
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2013

Real-Time High-Quality Image to Mesh Conversion for Finite Real-Time High-Quality Image to Mesh Conversion for Finite

Element Simulations Element Simulations

Panagiotis Foteinos
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Foteinos, Panagiotis, "Real-Time High-Quality Image to Mesh Conversion for Finite Element Simulations"
(2013). Dissertations, Theses, and Masters Projects. Paper 1539623633.
https://dx.doi.org/doi:10.21220/s2-aba0-9v40

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623633&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-aba0-9v40
mailto:scholarworks@wm.edu

Real-Time High-Quality Image to Mesh Conversion for Finite Element Simulations

Panagiotis Foteinos

Lefkada, Greece

Diploma from the Department of Electrical and Computer Engineering, University
of Thessaly, Greece, 2006.

A Dissertation Presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
January 2014

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

D octor of Philosophy

Panagiotis A. Foteinos

Approved by the com m ittee, December, 2013

W,k>
CommitheeTJtiair

Professor Nikos Chrisochoides, Computer Science
Old Dominion University

Professor Weizhen Mao, Computer Science
The College of William k Mary

Professor Mark Hinders, Applied Science
The College of William k Mary

Assistant Professor Pieter Peers, Computer Science
The College of WilUam k Mary

Assistant Prol
The C

yvanyk, Computer Science
illiam k Mary

ABSTRACT

Technological Advances in Medical Imaging have enabled the acquisition of images
accurately describing biological tissues. Finite Element (FE) methods on these
images provide the means to simulate biological phenomena such as brain shift
registration, respiratory organ motion, blood flow pressure in vessels, etc. FE
methods require the domain of tissues be discretized by simpler geometric elements,
such as triangles in two dimensions, tetrahedra in three, and pentatopes in four.
This exact discretization is called a mesh. The accuracy and speed of FE methods
depend on the quality and fidelity of the mesh used to describe the biological object.
Elements with bad quality introduce numerical errors and slower solver convergence.
Also, analysis based on poor fidelity meshes do not yield accurate results specially
near the surface. In this dissertation, we present the theory and the implementation
of both a sequential and a parallel Delaunay meshing technique for 3D and —for the
first time 4D space-time domains. Our method provably guarantees th a t the mesh
is a faithful representation of the multi-tissue domain in topological and geometric
sense. Moreover, we show th a t our method generates graded elements of bounded
radius-edge and aspect ratio, which renders our technique suitable for Finite
Element analysis. A notable feature of our implementation is speed and scalability.
The single-threaded performance of our 3D code is faster than the state of the art
open source meshing tools. Experim ental evaluation shows a more than 82% weak
scaling efficiency for up to 144 cores, reaching a rate of more than 14.3 million
elements per second. This is the first 3D parallel Delaunay refinement m ethod to
achieve such a performance, on either distributed or shared-memory architectures.
Lastly, this dissertation is the first to develop and examine the sequential and
parallel high-quality and fidelity meshing of general space-time 4D multi-tissue
domains.

Table of Contents

Acknowledgments.. iv

List of T a b l e s .. v

List of F ig u re s ... vii

1 I n t r o d u c t io n .. 2

1.1 Motivation and Related W o r k ... 2

1.2 C o n trib u tio n s ... 12

2 Guaranteed Quality Tetrahedral Delaunay Meshing for Medical Images . . 14

2.1 Preliminaries ... 15

2.2 A lg o rith m ..17

2.3 Proof of Q u a lity ..20

2.4 Proof of Good G ra d in g .. 30

2.5 Proof of Fidelity .. 35

2.G Implementation d e ta i l s .. 40

2.6.1 Medial Axis A p p ro x im a tio n ..41

2.6.2 Dihedral angle im p ro v em en t..43

2.7 Experimental E v a lu a tio n ...46

3 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations

56

3.1 Background: Delaunay Refinement for Smooth S u rfaces 57

3.2 Parallel Delaunay Refinement for Smooth Surfaces...................................... GO

3.2.1 Poor Element List (P E L) ..61

3.2.2 O p e ra t io n ...61

3.2.3 Update new and deleted cells ... 62

3.2.4 Load B alancer..62

3.2.5 Contention Manager (C M) ..63

3.3 Contention M a n a g e r ... 64

3.3.1 Aggressive-CM .. 65

3.3.2 Random-CM ..65

3.3.3 Global-CM ... 66

3.3.4 L o c a l-C M .. 67

3.3.5 C o m p ariso n ... 72

3.4 P erform ance.. 75

3.4.1 Hierarchical Work Stealing (HWS) ... 75

3.4.2 Strong Scaling R e s u l t s ...76

3.4.3 Weak Scaling R e s u lts .. 77

3.4.3.1 H y p e r- th re a d in g ... 81

3.5 Single-threaded e v a lu a tio n ... 83

4 4D Space-Time Delaunay Meshing for Medical Images... 90

4.1 Preliminaries ...91

4.2 A lg o rith m ... 93

4.3 Termination and Q u a l i ty ...95

4.4 A ccuracy...99

4.5 Experimental E v a lu a tio n ..103

4.6 Real-Time 4D M esh in g ... 105

4.6.1 C o m p le x ity .. 105

4.6.2 Parallelization...106

5 Conclusions and Future W o rk ...109

ii

A Installing and Using the Software

Bibliography...

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my advisor Professor Nikos
Chrisochoides for his guidance and support the last six years. Nothing would be
possible without his insight and encouragement over these years. Special thanks to
the dissertation committee members Professors Mark Hinders, YVeizhen Mao, Pieter
Peers and Denys Poshvvanyk for their constructive suggestions and discussions. I
would like to thank all my research collaborators and (ex) colleagues for fruitful
discussions, specially Dr. Andrev Chernikov, Dr. Yixun Liu, and Dr. Andriy Kot
for their cooperation on research projects and their friendship. 1 thank the
professors of the College of YVilliam and Mary for making their teaching and
coursework an inspiring and precious experience for my career. I thank the main
office of the Computer Science Department, and specially Mrs. Vanessa Godwin and
Mrs. Jacqulyn Johnson for their advice and help throughout these years as a PhD
student. Special thanks to Reves Center team for its support to international
affairs. I thank the Computer Science Departm ent of Old Dominion University for
providing everything necessary for my research during my stay there as a visitor
researcher. 1 thank the Electrical and Com puter Engineering Departm ent of
University of Thessaly and specially Professor Panayiotis Bozanis for the academic
support and help throughout my undergrad years. Last but not least, I would like
to thank my parents for always being there for me. This work is supported in part
by NSF grants: CCF-11398G4, CCF-113G538, and CSI-113G53G and by the John
Simon Guggenheim Foundation and the Richard T. Cheng Endowment.

List of Tables
2.1 Performance achieved by our algorithm and CGAL...40

2.2 Information about the input images... 47

3.1 Comparison among Contention Managers (CM)... 73

3.2 The specifications of the cc-NUMA machines we used.................................... 75

3.3 Information about the input images... 77

3.4 Weak scaling performance... 78

3.5 Hyper-threaded performance.. 81

3.0 Comparison between PI2M and CGAL... 84

4.1 Information about the images of the five patients...103

4.2 Statistics of the output meshes generated for each patient.............................103

4.3 The performance of the parallel 4D m ethod... 107

A .l The list and descriptions of influential macros... 115

V

List of Figures
1.1 Image to Mesh Conversion on the BigBrain d a ta .. 3

1.2 Image to Mesh Conversion on a micro-CT bone structure.............................. 4

2.1 The projection rule... 20

2.2 Illustration to the proof of Lemma 2.3..23

2.3 Illustration to the proof of Lemma 2.5..24

2.4 Flow diagram... 29

2.5 Illustration to the proof of Lemma 2.12..36

2.6 The point rejection strategies.. 45

2.7 Demonstrating the use of size functions..51

2.8 Meshes produced by our algorithm on the spheres and the torus.................52

2.9 Meshes produced by our algorithm on the brain and the stomach. . . . 53

2.10 Meshes produced by our algorithm on the skeleton and the colon. . . . 54

2.11 Meshes produced by our algorithm on the knee and the head-neck. . . . 55

3.1 Delaunay mesh generation and refinement...57

3.2 Implementation of the local Contention Manager (local-CM).................. 67

3.3 Illustration of the local Contention Manager (local-CM)........................... 69

3.4 A possible livelock and how to avoid i t ... 71

3.5 Strong scaling performance...76

3.6 Degree of available parallelism...80

3.7 Meshes generated by PI2M on the knee and the head-neck atlases. . . . 87

3.8 Meshes generated by CGAL on the knee and the head-neck atlases. . . 88

3.9 Meshes generated by TetGen on the knee and the head-neck atlases. . . 89

4.1 Picking region on surfaces... 92

vi

4.2 Proof of Lemma 4.3, a 3D illustration...96

4.3 Flow diagram depicting the relationship among the rules.................................98

4.4 Proof of Lemma 4.8... 100

4.5 Normalized volume histogram of the output m esh...104

4.G Complexity of the 4D code.. 105

vi i

Real-Time High-Quality Image to Mesh Conversion for Finite Element

Simulations

Chapter 1

Introduction

1.1 M otivation and R ela ted W ork

Image-to-mesh (I2M) conversion enables patient-specific Finite Element (FE) mod­

eling in image guided diagnosis and therapy [15,94]. See Figure 1.1 and Figure 1.2

for a couple of examples. This has significant implications in many areas, such as

imaged-guided therapy, development of advanced patient-specific blood flow simula­

tions for the prevention and treatm ent of stroke, patient-specific interactive surgery

simulation for training young clinicians, and study of bio-mechanical properties of

collagen nano-straws of patients with chest wall deformities, to name just a few.

Delaunay meshing is a popular technique for generating tetrahedral meshes, since

it is able to mesh various domains such as: polyhedral domains [38,117], domains

bounded by surfaces [109,113[, or multi-labeled images [29,110|, offering a t the same

time mathematical guarantees on the quality and the fidelity of the final mesh.

In the literature, Delaunay refinement techniques have been employed to mesh

objects whose surface is already meshed as a Piecewise Linear Complex (PLC) [34,

35, 38,40. 42, 45, 09, 90, 99.101,117, 121). The challenge in this category of techniques

is that the quality of the input PLC affects the quality of the final volume mesh. For

example, if the input angles of the PLC are small, then even term ination might be

compromised [120]. For images, one way to alleviate this challenge is to consider the

(a) A few slices of the grayscale BigBrain image (courtesy of BigBrain project).

(b) Views of the resulted tetrahedral mesh.

Figure 1.1: Image to Mesh Conversion on the high resolution BigBrain data [12] for subsequent,
FE bio-mechanical modeling.

faces of each outer voxel as the input PLC, since these faces meet a t large angles (90°

or 180°). However, this would result in an unnecessarily large final mesh.

Another approach is to assume that the object 12 to be meshed is known only

through an implicit function / : R3 —>■ Z such th a t points in different regions of

interest evaluate / differently. This assumption covers a wide range of inputs used in

modeling and simulation, such as param etric surfaces/volumes [109], level-sets, and

segmented multi-labeled images [29, 89,110], the focus of this thesis. If the subsequent

simulation permits sharp features of the domain to be rounded-off, such functions

can be used to represent PLCs as well [89), a fact tha t renders this approach cpiite

general. It should be noted that these methods do not suffer from any small input

angle artifacts introduced by the initial conversion to PLCs, since the isosurface <912

of the object 12 is recovered and meshed during refinement. In this work, we deal

with objects whose surface is a smooth manifold (see Section 2.1 and Section 4.1).

It is the algorithm’s responsibility to mesh both the surface and the interior of the

object such that the mesh boundary describes the object surface in a way that meets

the predefined fidelity and quality requirements.

(a) A few slices o f the grayscale bone image (courtesy of Dr. Xenios Papademetris, Dr. Steven Tommasini.
and Dr. Joshua Van Houten, Yale University).

(b) Views of the resulted tetrahedral mesh.

Figure 1.2: Image to Mesh Conversion on the micro-CT vertebral body of a mouse for subsequent
FE bone modeling and compression analysis.

The quality of an element is traditionally measured in terms of its circumradius-

to-shortest-edge ratio or radius-edge ratio for short. It is desirable th a t the mesh

elements have radius-edge ratio bounded from above. Meshes satisfying tha t bounded

ratio property are called almost-good meshes in the literature [91]. Miller et al. [99)

show that almost-good meshes guarantee optimal convergence rates for approximate

solutions of Poisson’s equation.

3D Delaunay volume meshing algorithms extend the popular Delaunay surface

meshing and reconstruction algorithms described in [10,44], and they offer quality

and fidelity guarantees [109,113| under the assumption tha t the surface of the object,

is smooth [10. 109] or does not form input angles less than 90° [113). However, the

4

quality achieved by these algorithms is somewhat weak: the upper bound for the

elements’ radius-edge ratio is larger than 4. In contrast, the upper bound guaranteed

by our algorithm is y/3 + 2 (« 1.93). To our knowledge, our algorithm is the first

volume Delaunay mesher for surfaces achieving such a small radius-edge ratio with

these fidelity guarantees.

Almost-good meshes, however, might contain nearly fiat elements, the so called

slivers. The reason is that slivers can have a very small radius-edge ratio and at the

same time a very small dihedral angle. In the literature, there are post-processing

techniques that given an almost-good mesh, they are able to remove slivers. See for

example the work of Li and Teng [91], the exudation technique of Cheng et al. [34],

and the sliver perturbation of Tournois et al. [81]. In fact, the sliver removal technique

of Li and Teng [91] requires a low radius-edge ratio, since the lower the radius-edge

ratio, the larger the guaranteed bound on the minimum dihedral angles. This is

another motivation for achieving low radius-edge ratio.

The success of Delaunay techniques to approximate the surface relies on the notion

of e-samples, first introduced by Amenta and Bern [9]. The construction of e-samples

directly from the surface is a challenging task. In the literature, however, it is assumed

that either such a sample is known [9-11| or th a t an initial sparse sample is given on

every connected component [28,109,113]. In this work, we propose a method tha t

starts directly from labeled images and computes the appropriate sample on the fly.

In the literature, there are also non-Delaunav surface and volume meshing algo­

rithms for 3D images. Marching Cubes [96| is a very popular technique for surface

meshing; it guarantees, however, neither good quality triangular facets nor faithful

surface approximation. Furthermore, since the cubes have a very small size (close to

the voxel size), Marching Cubes does not offer a way to control the size of the mesh.

\lolino et al. [102] develop the Red-Green Mesh (RGM) method. RGM starts by

meshing an initial body-centric cubic (BCC) lattice which is then compressed such

that its boundary fit on the surface. RGM gives, however, no quality or surface ap­

proximation guarantees. Another lattice-based method is the Isosurface Stuffing of

Labelle and Shewchuk [89]. They prove that the graded version of the final mesh

consists of elements with dihedral angles larger than 1.66°. The Lattice Decimation

method proposed bv Chernikov and Chrisochoides [41] is guaranteed to produce a

good geometric approximation of the underlying object. The meshes are also proved

to consist of tetrahedra with good dihedral angles. However, topological faithfulness

is not guaranteed. Alliez et al. [8] introduce a Delaunav-based optimization technique.

Specifically, they iteratively compute the new locations of the points by minimizing a

quadratic energy. The connectivity of these points is recalculated by finding their De­

launay triangulation each time. They show that this technique produces meshes that

respect the boundary of the domain. Klingner and Shewchuk [85] extend the work

of Freitag and Ollivier-Gooch [67] by proposing smoothing and topological transfor­

mations which improve the quality of the mesh substantially. The execution time,

however, can be very high, even for small mesh size problems.

In this thesis, building upon our 3D sequential code, we also present a 3D Delaunay

parallel Image-to-Mesh conversion algorithm (abbreviated as PI2X1) th a t (a) recovers

the isosurface of the biological object with geometric and topological guarantees and

(b) meshes the underlying volume with tetrahedra of high quality. These two charac­

teristics render our method suitable for subsequent FE analysis, since the robustness

and accuracy of the solver rely on the quality of the mesh [G9, 7 1 ,119|.

PI2M recovers the tissues’ boundaries and generates quality meshes through a

sequence of dynamic insertion and deletion of points which is computed on the fly

and in parallel during the course of refinement. To the best of our knowledge, none of

the parallel Delaunay refinement algorithms support point removals. Point removal,

however, offers new and rich refinement schemes which are shown in the sequential

meshing literature [G2, 85) to be very effective in practice.

Our implementation employs low’ level locking mechanisms, carefully designed con­

tention managers, and well-suited load balancing schemes that not only boost the

parallel performance, but they exhibit very little overhead: our single threaded per­

formance is more than 10 times faster than our previous sequential prototype [G2, G4]

and it is faster than CGAL [G] and TetGen [121J, the state of the art optimized se­

quential open source meshing tools. Specifically, PI2M is consistently 40% faster than

CGAL. We also compare PI2M with TetGen [121 [and show that PI2A1 is faster on

generating large meshes (i.e.. meshes consisting of more than 900.000 tetrahedra) by

6

35%. Considering the fact th a t both CGAL and TetGen perform insertions via the

Bowyer-Watson kernel [30,128], as is the case of P12M, such a comparison is quite

insightful.

Parallel Delaunay refinement is a highly irregular and data-intensive application

and as such, it is very dynamic in terms of resource management. Implementing an

efficient parallel Delaunay refinement would help the community gain insight into a

whole family of problems characterized by unpredictable communication patterns [16].

We test and show the effectiveness of PI2M on the cc-NUMA architecture. Demon­

strating the performance of mesh refinement on cc-NUMA architectures illuminates

the characteristic challenges of irregular applications on the many-core chips featur­

ing dozens of cores. But even the biggest distributed-memory machines consist of

groups of cores that, from our application’s point of view and supporting software,

can be treated as cc-NUMA. The efficient utilization of such deep architectures can

be achieved by employing a tightly-coupled approach inside each group (i.e., the ideas

of this thesis), and by being less explorative in the other layers, as we stated in more

detail in [46].

Specifically, we used the P ittsburgh Supercomputing Center’s Blacklight, employ­

ing BoostC+-v threads. Although the ideas of this thesis could be programmed using

the more general MPI programming model, we chose threads, since the maintenance

of threads is typically faster in shared-memory machines [84].

Experimental evaluation shows a more than 82% strong scaling efficiency for up to

64 cores, and a more than 82% weak scaling efficiency for up to 144 cores, reaching a

rate of more than 14.3 million elements per second. We are not aware of any 3D par­

allel Delaunay refinement method achieving such a performance, on either distributed

or shared-memory architectures. However, for a higher core count, our method ex­

hibits considerable performance degradation. We argue that this deterioration is not

because of load imbalance or high thread contention, but because of the intensive

and hop-wise slower communication traffic involved in increased problem sizes, large

memories, and cache coherency protocols. This problem could be potentially alle­

viated by using hybrid approaches to explore network hierarchies [46,65]. However,

this is outside the scope of the thesis. Our goal is to develop the most efficient and

scalable method on a moderate number (~ 100) of cores. Our long term goal is to

increase scalability by exploiting concurrency at different levels [46].

In the parallel mesh generation literature, only PLC-based m ethods have been

considered. That is, either Q is given as an initial mesh [31,50,78,126] or dQ is

already represented as a polyhedral domain [68, 83, 92,105]. We, on the contrary,

mesh both the volume and the isosurface directly from an image and not from a

polyhedral domain. This flexibility offers great control over the trade-off between

quality and fidelity: parts of the isosurface of high curvature can be meshed with

more elements of better quality. Moreover, our method is able to satisfy both surface

and volume custom element densities, as dictated by the user-specified size functions.

This is not the case of algorithms th a t treat the surface voxels as the PLC of the

domain [40, 73, 76], since the size of the elements is determined by the voxel spacing,

a fact that offers little control over the mesh density. In the future, we also plan to

incorporate in our parallel framework the com putational intensive smoothing of the

mesh boundary for CFD applications, e.g. lung modeling [57,87,88].

In our previous work [63], we implemented a parallel Triangulator able to support

fully dynamic insertions and removals. Our parallel Triangulator, however, has one

major limitation: as is the case with all Triangulators [20,23,24,63], it tessellates

only the convex hull of a set of points, and it is not concerned with any quality or

fidelity constraints imposed by the input geometry and the user. Also, in parallel tri­

angulation literature [20, 23, 24], the pointset, whose convex hull is to be constructed,

is static and given before the algorithm starts. In this thesis, we extend our previous

work [63|, such tha t the discovery of the dynamically changing set of points, which

are being inserted or removed in order to satisfy the quality and fidelity constraints,

is performed in parallel as well: a very dynamic process that increases parallel com­

plexity even more. This is neither incremental nor a trivial extension.

There is extensive previous work on parallel mesh generation, including various

techniques, such as: Delaunay, Octree, or Advancing Front meshing. Parallel mesh

generation refinement should not be confused with parallel triangulation [20, 23. 24,

63]. Triangulation tessellates the convex hull of a given, static set of points. Mesh

generation focuses on element quality and the conformity to the tissues" boundary.

which necessitates the parallel insertion or removal of points which are gradually and

concurrently discovered through refinement.

One of the main differences between our method and previous w'ork is th a t in

the literature the surface of the domain is either given as a polyhedron, or the ex­

traction of the polyhedron is done sequentially, or refinement starts from an initial

background octree. As explained in this Section above, our m ethod constructs the

polyhedral representation of the object’s surface from scratch, and therefore, it adds

extra functionality. This surface recovery is also performed in parallel, together with

the volume meshing, thus taking advantage of another degree of parallelism.

Given an initial mesh, de Cougny and Shephard [50] dynamically repartition the

domain such that every processor has equal work. They also describe “vertex snap­

ping”, a method tha t can be used for the representation of curved boundaries, but they

give no guarantees about the achieved fidelity (both geometrically and topologically).

In our past work [105], we implemented a tightly-coupled method like ours. How­

ever, in this thesis, we take extra care to greatly reduce the number of rollbacks (see

Section 3.3), and thus achieve scalability for a higher core count. In [39] and [92], our

group devised a partially-coupled and a decoupled method for distributed-memory

systems based on Medial Axis decomposition. However, Medial Axis decomposition

for general 3D domains is a challenging problem and still open. In contrast, the

method presented in this thesis does not rely on any domain decomposition, and as

such, it is flexible enough to be extended to arbitrary dimensions, a goal tha t is left

for future work. In [43], our group presented a method which allows for safe inser­

tion of points independently without synchronization. Although the method in [43|

improves data locality and decreases communication, it exhibits little scalability on

more than 8 cores because the initial bootstrapping, needed as a pre-processing step,

is performed sequentially and not in parallel.

Kadow [83] starts from a polygonal surface (PSLG) and offers tightly coupled

refinement schemes in 2D only. In our case, the polyhedral representation of the

object’s surface is performed in parallel, which adds extra functionality and available

parallelism. Galtier and George |G8] compute a smooth separator and distribute the

subdomains to distinct processors. However, the separators they create might not be

9

Delaunay-admissible and thus they need to restart the process from the beginning.

Weatherill et al. [114] subdivide the domain into decoupled blocks. Each block then

is meshed with considerably less communication and synchronization. Nevertheless,

the generated mesh is not Delaunay, a property tha t is critical to applications like

large scale electro-magnetics [116]. A decoupled Delaunay method was also developed

by Ivanov et al. [79]. The reported speedup is superlinear, but only on very small

(eight) core counts and on simplistic geometries.

Tu et al. [12G] describe a parallel octree method tha t interacts with the solver in

parallel and efficiently, but the fidelity and conformity of the meshes to complex multi­

material junctions/interfaces (one of this thesis’s goals) was not their main focus. The

work of Zhou et al. [131], and the Forest-of-octrees method of Burstedde et al. [31]

offer techniques for fair and efficient d a ta migration and partitioning in parallel. In

our application, however, we show th a t the main bottleneck tha t hampers scalability

is not load imbalance (see Subsection 3.4.1), but the rollbacks (see Section 3.3) and

the memory pressure in the switches (see Section 3.4.3). Load balancing and data

migration is also used by Okusanya and Peraire [107] to distribute bad elements across

processors, but the performance reported is rather low, as the speedup achieved on 8

cores is shown to be less than 2.4. Dawes et al. [53] presented a scalable octree-based

technique with grading and quality guarantees. Nevertheless, more than 48 cores are

needed to surpass the single-core performance of our method.

Ito et al. [78] start from an initial mesh and Lohner [95] from a PLC for subse­

quent parallel mesh generation in advancing front fashion. It should be noted, how­

ever, that advancing front methods guarantee neither termination nor good quality

meshes. Also, both methods show little scalability for even a small number of cores.

Zagaris et al. [130] developed a parallel divide and conquer advancing front domain

decomposition and volume meshing technique. The reported scalability, however, is

limited, because there is no much parallelism available in the top levels of the divide

and conquer tree.

Oliker and Biswas [108] employ three different architectures to test the applicability

of 2D adaptive mesh refinement. They conclude that unstructured mesh refinement is

not suitable for cc-NUMA architectures: irregular communication patterns and lack

10

of data locality deteriorate performance sometimes even on just 4 cores. In this thesis,

we show that this becomes a problem on a much higher core count (more than 144

cores); i.e., with this work, we push the envelop even further. Clearly, this approach

has its own limitations, but a highly scalable and efficient NUMA implementation

combined with the decoupled and partially coupled approaches we developed in the

past can allow us to explore concurrency levels in the order of at least 108 to 1010 [40].

Technological advances in imaging have made the acquisition of 4D medical images

feasible [103,125,127,129]. At the same time, pentatope capable FEM solvers [21,

100] operating directly on 4D data have been shown to be effective for advection-

diffusion and Navier-Stokes formulations.

In this work, we also describe a 4-diinensional Delaunay mesh algorithm which

operates directly on a 4-dimensional image X. X represents the domain Q to be

meshed as the temporal evolution of a 3D object. T hat is, Q — where Qt, is
u

the 3D object at time ti (i.e., the ith slice of S2).

We show that the resulting mesh is sliver free consisting of pentatopes whose

boundary is a correct approximation of the underlying isosurface dQ, = Note
t i

that space-time meshing is different from dynamic surface simulations (see [82] and

the references therein for example). In those simulations, the isosurface is not known;

instead, a tetrahedral mesh is adapted on each time step that describes accurately

the free surface dynamics.

One way to solve the space-time 4D problem is to mesh separately each 3D object

Qt, and then connect the elements between two consecutive objects to obtain space­

time elements. However, finding such correspondence—which also has to satisfy the

quality criteria— is not intuitive, especially when the topology and the geometry of

the two objects varies drastically. Alternatively, one could mesh a single object Qt,

and then deform the mesh to match the shape of the other temporal instances. The

limitation of this approach is twofold. First, the quality of the deformed mesh might

Ire much worse than the original; second, there is no control over the mesh density

across both the spatial and the temporal direction [21], since the mesh size of the

original instance determines the size of the rest of the instances.

11

Space-tirne meshing methods have already been proposed in the literature [60,124].

They assume, however, that the evolving object i l t, has the same spatial space across

time. Furthermore, the implementation of these techniques is confined to only the

2D+t case (i.e., the space-time elements are tetrahedra). The more general 3D r t

meshing has been the focus in [21,106], but they consider only convex hyper-surfaces

such as hyper-cubes or hyper-cylinders. To our knowledge, the method presented

in this thesis is the first to address the 3D+£ problem where the topology and the

geometry of the evolving object may differ substantially through time, and hence, it

is allowed to form complex hyper-surfaces.

In the literature [9,17, 27, 32,35, 36], it is shown tha t given a sufficiently dense

sample on a surface dfl, the restriction of its Delaunay triangulation to <99 is a

topologically good approximation, or, alternatively, it satisfies the closed-topological-

ball property [59]. Their focus, however, was not on volume meshing, but rather, on

surface reconstruction. In this thesis, we fill the space-time volume 9 with sliver-free

pentatopes, such tha t <99 is approximated correctly.

Our algorithm guarantees tha t the resulted pentatopes are of bounded aspect ra­

tio. We achieve that by generating elements of low radius-edge ratio and by proving

the absence of slivers. We clean the mesh from slivers by integrating into our frame­

work the theory presented in [90]. In [90], the surface is given as an already meshed

polyhedral domain (i.e., the method in [90] is a PLC-based method), a different prob­

lem than ours, since it is our algorithm ’s responsibility to mesh both the underlying

zero-surfaces and the bounded volume with topological and geometric guarantees.

1.2 C ontributions

In summary, the contributions of this thesis are the following:

• Development of a 3D Delaunay meshing technique that operates directly on im­

ages. samples and meshes the surface and the volume of the represented biological

object with quality and fidelity guarantees.

12

• Development of a high quality and fidelity 3D parallel Delaunay technique able

to scale on up to 144 cores exhibiting at the same time the best single-threaded

performance, to the best of our knowledge.

• Developement of a 4D Delaunay meshing technique able to recover arbitrary

space-time isosurfaces and investigation of ways and directions towards a parallel

4D Delaunay meshing refinement.

13

Chapter 2

Guaranteed Quality Tetrahedral

Delaunay Meshing for Medical

Images

In this chapter, we present a Delaunay refinement algorithm for meshing 3D medical

images. Given tha t the surface of the represented object is a smooth 2-manifold

without boundary, we prove tha t (a) all the tetrahedra of the output mesh have

radius-edge ratio less than y / y/3 + 2 (~ 1.93), (b) all the boundary facets have planar

angles larger than 30 degrees, (c) the symmetric (2-sided) Hausdorff distance between

the object surface and mesh boundary is bounded from above by a user-specified

parameter, and (d) the mesh boundary is ambient isotopic to the object surface.

The first two guarantees assure tha t our algorithm produces elements of bounded

radius-edge ratio. The last two guarantees assure tha t the mesh boundary is a good

geometric and topological approximation of the object surface. Our method also

offers control over the size of tetrahedra in the final mesh. Experimental evaluation

of our algorithm on synthetic and real medical data illustrates the theory and shows

the effectiveness of our method.

14

2.1 Prelim inaries

Let X C 1Z3 be the (spatial) domain of a multi-tissue segmented image. X is the input

of our algorithm that contains the object Q C X to be meshed. We assume that the
n

object is partitioned into a finite number of n distinct tissues Q = Qj, i — 1 , n.
i

Each fli defines an interface dQi th a t consists of the set of points th a t lie on the

boundary between Qi and at least one more tissue or the background of the image.
n

The isosurface dQ of SI is then the collection of all interfaces; th a t is, dQ =
i

i = 1 , . . . , n. We assume that we are given a function / : X —> { —1,0, 1,. . . , ra}, which

classifies every point p e l appropriately. Specifically, p evaluates / to —1 if it lies on

dQ, to 0 if it lies in the background (i.e., outside the object), or to a positive integer

i if it belongs to the tissue Slj. The existence of such a function is a quite reasonable

assumption: / can be constructed or approximated from the image voxels quite well

for any segmented image (see Section 2.G for details on / ’s implementation).

As is generally the case in the literature [10, 28,109], we also assume that dQ is a

smooth (twice differentiable) 2-manifold w ithout boundary.

D efin ition 2.1 (m edial axis, B lu m [25]) The medial axis of dQ is the closure of

the set of those points having more than one closest point on dQ.

D efin ition 2.2 (local fea ture s ize , A m en ta and B ern [9]) The local feature size

of a point p G Oil, denoted as lfsm (p), is the distance from p to the medial axis of

dQ.

We denote with lf s ^ and l f s ^ the infhnum and the supremum of the local feature

sizes of all the points on dQ respectively, tha t is: lfsg/j = inf{lfsao (p) : p G dQ}

and Ifs^f = sup{lfsan (p) : p G dQ}. .\o te tha t since dQ is assumed to be a smooth

manifold, both lfsg/2 and l f s ^ are positive real constants. Another useful property is

that the local feature size is 1-Lipschitz, tha t is,

lfecK! (p) < \pq\ + lfsas! (q) . (2.1)

15

D efin ition 2.3 (e-sam ple , A m en ta et al. [10]) A point set P C dQ is called an

e-sample of dQ, if for every point p G dQ there is a sample point q G P, such that

\pq\< 6- lfsm (p).

Next, we define a special restriction:

D efin ition 2.4 (res tr ic ted D e lau n ay tr ia n g u la tio n , B o isson n at e t al. [28]) Let

T> (P) be the Delaunay triangulation of the point set P. The restriction of T> (P) to

dQ, denoted as D\on{P), contains the facets in T> {P) whose dual Voronoi edges in­

tersect dQ.

We shall refer to a facet whose dual Voronoi edge intersects dQ as a restricted facet.

We denote the Voronoi edge of a facet / with Vor (/) .

In [28], the following useful theorem is proved:

T heorem 2.1 (B oisson nat et al. [28]) I f P is an e-sample of dQ with e < 0.09,

then:

• D\dn (P) is a 2-manifold ambient isotopic to dQ and

• the 2-sided Hausdorff distance between D\gn (P) and dQ is 0 (e 2).

We next define the surface ball of a restricted facet:

D efin ition 2.5 (surface ball, O udot e t al. [109]) Let f be a restricted facet and

e be f ’s dual Voronoi edge. The surface ball B sur; { f) of f is a closed ball which is

centered at a point p £ e D dQ and passes through f ’s vertices.

In the rest of the chapter, the center and radius of restricted facet f s surface ball

Bsmf(f) ar« denoted by csurf (/) and rsurf (/) , respectively.

The following Remark follows directly from the fact that the center of restricted

facet / ' s surface ball lies on its Voronoi edge:

Rem ark 2.1 The surface ball of f contains no vertices in its interior.

A real point p is called a vertex, if it has been already inserted into the mesh.

Point p is called a feature point (or a feature vertex, if p is inserted into the mesh).

16

if it is a surface point, i.e., p G dQ. In the rest of the chapter, cfp (p) denotes the

Closest Feature Point to p.

An element t is a tetrahedron, a (triangular) facet, or an edge. The diametral

ball B(t) of t is the set of points th a t lie inside or on Vs smallest circumscribing

sphere. The smallest circumscribing sphere of an element t will be sometimes called

its diametral sphere and symbolized by S(t). The center of Vs diam etral ball/sphere

and the radius of Vs diametral sphere are denoted by c(t) and r(t) , respectively. The

shortest edge of element t is denoted by lmin (t). Finally, the radius-edge ratio p (t) of

a tetrahedron or facet t is defined as p(t) =

2.2 A lgorithm

The user specifies as input the target upper radius-edge ratio pt for the mesh tetra-

hedra, the target upper radius-edge ratio pf for the mesh boundary facets, and pa­

rameter 8 . It will be clear in Section 2.5 th a t the lower 8 is, the better the mesh

boundary will approximate dQ. For brevity, the quantity 8 ■ lfs^j (z) is denoted by

Aau (z), where 2 is a feature point.

Our algorithm initially inserts the 8 corners of a cubical box B th a t contains the

object 0 , such tha t the distance between a point p on the box and any feature point

2 is at least 2A^n (z). Since lfsgu (z) < lfs^Q, it suffices to construct B such th a t it is

separated from the minimum bounding box of fi by a distance of at least 2 • 8 ■ l f s ^ .

Let d be the diagonal of the minimum bounding box of Q. Clearly, constructing box

B to be separated from the minimum bounding box by a distance of a t least d • d

fulfills the requirement, since l f s ^ cannot be larger than

After the computation of this initial triangulation, the refinement starts dictating

which extra points (also known as Steiner points) are inserted or which vertices are

deleted. At any time, the Delaunay triangulation T> {V) of the current vertices V is

maintained. Note that by construction, T>(V) always covers the entire object and

that any point on the box is separated from dQ by a distance of at least 2Aa<i (z),

where 2 is a feature point.

17

The users can also define their own customized Size Function sf : Q and

pass it as input to our mesher. The size function sets an upper bound on the radii of

the circumballs of the tetrahedra, and thus offers the flexibility of controlling which

parts of the domain need a denser representation.

During the refinement, some vertices are inserted exactly on the box; these ver­

tices are called box vertices. The edges that lie precisely on one of the 12 edges of the

bounding box are called box edges. We further divide the box vertices into two cate­

gories: box-edge vertices and non-box-edge vertices. The former vertices lie precisely

on a box edge, while the latter do not. The facets tha t lie precisely on one of the 6

faces of the box are called box facets. For example, the initial triangulation contains

just 8 box vertices (which are also box-edge vertices) and 12 box edges (among other

edges). Note that the endpoints of a box edge are always box edge vertices, but the

opposite is not always true. We shall refer to the vertices that are neither box vertices

nor feature vertices as free vertices.

Next, we define two types of tetrahedra:

• in te rse c tin g te t r a h e d r a : tetrahedra whose circumsphere intersects dQ (i.e.,

there is a t least one feature point in their circumball), and

• in te r io r te tra h e d ra : tetrahedra whose cireumcenter lies (strictly) inside Q.

Note tha t a tetrahedron might be both intersecting and interior or might belong

to neither type.

The algorithm inserts new vertices or removes existing ones for three reasons: to

guarantee tha t the mesh boundary is close to the object surface, to remove te tra ­

hedra or facets with large radius-edge ratio, and to satisfy the sizing requirements.

Specifically, let < be a tetrahedron and / a facet in V (V): the following five rules are

checked in this order:

• R l : Let t be an intersecting tetrahedron and 2 be equal to the Closest Feature

Point cfp(c(£)) of Vs cireumcenter c(t). If 2 is at a distance not closer than

A an (2) to any other feature vertex, then 2 is inserted and all the free vertices

closer than 2 Aan (z) to 2 are deleted.

18

• R2: Let t be an intersecting tetrahedron and 2 be equal to cfp (c (t)). If r(t) >

2 • A on (2), then c(t) is inserted.

• R3: Let / be a restricted facet. If either p (f) > pf or a vertex of / is not a

feature vertex, then 2 = Csurf (/) is inserted. All the free vertices closer than

2 A dn (2) to 2 are deleted.

• R4: If t is an interior tetrahedron whose radius-edge ratio is larger than or equal

to pt, then c(t) is inserted.

• R5: Let t be an interior tetrahedron. If \r(t)\ > sf(c (i)) , where sf(-) is the

user-defined Size Function, then c (t) is inserted.

Whenever there is no simplex for which R l, R2, R3, R4, or R5 apply, the re­

finement process terminates. The final mesh reported is the set of tetrahedra whose

circumcenters lie inside Q (i.e., interior tetrahedra). Thereafter, the final mesh is

denoted by AT

D efin ition 2.6 (M esh boundary) Let f be a facet of the final mesh AT Consider

its two incident tetrahedra. I f one tetrahedron has a cireumcenter lying inside a tissue

Qi and the other tetrahedron has a cireumcenter lying either outside f2* or on dQi,

then f belongs to the mesh boundary <9AT

In Section 2.5, we prove tha t dJvt meshes all multi-tissue interfaces
n

[J d lT (= dQ, see Section 2.1) accurately, in both geometric and topological sense.
i

To prove termination (see Section 2.3), no vertices should be inserted outside the

bounding box. Notice, however, that vertices inserted due to R2 may lie outside

the bounding box. To deal with such cases, we propose special p rojection s rules.

Their goal is to reject points lying outside the box and insert other points exactly

on the box. They are simple to implement, computationally inexpensive, and do not

compromise either quality or fidelity. Note tha t the projection rules are different than

the traditional encroachment rules described in [38,117, 118].

Specifically, assume that R2 is triggered for a (intersecting) tetrahedron t and c(t)

lies outside the box. In that case. c(t) is rejected for insertion. Instead, its projection

19

S(t)

c (t)

c' (t)

(b) c' (t) is a non-box-edge point.

S (f)

c ' (t)

(a) c' (t) is a box-edge point.

Figure 2.1: The projection rule. The cireumcenter c(t .) of a tetrahedron f (not shown) does not
lie inside the box. c (t) is rejected for insertion; rather, its projection c' (t) precisely on the box is
computed and inserted into the triangulation.

d (t) on the box is inserted in the triangulation. T hat is, d (t) is the closest to c (<)

box point. Notice that d (t) can either lie exactly on a box edge (see Figure 2.1a) or

in the interior of a box facet (see Figure 2.1b).

Recall that tetrahedra with circumcenters on d f l or outside are not part of the

final mesh, and tha t is why rules R4 and R5 do not check them.

Algorithm 1 summarizes our mesh generation algorithm. Observe th a t at line 10,

we ask for the closest feature point cfp (c) of a given cireumcenter c. Also, given a

feature point 2 <G d Q , the algorithm asks for its distance lfs^o (2) from the medial

axis. The computation of cfp (•) and lfsg^ (•) is explained in detail in Section 2.G. In

the next section, we will prove tha t Intersecting U Interior eventually will run out of

elements, and the algorithm terminates.

2.3 P ro o f o f Q uality

In this section, we prove that if the target upper bound pt for the radius-edge ratio

is 110 less than V v 3 + 2 . then our algorithm term inates outputting tetrahedra with

20

Algorithm 1: The mesh generation algorithm.
1 A l g o r i t h m : R e f i n e (J . S , p f , p j . s f { -))

I n p u t : Z i s t h e i m a g e c o n t a i n i n g (1 ,
6 i s t h e p a r a m e t e r t h a t d e t e r m i n e s h o w d e n s e t h e s u r f a c e s a m p l i n g w i l l b e .

P t f — \J ■*" 2) «■ t h e t a r g e t r a d i u s - e d g e r a t i o f o r t h e t e t r a h e d r a .
p j (> 1) i s t h e t a r g e t r a d i u s - e d g e r a t i o f o r t h e f a c e t s ,

s f (- } i s t h e s i z e f u n c t i o n .
O u t p u t : A D e l a u n a y m e s h vM t h a t a p p r o x i m a t e s cK2 w e l l a n d i s c o m p o s e d o f t e t r a h e d r a w i t h r a d i u s - e d g e ri

b o u n d a r y f a c e t s w i t h p l a n a r a n g l e s l a r g e r t h a n 3 0 ° .
a t i o l e s s t h a n i n a n d

2 L e t V' b e t h e s e t o f v e r t i c e s i n s e r t e d i n t o t h e t r i a n g u l a t i o n :
3 L e t T> (V) b e t h e t r i a n g u l a t i o n o f t h e s e t V .
4 L e t I n t e r c e d i n g a n d I n t e r i o r b e t h e s e t o f t h e i n t e r s e c t i n g a n d i n t e r i o r t e t r a h e d r a in T> (V ') . r e s p e c t i v e l y .

/ • At t h i s p o i n t , a l l t h s ab ov e s e t s a r a e q u a l t o t h e s s p t y s e t . » /
5 I n s e r t t h e 5 v e r t i c e s o f a c u b i c a l b o x w h i c h c o n t a i n s 12 s u c h t h a t a n y p o i n t i n s e r t e d o n t h e b o x i s s e p a r a t e d

d i s t a n c e o f a t l e a s t 2 <5 - I f s ^ j j (*) :
f r o m a n y p o i n t s € d l l b y a

6 U p d a t e V', "D (V) , I n t e r s e c t i n g , a n d I n t e r i o r \
7 w h i l e I n t e r s e c t i n g U I n f e r i o r ^ 0 d o
8 i f I n t e r s e c t i n g ^ 0 t h a n
9 P i c k a t e t r a h e d r o n t € I n t e r s e c t i n g - ,

1 0 C o m p u t e s t e r n e r — c f p (c (f)) ;
1 1 i f t h e r e i s n o f e a t u r e v e r t e x c l o s e r t h a n <5 - { s t e r n e r) t o s t e r n e r t h e n

/ ♦ RI a p p l i e s . • /
1 2 e l s e
1 3 i f r (t) > 2 <S I f i Q n { s t e r n e r) t h e n
1 4 C o m p u t e i l u n f r = c (t) ; / • R2 a p p l i e s . • /
1 6 i f s t e i n t r l i e s o u t s i d e t h e b o x t h e n
1 6 C o m p u t e s i n n e r ~ c / (t) . / * P r o j e c t i o n r u l s s a p p l y . • /
1 7 e n d

1 8 e l s e
1 9 i f < i s a d j a c e n t t o a r e s t r i c t e d f a c e t f , s u c h t h a t p (f) > p f o r f '» v e r t i c e s d o n o t b e o

r e s t r i c t e d f a c e t , / i t n e c e s s a r i l y i n c i d e n t t o a t l e a s t o ne i n t e r s e c t i n g t e t r a h e d r o n t . • /

n d i l t h a n / • S i n e s / i s a

2 0 C o m p u t e s f e m r r - c s „ r f (/) ; / * R3 a p p l i e s . * /
2 1 • I s a
2 2 I n t e r s e c t i n g = I n t e r s e c t i n g \ t ; / * No s t s i n e r p o i n t f o u n d . • /
2 3 c o n t i n u e :
2 4 a n d

2 6 a n d

2 6 a n d

2 7 e l s e / • I n t e r i o r c a n n o t be emp ty . • /
2 8 i f P (t) > P t o r r (t) > s f (c. (f)) t h a n
2 9 C o m p u t e s t e r n e r = c (f) ; / * R4 o r RS a p p l y . * /
3 0 e l s e
3 1 I n t e r i o r = I n t e r i o r \ t \ / • No a t e i n e r p o i n t f o u n d . * /
3 2 c o n t i n u e :

3 3 a n d

3 4 a n d
3 5 I n s e r t s t e r n e r -
3 6 i f s t e t n e r i s a f e a t u r e v e r t e x t h e n
3 7 D e l e t e a l l t h e f r e e v e r t i c e s t h a t a r e c l o s e r t h a n 2 • <5 • { s t e r n e r) t o s t . e m r r .
3 8 a n d
3 9 U p d a t e V , T> (V) , I n t e r s e c t i n g , a n d I n t e r i o r - ,

4 0 a n d
4 1 L e t t h e f i n a l m e s h A d b e e q u a l t o t h e s e t o f t h e t e t r a h e d r a i n TD (V) w h o s e c i r e u m c e n t e r l i e s i n s i d e 12;

radius-edge ratio less than pt and boundary facets with planar angles larger than 30°

(see Theorem 2.2). Note tha t termination and quality are not compromised by any

positive value of d. Param eter 6 affects only the fidelity guarantees (see Section 2.5).

Suppose that an element (tetrahedron or facet) t violates a rule R t, where i — 1.

2, 3, 4, 5, proj, where Rproj denotes the projection rules. That is, if t violates R2,

but its cireumcenter lies on or outside the box, then we say th a t t violates Rproj

instead, t is called an Ri element. R i dictates the insertion of a point p (and possibly

the removal of free points). Point p is called an Ri point. Although the initial 8 box

corners inserted into the triangulation do not violate any rule, we shall refer to these

corners as Rproj vertices as well.

Following similar terminology to [117,118]. we next define the insertion radius and

the parent of a point p.

21

D efin itio n 2.7 (In se rtio n ra d iu s) Let v be a vertex inserted into the triangulation.

Right after the insertion of v (i.e., before any potential vertex removals), the insertion

radius R{v) of v is equal to \vq\, where q is:

• v ’s closest box vertex already inserted into the mesh, if v is a box vertex,

• v ’s closest feature vertex already inserted into the mesh, if v is an R I vertex,

• v ’s closest vertex already inserted into the mesh, otherwise.

D efin ition 2.8 (P a re n t) Let v be an Ri vertex inserted into the mesh because an

element (tetrahedron or facet) t violated Ri. The parent Par(v) o f v is:

• an arbitrary box vertex, i f t is a facet incident to at least one box vertex,

• the most recently inserted vertex o f t , i f t is a facet with p { f) < p/,

• the most recently inserted vertex of lmm (t) , otherwise.

The following two Lemmata relate the insertion radii of a vertex v with the distance

between v and its neighbors.

L em m a 2.1 Let w be an R2, RS, R f , or an R5 vertex inserted into the triangulation

and let x he an arbitrary vertex already in the triangulation. Then, R(w) < \wx\.

P ro o f: According to Definition 2.7, R(w) is the distance between w and its closest

neighbor, say q. Therefore, R(w) = \wq\ < \wx\. ■

L em m a 2.2 Let w be an R I vertex inserted into the triangulation and let x be an

arbitrary feature vertex already in the triangulation. Then, R(w) < |iea;|.

P ro o f: According to Definition 2.7, R(w) is the distance between w and its closest

feature vertex, say q. Therefore, R(w) = \wq\ < \wx\. ■

L em m a 2.3 Let v be a box vertex. Then, R(v) > 2Ags* (2). where z is the closest

feature point of v.

22

S(t) 2 D d is k

S(t c (t)

,c(t)

Fc ' (t)

• z € dCl
2D disk

(a) c '(t) is not a box-edge vertex.

Figure 2.2: Illustration to the proof of Lemma 2.3.

Proof: According to Definition 2.7, R(v) is the distance between v and its closest

box vertex.

Initially, only the 8 box vertices of the bounding box are inserted. By construction,

no m atter the order they are inserted, no box point is closer than 2(51fsgj ̂ > 2 dlfspsj (z)

for any z e dQ. Therefore, the initial edges are definitely larger than 4A#u (z) for

any z E dQ, and the statem ent holds.

During the course of refinement, a box point v is inserted either because the cir-

cumcenter c(t) of an intersecting tetrahedron t lies on or outside the box. According

to the projection rules, c{t) is ignored, and its projection d (t) is inserted instead.

See Figure 2.2 for two examples illustrating the insertion of a non box-edge vertex

and a box-edge vertex. In both cases, consider the 2D disk (drawn in both Figure 2.2a

and Figure 2.2b) of the t ‘s sphere S(t) tha t contains c' (t) and is perpendicular to the

segment c(t)c' (t) . This disk partitions t 's circumball in two parts: the upper part

that contains c(t) and the lower part that intersects the interior of the box. From

the empty ball property, we know that the insertion radius of d (t) cannot be less

than the radius of the 2D disk. Let z be the closest feature point to d (t). Since t

is an intersecting tetrahedron, z has to lie in the lower part of f s circumball. which

23

Figure 2.3: Illustration to the proof of Lemma 2.5. The facet / is shown in bold together with its
circumcircle. The radius of the circumcircle of / is bounded from below by , ŵx̂ where w x

is the second smallest edge of / .

means that R{c' (£)) > \c'(t) z\. By construction, however, \c'(t) z\ is larger than

251fs^ > 2Aap (z), and the proof is complete.

■

Lem m a 2.4 Let v be a box vertex. Then \vcfp(v)\ < R (v) V 3.

Proof: If v is a box vertex inserted because the cireumcenter of an R2 element lies

on or outside the box, then the statem ent holds, because the proof of Lemma 2.3

directly suggests tha t |cfp(u) u| < R(v).

Consider the case where the box vertex v is one of the initially inserted 8 box

corners. Note that the circumballs of all the resulting tetrahedra are the same with

the circumscribed ball of the box. Let us denote with r the length of the radius of that

ball. Since that ball contains the whole box. we have th a t |ucfp(u)| < 2r. It is easy

to show that r = & L , where L is the box’s edge length edge. From Definition 2.7. we

know that R(v) = L, and therefore, we obtain th a t |ucfp (?;)| < 2 r — L \/Z = R { y) \ f3.

■
Lem m a 2.5 Let f be a facet and wx be its second smallest edge. I f p (f) < p j . then

|u,’il

P ro o f: Let / be a facet defined by the vertices w, x, and q. Assume that xq = lmin (/)

and wq is the largest edge. If there are more than one smallest edges and /o r largest

edges, choose arbitrarily one edge as the smallest and /o r one edge as the largest. In

this example, wx is the second smallest edge of / .

Keeping the circumball fixed, move w along the circumcircle such th a t the length

of wx becomes equal to the length of wq. In such a configuration (which is shown

in Figure 2.3), the length of w x (i.e., the length of the second smallest edge) is

maximized. Also observe, the radius wc bisects angle 9. From the right triangle

Acbw, we get that cos | = 2 \7(f)\• Since 9 is still the angle opposite to / ’s shortest

edge, 9 and p (f) are related through the following equality: sin# = [118]. This

fact and basic trigonometry yield th a t cos | = ^ ^ Note tha t the right-hand

side is maximized when p(f) gets its highest value. Since the Lemma assumes tha t

The following lemma sets a lower bound on the shortest edge introduced into the

mesh after the insertion of a point according to the five rules.

L em m a 2.6 Let v be inserted as dictated by the five rules and w be its parent. Then,

* R(v) > Agsi(z), i f v is an R I or an R2 vertex, where z is the closest feature

point to v,

p{ f) < Pf, we obtain that cos | < . Therefore, we finally conclude tha t

r (f) I > — t

R(v) > min | is an R3 vertex and w

or a box vertex,

• R(v) A min w), A q q (w) | , i f v is an R3 vertex and w is a feature vertex,

• R{v) > ptR(w), if v is an R4 vertex,

• R{v) > sf{v), if v is an R5 vertex.

P ro o f: We separate cases according to the typo of v.

• C ase 1 : v is an RI or an R2 vertex.

If RI is triggered, then v is equal to z. According to Definition 2.7, R(v) is the

distance between v and its closest feature vertex. Vertex v, however, is inserted

only if v is separated from any other feature vertex by a distance of at least

&du (v) = R(v), and the statem ent holds.

Otherwise, R2 applies for a tetrahedron t and v is equal to c(t). According to

Definition 2.7, R(v) is the distance between v and its closest neighbor. Because of

the empty ball property, R(v) is at least r{t) > 2Aasi (cfp (n)), and the statem ent

holds.

• C ase 2: v is an R3 vertex.

In this case, v is equal to the center CsUrf (/) of / ’s surface ball, where / is the

restricted facet that violates R3. According to Definition 2.7, R(v) is the distance

between v and its closest neighbor. Since any surface ball is empty of vertices in

its interior (Remark 2.1), we know th a t R(v) = |rsurf (/) | . The rest of this proof

attem pts to bound |rsurf (/) | from below. We separate three scenaria:

(a) First, consider the case where / is incident to at least on box vertex. Accord­

ing to Definition 2.8, this box vertex can be the parent w of v. By construction,

the distance between csurf (/) and w is a t least 2 Ap^ (z) for any feature point 2 .

Therefore, the surface radius is at least 2AgS2 (v) > A^jj (v), and the statem ent

holds.

(b) Second, consider the case where p (f) > pf. According to Definition 2.8, w

is the most recently inserted vertex incident to wq = Since p (f) is no

less than pf , |r (/) | = p (f) \lmin (/) | > pf |Zmin (/) |.

If w is not an RI vertex, from Lemma 2.1, we get that \r(f)\ > /? /|/mjn (/) | >

PfR(w).

If w is an RI vertex and q is a feature vertex (that is. q is either an RI or an R.3

vertex), then from Lemma 2.2, we get that \r(f)\ > pj |/mjn (/) | > pjR(w) .

If w is an RI vertex and q is a free vertex then q has to be separated from w

by a distance of at least 2 A qu(w), because RI deleted all the free points closer

26

than 2Aau (w) to w. That means tha t |u.'g| > 2Agit (w), a fact tha t also bounds

|r (0 | from below by > AgSl (w).

(c) Lastly, consider the case where f 's radius-edge ratio is less than pj. Since

R3 is triggered, / has to be incident to at least one free vertex q. According to

Definition 2.8, w is the most recently inserted vertex of / . If w is a feature vertex

(i.e., w is either an RI or an R3 vertex), then q must be separated from w by a

distance of at least 2Agu (w), because w was inserted after q, and by RI and R3,

all the free points closer than 2Aan (w) to w were deleted. Since wq is an edge

of / , the radius of any surface ball of / has to be a t least 2 At>n(w) = (^;) in

length. Otherwise, w is in fact a free vertex (i.e., it is an R2, R4, or R5 vertex).

Any vertex w of / is incident to / ’ s shortest edge (say Li), or f ' s second shortest

edge (say L2), or both. From Lemma 2.5, we have that | r (/) | ^

• C ase 3: v is an R4 vertex.

There has to be a tetrahedron t th a t violates R4, and therefore, |r(£)| > pt |/min (t)\

According to Definition 2 . 7 , R(v) is the distance between v and its closest neigh­

bor. Because of the empty ball property, R(v) = |r(t) | > pt |Zm;n (£)|. Accord­

ing to Definition 2.8, the parent w of v is the most recently inserted vertex of

Wq ^min (O ’

If w is not an RI vertex, from Lemma 2 . 1 , we get tha t pt |/min (t)\ > ptR(w).

If w is an RI vertex and q is a feature vertex (that is, q is either an RI or an R3

vertex), then from from Lemma 2 . 2 , we get tha t pt | / m jn (t)\ > ptR(w).

If w is an RI vertex and q is a free vertex then q has to be separated from w

by a distance of at least 2Agn (w), because RI deleted all the free points closer

than 2 A qq(w) to w. T hat means that \wq\ > 2A qq (w) , a fact tha t also bounds

. From Lemma 2.1, we finally get that: \r(f)\

r (01 from below by Op > Agu (ir).

• C ase 4: v is an R5 vertex.

27

v is the cireumcenter of a tetrahedron t with radius no less than sf (c (t)) = sf (v).

According to Definition 2.7 and the empty ball property, however, the radius of

t is equal to R(v).

■
The next Lemma shows tha t the boundary facets of the output mesh are in fact

restricted facets.

Lem m a 2.7 Let V be the set of vertices inserted into the triangulation. The set dM.

of the boundary facets of the final mesh A4 is a subset of T>\dn (V).

Proof: It follows directly from Definition 2.6. A facet / is a facet of the mesh

boundary, if it is incident upon a tetrahedron t\ whose cireumcenter lies inside Qt

(see Section 2.1) and upon a tetrahedron t% whose cireumcenter lies either outside

iii or on its surface dQi. However, this means tha t the dual Voronoi edge e of /

intersects dQi, and as a subsequence, e also intersects dQ (D dQi). Hence, / belongs

to T>\dn (V). ■

T heorem 2.2 (T erm ination and qu ality) Let p f > 1 and let

pt > ^ y/4 — + 2 y f \/3 + 2 ss 1.93^. The algorithm terminates producing tetra­

hedra of radius-edge ratio less than pt and boundary facets of planar angles larger than

30°.

Proof: Figure 2.4 shows the insertion radius of the inserted point as a fraction of the

insertion radius of its parent, as proved in Lemma 2.3 and Lemma 2.0. An arrow' from

Ri to Rj with label x implies tha t the insertion radius of an R j point v is a t least

x times larger than the insertion radius of its R i parent w. The label of the dashed

arrow's is the absolute value of R(v), with sf denoting th a t the insertion radius of v

is no less than sf (v). Note th a t the labels of the dashed arrow's depend on the local

feature size of dQ and the size function sf, and as such are always positive constants.

Recall that during refinement, free vertices might be deleted (because of R I or

R3). Nevertheless, such deletions of vertices are always preceded by insertion of

feature points. Considering the fact that feature vertices are never deleted from the

28

Pt

Pt

Pt

an

p t

R3

R5

R4

R I / R2 / projection

Figure 2.4: Flow diagram depicting the relationship among the insertion radii of the vertices
inserted because of the rules, where the arrows point from parents to their offspring. A solid arrow
from Ri to Rj with label x implies that the insertion radius of an Rj point v is at least x times
larger than the insertion radius of its R i parent w. The label of the dashed arrows is the absolute
value of R(u). No solid cycle should have a product less than 1. The dashed arrows break the cycle.

mesh, termination is guaranteed if we prove tha t the insertion radii of the inserted

vertices cannot approach zero. Clearly [117, 118], it is enough to prove th a t Figure 2.4

contains no solid cycle of product less than 1. By requiring p/ to be no less than 1

(cycle R i —> R3) and pf to be no less than /? + 2 > y /V 3 + 2 (cycle R3 -»

R4 —» R3), no solid cycle of Figure 2.4 has product less than 1, and term ination is

guaranteed.

Upon termination, the tetrahedra reported as part of the mesh have circumcenters

that lie inside Q and therefore they cannot be skinny, because otherwise R4 would

apply. This implies tha t any mesh tetrahedron has radius-edge ratio less than pt.

Since a boundary facet / is a restricted facet (by Lemma 2.7), R3 guarantees that

the radius-edge ratio p (f) of / ’s diam etral ball cannot be larger than or equal to pj.

Also, note that p{ f) is equal to 2 s?n 0. where 6 is the smallest angle of / [118]. It

29

follows that the planar angles are larger than 30°.

2.4 P ro o f o f G ood G rading

In this Section, we show that the shortest edge connected to an inserted vertex v is

proportional to v's local feature size. Although good grading implies size optimality

in 2D [lOOj, the same does not hold in 3D. Nevertheless, it is useful to show th a t

parts of the domain with large local feature sizes are meshed with larger and fewer

elements than parts of lower local feature sizes. We also wish to show th a t dense size

functions on certain parts will not affect considerably the density of vertices on other

parts of the domain.

Following similar terminology to [109], we define the general local feature size and

the general size function on a vertex v as follows:

D efin itio n 2.9 (G e n e ra l L ocal F e a tu re S ize) The general local feature size glfsm (v)

on a vertex v is defined as

9 lfsdu (v) = _mf ̂{ \vz\ + lfsm (z)} (2 .2)

D efin itio n 2.10 (G e n e ra l Size F u n c tio n) The general size function gsf(v) on a

vertex v is defined as

gsf(v) = mf { \pv| + sf{p) } (2.3)

The definition of glfsasj (•) implies that vertices far from dQ will tend to have

large general local feature sizes. In the case where the vertex lies on the surface,

the general local feature size coincides with the local feature size (see Definition 2.2)

of the vertex, and it increases when the vertex lies far from the medial axis. The

definition of gsf(-) implies that vertices close to parts of the domain on which the

user-defined size function is small will evaluate the general size function to a small

number as well.

The following Remark states a few useful properties of the general local feature

size and the general size function:

3 0

R e m a rk 2.2 (F ro m [8 ,98]) glfsdQ (•) and gsf(-) are 1-Lipschitz. Moreover, glfsdn (2)

Vsdu ('’)• V2 e Oil.

Following the terminology of [117,118], the density D (v) of a vertex v is defined

as:
r . , a min{glfsdsj (v) , gsf(n)}
D (v) = W) (’

Our goal is to bound from above the density of all inserted vertices by a constant

depending only on fi! and the input param eters. Notice that since D (v) <

and D (v) < 7 ^ , it is enough to bound from above either or

The following Lemma relates the insertion radius of a vertex with its distance from

its parent:

Lem m a 2.8 Let v be an R 3 or an R4 vertex inserted into the mesh and w be its

parent. Then, R(v) — \vw\.

Proof: If v is an R3 or R4 vertex, then v is the center of an element Vs circumball

or surface ball. According to Definition 2.8, the parent w of v is one vertex of t.

Because of the empty circumball and surface ball property, Definition 2.7 implies

that R(v) = \vw\. ■

The following Lemma relates the density of a vertex v with th a t of its parent:

Lem m a 2.9 Let v be an R3 or R4 vertex and R(v) > c ■ R(w), where w = Par{v).

Then

D (v) < 1 + ^ 1 . (2.5)
c.

Proof: The proof is similar to the proof of Lemma G in [118].

Let w = Par(v). Since glfsan (•) and gsf(-) are 1-Lipschitz (see Remark 2.2), we

have that:
m in { g l f s a s , (v) , g s f (u)} < nnin{ | iiu;| + g l f s asi (w) , |duj | + g s f (u j) }

= |uu;| <- m i n { g l f s a u (w) , g s f (i «) }
= R (v) -r m in {g] fS £(2 (ip) . g s f (ip) } (from Lem ma 2 .8)
= + R (i p) D (i p) (f r o m E q u a t i o n (2 . 4))

< R(v) * D (w) .

and the result follows by dividing both sides by R(v). ■

Before we proceed to the proof of good grading, we need two auxiliary Lemmata:

Lem m a 2.10 Let v be an R2 vertex. Then. \vcfp(v)\ < R(v).

31

Proof: Vertex v is an R2 vertex because of an intersecting tetrahedron t. Since t is

an intersecting tetrahedron and v is the center of t, we have th a t |ncfp(n)| < \r(t)\.

Definition 2.7, however, implies tha t |r(f)| = R(v), and the statem ent holds. ■

L em m a 2.11 Let v be a vertex inserted into the mesh. Then,

• D (v) < 1 , if v is an RI, R2, or a box vertex,

• D (v) < if v is an RS vertex and R(v) > min{Adii (w) , A qu (v) } , where

w = Par(v) 6 dQ, and

• D (v) < 1, if v is an R5 vertex.

Proof: We separate cases.

Let v be an RI vertex. According to the flow diagram of Figure 2.4, we have

that R(v) > Agn (cfp (t>)) = A qq (v) = S ■ lfsgn (z). From Remark 2.2, we have that

R(v) > 5 • lfsao (z) = 6 ■ glfsan (z), giving th a t D (v) < | and the statem ent

holds.

Let v be an R2 or a box vertex. According to the flow diagram, R(v) > Agn (cfp (v))

3 • lfsau (cfp (n)) = 5 ■ glfsan (cfp (v)), and from the fact th a t the general local feature

size is 1-Lipschitz, we have tha t R(v) > S (glfsgs! (v) — |ncfp(t’)|). From Lemma 2.4

and Lemma 2.10, we know that |ucfp(v)| < R (v) \ /3. Therefore, we obtain tha t

R(v) > 6 (glfsasi (v) — R(v)y/3). Dividing both sides by R(v) finally gives that

D (v) < , and the statem ent holds.

Let v be an R3 vertex and R(v) > A qq (v) = 5 ■ lfs^u (v). It follow's directly tha t

D{v)

Let v be an R3 vertex and R(v) > Aqu(w) , where w G OQ is the parent of v.

From Remark 2.2, we obtain that R(v) > A dii (w) = 5 ■ lfs£>S2 (w) = 5 ■ glfs0$2 (w) >

(glfsail (v) — |cie|). From Definition 2.8, w is one of the vertices of a restricted facet

whose surface ball has v as the center. From the empty surface ball property and

Definition 2.7. we know that R(v) = |mc|. Therefore, R(v) > 6 (glfsflu (v) — R{v)).

Dividing both sides by R(v) finally gives tha t D (v) < and the statem ent holds.

Let v be an R5 vertex. According to the flow diagram, all the arrows pointing to

Ro art' dashed and labeled as sf. The label of dashed arrows is he absolute value

of R(v) and therefore, R(v) > sf(u). Since, however, gsf(u) = inf { \pv\ + sf (p) } <

|utj + sf(u) = sf(u), we get tha t R(v) > gsf(u), and the proof is complete. ■

Finally, the following Theorem proves th a t our algorithm achieves good grading:

T h e o re m 2.3 (G o o d G ra d in g) Let pf be strictly larger than 1 and. let pt be strictly

larger than X = \ j ~ + 2 \Jy/% + 2 w 1.93^ . Let v be an Ri vertex inserted

into the mesh, i — 1 .2 .3 .4 . 5. proj. Then, right after its insertion, its density D (v)

is bounded from above by a fixed constant D, > 0.

P ro o f: This theorem will be proved via induction.

Initially, only the 8 box corners are inserted into the triangulation. According to

Lemma 2.11, the induction basis holds, if

Op„i = (2 .6)

For the induction hypothesis, assume th a t the density D (w) of v's parent Rj vertex

w is bounded from above by Dj, where j = 1, 2, 3 ,4 ,5 , proj. We need to show tha t one

constant Dj bounds from above the density of Ri vertex v, where * = 1,2,3, 4, 5, proj.

We separate cases according to the type of v:

• v is a n R I , R 2 , o r a bo x v e r te x

According to Lemma 2.11, the insertion radius of v is bounded from above by

Therefore, no m atter what the parent of v is, the induction step holds, if

D] = D 2 = Dpro, = (2.7)
a

• v is a n R 5 v e rte x

Similarly to the case above, Lemma 2.11 suggests that no m atter what the parent

of v is, the induction step holds, if

D .5 = 1 . (2 .8)

• v is a n R 4 v e rte x

From the flow diagram, all the arrows pointing to R4 are labeled with pt. There­

fore. from Lemma 2.9 and Lemma 2.0. we get that D (c) with c equal

3 3

to pt for any parent w. Thus, the induction step would be proved, if £>4 was set

to a value th a t satisfied all the following inequalities:

1 + ^ < £>4 (2.9)
Pt

1 + ^ < D a (2 .1 0)
Pt

1 + ^ < D 4 (2 .11)
Pt

1 + ^ = 1 + ^ < £ > 4 (2 . 12)
Pt Pt

Observe that the D 5 term in Inequality (2.12) is replaced by 1, according to

Equality (2.8).

v is an R3 vertex

According to Lemma 2.11, D (v) is bounded from above by ^ for the rela­

tionships of Figure 2.4 tha t are depicted bv the dashed arrows pointing to R3.

Therefore, for the induction step to be proved, D 3 has to satisfy at least the

following inequality:

1 + 6

< D 3 (2.13)

For the rest of the relationships (i.e., solid arrows), we know from Lemma 2.9

and Lemma 2.C that D (v) < 1 + — , where c is equal to pf if w is an R3 vertex

or equal to min | y -F /} if w is ari K.1, K2, Rproj, R4 or R5 vertex.

Therefore, the induction step would be proved, if D:i was set to a value th a t

satisfied also the following inequalities:

1 + T h m a x i X , j - 1 = 1 + D xX < D-, (2.14)

34

Observe that X is always larger than X when /?/ > 1 and th a t is why the j -

term is eliminated from Inequalities (2.14), (2.1C), and (2.17). Also, the D r,

term in Inequality (2.17) is replaced by 1, according to Equality (2.8).

Putting it all together and simplifying the results, Inequalities (2.9)- (2.17) above

are simultaneously satisfied by choosing:

Di = m m [h ± ± s ^ ‘ + ^ + x (l + 6 ' ^) {2.18)
\ Pt ~~X dpt Pt (Pf ~ 1) I

and

S + X (l + Sy/3) Spt (1 + X) + X (l + <5\/3) pj p((l + X) l
5 ’ Spt ’ pf - 1 ! pt - X j

(2.19)

Equalities (2.C), (2.7), (2.8), (2.18), and (2.19) satisfy both the induction basis and

the induction step for any number and type of vertices, and therefore, the proof is

complete.

max

2.5 P ro o f o f F idelity

In this section, we derive an upper bound for S. such th a t the boundary of the final

mesh is a provably good topological and geometric approximation of dQ. Our goal

F ig u r e 2.5: I l l u s t r a t i o n t o t h e p r o o f o f L e m m a 2.12.

is to prove that the mesh boundary dM. (see Definition 2.G) is equal to T>\gn (E) for

E a 0.09-sample of dQ (see Theorem 2.4 of this section). To see why this is enough,

recall that from Theorem 2.1, the restriction of a 0.09-sample of dQ to dQ is a good

topological and geometric approximation of dQ.

First, we show that 5 directly controls the density of the feature vertices. Let V

be the set of vertices in the triangulation and E be equal to V fl dQ.

L em m a 2.12 Let <5 < | . Then E is a y^j-^-sample of dQ.

P ro o f: Recall that upon termination, there is no tetrahedron for which R I, R2, R3,

R4, or R5 apply.

See Figure 2.5. Let p be an arbitrary point on dQ. Since T>{V) covers all the

domain, point p has to lie on or inside the circumsphere of a tetrahedron t (not

shown). Hence, t is an intersecting tetrahedron. Let point p' be the feature point

closest to c(t). Note that \c(t)p\ > \c(t)p' \ and therefore p 1 lies on or inside t 's

circumsphere. We also know that Vs circumradius has to be less than 2A qq (p'), since

otherwise R2 would apply for t. Therefore, we have the following:

\pp'\ < 2r(t) (because both p and p' lie on or inside B{t))
< 4Adu (p') (because of R2)
< 44 (\pp'\ + lfsao (p)) (from Inequality (2.1)).

36

and by reordering the terms, we obtain that:

4 8 1
\pp'\ < i T?lfsa!> (p) ’ with d < 7' (2.20)1 — 4o 4

Moreover, there must exist a feature vertex v in the triangulation closer than

Aon ip') = $ • Ifsas; (p ') to p', since otherwise R I would apply for t. Hence, \vp'\ <

8 • lfs9n (pr), and using Inequality (2.1), we have that:

|vp'\ < 5 (\pp'\ + ifsan (p)) (2.21)

Applying the triangle inequality for A pvp' yields the following:

\pv | <
<

PP
PP'
PP'
46

+ \vp'\
+ ̂(IPP'l + Ifeas! (p)) (from Inequality (2.21))
(1 + 8) + <5 • lfsau (p)

< (p) (1 + 8) + 8 ■ lfsas2 (p) (from Inequality (2.20))

= (« j f + i) i f S« ,(p)

= iSalfsai i p) ,

and the proof is complete. ■

Recall from Section 2.1 that the multi-tissue object 12 could be described as a
n

union of materials 12 = [J l2 j. Let us denote by 12], the j th connected component of
i

a specific tissue Qi: j = 1 , . . . ,rn.

Similar to Definition 2.4, T > (V) denotes the set of those facets in the Delaunay

triangulation of the vertices in V whose dual Voronoi edge intersects the surface <912,
n m

of 12]. Also, note that <912 = ULJ ■"
‘ j

From Lemma 2.12 and Definition 2.3, the following Corollary follows:

5 < 0 09

0.09-.Sample of di 2].

C o ro lla ry 2.1 Let 8 < H I « 0.0168 and let E l = V n dQj. Then , E \ is a

As we have already mentioned in Section 2.2. the final mesh A4 reported consists

of tetrahedra whose cireumcenter lies inside 12. Let A4] be the set of tetrahedra whose

cireumcenter lies inside 12].

37

Similar to Definition 2.G, d M \ denotes the set of the boundary facets of submesh

A i\ . That is, dM.\ contains the facets incident to two tetrahedra such that one

tetrahedron has a cireumcenter lying inside Qj and the other has a cireumcenter

lying either outside Dj or on dQj.

Lem m a 2.13 Let t be an intersecting tetrahedron whose circumball B (t) contains a

point m of d Q ’s medial axis. Then, <5 > j.

Proof: Upon termination, rule R2 cannot apply for any tetrahedron. Therefore, we

have the following:

2 ■ 6 ■ lfsan (cfp (c. (f))) > |r (f) | (from R2)
> lffp tdt))ml (since m and c f p (c (()) lie in sid e B (t))
> lfsw (c(py<,0)> (since m is on th e m edial a x is) =>

6 > i .

■

Lem m a 2.14 Let 8 < Any facet f G dM.\ belongs to (V) and has its vertices

on dQi.

Proof: Since / belongs to d M .\ , / is incident to two tetrahedra t \ , t 2 S V(V) , such

that the cireumcenter of t\ lies inside Qj and the cireumcenter of t 2 lies outside Ql or

dQj. However, this means that the Voronoi edge of / intersects dflj , and therefore,

/ € (V)■ This completes the first part.

Tor the second part and for the sake of contradiction, assume th a t there is at

least one vertex v of / that does not lie on dQi, but on another dQ{,. Consider the

tetrahedron t\, one of the two tetrahedra incident to / with cireumcenter lying inside

Q{. Since v lies on dQJt, , the circumball B(t \) of t\ intersects dQ in more than one

connected component. According to Lemma 7 of Amenta and Bern [9], this implies

that B(t) contains a point m of the medial axis of dQ. Moreover, observe tha t t\

is in fact an intersecting tetrahedron. From Lemma 2.13, we finally get tha t 6 > j.

However, this raises a contradiction, since 8 is assumed to be no larger than ■

The next two Lemmas prove a few useful properties for the mesh AA and its

boundary dA i. Our goal is to show that dAAj is always non-empty and does not have

38

boundary (Lemma 2.16), a fact th a t will be used for proving the fidelity guarantees

(Theorem 2.4).

Lem m a 2.15 Let 8 < Then, M j ^ 0.

Proof: For the sake of contradiction, assume that M j is empty. T hat means that

there is no tetrahedron whose cireumcenter lies inside Qj. Since the triangulation

V (V) covers all the domain, the circumballs of the tetrahedra in V (P) also cover the

tissue Qj. Therefore, there has to be a circumball B(t) {t € T> (V)) which contains a

point m on the medial axis of dQj, such that m lies inside By our assumption,

the cireumcenter c(t) cannot lie inside Qj. Therefore, t is an intersecting tetrahedron.

From Lemma 2.13, we finally get tha t However, this raises a contradiction,

since 8 is assumed to be no larger than ■

Lem m a 2.16 Let 8 < | . Then d M j is a non-empty set and does not have boundary.

Proof: The fact that d M j is a non-empty set follows directly from Lemma 2.15:

since M j cannot be empty, its boundary d M j cannot be empty too. For the other

part, since d M j is the boundary of a set of tetrahedra, it cannot have boundary.

■
The following Theorem proves the fidelity guarantees achieved by our algorithm:

T h e o re m 2.4 Let 8 = 0.0168. Then the mesh boundary d M is a 2-manifold ambient

isotopic to dQ and the 2-sided Hausdorff distance between the mesh boundary and dQ

is 0 {8 2).

Proof: Bv Theorem 2.1, it is enough to prove tha t dM. is the restriction to dQ of the

Delaunay triangulation of a 0.09-sample. We will, in fact, show th a t the boundary

d M j of the submesh M j is equal to T > (B j) (recall th a t Ej is equal to V n dQj)

which is the restriction to dQj of the Delaunay triangulation of a 0.09-sample of dQ \.

by Corollary 2.1. This is enough, since this would prove that the boundary of each

subrnesh M \ is an accurate representation of the interface dQj, for any i and j .

Let / be a facet in d M j . From Lemma 2.14. we know that / £ T>̂gQ] (V) that f ' s

vertices lie on dQj. Let B be the surface ball of / . From Definition 2.5. the interior

3 9

int (B) of B is empty of vertices in V. Therefore, int (B) is empty of vertices in

V fl dilj also. W ithout loss of generality, assume that the vertices in V are in general

position. Since there is a ball B th a t circumscribes / and does not contain vertices

of V fl dH\ in its interior, / has to appear as a simplex in T> (V D dQ?). Since the

center of B lies on dill, then the Voronoi dual of / intersects diij in T>\qq (V Pi di l j) .

as well. Hence, d M \ C V^dQJ (V n<9Qj).

For the other direction, we will prove tha t dJA\ cannot be a pi’oper subset of

T>\g n 3 (V f l dQ\), and therefore, equality between these two sets is forced. Toward

this direction, we will prove tha t any proper non-empty subset of T>̂aQj (v n d i V ,)

has boundary; this is enough, because we have proved in Lemma 2.1C tha t d A i j is

non-empty and does not have boundary.

Since V n dQj meets the requirements of Theorem 2 .1 , T>̂anj (V n<9f2:?) is a 2-

manifold without boundary. Therefore, any edge in (V D dQj) is incident to

exactly two facets of (V fl<9f2j). Since any proper non-empty subset A of

T>\m 3 {V n d i l i) has fewer facets, A contains at least an edge e incident to only one

facet. However, this implies tha t e belongs to the boundary of A , and the proof is

complete. ■

2.6 Im plem entation d eta ils

Wc used the Insight Toolkit (ITK) for image processing [7]. ITK provides, among

others, the implicit function / tha t describes object Q to be meshed (see Section 2.1).

Specifically, given a real point p, f returns 0 if the voxel enclosing p is in the back­

ground, or it returns the identifier i of the tissue Hi if that voxel belongs to

i = 1 , . . . ,n. fn order to compute the closest feature point function cfp (p) and iden­

tify the cloud of points lying on dH, we make use of the Euclidean Distance Transform

(EDT) as implemented in ITK and presented in [97|. Specifically, the EDT returns

the boundary voxel p' which is closest to p. Then, we traverse the ray pp' and we com­

pute the intersection between the ray and OH by interpolating the positions where /

changes value [9G]. The actual mesh generator was built on top of the Computational

4 0

Geometry Algorithms Library (CGAL) [6 j. CGAL offers flexible data structures for

Delaunay point insertions and removals and robust exact geometric predicates.

The rest of this section describes im portant implementation aspects.

2.6.1 M edial A xis A pp roxim ation

Recall that rules R1 and R2 make an extensive use of l f s ^ (-) , and therefore, knowl­

edge about the medial axis is needed.

Since the computation of the exact medial axis is a difficult problem [50,70], we

seek a good (for our purposes) approximation of it. Precisely, we are interested in

computing lfs^n (p): the approximation of lfsg^ (p), where p € dil.

R em ark 2.3 In this subsection, we do not alter the fidelity guarantees of Theo­

rem 2 -4 , since the theorem assumes that lfsau (•) is known and accurate; in this sub­

section, we attempt to provide a fast way to approximate lfsm (•).

For an excellent review of image-based medial axis approximation methods, see

the work of Coeurjolly and M ontanvert [49]. The authors also describe an optimal

algorithm (MAEVA1) for the com putation of the medial axis, which is a free im­

plementation to download. We found out, however, th a t although the method is

fast, the resulted discrete medial axis was not accurate enough for our purposes.

We attribute this behavior to the fact tha t image-based methods do not realize the

underlying shape; they compute the medial axis of volumetric data, which contains

discontinuities and thus, renders the com putation unstable.

Amenta et al. [11] and Dey and Zhao [50] (and the references therein) consider

methods that given a set of sample points on the surface, they approximate the

medial axis from their Voronoi diagram. Their key concept is the Pole of a feature

vertex, a technique that we integrate into our algorithm in order to compute ifs^j (■).

Boissonnat, and Oudot [28] describe a two-phase algorithm that is able to approximate

the medial axis based on the notion of the Lambda-Medial Axis [33]. The Lambda-

Medial Axis makes weaker assumptions about the sample and as such, it is suitable

Uittp: liris.cnrs.fr david.coeurjolly doku doku.php?id codeiinaova

41

for noisy data. Nevertheless, we found tha t the Pole technique is easier to implement

and quite robust for our purposes in all the input images we tried. It should also

be mentioned tha t both the Pole and the Lambda-Medial Axis technique focus on

surface recovery and not volume meshing. T hat means that they assume that only

vertices on the isosurface are allowed (i.e., the sample). This is not the case in this

work, since the quality criteria might dictate the insertion of vertices in the interior

of the domain. As we explain below, this difference necessitates the simultaneous

maintenance of a second triangulation.

Let E be a vertex set on dQ. and consider the voronoi vertices of the voronoi cell of

a feature vertex v G E. The voronoi vertices inside f2 (if any) are called internal and

the rest (if any) external. Amenta et al. [11] shows tha t if E is dense, the internal pole

(i.e., the furthest from v internal voronoi vertex) is close to the medial axis contained

in fl, and the external pole (i.e., the furthest from v external voronoi vertex) is close

to the medial axis contained in the complement of fl. Therefore, the poles of each

sample point form a good discrete approximation of the medial axis.

The problem with the poles (as a good approximation of the medial axis) is tha t

E has to be a dense sample of the surface; however, our algorithm needs the approx­

imation of the medial axis, so it can create a graded sample E. Recall th a t we do

not assume that a starting sample set is known a priori. In fact, when the algorithm

starts, there is not a even a single feature vertex inserted into the triangulation. In

order to resolve this cyclic dependency, our algorithm alternates between two modes:

a “uniform” and a “graded”.

Specifically, the algorithm m aintains a second triangulation T> (Z) (together with

the triangulation T>(V). see Section 2.2) which contains only feature vertices. To

compute lfsas; (2). 2 is inserted into the current set of feature vertices Z, and V (Z)

is updated. Next, the poles of 2 are computed from 2?(Z), and the distance from

2 to its closest pole is returned as the approximation of the distance from 2 to the

medial axis. Clearly, in the early stages of the refinement, Z is a very sparse sample

set, and, therefore, the poles of 2 £ Z are not to be trusted as a good approximation

of the medial axis. Note, however, that these poles can only be further from z, than

the poles computed at a much denser sample set. In other words, when Z is sparse.

42

lfsgu (z) gives a larger value than it should (i.e, lfsau (2) is larger than lfs9!? (2)). This

has severe consequences, since it is possible for the resulting sample not to be as dense

as it should.

For this reason, instead of returning just the value of lfs^n (2), we choose to return

the following quantity: min{A, lfsan (2)}, where A will be specified shortly. When

lfsan (z) is too large (i.e., larger than A), the value of A is returned. Param eter A acts

as a safety net and simulates the uniform mode of the algorithm: in the worst case,

a uniform sample set will be generated, whose density depends on A. Note th a t the

uniform mode is triggered mostly in the early stages of the algorithm. Later 011, more

and more feature vertices are inserted into the triangulation, and the medial axis is

sufficiently described by the poles; and this is when the graded mode of the algorithm

is activated.

Specifying a value for A is not intuitive. If A is small, then the approximation of

the medial axis would be more accurate, but the graded mode would be activated

fewer times, sacrificing in this way a well-graded surface mesh. On the other hand,

if A is large, then we would expect to see better grading, but it is likely for the

approximation of medial axis to be so bad (i.e., it is likely that lfsr9n (•) is too large),

such that the graded mode w'ould fail to capture the curvature of dfl. Nevertheless,

extensive experimental evaluation on both synthetic and real medical images has

shown that in most cases, setting A to a value 12 times the size of the voxel suffices.

Note that if the users are not interested in achieving grading along the surface,

the second triangulation V (Z) is not needed a t all, since they could define lfsgS2 (p)

to l)e simply equal to A.

2.6.2 D ihedral angle im provem ent

Provable theoretical guarantees on the minimum and maximum dihedral angles are

outside the scope of this thesis. Nevertheless, for practical purposes, we felt that the

issue of sliver removal and dihedral angle improvement should be addressed.

We could apply the sliver exudation technique |34| in order to improve the dihedral

angles. Edelsbrunner and Guoy [58]. however, have shown that in most cases sliver

43

exudation does not remove all poor tetrahedra: elements with dihedral angles less

than 5° survive. The random perturbation technique [91] offers very small guarantees

and sometimes requires many (random) trials for the elimination of a single sliver as

reported in [81].

A straightforward and inexpensive way to eliminate slivers is to try to split them

by inserting their circumcenter. Shewchuk [117] shows tha t this technique works when

the slivers are far away from the mesh boundary. However, when slivers are close to

the mesh boundary, the newly inserted points alter the boundary triangles. In fact,

the boundary triangles might not have their vertices on the surface any more, or

might not even belong to the restricted triangulation. In this subsection, we propose

point rejection strategies that prevent the insertion of points which hurt fidelity.

Our algorithm first tries to convert illegal facets to legal ones. We define legal

facets to be those restricted facets whose vertices lie precisely on dQ. Conversely, a

restricted facet with at least one vertex not lying on dQ is called an illegal facet.

Let / be an illegal facet and e its voronoi edge (see Figure 2.Ga). Recall th a t e

has to intersect dQ (see Section 2.1) at a point p. Any vertex v of / which do not lie

precisely on dQ is deleted from the triangulation, while point p is inserted.

In addition, the algorithm tries to keep in the Delaunay triangulation as many

legal facets as possible. Let c be the circumcenter of a sliver considered for insertion.

If the insertion of c eliminates a legal facet / (see Figure 2.6b), then c is not inserted.

Instead, a point p on the intersection of dQ and / ’s voronoi edge e is inserted.

In summary, we cope with slivers by augmenting our algorithm (see Section 2.2)

with the following two rules:

R 6 : If an illegal facet / appears, then all its vertices tha t do not lie on the surface

are deleted and a point p on Vor (/) n dQ is inserted (Figure 2.0a).

R 7: Let t be a sliver and c its circumcenter. If c eliminates a legal facet / , then c is

rejected. Instead, a point on p on Vor (/) D dQ is inserted (Figure 2.6b).

We define slivers via the optimization metric g. as described by Liu and .Joe |93|.
12 (3uDSpecificallv. for a tetrahedron t. g(t) = — g------ , where v is the volume of t. and lt
£ i = i l ?

44

V.
(a) (b)

Figure 2.6: The point, rejection strategies, (a) / is an illegal facet, (b) / is a legal facet.

are the lengths of Vs edges. We chose rj, because its com putation is robust even when

t is an almost flat element. In [93], it is proved that 0 < rj(t) < 1. Moreover, rj is 0

for a flat element, and 1 for the regular tetrahedron.

We consider a tetrahedron t to be a sliver, if rj (t) is less than 0.06. The reason we

chose this value is because: (a) it introduces a small size increase (about 15%) over the

mesh obtained without our sliver removal heuristic (i.e., without rules R 6 and R7),

and (b) it introduces a negligible time overhead. In the Experimental Section 2.7,

we show that this 0.06 bound corresponds to meshes consisting of tetrahedra with

dihedral angles between 4.6° and 171°.

Note that R6 and R7 never remove feature vertices; on the contrary, they might

insert more to “protect” the surface. Hence, they do not violate Theorem 2.4:

the mesh boundary continues being ecpial to the restricted Delaunay triangulation

T \̂dn {V HdD), and therefore a good approximation of the surface. In order not to

compromise termination (and the guarantees we give for the radius-edge ratio and

the boundary planar angles), if R6 or R7 introduce an edge shorter than the shortest

edge already present in the mesh, then the operation is rejected and the sliver in

question is ignored.

4 5

T a b l e 2 .1 : P e r f o r m a n c e a c h ie v e d b y o u r a lg o r i t h m a n d C G A L .

(a) Our algorithm. A is set to 12 times the spacing length of the corresponding image, S to 2. pt to \ / \ / 3 + 2. and pj
to 1.

In p u t
| E m b e d d e d S p h ere s T o ru s | B ra in S to m a c h S k e le to n C o lo n K n e e a t las H e a d -n e c k a t la s

a c h iev ed j|
radius-(*dge ra t in j| \ 9 3 1.03 1.93 1.84 1.93 1.93 1.93 1.93
ach iev ed p la n a r
b o u n d a ry an g le s

(deg rees)

1

| 30.0 30 .0 3 0 .0 3 0 .0 30.0 30 .0 3 0 .0 3 0 .0
- V ertices | 2 .4 2 8 2 .2 9 9 6 .0 2 3 4 .7 1 2 50 . 759 5 .9 1 7 102. 330 36 . 174

- B o u n d a r y fa ce ts 3 ,6 2 6 3 .8 9 8 1 0 .0 8 0 8 . 254 95 . 778 1 1 .0 4 0 146. 460 7 4 ,7 6 8
- E le m e n ts 8 .7 7 4 7 .7 2 7 21.13G 15.79C ̂ 163. 120 18. 545 426. 592 11 2 .7 7 8

sh o rte s t m esh ed g e (n u n) 1 0 .43 0.61 2.83 4.78 3.9 3 1 9 2 .2 8 .2
ac h iev ed d ih e d ra l .angles

(degress,) 1 3 .1 3 - I 5 o . 3 4 12.2 - 155.6 12.0 - 155.7 12.3 - 155.2 10 .8 - 156.0 11.3 - 155.8 4 .6 - 170.1 4 .7 - 170 .0
l im e (sees) ! 1.4 1.3 4 .8 2 . 6 41 8 5.3 43.9 20 3

(b) Performance achieved by CGAL on the sam e set o f images, pt is set to v/y/3 + 2, and p/ to 1.
In p u t

E m b e d d e d S p h ere s T o ru s B ra in S to m a c h S k e le to n C o lo n K n e e a t la s H e a d -n e c k a t la s
ach ieved-

ra d iu s-e d g e ra tio 1.41 1.30 1 .8 6 1.34 2.63 1.40 2.34 2.71
ac h iev ed p la n a r
b o u n d a ry .m gles

(d eg rees) 30 .0 30 .0 16.5 30 .0 20.3 2 2 .6 30 .0 1 0 .6

- V e r t ic e s 7. 099 1 .684 3 ,9 7 3 3 .4 4 7 42. 60 3 4 .8 3 4 8 1 .7 5 3 3 5 .7 5 5
- B o u n d a ry facet s 3. 682 1 ,4 5 0 2 ,5 5 4 2 . 8 6 6 5 4 .3 4 0 5 ,9 8 0 5 3 .1 8 6 6 0 ,G74

^ E le m e n ts 3 7 .7 1 8 7, 937 2 0 ,2 7 1 1 6 .4 4 2 173, 858 19, 524 430. 827 1 2 7 .6 8 4
sh o rte s t m esh ed g e (n u n) 0 .56 1.42 2 .63 3 .6 7 ft. 0 1 3 .19 0.26 ft. 15
ach iev ed d ih e d ra l an g le s

(d e g m -s) 11.87 - 161.30 14.3 - 159.3 11.3 - 161.5 11.0 - 163.8 1 0 . 0 - 165.7 12.0 - 160.5 2 .1 - 176.1 6 .5 - 169 .8
T im e (sees) 1 .0 0 .2 0 . 6 0.5 1 0 .0 1 .0 13.7 8 .8

We experimentally found th a t the point rejection strategies were able to generate

tetrahedra with angles more than 5° and less than 170°. We emphasize th a t neither

fidelity (see Theorem 2.4) nor termination (see Theorem 2.2) is compromised with

this heuristic.

2.7 E xperim ental E valuation

This section presents the final meshes generated by our algorithm on synthetic and

real medical data. All the experiments were conducted on a 64 bit machine equipped

with a 2.8 GHz Intel Core i7 CPU and 8 GB of main memory. For the 3D visualization

of the final meshes, we used Para View [122]. an open source visualization application.

Although the fidelity guarantees we give hold for a very small value of S (see

Theorem 2.4), we wanted to see if our algorithm works well for much larger values of

S. Specifically, for all the experiments, we set S to 2, i.e.. we set d to a value about 200

4 6

T a b l e 2 .2 : I n f o r m a t io n a b o u t t h e i n p u t im a g e s .

Image Resolution Spacing (mm3) Tissues
Single Sphere 416 x 416 x 416 0.04 x 0.04 x 0.04 1

Embedded Spheres 634 x 416 x 416 0.04 x 0.04 x 0.04 3
Torus 147 x 147 x 67 0.25 x 0.25 x 0.25 1
Brain 316 x 316 x 188 0.93 x 0.93 x 1.5 1

Stomach 140 x 186 x 86 0.96 x 0.90 x 2.4 1
Skeleton 359 x 265 x 218 0.96 x 0.96 x 2.4 1

Colon 296 x 167 x 117 0.96 x 0.96 x 1.8 1
Knee atlas 413 x 400 x 116 0.27 x 0.27 x 1 49

Head-neck atlas 241 x 216 x 228 0.97 x 0.97 x 1.4 60

times larger than Theorem 2.4 recommends. A larger value of <5 also implies tha t the

size of the output mesh is smaller. Small-size meshes are desirable for two reasons:

first, because the mesh generation execution time is considerably less (as it can be

seen below, see Table 2.1a), and second, because finite element simulations [18,19)

on them run faster. We observed tha t even though the fidelity guarantees proved in

Section 2.5 do not hold for large S, the results in fact are pretty good. (We should

also note tha t in some applications fidelity is not tha t im portant. For instance, a

study on the impact of 5 for the non-rigid registration problem [06] shows th a t the

accuracy and speed of the solver is not very sensitive to fidelity.)

As mentioned in Section 2.0.1, in all the following experiments, A is set to 12 times

the voxel size (i.e., length of the image spacing). Recall th a t A is used so tha t we can

compute an approximation of lfsgn (p), for p E dil.

For all the experiments, we set pt to yjy/3 + 2 and p f to 1, and therefore (from

Theorem 2.2) termination is certain, all the output tetrahedra are guaranteed to have

radius-edge ratio less than \ f \/3 4- 2. and all the boundary facets are guaranteed to

have planar angles larger than 30°. Recall tha t quality is not affected by any value

of S. Although these parameters imply infinite grading constants (Theorem 2.3),

grading is much better in practice, an observation that is also reported in [118] and

demonstrated in this Section as well.

The first set of experiments dem onstrates the use of custom size functions. Note

that the use of any size function alters neither the quality nor the fidelity guaran­

tees. since it is incorporated in Theorem 2.2 (see Section 2.3) and Theorem 2.4 (see

47

Section 2.5).

We synthetically created the image of a sphere of radius 10mm and center (0, 0, 0).

See Table 2 .2 for information about this image. We ran our algorithm on the sphere

image three times, each of which with a different size function: sfi (•) ,sf2 (•) , and

sf3 (•). sfi (•) restricts the radii of the elements to be smaller than 5mm, while sf2 (•)

restricts the radii of the elements to be smaller than 1mm. sf3 (•) is a non-uniform

size function. Specifically, it behaves as sfi (•) for z > 0 and as sf2 (-) for the other

part of the sphere.

Figure 2.7 depicts the results. In all these three experiments, the achieved radius-

edge ratio is less than \Jy/3 -F 2, and the planar angles are larger than 30°, as theory

dictates. Moreover, the dihedral angles of the output tetrahedra are between 12.9°

and 155.8°.

Observe that although param eters S and A (the ones directly responsible for the

sampling density) are fixed for all three runs, the sample density varies. In fact, small

size functions (i.e., size functions tha t take low values) make the boundary vertices

denser (compare Figure 2.7a and Figure 2.7b for example). Figure 2.7c shows better

exactly that: the surface is sampled more where the size function takes low values,

and less otherwise. This indirect effect is expected and it is due to R3. Because of a

small size function, more free vertices are inserter close to the surface. This, in turn,

is likely to invalidate more restricted facets; that is, more restricted facets will not

have their vertices on the surface, and thus, R3 is triggered dictating the insertion of

more feature vertices to protect the restricted facets.

The next set of experiments shows the output of our method on difficult geometries

both manifold and non manifold. Although the fidelity guarantees about the topology

of the output mesh are proved only for manifold domains, in this Section we show that

our method behaves fairly well for non-manifold cases (see Figure 2 .1 1 for example)

as well.

The first couple of images are the embedded spheres and a torus we synthetically

created. The third is an MRI brain image obtained from Huashan H ospital2. The

-Huashan Hospital. 12 Wulumuqi Zhong I.u. Shanghai. China.

4 8

next three images are CT segmented scans of a skeleton, a colon, and a stomach,

obtained from IRCAD Laparoscopic Center3. The last two images are the MRI knee

atlas [112] and the CT head-neck [80] atlas obtained from the Surgical Planning

Laboratory of Brigham and Women’s H ospital1. Information about the input images

is shown in Table 2.2. Figure 2.8, Figure 2.9, Figure 2.10, and Figure 2.11 show the

meshes produced by our algorithm on these input images.

Table 2 .1a reports some statistics for the meshes generated by our algorithm. The

observed largest radius-edge ratio in all the meshes is no more than \ / \ / 3 + 2 and

the observed planar angles of the boundary facets in all meshes is no smaller than

30° corroborating in this way the theory.

Also, for the meshes of Figure 2.8, Figure 2.9, Figure 2.10, and Figure 2.11, notice

that: (a) the interior of the object (i.e. the part away from the surface) is meshed

with fewer and bigger elements (volume grading), and (b) in most cases, more and

smaller boundary triangles mesh parts of the surface close to the medial axis (surface

grading). Graded meshes greatly reduce the total number of elements, representing,

at the same time, difficult geometries (i.e., geometries with high curvature and /or

non-manifold parts) accurately.

For comparison, Table 2.1b shows the meshes generated by CGAL [G], the state

of the art mesh generation tool we are aware of, able to operate directly on images

as well. We set the quality param eters to the same values with the ones used in our

algorithm. Note, however, tha t CGAL does not offer surface grading according to the

local feature size. Nevertheless, we were able to set an upper limit on the radii of all

the tetrahedra, so that the resulting meshes have similar number of elements to the

meshes produced by our algorithm.

Indeed, observe that both Table 2.1a and Table 2.1b report similar mesh sizes on

the same input image, with one exception: the mesh size on the Embedded Spheres

generated by CGAL is more than 4 times larger than the one generated by our method.

The reason for this mismatch is the fact that CGAL found it difficult to recover the

red ball (see F'igure 2.8a) with a small number of elements. We had to considerably

3http: wvvw.irrad.fr
’http: www. spl. harvard.edu

49

increase the size of the whole mesh so that CGAL could represent both connected

components.

Table 2.1a and Table 2.1b suggest that the quality achieved by our m ethod is

comparable to CGAL’s. The execution time of our method is much higher, but

this is expected since the surface grading offered by our algorithm necessitates the

computation of the poles and the maintenance of a second mesh, slowing down the

overall meshing time. Improving the speed of our algorithm is the main focus of the

next chapter.

50

(a) sfi (•): the radii are smaller than 5mm.

(b) sf2 (•): the radii are smaller than 1mm.

(c) sf3 (•): the radii are smaller than 5mm for z > 0 and smaller than 1mm for
z < 0.

Figure 2.7: Demonstrating the use of size functions. The whole mesh and a cross section of it is
displayed. A is set to about 12 times the spacing length of the image (i.e.. A = 12\/3 • 0.042 ss 0.83),
6 to 2, pi to n/\/3*+~2- anti pf to 1.

(a) embedded spheres

(b) torus

Figure 2.8: The final meshes produced by our algorithm for the embedded spheres and the torus.
The first mesh of each row illustrates the whole mesh and the second a cross-section of it.

52

(a) brain

(h) stomach

Figure 2.9: The final meshes produced by our algorithm for the brain and the stomach.

53

(a) skeleton

(b) colon

Figure 2.10: The final meshes produced by our algorithm for the skeleton and the colon.

(a) knee atlas

(b) head-neck atlas

Figure 2.11: The final meshes produced by our algorithm for the multi-tissue knee and head-neck
atlases.

Chapter 3

High Quality Real-Time

Image-to-Mesh Conversion for Finite

Element Simulations

In this chapter, we present a parallel Image-to-Mesh Conversion (I2M) algorithm

with quality and fidelity guarantees achieved by dynamic point insertions and re­

movals. Starting directly from an image, its implementation is capable of recovering

the isosurface and meshing the volume with tetrahedra of good shape. Our tightly-

coupled shared-memorv parallel speculative execution paradigm employs carefully

designed contention managers, load balancing, synchronization and optimizations

schemes. These techniques are shown to boost not only the parallel but also the

single-threaded efficiency of our code. Specifically, our single-threaded performance

is faster than both CGAL and TetGen, the sta te of the art sequential open source

meshing tools we are aware of. The effectiveness of our method is dem onstrated on

Blacklight, the Pittsburgh Supereornputing Center s cache-coherent XUMA machine.

We observe a more than 82% strong scaling efficiency for up to 04 cores, and a more

than 82% weak scaling efficiency for up to 144 cores, reaching a rate of more than

5 6

Figure 3.1: (a) The virual box is meshed into 6 tetrahedra. It encloses the volumetric object,
(b) During refinement, the final mesh is gradually being carved according to the Rules, (c) At the
end, the set of the tetrahedra whose circumcenter lies inside fl is the geometrically and topologically
correct mesh M.

14.3 million elements per second. This is the fastest 3D Delaunay mesh generation

and refinement algorithm, to the best of our knowledge.

3.1 Background: D elaunay R efinem ent for S m ooth Surfaces

Sequential Delaunay Refinement for smooth surfaces is presented in detail in the

literature [109,110] and in our previous work [62,04]. In this Section, we briefly

outline the main concepts.

As is usually the case in the literature [9, 89, 110], we assume that the surface of the

object dQ to be meshed is a closed smooth 2-manifold. To prove th a t the boundary

dM. of the final mesh M. is geometrically and topologically equivalent with dQ. we

make use of the sample theory [9]. Om itting the details, it can be proved |9, 11] that

the Delaunay triangulation of a dense pointset lying precisely on the isosurface dQ

contains (as a subset) the correct mesh A4. T hat mesh consists of the tetrahedra t.

whose circumcenter c(t) lies inside Q. Formally, the sample theorem could be stated

as follows [1 1 . 28, 56]:

T h e o re m 3.1 Let V he samples of dQ. I f for any point p 6 dQ. there is a sample

i: E V such that |r - p\ < S. then the boundary triangles of D o (V) is a topologically

correct representation of dQ. Also, the 2-sided Hausdorff distance between the mesh

and dQ is 0 (S 2).

Typical values for 5 are usually fractions of the local feature size of dQ. See [11, 28,

50, 109] for well defined S parameters. In our application, d values equal to multiples

of the voxel size is sufficient.

Therefore, one of the goals of the refinement is to sample the isosurface densely

enough. To achieve that, our algorithm first constructs a virtual box which encloses

fl. The box is then triangulated into 0 tetrahedra, as shown in Figure 3.1. This is

the only sequential part of our method. Next, it dynamically computes new points

to be inserted into or removed from the mesh maintaining the Delaunay property.

This process continues, until certain fidelity and quality criteria are met. Specifi­

cally, the vertices removed or inserted are divided into 3 groups: isosurface vertices,

circumcenters, and surface-centers.

The isosurface vertices will eventually form the sampling of the surface so tha t

Theorem 3.1 holds together with its theoretical guarantees about the fidelity of the

mesh boundary. Let c (£) be the circumcenter of a tetrahedron t. In order to guarantee

termination, our algorithm inserts the isosurface vertex which is the closest to c. (t). In

the sequel, we shall refer to the Closest IsoSurface vertex of a point p as cfp (p) e dQ.

The isosurface vertices (like the circumcenters) are computed during the refinement

dynamically with the help of a parallel Euclidean Distance Transformation (EDT)

presented and implemented in [123]. Specifically, the EDT returns the surface voxel

q which is closest to p. A surface-voxel is a voxel tha t lies inside the foreground and

has at least one neighbor of different label. Then, we traverse the ray p§ on small

intervals and we compute cfp (p) € dQ by interpolating the positions of different

labels [90]. The density of the inserted isosurface vertices is defined by the user by

a parameter d > 0. A low value for 6 implies a denser sampling of the surface, and

therefore, according to Theorem 3.1, a better approximation of dQ.

The circumcenter c(t) of a tetrahedron t is inserted when t has low quality (in terms

of its radius-edge ratio [117]) or because its circumradius r(t) is larger than a user-

defined size function sf(-). Circumcenters might also be chosen to be removed, when

they lie close to an isosurface vertex, because in this case termination is compromised.

Consider a facet / of a tetrahedron. The Voronoi edge V(f) of / is the segment

connecting the circumcenters of the two tetrahedra tha t contain / . The intersection

V(f) fl dQ is called a surface-center and is denoted by csurf(/) . During refinement,

surface-centers are computed similarly to the isosurfaces (i.e., by traversing V(f) on

small intervals and interpolating positions of different labels) and inserted into the

mesh to improve the planar angles of the boundary mesh triangles [118] and to ensure

that the vertices of the boundary mesh triangles lie precisely on the isosurface [109].

In summary, tetrahedra and faces are refined according to the following Refinement

Rules:

• R l: Let t be a tetrahedron whose circumball intersects dQ. Compute the closest

isosurface point z = cfp (c (t)). If 2 is at a distance not closer than 5 to any other

isosurface vertex, then z is inserted.

• R2: Let t be a tetrahedron whose circumball intersects dQ. If its radius r{t) is

larger than 2 • 5, then c(t) is inserted.

• R3: Let / be a facet whose Voronoi edge V(f) intersects dQ at csurf (/) . If either

its smallest planar angle is less than 30° or a vertex of / is not an isosurface

vertex, then csurf (/) is inserted.

• R4: Let t be a tetrahedron whose circumcenter lies inside Q. If its radius-edge

ratio is larger than 2 , then c(t) is inserted.

• R5: Let t be a tetrahedron whose circumcenter lies inside Q. If its radius r(t)

is larger than sf (c(t)), then c(t) is inserted.

• R6: Let t be incident to an isosurface vertex 2 . All the already inserted circum­

centers closer than 25 to 2 are deleted.

Rules R l and R2 are responsible for creating the appropriate dense sample so

that the boundary triangles of the resulting mesh satisfies Theorem 3.1 and thus the

fidelity guarantees. R.3 and R4 deal with the quality guarantees, while R5 imposes the

size constraints of the users. RG is needed so termination can be guaranteed. See [02.

G4.109) for more details. W hen none of the above rules applies, then refinement, is

complete. In our previous work [62,64], we prove th a t termination is guaranteed, the

radius-edge ratio of all elements in the mesh is less than 2 , and the planar angles of

the boundary mesh triangles is less than 30°.

3.2 P arallel D elaunay R efinem ent for Sm ooth Surfaces

A lgorithm 2: The parallel mesh generation algorithm. It is executed by each thread.
1 A l g o r i t h m : G e n e r a t e N e s h (Z . «’>. />. s / () . t i d)

I n p u t : Z i s t h e i m a g e c o n t a i n i n g U ,
d i s t h e p a r a m e t e r t h a t d e t e r m i n e s t h e d e n s i t y o f t h e s u r f a c e s a m p l i n g .
P { > 2) i s t h e t a r g e t r a d i u s - e d g e r a t i o ,
s f (-) i s t h e s i z e f u n c t i o n ,
t i d i s t h e u n i q u e i d e n t i f i e r o f t h e t h r e a d .

O u t p u t : A D e l a u n a y m e s h A d t h a t i s g u a r a n t e e d t o (a) a p p r o x i m a t e O i l i n a c o r r e c t it o p o l o g i c a l w a y w i t h H a u s d o r f f d i s t a n c e w i t h i n

0 (6 ^ } , < b > b e c o m p o s e d o f e l e m e n t s w i t h r a d i u s - e d g e r a t i o l e s s t h a n /> a n d (c
t h a n 3 0 ° .

} h a v e b o u n d a r y f a c e t s w i t h p l a n a r a n g l e s l a r g e r

3 i f t i d 0 t h e n / • I f i t i s t h e a a i u t h r e a d * /
/ * At t h i s a o a e n t , b o t h t h e a e s h and a l l PELs a r e e a p t y . « /

3 I n s e r t t h e 8 v e r t i c e s o f a b o x w h i c h c o n t a i n s 11.
4 P E L q = P E L q u N n w E l c m i m t s ;

5 e n d
6 w h i l e P E L f i d ^ d o
r t - P E L t j d n e x t I) ;
8 i f l o c k i n g t ' a v e r t i c e s i s n o t s u c c e s s f u l t h e n
9 U n l o c k r e l a t e d v e r t i c e s ; I n v o k e C o n t e n t i o n M a n a g e r ; c o n t i n u e ;

1 0 e n d
1 1 i f t i s o n i n t e r s e c t i n g t e t r a h e d r o n t h e n
1 3 C o m p u t e 2 = c f p (r (t)) ; / * p o t e n t i a l HI e l e m e n t • /
1 3 i f t h e r e i s o n i s o - s u r f a c e v e r t e x c l o s e r t h a r i 6 t o z t h e n
1 4 i f r (t) > 2 6 t h e n
1 5 C o m p u t e 2 = r (t) ; / * R2 e l e a e n t • /
1 8 e n d

1 7 e n d

1 8 e l s e
1 9 i f t i s a d j a c e n t t o a r e s t r i c t e d f a c e t f , s u c h t h o i /* (/) 1 o r f ' s v e r t i c e s d o n o t l i e o n O i l t h e n
3 0 C o m p u t e 2 — c s u r f (/) ; / • R3 a p p l i e s . * /
3 1 e l s e
3 3 i f c (t) l i e s i n s i d e I t a n d e i t h e r p (t) > p o r r (t) > s f {<: (t .)) t h e n
3 3 C o m p u t e 2 - c (<) ; / * R4 o r RS a p p l y . • /
3 4 e l s e
3 5 P E L t j (i =, P E L l j d / * t i s n o t a po or e l e a e n t * /
3 6 U n l o c k a l l t h e r e l a t e d v e r t i c e s ; c o n t i n u e ;

3 7 e n d

3 8 e n d

3 9 e n d
3 0 i f 2 i s a i s o s u r / a c e v e r t e x t h e n
3 1 P r e p a r e t o d e l e t e a l l t h e f r e e v e r t i c e s t h a t a r e c l o s e r t h a n 2 6 t o z .
3 3 e n d
3 3 i f l o c k i n g t h e v e r t i c e s f o r t h e o p e r a t i o n i s n o t s u c c e s s f u l t h e n
3 4 R o l l b a c k ; U n l o c k r e l a t e d v e r t i c e s ; I n v o k e C o n t e n t i o n M a n a g e r ; c o n t i n u e ;
3 5 e n d
3 6 I n s e r t z a n d d e l e t e t h e v e r t i c e s (i f a n y) ; U n l o c k a l l t h e r e l a t e d v e r t i c e s ;
3 7 i f L i e g g i n g L i s t 0 t h e n
3 8 o t h e r t i d — B e g g i n g L i s t —* f i r s t (>;
3 9 •’ E L u 7 h r r i d = r a „ t h , r J d u N . w E l r i n r a t , : / * G i v e v o r k t o b e g g i n g Thread o t h e r . i d • /

4 0 W a k e T h r e a d o t h e r i d ; / • N o t i f y Thread o t h e r . i d t h a t i t ca n c h e c k i t s PEL a g a i n » /
4 1 B e g g i n g L i s t = B e g g i n g L i s t - { o t h e r i d } .

4 3 e n d

4 3 e n d
4 4 i f B e g g i n g L i s t s i z e / i ! =-• & T h r e a d s - I t h e n / • I t I u NOT t h e l a s t Thread t o a sk f o r vork • /
4 5 B e g g i n g L i s t p t i s h a t e n d (t i d) :
4 6 W a i t ; “ _
4 7 c o n t i n u e ; / • Nov s o a e o t h e r t h r e a d g a v e Thre ad t i d work , so PELt j fj i s n o t e a p t y any a o r e * /

4 8 e l s e / • The a e s h i s r e a d y , a l l PELs a r e e a p t y • /
4 9 L e t t h e f i n a l m e s h -V(b e e q u a l t o t h e s e t o f t h e t e t r a h e d r a w h o s e c i r c u m c e n t e r l i e s i n s i d e W;
5 0 e n d

As explained in Section 3.1, before the mesh generation starts, the Euclidean

Distance Transform (EDT) of the image is needed for the on-the-flv com putation

of the appropriate iso-surface vertices. For this pre-processing step, we make use of

the publicly available parallel Maurer filter presented and implemented by Staubs el

GO

al. [123]. It can be shown [97,123j tha t this parallel EDT scales linearly with the

respect to the number of threads.

The rest of this section describes the main aspects of our parallel code. Algorithm 2

illustrates the basic building blocks of our multi-threaded mesh-generation design.

Note that our tightly-coupled parallelization does not alter the fidelity (Theorem 3.1)

and the quality guarantees described in the previous section.

3.2.1 P oor E lem ent List (PE L)

Each thread T, maintains its own Poor Element List (PEL) PEL,. PEL, contains

the tetrahedra th a t violate the Refinement Rules and need to be refined by thread 7)

accordingly.

3.2.2 O peration

An operation tha t refines an element can be either an insertion of a point p or the

removal of a vertex p. In the case of insertion, the cavity C (p) needs to be found and

re-triangulated according to the well known Bowver-Watson kernel [30,128]. Specif­

ically, C (p) consists of the elements whose circumsphere contains p. These elements

are deleted (because they violate the Delaunay property) and p is connected to the

vertices of the boundary of C(p). In the case of a removal, the ball B p needs to

be re-triangulated. As explained in [55], this is a more challenging operation than

insertion, because the re-triangulation of the ball in degenerate cases is not unique

which implies the creation of illegal elements, i.e., elements that cannot be connected

with the corresponding elements outside the ball. We overcome this difficulty by

computing a local Delaunay triangulation T>b(p) (or Dr for brevity) of the vertices

incident to p, such that the vertices inserted earlier in the shared triangulation are

inserted into P g first. In order to avoid races associated with writing, reading, and

deleting vertices cells from a PEL or the shared mesh, any vertex touched during the

operation of cavity expansion, or ball filling needs to be locked. We utilize GCC's

atomic built-in functions for this goal, since they perform faster than the conventional

pthread try_locks. Indeed, replacing pthread locks (our first implementation) with

61

GCC’s atomic built-ins (current implementation) decreased the execution time by

3.0% on 1 core and by 4.2% on 12 cores.

In the case a vertex is already locked by another thread, then we have a rollback:

the operation is stopped and the changes are discarded [105]. When a rollback occurs,

the thread moves on to the next bad element in its PEL.

3.2.3 U p d ate new and d e le ted cells

After a thread Tt completes an operation, new cells are created and some cells are

invalidated. The new cells are those tha t re-triangulate the cavity (in case of an

insertion) or the ball (in case of a removal) of a point p and the invalidated cells are

those that used to form the cavity or the ball of p right before the operation. Tt

determines whether a newly created element violates a rule. If it does, then T) pushes

it back to PEL, (or to another th read’s PEL, see below) for future refinement. Also,

T{ removes the invalidated elements from the PEL they have been residing in so far,

which might be the PEL of another thread. To decrease the synchronization involved

for the concurrent access to the PELs, if the invalidated cell c resides in another

thread Tj s PELj, then 7’ removes c from PELj only if 7} belongs to the same socket

with T;. Otherwise, 7) raises cell c’s invalidation flag, so that T) can remove it when

Tj examines c.

As Line 49 of Algorithm 2 shows, the final mesh JA reported consists of the subset

of tetrahedra whose circumcenter lies inside the object Q. To expedite the process

of finding those elements, each thread maintains a linked list of those elements on

the fly, i.e., from the beginning of mesh generation and refinement. Thus, collecting

those elements a t the end costs constant time 0 (f iThreads). These linked lists are

updated similarly to the update of the Poor Element Lists (PELs) described in the

previous paragraph.

3.2.4 Load Balancer

Right after the triangulation of the virtual box and the sequential creation of the

first G tetrahedra. only the main thread might have a non-empty PEL. Clearly. Load

62

Balancing is a fundamental aspect of our implementation. Our base (not optimized)

Load Balancer is the classic Random Work Stealing (RHYV) [2G] technique, since it

best fits our implementation design. In Section 3.4.1, we implement an optimized

work stealing balancer that takes advantage of the NUMA architecture and achieves

an excellent performance.

If the poor element list PELj of a thread 7) is empty of elements, 7* “pushes

back” its ID to the Begging List, a global array tha t tracks down threads without

work. Then, 7) is busy-waiting and can be awaken by a thread T} right after Tj gives

some work to Tt. A running thread Tj, every time it completes an operation (i.e., a

Delaunay insertion or a Delaunay removal), it gathers the newly created elements and

places the ones tha t are poor to the PEL of the first thread 7) found in the begging

list. The classification of whether or not a newly created cell is poor or not is done

by Tj. Tj also removes Tt from the Begging List.

To decrease unnecessary communication, a thread is not allowed to give work to

threads, if it does not have enough poor elements in its PEL. Hence, each thread 7)

maintains a counter that keeps track of all the poor and valid cells th a t reside in

PELj. T is forbidden to give work to a thread, if the counter is less than a threshold.

We set tha t threshold equal to 5, since it yielded the best results. When 7) invalidates

an element c or when it makes a poor element c not to be poor anymore, it decreases

accordingly the counter of the thread tha t contains c in its PEL. Similarly, when 7)

gives extra poor elements to a thread, 7) increases the counter of the corresponding

thread.

3.2.5 C ontention M anager (C M)

In order to eliminate livelocks caused by repeated rollbacks, threads talk to a Con­

tention Manager (CM). Its purpose is to pause on run-time the execution of some

threads making sure that at least one will do useful work so that system throughput

can never get stuck [115]. See Section 3.3 for approaches able to greatly reduce the

number of rollbacks and yield a considerable speedup, even in the absence of enough

parallelism. Contention managers avoid energy waste because of rollbacks and re­

63

duce dynamic power consumption, by throttling the number of threads tha t contend,

thereby providing an opportunity for the runtime system to place some cores in deep

low power states.

3.3 C ontention M anager

The goal of the Contention Manager (CM) is to reduce the number of rollbacks and

guarantee the absence of livelocks, if possible [74,115).

We implemented and compared four contention techniques: the Aggressive Con­

tention Manager (Aggressive-CM) [115], the Random Contention Manager (Random-

CM), the Global Contention Manager (Global-CM), and the Local Contention Man­

ager (Local-CM).

The Aggressive-CM and Random-CM are non-blocking schemes. As is usually

the case for non-blocking schemes [14,74,80,105,115], we do not prove absence of

livelocks for these techniques. Nevertheless, they are useful for comparison purposes

as Aggressive-CM is the simplest to implement, and Random-CM has already been

presented in the mesh generation literature [14, 80,105).

The Global-CM is a blocking scheme and we prove tha t does not introduce any

deadlock. (Blocking schemes are guaranteed not to introduce livelocks [22)).

The last one, Local-CM, is semi-blocking, that is, it has both blocking and non-

blocking parts. Because of its (partial) non-blocking nature, we found it difficult to

prove starvation-freedom [74,75], but we could guarantee absence of deadlocks and

livelocks. It should be noted, however, that we have never experience any thread

starvation when using Local-CM: all threads in all case studies are making progress

concurrently for about the same period of time.

Note that none of the earlier Transactional Memory techniques [74,115] and the

Random Contention Managers presented in the past [14,80,105] solve the livelock

problem. In this section, we show that if livelocks are not provably eliminated in our

application, then termination is compromised on high core counts.

For the next of this Section assume that (without loss of generality) each thread

64

always finds elements to refine in its Poor Element List (PEL). This assumption

simplifies the presentation of this Section, since it hides several details tha t are mainly

related to Load Balancing. The interaction between the Load Balancing and the

Contention Manager techniques does not invalidate the proofs of this Section.

3.3.1 A ggressive-C M

The Aggressive-CM is a brute-force technique, since there is no special treatm ent.

Threads greedily attem pt to apply the operation, and in case of a rollback, they just

discard the changes, and move on to the next poor element to refine (if there is any).

The purpose of this technique is to show th a t reducing the number of rollbacks is

not just a m atter of performance, but a m atter of correctness. Indeed, experimen­

tal evaluation (see Section 3.3.5) show's tha t Aggressive-CM very often suffers from

livelocks.

3.3.2 R andom -C M

Random-CM has already been presented (with minor differences) in the literature [14,

8 G, 104,105] and worked fairly well, i.e. no livelocks were observed in practice. This

scheme lets “randomness” choose the execution scenario that w'ould eliminate live­

locks. We implement this technique as w’ell to show' tha t our application needs con­

siderably more elaborate CMs. Indeed, recall that in our case, there is no much

parallelism in the beginning of refinement and therefore, there is no much random ­

ness that can Ire used to break the livelock.

Each thread 7 j counts the number of consecutive rollbacks r ;. If r; exceeds a

specified upper value r ' , then 7j sleeps for a random time interval If the consecutive

rollbacks break because an operation was successfully finished then r, is reset to 0 .

The time interval L is in milliseconds and is a randomly generated number between

1 and r f . The value of r~ is set to 5. O ther values yielded similar results. Note that

lower values for r" do not necessarily imply faster executions. A low r~ decreases the

number of rollbacks much more, but increases the number of times that a contented

thread goes to sleep (for t, milliseconds). On the other hand, a high r ' increases the

number of rollbacks, but randomness is given more chance to avoid livelocks; tha t is,

a contented thread has now more chances to find other elements to refine before it

goes to sleep (for L milliseconds).

Random -C\l cannot guarantee the absence of livelocks. As noted in [22], this

randomness can rarely lead to livelocks, but it should be rejected as it is not a

valid solution. We also experimentally verified that livelocks are not th a t rare (see

Section 3.3.5).

3.3.3 G lobal-C M

Global-CM maintains a global Contention List (CL). If a thread T) encounters a

rollback, then it writes its id in CL and it busy waits (i.e., it blocks). Threads

waiting in CL are potentially awaken (in FIFO order) by threads tha t have made a

lot of progress, or in other words, by threads th a t have not recently encountered many

rollbacks. Therefore, each thread Tt computes its “progress” by counting how many

consecutive successful operations s, have been performed without an interruption by

a rollback. If s* exceeds a upper value s +, then T) awakes the first thread in CL, if

any. The value for s + is set to 10. Experimentally, we found tha t this value yielded

the best results.

Global-CM can never create livelocks, because it is a blocking mechanism as op­

posed to random-CM which does not block any thread. Nevertheless, the system

might end up to a deadlock, because of the interaction with the Load Balancing’s

Begging List BL (see the Load Balancer in Section 3.2).

Therefore, at any time, the number of active threads needs to be tracked down,

that is, the number of threads that do not busy wait in either the CL or the Begging

List. A thread is forbidden to enter CL and busy wait, if it sees th a t there is only

one (i.e., itself) active thread; instead, it skips CL and attem pts to refine the next

element in its Poor Element List. Similarly, a thread about to enter the Begging List

(because it has no work to do) checks whether or not it is the only active thread

at this moment, in which case, it awakes a thread from the CL, before it starts

idling for extra work. In this simple way. the absence of livelocks and deadlocks are

G6

guaranteed, since threads always block in case of a rollback and there will always be

at least one active thread. The disadvantage of this method is th a t there is global

communication and synchronization: the CL, and the number of active threads are

global structures/variables that are accessed by all threads.

3.3.4 Local-CM

1 A lg o r ith m : I n i t ia l i z a t io n (T. i)
Input : T is th e a r r a y of t h re a d s .

i (> 0) is th e id of t h e ru n n in g th r e a d
T ; .

/+ s track s down th e progress o f T;. I t
counts th e number o f c o n secu tiv e op era tion s
th a t f in ish e d s u c c e s s fu lly w ithout
ro llb a ck . * /

2 TJiJ.s = 0;

/* c o n f l i c t in g . id e s t a b lis h e s depend en cies.
I f c o n f lic t in g _ id i s not a n e g a tiv e number
th a t means T, ro llb a ck s because i t
attem pted to acquire a v er tex a lready owned
b y T c o n f l i c t i n g J d • * /

3 T | i) .c o n f i i c t in g _ id ~ -I ;

/* busy_wait implements th e busy w a itin g . * /
4 T [i].busy_w ait = false;

(a) It is called by each thread, before refinement
starts.

1 A lg o r ith m : Rollback_Not_Occurred(T, t)
Input : T is th e a r r a y of th re a d s ,

i (> 0) is th e id of t h e ru n n in g t h re a d
I i which co m p le ted a n o p e ra t io n successfu lly ,
i.e., w i th o u t rollbacks .

2 I [i | . s T T ;
3 if Tfi j . s < s + th en

/* Ti does not awake any thread y e t . * /
4 return;
5 end

e T[i) .m utex . lockf) :
7 j • T [i | . ('L . p o p _ f r o n t ():
s T | i] .m u te x .u n lo c k !):

/* F lip T j ’ s f la g , s o i t can be awaken. * /
9 T |j) .busy_w ai t - false:

(b) T j completed the operation.

Figure 3.2: Pseudocode elaborating on the implementation of the local Contention Manager (local-
CM).

The local Contention .Manager (local-CM) distributes the previously global Con­

tention List (CL) across threads. The Contention List CL, of a thread Tj contains

the ids of threads that encountered a rollback because of Ij (i.e. they attem pted to

1 A l g o r i t h m : R o l lb a ck _ O c cu rred (1, t , co n f h c t in g _ id)

I n p u t : T is t h e a r r a y o f t h r e a d s ,
i (> 0) is t h e id o f t h e r u n n in g t h r e a d T;

w h ic h a t t e m p t e d t o acq u ire a v e r te x a l r e a d y lo c ke d by
t h e t h r e a d T id.

/ * The number o f c o n s e c u t i v e s u c c e s s f u l o p e r a t i o n s
i s r e s e t t o 0 . * /

2 T (i j . s = 0;

3 T [i | . co n f l i c t in g _ id - conflicting id;

4 T |m i n (i , c o n f l i c t in g ^ i d) J .m u t e x . l o c k ();
5 T [m a x (i .confl ic t in g _ id)] , m u tex , lo ck ();
6 i f 7 ’/ c o n f l ic t in g _ id / . b u s y _ w a i t t h e n

/ * y i s very l i k e l y t o b e buoy
w a i t i n g ; t o a v o i d c y c l i c d e p e n d e n c i e s , T, i s
f o r b id d e n t o busy w a i t . * /

7 T[ij .confl ic t ing id = -1:
8 rf (m a x (i . c o n f l ic t in g _ id)].m u t e x . u n l o c k ():
9 T (m in (i , c o n f l ic t in g _ id)j. m u t e x , u n lo c k ();

10 r e t u r n ;
n end

^conflicting_ id i s n o t bu®y w a i t i n g ; a t o m i c a l l y , Tj
w i l l . » /

12 T j i | . b u s y _ w a i t = true:
13 1 f m a x (i . c o n f l i c t in g _ i d)] . m u t e x . u n lo c k ():
14 T [m in (i . c o n f l ic t in g _ j d) j . m u t c x . u n l o c k f);

/ * Ti w r i t e s i t s i d i n Tco^,icti„E ’ s
C o n t e n t i o n _ L i s t (CL). * /

i s T |c o n f l i c t in g _ id | . m u t e x . l o c k ():
18 1 [conflicting id | . C 'L .p u s h _ b a c k (i) ;
i t 'I'{conflicting id j . m u t c x . u n l o c k f):

i s w h i l e V’/ i / .b u s y wait d o
/ * Ti i s busy w a i t i n g u n t i l t h r e a d Tconfli<:|inK id

wakes i t up. * /
19 e n d
20 I | iJ.conflict ing_id - -1;

(c) Tj did n o t com plete the operation because it en­
countered a rollback.

67

acquire a vertex already acquired by Tj) and now they busy wait. As above, if Tl is

doing a lot of progress, i.e., the number of consecutive successful operations exceed

s +, then Tj awakes one thread from its local CL,.

Extra care should be taken, however, to guarantee not only the absence of livelocks,

but also, the absence of deadlocks. It is possible that T\ encounters a rollback because

of T2 (and we symbolize this relationship by writing T\ —> T2), and T2 encounters a

rollback because of T\ (i.e., T2 —>■ Tj): both threads write their ids to the other

thread’s CL, and no one else can wake them up. Clearly, this dependency cycle

(Tj —»• T2 —>■ Ti) leads T\ and T2 to a deadlock, because under no circumstances these

threads will ever be awaken again.

To solve these issues, each thread is now equipped with two extra variables: con-

flicting id and busy wait. See Figure 3.2 for a detailed pseudo-code of local-CM.

The algorithm in Figure 3.2c is called by a Tj every time it does not finish the

operation successfully (i.e., it encounters a rollback). Suppose T, a ttem pts to ac­

quire a vertex already locked by Tj (Tj -» Tj). In this case, Tj does not complete

the operation, but rather, it rollbacks by disregarding the so far changes, unlocking

all the associated vertices, and finally executing the R ollback_O ccurred function,

with conflicting id equal to j . In other words, the conflict ing id variables represent

dependencies among threads: Tj - * T3 T).conflicting id = j .

For example, if Tj encounters a rollback because of Tj and Tj encounters a rollback

because of 7}.. then the dependency path from T) is T - » T3 - » Tk. which corresponds

to the following values: Tj.conflicting id = 7, .conflict ing id = k, T/,..conflicting_id =

— 1 (where -1 denotes the absence of dependency).

Lines 4-14 of R ollback_O ccurred decide whether or not T should block (via busy-

waiting). Tj is not allowed to block if Tconf|icting id has already decided to block (Lines

G-10). Threads communicate their decision to block by setting their b u s y _ w a it flags

to true. If Tconfiicting id busy_ w ait has already been set to true, it is imperative tha t T

is not allowed to block, because it might be the case that the dependency of Tj forms

a cycle. By not letting T, to block, the dependency cycle "breaks’". Otherwise. Tt

writes its itl to CLconfiicting id (Lines 15-17) and loops around its busy wait flag (Line

18).

G8

Tim« S tep 1 T im e S t ep 2 T im e S t ep 3

flit l i n g . t h r» -ad —-1
b u s v .w a i r = fa l*e

cl=u

i r . f l i r t i n g . t hr«*ad = - l
b u s y .w a i t = fa lf .t-

C L = ()

o n f i i c t i n g _ th r e a d = - 1
b u n v .w a i t = f a ls e

o r .f i i c t i n g . t h rea< l = 2
b u s y . w a i t = t m e

CL — {}

o n f l i c i i n g . t b r e a d s - 1
b u s y .w a i t = fa ls e

C L = { >

o n ft i r t i n g . t b r e a d = -1
b u s v .w a i t = fa ls e

C L = { }

> n flic t i n g . t b r e a d s - 1
b u s y .w a i t = fa ls e

CL— {)

C L = {}

jn f ln . t i n g . t h r e a d = - 1
b u s y . w a i t — fa ls e

C L = { >

C L = { }

m i l : - ' i I . r _ • h I • - . . I -

b u s y . w a i t — fa ls e

C L = < 1 >

c o n f i i c t i n g . t b r e a d — 2
b u s y . w a i t = f r u e

C L = { >

n f l u i i n g . t b r e a d = • 1 | c u n l lk ' .m g _ th r e » d = - l ■. u n f l k t h i g . t b r e a d - - 1
b u s v -w a i t = f a l s e . b u s y . w a i t = f a l s e b u s v .w a i t = f a l s e

C L = { >

I
i v .w a j t = falfte

CL = {}

• all • rnm.ri.n -I
b u s y .w a i t — fa ls i

C L = {)

b u s y . w a i t = fa 1st
CL = {}

C L = { >

c o n f l ic t i n g . t b r e a d = 3

I 1 !

i n f l i c t i n g . t b r e a d = 2
b u « y _ w a it = t r u e

C L — {)

CL = {)

i f l i r t i n g - t h r e a c l = 2 r o n f l i r t i n g . t b r e a d

b u s y . w a i t = f a l s e

n f l i c t i n g . t b r e a d = 2

CL = {)

T i m e S t e p 4 T i m e S t e p 5 T i m e S t e p 6

Figure 3.3: Illustration of the local Contention Manager (local-CM). Six Time Steps demonstrate
the interaction among four threads. The contents of their Contention List (CL), the value of the
conflicting thread variable, and the value of the busy_wait flag are shown.

The algorithm in Figure 3.2b is called by a T) every time it completes an operation,

i.e., every time 7) does not encounter a rollback. If Tj has done a lot of progress (Lines

2-5 of R o llback .N ot.O ccurred), then it awakes a thread T, from its Contention List

CL, by setting Tj s busy_ wait flag to false. Therefore, Tj escapes from the loop of

Line 18 in R o llback .O ccurred and is free to a ttem pt the next operation.

Figure 3.3 illustrates possible execution scenarios for local-CM during six Time

Steps. Below, we describe in detail what might happen in each step:

• T im e S te p 1: All four threads are making progress without any rollbacks.

• T im e S tep 2: I] and T4 attem pted to acquire a vertex already owned by

T2. Both T\ and Tj call the code of Figure 3.2c. Their conflicting id variables

represent those exact dependencies (Line 3 of R o llback .O ccurred).

0 9

• T im e Step 3: Ti and T4 set their b u s y w a i t flag to true (Line 12 of Rollback_Occurred),

they write their ids to CL2 (Lines 1 5 -1 7) , and they block via a busy wait (Line

18).

• T im e Step 4: T2 has done lots of progress and executes the Lines 6-9 of

Rollback_N ot_O ccurred, awaking in this way T\.

• T im e Step 5: A dependency cycle is formed: T2 —> T:i —» T4 —» T2. Lines 4-14

of Rollback_Occurred will determine which threads block and which ones do

not. Note that the mutex locking of Lines 4-5 cannot be executed at the same

time by these 3 threads. Only one thread can enter its critical section (Lines

6-14) at a time.

• T im e Step 6: Here it is shown that T4 executed its critical section first, T2

executed its critical section second, and T3 was last. Therefore, Tj and T2 block,

since the condition in Line 6 was false: their conflicting threads a t th a t time had

not set their b u sy _ w a it to true. The last thread T3 realized th a t its conflicting

thread T4 has already decided to block, and therefore, T3 returns a t Line 10,

without blocking.

Note that in Time Step 6 , T2 blocks without awaking the threads in its CL, and

that is why both CL2 and CL3 are not empty. It might be tem pting to instruct a

thread T to awake all the threads in CL;, when T; is about to block. This could

clearly expedite things. Nevertheless, such an approach could easily cause a livelock

as shown in Figure 3.4.

Local-CM is substantially more complex than global-CM, and the deadlock-free/livelock-

free guarantees are not very intuitive. The rest of this Subsection is devoted to prove

that local-CM indeed can never introduce deadlocks or livelocks.

The following two Remarks follow directly from the definition of deadlock and

livelock [2 2].

R em a rk 3.1 If a deadlock arises, then there has to be a dependency cycle where all

the participant threads block. Only then these blocked threads will never be awaken

ayain.

T im e S t ep 1 T im e S t ep 3 T im e S t ep 3

n d l i c t i n g . t b r e a d — -1
b u s y . w a i t — f a l s e

CL = U

b u s y . w a i t —f a l s e

CL={ >

: o n f l i c t m g - t b r e a d — -1
b u B v . w a i t - f a l s e

i ; i !

b u s v . w a i t —f a l s e

C L — { l }

c o n f l i c t i n g . t b r e a d • _ ..: i o n f l i r t i n g . t b r e a d — - i c o n f l i c t i n g . t b r e a d —-
b u s y . w a i t = f a l s e b u s y . w a i t = f a l s e \ b u s v . w a i t —f als e b u s v . w a i t = f a l s e

CL = U c l = o \ C L — { } V iJ!• • • •
n f l i e i i n g . t h r e a d — 2

C L = {>

• c o n f l i c t i n g . t b r e a d - 2
b u s y . w a i t = t r u e

' C L — {}

T im e S t ep 4

u i i l l k t i n g . t b r e a d — 3

C L H !

; c o n f l i c t i n g _ t h r e a d = 3
b u s y . w a i t = t r u e

CL — { }
; c o n f l i c t i n g . t b r e a d = • 1
; b u s y . w a i t —f a ls e

: c L = u

i s v . w a i t — fa l s e

C L — {2 J

c o n f l i c t i n g . t h r e a d = 1 ;

; c o n f l i c t i n g . t h r e a d —-1
b u s y . w a i t = fa l s e

i CL — { }

c o n f l i c t i n g . t h r e a d = 1
b u s y . w a i t —t r u e

C L = M }

j c o n f l i c t i n g . t h r e a d = - l
b u s y . w a i t = f a l s e

: c i . i -51
b u s y . w a i t = fa l s i

C L = (3)

c o n f l i c t i n g . t h r e a d —- i
b u s v . w a i t — f a l s e

C L = { }

C L = { }

c o n f l i c t i n g . t b r e a d - 2

Cl. ! \
T i m e S t e p 5 T i m e S t e p 9 T i m e S t e p T T i m e S t e p 8

Figure 3.4: A thread about to busy-wait on another thread’s Contention List (CL) should not
awake the threads already in its own CL. Otherwise, a livelock might happen, as illustrated in this
Figure. Time Step 8 leads the system to the same situation of Time Step 1: this can be taking place
for an undefined period of time with none of the threads making progress.

R e m a rk 3.2 I f a livelock arises, then there has to be a dependency cycle where all the

participant threads are not blocked. Since all the participant threads break: the cycle

without making any progress, this “cycle breaking” might be happening indefinitely

without completing any operations. In the only case where the rest threads of the

system are blocked waiting on these participant threads7 Contention Lists (or all the

system’s threads participate in such a cycle), then system-wide progress is indefinitely

postponed.

The next Lemmas prove tha t in a dependency cycle, at least one thread will block

and at least one thread will not block. This is enough to prove absence of deadlocks

and livelocks.

71

L em m a 3.1 (A bsence of d ead lo ck s) In a dependency cycle at least one thread

will not block.

P ro o f: For the sake of contradiction, assume th a t the threads 7^ , 7/2, . . . , 7"i„ par­

ticipate in a cycle, that is, Tix —>■ T i 2 —>■••• —>• Tlu —> Tn , such th a t all threads block.

This means that all threads evaluated Line C of Figure 3.2c to false. Therefore, since

Xjj’s conflicting id is Tl2, right before Tix decides to block (Line 12), Ti2 s busy_wait

flag was false. The same argument applies for all the pairs of consecutive threads:

{Ti2 ,T i:i}, {Tl3 ,T l4} , .. ., {TlnlTij}. But Tin could not have evaluated Line G to false,

because, by our assumption, Tix had already decided to block and Tix .busy wait had

been already set to true when Tin acquired Xq’s mutex. A contradiction: Tiu returns

from Rollback_O ccurred without blocking. ■

L em m a 3.2 (A bsence of livelocks) In a dependency cycle at least one thread will

block.

P ro o f: F or the sake of contradiction, assume that the threads Tix, Ti2, . . . , Tin par­

ticipate in a cycle, that is, Tix —>• T i 2 —> ■ ■ ■ -» Tin -* Tix, such tha t all threads do not

block. This means that all threads evaluated Line G of Figure 3.2c to true. Consider

for example Tix. When Tix acquired T i 2 s mutex, it evaluated Line G to true. That

means that T i 2 had already acquired and released its mutex having executed Line 12:

a contradiction because T i 2 blocks. ■

3.3.5 C o m p ariso n

For this case study, we evaluated each CM on the CT abdominal atlas of IRCAD

Laparoscopic Center (http://ww vv.ircatl.fr/) using 128 and 25G Blacklight cores (see

Table 3.2 for its specification). The final mesh consists of about 150 x 106 tetrahedra.

The single-threaded execution time on Blacklight was 1.080 seconds. See Table 3.1.

There are three direct sources of wasted cycles in our algorithm, and all of them

are shown in Fable 3.1:

7 2

http://wwvv.ircatl.fr/

Table 3.1: Comparison among Contention Managers (CM). A 150 Million element mesh is gener­
ated.

(a) 128 cores

Aggressive-CM Random-CM Global-CM Local-CM
time (secs) n/a 64.2 23.7 19.3
rollbacks n/a 2.48251 x 107 728,087 680, 338

contention
overhead (secs) n/a 4330.9 1081.4 545.80

load balance
overhead (secs) n/a 872.48 134.62 126.22

rollback overhead
(secs) n/a 516.81 3.0 2.9

total overhead
(secs) n/a 5720.9 1219.6 675.11

speedup n/a 16.8 45.6 56.0
livelock yes no not possible not possible

deadlock not possible not possible not possible not possible

Aggressive-CM
'b) 256 cores

Random-CM Global-CM Local-CM
time (secs) n/a n/a 22.3 14.1
rollbackss n/a n/a 882,768 1.71197 x 108
contention

overhead (secs) n/a n/a 3095.9 1377.1

load balance
overhead (secs) n/a n/a 285.44 239.98

rollback overhead
(secs) n/a n/a 3.6 7.6

total overhead
(secs) n/a n/a 3385.1 1624.9

speedup n/a 11/ a 48.4 76.6
livelock yes yes not possible not possible

deadlock not possible not possible not possible not possible

• contention overhead tim e: it is the to tal time th a t threads spent busy-waiting

on a Contention List (or busy-waiting for a random number of seconds as is the

case of Random-CM) and accessing the Contention List (in case of Global-CM).

• load balance overhead tim e: it is the total time that threads spent busy-

waiting on the Begging List waiting for more work to arrive (see Section 3.2)

and accessing the Begging List, and

• rollback overhead tim e: it is the total time that threads had spent for the

partial completion of an operation right before they decided that they had to

73

discard the changes and roll back.

Observe that Aggressive-CM was stuck in a livelock on both 128 and 25G cores.

We know for sure that these were livelocks because we found out tha t 110 tetrahedron

was refined, i.e., no thread actually made any progress, in the time period of an hour.

Random-CM terminated successfully 011 128 cores, but it was very slow compared

to Global-CM and Local-CM. Indeed, Random-CM exhibits a large number of roll­

backs that directly increases both the contention overhead and the rollback overhead.

Also, since threads’ progress is much slower, threads wait for extra work for much

longer, a fact tha t also increases the load balance overhead considerably. As we

have already explained above, Random-CM does not eliminate livelocks, and this is

manifested on the 25G core experiment, where a livelock did occur.

On both 128 and 25G cores, Local-CM performed better. Indeed, observe tha t

the total overhead time is approximately twice as small as Global-CM ’s overhead

time. This is mainly due to the little contention overhead achieved by Local-CM.

Since Global-CM maintains a global Contention List, a thread TJ waits for more time

before it gets awaken from another thread for two reasons: (a) because there are more

threads in front of Tj that need to be awaken first, and (b) because the Contention

List and the number of active threads are accessed by all threads which causes longer

communication latencies.

Although Local-CM is the fastest scheme, observe th a t it introduces higher number

of rollbacks 011 25G cores than Global-CM. This also justifies the increased rollback

overhead (see Table 3.1b). In other words, fewer rollbacks do not always imply faster

executions, a fact that renders the optimization of our application a challenging task.

This result can be explained by the following observation: the number of rollbacks

(and subsequently, the rollback overhead) and the contention overhead constitute a

tradeoff. The more a thread waits in a Contention List, the more its contention

overhead is, but the fewer the rollbacks it encounters are. since it does not attem pt

to perform any operation. Conversely, the less a thread waits in a Contention List,

the less its contention overhead is, but since it is given more chances to apply an

operation, it might encounter more rollbacks. Nevertheless. Table 3.1 suggests that

Local-CM does a very good job balancing this tradeoff 011 runtime.

7 4

T a b l e 3 .2 : T h e s p e c i f i c a t io n s o f t h e c c -N U M A m a c h in e s w e u s e d .

Model cores per
socket

sockets per
blade blades memory per

socket max hops
Blacklight Intel Xeon X75C0 8 2 128 C4GB 5

CRTC Intel Xeon X5C90 6 2 1 48GB 0

Although there are other elaborate and hybrid contention techniques [74, 115], none

of them guarantees the absence of livelocks. Therefore, we chose Local-CM because

of its efficiency and correctness.

3.4 Perform ance

In this Section, we describe a load balancing optimization and present the strong and

weak scaling performance on Blacklight. See Table 3.2 for its specifications.

3.4.1 H ie ra rch ica l W o rk S te a lin g (H W S)

In order to further decrease the communication overhead associated with remote

memory accesses, we implemented a Hierarchical Work Stealing scheme (HWS) by

taking advantage of the cc-NUMA architecture.

We re-organized the Begging List into three levels: BL1, BL2, and BL3. Threads

of a single socket that run out of work place themselves into the first level begging

list BL1 which is shared among threads of a single socket. If the thread realizes

that all the other socket threads wait on BL1, it skips BL1. and places itself to BL2,

which is shared among threads of a single blade. Similarly, if the thread realizes

that BL2 already accommodates a thread from the other socket in its blade, it asks

work by placing itself into the last level begging list BL3. When a thread completes

an operation and is about to send extra work to an idle thread, it gives priority to

BL1 threads first, then to BL2, and lastly to BL3 threads. In other words, BL1

is shared among the threads of a single socket and is able to accommodate up to

n u m b er_ o f _threads per socket — 1 idle threads (in Blacklight. tha t is 7 threads).

BL2 is shared among the sockets of a single blade and is able to accommodate up

to num b er_ o f _sockets_per_blade — 1 idle threads (in Blacklight, th a t is 1 thread).

Lastly, BL3 is shared among all the allocated blades and can accommodate at most

one thread per blade. In this way, an idle thread T, tends to take work first from

threads inside its socket. If there is none, T) takes work from a thread of the other

socket inside its blade, if any. Finally, if all the other threads inside T i s blade are

idling for extra work, T places its id to BL3, asking work from a thread of another

blade.

3.4.2 S tro n g S caling R e su lts

200r
— ideal
~ RWS
- H W S

150 *

o .
ZJIs 1 0 0 -
<D
Cl(0

176 32 176
N um ber of cores N um ber of c o re s

(a) (b)

{Contention O v e rh e a d S e c o n d s p e r Thread
■ L o a d B a lan c e O v e rh ea d S e c o n d s p e r Threac
□ R o llb a c k O v e rh e a d S e c o n d s p e r T hread

N um ber of c o re s

(c)

Figure 3.5: Strong scaling performance achieved by the classic Random Work Stealing (RWS)
and Hierarchical Work Stealing (HWS). (a)-(b) Comparison between RWS and HWS on speed-up

) and on the number of inter-blade accesses, (c) Breakdown of the overhead time for
HWS*.

Figure 3.5 shows the strong scaling experiment demonstrating both the Random

Work Stealing (HWS) load balance and the Hierarchical Work Stealing (HWS). The

76

Table 3.3: Information about the three input images used for the scaling results of Section 3.4 and
the single-threaded performace comparison of Section 3.5.

voxels spacing (mm'*) tissu»*s download from
abdominal at!.-us 512 x 512 x 219 0.96 x 0.96 x 2.4 23 http: www.ircad.fr software's 3Dircadb 3Dircadb2 3Dircadb2-2.zip

knee atlas 512 x 512 x 119 0.27 x 0.27 x 1 49 http: www.spl.harvard.txiu publications item view 1953
head-neck atlas 255 x 255 x 229 0.97 x 0.97 x 1.4 60 http: www.spl.harvard.txlu publications item view 2271

input image we used is the CT abdominal atlas obtained from IRCAD Laparoscopic:

Center. Information about this input image is shown in Table 3.3. The final mesh

generated consists of 124 x 106 elements. On a single Blacklight core, the execution

time was 1100 seconds.

Observe that the speed-up of HWS deteriorates by a lot for more than 04 cores

(see the green line in Figure 3.5a). In contrast, HWS manages to achieve a (slight)

improvement even on 176 cores. This could be a ttribu ted to the fact tha t the number

of inter-blade (i.e., remote) accesses are greatly reduced by HWS (see Figure 3.5b),

since begging threads are more likely to get poor elements created by threads of their

own socket and blade first. Clearly, this reduces the communication involved when a

thread reads memory residing in a remote memory bank. Indeed, on 170 cores, 98.9%

of all the number of times threads asked for work, they received it from a thread of

their own blade, yielding a 28.8% reduction in inter-blade accesses, as Figure 3.5b

shows.

Figure 3.5c shows the breakdown of the overhead time per thread for HWS across

runs. Note that since this is a strong scaling case study, the ideal behavior is a linear

increase of the height of the bars with the respect to the number of threads. Observe,

however, that the overhead time per thread is always below the overhead time mea­

sured on 10 threads. This means that Local-CM and the Hierarchical Work Stealing

method (HWS) are able to serve threads fast and tolerate congestion efficiently on

runtime.

3.4.3 W eak Scaling R esu lts

In this section, we present the weak scaling performance of PI2M on two inputs, the

information of which is presented in Table 3.3. The first is the same CT abdominal

atlas already used in the previous strong scaling Section. The second input image

77

http://www.ircad.fr
http://www.spl.harvard.txiu
http://www.spl.harvard.txlu

Table 3.4: Weak scaling performance. Across runs, the number of elements per thread remains
approximately constant.

(a) abdominal atlas
••■Threads I 16 32 04 128 144 100 170
•• Elements 1.07E 07 1.72E 08 3.-I9E 08 7.44E 08 1.32E 09 1.31E 09 1.07E 09 1.85E 09

Time (sees) 90.37 80.03 87.50 99.23 93.00 103.26 150.03 181.10
Elements

per second 1.18E or> 2.15E 06 3.99E 06 7.50E 00 1.42E 07 1.46E+07 1.1 IE 07 1.02E 07

Speedup UK) 18.19 33.71 03.33 119.50 123.07 91.10 80.30
Efficiency L.OO 1.11 1.05 0.99 0.93 0.80 0.59 0.49
Overhead
secs per
thread

0.90 1.60 2,11 2.98 4.42 1.70 8.71 10.55

-'Threads 1 16
<

32

b) knue-atla.

04 128 111 100 170
• Elements 1.06E 07 1.66E 08 3.70E 08 8.00E 08 1.31E 09 1.58E 09 1.70E 09 1.91 E 09

Time (secs) 87.26 80.67 98.30 110.72 97.79 110.00 107.08 190.00
Elements

per second 1.22E or, 2.05E 06 3. TOE 00

0C
|

<M|T 1.34E 07 1.43E4-07 1.02E 07 1.01E 07

Speedup LOO 16.89 .50.92 59.90 110.01 117.92 83.77 82.81
Efficiency LOO 1.06 0.97 0.94 0.86 0.82 0.52 0.47
Overhead
secs per
thread

0.87 1.16 2.77 3.11 5. 17 0.58 8.90 11.07

is the knee atlas obtained from Brigham & Women’s Hospital Surgical Planning

Laboratory [112]. Other inputs exhibit very similar results on comparable mesh sizes.

We measure the number of tetrahedra created per second across the runs. Specif­

ically, let us define with Elements (n) and T im e(n), the number of elements created

and the time elapsed, when n threads are employed. Then, the speedup is defined as

rrlnm(n)^Ki^mcntsji) • W ith n threads, a perfect speedup would be equal to n [72].
We can directly control the size of the problem (i.e., the number of generated

tetrahedra) via the parameter S (see Section 3.1). This param eter sets an upper limit

on the volume of the tetrahedra generated. W ith a simple volume argument, we can

show that a decrease of S by a factor of x results in an x i times increase of the mesh

size, approximately.

See Table 3.4. Each reported Time is computed as the average among three runs.

Although the standard deviation for up to 128 cores is practically zero on both inputs,

the same does not apply for higher core counts. Indeed, the standard deviation on

the 144-. 1G0-, and 176-core executions is about 10. 15. and 29 seconds respectively,

for both inputs. We attribute this behavior to the fact that in those experiments.

78

the network switches responsible for the cache coherency were close to the root of the

fat-tree topology and therefore, they were shared among many more users, affecting

in this way the timings of our application considerably. (Note tha t the increased

bandwidth of the upper level switches does not alleviate this problem, since the

bottleneck of our application is latency.) This conjecture agrees with the fact that

the the maximum number of hops on the experiments for up to 128 cores was 3, while

for 144, ICO and 17C cores, this number became 5.

Nevertheless, observe the excellent speedups for up to 128 threads. On 144 cores,

we achieve an unprecedented efficiency of more than 82%, and a rate of more than

14.3 Million Elements per second for both inputs, ft is worth mentioning tha t

CGAL [G], the fastest sequential publicly available fsosurface-based mesh gener­

ation tool, on the same CT abdominal (http://w w w .ircad.fr/softw ares/3D ircadb/

3Dircadb2/3Dirc:adb2.2.zip) image input, is 81% slower than our single-threaded per­

formance. Indeed, CGAL took 548.21 seconds to generate a similarly-sized mesh

(1.00 x 107 tetrahedra) with comparable quality and fidelity to ours (see Section 3.5

for a more thorough comparison case study). Thus, compared to CGAL, the speedup

we achieve on 144 cores is 751.25.

Observe, however, that our performance deteriorates beyond this core count. We

claim that the main reason of this degradation is not the overhead cycles spent on

rollbacks, contention lists, and begging lists (see Section 3.3.5), but the congested

network responsible for the communication. Below, we support our claim.

First of all. notice that the to tal overhead time per thread increases. Since this

is a weak scaling case study, the best that can happen is a constant number of

overhead seconds per thread. But this is not happening. The reason is tha t in

the beginning of refinement, the mesh is practically empty: only the six tetrahedra

needed to fill the virtual box are present (see Figure 3.1). Therefore, during tin1

early stages of refinement, the problem does not behave as a weak scaling case study,

but as a strong scaling one: more threads, but in fact the same size, which renders

our application a very challenging problem. See Figure 3.G for an illustration of the

17G-core experiment of Table 3.4a. X-axis shows the wall-time clock of the execution.

The Y-axis siiows the total number of seconds that threads have spent on useless

79

http://www.ircad.fr/softwares/3Dircadb/

193
m

T>cc
CD

CO
Jx

-Q
TJ
CO
CD

J Cv_
CD
>O
CD
>

J2
3
E3
o

ino
CDm

3O
CD
X
CD 775-
g> 665
‘3
3

TJ

umulative contention overhead by all threads
umulative load balance overhead by all threads
umulative rollback overhead by all threads

73%

efficiency 91% effic ien100% effic ien cy

66 79 93 106 119 132 145 158 172
Execution Time (secs)

Figure 3.6: Overhead time breakdown with respect to the wall time for the experiment on 176
cores of Table 3.4a. A pair (x, y) tells us that up to the xth second of execution, threads have not
been doing useful work so far for y seconds all together.

computation (i.e., rollback, contention, and load balance overhead, see Section 3.3.5)

so far, cumulatively. The more straight the lines are, the more useful work the threads

perform. Rapidly growing lines imply lack of parallelism and intense contention.

Observe that in the first 14 seconds of refinement (Phasej), there is high contention

and severe load imbalance. Nevertheless, even in this case, 176x14-665 73% of the176x14

time, all 170 threads were doing useful work, i.e., the threads were working on their

full capacity.

However, this overhead time increase cannot explain the performance deterioration.

See for example the numbers on 17C threads of Table 3.4a. 17G threads run for

181.10s each, and. on average, they do useless work for 10.55s each. In other words, if

there were no rollbacks, no contention list overhead, and no load balancing overhead,

the execution time would have to be 181.10s-10.55s 170.55s. 170.55s. however,

is far from the ideal 90.37s (that the first column with 1 thread shows) by 170.55s-

90.37 80.18s. Therefore, while rollbacks, contention management, and load balancing

introduce a merely 10 .5 5 s overhead, the real bottleneck is the 80.18s overhead spent on

8 0

memory (often remote) loads/'stores. Indeed, since the problem size increases linearly

with respect to the number of threads, either the communication traffic per network

switch increases across runs, or it goes through a higher number of hops (each of

which adds a 2,000 cycle latency penalty [4]), or both. It seems tha t after 144 cores,

this pressure on the switches slows performance down. A hybrid approach (46) able

to scale for larger network hierarchies is left for future work.

Table 3.5: Hyper-threaded execution of the case study shown in Table 3.4a. The columns of the
Speedup, TLB misses, LLC misses, and Resource stall cycles reported here are relative to the non
hyper-threaded execution of Table 3.4a on the same number of cores.

• Cores
C.> ih f i i .N . . . r r l 1 1G 32 64 128 144 160 176

••• Elements I.DTE • 07 1.72E ■ 08 3.49E - 08 7.44E 08 1 321' 00 1.31E ■ 09 1 .GTE 09 1.83E ■ 00
Time (sens) 38.03 •*>*>,98 , G1.37 67.28 240.36 342.01 436.72 480.83

Elements per
second 1.84E ■ 03 3.08E - 00 3.GTE - 06 1.11E 07 3.48E 06 4.41E ■ 06 3.83E 06 3.80E HO

Speedup L.jC 1.43 1.42 1.47 0.30 0.30 0.34 0.38
Overhead sees

per thread 1.16 2.53 3.64
___________ J

4.33 30.60 111.18 01.83 143.37
. _

TLB misses
increase per

thread
-13.20*/ -10.70/ -18.21/ -16.63/ -22.68/ -28.87/ -34.38/ -34.4 W,

LLC misses
increase per

thread
81.72/ -30.72/ -34.81/ -46.63/ -67.71/ -38.01/ -72.08/ -03.0,'i'/,

Resource stall
cycles increase

per thread
-16.73/ -30.21/ -47.04/ -48.12/ -38.38/ -37.18/ -10.44/ -43.20'/

3.4.3.1 Hyper-threading

Table 3.5 shows the performance achieved by the hyper-threaded version of our code.

For this case study, we used the same input and parameters as the ones used in the

experiment shown in Table 3.4a. The only difference is that now there are twice as

many threads as there were in Table 3.4a.

Since the hardware threads share the TLB, the cache hierarchy, and the pipeline,

we report the impact of hvper-threading on TLB misses, Last Level Cache (LLC)

misses, and Resource stall cycles. Specifically, we report the increase of those counters

relatively to the non hyper-threaded experiment of Table 3.4a. The reported Speedup

is also relative to the non hyper-threaded experiment.

The last three rows of Table 3.5 suggest th a t the hyper-threaded version utilized

the core resources more efficiently. Surprisingly enough, the TLB and LLC misses

81

actually decrease (notice the negative sign in front of the percentages) when two

hardware threads are launched per core. Also, as expected, the pipeline in the hvper-

threaded version is busier executing micro-ops, as the decrease of resource stall cycles

suggest.

Although hyper-threading achieves a better utilization of the TLB, LLC, and

pipeline, there is a considerable slowdown after 04 cores (i.e., 128 hardware threads).

Observe that hyper-threading expedited the execution for up to 04 cores. Indeed, the

hvper-threaded version is 47% faster on 04 cores compared to the non hyper-threaded

version. Beyond this point, however, there is a considerable slowdown. This slowdown

cannot be explained by merely the increase in the number of overhead seconds.

See for example the overhead secs per thread on 170 cores in Table 3.5. It is indeed

13 times higher than its non hyper-threaded counterpart; this is, however, expected

because the size of the problem is the same but now we use twice as many hardware

threads as before. If we subtract the overhead time of the hyper-threaded version on

170 cores, we get that for 480.83s — 143.37s = 337.40s, all hardware threads were

doing useful work. But this is still way longer than the 181.10s — 10.55s = 170.55s

useful seconds of the non hyper-threaded execution (see Table 3.4a).

We attribute this behavior to the increased communication traffic caused not by

the increased problem size (as was mostly the case in the non hyper-threaded ver­

sion), but by the increased number of “senders” and “receivers”. T hat is, even though

the problem size is the same, the hyper-threaded version utilizes more threads. This

means tha t at a given moment, there will be more packages (originated by the more

than before threads) in the switches waiting to be routed than before. This phe­

nomenon increases the communication latency. It seems that the network cannot

handle this pressure for more than G4 cores, or equivalently, 128 hardware threads.

Note that this agrees with the fact tha t in the non hyper-threaded version, the slow­

down occurred on more than 128 cores, which is again 128 threads (see Table 3.4).

3.5 Single-threaded evaluation

Although P12M introduces extra overhead due to locking, synchronization, contention

management bookkeeping (see Section 3.3), and hierarchical load balance (see Sec­

tion 3.4.1), in this Section we show that the single-threaded performance of our

method (PI2M) is better than the performance of CGAL [G] and TetGen [121], the

state-of-the-art sequential open source mesh generation tools. Moreover, PI2M has

comparable quality with CGAL and much better quality than TetGen. PI2M, CGAL,

and TetGen are very robust Delaunay methods, since they all use exact predicates.

Specifically, P12M adopts the exact predicates as implemented in CGAL [6,54].

It should be mentioned th a t although CGAL is able to operate directly on seg­

mented multi-tissue images (i.e., it is an Isosurface-based method), TetGen is a PLC-

based method (see Section 1.1). T hat is, TetG en’s inputs are triangulated domains

that separate the different tissues. For this reason, we pass to TetGen the triangulated

iso-surfaces as recovered by our method, and then let TetGen to fill the underlying

volume.

We ran PI2M, CGAL, and TetGen on two different multi-tissue 3D input images

obtained from Brigham & Women's Hospital Surgical Planning Laboratory (http:

/ / www.spl.harvard.edu/). The first is the MR knee-atlas [112] used in the previous

Section and the second is a CT head-neck atlas [80]. Information about these two

inputs is displayed in Table 3.3. The resulting output meshes generated by our method

P I2\I are illustrated in Figure 3.7. We should emphasize that we do not perform any

smoothing as a post-processing step, since smoothing tends to deteriorate quality. In

fact, in our previous work [G1, GG], we show th a t quality is of great importance in the

speed and accuracy of certain applications, such as non-rigid brain registration, and it

should not be compromised. Nevertheless, mesh boundary smoothing is desirable for

CFD simulations, such as respiratory airway modeling |57 .87, 8 8]. The extension of

our framework to support the computationally expensive step of volume-conserving

smoothing [87] and scale invariance [8 8] in parallel is left for future work.

For fair comparison, we also show the resulting output meshes generated by CGAL

and TetGen in Figure 3.8 and Figure 3.9. respectively. A close investigation of the

8 3

http://www.spl.harvard.edu/

meshes generated by TetGen (Figure 3.9) reveals tha t there are fewer labels than

the labels recovered by PI2M and CGAL. In other words, the labels of TetGen do

not correspond to the same labels of PI2M or CGAL. This is a ttributable to the

way TetGen groups elements together [1 2 1] for visualization purposes. As mentioned

earlier, the input PLC for TetGen is the set of the triangulated isosurfaces as recovered

by P12M. This PLC divides the domain into the subdomains th a t constitute the

different tissues. In order for the elements of a subdomain A to be colored by a

different label than the elements of a subdomain B , the user needs to specify two

seed points p a and p s , such tha t pa lies strictly in the interior of A and pg lies

strictly in the interior of B. A straightforward (perhaps not the best) way to compute

these seeds is to traverse the input image and to assign a seed point per tissue. The

unfortunate discrepancy with such an approach is th a t seeds might not lie in the

intended PLC subdomains, simply because the recovered isosurfaces (that form the

PLC) represent the actual tissue geometry within a tolerance (see Theorem 3.1). This

problem affects only the visualization of TetGen meshes and it becomes more acute

in our case, because there are many tissues th a t have very little volume, a reality

that renders the computation of the appropriate seed points less accurate and robust

in general. This fact alters the coloring of the TetGen meshes and this is the reason

TetGen coloring does not completely agree with the coloring of the meshes generated

by PI2M and CGAL.

Table 3.6: Statistics regarding the single-threaded performance and the quality/fidelity achieved
by PI2\I and CGAL. PI2M includes the extra overhead introduced by synchronization, contention
management, and load balancing to support the (potential) presence of other threads.

knee a t la s h e a d -n e ek a t la s
P I2M C G A L T e tG en P I2M C G A L T e tG e n

" te tr a h e d ra seconds 67 .GOO 10.UG9 98,658 96.16 1 29.077 6 1 ,903
tim e 6.5 sees 10.9 secs 4.4 secs 10.3 sees 34.1 s e ts 16.0 secs

• te tr a h e d ra 139.1 58 136.7 19 134.095 993.583 991 ,509 990 .116
m ax rad iu s-ed g e ra t io 2 1.1 18.G 2 11.2 93.1

sm alltvs t b o u n d a ry p la n a r ang le 17.4C 24.0° 18.0° 15.8'3 2 .4° 15.3"
(m in . m ax) d ih e d ra l ang les (-1.0' . 170.1) (2 .5 . 170.3) (2 .9 . 173.0 j (4 .5 ' . 170.2') (4.1 . 173.9) (0.1 . 172.0)

H ausdo rff d is ta n c e 10.7 m m 10.3 m m 15.3 m m 15.2 m m

Table 3.6 shows timings and quality statistics for PI2M. CGAL. and TetGen. \Ve

used C'RTC (see Table 3.2 for its specifications) for this case study. The timings

reported account for everything but for disk 10 operations. The execution time

8 4

reported for PI2M incorporates the 1.9 seconds and 1.2 seconds time interval needed

for the computation of the Euclidean distance transform (see Section 3.1) for the knee

atlas and the head-neck atlas, respectively.

We set the sizing parameters of CGAL and TetGen to values th a t produced meshes

of similar size to ours, since generally, meshes with more elements exhibit better

quality and fidelity. W7e access the achieved quality of these methods in terms of

radius-edge ratio and dihedral angles. Those metrics are of great im portant to us,

because they are shown to improve the speed and robustness of medical application

solvers dealing with isotropic materials [37,01,60,71,119]. Ideally, the radius-edge

ratio should be low, the minimum dihedral angle should be large, and the maximum

dihedral angle should be low. We also report the smallest boundary planar angles.

This measures the quality of the mesh boundary. Large smallest boundary planar

angles imply better boundary quality.

PI2M, CGAL, and TetGen allow users to specify the target radius-edge ratio.

Apart from TetGen, these methods also allow users to specify the target bound­

ary planar angles. VVe set the corresponding param eters accordingly, so tha t the

maximum radius-edge ratio is 2 (for PI2M, CGAL, and TetGen), and the smallest

boundary planar angle is more than 30° (for PI2M and CGAL only, since TetGen

does not give this parameter).

Fidelity measures how well the mesh boundary represents the iso-surfaces. We

access the fidelity achieved by these methods in terms of the symmetric (double­

sided) Hausdorff distance. A low Hausdorff distance implies a good representation.

Notice that we do not report the Hausdorff distance for TetGen, since the triangular

mesh that represents the iso-surfaces is given to it as an input. For the input images

we used for Table 3.0, the Hausdorff distances achieved by both PI2M and CGAL are

far from ideal. This happens because the values chosen for the sizing param eters at

this comparison did not recover isolated dusters of voxels which seem to be artifacts of

the segmentation anyway. Nevertheless, Theorem 3.1 guarantees (both in theory and

in practice) that if the sample is very dense, then the Hasdorff distance approaches

to zero. The goal of this Section is not to generate meshes of high fidelity, but to

demonstrate the effectiveness of PI2M by comparing PI2M with the state of the art

open source meshers.

We access the speed of the methods above by comparing the rate of generated

tetrahedra per second. Note th a t since our method not only inserts but also removes

points from the mesh (thus reducing the number of mesh elements), a perhaps fairer

way to access speed is to compare the rate of performed operations per second. Nev­

ertheless, we do not report this metric for two reasons. First, a high rate of operations

does not always imply a high rate of generated tetrahedra. The later, however, is the

only thing that matters, since comparing the quality/fidelity achieved by meshes of

very different mesh sizes makes no sense. Second, the number of removals performed

by PI2M accounts for only 2% over the total number of operations. Thus, the rate

of generated tetrahedra is very close the rate of operations per second; indeed, we

experimentally found out th a t those two rates are practically the same.

Observe that the PI2M and CGAL generate meshes of similar dihedral angles,

and fidelity, but our method is much faster. Indeed, the rate of the single-threaded

PI2M is 68.7% higher than CGAL on the knee atlas and more than 3 times higher on

the head-neck atlas. Also note th a t both PI2M and CGAL prove th a t the smallest

boundary planar angles are more than 30° and th a t radius-edge ratio is less than

2 [62]. Due to numerical errors, however, these bounds might be smaller in practice

than what theory suggests. Nevertheless, observe th a t PI2M yields much better

boundary planar angles and radius-edge ratio than CGAL on the head-neck atlas.

TetGen is faster than PI2M only on the knee atlas by a couple of seconds. For

larger meshes (as is the case with the head-neck atlas), TetGen is slower. Indeed, for

small meshes, the computation of the Euclidean Distance Transform (EDT) accounts

for a considerable percentage over the total execution time, a fact tha t slows down

the overall execution time bv a lot. For example, the actual meshing time on the

knee atlas was just 4.6 secs, very close to TetGen’s time and rate. Another notable

observation is that our method generates meshes with much better dihedral angles

and radius-edge ratio than TetGen. The achieved boundary planar angles are similar

simply because the PLC that is given to TetGen was in fact the triangular boundary

mesh of PI2M.

8G

(a) The 139,158 element mesh generated for the MR knee atlas.

(b) The 993.583 element mesh generated for the C’T head-neck atlas.

F i g u r e 3 .7 : O u t p u t m e s h e s g e n e r a te d b y P I 2 M 011 t h e M R k n e e a t l a s a n d 011 t h e C T h e a d - n e c k
a tla s .

87

(a) The 436,749 element mesh generated for the MR knee atlas.

1

3
(b) The 991..509 element mesh generated for the C l' head-neck atlas.

F i g u r e 3 .8 : O u tp u t m e s h e s g e n e r a te d b y C G A L o n t h e M R k n e e a t l a s a n d o n t h e C T h e a d - n e r k
a t la s .

8 8

(a) The 434.095 element mesh generated for the MR knee atlas.

(b) The 990.4 16 element mesh generated for the CT head-neck atlas.

F i g u r e 3 .9 : O u t p u t m e s h e s g e n e r a te d b y T e tG e n o n t h e M R k n e e a t l a s a n d o n t h e C T h e a d - n e c k
a t la s .

8 9

Chapter 4

4D Space-Time Delaunay Meshing for

Medical Images

In this chapter, we present a Delaunay refinement algorithm for 4-diinensional (3D - t)

segmented images. The output mesh is proved to consist of sliver-free simplices.

Assuming that the hyper-surface is a closed smooth manifold, we also guarantee

faithful geometric and topological approximation. We implement and dem onstrate

the effectiveness of our method on publicly available segmented cardiac images.

9 0

4.1 Prelim inaries

The input of our algorithm is a segmented n dimensional image I c K " . The object

fi C I is assumed to be represented as a cut function / : Rn >—» M, such tha t its

surface dQ is defined by the set { /(p) = 0} [89,109). Clearly, from a segmented

image, the zero-surface {/ (p) = 0 } can be easily computed by interpolating the voxel

values.

We assume that given a point p g l 4, we can ask for p ’s closest point on dQ. This

can be accomplished by an Euclidean Distance Transform (EDT) [52, 97]. Specifically,

the EDT returns the voxel p' G dQ which is closest to p. Then, we traverse the ray

pp' and we compute the intersection between the ray and dQ by interpolating the

positions of different signs [9G[. Points on <9f2 are referred to as feature points.

The local feature size lfsgu (x) of a point x G dQ is defined as the (closest) distance

between x and the medial axis of dQ. Since dQ is smooth, the local feature size

is bounded from below by a positive constant l f s ^ , th a t is, Ifs^n (x) > lfs^sj > 0 .

Another useful property is tha t the local feature size is 1-Lipschitz, tha t is,

lfsan (p) < |p - g| + lfsan (<?). (4.1)

A point set V C dQ is called an ^-sample, if for every point p G dQ there is a point

v G V at a distance at most e • Ifs^sj (p) from p [10],

Let V be a finite set of vertices V = {t’i , . . . , t>/v} C Rn. The Delaunay trian­

gulation of V is denoted by T>(V). A k-simplex cr*, = {i’i , . . . , t’A-+i} G D (V) is a

simplex defined by k + 1 vertices. We denote the length of the shortest edge of a

simplex cr with fmjn (a). The circumball B „ of a simplex cr is the smallest closed ball

circumscribing a 's vertices. R a is the circumradius length of the simplex and c (cr) is

its eircumcenter. The radius-edge ratio of a simplex a is defined as p{a) = j-r'fe)-

The voronoi cell Vor (c) of a vertex v G V is the set Vor(i') = {p e 1 " |

|r — p| < |<7 — p|. V g G V}. The voronoi dual of a simplex a G D (V) is defined as the

set Vor (cr) = {Vor (i ’j) H Vor (v3) \ Vi?j, Vj G cr}.

The restriction of D (V) to a topological space X is denoted by T)\qu (X) V.

T d \m (X)V is a sirnplieial complex (a s i s P (V)) that contains simplices of T> (V)

91

Z .C T

/

an

m w

Figure 4.1: A 2D illustration. The simplex a = {n, m} and its surface ball Bza. m is the midpoint
of a. Observe that since the radius 1Zz<T of Bza is larger than the radius Ra = \rn — e| of the
picking region of cr as defined here is larger than the picking region of [90].

whose voronoi dual intersects X in a non-empty set. Consider a k simplex a and let

Vor (a) intersect X at a point 2 . Any ball centered at 2 circumscribing o is called a

surface ball [28]. The corresponding surface ball is denoted by £LCT and its radius by

7ZZi(r, in the sequel. By the definition of Voronoi diagrams, Bz,a does not contain any

vertex of V in its interior.

Following the definition of [90], the metric we use to characterize the quality of a

simplex cr*. is rak = r— Low values of r imply a poor-quality element.\&k)

D efin itio n 4.1 (S liver [90]) Simplex a is a sliver if it contains a k-simplex cr*. (k <

A) such that p(cr*) < p, rak < f , and for any m-simplex crm of a (m < k), p(crm) < p,

r„ > f .V m —

The picking region V1Z(cr.\) of a 4-simplex cr4 is defined as the 4-dimensional solid

ball centered at c(crj) with radius £ R a i, Q < 1. Consider a restricted /r-simplex cr*.

and its surface ball Bz a k < 4. Its picking region "P7£(cr*.) is the intersection between

dQ and the 4-dimensional solid ball centered a t 2 with radius Q7iz.a. Q < 1. Note that

VTZ(<Ji) and T 1Z{(Jk) are contained in Ba and Bz<a, respectively. Observe that the

picking region of cr*. (k < 4) is a topological /r-ball and does not belong (necessarily)

in the affine k dimensional space defined by cr*.. This is different than the definition

in [90]. where the picking regions are defined inside the intersection of B a with the

affine space of cr. The reason for this change is the fact that the input of our algorithm

92

is not a Piecewise Linear Complex (PLC) but a cut function.

A good point p e VIZ (a) is a point that does not int roduce smaller slivers. A

sliver is small when its radius is less than bR„. In [90], it is proved th a t (a) the number

of small slivers S(cr) possibly created after the insertion of p is constant, and (b) the

volume |Fff| (the forbidden region) inside which p forms a small sliver is bounded

from above. The same findings hold in our case too, where the picking region of a

restricted facet cr3 is not inside the intersection of B a 3 and cr3’s affine space, but inside

the intersection of Bz,a3 and dQ.

L em m a 4.1 Given an almost-good mesh , a point p inside the picking region of a cr*,

can be found in a constant number of random rounds, such that any new sliver created

after the insertion of p has circumradius no smaller than bRak if k = 4, or no smaller

than b1Zz r7k i f k = 3.

R e m a rk 4.1 The proof is similar to [90], since | | and S(r) do not change and the

volume of the intersection of B „ 3 and rr3 ',s affine space is smaller than the intersection

of Bz „ :i and dQ. See Figure 4-1 for an illustration.

4.2 A lgorithm

The user specifies a parameter 6 . It will be clear in Section 4.4 th a t the lower S is, the

better the mesh boundary will approximate dQ. For brevity, the quantity 6 ■ lfs^n (z)

is denoted by (z), where z is a feature point.

Our algorithm initially inserts the 16 corners of a hyper-box that contains the 4

dimensional object Q, such th a t the distance between a box corner x and its closest

feature point z = cfp9SJ (x) is at least 2Adn (z). After the computation of this initial

triangulation, the refinement starts dictating which extra points are inserted. At any

time, the Delaunay triangulation V (V) of the current vertices V is maintained. Note

that bv construction, T> (V) always covers the entire hyper-volume and that any point

on the box is separated from dQ by a distance a t least 2 A qu (z). where z is a feature

point.

93

During the refinement, some vertices are inserted exactly on the box: these vertices

are called box vertices. The box vertices might lie on 1, 2, or 3-dimensional box faces.

We shall refer to the vertices tha t are neither box vertices nor feature vertices as free

vertices.

The algorithm inserts new vertices for three reasons: to guarantee tha t (a) <912 is

correctly recovered, (b) all the elements have small radius-edge ratio, and (c) there

are no slivers. Specifically, for a 4-simplex < 7 4 in the mesh, the following rules are

checked in this order:

• R l: Let B„A intersect dQ and 2 be equal to cfp9S2 (c (oq)). If 2 is at a distance

no closer than A gu (2) to any other feature vertex, then 2 is inserted.

• R2: Let B ai intersect dQ and 2 be equal to cfpau (c (eq)). If R a > 2A 352(2),

c(cr4) is inserted.

• R3: Let 0 (0-4) lie inside Q. If p(cq) > p, c(oq) is inserted.

• R4: Let c(oq) lie inside Q. If 0-4 contains a sliver, a good point inside V IZ (a 4)

is inserted.

• R5: Let 0-3 (0-3 C 0-4) be a restricted facet. If the vertices of oq are not feature

vertices, then a good point 2 inside V7Z(a:i) is inserted. All the free vertices

closer than A on (2) to 2 are deleted.

For i < j , priority is given to Hi over R j. T hat is, right before the insertion of a

point because of R j, there is 110 element that violates a rule RL Also, in R4, priority

is given to the lower dimensional slivers that oq might contain.

Whenever there is 110 simplex for which R l, R2, R3, or R4 apply, the refinement

process terminates. The final mesh reported is the set o f pentatopes whose circurn-

centers lie inside Q.

In a nutshell. R l and R2 is responsible for generating a sufficiently dense sample

011 dQ. II5 makes sure that the vertices of the simplices restricted to dQ lie 011 dQ

similarly to |109|. Lastly. R3 and R4 deal with the quality guarantees. In Section 4.3.

we will show that there are values for b. (j and p that do not compromise termination.

94

To prove termination, no vertices should be inserted outside the bounding box.

Notice, however, that vertices inserted due to R2 may lie outside the bounding box.

To deal with such cases, c(cr4) is rejected for insertion. Instead, its projection d (<t4)

on the box is inserted in the triangulation. T hat is, d (er4) is the closest to c (o 4) box

point. In Section 4.3 and Section 4.4, we prove tha t the insertion of projected points

do not compromise either quality or fidelity. Note that these projections are different

than the traditional encroachment rules described in [117,118].

Recall that pentatopes with circumcenters on dQ or outside Q are not part of the

final mesh, and tha t is why rule R3 and R4 do not check them.

4.3 Term ination and Q uality

In this section, we will specify the appropriate values for p, and h, so tha t the

algorithm terminates. Specifically, we will show during refinement the shortest edge

introduced into the mesh cannot be arbitrarily small.

Suppose that a violates a rule Ri. a is called an Ri element. Ri dictates the

insertion of a point p (and possibly the removal of free points). Point p is called an

Ri point. According to [117,118|, the insertion radius R p of p is defined as the length

of the shortest edge incident to p created right after the end of Ri and the parent

Par(p) of p as the most recently inserted vertex incident to the shortest edge of a.

L em m a 4.2 Let p and q define the shortest edge of a simplex a and q being inserted

after p. Then R q < lmin (a).

P ro o f: Assume that right after the insert ion of q. p is tin* closest point to q. In this

case, R q = \p — q\ = lmin (cr). Otherwise, there has to lie another closest vertex to q,

which implies that R q < \p — q\ = /mjn (cr). ■

The following Lemma bounds from below the shortest edge introduced into the

mesh after the insertion of a box vertex:

L em m a 4.3 Led v be a box vertex inserted into the mesh. Then. It, > 2 Aoo {z).

inhere z is a feature point.

Oo

S(tj

,c (t)

c' (t)

2 D d i s k

Figure 4.2: Proof of Lemma 4.3, a 3D illustration.

P ro o f: A box point v is inserted only because of R2 The circumcenter c (a) of a

pentatope a lies on or outside the box and its projection d (cr) = v falls on the box.

W ithout loss of generality, assume that the projection lies on the interior of a 3-face

(i.e. a box tetrahedron) F. See Figure 4.2 for a 3D illustration. (If c(cr) lies precisely

on the box, c' (a) is equal to v.) Consider the (2D) disk (drawn) of B„ which is

coplanar with F. T hat disk contains v and separates B a in two sides: the side tha t

contains c(<x) and the side th a t contains a part of the box.

We claim that the closest vertex - say w — to v lies on the intersection of B a 's

boundary and the ray c(a) v. To see why, note that B a is empty of vertices, and

therefore, the closest to v tha t an arbitrary vertex w' already in the triangulation can

be is when it lies on the boundary of B a and on the side of B a tha t contains a part

of the box, as shown. Consider the triangle A w'vc(a). From the law of cosines, we

have that:

|y - w'\2 = | c (a) - w ' \ 2 + \c (cr) - v\2 - 2 |c(cr) - u/| |c(cr) - c|cosu;
> Ic (cr) — u/ \ 2 + |c (cr) — v \ 2 — 2 |c (cr) — u’'| |c (cr) — r>| , since cos ui < 1

= (M<t) - m/| - \c\a) - t' |) 2

= (R„ — \c(a) — rj) . since w' lies on the sphere
I |2

= \V — W | ,

and our claim is proved.

Therefore, any possible new edge connected to v has length at least |t> — ;n|. Since,

however, a triggers R2. B„ has to intersect dQ. Therefore, there has to be a feature

point q E 9Q (illustrated) inside B a and on the same side of F as w. Let us denote

9C

with q', the projection of q to the box face F. By construction, |g — q'\ is at least

2Aan (2), where 2 is a feature point. Observe, however, that |u — w\ is always larger

than \q — q'|, because vw || qq', and the statem ent holds. Similar reasoning applies in

the case where c' (a) lies 011 a box triangle or a box edge. ■

The following Lemma proves a lower bound on the lengths created into the mesh

because of R l and R2:

Lem m a 4.4 Let p be a vertex inserted into the mesh because of R l or R2. Then,

Rp > Aao (2), where z is the closest feature point to p.

Proof: If R l is triggered, then p is equal to 2 and since there is no other feature

point already inserted in the mesh closer than Agjj (p) to p, the statem ent holds.

Otherwise, R2 applies for a simplex er4 and p is equal to 0 (0 4). Due to the empty

ball property, R v is at least R ai > 2Aqu (cfpao (p))> anfi the statem ent holds. ■

Lem m a 4.5 Let p be a vertex inserted into the mesh because RS applies for an ele­

ment a. Then, R p > pRpar{P)-

Proof: Since p is equal to c(o), Rp > R a = p { o) lmm (a) > plmin (cr). Lemma 4.2

suggests tha t /ra;n (cr) > RpaT(p), and the results follows. ■

Lem m a 4 .6 Let p be inserted into the mesh because of R f . Then,

• R P > ¥ Rpar(P), i f Par(p) is neither R f nor R5,

• Rp > bRparlpj. otherwise.

Proof: Let a be the simplex th a t violates R4.

Suppose tha t Par(p) is neither R4 nor R5. Since p belongs to the picking region

of <7 , Rp > (1 — Q R a > h ^ /min (&)■ From Lemma 4/2, we have th a t R p > ~ ^ R p ar(P)■

Otherwise, consider the case Par(p) is an R4 point. From Lemma 4.1, we know

that the circumradius of a is more than b times the circumradius of the R4 simplex

o' that inserted Par(p). Therefore. R p > (1 — QRa > (1 — Q bR a'. However, the

quantity (1 - QRa' is equal to R p aT[P)- and the statem ent holds.

9 7

l -c l - c

R5R3 R5

Rl/R2/projection

Figure 4.3: Flow diagram depicting the relationship among the rules. No solid cycle should have
a product less than 1. The dashed arrows break the cycle.

The exact same logic holds when Par(p) is an R5 point, by ju s t substituting fZzy

for R ai, where a' is an R5 simplex. ■

L em m a 4.7 Let p be inserted into the mesh because of R5. Then,

• ^ Rpar(pp if Par(p) is not an R5 point,

• Aou(z), otherwise.

P ro o f: Let cr:j Ire the simplex that violates R4.

Suppose that Par(p) is not an R5 point. Because of Lemma 4.2, the shortest edge

of 03 is at least Rpar{p)- Therefore, any surface ball of a:i has radius at least \ R p ar(p)-

Since the surface ball does not contain an}' vertex in its interior, R p > RpaT(p)-

Suppose that Par(p) is an R5 point. Note th a t when Par(p) is inserted, all the free

vertices closer than Aau (Po.r(p)) to Par(p) are deleted. Due to Ro, 03 contains at

least tme free vertex. Since Par(p) is the most recently inserted vertex incident to the

closest (xlge of a.j, the edge that contains Par(p) and the free vertex has to be at least

9 8

Aga(Par(p)). Therefore, any surface ball of has radius at least |A as i(Par(p)).

Hence, Rp > (Par(p)). ■

Putting all the Lemmas together, the solid arrows of Figure 4.3 show' the insertion

radius of the inserted point as a fraction of the insertion radius of its parent. An

arrow' from Ri to R j with label x implies th a t the insertion radius of an R j point

p is at least x times larger than the insertion radius of its Ri parent Par{p). The

label x of the dashed arrows is the absolute value of R p. Note th a t the labels of the

dashed arrows depend on the local feature size of dQ, and as such are always positive

constants.

Recall tha t during refinement, free vertices might be deleted (because of R5).

Nevertheless, such deletions of vertices are always preceded by insertion of feature

points. Considering the fact tha t feature vertices are never deleted from the mesh,

termination is guaranteed if we prove tha t the insertion radii of the inserted vertices

cannot decrease indefinitely. Clearly, [90,117,118], if there is no solid cycle of product

less than 1 , termination is guaranteed.

T h e o re m 4.1 The algorithm terminates producing sirnplices of bounded aspect ratio,

if

• p > 1, and

. ^ 6 > 1.
P ro o f: See Figure 4.3. The smallest product is produced by the solid cycles

R3—»R4—>R5—>R3 and R.4->Ro—>R4. By requiring the label product of these loops

to be more than 1 . the desired result follows. ■

4.4 A ccuracy

In this section, we prove that the mesh boundary is equal to the restriction of a dQ

sample A to dQ. In the literature, it is proved that these tetrahedra approxim ate the

surface correctly, in geometric and topological sense [9.27.35].

99

F ig u r e 4 .4 : P r o o f o f L e m m a 4 .8 .

First, we show that 6 directly controls the density of the feature vertices. Let V

be the set of vertices in the final mesh and A be equal to V fl dQ.

L em m a 4.8 Let 6 < Then A is a — ^-sample of dQ.

Proof: Recall tha t upon termination, there is no tetrahedron for which R l, R2, R3,

R4, or R5 apply.

See Figure 4.4. Let p be an arbitrary point on dQ. Since V (V) covers all the

domain, point p has to lie on or inside the circumsphere of a pentatope cr (not shown).

Hence, B a intersects dQ. Let point p' be the feature point closest to c(cr). Note that

|c(a) — p\ > |c(a) — p '| and therefore p' lies on or inside cr’s circumsphere. We also

know that cr's circumradius has to be less than 2A qq (p'), since otherwise R2 would

apply for t. Therefore, we have the following:

|p — p'| < 2R„ (because both p and p' lie on or inside B a)
< 4Agsi (p') (because of R2)
< 46 (|p - p'| + lfsas2 (p)) (from Inequality (4.1)),

and by reordering the terms, we obtain that:

46 1
Ip - p I < t _ 4^ lfs^ i (p) • with s < 4 - (4-2)

Moreover, then1 must exist a feature vertex v in the triangulation closer than

&on ip') = 6 ■ lfs^n {?') to P'• since otluuwise R l would apply for a. Hence. |c — p'\ <

too

(5 • lfsgii (//), and using Inequality (4.1), we have that:

p'\ < <5 (b - p 'I + lfsaw (p)) (4.3)

Applying the triangle inequality for A pvp' yields the following:

|p —1-’| <
<

pp'\ + b ~ p'\
p - p
p - p '

+ S (|p - p'l + lfsau (p)) (from Inequality (4.3))
_ (1 + S) + S ■ lfsasj (p)

< ~ ^lfsau (p) (1 4- 6) + S • Ifsan (p) (from Inequality (4.2))

= T ^ l f s ^ (P) ,

and the proof is complete. ■

Let us denote with uii one of the n connected components tha t fl consists of:
n

Q — 1’he next two Lemmas prove a few useful properties for the mesh A4
i = 1

and its boundary dAi . Our goal is to show th a t 9.M is always non-empty and does

not have boundary (Lemma 4.10), a fact tha t will be used for proving the fidelity

guarantees (Theorem 4.2).

L em m a 4.9 Let S < 1. Then, for every u>i there is a pentatope o 6 T> (V), such that

c (a) lies inside uii.

Proof: Let us consider a single connected component uii. The same reasoning applies

for any connected component of O.

For the sake of contradiction, assume that there is no pentatope whose circumcen-

ter lies inside uii. Since the triangulation T> (V) covers all the domain, the circumballs

of the pentatopes in T>(V) also cover the domain to;. Therefore, there has to be a

cireumball (a 6 T> (V)) which intersects a point m on the medial axis of duit, such

that rn lies inside io,. By our assumption, the circumcenter c{a) cannot lie inside cu,.

Therefore. B a intersects duil. Also, recall that R2 cannot apply to any pentatope.

Hence, we have the following:

2 • 6 ■ l f s y n (c f p y o (c (e r))) > R„ (f rom H2)

> lc|,|>t > i (si ncy rn a n d r f p ^ n (c-(o)) (i ° n° t lit’ o u ts id e B 0)
I f s n t t (f f p / K > (r (f 7))) / . . ,

1 ----------- (s in c e m is o n t h e m e d ia) a x i s) =^-

6 > i
i •

101

which raises a contradiction.

L em m a 4.10 Let 5 < Then, d A i is a non-empty set and does not have boundary.

P ro o f: The fact that d A i is a non-empty set follows directly from Lemma 4.9: since

A i cannot be empty, its boundary d A i cannot be empty too. For the other part,

since d A i is the boundary of a set of tetrahedra, it cannot have a boundary.

■
The following Theorem proves the fidelity guarantees:

T h e o re m 4.2 The mesh boundary dAA is the restriction to dQ of A = V D dQ.

P ro o f: Let / be a tetrahedron cr3 in d A i . As such, Vor (a:i) intersects dQ. Due to

Ro, the vertices of a:i lie on dQ. Recall tha t the surface ball Bz a3 does not contain

vertices in its interior. Therefore, B Z%CT3 is empty of vertices in V n dQ also. W ithout

loss of generality, assume that the vertices in V are in general position. Since there

is a ball that circumscribes cr3 and does not contain vertices of V n d D in its interior,

cr3 has to appear as a simplex in T> (V n dQ). Since the center 2 of the surface ball

lies on dQ, then the voronoi dual of cr3 intersects in T>\ou (dQ) dQ D V, as well.

Hence, d A i C V m (dQ) dQ D V.

For the other direction, we will prove th a t d A i cannot be a proper subset of

V \an (dQ) dQ n V, and therefore, equality between these 2 sets is forced. Toward

this direction, we will prove tha t any proper non-empty subset of (dQ)dQ D V

has boundary; this is enough, because we have proved in Lemma 4.10 tha t d A i is

non-empty and does not have boundary.

(dQ) dQ D V is the restriction of a sample of a dosed manifold dQ and there­

fore it is a 3-manifold without boundary [9|. That means tha t any 2-simplex in

T>\gn (dQ) dQ fl V is incident to exactly two 3-simplicos of T>\qh (dQ) dQ n V. Since

any proper non-empty subset A of Djao (dQ) dQ fl V has fewer 3-simplices, A con­

tains at least, a 2-simplex cr2 incident to only one 3-simplex. But this implies that. <r2

belongs to the boundary of A. and the proof is complete. ■

102

4.5 E xperim ental E valuation

The algorithm is implemented in C • +. YVe employed the Bowyer-Watson kernel [30,

128] for point insertions. The removal of a point p is implemented by computing the

small Delaunay triangulation of the vertices incident to p [55], such th a t the vertices

inserted earlier in the triangulation are inserted into the small triangulation first. It

can be shown [G3[that these new created pentatopes can always be connected back

to the original triangulation without introducing invalid elements. For the Euclidean

Distance Transform, we made use of the related filter implemented in 1TK [7] and

described in [97]. Lastly, we borrowed CGAL’s [6] exact predicates for the accurate

computation of the 4D in-sphere tests.

Table 4.1: Information about the images of the five patients used in this section. The spacing for
all the images is (1.77,1.77, 6,1)mrn4.

Case II Patl I Pat2 | Pat 3 | Pat4 | Pato |
ft Voxels I] (100 x 100 x 44 x 15) [(100 x 100 x 34 x 15) | (100 x 100 x 2fi x 15) | (100 x 100 x 31 x 15) | (100 x 100 x 29 x 15)j

We ran our code on five (segmented) images obtained from the 4D Heart D ataba­

se [103]. The first three represent the moving left ventricle of the patients, while the

last two the ventricle together with the myocardium for 15 cardiac cycles. Information

about these data is given in Table 4.1.

Table 4.2: Statistics of the output meshes generated for each patient.

P a t l P a t2 P a t 3 P a t l P a tS
•••• P en ta to p es 10.479 43.673 8.883 63 .016 56.528

B o u n d a ry T e tra h e d ra 30 .758 29.089 8,271 36.281 33.308
" V ertices ■1.709 4.311 1.362 5.567 5.132

S h o rte s t edge (m>n) 3.15 3.87 3.90 3.5 4.63
Ita d iu s-ed g e ra t io

(m a x im u m , average , d ev ia tio n) (1.93. 1.02. 0 .17) (1 .78 . 0 .98 . 0.15) (1.54. 0 .92. 0.10) (2 .20 . 1.06. 0.18) (1.87. 1.05. 0 .18)

.N orm alized volum e
(m in im u m , average, d ev ia tio n) (0.01. 0 .34. 0.18) (0 .01 . 0 .38 . 0.18) (0 .02 . 0 .13. 0 .17) (0.01. 0 .32 . 0.17) (0.01. 0 .33. 0 .17)

Recall that our algorithm needs the distance of any point on dSl from the medial

axis. The robust computation of the medial axis is a very difficult problem (see [50, 70|

for computing the exact medial axis, (49| for a review of image-based medial axis

methods, and [11] for computing the medial axis given a set of surface points) and

out of the scope of this thesis. Therefore, in the implementation, we assume that

lf'sa<! (p) is uniform and equal to the unit, which implies that A tm{p) becomes equal

103

to S. That is, in practice, 6 determines a uniform and (if small enough) dense sample

of the surface. We experimentally verified tha t a 8 value equal to 5 (the length of

five consecutive voxels along the fourth dimension) yielded manifold mesh boundaries

with vertices lying precisely on the iso-surface in accordance with Theorem 4.2.

The quantity ra determines the aspect ratio of pentatope a [90], but it is not

normalized, and therefore, it is hard to draw comparative conclusions. For this reason,

for a pentatope a of the final mesh, we report its normalized volume ra defined as the

ratio of its volume over the volume of a regular pentatope with circumradius equal

to the circumradius of a (or alternatively fCT =)• Clearly, ra € [0,1], where a

value of 0 implies a degenerate pentatope, while 1 implies a perfect quality.

Figure 4.5: Normalized volume histogram of the output mesh obtained for the input image Patl.

Table 4.2 shows quantitative data for the mesh generated on each image. We set

the radius of the picking regions equal to £ = | . Theorem 4.1 suggests that p be at

least 16 and b at least. 4. We experimentally observed tha t by selecting 4 to 10 random

points within the picking regions (both the 4- and the 3-topological balls), no small

element a was created with t„ less than 0.01. Despite the fact a value of 0.01 is rather

small, it is three orders of magnitude larger than the minimum normalized volume

reported in the case where no picking regions are employed at all. Also, notice that

the average normalized volume is much higher than the minimum value. This fact

together with the observed small standard deviation implies that most pentatopes

have normalized volume away from the minimum value and very close to the average.

Figure 4.5 shows the histogram of the normalized volumes for the first experiment

of Table 4.2. that is. when the input image P a tl was used. Similar histograms are

104

observed for all the other inputs as well.

4.6 R eal-T im e 4D M esh ing

During the development of the 4D Delaunay refinement code, we realized tha t its per­

formance behaves very differently than the performance of the 3D code we developed

and described in Chapter 2 and Chapter 3. This is due to mainly two reasons: (a) the

storage requirements and computations involved in a point insertion or removal are

higher because of the increased dimensionality, and (b) the 4D CGAL predicates we

employed to enforce robustness are not as well optimized as their 3D counterparts.

Indeed, the achieved rate of meshing a 4D hyper-sphere with 40,000 elements is 145

pentatopes per second, while the achieved rate of meshing the hypersphere’s equator

with the same number of elements is 107,037 tetrahedra per second.

In this Section, we improve the speed of our 4D code by optimizing its complexity

and by parallelizing the whole process. Since point removals account for approxi­

mately less than 1% of the total number of operations in all the cases we investigated,

we focus on 4D Delaunay point insertions.

4.6.1 C om plexity

E.1.5
=> 10

2000 80004000
Number of Points

60004000
Points

60002000
Number of Points

(a) (b)

Figure 4.6: The complexity of the 4D code (a) before, and (b) after the Rule reordering.

105

Ignoring the time involved for locating the first element in a point’s cavity, the

optimal complexity of a Delaunay insertion is constant . Therefore, inserting n points

costs fl(n) time. Although the 3D code reaches the optimal complexity in all the

case studies we experimented on, its 4D counterpart behaves very differently. Indeed,

Figure 4.Ga shows the number of deleted and created elements involved so far with

respect to the number of inserted points on the 4D hvper-sphere. If the complexity

was optimal, then the curve should look like a straight line. We observe, however, that

the complexity is far from ideal after the insertion of approximately 2,500 points. We

obtained similar results when we ran our code on other inputs, such as hyper-torus

and the five 4D hearts of Section 4.5.

Nevertheless, it can be proved [99] tha t it is possible to reach the optimal com­

plexity if, at any given moment of refinement, the radius-edge ratio is bounded from

above. In fact, this technique has already been applied successfully in the litera­

ture [77]. Therefore, we reordered the Rules of our algorithm (see Section 4.2), such

that rule R3 has the highest priority among all the rest of the Rules. In this way, the

mesh is always of bounded radius-edge ratio and as such, the expected complexity

should be close to the optimal. Indeed, Figure 4.Gb shows that the complexity curve

behaves linearly. This improvement boosted the performance of the 4D code by 27%

on the hyper-sphere mentioned above, bringing the rate of 145 pentatopes per second

up to 184 for the 40,000 element mesh generated.

4.6 .2 P arallelization

In this Subsection, we parallelize the 4D algorithm to take advantage of the multi-core

and many-core platforms already available in the market. To our knowledge, this is

the first attem pt to parallelize the mesh generation and refinement of 4D space-time

domains.

We employed a tightly-coupled approach similar to the concept of the 3D PI2M.

That is. before a thread applies any change, it has to lock all the associated vertices.

An attem pt to lock an already acquired vertex results in a rollback. Tin' avoidance

of livelocks is achieved via the Local-CM presented in detail in Section 3.3. since it

100

was shown to be the most effective way to eliminate livelocks, even in the presence of

very little parallelism.

We deactivated the picking region technique described in detail in the previous

Sections of this Chapter, because w'e wanted to perform a 1-to-l comparison with

the 3D code and investigate which parallelization techniques tha t were applied suc­

cessfully in 3D benefit the parallelization of the 4D problem as well. Keeping the

picking regions would imply more than one rounds per insertion causing a consider­

able increase in the number of rollbacks, a fact not associated to the nature of the

4D problem, but to the technique of eliminating slivers.

Table 4.3: The performance of the parallel 4D method (a) without, and (b) with fine grained
parallelism.

(a)

Threads 1 6 12
if Elements 39,696 40,598 39,870
Time (secs) 207.0 131.5 134.0

Elements per second 191.7 308.8 297.6
Speedup 1.00 1.61 1.55

Contention seconds
per thread 0.0 92.0 111.2

Balance seconds per
thread 0.0 1.3 2.7

Rollback seconds
per thread 0.0 1.3 9.4

Total overhead
seconds per thread 0.0 94.7 123.2

Threads
(b)

1 6 12
fi- Elements 39,696 39,632 39.612
Time (secs) 204.9 74.1 72.8

Elements per second 193.8 534.5 544.0
Speedup 1.00 2.76 2.81

Contention seconds
per thread 0.0 34.8 47.3

Balance seconds per
thread 0.0 1.5 6.6

Rollback seconds
per thread 0.0 1.5 0.1

Total overhead
seconds per thread 0.0 37.8 54.0

107

Table 4.3a illustrates the strong scaling performance of the 4D parallel implementa­

tion on the Pat5 input 4D heart. It also shows the average total overhead seconds per

thread (last column) and the exact source of the overhead, i.e., contention, balance,

and rollback overhead, as defined in Section 3.3.5.

Although the same parallelization techniques scaled the 3D counterpart for a core

count higher than 128, we observe tha t intensive overhead hampers scalability even

on 12 cores in 4D domains. For example, 91% of the to tal execution time on 12 cores

was spent waiting on contention lists, balance lists, and rollbacks. Interestingly, the

overhead of the 3D counterpart on a slice of the same 4D input was only G9% on

12 cores, when it generated a mesh of approximately the same size. This different

behavior could be attributed to the fact that now the size of the cavity is much larger

in 4D than it is in 3D. Indeed, we computed tha t the average size of the 4D cavity

(4D Pat5 heart) is about 72.9 pentatopes, while the average size of the 3D cavity

(slice of Pat5) is 18.0.

Nevertheless, the fact tha t most of the time is spent idling on contention and

balance lists gives us the opportunity to perform cavity expansions in parallel. When

a thread is working on inserting a point, it invites idling threads to perform the

operation in parallel. This parallelization scheme is called fine grained parallelization

and was successfully employed in the past by our group [13].

Table 4.3b shows the fine grained performance of our implementation. Observe

that the overhead seconds were greatly reduced. For example, on 12 cores, the over­

head seconds were reduced by 2.2X, simply because threads help active threads to do

useful work and therefore, they wait on the contention/balance lists much less. As an

immediate result, the fine grained implementation is 1.7X and 1.8X faster on G and

12 cores respectively.

108

Chapter 5

Conclusions and Future Work

In this work, we presented a 3D Delaunay refinement image-to-mesh conversion algo­

rithm that operates directly on segmented images. It is able to create an appropriate

sample set on the object’s surface, and to mesh the volume and the surface at the

same time. This flexibility (besides the fact tha t it solves three distinct problems,

that is, sampling, surface recovery, and volume meshing) results in a generally lower

number of vertices than in the case where the surface is meshed w ithout considering

the rules of quality. For instance, the insertion of points that improve the quality

might help the density requirement a t the same time.

Apart from the fidelity guarantees we give (namely, tha t the mesh boundary is a

good geometric and topological approximation of the object's surface), our algorithm

provablv achieves very low radius-edge ratio without sacrificing fidelity. The planar

angles of the boundary facets are also guaranteed to be larger than 30°. Moreover, by

slightly relaxing the quality guarantees, our algorithm provably exhibits good grading.

Experimental evaluation on various images shows that the final meshes are free of

slivers and exhibit both volume and (in most cases) surface grading, a fact tha t greatly

reduces the size of the mesh making the subsequent FEM analysis [18,19.-17] faster.

Lastly, demonstration of the use of custom size functions shows that our algorithm

allows for additional flexibility to meet user-defined mesh density.

We also presented PI2M: the first parallel Image-to-Mesh (P12M) Conversion

109

Isosurface-based algorithm and its implementation. Starting directly from a m ulti­

label segmented 3D image, it is able to recover and mesh both the isosurface dil with

geometric and topological guarantees (see Theorem 3.1) and the underlying volume

Q with quality elements.

This work is different from parallel Triangulators [20, 23, 24, 03], since parallel mesh

generation and refinement focuses on the quality of elements (tetrahedra and facets)

and the conformal representation of the tissues’ boundaries/isosurfaces by computing

on demand the appropriate points for insertion or deletion. Parallel Triangulators

tessellate only the convex hull of a set of points.

Our tighly-coupled method greatly reduces the number of rollbacks and scales up

to a much higher core count, compared to the tightly-coupled method our group de­

veloped in the past [105]. The data decomposition method [43] does not support

Delaunay removals, a technique tha t it is shown to be effective in the sequential

mesh generation literature [02,64], The extension of partially-coupled [39] and de­

coupled [92] methods to 3D is a very difficult task, since Delaunav-admissible 3D

medial decomposition is an unsolved problem. On the contrary, our method does not

rely on any domain decomposition, and could be extended to arbitrary dimensions

as well. Indeed, we plan to extend PI2M to 4 dimensions and generate space-time

elements (needed for spatio-temporal simulations [21, 111]) in parallel, thus, exploit­

ing parallelism in the fourth dimension. As future work, we also leave the mesh

boundary smoothing required for CFD simulations, such as respiratory airway mod­

eling [57, 87,88].

Our code is highly optimized through carefully designed contention managers, and

load balancers which take advantage of NUMA architectures. Our Global Contention

Manager (Global-CM) and Local Contention Manager (Local-CM) provably eliminate

deadlocks and livelocks. They achieve a speedup even on 250 cores, when other trad i­

tional contention managers, found in the mesh generation literature, fail to terminate.

Local-CM also reduced the number of overhead cycles by a factor of 2 compared to

the Global-CM on 250 cores, improving energy-efficiency by avoiding energy waste

because of rollbacks. Lastly, our Hierarchical Work Stealing load balancer (HWS)

sped up flic execution by a factor of 1.45 on 170 cores, as a result of a 22.8'X remote

110

accesses reduction.

All in all, PI2M achieves a strong scaling efficiency of more than 82% on G4 cores.

It also achieves a weak scaling efficiency of more than 82% on up to 144 cores. We

are not aware of any 3D parallel Delaunay mesh refinement algorithm achieving such

a performance.

It is worth noting that PI2M exhibits excellent single-threaded performance. De­

spite the extra overhead associated with synchronization, contention management,

and load balancing, PI2M generates meshes 40% faster than CGAL and with similar

quality. Moreover, PI2M achieves better quality than TetGen, and it is also faster

than TetGen for large mesh sizes.

Recall that in our method, threads spend time idling on the contention and load

balancing lists. And this is necessary in our algorithm for correctness and performance

efficiency. This fact offers great opportunities to control the power consumption, or

alternatively, to maximize the seconhxA t̂t rati°- Since idling is not the time critical

component in our algorithm, the CPU frequency could be decreased during such

an idling. Nevertheless, the appropriate frequency drop, the amount of idling, and

performance is a trade-off, and its investigation is left as future work.

As already explained, for core counts higher than 144, weak scaling performance

deteriorates because communication traffic (per switch) is more intense and passes

through a larger number of hops. In the future, we plan to increase scalability by

employing a hierarchically layered (distributed and shared memory) implementation

design |4G| and combine this tightly-coupled method with the decoupled and partially

coupled methods we developed in the past, exploring in this way different levels of

concurrency.

Lastly, in this dissertation, we presented a space-time meshing method for (3D • t)

image data. The method is able to provably clean up slivers and recover the hyper-

surfaces faithfully. Experiments on five 4D cardiac images show that the resulting

meshes consist of elements of bounded aspect ratio.

Efficient Discontinuous Galerkin formulations require that not only the hyper­

surface should be recovered but also the evolving 3D object at certain time steps [48].

This is a more challenging task considering the non-manifold nature of the underlying

111

space-time domain and it is left as future work.

Because of the increased memory space needed for high dimensional meshing, our

4D algorithm is rather slow: it is approximately 700 times slower than our three di­

mensional Delaunay mesher, as described in Section 4.6. Nevertheless, the fine grained

parallelization for the 4D code did yield a 2.81 speedup on 12 cores. YVe argue tha t the

main bottleneck for its scalability is the excessive amount of contention, a fact th a t

we did not observe in the 3D counterpart. We a ttribu te this difference in behavior

between the 3D and 4D implementation to the fact that the cavity size increases in

higher dimensions and therefore, tightly-coupled techniques need to lock many more

vertices. In the future, we plan to investigate other parallelization techniques, such as

data decomposition [43| and domain decomposition [39, 92], since they are expected to

alleviate the increased synchronization overhead observed in high dimensional mesh­

ing. In the future, we also plan to theoretically characterize the complexity of our

parallel methods described in Chapter 3 and C hapter 4, determining in this wav their

scalability on machines of different architecture [51].

112

Appendix A

Installing and Using the Software

In this Appendix, we provide brief instructions regarding the usage of the pieces of software presented

in Chapter 3 and Chapter 4, respectively. In particular, we describe how to use (a) the 3D parallel

Image to Mesh Conversion code (PI2M) and (b) its 4D counterpart (PI2M4). The source code is

located at code/ParallelMeshGeneration3D/ and code/ParallelMeshGeneration4D/, respectively.

The developed software depends on various other libraries which need to be installed prior to

compiling it. Specifically, our software depends on CMake [2], ITK [7], VTK [3], CGAL [6], PAPI [5],

and BoostC i i [1], Both executables are invoked as follows:

./Parallel —threads value —input name —delta value [—output name] [—pic name|

where:

• threads: the number of threads.

• input: an ITK compatible 3D/4D segmented image.

• delta: the 6 parameter that controls the density.

• output: the optional output mesh name where the mesh will be stored in the disk. Also,

mesh statistics about the quality of the mesh are reported. In 4D, the sequence of slices are

113

generated (naineO, nam el,...) as extracted from the mesh. If not given, then no output mesh

will be created.

• pic: the optional output PLC name. If not given, then no output PLC will be created. 3D

only.

Next, we list several important macros that affect the performance and the functionality of both

3D and 4D code, depending on whether or not they are on. These macros can be found in either

Config.h or Parallel_\lesh_Generator.h. Table A.la and Table A.lb elaborate on these macros and

their effect.

Lastly, under code/ParalleIMeshGeneration4D/, we have implemented two PI2M4 versions: vl2

and vl3. The difference is that vl3 re-arranges the priority of the Rules for complexity improve­

ment, as described in Section 4.6.1. These versions have been kept separate for maintainability and

readability reasons.

1 1 4

Table A .l: The list and descriptions of influential macros,

(a) Macros in Config.h that can be activated or deactivated by the user.

macro description comment

ASSERT sanity checks for the sequential mode
one thread

only

PARALLEL ASSERT sanity checks for the parallel mode

MEMORY MANAGER
if on, a pool of memory is maintained by each

thread

COMPUTE MESH

ELEMENTS ON THE

FLY

if on, the desired mesh can be extracted from the

triangulation in constant time. Otherwise, all the

elements need to be traversed and classified

during a post-processing step

3D only

REMOVE ON THE

FLY

if on, invalid elements are removed from their

corresponding PEL right away. Otherwise, they

are just marked as invalid and they are removed

from their PEL when the the responsible thread

examines it for splitting in a lazy manner

(b) Macros in Parallel Mesh Generation.h that can be activated or deactivated by the user.

macro description comment

NO GOOD ANGLES if on, no dihedral angle improvement is performed 3D only
NO REJECTION

STRATEGIES
if on, the isosurface is not protected 3D only

SLIVER REMOVAL picking regions are activated
4D only with

1 thread

FINE GRAINED fine grained parallelism is activated ID only
CONTENTION LOCAL

ON Local-CM is on

CONTENTION SIGNAL

ON Giobal-CM is on 3D only

CONTENTION SLEEP

ON Random-CM is on 3D only

INFINITE THREAD

if on, there is a dedicated thread for

inserting/ removing points on the box. This

decreases the number of rollbacks on the convex

hull

HLB the Hierarchical work stealing Load Balancer

REPORT COUNTERS

several statistics are obtained from each thread

during the execution anrl reported at the end.

This introduces zero synchronization overhead,

but it does introduce some computation overhead

PAPI_ON

PAPI counters are activated: TLB and LLC

misses are counted per thread, as well as the

number of resource stall cycles and remote

accesses

MARK BOUNDARY

TRIANGLES

if on, then the resulted VTK mesh file marks the

faces of each tetrahedron as boundary triangles or

not. Useful when applying boundary conditions.

It requires that the optional mesh name is given

3D only

NUMA
if on. the hop-wise distance of any node pair is

computed

Bibliography

[1| Boost Cv + libraries, http://www.boost.org/.

[2] C M a k f ,. h t t p : / / w w w . e r n a k e . o r g .

[3] VTK, Visualization Toolkit, http://www.vtk.org,

[4] SGI UV 100/1000 system specifications, http://www.sgi.coni/products/servers/uv/specs.
html, 2012. available online.

[а] PAPI, Performance Application Programming Interface, http://icl.cs.utk.edu/papi/, 2012.

[б] C o a l , Computational Geometry Algorithms Library, http://www.cgal.org, v4.0.

[7] ITK, Insight Segmentation and Registration Toolkit, http://www.itk.org, v4.1.0.

[8] P i e r r e A l l i f . z , D a v i d C o h e n - S t e i n e r , M a r i e t t e Y v i n e c , a n d M a t h i e l D e s b r l n .

Variational tetrahedral meshing. ACM Trans. Graph.. 24:617 625, July 2005.

[9] N i n a A m e n t a a n d M a r s h a l l B e r n . Surface reconstruction by Voronoi filtering. In SCG
’98: Proceedings of the fourteenth annual symposium on Computational geometry, pages 39 48,
New York, NY, USA, 1998. ACM.

[10] N i n a A m e n t a , S l n g h e e C h o i , T a m a l K. D e v , a n d N. L e e k h a . A Simple Algorithm
for Homeornorphic Surface Reconstruction. International Journal of Computational Geometry
and Applications, 12(1-2): 125 141, 2002.

[11] N i n a A m e n t a , S l n g h e e C h o i , a n d R a v i K r i s h n a K o l l l r i . The power crust. In Pro­
ceedings of the sixth ACM symposium on Solid modeling and applications, SMA '01. pages
249-266. New York, NY, USA, 2001. ACM.

[12] K a t r i n A m i n t s . C l a l d k L e p a g e , Lons B o r g e a t , H a r t m l t M o h l b e r g , T i . m o

D i g k s c h f . i d , M a r c - E t i e n n e R o l s s e a l , S e b a s t i a n B l l d a l , P i e r r e - L o u s B a z i n .

L i n d s a y B. L e w i s , A n a - M a r i a O r o s - P e i s q l e n s , N a d i m J. S h a h , T h o m a s L i p p e r t .

K a r l Z i l l e s , a n d A l a n C. E v a n s . BigBrain: An Ultrahigh-Resolution 3D Human Brain
Model. Science. 340(6139): 1472 1475, June 2013.

[13] C h r i s t o s A n t o n o p o l l o s , F i l i p B l a g o j e v i g , A n d r e v C h e r n t k o v , N i k o s C h h i . s o -

c h o i d e s , a n d D i m i t r i s N i k o l o p o l l o s . A multigrain Delaunay mesh generation method for
multicore suit-based architectures. .Journal on Parallel and Distributed Computing. 69:589
600. 2009.

[14] C h r i s i o s A n t o n o p o l l o s . X i a o n i n g D i n g , A n d r e v C h e r n t k o v , F i l i p B l a g o j e y i g .

D i m i t r i s N i k o l o p o l l o s . a n d N i k o s C h r i s o c h o i d e s . Multigrain parallel Delaunay mesh
generation: Challenges and opportunities for multithreaded architectures. In ACM Interna­
tional Conference on Supercomputing. number 19. pages 367 376. ACM. 2005.

116

http://www.boost.org/
http://www.ernake.org
http://www.vtk.org
http://www.sgi.coni/products/servers/uv/specs
http://icl.cs.utk.edu/papi/
http://www.cgal.org
http://www.itk.org

[15] X e c t l a i A r c h i p , O l i v i e r C l a t z , A n d r i v F e d o r o v , A n d r i y K o t , S t e p h e n W h a l e n ,

D a n K a c h e r , N i k o s C h r i s o o h o i d e s , F e r e n c J o l e s z , A l e x a n d r a G o l b y , P e t e r

B l a c k , a n d S i m o n K . W a r f i e l d . Non-rigid alignment of preoperative MRI, fMRI, D T -

MRI, with intra-operative MRI for enchanced visualization and navigation in image-guided
neurosurgery. Neuroimage, 35(2):609-624, 2007.

[16] K r s t e A s a n o v i c , R a s t i s l a v B o d i k , J a m e s D e m m e l , T o n y K e a v e n y , K u r t K e u t z f . r ,

J o h n K u b i a t o w i c z , N e l s o n M o r g a n , D a v i d P a t t e r s o n , K o u s h i k S e n , J o h n

W a w r z y n e k , D a v i d W e s s e l , a n d K a t h e r i n e Y e l i c k . A view of the parallel comput­
ing landscape. Commun. A C M , 52:56 67, October 2009.

[17] D o m i n i q u e A t t a l i , H e r b e r t E d e l s b r u n n e r , a n d Y u r i y M i l e y k o . Weak witnesses for
delaunay triangulations of submanifolds. In Proceedings o f the 2007 A C M sym posium on Solid
and physical modeling, SPM ’07, pages 143-150, New York, NY, USA, 2007. ACM.

[18] M. A u d e t t e , M. M i g a , J. N e m e s , K . C h i n z e i , a n d T . P e t e r s . A Review of Biomechan­
ical Modeling of the Brain for Intrasurgical Displacement Estimation and Medical Simulation.
Biomechanical Systems, General A natom y, pages 83 112, 2007.

[19] M . A . A u d e t t e , H. D e l i n g e t t e , A . F u c h s , O . B u r g f . r t , a n d K . C h i n z e i . A t o p o l o g i ­
c a l l y f a i t h f u l , t i s s u e - g u i d e d , s p a t i a l l y v a r y i n g m e s h i n g s t r a t e g y for c o m p u t i n g p a t i e n t - s p e c i f i c

h e a d m o d e l s f or e n d o s c o p i c p i t u i t a r y s u r g e r y s i m u l a t i o n . Com puter Aided Surgery, 1 2 (1) :43
5 2 , 2 0 0 7 .

[20] V i c e n t e H.F. B a t i s t a , D a v i d L. M i l l m a n , S y l v a i n P i o n , a n d J o h a n n e s S i n g l e r .
Parallel geometric algorithms for multi-core computers. Com putational Geometry, 43(8) :663-
677, 2010.

[21] M a r e k B e h r . Simplex space-time meshes in finite element simulations. In ternational Journal
fo r Numerical Methods in Fluids, 57:1421 1434, 2008.

[22] M B e n - A r i . Principles o f concurrent programming. Chapter 3, pages 30-43■ Prentice-Hall,
Englewood Cliffs, NJ, 1982.

[23] D a n i e l K . B l a n d f o r d , G u y E. B l e l l o c h , a n d C l f . m e n s K a d o w . Engineering a compact
parallel Delaunay algorithm in 3D. In Proceedings o f the 22nd Symposium on Computational
Geometry, SCG ’06, pages 292-300, New York, NY, USA, 2006. ACM.

[24] G u y E. B l e l l o c h , G a r y L. M i l l e r , J o n a t h a n C. H a r d w i c k , a n d D a f n a T a l m o r . De­
sign and implementation of a practical parallel Delaunay algorithm. Algorithm ica, 24(3) :243
269, 1999.

[25] H a r r y B l u m . A Transformation for Extracting New Descriptors of Shape. In Models fo r
the Perception o f Speech and Visual Form, Weiant Wathen-Dunn. editor, pages 362 380. MIT
Press, Cambridge, 1967.

[26[R o b e r t D. B l u m o f f . , C h r i s t o p h e r F. J o e r g . B r a d l e y C. K u s z m a u l , C h a r l e s E.
L e i s f . r s o n , K f j t h H. R a n d a l l , a n d Y u l i Z h o u . Cilk: an efficient multithreaded runtime
system. In Proceedings of the fifth A C M S IG P L A N sym posium on Principles and practice of
parallel programming, PPoPP '95, pages 207-216, New York, NY. USA. 1995. ACM.

[27] J e a n - D a n t e l B o i s s o n n a t , L e o n i d a s ,J. G u i b a s , a n d S t e v e Y. O i d o t . Manifold recon­
struction in arbitrary dimensions using witness complexes. Discrete Comput. Geom.. 4 2 : 3 7 70 .

May 2009.

117

[28] J e a n - D a x i e l B o i s s o n n a t a n d S t e v e O u d o t . Provably good sampling and meshing of
surfaces. Graphical Models, 6 7 (5) : 4 0 5 4 5 1 . 2 0 0 5 .

[29] D o b r i n a B o l t c h e v a , M a r i e t t e Y v t n e c , a n d J e a n - D a x i e l B o i s s o n n a t . M e s h Gener­
ation from 3D Multi-material Images. In Medical Im age Computing and C om puter-Assisted
Intervention, pages 283 290. Springer, September 2009.

[30] A d r i a n B o w y e r . Computing Dirichlet tesselations. C om puter Journal, 24:162-166, 1981.

[31] C a r s t e n B u r s t e d d e , O m a r G h a t t a s , M i c h a e l G u r m s , T o b i n I s a a c , G e o r g

S t a d l e r , T i m W a r b u r t o n , a n d L u c a s W i l c o x . Extreme-scale amr. In Proceedings of
the 2010 A C M /IE E E International Conference fo r High Performance Computing, Networking,
Storage and Analysis, SC TO, pages 1 12. IEEE Computer Society, 2010.

[32] F r E d e r i c C a z a l s a n d J o a c h i m G i e s e n . Delaunay triangulation based surface reconstruc­
tion: Ideas and algorithms. In Effective C om putational Geometry fo r Curves and surfaces,
pages 231 273. Springer, 2006.

[33] F . C h a z a l a n d A. L i e u t i e r . Stability and homotopy of a subset o f the medial axis. In
Proceedings o f the ninth A C M sym posium on Solid modeling and applications, SM ' 04 , pages
2 4 3 2 4 8 , Aire-la-Ville, Switzerland, Switzerland, 2 0 0 4 . Eurographics Association.

[34] S i u - W i n g C h e n g , T a m a l K . D e y , H e r b e r t E d e l s b r u n n e r , M i c h a e l A. F a c e l l o , a n d
S h a n g - H u a T e n g . S l i v e r e x u d a t i o n . Journal o f the ACM , 4 7 (5) : 8 8 3 - 9 0 4 , 2 0 0 0 .

[35] S i u - W i n g C h e n g , T a m a l K. D e y , a n d E d g a r A. R a m o s . Manifold reconstruction from
point samples. In Proceedings o f the sixteenth annual A C M -SIA M sym posium on Discrete
algorithms, SODA ’05, pages 1018-1027, Philadelphia, PA, USA, 2005. Society for Industrial
and Applied Mathematics.

[36] S i u - W i n g C h e n g , T a m a l K. D e y , a n d E d g a r A. R a m o s . Delaunay refinement for
piecewise smooth complexes. In Proc. 18th Annu. A C M -S IA M Sympos. D iscrete A lgorithm s,
pages 1096 1105. ACM Press, 2007.

[37] N u t t a p o n g C h f . n t a n e z , R o n A l t e r o v i t z , D a n i e l R i t c h i e , L i t a C h o , K r i s K .

H a u s e r , K e n G o l d b e r g , J o n a t h a n R . S h e w c h u k , a n d J a m e s F . O ’B r i e n . Interactive
simulation of surgical needle insertion and steering. In Proceedings o f A C M S IG G R A P H 2009,
pages 88:1-10, Aug 2009.

[38] A n d r k y C h e r n i k o y a n d N i k o s C h r i s o c h o i d e s . Three-Dimensional Semi-Generalized
Point Placement Method for Delaunay Mesh Refinement. In Proceedings o f the 16th In ter­
national Meshing Roundtable, pages 25-44, Seattle, WA, October 2007. Elsevier.

[39] A n d r f . y C h e r n t k o v a n d N i k o s C h r i s o c h o i d e s . Algorithm 872: Parallel 2D constrained
Delaunay mesh generation. A C M Transactions on M athematical Software. 3 4 : 6 25, January
2008.

[40] A n d r e v C h e r n t k o v a n d N i k o s C h r i s o c h o i d e s . Multitissue tetrahedral image-to-mesh
conversion with guaranteed quality and fidelity. S IA M Journal on Scientific Computing.
33:3491 3508. 2011.

[41] A n d r e y C h e r n t k o v a n d N i k o s C h r i s o c h o i d e s . Tetrahedral image-to-mesh conversion for
biomedical applications. In AC M Conference on B ioinform atics, Com putational Biology and
Biomedicine, pages 125-134. Chicago. IL. August 2011.

118

[42] A n d r e y C h e r n i k o v a n d N i k o s C h r i s o c h o i d e s . Generalized insertion region guides for
Delaunay mesh refinement. S IA M Journal on Scientific Com puting , 34(3):A1333 A1350, 2012.

[43] A n d r e y N. C h e r n i k o v a n d N i k o s P. C h r i s o c h o i d e s . Three-dimensional Delaunay re­
finement for multi-core processors. In Proceedings of the. 22nd annual international Conference
on Supercomputing, ICS ’08. pages 214 224, New York, NY, USA. 2008. ACM.

[44] L. P a u l C h e w . Guaranteed-quality mesh generation for curved surfaces. In Proceedings of
the 9th A C M Symposium on C om putational Geometry, pages 274 280, San Diego, CA, 1993.

[45] L. P a u l C h e w . Guaranteed-quality Delaunay meshing in 3D. In Proceedings o f the 1 3 th
A C M Sym posium on Computational G eom etry, pages 391-393, Nice, France, 1997.

[46] N i k o s C h r i s o c h o i d e s , A n d r e y C h e r n i k o v , A n d r i y F e d o r o v , A n d r i y K o t , L e o n i d a s

L i n a r d a k i s , a n d P a n a g i o t i s F o t e i n o s . Towards exascale parallel Delaunay mesh genera­
tion. In International Meshing Roundtable, number 18, pages 319-336, Salt Lake City, Utah,
October 2009. Springer Berlin Heidelberg.

[47] O l i v i e r C l a t z , H e r v e D e l i n g e t t e , I o n - F l o r i n T a l o s , A l e x a n d r a J. G o l b y , E o n

K i k i n i s , F e r e n c J o l e s z , N i c h o l a s A y a c h e , a n d S i m o n W a r f i e l d . Robust non-rigid
registration to capture brain shift from intra-operative MRI. IE E E Transactions on Medical
Imaging, 24(11): 1417 1427, November 2005.

[48] B e r n a r d o C o c k b u r n , G e o r g e E . K a r n i a d a k i s , a n d C h i - W a n g S h u . Discontinuous
galerkin methods: theory, computation and applications. Lecture notes in Com putational
Science and Engineering, 11, 2000.

[49] D a v i d C o e u r j o l l y a n d A n n i c k M o n t a n v e r t . Optimal separable algorithms to compute
the reverse euclidean distance transformation and discrete medial axis in arbitrary dimension.
IE E E Trans. Pattern Anal. Much. In tell., 29:437 448, March 2007.

[50] H. L. D e C o u g n y a n d M. S. S h e p h a r d . Parallel refinement and coarsening of tetrahedral
meshes. International Journal fo r Num erical Methods in Engineering, 46(7):1101 1125, 1999.

[51] D a v i d C u l l e r , R i c h a r d K a r p , D a v i d P a t t e r s o n , A b i i i j i t S a h a y , K l a u s E r i k

S c h a u s f . r , E u n i c e S a n t o s , R a m e s i i S u b r a m o n i a n , a n d T h o r s t e n v o n E i c k e n . Logp:
Towards a realistic model of parallel computation. S IG P L A N Not., 28(7):1 12, July 1993.

[52] P e r E r i c D a n i e l s s o n . Euclidean Distance Mapping. Computer Graphics and Image Pro­
cessing, 14:227 248. 1980.

[53] WN D a w e s , SA H a r v e y , S. F e l l o w s . N. E c c l e s , D. J a e g g i , a n d WP K e l l a r . A prac­
tical demonstration o f scalable, parallel mesh generation. American Institute of Aeronautics
and Astronautics, 1801 Alexander Bell Dr.. Suite 500 Res ton VA 20191-4344 USA,, 2009.

[54| O l i v i e r D e v i l l e r s a n d S y l v a i n P i o n . Efficient exact geometric predicates for dolaunay
triangulations. In Proc. 5th Workshop Algorithm Eng. Exper.. pages 37 44. SIAM, 2003.

[55| O l i v i e r D e v i l l e r s a n d M o n i q u e T e i l l a u d . Perturbations and vertex removal in a 3D
Delaunay triangulation. In Proceedings o f the 14th A C M -SIA M Sym posium on Discrete algo­
rithms. SODA ‘03. pages 313-319. SIAM. 2003.

[56] T a m a l In. D e y a n d W u l u e Z h a o . Approximate medial axis as a voronoi subromplex.
Computer-Aided Design. 36(2): 195-202. 2004.

119

[57] V o l o d y m y r D y e d o v , D a m e l R . E i n s t e i n , X i a n g m i n J i a o , A n d r e w P . K u p r a t ,

J a m e s P . C a r s o n , a n d F a c e n d o d e l P i n . Variational generation of prismatic boundary-
layer meshes for biomedical computing. International Journal for Numerical Methods in En­
gineering., 7 9 (8) : 9 0 7 - 9 4 5 , 2 0 0 9 .

[58] H e r b e r t E d e l s b r u n n e r a n d D a m r o n g G u o y . An experimental study of sliver exudation.
Engineering with Computers, 18:229 240, 2002.

[59] H e r b e r t E d e l s b r u n n e r a n d N i m i s h R. S h a h . Triangulating topological spaces. In SCO
’94: Proceedings of the tenth annual symposium on Computational qeometry, pages 285-292,
New York, NY, USA, 1994. ACM.

[60] J e f e E r i c k s o n , D a m r o n g G u o y , J o h n M. S u l l i v a n , a n d A l p e r U n g o r . Building
spacetime meshes over arbitrary spatial domains. Eng. with Coinput., 20(4):342-353, August
2005.

[61] A n d r i y F e d o r o v a n d N i k o s C h r i s o c h o i d e s . Tetrahedral Mesh Generation for Non-rigid
Registration of Brain MRI: Analysis of the Requirements and Evaluation of Solutions. In
International Meshing Roundtable, pages 55-72. Springer Verlag, October 2008.

[62] P a n a g i o t i s F o t e i n o s , A n d r e y C h e r n i k o v , a n d N i k o s C h r i s o c h o i d e s . Guaranteed
Quality Tetrahedral Delaunay Meshing for Medical Images. In Proceedings of the 7th Inter­
national Symposium on Voronoi Diagrams in Science and Engineering, pages 215 223. IEEE
Computer Society, June 2010.

[63] P a n a g i o t i s F o t e i n o s a n d N i k o s C h r i s o c h o i d e s . Dynamic parallel 3D Delaunay triangu­
lation. In International Meshing Roundtable, pages 3-20, Paris, France, October 2012. Springer
Berlin Heidelberg.

[64] P a n a g i o t i s F o t e i n o s a n d N i k o s C h r i s o c h o i d e s . High-quality multi-tissue mesh gen­
eration for finite element analysis. In Image-Based Geometric Modeling and Mesh Genera­
tion, Yongjie (Jessica) Zhang, editor, volume 3 of Lecture Notes in Computational Vision and
Biomechanics, pages 159 169. Springer Netherlands, 2013.

[65] P a n a g i o t i s F o t e i n o s , D a m i n g F e n g , A n d r e y C h e r n i k o v , a n d N i k o s C h r i s o c h o i d e s .

Multi-layered unstructured mesh generation. In Proceedings of the 27th international ACM
conference on International conference on supercomputing, ICS 13, pages 471 472, New York.
NY, USA, 2013. ACM.

[66] P a n a g i o t i s F o t e i n o s , Y i . x u n L i u , A n d r e y C h e r n i k o v , a n d N i k o s C h r i s o c h o i d e s .

An Evaluation of Tetrahedral Mesh Generation for Non-Rigid Registration of Brain MRI.
In Computational Biomechanics for Medicine V, 13th International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI) Workshop, pages 126 137.
Springer, September 2010.

|67] L o r i A. F r e i t a g a n d C a r l O l l i v i e r - G o o c i i . Tetrahedral mesh improvement using
swapping and smoothing. International Journal for Numerical Methods in Engineering.
40(21):3979 4002. 1997.

[68] J e r o m e G a l t i e r a n d P a u l - L o u i s G e o r g e . P r e p a r t i t i o n i n g as a w a y t o m e s h s u b d o m a i n s

in p ar a l l e l . In Special Symposium on Trends in Unstructured Mesh Generation, p a g e s 107 122.
ASME ASCE SES, 1997.

[69] P a u l - L o u i s G e o r g e a n d H o l m a n B o r o u c h a k i . Delaunay triangulation and meshing.
Application to finite elements. HERMES. 1998.

120

[70] P e t e r G i b l i n a n d B e n j a m i n B. K i m i a . A formal classification of 3D medial axis points
and their local geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26:238-251, January 2004.

[71] O r c u n G o k s e l a n d S e p t i m i u E. S a l c u d f . a n . High-quality model generation for finite
element simulation of tissue deformation. In 12th International Conference on Medical Im­
age Computing and Computer-Assisted Intervention (MICCAI), MICCAI 09, pages 248-256,
Berlin, Heidelberg, 2009. Springer-Verlag.

[72] J o h n L. G u s t a f s o n . Reevaluating Amdahl's law. Communications of the ACM, 31:532 533,
1988.

[73] U l r i c h H a r t m a n n a n d F r i t h j o f K r u g g e l . A Fast Algorithm for Generating Large Tetra­
hedral 3D Finite Element Meshes from Magnetic Resonance Tomograms. In Proceedings of
the IEEE Workshop on Biomedical Image Analysis, WBIA, pages 184 -192, Washington, DC,
USA, 1998. IEEE Computer Society.

[74] M a u r i c e H e r l i h y , V i c t o r L u c h a n g c o , a n d M a r k M o i r . Obstruction-free synchroniza­
tion: Double-ended queues as an example. In Proceedings of the 23rd International Conference
on Distributed Computing Systems, ICDCS '03, pages 522-. IEEE Computer Society, 2003.

[75] M a u r i c e H e r l i h y a n d J. E l i o t B. M o s s . Transactional memory: architectural support
for lock-free data structures. SIGARCH Comput. Archit. News, 21(2) :289 300, May 1993.

[76] P i n g H u , H u i C h e n , W e n W u , a n d P h e n g - A n n H e n g . Multi-tissue tetrahedral mesh gen­
eration from medical images. In International Conference on Bioinformatics and Biomedical
Engineering (iCBBE), pages 1-4. IEEE, June 2010.

[77] B e n o i t H u d s o n , G a r y M i l l e r , a n d T o d d P h i l l i p s . Sparse voronoi refinement. In
Proceedings of the 15th International Meshing Roundtable, pages 339 356. Springer Berlin
Heidelberg, 2006.

[78] Y a s u s h i I t o , A l a n S h i h , A n i l E r u k a l a , B h a r a t S o n i , A n d r e y C h e r n i k o v , X i k o s

C h r i s o c h o i d e s , a n d K a z u h i r o N a k a h a s h i . Parallel mesh generation using an advancing
front method. Mathematics and Computers in Simulation, 75:20B 209, September 2007.

[79] E. I v a n o v , H. A n d r A , a n d A. K u d r y a v t s e v . Domain decomposition approach for au­
tomatic parallel generation of tetrahedral grids. Technical Report 87. Fraunhofer (ITWM),
2006.

[80] M. J a k a b a n d R. K i k i n i s . Head and neck atlas. 11 2012. Available at: http://www.spl.
harvard, edu/publications/itein/ view/2271.

[81] J a n e T o u r n o i s , R a h u l S r i n i v a s a n , a n d P i e r r e A l l i e z . Perturbing Slivers in 3D De­
launay Meshes. In Proceedings of the 18th International Meshing Roundtable, pages 157-173,
Salt Lake City, Utah, USA, October 2009. Sandia Labs.

[82] X i a n g m i n J i a o , A n d r e w C o i . o m b i , X i n l a i N i . a n d J o h n H a r t . Anisotropic mesh adap­
tation for evolving triangulated surfaces. Eng. with Comput., 2 6 (4) : 3 6 3 3 7 6 . 2 0 1 0 .

[83] C l e m e n s M a r l i n J o a c h i m K a d o w . Parallel Delaunay Refinement Mesh Generation. 2 0 0 4 .

PhD Thesis. Carnegie Mellon University.

[84] R i c k y A. K e n d a l l , M a s h a S o s o n k i n a . W i l l i a m D. G r o p p , R o b e r t W. X u m h i c h .

a n d T h o m a s S t e r l i n g . Parallel programming models applicable to cluster computing and
beyond. In Numerical Solution of Partial Differential Equations on Parallel Computers. A.M.
Bruaser and A. Tveito. editors, pages 3 55. Springer. 2005.

121

http://www.spl

[85] B r y a n M a t t h e w K l i n g n e r a n d J o n a t h a n R i c h a r d S h e w c h u k . Aggressive tetrahedral
mesh improvement. In Proceedings of the International Meshing Roundtable, pages 3-23.
Springer, 2007.

[86] M i l i n d K u l k a r n t , P a t r i c k C a r r i b a c l t , K e s h a y P i n g a l i , G a n e s h R a m a n a r a y a n a n ,
B r u c e W a l t e r , K a v i t a B a l a , a n d L. P a u l C h e w . Scheduling strategies for optimistic
parallel execution of irregular programs. In Proc. Symp. on Parallelism in algorithms and
architectures (SPAA), pages 217 228, New York, NY, USA, 2008. ACM.

| 87] A . K u p r a t , A . K h a m a y s e h , D . G e o r g e , a n d L . L a r k e y . V o l u m e c o n s e r v i n g s m o o t h ­
i n g for p i e c e w i s e l i n e a r c u r v e s , s u r f a c e s , a n d t r i p l e l i ne s . Journal of Computational Physics,
1 7 2 (1) : 9 9 1 1 8 , 2 0 0 1 .

[88] A n d r e w P . K u p r a t a n d D a n i e l R. E i n s t e i n . An anisotropic scale-invariant unstruc­
tured mesh generator suitable for volumetric imaging data. J. Comput. Phys., 228(3) :619-640,
February 2009.

[89| F r a n q o i s L a b e l l e a n d J o n a t h a n R i c h a r d S h e w c h u k . Isosurface stuffing: fast tetra­
hedral meshes with good dihedral angles. ACM Transactions on Graphics, 26(3):57.1-57.10,
2007.

[90] X i a n g - Y a n g L i . Generating Well-Shaped D-dimensional Delaunay Meshes. In Computing
and Combinatorics, Jie Wang, editor, volume 2108 of Lecture Notes in Computer Science,
pages 91 100. Springer Berlin / Heidelberg. 2001.

[91] X i a n g - Y a n g L i a n d S h a n g - H u a T e n g . Generating Well-Shaped Delaunay meshed in 3D.
In Proceedings of the 12th annual ACM-SIAM Symposium on Discrete Algorithms, pages 28-
37, Philadelphia, PA, USA, 2001. Society for Industrial and Applied Mathematics.

[92] L e o n i d a s L i n a r d a k i s a n d N i k o s C h r i s o c h o i d e s . Graded Delaunay decoupling method for
parallel guaranteed quality planar mesh generation. SIAM Journal on Scientific Computing,
3 0 (4) : 1 8 7 5 1 8 9 1 , March 2 0 0 8 .

[93] A n w e i L i u a n d B a r r y J o e . O n t h e s h a p e o f t e t r a h e d r a f r o m b i s e c t i o n . Math. Comput.,
6 3 : 1 4 1 15 4 , J u l y 1 9 9 4 .

[94] Y i x u n L i u , C h e n g j u n Y a o , L i a n g f u Z h o u , a n d N i k o s C h r i s o c h o i d e s . A point based
non-rigid registration for tumor resection using iMRI. In IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, pages 1217-1220. IEEE Press, April 2010.

[95] R a i n a l d L o i i n k r . A 2nd generation parallel advancing front grid generator. In Proceedings of
the 21st International Meshing Roundtable, Xiangrnin Jiao and Jean-Christophe Weill, editors,
pages 457 474. Springer Berlin Heidelberg, 2013.

[96] W i l l i a m E. L o r e n s e n AND H a r v e y E. C l i n e . Marching cubes: A high resolution 3D
surface construction algorithm. SIGGRAPH Computer Graphics, 21(4):163 169. 1987.

|97| C a l v i n . R . M a u r e r , Q i R e n s h e n g , a n d V i j a y R a g h a y a n . A l i n e a r t i m e a l g o r i t h m for

c o m p u t i n g e x a c t e u c l i d e a n d i s t a n c e t r a n s f o r m s o f b i n a r y i m a g e s in a r b i t r a r y d i m e n s i o n s . IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(2):265 270, f e b 2003.

[98] G a r y L . M i l l e r , D a f n a T a l m o r . a n d S h a n g - H u a T e n g . D a t a g e n e r a t i o n for g e o m e t r i c

a l g o r i t h m s o n n o n - u n i f o r m d i s t r i b u t i o n s . Int. J. Comput. Geometry Appl., 9 (G) : 5 7 7 5 9 8 . 1 9 9 9 .

[99] G a r y L. M i l l e r . D a f n a T a l m o r , S h a n g - H u a T e n g , a n d N o e l W a l k i n g t o n . A De­
launay based numerical method for three dimensions: generation, formulation, and partition.
In Proceedings of the 27th Anna. ACM Sympos. Theory Comput. pages 683 692. ACM. 1995.

122

[100 | S c o t t A . M i t c h e l l . C a r d i n a l i t y b o u n d s f or t r i a n g u l a t i o n s w i t h b o u n d e d m i n i m u m a n g l e .

In CCCG, p a g e s 3 2 6 3 3 1 , 1 9 9 4 .

[101] S c o t t A. M i t c h f . i . l a n d S t e p h e n A. V a y a s i s . Quality mesh generation in higher dimen­
sions. SIAM J. Comput., 29(4):1334-1370. February 2000.

[102] N e i l M o l i n o , R o b e r t B r i d s o n , J o s e p h T e r a n , a n d R o n a l d F e d k i w . A crystalline,
red green strategy for meshing highly deformable objects with tetrahedra. In Proceedings
of the 12th International Meshing Roundtable, pages 103 114. Sandia National Laboratories,
September 2003.

[103] L . N a j m a n , J. C o u s t y , M . C o l p r i e , H. T a l b o t , S. C l A c . m e n t - G l t n a u d e a u , T . G o i s -
s e n , a n d J. G a r o t . An open, clinically-validated database of 3D * t cine-mr images of the left
ventricle with associated manual and automated segmentation. http://www.laurentnajman.
org/heart / index.html.

[104] D e m i a n N a v e , P a u l C h f a v , a n d N i k o s C h r i s o c h o i d e s . Guaranteed-quality parallel De­
launay refinement for restricted polyhedral domains. In ACM Symposium on Computational
Geometry (SoCG), pages 135 144. ACM, July 2002.

[105] D e m i a n N a v e , N i k o s C h r i s o c h o i d e s , a n d P a u l C h e w . Parallel Delaunay refinement for
restricted polyhedral domains. Computational Geometry: Theory and Applications, 28:191
215, 2004.

[106] M a r t i n N e u m u l l e r a n d O l a k S t e i n b a c h . Refinement of flexible spacefiA§time finite
element meshes and discontinuous Galerkin methods. Computing and Visualization in Science,
1 4 : 1 8 9 - 2 0 5 , 2 0 1 1 .

[107] T. O k u s a n y a a n d J. P e r a i r e . 3D parallel unstructured mesh generation, 1997. http:
,//citeseerx.ist.psu.edu/vicwdoc/summary ?doi -■ 10.1.1.48.7898.

[108] L e o n i d O l i k e r a n d R u p a k B i s w a s . Parabolization of a dynamic unstructured algorithm
using three leading programming paradigms. IEEE Trans. Parallel Distrib. Syst., 11 (9) : 931
9 4 0 , September 2 0 0 0 .

[109| S t e v e O u d o t , L a u r e n t R i n e a u , a n d M a r i e t t f . Y v i n f . c . Meshing volumes bounded
by smooth surfaces. In Proceedings of the International Meshing Roundtable, pages 203-219.
Springer-Verlag, September 2005.

[110] J e a n - P h i l i p p e P o n s , F l o r e n t S e g o n n e , J e a n - D a . m e l B o i s s o n n a t , L a u r e n t R i n e a u ,

M a r i e t t e Y v i n e c , a n d R e n a u d K e r i y e n . High-Quality Consistent Meshing o f Multi­
label Datasets. In Information Processing in Medical Imaging, pages 198 210. Springer Berlin
Heidelberg. 2007.

11111 T h o m a s C. S. R e n d a i . i . , C h r i s t i a n B. A l l e n , a n d E d w a r d D. C. P o w e r . Conservative
unsteady aerodynamic simulation of arbitrary boundary motion using structured and unstruc­
tured meshes in time. International .Journal for Numerical Methods in Fluids. 70(12):1518
1542. 2012.

[112J J.A. R i c h o l t , M . J a k a b , a n d R . K i k i m s . SPL K n e e Atlas. .January 2011. Available at:
http: .•www.spl.harvard.edu/publications item 'view 1953.

[113] L a u r e n t R i n e a u a n d M a r i e t t e Y v i n e c . Meshing 3D domains hounded by piecewise
smooth surfaces. In Proceedings of the International Meshing Roundtable, pages 443 460.
2007.

123

http://www.laurentnajman
http://www.spl.harvard.edu/publications

[114] R. S a i d , N.P. W e a t h e r i l l , K. M o r g a n , a n d N.A. V e r h o e v e n . Distributed parallel
Delaunay mesh generation. Computer Methods in Applied Mechanics and Engineering, 177(1-
2):109 125, 1999.

[115] W i l l i a m N. S c h e r e r , III a n d M i c h a e l L. S c o t t . Advanced contention management for
dynamic software transactional memory. In Proceedings of the 24th annual ACM symposium
on Principles of distributed computing, PODC ’05, pages 240 248. ACM, 2005.

[116] P. S f a v e l l , T.M. B e n s o n , C. C h r i s t o p o u l o s , D. W P T h o m a s , A. V u k o v i c , a n d J.G.
W y k e s . Transmission-line modeling (TLM) based upon unstructured tetrahedral meshes.
Microwave Theory and Techniques, IEEE Transactions on, 53(6): 1919-1928, 2005.

[117] J o n a t h a n R i c h a r d S h e w c h u k . Tetrahedral mesh generation by Delaunay refinement. In
Proceedings of the 14th ACM Symposium on Computational Geometry, pages 86-95, Min­
neapolis, MN, 1998. ACM.

[118] J o n a t h a n R i c h a r d S h e w c h u k . Delaunay refinement algorithms for triangular mesh gen­
eration. Computational Geometry: Theory and Applications, 22(1-3):21 74, May 2002.

[119] J o n a t h a n R i c h a r d S h e w c h u k . What is a Good Linear Element? - Interpolation, Condi­
tioning, and Quality Measures. In Proceedings of the 11th International Meshing Roundtable,
pages 115 126. Sandia National Laboratories, September 2002.

[120] H a n g Si. Constrained Delaunay tetrahedral mesh generation and refinement. Finite Elements
in Analysis and Design, 46:33 -46, 2010.

[121] H a n g S i . TetGen, A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator.
http://tetgen.berlios.de/, vl.4.3.

[122] A m y H e n d e r s o n S q u i l l a c o t e . ParaView Guide, A Parallel Visualization Application.
Kit ware Inc.. 2008.

[123] R o b e r t S t a u b s , A n d r i y F e d o r o v , L e o n i d a s L i n a r d a k i s , B e n j a m i n D u n t o n , a n d

N i k o s C h r i s o c h o i d e s . Parallel n-dimensional exact signed euclidean distance transform.
The Insight Journal, September 2006.

[124] S h r i p a d T h i t e . Efficient spacetime meshing with nonlocal cone constraints. In 13th Inter­
national Meshing Roundtable, pages 47 -58, 2004.

[125] Y a n g h a i T s i n , K l a u s K i r c h b e r g , G u e n t e r L a u r i t s c h , a n d C h e n y a n g X u . A deforma­
tion tracking approach to 4d coronary artery tree reconstruction. In Medical Image Computing
and Computer-Assisted Intervention dA§ MICCAI 2009, Guang-Zhong Yang, David Hawkes.
Daniel Rueckert, Alison Noble, and Chris Taylor, editors, volume 5762 of Lecture Notes in
Computer Science, pages 68 75. Springer Berlin / Heidelberg, 2009.

[126] T i a . n k a i T u , D a v i d R . O ’ H a l l a r o n , a n d O m a r G h a t t a s . Scalable parallel octree
meshing for terascale applications. In Proceedings of the 2005 ACM/IEEE conference on
Supercompxiting, SC 05, pages 4 . IEEE Computer Society. 2005.

|127| M v o n S i e b e n t i i a l , G S z f . k e l y , U G a m p e r , P B o e s i g f . r , A L o m a x , a n d Pii C a t t i n .
4D MR imaging of respiratory organ motion and its variability. Physics in Medicine and
Biology. 52(6):1547 1564, 2007.

[128] D a v i d F . W a t s o n . Computing the n-dimensional Delaunay tesselation with application to
Yoronoi polytopes. Computer Journal. 2 4 : 1 6 7 1 7 2 . 1 9 8 1 .

124

http://tetgen.berlios.de/

[129] E r n s t W e i g a n g , F a b i a n A. K a r i , F r i e d h e l m B e y e r s d o r f , M a x i m i l i a n L u e h r ,
C h r i s t i a n D. E t z , A l e x F r y d r y c h o v v i c z , A n d r e a s H a r l o f f , a n d M i c h a e l M a r k l .

Flow-sensitive four-dimensional magnetic resonance imaging: flow patterns in ascending aortic
aneurysms. European Journal of Cardio-Thoracic Surgery, 34(1):11 16, 2008.

[130] G e o r g e Z a g a r i s , S h a h y a r P i r z a d e h , a n d X i k o s C h r i s o c h o i d e s . A framework for
parallel unstructured grid generation for practical aerodynamic simulations. In 4̂ th AIAA
Aerospace Sciences Meeting, January 2009.

[131] M i n Z h o u , O n k a r S a h n i , T i n g X i e , M a r k S . S h e p h a r d , a n d K e n n e t h E . J a n s e n .

Unstructured mesh partition improvement for implicit finite element at extreme scale. .7.
Supercomput., 59(3):1218-1228, March 2012.

J . ’o

126

VITA

Panagiotis A. Foteinos

Panagiotis Foteinos joined the Computer Science Department of the College of William and Mary

in Fall 2007 towards a PhD Degree. He is currently a PhD candidate and research assistant. In Fall

2010, he concurrently worked at Old Dominion University as a visitor researcher. He entered the

Electrical and Computer Engineering Department of University of Thessaly in Fall 2002, where he

received his Bachelor’s on Computer Science.

	Real-Time High-Quality Image to Mesh Conversion for Finite Element Simulations
	Recommended Citation

	00001.tif

