

W&M ScholarWorks

Dissertations, Theses, and Masters Projects

Theses, Dissertations, & Master Projects

1974

A direct reaction multiple scattering pion-nucleus optical potential

Charles William Lucas College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

Recommended Citation

Lucas, Charles William, "A direct reaction multiple scattering pion-nucleus optical potential" (1974). *Dissertations, Theses, and Masters Projects.* Paper 1539623673. https://dx.doi.org/doi:10.21220/s2-y7ab-b473

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

- The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
- 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again beginning below the first row and continuing on until complete.
- 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
- 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms

300 North Zeeb Road Ann Arbor, Michigan 48106

74-22,287

4

LUCAS, Charles William, Jr., 1942-A DIRECT REACTION MULTIPLE SCATTERING PION-NUCLEUS OPTICAL MODEL POTENTIAL.

and the second second

The College of William and Mary in Virginia, Ph.D., 1974 Physics, nuclear

University Microfilms, A XEROX Company, Ann Arbor, Michigan

A DIRECT REACTION MULTIPLE SCATTERING PION-NUCLEUS OPTICAL MODEL POTENTIAL

A Thesis

Presented to

The Faculty of the Department of Physics The College of William and Mary in Virginia

In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy

> by Charles W. Lucas, Jr. June 1974

.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

Charles W. Lucos Jr Author

Approved, May 1974

William J. Kossler

Morton Eckhause

Edwa emler Remler

Gang Croon Bacq Hans C. von Bacyer

Kaymond W. Southworth

Raymond W. Southworth (Mathematics)

DEDICATED

To my wife, Alice

TABLE OF CONTENTS

		Page
ACKNOWL	EDGMENTS	vi
LIST OF	TABLES	viii
LIST OF	FIGURES	xii
ABSTRAC	T	xvii
CHAPTER		
I.	INTRODUCTION	2
II.	PREVIOUS WORK ON THE PION-NUCLEUS STRONG INTERACTION	
	POTENTIAL	6
	A. Pion-Nucleus Scattering	
	B. Pion-Nucleus Absorption at Very Low Energy	
	C. Pionic Atoms	
III.	DEVELOPMENT OF AN OPTICAL MODEL POTENTIAL FROM A MULTIPLE SCATTERING THEORY	24
	A. Validity of the Multiple Scattering Approach	
	B. Construction of the Multiple Scattering Equations	
	C. Construction of the Interaction Operators	
	D. Projection of the Total Pion-Nucleus Wavefunction onto the Nuclear Ground State	
	E. Summation of the Series of Multiple Scattering Terms	
	F. Formation of the Optical Model Potential	
IV.	ANALYSIS OF PION-NUCLEUS INTERACTION DATA	67
v.	SUMMARY AND CONCLUSIONS	72

APPENDICES

A. Derivation of the Pion-Nucleon and Pion-Nucleon-Pair Interaction Operators in Terms of the Partial Wave	
	75
B. Averages over Nucleon Scattering Operators	94
C. Nucleon-Pair Correlation Length for an Ideal Fermi Gas of Nucleons	9 6
D. Nuclear Density Parameters for Pions from Electron- Nucleus Scattering Data	104
E. Vacuum Polarization Contributions to Pionic Atom Emergy Levels	113
F. Method of Solving the Klein-Gordon Equation for Pionic Atoms	118
G. Fortran Computer Program for Solving the Klein-Gordon Equation for Pionic Atoms	133
H. Method for Determining the Phase Shifts and the Differen- tial Scattering Cross Section for Elastic Scattering	173
I. A Procedure for Averaging the Theoretical Differential Scattering Cross Section over the Finite Angular Resolu- tion of a Physical Detector	176
J. Procedure for Fermi-Averaging the Pion-Nucleon Interaction Amplitudes	179
K. Coordinate Transformation from the Laboratory to the Barycentric Frame of Reference	181
L. Method of Solving the Klein-Gordon Equation for Pion- Nucleus Scattering	184
M. Fortran Computer Program for Solving the Klein-Gordon Equation for Pion-Nucleus Scattering and Calculating the Elastic Differential Scattering Cross Section	191
N. Evaluation of the Invariant Amplitude for Pion-Nucleon Scattering in the Pion-Nucleus CM System	227
REFERENCES	351

ACKNOWLEDGMENTS

With great respect I would like to acknowledge my thesis advisor, Dr. William J. Kossler. He very graciously accepted the responsibility of advising my thesis when it was already well advanced. Wisely he expanded the scope of the thesis to include not only pionic atoms but also pion-nucleus interactions at low and intermediate energies. Without his encouragement and concern this work would never have reached its present state of completion and significance. Also, I would like to acknowledge Dr. Morton Eckhause for originally suggesting this research problem to me.

Many other people have contributed to my understanding of various aspects of the problem of pion-nucleus interactions and the way to properly analyze data. It is not possible to name everyone, but I would like to acknowledge the following: Dr. Judah M. Eisenberg and his group at the University of Virginia for help in the numerical analysis of pionic atom data; Dr. Edward A. Remler for the use of his general least square fitting program SEEK2 which turned out to be very useful in overcoming the problem of strong correlation of fitting parameters for pion-nucleus scattering; Dr. Raymond W. Southworth for suggesting the quasilinearization method to determine the parameter values in the optical potential for pionic atoms; and Dr. Hams C. von Baeyer for helpful discussions on various aspects of pion theory.

Finally, I would like to acknowledge the nuclear physics group at the Catholic University of America, consisting of Dr. Carl W. Werntz,

vi

Dr. Hall L. Crannell, Dr. Herbert Uberall, and Dr. Francesco Cannata, for their expert advice on nearly every aspect of this work, and the privilege of continuing to work on pion-nucleus interactions with their group.

LIST OF TABLES

Table	Page
1. Low Energy S-Wave πN Scattering Lengths	238
2. Low Energy P-Wave TN Scattering Lengths	239
3. Low Energy S-Wave TINN Scattering Lengths	240
4. Low Energy P-Wave 71NN Scattering Lengths	241
5. Summary of Data for Pionic 2p-ls Transitions	242
6. Summary of Data for Pionic 3d-2p Transitions	5144
7. Summary of Data for Pionic 4f-3d Transitions	247
8. Summary of Data for Pionic 5g-4f Transitions	250
9. Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π + on "He at 24 MeV Pion Kinetic Energy in the Lab	251
10. Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π + on ⁴ He at 51 MeV Pion Kinetic Energy in the Lab	252
ll. Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π + on ⁴ He at 60 MeV Pion Kinetic Energy in the Lab	253
12. Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π + on ⁴ He at 68 MeV Pion Kinetic Energy in the Lab	254
13. Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for TI+ on ⁴ He at 75 MeV Pion Kinetic Energy in the Lab	255
14. Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for TF on He at 110 MeV Pion Kinetic Energy in the Lab	256
15. Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for TF on ⁴ He at 150 MeV Pion Kinetic Energy in the Lab	257

Table

16.	Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π^- on ⁴ He at 153 MeV Pion Kinetic Energy in the Lab		•	•	•	•	258
17.	Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π^- on ⁴ He at 180 MeV						-
۱ß	Pion Kinetic Energy in the Lab	•	•	•	•	•	259
10.	in the Pion-Nucleus CM for π on ⁴ He at 220 MeV Pion Kinetic Energy in the Lab	•	•	•	•	•	260
19.	Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for TT on ⁴ He at 260 MeV						_
20.	Pion Kinetic Energy in the Lab	•	•	•	•	•	261
201	in the Pion-Nucleus CM for π^- on 12 C at 27.8 MeV Pion Kinetic Energy in the Lab	٠	•	•	•	•	262
21.	Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π^+ on ^{12}C at 30.2 MeV						
00	Pion Kinetic Energy in the Lab	•	•	٠	•	•	263
22.	in the Pion-Nucleus CM for π^+ on ¹² C at 31.5 MeV Pion Kinetic Energy in the Lab	•	•	•	•	•	264
23.	Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for \mathbf{W}^+ on 12° at 40 MeV						
-	Pion Kinetic Energy in the Lab	•	•	•	•	•	265
24.	Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for Π^+ on ^{12}C at 62 MeV Pion Kinetic Energy in the Lab	•	•	•	•	•	266
25.	Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π^- on 12 C at 62 MeV						
	Pion Kinetic Energy in the Lab	•	•	•	•	•	267
26.	Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π^- on 12C at 69.5 MeV Pion Kinetic Energy in the Lab	•	•	•	•	•	268
27.	Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π^- on ^{12}C at 80 MeV						
0 0	Pion Kinetic Energy in the Lab	•	•	•	•	•	269
20.	in the Pion-Nucleus CM for π^- on ¹² C at 87.5 MeV Pion Kinetic Energy in the Lab	•	•	•	•	•	270

Table

,

Page

29.	Elastic Differential Scattering Cross Section Data						
	in the Pion-Nucleus CM for π^- on 12C at 120 MeV						
	Pion Kinetic Energy in the Tab						271
		•	•	•	•	•	-1-
30.	Elastic Differential Scattering Cross Section Date						
50.	in the Bion Wholeys (M for TT on 120 at 150 May	6					
	In the Fion-Aucteus CM for N onC at 190 Mev						070
	Pion Kinetic Energy in the Lab	٠	•	٠	•	•	273
31.	Elastic Differential Scattering Cross Section Data						
	in the Pion-Nucleus CM for π^- on ^{12}C at 180 MeV						
	Pion Kinetic Energy in the Lab	•	•	•	•	•	274
32.	Elastic Differential Scattering Cross Section Data						
•	in the Pion-Nucleus CM for π^- on ¹² C at 200 MeV						
	Pion Kinetic Energy in the Tab						275
	Tou Vancoace Parally and Parallel and a set of the set of the set	•	•	•	•	•	-17
22	Flactic Differential Contraving Gross Contion Data						
22.	in the Dien Mulaus (W for - on 120 at 020 Mat						
	In the Pion-Nucleus CM for II on 1-C at 230 MeV						07
	Pion Kinetic Energy in the Lab	٠	٠	٠	•	•	276
34.	Elastic Differential Scattering Cross Section Data						
	in the Pion-Nucleus CM for π^- on ^{12}C at 260 MeV						
	Pion Kinetic Energy in the Lab	•	•	•	•	•	277
35.	Elastic Differential Scattering Cross Section Data						
57.	in the Pion-Nucleus CM for TT on ¹² C at 280 MeV						
	Pion Kinetic Energy in the Tab				•		279
	TION MANGATE THETE, IN THE THE TABLE TO THE TABLE	•	•	•	•	•	-12
36	Flactic Differential Contenting Cross Contion Data						
30.	La the Dise Welcon CM den Tt en 160 et 20 Mel		-				
	In the Pion-Nucleus CM IOF II. On a O at 50 MeV						000
	Pion Kinetic Energy in the Lab	٠	٠	٠	٠	•	200
37.	Elastic Differential Scattering Cross Section Data						
	in the Pion-Nucleus CM for TT on 100 at 87.5 MeV						
	Pion Kinetic Energy in the Lab	٠	٠	٠	•	•	281
38.	Elastic Differential Scattering Cross Section Data						
	in the Pion-Nucleus CM for π^- on 160 at 160 MeV						
	Pion Kinetic Energy in the Jab						282
	Them Wardenste must DA and since the state state state state	•	-	-	-	-	
20	Flactic Differential Southering Cross Section Data						
72.	An the Dier Busieve (W for TT" on 100 at 170 MeV						
	In the Fion-Rucieus CM IOF IS ON						080
	Pion Kinetic Energy in the lab	•	٠	•	•	•	203
1							
40.	Elastic Differential Scattering Cross Section Data						
	in the Pion-Nucleus CM for T on 100 at 220 MeV						
	Pion Kinetic Energy in the Lab	٠	٠	•	٠	•	284
41.	Elastic Differential Scattering Cross Section Data						
	in the Pion-Nucleus CM for TT on 160 at 230 MeV						
	Pion Kinetic Energy in the Lab	•	•	•		•	285

Table

Page

42.	Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π^- on 16 O at 240 MeV Pion Kinetic Energy in the Lab	5
43.	Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π^+ on 16 O at 270 MeV Pion Kinetic Energy in the Lab	7
<u>44</u> .	Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π on ⁴⁰ Ca at 205 MeV Pion Kinetic Energy in the Lab	3
45.	Elastic Differential Scattering Cross Section Data in the Pion-Nucleus CM for π^- on ⁴⁰ Ca at 215 MeV Pion Kinetic Energy in the Lab	•
46.	Shift in Energy Levels of Pionic Atoms Due to Vacuum Polarization)

LIST OF FIGURES

,

Figure	Page
1. Deduced Values of "b " from Analyzing Pionic Atom X-Ray	
Transition Data vs. Atomic Number	291
2. Deduced Values of "c " from Analyzing Pionic Atom X-Ray	
Transition Data vs. Atomic Number	292
3. Deduced Values of "B" from Analyzing Pionic Atom X-Ray	
Transition Data vs. Atomic Number	293
4. Deduced Values of "C" from Analyzing Pionic Atom X-Ray	
Transition Data vs. Atomic Number	294
5. Plot of Distorted and Undistorted Pionic Atom 1s Bound State	
Wavefunctions for ¹⁶ 0	295
6. Plot of Local and Nonlocal Real Parts of the Optical	
Potential for ¹⁶ 0	296
7. Plot of Local and Nonlocal Imaginary Parts of Optical	
Potential for $0 \ldots $	297
8. Plot of Distorted and Undistorted Pionic Atom 2p Bound State	
Wavefunctions for 40 Ca	. 298
9. Real ("b") vs. T_{π} for ⁴ He, ¹² C, ¹⁶ O, and ^{4O} Ca	299
10. Imaginary ("b") vs. T_{Π} for He , L^2C , L^6O , and Ca	, 300
11. Real ("c") vs. T_{TT} for He, 12, 16, and 40 Ca	301
12. Imaginary ("c,") vs. T_{TT} for He, ¹² C, ¹⁶ O, and ⁴⁰ Ca	, 302
13. Fermi-averaged Value of Real (b ₀) vs. T_{Π} as Determined from	
Three Sets of WN Phase Shifts	, 303

Figu	re	Page
14.	Fermi-averaged Value of Imaginary (b_0) vs. T_{T} as Determined	
	from Three Sets of WN Phase Shifts	304
15.	Fermi-averaged Value of Real (c) vs. $T_{\overline{11}}$ as Determined from	
	Three Sets of TIN Phase Shifts	305
16.	Fermi-averaged Value of Imaginary (c) vs. T_{TT} as Determined	
	from Three Sets of TIN Phase Shifts	30 6
17.	Fermi-averaged Value of Real (d_0) vs. T_{TT} as Determined from	
	Three Sets of TIN Phase Shifts	307
18.	Fermi-averaged Value of Imaginary (d_0) vs. T_{Π} as Determined	
	from Three Sets of TIN Phase Shifts	308
19.	Predicted Elastic Differential Scattering Cross Section for	
	π on He at 24 MeV	309
20.	Predicted Elastic Differential Scattering Cross Section for	
	π^+ on ⁴ He at 24 MeV	310
21.	Predicted Elastic Differential Scattering Cross Section for	
	π on ⁴ He at 51 MeV	311
22.	Predicted Elastic Differential Scattering Cross Section for	
	π^+ on He at 51 MeV	312
23.	Predicted Elastic Differential Scattering Cross Section for	
	TT on He at 60 MeV	313
24.	Predicted Elastic Differential Scattering Cross Section for	
	TT^{\dagger} on ⁴ He at 60 MeV	314
25.	Predicted Elastic Differential Scattering Cross Section for	
	TT on He at 68 MeV	315
26.	Predicted Elastic Differential Scattering Cross Section for	
	\mathbf{T}^{\dagger} on He at 68 MeV	316

.

Figure

27.	Predicted Elastic Differential Scattering	Cross	Section	for	
	TT on He at 75 MeV \ldots	• • •	••••	•••	317
28.	Predicted Elastic Differential Scattering	Cross	Section	for	
	TT^+ on He at 75 MeV \ldots \ldots	• • •	• • • •	• • •	318
29.	Predicted Elastic Differential Scattering	Cross	Section	for	
	TT on He at 110 MeV \ldots	• • •	• • • •	• • •	319
30.	Predicted Elastic Differential Scattering	Cross	Section	for	
	TT on He at 150 MeV \ldots \ldots	• • •	• • • •	• • •	320
31.	Predicted Elastic Differential Scattering	Cross	Section	for	
	$T\overline{T}$ on He at 153 MeV	• • •	• • • •	• • •	321
32.	Predicted Elastic Differential Scattering	Cross	Section	for	
	TT on He at 180 MeV	• • •		• • •	322
33.	Predicted Elastic Differential Scattering	Cross	Section	for	
	TT on He at 220 MeV	• • •	• • • •		323
34.	Predicted Elastic Differential Scattering	Cross	Section	for	
	TT on He at 260 MeV \ldots \ldots	• • •	• • • •	• • •	324
35.	Predicted Elastic Differential Scattering	Cross	Section	for	
	$TT = on = 12C \text{ at } 27.8 \text{ MeV} \dots$	• • •	• • • •	• • •	325
36.	Predicted Elastic Differential Scattering	Cross	Section	for	
	π^+ on ¹² C at 30.2 MeV	• • •	• • • •	• • •	326
37.	Predicted Elastic Differential Scattering	Cross	Section	for	
	π^+ on ¹² C at 31.5 MeV	• • •	• • • •	• • •	327
38.	Predicted Elastic Differential Scattering	Cross	Section	for	
	π^+ on ¹² C at 40 MeV	• • •	• • • •	• • •	328
39.	Predicted Elastic Differential Scattering	Cross	Section	for	
	π^+ on ¹² C at 62 MeV	• • •	• • • •		329

Fi	.guı	re

-		Page

40.	Predicted Elastic Differential Scattering	Cross	Section	for		
	π^- on ¹² C at 62 MeV	• • •	• • • •	••	•	330
41.	Predicted Elastic Differential Scattering	Cross	Section	for		
	π^- on ¹² C at 69.5 MeV	• • •	• • • •	••	•	331
42.	Predicted Elastic Differential Scattering	Cross	Section	for		
	π^{-} on C at 80 MeV	• • •	• • • •	••	•	332
43.	Predicted Elastic Differential Scattering	Cross	Section	for		
	TT^{-} on ¹² C at 87.5 MeV	• • •	• • • •	• •	•	333
44.	Predicted Elastic Differential Scattering	Cross	Section	for		
	TT on C at 120 MeV	• • •	• • • •	• •	•	334
45.	Predicted Elastic Differential Scattering	Cross	Section	for		
	π^- on C at 150 MeV	• • •	• • • •	• •	•	335
46.	Predicted Elastic Differential Scattering	Cross	Section	for		
	$\mathbf{T}^{-} \mathbf{on} \overset{12}{C} \mathbf{at} 180 \mathbf{MeV} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	• • •	• • • •	• •	•	3 3 6
47.	Predicted Elastic Differential Scattering	Cross	Section	for		
	π on ¹² C at 200 MeV	• • •	• • • •	• •	•	337
48.	Predicted Elastic Differential Scattering	Cross	Section	for		
	π^- on ¹² C at 230 MeV	• • •	• • • •	••	•	338
49.	Predicted Elastic Differential Scattering	Cross	Section	for		
	$TT on C at 260 MeV \dots \dots$	• • •	• • • •	• •	•	339
50.	Predicted Elastic Differential Scattering	Cross	Section	for		
	π on ¹² C at 280 MeV	• • •	• • • •	• •	•	340
51.	Predicted Elastic Differential Scattering	Cross	Section	for		
	π^+ on 0 at 30 MeV	• • •	• • • •	• •	•	341
52.	Predicted Elastic Differential Scattering	Cross	Section	for		
	TI^- on ¹⁶ 0 at 87.5 MeV	• • •		• •	•	342

Figure

Page

53.	Predicted Elastic	Differential Scattering Cross Section for	r	
	π^- on ¹⁶ 0 at 160	MeV	••	343
54.	Predicted Elastic	Differential Scattering Cross Section for	r	
	π^- on ¹⁶ 0 at 170	MeV	• •	344
55.	Predicted Elastic	Differential Scattering Cross Section for	r	
	π^{-} on ¹⁶ 0 at 220	MeV	• •	345
56.	Predicted Elastic	Differential Scattering Cross Section for	r	
	π on ¹⁶ o at 230	MeV	• •	346
57.	Predicted Elastic	Differential Scattering Cross Section for	r	
	π on ¹⁶ 0 at 240	MeV	• •	347
58.	Predicted Elastic	Differential Scattering Cross Section for	r	
	π^+ on ¹⁶ 0 at 270	Me∀	• •	348
59.	Predicted Elastic	Differential Scattering Cross Section for	r	
	π on Ca at 20)	5 MeV • • • • • • • • • • • • • • • • • • •	• •	349
60.	Predicted Elastic	Differential Scattering Cross Section for	r	
	T on Ca at 21	5 MeV • • • • • • • • • • • • • • • • • • •	• •	350

.

•

.

ABSTRACT

The purpose of this work is to derive an on-shell pion-nucleus optical model potential from multiple scattering theory in terms of πN ³⁴ and πNN interaction amplitudes and to demonstrate that this Kisslinger type potential is adequate to satisfactorily describe pion-nucleus interaction data. The derivation of the potential leads naturally to a form of the Lorentz-Lorenz effect with contributions due to virtual charge exchange and virtual spin flip. Also the derivation properly accounts for some aspects of nucleon motion and includes relativistic kinematical factors like $1 + E\pi/m_{\rm N}$. Using the Fermi-averaged πN amplitudes of N 20 Donnachie and Shaw¹²¹ and the calculated πNN amplitudes of Dover, one finds that the potential qualitatively and quantitatively describes rather satisfactorily the pion-nucleus interaction data for He, ⁴C, ¹⁶O, and ⁴⁰Ca for laboratory pion kinetic energy from 0-280 MeV.

xvii

A DIRECT REACTION MULTIPLE SCATTERING PION-NUCLEUS OPTICAL MODEL POTENTIAL

CHAPTER I

INTRODUCTION

This thesis derives an on-shell pion-nucleus strong interaction optical model potential from multiple scattering theory in the impulse approximation and demonstrates the capability of this Kisslinger³⁴-type potential to describe pion-nucleus strong interactions over a wide energy range. By formulating the on-shell pion-nucleus optical potential in terms of the TN and TNN interaction amplitudes, one obtains an optical potential with no free parameters. The usefulness of the potential is checked by analyzing some recent experiments on pionic atoms¹⁻⁷ and some precise measurements of the pion-nucleus elastic differential scattering cross sections on ⁴He, ¹²C, ¹⁶O, and ⁴⁰Ca at a variety of emergies.⁸⁻¹⁴

The use of pions to study nuclei via the pion-nucleus interaction has developed slowly since the discovery of the pion in 1947. This has been largely due to experimental limitations. At first pion beams were low in intensity and poor in emergy resolution. As a result the early experiments yielded poor statistics. Recently, however, much improved pionic atom experiments for a wide variety of muclei have been performed at CERN⁷ and SREL.^{1.4} In addition to these very low energy experiments, some pion-nucleus elastic scattering experiments of good precision and angular resolution have been performed in the energy range 30-300 MeV for such muclei as ⁴He, ¹²C, ¹⁶O, and ⁴⁰Ca.⁸⁻¹⁴ In the near future some of the new high intensity accelerators, the so-called "meson factories" such as LAMPF, ¹⁵ SIN, ¹⁶ Nevis, ¹⁷ and TRIUNF, ¹⁸ will

become operational with beam currents several orders of magnitude larger than those currently available. Then a large quantity of scattering data with good statistics will be taken for many nuclei, and it will be possible to study systematically the pion-nucleus differential scattering cross sections from nucleus to nucleus to see what effect the structure of the nucleus has on the scattering of pions.

In Chapter II a survey of the previous work on the pion-nucleus strong interaction optical model potential that is compatible with this work is presented. Section A covers the analysis of the early pionnucleus scattering experiments. Section B deals with the absorption of pions by the nucleus. Section C summarizes the more recent work on pionic atoms.

A pion-nucleus optical model potential is developed in Chapter III using multiple scattering theory and the impulse approximation. This development, which is similar to that of Ericson and Ericson,¹⁹ differs fundamentally from their work in that it sums the infinite series of multiple scattering equations assuming that only two nucleon correlations are important. The Ericsons truncate the series with an approximation that is strictly valid only for crystalline structures. Their quasicrystalline approximation leads to a different form for the Lorentz-Lorenz effect than is obtained in this work. Hufmer¹⁶⁸ has obtained a form for the Lorentz-Lorenz effect in agreement with this work.

Chapter IV contains an amalysis of pionic atom x-ray transition 4 12 16 40 data for He, C, O, and Ca using the optical model potential developed in Chapter III. The analysis indicates that inclusion of the two-mucleon correlations is sufficient to describe the experimentally observed pionic atom energy level shifts. Use of the predicted absorption

parameters for absorption on nucleon pairs by Dover²⁰ is sufficient to explain the discrepancy between the predicted and experimentally observed pionic atom energy level absorption rates as noted by many investigators.²¹⁻²³

The elastic pion-nucleus differential cross sections for He, 12, 16, 40 C, 0, and Ca for various pion energies are also analyzed in Chapter IV. In this case the energy-dependent Fermi-averaged πN amplitudes of Donnachie and Shaw 121 are used in the potential and a differential cross section is predicted for each nucleus at each of the measured energies in the range 24-280 MeV. The predicted differential cross sections are in good agreement with the experimentally measured values if one normalizes the experimentally measured values to the theoretically predicted cross section.

This work is essentially an extension of the work of Auerbach, Fleming, and Sternheim²⁴ who analyzed the elastic pion-mucleus differential scattering cross sections up to 87.5 MeV. Taking into account only s- and p-wave parts of the pion-mucleon interaction, the present analysis indicates that the contributions for two-nucleon correlation effects like virtual charge exchange and virtual spin flip become less important with increasing energy. As a result the pion can only be used as a probe of the long range Pauli correlations at very low energy.

Chapter V gives a summary of the results obtained from analyzing the pionic atom data and the elastic pion-nucleus scattering data. The chapter concludes by enumerating the possible future applications of the optical potential for investigating other reaction processes.

The details of the method of analysis used in Chapter IV and a Fortran listing of the computer programs employed are given in the

Ь,

appendices. In addition, appendices A and C contain explicit derivations of such important quantities as the TN and TNN scattering operators and the nucleon-pair correlation length for an ideal Fermi gas of nucleons. Appendix D gives the method of obtaining all the relevant nuclear density parameters for pions from the electron scattering nuclear charge density parameters.

CHAPTER II

PREVIOUS WORK ON THE PION-NUCLEUS STRONG INTERACTION POTENTIAL

A. Pion-Nucleus Scattering

The fundamental approach to the pion-nucleus strong interaction problem is given by the field theoretic method. Unfortunately no satisfactory Hamiltonian formalism for pion-nucleus interactions has been developed. Most of the work in the field has concentrated on the much simpler pion-nucleon interaction problem.

Despite the small progress of the purely field theoretic approaches to the pion-nucleus interaction, researchers have found it possible to describe the experimental pion-nucleus strong interaction data in terms of phenomenological pion-nucleus potentials. Recent theories leading to a phenomenological pion-nucleus potential have been predominantly direct reaction theories based on the impulse approx-25 imation, the optical model, and multiple scattering.

A direct reaction is a reaction in which the incident particle reacts with only a part of the nucleus, while the rest remains undisturbed. In other words, a direct reaction involves only some of the degrees of freedom of the nucleus. A compound reaction, by contrast, involves many more degrees of freedom and proceeds more slowly. Direct reactions take place in times of the order of transit times of nucleons across nuclei, which are typically 10^{-22} sec.

According to the impulse approximation the scattering amplitudes $f_{2J,2T}$ for pions incident on free and bound groups of nucleons are the same except for kinematical factors due to one group being bound. From $_{26}^{26}$ Goldberger and Watson's book pp. 86 and 658 one sees from the Lorentz transformation of the T matrix that

(II-1)
$$(f_{2J,2T})_{bound} \cong \left(\frac{1 + \frac{En}{M_{3roup}}}{(1 + \frac{En}{M_{MVC}})} \right) (f_{2J,2T})_{free}$$

The two amplitudes are nearly the same due to the smallness of the pion mass compared to that of a nucleon or group of nucleons.

An optical model is one that is capable of describing the partial absorption and transmission of an incident wave or particle. The optical model leads to a complex potential for describing the scattering and absorption of some particle such as a pion by a nucleus. Usually the optical model potential represents the interaction in the elastic channel only, i.e. for the nucleus in its ground state with no transfer of energy from the incident particle. One of the first optical model calculations for pion-nucleus elastic scattering was performed in 1952 $\frac{27}{27}$ by Byfield <u>et al</u>. in which they fitted 62 MeV T- carbon elastic scattering data. The pion-nucleus interaction was representated by the complex potential

(II-2)
$$V(r) = \begin{cases} -V_0 - iW & r \le R \\ 0 & r > R \end{cases}$$

where R = 1.37 A 1/3 f is the uniform radius of the nucleus.

In multiple scattering theory the nucleus may be treated as a system containing elementary subsystems such as nucleons, nucleon pairs, alpha particles, etc. The interaction of the pion with the nucleus is obtained by summing the interactions of the pion with the elementary subsystems being careful not to double count. This approach separates the elementary interaction problem from that of the structure of the nucleus. Using theoretical or experimental knowledge about the elementary interaction, one can gain information about the structure of the nucleus from pion-nucleus interaction data.

A multiple scattering formalism based on the Schroedinger 26equation has been developed by Watson and others. In many multiple scattering theories the scattering operator T is expressed in terms of two-body scattering operators t_j which act only on the pion and the j-th elementary scatterer bound in the nucleus. The single scattering approximation for scattering from individual bound nucleons consists of taking

(II-3)
$$T = \sum_{j=1}^{A} t_j$$

28,29 where A is the number of nucleons in the nucleus. Watson <u>et al</u>. show how to calculate the pion-nucleus potential from basic pionnucleon scattering amplitudes in the single scattering approximation. The single scattering approximation may be considered as the lowest order contribution to a series of more complex interactions of the pion with the nucleus. It is the first term in the multiple scattering series.

The multiple scattering optical model pion-nucleus potential was 30,31first used to analyze elastic scattering data. Several attempts were made in the years 1952-1956 to fit a complex square well optical model potential to the pion-nucleus scattering experiments for 60 \leq $T_{\pi} \leq 150$ MeV. All experienced the same difficulty, namely that while the differential cross section for small angles $\Theta \leq 60^{\circ}$ could be fit fairly well, the fit at larger angles was always too small.

32,33

Baker et al. analyzed the data on scattering of 80 MeV pions by Li, C, and Al using a variety of <u>local</u> complex potentials with sharp and diffuse surface shapes. They found that even a local potential with the more realistic Woods-Saxon shape did not significantly improve the fit for the differential cross section for angles greater than 60° .

In order to improve the predicted differential scattering cross 34 section at large angles Kisslinger made a simple extension of Watson's single scattering approximation which is useful for low energy pionnucleus scattering for which s- and p-wave pion-nucleon scattering dominate. He took into account the momentum dependence of the pionnucleon interaction by writing the pion-nucleon scattering operator

(II-4)
$$t(k',k) = ts + tp K k'$$

Using this one obtains an optical potential which has the configuration space form

(II-5)
$$V(r) \propto A_s e(r) - A_r \vec{\nabla} \cdot (er) \vec{\nabla}$$

where the gradient term gives rise to a nonlocal contribution.

Baker et al. in analyzing their data in 1958 on scattering of 80 MeV pions did find that a nonlocal potential of the Kisslinger form with adjustable complex parameters for the strength of the volume and gradient terms predicted larger differential cross sections at large angles in substantially better agreement with the experimental data.

Three years later Edelstein et al. performed π elastic scattering experiments on carbon at 69.5 and 87.5 MeV and on oxygen at 87.5 MeV with improved energy resolution. They also found that the Kisslinger form of the potential with adjustable parameters was capable

35

of describing the scattering data at large angles.

36 Similar work by Valckx <u>et al.</u> with TT^+ scattering on C and O at 87 MeV gave support to the Kisslinger form of the potential. The success of the Kisslinger form of the potential with adjustable parameters in fitting the differential cross section for large angles indicated the importance of the gradient terms derived from p-wave pion-nucleon scattering, but unfortunately these parameters could not be predicted in terms of the TN scattering amplitudes.

The work of Kisslinger was extended by Kerman and Logan in 1964 to include elastic charge-exchange scattering, where the nucleus is scattered to various states of the isotopic multiplet of which the ground state of the target nucleus is a member. For the case of inelastic charge exchange the nucleus is scattered from one isotopic multiplet to another. Actually elastic charge exchange is not purely elastic, since there is a difference in energy in the various charge states of an isobar due to Coulomb effects, and the mass of the TT° is different from that of the charged pions.

Kerman and Logan's extension of Kisslinger's pion-nucleon scattering amplitude has the form

$$(II-6) \quad \underline{t}_{i} (\underline{k}, \underline{k}') = (A + B \underline{t}_{\overline{n}} \cdot \underline{\tau}_{i}) + (C + D \underline{t}_{\overline{n}} \cdot \underline{\tau}_{i}) \underline{k} \cdot \underline{k}'$$

where A, B, C, and D are functions of the s- and p-wave πN phase shifts and $\underline{t}_{\overline{4}}$ and $\underline{7}_{\overline{1}}$ are isotopic spin operators for the pion and the i-th nucleon respectively. The $\underline{t}_{\overline{4}} \cdot \underline{7}_{\overline{1}}$ terms, which may be written in terms of isospin raising and lowering operators as

(II-7)
$$t_n \cdot T_i = \frac{t_+ T_- + t_- T_+}{2} + t_3 T_3$$

give rise to the elastic charge exchange scattering. With this extension one obtains an optical potential with the spatial form

(II-8)
$$V(r) \propto A' e_p(r) + B' e_n(r) + \nabla \cdot (c' e_p(r) \nabla) + \nabla \cdot (b' e_n(r) \nabla)$$

where $C_p(r)$ is the proton density and $C_{M}(r)$ is the neutron density. 37As a first approximation Kerman and Logan assumed that the neutron and proton densities were the same. Then the potential may be written in the form

(II-9)
$$\forall (v) \land (A + B \stackrel{t_n \cdot T}{\xrightarrow{n}}) e(v) + \nabla \cdot \left\{ (C + D \stackrel{t_n \cdot T}{\xrightarrow{n}}) e(v) \lor \nabla \right\}$$

where T is the total isotopic spin of the nucleus, N is the number of nucleons, and $\mathcal{C}(\mathbf{r})$ is the nucleon density. This form is often used 19,21-23 in the analysis of pionic atom energy level shifts, and it describes the isotopic spin dependence of the data well.

38

In 1968 Chivers <u>et al</u>. measured cross sections for single charge exchange (π^+,π°) at 180 MeV on several light nuclei. Because of the difficulty of detecting the π° by means of its decay into two photons, they measured the cross section by an activitation experiment in which the residual target nucleus state is identified by its radioactivity. From these measurements one notices that the (π^+,π°) cross section is largest where the final target has a bound state which is an isobaric analog of the initial state. This implies a favoring of $\Delta T = 0$ elastic scattering.

In 1967 Auerbach <u>et al</u>. made the first serious attempt to compare the parameters obtained from fitting elastic pion-nucleus differential scattering cross section data using an optical model potential of the Kisslinger form with that expected from TN scattering. They obtained best fit parameters close to those predicted from πN phase shifts in the energy region 24 < T_{π} < 87.5 MeV.

Three years later Krell and Barmo extended the analysis of 24Auerbach et al. for C to the energy region $120 < T_{\Pi} < 280$ MeV. Their best fit parameters showed some deviations from those expected from π N phase shifts, but their fits to the differential cross sections 24were poorer than those of Auerbach et al.

In 1972 Bercaw et al. fit their differential scattering data for π^- on 16 O in the energy range 160 < T_{π} < 240 MeV. Their best fit parameters showed drastic deviations from those expected from πN phase shifts. They found that the parameters in the Kisslinger form of the potential are strongly correlated and not well determined by the data 39 24contrary to the earlier work of Krell and Barmo and Auerbach et al.

Brueckner suggested in 1955 an effect which should also contribute to the pion-nucleus elastic scattering, particularly in the case of pionic atoms. He noted that nuclei absorb pions and that if a nucleus absorbed and subsequently emitted a slow pion, then the process would contribute to the elastic scattering amplitude. This effect had not been included in previous forms of the multiple scattering series. since the intermediate state of the system between absorption and emission contains no pion, and there was always one pion propagating through the system in previous forms of elastic multiple scattering 41 theory. Thouless pointed out that it was also possible for the emission to occur before the absorption. In this case the intermediate 41 40 state has two pions. Brueckner and Thouless made estimates of the effect of absorption on the elastic scattering based on a simple model for absorption of the pion by two nucleons in a deuteron-like state in

the nucleus. They concluded that the absorptive process's contribution to the elastic scattering amplitude could be as large as the absorption amplitude itself.

In 1969 Krell and Ericson, following the suggestion of Drell, 42 Lipkin, and de Shalit, introduced a type of double charge exchange called virtual charge exchange. This process may be represented by

21

where the pion interacts with two closely correlated nucleons. The virtual charge exchange term makes a significant contribution to the local part of the pion-nucleus potential.

In addition to the term for virtual charge exchange, Ericson and 19 Ericson introduced in 1966 a double scattering term to represent coherent scattering from two correlated nucleons. This double scattering term taken together with that of the virtual charge exchange gives rise to a contribution to the local part of the optical model potential proportional to

(11-10)
$$\int_{a}^{2} (A^{2} + \pi B^{2}) e(\bar{r})$$

where the B^2 term is due to virtual charge exchange and S^2 is the average nucleon-pair correlation length.

Following the observation of Kroll that the derivation of the 33 Kisslinger form of the pion-nucleus potential by Baker et al. with arguments which were classical in nature should lead to results analogous to electric dipole scattering in a polarizable medium, the Ericsons obtain for the nonlocal part of the optical potential a nonlinear dependence on the density of scatterers giving rise to a contribution proportional to

(II-11)
$$\nabla \cdot \left[\frac{\left(C + D \frac{t_{\Pi} \cdot T}{N}\right) e(v)}{1 + \frac{4\pi}{3} \eta \left(C + D \frac{t_{\Pi} \cdot T}{N}\right) e(v)} \right] \nabla$$

where the correlation parameter η is a measure of the polarization of the medium. For a medium of uniformly smoothly distributed protons and neutrons $\eta = 0$, but the granular structure of nuclear matter leads to $\eta \neq 0$ such that very short range anti-correlations between nucleons result in $\eta = 1$.

In order to obtain an optical model potential like those above one needs the elementary TN scattering amplitudes. These amplitudes may be measured experimentally or obtained from theory. There are two dynamical approaches, not based on Hamiltonians, which have been used to predict the WN scattering amplitudes. One is dispersion theory which has been reviewed by Hamilton. Dispersion relation theory is important, because it provides one with methods which make it possible to treat the dynamics of strong interaction. The other dynamical approach which has been applied to low energy pion-nucleon scattering is Current Algebra theory and the "soft pion" approximations. It is important for pion-nucleon scattering, because it gives a reasonable prediction for the s-wave pion-nucleon scattering amplitudes. The Current Algebra theory has been reviewed by Adler and Dashen.

B. Pion-Nucleus Absorption at Very Low Energy

Most of the theoretical work on pion-nucleus absorption as a direct reaction at very low energy has been confined to a model in which two nucleons in the nucleus absorb the pion, share the rest energy between them, and leave the residual nucleus without scattering from it. 47This model was used by Brueckner, Serber, and Watson in 1951 to relate the absorption probability to two-nucleon structure in the nucleus. They suggested that the two-nucleon absorption process requires such a close correlation of two nucleons in the nucleus that they must be in relative s-states.

Some direct evidence on the two-nucleon emission following pion 48absorption was first obtained in 1960 by Ozaki <u>et al.</u> who observed the n-n and n-p pairs from stopped π^- absorbed in C and al. Using counters which were sensitive to neutrons with $E_n > 10$ MeV and protons with $22 < E_p < 112$ MeV, they found that n-n pairs were more probable then n-p pairs by a ratio of 3.9 ± 1.2 in Al and 5.0 ± 1.5 in C.

In 1968 Nordberg, Kinsey, and Burman investigated the nucleon pairs emitted when a beam of TT was stopped in a variety of light 48 nuclei using an apparatus similar to that of Ozaki et al. but with much improved angular resolution. The relative angular distribution of the two nucleons emitted in the subsequent pion absorption was measured and found to peak at 180° supporting the two-nucleon model of the absorption process. However these emissions were found to account for 49 less than half of the total absorption. Also Nordberg et al. found that within the limit of their energy resolution the spectra of the call

emitted nucleons were not sensitive to details in the nuclear structure of the target nuclei. It may be that final state interactions account for the loss of emitted pairs and the loss of information related to 50 the nuclear structure of the target nuclei. Bertini noted from a study of T nucleus absorption data that the ratio of emitted n-n to n-p pairs upon pion absorption is considerably different from the ratio of n-p to p-p pairs that initially absorb the TT, indicating a masking of the original nuclear structure by the final state interactions. The effect of the final state interactions can be removed by performing a simultaneous total energy measurement on the two emitted ...

The existence of final state interactions is also supported by 51 the work of Anderson et al. in which they obtained neutron spectra for $1.8 < E_n < 150$ MeV using time-of-flight counters for stopped $\pi^$ absorbed by C, Al, Cd, Pb, and U. The mean number of neutrons emitted per absorption in the energy range 1.8 to 150 MeV was measured to be 2.8 ± 0.3 , 3.2 ± 0.3 , 3.6 ± 0.4 , 3.5 ± 0.4 , and 5.0 ± 0.5 for C, Al, Cd, Pb, and U respectively. They found that the emitted neutron energy spectra are characterized by a low-energy "evaporation" part and a high energy part due to "direct" neutron emission. This description is 52-55 that the capture of stopped π^- mesons in derived from the notion complex nuclei is a two step process. First the TT is captured by a pair of nucleons. Then the two nucleons share the pion's rest energy and initiate nuclear cascades in which one or more nucleons are ejected by direct emission. The energy that is not carried away by the direct emission is distributed among the remaining nucleons, raising the residual nucleus to a high temperature from which it deexcites by
evaporating particles. Rosen has found experimental support for the notion of a nucleon evaporation spectrum from his study of neutron emission from selected nuclei bombarded with 14 MeV neutrons. A good review of the evidence for neutron evaporation spectra from low energy 57 neutron scattering experiments has been written by LeCouteur.

Weisskopf suggested that the evaporation from a nucleus in a given state of excitation should follow a Maxwellian distribution law with a temperature appropriate for the density of levels in the residual nucleus. However in an evaporation cascade in which several nucleons are emitted in series, the nucleus should cool appreciably with the emission of each particle, and consequently the energy spectrum should 59,60deviate from the Maxwellian form. LeCouteur has derived a formula for the spectra at very low energies based on an improved statistical theory of emission of neutrons by evaporation from a nucleus of temperature Θ

(II-12)
$$N(E_N) \propto E_N e^{\frac{5}{11} - E_N/\Theta}$$

58

Anderson et al. fit their data with values of Θ ranging from 1.78 to 4.02 MeV, where Θ represents approximately the mean excitation energy per nucleon for a nucleus in equilibrium after absorbing the 51 pion. After Anderson et al. subtracted this evaporation spectrum from the experimental spectrum, the mean number of neutrons emitted per pion absorption was reduced to approximately 2 for all nuclei.

Another type of experiment that has been done to see if there is some other process for pion absorption at very low energy besides absorption on pairs involves looking at the heavier particles emitted upon absorption. In particular for π absorption by He the nonradiative possibilities are

56

$$\pi^{-} + {}^{4}He \longrightarrow P + 3M$$

$$(II-13) \longrightarrow d + 2M$$

$$\longrightarrow t + M$$

The last possibility is a two-body breakup, so the triton has a unique energy. For the p and d cases the energies of the charged particles are distributed smoothly. Thus in the charged particle energy spectrum the triton branch appears as a sharp peak on a smooth background of 61 protons and deuterons. Ammiraju and Lederman used this idea and looked for tritons. They found few triton events and consequently assigned a branching ratio of 1/60 for this mode of absorption. Schiff performed a hydrogen bubble chamber experiment on dissolved et al. ⁴He and found a large triton peak with branching ratio 1/3. In order to resolve the discrepancy between these two experiments Bizzari et al. and Bloch et al. performed very precise He bubble chamber experiments to obtain triton branching ratios of 18.4 ± 1.4 % and 19.4 + 1.8 % respectively. 65

In a similar vein Zaimidoroga <u>et al</u>. measured the branching ratios for $\frac{3}{\text{He}}$ obtaining

A π absorption experiment on nuclei in emulsion (C,N,O,Ag,Br) 66 has been performed by Vaisenberg et al. in which the emitted protons, deuterons, and tritons were separated and their energy spectra crudely measured. The branching ratios for p, d, and t were measured for absorption at rest in the light nuclei (C,N,O) and in the heavy nuclei (Ag,Br). The large branching ratios obtained for emission of d and t 67 68,69 have been interpreted by Shapiro and Kolybasov and Kolybasov as evidence for direct pion absorption on virtual alpha particles in the nucleus. Thus the process of pion absorption at low energy on pairs of nucleons is complicated by the possibility of pion absorption on virtual alpha particles and other clusters in the nucleus.

Eckstein first suggested a model for handling pion absorption on nucleon pairs in which the unknown short range nucleon-nucleon correlation is simply replaced by some specific short-range function such as a delta function. In particular she assumed that the pion wave $\frac{71}{10}$

$$(II-15) \quad \Psi^{i} \mid 0 > = \Psi(r) \delta(\vec{r} - \frac{\vec{r}_i + \vec{r}_i}{2}) \delta(\vec{r}_i - \hat{r}_i) \mid 0 >$$

where $|0\rangle$ represents the nuclear ground state and $\dot{\vec{r}}_i$ and $\dot{\vec{r}}_j$ are the positions of the i-th and j-th nucleons respectively. For s-wave absorption on nucleon pair ij, the scattering operator may be written in terms of the invariant products of the dynamical variables with the proper symmetry

$$(II-16) \quad \underbrace{f_{ij}}_{ij}(Y) = B_0 + B_1 \nabla i \cdot \nabla j + B_2 \underbrace{\eta}_{i} \cdot \underbrace{\eta}_{i} + B_3 (I - \nabla j \cdot \underbrace{\eta}_{i} \cdot \underbrace{\eta}_{i}) \underbrace{t_n}_{n} \cdot \underbrace{\eta}_{i} + \underbrace{\eta}_{i} + \underbrace{\eta}_{i} + \underbrace{\eta}_{i} \cdot \underbrace{\eta$$

where ∇_i ; is the Pauli spin operator for the i-th nucleon, $\underline{\gamma}_i$; is the isotopic spin operator for the i-th nucleon, and $\underline{\zeta}_{\underline{\gamma}}$ is the isotopic spin operator for the pion. The explicit relationship between the B's and the s-wave $\underline{\gamma}$ NN amplitudes is derived in Appendix A. For a spin zero N = Z nucleus Eckstein's model for absorption gives rise to the

19

potential term

where B is pure imaginary.

72

M. Ericson extended Eckstein's model to include absorption of p-wave pions on correlated nucleons by adding a p-wave part to $f_{ij}(r)$, i. e.

$$(II-18) \qquad \frac{k \cdot k}{k^2} \left[C_0 + C_1 \overline{v_1} \cdot \overline{v_3} + C_2 \overline{v_1} \cdot \overline{v_3} + C_3 (I - \overline{v_1} \cdot \overline{v_3}) t_{\overline{v_1}} \cdot (\overline{v_1} + \overline{v_3}) \right. \\ \left. + C_4 (\overline{v_1} \cdot \overline{v_3}) (\overline{v_1} \cdot \overline{v_3}) + C_5 (I - \overline{v_1} \cdot \overline{v_3}) [(t_{\overline{v_1}} \cdot \overline{v_1}) + (t_{\overline{v_1}} \cdot \overline{v_3}) (t_{\overline{v_1}} \cdot \overline{v_3})] \right]$$

where the C's are explicit functions of the p-wave π NN amplitudes derived in Appendix A. For a spin zero N = Z nucleus, the work of Eckstein plus that of M. Ericson gives rise to the potential term in configuration space

(II-19)
$$\mathcal{B}_{\bullet} e^{\mathcal{H}} \mathcal{H} + \nabla \cdot \left[c_{\bullet} e^{\mathcal{H}} \nabla \right]$$

This is essentially the form of the absorptive part of the optical potential that has been most extensively used in fitting to pionic 19,21-23 atom data.

C. Pionic Atoms

Soon after the work on the pion-nucleus optical potential by 34 Kisslinger and others began to describe pion-nucleus elastic scattering with some success, an attempt was made to apply it to predicting the energy level shifts and widths of pionic atoms due to the strong interaction. The fact that the shifts and widths were small compared to the energy level spacing due to the electromagnetic interaction suggested that the strong interaction might be treated as a perturbation on the 73 electromagnetic interaction. Deser et al., Brueckner, and Ivanenko and Pustovalov tried to predict the strong interaction pionic atom energy level shifts and widths from the low energy TIN scattering phase shifts using first order perturbation theory. In their predictions the energy level shifts and widths had a stronger atomic number depen-75 30,31 dence than the experimental shift and width data. Seki and Croner were the first to point out that first-order perturbation theory is not valid, due to the strength of the strong interaction potential. The strong interaction potential has a small effect on the pionic atom energy levels, since only a small fraction of the pion wave function overlaps the effective interaction volume. However, the pion's wave function is significantly distorted in the vicinity of the nucleus. Since this is precisely the region where perturbation theory requires that the wave function not deviate significantly from the unperturbed value, perturbation theory is not applicable.

With the realization that perturbation theory was not valid for analyzing strong interaction shifts and widths, most investigators switched to solving the relativistic Schroedinger wave equation exactly 21

by numerical methods for the purpose of fitting and predicting pionic atom data. Those optical model potentials which are derived through the Schroedinger equation must be put into the relativistic Schroedinger or Klein-Gordon equation in such a way that the original Schroedinger equation is obtained in the nonrelativistic limit. Many investigators exhibit this placement by writing the relativistic wave equation in the form

(II-20)
$$\left[\frac{\hbar^2}{am_{\Pi}} \nabla^2 + \frac{(E - V_{el}(r))^2}{am_{\Pi}c^2} - \frac{m_{\Pi}c}{a}\right] \Psi(r) = V_{sT}(r) \Psi(r)$$

where $V_{el}(r)$ is the electromagnetic pion-nucleus potential, $V_{st}(r)$ is the strong interaction pion-nucleus potential, m_{TT} is the mass of the pion, and E is the total energy of the pion.

A common form of the pion-nucleus optical potential is that of 19,21-23 21 the Ericsons'. Krell and Ericson found that their form of the potential predicted only half of the observed widths for all $\ell = 0$ pionic atom levels. 76

Recently Blum has proposed a different type of optical model based rather crudely on the microscopic picture of the scattering and absorption of pions by bound nucleons. The potential is constructed such that the real part simulates the elastic scattering of the pion by the nucleons. In analogy to the first order approximation of the multiple scattering theories, the real part of the potential is assumed to be proportional to the densities of the protons and neutrons. The imaginary part of the potential which must describe absorption of a pion by a correlated neutron-proton or proton-proton pair is taken proportional to the density of protons multiplied by the nuclear matter density. In order to allow for the possibility that the correlations might be density dependent, a volume and a surface absorption term were introduced. Making a number of simplifying approximations for the densities and correlation properties affecting absorption, Blum obtains the potential

(II-21)
$$V_{sT}(r) = Ase(r) - i \frac{2}{2}A \left[b^2 e^2(r) - a^2 \left(\frac{d}{dr} e^{r} \right)^2 \right]$$

where A is the atomic number, Z is the number of protons in the nucleus, s is the strength of the elastic scattering potential, $(de/dr)^2$ is the surface term resembling a p-wave contribution, and b and a are the strengths of the surface and volume absorption modes respectively. With this potential the pionic atom 2p-ls and 3d-2p data can be fitted as well as with the multiple scattering potentials.

Although Blum's potential gives rise to an attractively simple mathematical description of the pion-nucleus interaction, its usefulness is limited, because it is not directly related through a model to nuclear and nucleon properties.

CHAPTER III

DEVELOPMENT OF AN OPTICAL MODEL POTENTIAL FROM A MULTIPLE SCATTERING THEORY

The multiple scattering method has been used extensively for a wide variety of problems. It has been applied to the scattering of molecules in gases, ⁷⁷ neutron diffusion, ⁷⁸⁻⁸⁰ radiative equilibrium in stars, ^{81,82} scattering of charged particles, ⁸³ scattering of gamma rays, ^{84,85} cosmic ray shower theory, ^{86,87} and the resistivity of conductors.

Many of these problems have been treated using the Boltzmann integrodifferential equation for transport processes. The Boltzmann equation assumes that there are no correlations between the positions of the scatterers. In addition this approach is classical in that the wave nature of the incident particles is neglected. Such an approach is valid for wavelengths small compared to the separation between scatterers. For longer wavelengths a wave treatment is desirable, since the diffraction pattern will contain information about the correlation in scatterer positions.

The purpose of this chapter is to discuss systematically the multiple scattering of pion waves by a system of scatterers. Most of 91 19 19 19 19 19 19 discussions may be found in Goldberger and Watson and in Hufner's paper. Effects due to the correlation of nucleon pairs will be included explicitly.

24

A. Validity of the Multiple Scattering Approach

The purpose of this section is to indicate qualitatively the assumptions that restrict the validity of the multiple scattering approach. Also the steps that will be taken to reduce the importance of these assumptions are indicated.

One assumption that is usually made in a multiple scattering problem is that the properties of the individual scatterers are unmodified by the fact that they are bound in a many particle system. It is possible to properly account for the main modification in scatterer properties by taking into account what is known as the chemical binding effect. Such a correction has been used in treating the scattering of 90 neutrons by a molecule of ortho- or parahydrogen. This same correction is applied to the interaction amplitudes in the development to follow.

Another assumption tacitly made in the multiple scattering treatment is that the scatterers move sufficiently slowly that their positions may be regarded as adiabatic parameters. With this assumption the scattered wave $\Psi(\vec{r};\vec{r}_1,\vec{r}_2,\ldots,\vec{r}_n)$ can be computed for a fixed set of scatterer positions and then averaged over the distribution of scatterer positions in configuration space. The validity of this assumption depends on whether the velocity of the scatterer is small compared to the velocity of the wave. For nucleons the average momentum is approximately given by $\sqrt{3/5}$ of the Fermi momentum P_f which is about 250 MeV/c for most nuclei. Thus the average nucleon velocity is

(III-1) $\overline{V_N} \cong \sqrt{3/5} P_f/M_N \cong .2/C$

25

Due to the large velocity of the nucleons this approximation that neglects the velocity of the nucleons is only weakly valid for even very high energy pion-nucleus scattering where $v_{TT} \approx c$.

A further assumption implicit to the multiple scattering method is that the interaction of the projectile with the scatterers in the target is direct, i.e. there are no intermediate states in which the projectile is strongly correlated with the scatterers. In this work the contribution of such intermediate states is partially included by explicitly taking into account processes like virtual charge exchange.

One shortcoming of the multiple scattering method is that it does not conserve energy and momentum at each scattering in the same reference frame.

B. Construction of the Multiple Scattering Equations

Let us assume that the single scattering problems for pions incident on the individual scatterers of the type found in the nucleus can be completely described in terms of experimentally measured amplitudes or phase shifts. Furthermore, let us assume that the structure of the nucleus may be expressed in terms of a many particle density function which is sensitive to correlations between the elementary scatterers.

Consider a system of scatterers whose centers are located at $\vec{r_1}$, $\vec{r_2}, \ldots, \vec{r_n}$. Let the initial states of these scatterers be described by the set of parameters s_1, s_2, \ldots, s_n where the parameter s_1 is a shorthand notation for all the quantum numbers that describe the state of scatterer 1.

The probability that a set of n scatterers are located in a volume element $dr_1^{3}dr_2^{3}\dots dr_n^{3}$ with states s_1, s_2, \dots, s_n is given by (III-2) $P(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_m; s_1, s_2, \dots, s_m) d^3r_1 d^3r_2 \dots d^3r_m$

where

(III-3)
$$\lesssim \lesssim \dots \lesssim \int P(r_{i}, r_{2}, \dots, r_{m}; s_{i}, s_{2}, \dots, s_{m}) d^{3}r_{i} d^{3}r_{2} \dots d^{3}r_{m} = 1$$

The probability distribution for a single scatterer may be obtained by integrating over all other scatterers, i. e.

(III-4)
$$P(\vec{r}_{1}; s_{1}) = \underbrace{\leq \cdots \leq}_{s_{2}} \int P(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{m}; s_{1}, s_{2}, \cdots, s_{m}) d^{3}r_{2} \cdots d^{3}r_{m}$$

and the probability for the simultaneous locations of a pair of scatterers is obtained by integrating over all but that pair of variables, i.e.

(III-5)
$$P(\bar{r}_{1}, \bar{r}_{2}; s_{1}, s_{2}) = \underset{s_{3}}{\leq} \cdots \underset{s_{m}}{\leq} \int P(\bar{r}_{1}, \bar{r}_{2}, \cdots, \bar{r}_{m}; s_{1}, s_{2}, \cdots, s_{m})$$

 $d^{3}r_{3} \cdots d^{3}r_{m}$

If the distribution is completely random, the particles are independent of one another. In this case the probabilities associated with a single particle are not influenced by information concerning other particles, i. e.

(III-6)
$$P(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{m}; s_{1}, s_{2}, ..., s_{m}) = P(\vec{r}_{1}; s_{1}) P(\vec{r}_{2}; s_{1}) \cdots P(\vec{r}_{m}; s_{m})$$

A measure of the correlation or nonrandomness between the pair of particles (1,2) is given by

(III-7)
$$P(\vec{r}_{1}, \vec{r}_{2}; s_{1}, s_{2}) - P(\vec{r}_{1}; s_{1}) P(r_{2}; s_{2})$$

For a nonrandom probability distribution one can factor the probability using conditional probabilities, i. e.

(III-8)
$$P(\vec{r}_1, \vec{r}_2, ..., \vec{r}_m; s_1, s_2, ..., s_m) = P(r_1; s_1) P(r_1; s_1) \vec{r}_2, ..., r_m; s_2, ..., s_m)$$

where the conditional probability $P(\bar{r}_1; s_1 \mid \bar{r}_2 \dots \bar{r}_n; s_2 \dots s_n)$ represents the distribution of particles 2,3, ... n with the values of \bar{r}_1 and s_1 known or fixed. In a similar manner the pair distribution function may be factored out of the total distribution function to obtain

(III-9)
$$P(\bar{r}_{1}, \bar{r}_{2}, \dots, \bar{r}_{M}; s_{1}, s_{2}, \dots, s_{M}) = P(\bar{r}_{1}, \bar{r}_{2}; s_{1}, s_{2}) \cdot P(\bar{r}_{1}, \bar{r}_{2}; s_{1}, s_{2}) \bar{r}_{3}, \dots, \bar{r}_{M}; s_{B}, \dots, s_{M})$$

These probability distributions may be converted to density distributions or correlations by multiplying by the appropriate power of the number of scatterers. For example

(III-10)
$$e(r,s) = Ns P(r,s)$$

(III-11)
$$\mathcal{C}(\vec{r}_{1},\vec{r}_{2}; s_{1},s_{2}) = N_{s_{1}}N_{s_{2}} \mathcal{P}(\vec{r}_{1},\vec{r}_{2}; s_{1},s_{2})$$

where $\mathcal{C}(\mathbf{r},\mathbf{s})$ is the density of scatterers of type s and $\mathcal{C}(\mathbf{r}_1,\mathbf{r}_2;\mathbf{s}_1,\mathbf{s}_2)$ is the density of scatterer pairs with quantum numbers \mathbf{s}_1 and \mathbf{s}_2 .

In the notation of Ericson and Ericson the total pion-nucleus wavefunction $\Psi(\hat{r}; \hat{r}_1, \hat{r}_2, ..., \hat{r}_n; s_1, s_2, ..., s_n)$ corresponding to both elastic and inelastic scattering of the pion can be written as

$$(III-12) \quad \Psi(\tilde{\mathbf{r}}; \tilde{\mathbf{r}}_1, \tilde{\mathbf{r}}_2, \dots, \tilde{\mathbf{r}}_m; s_1, s_2, \dots, s_m) = \Psi(\tilde{\mathbf{r}}; \tilde{\mathbf{r}}_1, \tilde{\mathbf{r}}_2, \dots, \tilde{\mathbf{r}}_m; s_1, s_2, \dots, s_m) \mid 0 >$$

where $|0\rangle$ refers to the nuclear ground state and $\Psi(\hat{r};\hat{r}_1,\hat{r}_2,...,\hat{r}_n; s_1,s_2,...,s_n)$ is an operator which connects nuclear excited states to the ground state. This notation can be made more explicit by expanding the total pion-nucleus wavefunction in terms of a complete orthonormal set of wavefunctions $\Psi_1(\hat{r}_1,\hat{r}_2,...,\hat{r}_n;s_1,s_2,...,s_n)$ describing the various states i of the target with energies \in_i , i.e.

(III-13)
$$\Psi(\bar{r}; \bar{r}_1, \bar{r}_2, \dots, \bar{r}_N; s_1, s_2, \dots, s_N) = \underset{i}{\leq} \Psi_i(\bar{r}_1, \bar{r}_2, \dots, \bar{r}_N; s_i, s_2, \dots, s_N) \Psi_i(\bar{r})$$

The in= 0 term in this sum describes the target nucleus in its ground 19 state with a pion of energy E. Following Ericson and Ericson this expansion may be cast into operator form, i. e.

$$(III-14) \Psi(\bar{r};\bar{r}_{i},\bar{r}_{i},\cdots,\bar{r}_{m};s_{i},s_{2},\cdots,s_{m}) = \underbrace{\leq}_{i} \Psi_{i}(\bar{r}) \Psi_{i}(\bar{r}_{i},\bar{r}_{2},\cdots,\bar{r}_{m};s_{i},s_{2},\cdots,s_{m}) |0\rangle$$

where the $\psi_1(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_n; s_1, s_2, \dots, s_n)$ are operators that connect the nuclear excited states to the ground state.

In a similar manner the incident wavefunction $\Phi(\mathbf{\hat{r}};\mathbf{\hat{r}}_{1},\mathbf{\hat{r}}_{2},...,\mathbf{\hat{r}}_{n};$ $\mathbf{s}_{1},\mathbf{s}_{2},...,\mathbf{s}_{n}$) for the pion-nucleus system may be defined (III-15) $\Phi(\mathbf{\hat{r}};\mathbf{\hat{r}}_{1},\mathbf{\hat{r}}_{2},...,\mathbf{\hat{r}}_{n};s_{1},s_{2},...,s_{n}) = \underset{i}{\leq} \Phi_{i}(\mathbf{r}) \phi_{i}(\mathbf{\hat{r}}_{1},\mathbf{\hat{r}}_{2},...,\mathbf{\hat{r}}_{n};s_{1},s_{2},...,s_{n}) |0\rangle$ where $\phi_{1}(\mathbf{\hat{r}}_{1},\mathbf{\hat{r}}_{2},...,\mathbf{\hat{r}}_{n};s_{1},s_{2},...,s_{n})$ are operators that connect the

nuclear excited states to the ground state. If initially the nucleus is in its ground state

(III-16)
$$\underline{\Phi}(\bar{r};\bar{r}_{1},\bar{r}_{2},...,\bar{r}_{m};s_{1},s_{2},...,s_{m}) = \underline{\Phi}_{o}(\bar{r}) \phi_{o}(\bar{r}_{1},\bar{r}_{1},...,\bar{r}_{m};s_{1},s_{2},...,s_{m})|0>$$

$$= \underline{\Phi}_{o}(r)|0>$$

91 This notation may be related to Lax's probability notation by projecting the incident pion-nucleus wavefunction onto the nuclear ground state, i. e.

$$(III-17) < 0 | \underline{\Phi}(\vec{r}; \vec{r}_1, \vec{r}_2, \dots, \vec{r}_n; s_1, s_2, \dots, s_m) = <0 | \underbrace{\underline{\mp}}_i(\mathbf{r}) \underbrace{\underline{\Phi}}_i(\vec{r}_1, \vec{r}_1, \dots, \vec{r}_m; s_n; s_1, \dots, s_n) | 0 > \\= \underbrace{\underline{\leq}}_i \dots \underbrace{\underline{\leq}}_{s_n} \int \underline{\underline{\Phi}}_s(\mathbf{r}) P(\vec{r}_1 \dots \vec{r}_m; s_1 \dots s_n) d^3 r_1 \dots d^3 r_m \\= \underbrace{\underline{\Phi}}_s(\mathbf{r})$$

If the position and type of scatterer 1 is held fixed and all other scatterers averaged over, this is denoted by a subscript, i. e.

$$(III-18) \quad \langle 0 \rangle \not\leq \overline{\Phi}_{i}(\vec{r}) \not \otimes_{i} (\vec{r}_{i} \cdots \vec{r}_{n}; s_{i} \cdots s_{n}) | 0 \rangle_{1}$$

$$= \underbrace{\sum}_{s_2} \underbrace{\sum}_{s_m} \underbrace{\sum}_{\sigma_0} (\mathbf{r}) P(\mathbf{r}_1 \dots \mathbf{r}_m; s_1 \dots s_m) d^3 \mathbf{r}_2 \dots d^3 \mathbf{r}_m$$
$$= \underbrace{\Phi}_{\sigma}(\mathbf{r}) P(\mathbf{r}_1; s_1)$$

Similarly if scatterers 1 and 2 are held fixed, then this is denoted by (III-19) $\langle 0 | \xi \overline{\Phi}_i(\vec{r}_1 \cdots \vec{r}_m; s_i \cdots s_m) | 0 \rangle_{12}$ $\equiv \xi \cdots \xi \int \overline{\Phi}_o(r) P(\vec{r}_1 \cdots \vec{r}_m; s_i \cdots s_m) d^3r_3 \cdots d^3r_m$ $= \overline{\Phi}_o(r) P(\vec{r}_1, \vec{r}_1; s_1, s_2)$

Now that the formalism for handling the probability density function has been defined, consider the multiple scattering equations. The total pion wave representing the incident wave plus the sum of the scattered waves from each of the scatterers is given by

$$\begin{aligned} \text{(III-20)} \quad \Psi(\bar{r}; \bar{r}_{1}, \bar{r}_{2}, \cdots, \bar{r}_{n}; s_{1} \cdots s_{n}) &= \Psi(\bar{r}; \bar{r}_{1} \cdots \bar{r}_{n}; s_{1} \cdots s_{n}) \mid 0 > \\ &= \overline{\Phi}_{o}(r) \mid 0 > + \overset{A}{\underset{\delta^{=1}}{=}} \int \underline{9}(\bar{r}; \bar{r}_{1} \cdots \bar{r}_{n}; \bar{r}'; \bar{r}'; \bar{r}_{n}'; s_{1} \cdots s_{n}) \\ &\quad \int (\bar{r}_{3}' - \bar{r}') \int s's_{3}' \underbrace{f}_{3}(\bar{r}') \underbrace{\Psi_{3}^{\text{eff}}(\bar{r}'; \bar{n}' \cdots \bar{r}_{n}'; s_{1}' \cdots s_{n}')} \\ &\quad \mid 0 > d^{3}r' \end{aligned}$$

where $f_{,j}(\vec{r}^{\,i})$ is the pion-nucleon interaction operator which is defined in section C of this chapter in terms of the experimentally measured pion-nucleon phase shifts. The delta functions specify the range of the interaction and insure that the scattering operator for the j-th nucleon gives no contribution unless it operates on the effective pion wave incident on the j-th nucleon at the position of the j-th nucleon. $g(\vec{r}; \vec{r}_1, \vec{r}_2, \dots, \vec{r}_A; \vec{r}_1', \vec{r}_2', \dots, \vec{r}_A'; s_1, s_2, \dots, s_A)$ is a Green's function operator describing both the outgoing pion wave and the propagation of nuclear states. The Green's function may be defined for incident pions 19 of energy E in terms of the nuclear states |M| > of energy \in_M as

$$(III-21) \quad \begin{array}{c} \mathbf{g}\left(\ddot{\mathbf{r}};\ddot{\mathbf{r}},\cdots\ddot{\mathbf{r}}_{A};\bar{\mathbf{r}}';\ddot{\mathbf{r}},\cdots\ddot{\mathbf{r}}_{A}';s,\cdots s_{A}\right) = \underbrace{\boldsymbol{\xi}}_{\substack{M\\M\\M'}} \mathbf{g}_{M}\left(\ddot{\mathbf{r}};\ddot{\mathbf{r}}'\right)|M> < M'|$$

where $g_n(\hat{r}, \hat{r}')$ is the pion Green's function at an energy $E - \in_n$. When no external potential acts on the pion, the pion's Green's function which satisfies the time independent Klein-Gordon equation has the form

(III-22)
$$g_m(\bar{r},\bar{r}') = e^{ikm|\bar{r}-\bar{r}'|}/|\bar{r}-\bar{r}'|$$

where $k_n^2 = (E - \epsilon_n)^2 - m_{\pi}^2$.

In a similar manner the effective wave incident on scatterer j, denoted by

$$(III-23) \quad \Psi_{i}^{\text{eff}} \quad (\vec{r}; \vec{r}, \cdots \vec{r}_{A}; s, \cdots s_{A}) = \Psi_{i}^{\text{eff}} \quad (\vec{r}; \vec{r}, \cdots \vec{r}_{A}; s, \cdots s_{A}) \quad |0>$$

is given by the sum of the incident wave plus the pion waves scattered from all the scatterers other than j under the condition that particle j with quantum numbers s_j is at \overline{r}_j , i. e.

$$(III-24) \quad \Psi_{j}^{eff}(\bar{r}';\bar{r}_{i}'...\bar{r}_{A}';s_{i}'...s_{A}') = \Phi_{o}(\bar{r}') | o > + \sum_{\substack{i=l \ i \neq j}}^{A} \int g(\bar{r}';\bar{r}_{i}'...\bar{r}_{A}';\bar{r}'';\bar{r}_{i}''...\bar{r}_{A}'';s_{i}'...s_{A}') \delta(\bar{r}''-\bar{r}_{i}'') \delta s''s_{i}'' \int f_{i}''...\bar{r}_{A}'';s_{i}''...s_{A}'') \delta(\bar{r}''-\bar{r}_{i}'') \delta s''s_{i}'' \int f_{i}''...\bar{r}_{A}'';s_{i}''...s_{A}'') | o > d^{3}r''$$

Alternatively the effective wave incident on particle j may be written (III-25) $\Psi_{j}^{eff}(\bar{r}';\bar{r}_{1}'\cdots\bar{r}_{A}';s_{1}'\cdots s_{A}')|0\rangle = \Psi(\bar{r}';\bar{r}_{1}'\cdots\bar{r}_{A}';s_{1}'\cdots s_{A}')|0\rangle$ $-\int g(\bar{r}';\bar{r}_{1}'\cdots\bar{r}_{A}';\bar{r}'';\bar{r}_{1}'\cdots\bar{r}_{A}'';s_{1}'\cdots s_{A}') \delta(\bar{r}''\cdot\bar{r}_{j}'')$ $\delta s''s_{j}'' f_{j}(\bar{r}'') \Psi_{j}^{eff}(\bar{r}'';\bar{r}_{1}'\cdots\bar{r}_{A}'';s_{1}'\cdots s_{A}'') d^{3}r''$

Equation (III-25) defines the effective wave incident on scatterer j to be just the total pion-nucleus wave minus the scattered wave from scatterer j.

Proceeding in this fashion one can construct a sequence of equations. The next equation would be for the scattered pion wave from particle i knowing that particle j is at \tilde{r}_{j} , i. e.

$$(III-26) \quad \underbrace{\Psi_{i:j}^{eff}}_{i:j} \left(F^{II}; F_{i}^{II} \cdots F_{A}^{II}; s_{i}^{II} \cdots s_{A}^{II}\right) |0\rangle = \Phi_{a}(r^{II}) |0\rangle \\ + \quad \underbrace{\bigotimes_{k=1}^{A}}_{k=1} \int g\left(F^{II}; F_{i}^{II} \cdots F_{A}^{II}; F_{i}^{III} \cdots F_{A}^{II}; s_{i}^{II} \cdots S_{A}^{II}\right) \\ k^{d} j \\ \delta(F^{III} - F_{K}^{III}) \delta(S^{III} S_{K}^{III} - f_{K}(F^{III})) \underbrace{\Psi_{K:ij}^{eff}(F^{III}; F_{i}^{III} \cdots F_{A}^{II}; s_{i}^{III} \cdots S_{A}^{II}) \\ |0\rangle d^{3}r^{III}$$

This self-consistent method of handling wave scattering was 93first employed by Ewald in order to treat the problem of the scattering of x-rays by dipole scatterers distributed on a lattice. The method of the self-consistent field assumes that a wave is emitted by each scatterer in a manner that is determined by the wave incident on that scatterer, i. e. the effective wave. This effective wave is obtained by adding to the incident beam the waves emitted by all the other scatterers. The waves emitted by these scatterers are in turn influenced by the radiation emitted by the scatterer in question.

C. Construction of the Interaction Operators

Before one can examine the multiple scattering equations above in detail, it is necessary to obtain an expression for the interaction operator for the pion incident on each type of scatterer in the nucleus. The interaction operator must be applicable to a bound elementary scatterer instead of a free one. In the impulse approximation these should be the same except for kinematical factors.

The effect of the nuclear binding has been investigated by 94 Rockmore in terms of the Born approximation. In the nonrelativistic plane wave Born approximation

(III-27)
$$\frac{d\sigma}{d\Omega} = |f(\theta)|^2 = \frac{\mu^2}{K^4} \left| \frac{1}{2\pi} \int e^{i\hat{g}\cdot\hat{r}} V(r) d^3r \right|^2$$

the scattering amplitude is proportional to the reduced mass of the incident particle and the target. Thus the scattering amplitude for a pion incident on a nucleon of mass m_{N} rigidly bound to a nucleus of mass m_{Nuc} is related to the scattering amplitude for a pion incident on a free nucleon by

(III-28)
$$\frac{(f_{\pi N})_{bound}}{(f_{\pi N})_{free}} = \frac{\mu_{Nuc}}{\mu_{N}} = \frac{1 + \overline{m_{N}}}{1 + \frac{m_{\pi}}{m_{Nuc}}}$$

This result has been successfully used to describe the scattering of 95 neutrons from hydrogen molecules. The relativistic result according 26 to Goldberger and Watson was given in (II-1).

The basic processes or interactions involving one or two nucleons which the interaction operators should represent in order to completely describe pion-nucleon and pion-nucleon-pair interactions are as follows: ELASTIC SCATTERING

DOUBLE CHARGE EXCHANGE

(III-33)
$$\pi^{+} + MM \rightarrow \pi^{-} + PP$$

$$\pi^{+} - \pi^{-} - \pi^{-} - \pi^{-}$$
(III-34) $\pi^{-} + PP \rightarrow \pi^{+} + MM$

VIRTUAL CHARGE EXCHANGE

RADIATIVE ABSORPTION

ABSORPTION

(III-39)
$$\pi^+ + m \rightarrow p$$

 $\pi^+ - \int_{m}^{p} \pi^+$

Ρ

or pp

 $(III-41) \quad \pi^+ + \quad or \quad \pi^-$

96,97Experimentally at very low energy (< 1 MeV) the contribution from single charge exchange, double charge exchange, and radiative absorption account for only a few percent of the total absorption for all but the lightest nuclei such as 1 H and 3 He. For very low energies the single and double charge exchange reactions are inhibited compared to the absorption on pairs due to the small amount of momentum phase space available for pion emission resulting from the small amount of energy released in the charge exchange reactions. The radiative pion absorption is an electromagnetic reaction which is expected to be much weaker than the strong interaction absorption processes. Panofsky, 97Aamodt, and Hadley find π^{-} radiative absorption comparable in yield to the (π, π^{0}) charge exchange reaction at very low energy.

The absorption process can not occur on a free nucleon, because

energy and momentum can not be conserved in the process. It can occur, however, on a nucleon bound in a nucleus where the rest of the nucleus is available to help conserve momentum by taking up the recoil. In the impulse approximation the absorption process can be thought of as occuring on a single nucleon which has the proper Fermi momentum to conserve energy for the process. This type of process is represented 99 by

$$(III-43) \quad \Pi^- + (2,A) \rightarrow M + (2-1,A-1)^*$$

where the asterisk signifies that the product nucleus may be left in an excited state. The Fermi momentum required for this process is given by

(III-44)
$$P_f = \left[a m_P \left(m_\pi C^2 - E_{ex} - W_P \right) \right]^{\gamma_2}$$

where E_{ex} is the excitation energy of the product nucleus and W_p is the separation energy of the last proton. The momentum required is of the order 500 MeV/c, but the average Fermi momentum of a typical nucleus is 250 MeV/c.¹⁹ Thus the capture of the pion on a single nucleon at very low energy should be an improbable process. One would expect the absorption of the pion on nucleon pairs to be more probable, since energy and momentum are easily conserved in this process.

In the following development the nucleon and nucleon pair will be considered as the principal elementary scatterers of the nucleus with which the pion interacts. For formulating a multiple scattering theory, it is convenient to characterize the interaction of the pion with the elementary scatterers in terms of experimentally measurable parameters such as interaction amplitudes or phase shifts.

For pion-nucleon scattering the interaction operator is conven-

iently expressed in terms of a partial wave expansion, since both the orbital angular momentum \mathcal{L} and the total angular momentum J of the pion-nucleon system are conserved. In addition it is assumed that the total isotopic spin T of the pion-nucleon system is conserved. Following Ericson and Ericson¹⁹ a partial wave expansion of the pion-nucleon interaction operator $f_i(\mathbf{r})$ operating on the i-th nucleon in configuration, isospin, and spin space is given by

$$(III-45) \quad \oint_{i} (\widehat{\mathbf{r}}) = \alpha_{1} \prod_{T=Y_{2}} + \alpha_{3} \prod_{T=Y_{2}} + \bigotimes_{k=1}^{\infty} (\mathfrak{gl}+1)$$

$$\left[\alpha_{1,\mathfrak{gl}+1} \prod_{T=Y_{2}} \prod_{\mathfrak{J}=\mathfrak{gl}+Y_{2}} + \alpha_{\mathfrak{gl},\mathfrak{gl}+1} \prod_{\mathfrak{J}=\mathfrak{gl}} \prod_{\mathfrak{J}=\mathfrak{gl}+Y_{2}} \right]$$

$$\mathcal{P}_{\mathfrak{gl}}(\mathfrak{cos},\mathfrak{gl})$$

where the partial wave amplitudes are α_{2T} and $\alpha_{2T,2J}$, the \mathcal{T} 's are projection operators defined in Appendix A, \vec{r} is the pion coordinate, and \vec{r}_1 is the i-th nucleon coordinate.

In a similar manner a partial wave expansion of the low energy pion nucleon-pair interaction operator $f_{ij}(\vec{r})$ for the nucleon pair <u>ij</u> in configuration, isospin, and spin space is given by

$$(III-46) \quad \underbrace{f}_{i_{1}}(\tilde{r}) = B_{11} \underbrace{\Pi}_{J=1}^{Sym} \underbrace{\Pi}_{T=1}^{Avti} + B_{00} \underbrace{\Pi}_{J=0}^{Sym} \underbrace{\Pi}_{T=0}^{Avti} + B_{01} \underbrace{\Pi}_{J=0}^{Avti} \underbrace{\Pi}_{T=1}^{Sym} + B_{01} \underbrace{\Pi}_{J=0}^{Avti} \underbrace{\Pi}_{T=1}^{Sym} + B_{02} \underbrace{\Pi}_{J=0}^{Avti} \underbrace{\Pi}_{T=2}^{Sym} + \underbrace{g}_{l=1}^{So} \underbrace{(l_{l+1})}_{l_{l}} \underbrace{V}_{l+1,l} \underbrace{\Pi}_{J=2l+l}^{Sym} \underbrace{\Pi}_{T=1}^{Avti} + \underbrace{V}_{l_{l}} \underbrace{\Pi}_{T=2}^{Sym} + \underbrace{V}_{l_{l}}(0, 1) \underbrace{\Pi}_{J=2}^{Avti} \underbrace{\Pi}_{T=1}^{Sym} + \underbrace{V}_{l_{l}} \underbrace{\Pi}_{T=1}^{Sym} + \underbrace{V}_{l_{l}} \underbrace{\Pi}_{J=2}^{Sym} \underbrace{\Pi}_{T=1}^{Avti} + \underbrace{V}_{l_{l}} \underbrace{\Pi}_{J=2}^{T} \underbrace{\Pi}_{T=2}^{Sym} \underbrace{P}_{l_{l}}(cos \theta)$$

where B_{JT} and $\chi_{JT}(S,T)$ are the pion-nucleon-pair partial wave amplitudes, the T's are projection operators defined in Appendix A in which the sym- and antisymmetric refer to the nucleon pair, \vec{r} is the pion coordinate, and \vec{r}_{j} and \vec{r}_{j} are the coordinates of the i-th and j-th nucleons.

The pion may interact significantly with other elementary scatterers besides the nucleon and the nucleon pair. For instance Koly-68,69 basov finds evidence from a study of the angular correlation of protons, deuterons, and tritons emitted upon capture of π^- by 12 C and 16 O that absorption on transient alpha particles may play a dominant role in pion absorption if one neglects final state interactions. On the otherhand the inclusion of significant final state interactions may allow the pion-nucleus interactions. In order to keep the interaction as simple as possible the latter view is adopted.

100

Partensky and Ericson have estimated the effects of the d and f partial waves of the pion-nucleon interaction on the d and f angular momentum states of pionic atoms. They conclude that their contributions are negligible (< 10 % in all cases) when contrasted with the present precision of the measured pionic atom energy level shifts. Thus for the low energy pion-nucleus interaction only the s- and p-wave terms of the partial wave expansion need to be considered. For pion-nucleus scattering at energies $T_{\rm T} > 100$ MeV the d partial wave becomes 101 significant.

In order to use the interaction operators above in a multiple scattering theory to define a pion-nucleus potential for investigating nuclear structure, it is necessary to know the π N and π NN partial wave amplitudes. These are energy dependent and must be obtained by analyzing the scattering and absorption of pions incident on the various elementary scatterers at a variety of energies. Unfortunately there are no precise TNN scattering experiments at very low energies, so these amplitudes are obtained by extrapolating the higher energy results. Tables 1 and 2 contain a summary of the experimental extrapolations for the very low energy s- and p-wave pion-nucleon scattering amplitudes.

Some of the oldest and perhaps the best determinations of the 102 low energy pion-nucleon s-wave amplitudes are those of Bierman for 103 $\pi^+ p \rightarrow \pi^- + p$ with $6 \le E_{\pi} \le 24$ MeV and those of Fisher and Jenkins for $\pi^+ + p \rightarrow \pi^+ + p$ with 3.7 < $E_{\pi} < 25$ MeV as obtained from liquid 104 hydrogen bubble chamber experiments. McKinley has analyzed a large number of pion-nucleon scattering experiments at different energies and fit the tangent of the s- and p-wave phase shifts to a power series in k. The leading terms in the series correspond to constant s- and 105 p-wave scattering lengths. Hamilton and Woolcock have deduced values of the pion-nucleon s- and p-wave scattering lengths using forward dispersion relations for $\pi^{\pm} + p \rightarrow \pi^{\pm} + p$ scattering at moderate to high energy. Samaranayake and Woolcock have made use of a sum rule 107 by Goldberger, Miyazawa, and Ochme to eliminate one of the scattering length combinations in the forward dispersion relations of Hamilton and Woolcock for $\pi^{\pm} + p \rightarrow \pi^{\pm} + p$ scattering. With their improved formulation they obtain a different set of s-wave scattering lengths. 108 analyzed all the available $\pi^{\pm} + p \rightarrow \pi^{\pm} + p$ More recently Hamilton scattering experiments up to 41.5 MeV and obtained another set of s-109,110 wave scattering lengths. Also Donald et al. have performed $\pi^- + p \rightarrow \pi^- + p$ and $\pi^- + p \rightarrow \pi^- + n$ scattering experiments at

35 and 39 MeV and analyzed their results using the method of Hamilton 105 and Woolcock.

Unfortunately there are no pion two-nucleon scattering or absorption data available for determining the low energy TINN interaction amplitudes. The best one can do is to use the principle of detailed balance to relate processes like $N + N \rightarrow TI + N + N$ to $TI + N + N \rightarrow N + N$. Using the principle of detailed balance and 115 98 the cross sections of Woodruff, Stallwood <u>et al.</u>, and Kazarinov 116 19 and Simonov, Ericson and Ericson have been able to determine the imaginary parts of a few of the TINN interaction amplitudes for the absorption process. These are listed in Tables 3 and 4.

For pion-nucleus scattering in the range $24 \leq T_{\pi} \leq 280$ MeV the energy dependent values of the TNN and TNNN partial wave interaction amplitudes are needed. The elastic parts of these amplitudes are obtained from elaborate phase shift analyses of many pion-nucleon scattering experiments in which the energy dependent phase shifts are fit to various interpolating functions of the energy and momentum. The first well known and widely used set of such functions for the experimental s- and p-wave pion-nucleon scattering phase shifts was that of 117 This set was obtained by analysis of most of the scat-Anderson. tering experiments performed before 1956. Using a three parameter relativistic Breit-Wigner formula for fitting δ_{33} and polynomial expansions for the tangents of the other smaller phase shifts in terms of powers of q². Fifteen parameters were varied simultaneously to obtain the best fit to the differential cross sections for energies up to 300 MeV. An error matrix was calculated along with the optimum values of the parameters. The existence of a negative element on the

diagonal of the error matrix indicated that this fit was not entirely satisfactory.

In 1963 McKinley¹¹⁸ fit the available data in the energy region up to 600 MeV using simple interpolating expressions for tan $S_{\ell}/q^{2\ell+1}$. This form for the interpolating functions was suggested by the threshold dependence of partial wave phase shifts for a short range potential $(\tan S_{\ell} \ll q^{2\ell+1})$ and by the effective range approximation for nuclear forces.¹¹⁹ The interpolating functions that he obtained are¹¹⁸

$$\tan \delta_{3}/q = -0.10 - 0.036q^{2} + 0.003q^{4}$$

$$\tan \delta_{31}/q^{3} = (-0.13 + 0.072\omega - 0.012\omega^{2})/\omega$$

$$q^{3}\cot \delta_{33} = 4.108 + 0.7987q^{2} - 0.8337q^{4}$$

$$\tan \delta_{1}/q = 0.17 - 0.04q^{2} + 0.01q^{4}$$

$$\tan \delta_{11}/q^{3} = -0.015 + 0.005q^{2}$$

$$\tan \delta_{13}/q^{3} = -0.0035$$

McKinley noticed that the experiments at 98, 150, and 170 MeV did not follow the general trend of the other experiments for the j = 1/2phase shifts. Ignoring these three experiments he obtained an alternate set of j = 1/2 phase shifts.

$$\tan \delta_{1}/q = 0.17 + 0.02q^{2}$$

(III-48)
$$\tan \delta_{11}/q^{3} = 0.016$$

$$\tan \delta_{13}/q^{3} = \tan \delta_{31}/q^{3}$$

Two years later Roper, Wright, and Feld¹²⁰ completed their exhaustive analysis of the energy dependence of pion-nucleon phase shifts. They obtained 32 different solutions. Solution no. 24 for the 3, p, d, and f phase shifts for $0 \leq T_{TI} \leq 350$ MeV is their best one in 120 this energy range. For this solution Roper et al. obtained the interpolating functions of the form $\tan S/q^{2l+1}$, i. e.

$$\tan \int_{1}^{0} q = 0.195530 - 0.077224q + 0.016471q^{2} - 0.2299x10^{-4}q^{3}$$

$$\tan \int_{3}^{0} q = -0.062897 - 0.038534q - 0.008068q^{2} + 0.8734x10^{-4}q^{3}$$

$$\tan \int_{11}^{1} / q^{3} = -0.100852 + 0.064993q + 0.3796x10^{-4}q^{2}$$

$$\tan \int_{31}^{1} / q^{3} = -0.052532 + 0.029051q - 0.006173q^{2}$$

$$\tan \int_{13}^{1} / q^{3} = -0.021752 + 0.010737q - 0.001356q^{2}$$

(III-49)
$$\tan \int_{13}^{2} / q^{5} = 0.001929 + 0.1559x10^{-3}q$$

$$\tan \int_{33}^{2} / q^{5} = -0.1609x10^{-3} - 0.3038x10^{-3}q$$

$$\tan \int_{35}^{2} / q^{5} = -0.001185 + 0.6529x10^{-3}q$$

$$\tan \int_{35}^{2} / q^{5} = -0.001185 + 0.6529x10^{-3}q$$

$$\tan \int_{35}^{3} / q^{7} = 0.2516x10^{-3} - 0.4437x10^{-4}q$$

$$\tan \int_{35}^{3} / q^{7} = -0.6241x10^{-4} - 0.1785x10^{-4}q$$

$$\tan \int_{37}^{3} / q^{7} = -0.1884x10^{-4} - 0.1229x10^{-4}q$$

plus the resonance amplitude

(III-50)
$$\alpha_{33} = -\frac{\prod_{al}}{2k} \frac{a}{2} / \left[(E-E^{(3)}) + \frac{\prod_{l}}{2} \frac{\prod_{al}}{2} \right]$$

where

(III-51)
$$\prod_{e,g}^{(2T)} = \frac{4}{E+E_{0}^{(2T)}} k r_{o,g}^{(2T)} (\chi_{g}^{(2T)})^{2} \bigvee_{g} (k r_{o,g}^{(2T)})$$

is the resonace elastic width,

(III-52)
$$V_{\mathcal{A}}(kr_{0\mathcal{A}}^{(aT)}) = \frac{1}{(kr_{0\mathcal{A}}^{(aT)})^2} \left[j_{\mathcal{A}}^2(kr_{0\mathcal{A}}^{(aT)}) + M_{\mathcal{A}}^2(kr_{0\mathcal{A}}^{(aT)}) \right]^{-1}$$

is the barrier penetration factor,

(III-53)
$$\Gamma_{t_{x}}^{(\text{OT})} = \Gamma_{e_{x}}^{(\text{OT})} + \Gamma_{in_{x}}^{(\text{OT})}$$

is the resonance total width,

(III-54)
$$\prod_{i=1}^{(3)} = \prod_{i=1}^{(2T)} = \prod_{i=1}^{(2T)} (k-k_{-})^{2k+1} \leq 0$$

is the resonance inelastic width,

$$(III-55)$$
 k = 1.479

is the threshold pion c. m. momentum for one-pion production, k is the pion c. m. momentum,

• •

(III-56)
$$E = \left[M_{\pi}^{2} + k^{2} \right]^{y_{2}}$$

is the total pion c. m. energy,

(III-67)
$$E_{o}^{(3)} = E_{o}^{(27)} = 1.914$$

is the energy of the resonance,

(III-58)
$$(\gamma_{1}^{(3)})^{2} = (\gamma_{1}^{(27)})^{2} = 0.133$$

is the reduced elastic width, and

(III-59)
$$r_{0_1}^{(3)} = r_0^{(27)} = 0.9/$$

is the interaction range where $\mathbf{\hat{h}} = \mathbf{c} = \mathbf{m}_{\overline{u}} = 1$. 121

In 1966 Donnachie and Shaw published their best interpolating functions for the reciprocal of tan δ_{I}/q^{2} ⁺¹ for $0 \leq T_{\Pi} \leq 250$ MeV,

i.e.

• . •

$$q_{cot} \delta_1 = 5.848 + 5.482q^2 - 3.830q^4 + 1.004q^6 - .1076q^8 + .003977q^{10}$$

$$gcot \ \delta_3 = -11.364 + 3.697q^2 - .8014q^4 + .0776q^6 - .00285q^8$$

$$g^3cot \ \delta_{13} = -34.48 - 71.85q^2 + 36.70q^4 - 9.623q^6 + .968q^8$$

$$- .0330q^{10}$$

$$q^{3}$$
cot $\delta_{31} = -26.30 + 8.479q^{2} - 15.35q^{4} + 3.834q^{6} - .3560q^{8}$
+ .0115q^{10}

$$q^{3}$$
cot $\delta_{33} = 4.6512 - .6207q^{2} - .1473q^{4} - .0829q^{6}$

Unfortunately they did not report on a fit for δ_{11} or include higher partial waves.

...

D. Projection of the Total Pion-Nucleus Wavefunction onto the Nuclear Ground State

The effect of the nucleons on the pion may be averaged by projecting the total pion-nucleus wavefunction onto the nuclear ground state.

An expression for the total pion-nucleus wavefunction may be obtained by substituting (III-24), (III-26), etc. into (III-20). The first few terms in the resulting infinite series of terms are

$$\begin{aligned} \text{(III-61)} \quad \underbrace{\Psi(\hat{r}; \hat{r}, \cdots \hat{r}_{A}; s_{1} \cdots s_{A})}_{\text{incident}} &= \underbrace{\Phi_{o}(r)}_{\text{incident}} \underbrace{\Phi_{o}(r)}_{\text{incident}} \underbrace{\Phi_{o}(r; \hat{r}, \cdots \hat{r}_{A}; i)}_{\text{incident}} \\ \hat{r}'; \hat{r}, \cdots \hat{r}_{A}'; s_{1} \cdots s_{A}) \quad \delta(\hat{r}_{3}' - \hat{r}') \quad \deltas's_{3}' \quad f_{3}'(r) \\ \hat{\Phi}_{o}(r') \quad \Phi_{o}(r') \quad 1o' > d^{3}r' \\ \quad single \quad scattered \quad wave \\ \\ + \underbrace{A}_{j=1}^{A} \quad \underbrace{A}_{j=1}^{A} \quad \iint_{j=1}^{G} \quad \underbrace{g(\hat{r}; \hat{r}_{1} \cdots \hat{r}_{A}; \hat{r}'; \hat{r}' \cdots \hat{r}_{A}; \hat{r}_{1}; s_{1} \cdots s_{A}) \\ \delta(\hat{r}_{3}' - \hat{r}') \quad \deltas's_{3}' \quad f_{3}'(r') \\ g(\hat{r}'; \hat{r}, \cdots \hat{r}_{A}'; \hat{r}''; \hat{r}'' \cdots \hat{r}_{A}; \hat{r}'; \hat{r}' \cdots \hat{r}_{A}) \quad \delta(\hat{r}_{3}' - \hat{r}') \quad \deltas''s_{3}'' \quad f_{3}'(r') \\ double \quad scattered \quad wave \\ d_{3r'} d_{3r''} &= \underbrace{A}_{j=1}^{A} \quad \underbrace{A}_{j=1}^{A}$$

In order to project the total pion-nucleus wavefunction onto the nuclear ground state one needs a number of definitions and identities. From (III-6) one may write

(III-62)
$$P(\vec{r}_{1}'\cdots\vec{r}_{A}'; s_{1}'\cdots s_{A}') = P_{j}(\vec{r}_{j}';s_{j})P(\vec{r}_{j}';s_{j}'|\vec{r}_{1}'\cdots\vec{r}_{j-1}, \vec{r}_{j+1}, \cdots, \vec{r}_{A}'; s_{1}'\cdots s_{j+1}'s_{j+1}'\cdots s_{A}')$$

Using the definition in (III-18) one has

Thus

$$(III-64) < 0' | \delta(\vec{r}_{j}'-\vec{r}') \delta s_{j}' s_{j}' \underline{\Phi}_{0}(r') | 0' > = \underset{s_{j}'}{\leq} \int \delta(\vec{r}_{j}'\cdot\vec{r}) \delta s_{j}' s_{j}' \\ P_{j}(\vec{r}_{j}';s_{j}') \underline{\Phi}_{0}(r) d^{3}r_{j}' = P_{j}(\vec{r}';s') \underline{\Phi}_{0}(r')$$

Using the definition in (III-10) one obtains

(III-65)
$$\begin{array}{l} \overset{A}{\leq} \\ \overset{}{\leq} \\ \overset{}{_{j=1}} \\ \overset{}{_{s_j}} \\ \overset{}{_{s_$$

where $C_n(r)$ and $C_p(r)$ are the nuclear neutron and proton densities respectively.

From Appendix N the pion-nucleon scattering operator for scattering from the j-th scatterer is

$$(III-66) \quad f_{j} = (l + \underbrace{Ea}_{Mw}) \underbrace{b}_{j} - \underbrace{C}_{j} (\nabla \cdot \nabla' + \underbrace{Ea}_{2Mw} \operatorname{g}^{2}) / (l + \operatorname{Ea}_{Mw}) \\ + \underbrace{d}_{j} \stackrel{2}{\xrightarrow{A}} \frac{\overline{s}_{j} \cdot \overline{t}_{n}}{r'} \underbrace{d}_{r'}$$

where

(III-67)
$$b_{j} = b_{0} + b_{1} \frac{1}{2n} T_{j}$$

(III-68) $C_{j} = c_{0} + c_{1} \frac{1}{2n} T_{j}$
(III-69) $d_{j} = d_{0} + d_{1} \frac{1}{2n} T_{j}$

The operator $\underline{\tau}_{\pi} \cdot \underline{\tau}_{j}$ may be defined by

(III-70)
$$t_{1} \cdot t_{2} = t_{+} \cdot t_{-} + t_{-} \cdot t_{3} + 2 t_{3} \cdot t_{3}$$

such that for a negative pion

(III-71)
$$\langle 0 | \underset{j=1}{\overset{A}{\underset{j=1}{\overset{}}}} \frac{t_{\pi} \cdot T_{j}}{\overset{A}{\underset{j=1}{\overset{}}}} | 0 \rangle = \langle 0 | \underset{j=1}{\overset{A}{\underset{j=1}{\overset{}}}} 2 t_{3} T_{j_{3}} | 0 \rangle = N \cdot 2$$

Thus for the proton and neutron

$$(III-72) \quad b_{\mathcal{P}} = b_{\delta} - b_{\ell}$$

(III-73) $b_A = b_0 + b_1$

For arbitrary nuclei one obtains using (III-67), (III-68), (III-69), and (III-71)

$$(III-74) \quad \langle \circ' | \stackrel{A}{\underset{j=1}{\overset{j}{\underset{j=1}{\overset{j}{1}}\overset{j=1}{\overset{j}}{\overset{j}}{\overset{j}}{\overset{j}}{\overset{j}}}{\overset{j$$

.

From the definition of the pion-nucleus Green's function in (III-21) one obtains

$$(III-78) \quad \begin{array}{l} \begin{array}{l} \left\langle 0 \mid g\left(\vec{r}; \vec{r}, \cdots \vec{r}_{A}; \vec{r} \cdots \vec{r}_{A}; s, \cdots s_{A}\right) \mid 0' \right\rangle \\ = \left\langle 0 \mid \sum_{m=m'} g_{m}\left(\vec{r}, \vec{r}'\right) \mid m \right\rangle \left\langle m' \mid 0' \right\rangle = g_{0}\left(\vec{r}, \vec{r}'\right) \end{array}$$

where $g_0(\hat{r},\hat{r}')$ is the pion Green's function at an energy $E - \epsilon_0 \cdot \epsilon_0$ is the energy of the nuclear ground state.

Thus using (III-64), (III-65), and (III-74) one may project the second term in the series for the total pion-nucleus wavefunction given in (III-61) onto the nuclear ground state to obtain

$$(III-79) \begin{cases} \langle 0 | \Psi(\vec{r}; \vec{r}_{1} \cdots \vec{r}_{A}; s_{1} \cdots s_{A}) | 0 \rangle = \Phi_{o}(r) + \int e(r') \left[(1 + \frac{E_{II}}{M_{N}}) (b_{0} + b_{1} \frac{N-2}{A}) \right] \\ g_{o}(\vec{r}, \vec{r}') - (\frac{C_{o} + C_{i} N-2}{A}) \left\{ \nabla g_{o}(\vec{r}, \vec{r}') \cdot \nabla' + g_{o}(\vec{r}, \vec{r}') \right\} \\ \frac{1 + E_{II} / M_{N}}{(1 + E_{II} / M_{N})} \\ + (d_{o} + d_{1} \frac{N-2}{A}) g_{o}(\vec{r}, \vec{r}') = \frac{S_{o}(r)}{A} \frac{d_{II}}{r} \int \Phi_{o}(r') d^{3}r' \end{cases}$$

where the shape of the neutron and proton distributions have been assumed to be the same, i.e.

(III-80)
$$\frac{e_{\mathcal{M}}(r')}{N} = \frac{e_{p}(r')}{Z} = \frac{e(r')}{A}$$

In order to project the third term of the series for the total pion-nucleus wavefunction onto the nuclear ground state one needs some additional definitions and identities. From (III-9) one may write

Using the definition in (III-19) one has
$$(III-82) \begin{array}{l} \overset{A}{\underset{j=1}{\overset{1}{j=1}}} \overset{A}{\underset{i\neq j}{\overset{1}{j}}} < \circ^{n} \mid \overline{\Phi}_{o}(r^{n}) \mid \circ^{n} >_{i_{j}} = \overset{A}{\underset{j=1}{\overset{1}{j=1}}} \overset{A}{\underset{i=1}{\overset{1}{j=1}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}} \overset{A}{\underset{s_{i}}{\overset{1}{s_{i}}}} \overset{A}{\underset{s_{i}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}{\overset{I}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}{\overset{I}}{\overset{I}}} \overset{A}{\underset{s_{i}}{\overset{I}}{\overset{I}}} \overset{A}{\overset{I}}{\overset{I}}} \overset{A}{\overset{I}}{\overset{I}} \overset{I}{\overset{I}}} \overset{A}{$$

Thus

$$(III-83) \qquad \bigwedge_{j=1}^{A} \bigotimes_{\substack{i=1 \\ i\neq j}}^{A} < 0^{i} | \delta(\hat{r}_{j}' - \hat{r}') \delta s' s_{j}' | 0^{i} > \langle 0^{i} | \delta(\hat{r}_{i}'' - \hat{r}'') \delta s' s_{i}'' \underline{\Phi}_{o}(t'') | 0^{i} > \\ = \bigotimes_{\substack{j=1 \\ i\neq j}}^{A} \bigotimes_{\substack{i=1 \\ i\neq j}}^{A} \bigotimes_{\substack{j=1 \\ i\neq j}}^{A} \bigotimes_{\substack{i\neq j}}^{A} \bigotimes_{\substack{\substack{i\neq j}}^{A} \bigotimes_{\substack{i\neq j}}^{A$$

From Appendix C for a Fermi gas

$$(III-84) \quad \mathbf{e}(\vec{r}';\vec{r}'';s',s'') = \mathbf{e}(r')\mathbf{e}(r'')(1-\frac{1}{A})\left(1-\frac{A-4}{A-1} \cdot \frac{\mathbf{e}_{\mathbf{E}}(\vec{r}_{\mathbf{J}}\cdot\vec{r}'')}{4}\right)$$

is the nucleon pair density function where $G_{F}(\tilde{r}',\tilde{r}'')$ is the Fermi corre-F lation function which has the following properties

(III-85) $\lim_{|\vec{r}| \to \infty} G_{\vec{r}}(\vec{r}', \vec{r}'') = 0$

(III-86)
$$\lim_{v \to 0} G_F(v, v) = 1$$

(III-87)
$$\int \mathcal{G}_{\mathsf{F}}(\bar{\mathsf{F}}'\bar{\mathsf{F}}'') \mathsf{e}(\mathfrak{E}'') \mathsf{d}^3\mathsf{r}'' = 1$$

In the nucleus there are three sources of correlation, i.e. the Pauli correlations due to the Pauli Exclusion Principle, the nuclear force correlations, and the Coulomb correlations. For this work the Pauli correlations which are of longer range than the nuclear force correlations are assumed to dominate.¹⁹ We assume that the nucleon pair correlation function is approximately $G_{\mathbf{p}}(\mathbf{\dot{r}}^* - \mathbf{\dot{r}}^*)$.

Using (III-67) and Appendix C one may write

Finally one may project the third term in the series for the total pion-nucleus wavefunction given in (III-61) onto the nuclear ground state using (III-81), (III-82), (III-83), (III-84), and (III-88) to obtain

$$(III-89) \int e(r)e(r')(1-\frac{1}{A}) \left[\left(1+\frac{EA}{MN} \right)^{2} \left\{ \left(b_{0}^{2}+abbb, \frac{N+2}{A}-\frac{b_{1}^{2}}{A-1} \right) - \left(\frac{A-4}{A-1} \left(b_{0}^{2}+abbb, \frac{N+2}{A} \right) + ab_{1}^{2} \frac{A-2}{A-1} \right) \frac{G_{E}(F_{1},F_{1})}{4} \right] g_{*}(\tilde{r}_{i}F_{i})g_{*}(\tilde{r}_{i}'F_{i}')$$

$$+ \left\{ \left(C_{0}^{2}+ac_{0}c_{1} \frac{N-2}{A} - \frac{C_{1}^{2}}{A-1} \right) - \left(\frac{A-4}{A-1} \left(C_{0}^{2}+ac_{0}c_{1} \frac{N-2}{A} \right) \right.$$

$$+ ac_{1}^{2} \frac{A-2}{A-1} \right) G_{E}(F_{1},F_{1}') \frac{1}{4} \left\{ \left(\frac{\nabla g_{0}(\tilde{r}_{i}F_{i}') \cdot \nabla'}{1+En/MN} \right) \right\}$$

$$\left(\frac{\nabla' g_0(\vec{r}'_i \vec{r}'') \cdot \nabla''}{1 + E \pi / M_N} + \left\{ \left(d_0^2 + 2 d_0 d_1 \frac{N - 2}{A} - \frac{d_1^2}{A - 1} \right) \right. \\ \left. - \left(\frac{A - 4}{A - 1} \left(d_0^2 + 2 d_0 d_1 \frac{N - 2}{A} \right) + 2 d_1^2 \frac{A - 2}{A - 1} \right) \frac{G_F(\vec{r}' - \vec{r}'')}{4} \right\} \\ \left(\nabla g_0(\vec{r}'_i \vec{r}') \times \nabla' \right) \cdot \left(\nabla' g_0(\vec{r}'_i \vec{r}'') \times \nabla'' \right) \right] \overline{\Phi}_0(r'') d^3r' d^3r'''$$

where the Green's function for the propagation of the neutral pion after the pion has undergone single charge exchange has been replaced by $g_0(\dot{\vec{r}}, \dot{\vec{r}}')$. Since the charge exchanged nuclear state has nearly the same energy as the ground state due to the small amount of energy released in the charge exchange process, this approximation is very reasonable.

Adding (III-89) to (III-79) one obtains for the first three terms of the total pion-nucleus wavefunction projected onto the nuclear ground state

ş

$$(III-90) \quad \Psi(\mathbf{r}) = \Phi_{0}(\mathbf{r}) + \int e(\mathbf{r}') \left[(1 + \frac{\pi}{M_{N}}) (b_{0} + b_{1} \frac{M_{2}}{A}) g_{0}(\mathbf{r}; \mathbf{r}') \right] - (c_{0} + c_{1} \frac{M_{2}}{A}) \left\{ \nabla g_{0}(\mathbf{r}; \mathbf{r}') \cdot \nabla' + \frac{\pi}{M_{N}} g_{0}(\mathbf{r}; \mathbf{r}') \frac{g^{2}}{B^{2}} + (d_{0} + d_{1} \frac{M_{2}}{A}) \right\} - (c_{0} + c_{1} \frac{M_{2}}{A}) \left\{ \nabla g_{0}(\mathbf{r}; \mathbf{r}') \cdot \nabla' + \frac{\pi}{M_{N}} g_{0}(\mathbf{r}; \mathbf{r}') \frac{g^{2}}{B^{2}} + (d_{0} + d_{1} \frac{M_{2}}{A}) \right\} - (c_{0} + c_{1} \frac{M_{2}}{A}) \left\{ \nabla g_{0}(\mathbf{r}; \mathbf{r}') \cdot \nabla' + \frac{\pi}{M_{N}} g_{0}(\mathbf{r}; \mathbf{r}') \frac{g^{2}}{B^{2}} + (d_{0} + d_{1} \frac{M_{2}}{A}) \right\}$$

$$\left[\left(1+\frac{1}{M_{N}}\right)^{2}\left\{\left(b_{0}^{2}+2b_{0}b_{1}\frac{N+2}{A}-\frac{b_{1}^{2}}{A-1}\right)-\left(\frac{A-4}{A-1}\left(b_{0}^{2}+2b_{0}b_{1}\frac{N-2}{A}\right)+\right.\right.$$

$$\begin{aligned} \frac{A-2}{A-1} \left(2b_{1}^{2}\right) &\subseteq \underline{c}\left(\overline{r}^{i} \cdot \overline{r}^{i}\right) \\ \frac{A-2}{A-1} \left(2b_{1}^{2}\right) &\subseteq \underline{c}\left(\overline{r}^{i} \cdot \overline{r}^{i}\right) \\ \frac{A-2}{A-1} \left(2b_{1}^{2}\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}c_{1}c_{1}A\right) + 2c_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} \left(\overline{A}-1\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2c_{1}c_{1}A\right) + 2c_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} \left(\overline{A}-1\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2c_{1}c_{1}A\right) + 2c_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} \left(\overline{A}-1\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2c_{1}c_{1}A\right) + 2c_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} \left(\overline{A}-4\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}c_{1}A\right) + 2c_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}c_{1}A\right) + 2c_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}c_{1}A\right) + 2b_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}c_{1}A\right) + 2b_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}c_{1}A\right) + 2b_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}c_{1}A\right) + 2b_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}c_{1}A\right) + 2b_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}c_{1}A\right) + 2b_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}c_{1}A-2\right) + 2b_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}c_{1}A-2\right) + 2b_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}b_{1}A-2\right) + 2b_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}b_{1}A-2\right) + 2b_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1} \left(2b_{1}^{2} + 2b_{1}b_{1}A-2\right) + 2b_{1}^{2}A-2\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1}\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1}\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) &= \left(\frac{A-4}{A-1}\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4}{A-1}\right) \\ \frac{A-2}{A-1} &= \left(\frac{A-4$$

The higher order terms may be obtained in a similar manner; however, the first three terms are sufficient for the purpose of this work.

٠.

E. Summation of the Series of Multiple Scattering Terms

The infinite series of terms in the expression for the total pion wave in (III-90) may be easily summed in a self consistent manner if there are no correlations, i.e. all the correlation functions $G_{\mathbf{p}}(\mathbf{\ddot{r}}',\mathbf{\ddot{r}}'')$, etc. are zero. In this case the definition of $\Psi(\mathbf{r})$ itself may be used. Thus $\Psi(\mathbf{r})$ may be exactly represented in a self consistent manner by the equation

$$(III-91) \Psi(v) = \Phi_{o}(v) + \int e(v') \left[(1 + \frac{E\pi}{M_{N}}) (b_{o} + b_{1} \frac{N-2}{A}) g_{0}(\bar{r}, \bar{r}') - (C_{o} + C_{1} \frac{N-2}{A}) \left\{ \nabla g_{o}(\bar{r}, \bar{r}') \cdot \nabla' + \frac{E\pi}{M_{N}} g_{o}(\bar{r}, \bar{r}') \mathcal{E}^{2} \right\} / (1 + \frac{E\pi}{M_{N}}) - (d_{o} + d_{1} \frac{N-2}{A}) \frac{2}{A} \frac{\bar{s} \cdot \bar{k}_{1}}{r'} g_{o}(\bar{r}, \bar{r}') \frac{d}{dr}, \int \Psi(v) d^{3}r'$$

Substituting the definition of $\Psi(\mathbf{r})$ into the right hand side of (III-91) one can see that (III-90) is reproduced provided there are no correlations.

If there are two-particle, three-particle, etc., correlations, this self consistent method of truncating the multiple scattering series will not work, because all the correlations are handled incorrectly. On the other hand, if only two particle or pair correlations are significant one may correct (III-91) in order to properly handle the pair correlations. In order to obtain the correction term one substitutes the definition of $\Psi(\mathbf{r})$ given by (III-90) into (III-91) and then subtracts (III-91) from (III-90). An infinite series of correlation terms is obtained. The lowest order scattering terms involving the pair correlation function $G_{\mathbf{p}}(\hat{\mathbf{r}}', \hat{\mathbf{r}}'')$ are

$$(III-92) - \int \int e(r') e(r'') (1-\frac{1}{A}) \underbrace{G_{F}(\tilde{r}'-\tilde{r}'')}_{4} \left\{ (1+\frac{En}{M_{M}})^{2} \left[\frac{A-4}{A-1} (b_{0}^{2} + \frac{1}{A}) + \frac{1}{A} \right] \right\}$$

$$\begin{aligned} \mathbf{ab}_{o} \mathbf{b}_{i} \frac{\mathbf{N-2}}{\mathbf{A}} + \frac{\mathbf{A-3}}{\mathbf{A-1}} \mathbf{ab}_{i}^{2} \end{bmatrix} g_{o}(\hat{\mathbf{r}}_{i} \hat{\mathbf{r}}_{i}) g_{o}(\hat{\mathbf{r}}_{i}' \hat{\mathbf{r}}_{i}) - \begin{bmatrix} \frac{\mathbf{A-4}}{\mathbf{A-1}} (\mathbf{c}_{o}^{2} + \mathbf{a}_{o}^{2}) + \frac{\mathbf{A-3}}{\mathbf{A-1}} \mathbf{ac}_{i}^{2} \end{bmatrix} (\underbrace{\nabla g_{o}(\hat{\mathbf{r}}_{i}' \hat{\mathbf{r}}_{i}) \cdot \nabla'}_{(1 + \mathbf{E}\pi/\mathbf{M}_{N})} (\nabla' g_{o}(\hat{\mathbf{r}}_{i}' \hat{\mathbf{r}}_{i}) \cdot \nabla'')_{i} (\nabla' g_{o}(\hat{\mathbf{r}}_{i}' \hat{\mathbf{r}}_{i}) \cdot \nabla'')_{i} (\mathbf{v}_{i}' g_{o}(\hat{\mathbf{r}}_{i}' \hat{\mathbf{r}}_{i}) \cdot \nabla'')_{i} (\nabla' g_{o}(\hat{\mathbf{r}}_{i}' \hat{\mathbf{r}}_{i}) \cdot \nabla'')_{i} (\mathbf{v}_{i}' g_{o}(\hat{\mathbf{r}}_{i}' \hat{\mathbf{r}}_{i}) \times \nabla')_{i} \cdot (\mathbf{v}_{i}' g_{o}(\hat{\mathbf{r}}_{i}' \hat{\mathbf{r}}_{i}) \times \nabla'')_{i} \cdot (\nabla' g_{o}(\hat{\mathbf{r}}_{i}' \hat{\mathbf{r}}) \times \nabla'')_{i} \cdot (\nabla' g_{o}(\hat{\mathbf{r}}_{i}' \hat{\mathbf{r}})$$

The contribution of all the higher order terms may be included approximately by replacing $\underline{\Phi}_{0}(\mathbf{r}^{"})$ by $\underline{\Psi}(\mathbf{r}^{"})$. In this case all the higher order correlations are still handled incorrectly, but presumably they are not significant. Thus (III-91) may be corrected to obtain

$$(III-93) \qquad \Psi(\mathbf{r}) = \Phi_{0}(\mathbf{r}) + \int e(\mathbf{r}') \left[(1 + E_{A}) (\delta_{0} + \delta_{1} \frac{N+2}{A}) g_{0}(\mathbf{\bar{n}} \mathbf{F}) \right] - (c_{0} + c_{1} \frac{N+2}{A}) \left\{ \frac{\nabla g_{0}(\mathbf{\bar{n}} \mathbf{F}) \cdot \nabla' + E_{D}}{(1 + E_{A}/M_{N})} g_{0}(\mathbf{\bar{n}} \mathbf{F}) \frac{\nabla^{2}}{A^{2}} - (d_{0} + d_{1} \frac{N+2}{A}) \right] - (c_{0} + c_{1} \frac{N+2}{A}) \frac{(1 + E_{A}/M_{N})}{(1 + E_{A}/M_{N})}$$

$$= \frac{\delta \mathbf{\bar{k}}_{1}}{A} g_{0}(\mathbf{\bar{n}} \mathbf{\bar{F}}) \frac{d_{1}}{d_{1}} \frac{\Psi(\mathbf{r}') d^{3}\mathbf{r}'}{d_{1}\mathbf{r}} - \int e(\mathbf{r}') e(\mathbf{r}'') (1 - \frac{1}{A}) G_{E}(\mathbf{\bar{F}} \mathbf{\bar{F}})} \frac{(\mathbf{r}' \mathbf{\bar{F}})}{4} \frac{(1 + E_{A}/M_{N})}{(1 + E_{A}/M_{N})}$$

$$= \left[\frac{A^{-4}}{A-1} (c_{0}^{2} + 2c_{0} + d_{2} \frac{d_{2}^{2}}{A-1}) + 2c_{1}^{2} \frac{A-3}{A-1} \right] (\underline{\nabla g_{0}(\mathbf{\bar{n}} \mathbf{\bar{F}})} \cdot \nabla') (\nabla \dot{g_{0}(\mathbf{\bar{r}}, \mathbf{\bar{F}})} \cdot \nabla') - \left[\frac{A^{-4}}{A-1} (c_{0}^{2} + 2c_{0} + d_{2} \frac{A-3}{A-1}) \right] (\underline{\nabla g_{0}(\mathbf{\bar{n}} \mathbf{\bar{F}})} \cdot \nabla') (\nabla \dot{g_{0}(\mathbf{\bar{r}}, \mathbf{\bar{F}})} \cdot \nabla') - \left[\frac{A^{-4}}{A-1} (c_{0}^{2} + 2c_{0} + d_{2} \frac{A-3}{A-1}) \right] (\underline{\nabla g_{0}(\mathbf{\bar{n}} \mathbf{\bar{F}})} \cdot \nabla') (\nabla \dot{g_{0}(\mathbf{\bar{r}}, \mathbf{\bar{F}})} \cdot \nabla') - \left[\frac{A^{-4}}{A-1} (c_{0}^{2} + 2c_{0} + d_{2} \frac{A-3}{A-1}) \right] (\nabla g_{0}(\mathbf{\bar{n}} \mathbf{\bar{F}}) \cdot \nabla') (\nabla \dot{g_{0}(\mathbf{\bar{n}} \mathbf{\bar{F}}) \cdot \nabla') + \left[\frac{A^{-4}}{A-1} (d_{0}^{2} + 2d_{0} d_{1} \frac{M-2}{A}) + 2c_{1}^{2} \frac{A-3}{A-1} \right] (\nabla g_{0}(\mathbf{\bar{n}} \mathbf{\bar{F}}) \cdot \nabla') \cdot (\nabla' g_{0}(\mathbf{\bar{n}} \mathbf{\bar{F}}) \cdot \nabla') \right]$$

Equation (III-93) is a self-consistent equation for Ψ (r) which correctly handles Ψ (r) for all uncorrelated multiple scatterings and scatterings on correlated nucleon pairs. All the higher order correlated scatterings are treated in an approximate manner which is not strictly correct.

In principle one can use the method above to handle any finite number of higher order correlations. Thus a procedure has been defined that enables one to expand the self-consistent wave equation (III-91) for $\Psi(\mathbf{r})$ in terms of correlation functions to some order. The more correlations considered the more complicated (III-91) becomes due to the addition of correction terms. As a first approximation this work assumes that only pair correlations are significant and neglects all others.

F. Formation of the Optical Model Potential

The Schroedinger equation or any wave equation of the form

$$(III-94) \quad \frac{k^{2}}{2m_{\pi}} \left(\nabla^{2} + k^{2} \right) \Psi(Y) = V(Y) \Psi(Y) \qquad k^{2} = \frac{2m_{\pi} E_{\pi}}{k^{2}}$$

may be used to obtain a pion-nucleus potential from $\Psi(\mathbf{r})$. Consider the operation of

(III-95)
$$\frac{\hbar^2}{2/m_{\pi}} \left(\nabla^2 + k^2 \right) - V_{coul} (r)$$

on $\Psi(\mathbf{r})$. The pion's Green's function obeys the equation

$$(III-96) \left[\frac{k^{2}}{am_{\pi}}(\nabla^{2}+k^{2})-V_{cour}(r)\right]g_{\delta}(\bar{r},\bar{r}') = -\frac{4\pi\hbar}{am_{\pi}}\delta(\bar{r}-\bar{r}')$$

and the incident pion field $\overline{\Phi}_{0}(\mathbf{r})$ obeys the equation

$$(III-97) \left[\frac{\hbar^2}{2m_{\Pi}} \left(\nabla^2 + k^2\right) - V_{\rm cov}(h)\right] \overline{\Phi}_{\rm o}(h) = 0$$

Thus operating with (III-95) on $\Psi(\mathbf{r})$ in equation (III-93) and integrating over the delta functions obtain for negative pions

$$(III-98) \left[\frac{\hbar^{2}}{2M_{n}}\left(\nabla^{2}+\kappa^{2}\right)-V_{Coul}(\nu)\right]\Psi(\nu) = V_{ST}(\nu)\Psi(\nu)$$

$$=-\frac{4\pi\hbar^{2}}{2M_{n}}\left[\left(1+\frac{E\pi}{M_{N}}\right)\left(b_{0}+b_{1}\frac{M^{2}}{A}\right)e(\nu)-\left(c_{0}+c_{1}\frac{M^{2}}{A}\right)\left\{\frac{\nabla\cdot\Omega\nu}{1+E\pi/M_{N}}\nabla\left(1+\frac{E\pi}{M_{N}}\right)\left(b_{0}+b_{1}\frac{M^{2}}{A}\right)e(\nu)-\left(c_{0}+c_{1}\frac{M^{2}}{A}\right)\left\{\frac{\nabla\cdot\Omega\nu}{1+E\pi/M_{N}}\nabla\left(1+\frac{E\pi}{M_{N}}\right)\left(b_{0}+b_{1}\frac{M^{2}}{A}\right)e(\nu)-\left(c_{0}+c_{1}\frac{M^{2}}{A}\right)\left\{\frac{\nabla\cdot\Omega\nu}{1+E\pi/M_{N}}\inte(\nu)e(\nu)\right]$$

$$\left(1-\frac{1}{A}\right)\frac{G_{E}(\tilde{\nu}-\tilde{\nu}h)}{4}\left\{\left(1+\frac{E\pi}{M_{N}}\right)^{2}\left[\frac{A-4}{A-1}\left(b_{0}^{2}+\lambda b_{0}b,\frac{M-2}{A}\right)+\frac{A-2}{A-1}\partial b_{1}^{2}\right]$$

$$g_{0}(\tilde{\nu},\tilde{\nu}h)\int\Psi(\nu)d^{3}\nu^{1}+\frac{4\pi\hbar^{2}}{2M_{T}}\inte(\nu)\left(1-\frac{1}{A}\right)\left[\frac{A-4}{A-1}\left(c_{0}^{2}\frac{M^{2}}{A}\right)e(\nu)d^{3}\nu^{1}+\frac{4\pi\hbar^{2}}{2M_{T}}\inte(\nu)\left(1-\frac{1}{A}\right)\left[\frac{A-4}{A-1}\left(c_{0}^{2}\frac{M^{2}}{A}\right)e(\nu)d^{3}\nu^{1}+\frac{4\pi\hbar^{2}}{2M_{T}}\inte(\nu)\left(1-\frac{1}{A}\right)\left[\frac{A-4}{A-1}\left(c_{0}^{2}\frac{M^{2}}{A}\right)e(\nu)d^{3}\nu^{1}+\frac{4\pi\hbar^{2}}{2M_{T}}\inte(\nu)\left(1-\frac{1}{A}\right)\left[\frac{A-4}{A-1}\left(c_{0}^{2}\frac{M^{2}}{A}\right)e(\nu)d^{3}\nu^{1}+\frac{4\pi\hbar^{2}}{2M_{T}}\inte(\nu)\left(1-\frac{1}{A}\right)\left[\frac{A-4}{A-1}\left(c_{0}^{2}\frac{M^{2}}{A}\right)e(\nu)d^{3}\nu^{1}+\frac{4\pi\hbar^{2}}{2M_{T}}\frac{M^{2}}{A}\right]e(\nu)d^{3}\nu^{1}+\frac{4\pi\hbar^{2}}{2M_{T}}\frac{M^{2}}{A}$$

$$+ 2c_{\circ}c_{i}\frac{N-2}{A} + \frac{3c_{i}^{2}A-2}{A-i} \Big] (\nabla \cdot e(\theta)G_{\underline{F}}(\underline{F}-\underline{F}')) \nabla \Big) (\underbrace{\nabla g_{o}(\overline{F_{i}}\overline{F}')\cdot \nabla''}_{(1+\underline{F}\pi/M_{N})^{2}})$$

$$\underline{\Psi}(Y'')d^{3}r'' + \frac{4\pi/\hbar^{2}}{2m_{\pi}}\int e(r'')(1-\frac{1}{A}) \Big[\frac{A-4}{A-i}(d_{o}^{2}+2d_{o}d_{i}\frac{N-2}{A}) + \frac{A-2}{A-i}2d_{i}^{2}\Big] (\nabla X e(\theta)G_{\underline{F}}(\underline{F}-\underline{F}'') \nabla \Big) \cdot (\nabla g_{\circ}(\overline{F_{i}}\overline{F}'')X\nabla'')\underline{\Psi}(r'')d^{3}r''$$

None of the integrals in (III-98) can be evaluated exactly except by numerical means. For the purpose of this work some simplifying approximations will be made in order to easily evaluate the integrals.

Consider the first integral in (III-98). For the Pauli pair correlation function $G_{\mathbf{p}}(\mathbf{r}-\mathbf{r}^{"})$ most of the contribution to the integral must come in the region $\mathbf{r} \sim \mathbf{r}^{"}$ for $\mathbf{r}^{"}$ inside the nucleus. Assuming $\mathcal{C}(\mathbf{r}^{"})$ and $\Psi(\mathbf{r}^{"})$ are smooth functions that are fairly constant over small ranges in $\mathbf{r}^{"}$, one may remove them from the integral, i.e.

$$(III-99) \int e(r'') G_{\underline{F}}(\bar{r} \cdot \bar{r}'') g_{\underline{v}}(\bar{r} \cdot \bar{r}'') \underline{\Psi}(r'') d^{3}r'' \\ \cong e(r) \underline{\Psi}(r) \int G_{\underline{F}}(\bar{r} \cdot \bar{r}'') g_{\underline{v}}(\bar{r} \cdot \bar{r}'') d^{3}r''$$

The approximation made for $C(r^{"})$ is sometimes called the local density approximation.

Also let us assume that the pion propagator may be approximated by

(III-100)
$$g_{\bullet}(\tilde{r}, \tilde{r}'') \cong \frac{1}{|\tilde{r}-\tilde{r}''|}$$

due to the short range of the correlations. All these approximations are more valid the shorter the range of the pair correlation function.

Using approximations (III-99) and (III-100) one may write

$$(III-101) \int e(\mathbf{r}'') \underline{G}_{\mathbf{F}} (\mathbf{r}^{-\mathbf{\hat{r}}''}) \underline{g}_{\mathbf{o}} (\mathbf{\hat{r}}, \mathbf{\hat{r}}'') \underline{\Psi} (\mathbf{r}'') d^{3} \mathbf{r}'' \cong e(\mathbf{r}) \underline{\Psi} (\mathbf{r}) \int \frac{1}{|\mathbf{r} - \mathbf{\hat{r}}''|} \frac{G_{\mathbf{F}} (\mathbf{\hat{r}} - \mathbf{\hat{r}}'')}{4} d^{3} \mathbf{r}''$$
$$\cong e(\mathbf{r}) \underline{\Psi} (\mathbf{r}) \frac{9\pi}{4} \mathbf{r}_{\mathbf{f}}^{2}$$

where the value of the integral was obtained by changing the variable of integration to $\dot{\mathbf{x}} = \hat{\mathbf{r}}^{"}$ - $\hat{\mathbf{r}}$ and using Appendix C. Thus the contribution of the first integral in (III-98) to $V_{st}(\mathbf{r})$ is

$$(III-102) - \frac{4\pi h^2}{2m_{\Pi}} \left[-\frac{9\pi}{4P_{f}^2} e^{2} (1 - \frac{1}{A}) \left\{ \frac{A-4}{A+1} (b_0^2 + 3b_0 b_1 \frac{N-2}{A}) + 3b_0^2 \frac{A-2}{A+1} \right\} \right]$$

In order to evaluate the second integral in (III-98) consider the z-component of an integral of the form

(III-103)
$$\hat{k} \cdot \int_{-1}^{1} \int_{0}^{2\pi} \hat{x} (\hat{x} \cdot \hat{A}_{x}) d\cos \theta d\phi = \int_{-1}^{1} \int_{0}^{2\pi} \cos \theta \left[\sin \theta \cos \phi A_{x} \right]_{+}^{-1} \sin \theta \sin \phi A_{y} + \cos \theta A_{z} d\cos \theta d\phi$$

where $\dot{\mathbf{x}} = \dot{\mathbf{r}} - \dot{\mathbf{r}}^{"}$. Integrating over ϕ obtain

(III-104)
$$\int_{0}^{2\pi} \sin \phi \, d\phi = -\cos \phi \Big|_{0}^{2\pi} = 0$$

(III-105)
$$\int_{0}^{\partial n} \cos \phi \, d\phi = -\sin \phi \Big|_{0}^{\partial n} = 0$$

Thus

(III-106)
$$\hat{k} \cdot \int_{-1}^{1} \int_{0}^{2\pi} \hat{x} (\hat{x} \cdot \hat{A}_{(x)}) d\cos dx = 2\pi \int_{-1}^{1} A_{2}(x) \cos^{2} \theta d\cos \theta$$

= $2\pi A_{2}(x) \frac{\cos^{3} \theta}{3} \int_{-1}^{1} = \frac{4\pi}{3} A_{2}(x)$

Evaluating the other components of the integral in the same manner one obtains

$$(III-107) \int_{-1}^{1} \int_{0}^{2\pi} \hat{x} (\hat{x} \cdot A(x)) d\cos \theta dx = \frac{4\pi}{3} \tilde{A}(x) = \int_{-1}^{1} \int_{0}^{2\pi} \frac{\hat{x} \cdot \hat{x}}{3} A(x) d\cos \theta dx$$

The third integral in (III-98) is proportional to

(III-108)
$$\int e(\mathbf{r}'') \left(\nabla \cdot e(\mathbf{r}) \underline{G_{\mathbf{r}}(\mathbf{r},\mathbf{r}'')} \nabla\right) \left(\nabla g_{\mathbf{s}}(\mathbf{r},\mathbf{r}'') \cdot \nabla^{\mathbf{r}}\right) \Psi(\mathbf{r}'') d^{\mathbf{3}}\mathbf{r}''$$

Noting that $\nabla G_{\vec{r}}(\vec{r} - \vec{r}'') \propto \vec{r} - \vec{r}'' = \vec{x}$ and $\nabla g_{0}(\vec{r}, \vec{r}'') \propto \vec{r} - \vec{r}'' = \vec{x}$ and using (III-107) with $\vec{A}(x) = \nabla'' \Psi(r'')$ obtain

$$(III-109) \int \int \int \dot{x} dx (\dot{x} dy gw) \cdot \dot{A}(x) d\cos dx$$
$$= \frac{1}{3} \int \int \int \nabla \cdot \nabla gw \dot{A}(x) d\cos dx$$

Thus (III-108) may be evaluated using (III-101) and assuming

(III-110)
$$\nabla^2 g_{\bullet}(\vec{r}\cdot\vec{r}'') \cong -4\pi \delta(\vec{r}\cdot\vec{r}'')$$

to obtain

$$(\text{III-III}) \quad \int e(\mathbf{r}'') \left(\nabla \cdot e(\mathbf{r}) \underbrace{G_{\mathbf{p}}(\mathbf{r},\mathbf{\bar{r}}'')}_{\mathbf{q}} \nabla \right) \left(\nabla g_{\bullet}(\mathbf{r},\mathbf{\bar{r}}'') \cdot \nabla'' \psi_{(\mathbf{r}'')} \right) \sqrt{3} \mathbf{r}''$$

$$\cong \frac{1}{3} \int e(\mathbf{r}'') \nabla \cdot e(\mathbf{r}) \underbrace{G_{\mathbf{p}}(\mathbf{\bar{r}},\mathbf{\bar{r}}'')}_{\mathbf{q}} \nabla^{2} g_{\bullet}(\mathbf{r},\mathbf{\bar{r}},\mathbf{r}') \nabla'' \psi_{(\mathbf{r}'')} \sqrt{3} \mathbf{r}''$$

$$\cong - \frac{\pi}{3} e(\mathbf{r}) \nabla \cdot e(\mathbf{r}) \nabla \psi_{(\mathbf{r}')}$$

From (III-111) the contribution of the second integral in (III-98) to $V_{st}(r)$ is

$$(III-112) - \frac{4nK^2}{2\pi} I = e(v)(1-\frac{1}{A}) \left\{ \begin{array}{c} A^{-1} \left(C_0^2 + 2C_0 C_1 \frac{M^2}{A} \right) + 2C_1^2 \frac{M^2}{A-1} \right\} \frac{\nabla \cdot e(v) \nabla}{(1+e_1/a_N)^2}$$

In a very similar manner the contribution of the third integral in (III-98) to $V_{st}(r)$ is obtained to be

$$(\text{III-113}) - \frac{4\pi \hbar^2}{2\pi m} \stackrel{2\pi}{3} \text{eV} \left(1 - \frac{1}{A}\right) \left\{ \frac{A - 4}{A - 1} \left(d_0^2 + 2 d_0 d_1 \frac{N - 2}{A} \right) + 2 d_1^2 \frac{A - 2}{A - 1} \right\} \nabla \cdot \text{eV} \nabla$$

Substituting (III-102), (III-112) and (III-113) into (III-98)

one obtains the optical model potential $V_{et}(\mathbf{r})$ to be

$$(III-II4) \quad \bigvee_{ST} (r) = -\frac{4\pi\hbar^{2}}{\Im/m_{\Pi}} \left[\left(1 + \frac{E\pi}{M_{N}} \right) \left(b_{0} + b_{1} \frac{N \cdot 2}{A} \right) e(v) - \left(c_{0} + c_{1} \frac{N \cdot 2}{A} \right) \left\{ \nabla \cdot e(v) \nabla \frac{(1 + E\pi/m_{N})}{(1 + E\pi/m_{N})} - \frac{E\pi}{2M_{N}} \nabla^{2} e(v) \right\} - \left(d_{0} + d_{1} \frac{N \cdot 2}{A} \right) \frac{\partial}{\partial} e(v) \frac{5 \cdot E\pi}{V} \frac{d}{V} - \frac{9\pi}{4P_{T}^{2}} \frac{2}{e(v)} \left(1 + \frac{1}{A} \right) \left(1 + \frac{E\pi}{M_{N}} \right)^{2} \left\{ \frac{A - 4}{A - 1} \left(b_{0}^{2} + a b_{0} b_{1} \frac{N - 2}{A} \right) + a b_{1}^{2} \frac{A - 3}{A - 1} \right\} + \frac{\pi}{3} e(v) \left(1 - \frac{1}{A} \right) \left\{ \frac{A \cdot 4}{A - 1} \left(c_{0}^{2} + a b_{0} b_{1} \frac{N - 2}{A} \right) + a b_{1}^{2} \frac{A - 3}{A - 1} \right\} + \left(\frac{2 \cdot c_{1}^{2}}{(1 + E\pi/m_{N})^{2}} + \frac{4 \cdot d_{1}^{2}}{A - 1} \right) \nabla \cdot e(v) \nabla \right]$$

Thus we have completed the derivation of a pion-nucleus strong interaction optical model potential from the multiply scattered wave approach. The wave analysis enabled us to explicitly take into account scattering on correlated pairs.

The $V_{st}(r)$ in (III-114) represents only the elastic pion-nucleus interaction. In addition to the elastic interaction with the nucleus the pion may be absorbed. For pionic atoms and low energy pion-nucleus scattering conservation of energy and momentum prohibits pion absorption on single nucleons. Experimentally most pion absorption at low energy occurs on nucleon pairs.^{48,49,51}

The absorption process may be included in the multiple scattering equations in the single scattering approximation by considering the nucleon pairs for absorption as additional elementary scatterers. Thus the pion-nucleon pair absorption operators may be expressed in terms of purely imaginary pion-nucleon pair interaction amplitudes $B_{\rm rm}$ and $\gamma_{JT}(s,T)$. (See Appendix A for a derivation of the pion-nucleon pair interaction operator.)

If the nucleon pairs for absorption are considered as additional elementary scatterers, then in the single scattering approximation they give rise to a contribution to $V_{st}(r)$ of

(III-115)
$$V_{ST}(r) = -\frac{4\pi \tilde{h}^2}{2\pi m_{\pi}} \left[\left(1 + \frac{E\pi}{2M_{\pi}} \right) B e^2 r - C \frac{\nabla \cdot e^2 r}{1 + \frac{E\pi}{2M_{\pi}}} \right]$$

where B and C are pure imaginary. Thus the pion-nucleus strong interaction optical model potential including absorption on nucleon pairs may be written

$$(\text{IIII-116}) \quad \bigvee_{ST} (\mathbf{r}) = -\frac{4\pi h^{2}}{2\pi m_{n}} \left[\left(1 + \frac{E\pi}{M_{N}} \right) \left(b_{0} + b_{1} \frac{N-2}{A} \right) e(\mathbf{r}) - \left(\frac{C_{0} + C_{1} \frac{N-2}{A}}{1 + E\pi/m_{N}} \right) \right] \left\{ \nabla \cdot e(\mathbf{r}) \nabla - \frac{E\pi}{2M_{N}} \nabla^{2} e(\mathbf{r}) \right\} - \left(d_{0} + d_{1} \frac{N-2}{A} \right) \frac{2}{A} e(\mathbf{r}) \frac{S \cdot E_{n}}{r} \frac{d}{dr} - \frac{9\pi}{4r_{p}^{2}} e^{\frac{2}{C}} \left(1 - \frac{1}{A} \right) \left(1 + \frac{E\pi}{M_{N}} \right)^{2} \left\{ \frac{A \cdot 4}{A - 1} \left(b_{0}^{2} + 2 b_{0} b_{1} \frac{N+2}{A} \right) + 2 b_{1}^{2} \frac{A - 2}{A - 1} \right\} + \frac{1}{3} e(\mathbf{r}) \left(1 - \frac{1}{A} \right) \left\{ \frac{A \cdot 4}{A - 1} \left(c_{0}^{2} + 2 c_{0} c_{1} \frac{N+2}{A} \right) + 2 b_{1}^{2} \frac{A - 2}{A - 1} \right\} + \frac{1}{3} e(\mathbf{r}) \left(1 - \frac{1}{A} \right) \left\{ \frac{A \cdot 4}{A - 1} \left(c_{0}^{2} + 2 c_{0} c_{1} \frac{N+2}{A} \right) + 2 b_{1}^{2} \frac{A - 2}{A - 1} \right\} + \frac{1}{4} d_{0} d_{1} \frac{N \cdot 2}{A} + \frac{1}{4} \left(\frac{2 c_{1}^{2}}{\left(1 + \frac{E\pi}{M_{N}} \right)^{2}} + \frac{4}{4} d_{1}^{2} \right) \frac{A - 2}{A - 1} \right\} \nabla \cdot e(\mathbf{r}) \nabla + \left(\left(1 + \frac{E\pi}{M_{N}} \right) B e^{\frac{2}{C}} \right) - \left(\frac{\nabla \cdot e^{\frac{1}{C}}}{1 + \frac{E\pi}{M_{N}}} \right) \right]$$

This form of the potential is significantly different from that of Bricson and Ericson who obtained

$$(\text{III-II7}) \quad \bigvee_{\text{ST}} (r) = -\frac{4\pi \tilde{h}^{2}}{2M_{\Pi}} \left[\frac{(1+\frac{M_{\Pi}}{M_{N}})(b_{0}+b_{1}\frac{N-2}{A})e(r)}{1+\frac{q_{\Pi}}{4r_{P}^{2}}(b_{0}+b_{1}\frac{N-2}{A})e(r)} - (1+\frac{M_{\Pi}}{M_{N}})^{-1} \nabla \cdot \frac{(C_{0}+c_{1}\frac{N-2}{A})e(r)}{1-\frac{q_{\Pi}}{3}\frac{h}{r}(c_{0}+c_{1}\frac{N-2}{A})e(r)} \nabla + (C_{0}+c_{1}\frac{N-2}{A})}{(C_{0}+c_{1}\frac{N-2}{A})e(r)} \nabla + (C_{0}+c_{1}\frac{N-2}{A})} \frac{(M_{\Pi}}{M_{N}})^{2} \langle \tilde{P}_{N}^{2} \rangle e(r) - (d_{0}+d_{1}\frac{N-2}{A}) \frac{2}{A}e(r)\frac{5\cdot\tilde{l}_{\Pi}}{r}\frac{d}{dr} + (1+\frac{M_{\Pi}}{2M_{N}})Be^{2}(r) - C \nabla \cdot \frac{\nabla \cdot e^{2}(r)}{1+\frac{M_{\Pi}}{2M_{N}}} \right]$$

The main differences are that in this work the relativistic form involving E_{Π}/m_N instead of m_{Π}/m_N is obtained, the nucleon motion term is ing E_{Π}/m_N instead of m_{Π}/m_N is and the form of the Lorentz-Lorenz effect must be different from the classical form due to the inclusion of effects like virtual charge exchange. Also the spin dependent d term is found to give a contribution to virtual spin exchange even for spin zero nuclei.

Krell and Ericson²¹ in fitting their pion-nucleus optical model potential to pionic atom data for the 2p-1s transition data which is very sensitive to the form of the Lorentz-Lorenz effect, discarded the original Ericson and Ericson¹⁹ form of the Lorentz-Lorenz effect in the local part of the potential and replaced it with the form derived above which includes contributions due to virtual charge exchange.

Krell and Barmo²¹ in using the optical model potential of Krell and Ericson¹⁹ to fit the relativistic pion elastic scattering data on ¹²C failed to replace the $m_{\rm T}/m_{\rm N}$ terms with the relativistic $E_{\rm T}/m_{\rm N}$ terms. As a result the agreement between their best fit parameters and the values deduced from TN experiments was not too good.

CHAPTER IV

ANALYSIS OF PION-NUCLEUS INTERACTION DATA

The derivation of the optical model potential of Chapter III using multiple scattering theory involved a number of approximations. Although the approximations made in the derivation were reasonable, the magnitude of the terms involving correlations is only approximate due to the use of the Fermi gas model and neglecting the e^{ikr} dependence of the Green's function. As the energy of the pion increases the correlation terms must eventually disappear due to the oscillatory nature of e^{ikr} in the Green's function.

The full justification of any pion-nucleus interaction potential requires that it qualitatively and quantitatively describe the experimental data. There are many kinds of experiments in which the effect of the pion interacting strongly with the nucleus can be detected. For instance photo-pion production and electro-pion production exhibit final state pion-nucleus interactions. In some sense these kinds of experiments are two step processes. First the pion is produced electromagnetically, then it interacts strongly with the nucleus. One needs to know all the details of the production process in order to investigate the final state interactions using the experimental data.

Although experiments such as pion-production can be used to test the pion-nucleus interaction potential, it is advantageous to use the more direct processes such as elastic pion-nucleus scattering and its very low energy equivalent, pionic atoms. In these processes one need

67

deal with only the well known elastic electromagnetic processes in addition to the pion-nucleus strong interaction. For the purpose of testing the pion-nucleus optical model potential only these two processes are used in this work.

Tables 5-8 contain a listing of all the pionic atom x-ray transition emergies and widths. Not all of the pionic atom data are equally useful for testing the pion-nucleus optical potential, because not all of the TTNN interaction amplitudes in the optical potential are known. Also the nuclear density is only reasonably well known for N = Z spin zero nuclei. Thus the data for ${}^{4}\text{He}$, ${}^{12}\text{C}$, ${}^{16}\text{O}$, and ${}^{40}\text{Ca}$ are best for testing the potential.

In testing the potential for pionic atoms one could just substitute into the potential the experimentally deduced TAN and TANN interaction amplitudes, and solve the Klein-Gordon wave equation for this potential to predict the pionic atom transition data. This procedure is not fully satisfactory due to the large uncertainty in the experimentally measured TAN and TANN interaction amplitudes compared to the great precision of the pionic atom transition data. A better procedure is to fit the TAN and TANN interaction amplitudes to the pionic atom data via the pion-nucleus optical model potential, and then compare the resulting values with the experimentally determined ones. This procedure is outlined in great detail in Appendix F.

Following the method of analysis given in Appendix F, one obtains best fit values for the effective parameters

$$(IV-1) \quad b_{0}'' = b_{0} - \frac{3P_{F}}{2\pi A} (I-A) (I+\frac{E_{T}}{M_{N}}) \left[\frac{A-4}{A-1} b_{0}^{2} + \frac{A-a}{A-1} a_{0}^{2} \right]$$

$$(IV-2) \quad C_{0}'' = C_{0} - \frac{\pi}{3} \left(\frac{A}{4\pi R^{3}} \right) (I-A) \left[\left(\frac{A-4}{A-1} C_{0}^{2} + \frac{A-a}{A-1} a_{0}^{2} \right) + \left(\frac{A-4}{A-1} a_{0}^{2} + \frac{A-a}{A-1} a_{0}^{2} \right) \right]$$

$$(IV-2) \quad I+\frac{E_{T}}{M_{N}}$$

$$(IV-3) \ \ \ B'' = B_{0} - \frac{3}{A-1} B_{1} - \frac{3}{A-1} B_{2} + \frac{9}{(A-1)^{2}} \left(l + \frac{3}{A-1} \right) B_{4} - \frac{4}{A-1} \left(l + \frac{3}{A-1} \right) B_{5}$$

$$(IV-4) \ \ \ \ \ C'' = C_{0} - \frac{3}{A-1} C_{1} - \frac{3}{A-1} C_{2} + \frac{9}{(A-1)^{2}} \left(l + \frac{3}{A-1} \right) C_{4} - \frac{4}{A-1} \left(l + \frac{3}{A-1} \right) C_{5}$$

where R is the uniform radius of the density of nucleon centers and the parameters b_0 , b_1 , c_0 , c_1 , d_0 , d_1 , B_0 , B_1 , B_2 , B_4 , B_5 , C_0 , C_1 , C_2 , C_4 , and C_5 are particular combinations of TN and TTNN interaction amplitudes given in Appendix A. The best fit parameter values are displayed in Figures 1-4 along with the extrapolated values from TTN and TTNN interaction experiments.

From Figures 1 and 2 one sees that the "b," and "c," predicted 105 using the TIN amplitudes of Hamilton and Woolcock are not in agreement with the best fit values. On the otherhand the Fermi-averaged values of both "b," and "c," predicted by using the TIN amplitudes of 121Donnachie and Shaw agree satisfactorily with the best fit values.

For pion absorption on nucleon pairs, the picture is more complicated. From Figure 3 one sees that the "B" predicted by Ericson 19 and Ericson from pion production experiments is off by a factor of 2 from the best fit value. The only other estimate for "B" is that of 20 Dover who explicitly calculated the contributions of the various onand off-shell nucleon-nucleon T matrices and averaged them over the distribution of two-nucleon relative momenta in the Fermi sea. His calculations slightly overestimate the best fit values.

In the case of nonlocal absorption of pions on nucleon pairs, 19 one sees that the "C" predicted by Ericson and Ericson from pion production experiments is in excellent agreement with the best fit value. Again Dover overestimates the value of the absorption parameter by about 10 %.

For pedagogical reasons some figures have been included to give one a qualitative understanding of the influence of the strong interaction on pionic atoms. In Figure 5 is shown the ls bound state wave-16functions for 0 with and without the effect of the strong interaction. A radial plot of the repulsive local and attractive nonlocal parts of 16the optical potential for 0 is given in Figures 6 and 7. Figure 8 40displays the 2p bound state wavefunctions for Ca with and without the effect of the strong interaction.

Tables 9-45 contain a listing of the elastic pion-nucleus dif-4 12 16 40 ferential scattering cross section data for He, C, O, and Ca at a variety of pion energies. The precision of some of this data is poor, and therefore not extremely useful for testing the pion-nucleus potential. However much of the data is precise enough to make a check possible.

For testing the pion-nucleus optical potential, one finds that 121 using the Fermi-averaged pion-nucleon amplitudes of Donnachie and Shaw with all pair absorption amplitudes set equal to zero is satisfactory for describing the available differential cross section data. In the analysis of the elastic scattering data the pion absorption on pairs was neglected, because the effect of pair absorption on the cross section seems to be rather small and the energy dependence of the pair absorption parameters is unknown. The complicated procedure for calculating the differential cross section is described in great detail in Appendix L.

In Figures 9-12 are shown the predicted values of the complex parameters "b," and "c," as a function of the laboratory pion kinetic $\frac{12}{12}$ energy T T for C. The Fermi-averaged values of these complex parameters were predicted using the pion-nucleon amplitudes of Donnachie and Shaw.¹²¹ Also the values of the complex parameters b_0 and c_0 without correlation effects are given to indicate the magnitude of the correlation effects. Figures 13-18 give a comparison of the Fermi-averaged complex parameters $b_{,c}$, and $d_{,s}$ a determined from the pion-nucleon 0 118 Roper and Wright, 120 and amplitudes or phase shifts of McKinley, Roper and Wright, 120 and 121 Donnachie and Shaw. Since no uncertainties are given for these sets of pion-nucleon phase shifts a comparison of the various sets gives some idea of what the uncertainties may be.

The predicted elastic differential scattering cross sections for ⁴ 12, 16, 40 He, ² C, ³ O, and ⁴O Ca are given in Figures 19-60 along with the experimental cross sections. On each figure is indicated the normalization factor by which the calculated cross section must be multiplied to obtain agreement with data. Also the average χ^2 for the predicted cross section is listed on each graph.

A cursory inspection of all the differential cross sections reveals the merit of the Kisslinger-type optical potential. The potential seems to satisfactorily predict the differential cross sections for all nuclei qualitatively and quantitatively. The quantitative fit could be improved by varying the values of the pion-nucleon amplitudes. Not all of the data is equally well predicted, because some of the data are quite old and have serious systematic errors.

CHAPTER V

SUMMARY AND CONCLUSIONS

In this work a new pion-nucleus optical model potential has been derived from multiple scattering theory using the impulse approximation. This potential differs from previously accepted pion-nucleus optical model potentials, such as that of Ericson and Ericson,¹⁹ in four important aspects.

First, the form of the Lorentz-Lorenz effect is different. The form of the Lorentz-Lorenz effect in this work is due to the fundamental approximation made to treat the series of multiple scattering equations. Ericson and Ericson¹⁹ made what Lax^{91} calls the quasi-crystalline approximation to close the series of multiple scattering equations. This approximation, as its name implies, is appropriate for crystalline structures. In this work the approximation made was to neglect all correlations of nucleons higher than pair correlations in summing exactly the entire series of multiple scatterings.

Second, the dominant contribution to the local part of the optical potential--i.e., virtual charge exchange--enters naturally from this work as one of the terms in the potential. This is not true in the case of the quasi-crystalline approximation employed by Ericson and Ericson.¹⁹ As a result Krell and Ericson²¹ were forced to add in this term ad hoc.

Third, the relativistic kinematical factors involving E_{Π}/m_N are used. Many investigators, like Krell and Barmo,³⁹ have failed to use the

72

proper relativistic factors in fitting to relativistic elastic pionnucleus scattering data. Also the factor (1-1/A) multiplying the nucleon pair density and correlation terms has been included in this work. This factor has been neglected by many investigators.

Fourth, the contribution of nucleon motion is properly included resulting in a $\frac{E_{\Pi}}{2M_N} \subset \nabla^2 \in \mathbb{C}$ term in the potential. Ericson and 19 Ericson neglected this term and instead found an $(\frac{E_{\Pi}}{M_N})^2 \subset \langle P_N^2 \rangle \in (P)$ 122 nucleon motion term. According to Krajcik and Foldy this term should be neglected if one does not use bound nucleon spinors in calculating the potential from multiple scattering theory, because the contributions due to the nucleons being bound are of the order $(E_{\Pi}/M_N)^2$.

In order to test the accuracy of the optical potential of Chapter III to describe pion-nucleus interactions, the effective parameters in the potential were varied in order to obtain a fit to pionic atom x-ray transition data. Then the values of the best fit effective parameters were compared to those predicted by the theory using the pion-nucleon 121amplitudes of Donnachie and Shaw.

For the pionic atom data the optical potential is able to satisfactorily describe the shift of the pionic atom energy levels due to the strong interaction using the Fermi-averaged pion-mucleon amplitudes 121 of Donnachie and Shaw. The width of the pionic atom energy levels due to absorption on nucleon pairs is satisfactorily described for l>0states using the TINN amplitudes obtained from pion production experi-19 ments using the principle of detailed balance. For some reason the TINN amplitudes from production experiments are imadequate to describe 20the l=0 widths. Dover has explicitly calculated the contributions of the various on- and off-shell nucleon-nucleon T matrices and averaged them over the distribution of two-nucleon relative momenta in the Fermi sea in order to obtain effective s- and p-wave pair absorption parameters in fair agreement with the best fit values.

For the elastic pion-nucleus differential scattering cross section data the optical potential seems to be able to satisfactorily predict the more recent and more precise data. This is the first time any optical potential has been able to satisfactorily describe the elastic differential scattering cross section data for such a large energy range for even one nucleus, much less a range of nuclei!

Now that the interaction of the pion with the nucleus seems to be satisfactorily understood and described in terms of an optical potential, it is possible to seriously investigate other processes involving initial or final state pion-nucleus interactions such as photo-pion production, ¹²³ electro-pion production, pion single and double charge exchange, and inelastic pion scattering.

APPENDIX A

Derivation of the Pion-Nucleon and Pion-Nucleon-Pair Interaction Operators in Terms of Partial Wave Amplitudes

1. Pion-Mucleon Interaction Operator

Following the suggestion of Ericson and Ericson one may expand the pion-nucleon interaction operator $f_1(\mathbf{r})$ in terms of the pion-nucleon partial wave amplitudes α_{2T} and $\alpha_{2T,2J}$, since the orbital angular momentum \hat{k} , the total angular momentum J, and the total isotopic spin T of the pion-nucleon system are conserved in the interaction. In order to do this $f_1(\mathbf{r})$ may be written in terms of angular momentum and isospin projection operators.

Al
$$f_{\underline{1}}(\vec{r}) = \alpha_1 \prod_{T=Y_2} + \alpha_3 \prod_{T=Y_2} + \bigotimes_{l=1}^{\infty} (\mathfrak{d}_{l+1}) \left[\alpha_{l,\mathfrak{d}_{l+1}} \prod_{T=Y_2} \prod_{\mathfrak{d}_{\mathfrak{d}_{l+1}}} \right]$$

+ $\alpha_{\mathfrak{d},\mathfrak{d}_{l+1}} \prod_{T=Y_2} \prod_{\mathfrak{d}_{\mathfrak{d}_{\mathfrak{d}_{l+1}}}} + \alpha_{l,\mathfrak{d}_{l-1}} \prod_{T=Y_2} \prod_{\mathfrak{d}_{\mathfrak{d}_{\mathfrak{d}_{\mathfrak{d}_{l-1}}}} \right]$
 $\prod_{T=Y_2} \prod_{\mathfrak{d}_{\mathfrak{d}_{\mathfrak{d}_{\mathfrak{d}_{\mathfrak{d}_{\mathfrak{d}_{l-1}}}}} \right] P_{\underline{d}}(\cos \theta)$

For s- and p-waves only l = 0 or 1

The angular momentum projection operators may be defined using the relations

A3 $J^2 = \chi^2 + \chi^2 + 2\chi_2$

 $\Psi = \mathcal{I}(2+1) = \mathcal{I}(3+1) + \mathcal{I}(1+2) + \mathcal{I}(3+1) +$

Note

A5
$$\nabla \cdot l = J(J+1) - l(l+1) - 3/4 = \begin{cases} l & For & J=l+1/2 \\ -l-1 & For & J=l-1/2 \end{cases}$$

Thus the angular momentum projection operators may be defined in the 124 spatial representation by

A6
$$\prod_{J=l-Y_2} = \frac{l-\underline{\nabla}\cdot l}{2l+l}$$

A7

$$\Pi_{\mathcal{J}} = \underline{\lambda} + \underline{\gamma}_{2} = \underline{\lambda} + \underline{1} + \underline{\nabla} \cdot \underline{\lambda}$$

Usually the projection operators are written in the momentum representation instead of the spatial representation. In order to perform the transformation it is necessary to group the projection operators with the angular-dependent part of the scattering operator. The required transformations are as follows

$$A8 \qquad 1 \quad f_{R=1}(\cos \theta) \implies 1 \quad f_{R=1}\left(\frac{k \cdot k}{k^2}\right) = \frac{k \cdot k'}{k^2}$$

Thus in the momentum representation

Ald
$$\begin{aligned}
\Pi_{J=R-Y_{2}} & P_{R=1}(\cos\theta) \implies \frac{k \cdot k' - i \underbrace{\nabla} \cdot (\underline{k' \times \underline{k}})}{3 k^{2}} \\
\end{aligned}$$
All
$$\underbrace{\Pi_{J=R+Y_{2}} & P_{R=1}(\cos\theta) \implies \frac{2 k \cdot \underline{k'} + i \underbrace{\nabla} \cdot (\underline{k' \times \underline{k}})}{3 k^{2}} \\
\end{aligned}$$

The isospin projection operators may be defined using the

124

relations

A12
$$T = \frac{1}{2}T + \frac{1}{2}n$$

A13 $T^{2} = \frac{1}{2}T^{2} + \frac{1}{2}n^{2} + \frac{1}{2}n \cdot T$
A14 $T \cdot \frac{1}{2}n = T(T+1) - \frac{1}{1}(1+1) - \frac{1}{2}(1+\frac{1}{2}) = \begin{cases} 1 & F^{or} T = \frac{1}{2}n + \frac{1}{2}n \\ -\frac{1}{2}n - \frac{1}{2}n - \frac{1}{2}n - \frac{1}{2}n \\ -\frac{1}{2}n - \frac{1}{2}n - \frac{1}{2}n - \frac{1}{2}n - \frac{1}{2}n \\ -\frac{1}{2}n - \frac{1}{2}n - \frac$

Thus the isospin projection operators may be defined

A15 $\prod_{T=t_{n}-y_{a}} = \frac{1-\underline{\tau}\cdot\underline{t}_{n}}{3}$

A16

$$TT_{T} = t_n + Y_a = \frac{a + T \cdot t_n}{3}$$

Substituting the angular momentum and isospin projection operators into $f_1(\vec{r})$ obtain the interaction operator on nucleon \underline{i} to be

Al7
$$f_{i}(\tilde{r}) = \alpha_{1} \left(\frac{l - t_{n} \cdot T_{i}}{3} \right) + \alpha_{3} \left(\frac{2 + t_{n} \cdot T_{i}}{3} \right) + 3\alpha_{13} \left(\frac{l - t_{n} \cdot T_{i}}{3} \right) \left(\frac{2 k \cdot k^{1} + i \nabla_{i} \cdot k^{1} \cdot k}{3 k^{2}} \right)$$
$$+ 3\alpha_{33} \left(\frac{2 + t_{n} \cdot T_{i}}{3} \right) \left(\frac{2 k \cdot k^{1} + i \nabla_{i} \cdot (k^{1} \cdot k)}{3 k^{2}} \right) + 3\alpha_{11} \left(\frac{l - t_{n} \cdot T_{i}}{3} \right)$$
$$\left(\frac{k \cdot k^{1} - i \nabla_{i} \cdot (k^{1} \cdot k)}{3 k^{2}} \right) + 3\alpha_{31} \left(\frac{2 + t_{n} \cdot T_{i}}{3} \right) \left(\frac{k \cdot k^{1} - i \nabla_{i} \cdot (k^{1} \cdot k)}{3 k^{2}} \right)$$

Rewriting $f_{i}(\vec{r})$ and regrouping terms obtain

All
$$\begin{split} & \underbrace{f_{i}}(\mathbf{x}) = \frac{\alpha_{i} + 2\alpha_{3}}{3} + \frac{\alpha_{s} - \alpha_{i}}{3} \left(\underline{t}_{n} \cdot \underline{T}_{i} \right) + \left(\frac{2\alpha_{i3} + 4\alpha_{ss} + \alpha_{i1} + 2\alpha_{s1}}{3} \right) \\ & + \frac{2\alpha_{33} - 2\alpha_{i3} - \alpha_{i1} + \alpha_{31}}{3} \left(\underline{t}_{n} \cdot \underline{T}_{i} \right) \right) \frac{\mathbf{k} \cdot \mathbf{k}^{1}}{\mathbf{k}^{2}} + \left(\frac{\alpha_{i1s} + 2\alpha_{s3} - \alpha_{i1} - 2\alpha_{s1}}{3} \right) \\ & + \frac{\alpha_{33} - \alpha_{i13} + \alpha_{i11} - \alpha_{31}}{3} \left(\underline{t}_{n} \cdot \underline{T}_{i} \right) \right) \vdots \underbrace{\nabla_{i}} \cdot \left(\underline{\mathbf{k}}^{i} \times \underline{\mathbf{k}} \right) \\ & = \mathbf{b}_{s} + \mathbf{b}_{i} \left(\underline{t}_{n} \cdot \underline{T}_{i} \right) + \left(\mathbf{c}_{s} + \mathbf{c} \left(\underline{t}_{n} \cdot \underline{T}_{i} \right) \right) \underbrace{\mathbf{k} \cdot \mathbf{k}^{i}}_{\mathbf{k}^{2}} \\ & + \left(\mathbf{d}_{s} + \mathbf{d}_{i} \left(\underline{t}_{n} \cdot \underline{T}_{i} \right) \right) i \underbrace{\nabla_{i}} \cdot \left(\underline{\mathbf{k}}^{i} \times \underline{\mathbf{k}} \right) \end{split}$$

where

Alg
$$b_0 = \frac{\alpha_1 + 2\alpha_3}{3}$$
 $b_1 = \frac{\alpha_3 - \alpha_1}{3}$

$$C_{0} = \frac{2\alpha_{13} + 4\alpha_{23} + \alpha_{11} + 2\alpha_{31}}{3k^{2}} \quad C_{1} = -\frac{2\alpha_{13} + 2\alpha_{33} - \alpha_{11} + \alpha_{31}}{3k^{2}}$$

$$d_{0} = -\frac{\alpha_{13} - 2\alpha_{33} + \alpha_{11} + 2\alpha_{31}}{3k^{2}} \quad d_{1} = \frac{\alpha_{13} - \alpha_{33} - \alpha_{11} + \alpha_{31}}{3k^{2}}$$

$$I_{19}$$

These results are in agreement with those of Ericson and Ericson.

Writing
$$f_{1}(\vec{r})$$
 back in the spatial representation obtain

$$A20 \quad f_i(F) = b_0 + b_i(\underline{t}_n,\underline{\eta}) - \nabla \cdot (\underline{c}_0 + c_i,\underline{t}_n,\underline{\eta}) \nabla' + i(d_0 + d_i,\underline{t}_n,\underline{\eta}) \nabla \cdot (\underline{\nabla}(t) \times \nabla')$$

where

A21 $\underline{\sigma}(r) = \sum_{i=1}^{A} \underline{\nabla}_{i} \delta(\overline{r} \cdot \overline{r}_{i})$

A22
$$\vec{\nabla}(r) = \langle 0 | \underset{i=1}{\overset{A}{\underset{i=1}{\overset{}}} \vec{\nabla}_i \cdot \vec{\delta}(\vec{r} - \vec{r}_i) | 0 \rangle = \frac{2 \cdot \vec{s}(r)}{A}$$

and \overrightarrow{S} is the intrinsic spin of the nucleus. Thus

$$A^{23} \quad \underbrace{f_i(r)}_{lo} = \begin{bmatrix} b_0 + b_1 \underbrace{t_n \cdot \underline{\tau}}_{li} - \nabla \cdot (c_0 + c_1 \underbrace{t_n \cdot \underline{\tau}}_{li}) \nabla' \\ + \frac{\partial i}{A} (d_0 + d_1 \underbrace{t_n \cdot \underline{\tau}}_{li}) \nabla \cdot (e_1) \underbrace{\overline{s} \times \nabla'}_{lo} \end{bmatrix} |0>$$

where $|0\rangle$ represents the nuclear ground state.

Now for a spherical spin density distribution C(r)

A24
$$\nabla \cdot i \vec{s} e(r) \times \nabla' = -\frac{1}{r} \frac{d}{dr} e(r) i \vec{s} \cdot \vec{r} \times \nabla'$$

$$= \frac{\vec{s} \cdot \vec{l}_{\pi}}{r} \frac{d}{dr} e(r)$$

$$A25 \quad \underbrace{f_{i}(r)}_{lo} = \left[b_{0} + b_{i} \underbrace{t_{n}}_{n} \cdot \underbrace{T_{i}}_{r} - \nabla \cdot (c_{0} + c_{i} \underbrace{t_{n}}_{n} \cdot \underbrace{T_{i}}_{r}) \nabla' + (d_{0} + d_{i} \underbrace{t_{n}}_{r} \cdot \underbrace{T_{i}}_{r}) \underbrace{\frac{s}{A}}_{r} \underbrace{\frac{s}{A}}_{r} \underbrace{\frac{1}{d}}_{r} \right] |0\rangle$$

For $\ell_{\pi} = 0$ or spin zero nuclei the d and d terms give no contribution.

2. Pion-Nucleon-Pair Interaction Operator

The pion-nucleon-pair interaction operator $\underline{f}_{ij}(\mathbf{r})$ may be expanded in terms of the pion-nucleon partial wave amplitudes B_{JT} and $\delta_{JT}(S,T)$ where S and T refer to the total spin and isopsin of the nucleon pair. This expansion is valid, since the orbital angular momentum \mathcal{L} , the total angular momentum J, and the total isotopic spin T of the pionnucleon-pair system is conserved in the interaction. In order to make the expansion, $\underline{f}_{ij}(\mathbf{r})$ must be written in terms of angular momentum and isospin projection operators.

A31.
$$f_{1j}(\vec{r}) = B_{11} \prod_{J=1}^{sym} \prod_{T=1}^{Anti} + B_{00} \prod_{J=0}^{Anti} \prod_{T=0}^{sym} + B_{01} \prod_{J=0}^{Anti} \prod_{T=1}^{sym} + B_{02} \prod_{J=0}^{Anti} \prod_{T=2}^{sym} + \sum_{l=1}^{co} (2l+1) \left[\chi_{l+1,l} \prod_{J=l+l}^{sym} \prod_{T=1}^{Anti} + \chi_{l-l,l} \prod_{J=l+l}^{sym} \prod_{T=1}^{Anti} + \chi_{l,0} \prod_{J=l}^{Anti} \prod_{T=0}^{sym} + \chi_{l,0} (Q_{1}) \prod_{J=l}^{Anti} \prod_{T=l}^{sym} + \chi_{l,0} (Q_{1}) \prod_{J=l}^{Anti} \prod_{T=l}^{sym} + \chi_{l,0} (Q_{1}) \prod_{J=l}^{sym} \prod_{T=l}^{Anti} + \chi_{l,2} \prod_{J=l}^{sym} \prod_{T=2}^{sym} \prod_{T=2}^{n} \chi_{l,0} (Q_{2}) \prod_{J=l}^{sym} \prod_{T=l}^{n} + \chi_{l,0} \prod_{J=l}^{sym} \prod_{T=l}^{sym} \chi_{l,0} (Q_{2}) \prod_{J=l}^{sym} \prod_{T=l}^{sym} \chi_{l,0} (Q_{2}) \prod_{J=l}^{sym} \chi_{l,0} (Q_{2}) \prod_{T=l}^{sym} \chi_{l,0} (Q_{2}) \prod_{J=l}^{sym} \chi$$

where the \mathcal{M} 's are projection operators to be defined in which the sym and anti refer to the nucleon pair and \overline{r} is the pion coordinate.

For s- and p-waves only

A32
$$f_{1j}(\bar{r}) = B_{11} \prod_{J=1}^{sym} \prod_{T=1}^{Auti} + B_{00} \prod_{J=0}^{Auti} \prod_{T=0}^{sym} + B_{01} \prod_{J=0}^{Auti} \prod_{T=1}^{sym} + B_{01} \prod_{J=0}^{Auti} \prod_{T=1}^{sym} \prod_{T=1}^{Auti} + B_{01} \prod_{J=0}^{sym} \prod_{T=1}^{Auti} \prod_{T=1}^{sym} + B_{01} \prod_{J=0}^{sym} \prod_{T=1}^{Auti} \prod_{T=1}^{sym} + B_{01} \prod_{J=0}^{sym} \prod_{T=1}^{Auti} \prod_{T=1}^{sym} \prod_{T=1}^{sym$$

+
$$\chi_{12} \prod_{J=1}^{Anti} \prod_{T=2}^{Sym} \int \cos \Theta$$

Some of the angular momentum projection operators may be defined using the relation for f = 0

A33
$$\vec{J}^{2} = \vec{S}^{2} = 5\vec{i}^{2} + 5\vec{j}^{2} + 25\vec{i} \cdot 5\vec{j} = 5\vec{i}^{2} + 5\vec{j}^{2} + 5\vec{j}^{2}$$

80

A34
$$\nabla_i \cdot \nabla_j = 2 \left[5(5+1) - \frac{1}{2}(1+\frac{1}{2}) - \frac{1}{2}(1+\frac{1}{2}) \right] = \begin{cases} 1 & \text{For } 5 = 1 \\ -3 & \text{For } 5 = 0 \end{cases}$$

Thus the l = 0 angular momentum projection operators may be written

A35
$$\frac{\text{Anti}}{\prod_{J=0}} = \frac{1 - \nabla_{i} \cdot \nabla_{j}}{4}$$

A36
$$\prod_{J=1}^{SYM} = \frac{3 + \nabla_{J} \cdot \nabla_{J}}{4}$$

The isospin projection operators may be defined using the relations

A37
$$T = \frac{1}{2}T_i + \frac{1}{2}T_i + \frac{1}{2}T_i$$

A38
$$\underline{T}^2 = \frac{1}{4} \underline{T}_i^2 + \frac{1}{4} \underline{T}_i^2 + \underline{t}_{\pi}^2 + \underline{t}_{\pi} \cdot (\underline{T}_i + \underline{T}_i) + \frac{1}{4} \underline{T}_i \cdot \underline{T}_i$$

80

A39
$$t_{n} \cdot (T_{1} + T_{2}) + t_{2} T_{2} \cdot T_{2} = T(T+1) - 1(1+1) - t_{2}(1+t_{2}) - t_{2}(1+t_{2})$$

$$= T(T+1) - \frac{1}{2} = \begin{cases} \frac{5}{2} & \text{for } T=2 \\ -\frac{3}{2} & \text{for } T=1 \\ -\frac{1}{2} & \text{for } T=0 \end{cases}$$

where $\underline{\gamma}_i$ is the isospin matrix vector operating on nucleon $\underline{i}, \underline{\tau}_{\overline{n}}$ is the pion isospin vector, and $\underline{\tau}$ is the total isospin vector for the pionnucleon-pair system. Thus the isospin projection operators may be written

A40
$$\Pi_{T=0}^{\text{sym}} = -\left(\frac{\frac{3}{2} + \frac{1}{2}\pi \cdot (\overline{\tau}_{1} + \underline{\tau}_{3}) + \frac{1}{2}\pi \cdot \underline{\tau}_{3}}{2}\right)\left(\frac{5/2 - \frac{1}{2}\pi \cdot (\overline{\tau}_{1} + \underline{\tau}_{3}) - \frac{1}{2}\pi \cdot \underline{\tau}_{3}}{6}\right)$$

$$A41 \qquad \underbrace{\prod_{\tau=1}^{sym}}_{Z} = \left(\frac{\frac{9}{2} + \frac{t}{2}n \cdot (\underline{T}i + \underline{T}j) + \frac{1}{2} \cdot \underline{T}i \cdot \underline{T}j}{2}\right) \left(\frac{\frac{9}{2} - \frac{t}{2}n \cdot (\underline{T}i + \underline{T}j) - \frac{1}{2} \cdot \underline{T}i \cdot \underline{T}j}{4}\right) \left(\frac{3 + \underline{T}i \cdot \underline{T}j}{4}\right)$$

A42
$$T_{T}T=2 = \left(\frac{\frac{2}{3}+\frac{1}{2}\pi\cdot(\tau_{1}+\tau_{2})+\frac{1}{2}\tau_{1}\cdot\tau_{2}}{6}\right)\left(\frac{\frac{3}{2}+\frac{1}{2}\pi\cdot(\tau_{1}+\tau_{2})+\frac{1}{2}\tau_{1}\cdot\tau_{2}}{4}\right)$$

A43
$$\pi_{T=1}^{Anti} = 1 - \pi_{1} \cdot \pi_{5}$$

In order to simplify the terms in the projection operator expressions note that

A44
$$\left[T(T+i) - \frac{9}{3}\right]^{2} = \left[\underline{t}_{\overline{n}} \cdot (T_{\underline{i}} + T_{\underline{i}}) + \frac{1}{2} T_{\underline{i}} \cdot T_{\underline{i}}\right]^{2}$$
$$= \underline{t}_{\overline{n}} \cdot (\underline{T}_{\underline{i}} + T_{\underline{i}}) \underline{t}_{\overline{n}} \cdot (\underline{T}_{\underline{i}} + T_{\underline{i}}) + \underline{t}_{\overline{n}} \cdot (\underline{T}_{\underline{i}} + T_{\underline{i}}) \underline{t}_{\underline{n}} \cdot (\underline{T}_{\underline{i}} + T_{\underline{i}}) + \underline{t}_{\overline{n}} \cdot (\underline{T}_{\underline{i}} + T_{\underline{i}}) \underline{t}_{\underline{n}} \cdot (\underline{T}_{\underline{i}} + T_{\underline{i}} + T_{\underline{i}}) \underline{t}_{\underline{n}} \cdot (\underline{T}_{\underline{i}} + T_{\underline{i}}) \underline{t}_{\underline{n}} \cdot \underline{t} - T_{\underline{i}} + T_{\underline{i}} \cdot \underline{t} - T_{\underline{i}} + T_{\underline{i}} + T_{\underline{i}} + T_{\underline{$$

A45 $((\underline{T}_i,\underline{t}_n))(\underline{T}_i,\underline{t}_n) = \underline{t}_n^2 + i \underline{T}_i \cdot (\underline{t}_n \times \underline{t}_n) = a - \underline{T}_i \cdot \underline{t}_n$

Thus

A46
$$\left[T(T+1) - \frac{\eta}{2} \right]^{2} = (\underline{t}_{n} \cdot \underline{T}_{i})(\underline{t}_{n} \cdot \underline{T}_{i}) + (\underline{t}_{n} \cdot \underline{T}_{i})(\underline{t}_{n} \cdot \underline{T}_{i}) + 4$$
$$- \underline{t}_{n} \cdot (\underline{T}_{i} + \underline{T}_{i}) + \underline{t}_{n} \cdot (\underline{T}_{i} + \underline{T}_{i})(\underline{T}_{i} \cdot \underline{T}_{i}) + \underline{t}_{n} (\underline{T}_{i} \cdot \underline{T}_{i}) + \underline{t}_{n} (\underline{T}_{i} \cdot \underline{T}_{i}) + \underline{t}_{n} \cdot \underline{T}_{n} \cdot \underline{T}_{n} \cdot \underline{T}_{n} + \underline{T}_{n} + \underline{T}_{n} \cdot \underline{T}_{n} + \underline{T}_{n} + \underline{T}_{n} + \underline{T}_{n} \cdot \underline{T}_{n} + \underline{T}_{n} + \underline{T}_{n} + \underline{T}_{n} + \underline{T}_{n}$$

Also note

$$\mathbf{A47} - \underline{t}_{\pi} \cdot (\underline{T}_{i} + \underline{T}_{j}) + \underline{t}_{\pi} \cdot (\underline{T}_{i} + \underline{T}_{j}) (\underline{T}_{i} \cdot \underline{T}_{j}) = -4 \underline{t}_{\pi} \cdot (\underline{T}_{i} + \underline{T}_{j}) (\underline{1} - \underline{T}_{i} \cdot \underline{T}_{j}) = 0$$

since (1 - 7; -7;)/4 is nonzero only for antisymmetric <u>ij</u> isospin states and $t_n \cdot (t_i + t_j)$ is nonzero only for symmetric states.

In addition note that

A48
$$4\left(\frac{3+\tau_i\cdot\tau_j}{4}\right)^2 = 4\left[\frac{9}{16} + \frac{6}{16}\frac{\tau_i\cdot\tau_j}{2} + \frac{1}{16}(\tau_i\cdot\tau_j)^2\right]$$

80

A49
$$\left(\left(\underbrace{\mathcal{T}_{i}}_{\underline{i}},\underbrace{\mathcal{T}_{j}}_{\underline{i}}\right)^{2}\right)^{2} = -\frac{q}{4} - \frac{3}{2}\left(\underbrace{\mathcal{T}_{i}}_{\underline{i}},\underbrace{\mathcal{T}_{j}}_{\underline{i}}\right) + 4\left(\underbrace{3+\mathcal{T}_{i}}_{\underline{i}},\underbrace{\mathcal{T}_{j}}_{\underline{i}}\right)^{2}$$

But

DU U

A50
$$\left(\frac{3+\underline{T_i}\cdot\underline{T_j}}{\underline{H}}\right)^2 = \frac{3+\underline{T_i}\cdot\underline{T_j}}{\underline{H}}$$

80

A51
$$\left(\frac{T_{i}\cdot T_{j}}{4}\right)^{2} = -\frac{q}{4} - \frac{3}{2} \tilde{T_{i}}\cdot \tilde{T_{j}} + 3 + \tilde{T_{i}}\cdot \tilde{T_{j}} = \frac{3}{4} - \frac{1}{2} \tilde{T_{i}}\cdot \tilde{T_{j}}$$

Substituting A51 and A47 into A46 obtain

$$A52 \quad \left[T(T+1) - \frac{\eta_2}{2} \right]^2 = \left(\underline{t}_{\Pi} \cdot \underline{T}_i \right) \left(\underline{t}_{\pi} \cdot \underline{T}_i \right) + \left(\underline{t}_{\Pi} \cdot \underline{T}_i \right) \left(\underline{t}_{\pi} \cdot \underline{T}_i \right) + \left(\underline{t}_{\Pi} \cdot \underline{T}_i \right) \left(\underline{t}_{\pi} \cdot \underline{T}_i \right) + \left(\underline{t}_{\Pi} \cdot \underline{T}_i \right) \left(\underline{t}_{\pi} \cdot \underline{T}_i \right) + \left(\underline{t}_{\Pi} \cdot \underline{T}_i \right) \left(\underline{t}_{\pi} \cdot \underline{T}_i \right) + \left(\underline{t}_{\Pi} \cdot \underline{T}_i \right) \left(\underline{t}_{\pi} \cdot \underline{T}_i \right) \left(\underline{t}_{\pi} \cdot \underline{T}_i \right) + \left(\underline{t}_{\Pi} \cdot \underline{T}_i \right) \left(\underline{$$

Also

$$A53 \left[\underbrace{t}_{\Pi} \cdot (\underline{T}_{i} + \underline{T}_{j}) + \frac{1}{3} \underbrace{\eta_{i}}_{\underline{T}} \cdot \underline{\eta_{j}} \right]^{*} \left(\underbrace{3 + \underline{\eta_{i}}}_{\underline{Y}} \cdot \underline{\eta_{j}} \right) = \left[\underbrace{t}_{\Pi} \cdot (\underline{\eta_{i}} + \underline{\eta_{j}}) \underbrace{t}_{\underline{X}} \cdot (\underline{\eta_{i}} + \underline{\eta_{j}}) \right] \\ + \underbrace{t}_{\Pi} \cdot (\underline{\eta_{i}} + \underline{\eta_{j}}) (\underline{\eta_{i}} \cdot \underline{\eta_{j}}) + \underbrace{t}_{\underline{Y}} \left(\underbrace{\eta_{i}}_{\underline{T}} \cdot \underline{\eta_{j}} \right)^{*} \right] \left(\underbrace{3 + \underline{\eta_{i}}}_{\underline{Y}} \cdot \underline{\eta_{j}} \right)$$

Using

A54
$$(T_i \cdot T_j) \left(\frac{3 + T_i \cdot T_j}{4} \right) = 1 \left(\frac{3 + T_i \cdot T_j}{4} \right)$$

A55
$$t_{\pi} \cdot (T_i + T_i) \left(\frac{3 + T_i \cdot T_i}{4} \right) = t_{\pi} \cdot (T_i + T_i)$$

then

.

$$A56 \left[\underbrace{t_{\Pi}} \cdot \left(\underbrace{T_{i}} + \underbrace{T_{i}}_{I} \right) + \frac{1}{2} \underbrace{T_{i}}_{I} \cdot \underbrace{T_{i}}_{I} \right]^{2} \left(\underbrace{3 + \underbrace{T_{i}}_{I} \cdot \underbrace{T_{i}}_{I}}_{H} \right) = \underbrace{t_{\Pi}}_{\Pi} \cdot \underbrace{\left(T_{i} + \underbrace{T_{i}}_{I} \right)}_{H} \cdot \underbrace{\left(T_{i} + \underbrace{T_{i}}_{I} \right)}_{H} + \underbrace{t_{\Pi}}_{H} \cdot \underbrace{\left(T_{i} + \underbrace{T_{i}}_{I} \right)}_{H} \right) + \underbrace{t_{\Pi}}_{H} \left(\underbrace{3 + \underbrace{T_{i}}_{I} \cdot \underbrace{T_{i}}_{H}}_{H} \right) \\ = \left(\underbrace{t_{\Pi}}_{I} \cdot \underbrace{T_{i}}_{I} \right) \left(\underbrace{t_{\Pi}}_{I} \cdot \underbrace{T_{i}}_{I} \right) + \left(\underbrace{t_{\Pi}}_{I} \cdot \underbrace{T_{i}}_{I} \right) \left(\underbrace{t_{\Pi}}_{H} \cdot \underbrace{T_{i}}_{I} \right) + \underbrace{t_{\Pi}}_{H} \left(\underbrace{3 + \underbrace{T_{i}}_{I} \cdot \underbrace{T_{i}}_{H} \right) \right) \\ + \underbrace{t_{\Pi}}_{I} \cdot \underbrace{\left(\underbrace{T_{i}}_{I} + \underbrace{T_{i}}_{I} \right)}_{I \in I} + \underbrace{\frac{3}{16}}_{I \in I} + \underbrace{T_{i}}_{I \in I} \cdot \underbrace{T_{i}}_{I \in I} \right) \\ = \left(\underbrace{t_{\Pi}}_{I} \cdot \underbrace{T_{i}}_{I} \right) \left(\underbrace{t_{\Pi}}_{I} \cdot \underbrace{T_{i}}_{I} \right) + \underbrace{\left(\underbrace{t_{\Pi}}_{I} \cdot \underbrace{T_{i}}_{I} \right)}_{I \in I} \right) + \underbrace{t_{H}}_{H} + \underbrace{t_{H}}_{H} \left(\underbrace{3 + \underbrace{T_{i}}_{I} \cdot \underbrace{T_{i}}_{H} \right) \right)$$

Substituting A52 and A56 into the expressions for the projection operators obtain

$$A57 \qquad \prod_{T=0}^{sym} = -\left(\frac{1}{12}\right) \left[\frac{15}{4} + \frac{t}{2\pi} \cdot \left(\overline{\eta} + \frac{t}{2}\right) + \frac{1}{2} \cdot \underline{\eta} \cdot$$

But

A59
$$\left(\frac{35}{4} - \frac{1}{2} \begin{pmatrix} (T_i \cdot T_j) \\ - \frac{1}{2} \end{pmatrix} \left(\frac{3 + T_i \cdot T_j}{4} \right) = \left[\frac{33}{4} + 2 \begin{pmatrix} l - T_i \cdot T_j \\ - \frac{1}{4} \end{pmatrix} \right] \left(\frac{3 + T_i \cdot T_j}{4} \right)$$

= $\frac{33}{4} \left(\frac{3 + T_i \cdot T_j}{4} \right)$
and using previous identities for the $\left\{ \right\}$ term obtain

A60
$$\Pi_{T=1}^{s \vee m} = \frac{1}{8} \left[\frac{33}{4} \left(\frac{3 + \eta_i \cdot \eta_i}{4} \right) - \frac{t}{2\eta} \cdot \left(\overline{\eta}_i + \eta_i \right) - \left(\frac{t}{2\eta} \cdot \eta_i \right) \left(\frac{t}{2\eta} \cdot \eta_i \right) \right]$$
$$- \left(\frac{t}{2\eta} \cdot \eta_i \right) \left(t_{\overline{\eta}} \cdot \eta_i \right) - 4 - \frac{1}{4} \left(\frac{3 + \eta_i \cdot \eta_i}{4} \right) \right]$$
$$= \frac{1}{8} \left[2 + 2 \eta_i \cdot \eta_i - t_{\overline{\eta}} \cdot \left(\eta_i + \eta_i \right) - \left(t_{\overline{\eta}} \cdot \eta_i \right) \left(t_{\overline{\eta}} \cdot \eta_i \right) \right] \left(t_{\overline{\eta}} \cdot \eta_i \right) \right]$$

$$A61 \qquad \prod_{T=2}^{3/m} = \frac{1}{34} \left[\frac{2!}{2!} + 5 \frac{1}{2!} \cdot (\underline{T}_{i} + \underline{T}_{j}) + \frac{5}{2} (\underline{T}_{i} \cdot \underline{T}_{j}) + (\underline{t}_{\underline{T}} \cdot \underline{T}_{j}) (\underline{t}_{\underline{T}} \cdot \underline{T}_{j}) + 2 \underbrace{T_{i} \cdot \underline{T}_{i}}_{i} \cdot \underline{T_{i}} + (\underline{t}_{\underline{T}} \cdot \underline{T}_{j}) (\underline{t}_{\underline{T}} \cdot \underline{T}_{j}) + (\underline{t}_{\underline{T}} \cdot \underline{T}_{j}) + (\underline{t}_{\underline{T}} \cdot \underline{T}_{j}) (\underline{t}_{\underline{T}} \cdot \underline{T}_{j}) + (\underline{t}_{\underline{T}} \cdot \underline{T}_{j}) (\underline{t}_{\underline{T}} \cdot \underline{T}_{j}) + (\underline{t}_{\underline{T}$$

A62 $\prod_{T=1}^{Ahti} = \frac{1 - \tau_i \cdot \tau_i}{4}$

Substituting these expressions for the projection operators into the expression for $f_{ij}(\hat{\vec{r}})$ obtain for the l = 0 part of the expansion

$$A63 \qquad \underbrace{f_{ii}(\mathbf{r})}_{\mathbf{A}=0} = B_{11} \left(\frac{3 + \nabla_{i} \cdot \nabla_{i}}{4} \right) \left(\frac{1 - T_{i} \cdot T_{i}}{4} \right) + B_{00} \left(\frac{1 - \nabla_{i} \cdot \nabla_{i}}{49} \right) \\ \left[1 - T_{i} \cdot T_{i} - T_{i} \cdot (T_{i} + T_{i}) + (t_{i} \cdot T_{i}) (t_{i} \cdot T_{i}) + (t_{i} \cdot T_{i}) (t_{i} \cdot T_{i}) \right] \\ + B_{01} \left(\frac{1 - \nabla_{i} \cdot \nabla_{i}}{96} \right) \left[6 + 6 T_{i} \cdot T_{i} - 3 t_{i} \cdot (T_{i} + T_{i}) - 3 (t_{i} \cdot T_{i}) (t_{i} \cdot T_{i}) \right] \\ - 3 (t_{i} \cdot T_{i}) (t_{i} \cdot T_{i}) \right] + B_{02} \left(\frac{1 - \nabla_{i} \cdot \nabla_{i}}{96} \right) \left[10 + 5 t_{i} \cdot (T_{i} + T_{i}) \right] \\ + 9 T_{i} \cdot T_{i} + (t_{i} \cdot T_{i}) (t_{i} \cdot T_{i}) + (t_{i} \cdot T_{i}) (t_{i} \cdot T_{i}) \right] \\ = B_{0} + B_{1} \nabla_{i} \cdot \nabla_{i} + B_{2} T_{i} \cdot T_{i} + B_{3} (1 - \nabla_{i} \cdot \nabla_{i}) t_{i} \cdot (T_{i} + T_{i}) \\ + B_{4} (\nabla_{i} \cdot \nabla_{i}) (T_{i} \cdot T_{i}) + B_{5} (1 - \nabla_{i} \cdot \nabla_{i}) \left[(t_{i} \cdot T_{i}) (t_{i} \cdot T_{i}) + (t_{i} \cdot T_{i}) (t_{i} \cdot T_{i}) \right]$$

`

where

A64 Bo =
$$\frac{9B_{11} + B_{00} + 3B_{01} + 5B_{02}}{48}$$

B₁ = $\frac{3B_{11} - B_{00} - 3B_{01} - 5B_{02}}{48}$
B₂ = $\frac{-9B_{11} - B_{00} + 3B_{01} + B_{02}}{48}$
B₃ = $\frac{-2B_{00} - 3B_{01} + 5B_{02}}{96}$
B₄ = $\frac{-3B_{11} + B_{00} - 3B_{01} - B_{02}}{48}$
B₅ = $\frac{2B_{00} - 3B_{01} + B_{02}}{96}$

•

19 These results are not identical to those of Ericson and Ericson vho obtain a different B3, i.e.

$$A65 \quad B_3 = -\frac{2800 + 6801 - 2802}{96}$$

For the l = 1 case the angular momentum projection operators may be defined using the relations

$$A66 \quad \underline{J} = \underline{l} + \underline{s} + \underline{s} + \underline{s}$$

A67
$$\vec{J}' = \underline{\ell}^2 + \underline{s}i^2 + \underline{s}j^2 + 2\underline{\ell}\cdot(\underline{s}i + \underline{s}j) + 2\underline{s}i \cdot \underline{s}j$$

For the l = 1 p-wave

A68
$$J(J+1) = I(1+1) + \frac{1}{2}(1+\frac{1}{2}) + \frac{1}{2}(1+\frac{1}{2}) + \frac{1}{2}(\frac{1}{2}+\frac{1}{2}) + \frac{1}{2}(\frac$$

or

or
A69
$$\underbrace{\pounds \cdot (\nabla_{i} + \nabla_{j}) + \nabla_{i} \cdot \nabla_{j}}_{2} = J(J+1) - \frac{3}{2} = \int_{-\frac{3}{2}}^{-\frac{3}{2}} For J=1$$

Thus the l = 1 angular momentum projection operators may be defined

A70
$$\Pi_{\mathcal{J}=2}^{SYM} = \left(\frac{3/2 + \cancel{2}\cdot(\overrightarrow{U_1}+\overrightarrow{V_2}) + \overrightarrow{U_1}\cdot\overrightarrow{V_2}}{4}\right) \left(\frac{3/2 + \cancel{2}\cdot(\overrightarrow{U_1}+\overrightarrow{V_2}) + \cancel{2}\overrightarrow{U_1}\cdot\overrightarrow{U_1}}{6}\right)$$

A71
$$\Pi_{\mathcal{J}=1}^{\mathsf{syn}} = \left(\frac{5/3 - \cancel{2} \cdot (\cancel{1} + \cancel{1}) - \cancel{1} + \cancel{1} + \cancel{1})}{4} \right) \left(\frac{9/3 + \cancel{2} \cdot (\cancel{1} + \cancel{1}) + \cancel{1} + \cancel{1} + \cancel{1})}{2} \right) \left(\frac{3 + \cancel{1} \cdot \cancel{1}}{4}\right)$$

AT2
$$\Pi_{J=0}^{SYM} = -\left(\frac{5/2 - \frac{1}{2} \cdot (\underline{U} + \underline{U}) - \frac{1}{2} \underline{U} \cdot \underline{V}}{6}\right) \left(\frac{3/2 + \frac{1}{2} \cdot (\underline{V} + \underline{U}) + \frac{1}{2} \cdot \underline{V} \cdot \underline{U}}{2}\right)$$

A73
$$\pi_{J=1}^{Anti} = \frac{1 - \nabla_{J} \cdot \nabla_{J}}{4}$$

In direct analogy to the simplification of the isospin projection operators for the local s-wave amplitude the angular momentum projection operators may be reduced to

AT4
$$\Pi_{J=\lambda}^{SYM} = \frac{1}{24} \left[10 + 5 \cancel{2} \cdot (\cancel{1} + \cancel{1}) + 2 \cancel{1} \cdot \cancel{1} + (\cancel{1} \cdot \cancel{1}) (\cancel{1} \cdot \cancel{1}) + (\cancel{1} \cdot \cancel{1}) (\cancel{1} \cdot \cancel{1}) \right]$$

A75
$$\Pi_{\mathcal{J}=1}^{\text{sym}} = \frac{1}{8} \left[2 - \frac{1}{2} \cdot (\overline{v}_{1} + \overline{v}_{3}) + 2\overline{v}_{1} \cdot \overline{v}_{3} - (\frac{1}{2} \cdot \overline{v}_{3}) - (\frac{1}{2} \cdot \overline{v}_{3}) (1 \cdot \overline{v}_{3}) \right]$$

A76
$$\Pi_{J=0}^{\text{sym}} = \frac{1}{12} \left[1 - \frac{1}{2} (\overline{U}_{1} + \overline{U}_{2}) - \overline{U}_{2} \cdot \overline{U}_{2} + (\frac{1}{2} \cdot \overline{U}_{2}) (\frac{1}{2} \cdot \overline{U}_{2}) + (\frac{1}{2} \cdot \overline{U}_{2}) (\frac{1}{2} \cdot \overline{U}_{2}) \right]$$

ATT
$$T J = 1 = 1 - \overline{v_1} \cdot \overline{v_2}$$

Usually the projection operators are written in the momentum representation instead of the spatial representation. In order to perform the transformation it is necessary to group the projection operators with the angular dependent part of the scattering amplitude. The required transformations are as follows:

A78 1
$$P_{l=1}(\cos \theta) \implies 1 P_{l=1}\left(\frac{k \cdot k}{k^{1}}\right) = \frac{k \cdot k}{k^{2}}$$

A79
$$(\overline{\nabla_{i}} \cdot \underline{k}) \not_{k=i} (\cos \theta) \implies i \overline{\nabla_{i}} \cdot (\overline{\nabla_{k}} \times \underline{k}) \cos \theta$$

$$= i \overline{\nabla_{i}} \cdot \left(\frac{\widehat{\Theta}}{k} \frac{\partial}{\partial \theta} \cos \theta \times \underline{k}\right)$$

$$= i \overline{\nabla_{i}} \cdot \left(-\frac{\sin \theta}{k} \widehat{\Theta} \times \underline{k}\right)$$

$$= i \overline{\nabla_{i}} \cdot \frac{\underline{k}^{1} \times \underline{k}}{k^{2}}$$

 $A80 \qquad (\nabla i \cdot \underline{k})(\nabla i \cdot \underline{k}) = -\nabla i \cdot (\hat{\underline{\Theta}} \cdot \underline{\delta} \times \underline{k}) \nabla i \cdot (\hat{\underline{\Theta}} \cdot \underline{\delta} \times \underline{k}) \cos \Theta$ $= -\nabla i \cdot (\hat{\underline{\Theta}} \cdot \underline{\delta} \times \underline{k}) \nabla i \cdot (-\underline{\sin \Theta} \cdot \underline{\delta} \times \underline{k})$
$$= \overline{v_{j}} \cdot \left(\underbrace{\cos \theta}_{k} \delta \times \underbrace{k}_{k} \right) \overline{v_{j}} \cdot \left(\underbrace{\widehat{k}}_{k} \times \underbrace{k}_{k} \right)$$
$$= \left(\overline{v_{j}} \times \underbrace{k}_{k} \right) \cdot \left(\overline{v_{j}} \times \underbrace{k}_{k} \right) / k^{2}$$

Similarly

A81
$$(\nabla_{j} \cdot \underline{\lambda}) (\nabla_{i} \cdot \underline{\lambda}) P_{k=1}(\cos \Theta) \Longrightarrow (\nabla_{i} \times \underline{k}) \cdot (\nabla_{j} \times \underline{k}) / k^{2}$$

Thus the projection operators may be written in the momentum representation as

A82
$$\Pi_{J=3}^{\text{sym}} = \frac{1}{24k^2} \left[10 \, \underline{k} \cdot \underline{k}' + 5 i (\overline{v}_1 \cdot \overline{v}_3) \cdot (\underline{k}' \times \underline{k}) + 2 (\overline{v}_1 \cdot \overline{v}_3) \underline{k} \cdot \underline{k}' + (\overline{v}_1 \times \underline{k}') \cdot (\overline{v}_1 \times \underline{k}') \cdot (\overline{v}_1 \times \underline{k}') + (\overline{v}_2 \times \underline{k}') \cdot (\overline{v}_1 \times \underline{k}) \right]$$

$$A83 \qquad \Pi_{J=1} = \frac{1}{9k^2} \left[\frac{\partial k \cdot k'}{\partial k'} + \partial (\overline{v_1} \cdot \overline{v_j}) \underline{k} \cdot \underline{k'} - i (\overline{v_1} + \overline{v_j}) \cdot (\underline{k'} x \underline{k}) \right] \\ - (\overline{v_1} x \underline{k'}) \cdot (\overline{v_1} x \underline{k}) - (\overline{v_1} x \underline{k'}) \cdot (\overline{v_1} x \underline{k}) \right] \\A84 \qquad \Pi_{J=0} = \frac{1}{10k^2} \left[\underline{k} \cdot \underline{k'} - (\overline{v_1} \cdot \overline{v_j}) \underline{k} \cdot \underline{k'} - i (\overline{v_1} + \overline{v_j}) \cdot (\underline{k'} x \underline{k}) \right. \\ \left. + (\overline{v_1} x \underline{k'}) \cdot (\overline{v_2} x \underline{k}) + (\overline{v_2} x \underline{k'}) \cdot (\overline{v_1} x \underline{k}) \right] \\A85 \qquad \Pi_{J=1} = \left(\underbrace{1 - \overline{v_1} \cdot \overline{v_j}}{4} \right) \underline{\underline{k'} \underline{k'}}$$

The isospin projection operators are the same as for the local s-wave amplitude. Substituting in for the angular momentum and isospin projection operators obtain for the l = 1 part of the expansion for $f_{ij}(\tilde{r})$

$$A86 \quad \underbrace{f_{12}(\bar{r})}_{k=1} = \frac{\chi_{21}}{8k^2} \left[\left(10 + 2 \nabla_{\underline{i}} \cdot \nabla_{\underline{j}} \right) \underline{k} \cdot \underline{k}' + 5i \left(\nabla_{\underline{i}} + \nabla_{\underline{j}} \right) \cdot \left(\underline{k}' \times \underline{k} \right) \right. \\ \left. + \left(\nabla_{\underline{i}} \times \underline{k}' \right) \cdot \left(\nabla_{\underline{i}} \times \underline{k} \right) + \left(\nabla_{\underline{j}} \times \underline{k}' \right) \cdot \left(\nabla_{\underline{i}} \times \underline{k} \right) \right] \left(\underbrace{1 - \overline{T}_{\underline{i}} \cdot \underline{T}_{\underline{j}}}_{\underline{H}} \right)$$

Rewriting and regrouping terms obtain

$$\begin{array}{rcl} A87 & \left. f_{1\,j}^{*}\left(\vec{v}\right) \right|_{\mathcal{R}=1} &= \left(\frac{k\cdot k'}{k^{2}}\right) \left[\left\{ \begin{array}{c} \frac{10}{3a} \, \tilde{v}_{21} + \frac{1}{16} \, \tilde{v}_{01} + \frac{1}{16} \, \tilde{v}_{10} + \frac{6}{3a} \, \tilde{v}_{11}(q_{4}) \right. \\ &+ \left. \frac{6}{3a} \, \tilde{v}_{11}(q_{4}) + \frac{10}{3a} \, \tilde{v}_{12} \right] + \left\{ \begin{array}{c} \frac{2}{3a} \, \tilde{v}_{21} - \frac{1}{16} \, \tilde{v}_{01} - \frac{1}{16} \, \tilde{v}_{10} \right. \\ &- \left. \frac{6}{3a} \, \tilde{v}_{11}(q_{4}) + \frac{6}{3a} \, \tilde{v}_{11}(q_{4}) - \frac{10}{3a} \, \tilde{v}_{12} \right] \, \nabla_{1}^{*} \cdot \nabla_{1}^{*} + \left\{ \begin{array}{c} -\frac{10}{3a} \, \tilde{v}_{21} \right. \\ &- \left. \frac{1}{16} \, \tilde{v}_{01} - \frac{1}{16} \, \tilde{v}_{10} + \frac{6}{3a} \, \tilde{v}_{11}(q_{4}) - \frac{6}{3a} \, \tilde{v}_{11}(q_{4}) + \frac{2}{3a} \, \tilde{v}_{12} \right] \\ &- \left. \frac{1}{16} \, \tilde{v}_{01} - \frac{1}{16} \, \tilde{v}_{10} + \frac{6}{3a} \, \tilde{v}_{11}(q_{4}) - \frac{6}{3a} \, \tilde{v}_{11}(q_{4}) + \frac{2}{3a} \, \tilde{v}_{12} \right] \\ &\left. \left(\mathcal{T}_{1}^{*} \cdot \mathcal{T}_{2}^{*} \right) + \left\{ - \frac{1}{16} \, \tilde{v}_{10} - \frac{3}{3a} \, \tilde{v}_{11}(q_{4}) + \frac{6}{3a} \, \tilde{v}_{12} \right\} \left(\left. \left(- \overline{v}_{1}^{*} \cdot \overline{v}_{1}\right) \right) \frac{1}{27} \left(\tilde{u}_{1}^{*} \mathcal{L}_{2} \right) \\ &+ \left\{ - \frac{2}{39} \, \tilde{v}_{21} + \frac{1}{16} \, \tilde{v}_{01} + \frac{1}{16} \, \tilde{v}_{10} - \frac{6}{3a} \, \tilde{v}_{11}(q_{4}) - \frac{6}{3a} \, \tilde{v}_{11}(q_{4}) - \frac{6}{3a} \, \tilde{v}_{12} \right\} \right] \end{array}$$

$$\left(\nabla_{\underline{i}} \cdot \nabla_{\underline{j}} \right) \left(T_{\underline{i}} \cdot T_{\underline{j}} \right) + \left\{ \frac{1}{16} \chi_{10} - \frac{3}{32} \chi_{11}(0, 1) + \frac{1}{32} \chi_{12} \right\} \left(1 - \nabla_{\underline{i}} \cdot \nabla_{\underline{i}} \right)$$

$$\left\{ \left(t_{\underline{i}} \cdot T_{\underline{i}} \right) \left(t_{\underline{i}} \cdot T_{\underline{j}} \right) + \left(t_{\underline{i}} \cdot T_{\underline{j}} \right) \left(t_{\underline{i}} \cdot T_{\underline{i}} \right) \right\} + \left(1 - T_{\underline{i}} \cdot T_{\underline{j}} \right) \left(\nabla_{\underline{i}} + \Phi_{\underline{i}} \right) - \left(\frac{k' \times k}{k} \right) \left\{ \frac{5}{32} \chi_{21} - \frac{1}{16} \chi_{01} - \frac{3}{32} \chi_{11}(t_{10}) \right\} + \left(\frac{1 - T_{\underline{i}} \cdot T_{\underline{j}}}{k^{2}} \right) \left(\nabla_{\underline{i}} \times k' \right) + \left(\nabla_{\underline{i}} \times k' \right) \cdot \left(\nabla_{\underline{i}} \times k' \right) - \left(\nabla_{\underline{i}} \times k' \right) - \left(\nabla_{\underline{i}} \times k' \right) + \left(\nabla_{\underline{i}} \times k' \right) \cdot \left(\nabla_{\underline{i}} \times k' \right) - \left(\nabla_{\underline{$$

or

A88
$$\begin{aligned} & \oint_{k} i_{k} (\vec{r}) \Big|_{k=1} = k \cdot k^{1} \left[Co + C_{1} \nabla_{i} \cdot \nabla_{j} + C_{2} \sigma_{1} \cdot \sigma_{i} + C_{3} (I - \nabla_{i} \cdot \nabla_{j}) (\sigma_{1} \cdot \sigma_{j}) + C_{4} (\nabla_{i} \cdot \nabla_{j}) (\sigma_{1} \cdot \sigma_{j}) + C_{5} (I - \nabla_{i} \cdot \nabla_{i}) (\tau_{1} \cdot \sigma_{j}) + C_{5} (I - \nabla_{i} \cdot \sigma_{i}) \left[(t_{n} \cdot \sigma_{i}) (t_{n} \cdot \sigma_{j}) + (t_{n} \cdot \sigma_{j}) (t_{n} \cdot \sigma_{i}) \right] \right] \\ & + i C_{k} (I - \sigma_{i} \cdot \sigma_{i}) (\nabla_{i} + \sigma_{j}) \cdot (k' \times k) + C_{5} (I - \sigma_{i} \cdot \sigma_{j}) \\ & \left[(\nabla_{i} \times k') (\nabla_{j} \times k) + (\nabla_{j} \times k') \cdot (\nabla_{i} \times k) \right] \end{aligned}$$
where

· •

A89
$$C_0 = \frac{5\chi_{21} + \chi_{01} + \chi_{10} + 3\chi_{11}(0,4) + 3\chi_{11}(4,0) + 5\chi_{12}}{16k^2}$$

 $C_1 = \frac{\chi_{21} - \chi_{01} - \chi_{10} - 3\chi_{11}(0,4) + 3\chi_{11}(4,0) - 5\chi_{12}}{16k^2}$
 $C_3 = \frac{-5\chi_{21} - \chi_{01} - \chi_{10} + 3\chi_{11}(0,4) - 3\chi_{11}(4,0) + \chi_{12}}{16k^2}$
 $C_3 = -\frac{2\chi_{10} - 3\chi_{11}(0,4) + 5\chi_{12}}{3\partial k^2}$

.

$$C_{4} = -\frac{\chi_{21} + \chi_{01} + \chi_{10} - 3\chi_{11}(0, 1) - 3\chi_{11}(1, 0) - \chi_{12}}{16 k^{2}}$$

$$C_{5} = \frac{2\chi_{10} - 3\chi_{11}(0, 1) + \chi_{12}}{32 k^{2}}$$

$$C_{6} = \frac{5\chi_{21} - 3\chi_{01} - 3\chi_{11}(1, 0)}{32 k^{2}}$$

$$C_{7} = \frac{\chi_{21} + 2\chi_{01} - 3\chi_{11}(1, 0)}{32 k^{2}}$$

These results are not identical with those of Ericson and Ericson who obtain a different value for C_3 , C_5 , and C_6 , i.e.

A90
$$C_{3} = -\frac{2\chi_{10} + 9\chi_{11}(0, 1) - 9\chi_{12}}{32k^{2}}$$
$$C_{5} = \frac{2\chi_{10} - 3\chi_{11}(0, 1) + 9\chi_{12}}{32k^{2}}$$
$$C_{6} = \frac{9\chi_{21} + 9\chi_{01} - 9\chi_{11}(1, 0)}{32k^{2}}$$

Writing $f_{ij}(\mathbf{\dot{r}})$ in the spatial representation and neglecting the C_6 and C_7 terms which are small due to the A⁻¹ and A⁻² dependence, respectively, obtain

$$A91 \qquad \oint i_{\delta}(\tilde{r}) = B_{\circ} + B_{1} \nabla_{1} \cdot \nabla_{3} + B_{2} (1 - \nabla_{1} \cdot \nabla_{3}) + B_{3}(1 - \nabla_{1} \cdot \nabla_{3}) + B_{4}(\nabla_{1} \cdot \nabla_{3}) (T_{1} \cdot T_{3}) + B_{5}(1 - \nabla_{1} \cdot \nabla_{3}) [(t_{n} \cdot T_{1})(t_{n} \cdot T_{3})] + B_{4}(\nabla_{1} \cdot \nabla_{3}) (T_{1} \cdot T_{3}) + B_{5}(1 - \nabla_{1} \cdot \nabla_{3}) [(t_{n} \cdot T_{3})(t_{n} \cdot T_{3})] + (t_{n} \cdot T_{3}) (t_{n} \cdot T_{3}) (t_{n} \cdot T_{3})] + \nabla \cdot \{C_{\circ} + C_{1} \nabla_{1} \cdot \nabla_{3} + C_{2} (T_{1} \cdot T_{3}) + C_{3} (T_{1} \cdot T_{3}) + C_{5} (1 - \nabla_{1} \cdot \nabla_{3}) (t_{n} \cdot T_{1}) (t_{n} \cdot T_{3}) + (t_{n} \cdot T_{3}) (t_{n} \cdot T_{3})]\} \nabla'$$

19

$$\equiv \underline{B}_{ij} - \underline{C}_{ij} \nabla \cdot \nabla'$$

APPENDIX B

Averages over Nucleon Scattering Operators

In order to evaluate the fraction of nucleons in the nucleus that interact with the pion via any particular partial wave, it is necessary to average the projection operators for that channel over the nucleon states. For the purpose of averaging assume that the nucleon spin and isospin are statistically independent, i. e. they may be averaged separately, and the nucleus is in its ground state.

The following definitions and averages are needed for isospin

BI
$$\underline{T} = \frac{1}{2} \bigotimes_{i=1}^{A} \underbrace{\tau_{i}}_{i}$$

B2 $\langle 0 | \bigotimes_{i=1}^{A} \underbrace{\tau_{i}}_{i} | 0 \rangle = a \widehat{T}$
B3 $\langle 0 | \bigotimes_{i=1}^{A} \underbrace{\tau_{i}}_{i}^{2} | 0 \rangle = 4A \underbrace{\bot}_{a} (1 + \underbrace{1}_{a}) = 3A$

$$B4 < 0 | (\sum_{i=1}^{A} T_{i})^{2} | 0 > = 4 < 0 | T^{2} | 0 > = 4 T(T+1)$$

Using the identity

B8 $<(\underline{t}_{n},\underline{T}_{i})(\underline{t}_{n},\underline{T}_{i}) > = <\underline{t}_{n},\underline{t}_{n} + iT_{i}(\underline{t}_{n}\times\underline{t}_{n}) > = 2 - <\underline{t}_{n},\underline{T}_{i} >$ equation B7 is simplified to

$$B9 < (\underline{t}_{\overline{n}} \cdot \underline{T}_{\underline{i}})(\underline{t}_{\overline{n}} \cdot \underline{T}_{\underline{i}}) + (\underline{t}_{\overline{n}} \cdot \underline{T}_{\underline{i}})(\underline{t}_{\overline{n}} \cdot \underline{T}_{\underline{i}}) > \\ = \frac{8 < \underline{t}_{\overline{n}} \cdot \underline{T}_{\underline{i}} >^{2} - \frac{H}{A-I} + \frac{H}{4} < \underline{t}_{\overline{n}} \cdot \underline{T}_{\underline{i}} > \\ - \frac{H}{A-I} + \frac{H}{A-I} < \underline{t}_{\overline{n}} \cdot \underline{T}_{\underline{i}} >$$

In these definitions $|0\rangle$ represents the nuclear ground state, $T_3 = \frac{N-Z}{2}$ for $\pi^$ and $\langle t_{\pi} \cdot T_i \rangle = 2(t_{\pi})_3 T_3 = N - Z$.

The spin averages are obtained in a similar manner.

APPENDIX C

Nucleon Pair Correlations for an Ideal Fermi Gas of Nucleons

26

According to Goldberger and Watson the pair distribution function $P^{(2)}(\dot{x}, \dot{x}^{*})$ for N nucleons is defined as

c1
$$P^{(2)}(\vec{x},\vec{x}') = \frac{1}{N(N-1)} < 0 | \stackrel{H}{\leq} \delta(\vec{z}_{\alpha} - \vec{x}) \delta(\vec{z}_{B} - \vec{x}') | 0 >$$

where \propto and β refer to various nucleons. The average pair distribution function $P^{(2)}(\vec{x}, \vec{x}')$ is obtained by averaging over spin orientations.

The pair distribution function $P^{(2)}(\vec{x}, \vec{x}')$ depends on the dynamical properties of the scatterer. It can be easily calculated only for such simple systems as an ideal gas.

For the ground state of atomic nuclei the pair distribution function may be calculated in terms of the degenerate Fermi gas model for nucleons. Consider such a gas of N particles confined to a box of volume V. Plane wave states for these particles are of the form

$$\omega_{\ell}(i) = \omega_{\ell}(z_{1}, z_{1}, z_{1}) = \frac{1}{VV} e^{i \frac{1}{2} \cdot z_{1}} \chi_{1}^{\sqrt{2}} \eta_{1}^{\sqrt{2}}$$

where \hat{k} is the momentum, $\hat{\Xi}_{i}$ the space coordinate, S_{i} the spin, $\chi_{i}^{V_{\hat{k}}}$ the spinor, γ_{i} the isospin, and $\eta_{i}^{\gamma_{\hat{k}}}$ the isospinor. In the lowest state of the gas these plane wave states will all be occupied for $\ell < P_{f}$, the Fermi momentum, which is

$$P_{f} = \left(\frac{3\pi^{2}}{2}\frac{N}{V}\right)^{\frac{1}{3}}$$

The lowest state of the gas is

$$c_{1} | o \rangle = \frac{1}{\sqrt{N!}} \underset{Q}{\leq} e_{Q} \omega_{l_{1}}(\overline{z}_{1}, \overline{s}_{1}, \overline{z}_{1}) \cdots \omega_{l_{N}}(\overline{z}_{N}, \overline{s}_{N}, \overline{z}_{N})$$

where $l_1 \cdots l_N$ represent all the states having a momentum less than P_f , the Q's represent the N! permutations of the particle coordinates, and $\in_Q = \pm 1$ depending on whether Q is an even or odd permutation.

Consider the distribution of those pairs of particles which are in space-symmetric and space-antisymmetric states. The space exchange operator for a pair of Fermi particles (\propto , S) is

$$c5 \qquad \underline{Q} \propto \mathbf{B} = -\frac{1}{4} \left(1 + \underline{\nabla}_{\mathbf{x}} \cdot \underline{\nabla}_{\mathbf{B}} \right) \left(1 + \underline{\mathcal{T}}_{\mathbf{x}} \cdot \underline{\mathcal{T}}_{\mathbf{B}} \right)$$

where ∇_{α} and ∇_{β} are Pauli spin matrices and \mathcal{T}_{α} and \mathcal{T}_{β} are the isospin matrices. From the definition of the pair distribution function, the desired distributions are

$$C6 \quad P_{\pm}(\bar{X},\bar{X}') = \frac{1}{2N_{\pm}} < 0 \mid \overset{N}{\underset{\alpha\neq B=1}{\overset{\sim}{\overset{\sim}}} \delta(\bar{z}_{\alpha}-\bar{X}) \delta(\bar{z}_{B}-\bar{X}') (\underbrace{1\pm Q_{\alpha}}{_{2}}) \mid 0 > spin Averaged$$

where + and - refer to space-symmetric and space-antisymmetric states. Using the definition of |0> for the ground state one obtains

$$\Gamma_{\underline{Y}}(\overline{X},\overline{X}') = \frac{1}{4N_{\pm}} \underset{\substack{I \neq M < P_{4}}{\neq}}{\leq} \left[\left(\omega_{\underline{X}}(\underline{A}) \omega_{M}(\underline{a}), \left(1 \pm Q_{12} \right) \delta(\overline{X},\overline{z}_{1}) \right) \right]$$

$$\delta(\overline{X}',\overline{z}_{2}) \omega_{\underline{X}}(\underline{A}) \omega_{M}(\underline{a}) - \left(\omega_{\underline{X}}(\underline{a}) \omega_{M}(\underline{a}), \left(1 \pm Q_{12} \right) \delta(\overline{X},\overline{z}_{1}) \delta(\overline{X},\overline{z}_{2}) \omega_{\underline{X}}(\underline{a}) \omega_{\underline{X}}(\underline{a}) \right]$$

where

$$c8 \quad \omega_{g}(1) \, \omega_{m}(2) = \underbrace{e^{i \boldsymbol{k} \cdot \boldsymbol{z}_{1}}}_{\sqrt{y_{0}}} \underbrace{e^{i \boldsymbol{m} \cdot \boldsymbol{z}_{0}}}_{\sqrt{y_{0}}} \chi_{1}^{\sqrt{x}} \eta_{1}^{T_{x}} \chi_{0}^{\sqrt{x_{m}}} \eta_{2}^{T_{m}}$$

Using the definition of the space exchange operator

$$(1 \pm \alpha_{12}) \delta(\bar{x} - \bar{z}_{1}) \delta(\bar{x}' - \bar{z}_{2}) e^{i\bar{x}\bar{z}_{1}} e^{i\bar{m}\cdot\bar{z}_{2}} = e^{i\bar{x}\bar{x}} e^{i\bar{m}\cdot\bar{x}'} \pm e^{i\bar{x}\bar{x}'} e^{i\bar{m}\cdot\bar{x}}$$

and the orthogonality of the inner product

$$(\chi_1^{\nu_k} \eta_1^{\tau_k} \chi_3^{\nu_m} \eta_2^{\tau_m} \chi_1^{\nu_k} \eta_1^{\tau_k} \chi_3^{\nu_m} \eta_3^{\tau_m}) = 1$$

cii
$$(\chi_1^{\nabla_2} \eta_1^{T_1} \chi_2^{\nabla_m} \eta_2^{T_m}, \chi_2^{\nabla_2} \eta_2^{T_2} \chi_1^{\nabla_m} \eta_1^{T_m}) = \delta_{\nabla_2} \nabla_m \delta_{\mathcal{L}_{\mathcal{L}} \mathcal{L}_{\mathcal{M}}}$$

equation C7 may be written

c12
$$\overline{P_{\pm}(\tilde{x},\tilde{x}')} = \frac{1}{4N_{\pm}} \frac{1}{\sqrt{2}} \sum_{l \neq m < l_{\pm}} \left[(1 \pm e^{i\tilde{l}(\tilde{x}'-\tilde{x})}e^{i\tilde{m}\cdot(\tilde{x}-\tilde{x}')}) - \delta v_{k} + m \delta T_{k} \tau_{m} (e^{i\tilde{l}(\tilde{x}'-\tilde{x})}e^{i\tilde{m}\cdot(\tilde{x}-\tilde{x}')} \pm 1) \right]$$

In order to introduce the definition of the Fermi correlation function, one finds it convenient to change from a discrete to a continuous sum using the prescription

$$c_{13} \underset{l < r_{f}}{\lesssim} e^{i \tilde{\ell} \cdot (\tilde{\chi}' - \tilde{\chi})} \longrightarrow \frac{4 V}{(2\pi \hbar)^{3}} \int_{P_{e} < r_{f}} d^{3} P_{e} e^{i \tilde{P}_{e} \cdot (\tilde{\chi}' - \tilde{\chi})}$$

Defining the Fermi correlation function to be

$$C14 \quad G_{\mathsf{F}}(\bar{x}-\bar{x}') = \left[\frac{4 \vee (1+1)^{3}}{(2\pi\hbar)^{3}A} \int_{\mathbf{R}} e^{i\frac{\pi}{\mathbf{R}}\cdot(\bar{x}'-\bar{x})} d^{3}\mathbf{R}\right]^{2} = \frac{9\pi}{3} \frac{J_{35}(\mathbf{r}+|\bar{x}-\bar{x}'|)}{(\mathbf{r}+|\bar{x}-\bar{x}'|)^{3}}$$

one may write

$$C15 \leq e^{i \tilde{k} \cdot (\tilde{x}^{1} - \tilde{x})} e^{i \tilde{m} \cdot (\tilde{x} - \tilde{x}^{1})} = \frac{A(A-1)}{A^{2}} \leq e^{i (\tilde{k} - \tilde{m}) \cdot (\tilde{x}^{1} - \tilde{x})}$$
$$= A(A-1) \in [\tilde{x} - \tilde{x}^{1}]$$

$$C16 \quad \underbrace{\xi}_{\substack{k \neq m < r_{4}}} \delta_{\underline{v}_{1}} \underline{v}_{\underline{m}} \delta_{\underline{v}_{1}} \underline{\tau}_{\underline{m}} e^{i \, \underline{\tilde{k}} \cdot (\underline{\tilde{x}}^{L} \underline{\tilde{x}})} e^{i \, \underline{\tilde{m}} \cdot (\underline{\tilde{k}} \cdot \underline{\tilde{x}}^{l})} = \frac{4(\underline{\tilde{k}})(\underline{\tilde{k}}^{-l})}{A^{\underline{v}}} \underbrace{\xi}_{\substack{k \neq n \\ \underline{k} \neq \underline{m} \\ \underline{k} \neq \underline{k}}} \\ \delta_{\underline{\tau}_{k}} \tau_{\underline{m}} e^{i(\underline{\tilde{k}} - \underline{\tilde{m}}) \cdot (\underline{\tilde{x}}^{L} \underline{\tilde{x}})} = A(\underline{A}^{-l}) \, G_{\underline{F}}(\underline{\tilde{x}} - \underline{\tilde{x}}^{l})}$$

Thus one may rewrite C12 in terms of $G_{\mathbf{F}}(\hat{\mathbf{x}} - \hat{\mathbf{x}}')$ as

c17
$$\overline{P_{\pm}(\bar{x},\bar{x}')} = \frac{1}{4N_{\pm}} \frac{1}{\sqrt{2}} \left[A(A-I) \pm A(A-I) G_{F}(\bar{x},\bar{x}') - A(A-I) G_{F}(\bar{x},\bar{x}') \mp A(A-I) \right]$$

where

$$c_{18} \lesssim 1 = A(A-I)$$

$$C19 \leq 5 \sqrt{2} \sqrt{m} \delta \tau_{1} \tau_{m} = 4 \frac{A}{4} \left(\frac{A}{4} - 1 \right) = A \left(\frac{A}{4} - 1 \right)$$

26

This result does not agree with that given by Goldberger and Watson.

The average pair distribution function is given by

$$C20 \quad \overline{P^{(a)}(\bar{x},\bar{x}')} \equiv \frac{N_{+} \overline{P_{+}(\bar{x},\bar{x}')} + N_{-} \overline{P_{-}(\bar{x},\bar{x}')}}{A(A-I)/2}$$
$$= \frac{1}{4V^{2}} \frac{\partial}{A(A-I)} \left[\partial A(A-I) - \partial A(\frac{A}{4}-I) G_{F}(\bar{x}-\bar{x}') \right]$$
$$= \frac{1}{V^{2}} \left[1 - \frac{A}{4-I} G_{F}(\bar{x}-\bar{x}') \right]$$

and

$$c_{21} \qquad \stackrel{A}{\underset{i\neq j=1}{\overset{}{\underset{j=1}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\overset{}{\underset{j=1}{\underset{j=1}{\overset{}{\underset{j=1}{\underset{j=1}{\overset{}{\underset{}{\underset{j=1}{\underset{j=1}{\underset{j=1}{\overset{}{\underset{j=1}{\underset{j=1}{\overset{}{\underset{j=1}{\underset{i=1}{\overset{}{\underset{}{\underset{j=1}{\atop}}{\underset{i=1}{\overset{}{\underset{}{\underset{j=1}{\atop}{\atop}}{\underset{}{\underset{}{\underset{i=1}{\atop}{\atop}{\atop{i=1}{\atop}}{\atop}}{\underset{i=1}{\atop}}{\atop}{\atop}}{\underset{i=1}{\atop}}{\underset{i=1}{\atop}}{\atop}}{\underset{i=1}{\atop}}{\atop}{\atop}}{\underset{i=1}{\atop}}{\atop}}{\underset{i=1}{\atop}}{\atop}}{\underset{i=1}{\atop}}{\atop}}{\underset{i=1}{\atop}}{\underset{i=1}{\atop}}{\underset{i=1}{\atop}}{\underset{i=1}{\atop}}{\atop}}{\underset{i=1}{\atop}}{\underset$$

Note that the result above for $P^{(2)}(\bar{x},\bar{x}^{*})$ does agree with that of Goldberger and Watson despite the fact that it is obtained with different expressions for $\overline{P_{+}(\bar{x},\bar{x}^{*})}$.

The average pair distribution function may also be defined in terms of the pair correlation function $G(\hat{\mathbf{x}},\hat{\mathbf{x}}^{\dagger})$, i.e.

c22
$$\overline{\mathsf{P}^{(a)}(\dot{x},\dot{x}')} \equiv \frac{1}{\sqrt{2}} \left[1 + \mathcal{G}(\dot{x},\dot{x}') \right]$$

Comparing C22 with C20 one obtains

$$C23 \qquad G(\bar{x}-\bar{x}') = -\frac{A-4}{A-1} \frac{G_{F}(\bar{x}-\bar{x}')}{4}$$

Substituting this function into the definition for the average pair correlation length obtain

$$c_{24} \quad S_{Pauli}^{2} = -2 \int_{0}^{\infty} -\left(\frac{A-4}{A-1}\right) \frac{G_{F}(X)}{4} \times dx$$
$$= \frac{A-4}{A-1} \int_{0}^{\infty} \frac{q_{II}}{4} \quad \frac{J_{3/2}^{2}(P_{F}X)}{(P_{F}X)^{3}} \times dx$$

Let $y = P_{f}x$ C25 $\int_{Pauli}^{2} = \frac{A-4}{A-1} \frac{q_{ff}}{4P_{f}^{2}} \int_{0}^{\infty} \frac{J_{3/5}^{2}(y)}{y^{3}} dy$

125 From Gradshteyn and Ryzhik integral 6.574(2)

c26
$$\int_{0}^{\infty} \frac{\tau^{2}}{\xi^{\lambda}} d\xi = \frac{\Gamma(\lambda) \Gamma(\tau - \lambda) + \gamma_{2}}{2^{\lambda} \Gamma^{2}(\frac{\lambda}{2} + \gamma_{2}) \Gamma(\tau + \frac{\lambda}{2} + \frac{1}{2})}$$

Thus

$$c_{27} \int_{0}^{\infty} \frac{J_{y_{a}}^{2}(Y)}{Y^{2}} dY = \frac{\Gamma(a) \Gamma(a)}{a^{2} r^{2}(y_{a})} = \frac{1}{a \pi}$$

and

$$c_{28} \quad \widehat{S}_{p_{AUIi}}^{2} = \frac{9}{8 \, p_{f}^{2}} \, \frac{A-4}{A-1}$$

Now that the formalism for averaging over spatially symmetric and antisymmetric pairs has been defined, we are able to calculate the very important average of $(\underline{t}_{\overline{n}}, \underline{\gamma}_{\overline{l}})(\underline{t}_{\overline{\lambda}}, \underline{\gamma}_{\overline{s}})$. Expressing these operators in terms of unit operators and \underline{t}_{z} values one may write

$$(t_{n} \cdot T_{i})(t_{n} \cdot T_{a}) = t_{2} T_{i2} t_{2} T_{a2} + \underbrace{t^{+} T_{i} t^{-} T_{a}^{+} + t^{-} T_{i}^{+} t^{+} T_{a}^{-}}_{2}$$

Noting that

one may write

$$C32 \quad \overline{P_{\pm}(\bar{X}_{1}\bar{X}^{1})(\underline{t}_{\pi}\cdot\underline{T}_{1})(\underline{t}_{\pi}\cdot\underline{T}_{2})} = \frac{1}{4N\pm} \frac{1}{\sqrt{2}} \sum_{\substack{R \neq M < R_{\pm}}} \left\{ \left[\underline{1} \pm e^{i(\underline{R}\cdot\bar{M})\cdot(\bar{X}^{1}\cdot\bar{X})} \right] \right\}$$

$$\left[\left(\delta_{T_{R}}, \underline{\tau}_{m} - \delta_{T_{R}}, \underline{\tau}_{m+1} - \delta_{T_{R+1}}, \underline{\tau}_{m}\right) \underline{t}_{2}^{2} \right] - \left[e^{i(\underline{R}\cdot\bar{M})\cdot(\underline{X}^{1}\cdot\underline{X})} \pm \underline{1} \right]$$

$$\left[\delta_{R_{R}}, \underline{v}_{m}} \delta_{T_{R}}, \underline{\tau}_{2}^{2} + \delta_{N_{R}}, \underline{v}_{m}} \delta_{T_{R}}, \underline{\tau}_{m+1} \underline{t}^{-\underline{t}+1} + \delta_{N_{R}}, \underline{v}_{m}} \delta_{T_{R+1}}, \underline{\tau}_{m}} \underline{t}_{2}^{\pm} \right] \right\}$$

Using the identities

$$c_{33} \leq \int c_{1} \tau_{m} = 2 \frac{A}{2} (\frac{A}{2} - 1) = \frac{A^{2}}{2} - A$$

$$R \neq m < t_{4}$$

$$c_{36} \leq e^{i(\bar{\chi}-\bar{m})(\bar{\chi}'-\bar{\chi})} \int_{\mathcal{T}_{x},\mathcal{T}_{m}+1} = \leq e^{i(\bar{\chi}-\bar{m})\cdot(\bar{\chi}'-\bar{\chi})} \int_{\mathcal{T}_{x}+1,\mathcal{T}_{m}} \\ l \neq m < r_{x}$$

$$= \sum_{\mathbf{x} < \mathbf{r}_{1}} \sum_{\mathbf{A} < \mathbf{r}_{2}} e^{i(\mathbf{x} - \mathbf{x})} (\mathbf{x} - \mathbf{x})} \int_{\mathbf{T}_{2} + \mathbf{I}_{1}, \mathbf{T}_{2}, \mathbf{T}_{2}} = \frac{A^{2}}{4} G_{\mathbf{x}}(\mathbf{x} - \mathbf{x})$$

$$c_{37} \leq e^{i(\hat{x}-\hat{m})\cdot(\hat{x}\cdot\hat{x})} \int v_{x}v_{m} \int v_{x}v_{m} = 4 \frac{A}{4} (\frac{A}{4}-1) G_{F}(\hat{x}-\hat{x}')$$

$$k \neq m < r_{4}$$

$$c_{38} \leq e^{i(\hat{x}-\hat{m})\cdot(\hat{x}-\hat{x})} \delta_{x_{2}} \delta_{x_{1}} \delta_{x_{1}} \delta_{x_{1}} \delta_{x_{1}} \delta_{x_{1}} \delta_{x_{2}} \delta_{x_{2}} \delta_{x_{1}} \delta_{x_{2}} \delta_{x_{$$

$$= \sum_{\mathbf{x} < \mathbf{r}_{4}} \sum_{\mathbf{m} < \mathbf{r}_{4}} e^{i(\mathbf{x} - \mathbf{m}) \cdot (\mathbf{x} - \mathbf{x})} \int u_{1} \mathbf{r}_{m} \quad \delta \pi_{H_{1}} \tau_{m} = \Im \begin{pmatrix} A \\ A \end{pmatrix} \begin{pmatrix} A \\ A \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} \begin{pmatrix} X - \mathbf{x} \end{pmatrix}$$

C40
$$\leq \delta v_{2}, v_{m} \delta \tau_{2}, \tau_{m+1} = \leq \delta v_{2}, v_{m} \delta \tau_{2} + i_{1}, \tau_{m} = \partial \left(\frac{A}{4}\right) \frac{A}{4} = \frac{A^{2}}{8}$$

 $k \neq m < r_{4}$

C32 may be written

$$\begin{array}{rcl}
 & \overline{P_{\pm}(\bar{x},\bar{x}^{i})(\pm_{n}\cdot\bar{T}_{i})(\pm_{n}\cdot\bar{T}_{i})} &= \frac{1}{4N_{\pm}} \frac{1}{V^{2}} \left\{ \left(\frac{A^{2}}{2} - A - \frac{A^{2}}{4} - \frac{A^{2}}{4} \right) t^{2}_{\pm} \right\} \\
& \pm \left(\frac{A^{2}}{2} - A - \frac{A^{2}}{4} - \frac{A^{2}}{4} \right) G_{F}(\bar{x}-\bar{x}^{i}) t^{2}_{\pm} - \left(\frac{A}{4} - A \right) G_{F}(\bar{x}-\bar{x}^{i}) t^{2}_{\pm} \\
& - \frac{A^{2}}{8} G_{F}(\bar{x}-\bar{x}^{i}) \left(t^{-}t^{+} + t^{+}t^{-} \right) \mp \left(\frac{A^{2}}{4} - A \right) t^{2}_{\pm} \mp \frac{A^{2}}{8} (t^{-}t^{+} + t^{+}t^{-}) \right\} \\
& = \frac{1}{4N_{\pm}V^{2}} \left\{ \left(-A \mp \frac{A^{2}}{4} \pm A \right) t^{2}_{\pm} + \left(\mp A - \frac{A^{2}}{4} + A \right) G_{F}(\bar{x}-\bar{x}^{i}) t^{2}_{\pm} \\
& \mp \frac{A^{2}}{8} (t^{-}t^{+} + t^{+}t^{-}) - \frac{A^{2}}{8} G_{F}(\bar{x}-\bar{x}^{i}) \left(t^{-}t^{+} + t^{+}t^{-} \right) \right\}
\end{array}$$

and

.

$$c_{42} \quad \overline{P^{(a)}(\bar{x}_{i}\bar{x}^{\dagger})(\underline{t}_{\pi}\cdot\bar{T}_{i})(\underline{t}_{\pi}\cdot\bar{T}_{i})} = \frac{1}{4\sqrt{2}} \frac{2}{A(A-1)} \left\{ -2A t_{2}^{2} - 2A t_{2}^{2} - 2A$$

Using C21 and C43 one may evaluate terms in the optical potential involving virtual charge exchange, e.g.

$$C44 < 0 | \sum_{i=1}^{A} \sum_{\substack{j=1 \\ j\neq i}}^{A} (b_{0}+b_{i}t_{fi}\cdot\underline{T}_{i}) \delta(\hat{r}\cdot\hat{r}_{i}) (b_{0}+b_{i}t_{fi}\cdot\underline{T}_{i}) \delta(r'-r_{j}) | 0 >$$

$$= e(r) e(r')(1-\frac{1}{A}) \left\{ b_{0}^{2} + 2b_{0}b_{i}\frac{N-2}{A} - \frac{b_{1}^{2}}{A-i} - \left[(b_{0}^{2}+2b_{0}b_{i}\frac{N-2}{A})\frac{A-4}{A-i} + 2b_{1}^{2}\frac{A-2}{A-i} \right] G_{\underline{F}}(\hat{X}-\hat{X}^{1}) \left\}$$

1

APPENDIX D

Nuclear Density Parameters for Pions from Electron-Nucleus Scattering Data

Two kinds of information are needed for the pion-nucleus interaction problem. For the Coulomb interaction part of the problem one needs the charge distribution of the nucleus taking into account the finite size of the proton and the pion. For the strong interaction part of the problem the distribution of nucleon centers is required. Usually one assumes that the distribution of neutron centers is the same as that for proton centers. In this work nuclear density parameters are needed for ${}^{4}_{\text{He}}$, ${}^{12}_{\text{C}}$, ${}^{16}_{\text{O}}$, and ${}^{40}_{\text{Ca}}$.

The differential scattering cross sections for the scattering of high energy electrons are the best source of information about the nuclear charge distribution for most nuclei. In order to examine the relationship between the nuclear charge density and the electron scattering differential cross section, it is useful to consider the scattering problem in the Born approximation. The differential scattering cross section for an electron in the plane wave Born approxi-92 mation is

DI
$$\frac{d\sigma}{d\Omega} = \frac{\mu^2}{K^4} \left| \frac{1}{a\pi} \int e^{i\frac{\pi}{8}\cdot\vec{r}} V(t) d^3r \right|^2 = \frac{4\mu^2}{g^2K^4} \left| \int sin gr V(t) r dr \right|^2$$

where $nq = 2hk \sin \varphi/2$ is the momentum transfer. Integrating the integral twice by parts and using Poisson's equation

104

D2
$$\nabla^2 V(r) = \frac{1}{r} \frac{\partial^2}{\partial r^2} (r V(r)) = 4\pi z e^2 e^2(r)$$

one obtains

D3
$$\int_{0}^{\infty} \sin(gr) V(r) r dr = -\frac{4\pi z e^2}{g^2} \int_{0}^{\infty} \sin gr e(r) r dr.$$

Thus

D4
$$\frac{d\nabla}{d\Omega} = \frac{2^2 \kappa^2 \mathcal{H}^2}{\hbar^2 k^4 \sin^4 \theta/2} \left| \frac{4\pi}{8} \int_{0}^{\infty} \sin qr e \Theta r dr \right|^2$$
.

For a point nucleus the Coulomb differential scattering cross section is

$$D5 \quad \frac{d\sigma}{d\Omega}^{P} = \frac{2^{2} \kappa^{2} \mu^{2}}{\kappa^{4} \kappa^{4} \sin^{4} \theta / 2}$$

Writing the differential cross section D4 in terms of the point nucleus differential cross section

$$\frac{d\sigma}{dx} = \frac{d\sigma}{dx} \left| \frac{4\pi}{8} \int \sin qr \, e \phi \, r \, dr \right|^2 = \frac{d\sigma}{dx} \left| F(q^2) \right|^2$$

one may define a form factor $F(q^2)$ which is a measure of the charge distribution.

The development above indicates that the form factor is what is determined from electron scattering experiments and not the charge density itself. Since $F(q^2)$ is the Fourier transform of Q(r), it is necessary to know $F(q^2)$ for all q in order to obtain complete information about Q(r). Experimentally $F(q^2)$ is known only for $1 \le q \le$ 4 fm⁻¹. As a result Q(r) is known only approximately.

With the present range of momentum transfer q that can be obtained experimentally, it is possible to determine more than one parameter in the charge distribution. For spherically symmetric charge distributions

D7
$$F(q^2) = \frac{4\pi}{q} \int_{0}^{\infty} sin qr \ddot{e}(r) r dr = \int e^{i \vec{q} \cdot \vec{r}} e^{rr} d^3 r$$

If the momentum transfer q of the electron is small compared to the inverse of the nuclear radius R, i.e. $qR \ll 1$, then sin(qr) may be expanded to give

DB
$$F(g^2) = \frac{4\pi}{8} \int_{0}^{\infty} re(r) \left[gr - \frac{(gr)^3}{3!} + \frac{(gr)^5}{5!} - \cdots \right] dr$$

= $1 - \frac{g^2}{3!} < r^2 > + \frac{g^4}{5!} < r^4 > - \cdots$

Thus if only one parameter of the charge distribution can be obtained for small momentum transfer q, it is the rms radius.

The form factor $F(q^2)$ measured experimentally is the form factor of the charge distribution i.e. the density of proton centers with finite size of the proton included. In order to determine the density of proton centers for use in the pion-nucleus strong interaction potential, it is necessary to remove the effect of the finite proton size. If one assumes as a first approximation that the nucleus consists of interacting protons each with an undistorted charge density $\mathfrak{P}_p(\mathbf{r})$, then the charge density of the nucleus $\mathfrak{P}_{ch}(\mathbf{r})$ is of the form

D9
$$e_{ch}(r) = \int e_{p}(F-F) f(r) d^{3}r'$$

where f(r') is the distribution function for proton centers. The form factor for the nucleus $F(q^2)$ may be written

D10
$$F(g^2) = \int e^{i\frac{1}{8}\cdot\tilde{r}} e_{ch}(r) d^3r = \iint f(r') e^{i\frac{1}{8}\cdot\tilde{r}} e_{p}(\tilde{r}-\tilde{r}') d^3r d^3r'$$

Transforming the r variable of integration to $\dot{x} = \dot{r} - \dot{r}'$, one obtains

DII
$$F(g^2) = \int f(r') e^{i \overline{g} \cdot \overline{r}'} d^3 r' \int e^{i \overline{g} \cdot \overline{x}} e_{\mu}(x) d^3 x$$

Using the definition D7 for the form factor, one may make the following definitions:

D12
$$F_{p}(g^{2}) \equiv \int e^{i\frac{1}{6}\cdot x} e_{p}(x) d^{3}x$$

D13
$$F_{pc}(g^2) \equiv \int f(r') e^{i \hat{g} \cdot \hat{r}'} d^3r'$$

Then

$$D14 F(g^2) = F_p(g^2) F_{pc}(g^2)$$

where $F_p(q^2)$ is the form factor for the charge distribution of a proton and $F_{pc}(q^2)$ is the form factor for the distribution of proton centers.

Expanding $F(q^2)$, $F_p(q^2)$, and $F_{pc}(q^2)$ as a function of qr for small qr obtain

D15
$$F(g^{2}) = 1 - \frac{g^{2}}{6} < r^{2} > + \cdots = (1 - \frac{g^{2}}{6} < r_{h}^{2} > + \cdots)(1 - \frac{g^{2}}{6} < r_{h}^{2} > + \cdots)$$

= $1 - \frac{g^{2}}{6} (< r_{h}^{2} > + < r_{h}^{2} >) + \cdots$

Equating the coefficients of the independent powers of q on each side of the equation one has

$$D16 \quad \langle r^2 \rangle = \langle r_{P^2}^2 \rangle + \langle r_{P}^2 \rangle$$

or

D17
$$\langle r_{pc}^2 \rangle = \langle r^2 \rangle - \langle r_p^2 \rangle$$

This result is in agreement with that obtained by Elton. 127

Two basic approaches have been used in analyzing electron scattering data. These are based on theoretical notions concerning the form of the charge distribution.

One approach is based on the harmonic oscillator shell model. According to this shell model the distribution of proton centers $C_{pc}(r)$ is of the modified gaussian form for p shell nuclei, i.e.

D18
$$e_{PC}(r) = \frac{\partial}{\partial \pi^{3/2} a^{3}} \left(\frac{1}{2} + \frac{\partial^{2}}{\partial x^{2}} \frac{r^{2}}{d^{2}} \right) e^{-r^{2}/a^{2}}$$

where Z is the number of protons and a is the only density parameter. The charge distribution of the nucleus including the finite size of the protons is from equation D9

D19
$$e_{ch}(r) = \int e_p(\bar{r} - \bar{r}') e_{pc}(r') d^3 r'$$

In the shell model the charge distribution of the proton $\begin{pmatrix} p \\ p \end{pmatrix}$ (r) is assumed to be gaussian, i.e.

B20
$$e_{p}(r) = \frac{1}{\pi^{3/2}a_{p}^{3}}e^{-r^{2}/a_{p}^{2}}$$

Thus the integration may be performed to obtain

D21
$$C_{ch}(r) = \frac{2}{2\pi^{3/2}b^{3}} \left[1 + \frac{2}{3} \left\{ \frac{3(b^{2}-a^{2})}{2b^{2}} + \frac{a^{2}r^{4}}{b^{4}} \right\} \right] e^{-r^{3/6^{2}}}$$

where

D22
$$b^2 = a^2 + a_p^2$$
.

The form factor $F(q^2)$ for the nuclear charge distribution including the finite size of the proton is given by DlO to be

D23
$$F(q^2) = (1 - \frac{2}{6}a^2q^2)e^{-\frac{5}{6}q^2/4}$$

In analysis of the experimental value of $\mathbf{F}^2(q^2)$ to determine the charge parameters, one fits the theoretical $\mathbf{F}^2(q^2)$ to the experimental one. The fit is most sensitive to the first minimum in $\mathbf{F}^2(q^2)$ which essentially determines the parameter a. From the shell model viewpoint the first minimum originates from the interference between the s- and pnucleons. The rms radius of the distribution of proton centers is determined from a.

128-131 Unfortunately most experimentalists analyzing their electron scattering data have neglected the finite size of the proton and fit their data using a charge density of the form

D24
$$\operatorname{Pch}(m) = \frac{2}{\pi^{\frac{2}{3}}B^{3}} \frac{1}{2+8\alpha'} \left(1+\alpha'\frac{r^{2}}{B^{2}}\right) e^{-r^{2}/B^{2}} \alpha' = \frac{2}{3}$$

As a result the form factors obtained have not described the data well. In order to be able to fit the electron scattering data many experi-131 mentalists such as Crannell have also allowed $\alpha' = \frac{2-2}{3}$ to be varied as a second parameter. Thus one finds that the electron scattering data have not been fitted in a proper manner for extracting directly the density of proton centers in the nucleus.

In order to obtain the density of proton centers from the electron scattering fits, one must remove the form factor for the proton from the form factor obtained from D24, i.e.

D25
$$F_{ch}(g^2) = (1 - \frac{B^2 \alpha' g^2}{4 + 6 \alpha'}) e^{-g^2 6^2/4} = F_{pc}(g^2) F_p(g^2)$$

Thus one obtains

D26
$$F_{pc}(g^2) = (1 - \frac{B^2 \alpha' g^2}{4 + 6 \alpha'}) e^{-g^2 B^2/4}$$

 $\overline{B} = [B^2 - a_p^2]^{\gamma_a}$
 $a_p = .59 fm$

Taking the Fourier transform of $\mathbf{F}_{pc}(q^2)$ one obtains the density of proton centers to be

D27
$$P_{pc}(r) = \frac{\partial}{\pi^{2/2} B^{3}} \frac{1}{2+3\alpha^{1}} \left[1 + \frac{3\alpha^{2}}{2} \left(1 - \frac{B^{2}}{B^{2}} \right) + \alpha^{1} \frac{B^{2}}{B^{2}} \frac{r^{3}}{B^{2}} \right] e^{-r^{2}/B^{2}}$$

131 From Crannell the best fit values of the parameters α' and β for 12_{C} and 16_{O} are

¹²c
$$\alpha' = 4/3$$
 $\beta = 1.636$ fm
¹⁶0 $\alpha' = 8/5$ $\beta = 1.851$ fm

For ⁴He a similar procedure is followed in order to make use of 132 the electron scattering analysis of Frosh <u>et al.</u> They fit the electron-scattering data with the form factor

D28
$$F_{ch}(g^2) = (1 - (a_0^2 g^2)^6) e^{-b^2 g^2/4} = F_{pc}(g^2) F_{p}(g^2)$$

 $a_0 = .3/6 fm$
 $b = 1.362 fm$

Factoring out the form factor for the proton one obtains

D29
$$F_{pc}(g^{2}) = [1 - (a_{0}^{2}g^{2})^{6}]e^{-b^{2}g^{2}/4}$$

 $b^{2} = b^{2} - a_{p}^{2}$

Taking the Fourier transform of $F_{pc}(q^2)$ one finds the density of proton centers to be

D30
$$P_{pc}(r) = \frac{2e^{-r^{2}/b^{2}}}{\pi^{3/2}b^{3}} \left[1 - 64\left(\frac{a_{0}}{b}\right)^{12} \left\{ 135135 - 540540\frac{r^{2}}{b^{2}} + 540540\frac{r^{4}}{b^{4}} - 205920\frac{r^{6}}{b^{6}} + 34320\frac{r^{8}}{b^{8}} - 2496\frac{r^{10}}{b^{10}} + 64\frac{r^{12}}{b^{12}} \right\} \right]$$

For heavier nuclei (beyond p shell) one finds that the shell model becomes too complicated to use. In this case electron scattering 128 experimentalists have used a phenomenological density shape such as the Fermi density

D31
$$e_{ch}(r) = \frac{e_{o}}{1 + e^{-(r-R)/c}}$$

Uberall has given a prescription for obtaining the density of proton centers for these heavier nuclei using the Fermi shape.

D32
$$e_{pc}(r) = \frac{\overline{e_o}}{1 + e^{-(r-\overline{R})/\overline{c}}}$$

where

D33
$$\bar{R} = R + .13 A^{-y_3} fm$$

 $\bar{C} = C/1.13$

This approach was used for 40 Ca in conjunction with the electron scat-134 tering results of Croissiaux et al. They obtained for 40 Ca

۰.

$$D_{34}$$
 R = 3.602 fm c = .576 fm.

For the nuclear density parameters required for the pion-nucleus Coulomb interaction one follows a similar procedure to that above. First one needs to define

D35
$$F_{\pi N \nu c}(g^2) = F_{ch}(g^2) F_{\pi}(g^2)$$

Then taking the Fourier transform of $F_{TINuc} \begin{pmatrix} 2 \\ q \end{pmatrix}$ one obtains the Coulomb charge distribution $C_{TINuc} (r)$. The Coulomb potential is defined in TINuc terms of $C_{TINuc} (r)$ by

D36
$$V_{C}(r) = -e \int \frac{e_{\pi N u c}(r')}{|\bar{r}-\bar{r}'|} d^{3}r'$$

For this work the form factor of the pion is assumed to be approximately the same as that of the proton, i.e.

$$^{D37} F_{\pi}(g^{2}) \cong F_{p}(g^{2})$$

APPENDIX E

Vacuum Polarization Contributions to Pionic Atom Energy Levels

The pion-nucleus vacuum polarization potential to order \propto due to formation of virtual electron-positron pairs represented by the Feynman graph

E1
$$V_{\mu\rho}(r) = -\frac{a\alpha e}{3\pi} \int \frac{e(r')}{1r} \int_{1}^{\infty} e^{-\frac{a}{4}} \frac{mec}{4} \frac{|\vec{r}-\vec{r}'|}{5} (1+\frac{1}{a}\frac{1}{5}) \frac{\sqrt{5^2-1}}{5^2} dS d^3r'$$

where m_e is the mass of the electron. Expanding $\frac{1}{|\vec{F}-\vec{F'}|}$ in terms of spherical harmonics and integrating repeatedly by parts in order to obtain standard integrals, one obtains the vacuum polarization potential for a spherical charge distribution

$$E2 \quad V_{VP}(r) = -\frac{e}{r} \frac{\alpha h}{3m_e c} \int_{0}^{\infty} e(r') r' dr' \left[\frac{19x}{24} + \frac{x^3}{24} - \frac{3\pi x^2}{8} - \frac{\pi x^4}{48} + \frac{x^3}{24} - \frac{\pi x^4}{8} + \frac{x^3}{48} - \frac{\pi x^4}{48} + \frac{x^3}{24} - \frac{\pi x^4}{24} + \frac{x^4}{24} + \frac{\pi x^4}{24} + \frac{\pi x^4}{2$$

$$-\frac{2}{(2k+1)^2}\left(\frac{9}{8}-\frac{3x^2}{4}-\frac{x^4}{24}\right)\left\{\frac{1}{2}\right\}$$

$$X = 2\frac{mec}{\hbar}|\vec{r}-\vec{r}|$$

$$X = 2\frac{mec}{\hbar}(r+r')$$

$$136$$

where $\Psi(z)$ is the digamma function which is defined in terms of the gamma function by

t

E3
$$\Psi(z) = \frac{d \ln \Gamma(z)}{dz} = \frac{\Gamma(z)}{\Gamma(z)}$$

The first few terms of the expression for $V_{vp}(\mathbf{r})$ above were first 137 obtained by Barrett et al.

According to Mickelwait and Corben 138 According to Mickelwait and Corben the effect of the finite size of the nucleus on the vacuum polarization potential is less than 8% for the pionic states $1S(Z \le 12)$, $2P(Z \le 30)$, $3D(Z \le 82)$, and $4F(Z \le 82)$. Since the effect of the extended nuclear charge is small, the nuclear charge distribution may be approximated by a uniform charge distribution for calculational convenience. The error made in calculating the vacuum polarization potential by this procedure is $\le 1\%$.

Using the charge distribution

$$E^{\frac{1}{4}} \quad e(r') = \begin{cases} \frac{2e}{4\pi R^3} & r' \leq R \\ 0 & r' > R \end{cases}$$

where the uniform radius R is defined in terms of the rms radius by $R = \sqrt{5} r_{rms}$, the expression for the vacuum polarization potential may be integrated to obtain

$$\mathbb{E}5 \quad \bigvee_{\mathsf{VP}}(\mathsf{r} \leq \mathsf{R}) = -\frac{2 \, \alpha \, e^2}{4 \, \eta \, \mathsf{R}} \left[\left(-\frac{4}{3} - \frac{4}{3} \, \Psi(l) + \frac{4}{3} \, \mathit{Im} \, \underline{\mathsf{MeCR}} \right) \left(\frac{\mathsf{r}}{\mathsf{R}} \right)^2 \right. \\ \left. + \left(\frac{4}{3} + 4 \, \Psi(l) - 4 \, \mathit{Im} \, \underline{\mathsf{MeCR}} \right) + \left(\frac{2}{3} \left(\frac{\mathsf{r}}{\mathsf{R}} \right)^2 - 2 + \frac{4}{3} \, \frac{\mathsf{R}}{\mathsf{V}} \right) \right] \\ \left. \mathit{In} \, \left(1 - \frac{\mathsf{r}}{\mathsf{R}} \right) + \left(\frac{2}{3} \left(\frac{\mathsf{r}}{\mathsf{R}} \right)^2 - 2 - \frac{4}{3} \, \frac{\mathsf{R}}{\mathsf{V}} \right) \, \mathit{Im} \left(l + \frac{\mathsf{r}}{\mathsf{R}} \right) + \frac{2 \, \mathrm{Im} \, \mathrm{meCR}}{4 \, \mathsf{K}} \\ \left. + \left(\frac{1}{5} \left(\frac{\mathsf{r}}{\mathsf{R}} \right)^4 - 3 - 2 \left(\frac{\mathsf{r}}{\mathsf{R}} \right)^2 \right) \left(\frac{\mathsf{MeCR}}{4 \, \mathsf{K}} \right)^2 + \left(\frac{3 \, \mathrm{Im}}{16} + \frac{3 \, \mathrm{Im}}{9} \left(\frac{\mathsf{r}}{\mathsf{R}} \right)^2 \right) \\ \left(\frac{\mathsf{MeCR}}{4 \, \mathsf{K}} \right)^3 + \mathcal{O}_{\mathsf{S}} \left(\frac{\mathsf{MeCR}}{4 \, \mathsf{K}} \right)^4 \right]$$

.

and

$$E6 \quad \bigvee_{VP} (V \ge R) = -\frac{2 \times e^2}{3 \pi r} \left[1 - \left(\frac{r}{R}\right)^2 - 2 \left(\ln \frac{m_e c \cdot r}{R} - \Psi(i)\right) - \left(1 - \frac{3}{2} \frac{r}{R} + \frac{1}{2} \left(\frac{r}{R}\right)^3\right) \ln \left(1 - \frac{R}{r}\right) - \left(1 + \frac{3}{2} \frac{r}{R} - \frac{1}{2} \left(\frac{r}{R}\right)^3\right) \\ - \left(1 - \frac{3}{2} \frac{r}{R} + \frac{1}{2} \left(\frac{r}{R}\right)^3\right) \ln \left(1 - \frac{R}{r}\right) - \left(1 + \frac{3}{2} \frac{r}{R} - \frac{1}{2} \left(\frac{r}{R}\right)^3\right) \\ - \left(1 - \frac{3}{2} \frac{r}{R}\right) + \frac{3\pi}{2} \frac{m_e c \cdot r}{R} - 3 \left(\frac{m_e c \cdot r}{R}\right)^2 + \frac{2\pi}{3} \left(\frac{m_e c \cdot r}{R}\right)^3 \\ - \frac{3}{5} \left(\frac{m_e c \cdot R}{R}\right)^2 + \frac{2\pi}{3} \frac{m_e^2 c^2 \cdot r^R^2}{R^3}\right] - \frac{2 \cdot \alpha \cdot e^2}{16 \pi r} \left(\frac{h}{m_e c \cdot r}\right)^3 \\ - \frac{3}{5} \left(\frac{m_e c \cdot r}{(k!)^2}\right)^2 + \frac{2\pi}{3} \frac{m_e^2 c^2 \cdot r^R^2}{2k + 4} - \frac{2}{2k + 5}\right) \\ - \frac{3 \cdot k}{c \cdot s} \left\{ \left(\frac{x}{2k + s} - \frac{m_e c \cdot r}{k}\right) \left(\ln x - \Psi(k)\right) - \frac{x}{(2k + 6)^2} \right\} \\ + \frac{m_e c \cdot r}{(2k + 4)^2} \right\} + \left(\frac{19}{3(k + 1)^2} - \frac{24}{(2k + 1)^2}\right) \left(\frac{m_e c \cdot r}{k} - \frac{x}{2k + 5}\right) \\ + \frac{3 \cdot k^2 + 16k - 30}{3(k + 1)(2k + 1)} \left\{ \left(\frac{x}{3k + 5} - \frac{m_e c \cdot r}{3k + 4}\right) \left(\ln x - \Psi(k) - \frac{1}{k}\right) \right\} \\ - \frac{x}{(2k + 5)^2} + \frac{m_e c \cdot r}{(2k + 4)^2} \right\} + \frac{9}{(k + 1)^2 (2k + 5)^2} \left(\frac{m_e c \cdot r}{k} + \frac{1}{2k + 4}\right) \\ - \frac{x}{3k + 5} + \frac{14k + 30}{(k + 1)^2 (2k + 4)} \left\{ \left(\frac{x}{2k + 5} - \frac{m_e c \cdot r}{2k + 5}\right) \left(\ln x - \Psi(k)\right) - \frac{4k + 4}{k + 4}\right) - \frac{x}{(2k + 6)^2} + \frac{m_e c \cdot r}{(2k + 4)^2} \right\} \right\}$$

From the mass dependence of the C 4 factor in equation El for the vacuum polarization potential, the contribution of virtual muon and more massive fermion pairs is expected to be negligible. According to Fricke the formation of virtual muon pairs yields a vacuum polarization contribution of only -261 ev for the 1s state of muonic U^{238} . Due to the effect of the strong interaction, the contri-135 bution from virtual pion pairs is unknown. Fricke has calculated the contribution for a boson with mass equal to that of the pion neglecting the effect of the strong interaction. He found the contribution to be very small (-27 ev for the 1s muonic state of U^{238}). The fourth order contributions to the vacuum polarization potential proportional to \propto^2 give a negligible contribution of fractional value 1/500.

The vacuum polarization contribution to the energy of a particular pionic atom energy level may be obtained by numerically solving the Klein-Gordon equation. First the Klein-Gordon equation is solved for the energy of the nl state with the Coulomb, strong interaction, and vacuum polarization potentials. Then it is solved with just the Coulomb and strong interaction potentials. The difference in the two solutions for the energy of the nl state gives the contribution of vacuum polarization to the energy of that state. Table 46 gives a listing of the vacuum polarization contributions to various states of a number of nuclei as calculated by Terrill and Lucas using the strong interaction 21 potential of Krell and Ericson.

_ amec 18-F1 5

APPENDIX F

Method of Solving the Klein-Gordon Equation for Pionic Atoms

The time-independent Klein-Gordon equation is usually written in the form resembling the time-independent Schroedinger equation in order to insert the nonrelativistic strong interaction pion-nucleus optical model potential that was derived from multiple scattering theory via the 140 Schroedinger equation. Thus

$$F1\left[\frac{h^{2}c^{2}}{2\mu_{\pi}c^{2}}\nabla^{2} + (\underline{E}-V_{c}(\mathbf{r}))^{2}-M_{\pi}^{2}c^{4}\right]\Psi(\mathbf{r}) = V_{sT}(\mathbf{r})\Psi(\mathbf{r})$$
$$= \frac{h^{2}c^{2}}{2\mu_{\pi}c^{2}}\left[q(\mathbf{r})-\nabla\cdot\alpha(\mathbf{r})\nabla\right]\Psi(\mathbf{r})$$

where $V_{gt}(\mathbf{r})$ has been separated into local and nonlocal parts $q(\mathbf{r})$ and $\alpha(\mathbf{r})$

$$q_{r}(r) = -4\pi "b_{o}" e(r) - 4\pi i "B" e^{2}(r) + 2\pi E_{MN} c_{o} \nabla^{2} e(r)$$

$$\alpha(r) = -4\pi "c_{o}" e(r) - 4\pi i "C" e^{2}(r)$$

which have been written in terms of effective parameters " b_0 ", " c_0 ", "B", and "C".

For nuclei with only small deviations from spherical mass and charge distributions, assume $q(\vec{r}) = q(r)$ and $\alpha(\vec{r}) = \alpha(r)$ so that the orbital angular momentum ℓ is a good quantum number. Using separation of variables in the wavefunction $\Psi(\vec{r}) = R_{\ell}(r)Y_{\ell,M}(\Theta,\phi)$ obtain for the radial equation

F3
$$(1 + \alpha(r))\left(\frac{1}{r}\frac{\partial^2}{\partial r^2}rR_R(r) - \frac{l(l+1)}{r^2}R_R(r)\right) + \left(\frac{E_{m_R}-V_c(r)}{h^2c^2}\right)^2 - \frac{m_R^2}{h^2c^2}R_R(r)$$

= $g(r)R_R(r) - \alpha'(r)\frac{\partial R_R(r)}{\partial r}$

where n = n' + g + 1 is the principal quantum number having only positive 141 integer values. (n' = 0, 1, 2, ...)

This nonlocal wave equation can be transformed into a local one by making the substitution

$$F^{4} \qquad \phi_{\ell}(r) = \left[1 + \alpha(r)\right]^{\gamma_{2}} r R_{\ell}(r)$$

to obtain

F5
$$\phi_{\mathcal{X}}^{(\prime)} = \left[\frac{\ell(\ell+1)}{r^2} - \frac{1}{1+\alpha(r)} \left\{ \frac{(E_{M\ell} - V_{\ell}(r))^2 - M_{\eta}^2 c^4}{h^2 c^2} - g(r) + \frac{\alpha'(r)}{r} + \frac{\alpha'(r)}{4(1+\alpha(r))} + \frac{\alpha''(r)}{2} \right\} \phi_{\mathcal{X}}(r)$$

Note that the total energy may be written

$$E_{mk} = m_n c^2 + E'_{mk}$$

such that

F7
$$(E_{m_{\ell}} - V_{c}(r))^{2} - M_{n}^{2}c^{q} = 2 M_{n}c^{2}(E_{m_{\ell}}^{\prime} - V_{c}(r)) + (E_{m_{\ell}}^{\prime} - V_{c}(r))^{2}$$

So

$$F8 \quad \phi_{g}^{''}(\mathbf{r}) = \frac{I(I+1)}{r^{2}} - \frac{1}{1+\alpha 0} \left\{ \frac{2 M_{g}c^{2}(E_{ml} - V_{c}O) + (E_{ml} - V_{c}O))}{K^{2}c^{2}} - g(\mathbf{r}) + \frac{\alpha'(\mathbf{r})}{r} + \frac{\alpha'(\mathbf{r})^{2}}{H(1+\alpha 0)} + \frac{\alpha''(\mathbf{r})}{2} \right\} \phi_{g}(\mathbf{r})$$

In this equation for $\phi_{\mathbf{n}}(\mathbf{r})$ the energy $\mathbf{E}_{\mathbf{n}\mathbf{q}}$ ' and the strong interaction potential terms $q(\mathbf{r})$ and $\boldsymbol{\alpha}(\mathbf{r})$ are unknown. To solve for the parameters in $q(\mathbf{r})$ and $\boldsymbol{\alpha}(\mathbf{r})$ one needs to know $\mathbf{E}_{\mathbf{n}\mathbf{q}'}$. Pionic atom experiments measure the pionic atom x-ray transition energies $\mathbf{E}_{\mathbf{r}} =$ $\mathbf{E}_{n+1,\mathbf{q}+1} - \mathbf{E}_{n,\mathbf{q}}$ and linewidths $\Gamma_{\mathbf{n}\mathbf{q}}$. Since the strong interaction significantly affects only the lower energy level of a transition, the energy of the upper level $\mathbf{E}_{n+1,\mathbf{q}+1}$ can be determined by solving the Klein-Gordon equation with the appropriate Coulomb and vacuum polarization potentials. Then the real part of the experimental energy of the lower level $\mathbf{E}_{\mathbf{n}\mathbf{q}}$, can be obtained from the relation

F9
$$E_{M2} = E_{M+1,2+1} - E_{r}$$

Now there is a complex energy shift $\Delta E_{n_{f}}$ of the pionic atom electromagnetic energy levels due to the pion-nucleus strong interaction represented by $V_{st}(r)$ where

- FIO E'ME = E'ME + DEME
- FII DEME = DERME + i DEIME

F12 $\mathbf{E}_{\mathbf{M}\mathbf{R}}^{\mathbf{o}}$ = unperturbed electromagnetic energy of n \mathbf{R} state

The time dependence of the pionic atom wavefunction is given by

Thus the probability density for finding the pion in a certain state $n \boldsymbol{\ell}$ at time t, which is given by the absolute square of the wavefunction, is

$$Fli_{\mu} = e^{2\Delta E_{IM2} t/\hbar} = e^{-\frac{1}{2}m_2 t/\hbar}$$

Therefore the imaginary part of $V_{st}(r)$ which gives rise to ΔE_{Ing} leads to an exponential decay of all states ng and results in a broadening of the energy levels from which pion capture occurs. The width of the observed transition x-ray gives directly the width due to the strong interaction of there is no unresolved fine or hyperfine structure present, since the electromagnetic radiation width of the levels due to the probability of making a radiative transition is negligible in the range of observation compared to the strong interaction absorption width. So the imaginary part of the energy shift is given by

F15
$$\Delta E_{rms} = - \frac{r_{ms}}{2}$$

Note that the wave equation describing pion absorption must necessarily be complex, since the energy of the shifted state is complex.

In general the equation for $\phi_{\mathbf{x}}(\mathbf{r})$ is quite complicated and must be solved numerically. However, it is possible to separate the solution for all of space into two regions, i. e. the inner region in which the short range strong interaction potential and finite size Coulomb potential are important and the outer region in which only electromagnetic potentials for point sources are important. The wave equation for $\phi_{\mathbf{x}}(\mathbf{r})$ can be solved exactly in the outer region for a Coulomb potential. By using the logarithmic derivative of the outer wavefunction at the boundary of the two regions as a boundary condition on the inner wavefunction, it is possible to greatly reduce the region over which the wave equation must be numerically integrated. In practice the inner region need be only a few nuclear radii for high accuracy in the solution.

Now the vacuum polarization potential is also present in the

outer region and destroys the simple exact solution possible for the pure Coulomb point charge potential. However, the vacuum polarization may be treated separately using perturbative methods, since it gives rise to only a small shift in the energy and wavefunction of the state. To do this the wave equation is solved numerically for the energy eigenvalue using the Coulomb potential, the vacuum polarization potential, and an approximate value of the strong interaction potential. Then the same wave equation without the vacuum polarization potential is solved for the energy. The difference between the two energies obtained gives the shift in the energy of the state due to vacuum polarization. Now this energy shift may be subtracted from the experimentally determined energy of the ng state Ene: and the wave equation solved with this new energy Eng" in the absence of the vacuum polarization potential. This method of handling the vacuum polarization potential is particularly convenient, since the vacuum polarization potential is fairly longranged (500-2000 nuclear radii for 1 % accuracy) and rather time consuming to compute on the computer.

For the outer region the wave equation to be solved is

F16
$$\phi_{R}^{"}(w) + \left[-\frac{R(R+1)}{V^{2}} + \frac{2Mnc^{2}(E_{mR}^{"}-V_{c}(w)) + (E_{mR}^{"}-V_{c}(w))^{2}}{h^{2}c^{2}}\right]\phi_{R}(w) = 0 = 0$$

where $\text{Im } E_{ng''} = \Gamma_{AR}/2$ and

F17
$$V_{c}(r) = -\frac{2e^{2}}{r} = -\frac{2\kappa hc}{r}$$

Writing out all powers of r explicitly obtain

F18
$$\phi_{z}^{"}(r) + \left[-\frac{q(z+1)}{r^{2}} + \frac{2m_{z}c^{2}Em_{z}^{"}}{h^{2}c^{2}} + \frac{Em_{z}}{h^{2}c^{2}} + \frac{2m_{z}c^{2}}{hc} + \frac{2m_{z}c^{2}}{hc} + \frac{2m_{z}c^{2}}{hc} + \frac{2m_{z}c^{2}}{r^{2}} \right] \phi_{z}(r) = 0$$

123

Let

F19
$$S = \frac{\partial}{\hbar c} \left[- 2 m_{\pi} c^2 E_{M_{\pi}}^{"} - E_{M_{\pi}}^{"} \right] Y_2$$

F20
$$\lambda = \frac{2\alpha}{nc} \left(E_{me}^{"} + m_{fr}c^{2} \right) \frac{\partial}{\partial s}$$

Substituting in obtain

F21
$$\phi_{\ell}^{"}(r) + \left[-\frac{5^{2}}{4} + \frac{\lambda 5}{r} - \frac{\ell(\ell+1) - 2^{2} \alpha^{2}}{r^{2}} \right] \phi_{\ell}(r) = 0$$

Dividing by δ^2 , letting $\mathbf{e} = \delta \mathbf{r}$, and replacing $\boldsymbol{\phi}_{\mathbf{q}}(\mathbf{r})$ by $\boldsymbol{\phi}_{\mathbf{q}}(\mathbf{e})$ obtain

F22
$$\phi_{\ell}^{"}(e) + \left[-\frac{1}{4} + \frac{\lambda}{e} - \frac{\ell(\ell+1) - 2^{3} \kappa^{2}}{e^{2}} \right] \phi_{\ell}(e) = 0$$

136

Now Whittaker's equation is of the form

F23
$$W''(e) + \left[-\frac{1}{4} + \frac{k}{e} + \frac{1}{4} - \frac{k^2}{e^2} \right] W(e) = 0$$

with solution that is finite as $|e| \rightarrow \infty$

$$F^{24} = N e^{-\frac{q}{2}} e^{\frac{\mu+\gamma_{a}}{2}} \Psi(\mu+\gamma_{a}-k,1+a\mu,e)$$

where N is a normalization constant,

F25
$$M = \pm \left[\frac{4R^2 + 4R + 1 - 42^3 \kappa^2}{2} \right]^{\gamma_2} = \pm \left[\frac{(2R + 1)^2 - 42^2 \kappa^2}{2} \right]^{\gamma_2}$$

and $\Psi(\alpha, \gamma, z)$ is the confluent hypergeometric function of the second 142 kind with complex arguments given by

$$F26 \quad \Psi(\alpha, \mathbf{x}, \mathbf{z}) = \Gamma(\mathbf{i} - \mathbf{x}) \Gamma(\mathbf{x}) \left[\frac{1}{\Gamma(\mathbf{i} + \alpha - \mathbf{x})} \bigotimes_{k=0}^{\infty} \frac{(\alpha)_k}{\Gamma(\mathbf{x} + \mathbf{k})} \frac{\mathbf{z}^k}{\mathbf{k}!} - \frac{1}{\Gamma(\alpha)} \bigotimes_{k=0}^{\infty} \frac{(\mathbf{i} + \alpha - \mathbf{x})_k}{\Gamma(\mathbf{i} - \mathbf{x} + \mathbf{k})} \frac{\mathbf{z}^{k+1-\mathbf{x}}}{\mathbf{k}!} \right]$$

where

$$F27 \qquad (\alpha)_{k} = \alpha (\alpha+1)(\alpha+2) \cdots (\alpha+k-1)$$

F28 (x) = 1

Let $m = \mu + 1/2$, then

$$F^{29} \quad \phi_{\mathcal{R}}(e) = W_{\lambda,\mu}(e) = N e^{-e/2} e^{m} \Psi(m-\lambda, 2m, e)$$

Using the recursion relation for Whittaker functions from Whittaker and 143 Watson p. 352

F30
$$e W_{\lambda,\mu}^{\prime}(e) = (\lambda - e/2) W_{\lambda,\mu}(e) - [\mu^2 - (\lambda - \frac{1}{2})^2] W_{\lambda-1,\mu}(e)$$

one obtains

,

F31
$$e \frac{W_{\lambda,\mu}(e)}{W_{\lambda,\mu}(e)} = \lambda - e/_{2} - \left[\lambda^{2} - (\lambda - \frac{1}{2})^{2} \right] \frac{W_{\lambda-1,\mu}(e)}{W_{\lambda,\mu}(e)}$$

Now

F32
$$\frac{W_{\lambda-1,M}(e)}{W_{\lambda,M}(e)} = \frac{e^{M+Y_2}e^{-e^{Y_2}}\Psi(M+\frac{1}{2}-(\lambda-1),1+2M,e)}{e^{M+Y_2}e^{-e^{Y_2}}\Psi(M+\frac{1}{2}-\lambda,1+2M,e)}$$
$$= \frac{\Psi(M+\frac{3}{2}-\lambda,1+2M,e)}{\Psi(M+\frac{1}{2}-\lambda,1+2M,e)}$$

Thus the logarithmic derivative of $\phi_{\mathbf{x}}(\mathbf{e})$ is given by

F33
$$\underline{e} \, \underline{\phi_{2}(e)} = \lambda - \underline{e}/2 - \left[(m - \gamma_{2})^{2} - (\lambda - \gamma_{2})^{2} \right] \frac{\Psi(m + 1 - \lambda, 2m, e)}{\Psi(m - \lambda, 2m, e)}$$

or

$$F_{34} = \phi_{\ell}(e) = \phi_{\ell}(e) \left[-\frac{1}{2} + \frac{\lambda}{e} - \left[\frac{m(m-i) - \lambda(\lambda-i)}{e} \right] \frac{\Psi(m+i-\lambda, am, e)}{\Psi(m-\lambda, am, e)} \right]$$

Let the boundary between the interior and exterior regions be spherical with radius r_0 . The derivative of $\phi_1(e)$ at the boundary where $e = e_0$ is given by

F35
$$\phi_{\ell}'(e)|_{e \ge e_{0}} = \phi(e_{0}) \left[-\frac{1}{2} + \frac{\lambda}{e_{0}} - \left[\underline{m(m-1)} - \lambda(\lambda-1) \right] \Psi(m+1-\lambda, 2m, e_{0}) - \frac{\lambda}{e_{0}} \Psi(m-\lambda, 2m, e_{0}) \right]$$

~
Now the interior equation is an eigenvalue equation for the parameters in the optical model potential. Since the eigenvalue is independent of the normalization of the wavefunction, one may for convenience use an unnormalized wavefunction at the boundary such as $\phi_{\mathbf{q}}(\boldsymbol{\epsilon}_{\bullet}) = 1 + i$. In this case the boundary conditions on the interior solution are

F36
$$\phi_{\ell}(e_{0}) = 1+i$$

F37 $\phi_{\ell}'(e_{0})|_{e=e_{0}} = (1+i) \left[-\frac{1}{2} + \frac{\lambda}{e_{0}} - \frac{\left[m(m-1) - \lambda(\lambda-1) \right]}{e_{0}} + \frac{\psi(m+1-\lambda, 2m, e_{0})}{\psi(m-\lambda, 2m, e_{0})} \right]$

In addition to these two boundary conditions on the interior solution there is a third condition resulting from the fact that $\mathcal{K}_{\mathbf{Q}}(\mathbf{r})$ must be finite at the origin, i.e. $\phi_{\mathbf{Q}}(\mathbf{e}) \propto r\mathbf{R}(\mathbf{r}) \xrightarrow[\mathbf{r}\to\mathbf{0}]{} 0$. Thus the third boundary condition is

$$F_{38} \qquad \phi_{\ell}(e=\circ) = O$$

The interior equation to be solved is

F39
$$\phi_{\ell}^{\prime\prime}(e) = \left[\frac{\ell(\ell+1)}{e^2} - \frac{1}{1+\alpha(e/s)} \left\{-\frac{1}{4} - \frac{\lambda}{5} \frac{V_{c}(e/s)}{2\alpha \delta c} + \frac{V_{c}^{\prime\prime}(e/s)}{5^2 \delta^2 c^{\prime\prime}} - \frac{g(e/s)}{5^2} + \frac{1}{e} \frac{d}{de} \alpha(e/s) + \frac{1}{4(1+\alpha(e/s))} \left(\frac{d}{de} \alpha(e/s)\right)^2 + \frac{1}{2} \frac{d^2}{de^2} \alpha(e/s) \right] \phi_{\ell}(e)$$

In solving this complex equation it is convenient to separate $\phi_{\mathbf{x}}(\mathbf{e})$ into real and imaginary parts. However the use of a complex dependent variable \mathbf{e} complicates this separation in the case of derivative terms. The most desirable procedure is to rewrite the equation in terms of the real variable $\mathbf{e} = \mathbf{e}/\mathbf{e}_{\mathbf{e}} = \mathbf{r}/\mathbf{r}_{\mathbf{o}}$. Thus

$$F^{\downarrow 0} \quad \oint_{\mathcal{R}}^{\prime \prime}(\varepsilon) = \left[\frac{\lambda(l+1)}{\varepsilon^{2}} - \frac{1}{1+\alpha(\varepsilon r_{0})} \left\{ -\frac{S^{2}r_{0}^{2}}{4} - \lambda \delta r_{0}^{2} \frac{V_{c}(\varepsilon r_{0})}{2\alpha \hbar c} + \frac{r_{0}^{2}}{4} \frac{V_{c}^{2}(\varepsilon r_{0})} - g(\varepsilon r_{0})r_{0}^{2} + \frac{1}{\varepsilon} \frac{d}{d\varepsilon} \alpha(\varepsilon r_{0}) + \frac{1}{4(1+\alpha(\varepsilon r_{0}))} \left(\frac{d}{d\varepsilon} \alpha(\varepsilon r_{0}) \right)^{2} + \frac{1}{2} \frac{d^{2}}{d\varepsilon^{2}} \alpha(\varepsilon r_{0}) \int_{c}^{2} \int_{c}^{2} \left[\phi_{\mathcal{R}}(\varepsilon) \right]^{2} \\ = F_{\mathcal{R}}(\varepsilon) \phi_{\mathcal{R}}(\varepsilon)$$

with boundary conditions

$$F_{41} \phi_{\ell}(0) = 0$$

F42 $\phi_{\ell}(l) = l+i$

$$F_{43} \qquad \varphi_{2}^{\prime}(\varepsilon) \Big|_{\varepsilon=1} = (1+i) \Big[-\frac{\delta r_{0}}{2} + \lambda - [m(m-i) - \lambda(\lambda-i)] \frac{\Psi(m+i-\lambda_{j})m_{j}\delta r_{0}}{\Psi(m-\lambda_{j}, \beta r_{0},\delta r_{0})} \Big]$$

Separating the real and imaginary equations obtain

$$F^{44} = f_{R}(e) = F_{R}(e) \phi_{R}(e) - F_{R}(e) \phi_{R}(e)$$

$$F^{45} \qquad \phi_{\ell_{\mathbf{I}}}^{\prime\prime}(\epsilon) = F_{\ell_{\mathbf{R}}}(\epsilon) \phi_{\ell_{\mathbf{I}}}(\epsilon) + F_{\ell_{\mathbf{I}}}(\epsilon) \phi_{\ell_{\mathbf{R}}}(\epsilon)$$

Let us define a matrix type of notation and write the second order differential equations as two first order equations.

$$F^{46} \quad \vec{X} = \begin{pmatrix} X_{1}(\epsilon) \equiv \phi_{1R}(\epsilon) \\ X_{2}(\epsilon) \equiv \phi_{2R}(\epsilon) \\ X_{3}(\epsilon) \equiv \phi_{2R}(\epsilon) \\ X_{4}(\epsilon) \equiv \phi_{2R}(\epsilon) \\ X_{4}(\epsilon) \equiv \phi_{2R}(\epsilon) \end{pmatrix}$$

In terms of this new notation the differential equations become

F47 $X'_{1}(\epsilon) = X_{2}(\epsilon) \equiv f_{1}(\vec{x},\epsilon)$ **F48** $X'_{2}(\epsilon) = F_{2}(\epsilon) X_{1}(\epsilon) - F_{2}(\epsilon) X_{3}(\epsilon) \equiv f_{2}(\vec{x},\epsilon)$ **F49** $X'_{3}(\epsilon) = X_{4}(\epsilon) \equiv f_{3}(\vec{x},\epsilon)$

$$F50 \qquad X'_{4}(\epsilon) = F_{a}(\epsilon) X_{3}(\epsilon) + F_{a_{1}}(\epsilon) X_{1}(\epsilon) = f_{4}(\tilde{x}_{1}\epsilon)$$

In order to solve for one real and one imaginary parameter in the optical model potential such as $Re("b_0")$ and Im("B") the following equations must be added

F51 Re ("bo") =
$$X_{s}'(\epsilon) = 0 = f_{s}(\bar{x}, \epsilon)$$

F52 Im ("B") = $X_{s}'(\epsilon) = 0 = f_{s}(\bar{x}, \epsilon)$

The six boundary conditions needed to solve the six simultaneous first order differential equations are in terms of the new notation

$$F53 \qquad X_1(\varepsilon=0) = O$$

F54 $X_3(e=0) = 0$

F55
$$X_1 (e=1) = 1$$

F56 $X_3(\epsilon = 1) = 1$

F57
$$X_2(\epsilon=1) = \operatorname{Re} \varphi_2'(\epsilon) |_{\epsilon=1}$$

out $\epsilon=1$
F58 $X_4(\epsilon=1) = \operatorname{Im} \varphi_2'(\epsilon) |_{\epsilon=1}$

Now the first order differential equations are nonlinear in the variables X_1 , X_2 , X_3 , X_4 , X_5 , X_6 . Their derivatives can be linearized,

however, by using a type of Newton's method called quasilinearization 144,145 in which the derivatives of the variables are expanded in a J^{th} order Taylor series, i.e.

F59
$$\dot{X}_{3}(\varepsilon)_{k+1} = f_{\overline{J}}(\tilde{X}_{i}\varepsilon)\Big|_{\kappa} + (X_{i}(\varepsilon)_{k+1} - X_{i}(\varepsilon)_{k}) \frac{\partial f_{\overline{J}}(\bar{X}_{i}\varepsilon)}{\partial X_{i}(\varepsilon)}\Big|_{\kappa} + \cdots + (X_{a}(\varepsilon)_{k+1} - X_{a}(\varepsilon)_{k}) \frac{\partial f_{\overline{J}}(\bar{X}_{i}\varepsilon)}{\partial X_{a}(\varepsilon)}\Big|_{\kappa} + \cdots$$

where $\mathbf{\hat{X}}(\boldsymbol{\epsilon})_{k=0}$ represents the initial approximation for $\mathbf{\hat{X}}(\mathbf{\epsilon})$ and $\mathbf{\hat{X}}(\mathbf{\epsilon})_{k+1}$ represents the corrected or improved approximation to $\mathbf{\hat{X}}(\mathbf{\epsilon})$. Keeping only those terms through the first derivative in the Taylor series expansion, the quasilinearized equations are

$$F_{0} = X_{2}(e)_{k+1} = X_{2}(e)_{k} + (X_{2}(e)_{k+1} - X_{2}(e)_{k}) = X_{2}(e)_{k+1}$$

F61
$$\dot{X}_{3}(\varepsilon)_{k+1} = F_{R_{R}}(\varepsilon)_{1}X_{1}(\varepsilon)_{k} - F_{r_{1}}(\varepsilon)_{3}(\varepsilon)_{k} + (X_{1}(\varepsilon)_{k+1} - X_{1}(\varepsilon)_{k}).$$

 $F_{3_{R}}(\varepsilon)_{k} - (X_{3}(\varepsilon)_{k+1} - X_{3}(\varepsilon)_{k})_{k}F_{r_{1}}(\varepsilon)_{k} + (X_{s}(\varepsilon)_{k+1})_{k}$
 $- X_{s}(\varepsilon)_{k})(\frac{\partial F_{R_{R}}(\varepsilon)}{\partial X_{s}(\varepsilon)}_{x_{s}(\varepsilon)}X_{1}(\varepsilon) - \frac{\partial F_{2_{1}}(\varepsilon)}{\partial X_{s}(\varepsilon)}X_{s}(\varepsilon))_{k}$
 $+ (X_{6}(\varepsilon)_{k+1} - X_{6}(\varepsilon)_{k})(\frac{\partial F_{2_{R}}(\varepsilon)}{\partial X_{6}(\varepsilon)}X_{1}(\varepsilon) - \frac{\partial F_{2_{1}}(\varepsilon)}{\partial X_{5}(\varepsilon)}X_{s}(\varepsilon))_{k}$

$$F_{52} = \dot{X}_{3}(e)_{k+1} = X_{3}(e)_{k} + (X_{3}(e)_{k+1} - X_{3}(e)_{k}) = X_{3}(e)_{k+1}$$

F63
$$\dot{X}_{4}(\mathbf{c})_{k+1} = F_{\mathbf{z}_{\mathbf{R}}}(\mathbf{c}) X_{\mathbf{S}}(\mathbf{c}) \Big|_{k} + F_{\mathbf{z}_{\mathbf{T}}}(\mathbf{c}) X_{\mathbf{i}}(\mathbf{c}) \Big|_{k} + (X_{\mathbf{i}}(\mathbf{c})_{k+1} - X_{\mathbf{i}}(\mathbf{c})_{k})$$

 $F_{\mathbf{z}_{\mathbf{T}}}(\mathbf{c}) \Big|_{k} + (X_{\mathbf{3}}(\mathbf{c})_{k+1} - X_{\mathbf{5}}(\mathbf{c})_{k}) F_{\mathbf{z}_{\mathbf{R}}}(\mathbf{c}) \Big|_{k}$
 $+ (X_{\mathbf{5}}(\mathbf{c})_{k+1} - X_{\mathbf{5}}(\mathbf{c})_{k}) \left(\frac{\partial F_{\mathbf{z}_{\mathbf{R}}}(\mathbf{c})}{\partial X_{\mathbf{5}}(\mathbf{c})} X_{\mathbf{3}}(\mathbf{c}) + \frac{\partial F_{\mathbf{z}_{\mathbf{T}}}(\mathbf{c})}{\partial X_{\mathbf{5}}(\mathbf{c})} X_{\mathbf{i}}(\mathbf{c}) \right) \Big|_{k}$
 $+ (X_{\mathbf{6}}(\mathbf{c})_{k+1} - X_{\mathbf{6}}(\mathbf{c})_{k}) \left(\frac{\partial F_{\mathbf{z}_{\mathbf{R}}}(\mathbf{c})}{\partial X_{\mathbf{5}}(\mathbf{c})} X_{\mathbf{3}}(\mathbf{c}) + \frac{\partial F_{\mathbf{z}_{\mathbf{T}}}(\mathbf{c})}{\partial X_{\mathbf{5}}(\mathbf{c})} X_{\mathbf{i}}(\mathbf{c}) \right) \Big|_{k}$
 $+ (X_{\mathbf{6}}(\mathbf{c})_{k+1} - X_{\mathbf{6}}(\mathbf{c})_{k}) \left(\frac{\partial F_{\mathbf{z}_{\mathbf{R}}}(\mathbf{c})}{\partial X_{\mathbf{5}}(\mathbf{c})} X_{\mathbf{3}}(\mathbf{c}) + \frac{\partial F_{\mathbf{z}_{\mathbf{T}}}(\mathbf{c})}{\partial X_{\mathbf{5}}(\mathbf{c})} X_{\mathbf{i}}(\mathbf{c}) \right) \Big|_{k}$

$$F65 \quad X_{C}(E)_{k+1} = 0$$

144

where k = 0, 1, 2, ... According to Bellman the solution to the quasilinearized equations will give an improved approximation for $\vec{X}(\boldsymbol{\epsilon})$ provided the initial guess is close enough to the proper value.

In solving these quasilinearized equations, one finds it convenient to start with some arbitrary linearly independent initial conditions. When arbitrary linearly independent initial values are used, the solutions obtained must be combined with arbitrary constants to form the general solution. These constants are determined by the actual boundary conditions.

Let the homogeneous equations be solved with the initial conditions

$$F66 \quad \dot{X}(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \text{to obtain } \dot{X}(c) = \begin{pmatrix} X_{1}(c) \\ X_{2}(c) \\ X_{3}(c) \\ X_{4}(c) \\ X_{5}(c) \\ X_{5}(c) \\ X_{5}(c) \\ X_{6}(c) \end{pmatrix} = \begin{pmatrix} H_{11}(c) \\ H_{21}(c) \\ H_{31}(c) \\ H_{41}(c) \\ H_{51}(c) \\ H_{61}(c) \end{pmatrix}$$

$$F67 \quad \dot{X}(0) = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \text{to obtain } \dot{X}(c) = \begin{pmatrix} H_{12}(c) \\ H_{22}(c) \\ H_{52}(c) \\ H_{52}(c)$$

etc., and let the inhomogeneous equations be solved with the initial conditions

$$\mathbb{F}_{68} \quad \hat{\mathbf{X}}(\mathbf{0}) = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} \quad \mathbf{+}_{\mathbf{0}} \quad \mathbf{0} \text{ btain } \quad \hat{\mathbf{X}}(\mathbf{E}) = \begin{pmatrix} \mathbf{I}_{H_1}(\mathbf{E}) \\ \mathbf{I}_{H_2}(\mathbf{E}) \\ \mathbf{I}_{H_3}(\mathbf{E}) \\ \mathbf$$

Then the general solution obtained by adding the homogeneous and inhomogeneous solutions is given by

$$F_{69} = C_1 H_{11}(e) + C_2 H_{12}(e) + C_3 H_{13}(e) + C_4 H_{14}(e) + C_5 H_{15}(e) + C_6 H_{16}(e) + IH_1(e)$$

$$F_{70} = C_1 H_{a1}(E) + C_2 H_{a2}(E) + C_3 H_{a3}(E) + C_4 H_{a4}(E) + C_5 H_{a5}(E) + C_6 H_{a6}(E) + I H_{a}(E)$$

etc.

To evaluate the C's use the boundary conditions

$$F72 \quad X_{1}(0) = 0 \implies C_{1} = 0$$

$$F73 \quad X_{3}(0) = 0 \implies C_{3} = 0$$

$$F74 \quad X_{5}(0) = Re("b_{0}") \implies C_{5} = Re("b_{0}")$$

$$F75 \quad X_{6}(0) = Im("B) \implies C_{6} = Im("B")$$

$$F76 \quad X_{1}(1) = 1 \implies C_{3}H_{13}(1) + C_{4}H_{14}(1) + Re("b_{0}")H_{15}(1)$$

$$+ Im("B")H_{16}(1) + IH_{1}(1) = 1$$

F77
$$X_3(l) = 1 \implies C_a H_{3a}(l) + C_4 H_{34}(l) + Ke("b_o") H_{3s}(l) + Im("B") H_{36}(l) + IH_3(l) = 1$$

$$F78 \quad X_{2}(1) = \operatorname{Re} \left. \begin{array}{c} \varphi_{2}(\varepsilon) \\ \text{out} \end{array} \right|_{\varepsilon=1} = \sum C_{2} H_{22}(1) + C_{4} H_{24}(1) + \operatorname{Re}("b_{1}") H_{25}(1) \\ + \operatorname{Im}("B") H_{26}(1) + \operatorname{IH}_{3}(1) = \operatorname{Re} \left. \begin{array}{c} \varphi_{2}(\varepsilon) \\ \text{out} \end{array} \right|_{\varepsilon=1} \\ \text{out} \end{array}$$

Equations F76-F79 can now be solved simultaneously for C_2 , C_4 , Re("b₀"), and Im("B").

Once the C's are known the improved approximation for $\widehat{X}(\in)$ can be constructed. Using this improved approximation for $\widehat{X}(\in)$ as the initial value a still better approximation may be obtained. The whole procedure is iterated until the improved approximations converge to the proper value of $\widehat{X}(\in)$. In general the approximations will converge to within one part in 10^{-6} of the correct solution of the wave equation in 3 or 4 iterations if the initial guess for $\hat{X}(\epsilon)$ has the proper order of magnitude.

In practice the integration is not started at $\epsilon = 0$ but at $\epsilon = 10^{-6}$ of the integration step size due to the presence of $1/\epsilon$ terms in the wave equation.

APPENDIX G

Fortran Computer Program for Solving The Klein-Gordon Equation for Pionic Atoms

In this appendix is listed the actual Fortran computer program used to analyze pionic atom data. The notation in the program conforms closely to that of Appendix F. Due to the extensive comments one can easily follow the logic of the program.

KLEIN-GORDON

PURPOSE TUT C

S

PARAMETERS IN THE PION-NUCLEUS POTENTIAL, THE LOCAL AND EFFECTIVE NUNLOCAL PARTS OF THE PION-NUCLEUS OPTICAL MODEL POTENTIAL, AND THIS PROGRAM SOLVES THE KLEIN-GORDON EQUATION TO DETERMINE THE THE NORMALIZED PION WAVEFUNCTION.

METHOD

WAVEFUNCTION AND THE POTENTIAL PARAMETERS, THE LOACL AND NONLOCAL TO DETERMINE THE NORMALIZATION CONSTANT TO 3 SIGNIFICANT FIGURES. ARBITRARY PRECISION IN THE SOLUTION OF THE ORIGINAL DIFFERENTIAL IS SOLVED NUMERICALLY IN THE REGION CLOSE TO AND INCLUDING THE NUCLEAR VOLUME USING A NUMERICAL TECHNIQUE CALLED QUASILINEAR-IZATION WHICH APPROXIMATES THE ORIGINAL NONLINEAR DIFFERENTIAL POTENTIAL TERMS ARE GENERATED. FINALLY THE UNNORMALIZED PION WAVEFUNCTION IS INTEGRATED OUT TO A RADIUS SUFFICIENTLY LARGE EQUATION IN THE REGION NEAR THE NUCLEUS ARE OBTAINED IN TERMS OF THE EXTERNAL WAVEFUNCTIONS FOR WHICH AN EXACT ANALYTIC EQUATIONS BY THEIR TAYLOR SERIES EXPANSIONS TO FIRST ORDER IN FUNCTIONS OF THE SECOND KIND. THEN THE KLEIN-GORDON EQUATION THE BOUNDARY CONDITIONS FOR THE SOLUTION OF THE KLEIN-GORDON EQUATION. AFTER THE KLEIN-GORDON EQUATION IS SOLVED FOR THE THE UNKNOWN VARIABLES. THE LINEAR DIFFERENTIAL EQUATIONS OBTAINED MAY BE SOLVED IN AN ITERATIVE FASHION TO OBTAIN EXPRESSION IS KNOWN IN TERMS OF CONFLUENT HYPERGEOMETRIC

INPUT

C

THE FOLLOWING VARIABLES WITH SPECIFIED UNITS ARE NEEDED AS INPUT TO THE PROGRAM.

G21.G01.G10.G12.G1101.G1110 - LOW ENERGY P-WAVE PIGN-TWO NUCLEON - LOW ENERGY S-WAVE PION-TWD NUCLEON SCATTERING 90%-10% - LOW ENERGY S-WAVE PION-NUCLEON SCATTERING LENGTHS A(2T) SURFACE THICKNESS PARAMETER FOR THE 90%-10% 10 FERMI DENSITY PARAMETER FOR WHICH T IS THE SCATTERING LENGTHS G(J,T,S,T) WHERE THE LAST 11 ETRANS - ENERGY OF ELECTROMAGNETIC PIONIC ATOM TRANSITION FROM IS THE S AND T REFER TO THE TOTAL SPIN AND ISOSPIN CHANGE OF THE NUCLEAR CHARGE DENSITY WITH OF THE NUCLEON PAIR AND HAS BEEN OMITTED IN - NAME OF NUCLEAR ISOTOPE FOR WHICH KLEIN-GORDON EQUATION MAGNETIC TRANSITION FROM A STATE WITH ANGULAR MOMENTUM WITH ANGULAR MOMENTUM FOR WHICH THE KLEIN-GORDON EQUATION IS - LOW ENERGY P-WAVE PION-NUCLEON SCATTERING GAM - FULL WIDTH AT HALF POWER FUR PIDNS MAKING AN ELECTRO-= T/(4*LOG(3)) - FERMI DENSITY PARAMETER FOR WHICH T CHANGE OF THE POINT NUCLEON DENSITY SURFACE THICKNESS PARAMETER FOR THE - VACUUM RO - POINT NUCLEON FERMI DISTRIBUTION RADIUS PARAMETER L+1 TO A STATE WITH ANGULAR MOMENTUM = L (MEV) ALL CASES IN WHICH IT IS REDUNDANT RESPECT TO THE CENTRAL VALUE. LENGTHS A(2T,2J) (HHARC/MPI)**3 RESPECT TO THE CENTRAL VALUE. LENGTHS B(J,T) (HHARC/MPI)**4 DEVP - VACUUM POLARIZATION ENERGY OF L+1 STATE R - FERMI CHARGE DISTRIBUTION RADIUS PARAMETER NUMBER OF PROTONS IN THE NUCLEAR ISOTOPE POLARIZATION ENERGY OF L STATE (MEV) ATOMIC NUMHER OF THE NUCLEAR ISOTOPE MASS - MASS OF NUCLEAR ISOTOPE (CI2AMU) L+1 STATE TO L STATE (MEV) (HBARC/MPI)**6 IS BEING SOLVED. = T/(4*LOG(3))-(HBARC/MPI) A11, A13, A31, A33 811,800,801,802 RE SOLVED. A1,A3 - 2 NUC ł ပ ပပ ပ္ပ ۹

000

S

00000

Uυ

000

00000

S

00000

S

135.

SUBROUTINES REQUIRED

IMAGINARY PARTS OF THE FIRST ORDER TAYLOR CDPSI(A+B+Z)- SUBPROGRAM TO CALCULATE THE CONFLUENT HYPERGEOMETRIC DISTRIBUTION INSIDE AND OUTSIDE THE NUCLEUS. POT(R0,C0,R,C,Z,VC,KH0,DRH0,DDKH0,M,INTRVL,RU,A) - SUBROUTINE THAT CDGMMA(2) - SUBPROGRAM TO CALCULATE THE GAMMA FUNCTION FOR COMPLEX COMPLEX*16 E.DCMPLX.DELTA.CDS0RT.LAMBA.PU.II.CU.M.DU.CDPSI.RNL.AK(FUNCTION OF THE SECOND KIND WITH COMPLEX ARGUMENTS. CALCULATES THE NORMALIZED STRONG INTERACTION FERMI PDTMHD(CC,CCC,A,RD,Z,VC,RHD,DRHD,DDRHO,M,INTRVL,RU) - SUBRDUTINE THAT CALCULATES THE NORMALIZED STRONG INTERACTION PLOT(NO,A,N,M,NL,NS,N5) - SUBROUTINE FOR PLOTTING SEVERAL CROSS-THE COULOMB POTENTIAL FOR THE SHELL MODEL CHARGE CALCULATES THE STRONG INTERACTION MATTER DENSITY FERMI CHARGE DISTRIBUTION INSIDE AND DUTSIDE THE HARMONIC DSCILLATOR SHELL MODEL DENSITY AND THE POINT DENSITY AND THE COULOMB POTENTIAL FOR THE DSIMO(A+B+N+NN+KS) - SUBROUTINE TO SOLVE A SET OF SIMULTANEOUS SUBPROGRAM THAT DEFINES THE REAL AND SERIES EXPANSION OF THE KLEIN-GORDON CPSI2(K) - SUBPROGRAM FUR CALCULATING THE PIONIC WAVEFUNCTION POTHE4(Z,RO,VC,RHO,DRHO,DDRHO,M,INTRVL,RU) - SUBROUTINE THAT VARIAHLES VERSUS A HASE VARIABLE. OUTSIDE THE RANGE OF THE STRONG INTERACTION. LINEAR ALGEBRAIC EQUATIONS AX = B. AND THE COULOMB POTENTIAL FOR HE 4. ARGUMENTS NEEDED BY CDPSI. EQUATION. I NUCLEUS. F(X1K+X2K+X3K+X4K+K+N) IMPLICIT REAL*8 (A-\$)

Uυ

 $\cup \cup \cup$

S

136

61), ANON(61), Q(61), UC, PSI, DAK(61), DPSI

DPSI(K) = (DCMPLX(DUR(K),DUI(K))-(1,D0/(((K-1,D0)/INTRVL+1,D-3)*RD DPSI0(K) = (2.D0*ZALPHA*MPI/((L+1)*HBARC))**1.500/DS0RT(FAC(2*L+3) /(((K-1.D0 [)*(2.00*ZALPHA*MPI*((K-1.00)/INTRVL+1.0-3)*R0/((L+1)*HHARC))**L*DE READ(5,900) AI,A3,AII,A13,A31,A33,B11,B00,B01,B02,G21,G01,G10,G12, 2XP(-ZALPHA*MPI*((K-1.00)/INTRVL+1.D-3)*R0/((L+1)*HBARC))*(L/(((K-1 2X2(4,2),X1(4),U(4,7,61),H(2,2),RL(2),IH0(2),IH(2),CA(2),P(2),PSI2(DIMENSION D(2),C(6),VC(61),RHD(61),UR(61),UI(61),FR(61),FRBO(61), FKCO(61), FRG(61), FI(61), FIBO(61), FICO(61), FIG(61), X(4,5), XO(4,2), DATA FAC/1.D0.1.D0.2.D0.6.D0.5.401.1.202.7.202.5.0403.4.03204. 3.628805.3.628806.3.9916807.4.7900208.6.2270209.8.71783010. [5.00*621+601+610+3.00*61101+3.00*61110+5.00*612)/4.801 COMMON FR,FRB0,FRG,FRC0,FI,FIB0,FIG,FIC0,RB0,G,RC0,UR,UI,J,L INTEGER I,J,K,L,N,IJ,INDEX,JJ,INTRVL,KK,KS,NK,NNK,NNNX,NNNNK 361), PPSI2(61), DUK(61), DUI(61), DRH0(61), DDRH0(61), FAC(31) (621-601-610-3.D0*61101+3.D0*61110-5.D0*612)/4.8D1 21.30767D12,2.09228D13,3.55687D14,6.40237D15,1.21645D17, 32.43290D18,5.10909D19,1.12400D21,2.58520D22,6.20448D23, EQUIVALENCE (DU,D(1)),(RNL,RL(1)),(UC,CA(1)),(P(1),PSI) 41~55112025,4~03291026,1~08889028,3~04888029,8~84176D30, []+DAK(K)/(2.DO*(II+AK(K))))*DCMPLX(UR(K),UI(K))) >. D0)/INTRVL+1.D-3)*R0)-ZALPHA*MPI/((L+1)*HBARC)) (9.D0*B11+B00+3.D0*B01+5.D0*B02)/4.8D1 (3.D0*B11-B00-3.D0*B01-5.D0*B02)/4.8D1 (4.D0*A33+2.D0*A31+2.D0*A13+A11)/3.D0 -2.D0*B00-3.D0*B01+5.D0*B02)/9.6D1 -9.D0*B11-B00+3.D0*B01+B02)/4.8D1 -3.D0*811+800-3.D0*801-802)/4.801 2.D0*A33+A31-2.D0*A13-A11)/3.D0 2)/INTRVL+1.D-3)*R0*CDS0RT(II+AK(K))) 2.D0*800-3.D0*801+802)/9.601 = (A1+2.00*A3)/3.00 REAL*4 W(305), SNGL COMMON LAMBA,M,PO = (A3-A1)/3.D0 61101,61110,6 52.65252032/ " 8 **B**B0 **BB2** 884 **B**B1 BB3 885 CCO BO CC1 c CI **B**1

10

20

(-5.D0*621-601-610+3.D0*61101-3.D0*61110+612)/4.8D1 READ(5,902) NUC,2,4,S,L,MASS,GAM,ETRAN,DEVP,R,RD,CC,CCC [-62]+60]+610-3.00*61101-3.00*61110-612)/4.8D1 (-2.D0*610-3.D0*61101+5.D0*612)/9.6D1 (2.00*610-3.00*61101+612)/9.601 F(L.E0.0) IH0(1) =RB0 =RCO F(L.GT.0) IH0(1) = -.0002600 $\begin{array}{l} CC5 = 0.00\\ 6 = 1.00\\ RB0 = -.005700 \end{array}$ = -.000500 -.0014D0 -.08400 .003200 .001100 RD1 = -.099D0RBB0 = .05300-.1400 .000500 = -.15600 .05100 .25100 .086D0 .144D0 = 0.00 = 0•D0 0.00 0.00 0.00 0 • D 0 0.00 0.D0 0.00 0.00 0.00 ţI. 11 u ŧ IJ 11 11 11 11 n 11 11 11 11 Ħ 11 R ŧ 11 ŧ H 11 0 RCCO RBBO RCCO 180 RDO IDO 100 CC2 CC3 CC4 CC5 BBO **BB2** 8.83 **BB4** BB5 CC0 CC1 CC2 CC3 CC4 RCO IDI 881 IBI RB1 RC1 ICI

ASSUME A NORMALIZATION SUCH THAT AT SOME RADIUS OUTSIDE THE NUCLEUS THE BOUNDARY CONDITIONS GIVE U(1) = (1.00,1.00) AND DU(1)*DELTA/U(1). 1.61101.61110.H0.B1.C0.C1.BB0.BB1.BB2.BB3.BB4.BB5.CC0.CC1.CC2.CC3.C CALCULATION OF REAL AND IMAGINARY PARTS OF ENERGY FOR KLEIN-GORDON EQUATION ASSUMING THE PRINCIPLE QUANTUM NUMBER N = L + 1. WKITE(6,901) A1,A3,A11,A13,A31,A33,B11,B00,B01,B02,G21,G01,G10,G12 EL1 = -RMASS*(ZALPHA**2/(2.D0*(L+2.D0)**2)+ZALPHA**4*((L+2.D0)/(L+ Р = RMASS OF PIONIC ATOM WHERE MASS + + WRITE(6,903) NUC,Z,A,S,L,MASS,GAM,ETRAN,DEVP,R,RD,CC,CCC = 2.D0*ZALPHA*(DCMPLX(RMASS,0.D0)+E)/(HBARC*DELTA) DFLTA = CDSQRT(-2.D0*RMASS*E-E*E)*2.D0/HBARC = (1.D0+MPI/(2.D0*MN))/(1.D0+MPI/AMASS) PO =((N-1.DO)/INTRVL+1.D-3)*RD*DELTA NI = (1.D0+MPI/MN)/(1.D0+MPI/AMASS) [1.5D0)-.75D0)/(2.D0*(L+2.D0)**4)) MN = (938, 25600 + 939, 55000) / 2.00AMASS = MASS*931.47800-.51100 = MPI *AMASS/(MPI +AMASS) CALCULATION OF REDUCED MASS Z-1 ELECTRONS IS INCLUDED ZALPHA = Z/137.0388D02C4,CC5,IH0(1),IH0(2) T = (A-2.00*2)/2.00ER = EL1+DEVP-ETRAN = DCMPLX(ER,EI) IF(Z) 500,500,25 HBARC = 197.32D0= 139.57900 EI = -GAM/2.00N = 3 # INTRVL+1INTRVL = 20IHO(2) = 6RMASS LAMBA Idw 2N

 $\circ \circ \circ \circ$

ပပပ

0000%

THIS NORMALIZATION IS CHOSEN FOR CONVENIENCE, SINCE THE SOLUTION OF DU = -(II/2.DO-LAMBA/PO+((M*(M-II)-LAMBA*(LAMHA-II))*CDPSI(M-LAMBA IF(R.EQ.O.DO) CALL POTMHD(CC,CCC,A,RO,Z,VC,RHO,DRHO,DDRHO,N,INTRVL IF(R.GT.0.D0) CALL POT(R0.CC.R0.CC.R0.Z.VC.RH0.DRH0.DDRH0.N.INTRVL THE EIGENVALUE PROBLEM IS INDEPENDENT OF THE NORMALIZATION OF THE M = DCMPLX(.5D0+.5D0*DS0KT((2.D0*L+1.D0)**2-4.D0*ZALPHA**2).0.D0) EIGENFUNCTION. THE ASYMPTOTIC FORM OF THE WAVEFUNCTION OUTSIDE [F(A.EQ.4.DO) CALL POTHE4(Z.RO.VC.RHO.DRHO.DDRHO.N.INTRVL,RU) l+II,2.D0*M.PD)/(P0*CDPSI(M-LAMBA,2.D0*M.PD)))*CU*DELTA ANORM = EPS**L1*DEXP(-ZALPHA*MP1×R0*EPS/(L1*HBARC)) THE NUCLEUS IS USED TO EVALUATE DU(1)*DELTA/U(1). INITIALIZE PARAMETERS FOR QUASI-LINEARIZATION STORE INITIAL APPROXIMATION FOR SOLUTION WRITE(6,904) E.DELTA.LAMBA.PO.M.DU $IF(L_{60,0})RB0 = IH0(1)$ $IF(L_{GT_{0}})RC0 = IHO(1)$ 3.1415926535900 EPS = (N-I)/INTRVLCU = (1.00.1.00)(1.00.0.00) CPW = HBARC/MPISR = RO/INTRVLC(1) = 1.00= D(1)= 1.DO C(4) = D(2)G = IHO(2)INDEX = 0[1] = [+]1, KU, A) 11 = I I 1,RU) C(2) C(3) Б Б

ပပပ

00000

140

40

ပပပ

```
XCICI = -4.00%PI%PI/3.00%(1.00-1.00/A)%((A-4.00)/(A-1.00)%(RC0%RC0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    XBIBI = -6.D0*PF/MPI*(1.D0-1.D0/A)*((A-4.D0)/(A-1.D0)*(RB0**2+2.D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         XBICI = +2.D0*PF/MPI*(1.D0+1.D0/A)*((A-4.D0)/(A-1.D0)*(RB0*RC0+(RB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                10*RC1+RC0*RB1)*(1.D0-2.D0*Z/A))+2.D0*RB1*RC1*(A-2.D0)/(A-1.D0))*CP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             = +2.00%PF/MPI*((A-4.00)/A*(RC0+RC1*(I.00-2.00%Z/A)))*CPW**
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        XBICIC = +2.D0*PF/MPI*((A-4.D0)/A*(RB0+RB1*(1.D0-2.D0*Z/A)))*CPW**
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      2RC1*RC1+2•D0*RD0*RD0)*(A-2•D0)/(A-1•D0))*CPW**6*A/(4•D0*P1/3•D0*RU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 X8I818 = -6.D0*PF/MPI*((A-4.D0)/A*(2.D0*R80+2.D0*R81*(1.D0-2.D0*Z/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     XCICIC = -4.D0*P1*P1/3.D0*(1.D0-1.D0/A)*((A-4.D0)/(A-1.D0)*2.D0*RC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               :+2.00*RD0*RD0+2.00*(RC0*RC1+2.00*RD0*RD1)*(1.00-2.00*7/A))+2.00*(
                                                                                                                                                                                                                                                                                                                  XBIJ = 4.D0*PI*N2*(BB0+BB1*XSISJ+BB2*XTITJ+BB3*(1.D0-XSISJ)*XTT+
                                                                                                                                                                                                                                                                                                                                                                                        XBJI = 4.D0*PI*N2*RBB0*CPW**4
XCIJ = 4.D0*PI/N2*(CCO+CC1*XSISJ+CC2*XTITJ+CC3*(1.D0-XSISJ)*XTT+
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1*RB0*RB1*(1.D0-2.D0*Z/A))+2.D0*RB1*RB1*(A-2.D0)/(A-1.D0))*CPW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (0+2.D0*RC1*(1.D0-2.D0*Z/A))*CPW**6*A/(4.D0*P1/3.D0*RU**3)
                                                                                                                                                                                                                                       = 8.D0*T*T/(A*(A-1.D0))+4.D0*(T-1.D0)/(A-1.D0)
                                                                                                                                                                                              = 4.D0*T*(T+1.D0)/(A*(A-1.D0))-3.D0/(A-1.D0)
                                                                                                                                                          = 4.00*S*(S+1.00)/(A*(A-1.00))-3.00/(A-1.00)
                                                                             4.D0*PI/N1*(RC0+RC1*(1.D0-2.D0*Z/A))*CPW**3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2RC1*RC1+2.D0*RD0*RD0)*(A-2.D0)/(A-1.D0))*CPW**6
4.D0*P1*N1*(RB0+RB1*(1.D0-2.D0*Z/A))*CPW
                                                                                                                                                                                                                                                                                                                                                      BB4*XSISJ*XTITJ+BB5*(1.00-XSISJ)*XTTTT)*CPU**4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CC4*XSISJ*XTITJ+CC5*(1.D0-XSISJ)*XTTTT)*CPW*+6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PF = HBARC*(9.D0/8.D0*PI*A/RU**3)**(1.D0/3.D0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    XCICI = -4.00*P1*4.00*P1/3.00*RC0*CPW**6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                [0+2.D0*RC1*(1.D0-2.D0*//A))*CPW**6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         XCJI = 4.D0*PI/N2*RCC0*CPW**6
                                                                                                                   = 4.00*PI/NI*CPW**3
                                    = 4.00*PI*NI*CPW
                                                                                                                                                                                                                                                                                4.D0*T/A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (()))*CPW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                XBICIB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    XCICIC
    11
                                                                          = 10X
                                                                                                                   XCICO
                                                                                                                                                          XSISJ
                                                                                                                                                                                              XTITJ
                                         XBIBO
                                                                                                                                                                                                                                                                              XTT =
                                                                                                                                                                                                                                     XTTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2W**3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3440)
  X81
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            13
```

141

ں

Q

XBC = -8.D0*PF/MPI*(1.D0-1.D0/A)*((A-4.D0)/(A-1.D0)*(RB0*RC0+(RB0* RC1+RB1*RC0)*(1.D0-2.D0*Z/A))+2.D0*RB1*RC1*(A-2.D0)/(A-1.D0))*CPW* XBCB0 = -8.D0*PF/MPI*(1.D0-1.D0/A)* (A-4.D0)/(A-1.D0)*(RC0+RC1*(1. XBCCO = -8.D0*PF/MPI*(1.D0-1.D0/A)* (A-4.D0)/(A-1.D0)*(RB0+RB1*(1. UC = CU*EPS**L1*DEXP(-ZALPHA*MPI*RO*EPS/(L1*HBARC))/(ANORM*CDSORT) AKR = -XCI*RH0(K)-(XCJI+XCICI+XBC/RH0(K))*RH0(K)**2 AKRC0 = -XCICO*RH0(K)-(XCICIC+XBCCO)*RH0(K)**2 XCI0C0 = (ER+MPI)/MN*XCIC0*N1*.500 [F(L.EQ.0) AKI = -XCIJ*RHO(K)**2
IF(L.6T.0) AKI = -XCIJ*RHO(K)**2*6 EPS = (N-K)/(INTRVL*1.D0)+1.D-3 = -(XCIC0+XCICIC)*RHD(K) XCI() = (ER+MPI)/MN*XCI*N]*•5D0 II+AK(K))/CDS0RT(II+AK(1))) AKR = -(XCI + XCICI) + RHO(K)AK(K) = DCMPLX(AKR,AKI)[F(INDEX.GT.0) G0 T0 4] AKIG = -XCIJ*RHO(K)**2AKRBO = -XBCBO*RHO(K).D0-2.D0%2/A))%CPW%#3 2D0-2.D0*2/A))*CPW**3 XBICIC = 0.D0xCIUC0 = 0.0000 43 K = 1.NUR(K) = CA(1)XBICIB = 0.00UI(K) = CA(2)XBICI = 0.00XBCBO = 0.00XBCCO = 0.00AKICO = 0.00AKIB0 = 0.00XCI0 = 0.00AKRG = 0.00XBC = 0.00AKRCO 2 # 3

•

```
DDAKR = -XCI*DDRHU(K)-2.D0%(XCJI+XCICI+XBC/RHU(K))*(RHO(K)*DDRHD(K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DDAKRC = -XCICO*DDRHO(K)-2.DO*(XCICIC+XBCC0/RHO(K))*(RHO(K)*DDRHO(
                                                                                                                                   DAKRC0 = -XCIC0*DRHO(K)-2*D0*(XCICIC+XBCC0/RHO(K))*RHO(K)*DRHO(K)
                                   DAKR = -XCI*DKHO(K)-2.D0%(XCJI+XCICI+XBC/KHO(K))*RHO(K)*DRHO(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF(L.EQ.0) DDAKI = -XCIJ*2.D0*(RHO(K)*DDRHO(K)+DRHO(K)**2)
IF(L.GT.0) DDAKI = -XCIJ*2.D0*(RHO(K)*DDRHO(K)+DRHO(K)**2)*G
DDAKIG = -XCIJ*2.D0*(RHO(K)*DDRHO(K)+DRHO(K)**2)
                                                                                                                                                                                                                                                                     IF(L.GT.O) DAKI = -XCIJ*2.D0*RHD(K)*DRHD(K)*G
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                = 2.00*(1.00+AKK)*AKKC0+2.00*AKI*AKIC0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = 2.00*(1.D0+AKK)*AKR80+2.D0*AKI*AKIB0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DDAKRB = -XHCBO*(DDRHO(K)+DRHO(K)**2/RHO(K))
                                                                                                                                                                                                                                        IF(L.EQ.0) DAKI = -XCIJ*2.D0*RHU(K)*DRHU(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DENG = 2.D0*(1.D0+AKR)*AKRG+2.D0*AKI*AKIG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DDAKRC = -(XCICO+XCICIC)*DDRHO(K)
                                                                                                                                                                                                                                                                                                      DAKIG = -XCIJ*2.00*KHO(K)*0KHO(K)
                                                                                                                                                                       DAKRCO = -(XCICO+XCICIC)*DRHD(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   = AKRCO/DEN-RE1*DENCO/DEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     = AKRB0/DEN-RE1*DENB0/DEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DDAKR = -(XCI+XCICI)*DDRHD(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    [MIG = -AKIG/DEN-IMI*DENG/DEN
                                                                     DAKR = -(XCI+XCICI) * DRH0(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  REIG= AKRG/DEN-RE1*DENG/DEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DEN = (1.00+AKR)**2+AKI**2
                                                                                                                                                                                                                                                                                                                                                                                                       DAK(K) = DCMPLX(DAKR,DAKI)
                                                                                                                                                                                                    DAKRBO = -XBCBO*DRHO(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 RE1 = (1.00+AKR)/DEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     () +DRHO(K) *DRHO(K))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         K)+DRHO(K)**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IMI = -AKI/DEN
                                                                                                                                                                                                                                                                                                                                      DAKICO = 0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DDAKRG = 0.D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DDAKIC = 0.00
                                                                                                                                                                                                                                                                                                                                                                   DAKIBO = 0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DDAKIB = 0.00
                                                                                                      DAKRG = 0.00
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DENBO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DENCO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 REICO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     RE180
```

41

= -AKICO/DEN-IM1*DENC0/DEN IMICO

= 0.00 [M180

RE2 = ((1.00+AKR)*(DAKR**2-DAKI**2)+2.00*DAKK*DAKI*AKI)/DEN

DAKIG)+2.DD(DAKRG *DAKI*AKI+DAKR*DAKIG *AKI+DAKR*DAKI*AKIG))/D -DAKI = (AKRG *(DAKR**2-DAK]**2)+2.00*(].D0+AKR)*(DAKR*DAKRG EN-RE2*DENG /DEN RE2G

[*DAKIC0)+2.D0*(DAKRC0*DAKI*AKI+DAKR*DAKIC0*AKI+DAKR*DAKI*AKIC0))/D RE2C0 = (AKRC0*(DAKR**2-DAKI**2)+2.D0*(1.D0+AKR)*(DAKR*DAKRC0-DAKI 2EN-RE2*DENC0/DEN

RE2B0 = (AKRB0*(DAKR**2-DAKI**2)+2.00*(1.00+AKR)*(DAKR*DAKRB0-DAKI *DAK I B0)+2 •D0*(DAKRB0*DAK I *AK I +DAKR*DAK I F0*AK I +DAKR*DAK I *AK I H0) // 2DEN-RE2*DENB0/DEN

IM2 = ((1.D0+AKR)*2.D0*DAKR*DAKI-AKI*(DAKR**2-DAKI**2))/DEN

= (AKRG *2.D0*DAKR*DAKI+2.D0*(1.D0+AKR)*(DAKRG *DAKI+DAKR*DA IKIC)-AKIC *(DAKR**2-DAKI**2)-AKI*2.00*(DAKR*DAKRC -DAKI*DAKIC))/ 2DEN-IM2*DENG /DEN I M2G

IM2C0 = (AKRC0*2.D0*DAKR*DAKI+2.D0*(].D0+AKR)*(DAKRC0*DAKI+DAKR*DA LKICO)-AKICO*(DAKK**2-DAKI**2)-AKI*2•DO*(DAKK*DAKRCO-DAKI*DAKICO))/ 2DEN-IM2*DENC0/DEN

[M2B0 = 0.00

= DAKR/(EPS*R0)-DDAKR/2.D0+.25D0*RE2 ANONR

ANONRG = -DAKRG /(EPS*R0)-DDAKRG/2.00+.25D0*RE2G

= -DAKRC0/(EPS*R0)-DDAKRC/2.D0+.25D0*RE2C0 ANONRC

= -DAKRB0/(EPS*RU)-DDAKKB/2.00+.2500*RE2B0 ANDNRB

ANDNI = -DAKI/(EPS*R0)-DDAKI/2.D0+.25D0*IM2

= -DAKICO/(EPS*R0)-UDAKIC/2.00+.2500*IM2C0 ANONIG = -DAKIG /(EPS*RO)-DDAKIG/2.DO+.25D0*IM2G ANDNIC

= 0.00 **ANONIB**

ANON(K) = -HBARC**2/(2.D0*RMASS)*DCMPLX(ANONR,ANONI)

= -XBI*RHD(K)-XBJI*RHD(K)**2

= -(XBI+XBIBI)*RH0(K)-XBJI*RH0(K)**2-(XBICI+XCI0)*(DDRH0(K)+2.D 0/(R0*EPS)*DRH0(K))-X8ICI*DRH0(K)**2/RH0(K)

0RG = 0.00

ORCO = 0.DO

ORC0 = -(XBICIC+XCI0C0)*(DDRHD(K)+2.D0/(R0*EPS)*DRHD(K))-XBICIC*DR ORC0 == XBICIC*(DDRHO(K)+DRHO(K)**2/RHO(K)+2.D0/(RO*EPS)*DRHO(K))

WITH ARBITRARY CONSTANTS TO FORM THE GENERAL SOLUTION. THE CONSTANTS ARE DETERMINED BY THE BOUNDARY CONDITIONS. THIS TECHNIQUE MAKES IT SOLVE QUASILINEAR APPROXIMATION TO NONLINEAR KLEIN-GORDON EQUATION. = -XBIB0*RH0(K)-XBIB18*RH0(K)-XBIC18*(DDRH0(K)+DRH0(K)**2/RH0 IF(L.GT.O) FRG(K) = -REIG*BRACKR-REI*ANONRG+IMIG*BRACKI+IMI*ANONIG INDEPENDENT INITIAL VALUES MAY BE USED FOR GETTING THE HOMOGENEOUS AND PARTICULAR SOLUTIONS. WHEN ARBITRARY LINEARLY INDEPENDENT FRCO(K) = -REICO*BRACKR-RE1*ANONRC+IMICO*BRACKI+IMI*ANONIC+RE1*QRC IF(L_E0.0) FIG(K) = RE1*0IG+IM1*0RG
IF(L.GT.0) FIG(K) = -RE1G*BRACKI-RE1*ANONIG-IM1G*BRACKR-IM1*ANONRG FICO(K) = -REICO*BRACKI-RE1*ANONIC-IMICO*BRACKR-IM1*ANONRC+IM1*0RC POSSIBLE TO TRANSFORM A PROBLEM WITH BOUNDARY CONDITIONS AT TWO OR = (2.00*RMASS*(ER-VC(K))+(ER-VC(K))**2-E1**2)/HBARC**2-0R+ SOLUTION PLUS PARTICULAR OR INHOMOGENEOUS SOLUTION. ANY LINEARLY INITIAL VALUES ARE USED. THE SOLUTIONS OBTAINED MUST BE COMBINED FOR DIFFERENTIAL EQUATIONS THE GENERAL SOLUTION = HOMOGENEOUS = (2.00*RMASS*E1+2.00*E1*(ER-VC(K)))/HBARC**2-01+ANONI FR(K) = L*(L+1.D0)/(EPS*R0)**2-RE1*BRACKR+IM1*BRACKI 0(K) = HBARC**2/(2.00*RMASS)*DCMPLX(0R.01) FRBO(K) = RE1*URBO-RE1*ANONRB-RE1BO*BRACKR $IF(L \cdot E0 \cdot 0) FRG(K) = RE1*0RG-IM1*0IG$ IF(L.E0.0) 0I = -XHIJ*RHO(K)**2*G IF(L.E0.0) 0IG = -XHIJ*RHO(K)**2 $F(L_{6}T_{0}) = -XHJ_{RHO}(K) + 2$ FI(K) = -RE1 + BRACKI - IMI + BRACKR(K)+2.D0/(R0*EPS)*DRH0(K)) $IF(L_{6}T_{0}) QIG = 0.D0$ 01G = -XBIJ*RHO(K)**2= -XBIBO*RHO(K)= RE1*0RB0 FIBO(K) = IMI * ORBOHO(K) **2/RHO(K) FRBO(K) BRACKR BRACKI ANDNR ORBO **QRBO** 0

43

000000000

GENERATE ARMITRARY LINEARLY INDEPENDENT INITIAL VALUES FOR INTEGRATION. SEE SOUTHWORTH'S BOOK 'DIGITAL COMPUTATION AND NUMERICAL METHODS' MORE POINTS TO THE INITIAL VALUE PROBLEM WHICH IS EASIER TO SOLVE. X(I,K) = X(I,K-1)-SR*(F(X(1,K-1),X(2,K-1),X(3,K-1),X(4,K-1),K-1,1) X(I,K) = X(I,K-1)-SR*F(X(1,K-1),X(2,K-1),X(3,K-1),X(4,K-1),K-1,) USE MODIFIED EULER'S METHOD TO START BACKWARD INTEGRATION USING ADAM'S METHOD BY PROVIDING VALUES FOR THREE ADDITIONAL POINTS. ITERATE EULER-GAUSS BACKWARD INTEGRATION FORMULA +F(X(1,K),X(2,K),X(3,K),X(4,K),K,I))/2.D0 USE EULER BACKWARD INTEGRATION FORMULA X(K) = X(K-1)-SR*(F(X(K-1))+F(X(K)))/2TO OBTAIN A PREDICTED VALUE OF X(K) TO OBTAIN BETTER VALUES FOR X(K) X(K) = X(K-1)-SK*F(X(K-1))50 IF(J.E0.JJ) GO TO 00 240 J = 1, JJXO(I,1) = 0.00X2(I,1) = 0.00DO 100 K = 2,4I = I = 00000 $D(1) \frac{9}{95} \text{ KK} = 1.3$ = 1, 1.0= 1,IJ X(I,I) = 0.00X(I,I) = C(I)PAGE 436. Gn TN 60 D0 70 I DU 95 I 11 11 C 4 Ϋ́ Γ 95 $\cup
 \cup
 \cup$ J ပပ S

SEE SOUTHWORTH'S BOOK 'DIGITAL 22+2)+X(3+2)+X(4+2)+K-3+I)-9+D0*F(X(1+1)+X(2+1)+X(3+1)+X(4+1)+K-4+I XO(1,2) = X(1,4)-SR/24.D0*(55.D0*F(X(1,4),X(2,4),X(3,4),X(4,4),K 1-1,I)-59.D0*F(X(1.3),X(2.3),X(3.3),X(4.3),K-2,I)+37.00*F(X(1.2),X(1D0*F(X(1,4),X(2,4),X(3,4),X(4,4),K-1,1)-5.D0*F(X(1,3),X(2,3),X(3,3 X2(1,2) = X(1,4)-SR/24.00*(9.00*F(X1(1),X1(2),X1(3),X1(4),K,1)+19. USE THE ADAMS-BASHFORTH PREDICTOR-CORRECTOR METHOD TO INTEGRATE X0(K) = X(K-1)-SR/24*(55*F(K-1)-59*F(K-2)+37*F(K-3)-9*F(K-4)) FDR SECOND ARGUMENT] = K-1.2 = K CORRECTOR EQUATION TO IMPROVE RESULT OF PREDICTOR EQUATION X2(K) = X(K-1)-SK/24*(9*F(K)+19*F(K+1)-5*F(K-2)+F(K-3)) 2),X(4,3),K-2,I)+F(X(1,2),X(2,2),X(3,2),X(4,2),K-3,I)) PREDICTOR EQUATION IS CORRECTED FOR ESTIMATED ERROR CORRECTUR EQUATION IS CORRECTED FOR ESTIMATED ERROR $XI(I) = XO(I_{2})-25I_{0}DO/270_{0}DO^{*}(XO(I_{1})-X2(I_{1}))$ COMPUTATION AND NUMERICAL METHUDS' PAGE 446. PREDICTOR EQUATION FOR BACKWARD INTEGRATION XI(K) = XO(K) - 251/270*(XO(K-1)-X2(K-1))THE REST OF THE WAY TO THE ORIGIN. FUR SECOND ARGUMENT I = K-1, 2 = KX(3,K) X(2,K) = X(4•K) X(1,K) DO 120 I = 1,1J00 130 I = 1.1JD0 240 K = 5 N11 n 11 U(4, J, K) U(1,J,K) U(3,J,K) U(2, J,K) 120 100 $\cup \cup \cup \cup$ υu ں ပပ $\circ \circ \circ \circ \circ$ ں ں

```
SOLVE FOR THE ARBITKARY CONSTANTS FOR FORMING THE GENERAL SOLUTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              USE EVALUATED CONSTANTS TO FORM THE NEW GENERAL SOLUTION AND STORE
                   ¥
                     11
                    ഹ
                    = K-l•
                                                                                                                                                                                                                                                                                                                LL1 = .5D0+.5D0*DS0RT((2.00*L+1.D0)**2-4.D0*ZALPHA**2)
                  = K-2, 4
                                                                                                                                                                                                                                                                                                                                               *U(I+5,JJ,N)
                                                                                                                                                                                                                                                                                                                                                                              *U(I+2,J,N)
                                                 X2(I,2)+19.D0/720.D0*(X0(I,2)-X2(I,2))
                FOR SECOND ARGUMENT I = K-4, 2 = K-3, 3
                                                                                                                                                UPGRADE ALL PARAMETERS FOR NEXT STEP
X(K) = X2(K)+19/720*(X0(K)-X2(K))
                                                                                                                                                                                                                                                                                                                                                                                                             wRITE(6,907) INDEX,IH(1),IH(2),KS
                                                                                                                                                                                                                                                                                                                                                                               •N)-1.D-3*K0/LL1
                                                                                                                                                                                                                                                                                                                                               IH(I) = -U(I, JJ, N) + I, D-3 \times RO/LLI
                                                                                                                                                                                                                                                                                                                                                                                                CALL DSIMO(H, IH, 2, 4, KS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IN OLD ONE'S PLACE.
                                                                                                                                                                                                                                               X(I,KK) = X(I,KK+1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DUR(K) = U(3, JJ, K)
                                                                = X(1+5)
                                                                                = X(3,5)
                                                                                                = X(2,5)
                                                                                                                  = X(4,5)
                                                                                                                                                                                                 x0(1,1) = x0(1,2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             UR(K) = U(1,JJ,K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              UI(K) = U(2.JJ.K)
                                                                                                                                                                                                                X2(I,1) = X2(I,2)
                                                                                                                                                                                                                               DD 240 KK = 1,4
                                                                                                                                                                                DO 240 I = 1.1J
                                                                                                                                                                                                                                                                                                                                                                               H(I,J) = U(I,J)
                                                                                                                                                                                                                                                                                                                              D0 250 I = 1,2
                                                                                                                                                                                                                                                                                                                                                                D0 250 J = 1,2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DO 270 K = 2_{9}N
                                                                                                                                                                                                                                                                                                                                                                                                                              C(5) = IH(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                               C(6) = IH(2)
                                                  X(I_{+}5) =
                                                                                                U(3,J,K)
                                                                                                                  U(4,J,K)
                                                                U(1,J,K)
                                                                                U(2, J, K)
                                                130
                                                                                                                                с
с
230
230
                                                                                                                                                                                                                                                240
C
                                                                                                                                                                                                                                                                                                                                                                               250
                                ں
                                                                                                                                                                                                                                                                               ပပ
 ں
                 ں
                                                                                                                                                                                                                                                                                                                                                                                                                                                                \cup \cup \cup \cup
```

CHECK WHETHER SOLUTION HAS CONVERGED TO WITHIN PRESCRIBED RELATIVE TOLFRANCE = TOL. PPSI2(I) =(2.00*2ALPHA*MPI/((L+1)*HBARC))**3/FAC(2*L+3)*(2.00*ZALP WRITE(6,906) K,UR(K),UI(K),RL(1),RL(2),Q(K),AK(K),ANDN(K),VC(K),RH HA*MPI*EPS*RD/((L+1)*HBARC))**(2*L)*DEXP(-2.D0*ZALPHA*MPI*EPS*RD/(NORM = NORM+SR/140.D0*(41.D0*PSI2(K)+216.D0*PSI2(K+1)+27.D0*PSI2(K RNL = DCMPLX(UR(K),UI(K))/(EPS*RD*CDS0RT((1.D0,0.D0)+AK(K))) IF(L.EC.0) RNL = (1.D0.0.D0)/CDSQRT((1.D0.0.D0)+AK(K)) IF(DABS(IH(I)-IH0(I))/DABS(IH(I)).GT.TOL) GD TD 320 PSI = DCMPLX(UR(I),UI(I))/CDSQRT(II+AK(I)) DUR(K) = DUR(K) + IH(J) * U(3, J, K)DUI(K) = DUI(K)+IH(J)*U(4.J.K) UI(K) = UI(K) + IH(J) * U(2, J, K)UR(K) = UR(K) + IH(J) * U(I, J, K)EPS = (I-1.00)/INTRVL+1.0-3(L+1)*HBARC))*(RO*EPS)**2 PSI2(K) = P(1) * * 2 + P(2) * * 2EPS = (N-K)/(INTRVL*1.00)IF(K.LT.N) GO TO 295 DUI(K) = U(4, J, J, K)RNL = (0.00,0.00)DN 302 K = 1,55,6DO 270 J = 1,2Df1 = 300 K = 1.N $00\ 290\ I = 1,2$ N = 1 = 1 = 1 = 1EPSR = EPS*RO WRITE(6,905) NORM = 0.00= 1.0-3 G0 T0 300 K = N+1-ICONTINUE D(K) TOL 270 C C C C 290 295 300 302 301

TERM = SR/140.D0*(41.D0*CPSI2(K)+216.D0*CPSI2(K+1)+27.D0*CPSI2(K+2 1)+272.D0*CPS12(K+3)+27.D0*CPSI2(K+4)+216.D0*CPSI2(K+5)+41.D0*CPSI2 1+2)+272.D0*PSI2(K+3)+27.D0*PSI2(K+4)+216.D0*PSI2(K+5)+41.D0*PSI2(K CHECK TO SEE IF THE INTEGRAL HAS CONVERGED TO WITHIN 3 SIGNIFICANT PION'S NORMALIZED PROBABILITY DENSITY FOR STRONG WITH FINITE SIZE NUCLEUS AND WITHOUT STRONG [F(TERM*INTRVL/NORM.GT.1.D-3) GO TO 303 = SNGL(PSI2(K)/(NORM*(EPS*R0)**2)) W(NNNK) = SNGL(CDABS(DPSI(K))/NORM)= SNGL (PPSI2(K)/(EPS*R0)**2) INTERACTION FOR POINT NUCLEUS. EPS = 1/(INTRVL*1.D0)+1.D-3 W(NNNNK) = SNGL(DPSIO(K))NORM = NORM+TERM*INTRVL IF(K.E0.1) GO TO 307 W(K) = SNGL(EPS*RO) $D0 304 K = 1 \cdot N$ M(NNNNK) = 0.0W(NNNK) = 0.0NNNNK = 4*N+K = 0.0 NNNK = 3*N+K COMPUTE THE **INTERACTION** 0.0 = NNK = N+N+K 60 TN 304 NK = N+KFIGURES. X = X+C " |-|-M (NNK) M (NNK) 2(K+6)) M(NK) × " A (NK) 2+6)) 303 307 S $\cup \cup \cup$ C S S

```
[1] *RH0(N-K) +27.D0*PPSI2(K+2)*R+I0(N-K-1)+272.D0*PPSI2(K+3)*RH0(N-K-
                                                                                                                                                                                                                                                                                                      22)+27.00%PPSI2(K+4)%KH0(N-K-3)+216.00%PPSI2(K+5)%RH0(N-K-4)+41.00%
                                                                                                                                                    PROB = PROB+SR/140.D0*(41.D0*PSI2(K)*RHO(N+1-K)+216.D0*PSI2(K+1)*R
                                                                                                                                                                            [H0(N-K)+27.D0*PSI2(K+2)*KH0(N-K-1)+272.D0*PSI2(K+3)*RH0(N-K-2)+27.
                                                                                                                                                                                                    2D0*PSI2(K+4)*RHD(N-K-3)+216.D0*PSI2(K+5)*RHD(N-K-4)+41.D0*PSI2(K+6
                                                                                                                                                                                                                                                      PROBO = PROBO+SR/140.D0*(41.D0*PSI2(K)*RHO(N+1-K)+216.D0*PPSI2(K+
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   •2D14.
                        COMPUTE THE PROBABILITY OF THE PION BEING INSIDE THE NUCLEUS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ',D14.7,' U(',I2,') = ',2D14.7,' DU(',I2,')
                                                                                                                                                                                                                                                                                                                                                                                                                                                            WRITE(6.920) W(I).W(N+I).W(N+N+I).W(3*N+I).W(4*N+I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        WRITE(6,925) EPSR, I, UR(I), UI(I), I, DUR(I), DUI(I)
                                                                                                                                                                                                                                                                                                                                                           PROB = PROB/NORM*(4.00*PI*RU**3/3.00)
                                                                                                                                                                                                                                                                                                                                                                                   PRORO = PROBO*(4.D0*PI*RU)**3/3.D0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORMAT(8(D9.2.1X)/8(D9.2.1X)/D9.2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              EPSR = (N-I)/(INTKVL*I.D0)*R0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CALL PLOT(1,W.N,3,N,0,3*N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IF(INDEX.LE.20) GO TO 330
                                                                                                                                                                                                                                                                                                                                                                                                           WRITE(6,919) PROB, PROB0
                                                                                                                                                                                                                                                                                                                                3PPSI2(K+6)*RH0(N-K-5))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WRITE(6,908) INDEX
                                                                                                                            D0 305 K = 1,55,6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     I NDEX = I NDEX+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DD 308 I = 1 \cdot N
                                                                                                                                                                                                                                                                                                                                                                                                                                    D0 306 I = 1 \cdot N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           = 1+2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IH(I
                                                                                                                                                                                                                              3)*RH0(N-K-5))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FORMAT(" R =
                                                                                                 PRORO = 0.00
                                                                           PROB = 0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = (I)OHI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GN TN 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        00 340 F
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              GO TO 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G0 T0 40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   STDP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        308
925
                                                                                                                                                                                                                                                                                                                                                                                                                                                              306
                                                                                                                                                                                                                                                      305
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     320
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         330
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                340
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         906
                      ں ں
ں
```

CONTINUE

304

- FORMAT(5×,"A1",8×,"A3",7×,"A11",7×,"A13",7×,"A31",7×,"A33",7×,"B11 2G10',7X,'G12',6X,'G1101',6X,'G1110'/1X,8(D9.2,1X)//5X,'B0',8X,'B1' l',7X, BOO'/IX,8(D9.2,1X)//4X, BOI',7X, BO2',7X, G2I',7X, G0I',7X, 4//4X,'BB4',7X,'BB5',7X,'CCO',7X,'CC1',7X,'CC2',7X,'CC3',7X,'CC4',7 FORMAT(A6,D7.1,D8.2,D7.1,I2,D13.8,D9.3,D11.5,D8.3,D9.3/D9.3,2D8.3) 3,8X, CO', 8X, CI', 7X, BHO', 7X, BBL', 7X, BBZ', 7X, BB3'/IX, 8(D9,2,1X) 5X+'CC5'/IX+8(D9-2+1X)//3X+'IHO(1)'+4X+'IHO(2)'/IX+2(D9-2+1X)/) 901
- ETRAN',7X,'DEVP',9X,'R',9X,'RO',8X,'CC',8X,'CCC'/1X,A6,1X,D8.2,1X, F0RMAT(* NUC.*,6X,*Z',9X,*A*,7X,*S',6X,*L',6X,*MASS',8X,*GAM*,7X,* 2D8.2.1X,D8.2.1X,I2.1X,D14.8,1X,D9.3,1X,D11.5,1X,D9.3,1X,D10.3,1X, 3D10.3,1X,D10.3,1X,D10.3) 902 903
- 11 = ',2D14.7/' LAMBA = ',2D14.7/' PO ',2014.7/' M = ',2014.7/' 0U = ',2014.7/) = ',2D14.7/' DELTA FORMAT(' E 904
- IOR(K)', 6X, 'QI(K)', 5X, 'AKR(K)', 5X, 'AKI(K)', 3X, 'ANONR(K)', 3X, 'ANONI(FORMAT(/' N',6X,'UR(K)',6X,'UI(K)',4X,'RNLR(K)',4X,'RNLI(K)',5X, 2K) * + 6X + * VC(K) * + 4X + * * * * HO(K) * /) 905
 - FORMAT(' AFTER ',I2,' ITERATIONS'/' IH(1) = ',D10.3/' IH(2) = FORMAT(1X,12,4(1X,D10.3),D10.3,6(1X,D10.3),D10.3) 906 907

• **D**1

- FORMAT(' SOLUTION HAS NOT CONVERGED AFTER ',I2,' ITERATIONS') FORMAT(' PROB = ',D14.7/' PROBD = ',D14.7//6X,'EPS',10X,'|PSI|**2' = ',12/) 0.3/1 KS 908
 - (/ | DSID| **2',9X, | DPSI | ',10X, | DPSIO| '/) 919
- FORMAT(5(1X,D14.7)) END 920

FUNCTION F(X1K,X2K,X3K,X4K,K,N)

DOURLE PRECISION SUBPROGRAM THAT DEFINES THE REAL AND IMAGINARY PARTS OF THE FIRST ORDER TAYLOR SERIES EXPANSION OF F(R).

COMPLEX*16 LAMBA,M,PO

1(61),FIB0(61),FIG(61),FIC0(61),B0K1,B0K,B0,GK1,GK,G,C0K1,C0K,C0,F, REAL*8 UKIR,UKII,UR(61),UI(61),FR(61),FRB0(61),FRG(61),FRC0(61),FI 2X1K•X2K•X3K•X4K

F = FR(K)*X3K +FI(K)*X1K +(B0K1-B0K)*(FRB0(K)*UI(K)+FIB0(K)*UR(K)) .+(GK1-GK)*(FRG(K)*UI(K)+FIG(K)*UR(K))+(C0K1-C0K)*(FRCO(K)*UI(K)+FI F = FR(K)*XIK -FI(K)*X3K +(BOK1-BOK)*(FRBO(K)*UR(K)-FIBO(K)*UI(K)) +(GK1-GK)*(FRG(K)*UR(K)-FIG(K)*UI(K))+(COK1-COK)*(FRCO(K)*UR(K)-FI COMMON FR,FRB0,FRG,FRC0,FI,FIB0,FIG,FIC0,B0,G,C0,UR,UI,J,L 1.D0 1.D0 11 8 [F(J.E0.1.AND.L.E0.0) BOK1 COK1 GO TO (15,20,25,30), N F(J.E0.1.AND.L.GT.O) $F(J_{\bullet}E0_{\bullet}2) GKI = 1_{\bullet}D0$ $F(J_{\bullet}LT_{\bullet}3) GO TO 10$ FUNCTION CDPSI(A,B,Z) $[F(L_E0_0)] BOK = B0$ = C0 COMMON LAMBA,M,PO F(L.GT.0) COK 2CO(K)*UI(K)) 3C0(K)*UR(K)) BOKI = 0.00COK1 = 0.00GKI = 0.00BOK = 0.00COK = 0.00GK = 0.00F = X2K П = Х4К GK = G RETURN RETURN RETURN RETURN END

20

10

25

30

ပပ

HYPERGEOMETRIC FUNCTION OF THE SECOND KIND WITH COMPLEX ARGUMENTS. DOUBLE PRECISION FUNCTION SUBPROGRAM TO CALCULATE THE CONFLUENT

COMPLEX*16 CDPSI.A.B.Z.CDGMMA,TERM.SUMM.C.ZB.GI.G2.G3.PI.CDEXP.CDL DOUBLE PRECISION SUM(2),TRM(2),TOL,CDABS,DABS EQUIVALENCE (SUM(1),SUMM),(TRM(1),TERM) OG + DCMPLX

C

 $\cup \cup \cup$

```
G1 = G1*(A+DCMPLX(K*1.D0-2.00,0.D0))/(B+DCMPLX(K*1.D0-2.D0,0.D0))
CHECK WHETHER ASYMPTOTIC FORM OF FUNCTION FOR LARGE Z IS NEEDED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CHECK WHETHER SUM HAS CONVERGED TO WITHIN THE REQUIRED RELATIVE
                                                                                                                                                                                                                                                                                                                                                                         G2*(A-B+DCMPLX(K*1.D0-1.D0,0.D0))/(DCMPLX(K*1.D0,0.D0)-B)
                                                                                                                                                                                                                                               = CDGMMA(A-B+(1.D0,0.D0))/CDGMMA((2.D0,0.D0)-B)
                                                                                                                                                                                                                                                                        G3 = (1.00,0.00)/(((1.00,0.00)-8)*61*62)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F(DABS(TRM(1)/SUM(1)).GT.TOL) GO TO
F(SUM(2).EQ.0.DO) GO TO 30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 [F(DABS(TRM(2)/SUM(2)).LT.TOL) GD TO
                                                                                                                                                ZB = CDEXP(((1,D0,0,D0)-B)*CDL06(Z))
                                                                                                                                                                                                                                                                                                                        C = C*Z/DCMPLX(K*1.D0-1.D0.0.D0)
                                                                       IF(CDABS(Z).6T.22.D0) G0 T0 50
                                                                                              PI = (3.1415926535897900.00)
                                                                                                                                                                                                                       GI = CDGMMA(A)/CDGMMA(B)
                                                                                                                                                                                                                                                                                                                                                                                                    = C*(61-62*2h)
                                                                                                                                                                                               SUMM = (0,00,0,00)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                [F(K-100) 10,40,40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TOLERANCE = TOL.
                                                                                                                                                                                                                                                                                                                                                                                                                        = SUMM+TERM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CDPSI = 63 * SUMM
                                                                                                                                                                          C = (1.00, 0.00)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          = 63*SUMM
                                              TOL = 1.0-8
                                                                                                                                                                                                                                                                                                60 10 15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            X = X+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CDPSI
                                                                                                                          TERM
                                                                                                                                                                                                                                                                                                                                                                           62 =
                                                                                                                                                                                                                                                                                                                                                                                                                          SUMM
                                                                                                                                                                                                                                                62
```

10

15

000

20

30

40

```
TERM = -(A+DCMPLX(K*1.DO-1.D0,0.00))*(A-B+DCMPLX(K*1.D0,0.D0))/(2*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             = 1,2D15.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FORMAT( ASYMPTOTIC PSI SERIES DID NOT CONVERGE / A = 1,2D15,8/1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FORMAT(' PSI SERIES DID NOT CONVERGE'/' A = ',2D15.8/' B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SUBROUTINE POTHE4( Z,RO,VC,RHO,DRHO,DDRHO,M,INTRVL,RU)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1B = ',2015,8/' Z = ',2015,8/' C0PSI = ',2015,8)
                                                                   ASYMPTOTIC FORM OF EXPANSION FOR LARGE Z
                                                                                                                                                                                                                                                                            [F(SUM(2).E(0.00) G0 T0 80
[F(DABS(TRM(2)/SUM(2)).LT.TOL) G0 T0 80
                                                                                                                                                                                                                                                   IF(DABS(TRM(1)/SUM(1)).GT.TOL) G0 T0 70
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              8/' Z = ',2015.8/' C0PSI = ',2015.8)
                                                                                                                                                                                                                                                                                                                                              IF(K*1.D0.GT.CDABS(Z)) G0 T0 90
                                                                                                                                                                                                                                                                                                                                                                                          CDPSI = SUMM*CDEXP(-A*CDLDG(Z))
                                                                                                                                                                                                                                                                                                                                                                                                                                      CDPSI = SUMM*CDEXP(-A*CDLOG(2))
WRITE(6,900) A, B, Z, CDPSI
                                                                                                                                                                                                                                                                                                                                                                                                                                                             WRITE(6,910) A, B, Z, CDPSI
                                                                                                                                      TERM = (1.D0.0.D0)
                                                                                                               SUMM = (1.D0.0.D0)
                                                                                                                                                                                                                               SUMM = SUMM+TERM
                                                                                                                                                                                                                                                                                                                       X = X
                                                                                                                                                                                                                                                                                                                                                                     Gn Tn 60
                                                                                                                                                                                                          K)*TERM
                       RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                 RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     RETURN
                                                                                                                                                              --
"
~
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             006
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        910
                                            ပ်ပင်
                                                                                                                                                                                    60
                                                                                                                                                                                                                                                                                                                      70
                                                                                                                                                                                                                                                                                                                                                                                             80
                                                                                                                                                                                                                                                                                                                                                                                                                                        60
```

INITIALIZATION OF PARAMETERS

IMPLICIT REAL*8(A-H+0-Z). INTEGER(I-N)
DIMENSION RHO(M).DRHO(M).VC(M)

ບບບ

```
RHO(MN)= RNORM*DEXP(-R2BB2)*(1.D0-64.D0*(A0/BB)**12*(135135.D0-540
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          540.D0*R2BB2+540540.D0*R2BB2**2=205920.D0*R2BB2**3+34320.D0*R2BB2*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2D0*205920.D0*R28B2**3+8.D0*34320.D0*R28B2**4-10.D0*2496.D0*R2BB2**
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1)*BB)**3*R0*EPS)*(-2.D0*540540.D0*R2BB2+4.D0*540540.D0*R2BB2**2-6.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DDRH0(MN)= -2.D0/HB**2*(2.D0*R0*EPS*DRH0(MN)+(1.0+2.D0*R2BB2)*RH0(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DRHO(MN)= -2.00*R0*EPS/BB**2*RHO(MN)-128.0*DEXP(-R2BB2)/((DSQRT(PI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CALCULATION OF THE STRONG INTERACTION DENSITY RHD AND ITS
                                                                                                                                                                                                                                                                                                                                                                                                                                  =DSORT((5.00/3.00)*(1.67D0**2-AP**2))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     VCNDRM = -2.00*24LPHA*HBARC/DS0RT(PI)
                                                                                                                                                                                                                                 1 • D0 - 64 • D0 * (A0/HD) ** 12* 135 135 • D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2*4-2496.00*R2BH2**5+64.00*R2HB2**6))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      35+12.00*64.00*R2BB2**6)*(A0/HB)**12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     EPS = (N-1.D0)/(INTRVL*1.D0)+1.D-6
                                                                                                                                                                                                                                                                                                                  = 64.D0*(AD/BD)**12*205920.D0
                                                                                                                                                                                                                                                           64.D0*(A0/B0)**12*540540.D0
                                                                                                                                                                                                                                                                                                                                             =-64.D0*(A0/B0)**12*34320.D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RNORM = 2.00/(DSQRT(PI)*BB)**3
                                                                                                                                                                                                                                                                                                                                                                         = 64.D0*(A0/B0)**12*2496.D0
                                                                                                                                                                                                                                                                                                                                                                                                    -64.D0*(A0/B0)**12*64.D0
DSORT(2.D0/3.D0)*.72D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DERIVATIVES DRHO AND DDRHO
                                                                                        DSQRT(BO*BO-AP*AP)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     = (R0*EPS/BB)**2
                                                                                                                                                                          ZALPHA = Z/137.0388D0
                                                                                                                   3.14159265359D0
                                                                                                                                               = 197.32D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D(1 \ 20 \ N = 1,M
                                                              1.36200
                                                                                                                                                                                                        10L = 1.0-6
                              .31600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              N-I+W = NW
                                                                                                                                                                                                                                                                                           6
1
                                                                                                                                               HBARC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   R2882
       H
                                                                                                                        11
                                                                 H
                                                                                             11
                                     H
                                                                                                                                                                                                                                   11
                                                                                                                                                                                                                                                                 11
   ٩P
                                 QA
                                                              BD
                                                                                        88
                                                                                                                   Id
                                                                                                                                                                                                                                                                                                                                                                                                                                RU
                                                                                                                                                                                                                                    4
```

 $\circ \circ \circ \circ$

156

IMN)+64.0*DEXP(-R2HB2)/(DSURT(PI)*BB)**3*(-2.D0*540540.D0+12.D0*540 2540.D0*K2BB2-30.D0*205920.D0*R2BR2**2+56.D0*34320.D0*R2BR2**3-90.D 30*2496.D0*R2BB2**4+132.D0*64.D0*R2BB2**5)*(A0/BB)**12)

CALCULATION OF THE COULOMB POTENTIAL

 $\cup \cup \cup$

IF(DABS(TERM/SUM).GT.TOL) G0 T0 10 TERM = TERM*2.DO*R2B2/K $RB = R0 \approx EPS/BO$ SUM = SUM+TERM = RB**2 TERM = RB K = K+2 11 3 TERM R2B2 " " SUM 10 20

05.00*D/8.D0+946.D0*E/16.D0+10395.D0*F/32.D0+135135.D0*G/64.D0)*SU 5249.00*6/16.00)*RB**5-(E/2.00+19.00*F/4.00+327.00*6/8.00)*RB**7-(F 6/2.00+23.00*6/4.00)*RB**9-6/2.00*RB**11) 2M-(8/2.D0+7.D0*C/4.D0+57.D0*D/8.D0+ 561*E/16.D0+6555.D0*F/32.D0+1 416.D0+22005.D0*6/32.D0)*RB**3-(D/2.D0+15.D0*E/4.D0+213.D0*F/8.D0+3 VC(MN)= VCNORM*DEXP(-R282)/(RO*EPS)*((A+3.D0*B/2.D0+15.D0*C/4.D0+1 312095.D0*G/64.D0)*RB-(C/2.D0+11.D0)*D/4.D0+123.D0*E/8.D0+1545.D0*F/ RETURN

END

SUBROUTINE POTMHO(W.B.A.RO.Z.VC.RHO.DRHO.DDRHO.M.INTRVL,RU) IMPLICIT REAL#8(A-H.O-\$).INTEGER(I-N) DIMENSION RHO(M), DRHO(M), DDRHO(M), VC(M)

INITIALIZATION OF PARAMETERS

 $\cup \cup \cup$

AP = DS0RT(2.D0/3.D0)*.7200

DSORT((5.D0/3.D0)*8*8*((DABS(Z)-2.D0)/DABS(Z)+1.5D0)) RU =

BB = DS0RT(B*R-AP*AP)

PI = 3.1415926535900

HBARC = 197.3200

```
= -VSNDRM*DR2BB2*(1.00+1.5D0*W-2.5D0*W*(B/BB)**2+W*(B/BB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DDRHQ(MN) = -VSNORM*((DDR2B2-DR2BB2**2)*(1.D0+1.5D0*W-2.5D0*W*(B/B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF(DABS(Z).GT.2.DO) VC(MN) = VCNORM*(-W/(2.DO+3.DO*W)+SUM)*DEXP(-R
                                                                                                                                                                                                                                                                                                                           RHO(MN) = VSNORM*(1.DO+1.5D0*W*(1.DO-(8/88)**2)+W*(8/88)**2*R2882)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    LB)**2+W*(B/BB)**2*K2BB2)+DK2BB2**2*W*(B/BB)**2)*DEXP(-K2BB2)
                                                                                                       CALCULATION OF THE STRONG INTERACTION DENSITY VST AND ITS DERIVATIVES DVST AND DDVST.
                         2*A/(PI**1.500*88**3*(2.00+3.00*W))
                                                    VCN0RM = -2.00*24LPHA*HBARC/(DS0RT(PI)*B)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CALCULATION OF THE COULOMB POTENTIAL
                                                                                                                                                                                                                                                                       EPS = (N-1.00)/(INTRVL*1.00)+1.0-3
R2BB2 = (R0*EPS/BB)**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF(DABS(TERM/SUM).GT.TOL) GO TO 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              VC(MN) = VCNORM*SUM*DEXP(-R2B2)
                                                                                                                                                                                                                                                                                                                                                                             DR2BB2 = 2.00*R0*EPS/BB**2
                                                                                                                                                                                                                                                                                                                                                                                                                                 [] **2*R2BB2 )*DEXP(-K2BB2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ferm = Term*2.DO*R2B2/K
= 2/137.0388D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            R2B2 = (R0*EPS/B)**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                              DDR2B2 = 2.00/BB**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SUM = SUM+TERM
                                                                                                                                                                                                                DO 20 N = 1.4M
                                                                                                                                                                                                                                                                                                                                                     [*DEXP(-R2BB2)
                                                                                                                                                                                         = 1.D-6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     = 1.DO
                                                                                                                                                                                                                                           WN = W+I-N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 SUM = TERM
                                                                                                                                                                                                                                                                                                                                                                                                           DRHD (MN)
                                H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        K = K+2
 ZALPHA
                           VSNORM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ×
"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TERM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (282)
                                                                                                                                                                                     TOL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      END
```

 $\cup \cup \cup \cup$

158

20

10

ပပပ

DEXP, DSORT REAL*8 R0,C0,R,C,Z,VC(M),RH0(M),PI,SUM,DE1,DE2,TERM,TERM1,TERM2, SUBROUTINE POT(R0,C0,R,C,RR,Z,VC,RH0,DRH0,DDRH0,M,INTRVL,RU,A) ITERM3.HBARC,ZALPHA,VSNORM,VCNORM,EPS,SUMM,TERMM,RU,NN, 2,DAHS,DRHD(M),DDRHD(M),EX,RK

CALCULATION OF THE STRONG INTERACTION POTENTIAL NORMALIZATION CONSTANT VSNDRM

ပပ

ပပ

```
A/(4.D0*PI*(PI*PI*C0*C0*RR/3.D0+RR**3/3.D0-2.D0*C0**3*
                                                                                                                                                                                                                                                                                                                                                                                                     RU = DSQRT(5.D0/3.D0*(RR**5/5.D0+2.D0/3.D0*C0*C0*PI*PI*RR**3+7.D0/
                                                                                                                                                                                                                                                                                                                                                                                                                              [15.D0*(C0*PI)**4*RR-24.D0*C0**5*SUMM)*VSNDRM*4.D0*PI/A)
                                                                                                                                                                                                                                                                                                    F(DABS(TERMM/SUMM).GT.1.D-6) G0 T0 2
                                                                                                                                                                                                                                                                                                                              [F(DABS(TERM/SUM).GT.1.D-6) G0 T0 6
PI = 3.1415926535900
                                                                                                                                                   TERMM = TERM1/NN**5
                                                                      DE1 = -DEXP(-RR/CO)
                                                                                                                                                                                                     = TERM1/NN**3
                                                                                                                                                                              = SUMM+TERMM
                                                                                                                                                                                                                                                     FERMI = TERM1*DEI
                                                                                                                                                                                                                             SUM = SUM+TERM
                                                                                                                                                                                                                                                                               NN = NN + 1 \cdot DO
                                                SUMM = 0.00
                                                                                                  FERMI = DEI
                         SUM = 0.00
                                                                                                                          NN = 1.00
                                                                                                                                                                                                                                                                                                                                                      V SNORM =
                                                                                                                                                                                                                                                                                                                                                                               SUM))
                                                                                                                                                                              SUMM
                                                                                                                                                                                                     FERM
```

Ś

2

CALCULATION OF COULOMB POTENTIAL NORMALIZATION CONSTANT VCNORM

ပပပ

ZALPHA = Z/137.038800= -DEXP(-R/C)= 197.3200 SUM = 0.00HBARC 0E1

```
VCN0KM = _ -ZALPHA*HBAKC/(PI*PI*C*C*R/3.D0+R**3/3.D0-2.D0*C**3*SUM)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      = 0.00
                                                                                                                                                                                                                                                                                                                                   DDRHO(MN)=DRHO(MN)/CO*(1.DO-2.DO*EX/(1.DO+EX))
                                                                                                                                                                                                                                                  RHfn(MN) = VSNORM/(1,D0)+DEXP((EPS*R0-RR)/CO))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 [F(DABS(TERM1/(NN**3*SUM)).LT.1.D-15) TERM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           'ERM = TERM1/NN**3+TERM2/NN**2+TERM3/NN**3
                                                                              IF(DABS(TERM/SUM).GT.1.D-15) G0 T0 20
                                                                                                                                            CALCULATION OF NORMALIZED POTENTIALS
                                                                                                                                                                                                                            EPS' = (N-1.D0)/(INTRVL*1.D0)+1.D-3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F(DABS(DE2),LT,1,D-15) DE2 = 0,00
                                                                                                                                                                                                                                                                                           DRHO(MN)=-RHO(MN)/CO*EX/(1.00+EX)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              = -2.00*C**3/(R0*EPS)*DE1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     = 2.00*C**3/(R0*EPS)*0E2
                                                                                                                                                                                                                                                                                                                                                                                                                    COULOMB POTENTIAL FOR EPS*RO<R
                                                                                                                                                                                                                                                                                                                                                       [F(N.E0.]) DDRH0(MN)=0.D0
                                                                                                                                                                                                                                                                     EX = DEXP((EPS*R0-RR)/C0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DE2 = -DEXP((R0*EPS-R)/C)
                                                                                                                                                                                                                                                                                                                [F(N.EQ.]) DRH0(MN)=0.D0
                                                                                                                                                                                                                                                                                                                                                                          F(EPS.GT.R/R0) G0 T0 60
FERM1/NN**3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DE1 = -DEXP(-R/C)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       = TERM1*DE1
                                        FERMI = TERM] * DEI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 =-C*C*DE2
                    SUM = SUM+TERM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SUM = SUM+TERM
                                                                                                                                                                                     DO 80 N = 1.M
                                                             NN = NN+1.00
                                                                                                                                                                                                         MN = M+1-N
                                                                                                                                                                                                                                                                                                                                                                                                                                                             SUM = 0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                NN = 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FRMI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ERM3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ERMI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  TERM2
20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           50
                                                                                                                                                                                                                             3040
                                                                                                                          ပပပ

  \cup 
  \cup 
  \cup
```

= DE1

TERM1

NN = 1.00
```
VC(MN) = VCNORM*(R*R/2.DO-(EPS*RD)**2/6.DO+C*C*PI*PI/6.DO+SUM)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   VC(MN) = VCNORM*(R**3/3.D0+C*C*PI*PI*R/3.D0+SUM)/(EPS*RD)
                                                                                                                                                                                                                                                                                                                                                                          = 0.00
                                                                                                                                                                                                                                                                                                                                                                        [F(DABS(TERM1/(NN**3*SUM)).LT.1.D-15) TERM1
                                                                                                                                                                                                                                                                                                                                [EKM = TERM1/NN**3+TERM2/NN**2+TERM3/NN**3
                                                              IF(DABS(TERM/SUM).GT.1.D-08) G0 T0 50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               [F(DABS(TERM/SUM).GT.1.D-08) G0 T0 70
                                                                                                                                                                                                                                                                                                                                                                                                                   0.00
                                                                                                                                                 \boldsymbol{\alpha}
                                                                                                                                                 ^
                                                                                                                                                                                                                                                                                                                                                                                                                     IJ
                                                                                                                                               COULOMB POTENTIAL FOR EPS*RO
                                                                                                                                                                                                                                                                                                                                                                                                               F(DABS(DE2).LT.1.D-15) DE2
                                                                                                                                                                                                                                                 = -DEXP(~(EPS*R0-R)/C)
                                                                                                                                                                                                                                                                                       = C*C*EPS*R0*DE2
                                                                                                                                                                                                                                                                    [ERM] = -2.00*C**3*DE]
                                                                                                                                                                                                                                                                                                            = 2.00*C**3*DE2
TERM2 = TERM2*DE2
                       = TERM3*DE2
                                                                                                                                                                                                                             = -DEXP(-R/C)
                                                                                                                                                                                                                                                                                                                                                                                                                                    ERM2 = TERM2*DE2
                                                                                                                                                                                                                                                                                                                                                                                                                                                        TERM3 = TERM3*DE2
                                                                                                                                                                                                                                                                                                                                                                                            T = T \in M 
                                                                                                                                                                                                                                                                                                                                                   SUM = SUM+TERM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            NN = NN + \mathbf{I} \cdot \mathbf{D}\mathbf{O}
                                           NN = NN+1.00
                                                                                                                                                                                    SUM = 0.00
                                                                                                                                                                                                         NN = 1.00
                                                                                                      GO TO 80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RETURN
                       TERM3
                                                                                                                                                                                                                                                                                         TERM2
                                                                                                                                                                                                                                                                                                            ERM3
                                                                                                                                                                                                                                                 DE2
                                                                                                                                                                                                                             DE1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                END
```

70

000⁰

FUNCTION CDGMMA(2)

ပပပ

80

DOUBLE PRECISION FUNCTION SUBPROGRAM TO CALCULATE THE GAMMA FUNCTION FOR COMPLEX ARGUMENTS.

COMPLEX*16 CDGMMA,Z,T,TT,SUMM,TERM,DEN,ZM,ZZ,DCMPLX,CDL0G,CDEXP,CD DOURLE PRECISION X,Y,XDIST,A(2),C(12),SUM(2),TRM(2),CDABS,DABS,DLD DATA TOL,IOUT,PI/1.D-15,6,(3.14159265358979D0,0.D0)/,C/.833333333 1333330-1, -.27777777777777780-2, .7936507936507940-3, -.595238095238095238095238095238095238095238095238095238095250-3, -.1917526917526920-2, .64102564102564100-2DETERMINE WHETHER Z IS TOO CLOSE TO A POLE BY FINDING NEAREST POLE 3. - . 2955065359477120-1. . 17964437236883100. - . 13924322169059001. . 1340 C(12) = COEFFICIENTS IN STIKLING'S APPROXIMATION FOR LN(GAMMA(T)) IF Z IS TOO CLOSE TO A POLE, PRINT ERROR MESSAGE AND RETURN WITH SET ALL SYSTEM DEPENDENT CONSTANTS WITH DATA STATEMENT WHERE EQUIVALENCE (A(1),ZZ),(SUM(1),SUMM),(TRM(1),TERM) IOUT = SYSTEM DEPENDENT OUTPUT CHANNEL 428640441684D2**.-.**156848284626020D3/ xDIST = X - DFLOAT(IDINT(X-.5D0))CDGMMA = DCMPLX(1,D0/T0L,0,D0)CDGMMA = DCMPLX(1.D0/T0L.0.D0)AND COMPUTING DISTANCE TO IT. IF(CDABS(ZM).GE.TOL) G0 T0 10 [F(X.GE.TOL) GO TO 20 ZM = DCMPLX(XDIST,Y)REFLEK = .FALSE. WRITE(INUT, 900) LOGICAL REFLEK 16.TOL.DFLOAT X = A(1)Y = A(2)2 = 22 SIN.PI RETURN ပပ $\circ \circ \circ$ $\cup
 \cup
 \cup$ $\cup
 \cup
 \cup$

с

```
SUMM = (T-(.5D0,0.D0))*CDL0G(T)-T+(.5D0,0.D0)*CDL0G((2.D0,0.D0)*PI
                                                                                                                                                                                                                                                                 IF Z IS NOT TOO CLOSE TO A POLE, MAKE REAL(Z)>10 AND ARG(Z)<PI/4
                                                                                           AND COMPUTE GAMMA(1-Z). NOTE REFLEK IS A TAG TO INDICATE THAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TEST REAL AND IMAGINARY PARTS OF LN(GAMMA(Z)) SEPARATELY FOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CONVERGENCE. IF Z IS REAL SKIP IMAGINARY PART OF CHECK.
                 FOR REAL(Z) NEGATIVE EMPLOY THE REFLECTION FORMULA
                                                                                                                                                                                                                                                                                                                                                                                                     COMPUTE STIRLING'S APPROXIMATION FOR LN(GAMMA(T))
                                                                                                                                                                                                                                                                                                       M = MAXO(IABS(IDINT(Y)) - IDINT(X), 10 - IDINT(X), 0)
                                                        GAMMA(Z) = PI/(SIN(PI*Z)*GAMMA(I-Z))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F(DABS(TRM(2)/SUM(2)).LE.TOL) G0 T0 100
                                                                                                                THIS RELATION MUST BE USED LATER.
                                                                                                                                                                                                                                                                                                                          = DCMPLX(X+DFLOAT(M),Y)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IF(Y.EQ.O.DO) GO TO 100
                                                                                                                                                  IF(X.GE.0.D0) G0 T0 20
                                                                                                                                                                     REFLEK = .TRUE.
ZZ = (1.00.0.00)-ZZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 SUMM = · SUMM+TERM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                TERM = C(J)/DEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DEN = DEN*TT
                                                                                                                                                                                                         X = 1.00 - X
                                                                                                                                                                                                                                                                                                                                           TT = T*T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ] = J+I
                                                                                                                                                                                                                                                                                                                                                               DEN = T
                                                                                                                                                                                                                           λ- = λ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ר
ה
ר
                                                                                                                                                                                                                                                                                                      20
                                                                                                                                                  10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 с 70
С
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  80
                                                                                                                                                                                                                                                                                    ں
\circ \circ \circ \circ \circ \circ \circ \circ
                                                                                                                                 ں
                                                                                                                                                                                                                                                ပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ပပ
                                                                                                                                                                                                                                                                                                                                                                                   ပပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ں
```

LN(GAMMA(Z)) = LN(GAMMA(Z+M))-LN(Z)-LN(Z+I)-...-LN(Z+M-I) FORMAT(1X, 'AKGUMENT OF GAMMA FUNCTION IS TOO CLOSE TO A POLE') PRINT ERROR MESSAGE AND LN(GAMMA(Z)) = LN(GAMMA(Z+M)/(Z*(Z+1)*...*(Z+M-1))) FORMAT(* ERROR - STIRLINGS SERIES HAS NOT CONVERGED*) CHECK TO SEE IF REFLECTION FORMULA SHOULD BE USED. RECURSION RELATION USED TO OBTAIN LN(GAMMA(Z)) Df) 110 I = 1,M SUMM = SUMM-CDLOG(ZZ+DCMPLX(DFLOAT(I-1),0.D0)) STIRLING'S SERIES DID NOT CONVERGE. SUMM = CDLOG(PI/CDSIN(PI*ZZ))-SUMM TEST FOR NONCONVERGENCE IF(M.EQ.0) GO TO 120 IF(REFLEK) G0 T0 130 CDGMMA = CDEXP(SUMM) IF(J-12) 70,70,90 WRITE(IOUT,910) G0 T0 140 PROCEDE. RETURN END 100 110 C 120 130 140 006 910 ں ں ں ں $\circ \circ \circ \circ \circ \circ$ 164

PURPOSE

.

Φ ម AX A TO SOLVE A SET OF SIMULTANEOUS LINEAR EQUATIONS

DESCRIPTION OF PARAMETERS

A = MATRIX OF COEFFICIENTS N BY N STORED COLUMNWISE.

B = VECTOR OF ORIGINAL CONSTANTS (LENGTH N). THESE ARE REPLACED BY FINAL SOLUTION VALUES. VECTOR X.

N = NUMBER OF EQUATIONS AND VARIABLES (N>1).

KS = DUTPUT DIGIT

O FOR A NORMAL SOLUTION

I FDR A SINGULAR SET OF EQUATIONS

METHOD

C

000

THE SIMULTANEOUS EQUATIONS ARE SOLVED BY ELIMINATION USING LARGEST CHANGING ROWS WHEN NECESSARY TO AVDID DIVISION BY ZERO OR SMALL PIVNTAL DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTER-ELEMENTS.

VECTOR B, WITH VARIABLE 1 IN B(1), VARIABLE 2 IN B(2)....,VARIABLE N IN B(N). IF NO PIVOT CAN BE FOUND EXCEEDING A TOLERANCE OF 0.0. FINAL SOLUTION VALUES ARE DEVELOPED IN THE FORWARD SOLUTION TO DETAIN VARIABLE N IS DONE IN N STAGES. THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET EQUAL TO 1. THE BACK SOLUTION FOR THE OTHER VARIABLES IS CALCULATED BY SUCCESSIVE SUBSTITUTIONS.

ပပ

SUBROUTINE DSIMO(A,B,N,NN,KS) DOUBLE PRECISION A(NN),B(N),TOL,BIGA,SAVE,DABS

FORWARD SOLUTION

ບບ

TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IF(DABS(B1GA)-DABS(A(IJ))) 20,30,30 INTERCHANGE ROWS IF NECESSARY IF(DABS(BIGA)-TOL) 35,35,40 I]=J+N*(J-2) N+L=I 06 00 DO 65 J=1,N BIGA = 0.D0IT=JJ-J DO 50 K=J.N FOL = 0.00A(II) = A(IZ)BIGA=A(IJ)A(12)=5AVE SAVE=A(I1) 1+N+00=00 L T = I MAX-J 30 CONTINUE I 2= I 1+ I T I + I I = ſ I I] =]] +N I = X A M I ן+נ≃ץנ RETURN N-≈(l KS=0 35 KS=1 40 20

ပပပ

ပပပ

ပ

ບບບ

J

```
DIVIDE EQUATION BY LEADING COEFFICIENT
                                                                                                                                                                                                               JJX=IXJX+IT
A(IXJX)=A(IXJX)-(A(IXJ)*A(JJX))
                                                                                           ELIMINATE NEXT VARIABLE
                                                                                                                                                                                                                                        B(IX)=B(IX)-(B(J)*A(IXJ))
                                                                                                                                                                                                                                                                                                                                                                         DD 80 K=1,J
B(IB)=B(IB)-A(IA)*B(IC)
                           A(II) = A(II) / BIGA
                                                                                                                     IF(J-N) 55.70.55
I()S=N*(J-1)
                                                                                                                                                                                                  X I + ( I - X C ) * N = X C X I
                                                                                                                                                                                                                                                                  BACK SOLUTION
                                                                 B(J)=SAVE/BIGA
                                                                                                                                                                                                                                                                                                                       1,NY
                                                                                                                                                                                    Nº YL=JY. 00 00
                                                                                                                                              DO 65 IX=JY.N
                                                     B(IMAX)=B(J)
                                        SAVE=B(IMAX)
                                                                                                                                                       IXJ=IQS+IX
IT=J-IX
                                                                                                                                                                                                                                                                                                                    DU 80 J =
                                                                                                                                                                                                                                                                                                                                                                                                               IC=IC-I
RETURN
                                                                                                                                                                                                                                                                                                                                                                                                  I A = I A - N
                                                                                                                                                                                                                                                                                                                                   I = I T - J
                                                                                                                                                                                                                                                                                                        I = N \times N
                                                                                                                                                                                                                                                                                                                                               [ -N=8]
                                                                                                                                                                                                                                                                                            1-N=YN
                                                                                                                                                                                                                                                                                                                                                            I C=N
                                                                                                                                                                                                                                                                                                                                                                                                                                          END
                            50
                                                                                                                                   55
                                                                                                                                                                                                                                                                                            70
                                                                                                                                                                                                                             60
65
                                                                                                                                                                                                                                                                                                                                                                                                                 80
```

 $\cup \cup \cup$

ပ ပ

ပပပ

167

DIMENSION DUT(101), YPR(11), ANG(9), A(N5) SUBROUTINE PLOT(NO.A.N.M.NL.NS.N5)

SUBROUTINE PLOT

ပပ

PURPUSE

 $\circ \circ \circ \circ \circ \circ$

PLOT SEVERAL CROSS-VARIABLES VERSUS A BASE VARIABLE

USAGE

ပပ C S \circ

CALL PLOT (N0,A,N,M,NL,NS)

DESCRIPTION OF PARAMETERS

- CHART NUMBER (3 DIGITS MAXIMUM) 0N

C

- MATRIX OF DATA TO BE PLOTTED. FIRST COLUMN REPRESENTS BASE VARIABLE AND SUCCESSIVE COLUMNS ARE THE CROSS-VARIAHLES (MAXIMUM IS 9). 1 ۹
 - ROWS IN MATRIX A NUMBER OF ł
 - COLUMNS IN MATRIX A (EQUAL TO THE TOTAL NUMBER OF I ZΣ
- NUMBER OF VARIABLES). MAXIMUM IS 10.
- NUMBER OF LINES IN THE PLOT. IF O IS SPECIFIED, 50 LINES ARE USED. ŧ ٦L

S S S \circ S S ى S

- CODE FOR SORTING THE BASE VARIABLE DATA IN ASCENDING ORDER I SZ
 - SORTING IS NOT NECESSARY (ALREADY IN ASCENDING ORDER). 0
 - SORTING IS NECESSARY.

.......... *

DEVELOP BLANK AND DIGITS FOR PRINTING

 $\circ \circ \circ$

NLL=NL

```
SORT BASE VARIABLE DATA IN ASCENDING ORDER
                                                                                                                                                                                                                                                                                       FIND SCALE FOR CROSS-VARIABLES
                                                                                                                                                                                                                                                                    XSCAL=(A(N)-A(1))/(FLOAT(NLL-1))
                                                                                                                                                                                                                                                  FIND SCALE FOR BASE VARIABLE
                                                      IF(A(I)-A(J)) 14, 14, 11
                                                                                                                                                                                    16 IF(NLL) 20, 18, 20
18 NLL=50
IF(NS) 16, 16, 10
                                                                                                                                                                                                              PRINT TITLE
                                                                                                                                                                                                                                 WRITE(6,1) NO
                                     DO 15 I=1,N
DO 14 J=1,N
                                                                                 00 12 K=1,M
                                                                                                                                                                  TEST NLL
                                                                                                                                                                                                                                                                                                                 YMIN=A(M1)
YMAX=YMIN
                                                                                                                    ( \L) = \L( \L) \L
                                                                                                                                       CONT INUE
                                                                                                                                               CONTINUE
                                                                                                                              A(LL)=F.
                                                                                                   LL=LL+N
                                                                       LL= J-N
                                                                                                            F=A(L)
                                                                                                                                                                                                                                                                                                        1+N=1W
                                                                L = I - N
                                                                                          N+7=7
                                     10
                                                                                                                              12
                                                                                                                                               15
                                                                11
                                                                                                                                                                                                      ບບບຂຶບບບ
          ပပပ
                                                                                                                                                          ပပပ
                                                                                                                                                                                                                                                                              ပပပ
```

FIND BASE VARIABLE PRINT POSITION PRINT LINE AND CLEAK, OR SKIP WRITE(6.2)XPR,(0UT(IZ),IZ=1,101) JP=((A(LL)-YMIN)/YSCAL)+1.0 IF(A(L)-XPR-.010) 50.50.70 YSCAL = (YMAX - YMIN) / I00.0FIND CROSS-VARIABLES IF(A(J)-YMIN) 28.26.26 IF(A(J)-YMAX) 40,40,30 OUT(JP)=ANG(J)
CONTINUE 50 D0 55 IX=1.101 55 OUT(IX)=BLANK XPR=XB+F*XSCAL DD 40 J=M1,M2 DUT(IX)=BLANK DO 60 J=1,MY WRITE(6,3) YMIN=A(J) $(\Gamma) = X = X = V$ רר=ר+ז*א GO TO 40 CONT INUE GO TO 80 XB = A(1)N~W=ZW M Y = M - 1 [+]=] 70 WRITE(80 I=I+1 F=[-] L = 1 [=] 26 28 30 4 5 60

ບບບ

ပပ

```
REAL*8 CPSI2,PSI(2),FK(61),FRB0(61),FRG(61),FRC0(61),FI(61),FIB0(6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ICDEXP(M*CDLDG(EPS))*CDPSI(M-LAMHA,2.D0*M,EPS*P0)/CDPSI(M-LAMHA,2.D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                *
()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       COMPLEX*16 LAMBA,M,PO,CPSI,COPSI,DCMPLX,CDEXP,CDLOG,EPS,DELTA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CPSI = DCMPLX(1.D0,1.D0)*CDEXP(-P0*(EPS-(1.D0,0.D0))/(2.D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           COMMON FR,FRB0,FRG,FRC0,FI,FIB0,FIG,FIC0,B0,G,C0,UR,UI,J,L
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                11),FIG(61),FICO(61),80,6,C0,UR(61),UI(61)
                                                                                              PRINT CROSS-VARIABLES NUMBERS
                                                                                                                                                                                                                                                                                                          FORMAT(1H1,60X,7H CHART ,13//)
                                                                                                                                                                                                              YPR(KN+1)=YPR(KN)+YSCAL*10.0
                                                                                                                                                                                                                                                           WRITE(6.8)(YPR(IP),IP=1.11)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    EPS = DCMPLX(K/3.D0.0.D0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               EQUIVALENCE (PSI(1), CPSI)
                                                                                                                                                                                                                                                                                                                                FORMAT(1H , F5.1, 5X, 101A1)
                                                                                                                                                                                                                                                                                                                                                                                                                               8 FORMAT(1H0,9X,11E10.3)
  86
                                                                                                                                                                                                                                                                                                                                                                               FORMAT(1H ,10X,101H.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     COMMON LAMBA,M,PU
IF(I-NLL) 45, 84,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FUNCTION CPSI2(K)
                                                                                                                                                                                        DO 90 KN=1,9
                                                                                                                                                                                                                                    YPR(11)=YMAX
                                                                                                                                                                   ÝPR(1)=YMIN
                                                                                                                                                                                                                                                                                                                                                        FORMAT(1H )
                                                                                                                                            WRITE(6.7)
                                               G0 T0 50
                       XPR=A(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          20*M, PO)
                                                                                                                                                                                                                                                                                    RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                     END
                         84
                                                                                                                                            86
                                                                                                                                                                                                                                                                                                                                                           m
                                                                                                                                                                                                                                                                                                                                                                                 ~
                                                                                                                                                                                                                 60
                                                                                                                                                                                                                                                                                                                                  2
                                                                                                                                                                                                                                                                                                             -
```

ပပပ

171

CPSI2 = PSI(1)**2+PSI(2)**2 RETURN .

Q

APPENDIX H

Method for Determining Phase Shifts and Differential Scattering Cross Sections for Pion-Nucleus Elastic Scattering

According to Goldberger and Watson the differential cross section in the barycentric coordinate system for scattering by a Coulomb plus a short range force is given by

$$H1 \quad \frac{d\sigma}{d\sigma} (\Theta) = |f(\Theta)|^2$$

where $f(\mathbf{\Theta})$, the total scattering amplitude, may be separated into a point Coulomb amplitude $f_c(\mathbf{\Theta})$ and the short range force amplitude $f_s(\mathbf{\Theta})$, i.e.

H2
$$f(\Theta) = f_c(\Theta) + f_s(\Theta)$$

where

H3
$$f_{c}(\Theta) = \sum_{l=0}^{\infty} \frac{a_{l+l}}{a_{lk}} (e^{a_{l}\nabla_{l}} - l) P_{l}(coe \Theta)$$

and

$$H^{4} = f_{g}(\Theta) = \sum_{l=0}^{\infty} \frac{2l+l}{2k} e^{2i\nabla_{l}} (e^{2i\nabla_{l}} - l) P_{l}(\cos \Theta)$$

The infinite series for the Coulomb amplitude may be summed to obtain

26

$$H5 \quad f_{c}(\Theta) = -\frac{N\hbar c}{2\kappa c \sin^{2} \Theta} e^{-2iN\ln(\sin \Theta) + 2i\nabla_{0}}$$

where

H6 N =
$$\frac{2\alpha}{kc} \left(\frac{E_1 E_2}{E_1 + E_2} \right)$$

$$H7 \quad e^{2i\sigma_k} = \Gamma(k+1+iN) / \Gamma(k+1-iN)$$

and k is the momentum of the pion in the barycentric system. The number of partial waves that must be included in the sum of $f_s(\Theta)$ depends on the energy of the pion. For $T_{\overline{\pi}} = 300$ MeV about 8 terms are needed for 1% accuracy. For lower energy less are needed. At higher energies more are needed.

The short range partial wave phase shifts are calculated by integrating the Klein-Gordon equation with the Coulomb potential for an extended charge distribution and the pion-nucleus strong interaction potential from the origin out to some point R beyond the range of the finite size nucleus Coulomb effects and the strong interaction potential. Outside the region where the short range potentials are important, the asymptotic form of the radial wavefunction is given by

$$H^{B} = R_{g}(r) \Big|_{r=R} = C \Big[F_{g}(N, kR) \cos \sqrt{g} + G_{g}(N, kR) \sin \sqrt{g} \Big]$$

H9
$$R'_{k}(r)|_{r=R} = C \left[F'_{k}(N,kR) \cos v_{k} + G_{k}(N,kR) \sin v_{k} \right]$$

where $F_{\mathbf{g}}(N,kR)$ and $G_{\mathbf{g}}(N,kR)$ are the regular and irregular Coulomb functions, the primes denote derivatives taken with respect to r, and C is a constant normalization factor needed to make $R_{\mathbf{g}}(\mathbf{r})$ match the Coulomb wavefunction.

An expression for $\mathbf{v}_{\mathbf{x}}$ may be obtained by dividing both equations by $\cos(\mathbf{v}_{\mathbf{x}})$ and dividing the second equation by the first to eliminate the normalization constant C, i.e.

HIO
$$\frac{R_{R}(r)}{R_{L}(r)}\Big|_{r=R} = \frac{F_{R}(N,kr) + \tan \overline{v_{R}} G_{R}(N,kr)}{F_{R}'(N,kr) + \tan \overline{v_{R}} G_{R}'(N,kr)}\Big|_{r=R} \equiv Y_{R}(r)\Big|_{r=R}$$

.

Solving for $tan(\mathbf{v}_{\mathbf{x}})$ gives

HII + An
$$V_R = \frac{F_R(N,kr) - Y_R(r) F_R(N,kr)}{-G_R(N,kr) + Y_R(r) G_R(N,kr)} | r=R$$

Using the identity for the scattering amplitude for the **Q**-th partial 146 wave

H12
$$a_{k} \equiv e^{\frac{2i\sqrt{k}}{2ik}} = e^{i\frac{\pi}{k}} \frac{\sin\sqrt{k}}{k} = \frac{1}{-ik+k \cot k}$$

obtain

H13
$$f_s(\Theta) = \sum_{l=0}^{\infty} (2l+l) \alpha_l e^{2i V_l} r_l(\cos \Theta)$$

APPENDIX I

Procedure for Averaging the Theoretical Differential Scattering Cross Section over the Finite Angular Resolution of a Physical Detector

For all pion-nucleus scattering experiments there is an effective detector angular resolution due to the finite size of the detector, the finite size of the target, and the associated detector electronics. In order to predict the experimentally measured differential cross sections, it is necessary to average the theoretical differential cross section over the effective angular acceptance of the detector, i.e.

$$\frac{\Theta_0 + 4/2}{d \nabla}$$
11 $\frac{d \nabla}{d \nabla} (\Theta_0) = \frac{1}{\Delta} \int \frac{d \nabla}{d \Omega} (\Theta) P(\Theta - \Theta_0) d\Theta$

$$= \frac{1}{\Delta} \int \frac{d \nabla}{d \Omega} (\Theta) P(\Theta - \Theta_0) d\Theta$$

where $P(\ominus - \ominus_0)$ is the effective angular response of the detector which is zero for $|\ominus - \ominus_0|$ greater than some angle $\Delta/2$. In general $P(\ominus - \ominus_0)$ is a function of the geometry of the detector and the target and the electronic detector circuit. Usually it is assumed to be symmetric about \ominus_0 .

For any region in Θ the differential scattering cross section may be expanded in a power series in Θ

$$\frac{d\sigma(\Theta)}{d\Omega} = A + B\Theta + C\Theta^2 + \cdots$$

Assuming $P(\ominus - \ominus_0)$ is symmetric about Θ_0 implying

$$I_{3} = \int_{\Theta_{0}-4/2}^{\Theta_{0}+4/2} B \Theta P(\Theta-\Theta_{0}) d\Theta = O$$

gives the result that the lowest order correction to the theoretical $\frac{dv}{dx}(\Theta)$ due to the finite angular resolution of a real detector depends on the quadratic or parabolic term in the expansion.

In order to estimate this correction assume as a first approximation that $P(\ominus - \ominus_0)$ is purely geometrical and can be represented by

Fitting the theoretical differential scattering cross section at three points Θ_0 , $\Theta_0 + \Delta/2$, $\Theta_0 - \Delta/2$ with a parabola, one may use Simpson's rule to obtain an average $\frac{d\nabla}{dR}(\Theta)$ in the angular range of the detector about Θ_0

This result gives a first approximation to the average differential scattering cross section as measured by a detector with a purely geometrical effective angular resolution of $\pm \Delta/2$.

An improved estimate of $\overline{d\Sigma(e_0)}$ may be obtained by approximating P($\Theta - \Theta_0$) by a parabola over the region of interest, i.e.

and using Simpson's three point integration formula to obtain

$$\frac{\overline{d\tau}(\Theta)}{dr} = \int_{\Theta_{\sigma}} \frac{d\overline{\tau}(\Theta)}{d\overline{r}}(\Theta) P(\Theta - \Theta) d\Theta \int_{\Theta_{\sigma}} \frac{\Theta_{\sigma} + \Delta \rho}{\rho(\Theta - \Theta_{\sigma})} d\Theta$$

17

$$= \frac{A}{6} \left[\frac{d\tau}{d\Omega} (\Theta_0 + 4/_2) P(4/_2) + 4 \frac{d\tau}{d\Omega} (\Theta_0) P(\Theta) + \frac{d\tau}{d\Omega} (\Theta_0 - 4/_2) P(-4/_2) \right] / \frac{A}{6} \left[P(4/_2) + 4 P(\Theta) + P(-4/_2) \right]$$
$$+ P(-4/_2) \left[+ P(-4/_2) \right]$$
$$= \frac{1}{5} \left[\frac{1}{2} \frac{d\tau}{d\Omega} (\Theta_0 + 4/_2) + 4 \frac{d\tau}{d\Omega} (\Theta_0) + \frac{1}{2} \frac{d\tau}{d\Omega} (\Theta_0 - 4/_2) \right]$$

where

18
$$P(4/3) = P(-4/3) = 1/2$$

 $P(0) = 1$

APPENDIX J

Procedure for Fermi-Averaging the TN Interaction Amplitudes

Many types of nuclear experiments indicate that the nucleons in the nucleus have a momentum distribution of some sort. Thus, in order to evaluate the πN interaction amplitudes which are a function of the relative momentum in the πN CM system in the pion-nucleus CM system, it becomes necessary to average in some way over the momentum of nucleons in the nucleus. For this work the Fermi gas model of the nucleus is used in order to obtain approximately the momentum distribution of the nucleons in the nucleus.

From the general form of the Lorentz transformation the relative momentum of a pion with laboratory momentum \vec{P}_{π} and energy E_{π} with respect to a nucleon bound in the nucleus with laboratory momentum \vec{P}_N and energy E_N is

$$J_{1} = \hat{P}_{\pi} = (\hat{P}_{\pi} E_{N} - \hat{P}_{N} E_{\pi}) / [m_{\pi}^{2} + m_{N}^{2} + 2E_{\pi}E_{N} + 2\hat{P}_{n} \cdot \hat{P}_{N}]^{\gamma_{2}}$$

where

where

$$J_{2} |\vec{p}_{n}^{CM}| = \left[\frac{\vec{p}_{n}^{2} E_{N}^{2} - 2\vec{r}_{n} \cdot \vec{P}_{N} E_{n} E_{N} + r_{N}^{2} E_{n}^{2}}{M_{n}^{2} + M_{N}^{2} + 2E_{n}E_{N} + 2\vec{r}_{n} \cdot \vec{r}_{N}}\right]^{1/2}$$

The average value of the TN interaction amplitude $\alpha_{2T,2J}(n^{em})$ defined in Appendix A may be defined by

$$J3 \qquad \overline{\alpha_{2T,2J}(\vec{P}_n^{CM})} \equiv \int f(\vec{P}_n) \alpha_{2T,2J}(\vec{P}_n, \vec{P}_n) d^3 P_N \\ \int f(\vec{P}_n) d^3 P_N$$

where $f(\vec{P}_N)$ is the probability of a nucleon in the nucleus having a momentum \vec{P}_N .

For the Fermi gas model of the nucleus

$$J_{4} = \frac{1}{\sqrt{2T_{1}^{2} J(\hat{P}_{n}^{0})}} = a_{1} \int_{-1}^{1} \int_{0}^{p_{4}} \alpha_{2T_{1}^{2} J}(\hat{P}_{n}, \hat{r}_{N}) P_{N}^{3} dP_{N} dC_{0} \theta_{nN} / \frac{4\pi}{3} P_{4}^{3}$$

where P, is the Fermi momentum defined by

J5
$$P_{f} = \left(\frac{3\pi}{2} e\right)^{\gamma_3}$$

and *C* is the density of nucleons in the nucleus. For a first approximation *C* is taken to be the uniform density of the nucleus with the finite size of the proton removed as determined from electron scattering experiments.

The $\alpha_{gT,gJ}(\overline{F_n}^{SM})$ are the quantities which appear in all pionnucleus potentials derived from multiple scattering theory.

APPENDIX K

Coordinate Transformations from the Laboratory To the Barycentric Frame of Reference

Consider the scattering in the laboratory frame of reference of two particles having masses M_1 and M_2 . The incident momenta and energies of the particles are $\overline{P}_1 \neq 0$, $\overline{P}_2 = 0$, and

K1
$$E_{i,P_1} = (M_i^2 c^4 + P_i^2 c^2)^{y_2}$$
 $E_{a,P_2} = M_a c^2$

The total energy of the two particles is

$$K^2 = E_1, P_1 + E_2, P_2$$

When the scattering is completed the two particles emerge from the region of interaction with momenta \vec{k}_1 and \vec{k}_2 and energies $\epsilon_{i,k}$, and ϵ_{2,k_2} . An element of solid angle into which \vec{k}_1 is directed may be expressed as

where the polar angle Θ_{L} and the azimuthal angle ϕ_{L} are measured with respect to a polar axis defined by the direction of \vec{P}_{1} .

In the barycentric coordinate system particles 1 and 2 have momenta $\stackrel{\bullet}{\rightarrow}$ and $\stackrel{\bullet}{\rightarrow}$ and energies $\epsilon_{i,+}$ and $\epsilon_{2,+}$ prior to the scattering. The total energy of the particles is

 K^{4} E = E , + E ,

After scattering the two particles will have momenta $\frac{1}{4c}$ and $-\frac{1}{4c}$. For elastic scattering conservation of energy requires that $|\frac{1}{4c}| = |\frac{1}{4}|$ in the final asymptotic state. An element of solid angle into which $\frac{1}{4c}$ is directed may be expressed as

$$K_5 = d\phi_8 \sin \theta_8 d\theta_8$$

where the polar axis is defined by the direction of $\hat{\mathbf{A}}$. Since $\hat{\mathbf{P}}_{1}$ and $\hat{\mathbf{A}}$ are parallel, this axis is the same as that about which $(\mathbf{Q}, \mathbf{P}_{1})$ are measured.

26 According to Goldberger and Watson the differential cross sections in the laboratory and barycentric frames of reference are related by

$$\frac{q\sigma}{q\Delta} = 2\left(\frac{3\sigma}{3\sigma}\right)\frac{q\sigma}{q\Delta}$$

where $J(\frac{\partial \Omega}{\partial \Omega_{L}})$ represents the factor for transforming the differential cross section from the barycentric to the laboratory frame of reference. Using the Lorentz transformation equations of Chapter 6 of Goldberger $\frac{26}{26}$ and Watson, one obtains a simplified form of their expression for $J(\frac{\partial \Omega_{L}}{\partial \Omega_{L}})$ which is

$$K7 \qquad \overline{J\left(\frac{\partial \Omega_{B}}{\partial \Omega_{L}}\right)} = \frac{k_{1}^{2}/k^{2}}{\frac{k_{1}E_{L}}{k_{E_{B}}} - \frac{\varepsilon_{11}k_{1}}{M_{A}c^{2}} \cos \Theta_{L}}$$

where

 $K^{8} = \left(M_{1}^{2}C^{4} - M_{a}^{2}C^{4} + 2M_{a}C^{2}E_{L}\right)^{y_{a}}$ $Ac = M_{a}C^{2}\left(\frac{E_{L}^{2}}{E_{a}^{2}} - 1\right)^{y_{a}}$

$$k_{1}C = \frac{\varepsilon_{1,k}}{\varepsilon} B \cos \Theta_{L} + \sqrt{k^{2}c^{2}(1-B^{2})} - M_{1}^{2}c^{4}B^{2}(1-\cos^{2}\Theta_{L})}$$

$$l - B^{2}\cos^{2}\Theta_{L}$$

$$\varepsilon_{1,k} = (k^{2}c^{2} + M_{1}^{2}c^{4})^{\frac{1}{2}}$$

$$\varepsilon_{2,k} = (k^{2}c^{2} + M_{2}^{2}c^{4})^{\frac{1}{2}}$$

$$B = kc / \varepsilon_{2,k}$$

$$\varepsilon = \varepsilon_{2,k} / M_{2}c^{2}$$

The transformation of angles from one reference frame to the other is obtained from the Lorentz transformation equations to be

$$K9 \quad \cos \Theta_{L} = \frac{\chi}{k_{1}} \left(-k \cos \Theta_{B} + \frac{B}{c} \in I_{1} k \right)$$

$$k_{1} \sin \Theta_{L} = -k \sin \Theta_{B}$$

$$\cos \Theta_{B} = \left(\frac{\epsilon_{1} k_{1}}{r} - \epsilon_{1} k \right) / B \cdot k c$$

APPENDIX L

Method of Solving the Klein-Gordon Equation For Pion-Nucleus Scattering

The time-independent Klein-Gordon equation which describes pionnucleus scattering in the barycentric coordinate system may be written 26 in the form

$$\Box \begin{bmatrix} \frac{h^{2}}{2M_{R}} \nabla^{2} + (E - V_{c}(r))^{2} - M_{n}^{2}c^{4} \\ \Im M_{n}c^{2}(1 + \frac{E - V_{c}(r)}{M_{M_{N}c}c^{2}} - \frac{Y_{n}^{2}c^{2}}{4M_{N}vc}c^{4}) \end{bmatrix} \Phi(r) = V_{sT}(r) \overline{\Phi}(r)$$

where \mathbf{v} is the pion-nucleus relative radial coordinate, \mathbf{E} is the total pion energy, $V_{\mathbf{c}}(\mathbf{v})$ is the pion-nucleus Coulomb potential, $V_{\mathbf{sr}}(\mathbf{v})$ is the optical model pion-nucleus potential, $\mathcal{M}_{\mathbf{R}}$ is the mass of the pion, and $\mathcal{M}_{\mathbf{Nvc}}$ is the mass of the nucleus. The total pion energy \mathbf{E} in the barycentric coordinate system is determined from the total pion energy in the lab using Appendix K. For nuclei with only small deviations from spherical mass and charge distributions, one assumes that the orbital angular momentum \mathbf{A} is a good quantum number. Using separation of variables in the wavefunction

$$12 \qquad \Phi(\mathbf{r}) = K_{\mathbf{k}}(\mathbf{r}) \, Y_{\mathbf{k},\mathbf{m}}(\boldsymbol{\Theta},\boldsymbol{\phi})$$

one obtains the radial equation

$$L_{3}\left[\frac{1}{r}\frac{\partial^{2}}{\partial r^{2}}r - \frac{l(l+1)}{r^{2}} + \frac{(E-k(r))^{2}-M_{R}^{2}c^{4}}{2M_{R}c^{2}\left(1+\frac{E-k(r)}{M_{R}c^{2}}-\frac{m_{R}^{2}c^{2}}{4M_{R}^{2}c^{4}}\right)}\right]R_{2}(r) = V_{ST}(r)R_{2}(r)$$

Making the substitution

$$I^{\perp} \qquad \phi_{\ell}(\mathbf{r}) = \mathbf{r} \, \mathcal{R}_{\ell}(\mathbf{r})$$

one obtains for L3

L5
$$\phi_{\chi}^{"}(r) = \left[\frac{l(l+1)}{r^{2}} - \frac{(E-V_{c}(r))^{2} - M_{\pi}^{2}c^{4}}{K^{2}c^{2}(1 + \frac{E-V_{c}(r)}{M_{M_{w}}c^{2}} - \frac{M_{\pi}^{2}c^{2}}{r^{2}}) - \frac{2M_{\pi}c^{2}}{K^{2}c^{2}}V_{sT}(r)\right]\phi_{\chi}(r)$$

For a realistic extended nuclear charge density $\mathbf{k}(\mathbf{v})$ is quite complicated, and the equation for $\phi_{\mathbf{k}}(\mathbf{v})$ must be solved numerically. However, it is possible to separate the solution for all of space into two regions, i.e. an inner region in which the Coulomb potential due to the finite size of the nuclear charge distribution and the pion-nucleus strong interaction potential are important, and an outer region in which only the electromagnetic potential for a point source is important. The wave equation for $\phi_{\mathbf{k}}(\mathbf{v})$ can be solved exactly in the outer region for the Coulomb potential of a point source. By using the logarithmic derivative of the outer wave function at the boundary of the two regions as a boundary condition on the inner wavefunction, it is possible to greatly reduce the region over which the wave equation must be numerically integrated. In practice the inner region need be only a few nuclear radii for high accuracy in the solution.

For the outer region the Coulomb potential has the form

$$L6 \quad V_{c}(\mathbf{M}) = -\frac{2\mathbf{e}^{2}}{r} = -\frac{2\alpha\hbar c}{r}$$

Writing out all powers of \checkmark explicitly for equation L5 except for the $V_c(\mathbf{r})$ term in the denominator obtain

$$L7 \quad \phi_{2}^{"}(r) + \left[\frac{-l(l+1) + \frac{2^{2}\alpha^{2}}{(1 + \frac{E-V_{c}(r)}{M_{NNC}c^{2}} - \frac{R_{1}c^{2}}{4M_{NNC}c^{4}}}{r^{2}} \right]$$

$$-\frac{2E2\alpha}{r\hbar c} \frac{1}{1+\frac{E-V_{c}P}{M_{r}N_{c}c^{2}}} - \frac{m^{2}c^{2}}{4M_{r}N_{c}c^{4}}$$

+
$$\frac{E^{2} - M_{n}^{2}c^{4}}{h^{2}c^{2}(1 + \frac{E - V_{n}(v)}{M_{m}c^{2}} - \frac{\gamma_{n}^{2}c^{2}}{\gamma_{m}^{2}m_{m}c^{2}})} \int \phi_{\ell}(v) = 0$$

Let

L8
$$S = \frac{2i}{hc} \left[\frac{E^2 - Mn^2 c^4}{1 + E - Vc(V)} - \frac{Pn^2 c^2}{4Mn^2 c^4} \right]^{y_a}$$

19
$$i\eta \equiv \frac{\partial E Z }{\delta hc} \frac{1}{1 + \frac{E - k(h)}{Mmc^2} - \frac{h^2 c^2}{4Mm^2 c^4}}$$

Substituting these definitions into equation L7 obtain

110
$$\phi_{\ell}''(r) + \left[-\frac{5^2}{4} + \frac{ih}{r} - \frac{\ell(\ell+1)}{r^2} + \frac{2^2\alpha^2}{r^2} - \frac{1}{1 + \frac{E-Vc(r)}{M_{MRC}c^2} - \frac{hc^2}{4M_{MRC}^2}} \right] \phi_{\ell}(r) = 0$$

Dividing by S^2 , letting e = Sr, and replacing $f_{\mathbf{x}}(\mathbf{r})$ by $f_{\mathbf{x}}(\mathbf{e})$ obtain

$$111 \quad \phi_{g}''(e) + \left[-\frac{1}{4} + \frac{in}{e} - \frac{l(g+i) - \frac{2}{3}k^{2}}{(1 + \frac{E - V_{c} \theta}{M_{Mu}} - \frac{hic^{2}}{m_{Mu}})} \right] \phi_{g}(g) = 0$$

Equation L11 resembles Whittaker's equation which has the form

112
$$W_{g}'(e) + \left[-\frac{1}{4} + \frac{in}{e} + \frac{1}{4} - \frac{1}{4^{2}} \right] W_{g}(e) = 0$$

143

According to Whitaker and Watson the solution to this equation has the form

113
$$W_{2}(e) = F_{2}(e) \cos v_{2} + G_{2}(e) \sin v_{2}$$

where $F_{\mathbf{x}}(\mathbf{c})$ and $G_{\mathbf{x}}(\mathbf{c})$ are the regular and irregular Coulomb wavefunctions respectively, and $\nabla_{\mathbf{x}}$ is the phase shift. The normalized Coulomb wavefunctions may be defined by

114
$$F_{e}(e) = \sqrt{\frac{2}{\pi}} \frac{Y_{e}(e) + Y_{e}^{*}(e)}{2} = \sqrt{\frac{2}{\pi}} \frac{Real}{Y_{e}(e)}$$

115
$$G_R(e) = \sqrt{\frac{2}{71}} \quad \frac{Y_R(e) - Y_R(e)}{2i} = \sqrt{\frac{2}{71}} \quad \text{Imaginary}(Y_R(e))$$

where

116
$$Y_{2}(e) \equiv i e^{i\pi R/2} e^{i\pi R/2} e^{n\pi/2} e^{m} \Psi(m-in, 2m, e)$$

$$117 e^{2i\nabla k} \equiv \Pi(k+1+i\eta) / \Pi(k+1-i\eta)$$

118 $M = \mu + \gamma_2$

119
$$\mu = \frac{1}{2} \left[(21+1)^2 - 42^3 \alpha^2 / (1 + \frac{E - k_c(r)}{M_{Muc} c^2} - \frac{Pn c^2}{4M_{Muc} c^4}) \right]^{\gamma_2}$$

 ∇_{λ} is the Coulomb phase factor and $\Psi(M-i\eta, 2/n, \ell)$ is the confluent 142 hypergeometric function of the second kind.

From I13 one may write an expression for $W_{\mathbf{x}}(\mathbf{e})$, i.e.

120
$$W_{g}'(e) = F_{g}'(e) \cos \pi + G_{g}'(e) \sin \pi$$

Dividing equation L20 by L13, one obtains an expression for the logarithmic derivative $Y_{\ell}(c)$

121
$$V_{\ell}(e) \equiv \frac{W_{\ell}(e)}{W_{\ell}(e)} = \frac{F_{\ell}(e) + \tan \nabla_{\ell} G_{\ell}(e)}{F_{\ell}(e) + \tan \nabla_{\ell} G_{\ell}(e)}$$

Equation 121 may be solved for $\tan v_{\chi}$ to obtain

122
$$\tan v_{\bar{k}} = \frac{V_{\bar{k}}(e) F_{\bar{k}}(e) - F_{\bar{k}}(e)}{-V_{\bar{k}}(e) G_{\bar{k}}(e) + G_{\bar{k}}(e)}$$

Since the energy of the pion is known when solving equation L5, one can simply integrate numerically from the origin out to the boundary $\mathbf{e} = \mathbf{e}_{\mathbf{e}}$ between the interior and exterior regions. Near the origin one uses the boundary conditions

$$\phi_{R}(e) \stackrel{e_{4}(e)}{=} e^{R+1}$$

124
$$\phi'_{\ell}(e) = \frac{\ell+1}{e} \phi_{\ell}(e)$$

to start the integration.

The value of $\varphi_{\varrho}(\varrho)$ is not properly normalized by this procedure, but the boundary conditions at $\varrho_{\varrho}(\varrho)$ may be used to normalize $\varphi_{\varrho}(\varrho)$. Using the numerical solution for $\varphi_{\varrho}(\varrho)$ and $\varphi'_{\varrho}(\varrho)$ at $\varrho_{\varrho}(\varrho)$, one can evaluate the logarithmic derivative $\gamma_{\varrho}(\varrho_{\circ})$, i.e.

125
$$Y_{R}(e_{0}) = \frac{\varphi_{R}'(e)}{\varphi_{R}(e)} | e = e_{0}$$

From L22 tan V_{2} may be obtained. Once tan V_{2} is known the normalized wavefunction may be constructed at $C = C_{0}$ from

126
$$N_{\ell} \phi_{\ell}(\mathbf{e}_{0}) = F_{\ell}(\mathbf{e}_{0}) \cos v_{\ell} + G_{\ell}(\mathbf{e}_{0}) \sin v_{\ell}$$

127
$$\sin \sqrt{e} = \left[\sqrt{e(e)} F_e(e) - F_e(e) \right] / P \left| e = ee \right]$$

$$L28 \quad \cos v_{\ell} = \left[-\gamma_{\ell}(\ell) \, \mathcal{G}_{\ell}(\ell) + \mathcal{G}_{\ell}(\ell)\right] / P \left| \ell = \ell_{0}$$

129
$$P = \left[\left(-\chi_{\ell}(e) F_{\ell}(e) + F_{\ell}'(e) \right)^{2} + \left(\chi_{\ell}(e) G_{\ell}(e) - G_{\ell}'(e) \right)^{2} \right]$$

The method of Appendix H is used to calculate the pion-nucleus differential cross section from the set of phase shifts ∇_{ℓ} obtained above. Then the cross section is averaged over the finite angular resolution of the physical detector using the method given in Appendix I. These cross sections may then be compared to the experimental data as is done in this work.

It is also possible to vary the parameters in the pion-nucleus strong interaction potential to fit the pion-nucleus differential scattering cross section data at various energies. Then these energy dependent best fit parameters may be compared to those predicted from TAN and TANN interaction amplitudes.

In order to obtain a set of pion-nucleus strong interaction potential parameters that will fit the experimentally observed pionnucleus differential scattering cross section data, it is desirable to perform some sort of weighted or constrained least squares fit to the data. Since the differential cross section is a nonlinear function of the potential parameters and the parameters are strongly correlated, most nonlinear least square fitting procedures are not suitable. The most satisfactory procedure this investigator has found is to use an ordered nonlinear least square fit in which the variables are fit two at a time. By carefully choosing the order in which the variables are fit to be $\text{Real}(c_0)$, $\text{Imaginary}(c_0)$, $\text{Real}(b_0)$, $\text{Imaginary}(b_0)$, and finally the overall normalization of the data, one can to a large extent remove the effect of correlations between the parameters and obtain fitted values in agreement with theoretical values. The program for doing this is given in Appendix M, but the results of this procedure are not presented in this work.

. .

APPENDIX M

Fortran Computer Program

For Solving the Klein-Gordon Equation for Pion-Nucleus Scattering And Calculating the Elastic Differential Scattering Cross Section

In this appendix is listed the actual Fortran computer program used to predict the pion-nucleus elastic differential scattering cross sections for $T_{\pi} \leq 280$ MeV. The notation in the program conforms closely to that of Appendixes F and L. Due to the extensive comments one can easily follow the logic of the program.

This program will also perform a least squares fit on the parameters in the potential if one removes the appropriate

GO TO 1

card from the main program. Due to the strong correlation of the parameters in the potential, this least square fitting program may give spurious results.

COMMON VC, RHO, DRHO, DDRHO, YK, UNC, THETA, DTHETA, Z, A, S, MASS, EL, RO, RU, R DRHD(61),DDRHD(61),FK0(40),FK1(40),DFKX(4,40),M(4,4),F(4),DX(4),UN FORMAT(4X, 'RBO',8X, 'IBO',8X, 'RBI',8X, 'IBI',8X, 'ISO',8X, 'ICO',8X, 'RCO',8X, 'R DIMENSION YK(40),UNC(40),THETA(40),DTHETA(40),X(4),VC(61),RHD(61), [B0, IB0, RB1, IB1, RC0, IC0, RC1, IC1, RD0, ID0, RD1, ID1, NDRM, NUM, NL, INTRVL, FORMAT(NUC.',6X,'Z',9X,'A',7X,'S',6X,'L',6X,'MASS',9X,'EL',9X,'R I', 10X, 'RD', 9X, 'CC', 9X, 'CCC'/1X, A6, D9.2, 1X, D8.2, 1X, D8.2, 1X, I2, 1X, D1 INTEGER INTRVL, N, L, WUM, NL, LW, I, NP, J, K, IPIP, M1(4), L1(4), INDEX, IFIG [C1', 8X, IC1', 8X, 'NORM'/IX, 9(D10.3, 1X)/4X, 'RD0', 8X, 'ID0', 8X, 'RD1', WRITE(6,907) RB0,IB0,RB1,IB1,RC0,IC0,RC1,IC1,N0RM,RD0,ID0,RD1,ID1 READ IN INFORMATION ON NUCLEUS AND DIFFERENTIAL SCATTERING CROSS READ (5,904) NUM,NL,LW,(YK(I),UNC(I),THETA(I),DTHETA(I),I=1,NUM) FORMAT(A6,D7.1,D8.2,D7.1,I2,D13.8,D9.3,D10.3,D9.3,D9.3,D9.3) READ(5,906) RB0, INO, RB1, IN1, RC0, ICO, RC1, IC1, RD0, ID0, RD1, ID1 FORMAT(' INTRVL = ', I3, ' N = ', I3/(' DELTA = ', DI0, 3))24.8,1X,09.3,1X,011.5,1X,09.3,1X,010.3,1X,010.3) WRITE(6,903) NUC,Z,A,S,L,MASS,EL,K,RD,CC,CCC READ(5,902) NUC, Z, A, S, L, MASS, EL, R, RU, CC, CCC 1 • NP) READ(5,900) INTRVL, N, (DELTA(I), I = 1, NP) II WRITE(6,901) INTRVL,N,(DELTA(I),I FORMAT(312/(1X,4(D10.3,1X))) [F(RB0.EQ.0.D0) GU TO 1000 28X, 'ID1'/1X,4(D10.3,1X)) IMPLICIT REAL*8(A-Z) FORMAT(I3,I3,5D10.3) 2N, LW, NP, INDEX, IFIG FORMAT(1X,4D14.7) 2CDX(4),DELTA(4) [FIG = IFIG+1]IFIG = IFIG+1NDRM = 1.0018 SECTION 11 = dN IFIG 906 006 901 907 902 903 904 $\cup
 \cup
 \cup$

= ',I3,' NL = ',I3,' LW = ',I3/3X,'DSIGMA',6X,'UNC',8 IF(A.EQ.4.DI) CALL POT(RO.CC.R.CCC.RO.Z.VC.RHO.DRHO.DDRHO.N.INTRVL IF(R.EQ.O.DO) CALL POTMHD(CC.CCC.A.RD.Z.VC.RHD.DRHD.DDRHD,N.INTRVL WRITE(6,905) NUM,NL,LW,(YK(I),UNC(I),THETA(I),DTHETA(I),I=1,NUM) IF(A.EQ.4.DO) CALL POTHE4(Z.KO.VC.KHO.DKHO.DDRHO.N.INTRVL,RU) WRITE(6.6) Z.A L CONSTRUCT THE SYMMETRIC MATRIX M FOR NORMAL EQUATIONS AND F(I) = F(I)+(YK(J)-FKO(J))*DFKX(I,J)/UNC(J)**2 DFKX(I,J) = (FKI(J)-FKO(J))/(X(I)*DELTA(I))[X,'THETA',7X,'DTHETA'/(]X,4(D10.3,1X))] = ', 014.7X(I) = X(I) + (I - D0 + DELTA(I))X(I) = X(I)/(I.00+DELTA(I))FORMAT(' Z = ', D14.7, ' ACALL EVAL(FK1,CHI2,X) CALL EVAL(FK0, CHI0, X) DO IO J = 1, NUMDO 15 J = 1, NUMDO 16 J = 1, NUMDO IO I = 1, NPDO 20 I = 1,NP DO 20 K = 1.NP= 0.00 FURMAT(NUM X(1) = 1.00 X(2) = 1.00 X(3) = 1.00 X(4) = 1.00 F(I) = 0.00INDEX = 0INDEX = , RU, A) G0 T0 1 NP II O 4 M(I,K) • RU) -= dN 905 ິ - ບບບ 15 Ś ഹ

```
l RCO = ',D14.7,' +- ',D14.7/' ICO = ',D14.7,' +- ',D14.7/' NORM =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ----
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IF(DABS(CHI20-CHI0).LT..01D0.DR.INDEX.GT.4) GD TD
                                                                                      CONSTRUCT VECTOR OF CORRECTIONS TO INITIAL GUESS
M(I,K) = M(I,K) + DFKX(I,J) + DFKX(K,J) / UNC(J) + + 2
                                                                                                                                                                                                                                               IF(-DX(J)/X(J),GT,I,D0) DX(J) = -X(J)/2,D0
                                                                                                                                                                                                             DX(J) = DX(J) + M(J,I) + F(I)/3,D0
                                                  CALL MINV(M,NP,D,M1,L1,NPNP)
                                                                                                                                         ((L, L) = DSORT(M, J, J))
                                                                                                                                                                                                                                                                                                                                    2', D14.7, ' +- ', D14.7/)
                                                                                                                                                                                                                                                                                                                                                       CALL EVAL(FK0, CHI20, X)
                                                                                                                                                                                                                                                                                                                                                                                         = RB0 * UNCDX(1)
                                                                                                                                                                                                                                                                                                                                                                                                                            = IBO#UNCDX(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                             UNCO = RCO*UNCDX(3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              UNC2 = IC0*UNCDX(4)
                                                                                                                                                                                                                                                                  (\Gamma) X G + (\Gamma) X = (\Gamma) X
                                                                                                                         D(1 21 J = 1 + NP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    INDEX = INDEX+1
                                                                                                                                                                                         DO 25 I = 1, NP
                                                                                                                                                                                                                             D0 30 J = 1, NP
                                                                                                                                                          D(1, 25 J = 1.NP
DX(J) = 0.D0
                                                                                                                                                                                                                                                                                                                                                                       B0 = RB0 * X(1)
                                                                                                                                                                                                                                                                                                                                                                                                         B2 = IH0 * X(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                          CO = RCO * X(3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C2 = IC0 + X(4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CHIO = CHI20
                                 NPNP = NP*NP
                                                                                                                                                                                                                                                                                 WRITE(6
                CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GO TO 5
                                                                                                                                                                                                                                                                                                                                                                                         UNBO
                                                                                                                                                                                                                                                                                                                                                                                                                           UNB2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      STOP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1000
                                                                                                                                                                                                                                                                                                    913
 16
20
                                                                                                                                                                                                                                                                  30
                                                                                                                                                                                                             25
                                                                                                                                         21
                                                                      ں ں ں
```

DVST(N) = -VSNORM*DK2HB2*(].D0+].5D0*W-2.5D0*W*(B/BB)**2+W*(B/BB DDVST(N) = -VSNORM*((DDR2B2-DR2BB2**2)*(1.D0+1.500*W-2.5D0*W*(B/B VST(N) = VSNDRM*(1.D0+1.5D0*W*(1.D0-(B/BB)**2)+W*(B/BB)**2*R2BB2) [B)**2+W*(B/BB)**2*R2HB2)+DR2HB2**2*W*(B/BB)**2)*DEXP(-R2BB2) SUBROUTINE POTMHO(W,B,A,RO,Z,VC,VST,DVST,DDVST,M,INTRVL,RU) R() = DSQRT((5.D0/3.D0)*H*B*((DABS(2)-2.D0)/DABS(2)+1.5D0)) CALCULATION OF THE STRONG INTERACTION DENSITY VST AND ITS = 2*A /(PI**1.5D0*BB**3*(2.D0+3.D0*W)) = -2.00*ZALPHA*HBARC/(DSORT(PI)*B) DIMENSION VST(M), DVST(M), DDVST(M), VC(M) IMPLICIT REAL*8(A-H, 0-\$), INTEGER(I-N) EPS = (N-1.00)/(INTRVL*1.00)+1.0-6INITIALIZATION OF PARAMETERS DS0RT(2.D0/3.D0)*.7200 DERIVATIVES DVST AND DDVST. DK2BB2 = 2.D0*K0*EPS/BB**2 [] **2*R2BB2)*DEXP(-R2BB2) R2BB2 = (R0 * EPS/BB) * *2ZALPHA = Z/137.0388D0BB = DSORT(B*B-AP*AP)PI = 3.1415926535900DDR2B2 = 2.00/BB**2HBARC = 197.3200*DEXP(-R2BB2) DO 20 N = 1.MT0L = 1.0-6VCNORM V SNORM A P =

 $\cup \cup \cup \cup$

ပပပ

CALCULATION OF THE COULOMB POTENTIAL

ပပပ

R2B2 = (R0 + EPS/B) + 2

```
Z,RO,VC,RHO,DKHO,DDRHO,M, INTRVL,RU)
                                                                                                                                       VC( N) = VCNORM*(-W/(2.DO+3.DO*W)+SUM)*DEXP(-R2B2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               RU =DSQRT((5.D0/3.D0)*(1.67D0**2-AP**2))
                                                                                                                                                                                                                                                                                                DIMENSION RHO(M), DRHO(M), DDRHO(M), VC(M)
                                                                                                                                                                                                                                                                            IMPLICIT REAL*8(A-H.O-Z). INTEGER(I-N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         A = 1.00-64.00*(A0/B0)**12*135135.00
                                                                                                                   IF(DABS(TERM/SUM).GT.TDL) G0 T0 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  = 64.D0*(A0/B0)**12*205920.D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           B = 64 \cdot D0 + (A0/B0) + 12 + 540540 \cdot D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       =-64.D0*(A0/B0)*#12*34320.D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         = 64.D0*(AD/BD)**12*2496.D0
                                                                                                                                                                                                                                                                                                                                        INITIALIZATION OF PARAMETERS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              = -64.D0*(A0/B0)**12*64.D0
                                                                                                                                                                                                                                                                                                                                                                               = DS0RT(2.D0/3.D0)*.72D0
                                                         TERM = TERM*2.00*R2B2/K
                                                                                                                                                                                                                                                                                                                                                                                                                                        = DSORT(B0*B0-AP*AP)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ZALPHA = Z/137.0388D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                         = 3.14159265359D0
                                                                                                                                                                                                                                                           SUBROUTINE POTHE4(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              HBARC = 197.3200
                                                                              SUM = SUM+TERM
                                                                                                                                                                                                                                                                                                                                                                                                                      = 1.36200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TOL = 1.0-6
FERM = 1.00
                                                                                                                                                                                                                                                                                                                                                                                                    .316D0
                  SUM = TERM
                                                                                                  K = K+2
                                                                                                                                                          RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  8-
1-
1-
                                         m
                                                                                                                                                                                                                                                                                                                                                                                                    A0 =
                                          "
"
                                                                                                                                                                                END
                                                                                                                                                                                                                                                                                                                                                                                                                                        88
                                                                                                                                                                                                                                                                                                                                                                                                                                                          μ
                                                                                                                                                                                                                                                                                                                                                                                                                        80
                                                                                                                                                                                                                                                                                                                                                                                ЧA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ں
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ٥
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Ľ.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ى
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ш
```

ပပပ

20

10

196

ပ
= RNORM*DEXP(-R28R2)*(1.00-64.00*(AD/BB)**12*(135135.00-540 540.00*R2BB2+540540.00*R2BB2**2-205920.00*R2BB2**3+34320.00*R2BB2* DRHO(N) = -2.D0*R0*EPS/BB**2*RHO(N)-128.D0*DEXP(-R2BB2)/((DS0RT(PI [])*BB)**3*RO*EPS)*(-2.00*540540.D0*R2BB2+4.D0*540540.D0*R2BB2**2-6. CALCULATION OF THE STRCNG INTERACTION DENSITY RHD AND ITS VCNNRM = -2.DO*ZALPHA*HBARC/DS0RT(PI) 2*4-2496.D0*R2BB2**5+64.D0*R2BB2**6)) 35+12.D0*64.D0*R2BB2**6)*(A0/BB)**12 EPS = {N-1.D0}/(INTRVL*1.D0)+1.D-6 = 2.00/(DS0RT(PI)*BB)**3 DERIVATIVES DRHO AND DDRHO = (R0*EPS/BB)**2 DO 20 N = 1.4MRHO(N) RNORM **R2BB2**

 $\cup \cup \cup$

2D0*205920.D0*K2HB2**3+8.D0*34320.D0%K2HB2**4-10.D0*2496.D0*K2HB2** DDRHO(N) = -2.D0/HB**2*(2.D0*KD*EPS*DRHO(N)+(1.D0+2.D0*R2HB2)*RHO(

N)+64.D0*DEXP(-K2BB2)/(DS0KT(PI)*8B)**3*(-2.D0*540540.D0+12.D0*540 2540.00*R2BB2-30.00*205920.00*R2BB2**2+56.00*34320.00*K2B2**3-90.0 30*2496.D0*K2BB2**4+132.D0*64.D0*K2BB2**5)*(A0/BB)**12)

CALCULATION OF THE COULOMB POTENTIAL

ບບບ

```
[F(DABS(TERM/SUM).GT.TOL) GO TO 10
                                                                  TERM = TERM*2.D0*R2H2/K
RB = RO = RO = RO
                                                                              SUM = SUM+TERM
              = RB**2
                                       SUM = TERM
                           RB
                                                                                            K = X+2
                             #
                                                     ŝ
                          TERM
              R2B2
                                                      ₩
1
```

10

20

VC(N) = VCNORM*DEXP(-R2B2)/(RO*EPS)*((A+3.D0*B/2.D0+15.D0*C/4.D0+1 05.D0*D/8.D0+946.D0*E/16.D0+10395.D0*F/32.D0+135135.D0*6/64.D0)*SU 2M-(B/2.D0+7.D0*C/4.D0+57.D0*D/8.D0+ 561*E/16.D0+6555.D0*F/32.D0+1 416.D0+22005.D0*6/32.D0)*KB**3-(D/2.D0+15.D0*E/4.D0+213.D0*F/8.D0+3 312095。D0*6/64。D0) *KB-(C/2。D0+11。D0*D/4。D0+123。D0*E/8。D0+1545。D0*F/

5249。D0*6/16。D0)*RB**5-(E/2。D0+19。D0*F/4。D0+327。D0*6/8。D0)*RB**7-(F DEXP, DSORT A/(4.D0*PI*(PI*PI*C0*C0*R0/3.D0+R0*3/3.D0-2.D0*C0**3* RU = DSQRT(5.D0/3.D0*(R0**5/5.D0+2.D0/3.D0*C0*C0*P]*P]*R0**3+7.D0/ REAL*8 R0,C0,R,C,Z,VC(M),VST(M),PI,SUM,DE1,DE2,TERM,TERM1,TERM2, SUBROUTINE PDT(R0,C0,R,C,RR,Z,VC,VST,DVST,DDVST,M,INTRVL,RU,A) CALCULATION OF COULOMB POTENTIAL NORMALIZATION CONSTANT VCNORM CALCULATION OF THE STRONG INTERACTION POTENTIAL NORMALIZATION ITERM3+HBARC,ZALPHA,VSNOKM,VCNORM,EPS,SUMM,TERMM,RU,NN, 2,DABS,DVST(M),DDVST(M),EX,A,RR 115.D0*(C0*PI)**4*R0-24.D0*C0**5*SUMM)*VSNORM*4.D0*PI/A) 6/2.00+23.00*6/4.00)*KB**9-6/2.00*KB**11) [F(DABS(TERMM/SUMM).GT.1.D-6) G0 T0 2 [F(DABS(TERM/SUM).GT.1.D-6) G0 T0 6 PI = 3.1415926535900TERM1/NN**5 DEI = -DEXP(-RO/CO)TERM = TERM1/NN**3SUMM = SUMM+TERMM TERM1 = TERM1*DE1 CONSTANT VSNORM SUM = SUM+TERM $OQ \cdot I + NN = NN$ SUMM = 0.00TERMI = DEISUM = 0.00NN = 1.00V SNORM = RETURN SUM)) END

2

Q

ပပပ

 $\cup
 \cup
 \cup$

198

and a second of

```
IF(DABS(TERM/SUM).6T.1.0-15) G0 T0 20
VCNORM = -ZALPHA*HBARC/(PI*PI*C*C*R/3.00+R**3/3.00-2.00*C**3*SUM)
                                                                                                                                                                                                                                                                                                                                                                                                     If( N.EQ.1) DVST( N) = 0.D0
DDVST( N) = DVST( N)/CO*(1.D0-2.D0*EX/(1.D0+EX))
                                                                                                                                                                                                                                                                                                                                           VST( N) = VSNORM/(1.D0+DEXP((EPS-1.D0)*R0/C0))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        IERM = TERM1/NN**3+TERM2/NN**2+TERM3/NN**3
                                                                                                                                                                                                                                                            CALCULATION OF NORMALIZED POTENTIALS
                                                                                                                                                                                                                                                                                                                                                                                  DVST(N) = -VST(N)/CO = X/(1,00 + EX)
                                                                                                                                                                                                                                                                                                                       EPS = (N-1,D0)/(INTRVL*1,D0)+1,D-6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             = -2.00*C**3/(R0*EPS)*DE1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   = 2.00*C**3/(R0*EPS)*DE2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       COULOMB POTENTIAL FOR EPS*RO<R
                                                                                                                                                                                                                                                                                                                                                                                                                                            [F(N,EQ,I) DDVST(N) = 0.00
                                                                                                                                                                                                                                                                                                                                                            EX = DEXP((EPS-1.00) *R0/C0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DE2 = -DEXP((RO*EPS-R)/C)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                [F(EPS.GT.R/R0) G0 T0 60
                    ZALPHA = Z/137.0388D0
                                                                                                                     TERM = TERM1/NN**3
                                                          DEI = -DEXP(-R/C)
                                                                                                                                                           TERM1 = TERM1*DE1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DE1 = -DEXP(-R/C)
HBARC = 197.32D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 =-C*C*DE2
                                                                                                                                       SUM = SUM+TERM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SUM = SUM+TERM
                                                                                                                                                                              NN = NN + 1.00
                                                                                                                                                                                                                                                                                                     DO 80 N = 1.4
                                                                               TERM1 = DE1
                                        SUM = 0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SUM = 0.00
                                                                                                 NN = 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NN = 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FERM3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TERM2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TERMI
                                                                                                                     20
                                                                                                                                                                                                                                                                                                                       3040
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        50
                                                                                                                                                                                                                                           ບບບ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     000
```

```
IF(DABS(TERM/SUM).GT.1.D-08) GU TD 50
VC( N) = VCNORM*(R*R/2.DD-(EPS*RD)**2/6.D0+C*C*PI*PI/6.D0+SUM)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               VC( N) = VCNDRM*(R**3/3.D0+C*C*PI*PI*R/3.D0+SUM)/(EPS*RD)
  = 0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                      = 0.D0
F(DABS(TERM1/(NN**3*SUM)).LT.1.D-15) TERM1
                                                                                                                                                                                                                                                                                                                                                                                                                                   F(DABS(TERM1/(NN**3*SUM)).LT.1.D-15) TERM1
                                                                                                                                                                                                                                                                                                                                                                                           [ERM = TERM]/NN**3+TERM2/NN**2+TERM3/NN**3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            [F(DABS(TERM/SUM).GT.1.D-08) G0 T0 70
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            = 0.00
                                            0.00
                                                                                                                                                                                                          α
                                                                                                                                                                                                            ^
                                            11
                                                                                                                                                                                                          FOR EPS*RO
                                          DE2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            [F(DABS(DE2).LT.1.D-15) DE2
                                                                                                                                                                                                                                                                                                             = -DEXP(-(EPS*R0-R)/C)
                                         [F(DABS(DE2).LT.1.D-15)
                                                                                                                                                                                                                                                                                                                                                    = C*C*EPS*R0*DE2
                                                                                                                                                                                                                                                                                                                                TERMI = -2.00 + C + 3 + 0EI
                                                                                                                                                                                                                                                                                                                                                                        = 2.00*C**3*DE2
                                                                                                                                                                                                         COULOMB POTENTIAL
                                                             FERM2 = TERM2*DE2
                                                                                                                                                                                                                                                                                                                                                                                                                                                      FERMI = TERMI * DEI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FERM2 = TERM2*DE2
                    f \in RMI = T \in RMI * DEI
                                                                                  FERM3 = TERM3*DE2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TERM3 = TERM3*DE2
                                                                                                                                                                                                                                                                                         = -DEXP(-R/C)
                                                                                                                                                                                                                                                                                                                                                                                                                 SUM = SUM+TERM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        NN = NN + 1.00
                                                                                                       NN = NN+1.00
                                                                                                                                                                                                                                                  SUM = 0.00
                                                                                                                                                                                                                                                                     NN = 1.00
                                                                                                                                                                GO TO 80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         RETURN
                                                                                                                                                                                                                                                                                                                                                    TERM2
                                                                                                                                                                                                                                                                                                                                                                         FERM3
                                                                                                                                                                                                                                                                                         DEl
                                                                                                                                                                                                                                                                                                             DE2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              END
```

000⁰

SUBROUTINE EVAL (AIB, NCHI2, PP)

```
SA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FORMAT(' ENTERING EVAL RBO = ',D14.7,' IBO = ',D14.7,' RCO = ',D14
.7,' ICO = ',D14.7,' NORM = ',D14.7)
                            INTEGER I,J,K,L,N,IJ,J,INTRVL,KK,KS,MD,MM,LL,NUM,NV,NL,LW,NP,INDE
                                                                                                                                  COMPLEX*16 AK(61),ANON(61),O(61),RNL,CDSORT,DCMPLX,LNDER,ALBL,AL(1
                                                                                                                                                                                                                DIMENSION VC(61),RH0(61),FR(61),FI(61),X(4,5),X0(4,2),X2(4,2),X1(4
                                                                                                                                                                                                                                                                        2(40),THETA(40),COSB(40),SIN2B2(40),JBL(40),AIB(40),AIL(40),Y(2),DY
                                                                                                                                                                                                                                           I).IH(2).H(2).H(2.2).C(4).UR(61).UI(61).DUR(61).DUI(61).RL(2).AI(40).UNC
                                                                                                                                                                                                                                                                                                 3(2),SUM(2),DRH0(61),DDRH0(61),P(10),PP(4),DTHETA(40),SIN(2),COS(2)
                                                                                                                                                                                                                                                                                                                                                      COMMON VC, RHO, DRHO, DDRHO, DSIGMA, DELSIG, THETA, DTHETA, Z, A, S, MASS, E,
                                                                                                                                                                                                                                                                                                                                                                              R0,RU,RB0,IB0,RB1,IB1,RC0,IC0,RC1,IC1,RD0,ID0,RD1,ID1,NDR,NUM,NL,
                                                                                                                                                             0).CDEXP.ETA.UN.II.M.DELTA.W.YL.DYL.CDLDG.CDPSI.SUMM.CDGMA.
                                                                                                                                                                                                                                                                                                                                                                                                                                    EQUIVALENCE (RNL, KL(1)), (YL, Y(1)), (DYL, DY(1)), (SUMM, SUM(1))
EQUIVALENCE (SINVL, SIN(1)), (COSVL, COS(1))
                                                                                                                                                                                       2(10), EXPSIG, TSA, CFC (40), CRHD, SINVL, COSVL, DN, L1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF(NP.GT.0) WRITE(6,951) B0,B2,C0,C2,N0RM
                                                                                                                                                                                                                                                                                                                           4,RF(61),DSIGMA(40),DELSIG(40)
                                                                                                                                                                                                                                                                                                                                                                                                            2INTRVL,N,LW,NP,INDEX,IFIG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DATA SIGNI, SIGN2/'-', '+'/
                                                                               LOGICAL*1 SIGN1,SIGN2
[MPLICIT REAL*8 (A-2)
                                                                                                       REAL*4 AIM(150), SNGL
                                                      X, IFIG, IA, IFIX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C2 = IC0*PP(4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   B0 = RB0*PP(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          RC0*PP(3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               B2 = IB0*PP(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              054D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      •077D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               = .000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = 0.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                • 500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            . 500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NORM = NOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   •000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 #
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ti
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ŧ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           61101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 B00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            B01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       811
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       B02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  621
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       610
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                612
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            601
```

= RMASS OF PIONIC ATOM WHERE MASS OF 5.D0*621+601+610+3.D0*61101+3.D0*61110+5.D0*612)/4.8D1 [-5.D0*621-601-610+3.D0*61101-3.D0*61110+612)/4.8D1 (G21-601-610-3.D0*61101+3.D0*61110-5.D0*612)/4.8D1 -G21+G01+G10-3.D0*G1101-3.D0*G1110-G12)/4.801 9.D0*B11+B00+3.D0*B01+5.D0*B02)/4.8D1 3.D0*B11-B00-3.D0*B01-5.D0*B02)/4.8D1 [-2.D0*610-3.D0*61101+5.D0*612)/9.6D1 [-2.D0*B00-3.D0*B01+5.D0*B02)/9.6D1 -9.D0*811-800+3.D0*801+802)/4.801 -3.00*H11+B00-3.00*B01-B02)/4.801 [2.00*610-3.00*61101+612)/9.601 2.00*800-3.00*801+802)/9.601 = MASS*931.478D0-.511D0 = MPI *AMASS/(MPI +AMASS) INITIALIZATION OF PARAMETERS CALCULATION OF REDUCED MASS 2-1 ELECTRONS IS INCLUDED MPI = 139.57900• 000 = 0.0D0 0.00 0.00 0.00 00.00 0.D0 0.D0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11 11 H li 11 51110 11 11 Ħ u R u H B II 11 u 11 H 11 11 11 11 lł 11 AMASS RMASS Ħ **RBBO** RCCO BBO CC3 **BB4** BBO 882 883 **BB4** 000 CC5 881 RB2 883 cco CC3 CC4 CC5 885 CC2 CC4 885 881 CCI CC2 CC1

 $\cup
 \cup
 \cup$

ပပ

```
T = (A-2.D0*DABS(Z))/2.D0
MN = (938.256D0+939.550D0)/2.D0
HBARC = 197.32D0
ZALPHA = Z/137.0388D0
```

C

TRANSFORMATION OF ENERGY TO BARYCENTRIC COORDINATE SYSTEM FOR KLEIN-GORDON EQUATION

 $\cup \cup \cup \cup$

```
KVRELB = {EB-M2+{(EB-M2)**2+M]**2)/(2.D0*M2))/(1.D0+{EB-M2-VC(N))/
                                                                                                                                                                                                                                                          INITIALIZE PARAMETERS FOR DEFINING THE KLEIN-GORDON EQUATION
                                                                                                                                                                                                                                                                                                                                                                                                                                         XSISJ = 4.D0*S*(S+1.D0)/(A*(A-1.D0))-3.D0/(A-1.D0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                             = 4.D0*T*(T+1.D0)/(A*(A-1.D0))-3.D0/(A-1.D0)
                                                                                                                                                                                                                  IF(NP.GT.0) WRITE(6,904) EL,EB,KC,EIK,E2K,ER,EI
                                                       = DSORT(M1**2-M2**2+2.D0*M2*EL)
                                                                           KC = M2*DSQRT(EL**2/EB**2-1.00)
                                                                                                                                                                                                                                                                                                                     = l.DO+(MPI+E)/(2.DO*MN)
                                                                                                                                                       1M2-KC**2/(4.D()*M2**2))**2
                                                                                                                   = DSORT(KC**2+M2**2)
                                                                                              = DSQRT(KC**2+M]**2)
                                                                                                                                                                                                                                                                                                   I.DO+(MPI+E)/MN
                                                                                                                                                                                                                                                                                                                                         = 3.14159265359D0
                                                                                                                                                                                                                                                                                                                                                           = (1.00, 0.00)
                                                                                                                                                                                                                                                                                                                                                                               II = (0.00, 1.00)
                                                                                                                                                                                                                                                                                                                                                                                                   CPW = HBARC/MPI
                                                                                                                                                                                                                                                                                                                                                                                                                      SR = RO/INTRVL
                                      = E +M1+M2
                                                                                                                                                                             ER = EB-M1-M2
                  = AMASS
                                                                                                                                                                                               = 0.00
Idw =
                                                                                                                                                                                                                                                                                                                                                                                                                                                             VIITS
                                                                                                                                                                                                                                                                                                      11
                                                                                              ElK
                                                                                                                   E2K
                                                        8
                 M2
                                     ц
Ш
                                                                                                                                                                                                                                                                                                                                                            N
                                                                                                                                                                                                  ш
                                                                                                                                                                                                                                                                                                                     22
Z
                                                                                                                                                                                                                                                                                                                                        Ы
Ĩ
                                                                                                                                                                                                                                                                                                     ī
```

ပပပ

203

XBIJ = 4.D0*PI*N2*(BB0+BB1*XSISJ+BB2*XIITJ+BB3*(1.D0-XSISJ)*XTT+

= 8.00*T*T/(A*(A-1.00))+4.00*(T-1.00)/(A-1.00)

 $XTT = 4.00 \pm T/A$

XTTTT

= -4.D0*PI*PI/3.D0*((A-4.D0)/A*2.D0*(C0*C2+2.D0*RD0*ID0+2.D XBICIR = +2.D0*PF/MPI*((A-4.D0)/A*(B0*C0-B2*C2+(B0*RC1-B2*IC1+C0*R Bl-C2*IB1)*(1.D0-2.D0*2/A))+2.D0*(RB1*RC1-IB1*IC1)*(A-2.D0)/A)*CPW XBICII = +2.00*PF/MPI*((A-4.00)/A*(B2*C0+B0*C2+(B0*IC1+B2*RC1+RB1* [C2+1B1*C0)*(1•D0-2•D0*2/A))+2•D0*(RB1*IC1+IB1*RC1)*(A-2•D0)/A)*CPW 2A))+2.D0*(RC1*RC1-IC1*IC1+2.D0*(RD0*RD0-ID0*ID0))*(A-2.D0)/A)*CPW* 0+(C0*IC1+C2*RC1+2.D0*(RD0*ID1+ID0*RD1))*(1.D0-2.D0*Z/A))+4.D0*(RC -IB1*C2)*(1.D0-2.D0*Z/A))+2.D0*(RB1*RC1-IH1*IC1)*(A-2.D0)/A)*CPW** [+IB]*C0)*(].D0-2.D0*Z/A))+2.D0*(RB]*IC1+IB]*RC1)*(A-2.D0)/A)*CPW** XBIBII = -6.D0*PF/MPI*((A-4.D0)/A*(2.D()*B0*B2+4.D0*(B0*IB1+B2*RB1) XBCR = -8.D0*PF/MPI*((A-4.D0)/A*(B0*C0-B2*C2+(B0*RC1+RB1*C0-B2*IC1 XBIBIR = ~6.D0*PF/MPI*((A-4.D0)/A*(B0*B0-B2*B2+2.D0*(B0*RB1-B2*IB1 [ID0*ID0)+2.D0*(C0*RC1-C2*IC1+2.D0*(RD0*RD1-ID0*ID1))*(1.D0-2.D0*Z/ XBCI = -8.D0*PF/MPI*((A-4.D0)/A*(B0*C2+B2*C0+(B0*IC1+RB1*C2+B2*RC1 = -4.D0*P1*P1/3.D0*((A-4.D0)/A*(C0*C0-C2*C2+2.D0*(RD0*RD0-XCIJ = 4.D0*PI/N2*(CCO+CC1*XSISJ+CC2*XTITJ+CC3*(1.D0-XSISJ)*XTT+ 21*IC1+2.D0*RD1*ID1)*(A-2.D0)/A)*CPW**6*A/(4.D0*P1/3.D0*RU*#3) [)*(1.D0-2.D0*Z/A))+2.D0*(RB1*RB1-IB1*IB1)*(A-2.D0)/A)*CPW XCICIR = -4.D0*PI*4.D0*PI/3.D0*(C0*C0-C2*C2)*CPW**6 XCICII = -4.D0*PI*4.D0*PI/3.D0*2.D0*C0*C2*CPW**6 *(1.D0-2.D0*Z/A))+4.D0*RB1*1B1*(A-2.D0)/A)*CPW .CC4*XSISJ*XTITJ+CC5*(].DO-XSISJ)*XTTTT)*CPW**6 BB4*XSISJ*XTITJ+BB5*(1.D0-XSISJ)*XTTTT)*CPW**4 PF = HBARC*(9.D0/8.D0*PI*A/RU**3)**(1.D0/3.D0) = 4.D0*PI/N1*(C0+2.D0*RC1*T/A)*CPW**3 XC2 = 4.D0*PI/N1*(C2+2.D0*IC1*T/A)*CPW**3 21*IC1+2.D0*RD1*ID1)*(A-2.D0)/A)*CPW**6 = 4.00*PI*NI*(80+2.00*R81*T/A)*CPW XB2 = 4.D0*PI*N1*(B2+2.D0*IB1*T/A)*CPW X8JI = 4.D0*P1*N2*RBB0*CPW**4 XCJI = 4.D0*PI/N2*RCCO*CPW**6 3*6*A/(4.D0*PI/3.D0*RU**3) XC1C1R XCICII XC I XBI 3 # # 3 2 * * 3 3 * 6

C

J

```
DDAKR = +XCI*DDRHO(K)-(XCJI+XCICIR+XBCR/RHO(K))*2.D0*(RHO(K)*DDRHO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DDAKI = -xc2*DDRHO(K)-(xc1J+xcICI11+xBc1/RHO(K))*2•DO*(RHO(K)*DDRHD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            OR = -(XBI+XBIBIR)*RHO(K)-XBJI*RHO(K)**2-(XBICIR+XCIOR)*(DDRHO(K)+
                                                                                                                                                                                                                                                                                                                                                                                                          DAKR = -XCI*DRHO(K)-(XCJI+XCICIR+XBCR/RHO(K))*2•D0*RHO(K)*DRHO(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                           DAKI = -XC2*DRHD(K)-(XCIJ+XCICII+XBCI/RHD(K))*2.D0*RHD(K)*DRHD(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              = ((FAC +AKR)*(DAKR**2-DAKI**2)+2.DO*DAKR*DAKI*AKI)/DEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        = ((FAC +AKR)*2.D0*DAKR*DAKI-AKI*(DAKR**2-DAKI**2))/DEN
                                                                                                                                                                                                                                                                             -XCI*RH0(K)-(XCJI+XCICIR+XBCR/RH0(K))*RH0(K)**2
                                                                                                                                                                                                                                                                                                                                -XC2*RHD(K)-(XCIJ+XCICII+XBCI/RHD(K))*RHD(K)**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ANON(K) = -HBARC**2/(2.D0*RMASS)*DCMPLX(ANDNR,ANONI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       12.00/(R0*EPS)*DRH0(K))-XBICIR*DRH0(K)**2/RH0(K)
                                                                                                                                                                                                                                                   = 1.00+(E8-M2-VC(K))/M2-KC*#2/(4.00*M2*#2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                = -DAKR/(EPS*R0)-DDAKR/2.DO+.25D0*RE2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           = -DAKI/(EPS*RD)-DDAKI/2.00+.2500*IM2
                      = (ER+MPI)/MN*XCI*NI*.5D0
                                              # (ER+MPI)/MN*XC2*N1*.5D0
                                                                                                                                                                                                                           (K-1)/(INTRVL*1.D0)+1.D-6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DDAKR = -(XCI+XCICIR)*DDRHO(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            = -(XC2+XCICII)*DDRHO(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                    = -(XCI+XCICIR)*DRHO(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DAKI = -(XC2+XCICII)*DRHD(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (FAC +AKR)**2+AKI**2
                                                                                                                                                                                                                                                                                                      -(XCI+XCICIR)*RH0(K)
                                                                                                                                                                                                                                                                                                                                                        -(XC2+XCICII)*RHD(K)
                                                                                                                                                                                                                                                                                                                                                                                = DCMPLX(AKR,AKI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              = (FAC +AKR)/DEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      l(K)+DRHO(K)**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1(K)+DRHO(K)**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      = -AKI/DEN
                                                                        XBICIR = 0.D0
                                                                                               = 0.00
                                                                                                                                                                                                    D0 43 K = 1,N
                                                                                                                       XBCR = 0.00
                                                                                                                                                  XBCI = 0.00
                                                                                                  XBICII
                                                                                                                                                                                                                            EPS =
                      XCI0R
                                                                                                                                                                                                                                                                                                                                                                                    AK(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DEN =
                                                                                                                                                                                                                                                                                H
                                                                                                                                                                                                                                                                                                             11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DDAKI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ANONR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           I NONA
                                                 XCI0I
                                                                                                                                                                             0 =
                                                                                                                                                                                                                                                                                                                                                                                                                                    DAKR
                                                                                                                                                                                                                                                                              AKR
                                                                                                                                                                                                                                                                                                        AKR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              REI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              RE2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           I M 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IMI
                                                                                                                                                                                                                                                      FAC
                                                                                                                                                                                                                                                                                                                                   AKI
                                                                                                                                                                                                                                                                                                                                                          AKI
39
```

```
SEE SOUTHWORTH'S BOOK 'DIGITAL COMPUTATION AND NUMERICAL METHODS'
0I = -(XB2+XBIBII)*RHO(K)-XBIJ*RHO(K)**2-(XBICII+XCIQI)*(DDRHO(K)+
                                                                                                                  NONA+10-(
                                                                                                                                                                                                                                                                                                                                                                                                                               L] = .5D0*UN+.5D0*CDS0RT((2.D0*L+UN)**2-4.D0*ZALPHA**2/(UN+(EB-M2-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FORWARD INTEGRATION USING
                                                                  *(ER-VC(K))+(ER-VC(K))**2-E1**2)/(HBARC**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ADAM'S METHOD BY PROVIDING VALUES FOR THREE ADDITIONAL POINTS.
                                                                                                                                                                                                                                                 GENERATE INITIAL VALUES FOR
                                                                                                               *EI+2.D0*EI*(ER-VC(K)))/(HBARC**2
                   .2.D0/(R0*EPS)*DRH0(K))-X8ICII*DRH0(K)**2/RH0(K)
                                           0(K) = HBARC**2/(2.DO*RMASS)*DCMPLX(0R,01)
                                                                                                                                                                                                                                                                                                                                                                                                                                                   IVC(1))/M2*UN-KC**2/(4*D0*M2**2)*UN+AK(1)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         SUMM = L1*CDEXP((L1-UN)*DLOG(1.D-6*R0))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            USE MODIFIED EULER'S METHOD TO START
                                                                                                                                                                              = L*(L+1.00)/(EPS*R0)**2+RF(K)
                                                                                                                                                                                                                                              SOLVE THE KLEIN-GORDON EQUATION.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           SUMM = CDEXP(L1*DLOG(1.D-6*R0))
                                                                                                                                                         = -RE1*BRACKR+IM1*BRACKI
                                                                                                                                                                                                     = -RE1*BRACKI-IM1*BRACKR
                                                                BRACKR = (2.00*M]
                                                                                                             BRACKI = (2.00 \text{ MI})
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               = SUM(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SUM(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                = DUI(1)
                                                                                                                                                                                                                                                                                                                                                              = 0.00
                                                                                                                                                                                                                                                                                                                                                                                  X2(I,1) = 0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DUR (1
                                                                                                                                                                                                                                                                                                                                        = 1,IJ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    X(3,1) = UI(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     X(1,1) = UR(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            UI(1) = SUM(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                = SUM(1
                                                                                                                                                                                                                                                                       INTEGRATION.
                                                                                                                                                                                                                                                                                                                                                                                                          L1 = L+1.00
                                                                                       I)-OR+ANONR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PAGE 436.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              11
                                                                                                                                                                                                                                                                                                                                      DO 70 I
                                                                                                                                                                                                                                                                                                                                                            (I+I)0X
                                                                                                                                                                                                                                                                                                                    1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DUR(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                X(4,1)
                                                                                                                                                                                                   FI(K)
                                                                                                                                                         RF(K)
                                                                                                                                                                              FR(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                UR(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     X(2,1)
                                                                                                                                                                                                                                                                                                                 ٦I
                                                                                                                                                                                                                                                                                                                                                             C 20
```

206

X(I,K) = X(I,K-1)+SR*F(X(I,K-1),X(2,K-1),X(3,K-1),X(4,K-1),FR(K-1) X(I,K) = X(I,K-1)+SR*(F(X(I,K-1),X(2,K-1),X(3,K-1),X(4,K-1),FR(K-1 •I)+F(X(1,K),X(2,K),X(3,K),X(4,K),FR(K),FI(K) •I))/2 XO(1,2) = X(1,4)+SR/24.D0*(55.D0*F(X(1,4),X(2,4),X(3,4),X(4,4),F THE REST DF THE WAY. SEE SOUTHWORTH'S BOOK ''DIGITAL COMPUTATION AND NUMERICAL METHODS'' PAGE 446. USE THE ADAMS-BASHFORTH PREDICTOR-CORRECTOR METHOD TO INTEGRATE XO(K) = X(K-1)+SR/24*(55*F(K-1)-59*F(K-2)+37*F(K-3)-9*F(K-4)) FORWARD INTEGRATION FORMULA FORWARD INTEGRATION FORWARD INTEGRATION FORMULA X(K) = X(K-1)+SR*(F(X(K-1))+F(X(K)))/2X(K) FOR SECOND ARGUMENT $I = K - I_{*}2 = K$ TO OBTAIN BETTER VALUES FOR X(K) TO OBTAIN A PREDICTED VALUE OF X(K) = X(K-1)+SR*F(X(K-1))PREDICTOR EQUATION FOR ITERATE EULER-GAUSS • 1) = 1,1J DUR(K) = X(2,K)DUI(K) = X(4,K)00 90 I = 1, IJD0 100 K = 2,4DO 95 KK = 1,300 95 I = 1, IJUI(K) = X(3,K)UR(K) = X(1,K)USE EULER 1),FI(K-1) I,FI(K-1) 2.00 100 90 95 00000 J 00000 ں ບບບ 00000

```
•I)+37.D0*F(X(1,2),X(2,2),X(3,2),X(4,2),FR(K-3),FI(K-3)
                                                                                                                                                                                                                                                                                                                                                       -
                                                                                                                                                                                                                                                                                                                                                                     •I)+F(X(],
 .1)-59.D0*F(X(1,3),X(2,3),X(3,3),X(4,3),FR(K-2),
                                                  • I ) )
                                                                                                                                                                                                                                                                                                                        X2(I,2) = X(I,4)+SR/24.D0*(9.D0*F(XI(I),XI(2),XI(3),XI(4),FR(K),FI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ¥
                                                                                                                                                                                                                                                                                                                                             l(K) • I)+19•D0*F(X(1,4),X(2,4),X(3,4),X(4,4),FR(K-1),FI(K-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           11
                                                                                                                                                                                                           CORRECTOR EQUATION TO IMPROVE RESULT OF PREDICTOR EQUATION
                                               •I)-9-D0*F(X(I,1),X(2,1),X(3,1),X(4,1),FR(K-4),FI(K-4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ഹ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       4 = K - 1,
                                                                                                                                                                                                                               X2(K) = X(K-1)+SK/24*(9*F(K)+19*F(K-1)-5*F(K-2)+F(K-3))
                                                                                                                                                                                                                                                                                                                                                                    2)-5.D0*F(X(1,3),X(2,3),X(3,3),X(4,3),FR(K-2),FI(K-2)
                                                                                           PREDICTOR EQUATION IS CORRECTED FOR ESTIMATED ERROR
                                                                                                                                                                                                                                                                                                                                                                                                                                       CORRECTOR EQUATION IS CORRECTED FOR ESTIMATED ERROR
                                                                                                                                                                                                                                                                                                                                                                                           ((1,
                                                                                                                                                              XI(I) = XO(I_{2}) - 251_{0}O(270_{0}O_{2}(XO(I_{1})) - X2(I_{1}))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                X(I_{5}) = X2(I_{2})+I_{9}D0/720,D0*(X0(I_{2})-X2(I_{2}))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FOR SECOND ARGUMENT 1 = K-4, 2 = K-3, 3 = K-2,
                                                                                                                                                                                                                                                                                                                                                                                           32),X(2,2),X(3,2),X(4,2),FR(K-3),FI(K-3)
                                                                                                                 X1(K) = X0(K) - 251/270*(X0(K-1)-X2(K-1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       UPGRADE ALL PARAMETERS FOR NEXT STEP
                                                                                                                                                                                                                                                   FOR SECOND ARGUMENT 1 = K-1, 2 = K
                                                                                                                                                                                                                                                                                                                                                                                                                                                             X(K) = X2(K)+19/720*(X0(K)-X2(K))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          X(I + KK) = X(I + KK + I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       xo(I,1) = xo(I,2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              X2(I,1) = X2(I,2)
                                                                                                                                                                                                                                                                                                  00.130 I = 1,1J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D0 240 I = 1, IJ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DO 240 KK = 1,4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DUR(K) = X(2,5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DUI(K) = X(4,5)
IR(K-1),FI(K-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  UI(K) = X(3,5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    UR(K) = X(1,5)
                         2FI(K-2)
                                                                      C 120
C 1 C C C C C C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            240
                                                                                                                                                                                                        0000
                                                                                                                                                                                                                                                                                                                                                                                                                   00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \cup \cup \cup
```

```
M = DCMPLX(.5D0+.5D0*DSURT((2.D0*L+1.D0)**2-4.D0*ZALPHA**2/FAC).0.
                                                                                                                                                                                                                                                                                                                                                                                                                                             DYL = YL*(ETA/CRHO-UN/2.DO-(M*(M-UN)-ETA*(ETA-UN))/CRHO*CDPSI(M-ET
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   • 2D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      LNDER = DCMPLX(DUR(N),DUI(N))/(DCMPLX(UR(N),UI(N))*DSQRT(((EB-M2)*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         114.7, SIGMA(',I2,') = ', D14.7/' REAL(DELTA(',I2,')) = ',D14.7,'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          = ',D14.7,'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FORMAT(' SIN(DELTA(',II,')) = ',2D14.7/' COS(DELTA(',II,')) =
                                                                                         ETA = -II*2ALPHA*(EB-M2)/(DSORT((EB-M2)**2-M]**2)*DSORT(FAC))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           [F(NP.GT.0) WRITE(6.340) L.SINVL.L.COSVL.L.SIGMAL.L.RVL.L.IVL
                                                                                                                                                                                                                                                                                                                    W = CDEXP(-CRH0/2.D0+M*CDL0G(CRH0))*CDPSI(M-ETA,2.D0*M,CRH0)
                                                                                                                                                                                         GENERATE THE COULOMB WAVEFUNCTIONS AND THEIR DERIVATIVES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ',D14.7,' GL = ',D14.7,' DFL
                                                               = 2.00*II/HBARC*DSURT(((EB-M2)**2-M]**2)/FAC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IA+UN,2.D0*M,CRHD)/CDPSI(M-ETA,2.D0*M,CRH0))*2.D0*II
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DN = CDSORT((LNDER*FL-DFL)**2+(-LNDER*GL+DGL)**2)
                                                                                                                                                                                                                                                                                                                                                                                                                YL = II*CDEXP(-II*(SIGMAL-.5D0*PI*(M-UN-ETA)))*W
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = DATANH(SIN(2)/COS(1))
                                                                                                                           CRH0 = ((N-1)/(INTRVL*1.D0)+1.D-6)*R0*DELTA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             L,FL,GL,DFL,DGL
CALCULATE THE SCATTERING AMPLITUDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2IMAG(DELTA(', I2, ')) = ', D14.7/)
                                                                                                                                                                                                                                                                                                                                                      SUMM = CDLDG(CDGMMA(M+ETA))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                = (-LNDER*GL+DGL)/DN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             RVL = DATAN(SIN(1)/COS(1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    = (LNDER*FL-DFL)/DN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IF(NP.GT.0) WRITE(6,953)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FORMAT(' L = ', I2, ' FL =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F(SIN(2).NE.0.DO) IVL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  *2-M1**2)/FAC)/HBARC)
                                                                                                                                                                                                                                                                                                                                                                                    SIGMAL = SUM(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DGL = 1,014.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             = DY(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DGL = DY(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = 0°D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FL = Y(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             = Y(2)
                                                               DELTA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                COSVL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      SINVL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DFL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ר
| <
                                                                                                                                                                                                                                                                                        1D0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ЗL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               340
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          953
```

ပပပ

000

```
CFC(I) = -NN/(2.D0*DSORT(((EB-M2)**2-M1**2)/FAC)/HBARC*SIN2B2(I))*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          EXPSIG = EXPSIG*DCMPLX((J-I)**2*1.DO-NN*NN,2.DO*(J-I)*NN)/((J-I)**
                                                                                                                                                                                                                                                                                 PREDICT AVERAGE THEORETICAL DIFFERENTIAL SCATTERING CROSS SECTION
                                                                                                                                                                                                                                                                                                         AS SEEN BY A PHYSICAL DETECTOR WITH FINITE ANGULAR RESOLUTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        P(J) = ((2*J-3)*COSH(I)*P(J-I)-(J-2)*P(J-2))/(J-I)
                                                                                                                                                                                                                                                                                                                                                                                           NN = -ZALPHA*KVRELB/DSORT(((EB-M2)**2-M1**2)/FAC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           EXPSIG = DCMPLX(1.D0-NN*NN,2.D0*NN)/(1.D0+NN*NN)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              = (THETA(I)+DTHETA(I))/57.300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        [F(K, E0, 3)] THETAB = (THETA(I)-DTHETA(I))/57.300
                                                                                                                                                                                              [F(NP.GT.0) WRITE(6,907) (I,AL(I),I=1,LW)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                P(J) = G-P(J-2)+G-(G-P(J-2))/DFL0AT(J-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CDEXP((0.D0,-1.D0)*NN*DLOG(SIN2H2(I)))
                                                                                                                                      FR(K) = L*(L+1.00)/(EPS*K0)**2+RF(K)
ALBL = (DGL-GL*LNDER)/(FL*LNDER-DFL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                = THETA(I)/57.3D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SIN2B2(I) = (1.00-C0SB(I))/2.00
                                                                                                              EPS = (K-1)/(INTRVL*1.00)+1.0-6
                                                                                                                                                                                                                         FORMAT(' AL(', 13,') = ', 2D14.7)
                          AL(L+1) = HBARC/(KC*(ALBL-II))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      SA(2) = 3.D0*P(2)*EXPSIG*AL(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F0 = F0+3.00 \times EXPSIG \times AL(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    COSB(I) = DCOS(THETAB)
                                                                                                                                                                    [F(L.LT.LW) GO TO 45
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G = COSB(I)*P(J-I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF(K.EQ.1) THETAB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IF(K.E0.2) THETAB
                                                                                                                                                                                                                                                                                                                                                                                                                         DO 370 I = 1,000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              D0 365 J = 3, LW
                                                                                    D0 350 K = 1,N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               P(2) = COSB(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           SA(1) = AL(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2*1 • DO+NN*NN)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               P(1) = 1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FO = AL(1)
                                                         [ = [+]
                                                                                                                                                                                                                                                                                                                                                                 350
                                                                                                                                                                                                                          907
                                                                                                                                                                                                                                                                                                                                                                                           355
                                                                                                                                                                                                                                                                               ပပ
                                                                                                                                                                                                                                                     ں
                                                                                                                                                                                                                                                                                                                                   J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           S
```

```
PRINT AND PLOT PREDICTED DIFFERENTIAL CROSS SECTION
                                                                                                = AIB(I)+.100*CDABS(TSA)**2
                                                                                                                                                                                                                                                                              SUM1 = SUM1 +DSIGMA(I)*AIB(I)/DELSIG(I)**2
                                                                                = .8D0*CDABS(TSA)**2
                                                                                                                                                                                                                                                                                               = SUM2+(AIB(I)/DELSIG(I))**2
               SA()) = (2*J-1)*P())*EXPSIG*AL()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             AIM(I) = SNGL(THETA(I))
AIM(J) = SNGL(DLDG10(DSIGMA(I)))
FO = FO+(2*J-1)*EXPSIG*AL(J)
                                                                                                                                                                                               CALCULATE NORM FOR BEST FIT
                                                                                                                                                                                                                                                                                                                                                                FORMAT(' NORM = ', D14.7)
                                                                                                                                                               IF(NP.EQ.0) GO TO 374
                                                                                                                                                IF(K.LT.4) GO TO 355
                                                                                                                                                                                                                                                                                                                                                                               I = 1,NUM
= AIB(I)*NORM
                                                                                                [F(K.GT.1) AIB(I)
                                                                                 [F(K.EQ.1) AIB(I)
                                                                                                                                                                                                                                                                                                                                                WRITE(6,373) NORM
                                                                                                                                                                                                                                                              DO 371 I = 1,NUM
                                                                                                                                                                                                                                                                                                              NORM = SUM1/SUM2
                                                                                                                                                                                                                                                                                                                                                                                                                                                              D0 380 I = 1, NUM
                                                 DD 366 J = 1,LW
                                                                 TSA = TSA+SA(J)
                               TSA = CFC(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              I + W \cap W = 2 + W \cap W + I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               I + W \cap W = 4 + N \cap W + I
                                                                                                                                                                                                                                               SUM2 = 0.00
                                                                                                                                                                                                                               SUM1 = 0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                K = 2*NUM+I
                                                                                                                                                                                                                                                                                                                                NOR = NORM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               LL= 3*NUM+I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              I + WON = C
                                                                                                                                                                                                                                                                                                                                                                                D0 375 I
                                                                                                                CONTINUE
                                                                                                                                   X = X+1
                                                                                                                                                                                                                                                                                                                                                                                               AIB(I)
                                                                                                                                                                                                                                                                                               SUM2
                  365
                                                                 366
                                                                                                                370
                                                                                                                                                                                                                                                                                                                                                               373
374
375
C
C
C
                                                                                                                                                                                                                                                                                                371

  \circ \circ \circ
```

ð" .

```
0••
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORMAT(' POINT(',I2,') THETA = ',DI4.7,' AI(EXP) = ',DI4.7,' UNC(E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DOUBLE PRECISION SUBPROGRAM THAT DEFINES THE KLEIN-GORDON EQUATION
                                                                                                                                      IF(NP.GT.0) WRITE(6.911) I.THETA(I).DSIGMA(I).DELSIG(I).AIB(I).CF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               u
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FORMAT(' ELAB = ',D14.7,' ECM = ',D14.7,' KC = ',D14.7,' E1K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (XP) = ',Dl4.7,' AI(THE) = ',Dl4.7,' CFC(I) = ',Dl4.7)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              14.7, E2K = ',D14.7/' ER = ',D14.7,' EI = ',D14.7)
                                                                                                                                                                                                                                                                                                                                                        CHI2 = CHI2+(DABS(DSIGMA(I)-AIB(I))/DELSIG(I))**2
                                                                                                                                                                                           IF(NP.GT.0) CALL PLOT(1,AIM,NUM,6,49,0,NUM*6)
AIM(K) = SNGL(DLDGIO(DSIGMA(I)+DELSIG(I)))
                           AIM(LL)= SNGL(DLOG10(DSIGMA(I)-DELSIG(I)))
                                                                                                                                                                                                                                                                                                                                                                                                                                          = 1,014.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IMPLICIT REAL*8(A-H.O-Z). INTEGER(I-N)
                                                                                AIM(MO) = SNGL(DLOGIO(CDABS(CFC(I)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FUNCTION F(XIK,X2K,X3K,X4K,FRK,FIK,M)
                                                                                                                                                                                                                                                                                                                                                                                                             IF(NP.GT.O) WRITE(6.912) NCHI2
FORMAT(' NORMALIZED CHI-SOUARED
                                                    AIM(MM) = SNGL(DLOGIO(AIR(I)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               GO TO (10,20,30,40),M
                                                                                                                                                                                                                                                  EVALUATE CHI-SQUARED
                                                                                                             CF = CDABS(CFC(I))
                                                                                                                                                                                                                                                                                                                                                                                                                                                              [A = IFIX(SNGL(A))
                                                                                                                                                                                                                                                                                                                              MUN = 1.000
                                                                                                                                                                                                                                                                                                                                                                                 NCHIZ = CHIZ/NUM
                                                                                                                                                                                                                                                                                                     CH12 = 0.00
                                                                                                                                                                 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F = X2K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                END
                                                                                                                                                                                                                                                                                                                                                          390
                                                                                                                                                                   380
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          904
                                                                                                                                                                                                                                                                                                                                                                                                                                          912
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               116
                                                                                                                                                                                                                        \cup \cup \cup
```

ပပပ

RETURN 10

F = FRK * X1K - F1K * X3K20

RETURN 30 F = X4K RETURN 40 F = FRK*X3K+FIK*X1K RETURN END

FUNCTION DATANH(X)

 $\cup
 \cup
 \cup$

FUNCTION SUBPROGRAM TO CALCULATE THE INVERSE OF THE HYPERBOLIC TANGENT FUNCTION

REAL*8 DATANH,X,DEN,SUM,TERM DEN = 1.DO TERM = X SUM = TERM/DEN DEN = DEN+2.DO TERM = TERM*X*X SUM = SUM+TERM/DEN IF(TERM/(DEN*SUM).GT.1.D-3) GD TO 10 DATANH = SUM RETURN RETURN END

10

SUBROUTINE PLOT(NO,A,N,M,NL,NS,N5)

SUBROUTINE PLOT

00000000

PURPOSE

PLOT SEVERAL CROSS-VARIABLES VERSUS A BASE VARIABLE

	T COLUMN REPRESENTS INS ARE THE CROSS- AL TO THE TOTAL	IS SPECIFIED, 50 DATA IN ASCENDING EADY IN ASCENDING	
PLOT (N0.A.N.M.NL.NS)	ION OF PARAMETERS CHART NUMBER (3 DIGITS MAXIMUM) MATRIX OF DATA TO BE PLOTTED. FIRS BASE VARIABLE AND SUCCESSIVE COLUM VARIABLES (MAXIMUM IS 9). NUMBER OF ROWS IN MATRIX A NUMBER OF COLUMNS IN MATRIX A (EQU NUMBER OF VARIABLES). MATRIX A (EQU	VUMBER OF LINES IN THE PLOT. IF O LINES ARE USED. CODE FOR SORTING THE BASE VARIABLE CODE FOR SORTING THE BASE VARIABLE ORDER O SORTING IS NOT NECESSARY (ALR ORDER). I SORTING IS NECESSARY.	JT(101),YPR(11),ANG(9),A(N5) BLANK AND DIGITS FOR PRINTING NNG/' ',',',',',',',',',',',',',',',',',','
USAGE CALL	DE SCR		DIMENSIAN OU DEVELOP F DATA BLANK, NLL=NL NLL=NL IF(NS) 16, 1 SORT BASE SORT BASE 10 DO 15 I=1,N DO 14 J=1,N IF(A(I)-A(J) 11 L=1-N

.

.

*

214

Å

FIND SCALE FOR CROSS-VARIABLES XSCAL=(A(N)-A(1))/(FLDAT(NLL-1)) FIND SCALE FOR BASE VARIABLE DD 40 J=M1,M2 IF(A(J)-YMIN) 28,26,26 IF(A(J)-YMAX) 40,40,30 16 IF(NLL) 20, 18, 20 18 NLL=50 PRINT TITLE WRITE(6,1) NO DO 12 K=1,M L=L+N TEST NLL (T) = V(T)(IW)V=VIWA 12 A(LL)=F 14 CONTINUE 15 CONTINUE YMAX=YMIN (C) A=NIMY 30 YMAX=A(J) 40 CONTINUE GN TN 40 LL=LL+N M2=M≉N F=A(L) LL=J-N MI = N + I26 28 000⁰000 ပပပ \mathbf{O} \mathbf{O} \mathbf{O}

•

.

.

FIND BASE VARIABLE PRINT POSITION PRINT CROSS-VARIABLES NUMBERS PRINT LINE AND CLEAR, OR SKIP WRITE(6,2)XPR,(0UT(IZ),IZ=1,101) JP=((A(LL)-YMIN)/YSCAL)+1.0 OUT(JP)=ANG(J) CONTINUE IF(A(L)-XPR-.100) 50,50,70 YSCAL=(YMAX-YMIN)/100.0 FIND CROSS-VARIABLES IF(I-NLL) 45, 84, 86 XPR=XB+F*XSCAL 50 DO 55 IX=1,101 55 OUT(IX)=BLANK DO 60 J=**1**,MY LL=L+J*N WRITE(6,3) 86 WRITE(6,7) XPR=A(N) G0 T0 50 GO TO 80 XB=A(1)M Y=M-1 L=L+1 I + I = I F = I - I[=] I=1 45 60 70 80 84

ပပပ

ပပပ

ပပပ

ပပပ

```
FDRMAT(IH1,60X,7H CHART ,I3//)
                               YPR(KN+1)=YPR(KN)+YSCAL*10.0
                                                             WRITE(6,8)(YPR(IP),IP=1,11)
                                                                                                            FURMAT(1H ,F5.1,5X,101A1)
                                                                                                                                                                         FORMAT(1H0,9X,11E10.3)
                                                                                                                                           • 9X,101H.
                00 90 KN=1.9
                                               YPR(11)=YMAX
YPR(1) = YMIN
                                                                                                                                          7 FORMAT(1H
                                                                                                                           FORMAT(1H
                                                                             RETURN
                                                                                                                                                                                           END
                                06
                                                                                                            \sim
                                                                                                                           m
```

œ

FUNCTION CDPSI(A, B, Z)

 $\cup \cup \cup \cup$

HYPERGEOMETRIC FUNCTION OF THE SECOND KIND WITH COMPLEX ARGUMENTS. DOUBLE PRECISION FUNCTION SUBPROGRAM TO CALCULATE THE CONFLUENT

```
COMPLEX*16 CDPSI,A,B,Z,CDGMMA,TERM,SUMM,C,ZB,G1,G2,G3,PI,CDEXP,CDL
                                                                                DOUBLE PRECISION SUM(2), TRM(2), TOL, CDABS, DABS
                                                                                                                           EQUIVALENCE (SUM(1), SUMM), (TRM(1), TERM)
                                     106, DCMPLX
```

ð- .

CHECK WHETHER ASYMPTOTIC FORM OF FUNCTION FOR LARGE Z IS NEEDED

ပပပ

```
IF(CDABS(2).6T.22.00) G0 T0 50
                  TOL = 1.0-06
IOUT = 6
                                                                       -
-
-
```

ZB = CDEXP(((1,00,0,00)-B)*CDL06(Z))PI = (3.1415926535897900.00)SUMM = (0.00, 0.00)= (1.00.0.00)ں

TERM = -(A+DCMPLX(K*1.D0-1.D0,0.D0))*(A-B+DCMPLX(K*1.D0,0.D0))/(2* GI = G1*(A+DCMPLX(K*1.D0-2.D0,0.D0))/(B+DCMPLX(K*1.D0-2.D0,0.D0)) CHECK WHETHER SUM HAS CONVERGED TO WITHIN THE REQUIRED RELATIVE G2 = G2*(A-B+DCNPLX(K*1.00-1.00,0.00))/(DCMPLX(K*1.00,0.00)-B) = CDGMMA(A-B+(1.D0,0.D0))/CDGMMA((2.D0,0.D0)-B) = (1.00.0.00)/(((1.00.0.00)-B)*61*62) 2 30 20 70 80 ASYMPTOTIC FORM OF EXPANSION FOR LARGE IF(DABS(TRM(2)/SUM(2)).LT.T0L) 60 T0 IF(DABS(TRM(1)/SUM(1)).GT.TOL) GO TO [F'(DABS(TRM(1)/SUM(1)).GT.TOL) G0 T0 IF(DABS(TRM(2)/SUM(2)).LT.TOL) GD TO C = C*Z/DCMPLX(K*1.00-1.00,0.00)[F(SUM(2).E0.0.D0) GD TD 30 IF(SUM(2).E0.0.D0) G0 T0 80 WRITE(IDUT,900) A,B,Z,CDPSI CDGMMA(A)/CDGMMA(B) TFRM = C*(G1-G2*ZB)IF(K-100) 10,40,40 SUMM = (1.00, 0.00)TERM = (1.D0.0.D0)= SUMM+TERM TOLERANCE = TOL. SUMM = SUMM+TERM CDPSI = G3*SUMM $CDPSI = G3 \approx SUMM$ " + + GO TO 15 K)*TERM K = X+1 RETURN RETURN 11 ----SUMM 63 62 61 10 15 20 30 20 40 2000 60 $\cup \cup \cup \cup$

DOUBLE PRECISION X+Y+XDIST+A(2)+C(12)+SUM(2)+TRM(2)+CDABS+DABS+DLO •,2D15. COMPLEX*16 CDGMMA,Z,T,TT,SUMM,TERM,DEN,ZM,ZZ,DCMPLX,CDLDG,CDEXP,CD FORMAT(' ASYMPTOTIC PSI SERIES DID NOT CONVERGE'/ A = ',2D15.8/' C(12) = COEFFICIENTS IN STIRLING'S APPROXIMATION FOR LN(GAMMA(T)) SET ALL SYSTEM DEPENDENT CONSTANTS WITH DATA STATEMENT WHERE DOUBLE PRECISION FUNCTION SUBPROGRAM TO CALCULATE THE GAMMA 11 = ',2D15.8/' B EQUIVALENCE (A(1), ZZ), (SUM(1), SUMM), (TRM(1), TERM) IB = ',2015.8/' Z = ',2015.8/' CDPSI = ',2015.8) FORMAT(' PSI SERIES DID NOT CONVERGE'/' A IOUT = SYSTEM DEPENDENT OUTPUT CHANNEL 8/' Z = ',2D15.8/' CDPSI = ',2D15.8) CDPSI = SUMM*CDEXP(-A*CDLDG(Z)) CDPSI = SUMM*CDEXP(-A*CDLDG(Z)) FUNCTION FOR COMPLEX ARGUMENTS. WRITE(IOUT,910) A, B, Z, CDPSI [F(K.GT.100) GO TO 90 FUNCTION CDGMMA(Z) LOGICAL REFLEK G.TOL, DFLOAT G0 T0 60 RETURN RETURN SIN.PI END 006 910 80 06 $\circ \circ \circ \circ$

333330-1,-.2777777777777780-2,.7936507936507940-3,-.59523809523809 DATA TOL,IOUT,PI/1.D-15,6,(3.14159265358979D0,0.D0)/,C/.833333333 **25D-3..841750841750842D-3.-.191752691752692D-2..6410256410256410D-2** 3.-.2955065359477120-1..17964437236883100.-.13924322169059001..1340 428640441684D2,--156848284626020U3/

0000

DETERMINE WHETHER Z IS TOO CLOSE TO A POLE BY FINDING NEAREST POLE IF Z IS TOO CLOSE TO A POLE, PRINT ERROR MESSAGE AND RETURN WITH Z IS NOT TOD CLOSE TO A POLE, MAKE REAL(Z)>10 AND ARG(Z)<P1/4 AND COMPUTE GAMMA(1-Z). NOTE REFLEK IS A TAG TO INDICATE THAT FOR REAL(2) NEGATIVE EMPLOY THE REFLECTION FORMULA M = MAXO(IABS(IDINT(Y)) - IDINT(X), IO - IDINT(X), 0)GAMMA(Z) = PI/(SIN(PI*Z)*GAMMA(I-Z))THIS RELATION MUST BE USED LATER. xDIST = X - DFLUAT(IDINT(X-.5D0))CDGMMA = DCMPLX(1,D0/T0L,0,D0)CDGMMA = DCMPLX(1,D0/TUL,0,D0)AND COMPUTING DISTANCE TO IT. IF(CDABS(ZM).GE.TOL) GO TU 10 IF(X.GE.0.D0) G0 T0 20 F(X.GE.TOL) GO TO 20 ZM = DCMPLX(XDIST,Y)ZZ = (1.00, 0.00) - ZZREFLEK = .FALSE. WRITE(I0UT,900) REFLEK = .TRUE. X = 1.00 - XX = A(1)Y = A(2)2 = 22RETURN γ = γ Ĩ ပ်ပပ်လို 10 $\circ \circ \circ \circ$ 00000000 0000

SUMM = (T-(.5D0,0.D0))*CDLOG(T)-T+(.5D0,0.D0)*CDLOG((2.D0,0.D0)*PI = [N(GAMMA(Z+M))-LN(Z)-LN(Z+])-....LN(Z+M-]) TEST REAL AND IMAGINAKY PARTS OF LN(GAMMA(Z)) SEPARATELY FOR PRINT ERROR MESSAGE AND CONVERGENCE. IF Z IS REAL SKIP IMAGINARY PART OF CHECK. IF(DABS(TRM(1)/SUM(1)).GT.TOL) GU TO 80 = LN(GAMMA(Z+M)/(Z*(Z+1)*...**(Z+M-1))) COMPUTE STIRLING'S APPROXIMATION FOR LN(GAMMA(T)) RECURSION RELATION USED TO OBTAIN LN(GAMMA(Z)) [F(Y.E0.0.D0) G0 T0 100
[F(DABS(TRM(2)/SUM(2)).LE.TOL) G0 T0 100 STIRLING'S SERIES DID NOT CONVERGE. T = DCMPLX(X+DFLOAT(M), Y)TEST FOR NONCONVERGENCE IF(M.E0.0) GO TO 120 LN(GAMMA(Z)) LN(GAMMA(Z)) IF(J-12) 70,70,90 SUMM = SUMM+TERM TERM = C(J)/DENWRITE(I0UT,910) CONVERGENCE. DEN = DEN*TT $\mathbf{I} = \mathbf{I} * \mathbf{I}$ PROCEDE. DEN = T**ι**+Γ = " 100 ° 0 0 0 0 60 0000000000 80 ں <mark>ن</mark> ں ں ں ں ں

THE DETERMINANT FORMAT(1X, ARGUMENT OF GAMMA FUNCTION IS TOO CLOSE TO A POLE.) FORMAT(' ERROR - STIRLINGS SERIES HAS NOT CONVERGED') INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY METHOD - THE STANDARD GAUSS-JORDAN METHOD IS USED. CHECK TO SEE IF REFLECTION FORMULA SHOULD BE USED. SUMM = SUMM-CDLOG(ZZ+DCMPLX(DFLOAT(I-1),0.D0)) SUMM = CDLOG(PI/CDSIN(PI*ZZ))-SUMM USAGE - CALL MINV(A,N,D,L,M,NN) RESULTANT DETERMINANT
WORK VECTOR OF LENGTH N
WORK VECTOR OF LENGTH N DESCRIPTION OF PARAMETERS PURPOSE - INVERT A MATRIX RESULTANT INVERSE ORDER OF MATRIX A IF(REFLEK) GO TO 130 CDGMMA = CDEXP(SUMM) SUBROUTINE MINV DO 110 I = 1.4N+N - NN GD TD 140 ł I RETURN z οuz ۹ END 110 C 120 130 910 140 006 ں ں

IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT **************** SUBRDUTINE MINV(A,N,D,L,M,NN) DIMENSION A(NN),L(N),M(N) DOUBLE PRECISION A,D,BIGA,HOLD,DABS IF(DABS(BIGA)-DABS(A(IJ))) 15,20,20 THE MATRIX IS SINGULAR. SEARCH FOR LARGEST ELEMENT INTERCHANGE ROWS IF(J-K) 35,35,25 z - z - + 1 • N D0 20 I = $K_{+}N$ DO 20 $J = K_{+}N$ BIGA = A(IJ)(1 - 1) = N = 2BIGA = A(KK)KK = NK + K DO 80 K = $I + ZI = \Gamma$ NK = NK+N KI = K - N¥ 11 D = 1.00CONTINUE J = L(K)DN 30 I KI = KI M(K) = J.... NK II IN ((K) M(K) L (K) 0000 10 15 25 00000 ပပပ

```
DIVIDE COLUMN BY MINUS PIVOT IVALUE OF PIVOT ELEMENT IS STORED IN
BIGA)
                                                                                                                                                                                                                  DO 55 I = 1.N
IF(I-K) 50,55,50
IK = NK+I
A(IK) = A(IK)/(-BIGA)
                                              INTERCHANGE COLUMNS
                                                                                                                                                                                        IF(BIGA) 48,46,48
                                                                         [F(I-K) 45,45,38
                                                                                                                                                                                                                                                                                             DO 65 I = 1,N
IK = NK+I
HOLD = A(IK)
                                                                                                                                                                                                                                                                                                                        IJ = I - N
DO 65 J = 1,N
                                                                                                                                                                                                                                                                           REDUCE MATRIX
H\cap L D = -A(KI)
JI = KI-K+J
                 A(KI) = A(JI)A(JI) = HOLD
                                                                                            00 40 J = 1.0
                                                                                                                        HOLD = -A(JK)
                                                                                                                                 A(JK) = A(JI)
                                                                                                                                          A(JI) = HOLD
                                                                                  (I-I)*N = df
                                                                                                              [+d[ =
                                                                                                    = NK+J
                                                                                                                                                                                                 D = 0.DO
RETURN
                                                                                                                                                                                                                                                        CONTINUE
                                                                 I = M(K)
                                                                                                     ¥
                            38
                                                                                                                                          4 0 0 0 0 4 4
5 5
                                                                                                                                                                                                                   48
                                                                                                                                                                                                                                      50
```

```
FINAL ROW AND COLUMN INTERCHANGE
                                                                                                                                                                                                REPLACE PIVOT BY RECIPROCAL
                           KJ = IJ-I+K
A(IJ) = HOLD*A(KJ)+A(IJ)
                                                                  DIVIDE ROW BY PIVOT
                                                                                                                                                                                                                                                                                                         IF(I-K) 120,120,108
                                                                                                                   IF(J-K) 70,75,70
A(KJ) = A(KJ)/BIGA
                                                                                                                                                                                                                   A(KK) = 1.DO/BIGA
CONTINUE
                                                                                                                                                                                                                                                                                      IF(K) 150,150,105
                                                                                                                                                          PRODUCT OF PIVOTS
         IF(I-K) 60,65,60
IF(J-K) 62,65,62
                                                                                                                                                                                                                                                                                                                                     D0 110 J = 1.0
JK = J0+J
                                                                                      KJ = K-N
DO 75 J = 1,N
KJ = KJ+N
                                                                                                                                                                                                                                                                                                                  (I - X) = N + (K - I)
                                                                                                                                                                                                                                                                                                                             JR = N*(I-I)
                                                                                                                                                                             D = D*BIGA
N+\Gamma I = \Gamma I
                                                                                                                                                                                                                                                                    K = N
K = (K-1)
                                               CONTINUE
                                                                                                                                                                                                                                                                                                 I = L(K)
                                                                                                                                      CONT INUE
                                                                                                                                                                                                                                                                             100
                                                                                                                                                                                                                                                                                                 105
                                                                                                                                                                                                                                                                                                                   108
                                                                                                                                                                                                                            ၀
၀၀၀၀
                   60
62
                                                ς
γ
γ
γ
                                                                                                                            CC 75
                                                                                                                                                                                      ບບບ
```

. . .

225

HPTLD = A(JK) JI = JR+J JI = JR+J A(JK) = -A(JI) A(JI) = HOLD J = M(K) I20 J = M(K) IF(J-K) 100.100.125 KI = K-N DO 130 I = 1.N KI = KI+N HOLD = A(KI) JI = KI-K+J A(JI) = HOLD A(JI) = HOLD A(JI) = HOLD GO TO 100 END END

APPENDIX N

Evaluation of the Invariant Amplitude for Pion-Mucleon Scattering in the Pion-Nucleus CM System

26

According to Goldberger and Watson the invariant amplitude for pion-nucleon scattering

$$(P_N,\lambda) + (P_{\pi},B) \rightarrow (P_N',\lambda') + (P_{\pi}',\alpha)$$

18

$$\mathbf{M} = \overline{U}(\vec{\mathbf{P}}_{N}) \left(A_{\alpha \mathbf{B}} - i \mathbf{Y} \cdot \mathbf{Q} \ \mathbf{B}_{\alpha \mathbf{B}} \right) U(\vec{\mathbf{P}}_{N})$$

where

 $\mathbf{N}^2 \quad \mathbf{Q} = \frac{\mathbf{P}_n + \mathbf{P}_n'}{2}$

$$\mathbf{N3} \quad \mathbf{A}_{\boldsymbol{\alpha}\mathbf{B}} = \mathbf{A}^{(+)} \mathbf{f}_{\boldsymbol{\alpha}\mathbf{B}} + \mathbf{A}^{(-)} \mathbf{f}_{\boldsymbol{\alpha}} \left[\mathbf{T}_{\boldsymbol{\alpha}}, \mathbf{T}_{\boldsymbol{B}} \right]$$

$$\mathbf{W} = \mathbf{B}^{(+)} \mathbf{G}_{\alpha \mathbf{B}} + \mathbf{B}^{(-)} \pm [\mathbf{T}_{\alpha_i} \mathbf{T}_{\mathbf{B}}].$$

The scalars $A_{{\it \propto}{\it B}}$ and $B_{{\it \alpha}{\it B}}$ are in general functions of the invariants s, t, and u where

N5
$$S = -(P_n + P_N)^2 = -(P'_n + P_N)^2$$

$$16 \quad t = -(P_n - P_n')^2 = -(P_n - P_n')^2$$

N7
$$U = -(P_{\Pi} - P_{N'})^{2} = -(P_{\Pi}' - P_{N})^{2}$$
.

In the notation of Goldberger and Watson²⁶ the invariant amplitude is related to the S matrix by

NB
$$S_{\alpha B} = S_{P_{n}, P_{n}'} S_{P_{n}, P_{n'}} \delta_{\alpha B} + 2\pi i \delta(P_{n}' + P_{n} - P_{n})$$

 $S_{P_{n+P_{n}}, P_{n'}' + P_{n'}} \left(\frac{M_{n}^{2}}{4E_{n}E_{n'}E_{n}E_{n'}}\right)^{\gamma_{2}} M_{\alpha B}$

and to the total 77 N cross section by

N9
$$\overline{\nabla \pi N} = \frac{\left(\frac{MN}{4\pi}\right)^2}{V_{rel} E_{\pi} E_{N}} \int \frac{d^3 P_{N'}}{E_{N'}} \int \frac{d^3 P_{\pi'}}{E_{\pi'}} \int \frac{d^3 P_{\pi'}}{E_{\pi'}} \int \left(\frac{d^3 P_{\pi'}}{E_{\pi'}}\right) \left(\frac{d^3 P_{\pi'}}{$$

The differential cross section for the final pion to be in the solid angle $d \, {\cal R}_{TT}{}^\prime$ is

$$\frac{d\sigma}{d\tau} = |f|_{5}$$

where

M11
$$f = \frac{MN}{4\pi} \sqrt{\frac{e}{Vre} [M\alpha_B]}$$

$$\mathbf{n}_{2} \quad \mathbf{e} = \int \frac{\mathbf{p}_{n'} d\mathbf{p}_{n'}}{\mathbf{E}_{n'}} \int \frac{d^{3}\mathbf{P}_{N'}}{\mathbf{E}_{N'}} S(\mathbf{p}_{N'} + \mathbf{p}_{n'} - \mathbf{p}_{N} - \mathbf{p}_{n}).$$

In the pion-nucleon CM system

n13
$$f^{\pi N} \cong \frac{|M_{\alpha B}|}{4\pi (1 + E\pi/M_N)}$$

For a nucleon bound in the nucleus, the pion-nucleon scattering amplitude in the pion-nucleus CM system is related to the pion-nucleon scattering amplitude in the pion-nucleus CM by II-1, i.e.

$$\mathbf{M14} \quad \mathbf{f}^{\mathbf{TNUC}} \cong (\mathbf{I} + \mathbf{E}_{\mathbf{MN}}^{\mathbf{T}}) \mathbf{f}^{\mathbf{TN}}.$$

Thus the relationship between the pion-nucleon scattering amplitude in the pion-nucleus CM system to the invariant amplitude M is given by

$$\mathbf{M15} \quad \mathbf{f}^{\mathbf{MNUC}} \cong |\mathbf{M}_{\alpha \mathbf{B}}| / 4\pi$$

The operator form of the invariant amplitude $M_{\,\it N\,\it B}$ is obtained by substituting into NL

N16
$$U(P_N) = \sqrt{\frac{E_N + M_N}{2M_N}} \begin{pmatrix} I U_P \\ \frac{\overline{V} \cdot \overline{P}_N}{E_N + M_N} & U_P \end{pmatrix}$$

$$\mathbf{N17} \quad \overline{U}(\mathbf{P}_{N}') = \sqrt{\frac{\mathbf{E}_{N}' + \mathbf{M}_{N}}{2\mathbf{M}_{N}}} \left(\mathbf{I} U_{\mathbf{p}}^{\dagger} - \frac{\overline{\mathbf{U}} \cdot \overline{\mathbf{P}}_{N}}{\mathbf{E}_{N}' + \mathbf{M}_{N}} U_{\mathbf{p}}^{\dagger} \right)$$

N18
$$\vec{\chi} = \begin{pmatrix} \circ & -i\vec{\sigma} \\ i\vec{\sigma} & \circ \end{pmatrix}$$
 $\chi_4 = \begin{pmatrix} I & \circ \\ \circ & -I \end{pmatrix}$.

The resulting expression is

$$M_{\alpha B} = \frac{\sqrt{E_{N}' + M_{N}} \sqrt{E_{N} + M_{N}}}{2M_{N}} U_{p}^{+} \left[\left\{ 1 - \frac{(\overline{v} \cdot \overline{P}_{N})(\overline{v} \cdot \overline{P}_{N})}{(E_{N} + M_{N})(E_{N} + M_{N})} \right\} A_{\alpha B} \right]$$

$$+ \left\{ \frac{E_{n} + E_{n}'}{2} - \overline{\nabla} \cdot \frac{(\overline{P}_{n} + \overline{P}_{n})}{2} \frac{\overline{\nabla} \cdot \overline{P}_{N}}{E_{N} + M_{N}} - \frac{(\overline{v} \cdot \overline{P}_{N})}{2(E_{N}' + M_{N})} \right\}$$

$$+ \left(\frac{E_{n} + E_{n}'}{2} \right) \frac{(\overline{\nabla} \cdot \overline{P}_{N})(\overline{\nabla} \cdot \overline{P}_{N})}{(E_{N}' + M_{N})(E_{N} + M_{N})} \right\} B_{\alpha B} U_{p},$$

.

Note that the effect of the nuclear binding on the spinors has been neglected.

Now $M_{o(B)}$ may be written in a more symmetric way. Consider the terms in $M_{\alpha B}$ of the form

$$\frac{1}{\sqrt{2}} \sqrt{\frac{E_N + M_N}{2M_N}} \sqrt{\frac{E_N + M_N}{2M_N}} \left[1 \mp \frac{1}{4} \frac{1}{4$$

$$= \sqrt{\left(1 + \frac{T_N}{2M_N}\right)\left(1 + \frac{T_{N'}}{2M_N}\right)\left(1 + \frac{\tilde{P}_N \cdot \tilde{P}_{N'}}{2M_N^2}\right)}$$

$$\cong \left[1 + \frac{T_N + T_N^{\dagger}}{4M_N}\right] \left[1 + \frac{\tilde{P}_N \cdot \tilde{P}_{N'}}{4M_N^2}\right]$$

$$= 1 + \frac{P_N^2 + P_{N'}^2}{8M_N^2} + \frac{\tilde{P}_N \cdot \tilde{P}_{N'}}{4M_N^2}$$

$$= 1 + \left(\frac{\tilde{P}_N + \tilde{P}_{N'}}{8M_N^2}\right)^2 \cdot$$

Using the symmetric expression $M_{\alpha\beta}$ may be written

$$M^{21} \qquad M_{\alpha B} = U_{p}^{+} \left\{ A_{\alpha B} \left[1 + \left(\frac{\bar{P}_{N} - \bar{P}_{N}}{8M_{N}^{2}} \right)^{2} - i \frac{\bar{\sigma} \cdot \left(\bar{P}_{N}' \times \bar{P}_{N} \right)}{4M_{N}^{2}} \right] \right. \\ \left. + B_{\alpha B} \left[1 + \left(\frac{\bar{P}_{N} + \bar{P}_{N}' \right)^{2}}{8M_{N}^{2}} + i \frac{\bar{\sigma} \cdot \left(\bar{P}_{N}' \times \bar{P}_{N} \right)}{4M_{N}^{2}} \right] \frac{E_{n} + E_{n}'}{a} \\ \left. - B_{\alpha B} \left[\left(\bar{P}_{N} + \bar{P}_{N'} \right) - i \bar{\sigma} \cdot \chi \left(\bar{P}_{N} - \bar{P}_{N'} \right) \right] \cdot \left(\frac{\bar{P}_{n} + \bar{P}_{n}' \right)}{4M_{N}} \right\} U_{p} .$$

26 In their book Goldberger and Watson have evaluated the elastic pion-nucleon isoscalar scattering amplitude f in the pion-nucleon CM system and obtained

$$\pi^{22} \qquad f^{(t)} = U_{p}^{+} \left[\frac{E_{N} + M_{N}}{2W} \left\{ \frac{A^{(t)} + (W - M_{N})B^{(t)}}{4\pi} \right\} \right]$$

$$+ \frac{E_{N} - M_{N}}{2W} \left\{ -\frac{A^{(t)} + (W + M_{N})B^{(t)}}{4\pi} \right\} (\bar{\nabla} \cdot \hat{P}_{\pi}) U_{p}.$$

They compared this form with the phase shift form normally used in pion-nucleon scattering

$$\mathbf{m}_{23} \quad \mathbf{f}^{(+)} = U_{p}^{+} \left[\mathbf{f}_{1}^{(+)} + \mathbf{f}_{2}^{(+)} (\mathbf{\vec{\tau}} \cdot \mathbf{\hat{r}}_{n}) (\mathbf{\vec{\tau}} \cdot \mathbf{\hat{r}}_{n}) \right] U_{p}$$

(+) (+) (+) (+) and solved for A and B interms of f_1 and f_2 to obtain

$$\frac{A^{(+)}}{4\pi} = \frac{W + M_N}{E_N + M_N} f_1^{(+)} - \frac{W - M_N}{E_N - M_N} f_2^{(+)}$$

$$\frac{B^{(+)}}{4\pi} = \frac{1}{E_N + M_N} f_1^{(+)} + \frac{1}{E_N - M_N} f_2^{(+)}$$

(+) (+) where the f_1 and f_2 are related to the pion-nucleon phase shifts by

$$\mathbf{N}_{26} \qquad \mathbf{f}_{1}^{(t)} = \sum_{k=0}^{\infty} \mathbf{f}_{k} + \mathbf{p}_{k+1}^{\prime}(\hat{\mathbf{h}}_{n} \cdot \hat{\mathbf{h}}_{n}) - \sum_{k=2}^{\infty} \mathbf{f}_{k} - \mathbf{p}_{k-1}^{\prime}(\hat{\mathbf{h}}_{n} \cdot \hat{\mathbf{h}}_{n})$$

$$\begin{split} \mathbf{N27} & \mathbf{f}_{2}^{(t)} = \bigotimes_{l=1}^{\infty} \left(\mathbf{f}_{l}^{(t)} - \mathbf{f}_{l}^{(t)} \right) \mathbf{P}_{2}^{\prime}(\hat{\mathbf{f}}_{n} \cdot \hat{\mathbf{f}}_{n}^{\prime}) \\ \mathbf{N28} & \mathbf{f}_{l}^{(t)} = e^{i\frac{(t)}{\delta l_{\pm}}} = e^{i\frac{(t)}{\delta l_{\pm}}} \frac{(t)}{\sin \delta l_{\pm}} \frac{(t)}{l_{\pm}} \frac{(t)}{l_{\pm$$

For s and p waves only one has

$$\mathbf{x}^{29} \quad \mathbf{f}_{1}^{(+)} = \mathbf{f}_{0+}^{(+)} + \mathbf{3} \mathbf{f}_{1+}^{(+)} (\hat{\mathbf{p}}_{n} \cdot \hat{\mathbf{p}}_{n'})$$

$$\mathbf{H}_{30} \quad \mathbf{f}_{41}^{(4)} = \mathbf{f}_{1-}^{(4)} - \mathbf{f}_{1+}^{(4)} \cdot$$

Thus

$$\begin{array}{rcl} \mathbf{M31} & \mathbf{f}^{(\texttt{H})} = U_{p}^{+} \left[f_{0}^{(\texttt{H})} + \left(3f_{1}^{(\texttt{H})} + f_{1}^{(\texttt{H})} - f_{1}^{(\texttt{H})} \right) \hat{\mathbf{f}}_{n} \cdot \hat{\mathbf{f}}_{n} \\ & + \left(f_{1}^{(\texttt{H})} - f_{1}^{(\texttt{H})} \right) i \, \hat{\boldsymbol{\sigma}} \cdot \left(\hat{\mathbf{f}}_{n} \times \hat{\mathbf{f}}_{n} \right) \right] U_{p} \, . \\ & 19 \end{array}$$

In terms of the notation of Ericson and Ericson

 $b_{0} = f_{0+}^{(H)}$

N33
$$C_6 = \frac{2 + 1 + 1}{|\vec{p}_{\pi}|^2}$$

$$d_{0} = f_{1} - f_{1} + \frac{(4)}{|\bar{m}|^{2}}$$

80

N35
$$f^{(1)} = U_p^+ \left[b_0 + c_0 \dot{p}_1 \cdot \dot{p}_1 + i d_0 \dot{\tau} \cdot (\dot{p}_1 \times \dot{p}_1) \right] U_p.$$

The general form of f in the pion-nucleon CM may also be written in the Ericson's notation to be

$$\mathbf{M36} \quad \mathbf{f} = U_{\mathbf{p}}^{+} \left[\left(\mathbf{b}_{\mathbf{0}} + \mathbf{b}_{\mathbf{1}} \underbrace{\tau}_{\mathbf{n}} \cdot \underbrace{T}_{\mathbf{N}} \right) + \left(\mathbf{c}_{\mathbf{0}} + \mathbf{c}_{\mathbf{1}} \underbrace{\tau}_{\mathbf{n}} \cdot \underbrace{T}_{\mathbf{N}} \right) \mathbf{\vec{P}}_{\mathbf{n}} \cdot \mathbf{\vec{P}}_{\mathbf{n}} \\ + \mathbf{i} \left(\mathbf{d}_{\mathbf{0}} + \mathbf{d}_{\mathbf{1}} \underbrace{\tau}_{\mathbf{n}} \cdot \underbrace{T}_{\mathbf{N}} \right) \mathbf{\vec{\nabla}} \cdot \left(\mathbf{\vec{P}}_{\mathbf{n}} \times \mathbf{\vec{P}}_{\mathbf{n}} \right) \right] U_{\mathbf{p}} .$$

Consider the invariant amplitude $M_{\alpha\beta}$ in the pion-nucleus CM $\frac{122}{122}$ system. According to Krajcik and Foldy the expression one obtains for $M_{\alpha\beta}$ using free nucleon spinors is correct only to order $1/M_{N}$, because the effect of nuclear binding on the spinors is of order $1/M_{N}^{2}$. In order to obtain $M_{\alpha\beta}$ to order $1/M_{N}$ one needs to expand the coefficients of f_{1} and f_{2} in the expressions for $A_{\alpha\beta}$ and $B_{\alpha\beta}$ given in equations N^{24} and N^{25} .

Nov

N37
$$\frac{1}{\widehat{E} + M_N} \cong \frac{1}{2M_N}$$

$$\frac{\widehat{W} + MN}{\widehat{E} + MN} \cong \frac{M_N (1 + \frac{E_n + E_n'}{2M_N}) + MN}{2M_N} = 1 + \frac{E_n + E_n'}{4M_N}$$
$$N39 \quad \frac{1}{\underline{E} - M_{N}} = \frac{1}{\frac{\overline{h_{n}} \cdot \overline{h_{n}'}}{\underline{A} M_{N}} \left(1 - \frac{\overline{h_{n}} \cdot \overline{h_{n}'}}{\underline{H} M_{N}^{2}} \right)} \stackrel{\leq}{=} \frac{1 + \frac{\overline{h_{n}} \cdot \overline{h_{n}'}}{\underline{H} M_{N}^{2}}}{\frac{\overline{h_{n}} \cdot \overline{h_{n}'}}{\underline{A} M_{N}}}$$

$$N40 \quad - \frac{\overline{W} - M_{N}}{\underline{E} - M_{N}} = -\frac{M_{N}}{\frac{\overline{h_{n}} \cdot \overline{h_{n}'}}{\underline{A} M_{N}} \left(1 - \frac{\overline{h_{n}} \cdot \overline{h_{n}'}}{\underline{H} M_{N}^{2}} \right)}{\left(1 - \frac{\overline{h_{n}} \cdot \overline{h_{n}'}}{\underline{A} M_{N}} - \frac{\overline{h_{n}^{2} + h_{n}'}}{\underline{H} M_{N}^{2}} \right)} - \left(\frac{\overline{h_{n}} \cdot \overline{h_{N}} + \overline{h_{n}'} \cdot \overline{h_{n}'}}{\underline{A} M_{N}^{2}} + \frac{\overline{h_{n}} \cdot \overline{h_{n}'}}{\underline{A} M_{N}^{2}} + \frac{\overline{h_{n}} \cdot \overline{h_{n}}}{\underline{A} M_{N}^{2}} \right) + \frac{\overline{E} n}{\underline{A} M_{N}} \left(\frac{\overline{h_{n}^{2} + \overline{h_{n}^{2}}}{\underline{A} M_{N}^{2}} + \frac{\overline{h_{n}} \cdot \overline{h_{n}'}}{\underline{A} M_{N}^{2}} \right) + \frac{\overline{E} n'_{n}}{\underline{A} M_{N}^{2}} + \frac{\overline{h_{n}} \cdot \overline{h_{n}'}}{\underline{A} M_{N}^{2}} \right)$$

where the \sim signifies a pion-nucleon CM quantity. Substituting these terms into the expression for $M_{\alpha\beta}$ given in N21 obtain after some cancellation

$$\begin{split} \mathbf{M}_{41} \quad \mathcal{M}_{\alpha\beta} &= U_{p}^{+} \left[\left\{ \left(1 + \frac{\mathbf{E}_{n} + \mathbf{E}_{n}'}{4M_{N}} \right) + \frac{1}{1} - \frac{2}{\mathbf{R}_{n}} \frac{M_{N}^{2}}{\mathbf{R}_{n}} \left[\frac{\mathbf{E}_{n} + \mathbf{E}_{n}'}{2M_{N}} \right] \right. \\ &- \frac{\mathbf{\tilde{r}}_{n}^{2} + \mathbf{\tilde{p}}_{n}^{2}}{4M_{N}^{2}} - \left(\frac{\mathbf{\tilde{p}}_{n} \cdot \mathbf{\tilde{p}}_{N} + \mathbf{\tilde{n}}^{1} \cdot \mathbf{\tilde{p}}_{N}'}{2M_{N}^{2}} \right) + \frac{\mathbf{E}_{n}}{2M_{N}} \left(\frac{\mathbf{\tilde{p}}_{n}^{2} + \mathbf{\tilde{p}}_{n}^{2}}{2M_{N}^{2}} + \frac{\mathbf{\tilde{p}}_{n'} \cdot \mathbf{\tilde{p}}_{n}}{2M_{N}^{2}} \right) + \frac{\mathbf{E}_{n'}}{2M_{N}^{2}} \left(\frac{\mathbf{\tilde{p}}_{n'}^{2} + \mathbf{\tilde{p}}_{n'}^{2}}{2M_{N}^{2}} + \frac{\mathbf{\tilde{p}}_{N'} \cdot \mathbf{\tilde{p}}_{n}}{M_{N}^{2}} \right) \right] \mathbf{f}_{2} \left\{ 1 + \left(\frac{\mathbf{\tilde{p}}_{N} - \mathbf{\tilde{p}}_{N'} \right)^{2}}{8M_{N}^{2}} - \mathbf{i} \frac{\mathbf{\tilde{r}} \cdot (\mathbf{\tilde{p}}_{N} \times \mathbf{\tilde{p}}_{N})}{4M_{N}^{2}} \right\} + \left\{ \frac{\mathbf{f}_{1}}{2M_{N}} + \frac{2M_{N}}{\mathbf{\tilde{p}}_{n}} \mathbf{\tilde{p}}_{N'} \right\} \\ \left\{ 1 + \left(\frac{\mathbf{\tilde{p}}_{N} + \mathbf{\tilde{p}}_{N'} \right)^{2}}{8M_{N}^{2}} + \mathbf{i} \frac{\mathbf{\tilde{r}} \cdot (\mathbf{\tilde{p}}_{N'} \times \mathbf{\tilde{p}}_{N})}{4M_{N}^{2}} \right\} \left(\frac{\mathbf{E}_{n} + \mathbf{E}_{n'}}{2} \right) - \left\{ \frac{\mathbf{f}_{1}}{2M_{N}} + \frac{2M_{N}}{\mathbf{\tilde{p}}_{n}} \mathbf{\tilde{p}}_{N'} \right\} \\ \left\{ 2 + \left(\frac{\mathbf{\tilde{p}}_{N} + \mathbf{\tilde{p}}_{N'} \right)^{2}}{8M_{N}^{2}} + \mathbf{i} \frac{\mathbf{\tilde{r}} \cdot (\mathbf{\tilde{p}}_{N'} \times \mathbf{\tilde{p}}_{N})}{4M_{N}^{2}} \right\} \left(\frac{\mathbf{E}_{n} + \mathbf{E}_{n'}}{4M_{N}} - \left\{ \frac{\mathbf{f}_{1}}{2M_{N}} + \frac{2M_{N}}{\mathbf{\tilde{p}}_{n}} \mathbf{\tilde{p}}_{N'} \right\} \right\} \\ \left\{ 2 + \left(\frac{\mathbf{\tilde{p}}_{N} + \mathbf{\tilde{p}}_{N} \right)^{2}}{8M_{N}^{2}} + \mathbf{i} \frac{\mathbf{\tilde{r}} \cdot (\mathbf{\tilde{p}}_{N'} \times \mathbf{\tilde{p}}_{N'})}{4M_{N}^{2}} \right\} \left(\frac{\mathbf{E}_{n} + \mathbf{E}_{n'}}{4M_{N}} \right) - \left\{ \frac{\mathbf{f}_{1}}{2M_{N}} + \frac{2M_{N}}{\mathbf{\tilde{p}}_{N}} \right\} \\ \left\{ \frac{\mathbf{f}_{1}}{4M_{N}} + \mathbf{f}_{2} \right\} \left\{ \left(\mathbf{\tilde{p}}_{N} + \mathbf{\tilde{p}}_{N} \right) - \mathbf{i} \mathbf{\tilde{r}} \times (\mathbf{\tilde{p}}_{N'} - \mathbf{\tilde{p}}_{N'}) \right\} \left(\frac{\mathbf{\tilde{p}}_{n} + \mathbf{\tilde{p}}_{n'}}{4M_{N}} \right) \right\} \\ \left\{ \mathbf{U}_{N} \right\} \\ \left\{$$

Combining coefficients of f_1 and f_2 obtain

$$M^{2} = M_{\alpha B} = U_{p}^{+} \left[\left\{ 1 + \frac{E_{n} + E_{n}'}{2M_{N}} \right\} f_{1}^{+} + \frac{f_{a}}{2R_{n}} \left\{ \tilde{P}_{n}^{2} \left(1 - \frac{E_{n}}{M_{N}} \right) + \tilde{P}_{n}^{+} \left[2 \left(1 - \frac{E_{n}}{M_{N}} \right) - \frac{2E_{n}}{M_{N}} \tilde{P}_{N} \cdot \tilde{P}_{n}^{+} - \frac{2E_{n}'}{M_{N}} \tilde{P}_{N'} \cdot \tilde{P}_{n}^{+} + \left(\tilde{P}_{n} \cdot \tilde{P}_{N} + \tilde{P}_{n}^{+} \cdot \tilde{P}_{N'} \right) \right] - \frac{E_{n}}{M_{N}} \tilde{P}_{N'} \cdot \tilde{P}_{n}^{+} + \left(\tilde{P}_{n} \cdot \tilde{P}_{N} + \tilde{P}_{n}^{+} \cdot \tilde{P}_{N'} \right) - \tilde{P}_{N} \cdot \tilde{P}_{n}^{+} - \tilde{P}_{N'} \cdot \tilde{P}_{n} \right) - \frac{E_{n} + E_{n}'}{2M_{N}} \left[\left(\frac{\tilde{P}_{N} - \tilde{P}_{N'} \right)^{2} - i \tilde{\sigma} \cdot \left(\tilde{P}_{N} \times \tilde{P}_{N} \right) \right] - \frac{E_{n}}{M_{N}} \tilde{P}_{N}^{2} - \frac{E_{n}'}{2} \tilde{P}_{N'}^{+} + i \tilde{\sigma} \cdot \left(\tilde{P}_{N} \times \tilde{P}_{N} \right) \right] - \frac{E_{n}}{M_{N}} \tilde{P}_{N}^{2} + \frac{E_{n} + E_{n}'}{2M_{N}} \left(\frac{\tilde{P}_{N}^{+} + \tilde{P}_{N}^{-1} + 2\tilde{P}_{N} \cdot \tilde{P}_{N'}}{2} + i \tilde{\sigma} \cdot \left(\tilde{P}_{N} \times \tilde{P}_{N} \right) \right) + i \tilde{\sigma} \cdot \left(\tilde{P}_{n} - \tilde{P}_{n} \right) \chi \left(\tilde{P}_{n} + \tilde{P}_{n}^{-1} \right) \int U_{p} \cdot \tilde{P}_{N}^{-}$$

For elastic pion-nucleus scattering one has $\tilde{P}_{\pi}^{\ 2} \cong \tilde{P}_{\pi'}^{\ 2}$ and $B_{\pi} \cong B_{\pi'}$. Using the identity

$$\mathbf{N}+3 - q^2 = -(\mathbf{P}_{n'} - \mathbf{P}_{n}) \cdot (\mathbf{P}_{n} - \mathbf{P}_{n'}) = \mathbf{P}_{n'} \cdot \mathbf{P}_{n'} + \mathbf{P}_{n'} \cdot \mathbf{P}_{n'} - \mathbf{P}_{n'} \cdot \mathbf{P}_{n'} \cdot \mathbf{P}_{n'}$$
$$= -(\mathbf{P}_{n} - \mathbf{P}_{n'})^{2} = -\mathbf{P}_{n}^{2} - \mathbf{P}_{n'}^{2} + \mathbf{P}_{n'} \cdot \mathbf{P}_{n'}$$

one obtains for elastic scattering

$$\begin{split} \mathbf{N}^{\mathbf{H}\mathbf{H}} & \mathcal{M}_{\mathbf{X}\mathbf{B}} = U_{\mathbf{P}}^{+} \left[\left\{ 1 + \underbrace{\mathbb{E}\pi}_{\mathcal{M}_{N}} \right\} \widehat{\mathbf{f}}_{1} + \left\{ 2 \widehat{\mathbf{P}}_{N} \cdot \widehat{\mathbf{P}}_{n}^{\prime} \left(1 - \underbrace{\mathbb{E}\pi}_{\mathcal{M}_{N}} \right) + \underbrace{\mathbb{E}\pi}_{\mathcal{M}_{N}} \mathbf{g}^{2} \right. \\ & + \underbrace{\mathbb{E}\pi}_{\mathcal{M}_{N}} \left(- 2 \widehat{\mathbf{P}}_{N} \cdot \widehat{\mathbf{P}}_{n} - 2 \widehat{\mathbf{P}}_{N'} \cdot \widehat{\mathbf{P}}_{n'} - \widehat{\mathbf{P}}_{N'}^{2} - \widehat{\mathbf{P}}_{N'}^{2} + \widehat{\mathbf{P}}_{N'} \cdot \widehat{\mathbf{P}}_{n'} + \widehat{\mathbf{P}}_{N'} \cdot \widehat{\mathbf{P}}_{n'} \right) \\ & + \underbrace{\mathrm{E}\pi}_{\mathcal{M}_{N}} \left(- 2 \widehat{\mathbf{P}}_{N'} \cdot \widehat{\mathbf{P}}_{n} \right) + 2 i \widehat{\mathbf{T}} \cdot \left(\widehat{\mathbf{P}}_{n}^{\prime} \times \widehat{\mathbf{P}}_{n} \right) \right\} \frac{\widehat{\mathbf{f}}_{2}}{2 \widehat{\mathbf{R}}_{N} \widehat{\mathbf{P}}_{n'}} \left] U_{\mathbf{P}} \cdot \end{split}$$

But

$$N45 - g^{2} = -(\vec{P}N' - \vec{P}N)^{2} = -\vec{P}N^{2} - \vec{P}X^{2} + a\vec{P}N \cdot \vec{P}N',$$

$$\mathbf{M}_{\alpha B} = U_{p}^{+} \left[\left\{ 1 + \underbrace{\overline{M}_{N}}_{NN} \right\} f_{1} + \left\{ \underbrace{\overline{P}_{n} \cdot \overline{P}_{n}}_{N} \left(1 - \underbrace{\overline{M}_{n}}_{N} \right) - \underbrace{\overline{P}_{n}}_{MN} \left(\underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} + \underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} \right) + \underbrace{\overline{P}_{n}}_{MN} \left(\underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} + \underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} \right) + \underbrace{\overline{P}_{n}}_{MN} \left(\underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} + \underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} \right) + \underbrace{\overline{P}_{n}}_{MN} \left(\underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} + \underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} \right) + \underbrace{\overline{P}_{n}}_{MN} \left(\underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} + \underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} \right) + \underbrace{\overline{P}_{n}}_{N} \left(\underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} + \underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} \right) + \underbrace{\overline{P}_{n}}_{N} \left(\underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} + \underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} \right) + \underbrace{\overline{P}_{n}}_{N} \left(\underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} + \underbrace{\overline{P}_{N} \cdot \overline{P}_{n}}_{N} \right) + \underbrace{\overline{P}_{n}}_{N} \left(\underbrace{P}_{N} \cdot \overline{P}_{n} \right) + \underbrace{\overline{P}_{n}}_{N} \left(\underbrace{P}_{N} \cdot \overline$$

From equations N29, N30, N32, N33, N34, and N36 one has

$$f_{1} = b_{0} + b_{1} t_{\overline{n}} \cdot \overline{T}N + (C_{0} + c_{1} t_{\overline{n}} \cdot \overline{T}N) \hat{h}_{\overline{n}} \cdot \hat{h}_{1}$$

$$\frac{f_{2}}{F_{\overline{n}} \cdot \overline{h}_{1}} = d_{0} + d_{1} t_{\overline{n}} \cdot \overline{T}N \cdot (C_{0} + c_{1} t_{\overline{n}} \cdot \overline{T}N) \hat{h}_{\overline{n}} \cdot \hat{h}_{1}$$

$$\frac{f_{2}}{F_{\overline{n}} \cdot \overline{h}_{1}} = d_{0} + d_{1} t_{\overline{n}} \cdot \overline{T}N \cdot (C_{0} + c_{1} t_{\overline{n}} \cdot \overline{T}N) \hat{h}_{\overline{n}} \cdot \hat{h}_{1}$$

Using the Lorentz transformation one finds the relationship to order E_{TT}/M_{H}

$$\mathbf{N}49 \quad \widehat{\mathbf{P}}_{\overline{\mathbf{n}}} \cdot \widehat{\mathbf{P}}_{\overline{\mathbf{n}}} \cong \left[\widehat{\mathbf{P}}_{\overline{\mathbf{n}}} \cdot \widehat{\mathbf{P}}_{\overline{\mathbf{n}}}' - \frac{\mathbf{E}_{\overline{\mathbf{n}}}}{\mathbf{M}_{N}} (\widehat{\mathbf{P}}_{N} \cdot \widehat{\mathbf{P}}_{\overline{\mathbf{n}}}' + \widehat{\mathbf{P}}_{N}' \cdot \widehat{\mathbf{P}}_{\overline{\mathbf{n}}}) \right] / (1 + \mathbf{E}_{\overline{\mathbf{n}}})^{2}.$$

Thus M_{KB} in equation N46 may be written

$$M_{\alpha \beta} = U_{p}^{+} \left[\left(1 + \frac{E\pi}{M_{N}} \right) \left\{ \left(b_{0} + b_{1} \pm \pi \cdot T_{N} \right) + \left(c_{0} + c_{1} \pm \pi \cdot T_{N} - d_{0} \right) - d_{1} \pm \pi \cdot T_{N} \right) \left(\frac{\tilde{P}_{\pi} \cdot \tilde{P}_{\pi'} - \frac{E\pi}{M_{N}} \left(\tilde{P}_{N} \cdot \tilde{P}_{\pi'} + \tilde{P}_{N'} \cdot \tilde{P}_{n} \right) \right) + \left(d_{0} + d_{1} \pm \pi \cdot T_{N} \right) \left(1 + \frac{E\pi}{M_{N}} \left(1 + \frac{E\pi}{M_{N}} \right)^{2} \right) \right] + \left(d_{0} + d_{1} \pm \pi \cdot T_{N} \right) \left(1 + \frac{E\pi}{M_{N}} \left(1 + \frac{E\pi}{M_{N}} \right)^{2} + \frac{E\pi}{M_{N}} \left(\tilde{P}_{N} \cdot \tilde{P}_{n} + \tilde{P}_{N'} \cdot \tilde{P}_{n} \right) + \frac{E\pi}{M_{N}} \left(\tilde{P}_{N} \times \tilde{P}_{N} \times \tilde{P}_{N} \right) + \frac{E\pi}{M_{N}} \left(\tilde{P}_{N} \times \tilde{P}_{N} \right) + \frac$$

or cancelling out $d_0 + d_1 t_{\overline{n}} \cdot T_N$ terms

$$M_{\alpha B} = U_{P}^{+} \left[(1 + \mathcal{R}_{N}) (b_{0} + b_{1} \underbrace{\forall n} \cdot \mathcal{I}_{N}) + (C_{0} + c_{1} \underbrace{\forall n} \cdot \mathcal{I}_{N}) \right]$$

$$\left\{ \frac{\tilde{m} \cdot \tilde{m}^{1} - \mathcal{R}_{N} (\tilde{n} \cdot \tilde{m}^{1} + \tilde{n} \cdot \tilde{n})}{1 + E \pi / M_{N}} + i (d_{0} + d_{1} \underbrace{\forall n} \cdot \mathcal{I}_{N}) \right\}$$

$$\left\{ \overline{\nabla} \cdot (\tilde{m}^{1} \times \tilde{m}) + \underbrace{\overline{m}_{N}}{M_{N}} \overline{\nabla} \cdot (\tilde{n}^{1} \times \tilde{n}) \right\} U_{P}$$

In order to evaluate the $\vec{P}_{N}' \vec{P}_{T}' + \vec{P}_{N}' \vec{P}_{T}$ terms one needs to note that in a complex nucleus

$$\mathbf{N52} \quad \langle \mathbf{O}^{\dagger} | \stackrel{A}{\underset{i=1}{\overset{}{\underset{i=1}{\underset{i=1}{\overset{}{\underset{i=1}{\overset{}{\underset{i=1}{\overset{}{\underset{i=1}{\overset{}{\underset{i=1}{\overset{}{\underset{i=1}{\overset{}{\underset{i=1}{\overset{}{\underset{i=1}{\overset{}{\underset{i=1}{\overset{}{\underset{i=1}{\overset{}{\underset{i=1}{\overset{}{\underset{i=1}{\overset{}{\underset{i=1}{\overset{}{\underset{i=1}{\underset{i=1}{\overset{}{\underset{i=1}{\underset{i=1}{\overset{}{\underset{i=1}{\underset{i=1}{\overset{}{\underset{i=1}{\underset{i=1}{\overset{}{\underset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\atop\atopi=1}{\underset{i$$

Similarly

153
$$<0^{+}|\stackrel{A}{\leq} \vec{P}_{N'_{1}} S(\vec{r} \cdot \vec{r}_{1})|0^{+} > = +\frac{1}{2} \nabla e \Theta$$
.

Thus in evaluating reduced matrix integrals like

N54
$$\int d^3r e^{i\vec{k}\cdot\vec{r}}\vec{p}n'\cdot \langle o^{\dagger}| \stackrel{A}{\underset{i=1}{\overset{\sim}{\sim}}} \mathcal{J}(\vec{r}\cdot\vec{r}i)\vec{p}n; |o^{\dagger}\rangle$$

one should break \tilde{P}_{π} ' into components perpendicular and parallel to \bar{q} . Only \tilde{P}_{π} parallel to \bar{q} can contribute.

Let

$$N55 \quad \stackrel{>}{\leq} = \stackrel{P_{n}}{=} \stackrel{P_{n}}{=}$$

N56 $\vec{q} = \vec{P}_{\Pi} - \vec{P}_{\Lambda}'$.

Thus

 $N57 \quad \vec{P}_{\Pi} = \vec{z} + \vec{g}$

$$\mathbf{n}_{58} \quad \vec{p}_{\pi}' = \underbrace{\vec{z}}_{2} \cdot \vec{g}_{\pi}$$

and

$$\begin{split} \mathbf{N}59 \quad \int d^{3}\mathbf{r} \, e^{i\,\mathbf{\tilde{g}}\cdot\mathbf{\tilde{r}}} \, |\mathbf{\tilde{r}}_{\pi}'\cdot \langle \mathsf{ot} | \stackrel{\texttt{A}}{\underset{i=1}{\overset{\sim}{\sim}} \delta(\mathbf{\tilde{r}}\cdot\mathbf{\tilde{r}}_{i}) \, |\mathbf{\tilde{r}}_{n}; | \mathsf{ot} \rangle \\ &= \int d^{3}\mathbf{r} \, e^{i\,\mathbf{\tilde{g}}\cdot\mathbf{\tilde{r}}} (-\,\mathbf{\underline{\tilde{g}}}{\underset{q}{\sim}}) \cdot (-\,\mathbf{\underline{\tilde{r}}}{\underset{q}{\sim}}) \, e(\mathbf{\tilde{r}}) \\ &= \int d^{3}\mathbf{r} \, e^{i\,\mathbf{\tilde{g}}\cdot\mathbf{\tilde{r}}} \, \mathbf{\underline{g}}_{q}^{2} \, e(\mathbf{\tilde{r}}) \end{split}$$

where one integrates by parts to get the ∇ to operate on $e^{i\vec{q}\cdot\vec{r}}$. Similarly

$$\mathbf{M} = \int d^{3}r \, e^{i\mathbf{\hat{g}}\cdot\mathbf{\hat{r}}} \, \mathbf{\hat{r}}_{\pi} \cdot \langle o^{\dagger}| \overset{A}{\underset{i=1}{\overset{a}{\leftarrow}}} \, \mathbf{\hat{r}}_{\pi'_{i}} \, \mathcal{S}(\mathbf{\hat{r}}\cdot\mathbf{\hat{r}}) \, |o^{\dagger}\rangle$$

$$= \int d^{3}r \, e^{i\mathbf{\hat{g}}\cdot\mathbf{\hat{r}}} \, (\mathbf{\hat{g}}/a) \, \mathbf{i} \, \mathbf{\nabla} \, e(\mathbf{\hat{r}})$$

$$= \int d^{3}r \, e^{i\mathbf{\hat{g}}\cdot\mathbf{\hat{r}}} \, \mathbf{\hat{g}}^{2} \, e(\mathbf{\hat{r}})$$

Thus one obtains

N61
$$\vec{P}_{\Pi} \cdot \vec{P}_{N} + \vec{P}_{\Pi} \cdot \vec{P}_{N} = \mathcal{R}^{2}/\mathcal{J}$$

Using NGL one obtains the final expression for $M_{\alpha\beta}$ to be

$$M_{\alpha B} = U_{p}^{+} \left[\left(1 + \frac{E_{m}}{M_{N}} \right) \left(b_{0} + b_{1} \pm n \cdot \underline{T}_{N} \right) + \left(c_{0} + c_{1} \pm n \cdot \underline{T}_{N} \right) \right] \\ \left\{ \frac{f_{11} \cdot f_{11}}{1 + E_{11} / M_{N}} \right\}^{-} + i \left(d_{0} + d_{1} \pm n \cdot \underline{T}_{N} \right) \\ \left\{ \frac{f_{11} \cdot f_{11}}{1 + E_{11} / M_{N}} + \frac{E_{m}}{M_{N}} \frac{f_{1}}{F} \cdot \left(f_{N} \times f_{N} \right) \right\} \right] U_{p} \\ \equiv U_{p}^{+} \left[\left(1 + \frac{E_{m}}{M_{N}} \right) \frac{b}{D} + \frac{c}{2} \left(f_{n} \cdot f_{n} - \frac{E_{m}}{M_{N}} f^{2} \right) / (1 + E_{n}) \\ + i \frac{d}{2} \left\{ \frac{f_{11} \cdot f_{11} \times f_{21}}{F} + \frac{E_{m}}{M_{N}} f^{2} \cdot \left(f_{N} \times f_{N} \right) \right\} \right] U_{p} \cdot$$

This result is accurate to order E_{π}/M_N . Although this form seems unique, there are two possible ways of putting in q^2 , i.e. in nucleon operators or pion operators. Cannata, Lucas, and Werntz¹⁷¹ used $q^2 = -\nabla^2 \mathcal{C}(r)$. A similar result was derived independently by Mach¹⁶⁶ in a different way. Kisslinger and Tabakin¹⁶⁷ attempted to derive this result but failed to obtain the coefficient of 1/2 for the nucleon motion term proportional to $\frac{E_{\pi}}{M_N} \nabla^2 \mathcal{C}(r)$. According to Krajcik and ¹²² Foldy² one must use bound state nucleon spinors if one wants to find the proper higher order terms in $M_{\alpha,\beta}$.

<i>م</i> ٦	م 3	
(m _π ⁻¹)	(m _n ⁻¹)	Reference
0.205 <u>+</u> 0.005	-0.115 <u>+</u> 0.003	111,112 ⁸
0.182 <u>+</u> 0.006	-0.103 <u>+</u> 0.006	102,103
0.17	-0.10	104
0.171 + 0.005	-0.088 <u>+</u> 0.004	105
0.183 <u>+</u> 0.016	-0.109 <u>+</u> 0.016	106
0.179 <u>+</u> 0.019	-0.103 <u>+</u> 0.019	110
0.180 + 0.012	-0.091 + 0.005	108

TABLE 1. Low energy s-wave πN scattering lengths.

a. As quoted in reference 102.

A 11	م 1 ₃	کر ₃₁	کر ₃₃	
(m π ⁻³)	(¤¶ ⁻³)	(ш п ⁻³)	(m_1 ⁻³)	Reference
-0.016 + 0.110	-0.055 ± 0.062	+100.0 <u>+</u> 8140.0-	012.0	111-114 ⁸
-0.015	-0.0035	-0.13	0.243	104 b
-0.016	-0.13	-0.13	0.201	104 b
-0.101 ± 101.0-	-0.029 ± 0.005	-0.038 <u>+</u> 0.005	0.215 ± 0.005	105
a. As quoted in refer	ence 102.			

TABLE 2. Low energy p-wave TN scattering lengths.

b. The two entries refer to two different parameterizations.

TABLE 3. Low energy s-wave TINN scattering lengths.

B_{01}	$\frac{B_{11}}{(m_{\pi}^{-4})}$	B_{00}	B_{02}	Ref-
(m π^{-4})		(m_ π^{-4})	(m_ π^{-4})	erence
(-0.054 <u>+</u> 0.020)(1-1) (-0.054 <u>+</u> 0.020)(1-1)	(-0.044 <u>+</u> 0.004)(1-1) (-0.077 <u>+</u> 0.007)(1-1))		19 ⁸ 21 ⁸

a. The real parts are crudely estimated to be of the same magnitude but opposite sign to the imaginary part.

i.

Ref- erence	19 ⁸ 21 ⁸
γ ₁₁ (1,0) (m.π ⁻⁶)	
γ ₁₂ (¤π ⁻⁶)	
β ₁₁ (0,1) (mπ ⁻⁶)	
3 δ ₁₀ (mπ ⁻⁶)	(-1.4 <u>+</u> 0.5)(1-1) (-0.4)(1-1)
$3(Y_{01} + 5Y_{21})$ (m_{T}^{-6})	(-2.80 <u>+</u> 0.29)(1-1) (-3.10)(1- 1)

TABLE 4. Low energy p-wave TINN scattering lengths.

,

a. The real parts are crudely estimated to be of the same magnitude but opposite sign to the imaginary part.

	2p-ls Transition Energies (Kev)			
Isotope	Berkeley ^{5,6}	CERN ⁷	W&M ¹⁻⁴	Average
3 _{He}			10.68 <u>+</u> 0.06	10.68 <u>+</u> 0.06
¹⁴ He			10.70 <u>+</u> 0.05	10.70 <u>+</u> 0.05
6 _{L1}	23.9 <u>+</u> 0.2		24.18 <u>+</u> 0.06	24.157 <u>+</u> 0.057
7 _{L1}	23.8 <u>+</u> 0.2		24.06 <u>+</u> 0.06	24.039 <u>+</u> 0.057
9 _{Be}	42.1 <u>+</u> 0.2	42.38 + 0.20	42.32 <u>+</u> 0.05	42.311 <u>+</u> 0.047
10 _B	64.9 <u>+</u> 0.2	65.94 <u>+</u> 0.18	65.79 <u>+</u> 0.11	65.663 <u>+</u> 0.210
11 _B	64.5 <u>+</u> 0.2	64.98 <u>+</u> 0.18	65.00 <u>+</u> 0.11	64.905 <u>+</u> 0.110
12 ^C	93.3 <u>+</u> 0.5	92.94 <u>+</u> 0.15	93.19 <u>+</u> 0.12	93.099 <u>+</u> 0.092
14 _N	123.9 <u>+</u> 0.5	124.74 <u>+</u> 0.15		124.671 <u>+</u> 0.163
16 ₀	160.6 <u>+</u> 0.7	159.95 <u>+</u> 0.25		160.024 <u>+</u> 0.235
18 ₀	~~	155.01 <u>+</u> 0.25	***	155.01 <u>+</u> 0.25
19 _F	196.5 <u>+</u> 0.5	195.9 <u>+</u> 0.5		196.20 <u>+</u> 0.35
20 _{Ne}			238.35 <u>+</u> 0.50	238.35 <u>+</u> 0.50
23 _{Na}	277.2 <u>+</u> 1.0	276.2 <u>+</u> 1.0	277.7 <u>+</u> 0.5	277.37 <u>+</u> 0.41
24 _{Mg}	330.3 <u>+</u> 1.0		331.80 <u>+</u> 1.65	330.70 <u>+</u> 0.86

TABLE 5. Summary of data for pionic 2p-1s transitions.

	Widths (Kev)			
Isotope	Berkeley ^{5,6}	CERN ⁷	W&M ¹⁴	Average
3 _{He}			_	
4 _{He}			+ 0.06 0.01 - 0.01	+ 0.06 0.01 - 0.01
6 Li	0.39 <u>+</u> 0.36		0.15 <u>+</u> 0.05	0.155 <u>+</u> 0.050
7 _{L1}	0.57 ± 0.30		0.19 <u>+</u> 0.05	0.200 <u>+</u> 0.049
9 _{Be}	0.85 <u>+</u> 0.28	1.07 <u>+</u> 0.30	0.58 <u>+</u> 0.05	0.601 <u>+</u> 0.052
10 _B	1.4 <u>+</u> 0.5	1.27 <u>+</u> 0.25	1.68 <u>+</u> 0.12	1.594 <u>+</u> 0.106
11 _B	2.3 <u>+</u> 0.5	1.87 <u>+</u> 0.25	1.72 <u>+</u> 0.15	1.793 <u>+</u> 0.125
¹² c	2.6 <u>+</u> 0.5	2.96 <u>+</u> 0.25	3.25 <u>+</u> 0.15	3.138 <u>+</u> 0.125
14 N	4.1 <u>+</u> 0.4	4.48 <u>+</u> 0.30		4.343 <u>+</u> 0.240
16 ₀	9.0 <u>+</u> 2.0	7.56 <u>+</u> 0.50	* = =	7.645 <u>+</u> 0.485
180		8.67 <u>+</u> 0.70		8.67 <u>+</u> 0.70
19 F	4.6 <u>+</u> 2.0	9.4 <u>+</u> 1.5		7.67 <u>+</u> 1.63
20 _{Ne}			14.2 <u>+</u> 2.0	14.2 <u>+</u> 2.0
23 _{Na}	4.6 <u>+</u> 3.0	10.3 <u>+</u> 4.0	7.2 <u>+</u> 1.2	6.93 <u>+</u> 1.07
24 _{Mg}			7.8 <u>+</u> 5.0	7.8 <u>+</u> 5.0

TABLE 5. Summary of data for pionic 2p-1s transitions. (Cont'd)

- <u></u>	3d-2p Transition Energies (Kev)	2p Widths (ev) ^a			
Isotope	NAL ¹⁴⁷	CERN ^{148,1}	49 W&M ¹⁵⁰	NAL ¹⁴⁷	
4 _{He}				0.0033 + 0.0013	
6 _{L1}			0.015 <u>+</u> 0.005		
7_{Li}				0.0165 <u>+</u> 0.0066	
9 _{Be}	8.10 ± 0.15	0.16 <u>+</u> 0.03	0.16 <u>+</u> 0.03	0.0526 <u>+</u> 0.0132	
10 _B		0.32 <u>+</u> 0.06			
¹¹ B		0.27 <u>+</u> 0.04			
12 _C	18.40 <u>+</u> 0.32	1.02 <u>+</u> 0.29	2.6 <u>+</u> 0.9	1.25 <u>+</u> 0.20	
14 _N		2.1 <u>+</u> 0.3			
16 ₀		4.7 <u>+</u> 0.8	12.0 <u>+</u> 4.0		
180		3.8 <u>+</u> 0.7			
19 _F		11.2 <u>+</u> 1.9			
23 _{Na}		34.6 <u>+</u> 7.6			

TABLE 6. Summary of data for pionic 3d-2p transitions.

••••••	3d-2p Transition Energies (KeV)			
Isotope	6,160 Berkeley	0,161 162 CERN	W&M ¹⁶³	Average
27 _{A1}	87.53 <u>+</u> 0.07	87.40 <u>+</u> 0.10		87.48 <u>+</u> 0.06
28 ₅₁		101.58 <u>+</u> 0.15		101.58 <u>+</u> 0.15
31 _P		116.78 <u>+</u> 0.10		116.78 <u>+</u> 0.10
32 ₈	133.2 <u>+</u> 0.3	133.06 <u>+</u> 0.10		133.07 <u>+</u> 0.09
35 _{Cl}		150.55 <u>+</u> 0.15		150.55 <u>+</u> 0.15
39 _K	188.6 <u>+</u> 0.3	188.77 <u>+</u> 0.18		188.73 <u>+</u> 0.15
40 _{Ca}	209.3 <u>+</u> 0.3	209.66 <u>+</u> 0.18	*	209.56 <u>+</u> 0.15
⁴⁴ Ca	208.94 <u>+</u> 0.10			208.94 <u>+</u> 0.10
48 _{T1}		253.98 <u>+</u> 0.20		253.98 <u>+</u> 0.20
51 _V	278.2 <u>+</u> 0.4	277.85 <u>+</u> 0.20		277.92 <u>+</u> 0.18
⁵² Cr	302.5 <u>+</u> 0.5	302.75 <u>+</u> 0.25		302.70 <u>+</u> 0.22
55 _{Mn}	328.5 <u>+</u> 0.8	329.12 <u>+</u> 0.25		329.06 <u>+</u> 0.24
56 _{Fe}	356.9 <u>+</u> 1.0	356.43 <u>+</u> 0.30		356.47 <u>+</u> 0.29
59 _{Co}	384.6 <u>+</u> 1.0	384.74 <u>+</u> 0.35		384.72 <u>+</u> 0.33
58 _{ni}		415.23 <u>+</u> 0.70	414.11 <u>+</u> 0.48	414.47 <u>+</u> 0.40
60 _{ni}			414.08 <u>+</u> 0.51	414.08 <u>+</u> 0.51
63 _{Cu}		446.1 <u>+</u> 2.0	***	446.1 <u>+</u> 2.0
⁶⁴ Zn		478.2 <u>+</u> 3.0		478.2 <u>+</u> 3.0

TABLE 6. Summary of data for pionic 3d-2p transitions. (Cont'd)

=

	Widths (KeV)			
Isotope	Berkeley ^{6,161}	CERN ^{22,162}	w&M ¹⁶³	Average
27 _{Al}		0.11 + 0.08 0.36 + 0.15		0.11 <u>+</u> 0.08 0.36 <u>+</u> 0.15
28 ₅₁		0.18 + 0.08	~ ~ ~	0.18 <u>+</u> 0.08
31 _P		0.20 ± 0.08 0.43 ± 0.15		0.20 <u>+</u> 0.08 0.43 <u>+</u> 0.15
32 ₈	0.8 <u>+</u> 0.4	0.79 <u>+</u> 0.15		0.79 <u>+</u> 0.15
35 _{C1}		0.89 <u>+</u> 0.25		0.89 <u>+</u> 0.25
39 _K	1.90 <u>+</u> 0.15	1.45 <u>+</u> 0.15		1.68 <u>+</u> 0.11
40 _{Ca}	2.29 <u>+</u> 0.13	2.00 <u>+</u> 0.25		2.23 <u>+</u> 0.12
44 Ca	2.07 <u>+</u> 0.15			2.07 <u>+</u> 0.15
48 _{T1}		2.89 <u>+</u> 0.25	aa aa xa	2.89 <u>+</u> 0.25
51 _V		3.66 <u>+</u> 0.25		3.66 <u>+</u> 0.25
⁵² Cr		4.46 <u>+</u> 0.35		4.46 <u>+</u> 0.35
55 _{Mn}		6.38 <u>+</u> 0.40		6.38 <u>+</u> 0.40
56 Fe	6.0 <u>+</u> 2.5	8.65 <u>+</u> 0.60		8.51 <u>+</u> 0.58
59 _{Co}		7.37 <u>+</u> 0.70		7.37 <u>+</u> 0.70
58 _{N1}		12.7 <u>+</u> 3.0	7.6 <u>+</u> 1.4	8.5 <u>+</u> 1.3
60 _{N1}			8.5 <u>+</u> 1.5	8.5 <u>+</u> 1.5
63 _{Cu}		15.9 <u>+</u> 4.0		15.9 <u>+</u> 4.0
64 Zn		16.8 <u>+</u> 6.0		16.8 <u>+</u> 6.0

TABLE 6. Summary of data for pionic 3d-2p transitions. (Cont'd)

	4f-3d Transition Energies (KeV)	3d Widths (ev) ^a
Isotope	Berkeley ¹⁵⁹	CERN ²²
27 _{Al}		0.02 <u>+</u> 0.01
28 ₅₁		0.01 <u>+</u> 0.04
³¹ P		0.09 <u>+</u> 0.05
32 ₅		0.07 <u>+</u> 0.06
Cl		0.30 <u>+</u> 0.13
к		0.6 <u>+</u> 0.3
40 _{Ca}	72.352 <u>+</u> 0.009	0.5 <u>+</u> 0.3
Ti	87.651 <u>+</u> 0.009	2.5 <u>+</u> 0.7
51 _V		1.7 <u>+</u> 0.9
Cr		4.9 <u>+</u> 1.1
55 _{Mn}		6.7 <u>+</u> 1.4
Fe		9.2 <u>+</u> 2.2
59 _{Co}		12.9 <u>+</u> 7.0
Ni		12.2 <u>+</u> 4.3
Cu		18.4 <u>+</u> 6.8
Zn		29.5 <u>+</u> 12.4

TABLE 7. Summary of data for pionic 4f-3d transitions.

a. These widths were calculated by means of a cascade calculation that reproduced the observed yields of the 2p-1s transitions.

	4f-3d Transition Energies (KeV)		
Isotope	6 Berkeley	164 CERN	
89 _Y	278.2 <u>+</u> 0.3	• • •	
93 _{ND}	307.6 <u>+</u> 0.3	307.7 <u>+</u> 0.2	
Mo		323.2 <u>+</u> 0.2	
103 _{Rh}	370.9 <u>+</u> 0.4		
In	442.1 <u>+</u> 1.1	442.9 <u>+</u> 0.5	
116 _{Sn}	460.9 <u>+</u> 0.6		
117 _{Sn}	460.4 <u>+</u> 0.6		
118 _{Sn}	460.4 <u>+</u> 0.6		
119 _{Sn}	460.3 <u>+</u> 0.6		
120 _{Sn}	460.5 <u>+</u> 0.6		
122 _{Sn}	460.3 <u>+</u> 0.6		
124 _{Sn}	460.2 <u>+</u> 0.6		
127 _I	519.1 <u>+</u> 1.1	520.8 <u>+</u> 0.8	
133 _{Cs}	560.5 <u>+</u> 1.1	562.0 <u>+</u> 1.5	
IA	603.6 <u>+</u> 0.9	604.9 <u>+</u> 2.0	
140 _{Ce}	626.1 <u>+</u> 2.0		
141 _{Pr}	649.5 <u>+</u> 2.0	648.1 <u>+</u> 2.0	

TABLE 7. Summary of data for pionic 4f-3d transitions. (Cont'd)

	Widths (KeV)			
Isotope	Berkeley ⁶	CEI	CERN ¹⁶⁴	
	without hfs	without hfs	with hfs	
89 _Y	0.8 ± 0.6			
93 _{Nb}	0.6 + 0.4	0.52 <u>+</u> 0.10		
Mo		0.56 <u>+</u> 0.10		
103 Rh	1.2 <u>+</u> 0.6			
In		2.8 + 0.6	2.6 <u>+</u> 0.6	
116 _{Sn}	1.9 <u>+</u> 1.2			
117 _{Sn}	2.1 <u>+</u> 1.2			
118 _{Sn}	2.5 <u>+</u> 1.2			
119 _{Sn}	1.9 <u>+</u> 1.2			
120 Sn	2.7 <u>+</u> 1.2		* = -	
122 _{Sn}	2.0 <u>+</u> 1.2			
124 _{Sn}	2.3 <u>+</u> 1.2	~~ _		
127 _I		4.6 <u>+</u> 1.5	4.4 <u>+</u> 1.5	
133 _{Cs}	4.2 <u>+</u> 1.8	3.3 <u>+</u> 1.5	+ - -	
La		6.2 <u>+</u> 2.0	6.2 <u>+</u> 2.0	
140 Ce	5.8 <u>+</u> 3.8			
¹⁴¹ Pr	6.7 <u>+</u> 2.8	5.4 <u>+</u> 2.5	** **	

TABLE 7. Summary of data for pionic 4f-3d transitions. (Cont'd)

transitions.
58-4f
pionic
for
data
g
Summary
æ.
TABLE

	58-I	4f Transition Energi	es (KeV)	3	idths (KeV)	
		IJ.	371	Berkeley	ao	8N 164
Isotope	Berkeley	CERN	WENTO	without hfs	without hfs	with hfs
181 _{Ta}	453.1 ± 0.4	453.90 ± 0.20	453.4 ± 0.3	l B B	f 1 1	0.5 ± 0.2
ጜ		519.34 ± 0.24	8 1 1	 	1.8 ± 1.0	1 J 1
179 _{Au}	532.5 ± 0.5	533.16 ± 0.20	r 1 1	6 1 1	1.1 ± 0.3	1.0 ± 0.3
Hg	1	547.14 ± 0.25	1	4 1 2	1.4 ± 0.5	:
Т	8 8 1	561.67 ± 0.25	!	ļ	1.0 ± 0.2	\$ \$ 0
206 Pb	8 9 1	575.62 ± 0.30		:	1.2 ± 0.4	1 1 1
nat _{Pb}		575.56 ± 0.25	1	;	1.1 ± 0.3	8
209 _{B1}	589.8 ± 0.9	590.06 ± 0.30	1 1 1	1.7 ± 1.0	1.7 ± 0.5	1.7 ± 0.5
232 _{JIh}	698.0 + 0.6	698.4 ± 0.4	8 9 9	6.0 ± 0.9	4.6 ± 0.8	1
238 _U	731.4 ± 1.1	732.0 ± 0.4		6.1 ± 1.0	6.8 ± 0.8	1
239 _{Pu}	766.2 ± 1.6		1	9.1 ± 2.5		1

O (deg)	dσ-/dΩπ+ (fm ² /sr)	dτ /d១π ⁻ (fm ² /sr)
51.6 <u>+</u> 8.0	0.027 <u>+</u> 0.005	0.079 + 0.011
61.8 <u>+</u> 8.0	0.038 <u>+</u> 0.006	0.035 <u>+</u> 0.008
76.9 <u>+</u> 8.0	0.044 + 0.005	0.012 <u>+</u> 0.005
92.0 <u>+</u> 8.0	0.073 <u>+</u> 0.005	0.033 <u>+</u> 0.012
107.0 <u>+</u> 8.0	0.104 <u>+</u> 0.008	0.075 <u>+</u> 0.010
121.8 <u>+</u> 8.0	0.153 <u>+</u> 0.015	0.133 <u>+</u> 0.013
139.3 <u>+</u> 8.0	0.233 <u>+</u> 0.016	0 . 175 <u>+</u> 0 . 027
150.9 <u>+</u> 8.0	0.248 <u>+</u> 0.012	0.275 <u>+</u> 0.022

TABLE 9. Elastic differential scattering cross section data in the 151 pion-nucleus CM for $\pi \pm$ on the at 24 MeV pion kinetic energy in the lab.

e (deg)	d σ/dΩπ⁺ (fm ² /sr)	d σ/d Ωπ ⁻ (fm ² /sr)
31.5 <u>+</u> 2.5	0.1516 <u>+</u> 0.0140	0.5192 <u>+</u> 0.0254
36.7 <u>+</u> 2.5	0.1611 <u>+</u> 0.0136	0.3969 <u>+</u> 0.0166
41.9 <u>+</u> 2.5	0.1223 <u>+</u> 0.0093	0.2978 <u>+</u> 0.0145
47.1 <u>+</u> 2.5	0.1131 <u>+</u> 0.0093	0.2033 <u>+</u> 0.0107
62.5 <u>+</u> 2.5	0.0434 + 0.0024	0.0560 <u>+</u> 0.0025
67.6 <u>+</u> 2.5	0.0266 <u>+</u> 0.0023	0.0371 <u>+</u> 0.0020
72.7 <u>+</u> 2.5	0.0323 + 0.0020	0.0269 <u>+</u> 0.0019
77.8 <u>+</u> 2.5	0.0375 <u>+</u> 0.0023	0.0314 <u>+</u> 0.0020
82.8 <u>+</u> 2.5	0.0581 <u>+</u> 0.0026	0.0427 <u>+</u> 0.0023
92.9 <u>+</u> 2.5	0.0993 <u>+</u> 0.0050	0.0950 ± 0.0041
102.8 <u>+</u> 2.5	0.1610 <u>+</u> 0.0057	0 .1 638 <u>+</u> 0 .0 053
122.5 <u>+</u> 2.5	0.3433 <u>+</u> 0.0144	0.3715 <u>+</u> 0.0132
132.2 <u>+</u> 2.5	0.4095 <u>+</u> 0.0164	0.4471 <u>+</u> 0.0148
141.8 <u>+</u> 2.5	0.4764 + 0.0177	0.4791 <u>+</u> 0.0147
151.4 <u>+</u> 2.5	0.4918 <u>+</u> 0.0194	0.5034 <u>+</u> 0.0156

TABLE 10. Elastic differential scattering cross section data in the 152 pion-nucleus CM for $\pi \pm$ on ⁴He at 51 MeV pion kinetic energy in the lab.

⊖ (deg)	dτ/d_Ωπ⁺ (fm ² /sr)	d √-/dΩπ⁻ (fm ² /sr)
31.5 <u>+</u> 2.5	0.2661 <u>+</u> 0.0075	0.6712 <u>+</u> 0.0146
36•7 <u>+</u> 2•5	0.2634 <u>+</u> 0.0071	0.5033 <u>+</u> 0.0106
41.9 <u>+</u> 2.5	0.2327 <u>+</u> 0.0052	0 . 3854 <u>+</u> 0 .00 76
47.1 <u>+</u> 2.5	0.1663 <u>+</u> 0.0046	0.2835 <u>+</u> 0.0062
62.6 <u>+</u> 2.5	0.0534 <u>+</u> 0.0010	0.0747 <u>+</u> 0.0013
67.7 <u>+</u> 2.5	0.0366 <u>+</u> 0.0009	0.0436 <u>+</u> 0.0009
72.8 <u>+</u> 2.5	0.0325 <u>+</u> 0.0008	0.0306 <u>+</u> 0.0008
77•9 <u>+</u> 2•5	0.0375 <u>+</u> 0.0008	0.0336 <u>+</u> 0.0009
83.0 <u>+</u> 2.5	0.0618 <u>+</u> 0.0012	0.0521 <u>+</u> 0.0011
93.0 <u>+</u> 2.5	0.1128 <u>+</u> 0.0021	0.1077 <u>+</u> 0.0021
102.9 <u>+</u> 2.5	0.1928 <u>+</u> 0.0031	0.1916 <u>+</u> 0.0031
122.6 + 2.5	0.3936 <u>+</u> 0.0079	0.4232 <u>+</u> 0.0083
132.3 <u>+</u> 2.5	0.4592 <u>+</u> 0.0104	0.4875 <u>+</u> 0.0109
141.9 <u>+</u> 2.5	0.5422 <u>+</u> 0.0150	0.5544 <u>+</u> 0.0153
151.5 <u>+</u> 2.5	0.5721 <u>+</u> 0.0196	0.5924 <u>+</u> 0.0203

TABLE 11. Elastic differential scattering cross section data in the pion-nucleus CM for $\pi \pm$ on ⁴He at 60 MeV pion kinetic energy in the lab.

⊖ (deg)	dτ/d_n+ (fm ² /sr)	d τ-/dΩπ⁻ (fm ² /sr)
31.6 <u>+</u> 2.5	0.4031 <u>+</u> 0.0190	0.7299 <u>+</u> 0.0273
36.8 + 2.5	0.3612 + 0.0176	0.5312 <u>+</u> 0.0361
42.0 <u>+</u> 2.5	0.3247 <u>+</u> 0.0135	0.4494 <u>+</u> 0.0164
47.2 <u>+</u> 2.5	0.2651 + 0.0126	0.3082 <u>+</u> 0.0223
62.7 <u>+</u> 2.5	0.0722 <u>+</u> 0.0025	0.0925 <u>+</u> 0.0034
67.8 <u>+</u> 2.5	0.0437 + 0.0020	0.0512 <u>+</u> 0.0026
72•9 <u>+</u> 2•5	0.0382 + 0.0018	0.0366 <u>+</u> 0.0022
78.0 <u>+</u> 2.5	0.0447 <u>+</u> 0.0019	0.0388 + 0.0025
83.1 <u>+</u> 2.5	0.0692 <u>+</u> 0.0025	0.0556 <u>+</u> 0.0030
93.1 <u>+</u> 2.5	0.1350 <u>+</u> 0.0047	0.1180 <u>+</u> 0.0051
103.0 <u>+</u> 2.5	0.2094 + 0.0063	0.2018 <u>+</u> 0.0069
122.7 <u>+</u> 2.5	0.4011 <u>+</u> 0.0149	0.4392 + 0.0142
132.4 <u>+</u> 2.5	0.4961 <u>+</u> 0.0176	0.5098 <u>+</u> 0.0163
142.0 <u>+</u> 2.5	0.5853 + 0.0213	0.5543 <u>+</u> 0.0316
151.5 <u>+</u> 2.5	0.5843 <u>+</u> 0.0267	0.5591 <u>+</u> 0.0333

TABLE 12. Elastic differential scattering cross section data in the pion-nucleus CM for $\pi \pm$ on ⁴He at 68 MeV pion kinetic energy in the lab. 152

⊖ (đeg)	d a-/dvu+ (tw ₅ /er)	d σ/ds.π⁻ (fm ² /sr)
31.6 <u>+</u> 2.5	0.5940 <u>+</u> 0.0205	0.9394 <u>+</u> 0.0236
36.9 <u>+</u> 2.5	0.5252 <u>+</u> 0.0167	0.7080 <u>+</u> 0.0215
42 . 1 <u>+</u> 2.5	0.4268 <u>+</u> 0.0141	0.5858 <u>+</u> 0.0132
47.3 <u>+</u> 2.5	0.3006 <u>+</u> 0.0104	0.3979 <u>+</u> 0.0127
62.8 + 2.5	0.0960 <u>+</u> 0.0025	0.1119 <u>+</u> 0.0023
67 . 9 <u>+</u> 2.5	0.0623 <u>+</u> 0.0019	0.0667 <u>+</u> 0.0017
73.0 <u>+</u> 2.5	0.0458 + 0.0017	0.0488 <u>+</u> 0.0014
78 . 1 <u>+</u> 2.5	0.0529 + 0.0019	0.0498 <u>+</u> 0.0015
83.2 <u>+</u> 2.5	0.0776 + 0.0023	0.0710 + 0.0018
93 . 2 <u>+</u> 2.5	0.1413 + 0.0042	0 . 1325 <u>+</u> 0 . 0035
103.1 <u>+</u> 2.5	0.2203 <u>+</u> 0.0057	0.2361 + 0.0050
122.8 <u>+</u> 2.5	0.4508 + 0.0143	0.4578 <u>+</u> 0.0103
132.4 <u>+</u> 2.5	0.5264 <u>+</u> 0.0152	0.5379 <u>+</u> 0.0116
142.0 <u>+</u> 2.5	0.6054 <u>+</u> 0.0175	0.5646 <u>+</u> 0.0169
151.6 <u>+</u> 2.5	0.6114 <u>+</u> 0.0200	0.6046 + 0.0203

TABLE 13. Elastic differential scattering cross section data in the pion-nucleus CM for $\pi \pm$ on ⁴He at 75 MeV pion kinetic energy in the lab. 152

.

llO MeV pion kinetic er	ergy in the lab		
Φ	dv/d&π ⁻	0	dσ/dΩπ ⁻
(deg)	(fm≤/sr)	(deg)	(fm [≤] /sr)
10.5 ± 1.0	0.900 ± 0.040	83.0 ± 1.0	0.013 ± 0.003
16.0 ± 1.0	0.530 ± 0.030		0.015 ± 0.003
20.0 + 1.0	0.400 ± 0.020	" 93.0 <u>+</u> 1.0	0.023 ± 0.003
27.0 ± 1.0	0.320 + 0.020	" 98.0 <u>+</u> 1.0	0.028 ± 0.005
29.0 ± 1.0	0.280 + 0.020	" 103.0 <u>+</u> 1.0	0.024 ± 0.003
37.5 ± 1.0	0.180 ± 0.020	108.0 + 1.0	0.032 ± 0.003
45.5 <u>+</u> 1.0	0.120 + 0.010	" 113.0 <u>+</u> 1.0	0.038 ± 0.003
47.5 ± 1.0	0.098 ± 0.008	", 118.0 <u>+</u> 1.0	0.039 ± 0.003
53.0 ± 1.0	0.065 ± 0.005	" 123.0 <u>+</u> 1.0	0.051 ± 0.003
58.0 ± 1.0	0.033 ± 0.003	128.0 ± 1.0	0.052 ± 0.004
63.0 ± 1.0	0.020 + 0.004	" 133.0 <u>+</u> 1.0	0.047 ± 0.003
68.0 ± 1.0	0.014 + 0.003	138.0 ± 1.0	0.043 ± 0.004
73.0 ± 1.0	0.0080 ± 0.0015	" 1 ⁴ 3.0 <u>+</u> 1.0	100°0 + 610°0
78.0 ± 1.0	0.0080 ± 0.0015	" 148.0 ± 1.0	0.031 ± 0.003

TABLE 14. Elastic differential scattering cross section data in the pion-nucleus CM for Ton the at

.

⊖ (deg)	dτ/dᡗπ- (fm ² /sr)	
37.5 <u>+</u> 1.0	0.17 <u>+</u> 0.02	
63.0 <u>+</u> 1.0	0.015 + 0.002	
69.0 <u>+</u> 1.0	0.0053 <u>+</u> 0.0005	
74.0 <u>+</u> 1.0	0.0038 <u>+</u> 0.0005	
79.0 <u>+</u> 1.0	0.0031 <u>+</u> 0.0007	
84.0 <u>+</u> 1.0	0.0046 <u>+</u> 0.0006	
89.0 <u>+</u> 1.0	0.0064 <u>+</u> 0.0007	
94.0 <u>+</u> 1.0	0.0080 <u>+</u> 0.0010	
99.0 <u>+</u> 1.0	0.010 <u>+</u> 0.001	
104.0 <u>+</u> 1.0	0.010 <u>+</u> 0.001	
109.0 <u>+</u> 1.0	0.010 + 0.001	
114.0 <u>+</u> 1.0	0.0105 <u>+</u> 0.0010	
119.0 <u>+</u> 1.0	0.0092 <u>+</u> 0.0010	
123.0 <u>+</u> 1.0	0.0095 <u>+</u> 0.0010	
128.0 <u>+</u> 1.0	0.0090 <u>+</u> 0.0010	
133.0 <u>+</u> 1.0	0.0072 <u>+</u> 0.0009	
138.0 <u>+</u> 1.0	0.0051 <u>+</u> 0.0006	
142.5 <u>+</u> 1.0	0.0059 <u>+</u> 0.0007	
147.0 <u>+</u> 1.0	0.0064 <u>+</u> 0.0007	

TABLE 15. Elastic differential scattering cross section data in the pion-nucleus CM for π on ⁴He at 150 MeV pion kinetic energy in the lab.¹⁵³

,

Ə (deg)		d τ/d Ωπ ⁻ (fm ² /sr)
20 <u>+</u>	5	4.46 <u>+</u> 0.62
30 <u>+</u>	5	3.88 <u>+</u> 0.40
40 <u>+</u>	5	2.32 <u>+</u> 0.26
50 <u>+</u>	5	1.37 <u>+</u> 0.17
60 <u>+</u>	5	0.560 <u>+</u> 0.091
70 <u>+</u>	5	0.098 <u>+</u> 0.034
80 <u>+</u>	5	0.047 <u>+</u> 0.023
90 <u>+</u>	5	0.185 <u>+</u> 0.049
100 <u>+</u>	5	0.223 <u>+</u> 0.055
110 <u>+</u>	5	0.184 + 0.049
120 <u>+</u>	5	0.160 <u>+</u> 0.046
130 <u>+</u>	5	0.121 <u>+</u> 0.046
140 <u>+</u>	5	0.072 <u>+</u> 0.043
150 <u>+</u>	5	0.069 <u>+</u> 0.050
167.5 <u>+</u>	12.5	0.172 <u>+</u> 0.076

TABLE 16. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on He at 153 MeV pion kinetic energy in the lab.

.

(deg)	<mark>d </mark>	(deg)	<mark>dσ-/d.α.π</mark> - (^{fm2/sr})
18 + 1	0.60 ± 0.04	8 9.5 <u>+</u> 1.0	0.0023 ± 0.0003
22 + 1	0.39 ± 0.03	" 94.5 <u>+</u> 1.0	0.0030 ± 0.0004
32.5 ± 1.0	0.21 + 0.02	" 99.5 <u>+</u> 1.0	0.0033 ± 0.0003
38 <u>+</u> 1	0.14 + 0.02	" 104.5 <u>+</u> 1.0	0.0031 ± 0.0004
43 + 1	0.085 ± 0.006	" 109.5 <u>+</u> 1.0	0.0020 ± 0.0003
48 + 1	0.047 ± 0.003	" 114.5 ± 1.0	0.0025 ± 0.0003
53 ±1	0.030 ± 0.002	119 <u>+</u> 1	0.0015 ± 0.0003
58.5 ± 1.0	0.013 ± 0.001	" 12 ⁴ ± 1	0.0015 ± 0.0003
64 + 1	0.0055 ± 0.0006	• 129 <u>+</u> 1	0.0016 ± 0.0003
69 + 1	0.0018 + 0.0002	133.5 ± 1.0	0.0017 ± 0.0003
74.5 ± 1.0	0.0010 ± 0.0003	1 138 <u>+</u> 1	0.0015 ± 0.0003
79 ± 1	0.0014 ± 0.0003	" 1 ⁴ 3 ± 1	0.0020 ± 0.0003
84.5 + 1.0	0.0020 + 0.0003	" 147.5 + 1.0	0.0022 + 0.0003

TABLE 17. Elastic differential scattering cross section data in the pion-nucleus CM for π^{-} on ⁴He at 180 MeV pion kinetic energy in the lab. 153

⊖ (deg)	dv-/dΩn ⁻ (fm ² /sr)	4 1 4 4 4 1 4 1 4 1	⊖ (deg)	dv-/d_Ω_π- (fm ² /sr)
38+0 <u>+</u> 1.0	0.12 <u>+</u> 0.01	110	0.0 <u>+</u> 1.0	0.00053 <u>+</u> 0.00015
69.5 <u>+</u> 1.0	0.00067 <u>+</u> 0.00017	115	5.0 <u>+</u> 1.0	0.00044 + 0.00010
74.5 <u>+</u> 1.0	0.00028 <u>+</u> 0.00010	·· 119	0.5 <u>+</u> 1.0	0.00031 + 0.00007
80.0 <u>+</u> 1.0	0.00075 <u>+</u> 0.00017	124	•.5 <u>+</u> 1.0	0.00035 <u>+</u> 0.00009
85.0 <u>+</u> 1.0	0.00045 <u>+</u> 0.00010	129	0.0 <u>+</u> 1.0	0.00052 <u>+</u> 0.00010
90.0 <u>+</u> 1.0	0.0009 <u>+</u> 0.0002	11 134	.0 <u>+</u> 1.0	0.0011 <u>+</u> 0.0002
95.0 <u>+</u> 1.0	0.0008 <u>+</u> 0.0002	138	3.5 <u>+</u> 1.0	0.0010 <u>+</u> 0.0002
100.0 <u>+</u> 1.0	0.0011 <u>+</u> 0.0002	11 143	3.0 <u>+</u> 1.0	0.0010 <u>+</u> 0.0002
105.0 <u>+</u> 1.0	0.0007 <u>+</u> 0.0002	·· 147	7.0 <u>+</u> 1.0	0.0011 <u>+</u> 0.0002

TABLE 18. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on ⁴He at 220 MeV pion kinetic energy in the lab.¹⁵³

⊖ (deg)	dv/dn _n - (fm ² /sr)	1 8 8 8 9 8 7 8 7 8	⊖ (deg)	dσ/dΩπ- (fm²/sr)
38.0 <u>+</u> 1.0	0.110 <u>+</u> 0.010	4 8 4 1	96.0 <u>+</u> 1.0	0.00038 + 0.00009
44.5 <u>+</u> 1.0	0.073 <u>+</u> 0.005	1 A 8 A	101.0 <u>+</u> 1.0	0.00027 <u>+</u> 0.00010
49.0 <u>+</u> 1.0	0.055 <u>+</u> 0.003	1 I 1 I	105.5 <u>+</u> 1.0	0.00025 <u>+</u> 0.00007
54.5 <u>+</u> 1.0	0.017 <u>+</u> 0.001	4 8 8 8	110.5 <u>+</u> 1.0	0.00010 <u>+</u> 0.00002
60.0 <u>+</u> 1.0	0.0060 <u>+</u> 0.0005	1 1 1 1	115.0 <u>+</u> 1.0	0.00016 <u>+</u> 0.00006
65.0 <u>+</u> 1.0	0.0025 <u>+</u> 0.0004	11	120.0 <u>+</u> 1.0	0.00017 <u>+</u> 0.00006
70.0 <u>+</u> 1.0	0.0007 <u>+</u> 0.0001	••	125.0 <u>+</u> 1.0	0.00012 <u>+</u> 0.00005
75.0 <u>+</u> 1.0	0.00055 <u>+</u> 0.00015	1 4 4 1	129.5 <u>+</u> 1.0	0.00026 <u>+</u> 0.00006
80.0 <u>+</u> 1.0	0.00040 <u>+</u> 0.00006	1 1 1 1	134.0 <u>+</u> 1.0	0.00035 <u>+</u> 0.00007
85.5 <u>+</u> 1.0	0.00043 <u>+</u> 0.00009	1 T T 1	139.0 <u>+</u> 1.0	0.00045 + 0.00015
91.0 <u>+</u> 1.0	0.00048 <u>+</u> 0.00008	1 1 1 1 1 1	148.0 <u>+</u> 1.0	0.00055 <u>+</u> 0.00010

.

TABLE 19. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on ⁴He at 260 MeV pion kinetic energy in the lab.¹⁵³

TABLE 20. pion_nucleus lab. ⁸	Elastic differential scattering cross section data in the CM for π^- on 12C at 27.8 MeV pion kinetic energy in the

⊖ (deg)	dv-/d_27- (fm²/sr)	
40. 6 <u>+</u> 5.0	1.564 <u>+</u> 0.126	
60.7 <u>+</u> 5.0	0.199 <u>+</u> 0.035	
80.8 <u>+</u> 5.0	0.163 <u>+</u> 0.025	
100.8 <u>+</u> 5.0	0.269 <u>+</u> 0.029	
120.7 <u>+</u> 5.0	0.801 <u>+</u> 0.091	

⊖ (deg)	dv-/dΩπ ⁺ (fm ² /sr)	4 8 6 4 7 8 8 7 8 7 8 7 8 7 8 7	⊖ (deg)	d√/dΩπ+ (fm²/sr)
40.6 <u>+</u> 5.0	0.354 <u>+</u> 0.066	14 8 E	80.9 <u>+</u> 5.0	0.383 + 0.052
45.6 <u>+</u> 5.0	0.272 <u>+</u> 0.039	 	90.9 <u>+</u> 5.0	0.431 <u>+</u> 0.036
50.7 <u>+</u> 5.0	0.323 <u>+</u> 0.045	E 1	100.9 <u>+</u> 5.0	0.603 <u>+</u> 0.050
60.8 <u>+</u> 5.0	0.252 <u>+</u> 0.042	61 61	110.8 <u>+</u> 5.0	0.642 <u>+</u> 0.081
70.8 <u>+</u> 5.0	0.473 <u>+</u> 0.051	11	120.7 <u>+</u> 5.0	0.651 <u>+</u> 0.068

TABLE 21. Elastic differential scattering cross section data in the pion mucleus CM for π^+ on 12 C at 30.2 MeV pion kinetic energy in the lab.

TABLE 22. pion-nucleus lab.155	Elastic differential scattering cross section data in the CM for π^+ on ^{12}C at 31.5 MeV pion kinetic energy in the

.

⊖ (deg)	dτ/dΩπ+ (fm²/sr)	
40.6 <u>+</u> 7.0	0.564 + 0.066	
55.7 <u>+</u> 7.0	0.071 <u>+</u> 0.016	
70.8 <u>+</u> 7.0	0.375 <u>+</u> 0.035	
90.9 <u>+</u> 7.0	0.398 <u>+</u> 0.038	
105.8 <u>+</u> 7.0	0.650 <u>+</u> 0.058	
120.8 <u>+</u> 7.0	0.658 <u>+</u> 0.051	
145.5 <u>+</u> 7.0	0.743 <u>+</u> 0.065	

⊖ (deg)	dτ/dΩπ+ (fm²/sr)
45.7 <u>+</u> 5.0	0.242 <u>+</u> 0.080
60.8 <u>+</u> 5.0	0.215 <u>+</u> 0.016
90.9 <u>+</u> 5.0	0.410 <u>+</u> 0.030
120.8 <u>+</u> 5.0	0.545 <u>+</u> 0.026
140.6 <u>+</u> 5.0	0.733 <u>+</u> 0.074

TABLE 23. Elastic differential scattering cross section data in the pion-nucleus CM for π^+ on ^{12}C at 40 MeV pion kinetic energy in the lab.

⊖ (deg)	dv/dΩπ+ (fm²/sr)	(deg)	dv-/dΩπ ⁺ (fm ² /sr)
10.2 + 3.0	38.62 <u>+</u> 8.69	55.8 <u>+</u> 5.0	0.686 <u>+</u> 0.392
15.3 <u>+</u> 2.0	12.08 <u>+</u> 3.38	71.0 + 10.0	0.692 <u>+</u> 0.494
20.4 <u>+</u> 5.0	1.45 <u>+</u> 0.58	91.0 <u>+</u> 10.0	0.200 <u>+</u> 0.199
30.5 <u>+</u> 6.0	1.94 <u>+</u> 0.78	111.0 <u>+</u> 10.0	0.304 <u>+</u> 0.152
38.6 <u>+</u> 2.0	2.92 <u>+</u> 0.97	133.7 + 8.0	1.127 <u>+</u> 0.410
45.7 <u>+</u> 5.0	2.34 <u>+</u> 0.59	162.3 <u>+</u> 20.0	0.414 <u>+</u> 0.413

TABLE 24. Elastic differential scattering cross section data in the pion-nucleus CM for π^+ on 12 C at 62 MeV pion kinetic energy in the lab.²⁷

⊖ (deg)	dτ/dΩπ ⁻ (fm ² /sr)	11 13 14 11 24	⊖ (deg)	dv/dΩπ- (f=²/sr)
10.2 <u>+</u> 2.0	62.76 <u>+</u> 9.66	18 11	45.7 <u>+</u> 5.0	2.15 <u>+</u> 0.68
15.3 <u>+</u> 2.0	34.78 <u>+</u> 7.73	**	55.8 <u>+</u> 5.0	1.08 <u>+</u> 0.29
18.3 <u>+</u> 2.0	19.82 <u>+</u> 4.35	11	71.0 <u>+</u> 10.0	0.553 <u>+</u> 0.178
22.4 + 2.0	10.16 <u>+</u> 3.39	. F1 . F1	91.0 <u>+</u> 10.0	0.360 <u>+</u> 0.170
26.5 <u>+</u> 2.0	8.33 <u>+</u> 2.33	11	111.0 <u>+</u> 10.0	0.668 <u>+</u> 0.243
30.5 <u>+</u> 2.0	4.17 <u>+</u> 1.75	8 8 8 8	130.8 <u>+</u> 10.0	0.696 <u>+</u> 0.246
34.6 <u>+</u> 2.0	6.02 <u>+</u> 2.14	**	150.5 <u>+</u> 10.0	0.722 <u>+</u> 0.310
38.6 <u>+</u> 2.0	2.82 <u>+</u> 1.46	11 11 	170.2 <u>+</u> 10.0	1.968 <u>+</u> 0.932

TABLE 25. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on ^{12}C at 62 MeV pion kinetic energy in the lab.²⁷

⊖ (deg)	dτ/dΩπ ⁻ (fm ² /sr)	11 11 11 11 11 11	⊖ (deg)	dτ-/dΩπ- (fm²/sr)
20.4 <u>+</u> 3.1	14.20 <u>+</u> 1.55	11 11	76.0 <u>+</u> 4.7	0.402 <u>+</u> 0.031
25.5 <u>+</u> 3.1	9.00 <u>+</u> 0.87	1 A 4 A	81.1 <u>+</u> 4.7	0.445 <u>+</u> 0.071
30.5 <u>+</u> 3.1	7.66 <u>+</u> 0.64	4 1 4 1	86.1 <u>+</u> 4.7	0.488 <u>+</u> 0.050
35.6 <u>+</u> 3.1	4.90 <u>+</u> 0.46	11	91.1 <u>+</u> 4.7	0.507 <u>+</u> 0.083
40.7 <u>+</u> 3.1	4.04 + 0.34	**	96.1 <u>+</u> 4.7	0.525 <u>+</u> 0.032
45.8 <u>+</u> 4.0	2.62 <u>+</u> 0.19	8 8 8 8	101.0 <u>+</u> 4.7	0.538 <u>+</u> 0.062
50.8 <u>+</u> 4.0	1.46 <u>+</u> 0.12	11 11	106.0 <u>+</u> 4.7	0.442 <u>+</u> 0.054
55.9 + 4.0	0.872 <u>+</u> 0.098	11 11	111.0 <u>+</u> 4.7	0.497 <u>+</u> 0.059
60.9 <u>+</u> 4.0	0.499 <u>+</u> 0.055	4.4 1.8	116.0 <u>+</u> 4.7	0.342 <u>+</u> 0.049
66.0 <u>+</u> 4.0	0.409 <u>+</u> 0.033	1 H 8 H	120.9 <u>+</u> 4.7	0.322 <u>+</u> 0.048
71.0 <u>+</u> 4.7	0.317 <u>+</u> 0.025	# 1 1 1	125.9 <u>+</u> 4.7	0.221 <u>+</u> 0.045

TABLE 26. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on 12C at 69.5 MeV pion kinetic energy in the lab.³⁵

•--

⊖ (deg)	dv/dΩπ ⁻ (fm ² /sr)	11 1) 11 11 11	⊖ (deg)	dv/dsπ ⁻ (fm²/sr)
20.4 <u>+</u> 3.0	14.46 <u>+</u> 1.45	11	71.1 <u>+</u> 5.6	0.274 <u>+</u> 0.027
25.5 <u>+</u> 3.4	11.88 <u>+</u> 1.06	6.8 8.8	76.1 <u>+</u> 5.6	0.330 <u>+</u> 0.064
30.6 <u>+</u> 3.4	7.13 <u>+</u> 0.52	23 84	81.1 <u>+</u> 5.6	0.290 <u>+</u> 0.045
35.6 <u>+</u> 3.4	6.52 <u>+</u> 0.58	**	86.1 <u>+</u> 5.6	0.321 <u>+</u> 0.060
40.7 <u>+</u> 3.7	3.80 <u>+</u> 0.16	11 11	91.1 <u>+</u> 5.6	0.321 <u>+</u> 0.030
45.8 <u>+</u> 3.7	2.82 <u>+</u> 0.23	**	96.1 <u>+</u> 5.6	0.320 <u>+</u> 0.060
50.9 <u>+</u> 3.7	1.81 <u>+</u> 0.30	11 11	101.1 <u>+</u> 5.6	0.286 <u>+</u> 0.050
55.9 <u>+</u> 4.1	1.19 <u>+</u> 0.18	41 61	106.1 <u>+</u> 5.6	0.261 <u>+</u> 0.056
61.0 <u>+</u> 4.1	0.518 <u>+</u> 0.147	8 1 6 8	111.0 <u>+</u> 5.6	0.167 <u>+</u> 0.020
66.0 <u>+</u> 5.6	0.323 <u>+</u> 0.059	r t # F	118.0 <u>+</u> 5.6	0.168 <u>+</u> 0.061

TABLE 27. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on 12 C at 80 MeV pion kinetic energy in the lab. ³³

θ	92/92 ² -	+ 1 + 1 + 1	θ	dv-/dr-
(deg)	(fm ² /sr)	8 I 1 I	(deg)	(fm ² /sr)
25.5 <u>+</u> 2.8	10.53 <u>+</u> 1.02	11	81.1 <u>+</u> 4.5	0.404 + 0.044
30.6 <u>+</u> 2.8	8.31 <u>+</u> 0.59	6 A 8 B	86.2 <u>+</u> 4.5	0.356 <u>+</u> 0.051
35•7 <u>+</u> 2.8	6.62 <u>+</u> 0.47	** * *	91.2 <u>+</u> 4.5	0.330 <u>+</u> 0.030
40.7 <u>+</u> 2.8	3.86 <u>+</u> 0.17	8 S 8 J	96.1 <u>+</u> 4.5	0.279 <u>+</u> 0.040
45.8 <u>+</u> 3.8	2.82 <u>+</u> 0.25	4 8 8 8	101.1 <u>+</u> 4.5	0.262 <u>+</u> 0.031
50.9 <u>+</u> 3.8	1.46 <u>+</u> 0.10	8 A 8 A	106.1 <u>+</u> 4.5	0.174 <u>+</u> 0.026
56.0 <u>+</u> 3.8	0.762 <u>+</u> 0.050	6 0 6 0	111.1 <u>+</u> 4.5	0.118 <u>+</u> 0.023
61.0 <u>+</u> 3.8	0.569 <u>+</u> 0.048	**	116.0 <u>+</u> 4.5	0.081 <u>+</u> 0.030
66.0 <u>+</u> 3.8	0.411 <u>+</u> 0.033	••	121.0 <u>+</u> 4.5	0.092 <u>+</u> 0.029
71.1 <u>+</u> 3.8	0.341 <u>+</u> 0.029	# # # f	125.9 <u>+</u> 4.5	0.062 <u>+</u> 0.027
76.1 <u>+</u> 4.5	0.359 <u>+</u> 0.026	88 88 8		

TABLE 28. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on ^{12}C at 87.5 MeV pion kinetic energy in the lab. 35

TABLE 29. Elastic differential scattering cross section data in the pion-nucleus CM for π^{-} on ¹²C at 120 MeV pion kinetic energy in the lab.10,157

Ø	π <i>Ω</i> h/¬b	0	קידים, מית-π-	0	d a ∕d <i>Ω</i> π-
(deg)	(fm ² /sr)	(deg)	(fm ² /sr)	(deg)	(fm ² /sr)
6:03 + 1.00	139.36 ± 3.00	9.70 ± 1.00	12.0 + 09.94	18.53 <u>+</u> 1.60	23.79 ± 0.86
6.22 <u>+</u> 1.00	121.89 ± 3.80	10.07 ± 1.00	46.33 ± 1.24	20.96 ± 1.00	19.97 ± 0.44
6.54 ± 1.00	101.69 ± 2.19	10.69 ± 1.00	41.07 <u>+</u> 1.03	21.07 ± 1.60	20.08 ± 0.69
6.73 <u>+</u> 1.00	90.10 ± 2.80	10.84 ± 1.60	39.81 <u>+</u> 1.98	21.32 ± 1.00	20.58 ± 0.64
7.05 ± 1.00	88.25 ± 1.76	1.00 ± 1.00	40.66 ± 1.33	26.08 ± 1.00	13.32 ± 0.38
7.24 + 1.00	79.84 ± 2.29	09.1 <u>+</u> 1.60	34.86 ± 2.23	26.16 ± 1.60	13.85 ± 0.35
7.56 ± 1.00	74.23 ± 1.48	12.89 ± 1.60	32.66 ± 1.90	26.43 ± 1.00	13.25 ± 0.55
7.75 ± 1.00	67.72 ± 1.95	13.29 ± 1.00	32.71 ± 0.70	31.27 ± 1.60	8.96 ± 0.25
8.07 ± 1.00	65.67 ± 1.33	13.65 ± 1.00	31.39 ± 1.01	36.38 <u>+</u> 1.60	6.00 ± 0.21
8.27 <u>+</u> 1.00	60.26 ± 1.77	13.91 ± 1.60	31.43 ± 1.70	h1.56 <u>+</u> 1.60	2.90 ± 0.19
8.58 ± 1.00	59.24 ± 1.17	14.94 ± 1.60	29.22 ± 1.22	46.64 ± 1.60	1.24 ± 0.12
8.77 ± 1.00	55.68 <u>+</u> 1.56	15.85 ± 1.00	27.75 ± 0.59	51.72 ± 1.60	0.607 ± 0.060
0.09 <u>+</u> 1.00	52.45 ± 1.01	15.97 ± 1.60	25.85 ± 1.07	56.79 ± 1.60	0.326 ± 0.040
0 . 11 <u>+</u> 1.00	48.81 <u>+</u> 1.30	16.20 ± 1.00	27.35 ± 0.88	61.85 ± 1.60	0.197 ± 0.035

$\begin{array}{c} \mathbf{d} \mathbf{r} / \mathbf{d} \mathbf{J} \mathbf{\pi}^{-} \\ \mathbf{e}_{\mathbf{g}} \\ \mathbf{e}_{\mathbf{g}} \\ \mathbf{f}_{\mathbf{m}}^{\mathbf{d}} / \mathbf{s}_{\mathbf{r}} \\ \mathbf{f}_{\mathbf{m}}^{\mathbf{d}} / \mathbf{s}_{\mathbf{r}} \\ \mathbf{f}_{\mathbf{m}}^{\mathbf{d}} / \mathbf{s}_{\mathbf{r}} \\ \mathbf{f}_{\mathbf{m}}^{\mathbf{d}} \\ \mathbf{f}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	eg) (d σ-/d Ջ. π- (f ^{m2/sr})	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.60 0.15	50 ± 0.030	
$7 \pm 1.60 0.155 \pm 0.030$ $1 \pm 1.60 0.075 \pm 0.020$ $1 \pm 1.60 0.031 \pm 0.014$ $1 \pm 1.60 0.0083 \pm 0.0059$ $1 \pm 1.60 0.060 \pm 0.015$ $1 \pm 1.60 0.066 \pm 0.015$	+ + 1.60 0.17	75 ± 0•030	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 ± 1.60 0.15	55 ± 0•030	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L <u>+</u> 1.60 0.07	75 ± 0.020	: = 2
3 ± 1.60 0.0083 ± 0.0059 4 ± 1.60 0.060 ± 0.015 3 ± 1.60 0.066 ± 0.015 1 ± 1.60 0.066 ± 0.015	1-1.60 0.03	31: + 0.014	
9 ± 1.60 0.060 ± 0.015 3 ± 1.60 0.066 ± 0.015	3 ± 1.60 0.00	383 <u>+</u> 0.0059	
3 + 1.60 0.066 + 0.015) <u>+</u> 1.60 0.06	50 <u>+</u> 0.015	
	3 + 1.60 0.06	66 - + 0-015	
			= =
			= :
= = = :			
=			

TABLE 29. Elastic differential scattering cross section data in the pion-nucleus CM for $\mathbf{\pi}^{2}$ on ¹²C at 120 MeV pion kinetic energy in the lab. ($Cont^{4}d$)

⊖ (deg)	dσ/dΩπ ⁻ (fm ² /sr)	6 1 6 8 6 8 6 8	⊖ (deg)	d σ /d Ω π ⁻ (fm²/sr)
10.2 <u>+</u> 1.6	47.59 <u>+</u> 2.86	1 8 7 8	61.3 <u>+</u> 1.6	0.102 + 0.009
11.2 <u>+</u> 1.6	43.08 <u>+</u> 1.97	11 it	66.3 <u>+</u> 1.6	0.148 <u>+</u> 0.010
12.7 <u>+</u> 1.6	40.95 <u>+</u> 1.62	11 11	71.4 <u>+</u> 1.6	0.127 <u>+</u> 0.010
15.3 <u>+</u> 1.6	36.55 <u>+</u> 1.35	8 8 8 8	76.4 <u>+</u> 1.6	0.122 <u>+</u> 0.008
20.4 <u>+</u> 1.6	26.44 <u>+</u> 0.62	11	81.4 <u>+</u> 1.6	0.073 <u>+</u> 0.006
25.6 <u>+</u> 1.6	16.99 <u>+</u> 0.31	11	86.5 <u>+</u> 1.6	0.040 <u>+</u> 0.005
30.7 <u>+</u> 1.6	9.81 <u>+</u> 0.21	6 6 6 8	91.5 <u>+</u> 1.6	0.015 <u>+</u> 0.004
35.8 <u>+</u> 1.6	5.03 <u>+</u> 0.10	11	96.5 <u>+</u> 1.6	0.011 <u>+</u> 0.003
40.9 <u>+</u> 1.6	2 .2 9 <u>+</u> 0.07	• •	101.4 <u>+</u> 1.6	0.013 <u>+</u> 0.003
46.0 <u>+</u> 1.6	0.83 <u>+</u> 0.03	••	111.4 <u>+</u> 1.6	0.032 + 0.004
51.1 <u>+</u> 1.6	0.256 <u>+</u> 0.014	4 E E E	121.3 <u>+</u> 1.6	0.043 <u>+</u> 0.006
56.2 <u>+</u> 1.6	0.118 <u>+</u> 0.010	4 8 8 8	140.9 <u>+</u> 1.6	0.023 <u>+</u> 0.005
58.7 <u>+</u> 1.6	0.070 <u>+</u> 0.017	6 8 8 1 6 8		

TABLE 30. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on ^{12}C at 150 MeV pion kinetic energy in the lab. 10

TABLE 31. Elastic differential scattering cross section data in the pion-nucleus CM for Π^- on ¹²C at 180 MeV pion kinetic energy in the lab.^{10,157}

0	dæ/dæπ-	Ø	-μΩ/dΩ π-	Ø	dσ/dΩπ-
(deg)	(fm ^r /ar) ;; ;;	(deg)	(fm ^c /sr) ;	ı (deg)	(fm ^c /sr)
5.50 ± 1.00	11 61.5 ± 77.121	12.75 ± 1.60	39.71 ± 1.50	45.83 ± 1.60	0.148 ± 0.019
6.01 ± 1.00	93.31 ± 1.67	13.20 ± 1.00	39-99 ± 1-07	48.38 ± 1.60	0.046 ± 0.012
6.52 ± 1.00	77.93 ± 1.38	15.32 ± 1.60	36.20 ± 1.11	50.93 ± 1.60	0.0113 ± 0.0038
7.04 ± 1.00	70.00 ± 1.25	15.77 ± 1.00	37.24 ± 1.01	53.47 ± 1.60	0.040 ± 040.0
7.55 ± 1.00	60.78 ± 0.91	17.89 ± 1.60	31.37 ± 0.70	56.01 ± 1.60	0.052 ± 0.010
8.07 ± 1.00	59.78 ± 1.09	18.35 ± 1.00	28.34 ± 0.77	61.09 ± 1.60	0.150 ± 0.018
8.58 ± 1.00	55.39 ± 1.00	20.46 ± 1.60	24.21 ±0.37	66.15 ± 1.60	0.160 ± 0.018
9.09 ± 1.00	53.12 ± 1.17	20.91 ± 1.00	23.10 ± 0.64	71.21 ± 1.60	0.094 ± 0.014
9.61 <u>+</u> 1.00	51.35 ± 1.25	25.57 ± 1.60	14.78 ± 0.29	76.25 ± 1.60	0.078 ± 0.012
10.12 + 1.00	49.62 + 1.20	26.05 ± 1.00	13.76 ± 0.45	86.29 ± 1.60	0.0035 ± 0.0025
10.18 ± 1.60	146.22 <u>+</u> 2.94	30.71 ± 1.60	7.53 ± 0.16	101.38 ± 1.60	0.0076 ± 0.0034
10.63 ± 1.00	45.18 ± 1.25	35.81 ± 1.60	3.08 ± 0.07	140.82 ± 1.60	0.0072 ± 0.0028
11.21 ± 1.60	45.47 <u>+</u> 1.90	40.73 <u>+</u> 1.60	0.873 ± 0.050		

ī

274

⊖ (deg)	d4-\qUI- (Im ₅ /sr)	··· ⊖ ·· (deg)	dτ/dΩπ- (fm ² /sr)
11.2 <u>+</u> 1.6	45.93 <u>+</u> 1.64		0.091 <u>+</u> 0.012
12.3 ± 1.6 15.4 ± 1.6	42.14 <u>+</u> 1.31 35.63 <u>+</u> 1.08	$\begin{array}{c} 56.5 \pm 1.6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$\begin{array}{rrrr} 0.105 & \pm & 0.010 \\ 0.131 & \pm & 0.014 \end{array}$
20.5 ± 1.6	22.59 <u>+</u> 0.36	66.6 ± 1.6	0.106 ± 0.013
25.6 ± 1.6 30.8 ± 1.6	5.92 ± 0.18	71.0 ± 1.0	0.039 ± 0.004 0.030 ± 0.004
35.9 <u>+</u> 1.6 41.2 + 1.6	2.12 <u>+</u> 0.07 0.420 + 0.031	$\begin{array}{c} 11 \\ 12 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 $	0.015 ± 0.002 0.0013 + 0.0006
- 46.3 <u>+</u> 1.6	0.054 <u>+</u> 0.011	101.7 ± 1.6	- 0.0026 <u>+</u> 0.0008
48.9 <u>+</u> 1.6 51.4 <u>+</u> 1.6	0.030 <u>+</u> 0.008 0.051 <u>+</u> 0.010	$\begin{array}{c} 121.5 \pm 1.6 \\ 141.1 \pm 1.6 \\ 141.1 \pm 1.6 \end{array}$	0.0021 <u>+</u> 0.0006 0.0042 <u>+</u> 0.0029

1.

TABLE 32. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on ^{12}C at 200 MeV pion kinetic energy in the lab.¹⁰

⊖ (deg)	dτ-/dΩπ ⁻ (fm ² /sr)	00 80 05 14 11	⊖ (deg)	dv/dsn- (fm ² /sr)
10.4 <u>+</u> 1.6	45.08 <u>+</u> 1.67	11	43.8 <u>+</u> 1.6	0.107 <u>+</u> 0.015
11.5 <u>+</u> 1.6	41.44 <u>+</u> 1.52	••	46.3 <u>+</u> 1.6	0.077 <u>+</u> 0.009
12.5 <u>+</u> 1.6	39.98 <u>+</u> 1.24	**	48.9 <u>+</u> 1.6	0.104 <u>+</u> 0.015
15.6 <u>+</u> 1.6	32.29 <u>+</u> 0.91		51.4 <u>+</u> 1.6	0.108 <u>+</u> 0.011
20.7 <u>+</u> 1.6	18.97 <u>+</u> 0.43	11	56.5 <u>+</u> 1.6	0.154 <u>+</u> 0.018
25.9 <u>+</u> 1.6	9.39 <u>+</u> 0.22	11	61.6 <u>+</u> 1.6	0.145 + 0.021
31.0 <u>+</u> 1.6	3.48 <u>+</u> 0.10	11	66.7 <u>+</u> 1.6	0.069 <u>+</u> 0.011
36.2 <u>+</u> 1.6	1.17 <u>+</u> 0.04		71.7 <u>+</u> 1.6	0.060 <u>+</u> 0.022
41.2 <u>+</u> 1.6	0.189 <u>+</u> 0.016	61 61		

TABLE 33. Elastic differential scattering cross section data in the pien-nucleus CM for TT on 12C at 230 MeV pion kinetic energy in the lab.¹⁰

,

at	
L2 L2	
ទ	
ן ד	
Ч	
N L	
ns C	
scle	
าส-น	
plo	
the	
ų	
lata	
o uo	
ict i	
ŭ	
CIO	
a la	2
ţeri	
Cat	
	å
inti	t P
fer	3
àif	ener
tic	4
21as	lnet
	R R
В Д	pic
ABL	Fe V
54	ର୍ଷ୍ଣ

•

0	dv/dлπ- 2	0	d ע- / את ייי	0	_π
(deg)	(fa ^c /ar)	, (deg)	(fm ^c /sr) ,,	(deg)	(fm ^c /ar)
4.68 ± 1.00	119.35 ± 1.86	11.05 ± 1.00	47.56 <u>+</u> 1.44	15.96 ± 1.00	31.84 ± 0.77
5.20 ± 1.00	84.31 ± 1.15	11.37 ± 1.00	יי זיזי ד זויזיו	16.22 ± 1.00	30.38 ± 0.94
5.71 ± 1.00	68.91 ± 0.89	09.1 ± 64.11	h4.54 ± 2.63	18.10 ± 1.00	26.03 ± 0.73
6.23 ± 1.00	60.92 ± 0.75	11.82 ± 1.00	45.59 <u>+</u> 1.12	18.54 ± 1.00	24.25 ± 0.54
6.74 ± 1.00	55.16 ± 0.67	12.08 ± 1.00	11.66 ± 1.38	18.81 ± 1.00	24.21 ± 0.68
7.26 ± 1.00	53.41 ± 0.63	12.41 ± 14.21	43.42 ± 1.37	20.69 ± 1.00	18.17 ± 0.67
7.78 ± 1.00	52.27 ± 0.62	12.85 ± 1.00	10.1 = 95.04	20.78 ± 1.60	18.39 ± 0.44
8.29 ± 1.00	1-0-59 + 0-59	13.04 ± 1.60	45.08 ± 2.38	21.13 ± 1.00	17.17 ± 0.51
8.88 ± 1.00	1+9.66 ± 0.58	13.12 ± 1.00	40.56 ± 1.25	21.39 ± 1.00	15.62 ± 0.59
9.33 ± 1.00	17.86 ± 0.61	1 13.44 ± 1.00	39.39 ± 1.25	25.95 ± 1.60	8.35 ± 0.20
9.84 ± 1.00	h7.49 ± 0.79	13.89 ± 1.00	38.67 ± 0.95	31.12 ± 1.60	3.03 ± 0.09
10.36 ± 1.00	H6.53 ± 0.77	14.15 + 1.00	37.10 ± 1.15	36.26 ± 1.60	0.82 ± 0.05
10.45 ± 1.60	52.23 ± 4.63	15.51 ± 1.00	31.09 ± 1.03	38.72 ± 1.60	0.421 + 0.049
10.78 ± 1.00	h4.85 <u>+</u> 1.12	, 15.63 <u>+</u> 1.60	30.39 ± 0.86	41.29 <u>+</u> 1.60	0.172 ± 0.026

260 MeV pion ki	netic energy in th	e lab.	(Cont'd)				
Ø	d σ-/dΩπ- 2		Ø	קע-אס-שר מאסיים	:::	Φ	d π-/d π- 2, ,
(deg)	(fa ^c /sr)	: :	(deg)	(fm ^c /sr)	: -	(deg)	(fm ^c /ar)
₿ 3:86 ± 1.6 0	0.108 ± 0.020						
46.42 ± 1.60	0.147 ± 0.021	::					
48.98 ± 1.60	0.180 ± 0.022						
51.54 ± 1.60	0.181 ± 0.022						
56.64 <u>+</u> 1.60	0.142 ± 0.019				::		
61.73 ± 1.60	0.109 ± 0.016				::		
66.81 <u>+</u> 1.60	0.052 ± 0.010						
71.88 ± 1.60	0.037 ± 0.009						
		· -					
		-			-		

TABLE 34. Elastic differential scattering cross section data in the pion-nucleus CM for π^{-} on 1^{2} C at

⊖ (deg)	dσ/dΩπ ⁻ (fm ² /sr)	8 8 8 8 8 8 8 1 8 1 8 1	⊖ (deg)	dv/dn ⁻ (fm ² /sr)
11.0 <u>+</u> 1.6	38.69 <u>+</u> 1.42	- 11 11	44.0 <u>+</u> 1.6	0.131 <u>+</u> 0.015
12.6 <u>+</u> 1.6	35.41 <u>+</u> 1.27	8 8 8 8	46.6 <u>+</u> 1.6	0.157 <u>+</u> 0.017
15.1 <u>+</u> 1.6	28.16 <u>+</u> 0.90	81 88	49.2 <u>+</u> 1.6	0.146 <u>+</u> 0.016
17.7 <u>+</u> 1.6	22.16 <u>+</u> 0.68	••	51.7 <u>+</u> 1.6	0.136 <u>+</u> 0.016
20.3 <u>+</u> 1.6	15.62 <u>+</u> 0.47	11	.56.8 <u>+</u> 1.6	0.137 👍 0.016
25.5 <u>+</u> 1.6	6.91 <u>+</u> 0.24	# 1 # 1	61.9 <u>+</u> 1.6	0.088 <u>+</u> 0.012
30.6 <u>+</u> 1.6	2.41 <u>+</u> 0.10	#1 #1	67.0 <u>+</u> 1.6	0.060 <u>+</u> 0.010
35.8 <u>+</u> 1.6	0.56 <u>+</u> 0.04	11	72.1 <u>+</u> 1.6	0.015 <u>+</u> 0.005
41.5 <u>+</u> 1.6	0.161 <u>+</u> 0.018	88 88 88	131.1 <u>+</u> 1.6	0.0025 <u>+</u> 0.0020

TABLE 35. Elastic differential scattering cross section data in the pion-nucleus CM for π on 1²C at 280 MeV pion kinetic energy in the lab.¹⁰

⊖ (deg)	dv/dΩπ ⁺ (fm ² /sr)	
40.4 <u>+</u> 5.0	0.586 <u>+</u> 0.071	
50.5 <u>+</u> 5.0	0.573 <u>+</u> 0.050	
60.6 <u>+</u> 5.0	0.556 <u>+</u> 0.053	
70.6 <u>+</u> 5.0	0.616 <u>+</u> 0.066	
80.6 <u>+</u> 5.0	0.718 <u>+</u> 0.078	
90.7 <u>+</u> 5.0	0.686 <u>+</u> 0.071	
100.6 <u>+</u> 5.0	0.827 <u>+</u> 0.058	
120.6 <u>+</u> 5.0	0.759 <u>+</u> 0.084	

•~

TABLE 36. Elastic differential scattering cross section data in the pion-nucleus CM for π^+ on 160 at 30 MeV pion kinetic energy in the lab. 8

⊖ (deg)	dv/dΩπ ⁻ (fm ² /sr)	- 33 68 99 61	⊖ (deg)	dv/d.n (fm ² /sr)
20.3 + 2.8	22.36 <u>+</u> 1.07	11 11	70.8 <u>+</u> 3.8	0.438 <u>+</u> 0.059
25.4 <u>+</u> 2.8	15.76 <u>+</u> 0.88	1 A 8 J	75.8 <u>+</u> 4.5	0.412 <u>+</u> 0.062
30-4 <u>+</u> 2.8	10.72 <u>+</u> 0.78	11	80.9 <u>+</u> 4.5	0.319 <u>+</u> 0.088
35.5 <u>+</u> 2.8	7.35 <u>+</u> 0.42	4.1 1.1	85.9 <u>+</u> 4.5	0.306 <u>+</u> 0.055
40.6 <u>+</u> 2.8	5.29 <u>+</u> 0.24	1 H 1 H	90.9 <u>+</u> 4.5	0.229 <u>+</u> 0.042
45.6 <u>+</u> 3.8	2.66 <u>+</u> 0.22	# 3 # 1	95•9 <u>+</u> 4•5	0.245 <u>+</u> 0.046
50.7 <u>+</u> 3.8	1.68 <u>+</u> 0.09	11 	100.9 <u>+</u> 4.5	0.059 <u>+</u> 0.033
55.7 <u>+</u> 3.8	0.826 <u>+</u> 0.069	8 F 8 F	110.8 <u>+</u> 4.5	0.031 <u>+</u> 0.031
60.8 <u>+</u> 3.8	0.571 <u>+</u> 0.108	11 11	120.7 <u>+</u> 4.5	0.029 <u>+</u> 0.029
65.8 <u>+</u> 3.8	0.418 <u>+</u> 0.070	8 8 8 8 8 8	130.7 <u>+</u> 4.5	0.028 <u>+</u> 0.028

.

TABLE 37. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on 160 at 87.5 MeV pion kinetic energy in the lab.⁹

at	
٤٥	
g	
Ľ	
۲ بر	
j J	
t S	
leu	
Duc	
-uo	
đ	
the	
in	
data	
go	
set1	
ŭ.	
CLOS	
80	
Le	ŧ
Catt	ġ.
ă m	e F
tia	th
ren	1 <u>1</u> n
H	616)
с G	en
	tic
Ele	kine
<u>8</u> .	on
B	μ
TAB	2
	20

			والمتعادين والمتعاد بالمتحال والمتعادين والمحار والمحار والمحار والمحار والمحار والمحار والمحاري والمحار والمحار		
0	dτ/dΩπ-	0	dτ/dΩπ- (2/2-)	0	dσ-/dΩπ- (***)
(aeg)		(deg)	(IB/87)	(aeg)	(18 / BI)
15.3 ± 2.0	94.15 ± 10.77	41.8 ± 2.0	060.0 + 067.0	68.0 ± 2.0	0.160 ± 0.021
17.3 ± 2.0	61.96 ± 8.26	1 43.8 <u>+</u> 2.0	0.211 ± 0.035	70.0 ± 2.0	0.201 ± 0.021
19.4 ± 2.0	65.12 + 5.16	45.8 ± 2.0	0.166 ± 0.023	12.1 ± 2.0	0.120 ± 0.015
21.4 + 2.0	47.33 ± 3.65	47.8 ± 2.0	0.193 ± 0.025	74.1 ± 2.0	0.029 ± 0.004
23.5 ± 2.0	22.23 + 2.00	149.9 ± 2.0	0.080 ± 0.018	76.1 ± 2.0	0.015 ± 0.002
25.5 ± 2.0	16.25 ± 1.26	51.9 ± 2.0	0.116 ± 0.021	78.1 ± 2.0	0.016 ± 0.002
27.5 ± 2.0	11.58 ± 0.96	53.9 ± 2.0	0.150 ± 0.029		
29.6 ± 2.0	8.15 ± 0.65	55.9 ± 2.0	0.342 ± 0.038		
31.6 ± 2.0	6.68 ± 0.52	58.0 ± 2.0	0.345 ± 0.039		
33.6 ± 2.0	5.56 ± 0.54	60.0 ± 2.0	0.363 ± 0.040		
35.7 ± 2.0	2.64 ± 0.25	62.0 ± 2.0	0.232 ± 0.028		
37.7 ± 2.0	1.70 ± 07.1	64.0 ± 2.0	0.258 ± 0.033		
39.7 ± 2.0	1.21 ± 0.13	66.0 ± 2.0	0.266 ± 0.028	-	

⊖ (deg)	dv/d.a.m ⁻ (fm ² /sr)	6 0 6 0 8 0 8 0 8 0 8 0	⊖ (deg)	dv /dL n ⁻ (fm ² /sr)
15.3 <u>+</u> 2.0	70.52 <u>+</u> 8.55	9 T 5 J	45.8 <u>+</u> 2.0	0.127 <u>+</u> 0.018
17.4 <u>+</u> 2.0	60.82 <u>+</u> 4.90	81 81	47.9 <u>+</u> 2.0	0.0168 <u>+</u> 0.0089
19.4 <u>+</u> 2.0	40.50 <u>+</u> 3.09	88 81	49.9 <u>+</u> 2.0	0.0404 <u>+</u> 0.0123
21.4 <u>+</u> 2.0	32.82 <u>+</u> 2.57	**	51.9 <u>+</u> 2.0	0.173 <u>+</u> 0.026
23.5 <u>+</u> 2.0	17.30 ± 1.31	**	53.9 <u>+</u> 2.0	0.242 <u>+</u> 0.029
25.5 <u>+</u> 2.0	13.43 <u>+</u> 1.03	11	56.0 <u>+</u> 2.0	0.241 <u>+</u> 0.030
27.5 <u>+</u> `2.0	11.27 <u>+</u> 0.85	• •	58.0 <u>+</u> 2.0	0.439 <u>+</u> 0.045
29.6 <u>+</u> 2.0	8.24 <u>+</u> 0.59	11	60.0 <u>+</u> 2.0	0.249 <u>+</u> 0.028
21.6 <u>+</u> 2.0	4.81 <u>+</u> 0.40	11	62.0 <u>+</u> 2.0	0.243 <u>+</u> 0.025
33.6 <u>+</u> 2.0	4.18 <u>+</u> 0.34	**	64.1 <u>+</u> 2.0	0.190 <u>+</u> 0.022
35.7 <u>+</u> 2.0	2.33 <u>+</u> 0.22	4 8 8 1	66.1 <u>+</u> 2.0	0.101 <u>+</u> 0.018
37.7 <u>+</u> 2.0	1.39 <u>+</u> 0.14	11 11	68.1 <u>+</u> 2.0	0.148 <u>+</u> 0.018
39.7 <u>+</u> 2.0	0.749 + 0.086	11	70.1 <u>+</u> 2.0	0.140 <u>+</u> 0.016
41.8 <u>+</u> 2.0	0.604 + 0.076	11	72.1 <u>+</u> 2.0	0.018 <u>+</u> 0.002
43.8 <u>+</u> 2.0	0.159 <u>+</u> 0.022	81 53 88	74.1 + 2.0	0.009 + 0.002

TABLE 39. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on 160 at 170 MeV pion kinetic energy in the lab.¹⁴

⊖ (deg)	d τ /d Ω π ⁻ (fm ² /sr)	00 00 00 00	⊖ (deg)	dv/dΩπ ⁻ (fm ² /sr)
15.4 <u>+</u> 2.0	25.03 <u>+</u> 2.96	18	41.9 <u>+</u> 2.0	0.305 <u>+</u> 0.059
17.4 <u>+</u> 2.0	13.19 <u>+</u> 2.01	11	43.9 <u>+</u> 2.0	0.208 + 0.038
19.5 <u>+</u> 2.0	6.63 <u>+</u> 0.91	2 8 1 8	46.0 <u>+</u> 2.0	0.478 + 0.079
21.5 <u>+</u> 2.0	5.68 <u>+</u> 0.79	8 8 8 8	48.0 <u>+</u> 2.0	0.506 + 0.080
23.5 <u>+</u> 2.0	2.87 <u>+</u> 0.34	**	50.0 <u>+</u> 2.0	0.181 + 0.042
25.6 <u>+</u> 2.0	2.83 <u>+</u> 0.37	8 8 8 8	52.1 <u>+</u> 2.0	0.209 ± 0.041
27.6 <u>+</u> 2.0	0.759 <u>+</u> 0.153	11 11	54.1 <u>+</u> 2.0	0.114 + 0.023
29.7 <u>+</u> 2.0	0.498 <u>+</u> 0.096	8 8 8 8	56.1 <u>+</u> 2.0	0.160 <u>+</u> 0.029
31.7 <u>+</u> 2.0	0.374 <u>+</u> 0.061	**	58.1 <u>+</u> 2.0	0.115 <u>+</u> 0.020
33.7 <u>+</u> 2.0	0.317 <u>+</u> 0.052	**	60.2 <u>+</u> 2.0	0.027 <u>+</u> 0.010
35 . 8 <u>+</u> 2.0	0.230 <u>+</u> 0.096	14 11	62.2 <u>+</u> 2.0	0.012 ± 0.008
37.8 <u>+</u> 2.0	0.217 <u>+</u> 0.039	+ 4 1	64.2 <u>+</u> 2.0	0.013 <u>+</u> 0.009
39.9 <u>+</u> 2.0	0.250 <u>+</u> 0.061	6 F 1 A 1 I	_	

TABLE 40. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on 160 at 220 MeV pion kinetic energy in the lab.

⊖ (deg)	dv/dnn ⁻ (fm ² /sr)	80 81 80 80 80 80	⊖ (deg)	dv /dΩ π ⁻ (fm ² /sr)
15.4 <u>+</u> 2.0	31.40 <u>+</u> 3.15	18 14	41.9 <u>+</u> 2.0	0.264 + 0.044
17.4 <u>+</u> 2.0	21.67 <u>+</u> 2.77	44 14	44.0 <u>+</u> 2.0	0.284 + 0.046
19.5 <u>+</u> 2.0	21.21 <u>+</u> 1.62	41 15	46.0 <u>+</u> 2.0	0.323 <u>+</u> 0.035
21.5 <u>+</u> 2.0	18.83 <u>+</u> 1.82	FE 11	48.0 <u>+</u> 2.0	0.365 <u>+</u> 0.049
23.6 <u>+</u> 2.0	13.58 <u>+</u> 1.53	11 18	50.1 <u>+</u> 2.0	0.354 + 0.049
25.6 <u>+</u> 2.0	7.70 <u>+</u> 0.68	88 88	52.1 <u>+</u> 2.0	0.242 ± 0.032
27.6 <u>+</u> 2.0	6.52 <u>+</u> 0.68	14 11	54.1 <u>+</u> 2.0	0.232 <u>+</u> 0.033
29.7 <u>+</u> 2.0	3.30 <u>+</u> 0.23	8 8 8 8	56.2 <u>+</u> 2.0	0.097 <u>+</u> 0.018
31.7 <u>+</u> 2.0	1.42 <u>+</u> 0.14	6 R	58.2 <u>+</u> 2.0	0.095 <u>+</u> 0.016
33.8 <u>+</u> 2.0	0.530 <u>+</u> 0.079	**	60.2 <u>+</u> 2.0	0.046 + 0.012
35.8 <u>+</u> 2.0	0.198 <u>+</u> 0.025	**	62.2 <u>+</u> 2.0	0.018 <u>+</u> 0.008
37.8 <u>+</u> 2.0	0.159 <u>+</u> 0.021	**	64.3 <u>+</u> 2.0	0.014 <u>+</u> 0.000
39.9 <u>+</u> 2.0	0.164 <u>+</u> 0.024) 	66.3 <u>+</u> 2.0	0.002 + 0.002

TABLE 41. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on ¹⁶⁰ at 230 MeV pion kinetic energy in the lab.¹⁴

Ə (deg)	dv/dn- (fm ² /sr)	⊖ ⊖ 	dτ /dΩ π ⁻ (fm ² /sr)
15.4 ± 2.0 17.4 ± 2.0 19.5 ± 2.0 21.5 ± 2.0 23.6 ± 2.0 25.6 ± 2.0 27.7 ± 2.0 29.7 ± 2.0 31.7 ± 2.0 33.8 ± 2.0 35.8 ± 2.0 37.9 ± 2.0	20.21 ± 2.38 11.25 ± 1.72 7.33 ± 0.89 4.96 ± 0.75 2.55 ± 0.25 1.06 ± 0.17 0.354 ± 0.105 0.358 ± 0.086 0.315 ± 0.055 0.173 ± 0.035 0.254 ± 0.048 0.201 ± 0.039	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 0.446 \pm 0.073 \\ 0.445 \pm 0.048 \\ 0.405 \pm 0.070 \\ 0.243 \pm 0.057 \\ 0.331 \pm 0.052 \\ 0.270 \pm 0.044 \\ 0.104 \pm 0.020 \\ 0.0923 \pm 0.0156 \\ 0.0798 \pm 0.0175 \\ 0.0132 \pm 0.0068 \\ 0.0049 \pm 0.0049 \\ 0.0059 \pm 0.0059 \end{array}$
39.9 <u>+</u> 2.0	0.577 <u>+</u> 0.079	4 6 8 8	

TABLE 42. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on ^{16}O at 240 MeV pion kinetic energy in the lab. 14

.

⊖ (deg)	dv/dΩπ+ (fm²/sr)	11 50 71 54 24	⊖ (deg)	dv-/dภ_1+ (fm ² /sr)
5.1 <u>+</u> 1.0	293.9 <u>+</u> 37.9	11	34.9 <u>+</u> 1.0	0.957 <u>+</u> 0.191
6.7 <u>+</u> 1.0	132.7 <u>+</u> 14.2	**	36.9 <u>+</u> 1.0	0.670 <u>+</u> 0.096
8.2 <u>+</u> 1.0	102.4 <u>+</u> 7.6	11	39.0 <u>+</u> 1.0	0.671 <u>+</u> 0.096
11.3 <u>+</u> 1.0	84.44 <u>+</u> 9.49	••	41.0 <u>+</u> 1.0	0.672 <u>+</u> 0.096
15.4 <u>+</u> 1.0	56.97 <u>+</u> 7.60	11	43.0 <u>+</u> 1.0	0.769 <u>+</u> 0.096
18.5 <u>+</u> 1.0	35.16 <u>+</u> 3.80	**	46.1 <u>+</u> 1.0	0.722 <u>+</u> 0.096
21.6 <u>+</u> 1.0	12.37 <u>+</u> 2.85	••	50.7 <u>+</u> 1.0	0.435 <u>+</u> 0.068
24.6 <u>+</u> 1.0	8.57 <u>+</u> 0.95	••	55.3 <u>+</u> 1.0	0.252 <u>+</u> 0.039
27.7 <u>+</u> 1.0	6.39 <u>+</u> 0.76	**	59.8 <u>+</u> 1.0	0.127 <u>+</u> 0.019
30.8 <u>+</u> 1.0	1.91 <u>+</u> 0.29	** * 1 * 4	64.4 <u>+</u> 1.0	0.059 <u>+</u> 0.010

TABLE 43. Elastic differential scattering cross section data in the pion-nucleus CM for π^+ on 160 at 270 MeV pion kinetic energy in the lab. 158

⊖ (deg)	dv/d.s.π ⁻ (fm²/sr)	'' O '' (deg)	dτ/dภπ- (fm ² /sr)
15.1 ± 2.0 17.2 ± 2.0 19.2 ± 2.0 21.2 ± 2.0 23.2 ± 2.0 25.2 ± 2.0 $27.2 + 2.0$	84.62 ± 11.63 120.10 ± 15.63 59.96 ± 5.63 49.87 ± 6.68 55.03 ± 5.44 18.70 ± 5.72 8.13 ± 0.94	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.65 ± 0.28 2.10 ± 0.27 1.30 ± 0.15 0.587 ± 0.085 0.404 ± 0.091 0.298 ± 0.062 0.409 ± 0.090
29.3 ± 2.0 31.3 ± 2.0 33.3 ± 2.0 35.3 ± 2.0 37.3 ± 2.0 39.3 ± 2.0 41.4 ± 2.0 43.4 ± 2.0	2.86 ± 0.58 3.59 ± 0.41 5.04 ± 0.60 4.33 ± 0.40 5.90 ± 0.64 5.55 ± 0.65 4.41 ± 0.39 4.34 ± 0.56	59.5 ± 2.0 61.5 ± 2.0 63.5 ± 2.0 65.5 ± 2.0 67.5 ± 2.0 69.5 ± 2.0 71.5 ± 2.0	0.539 ± 0.106 0.340 ± 0.051 0.357 ± 0.056 0.149 ± 0.077 0.081 ± 0.020 0.111 ± 0.024 0.059 ± 0.016

TABLE 44. Elastic differential scattering cross section data in the pion-mucleus CM for π^- on 40 Ca at 205 MeV pion kinetic energy in the lab. 14

⊖ (deg)	dτ/dΩπ ⁻ (fm ² /sr)	8 8 6 8 6 8 6 8 6 8	⊖ (deg)	dv/dΩπ ⁻ (fm ² /sr)
15.1 ± 2.0 17.2 ± 2.0 19.2 ± 2.0 21.2 ± 2.0 23.2 ± 2.0 25.2 ± 2.0 27.2 ± 2.0 29.3 ± 2.0 31.3 ± 2.0 33.3 ± 2.0 35.3 ± 2.0 $37.3 + 2.0$	90.20 ± 10.10 66.21 ± 7.62 51.74 ± 4.96 23.16 ± 2.86 9.72 ± 1.10 5.05 ± 0.63 2.21 ± 0.43 2.32 ± 0.52 3.52 ± 0.50 2.98 ± 0.67 3.42 ± 0.40 3.21 ± 0.43		43.4 ± 2.0 45.4 ± 2.0 47.4 ± 2.0 49.4 ± 2.0 51.4 ± 2.0 53.4 ± 2.0 55.4 ± 2.0 57.5 ± 2.0 61.5 ± 2.0 63.5 ± 2.0 65.5 ± 2.0	1.24 ± 0.39 0.976 ± 0.153 0.558 ± 0.153 0.383 ± 0.083 0.173 ± 0.057 0.179 ± 0.057 0.151 ± 0.049 0.198 ± 0.048 0.194 ± 0.036 0.115 ± 0.026 0.065 ± 0.014 $0.060 + 0.015$
39.3 <u>+</u> 2.0 41.4 <u>+</u> 2.0	2.91 ± 0.40 1.83 ± 0.30	13 17 19 19 <u>11</u>	67.5 <u>+</u> 2.0	0.024 <u>+</u> 0.010

TABLE 45. Elastic differential scattering cross section data in the pion-nucleus CM for π^- on ⁴⁰Ca at 215 MeV pion kinetic energy in the lab.¹⁴

Nucleus	$\Delta E^{ls}(ev)$	$\Delta E^{2p}(ev)$	∆ E ^{3d} (ev)
4 _{He}	- 29.7 <u>+</u> 0.2	- 0.924	
6 _{L1}	- 94.8 <u>+</u> 0.5	- 4.32	
7 ₁₁	- 92.9 <u>+</u> 0.6	- 4.35	
9 _{Be}	- 199.2 <u>+</u> 0.3	- 11.9	
10 _B	- 348.5 <u>+</u> 2.5	- 25.0	
11 _B	- 339.0 <u>+</u> 1.5	- 25.1	
¹² C	- 537.7 <u>+</u> 1.4	- 44.9	
14 _N	- 777.3 + 2.4	- 72.5	
16 ₀	- 1086 <u>+</u> 4	- 109	
180	- 989 <u>+</u> 5	- 109	
19 _F	- 1350 <u>+</u> 7	- 154	
20 _{Ne}	- 2124	- 210	
23 _{Na}	- 2074 <u>+</u> 6	- 276	
24 Mg	- 2610 <u>+</u> 14	- 354	
⁴⁰ Ca	·	- 1430	- 220

TABLE 46. Shift in energy levels of pionic atoms due to vacuum polarization.

•

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 5.

FIGURE 7.

FIGURE 8.

q

FIGURE 11.

FIGURE 12.

FIGURE 13.

FIGURE 14.

FIGURE 15.

FIGURE 17.

FIGURE 18.

FIGURE 2D.

FIGURE 21.

FIGURE 22.

FIGURE 23.

FIGURE 24.

FIGURE 25.

FIGURE 26.

FIGURE 27.

FIGURE 28.

FIGURE 29.

FIGURE 30.

FIGURE 31.

FIGURE 32.

FIGURE 33.

FIGURE 34.

, i

FIGURE 36.

FIGURE 37.

FIGURE 38.

FIGURE 39.

FIGURE 40.

FIGURE 41.

FIGURE 42.

FIGURE 43.

FIGURE 45.

FIGURE 46.

FIGURE 47.

FIGURE 48.

FIGURE 49.

FIGURE 50.

FIGURE 51.

FIGURE 54.

FIGURE 55.

FIGURE 56.

FIGURE 57.

FIGURE 58.

FIGURE 59.

FIGURE 60.

XI. LIST OF REFERENCES

- R. J. Wetmore, D. C. Buckle, J. R. Kane, and R. T. Siegel, Phys. Rev. Lett. 19, 1003 (1967).
- R. J. Harris, W. B. Shuler, M. Eckhause, R. T. Siegel, and R. E. Welsh, Phys. Rev. Lett. 20, 505 (1968).
- 3. G. H. Miller, M. Eckhause, W. W. Sapp, and R. E. Welsh, Phys. letters 27B, 663 (1968).
- 4. M. Eckhause, F. R. Kane, J. R. Kane, P. Martin, G. H. Miller, C. B. Spence, Jr., and R. E. Welsh, Nuc. Phys. B44, 83 (1972).
- 5. D. A. Jenkins, R. Kunselman, M. K. Simmons, and T. Yamazaki, Phys. Rev. Lett. 17, 1 (1966).
- 6. D. A. Jenkins and R. Kunselman, Phys. Rev. Lett. 17, 1148 (1966).
- 7. G. Backenstoss, S. Charalambus, H. Daniel, H. Koch, G. Poelz, H. Schmitt, and L. Tauscher, Phys. Letters 25B, 365 (1967).
- 8. J. F. Marshall, M. E. Nordberg, Jr., and R. L. Burman, Phys. Rev. Cl, 1685 (1970).
- 9. R. M. Edelstein, W. F. Baker, and J. Rainwater, Phys. Rev. <u>122</u>, 252 (1961).
- 10. F. Binon, P. Duteil, J. P. Garron, J. Gorres, L. Hugin, J. P. Peigneux, C. Schmit, M. Spighel, and J. P. Stroot, Nuc. Phys. <u>B17</u>, 168 (1970).
- 11. M. E. Nordberg, Jr., and K. F. Kinsey, Phys. Letters 20, 692 (1966).
- 12. K. M. Crowe, A. Fainberg, J. Miller, and A. S. L. Parsons, Phys. Rev. 180, 1349 (1969).
- Yu. A. Budagov. P. F. Ermolov, E. A. Kushnirenko, and V. I. Moskalev, Zh. Eksperim. i Teor. Fiz. (USSR) 42, 1191 (1961) [Soviet Phys. -JETP (USA) 15, 824 (1962)].
- 14. R. W. Bercaw, J. S. Vincent, E. T. Boschitz, M. Blecher, K. Gotow, D. K. Anderson, R. Kerns, R. Minehart, K. Ziock, and R. Johnson, Phys. Rev. Lett. 29, 1031 (1972). The numerical values given in the tables were received by private communication from Gotow.
- 15. Los Alamos Meson Physics Facility at Los Alamos, New Mexico.

- 16. Schweizerisches Institut fur Nuklearforschung in Villigen, Switzerland.
- 17. The Columbia University Nevis Synchrocyclotron at Irvington-on-Hudson, New York.
- 18. Tri-University Meson Physics Facility in Vancouver, British Columbia, Canada.
- 19. M. Ericson and T. E. O. Ericson, Ann. Phys. 36, 323 (1966).
- 20. C. B. Dover, Ann. Phys. 79, 441 (1973).
- 21. M. Krell and T. E. O. Ericson, Nuc. Phys. Bl. 521 (1969).
- 22. G. Backenstoss, in invited paper presented at the International Conference in High-Energy Physics and Nuclear Structure at Columbia University in New York from September 8-12, 1969.
- 23. D. K. Anderson, D. A. Jenkins, and R. J. Powers, Phys. Rev. <u>188</u>, 9 (1969).
- 24. E. H. Auerbach, D. M. Fleming, and M. M. Sternheim, Phys. Rev. <u>162</u>, 1683 (1967).
- 25. D. S. Koltun in Advances in Nuclear Physics Vol. III, (M. Baranger and E. Vogt editors), (Plenum Press, New York, 1969).
- 26. M. L. Goldberger and K. M. Watson, <u>Collision Theory</u>, (John Wiley and Sons, Inc., New York, 1964).
- 27. H. Byfield, J. Kessler, and L. M. Lederman, Phys. Rev. 86, 17 (1952).
- 28. K. M. Watson, Phys. Rev. 89, 575 (1953).
- 29. N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).
- 30. M. Stearns and M. B. Stearns, Phys. Rev. 103, 1534 (1956).
- 31. M. Camac, A. D. McGuire, J. B. Platt, and H. B. Shulte, Phys. Rev. 88, 1934 (1952).
- 32. W. F. Baker, J. Rainwater, and R. E. Williams, Phys. Rev. <u>112</u>, 1763 (1958).
- W. F. Baker, H. Byfield, and J. Rainwater, Phys. Rev. <u>112</u>, 1773 (1958).
- 34. L. S. Kisslinger, Phys. Rev. 98, 761 (1955).
- 35. R. M. Edelstein, W. F. Baker, and J. Rainwater, Phys. Rev. <u>122</u>, 252 (1961).
- 36. E. P. G. Valckx, E. S. Gelsema, and M. Kruiskamp, Nuovo Cimento 23, 1005 (1962).

- 37. A. K. Kerman and R. K. Logan, in "Nuclear Spectroscopy with Direct Reactions Vol. I," Argonne National Lab Report - 6848, p. 236 (1964).
- D. Chivers, J. J. Domingo, E. M. Rimmer, R. C. Whitcomb, B. W. Allardyce, and N. N. Tanner, Phys. Letters 26B, 573 (1968).
- 39. M. Krell and S. Barmo, Nuc. Phys. B20, 461 (1970).
- 40. K. A. Brueckner, Phys. Rev. 98, 769 (1955).
- 41. D. J. Thouless, Proc. Phys. Soc. 69, 280 (1956).
- 42. S. D. Drell, H. J. Lipkin, and A. de Shalit unpublished paper referred to in reference 14.
- 43. N. M. Kroll, private communication as reported in reference 9.
- 44. J. Hamilton, "Pion-Nucleon Interactions," in <u>High Energy Physics</u>, edited by E. H. S. Burhop (Academic Press, New York and London, 1967) Vol. I p. 194.
- 45. S. L. Adler and R. F. Dashen, Current Algebras (W. A. Benjamin, New York and Amsterdam, 1968).
- 47. K. A. Brueckner, R. Serber, and K. M. Watson, Phys. Rev. <u>84</u>, 258 (1951).
- 48. S. Ozaki, R. Weinstein, G. Glass, E. Loh, L. Neimala, and A. Wattenberg, Phys. Letters 4, 533 (1960).
- 49. M. E. Nordberg, Jr., K. F. Kinsey, and R. L. Burman, Phys. Rev. <u>165</u>, 1096 (1968).
- 50. H. W. Bertini, Phys. Letters 30B, 300 (1969).
- 51. H. L. Anderson, E. P. Hinks, C. S. Johnson, C. Rey, A. M. Segar, Phys. Rev. 133, B392 (1964).
- 52. R. Serber, Phys. Rev. 72, 1114 (1947).
- 53. J. Heidmann and L. Leprince-Ringuet, Comptes Rendue 226, 1716 (1948).
- 54. S. Tamor, Phys. Rev. 77, 412 (1950).
- 55. P. Cuer, Comptes Rendue 231, 846 (1950).
- 56. L. Rosen, Peaceful Uses of Atomic Energy Vol. 4 (United Nations, New York, 1956).
- K. J. LeCouteur, in Nuclear Reactions Vol. I, edited by P. M. Endt and M. Demur (North-Holland Publishing Company, Amsterdam, 1959) pp. 318-355.
- 58. V. Weisskopf, Phys. Rev. 52, 295 (1937).

- 59. K. J. LeCouteur, Proc. Phys. Soc. A63, 259 (1950).
- 60. K. J. LeCouteur, Proc. Phys. Soc. A65, 718 (1952).
- 61. P. Ammiraju and L. M. Lederman, Nuovo Cimento 4, 283 (1956).
- 62. M. Schiff, R. H. Hildebrand, and C. Giese, Phys. Rev. 122, 265 (1961).
- 63. R. Bizzari, E. Di Capua, U. Dore, G. Gialanella, P. Guidoni, and I. Laakso, Nuovo Cimento 33, 1497 (1964).
- 64. M. M. Block, T. Kikuchi, D. Koetke, J. Kopelman, C. R. Sun, R. Walker, G. Culligan, V. L. Telegdi, and R. Winston, Phys. Rev. Letters <u>11</u>, 301 (1963).
- 65. O. A. Zaimidoroga, M. M. Kulyukin, R. M. Sulyaev, I. V. Falomkin,
 A. I. Filippov, V. M. Tsupko-Sitnikov, and Yu. A. Scherbakov,
 Zh. Eksper. Teor. Fiz. (USSR) <u>51</u>, 1646 (1966) [Soviet Phys. JETP (USA) <u>24</u>, 1111 (1967)].
- 66. A. O. Vaisenberg, E. D. Kulganova, and N. V. Rabin, Zh. Eksper. Teor. Fiz. (USSR) <u>47</u>, 1262 (1964) [Soviet Phys. JETP (USA) <u>20</u>, 854 (1965)].
- 67. I. S. Shapiro and V. M. Kolybasov, Zh. Eksper. Teor. Fiz. (USSR) <u>44</u>, 270 (1963) [Soviet Phys. JETP (USA) 17, 185 (1963)].
- 68. V. M. Kolybasov, Yaderna Fizika (USSR) <u>3</u>, 729 (1966) [Soviet J. Nuclear Phys. (USA) <u>3</u>, 535 (1966)].
- 69. V. M. Kolybasov, Yaderna Fizika (USSR) 3, 965 (1966) [Soviet J. Nuclear Phys. (USA) 3, 704 (1966)].
- 70. S. G. Eckstein, Phys. Rev. 129, 413 (1963).
- 71. Actually Eckstein associated the delta functions with the scattering operator.
- 72. M. Ericson, Comptes Rendue 258, 1471 (1964).
- 73. S. Deser, M. L. Goldberger, K. Baumann, and W. Thirring, Phys. Rev. 96, 774 (1954).
- 74. D. D. Ivanenko and G. E. Pustovalov, Usp. Fiz. Nauk (USSR) <u>61</u>, 27 (1957) [Soviet Phys. - Usp. (USA) 63, 1043 (1961)].
- 75. R. Seki and A. H. Cromer, Phys. Rev. 156, 93 (1967).
- 76. B. Blum, Nuc. Phys. B23, 155 (1970).
- 77. S. Chapman and T. C. Cowling, Mathematical Theory of Non-Uniform Cases (Cambridge University Press, Teddington, 1939).
- 78. R. E. Marshak, Revs. Mod. Phys. 19, 185 (1947).

- 79. 0. Halpern and R. K. Luneburg, Phys. Rev. 76, 1811 (1949).
- 80. Marshak, Brooks, and Hurwitz, Nucleonics 4, 10, 43 (1949) and 5, 53, 59 (1949).
- E. Hopf, "Problems in Radiative Equilibrium," Cambridge Tract No. 31 (1934).
- 82. S. Chandrasekhar, <u>Radiative Transform</u> (Oxford University Press, London, 1950).
- 83. H. S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).
- 84. U. Fano, Phys. Rev. 76, 739 (1949).
- 85. W. R. Faust, Phys. Rev. 77, 227 (1950).
- 86. B. Rossi and K. Greisen, Revs. Mod. Phys. 13, 240 (1941).
- 87. H. S. Snyder, Phys. Rev. 76, 1563 (1949).
- 88. E. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 (1950).
- 89. A. H. Wilson, The Theory of Metals (Cambridge University Press, Teddington, 1936).
- 90. S. DeBenedetti, Nuclear Interactions (John Wiley and Sons, Inc., New York, London, and Sydney, 1964), pp. 163.
- 91. M. Lax, Revs. Mod. Phys. 23, 287 (1951).
- 92. E. Merzbacher, Quantum Mechanics (John Wiley and Sons, Inc., New York and London, 1961) pp. 221-228.
- 93. P. P. Ewald, Ann. Physik 49, 4 (1916).
- 94. R. M. Rockmore, Phys. Rev. 105, 256 (1957).
- 95. H. A. Bethe and P. M. Morrison, Elementary Nuclear Theory (John Wiley and Sons, Inc., New York, 1956) p. 63.
- 96. V. I. Petrukhin and Yu. D. Prokoshkin, Nuc. Phys. 54, 414 (1964).
- 97. W. K. H. Panofsky, R. L. Aamodt, and J. Hadley, Phys. Rev. 81, 565 (1951).
- 98. R. A. Stallwood, R. B. Sutton, T. H. Fields, J. G. Fox, and J. A. Kane, Phys. Rev. 109, 1716 (1958).
- 99. E. H. S. Burhop, in High Energy Physics Vol. III, edited by E. H. S. Burhop (Academic Press, New York and London, 1969).
- 100. A. Partensky and M. Ericson, Nuc. Phys. Bl, 382 (1967).

- 101. A. Donnachie, in Particle Interactions at High Energies edited by T. W. Priest and L. L. J. Vick (Plenum Press, New York, 1967), p. 330.
- 102. F. Bierman, Phys. Rev. 127, 599 (1962).
- 103. G. E. Fisher and E. W. Jenkins, Phys. Rev. 116, 749 (1959).
- 104. J. M. McKinley, Revs. Mod. Phys. 35, 788 (1963).
- 105. J. Hamilton and W. S. Woolcock, Revs. Mod. Phys. 35, 737 (1963).
- 106. V. K. Samaranayake and W. S. Woolcock, Phys. Rev. Letters 15, 936 (1965).
- 107. M. L. Goldberger, H. Miyazawa, and R. Oehme, Phys. Rev. <u>99</u>, 986 (1955).
- 108. J. Hamilton, Phys. Letters 20, 687 (1966).
- R. A. Donald, W. H. Evans, W. Hart, P. Mason, D. E. Plane, and E. J. C. Read, Proc. Phys. Soc. 87, 445 (1966).
- 110. R. A. Donald, Proc. Phys. Soc. 88, 1047 (1966).
- 111. S. W. Barnes, B. Rose, G. Giacomelli, J. Ring, K. Miyake, and K. Kinsey, Phys. Rev. 117, 226 (1960).
- 112. S. W. Barnes, H. Winick, K. Miyake, and K. Kinsey, Phys. Rev. <u>117</u>, 238 (1960).
- 113. S. W. Barnes et al., Atomic Energy Commission Report NYO-2170 (unpublished).
- 114. W. Johnson and M. Camac, Atomic Energy Commission Report NYO-2169 (unpublished).
- 115. A. E. Woodruff, Phys. Rev. 117, 1113 (1960).
- 116. Iu. M. Kazarinov and Iu. N. Simonov, Zh. Eksper. Teor. Fiz. <u>35</u>, 78 (1958).
- 117. H. L. Anderson, in Rochester Conference in High Energy Nuclear Physics (Interscience Publishers, Inc., New York, 1956), Sec. I, p. 20.
- 118. J. M. McKinley, Revs. Mod. Phys. <u>35</u>, 788 (1963).
- 119. J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).
- 120. L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. <u>138</u>, B190 (1965).

- 121. A. Donnachie and G. Shaw, Ann. of Phys. 37, 333 (1966).
- 122. R. A. Krajcik and L. L. Foldy, Phys. Rev. Lett. 24, 545 (1970).
- 123. C. W. Lucas, Jr. and C. W. Werntz, Bull. Am. Phys. Soc. <u>10</u>, 1409 (1973).
- 124. J. J. Sakurai, Invariance Principles and Elementary Particles (Princeton University Press, Princeton, 1964).
- 125. I. S. Gradshetyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic Press, New York, 1965).
- 126. I. Sick and J. S. McCarthy, Nuc. Phys. A150, 631 (1970).
- 127. L. R. B. Elton, <u>Muclear Sizes</u> (Oxford University Press, London, 1961), p. 21.
- 128. R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).
- 129. H. F. Ehrenberg, R. Hofstadter, U. Meyer-Berkhout, D. G. Ravenhall, and S. E. Sobottka, Phys. Rev. 113, 666 (1959).
- 130. U. Meyer-Berkhout, K. W. Ford, and A. E. S. Green, Ann. Phys. 8, 119 (1959).
- 131. H. Crannell, Phys. Rev. 148, 1107 (1966).
- 132. R. F. Frosh, J. S. McCarthy, R. E. Rand, and M. R. Yearian, Phys. Rev. 160, 874 (1967).
- 133. H. Uberall, <u>Electron Scattering from Complex Nuclei</u> (Academic Press, New York and London, 1971), p. 214.
- 134. M. Croissiaux, R. Hofstadter, A. E. Walker, M. R. Yearian, D. G. Ravenhall, B. C. Clark, and R. Herman, Phys. Rev. <u>137</u>, B865 (1965).
- 135. B. Fricke, Z. Physik 218, 495 (1969).
- 136. U. S. Dept. of Commerce, National Bureau of Standards Applied Mathematics Series 55, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U. S. Government Printing Office, Washington, D. C., 1964).
- 137. R. C. Barrett, S. J. Brodsky, G. W. Erickson, and M. H. Goldhaber, Phys. Rev. 166, 1589 (1968).
- 138. A. B. Mickelwait and H. C. Corben, Phys. Rev. 96, 1145 (1954).
- 139. C. W. Terrill and C. W. Lucas, Jr., unpublished. This work was an extension of C. W. Terrill's Econors thesis, "A Calculation of the Energy Level Shifts in Pionic Atoms Due to Vacuum Polarization", in which the strong interaction potential was approximated by a

square well potential.

- 140. This form of the wave equation is not unique. One could have $V_{rt}(r)$ terms squared.
- 141. L. I. Schiff, <u>Quantum Mechanics</u> (McGraw-Hill Book Company, Inc., New York and London and Toronto, 1955), Second edition, p. 322.
- 142. N. N. Lebedev, Special Functions and Their Applications (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1965), p. 263. (Note that there is a misprint in the second term. The $(4 \propto \chi)$ should be $(1+\varkappa \chi)_{\nu}$).
- 143. E. T. Whitaker and E. N. Watson, <u>A Course in Modern Analysis</u> (Cambridge University Press, Cambridge, 1963).
- 144. R. E. Bellman and R. E. Kalaba, <u>Quasilinearization and Nonlinear</u> Boundary Value Problems (American Elsevier Pub. Co., New York, 1965).
- 145. E. S. Lee, <u>Quasilinearization and Invariant Imbedding</u> which is volume 41 of <u>Mathematics in Science and Engineering</u>, edited by R. E. Bellman (Academic Press, New York and London, 1968).
- 146. S. DeBenedetti, Nuclear Interactions (John Wiley and Sons, Inc., New York, 1964), p. 149.
- 147. S. Berezin, G. Burleson, D. Eartly, A. Roberts, and T. O. White, Nuc. Phys. B16, 389 (1970).
- 148. H. Koch, G. Poelz, H. Schmitt, L. Tauscher, G. Backenstoss, S. Charalambus, and H. Daniel, Phys. Letters 28B, 279 (1968).
- 149. H. Koch, M. Krell, C. V. D. Malsburg, G. Poelz, H. Schmitt, L. Tauscher, G. Backenstoss, S. Charalambus, and H. Daniel, Phys. Letters 29B, 140 (1969).
- 150. W. W. Sapp, Jr., College of William and Mary Report WM 70-21, August 1970.
- 151. M. E. Nordberg, Jr., and K. F. Kinsey, Phys. Lett. 20, 692 (1966).
- 152. K. M. Crowe, A. Fainberg, J. Miller, and A. S. L. Parsons, Phys. Rev. 180, 1349 (1969).
- 153. F. Binon, talk on "Pion-Nucleus Scattering" given at International Seminar on -Meson Nucleus Interactions, Strassbourg, September 20-22, 1971.
- 154. Yu. A. Budagor, P. F. Ermolov, E. A. Kushnirenko, and V. I. Moskalev, Soviet Physics JETP 15, 824 (1962).
- 155. P. P. Kane, Phys. Rev. 112, 1337 (1958).

- 156. J. Perry, Doctoral dissertation submitted to the University of Rochester, 1953 (unpublished).
- 157. F. Binon, V. Bobyr, P. Duteil, M. Gouanere, L. Hugon, J. P. Pelgneux, J. Renuart, C. Schmitt, M. Spignel, and J. P. Stroot, Nuc. Phys. <u>B33</u>, 42 (1971).
- 158. J. Rohlin, S. Rohlin, B. W. Allardyce, J. J. Domingo, C. H. Ingram, N. W. Tanner, E. Rimmer, and J. P. Girardeau-Montart, Nuc. Phys. <u>B37</u>, 461 (1972).
- 159. R. E. Shafer, Phys. Rev. 163, 1451 (1967).
- 160. A. Astbury, J. P. Deutsch, K. M. Grove, R. E. Shafer, and R. E. Taylor, Comptes Rendus du Congrès Int. de Phys. Nucl., Paris 1964, Vol. 2, p. 225.
- 161. A. R. Kunselmann, Doctoral dissertation submitted to the University of California, Berkeley, 1969, UCRLR Report 18654.
- 162. G. Poelz, H. Schmitt, L. Tauscher, G. Backenstoss, S. Charalambus, H. Daniel, and H. Koch, Phys. Letters 26B, 331 (1968).
- 163. D. A. Jenkins, R. J. Powers, and G. H. Miller, Phys. Rev. <u>185</u>, 1508 (1969).
- 164. H. Schmitt, L. Tauscher, G. Backenstoss, S. Charalambus, H. Daniel, H. Koch, and G. Poelz, Phys. Letters 27B, 530 (1968).
- 165. R. A. Carrigan, W. W. Sapp, W. B. Shuler, R. T. Siegel, and R. E. Welsh, Phys. Letters 25B, 193 (1967).
- 166. R. Mach, Nucl. Phys. A205, 56 (1973).
- 167. L. S. Kisslinger and F. Tabakin, Phys. Rev. <u>C9</u>, 188 (1974).
- 168. B. Goplen, W. R. Gibbs, and E. L. Lomon, Phys. Rev. Letters <u>32</u>, 1012 (1974).
- 169. J. Hufner, Nuc. Phys. B58, 55 (1973).
- 170. G. Faldt, Nuovo Cimento Letters 8, 655 (1973).

••• ,

171. F. Cannata, C. W. Lucas, Jr., and C. Werntz, to be published.

VITA

Charles William Lucas, Jr.

Born March 21, 1942, in Washington, D.C. Graduated from Fairfax High School, Fairfax, Virginia, 1960; the College of William and Mary, Williamsburg, Virginia, B.S., 1964; the University of Maryland--College Park, M.S., 1967. The thesis for the master's degree in experimental solid state physics was entitled "The Temperature Dependence of the Saturation Magnetization of Nickel."

In September 1967 the author entered the College of William and Mary as a graduate student in the Department of Physics. Before formally completing the thesis the author took in November 1972 a position as research associate in the physics department of the Catholic University of America, Washington, D.C., where he has been engaged in theoretical studies concerning photo-pion production.