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ABSTRACT

The problem of an electromagnetic wave, obliquely incident upon a
plasma slab is considered as a boundary-value problem, using a self-
consistent solution of the coupled linearized Vlasov and Maxwell equations.
Power reflection, transmission, and absorption coefficients are derived
under the asgumption that all particles undergo specular reflection at
the surfaces of the plasma slab. Although our analysis is valid for
arbitrary slab thickness, computational results are presented for slabs
which are thin compared to a wavelength. The results show that a series
of resonances occur which are attributed to the finite temperature of the
plasma. The results further show that the resonances are Landau
damped as the thermal velocity of the plasma electrons increases. It
is shown that similar resonances can be predicted from the coupled
linearized hydrodynamic-Maxwell equations; however, as is well known
such a model does not predict Landau damping. The effects of a finite
collision frequency are then included via a simple B.G.K. collision
term. The numerical computations vividly indicate that the resonances
undergo severe damping for extremely small values of the collision
frequency to signal frequency ratio.

Finally, the plasma capacitor problem is considered, and the results
indicate that the longitudinal resonances have very similar characteristics

to the plane wave resonances.
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CHAPTER I. INTRODUCTION

The interaction of electromagnetic waves with plasmas has been of
continuing interest to those engaged in the study of the ionosphere, of
the radar return from meteor trails, and of reentry plasma sheaths. In
the last category, most of the research emphasis has been directed
toward the solution of boundary-vaelue problems, varying in complexity
from relatively simple plane wave(l) interactions to rather complicated

(2)

ones involving antennas under plasmas With few exceptions(B), a

simple "cold" plasma model has been used. A cold plasma is defined

electron
here as one in which the/thermal velocity is zero, so that the
plasma behaves as an incompressible fluid which exerts no pressure.
One of the major shortcomings of this model is that no mechanism

a spectrum of

is provided in which to excite/longitudinal plasme waves. The
importance of these longitudinal oscillations lies in the fact that
they have been observed experimentally in the laboratory, as far
back as l93l(u) and later in connection with the radar scattering from
cylindrical plasma columns(5). It was observed that the radar return
consisted of a series of resonances, the characteristics of which are
shown in figure 1. The interesting feature of these resonances is that
cold plasma theory predicts only the main resonance which, for the
cylindrical column, occurs at W, = Uﬁib (for a plane slab, this
resonance occurs when o = wb). Much more comprehensive and convincing
experiments were initiated in 1957 by Dattner(6). His experiment con-
sisted of placing a small cylindricel discharge tube into the wall of a

with the electric field perpendicular to the tube
waveguide/and monitoring the reflection coefficient as a function of
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increasing discharge tube current. Because of the thoroughness of the
experiment, there ig no doubt that the secondary resonances exist, and
they have since thagigzen termed Tonks-Dattner resonances. Although
excellent experimental results were available, a satisfactory analytical
explanation for these resonances did not appear until the classic work
of Parker, Nickel, and Gould(7) was published. Upon applying a fluid

model of the plasma, they were able to conclude that a spectrum of

resonances wvere generated at the frequencies

w = w:' + (3KT;)'Q2‘
m

where Tg 1is the electron temperature, K is the Boltzmann constant,
m 1is the electron mass, and k 1s a wave number which deéends on the
radius of the plasma column. These frequencies correspond to longi-

to the electromagnetic wave
tudinal plasma oscillations, which couple more strongly/ because the
phase velocity of such waves 1ls of the order of the thermal velocity of
the electrons in the plasma.

One of the major shortcomings of an approach based on the linearized
fluid equations lles 1n the fact that, for finite thermal velocity, the
fluid equations are valid only for @ ~'wp(7)- Analytical results based
on such a model should therefore become less accurate as the ratio of
ab/a) decreases. Another major shortcoming ls the failure of the fluid
equations to predict Landau damping(B). The proper description requires a
detailed solution of the Vlasov equation, where we identify the Vlasov

to be solved self-consistently with Maxwell's equati

equation as the collisionless Boltzmann equation A The importance of the

Landau demping lies in the fact that the collisionless damping should be
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the ratio of the thermal velocity to
pronounced as/the phase velocity of the longitudinal wave increases. It

will be shown that this ratio increases as the order of the resonance in-
creases, which could account for the damping of the secondary resonances
shown in figure 1. 1In order to determine how the width of the resonances

at half-maximum behave in detail as a function of all the parameters it is

necessary to solve a boundary-value problem. Our model consists of a
plane wave obliquely incident upon a plasma slab with the electric
vector polarized ln the plane of incidence, so that longitudinal plasma
oscillations are excited. This particular problem also has applications
to the study of antennas under reentry plasmas, because the radiation
characteristics of such antennas can be described by a spectrum of plane
waves(9). The kinetic treatment of this problem has previously been

(10) (11) in this country

considered by Hinton and by Bowman and Weston
and by Kondratenko and Miroshnichenko(lz) in the Soviet Union. Hinton(lo)
solved the problem by expressing the currents as integrals over particle
orbits. This procedure is equivalent to solving the Vlasov equation.

The approach, however, requires several ponderous perturbation

expanslons and leads to an integral equation solution of the problem.
Bowman and Weston(ll), on the other hand, used the singular eigenfunction
techniques of Case(13) Shure(lu), Felderhof(l5), and Van Kampeé}gg obtain
solutions to the Vlasov-Maxwell equatlons. The major disadvantage of
this approach is that analytical and numerical results appear to be
rather difficult to obtailn. Kondratenko and Miroshnichenko{ll) published

an excellent and conclse piece of work. Proceeding as Landau(B) did for

the half-space problem they used an integrating factor to solve the
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Vlasov equation. This resulted in a solution in the form of an integral
equation which was reduced by means of a Fourier series. Our treatment
differ from theirs, largely in the 1lnitial formulation procedure.

In none of the above papers were numerical results presented.
In fact, the only computations which have appeared, were done by
Melnyk(l7), who considered a plasma whose equilibrium statistics are
governed by degenerate TFermi-Dirac statistics. We shall consider
Maxwell-Boltzmann statistics and approach the problem by initially
assuming specular reflection of electrons as the plasma boundaries. This,
we will show, automatically allows us to immediately choose a Fourier
series representation of the problem, and we do not obtain an integral
equation. It is in this way that our formulation differs from that in
reference 11. The usual electromagnetic boundary conditions are used
in connection ﬁith the‘Boundary condition of specular reflection. We
then solve for and calculate the reflection, transmission, and absorption
coefficients as functions of the plasma electron density and thermal
velocity for a slab which is thin compared to a free-space wavelength
and for zero collision frequency. A series of resonances, i.e., peaks
in the reflection coefficient, occur which exhibit features of the
Tonks-Dattner resonances, and which become Landau damped as the thermal
veloclty of the plasma increases. The reflection coefficient described
by a continuous fluld model of a plasma 1s also computed; and similar
resonances are noted except that they are not Landau damped.

A kinetic analysis of the plasma capacitor(lB) is included to
strengthen our physical deduction concerning the predominance of longi-

tudinal oscillations in our plane wave solution. The results show that
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the plasma capacitor, which contains only a longitudinal electric field,
resonates at precisely the same slab thickness, plasma frequency,
thermal velocity, and propegating frequency as for the plane wave
interacting with the slab. These resonances are more conventionally
defined in the sense tinat a peak in resistance, and a zero in reactance
is noted at the resonant frequency.

Finally, a finite collision frequency is considered using a simple
B.G.K.(l9) collision term and for purposes of namenclature, we shall
continue to refer to the kinetic equation as the Vlasov equation. The
results show that the higher-order resonances are completely washed out
at such a small value of the ratio of collision to propagating frequency
that laboratory reproduction of such resonances would be difficult to
achieve at normal radio and microwave frequencies. It is concluded that
although the present model exhibits some characteristics of the Tonks-~
Dattner resonances on a qualitative basis, the detailled structure of the
resonances is influenced by another mechanism, probably the inhomogeniety

of the plasma.
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CHAPTER II. INTERACTION OF A PLANE WAVE WITH A UNIFORM

PLASMA SLAB

Figure 2 shows the geometry of the problem. A plane wave is
incident upon a plasma slab with the electric vector polarized in the
plane of incldence. The incident electromagnetic wave is assumed to
have a harmonic dependence of the form E = E, exp i(kox cos ©
+ k,z sin 6 - wt). The faces of the plasma slab are x =0 and x = L;
the plane of incidence is the x-z plane, and the apngle qf incidence
is ©. Here k, 1is the free-space propagation constant, ko = w/c
and w is the angular frequency of the incident wave. The case where
the electric vector of the incident wave 1s perpendicular to the plane
of incidence is dlscussed in an analogous manner in a later section.
Kinetic effects, however, depend upon the ratio of thermal velocity to
the phase velocity of the plasma waves involved. This ratio is appreciable
only for longitudinal plasma waves. These, however, do not couple to
incident electromagnetic waves polarized perpendicular to the plane of
incidence. The reflection coefficient for the case where the electric
vector is parallel to the plane of incidence will be discussed, first
for the linearized cold plasma model, then for the linearized fluid
model, and finally for the linearized Vlasov equation (with a B.G.K;
collision term). The equations describing the plesma in each case are
solved self-consistently with Maxwell's equations. In each case, the

tangential field components at the left of the slab (x < 0) are glven by:

. . ' ‘53 ih 8 -t
Hﬁ - Ho[e‘b’sta.‘. Re—chXCdS‘ﬂ]e‘( s ) (1)



k,refers to incident wave
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Figure 2.- Geometry of a plane wave obliquely incident upon
a plasma slab.
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Ei‘ - . Ho[e.'lt.x cosé _ P e—:'ﬁ.xcos 9} ,Lé_i to5 0 ez’{b,g siné -wt)
(2)

Where R is the complex reflection coefficient for the magnetic field
and Hp 1is the magnetic field amplitude of the incident wave. MKSA
units will be used throughout.

To the right of the slab (x > L), we have:

JCh2sind - wt)

Hy = H,T e®x%s? ¢ )

' 0 (thisinbd-wtd
Ez'—"HoTJg-: eJe,xco.s 6( s eme cos éd (4)

Here T 1is the complex transmission coefficient for the magnetic field.
The boundary conditlions across the surfaces x =0 and x =L require
that the z-dependence of the fields within the slab be the same as those
outside; therefore, the fields inside the slab are of the form

E,H = E(x), H(x)ei(koZ sin © - wt), g such, the exponential dependence
el(koz sin 8 - wt) peeq not explicitly appear in any of the subsequent
expressions.

A. Interaction of a Plane Wave With a Uniform Cold Plasma Slab

If the plasma is cold, the random velocity of the free electrons
is assumed to be zero, and the dielectric consteant of the plasma can be
determined without resorting to kinetic theory. Instead, the equations
of motion of a free electron interacting with an electromagnetic wave

are solved in order to deduce the polerization per particle, from which
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one obtains the following expression for the relative dlelectric constant

of the plasma:

€ _ | — (%)2 - 5 ) gr)z
éo ") 2 2 (5)

I’loe2
me
and v 1s the colllsion frequency for momentum transfer, both of which

where wp 1s the plasma frequency, wg = (no = electron density)
are assumed to be constant.

The solution to this problem appears in Stratton(ao) but not in a
form which will be useful when we compare these results with those that
we will obtain for the fluid and kinetlc models.

In order to develop the desired solution, we start with the Maxwell

curl equations:

AW -l:-l’ = ‘3: = -t'wé-E? (6)
VXE = - D—-E = c'w/u.H (7)

Since the plasma is non-peramegnetic, the permeability u, 1is assuﬁed
to be that of free space, and the dielectric constant € gilven by (5).
Using (6) and (7), H = Hy(x)ﬁy (G& = unit vector in the y-direction)

can formally be derived. The result is:

H.} (x) = H*Q_) Sin kpx - HL(o) Sin kP(X—L) 8)

Sin kel
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where Hy(0) and Hy(L) are the values of Hy at x =0 and x =1L,

respectively, and kP = kO"é; - sin2 8 for wpﬁn‘< cos 6 and
o

kp = iko\fsing 6 - éL for wp/w > cos 0., Reflection, transmission, and

o
absorption coefficients can now be determined from the boundary conditions,

i.e., continuity of tangential E and tangential H at x =0 and

x = L. Using (1)-(4), (8), and (6), the boundary conditions lead to

the following relationships:
(1 +R)H, = Hy (o) (9)

H,T e£ kL cos @ _ H., (1) (10)
_//Z::: (I—-R) H, cos o = -:.'w,u,[H,(o)G.,L— H,(L) GZL} (11)

-//-i‘_? Ho T e‘.b’“os acas 0= -l.w/uo{H."(o)GzL - HJ(L) G,L] (12)

It is important to note here that the functions Gj and Gp will be
defined separately for (a) the cold plasma model (b) the fluid model
and (c) the Vlasov model. In this way, we can use a single algebraic
relationship to solve (9)-(12) once Gy and Gp are given. For the

cold plasma, we have:

e}
G, = (_’3 . ‘E_"_f__kg_t_- (13)
© € h?r L-

G G - esec kyl
cos le, L kp L
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If we also define 2 as the surface impedance of the plasma at

X = 0, we have

. 2
Z = tk"L G - GL o (15)
cos & ' G - fcosd
' k, L

then it follows that

-~ Z (16)
| + Z

X
il

and

- L", Lcos8
_ ( l'+ F?T)C&;; 63

_ (Cosé#
G, T

The absorption coefficient may be defined as:

(17)

T

2 ]
A= |—|R|" -[T] (28)
In the absence of collisions (v = 0) the absorption coefficient of the

cold plasma slab is zero.
In the limit as L — o, only forward traveling waves exist in the

plasme slab, and the expression for the surface impedance reduces to

- (kN L (19)
Zire (Tgf £ cose
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Near ng/abz =1 and (v/w) ~ 0, the dielectric constant approaches
zero, and Gl and Go become large so that the surface impedance can

approximately be written as:

Ze = - kgz_L_ tam koL (AL

(20)
S
k. = kr‘- cosé
which, for a thin slab (kpL - 0) reduces to
2
Zive = - thl [ke _é’__ (21)
L-vo cosé \k] &

We see that the reflectlon coefficient of even a thin slab, for which
v=0 and € -0, should be unity at w = wp because the impedance
becomes infinite. We also note that the limit given by (21) depends
upon the order in which the limits are taken with respect to € and L.
Naturally, for L =0, Z goes to one,not zero as implied by (21).
The thin slab will be investiligated in more detail later. When the slab
is not thin, we see from (13), (14), and (15) thet the impedance approaches
zero when kgl = o+ %)u for n=0, 1, 2, ... These are Fabry-Perot
resonances which are fimiliar in optiecs.

Numerical results will be given in section F.

B. Fluid Description of the Plane Wave Problem

The linearized Vlasov equation, with a B.G.K. collision term
of the form - v(f - £f5) = ~ vry (where £, is the unperturbed distribution

function and f] is the perturbation) and with dfdt = - iw, may be

written as



-
v -)
~iwf, + T _ ek, 3£° = -24 (22)
oxX m  av
of
If the zeroth and first moments/equation (22) are calculated with respect
to the particle velocity, the following expressions are obtained (see

ref. 1, for example) for conservation of mass and momentum:

(={w +V)n, + NV & =0 (23)
- <>
(~iw +9) nelw = - ”O}SE - VP (24)

«
where 3' is the fluid velocity, P is the pressure tensor, and ng

and nj are the unperturbed electron density, and its perturbation,
respectively.

The pressure tensor corresponds to terms in the next higher moment,
which can be eliminated by assuming a scalar pressure and using the

equation of state

P= nKTe (25)

(K is the Boltzmann constant and Te is the electron temperature) in

connection with an adisbatic equation

P/nY = constant (26)

If we linearize the pressure term in (24), and eliminate n, using

Py = anTe the following equations are obtained:

Y7 >
mn,(V-iw) U = p,ef - VP (27)

a%wm ne V- = (w P (28)
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is the unperturbed electron density a€ = 7v% = 7KTe/m

(vm is the thermal velocity) and m is the electron mass. Equations (27)
T

Where n,

and (28) are the same ones Wait(j) used to derive the reflection
coefficients for a uwniform half-space. Our proéedure is similar to his,
except we have an additional boundary at x = L. The electric field

and the fluid velocity are related via the Maxwell equations
—> o 4
VXE = eu H (29)
a . A A
VX H = -fwe, E + ne (30)

when the last term in (30) is the macroscopic convection current.
Equations (27)~-(30) can be used to develop wave equations for Pq

and E. Since the wave equation is a second-order differential

equation, a total of four unknown coefficients must be determined within

the sleb (two coefficients for Py and two for §). However, equations (27)

and (29) can be used to show that the boundary condition of specular

reflection, i.e., u =0 at x =0, and x =1L, implies that

QU/
oI

'3'3 X=o hee
X=L

:)LJ% = Luh)ég

QJ
x

X
X

o
L

the two unknown coefficients for Pl can therefore be expressed in

-
terms of those for H, giving the following solutions:

Hym= Ha sin kex = Hyto) Sinke (x-)  (31)
Sin ‘Q'\_
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Piy= %’E wke,s"né [H, (0 cos buix-1)- H,{L)cas!’ux)

'.;,_l.(.“ Sin I? L
where
z y a . 2 U 5
ku = W ([-— w__& ) _Z.) - ko sin*o (33)

Note that the expression for Hy(x) is identical to what was obtained

for the cold plasma. It also follows that:

-

-

we .
Ef LW Mo H.,(o) - l_?g os ke x-L) _ — l?azsmzé coS ku(X—L)

o é SLV\.‘ey (H"")ék skaJ
w?
Wwe
+ H%“_) kp Cos k[_:X b @2 k¢> Sin®8 cos kux
€ sinlepl 2\ € b sinbal (34)
z SinKp ("'"za‘)g; L sin b
Therefore, if we set
w2
2 _. 2z
(JEE\ cos k, + @ sin20 eos k. L -
)

k L Sin kp (’—f'l.%)éé.ok“l_ St k«.L
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and

Wy .
G - 1&2 | N =2, $in?0 coshk.L

- . (36)
ko é—okasin\e,L (Ht%’;)%k..lﬁ"”ku/—

We obtain an expression for the impedance at x = 0 1dentical with the
cold plasma result (15), but with our functions Gy and Gy given now
by (34) and (35). When k, =w, i.e., when a® =0, G and Gp reduce
to those for the cold plasma. By inspecting (35) and (36), we note that
for v % 0, Fabry-Perot tyﬁe resonances occur when kuL = In

(1 =0,1, 2, ...) in addition to the cold plasma resonances ¢€/ey =0
end kL= (n+1/2)x (n=0,1, 2, ...). It is interesting to note at
this point that the phase velocity can be very low for longitudinal
waves, and we can therefore expect resonances for éiabs which are thin
compéred to a free-space wavelength. If the thermal velocity

Vp = a/v’37' i1s small compared to the speed of light these resonances

occur when

2
%
Wk “
C
kL
or at a phase velocity Von = hx C° The phase velocity of longitudinal

waves therefore becomes smaller as the slab dimension decreases and as
the order of the resonances lncreases. The quantity 7 is normally

assumed to be three for an electron gas.
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Results of
/calculations for the reflection and absorption coefficients are pre-

sented in Section ¥, and comparisons are made with those obtained from
the other models of the plasma.

C. Direct Solution of the Plane Wave Problem Using the Linearized

Vlasov Equation

In the last section, we wrote the linearized Vlasov
equation, with a B.G.K. collision term of the form - v(f - fo) = - vfp
and with 93/3t = - iw, as

- .
_L'w.p‘ ~ ? » a"l - & E . afo = e U'F| (22)
F¥ 4 m P

where f, 1is the unperturbed distribution function, f; is the
perturbation of the distribution function, ¥ is the particle velocity,
end X is the particle position. Equation (22) is to be solved self-

consistently with the Maxwell Curl equations:

-> —>
TUx H =-¢'we,E-ef,c,z?4z? (38)
AV4 ¢ EEP = L.LLb“o ;T' (39)

where the last term in (38) is the density of the convection current.
In order to proceed, the distribution functions for the velocity ha}f-
space Vy > O and the velocity half-space v, <O are considered
separately. If the former is denoted by fl+(---Vk---) and the latter

denoted by fl'(... ~Vye+.) then f1* and £y~ satisfy the following

equations:
i sd) B Ay vy s - & (£ 2L £ A ) = 0
X m\ Iy Ik

(40)
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(~rw V) - vy I+ L'E,U;Sina-‘:.'— j&_( E, % - x?gf,):a (41)
ox m Iz IVx

If we now introduce F*' = 17+ £17 and P = fl+ - £,7, the

following second~order differential equation in x 1is obtained for

a‘F + (wriv- Ieeg SO F™_ 2relwrv- ",U’; Sin )Jﬁ E,

F

2 x2 Vit myx®
~ 2 2 - (52)
mv, v Ix

If all particles are specularly reflected at x =0 and x =1,
then F~ must vanish at x =0 and x = L. This condition can be
satisfied identically by a Fourier sine series for F~ as a function

of x:

F-

e

Fy(?) Sin f{l (43)
=/

with

L
F, _Z_.J F~ sin ALTX Jx ()
L J L
Examining (42) and (43), we see that they then imply a Fourier sine
series expansion for Ex and a cosine series for Ez‘

If Elps Eyz, and Hy, are the corresponding Fourier

coefficients for Ey, E, and Hy, we have
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Jx'ewwa['/a, e H "(H"Z'vo;/)E.lx]
wm st [(w- b,z $'n8 Y (?_Z'_l:_‘f'_‘)zj

(45)

=

where

-2 Ui
fo=noFp = M €
emrv)¥2

is the equilibrium distribution function, assumed to be Maxwellian.

Since the x-~component of the current is defined as:
(-]

Ay = -eﬁdtq.dzr,fv,F'Jm,
pey o

the Fourier components of jx are

C 5
fay = “—"’;:;—‘3’ %”-_{J-u Ea -\/Z J.i& HJ,} (46)

where:
w
- , — F; /
Jll (| + ¢ %) Z'L'elr__JJ aVy JVJ( (:_ ke, v; % :,9-»-[1’)2—(@

(47)
0

201 v s R v
Jop = T ”a(w} dv; J (@ 5ind +¢v)2_(£L’L'_”g)z (48)

-0 (]
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We have assumed that the unperturbed distribution function is

Maxwellian , and we define the two-dimensional form as follows:

o0
Jd’v, Fo (v, vy, %) = K (%5, 55)
- 00

The evenness of the integrand allows us to extend the range of
integration over the entire real Vy @axis; and we also use a partial

fraction expansion to obtain

alzﬁ{¢!QZ§4F; Yy
= .V y
J'n,c. (|+ L‘_u.)”‘ w-Tleove sinf - 4T5% , . (49)

(50)

- )
T J‘ Lvi dvi Yy U Vs Fo
24 w—-lkv;sin8 - e . p
We can now make use of Fourier transforms in velocity space(gz) to
reduce (49) and (50) to single integrals. For example, (49) can

be written as a convolution in the form

- -]

, vz dvi 5
J-'ﬂ = <’+ ‘5)[5\ w-kové Stné - ‘e_Z:_U;.}-l")

(’*‘v/“")f[ H, (A, A :) HZ (e, Ne) ol Ny d A (51)
zm%

where A, and A, are the transform varisbles of the velocity

components vy and vy, respectively, Hl(Ax, A,) and He*(Ax, Ay)
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are given by:

Hy (1) = L ﬂ @ SNVt

AUl (52)
[ - koL sin 6 4_¢_£_1.J
T

-.,(A,,u;+/\,xr) (U ‘)/zuz
H2(Ay Ag) = Sg

2r u;.2

2
- (A +A}) X

= (53)

Equation (52) can be evaluated using contour integration in the complex
Vy DPplane.

The integration over Vy gives:

H-—ZmLf,/ oMl o ‘A*‘“’*‘”)N' "\xz-l.-sm,e

(Ax>0)
=0 (Ax 40) (54)
And, the integration over v, gives:
2. wL(l-H
H= -(2m) L!'.e‘ [A Agle, LSmﬂ]
LIr AT
(A >0) (55)
= 0o ( Ax<o)
Equation (51) therefore reduces to
/\!stl-ﬂ )
u“('-ﬂz-):‘{rifalne )
5 - U
(I+ '2':'3":"71‘-‘5""" Ax V§ (56)

Z
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The dispersion integrals can also be reduced by transforming the
x and 2z velocity components to those perpendicular to and parallel
to the wave vector. However, the Torm of the integral given by (56)
allows one to determine by inspection if the integrands of the
dispersion integrals are oscillatory and therefore difficult to
evaluate. Approximations for small viqp cen be made by expanding the
Gaussian term in (56).

A similar reduction for J,; yields:

: g Axel e
J:Ql = 5_!—_. 'U',-‘ }?oL Sin&f o[ﬁ,, ‘ )
Lr m ztz . /\
o _(1+ %= Scaszab X
' e ( £ z Ay (57)

The Fourier coefficients of the z-component of the current can be

determined in an analogous manner, with the result:

‘ 2
fjte = wiwee L\, — [ i_fyH,.,

v ooem
(58)

where

Jap==-0+:%)L kLsma,, d’/\, i (14 % )
Lr

( 6 &
-+ 1'3'7715‘." 9, 9
€ Ax

and
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o0 ¢ s “"’L(I+¢' ?i) i+ kZL sin2é) As
J_+1='é_’r-v;zfdl/,xe o “ (4 ( sikh )z'
Lr

Further comments on the integrals, including the expression of the
integrals in terms of the plasme dispersion function(25) , are made in

Appendix A.

A Fourier analysis of the Maxwell Curl equations (38) and (39)

gives:
a_lt_.z- E}z = - tlé sin @ E:(‘ - ¢'w/4, ng (61)
E = ko siné H
A we, i zwé., 1/v (62)
Hg [k,,z- ks sin2é -(_{_ﬂ_‘)z] + L H«_,(o)-(-l)!//: (L)
/ L L L/, )

= -4':é, sen @ 40 Lr 12x
L (63)

Substituting the current expressions (4k4) and (56) into the above set of

equations, explicit expressions for the field components may be

obtained. The results are:
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_ (4_]1_‘) [H%lo) - (-))IH., (L)
L

H:.ﬁ L/2
2_ 2 _. 2 -‘ r 2- lwz w - .
k2 - R sin?6 («;‘ZL_) k. e FF‘(J:" ‘%f_‘ﬂﬂfzz)
E‘¥= (6k4)
Ha, t0) - -1Y2H, (1 ] Wp kL J}
a‘,gzi[ =T, ’l["’s"g"#ﬁ'g
~wp L Tl b2 k2sinzg —(LTV - brwg -kl
[ [ Moot K (o1
(65)
Esa =
e 2
| {w)-(—l) HZ“)][’_S n2d - C_tlegta;i
{w o L/2 W= Uy
_we LT, orr) - b L
[I u-‘ J{k kSLnG ( ) w U;. (Iu smaJ—)J
(66)

We recognize from (33)-(35) that

o0
Ee()=) Egy = - icoma[Hy (@ GiL— Hy 1) G L]
#ee (67)
where Gl and G, are the functionsprevioﬁsly introduced to define the |

surface impedance for the cold plasma and fluid models. From (64),

(66), and (67) it follows that Gy and Gp for the Vlasov model are:
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(69)
doy ma
where we have defined J = Jll -~ = gin 0 ] ==, The reflection and
52 c in

transmission coefficiencts can be derived substituting Gy and Go
into equations (15), (16) and (17).

We should emphasize again that G; and G, as given above
specify the surface impedance of the plasma, and therefore uniquely
specify the reflection, transmission, and absorption coefficients for
the planz wave problem. We show in Appendix B, that our results reduce
to those of the half space in the limit as L — w, as they should.

As the ratio of v,I,/V'phase (vphase being the phase velocity of
the wave) becomes small, the imaginary parts of the dispersion integrals
Jdin are negligible, and the real parts of the dispersion integrals can
be expanded in increasing powers of VT/Vphase’ as shown in

Appendix A. The results, when applied to (68) and (69) are:
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2 r
£ | - “-;E’_—Sm 4- (.a ) (70)
| .St'n"ﬁ
oo - - wr _ )
(e S 260 eSS ¥1
G ﬁ'(— 2 1
* kL c |+ &5 | - We _ gin2f - (1!.71'
- w* L (71)
Resonances occur in Gl and G2 when
‘—"'iat'
Lr = @L J‘- ‘5331.'
A% wr
c w (72)
which is approximately the same as the hydrodynemic results for
®p/w ~ 1. With K defined as Ix/L, we note that the resonances
defined by (72) occur when
Vi w o L
Phase - = = = (73)
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Thus the kinetic effect, i.e. Landau damping, should become more

pronounced as the ratio of e/VT becomes smaller. Therefore,

Vphas
for fixed VT/C and fixed k LI, the Landau damping should become more
severe as the order of the resonance increases. WNumerical results of the

reflection and gbsorption coefficients are discussed in Section F.

D. The Kinetic Results for the Electric Field Perpendicular to the

Plane of Incidence

We have indicated that most of the interesting effects
associated with a plane wave obliquely incident upon a plasma layer
occur with longitudinal plasma waves excited in the plasma. As such,
the case of the electric vector perpendicular to the plane of incidence
(El= Ey ;& in figure 1) is only of secondary interest. However, we
include the results here, for completeness. If we proceed as in

Section C, we find that the Fourler coefficients of F~ are:

[

F,= -2‘wp ke Foyuy Hee

e w .
(W= kevy sind+i2)%- (AT5)*]
(74)
It further follows from the Maxwell Curl eqguations that:
2 2 )
X (75)

or
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ey (k- k2 sinte) Hy = e (45 vy 35
Ix2 ' ox

= -le 5,15—* Y (w-kzsinb) F-
Y
(76)
A Fourier expansion of (76) gives
o -1)f Hy L)
L [He(o) = G Ha ]
= |-—S£n29-(~_€!.’.' 2w wp
' k"") 2—:’-‘,‘,,:5 (77)
where Py
T < odvy dv; F
<~ W-kouz 5in b~ LTV 'y
—00
> koz'- y . wl a.y-
_...L'Lf:[A _A:gz(!+£z a.s”'z) ‘A‘F"(H“')
— X
AT
o
(78)

we se A é 4 S 8 'k.zs'nQ—w‘t
IF tE~3= E,[e xeosb  oto k.x cos ]ee( ) )

for x <0 and E‘ - EOT-Let'(k.XCOS.o + ko2 5"’19“’“9'5)

for x > L, vhere R'L and T"' are the reflection and transmission

coefficients for the electric field perpendicular to the plane of
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incidence. If we complete the boundary-value problem, we find that

~

4
‘+R-L = £ = -fk,l. Cos & G;L - (Gz>
|- Rt G+ L
' kLcoso

where Z 1is the surface impedance, and the functions GiL and

2

(79)

GéL are given by:

G, = ._L.zi_é /

kL) L1+ & |- s:’n’a-(ﬁ’{)z- w4 T, (s0)

koL w* . (81)
Equation (79) is slightly different in form from what we previously
obtained for the case of perpendicular incidence; this is because

RJ: in this case, is the ratio of the reflected to the incident electric
field. |

E. Relationship to the Plasma Capacitor Problem

We have already pointed out that while the ratio of VT/Vphase
is ordinarily negligible for transverse waves, p-polarized waves might
be expected to show interesting kinetic effects, es we have shown. As

further support of this supposition, it is useful to compare the plane
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wave calculations with corresponding computations in which only
longitudinal plasma oscillations are excited. The plasma capacitor
provides this for us.

The problem under consideration consists cf a plane-parallel
plasma~filled capacitor, whose plates are located at x =0 and x = L.
An electric field, oscillating at an angular frequency , is applied
normal to the plates. In this section we show that the capacitor
exhibits resonance behavior at the same values of kgL, (wp/w)e, and
(vp/Vphase). In order to affect this, we will solve for the
impedance of the capacitor, as did Hall(lB) and Shure(29).

If we set E, and v equal to zero in (40) and (%1), and
proceed in a manner analogous to that which led to the expression for
the x-component of the current density (equation (46)), we find that

the Fourier coefficients of the current density in the capacitor are:

Jog = ‘WP @WE L T, Egy

V2 Lr
T (82)
which is nothing more than (46) with sz = 0. The continuity
equation, relating charge density and current density, gives:
- L = Ix ~ twe, By = constant
A (83)

vhere I/A 1is the current per unit area on the plate of the capacitor.

A Fourier expesnsion of (83) gives:
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’ 0 ’ 1
I ‘ _Z_ [l-(-l) } = cwéo[l— ‘-‘-)Ez _'=- -Iu] E.Px (84)
A L Tam Urt AT
L
L
Since the voltage between the plates is given by V = —\/P Exdx,
0

we find that the impedance of the capacitor is given by

£= - L () D_M)] (85)

th ﬂ"-[,l ’ J
=y _e-n— J 2
where C 1is the capacity in the absence of a plasma. If we identify
2
+ 9o . ) .
A =1 - —) ?— 127 the gbove expression becomes identical to that
i 7t

obtained by Shure(eu). For VT/Vphase << 1, (85) reduces to

N = [1- ntl
e e

wl

wl

An inspection of the denominator of the sum in (86) shows that

resonances occur when

w?
AL = koL m‘ (87)

3 Vs “r s

Equation (87) is identical to equation (72), which defined the
resonance condition for a plane wave incident upon the slab. We should
therefore expect similarities between the plane wave and capacitor
results. These similarities will be exhibited in the form of numerical

calculations in the next section.
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F. Numerical Results

In order to clearly delineate the differences between using cold,
fluid, and kinetic models for & plane electromagnetic wave obliquely
incident upon a plasma layer, computations of the reflection coefficient
for each model were made as a function of Qppﬂn)z with the following

parameters fixed:

6 = 15°
koL = 0.1
viw =0

vp/e = 1072

(vp/vphase = 0.157)

The results are shown in figure 3. We note that for the cold plasma
(fig. 3(a)), only one resonnance occurs, and that is located at w = wp. In
the fluid limit (fig. 3(b)), a series of resonances occur, corresponding
to the zeros of sin<%\’l - usg/a)z L). We also note that the main
resonance is displaced from (wpﬁn)g = 1, and that each higher order
resonance is narrower than its predecessor. The results obtained from
the Vlasov equation are similer to those obtained via the hydrodynamic
equations, except that the resonances do not occur at the same values
of (wpﬁn)E. The departure becomes more pronounced with increasing order,
but this is to be expected since the fluid approximation becomes less
valid (for example, compare egs. (37) and (72)). We also note that a
resonance 1s associlated with each odd term of the Fourier expansion.

In order to demonstrate the effects of Landau damping, the 1 =5

resonance was investigated for additional values of the parameters.
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Figure 3.- Reflection coefficient of a plane wave incident upon
a plasma slab (a) cold plasma theory (b) linearized fluid
model (c) model based on the linearized Vliasov equation.
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The reflection and absorption coefficients are shown in figure 4 for
various values of VT/Vphase: where the abcissa has been grossly
exaggerated. For VT/Vphase = 0.157, little Landau damping occurs, as
evidenced by a narrow resonance having a peak reflection coefficient near
unity. However, absorption becomes very pronounced with only a small
increase in VT/Vphase° We note that the resonance is heavily Landau
damped at a ratio of vp/vphace OF less than 0.2. It is somewhat
surprising to see so much damping at such a low value of VT/Vphase’ but
this occurs because the width of the resonance is so smali. The pertinence
of the line width will be discussed later when we consider collisional

damping. The resonant peak also occurs at smaller values of (wvﬁm)g

v,./V
T "phase . . . . : :
as / increases, as is evidenced in figure 5, where the abcissa is

again exaggerated. The reflection and absorption coefficients are plotted
as functions of (w?/w)z, for various values of the angle of incedence,

in figure 6 with the following parameters fixed:

koL = 0.1
v/im =0
vp/e = 1.16 x 1072

(vp/Vphase = 0.182)

As the angle of incidence increases from 0 = 59 to 0 = 159, - the
peak value of the absorption coefficient increases, in large part, because
the longitudinal component of the electric field increases in proportion
to sin 8. As 6 further increases, the transverse electromagnetic
waves become evanescent within the slab. Since the transverse waves and

longitudinal waves are coupled, this lesds to a washing out of the
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Figure Y4.- Reflection and absorption coefficients as a function of
the plasma electron density for various electron thermal
velocities.
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Figure 6.~ Reflection and absorption coefficients as a function
of electron density for various angles of incidence.
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resonance. Since electromagnetic waves in a plasma propagate as

R 2/, 2 2
et ikpx _ eiikoi\Jl*pPﬁD sin ®, the waves become evanescent when

8 = cos™t uﬁy&n, which is sbout 19° for the case considered here. We
further note in figure 6 that there is very little shift in the position
of the resonance with increasing values of the angle of incidence.

The reflection and absorption coefficients plotted as a function
of quﬁn)g and v/w are shown in figure 7 for the model based on the

Vlasov equation, with the following parameters fixed:

8 = 15°
koL = 0.1
vT/c = 1072

(VT/Vphase = 0.157)

For values of v/w less than about 10'6, the collisions do not
appreciably influence the reflection and absorption coefficients; however,
as v/h>increases a couple of orders of magnitude, the damping becomes
pronounced. While it may, at first glance, seem surprising that such
a large effect occurs for v/w as low as lO'h, we can see from figure 7
that the line width is of the order of IO'h. From our general knowledge
of resonance phenomena, we expect damping to be appreciable whenever the
collision frequency is of the order of the line width., This also aécounts
for the degree of Landau damping observed in figure k.

Similar conclusions can be drawn by inspecting the fluid results,
shown in figure 8.

Computer results for the impedance of the plasma capacitor are shown

in figure 9, when the resistance and reactance (normalized to X, = 1/aC)
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Figure T.- Reflection and absorption coefficients as a function of
electron density for various values of collision frequency for
a plasma model based on the linearized Vlasov equation with a
B.G.K. collision term.
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Figure 8.- Reflection and absorption coefficient as a function of
electron density with collision frequency as a parameter for
a linearized fluid equation.
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Figure 9.- The impedance of a plasma capacitor as a function of
electron density for several values of the thermal velocity.
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Figure 9.~ Continued.
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are plotted as a function of (wpﬂn)z. Figure 9(a) gives results for

VT/C = 1072 (VT/Vphase = 0.157), figure 9(b) gives than for
VT/C = 1.20 X 10~J (VT/Vphase = 0.188), and figure 9(b) gives than for
vp/e = 1.30 X 1072 (VT/Vphase = 0.203). In each case the normalized

slab thickness koL 1is fixed at 0.1l. Therefore, except for the angle

of incidence, which does not appear in the capacitor expression, all
pertinent capacitor parameters are the same as those for the 1 =5 plane
wave resonance. We see from figure 9 that the resonance is very sharp
for low values of vT/c, and the width at half-maximum noticeably broadens
as the thermal velocity increases, as does the reflection coefficient

of the plane wave. We further note that if figure 9 is compared with
figures 4 and 5, the peak of the resonance for the capacitor and the
obliquely incident p-polarized plane wave occurs at precisely the same

values of the plasma parameters,
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CHAPTER ITII. DISCUSSION AND CONCLUDING REMARKS

Our prime objective in the work described herein was to analytically
and computationally examine the details of the coupling phenomena that
occur between electromagnetic waves and longitudinal plasma oscillations.
We did this in order to relate this problem to the Tonks - Dattner -
resonances, which are known to occur when an electromagnetic field is
applied to an inhomogeneous plasma in such & way as to couple to longitu-
dinal plasma waves. Our model of the inhomogeneous plasme was of the
simplest type: a thin uniform plasma slab. The specific boundary-value
problem considered an electromagnetic plane wave obliquely incident upon
the slab, and sssumed specular reflection of plasma elections from the
faces of the slab. By solving for the reflection, transmission, and
absorption coefficients, we could therefore examine the detailed behavior
of the resonences; i.e., the shift 1n resonant frequency and changes in
the width at hslf-maximum of tﬁgjggiﬁgiiig% EEfoicient as a function of
the plasma parameters. The problem was approached in such a way as to

delineate the differences, both from & physical and computational
viewpoint, between a cold plasme model, a fluid model, and a model based
on the Vlasov equation. The case where the electric vector was polarized
parallel to the plane of incidence considered in detail. Only this.
polarization excites longitudinal plasma oscillation, for which the ratio
of the thermsl velocity of the particles to the phase velocity of the
wave is not so small as to diminish the kinetic effects. Our analysis

further showed that, from the practical viewpoint, the lower order longi-

tudinal plasma resonances (i.e., I = 1, 3, and 5) can be supported; ghese are
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well separated only if the plasma slab is thin compared to the wavelength
of the incident wave. The cold plasma model predicts, for such a slab,
that only one resonance can be supported, and that occurs when the signal
frequency equals the plasma frequency. The fluid model was found to
support a series of resonances, which become narrower as the order
increased, and which are similar in nature to the Tonks - Dattner
resonances in the sense that the secondary resonances occur at successively
lower values of the electron density than does the main resonance.
Similar resonances were observed when & kinetic anelysis was undertaken,
using the Valsov equation, except that electron densities for resonance
were shifted, and the effects of Landau damping became evident as the
thermal velocity increased. This is a manifestation of the fact that
the ratio VT/Vphase can no longer be considered .negligible as the
order increases., This damping with increasing order is qualitatively
consistent with the experimental observations of the behavior of the
Tonks-Dattner resonances. Such collisionless damping Eannot be anticipated
from the fluid equations. The fluid equations, however, have the
advantage of presenting a simple physical picture of the standing wave
processes that occur within the slab,

The pertinence of the parallel-plate, plasma filled capacitor problem
was demonstrated by calculating the impedance of the capacitor as a
function of slab thickness, plasma frequency, propagating frequency, and
thermal velocity. It was found that when the slab is driven either by
the capacitor or by a plene wave, resonances occur at the same values of
the above parameters, and that Landau damping commences in both problems

at the same values of the thermal velocity.
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Most of the computational effort pertaining to the Vlasov equation
consisted of evaluating the dispersion function, and using it to computa-
tionally determine the series given by (68) and (69) (see appendix C for
details) this would, in turn, be used to determine reflection, trans-
mission, and absorption coefficients. One of the more surprising aspects
of the computations was that, for the cases considered, the infinite series
given by (68) and (69) can accurately be represented by only two terms in
the series. These terms consist of the first (I = 0) term and that odd
term (1 = 1,3,5,++) which corresponds most nearly to resonance for the
parameters under consideration. This is to be contrasted with the half
space solution (to which our results reduce as the slab dimension goes
to infinity), which usually requires more involved computational techniques.

We then considered the influence of collisional demping of the
resonances. For the particular parameters considered, it was observed
that unless the collision frequency-to-signal frequency ratio is less
than about lO'h, the third cdd resonance is washed out. Since a collision
fregquency ratio of less that lO‘u for gaseous plasmas, is not easy to
achieve in the laboratory, it is difficult to conclude that the uniform
slab can support the experimentally observed Tonks-Dattner resonances.

We are tempted to conclude that the inhomogeneity of the plasma does
more than merely control the spacing of the resonances(Y). OQur results
lead us to believe that the inhomogeneity may also tend to broaden the
width of the higher-order resonances at half-maximum-which would make
them less sensitive to collisional and Landau damping. This broadening
could occur either because the inhomogeneity provides a gradual transition

in the impedance between the plasma and the air interface, or because the



- 49 -

inhomogeneity induces a background field which causes resonant trapping
of the electrons. An investigation of the latter problem (i.e., consid-
eration of the background field) is a very formidable task, indeed. The
description of even the simplest problems have developed into enormous
and frustrating computer programming projecﬁ§e5)(26), and illuminating
results are difficult to achieve unless many simplifying assumptions are
made(27). However, such results should present some new and rather
interesting kinetic effects, and the problem is therefore worthwhile to
pursue. Ifwican ignore the background fiéld(es), the problem becomes
more tractable (but still computationally much more difficult than the
uniform plasma). Such a solution may be valuable in order to determine
whether or not a gradual reduction in electron density at the boundaries
will broaden the resonances.

The techniques described here can easily be extended to other problems
such as: (1) the study of the impedance characteristics of antennas under
plasmas(9), (2) the effects of nonspecular reflecting boundaries and
(3) electromagnetic waves obliquely incident upon a plasma slab in which
a static magnetic field is applied normal to the boundaries. All of

these problems are of interest, and may be approached by extending the

techniques of the current work.
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APPENDIX A
FURTHER PROPERTIES OF THE DISPERSION INTEGRALS
If the collision frequency v is zero, we may define the various

dispersion integrals as follows:

Jae | =

ff% dv dvg Vi Ve (A-1)

- 2
T4 *w RARINT-E Qurvx Ve
Jsg L. v
L . L

where the integration over vy has been performed, to give
L
j dvg E("X;Vy»vi) = E(VX,VE) , which is the two-dimensional
-0

Maxwellian distribution function. From the integral relationships:

SfowRdnde = [(TveFdwdg =0 2

and
ffj: Fodvdvg = 1 (a-3)

It is possible to show, by multiplying the numerators and denominators

of the integrands of (A-2) and (A-3) by “‘kivesme“ﬂlrgl that
g = J_;_g__ SINO +,ﬁr_ .7.52 (A-k)
4 C w L _

=.Tq.1 sme+L1t;J",_ =
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3:&):];==(%er} +k°55i\i6]—3£) (A-6)

'Ia_g"ﬁe_l: SIN B J—,_Q

= (&-7)

And, as shown in the text, it is possible to use Fourier transforms
in velocity space to re-express (A-1) in terms of single integrals over

the transform variable Ax' The results are:

PJ_Q * B [ -
. 2

J-u = 'L[\x VT

] 2 Kby
IM -V LT SING

~o 3T T )
::?9. -:!é__L_'. d[\xQ 3,‘";['*‘5‘1‘;‘;5_-"_'-5.‘-_2] QL A:_L "LA K‘QVI SING
w (-}

I:; - ‘-}‘r#r-s'“
" (=63 )

(A-8)
In the limit as Vi 0, the exponential involving v.% may be
expanded as a Taylor series to give approximations for the real parts of

the dispersion integrals as the thermal velocity of the plasma approaches

zero. The results are:

NN, !fi' Kﬁsuuzehea_ i (4-9)
) Wt L& 2

Jig = EQ_—T P+ 3VE( LTy k3 swae)
w* L @\ 12 (hr20)
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Jag = 2ko 58 '—Q—i- Yo (A-11)
Jsp = KoLk sin B I:LQ (A-12)

J:AE = "i-)r ! +'V-T(£Tr +3ko sin’ 6)]

(A-13)
= _\_/_{_ |+ Vp (3,@ T+ kE sin 8) (A-14)
w w=\ LT

We now relate the above integrals to the tabulated plasma dispersion
function, as given by Fried and Conte(25). Fried and Conte define the

dispersion function as follows:

Z(e)= L J d -
-

which may be recognized as the Hilbert transform of the Gaussian. If

v
we perform a change of variables so that x = X, with

22 2 Vae
kOL sin™ © 1 1
a = v, 1+ ———, and define { as C:@
T 12,2 i \EvT
7 koL sin® @
12,2
the velocity transforms may be used to show that
(A-16)

Z(8) = -%J}zm
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Further manipulations may be performed to show that:

Jig (8) = -Qf'lT V'r) ¢ [' +C'Z{§)] (A-17)
L (€

Jge(Q) = J.( (_;r_) SIN e(%_:_rz) _C'_c_o‘ga[Z(e) A€ Z(g)—gg] (4-28)

J3g(8) = .-lsme V‘ C[H‘;Z(Q] (a-19)

The identities (A-4) and (A-5), in connection with (A-17) - (A-19)
may be used to express Juz(g) and J5Z(§) in terms of the dispersion

funection. For 1 = 0, the dispersion integrals become:

J-0= IQQ = - Z(;o)w (4-20)
v ISP
Jio = Ja0= 0 (a2)
Js0 = - L1 +GaZ (6] (A-22)
Ko SIN e |
Jao = —_dvr8, [CZ(Q+1] @)
where q:i- k;,:i"d G;
Co = )

(A-24)

KoV V4 SIND
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Finally, had we eliminated Hyy in (43), the Fourier components of the

current density could have been expressed in the following form:

. z R
Jag= t9p Eo [J:es Eﬁx +idag Elz] (4-25)
w2 |
J 0= __Lee’_ L Jyp Eﬂa "‘dol.Q Eﬂ\c] (A-26)

.
If we define the modes of the conductivity tensor (0~S) through

ohm's law:

Jox = Oxxp Ege +0xzp Epe
) (A-27)
Joe = Saxg Ea, +9z29 Eo,

Our expressions agree with those of Hinton, who solved this problem
by integrating over particle trajectories.

For a finite collision frequency ratio v/w, the pertinent
dispersion integrals are given by (56), (57), (59), and (60), which are

also expressible in terms of the dispersion function, giving

:r,l=—(|+a.v/w):égl{r(_vg-)atgz[_l+§Z(g)] (8-28)

_ 4
Tag = 2Vr) s (ﬁ ) ¢ € [2©-28Z©) -ag Tz
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Jap=-2(1+iv/w)sine V'rj\ g[: +S Z(Q)]

where, for a finite collision frequency

C=C%( 1+iviw)

where

(4-50)

(A-31)

(A-32)

(A-33)
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APPENDIX B
INTERACTION OF A PLANE WAVE WITH A PLASMA HALF SPACE

For the case where the slab thickness L approaches infinity, we
can solve the problem in the original way that Landau and others have

done. We write the Vliasov equation in the form:

ot 3 sikevzsinb-e B M- e Exdfoco )
Ix ' m S\I.z. m JVX
We again Fourier analyze the Vlasov equation in configuration
space, except that the half space requires a superposition of continuous
modes rather than discrete modes. In other words, £y 1s expanded as a

Fourier integral instead of a Fourier series. We have:
L) .
Y n - (.kxx
'pl (V) X) = )’ 'pn {V, Kx) e Aky (B-2)
- Qo

A straightforward Fourier analysis of (B-1), in connection with the

convolution theorem gives:

£ =-e (dvx é‘b"“") 3o Egix’ )+_J_@3_ E,(x’)]: Vi< O |

My J.V;; dvx (B-3)
x
X . ;
L ’\‘) ) 1%
f-e dX' efbx é'gg_Ea(X )+_¥_o_ EX(X]:- 3 Vx>0
mMVy AV.E ‘JVx

-0
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with
b = - k.,‘lz sSiné
\r¥ (B-4)

If we express the field components of (B-3) in terms of their

Fourier transforms,

[V-EEE + Vx El

m"’r W -KoVz SING - kixVy

F=n

(B-5)

for all Vg where a bar denotes the Fourier transform. From our

definition of the current components, we have:

— . - — 1
g = LZolop Ee Jalkd +E, Is(KQ] (B-6)

e

- °°DP
Jz =
Ve

E.J, & )+E j&(ky)] (B-7)

where the J's in (B-6) and (B-7) are identical to the dispersion
integrals given in appendix A, with 1n/L replaced by the continuous
wave number, ky. The currents explicitly appear in the wave equation

as follows:

J* H¢
Ix

+(Kd-k2s Q)H% '"bki:J + (-8)



- 58 -

The form of (B-3) suggests the symmetry properties Hy(x) = - Hy(—x),
Jx(x) = - Jg(-x), and j,(x) = jy(-x). Using these properties to Fourier

transform (B-8) gives:

(k3-kZsio- kx)H‘} L ke I-_lg_@_ -
'\7%9' E [ Ta tk) +hosing Tslky ]

+E°oo EethJq.(kg)-l-k Swedz(kx):l
%3

(B-9)

Where a bar over a field component denotes a Fourier transform. The

Fourier transforms of the Maxwell curl equations are:

Lk Ea=ikosmo Ex -t Hy

(B-10)

Ex"k° snb H +- L(Dp

WE t.lwio [Ea*‘z&ﬂ)w‘ £:J5 (k,% (B-11)

T

Equations (B-9), (B-10), and (B-1l) are all that are needed to solve for
all the field components. After several ponderous algebraic manipulations,

one can obtain the following results:

(B-12)

Hu= ka”g(@
‘4 -2 T
w {Kkisnte & e [J—‘*(K,)- &;_L_@J;mﬂ
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Ky wvr ke
(B-13)
. k}E—Stu‘e g.\?g’} Taon) | 0wt
- W Tilkx)
"‘_[ VE e
T 2T —
{k:' -k:sm’e -k ‘ZP\Z-:_Q. %4“‘\3" k°————5:'9 Jz&“):l

x (B-14)

Now, the field expressions for the plasma slab (equations (64)-(66))

are of the following form:

He = 2 H 2y s ,QIrLIL (B-15)
A=

n

[=¥2)
<1
B-16
Ey = LE,Q,;, siv Lme (B-26)
L= L
D
(B-17)
ce- 2 Sty cos
=P ° L
But, it also follows from (64)-(66) that H, =-H., , E =-E_;

iy iy Ix

and E, =E_;,, so that the sumation index I can be extended from oo

to 4o giving Hy=§lz

o0

z sz eilmc/ L, and similar expressions for E,

-00
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and Ey. In the limit as L — o, the summations convert to integrals

such that Ix/L —» ky and dky — =n/L. In this limit:

_ N Lim(/,_ - vkvy
Hy= E‘L_EHI,& —’ZL;; gtk ™ dky (5.18)

—ed

In which case, the sum of the terms defining Hy in (6L4) becomes:

- dki ébkzX ki ”‘d (0)
R %F@;w-%gmﬂl

-

(B-19)
Where Hy(L) -0 as L —»w. Equation (B-19) is the Fourier transform

of (B-12). Since (B-13) and (B-14) follow in a similar manner, we have
proven that our resulis for the slab reduce to the half space results as

I, »», which was to be shown.
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APPENDIX C
SOME COMMENTS ON THE COMPUTATIONAL PROCEDURE

The programs for all numerical computations were written in
Fortran IV for use on the CDC-6600 computer facility at the Langley
Research Center.

The programs applicable to the cold plasma and hydrodynamic models
involve only the elementary transcendental functions of complex arguments,
and therefore do not require any detailed explanation. The programs
relating to the Vlasov equation should, however, be discussed in a little
more detail. The reflection, transmission, and absorption coefficients
were determined by evaluating the series defining G; and Go

(equations (68) and (69)), which are given again below, for reference:

= _ _ WY T,
G =l ia [l sne T 52] (&)

(Kol ¥/ s 1482 gf_b ][, Siie (1,,5 B (T k.,leueJuY

L=o Ew®

cmz I E""“‘e VM_,stﬁ](:)f
o 3%

L d,g]} SIN'D .(%_" “.’_'3& (d” hl.s:uﬁdz,)] (69)
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Equations (68) and (69) are then used in a trivial manner in connection
with (15), (16), (17), and (18) to solve for the reflection, transmission,
and absorption coefficients. The dispersion integrals (the J's) in (68)
and (69) were then expressed in terms of the dispersion function Z(¢),

which for ¢ < 4 was computed from the differential equation:

Z'(e) = -al 1+ e %(e)] (c-1)

Under the initial condition that Z(0) = ivw. For { > L4, the asymptotic
(23)
series was used. Calculations were performed only for real

qE’. = |
VT z.n.v. 2
Va E—\il——-—koth+sm (2]

For small v/w; the dispersion function was evaluated using a Taylor

series expansion:

d Z(8) *v/ o)
d (V/,,o)

«r}w-

Z(e)X Z(c) +

40=I)

Where, from (A-32) ¢ = tB(1 + iv/w). Equation (C-2) therefore reduces

to

(€)= Z (%) -2 [ 14" Z (e M (@

for v/w<< 1.
For plasma slabs thin compared to a wavelength, the numerical

results indicated that Gp and Gp converged so rapidly that only the
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1 =0 term and the most nearly resonant term contribute to the series
for G and Gp. The resonant term is that term in odd 1 for which
1 - a%/v% L/in Jy3 in the denominator of (68) and (69) is a minimum.

The dominant 1 = O term is simply

G (f=0) = Go{f=0)= | (c-4)
521 - WP )
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