing, the spectrum consists of a discrete spectrum
as well as a continuum, The weak shear or small bumpiness is, thus, an
example of an extremely singular perturbetion of the original theta pinch

equilibrium,



VI, APPENDIX

A, Derivation of the cusp veloeity

The normal speed locus for the slow magnetosonic wave is de-

termined by the root

c*- -;—kci +c3) - ﬁ}{-ci)’- 4ciecx cos’0 ' ] =0

For the cusp one is particularly interested in the behavior for angles
near 7/2, Assuming that cos (0) is very small, one may approximate the
square root by the first two terms of its series expansion finding

c*-c2cos®0 =0
22

cc
where Ci = (-—-z—%) defines the cusp speed. This is similar to the
CotC
g A

equation for the Alfven normal loci.

Thus, the portion of the slow normel speed locus corresponding
to nearly perpendicular propagation is approximated by a circle of diam-
eter Cc end all the plane waves propagating in these directions converge
at two single points of infinite multiplicity. These points propagate

strictly one dimensionelly,

B. Long Wavelength Eq_uili‘bria8

For long wavelength equilibria, assume k = € << §, Equations

(X1-49) and (II-50) become

107
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Y= =P

( .'l: q,(l),)l _ . rq}!’Pll(qp)) (B2)

By following the same procedure described in the text one finds that the

long wavelength equilibrium quantities satisfy

|
P "“%az =z (B3)
s
(b)'=rc | (Bk)
I-tb ..g': ’::
c-22(F) =0 (85)
Equation (BS) is easily rewritten
Vi
(a(_—a.’b) =0 (6)
Equation (B6) is immedistely integrated and yields
c-2b_1 (57)
Substituting Eq. (BT) into Eq. (B4) gives
b)'- r (38)
(" aj = az
Integration gives
a(r) r rld'.l
b(r) = (89)

r J [a@)]?

Equations (B3), (B9), and (B7) determine the long wavelength equilibrium

configuration,
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C. Equilibrium MHD Characteristics

To determine the characteristics of the system of partial

differential equations
v-8=0 (II-1)
Vp =(Vx8)xB (TI-3)

one follows Jeffrey and Taniu.ti,lh introducing a family of surfaces in
three dimensional space and finding conditions such that the normal
derivatives across this surface can no longer be computed, If the nor-
mal derivatives cannot be computed across the surface, then the surface
is defined to be characteristic surface. The characteristie surfaces
are not dependent on any particular coordinste system, hence, no gen-
erality is lost if one examines Egs. (1) and {3') in a cartesian sys-
tem. In a surface ¢(x, y, z) = constant one mey define a new coordinate
system and rewrite the system of pertial, differentisl equations; that
part involving the normal derivative for the fourth order system (1} and

(3') is written in matrix form

[ ew-a)u3t s\ [P
5 sE ewsPay |, b
2 5 -5% w3 | 8,
\o 2 % 2/ \8

(c1)




110

The normel derivatives are indeterminate when the determinant of the
coefficient matrix vanishes, thus, the vanishing of this determinant
provides the condition necessary for the surface ¢ = constant to be
characteristic, The evaluation of this determinant is facilitated by
recognizing that the second, third, and fourth column of the matrix

mey be rewritten

pe) R (o) (3 /) (&
o} | B-vé E- o 3

? 3y

0 2 0 2 8vé 8- %

oz
¢ } \o
) o) B V) &
Then the rules of determinaents lead to gn immediate reduction to
( --a"?f BV 0 o

¥ 0 gwWo
1
“H-2 0 0w

| © Qf‘?ﬂ?_é)

X 3y oz

= BV @4 )

The characteristic surfaces are thus those which satisfy

B-VF=0  (cowrted tuice)
Vé=0 (counted twice)

The first condition states thet the chargeteristic surface is covered
by magnetic field lines, thus, magnetic surfaces are characteristic.
The second states that the characteristie surface has no normal, thus

no real surface exists, The fourth order system possesses a doubly
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degenerate real characteristic surface and a double degenerate complex
surface, The system of partisl differential equations is therefore a

mixed type, elliptic-hyperbolic, and has multiple characteristics.

D. Long Wavelength Modes of an Ordinary Theta Pinch

In the case of an ordinary theta pinch the equilibrium mag-
netic field lines are straight and it may be assumed that all quantities

vary as

The wavenumber is 28 and is scaled to the small quantity §. It is then

found thet P end the components of T are _
P=-0p +a) (0w +Ev) - 88 ¥pw
1ﬁ_=n-1§f£P%1?¢1
T = _S¥dv
T, = i3 (L (ruy s L)

Modes with w = {9(1) in 8. The equation of motion in this case is

identical to that derived for modes of the bumpy theta pinch with
w= (1) in 8
- pus + [-(Xp'mz)?’-ir’]'= 0+ 0%
s >0 _ 2
—pe*vr 4 42~ O’Pw?)-v’-v] = O*Q(f)
-pS*w = 0+0()

The modes are transverse, Upon introducing & velocity potential, x(r),

such that

a1
v= ’D‘iitt:
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it is found X(r) must satisfy the self-adjoint ordinary differential

equation
2(xx'Y+ (—ﬁ‘-": -)x=0

subject to the boundary condition x’(rw) = 0 and regulaerity.

Modes with w = @ (8). Expansion of the equation of motion gives, to

lowest order in § ;
- - 3
v[(xp+a=) vi]=0
Thus, the flow must be incompressible

Then P and the compenents of T are no larger than (62)
P= -iSU¥pw
1;_: _sazazu
Tp= -8Ua@T
. f[% =0

A velocity stream function ¥(r) such that

may be introduced and the eguation of motion is found to give
: . ’ 2 2400
~poiny - [ikVpw] = ML
/s AMmeE- - 2 Zys
-p - P [ilpw] = £&X
0=0
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Upon elimination of w these two egquations give
, ’- —-m—z z— f—
Yo X ]~ e (p-La?) X = O

Solutions must satisfy regularity at r = 0 and the boundary condition
x(rw) = 0 to be physically acceptable,

This equation was studied by Barstoneh who found that the spec~
trum of eigenvalues consists solely of a continuum of reel values. This

steble continuum is the Alfven continuum.

E, Ordinary Screw Pinch

Consider the equilibrium magnetic field
B = (0, $dn , an))
-

The equation of motion of the perturbed velocity involves the following

guantities
P=-Gp +a Yt + 1)1 S Wpw + 8722 adw+ Sifadv
-§d(u) - ;8Ud'w
T,=-5"(la+2d)u - 5°2: bad ¥ + 52 ()
To = -3*(las 2dY'r - S (tar 2 d(3) + 8lka (fa+ Fd)ow
T.=-i8a (fa+%‘-cl)(% (ra¥+ §) - 8P d (lat Pd)w

Following the expansion procedure for modes with w = @ (1) in 6 exactly
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the same eigenvalue equation is found for the velocity potential, ¥,

as was found in the previous cases

Jéz(}’:t?) 1qP4hnF - :)JX: 0

v=d
v ,V’x

For modes with w = J(8) one expands the equation of motion order by

where

order in & and finds to lowest order thet the flow is incompressible,
V-t = 0+0(%)
Tntroducing the velocity stream function, X(r), one finds
P= -5'iladt’-5*2 4r(dX) - 8% l¥pw + 'L Padw
T=-52(lar2df 1 +5°2iLa FX +3 22 J(EEY
To= Slat 2dY 7 - 34 (1a+20) r(5)
T = 0+0(3%)

The equation of motion then gives the three relations
-pr i 4 P - (s dfa + 2ila S0 e 22 JEEY
PSP = (las PAF 2 - Pl 7 X' 2 Plla 3T
0=0

Upon elimination of P one finds that X(r) must satisfy the eigenvalue

equation

Hlpor- cturpay X - e 24712~
22 ha + (@) (far2a)] %
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The addition of a theta component to the axial magnetie field of a theta
pinch changes the equation of motion in two ways, First; the factor
(22) on the left hand side becomes (fa + g-d). Second, a nonzero term
appears on the right hand side of the equation, Because of this term on
the right hand side, the differential equation may admit well behaved
eigenfunctions and a discrete spectrum as well as the singular eigen-
functions and the continuous spectrum described for the ordiﬁany thetsa

pinch,
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