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ABSTRACT

An effective potential operator is derived from the multiple- 

scattering series expansion of the exact transition amplitude for 

scattering two composite particles. This effective potential operator 

is used in a high-energy context to derive an approximate one-body 

Schroedinger equation by use of the closure approximation. The equiva

lent one-body equation is reduced to a set of coupled channel equations 

which relates the entrance channel to the final excited states of the 

projectile and target. A Schroedinger equation for the coherent elastic 

amplitude is extracted from the coupled equations. Total and absorption 

cross sections are derived on the basis of the eikonal approximation and 

the assumption that the coherent scattering dominates the elastic 

scattered amplitude. The equations are applied to the nuclear scattering 

problem and dependence of the total and the absorption cross sections on 

the model used for single particle densities is examined. The Saxon- 

Woods form factors show excellent agreement with neutron-nucleus cross 

sections. Absorption cross sections for heavy ion absorption on various 

target nuclei are calculated with some comparisons with the limited 

available experimental data. The use of geometric cross sections are 

found to be valid only when both target and projectile are heavier than 

argon at intermediate energies since nuclei show a rather high degree 

of transparency. Factorization of the total cross sections is found to 

be only in the limited geometric sense.

vii



COMPOSITE PARTICLE REACTION THEORY



I. INTRODUCTION

Most interactions to be observed in nature are among particles 

which are composed of some more fundamental constituents. This is obvi

ous for atomic, molecular, and nuclear interactions in which constitu

ents are sometimes ejected or transferred to change the basic makeup of 

the interacting particles. It is less obvious for the interaction of 

the so-called ,,elementary,, particles of high-energy physics in particu

lar, since the ejection of the more elementary stuff has either not been 

observed or not been properly recognized. Herein, we consider the 

interaction of composite particles in scattering states which are the 

states most accessible to experimental study. Our purpose will be to 

find relations between experimentally observable quantities for compos

ite scattering in terms of physical quantities related to the internal 

constituents of which the composites are composed. In this paper, we 

will label as elementary those constituents of which a composite is 

composed and use the assumption that the number of elementary particles 

is conserved in the interaction. Hie composite particles are then 

bound collections of elementary particles. Although some of the bound 

states may be unstable, we will assume their lifetimes are long compared 

to the time in which the scattering systems interact.

Generally, the question of compositeness arises when a particle 

shows an internal structure so that its interaction appears not attrib

utable to a potential emanating from a point. What appears instead are 

potentials emanating from the elemental constituents with the overall

2
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interaction being composed of sums over potentials generated by individ

ual constituents. The simplest form of such a potential is in electron

electron is that generated by the charge distribution of protons p(r) 

in the nucleus as

The Fourier transform of p(x) is called the charge form factor. The 

phenomenology associated with electron scattering is to determine the 

charge distribution which most nearly represents the experimental elec

tron cross sections.

An alternate but fully equivalent picture of the scattering of 

elementary projectiles with composite targets is to view the scattering 

in terms of the scattering of the projectile from individual constit

uents. Clearly, a principal contribution is made by the scattering of 

the projectile from a single constituent of the composite with such a 

contribution for each constituent. There are also terms contributed by 

.scattering the projectile from two consecutive constituents with contri

bution from all possible constituent pairs. Similarly there are contri

butions from three, four, and more successive scatterings. Formalisms
1-4using this picture are called multiple-scattering theories. It is 

clear from this description that the scattering from a composite target 

is determined from the relative positions of the constituents (i.e., the 

target wave function) and the amplitude for scattering the projectile 

from a single target constituent (i.e., a two-body scattering amplitude). 

The extension of multiple-scattering to treat composite projectiles

scattering from nuclei in which the potential V(r) experienced by the
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scattering from composite targets is reasonably straightforward and

largely consists of finding the right bookkeeping formula to determine
5-9which constituent scattered from what constituent.

An approximate multiple-scattering series can be derived on the 

basis of a small angle approximation.3 The usual eikonal result10,11 is 

a phase shift as a function of impact parameter given in terms of the 

interaction potential by

x < z > =  r v \ _ y ( t + i ) d r

which is related to the scattering amplitude by

where and kf are the projectile initial and final momentum vectors,

cf the momentum transfer, and v is the relative velocity. The usual
3 4 _Glauber* result for scattering an elementary projectile from a compos

ite target is obtained by taking the interaction potential as

\ A x >  =  I  V . ( * -  ? )

where ST is the position vector of the projectile relative to the target 

center of mass, is the position vector of the o-constituent of the 

target, and Vffl is the potential acting between the projectile and the 

a-constituent.3,5,10 The extension of Glauber theory for scattering two 

composite particles is accomplished by taking

V(xj= i
etj J
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where is the location of the j-constituent of the projectile rela

tive to the projectile center of mass.** ^  The appropriate form for the 

scattering amplitude in Glauber theory is

\ e" f b  n s s . fp)i

where 5p denotes the collection of projectile constituent relative 

coordinates r\, ^  denotes the collection of target constituent rela

tive coordinates r^, the g ^  and g ^  are the internal wave functions 

of the projectile and target where m and y label the corresponding 

states, and the profile function is defined as

r ( £ , = i - ,%)]
Assuming the potentials commute, the multiple-scattering form of

the profile function is obtained as

r ( £ x r , >  =  ' - y ! t ' -

where

and

•x

Note that Yo  ̂ is the profile function for scattering constituent o 

with constituent j and could be obtained by laboratory measurement by 

using a beam of elementary type a particles and a target of elementary 

type j particles (for example, a proton beam and hydrogen target to
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obtain two-body data for nuclear scattering). The two-body scattering 

amplitude is given by

which is related to the experimental cross sections by
.1

The profile function for composite scattering may now be written as a 

multiple-scattering series as (we now suppress the dependence on r^ 

and ra in the notation) <«j)*(/3jh

^  5 X ( b ) - y  J  • • •

jit

where the first term corresponds to the contributions in which only one 

constituent of the projectile scatters from only one constituent of the 

target (i.e., single scattering), the second term corresponds to events 

in which two successive scatterings between projectile and target 

constituents occur (i.e., double scattering) and the higher-order terms 

correspond to events in which three or more successive scatterings occur. 

The first two terms are graphically represented in figures 1 and 2. IVo 

distinct graphs are required to represent the double-scattering term.

Note also that the above Glauber form of the multiple-scattering series 

teiminates after (Ap • A^) fold scattering terms where Ap is the 

number of projectile constituents and A^ is the number of target 

constituents. The Glauber theory accurately represents the composite 

scattering amplitude when the two-body scattering amplitudes are strongly
3 A &peaked at small momentum transfer ’** although convergence of the Glauber
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6 o 10multiple-scattering series is slow when Ap and Aj. are large. * *

As can be noted above, Glauber theory is straightforward although 

practical calculations are somewhat tedious when large numbers of 

constituents are involved.

Most calculations using Glauber theory have been for deuteron-
deuteron scattering^’*2“16 ^  limited comparisons of the total cross

6 12 section and elastic differential cross section with experiment are

encouraging. Calculations of cross sections for various target and
7 8 12 16-19projectile nuclei have also been made ’ * ’ while comparison with

experiments are lacking presumably due to the paucity of experimental 

data.

A useful phenomenological device for the analysis of composite

particle scattering experiments is the optical model.which is taken with

a sufficient number of parameters so as to fit a large range of possible 
20 21scattering data. ’ It is the complex valuedness of optical potentials 

which set them apart from a phenomenologically determined interaction 

potential. The name of this effective potential was chosen because of 

its analogy with the propagation of light through a semitransparent 

medium (i.e., complex index of refraction). The imaginary part of the 

optical potential corresponds to absorption of the incident beam by the 

medium (i.e., events in which the medium is changed or disturbed). By 

solving the optical model one obtains the elastic scattering amplitude 

from which the total cross section is calculated using the optical 

theorem and the absorption cross section is luund by calculating the 

loss of elastically scattered particles. The spatial shape of the 

optical potential is usually assumed to represent the physical shape of
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the target and projectile (i.e., related to the matter density) if the

basic interaction of the elemental constituents is of short range.

A principal success of multiple-scattering theories is their ability
22 23to relate to the optical model. * This has allowed the optical poten

tial for elementary projectile scattering from composite targets to be 

determined from the more fundamental quantities as the two-body scatter

ing amplitude f(k,cf) and the target single-particle density function 

given as

p (,> =  x  I  < I v £ »

so that the optical potential is

'op*

With this result, the optical model is removed from the sole position as 

a phenomenological tool to that of a first-principles theory for scatter

ing an elementary projectile from a composite target. The advantage of 

the optical model is that the solution of an equivalent potential 

scattering problem is a less formiable task than computing each term of 

the multiple-scattering series when a large number of constituents'are 

involved. An optical model for the scattering of a composite projectile 

from a composite target has been derived from Glauber's approximate form 

of multiple-scattering theory in the limit as either the target consti

tuent number Â , or projectile constituent number Ap increase without 

bound provided A^ApO = constant where o is the total two-body cross
O

section. Although this restriction is not met in nature, this optical 

model has shown considerable success in analyzing elastic differential
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cross-section data for alpha, carbon, and oxygen projectiles on the
24respective targets of iron, nickle, and carbon. More recently, an 

extension of Watson's multiple-scattering series to the scattering of 

composite projectiles and targets indicates the optical model to be far 

more accurate than is found for the Glauber series.9

A principal aim in the study of composite scattering is in applica

tion to nuclear scattering. Motivated by the success of nuclear physics 

to explain many nuclear properties on the basis of nuclear models in 

which nuclei are to a good approximation bound collections of nucleons, 

we would expect the scattering states to be described within the same 

model, at least within appropriate limits. In that the physical domain 

probed by scattering experiments is generally different than those ob

served in nuclear experiments relating to deformations, low lying 

excited states, magnetic moment, etc., any systematic deviation from a 

composite scattering theory might be interpreted as inadequacy of the 

underlying nuclear model. All strongly interacting systems seem to be 

composite although the number of composite parts may not necessarily be

fixed and a theory in which constituent number is emphasized may not be
25generally applicable. However, if we consider the nearly 40 years of 

nuclear study, we are compelled to fix the constituent number in nuclear- 

scattering theory to be the baryon number of the systems as a first 

approximation.

Some ideas for the asymptotic behavior of composite nuclear scatter

ing have been proposed by Chew on the basis of analytic S-matrix theory 

and assumed Regge behavior which states that at high energy and near
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forward angles the scattering amplitude for two-body reactions has the 

form

where s is the invariant mass squared, t is the square of the four

momentum transfer, and ou (t) is the leading Regge trajectory (i.e., the
25-27Regge pole with largest real part of cuft)). For elastic scatter

ing, the leading trajectory is assumed to be the pomeron exchange pole 

for which ctp(0) si. It has been shown that the asymptotic Regge term 

factorizes and the elastic amplitude for scattering A and B may be 

written as
*,(*)FU,*)~ V * ' W * >  i

28 29where YPA(t) and YPB(t) are the pomeron vertex functions. * As a 

consequence of this factorization and the optical theorem

c s . - ¥

one has the result

Since scattering reactions for which all particles with baryon number

less than 2 seem to exhibit Regge behavior, it is natural to expect this
25 26same asymptotic behavior in the nuclear case also * (i.e., involving a

particle with baryon number of 2 or more). As noted above, a conse

quence of Regge behavior is the factorization of the asymptotic ampli

tude which leads to a simple experimental test. Chew further argues
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that if the high energy limit is obtained relative to the level spacing

of the composite structures then the asymptotic behavior may be obtained
25at present-day heavy ion accelerators. Less optimistic are the results

of Udgoankar and Gell-Mann who show on the basis of Glauber theory that

the asymptotic region in the nuclear case lies above that obtained for 
30particle physics. The inherent simplicity of the factorization idea 

has brought renewed interest, (largely) in connection with the heavy ion 

experiments at the now defunct Princeton Particle Accelerator and the

Bevalac. Several recent papers concerning factorization for nuclear
31- 34cross sections have recently appeared. Wang considers the factori

zation of heavy ion cross sections at energies of a few GeV/nucleon and
34 33found factorization not to apply. Franco did show that helium cross

sections approach factorization for energies above about 50 GeV which
30generally agrees with the results of Udgoankar and Gell-Mann and the

31 32results'of Gribov. Fishbane and Trefil considered the optical model
35extension of Glauber theory proposed by Chou and Yang within the con

text of gaussian matter density functions and observed a geometric form 

of factorization for composite projectiles and targets whenever the rms 

radii do not differ greatly. This geometric form of factorization is
28quite distinct from the original dynamical notion proposed by Gell-Mann,

29 25Gribov and Pomeranchuk, and Chew.

It is the purpose of the present paper to examine a new multiple-

scattering series for composite systems. We will concentrate on the

exact scattering amplitude including all target recoil terms and not make

forward scattering assumptions regarding the two-body scattering aapli-

tudes as in the case of Glauber theory. The starting point is the N-body
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time-dependent Schroedinger equation with two-body potentials and exact

scattering amplitude. A multiple-scattering series is found for the 
9exact amplitude. This new series reduces to the usual Watson-multiple-

scattering series when the projectile is elementary. The multiple-

scattering series which converges to the exact amplitude is then compared

to the Glauber series where the usual cancellation among principle value
9 10parts and higher-order terms is noted. * An effective potential rele

vant to the optical model is derived. Preliminary optical model consid

erations indicate that the coherent elastic scattering (scattering in 

which the projectile and target always remain in their ground state) 

should be well represented even when the constituent number is moderately 

small and the minimum model errors are obtained when the constituents are 

equally divided between the projectile and target indicating the optical 

model to be more accurate than heretofore expected. An approximate 

Lippmann-Schwinger equation (an integral form of the Schroedinger 

equation) in terms of the optical potential is derived and reduced to an 

equivalent Schroedinger equation for the scattering of a single particle 

in an energy-dependent local potential. Such a simplification is shown 

to result from a high-energy assumption and by application of the clos

ure approximation to the accessible eigenstates of the target and the 

projectile. The elastic scattering potential is found to be the matrix 

element of the single-scattering operator taken between the ground 

states of the projectile and target. Ihis result is obtained by project

ing the coherent part of the scattered wave from the system's Lippmann- 

Schwinger equation. That the scattering should be dominated near the 

forward direction by the coherent amplitude follows since small momentum
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transfer between constituents is not likely to excite the target or the 

projectile. This is surely not the case at large momentum transfer where 

incoherent scattering is expected to be an important if not the dominant 

contribution to the elastic channel. The sum effect of all incoherent 

(elastic and inelastic) processes is through the appearance of absorption 

in the foxward scattered coherent amplitude and use of the optical theorem 

gives an estimate of the total cross section since coherent scattering 

dominates in the forward direction. Since incoherent processes are 

expected to be important only at large momentum transfer and since elas

tic scattering is very forward at high energy, we anticipate that the 

integrated coherent-elastic differential cross section (i.e., total 

coherent cross section) is a good estimate to the total elastic scatter

ing cross section. We obtain good comparison with nuclear absorption 

experiments by using the difference between the total cross section and 

the total coherent cross section. The nuclear single particle densities 

are represented by three alternate models as a gaussian, Saxon-Woods 

function, and step function (uniform model). The Saxon-Woods density 

function is found to accurately represent the experimental scattering 

data.

The remainder of the paper is as follows: Chapter II contains a

derivation of the multiple-scattering series, implications of the impulse 

approximation, relation to Glauber theory, and introduction of effective 

potential considerations. In Chapter III we derive an approximate 

Lippmann-Schwinger equation using the multiple-scattering formalism from 

which an equivalent one-body Schroedinger equation is found using a high- 

energy assumption and the closure approximation. A set of coupled
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channel equations are then derived, from which the coherent elastic 

amplitude is extrated. The relation of the coherent elastic amplitude 

to the full coupled channel amplitude is discussed in an appendix. The 

optical potential for the coherent scattering is calculated and the total 

and absorption cross sections are found in terms of an eikonal approxi

mation. In Chapter IV, the effects of models for the nuclear single

particle densities is examined for nucleon-nucleus scattering. The 

Saxon-Woods model is chosen for the calculation of cross sections as a 

function of projectile and target mass. Comparison of theoretical re

sults using the Saxon-Woods model with heavy ion absorption experiments 

show good agreement. Results of the paper are discussed in Chapter V.



II. MULTIPLE SCATTERING THEORY

We formulate a description of the experiment in which an energetic 

composite projectile of well defined momentum and mass number Ap 

strikes a composite target of mass number Ay and the scattered projec

tile is observed at some remote point from the target site. We assume 

the combined system of N constituents interacts through two-body 

potentials and the hamiltonian is given by

(1)j «j 06 J
where Roman subscripts pertain to the projectile and Greek subscripts

refer to the target. The projectile hamiltonian can be reduced by

extracting the center of mass motion as
I "— 2̂*

H p  =  i w A p  fp +  (2)

where the projectile momentum operator is

(3)
and h^ depends on neither ? nor its canonically conjugate position 

variable. Similar results also obtain for the target
j —Jp £

Hr=zZtfr Pr +hr (4)
with

I Kt (5)eC

15
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The full hamiltonian (1) can be written in the usual form showing 

explicitly the collective parts and interactions separately

and the projectile momentum relative to the overall center of mass is

The first term in Eq. (6), N-body center of mass motion energy, is 

completely decoupled from all of the remaining terms. Hie second term 

is the relative motion kinetic energy of the projectile and target.

action term V. The projectile and target internal hamiltonians (hp 

and h^) are coupled to the relative motion through the interaction V. 

As the projectile-target separation becomes large, the interaction term 

tends quickly to zero and we assume that well defined states of 

momentum are prepared in the entering state and are observed in the 

final state. These states are eigenstates of the free projectile-target 

hamiltonian

(6)
where the overall center of mass momentum operator is

(7)

(8)
and the interaction potential is

(9)

The projectile relative position variable appears only in the inter-

CIO)
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and can be decoupled into collective modes as can be seen from Eq. (6). 

Hie full wave function satisfies the Schroedinger equation

H f - E f  (11)
and consist of a superposition of a free state plus a scattered state

+ % (12)
where

% * G 7 t (13)
with the Green's function given by

(e - H p - H r ) " s =  I ( « >

and transition operator

+  (lg)

The usual wave operator which transforms free states to final scattered 

states is defined as'

(16)

and satisfies the Lippmann-Schwinger equation as

j l  - / +  G ,V J l (17)

so that 7  is formally given by

(IS)
3 =  V J l
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It will be our purpose to find a series for ^7 that is in terms of

simpler functions. Ihe development follows closely the original work 

of Watson.1,2

To proceed with this program, we first define the transition 

operator for scattering the a-constituent of the target with the 

j-constituent of the projectile which is a solution of a Lippmann- 

Schwinger type equation

t = V,. + \l Si*:
j ** J J (19

and the wave operator which transforms the entering free state up to the 

collision of the a and j constituents

Equation (20) is interpreted in the following way. The propagation to 

the time just before the a and j constituents scatter is the sum of 

an operator which brings the initial free state plus the scattered part 

from the scattering of all other 3 and k constituents. We antici

pate but must yet prove that the full wave operator consists of the 

wave operator which transforms the system to the a and j collision, 

plus the additional contribution due to the scattering of the o and 

j constituents; that is,

which can be written in more symmetric fashion using Eq. (20) as

(20)

(21)

(22)
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and we will now prove that the series given by equations (19) through 

(22) constitutes an exact representation of the scattering process 

defined by equations (1) through (18). Consider the product 
a  = + VC.J G

= (NCj +
=  tMJ ^ - j  (23)

Performing a summation on the a and j constituents we obtain
7= I \C; SI

= 2  w *j (24)

which shows equations (19), (20), and (22) as a solution to (17).

The implied simplicity of the coupled equations (20) is somewhat mis

leading since the two-body scatterings represented by (19) are N-body 

operators. However, at sufficiently high energy, the effects of nuclear 

binding in Eq. (19) are negligible. The Green's function G may then be 

replaced by the free N-body Green's function Gq which satisfies

(e -IT,-IT.) 6.= / (25)
The impulse approximation (Watson's form) consists of approximating Eq. 

(19) by

C j  =  +  (26)

so that the operator given by Eq. (26) acts as a true two-body transition 
1 36amplitude. * The major advantage is that the amplitude (26) is closely 

related to the experimental nucleon-nucleon scattering amplitude which is 

reasonably well known and we will require no exact knowledge of the poor

ly understood two-body nuclear potential.

By iteration of equations (24) and (20) we obtain the multiple 

scattering series
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which constitutes a formal solution to the exact scattering problem.
1 36If we now make the usual replacement of

G — * G.
where Gq is the free N-body Green's function, then the t ^  become 

essentially two-body operators and (27) becomes a series of sequential 

two-body operators. The graphical representations of the terms of the 

series (27) are shown in Figs. 1 and 2. The series (27) reduces to the 

usual Watson series when the projectile consists of a single parti

cle. When (27) is evaluated using the eikonal approximation,^ the

Glauber theory is obtained which implies cancellation of an infinity
9 37of terms of (27) in the eikonal context. *

The convergence of the multiple-scattering series (27) is not

dependent on the strength of the two-body potentials which is its main

advantage over the B o m  series. Unlike the generally singular two-body

potentials, the two-body transition operators are finite everywhere so

that the rates of convergence of the multiple-scattering series is

fixed by the number of possible scattering combinations. For example,

single scattering is composed of (Ap * Ap) terms, double scattering

has (Ap • Ap)(Ap * Ap - 1) terms, etc. Clearly, the convengence is

slow when large numbers of nucleons are involved. Some of the practical

aspects of convergence are discussed elsewhere within the context of the 
8 12Glauber theory. ’ We will now use the multiple scattering series to 

derive an approximate scattering theory whitfh shows promise in solving 

for the (approximate) scattering amplitude.
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Before engaging in a full discussion of the optical model, we

would first like to indicate how an effective potential description

relates to the multiple-scattering series (27). To see this relation

we seek a potential operator whose Born series is equivalent to the

multiple-scattering expansion (27). Such an operator is closely re-
20-23 38lated to the so-called optical potential ’ and we shall refer

to it as V t< The transition operator

ClOFt =  +  ^  G  3 * *  (28)

will be defined by

=  I  ^  « * >
from which

x ,  -  1 6 t -i ' ••• (»)
r ‘‘j

The optical model is obtained by retaining the first term in (30) and 

the order of approximation is

Oort ~ 0 ~  Vop* W o r t A f i p h r ) (31)

since t ^  = v0pt/(ArAp) where Â , and Ap are the mass numbers of 

the target and projectile, respectively. The amplitude (28) is a rather 

good approximation to the exact amplitude for light as well as heavy 

projectiles and targets. It is noted that for a fixed number of 

constituents that the minimum model error (31) occurs when constituents 

are equally divided among the projectile and target.



III. THE OPTICAL MODEL

In the previous chapter, a multiple-scattering series was derived 

for the exact scattering amplitude. It is generally expected that the 

series will converge slowly so that direct summation of the series is 

not practical. It was noted that an effective potential could be found 

w h ic h  accurately approximates the multiple scattering formalism and 

solution of the corresponding effective potential problem would, in 

effect, sum the multiple-scattering series to all orders. We will con

sider this possibility in more detail and show that the effective poten

tial concept leads to an optical model of composite particle scattering.

Examination of the operators given by (20) and (22) shows that

We now consider the model in which we assume the wave operator to satis

fy the approximate Lippmann-Schwinger equation

-  il -  £ V (32)

with which Eq. (22) is rewritten as

S I  = I + «j J
(33)

Jlf =  I + QV0f>t Jl' (34)

where the effective potential is

(35)

and the lowest order correction to the model is

22



23

J l - n ' =  0 ( I / A , , A J (36)

as is evident from (33). To further simplify the Lippmann-Schwinger 

equation, we now examine the Green's function, G.

The Green's function with an outgoing spherical wave is

£■= + ̂  - H p - H T) ' (37)

The eigenstates of the projectile hamiltcnian of Eq. (2) are given by

t' r &  = <tt + £" ) € t  (38>
pwhere em is the internal energy eigenvalue and the projectile kinetic 

energy is

(39)

with IT the eigenvalue of and similarly for the target hamiltonian
of Eq. (4)

ST  * j T

(40) 

with

C41)

and )C the eigenvalue of P^. The eigenstates of (38) and (40) are

written as

O r  =  \  b r  (42)
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and

f -  ~  C43)y/,K T*

where the g's denote the internal state and the <f>'s refer to one- 

body collective propagation and are of the form

ir=(sk)k C44>
and similarly for the target. The product wave function is then

t x  ~ 3rm 3V  irg    (45)

where

(rir)^ i k - x )  (46)

X is the overall center of mass coordinate and x is the relativecm
coordinate between the projectile and target. In what follows, we will 

specialize to the overall center of mass frame in which

r « - *  c4?)

and factor the center of mass motion from the state wave functions (45). 

We then represent the Green's function as

(48)
P +i„ _ r r - f;. - e?

V
where

k/ r1 C49)_ j y   L
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Rewriting the Lippaaim-Schwinger equation (34) with use of (48) obtains

l t ' > =  13*3,.

*1 ff°>
fw/

and in configuration.space

w /j t - ji
V    (51)

where

$p - { r'r > % > % • •  • rAf] (52)

fr " [  r,r / .» r*r * * * ^  ) (53)

and

r  = t  •<• - £») +«r- £ >] (54)

38We now follow a development similar to that of Foldy and Walecka.'

If the energy transferred to the internal state of both the projectile 

and target are small coapared to the incident energy, then
— » j*

kpy, ~  *

We may now use the closure approximation to rewrite (51) as

t < J )

- j r V s  w i r s x  (55)

It follows that (55) satisfies an equivalent one-body Schroedinger



equation given by

+ k ' )V'(1„ £.*)= ? ' ( % £ , * )  (56)

Note that the projectile and target constituent coordinates (^,5^,)

appear as parameters in the equivalent one-body equations (5$) and (56).

The calculation of the asymptotic scattered wave is made as if the consti

tuents are held fixed in their common center of mass frames.

The target and projectile internal wave functions are not eigen

states of the optical potential operator and the initial internal states 

are mixed into various modes of final excited internal states in the 

full scattered wave. Ihis we express as

<57>
from which we write the coupled equations

(v; + D = ( ^ ) 1  V 5 (5W
where

\ )  (59) 
The boundary condition for the elastic channel contribution is

■£<*) ~  (ssf [ y,jf)—  ]  (60)

and the inelastic channels satisfy

s. , i &  p . ed<°C * Mxlj
~  i?i <61>

where m and u are not both zero. The optical model will be defined 

as the approximation of (58) for the elastic scattered part as
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where

(63)

and

* ( \  9r.l £,*>1*. 3r.) (64)

with coupling to various excited internal states neglected. This is 

surely correct at small momentum transfer or near forward scattering. 

The corresponding approximate wave function is called the coherent 

scattered wave and it dominates the forward scattered component. We 

now evaluate the optical potential for use in the approximate 

Schroedinger equation (62). For simplicity, we first calculate the 

Fourier transform of a single term of (64) where the potential operator 

is given by (35)

where q is the momentum transfer. Equation (65) is the well-known 

single-scattering term of the multiple-scattering series as expected. 

Note that tg^ is used to denote both the operator and its matrix 

elements and should cause no confusion. Hie form factors are the usual 

Fourier transforms of the single-particle density functions of the 

target and projectile. For the present, we treat the nucleon-nucleon 

interaction as being independent of constituent type (i.e., independent 

of 3 and £). To account for constituent type dependence for nuclear 

scattering, t is understood to be the average amplitude

(65)
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t  ~  Affiji ^PP +  N? 2 r) tnpJ (66)

where Np and Np are target and projectile neutron numbers and Zp

and are the corresponding proton numbers. Equation (66) reduces 

to the usual expression for an elementary projectile. The optical 

potential is found by taking the inverse Fourier transform of (65) and 

summing over constituents to obtain

w < ? ) = A p at Pr,r, $ ffyx+i+fyiik,;}) (67)
where p t and pp are the target and projectile single-particle

density functions and t(k,y) is the energy (k) and space dependent 

two-body transition amplitude.

We use the usual parameterization of the two-body scattering ampli

tudes which satisfy unitarity, are customarily used to analyze experi

ments, and are consistent with Regge behavior as

f <e, p  - [«(e) * B(e)̂  W

where e is the constituent energy in the two-body center of mass frame

given in terms of relative velocity by

e  - If ** (69)

where w = m/2 is the two-body reduced mass and the relative velocity is

vs Jfk/ntAFAr 1

o(e) is the energy dependent total cross section, a(e) is the energy
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dependent ratio of real-to-imaginary part, and B(e) is an energy 

dependent parameter. The normalization of the transition amplitudes 

are such that

The space representation is given by

ite,J)= - <r-(e)[oC(e) + ijlz'rrsw] (72)

for use in calculating the optical potential with Eq. (67). We note in 

passing that the two-body amplitude generally falls to zero in a short 

distance from its center at intermediate energies and the spatial varia

tion of the single-particle density is slow in comparison and justi

fiably we can neglect the single-particle density variation over the 

two-body amplitude range as

(73)

where a^ (ap) is the target (projectile) rms radius. Considering for
2nuclear scattering that B(e) is on the order of 0.3 fm for energies 

from several hundred MeV to several GeV, the higher-order terms of (73) 

are small.

We must now solve the Schroedinger equation (62) for the optical 

potential given by (73), which we now write as

(74)
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where

V ( * =  (75)

We will require subsequently the maximum value of the potential which is
a-

" (76)

where r - 1.4 fin. o
We will solve Eq. (73) using the eikonal approximation which is 

valid for small angle scattering, provided that

/ (77a)

and

| V„Zrtx))/jV<2>l < <  k (78a)

Taking the total nucleon-nucleon cross section as 40 mb we find (77a) to 

be

| < > >  O.l (77b)

and (78a) is rewritten as

k > >  (A) + aj)'^ (78b)

and is easily met by (77b).

Ihe fundamental quantity of the eikonal approximation is the phase 

function as function of impact parameter

(79)
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In terms of the phase function we may calculate the scattering amplitude 

near forward angles by

X<bj- IJ  (80)

and from the optical theorem the total cross section

= C81)

where xr and are the real and imaginary parts of the phase func

tion (79). In that the number of angular momentum states which contri

bute to the elastic coherent cross section are large in accordance with 

inequality (78b), we may calculate the total coherent cross section from

C£ =. (82)

which may be reduced to (c.f., ref. 11 on page 337)

(Tt *  Hir \  b<Jb[l -  e4f[-y-i(h>]
o*

- 2 7T \  £ I “  w )J (83)

by which we obtain the total incoherent cross section by

°r„c =

z IV \kJk{l- 1  Xj< w j j  (84)
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Since the coherent scattering dominates near forward angles where most 

of the elastic scattering occurs, we anticipate that the total coherent 

cross section would be a good approximation to the total (elastic) 

scattering cross section as

%  &  (85)

from which we find the total absorption cross section to be

<S. *  °Tnc (86)

The relation between the coherent, the elastic, the incoherent and the 

inelastic amplitudes are further discussed in appendix A. In discuss

ing nuclear scattering in the next chapter, we will assume equations 

(83) to (86) are satisfied. We will justify this assumption by making 

a limited numer of comparisons with laboratory experiments.



IV. NUCLEAR SCATTERING

It was shown in the previous chapter that the N-body scattering 

problem can be replaced by an optical model where the optical potential 

is related to the single-particle densities of the scattering composite 

systems and the two-body transition amplitudes. Particular advantage 

for this formalism lies in the fact that bound state wave functions re

quired to calculate single-particle densities and the two-body scattering 

amplitudes required to compute the optical potential can be solved inde

pendently of the full N-body scattering process. Even more importantly, 

this same information required to determine the optical potential for 

heavy ion scattering is generally available from the totally independent 

set of experiments of electron scattering and nucleon-nucleon scattering. 

This last approach is quite attractive since aside from having a unify

ing effect on three otherwise loosely related disciplines, such a semi- 

empirical approach would provide a stringent consistency check on data 

obtained from three different unrelated experiments.

We derive in this chapter cross sections for nuclear scattering 

utilizing the data on nuclear radii compiled by Hofstadter et al. and 

two-body scattering found in nucleon-nucleon scattering experiments. 

Generally, among the best representations of nuclear single-particle 

densities is the Saxon-Woods function. However, the Saxon-Woods func

tion is not amenable to analytic methods. For this reason we will con

sider two simpler functions for which the scattering cross sections 

can be reduced to a simple algebraic form. The three functions

33
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considered for single-particle density models are (1) the gaussian 

function which shows a large degree of diffuseness with no well-defined 

nuclear surface, (2) the Saxon-Woods function with a nearly constant 

interior nuclear density with a reasonably defined but diffuse nuclear 

surface, and (3) the uniform density function with constant nuclear 

interior and a sharply-defined nuclear surface. We will evaluate the 

adequacy of these three models by comparing calculated results for the 

three models with measured total cross sections for neutron-nucleus 

scattering. Having examined the question of model dependence, we may 

then consider simultaneously to what extent does the coherent ampli

tude represent the elastic channel and how well does the eikonal approxi

mation represent the elastic scattering amplitude. These questions will 

be examined by comparing optical model calculations with the eikonal 

approximation for absorption cross sections and comparing with nucleon-
t

nucleus scattering experiments. Armed with the results of these 

comparisons, we then compare results for heavy ion absorption cross 

sections with the limited available experimental data. Cross sections 

for a selected set of possible projectiles are then presented for 

comparison with future experiments. We then make some observations 

about nuclear transparencies and a theoretical test of the factorization 

hypothesis proposed by Chew.

1. Gaussian Model Calculations

We consider evaluation of the optical potential W(X) for the case 

when the two-body transition amplitude and the single-particle density 

functions are approximated by gaussian functions. The single-particle 
densities for a nucleus with A constituents we write as
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p (7 , =  e * f  (- 3 ? , / l  % )  (87)
A

where is the nuclear rms radius and the normalization is the usual

I (88)
The combined target-projectile overlap density is given by

( > ( r ) = l p  (3) £ > ( ? + ? )  J9?

=  ( § e ^ o C - 3 r x/ 2 a ‘ ) (89)

where

- £  =  < + <  (90)
39and aA will be taken from the results compiled by Hofstadter. We 

then find the optical potential to be

W(x) = - A, AfM  ft*) [*<*) + L]($TJ dl)* e^r- 3*/iaJ)

-  “  M r  & * & ( § * $ )  x ̂ o ( -  s x V a a J )  (91)

where

aj = ai + 38(e) (92)

and o(e) and a(e) are given in equation (68). Ihe Schroedinger 

equation (74) with the optical potential given by (75) will now be 

solved using the eikonal formalism.
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First, we note the phase function can be written as

f*

where

X(b)= x 0 e ^ o ( - 3 b / a - a t )

X  a= 3 A f bT + i] /H'n a *

(93)

(94)

The total cross section is found in terms of the phase function at zero 

impact parameter (94) as

(95)

where Y. *s Euler’s constant and Ej(z) is the exponential integral for 

complex argument. Similarly we find the incoherent cross section

c:* *  ¥  +  infix,,) +  yj (96)

where

X 0  ̂—

The rms radii for the electric charge distribution as taken from 
39Hofstadter et al. are given by

(97)

a

0.8
2.17
1.78
1.63

j/j
^ 0.82 A + 0.58

A = 1 
= 2 
* 3 
= 4 

6 i  A i  14 
A >. 16

(fm)
(98)

and are shown in relation to the values obtained from electron scattering 

data in figure 3.
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2. Saxon-Woods Model Calculations

The Saxon-Woods single-particle density is represented as

p ( r )  =  c/[i + efyofcr - R)/oJj (99)

where the parameters R and c are given by

c  =  t / y . y

(100)

(101)

and r^ g is the radius at the half density and t is the skin thick

ness. Graphs of the half density radius and skin thickness are shown in 

figures 4 and 5 in comparison with the parameters as extracted from 

electron scattering data. For A less than 4 we use the gaussian

Hie optical potential scattering for the Saxon-Woods form factors 

is not easily reducible to an analytic form and has been calculated here 

using numerical quadratures. A corresponding numerical evaluation of 

the phase function and forward scattered amplitude from which total cross 

sections and absorption cross sections are found has been made. The 

results will be discussed subsequently.

3. Uniform Density Model

We now derive expressions for the total and incoherent cross sec

tions for scattering nucleons from a target nucleus with the single 

particle density approximated by a uniform distribution as given by

densities of the previous section. 39

£ ( ? > -  ' -*)
(102)
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where the equivalent uniform radius is

r  - /.a.*? a,
and

f ^ V h *  r *

where 0(t) is the unit step function. The optical potential is 

M * ) -  - Af y ?  a -re > [o tf« >  + i] ̂ 6(ru - iHi)

with

A*
Y ( x ) - jg ne) [ 0« <, + l] 0(r„ - )7l)

The phase function is found to be

X(k) - f\r <r<e>0«> +i] ^ fr* 

from which we calculate the total cross section as
<rT = «m r a y ^ ^ j ]T o J

= X'" rux + C ^ CT« + OcjfC-ti;) -  ijJ

where

a = /4r p0 <r<«>

c =  a  + * * * (<)

Similarly we find the incoherent cross section to be

°T»t “  ^  +* & [ (xa,r» + •> - >]

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)



We will not derive the general result for arbitrary target and projec

tile since it will not play a role in further development.

4. Results

The total cross sections for nucleon-nucleus scattering using the

gaussian, uniform, and Saxon-Woods single-particle densities with model
39parameters taken from the compilations of Hofstadter and Collard are

shown in Fig. 6 in comparison to the measurements of neutron-nucleus
40 41cross sections of Schimmerling et al. at 1.064 GeV. ’ The optical

model shows remarkably good agreement with the experimental data when

the Saxon-Woods model densities are chosen. The diffuseness of the

gaussian density tends to overestimate the cross section while the

sharp cutoff of the uniform model tends to underestimate the cross

section. Even so, all three models give a reasonable representation of

the data; the required radius to reproduce the data is slightly

different for each model.

The absorption cross sections for nucleon-nucleus scattering as

estimated by the total incoherent cross sections are shown in Fig. 7

as calculated for the three model densities. Also shown is the data
40 41from the experiments of Schimmerling et al. ’ at 1.064 GeV and of

A O yl f
Igo et al. * at 1.0 GeV. Again, we see that all three models 

reasonably represent the data although there is a definite preference 

for the Saxon-Woods and gaussian results. Perhaps the most gratifying 

of these results is that the moderate sensitivity of the absorption 

cross section on variations in nuclear skin thickness as exhibited in 

the Saxon-Woods results appears to be displayed by the experimental 

data of Schimmerling et al. as well.
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The Saxon-Woods functions appear most adequate to describe the 

nuclear single-particle densities, although the errors associated with 

gaussian and uniform models are usually less than 15 percent. The 

absorption cross sections for triton-nucleus scattering at 0.1 GeV/ 

nucleon have been estimated by adjusting the two-body cross sections to 

70 mb and using the gaussian density for the triton and Saxon-Woods for 

heavier nuclei. Tlie results are shown in Fig. 8 in comparison with the
42 44data of Millbum et al. ’ Good agreement is displayed at lower target 

mass numbers with 30 percent errors for lead and uranium targets. The 

A dependence displayed by the experiments is nearly that of nucleon- 

nucleus cross sections. The theoretical A dependence of triton-nucleus 

scattering is markedly different than that obtained for nucleon-nucleus 

scattering.

Calculated oxygen-nucleus absorption cross sections at 2 GeV/

nucleon'are shown in Fig. 9 in comparison to the experiments of 
45Heckman et al. Excellent agreement is obtained for hydrogen and 

carbon targets. The results for sulfur differ by 17 percent while lead 

and copper are about 10 percent below the theoretical curve.

It is apparent from these limited comparisons that the simplified 

model derived in the previous chapter provides a reasonable representa

tion of the experimental observations. Certainly in the case of nucleon- 

nucleus scattering the model is quite accurate. The triton-nucleus 

results are less convincing while the agreement with the more recent 

oxygen-nucleus data of Heckman et al. reassures us in the essential 

validity of the theory. In Figs. 10 and 11 we show calculations of
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total and absorption cross sections for selected projectiles and energy 

of 1 GeV/nucleon. These results will hopefully be useful for comparison 

with future experiments.

An interesting quantity to be derived from the present calculations 

is the average nuclear opacity given by

0 = 0; / *  <5 (112)
where the geometric cross section is given by

07 = m r uX
(113)

'4 - '1/
and the equivalent uniform radius for the combined system in (113) is the 

sum of the equivalent uniform radii of the projectile and target. The 

opacity is shown in Fig. 12 for selected projectile masses as a function 

of target mass. The curves in the figure were hand drawn between the 

discrete target mass numbers. A rather surprising result is that all 

nuclei are more opaque to nucleons than to deuterons. This unusual 

transparency of the deuteron is due to the unusually low density of the 

deuteron; i.e., the deuteron consists of two nucleons spread over a 

region about the size of an oxygen nucleus. This yields an optical 

potential for deuteron-nucleus scattering which is rather shallow and 

spread over a large geometric region. As a consequence, only slight 

absorption of an incident deuteron beam occurs in the region of the 

potential. Elastic scattering which appears as diffraction to fill the 

hole formed in the incident beam by the optical potential requires the 

elastic cross section for deuterons to be small since the hole was left 

nearly filled by the shallow deuteron potential. This certainly confirms
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our intuitive notion that the deuteron is easily destroyed in nuclear 

scattering since the deuteron is so weakly bound and can barely survive 

the shock. Had the optical potential been strongly absorbing (and 

hence deep) then we must conclude that diffraction effects are import

ant and the elastic scattering cross section would be large, which dis

agrees with our notion that the deuteron breaks up easily in nuclear 

reaction. These ideas will be further discussed below.

We observe a general increase in opacity with increasing target 

mass as well as a small amplitude oscillation. The source of the 

oscillation can be seen in Figs. 3 to 5 as due to variations of diffuse

ness at the nuclear edge and the varying A dependence of the nuclear 

rms radius for light nuclei. The geometric limit for the cross sections 

are characterized by unit opacity, and is obtained only when both the 

projectile and target are relatively heavy. In most cases, the total 

cross section is less than twice the geometric cross section. However, 

the diffuse nuclear edge plays an ever-increasing important role for 

very heavy projectiles and targets. In no case is twice the geometric 

cross section exceeded by more than 10 percent. A related quantity is 

the absorption opacity defined as

Q.W = <*. /  (H4)

The absorption opacity is shown in Fig. 13 for selected projectiles as a 

function of target mass number. The main features of the absorption 

opacity are its stronger dependence on variations in skin thickness and 

their larger values in comparison to average opacity.
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The fact that nuclei are so transparent is in part the reason why 

absorption opacity is larger. Should nuclei appear as absorbing disk, 

then

(115)

in which case elastic scattering is purely diffractive. However, it is 

clear from our results that

(ii6>
07 <  ^

To further emphasize this point, we give the ratio °a^s/°T in Fig* 14. 

It is clear that purely diffractive scattering is approached asymptoticly 

for large target mass numbers but is not yet obtained for even uranium 

targets. It is seen from Fig. 14 that projectile-target interactions are 

quite inelastic except for heavy targets or projectiles.

We will now examine the proposal made by Chew that the scattering 

amplitude should factorize at energies which are large compared to the 

level spacing of internal excited stateis. Clearly, 1 GeV/nucleon ful

fills this requirement for heavy ion scattering. We define the factoriz- 

ability as the ratio

(117)

where is the total cross section for projectile denoted by P and

target denoted by T. If Chew's proposal is correct then Fp̂ , is inde

pendent of P and T and is equal to unity. We have calculated the 

factorizability for selected projectiles as a function of target mass 

number and the results are shown in Fig. 15. Clearly, factorization is 

obtained only in the region of the identity where the projectile and 

target are the same
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(118)
That is, factorization occurs only when the projectile and target have 

nearly the same number of constituents. This is clearly a geometrical 

form of factorization which occurs only when the projectile and target

by Chew is in disagreement with the present theory. We do expect factor

ization to be obtained at sufficiently high energy since nuclear matter 

is in that case unusually transparent and the B o m  approximation is 

expected to be accurate since shadow effects associated with multiple 

scattering are then small. The B o m  approximation is given by

which is already in factorized form. Note, however, that this form of 

the factorization principle for heavy ion scattering requires much higher 

energies than that required to obtain factorization for nucleon-nucleon

32are of comparable size. The dynamical factorization principle proposed

ftp, C (119)

30,31scattering.



V. CONCLUDING REMARKS

A multiple-scattering series for heavy ion scattering has been 

derived which appears as a natural extension to the Watson formalism.

The structure of this series indicates that it reduces to the Glauber 

result within the eikonal context. An effective potential operator was 

found which shows that an optical model for heavy ion scattering is a 

good approximation for even rather light nuclei. Using the multiple 

scattering formalism, an approximate Lippman-Schwinger equation was 

found for the effective potential. Ihis Lippmann-Schwinger equation re

duced to an approximate one-body Schroedinger equation for scattering in 

the effective potential when high-energy was assumed and the closure 

approximation was applied to the accessible eigenstates of the projec

tile and target. This equivalent one-body Schroedinger equation was 

shown to be equivalent to a set of coupled channel equations relating 

the entering state to all of the final channel states of this N-body 

system. The coherent elastic scattering was extracted by neglecting the 

coupling of the entering state to the various excited states of the tar

get and projectile. The coherent scattering amplitude was solved using 

the eikonal approximation from which total cross sections are calculated. 

Model dependence for the nuclear form factors was examined by comparing 

with neutron-nudeus cross sections and the Saxon-Woods density function 

appears most appropriate. Further comparison of the incoherent cross 

sections for nucleon-nucleUs scattering with experimental measurements 

of absorption cross sections shows remarkably good agreement, thus indi-

45
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eating that most of the elastic scattering amplitude is well approxi

mated by the eikonal solution of the coherent amplitude.

Calculations of nucleus-nucleus scattering were then made using the 

Saxon-Woods functions for scattering tritons and oxygen from various 

targets. Generally good agreement is obtained in comparison to absorp

tion cross-section measurements. Additional calculations of scattering 

with selected projectiles were made for comparison with future 

experiments.

The theoretical results indicate that many target nuclei show an 

exceptional degree of transparency even for projectiles as heavy as 

oxygen with high opacity obtained mainly for both the projectile and 

target heavier than argon. Associated with this transparency is the 

tendency of these interactions to be inelastic. As the target and 

projectile mass increases the system appears more as an absorbing disk 

in which elastic scattering is purely diffractive. Although this limit 

can be approximated it is not yet obtained for uranium scattering from 

uranium.

Chew's suggestion that factorization may be obtained for nucleus- 

nucleus scattering at energies (*1 GeV) which are large compared to 

the nuclear level spacing is not supported by the present results. A 

geometric factorization principle similar to the results derived by 

Fishbane and Trefil is observed.

Although a reasonable step in developing theory for heavy ion 

reactions has been made, a considerable body of work remains and we will 

conclude this paper by noting some needed developments. Ihe most 

conspicuous are the lack of symmetrization of the theory with respect



47

to identical particles and the neglect of spin effects. Ihese effects 

may well be small at high enough energy. There is a need for inclusion 

of relativistic effects in the theory. There are further questions 

regarding the effects of incoherent processes especially for nonforward 

scattering. The main problem in treating the incoherent scattering is 

the typically large number of channels involved and will probably be 

handled ultimately using statistical models.



APPENDIX

COMPOSITE REACTION COUPLED CHANNEL AMPLITUDES

In this appendix, we will examine the solution of the coupled 

channel equations for composite particle scattering. Particular 

attention will be given to the relation between the coherent elastic 

scattered wave, the B o m  approximation, Chew's form of the impulse 

approximation, the distorted-wave B o m  approximation (DWBA), and 

various approximation procedures to the coupled equations. Finally, 

we will show how the coupled equations can be solved assuming small 

angle scattering and a simplified expression for the elastic and all 

of the inelastic scattering amplitudes will be derived. We will 

further discuss the usual use of the optical theorem to estimate 

total cross sections from the coherent elastic scattered wave and, 

in particular, Shed some light on the reasons why this estimate of 

total cross section is so successful.

48
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Coupled channel equations. The starting point for the present 

discussion is the coupled channel (Schroedinger) equation relating the 

entrance channel to all excited states of the target and projectile 

which was derived assuming high energy and closure for the accessible 

internal eigenstates of the target and projectile derived in Chapter III. 

These coupled equations are given

where subscripts m and y label the eigenstates of the projectile and 

target, Ap and Ap are projectile and target mass number, m is consti

tuent mass, Tc is projectile momentum relative to the center of mass, x 

is the projectile position vector relative to the target, with

gp (£p) ' and gTy(5T) are the projectile and target internal wave

functions, Zp and Zj are collections of internal coordinates of the

C D

(2)

m

projectile and target constituents, V (£1,fl,3?) is the effectiveJ / i W J  W V i b X X v  ( U i u  tOI. g v  L  b u i i j  vtlvll } O p t  P *  T *

potential operator derived in Chapter II and given by

(3)

where t .(x ,x.) is the two-body transition operator for the j-
'■* J J

constituent of the projectile at position Xj and the a-constituent of 

the target at x^ and N is the total constituent number

+ A r (4)



We simplify the notation by introducing the wave vector

t \ t 'C*  f ( X ) =  i

and the potential matrix

(5)

VL V <3(M,#| V~.t IX) • 1
v..,~ & V„,.t <~> # •
v;.,.. <*s & * •

vj, v, . # •
0 • • • •
0

0

•• •
0

• ' *J

(6)

The coupled equations are then written in matrix form as

( V *  + k*) f a x )  - (7)

for which we now seek approximations.

Born approximation. The B o m  approximation of the coupled equations 

is written as

O L7'X I*?r i  -> i r  —-z. i ? - *
•f (?) =  ~ w  \  ®  W x )  ̂  / C8)

which is a matrix of approximate scattering amplitudes relating all 

possible entrance channels to all possible final channel states. For 

example, diagonal elements relate to all possible elastic scatterings 

of the system where the elastic channel is defined by the entrance 

channel. Recalling the definition of the potential matrix in equation 

(2), we write
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where F„ (q) and FT (q) are the projectile and target form 
m'm u'u

factors. Equation (9) corresponds to a generalized version of Chew's

consistent with the idea that solution of the optical model illicitly 

sums the multiple scattering corrections. As noted in Chapter II, the 

B o m  series is term-by-term equivalent to the multiple-scattering series. 

It follows from the form of Eq. (9) that

where (Jm, a r e  the internal angular momentum quantum numbers

of the target (projectile) in the final and entering states, respectively. 

The a ^  and ap^ are the lowest order nonvanishing transition 

moments of the target and projectile, respectively. On the basis of the 

Born approximation, we see a very strong threshold effect on the various 

excitation processes which causes an ordering in the contribution of 

specific excitation channels in going from small to large momentum trans

fer. Clearly, at zero momentum transfer, only the elastic channel is 

open. As the momentum transfer increases, the single dipole transitions 

for either the target or projectile, but not both, are displayed first. 

Note that this severely restricts the accessible angular momentum states

impulse approximation^ or single-scattering approximation.^ This is

at small momentum transfer where

(11)
and

(12)



52

in the excitation process. At slightly higher momentum transfer, coinci

dent dipole transitions in projectile and target and single quadrupole 

transitions are in competition with and may eventually dominate the 

single dipole transitions at sufficiently high momentum transfer. 

Similarly at higher momentum transfer, transitions to higher angular 

momentum states are possible.

Perturbation expansion and DWBA. According to the above discussion, 

we see that over a restricted range of momentum transfer the off-diagonal 

elements of the "Bom" matrix of scattering amplitudes are small compared 

to the elastic-scattering amplitudes for the various channels found along 

the diagonal. Noting that these amplitudes are proportional to the 

potential, we may consider the decomposition

where T /£ ( x )  are the diagonal parts of V(x) and V^(x) are the 

corresponding off-diagonal parts. Clearly, we may assume

in accordance with the above discussion. We will treat the off-diagonal 

contribution as a perturbation and consider the iterated solution.

We rewrite Eq. (7) as

V(K) + ‘l6*x> (13)

T < C X )  « (14)

<■*}} V <*> =  ^ (15)

and take as a first approximation

(16)
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The only nonzero component of t|»0(x) is the elastic coherent scattered 

wave. If the initial prepared states are in their ground states, then 

we solve for the coherent elastic wave from

(17)

and the first approximation is

%<■*>]
oo
o (18)

Estimating the perturbation via use of Eq. (18) we now correct the result 

as

(19)

The right-hand side is a term describing the source of excitation caused 

by the interaction of the coherent amplitude and is of the form

2£cx) if/ tx) =  VI.,.. (20)

Noting that the first component of the source of excitation is zero, we 

see that the equation for the first component of Eq. (19) is

[ V ?  +  k* - <*>] c 7) = O (21)
from which we see that the iteration of the elastic channel obtains again 

the coherent elastic amplitude

(22)
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The remaining components of (19) are

[x7l + V - 1 C  =• y  C+)V<c*) (235

This process of successive iteration is equivalent to the series approxi

mation

fix) ■=. i f  (7> +  fix) + - (24)

where

and

I \7xl + - V i  <*>] ^<*> = 0 (25)

(26)
[v; +  V- -

The iterated solution and series solution are related as

■yjf5<> = - (27)

and the i—  iterate is the i—  partial sum of the series.

Further insight can be gained by considering the formal solution to 

the coupled equations (25) and (26). We introduce the diagonal coherent 

propagator

Qt - [ V S  +  k X ~ %<*>] ; (28)

and the coherent wave operator

n *  I +  ( ? ;  +~kX)'"VZ<*> (29)
c

with which the solution to Eq. (26) is written as
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(30)
and note that

(31)
where i|»p is the entering plane-wave state. The series (24) may now be 

written as

Hie first term is the coherent elastic scattered wave as noted above and 

represents attenuation and propagation of the incident plane wave in 

matter. Since S I is diagonal, this propagation is in undisturbed 

matter. The second term relates to the excitation caused by the presence 

of the coherent elastic wave followed by coherent propagation in disturb

ed matter. Note that the second term has no contribution in the elastic 

channel. The third term relates to further excitation caused by the 

presence of the scattered waves formed exclusively by coherent excitation 

and the first correction to the elastic channel due to incoherent pro

cesses. Hence, the coherent elastic wave is correct up to third-order 

terms in off-diagonal elements of the potential matrix which shows con

siderable damping or suppression at small momentum transfer as shown in 

connection with Eq. (10). This may well be the reason why the coherent
Aftelastic amplitude has been so successful in nuclear applications as 

shown in Chapter IV.

It is obvious from the structure of the second term in the series
49(32), that it is the usual distorted-wave B o m  approximation or single 

inelastic scattering approximation^0 and the entire series could be

(32)
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aptly referred to as the distorted-wave B o m  series. However, recalling 

that the terms of the series correspond to a successively larger number 

of changes in states of excitation (i.e., the first term contains no 

excitation, the second term transforms the coherent elastic wave to the 

excited states, the third term transforms the excited states of the 

second term to new excitation levels and so on); a more appropriate name 

for the series would be the "multiple excitation series."

Pull coupled channel amplitudes. We consider now the solution to 

the coupled equations (7) within a small-angle approximation. We will 

in effect sum the multiple excitation series to all orders and as a final 

result give expressions for the scattering amplitudes connecting all 

possible entrance channels to all possible final channels. Making now 

the forward scattering assumption, we take the boundary condition as

(33)

where -z is the direction to the beam source and 6 is a constant 

vector with a unit entry at the entrance channel element and zero else

where. Equation (33) simply states that no particles are scattered 

backwards. Physically, this assumption is justified since the backward 

scattered component for most high-energy scattering is many orders of 

magnitude less than the forward scattered component. We will seek a 

solution to Eq. (7) of the form

f ( X > =  (sfe)* f (*}]  * (34)

where ^(x) is a matrix with elements connecting all possible entrance
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channels to all possible final channels. The boundary condition (33) 

implies

Z  c?) - o  (35)
2 - 9 - 0 0

as a boundary condition on <K x!> • Using Eq. (34) we may write an 

equation for <|>(x) as

i VMl <*> - [ %  f & ]  ~  ^ *7x ?<») - V W - o  (36)

If V(x) is small compared to the kinetic energy

(37)

and if the change in V(x) is small over one oscillation of the incident 

wave as

^  2?<x) «  k V (38)

where inequalities refer to magnitudes of elements on each side of (37) 

and (38); then we may approximate (36) by

(39)

which has a solution as

4 > W  (40)

where the value a is fixed by the boundary condition (35) to be -® .

We may now write the scattered wave (34) as

t < » =  t t )1 s C4i)
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We note that the wave operator is approximated by

_n_ ~ jrk \Jr  a * ' ]  (42)

The scattering amplitudes are given by
= -J| ?<*> J**

= ^  U V  (43)

where k^ is the final projectile momentum and q the momentum transfer 

is given by

(44)

We define a cylindrical coordinate system with cylinder axis along the 

beam direction and write

x ̂  b + * (45)

where l> is the impact parameter vector and note that

0(«V (46)

where 6 is the scattering angle which we assume small. Using then the 

small angle approximation we obtain

f < v = jl?jt (47)

which we rewrite as

|(J) = *&] - ij Jixb (48)
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where
OO

= ~ % k  \  (49)-OO
Equation (48) gives the matrix of scattering amplitudes of all possible 

entrance channels to all possible final channels of the system.

We may inquire as to the relation between the eikonal result for the 

full scattering amplitude (48) and the various approximate results dis

cussed earlier in this appendix. First, we consider the expansion in 

powers of x the integrand of equation (48)

| i e '1 b [ ‘ * £ ‘X + (50)

The first term is the Born approximation at small angles. Higher-order 

terms are multiple-scattering corrections to the B o m  result. Recall 

that the B o m  approximation for the optical potential is equivalent to 

Chew's impulse approximation. A more interesting result is obtained by 

separating the x matrix into its diagonal and off-diagonal parts as

X ( b ) =  (51)

which corresponds to the diagonal and off-diagonal parts of the matrix 

potential V(x). If we now make an expansion in powers of the off- 

diagonal part of x in equation (48) we obtain

\  ft L « f (  - 1]

~Vti\ ® l' ,b ** (52)

The first term is the elastic coherent amplitude, the second term is the

distorted wave B o m  approximation, and the remaining terms are multiple 

excitation corrections.
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