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ABSTRACT

Technological Advances in Medical Imaging have enabled the acquisition of images
accurately describing biological tissues. Finite Element (FE) methods on these
tmages provide the means to simulate biological phenomena such as brain shift
registration, respiratory organ motion, blood flow pressure in vessels, etc. FE
methods require the domain of tissues be discretized by simpler geometric elements,
such as triangles in two dimensions, tetrahedra in three, and pentatopes in four.
This exact discretization is called a mesh. The accuracy and speed of FE methods
depend on the guality and fidelity of the mesh used to describe the biological object.
Elements with bad quality introduce numerical errors and slower solver convergence.
Also, analysis based on poor fidelity meshes do not yield accurate results specially
near the surface. In this dissertation, we present the theory and the implementation
of both a sequential and a parallel Delaunay meshing technique for 3D and —for the
first time-— 4D space-time domains. OQur method provably guarantees that the mesh
is a faithful representation of the multi-tissue domain in topological and geometric
sense. Moreover, we show that our method generates graded elements of bounded
radius-edge and aspect ratio, which renders our technique suitable for Finite
Element analysis. A notable feature of our implementation is speed and scalability.
The single-threaded performance of our 3D code is faster than the state of the art
open source meshing tools. Experimental evaluation shows a more than 82% weak
scaling efficiency for up to 144 cores, reaching a rate of more than 14.3 million
elements per second. This is the first 3D parallel Delaunay refinement method to
achieve such a performance, on either distributed or shared-memory architectures.
Lastly, this dissertation is the first to develop and examine the sequential and
paralle] high-quality and fidelity meshing of general space-time 4D multi-tissue
domains.
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Chapter 1

Introduction

1.1 Motivation and Related Work

Image-to-mesh (I2M) conversion enables patient-specific Finite Element (FE) mod-
eling in image guided diagnosis and therapy [15,94]. See Figure 1.1 and Figure 1.2
for a couple of examples. This has significant implications in many areas, such as
imaged-guided therapy, development of advanced patient-specific blood flow simula-
tions for the prevention and treatment of stroke, patient-specific interactive surgery
simulation for training young clinicians, and study of bio-mechanical properties of
collagen nano-straws of patients with chest wall deformities, to name just a few.

Delaunay meshing is a popular technique for generating tetrahedral meshes, since
it is able to mesh various domains such as: polyhedral domains [38.117], domains
bounded by surfaces [109, 113|, or multi-labeled images |29, 110|, offering at the same
time mathematical guarantees on the quality and the fidelity of the final mesh.

In the literature, Delaunay refinement techniques have been emploved to mesh
objects whose surface is already meshed as a Piecewise Linear Complex (PLC) [34,
35,38, 40. 42, 45,69, 90,99. 101, 117, 121]. The challenge in this category of techniques
is that the quality of the input PLC affects the quality of the final volume mesh. For
example. if the input angles of the PLC are small. then even termination might be

compromised [120]. For images. one way to alleviate this challenge is to consider the



{a) A few slices of the grayscale BigBrain image (courtesy of BigBrain project).

oot

(b) Views of the resulted tetrahedral mesh.

Figure 1.1: Image to Mesh Conversion on the high resolution BigBrain data [12] for subsequent
FE bio-mechanical modeling.

faces of each outer voxel as the input PLC, since these faces meet at large angles (90°
or 180°). However, this would result in an unnecessarily large final mesh.

Another approach is to assume that the object € to be meshed is known only
through an implicit function f : R® — Z such that points in different regions of
interest evaluate f differently. This assumption covers a wide range of inputs used in
modeling and simulation, such as parametric surfaces/volumes [109], level-sets, and
segmented multi-labeled images [29, 89, 110, the focus of this thesis. If the subsequent
simulation permits sharp features of the domain to be rounded-off, such functions
can be used to represent PLCs as well [89], a fact that renders this approach quite
general. [t should be noted that these methods do not suffer from anyv small input
angle artifacts introduced by the initial conversion to PLCs, since the isosurface 0}
of the object §2 is recovered and meshed during refinement. In this work, we deal
with objects whose surface is a smooth manifold (see Section 2.1 and Section 4.1).
It is the algorithm’s responsibility to mesh both the surface and the interior of the
object such that the mesh boundary describes the object surface in a way that meets

the predefined fidelity and quality requirements.



{a) A few slices of the grayscale bone image (courtesy of Dr. Xenios Papademetris, Dr. Steven Tommasini.
and Dr. Joshua Van Houten. Yale University).
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{b) Views of the resulted tetrahedral mesh.

Figure 1.2: Image to Mesh Conversion on the micro-CT vertebral body of a mouse for subsequent
FE bone modeling and compression analysis.

The quality of an element is traditionally measured in terms of its circumradius-
to-shortest-edge ratio or radius-edge ratio for short. 1t is desirable that the mesh
elements have radius-edge ratio bounded from above. Meshes satisfving that bounded
ratio property are called almost-good meshes in the literature [91]. Miller et al. [99]
show that almost-good meshes guarantee optimal convergence rates for approximate
solutions of Poisson’s equation.

3D Delaunay volume meshing algorithms extend the popular Delaunay surface
meshing and reconstruction algorithms described in [10.44]. and they offer quality
and fidelity guarantees [109. 113] under the assumption that the surface of the object

is smooth {10, 109] or does not form input angles less than 90° [113]. However. the



quality achieved by these algorithms is somewhat weak: the upper bound for the
elements’ radius-edge ratio is larger than 4. In contrast, the upper bound guaranteed
by our algorithm is v/ /3 + 2 (= 1.93). To our knowledge, our algorithm is the first
volume Delaunay mesher for surfaces achieving such a small radius-edge ratio with
these fidelity guarantees.

Almost-good meshes, however, might contain nearly flat elements, the so called
slivers. The reason is that slivers can have a very small radius-edge ratio and at the
same time a very small dihedral angle. In the literature, there are post-processing
techniques that given an almost-good mesh, they are able to remove slivers. See for
example the work of Li and Teng [91]. the ezudation technique of Cheng et al. [34],
and the sliver perturbation of Tournois et al. [81]. In fact, the sliver removal technique
of Li and Teng [91] requires a low radius-edge ratio, since the lower the radius-edge
ratio, the larger the guaranteed bound on the minimum dihedral angles. This is
another motivation for achieving low radius-edge ratio.

The success of Delaunay techniques to approximate the surface relies on the notion
of e-samples, first introduced by Amenta and Bern [9]. The construction of e-samples
directly from the surface is a challenging task. In the literature, however, it is assumed
that either such a sample is known [9-11] or that an initial sparse sample is given on
every connected component [28,109, 113]. In this work, we propose a method that
starts directly from labeled images and computes the appropriate sample on the fly.

In the literature, there are also non-Delaunay surface and volume meshing algo-
rithms for 3D images. Marching Cubes |96] is a very popular technique for surface
meshing; it guarantees, however, neither good quality triangular facets nor faithful
surface approximation. Furthermore, since the cubes have a very small size (close to
the voxel size), Marching Cubes does not offer a way to control the size of the mesh.
Molino et al. [102] develop the Red-Green Mesh (RGM) method. RGM starts by
meshing an initial body-centric cubic (BCC) lattice which is then compressed such
that its boundary fit on the surface. RGM gives, however, no quality or surface ap-
proximation guarantees. Another lattice-based method is the Isosurface Stuffing of
Labelle and Shewchuk [89]. Theyv prove that the graded version of the final mesh

consists of elements with dihedral angles larger than 1.66°. The Lattice Decimation



method proposed by Chernikov and Chrisochoides |41} is guaranteed to produce a
good geometric approximation of the underlying object. The meshes are also proved
to consist of tetrahedra with good dihedral angles. However, topological faithfulness
is not guaranteed. Alliez et al. 8] introduce a Delaunay-based optimization technique.
Specifically, they iterativelv compute the new locations of the points by minimizing a
quadratic energy. The connectivity of these points is recalculated by finding their De-
launay triangulation each time. They show that this technique produces meshes that
respect the boundary of the domain. Klingner and Shewchuk [85] extend the work
of Freitag and Ollivier-Gooch [67] by proposing smoothing and topological transfor-
mations which improve the quality of the mesh substantially. The execution time,
however, can be very high, even for small mesh size problems.

In this thesis, building upon our 3D sequential code, we also present a 3D Delaunay
parallel Image-to-Mesh conversion algorithm (abbreviated as PI2M) that (a) recovers
the isosurface of the biological object with geometric and topological guarantees and
(b) meshes the underlying volume with tetrahedra of high quality. These two charac-
teristics render our method suitable for subsequent FE analysis, since the robustness
and accuracy of the solver rely on the quality of the mesh (69,71, 119|.

PI2M recovers the tissues’ boundaries and generates quality meshes through a
sequence of dynamic insertion and deletion of points which is computed on the fly
and in parallel during the course of refinement. To the best of our knowledge, none of
the parallel Delaunay refinement algorithms support point removals. Point removal,
however, offers new and rich refinement schemes which are shown in the sequential
meshing literature |62, 85| to be very effective in practice.

Our implementation employs low level locking mechanisms. carefully designed con-
tention managers, and well-suited load balancing schemes that not only boost the
parallel performance, but they exhibit very little overhead: our single threaded per-
formance is more than 10 times faster than our previous sequential prototype [62, 64
and it is faster than CGAL [6] and TetGen [121], the state of the art optimized se-
quential open source meshing tools. Specifically, PI2M is consistently 40% faster than
CGAL. We also compare PI2M with TetGen [121] and show that PI2M is faster on

generating large meshes (i.e.. meshes consisting of more than 900. 000 tetrahedra) by
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35%. Considering the fact that both CGAL and TetGen perform insertions via the
Bowyer-Watson kernel [30,128], as is the case of PI2M, such a comparison is quite
insightful.

Parallel Delaunay refinement is a highly irregular and data-intensive application
and as such, it is very dynamic in terms of resource management. Implementing an
efficient parallel Delaunay refinement would help the community gain insight into a
whole family of problems characterized by unpredictable communication patterns [16].
We test and show the effectiveness of PI2M on the cc-NUMA architecture. Demon-
strating the performance of mesh refinement on cc-NUMA architectures illuminates
the characteristic challenges of irregular applications on the many-core chips featur-
ing dozens of cores. But even the biggest distributed-memory machines consist of
groups of cores that, from our application’s point of view and supporting software,
can be treated as cc-NUMA. The efficient utilization of such deep architectures can
be achieved by employing a tightly-coupled approach inside each group (i.e., the ideas
of this thesis), and by being less explorative in the other layers, as we stated in more
detail in [46].

Specifically, we used the Pittsburgh Supercomputing Center’s Blacklight, employ-
ing BoostC++ threads. Although the ideas of this thesis could be programmed using
the more general MPI programming model, we chose threads, since the maintenance
of threads is typically faster in shared-memory machines [84].

Experimental evaluation shows a more than 82% strong scaling efficiency for up to
64 cores, and a more than 82% weak scaling efficiency for up to 144 cores, reaching a
rate of more than 14.3 million elements per second. We are not aware of any 3D par-
allel Delaunay refinement method achieving such a performance, on either distributed
or shared-memory architectures. However, for a higher core count, our method ex-
hibits considerable performance degradation. We argue that this deterioration is not
because of load imbalance or high thread contention, but because of the intensive
and hop-wise slower communication traffic involved in increased problem sizes, large
memories. and cache coherency protocols. This problem could be potentially alle-
viated by using hybrid approaches to explore network hierarchies [46. 65]. However,

this is outside the scope of the thesis. Our goal is to develop the most efficient and
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scalable method on a moderate number (~ 100) of cores. Our long term goal is to
increase scalability by exploiting concurrency at different levels [46].

In the parallel mesh generation literature, only PLC-based methods have been
considered. That is, either § is given as an initial mesh [31, 50, 78,126] or 99 is
already represented as a polyhedral domain [68,83,92,105|. We, on the contrary,
mesh both the volume and the isosurface directly from an image and not from a
polyhedral domain. This flexibility offers great control over the trade-off between
quality and fidelity: parts of the isosurface of high curvature can be meshed with
more elements of better quality. Moreover, our method is able to satisfy both surface
and volume custom element densities, as dictated by the user-specified size functions.
This is not the case of algorithms that treat the surface voxels as the PLC of the
domain [40, 73, 76], since the size of the elements is determined by the voxel spacing,
a fact that offers little control over the mesh density. In the future, we also plan to
incorporate in our parallel framework the computational intensive smoothing of the
mesh boundary for CFD applications, e.g. lung modeling [57, 87, 88].

In our previous work [63], we implemented a parallel Triangulator able to support
fully dynamic insertions and removals. Our parallel Triangulator, however, has one
major limitation: as is the case with all Triangulators [20,23, 24,63|, it tessellates
only the convex hull of a set of points, and it is not concerned with any quality or
fidelity constraints imposed by the input geometry and the user. Also, in parallel tri-
angulation literature [20, 23, 24], the pointset, whose convex hull is to be constructed,
is static and given before the algorithm starts. In this thesis, we extend our previous
work [63], such that the discovery of the dynamically changing set of points, which
are being inserted or removed in order to satisfv the quality and fidelity constraints.
is performed in parallel as well: a very dvnamic process that increases parallel com-
plexity even more. This is neither incremental nor a trivial extension.

There is extensive previous work on parallel mesh generation, including various
techniques, such as: Delaunay, Octree, or Advancing Front meshing. Parallel mesh
generation ‘refinement should not be confused with parallel triangulation [20, 23, 24,
63]. Triangulation tessellates the convex hull of a given, static set of points. Mesh

generation focuses on element quality and the conformity to the tissues™ boundary.



which necessitates the parallel insertion or removal of points which are gradually and
concurrently discovered through refinement.

One of the main differences between our method and previous work is that in
the literature the surface of the domain is either given as a polyhedron, or the ex-
traction of the polyhedron is done sequentially, or refinement starts from an initial
background octree. As explained in this Section above, our method constructs the
polyhedral representation of the object’s surface from scratch, and therefore, it adds
extra functionality. This surface recovery is also performed in parallel, together with
the volume meshing, thus taking advantage of another degree of parallelism.

Given an initial mesh, de Cougny and Shephard [50] dynamically repartition the
domain such that every processor has equal work. They also describe “vertex snap-
ping”, a method that can be used for the representation of curved boundaries, but they
give no guarantees about the achieved fidelity (both geometrically and topologically).

In our past work [105], we implemented a tightly-coupled method like ours. How-
ever, in this thesis, we take extra care to greatly reduce the number of rollbacks (see
Section 3.3), and thus achieve scalability for a higher core count. In |39] and [92], our
group devised a partially-coupled and a decoupled method for distributed-memory
systems based on Medial Axis decomposition. However, Medial Axis decomposition
for general 3D domains is a challenging problem and still open. In contrast, the
method presented in this thesis does not rely on any domain decomposition, and as
such, it is flexible enough to be extended to arbitrary dimensions, a goal that is left
for future work. In [43], our group presented a method which allows for safe inser-
tion of points independently without synchronization. Although the method in [43]
improves data locality and decreases communication. it exhibits little scalability on
more than 8 cores because the initial bootstrapping, needed as a pre-processing step,
is performed sequentially and not in parallel.

Kadow [83] starts from a polygonal surface (PSLG) and offers tightly coupled
refinement schemes in 2D onlv. In our case. the polyhedral representation of the
object’s surface is performed in parallel, which adds extra functionality and available
parallelism. Galtier and George |68] compute a smooth separator and distribute the

subdomains to distinct processors. However. the separators thev create might not be



Delaunay-admissible and thus they need to restart the process from the beginning.
Weatherill et al. [114] subdivide the domain into decoupled blocks. Each block then
is meshed with considerably less communication and synchronization. Nevertheless,
the generated mesh is not Delaunay, a property that is critical to applications like
large scale electro-magnetics [116]. A decoupled Delaunay method was also developed
by Ivanov et al. [79]. The reported speedup is superlinear, but only on very small
(eight) core counts and on simplistic geometries.

Tu et al. [126] describe a parallel octree method that interacts with the solver in
parallel and efficiently, but the fidelity and conformity of the meshes to complex multi-
material junctions/interfaces (one of this thesis’s goals) was not their main focus. The
work of Zhou et al. [131], and the Forest-of-octrees method of Burstedde et al. |31]
offer techniques for fair and efficient data migration and partitioning in parallel. In
our application, however, we show that the main bottleneck that hampers scalability
is not load imbalance (see Subsection 3.4.1), but the rollbacks (see Section 3.3) and
the memory pressure in the switches (see Section 3.4.3). Load balancing and data
migration is also used by Okusanya and Peraire [107] to distribute bad elements across
processors, but the performance reported is rather low, as the speedup achieved on 8
cores is shown to be less than 2.4. Dawes et al. [33] presented a scalable octree-based
technique with grading and quality guarantees. Nevertheless, more than 48 cores are
needed to surpass the single-core performance of our method.

[to et al. |78] start from an initial mesh and Lohner [95] from a PLC for subse-
quent parallel mesh generation in advancing front fashion. It should be noted, how-
ever, that advancing front methods guarantee neither termination nor good quality
meshes. Also, both methods show little scalability for even a small number of cores.
Zagaris et al. [130] developed a parallel divide and conquer advancing front domain
decomposition and volume meshing technique. The reported scalability. however, is
limited, because there is no much parallelism available in the top levels of the divide
and conquer tree.

Oliker and Biswas [108] employ three different architectures to test the applicability
of 2D adaptive mesh refinement. They conclude that unstructured mesh refinement is

not suitable for ce-NUMA architectures: irregular communication patterns and lack
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of data locality deteriorate performance sometimes even on just 4 cores. In this thesis,
we show that this becomes a problem on a much higher core count (more than 144
cores); i.e., with this work, we push the envelop even further. Clearly, this approach
has its own limitations, but a highly scalable and efficient NUMA implementation
combined with the decoupled and partially coupled approaches we developed in the
past can allow us to explore concurrency levels in the order of at least 108 to 10*° [46].

Technological advances in imaging have made the acquisition of 4D medical images
feasible [103,125,127,129]. At the same time, pentatope capable FEM solvers [21,
106] operating directly on 4D data have been shown to be effective for advection-
diffusion and Navier-Stokes formulations.

In this work, we also describe a 4-dimensional Delaunay mesh algorithm which
operates directly on a 4-dimensional image Z. I represents the domain Q to be

meshed as the temporal evolution of a 3D object. That is, Q = UQ"" where €2, is
¢
the 3D object at time ¢; (i.e., the i*® slice of €2).

We show that the resulting mesh is sliver free consisting of pentatopes whose

boundary is a correct approximation of the underlying isosurface 99 = U J),. Note

that space-time meshing is different from dynamic surface simulations (tslee [82] and
the references therein for example). In those simulations, the isosurface is not known;
instead, a tetrahedral mesh is adapted on each time step that describes accurately
the free surface dynamics.

One way to solve the space-time 4D problem is to mesh separately each 3D object
€2, and then connect the elements between two consecutive objects to obtain space-
time elements. However, finding such correspondence—which also has to satisfy the
quality criteria— is not intuitive, especially when the topology and the geometry of
the two objects varies drastically. Alternatively, one could mesh a single object €,
and then deform the mesh to match the shape of the other temporal instances. The
limitation of this approach is twofold. First, the quality of the deformed mesh might
be much worse than the original; second, there is no control over the mesh density
across both the spatial and the temporal direction [21], since the mesh size of the

original instance determines the size of the rest of the instances.
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Space-time meshing methods have already been proposed in the literature [60, 124].
They assume, however, that the evolving object §2;, has the same spatial space across
time. Furthermore, the implementation of these techniques is confined to only the
2D+t case (i.e., the space-time elements are tetrahedra). The more general 3D+ ¢
meshing has been the focus in [21, 106], but they consider only convex hyper-surfaces
such as hyper-cubes or hyper-cylinders. To our knowledge, the method presented
in this thesis is the first to address the 3D-+¢ problem where the topology and the
geometry of the evolving object may differ substantially through time, and hence, it
is allowed to form complex hyper-surfaces.

In the literature [9,17,27,32,35, 36|, it is shown that given a sufficiently dense
sample on a surface 952, the restriction of its Delaunay triangulation to 9JQ is a
topologically good approximation, or, alternatively, it satisfies the closed-topological-
ball property [59]. Their focus, however, was not on volume meshing, but rather, on
surface reconstruction. In this thesis, we fill the space-time volume 2 with sliver-free
pentatopes, such that 92 is approximated correctly.

Our algorithm guarantees that the resulted pentatopes are of bounded aspect ra-
tio. We achieve that by generating elements of low radius-edge ratio and by proving
the absence of slivers. We clean the mesh from slivers by integrating into our frame-
work the theory presented in [90]. In [90], the surface is given as an already meshed
polyhedral domain (i.e., the method in [90] is a PLC-based method), a different prob-
lem than ours, since it is our algorithm’s responsibility to mesh both the underlying

zero-surfaces and the bounded volume with topological and geometric guarantees.

1.2 Contributions

In summary. the contributions of this thesis are the following:

e Development of a 3D Delaunay meshing technique that operates directly on im-
ages. samples and meshes the surface and the volume of the represented biological

object with quality and fidelity guarantees.
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e Development of a high quality and fidelity 3D parallel Delaunay technique able
to scale on up to 144 cores exhibiting at the same time the best single-threaded

performance, to the best of our knowledge.

e Developement of a 4D Delaunay meshing technique able to recover arbitrary
space-time isosurfaces and investigation of ways and directions towards a parallel

4D Delaunay meshing refinement.
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Chapter 2

Guaranteed Quality Tetrahedral
Delaunay Meshing for Medical
Images

In this chapter, we present a Delaunay refinement algorithm for meshing 3D medical
images. Given that the surface of the represented object is a smooth 2-manifold
without boundary, we prove that (a) all the tetrahedra of the output mesh have
radius-edge ratio less than v/v/3 + 2 (= 1.93), (b) all the boundary facets have planar
angles larger than 30 degrees. (¢) the symmetric (2-sided) Hausdorff distance between
the object surface and mesh boundaryv is bounded from above by a user-specified
parameter, and (d) the mesh boundary is ambient isotopic to the object surface.
The first two guarantees assure that our algorithm produces elements of bounded
radius-edge ratio. The last two guarantees assure that the mesh boundary is a good
geometric and topological approximation of the object surface. Our method also
offers control over the size of tetrahedra in the final mesh. Experimental evaluation
of our algorithim on synthetic and real medical data illustrates the theory and shows

the effectiveness of our method.
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2.1 Preliminaries

Let Z C R3 be the (spatial) domain of a multi-tissue segmented image. Z is the input

of our algorithm that contains the object Q C Z to be meshed. We assume that the
n
object is partitioned into a finite number of n distinct tissues 2 = U Qi i=1,...,n.

i
Each Q; defines an interface 9¢2; that consists of the set of points that lie on the

boundary between (); and at least one more tissue or the background of the image.

The isosurface 02 of Q) is then the collection of all interfaces; that is, 9N = U@Qi,

i=1,...,n. We assume that we are given a function f:Z — {—1,0,1,..., n},zwhich
classifies every point p € T appropriately. Specifically, p evaluates f to —1 if it lies on
062, to 0 if it lies in the background (i.e., outside the object), or to a positive integer
i if it belongs to the tissue ;. The existence of such a function is a quite reasonable
assumption: f can be constructed or approximated from the image voxels quite well
for any segmented image (see Section 2.6 for details on f’s implementation).

As is generally the case in the literature [10, 28, 109], we also assume that 90 is a

smooth (twice differentiable) 2-manifold without boundary.

Definition 2.1 (medial azis, Blum [25]) The medial azis of 9§ is the closure of

the set of those points having more than one closest point on 0.

Definition 2.2 (local feature size, Amenta and Bern [9]) The local feature size
of a point p € 082, denoted as Ifsyg, (p), is the distance from p to the medial azxis of
oQ.

We denote with Ifsli and Ifsh the infimum and the supremum of the local feature

.inf

sizes of all the points on 99 respectively, that is: Ifsg, = inf{lfsgq (p) : p € O}

and s} = sup{lfssn (p) : p € 9N}. Note that since 9€ is assumed to be a smooth
o9

manifold, both Ifsi and Ifs};? are positive real constants. Another useful property is

that the local feature size is 1-Lipschitz, that is,

Ifsan (p) < |pg| + fsaq (q) - (2.1)



Definition 2.3 (c-sample, Amenta et al. [10]) A point set P C 9Q is called an
e-sample of OS2, if for every point p € OS) there is a sample point ¢ € P, such that
lpg| < € - Ufsyq, ()

Next, we define a special restriction:

Definition 2.4 (restricted Delaunay triangulation, Boissonnat et al. [28]) Let
D (P) be the Delaunay triangulation of the point set P. The restriction of D (P) to
0S), denoted as Do, (P), contains the facets in D (P) whose dual Voronoi edges in-
tersect Of2.

We shall refer to a facet whose dual Voronoi edge intersects €0 as a restricted facet.
We denote the Voronoi edge of a facet f with Vor (f).

In [28], the following useful theorem is proved:

Theorem 2.1 (Boissonnat et al. [28]) If P is an e-sample of 902 with ¢ < 0.09,
then:

e Dy (P) is a 2-manifold amnbient isotopic to 00 and
o the 2-sided Hausdorff distance between Dis (P) and 9 is O(e?).
We next define the surface ball of a restricted facet:

Definition 2.5 (surface ball, Oudot et al. [109]) Let f be a restricted facet and
e be f’s dual Voronoi edge. The surface ball By,y(f) of f is a closed ball which is

centered at a point p € e NI and passes through f’s vertices.

In the rest of the chapter, the center and radius of restricted facet f’s surface ball
Bsurt (f) are denoted by ceurr (f) and rgy (f), respectively.
The following Remark follows directly from the fact that the center of restricted

facet f's surface ball lies on its Voronoi edge:
Remark 2.1 The surface ball of f contains no vertices in its interior.

A real point p is called a wvertex. if it has been already inserted into the mesh.

Point p is called a feature point (or a feature vertex. if p is inserted into the mesh).
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if it is a surface point, i.e., p € 9. In the rest of the chapter, cfp (p) denotes the
Closest Feature Point to p.

An element t is a tetrahedron, a (triangular) facet, or an edge. The diametral
ball B(t) of t is the set of points that lie inside or on ¢’s smallest circumscribing
sphere. The smallest circumscribing sphere of an element ¢ will be sometimes called
its diametral sphere and symbolized by S(t). The center of t's diametral ball/sphere
and the radius of t’s diametral sphere are denoted by ¢ (¢) and r(t), respectively. The
shortest edge of element ¢ is denoted by [y, (¢). Finally, the radius-edge ratio p(t) of

a tetrahedron or facet t is defined as p(t) = %

2.2 Algorithm

The user specifies as input the target upper radius-edge ratio p; for the mesh tetra-
hedra, the target upper radius-edge ratio py for the mesh boundary facets, and pa-
rameter §. It will be clear in Section 2.5 that the lower ¢ is, the better the mesh
boundary will approximate 9§2. For brevity, the quantity 0 - ifsgq (z) is denoted by
Aaq (z), where z is a feature point.

Our algorithm initially inserts the 8 corners of a cubical box B that contains the
object €2, such that the distance between a point p on the box and any feature point

sup

z is at least 20 (2). Since Ifspq (2) < Ifsyy, it suffices to construct B such that it is
separated from the minimum bounding box of € by a distance of at least 2- 0 - 1fs},}.
Let d be the diagonal of the minimum bounding box of €. Clearly, constructing box
B to be separated from the minimum bounding box by a distance of at least d - d
fulfills the requirement, since 1fs}; cannot be larger than 4.

After the computation of this initial triangulation, the refinement starts dictating
which extra points (also known as Steiner points) are inserted or which vertices are
deleted. At any time, the Delaunay triangulation D (V') of the current vertices V' is
maintained. Note that by construction, D (V) always covers the entire object and
that any point on the box is separated from J€ by a distance of at least 28y (z),

where z is a feature point.
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The users can also define their own customized Size Function sf :  — R~ and
pass it as input to our mesher. The size function sets an upper bound on the radii of
the circumballs of the tetrahedra, and thus offers the flexibility of controlling which
parts of the domain need a denser representation.

During the refinement, some vertices are inserted exactly on the box; these ver-
tices are called box vertices. The edges that lie precisely on one of the 12 edges of the
bounding box are called box edges. We further divide the box vertices into two cate-
gories: bor-edge vertices and non-bozr-edge vertices. The former vertices lie precisely
on a box edge, while the latter do not. The facets that lie precisely on one of the 6
faces of the box are called box facets. For example, the initial triangulation contains
just 8 box vertices (which are also box-edge vertices) and 12 box edges (among other
edges). Note that the endpoints of a box edge are always box edge vertices, but the
opposite is not always true. We shall refer to the vertices that are neither box vertices
nor feature vertices as free vertices.

Next, we define two types of tetrahedra:

e intersecting tetrahedra: tetrahedra whose circumsphere intersects 0Q2 (i.e.,

there is at least one feature point in their circumball), and
¢ interior tetrahedra: tetrahedra whose circumcenter lies (strictly) inside Q.

Note that a tetrahedron might be both intersecting and interior or might belong
to neither type.

The algorithm inserts new vertices or removes existing ones for three reasons: to
guarantee that the mesh boundary is close to the object surface, to remove tetra-
hedra or facets with large radius-edge ratio, and to satisfv the sizing requirements.
Specifically, let ¢ be a tetrahedron and f a facet in D (V'); the following five rules are

checked in this order:

e R1: Let ¢ be an intersecting tetrahedron and z be equal to the Closest Feature
Point cfp (¢(t)) of t's circumcenter ¢ (). If z is at a distance not closer than
Apa (2) to any other feature vertex, then z is inserted and all the free vertices

closer than 2A4q (z) to z are deleted.
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o R2: Let ¢t be an intersecting tetrahedron and z be equal to cfp (c(t)). If r(t) >
2 Apq (z), then c(t) is inserted.

e R3: Let f be a restricted facet. If either p(f) > ps or a vertex of f is not a
feature vertex, then z = cgur (f) is inserted. All the free vertices closer than

2A50 (2) to z are deleted.

e R4: If ¢ is an interior tetrahedron whose radius-edge ratio is larger than or equal

to pi, then c(¢) is inserted.

e R5: Let ¢ be an interior tetrahedron. If |r(t)] > sf(c(¢)), where sf(-) is the

user-defined Size Function, then ¢ (¢) is inserted.

Whenever there is no simplex for which R1, R2, R3, R4, or R5 apply, the re-
finement process terminates. The final mesh reported is the set of tetrahedra whose
circumcenters lie inside §) (i.e., interior tetrahedra). Thereafter, the final mesh is

denoted by M.

Definition 2.6 (Mesh boundary) Let f be a facet of the final mesh M. Consider
its two incident tetrahedra. If one tetrahedron has a circumcenter lying inside a tissue
Q; and the other tetrahedron has a circumcenter lying either outside Q; or on 0%2;,

then f belongs to the mesh boundary OM.

In Section 2.5, we prove that M meshes all multi-tissue interfaces

Tl
UBQi (= 09, see Section 2.1) accurately, in both geometric and topological sense.
i

To prove termination (see Section 2.3), no vertices should be inserted outside the
bounding box. Notice, however, that vertices inserted due to R2 may lie outside
the bounding box. To deal with such cases, we propose special projections rules.
Their goal is to reject points lving outside the box and insert other points exactly
on the box. They are simple to implement, computationally inexpensive, and do not
compromise either quality or fidelity. Note that the projection rules are different than
the traditional encroachment rules described in [38,117, 118].

Specifically, assume that R2 is triggered for a (intersecting) tetrahedron t and c(t)

lies outside the box. In that case. ¢ (t) is rejected for insertion. Instead. its projection
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. fc(t) -
' F
“F o c' (1)
: \_/
(a) ¢’ (t) is a box-edge point. (b) ¢’ (t) is a non-box-edge point.

Figure 2.1: The projection rule. The circumcenter ¢ (t) of a tetrahedron ¢ (not shown) does not
lie inside the box. c(t) is rejected for insertion; rather, its projection ¢’ (t) precisely on the box is
computed and inserted into the triangulation.

d (t) on the box is inserted in the triangulation. That is, ¢ (¢) is the closest to ¢ ()
box point. Notice that ¢/ (¢) can either lie exactly on a box edge (see Figure 2.1a) or
in the interior of a box facet (see Figure 2.1b).

Recall that tetrahedra with circumcenters on 02 or outside 2 are not part of the

final mesh, and that is why rules R4 and R5 do not check them.

Algorithm 1 summarizes our mesh generation algorithm. Observe that at line 10,
we ask for the closest feature point cfp (¢) of a given circumcenter ¢. Also, given a
feature point z € 99, the algorithm asks for its distance lfsgg (z) from the medial
axis. The computation of cfp () and Ifsgq (-) is explained in detail in Section 2.6. In
the next section, we will prove that Intersecting U Interior eventually will run out of

elements, and the algorithm terminates.

2.3 Proof of Quality

In this section, we prove that if the target upper bound p; for the radius-edge ratio

is 1o less than v/v/3 + 2. then our algorithin terminates outputting tetrahedra with
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Algorithm 1: The mesh generation algorithm.

1 Algorithm: Refine(Z. §, 5y, ﬁi. af (-

Input : I is the image containing {1,
& is the parameter that determines how dense the surface sampling will be.

A (2 VB + 2) is the target radius-cdge ratio for the tetrahedra,
fig (> 1) is the target radius-cdge ratio for the facets,
sf (-} is the size function.
Output: A Delaunay mesh M that approximates 312 well and is composed of tetrahedra with radius-edge ratio less than 4, and
boundary facets with planar angles larger than 30°.

2 Let V be the set of vertices inserted into the triangulation:
8 Let D (V) be the triangulation of the set V':
4 Let Intersecting and inferior be the set of the intersecting and interior tetrahedra in D (V), respectively;
/% At this point, all the above sets are equal %o the empty set. */
8 Insert the 8 vertices of a cubical box which contains {2 such that any point inserted on the box is separated from any point 2 € 9(2 by a
distance of at least 2 - 4 - Ifagq; (2):
8 Update V. D (V), Intersecting, and Interior;
7 while Intersectaing U Interior # @ do
8 if Intersecting # @ then
3 Pick a tetrahedron t € Inlersecting:
o
1

1 Compute steiner = cfp (¢ (1)}
1 if there 18 no feature verter closer than 6 - ifsgq; (steiner) to steiner then
/¢ R1 appliea. ¢/
12 else
13 i€ 7(t) > 26 Ufagg (stemer) then
14 Compute striner = e (t): /¢ R2 applies. ¢/
15 if sieiner lies outside the bor then
16 Compute stener = o (¢); /e Projection rules apply. o/
17 end
18 else
19 if t 15 adjacent to a restricted facet f, such that p(f) > ﬁf or f’s vertices do not tie on 841 then /% Sinca f is a
restricted facet, f ie necessarily incident te at least one intersecting tetrahedrom t. ¢/
20 Compute stemer = caypy (£): /% B3 applies. +/
21 olse
22 Intersecting = Infersecting \ t; /+ Mo steimer point found. +/
23 continue;
24 end
25 end
26 end
27 olse /e Intertor cannot be empty. +/
28 if p(t) > py or r(t) > sf(c(1)) then
29 Compute sfemner = ¢ (); /% R4 or RE apply. o/
30 else
31 Interior = Interior \ t; /¢ No steiner point found. /
32 continue:
33 end
34 ond
35 Insert steiner;
36 if stemer 13 a feature vertez then
14 Delete all the free vertices that are closer than 2 - 8 < Mayg, (sterner) to stemer.
38 end
39 Update V, D (V), Interserting, and Intertor;
40 end

41 Let the final mesh M be equal to the set of the tetrahedra in D {V} whose circumcenter lies inside (1

radius-edge ratio less than p, and boundary facets with planar angles larger than 30°
(see Theorem 2.2). Note that termination and quality are not compromised by any
positive value of 9. Parameter 4 affects only the fidelity guarantees (see Section 2.5).

Suppose that an element (tetrahedron or facet) ¢ violates a rule Ri, where i = 1.
2, 3, 4, 5, proj. where Rproj denotes the projection rules. That is, if ¢ violates R2,
but its circumcenter lies on or outside the box, then we say that ¢ violates Rproj
instead. t is called an Rz element. Ri dictates the insertion of a point p (and possibly
the removal of free points). Point p is called an Ri point. Although the initial 8 box
corners inserted into the triangulation do not violate any rule, we shall refer to these
corners as Rproj vertices as well.

Following similar terminology to [117. 118]. we next define the insertion radius and

the parent of a point p.




Definition 2.7 (Insertion radius) Let v be a vertex inserted into the triangulation.
Right after the insertion of v (i.e., before any potential vertexr removals), the insertion

radius R(v) of v is equal to |vq|, where q is:
e v’s closest box verter already inserted into the mesh, if v is a bozx vertex,
e v’s closest feature verter already inserted into the mesh, if v is an R1 verter,

e v’s closest vertex already inserted into the mesh, otherwise.

Definition 2.8 (Parent) Let v be an Ri verter inserted into the mesh because an

element (tetrahedron or facet) t violated Ri. The parent Par(v) of v is:
e an arbitrary box vertex, if t is a facet incident to at least one box verter,
e the most recently inserted vertex of t, if t is a facet with p(f) < py,

e the most recently inserted vertex of Ly, (t), otherwise.

The following two Lemmata relate the insertion radii of a vertex v with the distance

between v and its neighbors.

Lemma 2.1 Let w be an R2, R3, R4, or an R5 vertex inserted tnto the triangulation

and let x be an arbitrary vertex already in the triangulation. Then, R(w) < |wx|.

Proof: According to Definition 2.7, R(w) is the distance between w and its closest

neighbor, say q. Therefore, R(w) = |wq| < |wz]. n

Lemma 2.2 Let w be an R1 vertex inserted into the triangulation and let x be an

arbitrary feature vertex already in the triangulation. Then, R(w) < |wz].

Proof: According to Definition 2.7, R(w) is the distance between w and its closest

feature vertex, say ¢. Therefore, R(w) = Jwq| < |wz|. |

Lemma 2.3 Let v be a box verter. Then, R(v) > 204 (z), where z is the closest

feature point of v.



2D disk |

{a) ¢’ (t) is not a box-edge vertex. {b) ¢’ (t) is a box-edge vertex.

Figure 2.2: Illustration to the proof of Lemma 2.3.

Proof: According to Definition 2.7, R(v) is the distance between v and its closest
box vertex.

Initially, only the 8 box vertices of the bounding box are inserted. By construction,
no matter the order they are inserted, no box point is closer than 281fs35 > 24lfsyq, (2)
for any z € 9Q. Therefore, the initial edges are definitely larger than 4Asq (z) for
any z € d€2, and the statement holds.

During the course of refinement, a box point v is inserted either because the cir-
cumcenter ¢ (t) of an intersecting tetrahedron ¢ lies on or outside the box. According
to the projection rules, ¢ (t) is ignored, and its projection ¢ (t) is inserted instead.

See Figure 2.2 for two examples illustrating the insertion of a non box-edge vertex
and a box-edge vertex. In both cases, consider the 2D disk (drawn in both Figure 2.2a
and Figure 2.2b) of the ¢'s sphere S(t) that contains ¢/ () and is perpendicular to the
segment ¢ (t) ¢ (¢). This disk partitions ¢'s circumball in two parts: the upper part
that contains ¢ (t) and the lower part that intersects the interior of the box. From
the empty ball property. we know that the insertion radius of ¢ (t) cannot be less
than the radius of the 2D disk. Let z be the closest feature point to ¢ (¢). Since ¢

is an intersecting tetrahedron. z has to lie in the lower part of t's circumball. which



Figure 2.3: Illustration to the proof of Lemma 2.5. The facet f is shown in bold together with its

Jwz|

circumcircle. The radius of the circumcircle of f is bounded from below by \/-?——*——— where wz
4-4 42
7

is the second smallest edge of f.

means that R(c (t)) > |’ (t) z|. By construction, however, |¢’(t) z] is larger than
20150 > 2000 (2), and the proof is complete.
]

Lemma 2.4 Let v be a box vertex. Then |vcfp (v)] < R(v)V3.

Proof: If v is a box vertex inserted because the circumcenter of an R2 element lies
on or outside the box, then the statement holds, because the proof of Lemma 2.3
directly suggests that |cfp (v) v| < R(v).

Consider the case where the box vertex v is one of the initially inserted 8 box
corners. Note that the circumballs of all the resulting tetrahedra are the same with
the circumseribed ball of the box. Let us denote with r the length of the radius of that
ball. Since that ball contains the whole box, we have that |vefp (v)] < 2r. It is easy
to show that r = ?L., where L is the box’s edge length edge. From Definition 2.7. we
know that R(v) = L, and therefore, we obtain that |vcfp (v)! < 2r = Lv3 = R(v)V3.
[

Lemma 2.5 Let f be a facet and wzx be its second smallest edge. If p(f) < py. then
r(f)] > = —.

4 -2

&8
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Proof: Let f be a facet defined by the vertices w, z, and g. Assume that xq = [ (f)
and wq is the largest edge. If there are more than one smallest edges and/or largest
edges, choose arbitrarily one edge as the smallest and/or one edge as the largest. In
this example, wx is the second smallest edge of f.

Keeping the circumball fixed, move w along the circumcircle such that the length
of wz becomes equal to the length of wq. In such a configuration (which is shown
in Figure 2.3), the length of wzx (i.e., the length of the second smallest edge) is

maximized. Also observe, the radius wec bisects angle #. From the right triangle

Acbw, we get that cosg = 2;;"(1}’)]. Since 8 is still the angle opposite to f’s shortest
edge, 6 and p (f) are related through the following equality: sinf = 5 [118]. This

1-—L-11
0 4p(f) +

fact and basic trigonometry yield that cos . Note that the right-hand

2 2
side is maximized when p(f) gets its highest value. Since the Lemma assumes that
\/i:;—;ﬁl
p(f) < ps, we obtain that cosg < ————\7-2—1—— Therefore, we finally conclude that

Ir(f)] > L — .

[ [4-L+2
Py

The following lemma sets a lower bound on the shortest edge introduced into the

mesh after the insertion of a point according to the five rules.

Lemma 2.6 Let v be inserted as dictated by the five rules and w be its parent. Then,

e R(v) > Apu(z), if v is an RI or an R2 vertex, where z is the closest feature
pownt to v,

X is an R3 verter and w
R(v) > min {¢, prR(w), Doa (v) }, if v is an R3 verter and w is a free

[ fJa-+2
’¥

or a bor verter,

R(v) > min {ﬁfR(w)., Apg (w) } if v is an R3 vertex and w is a feature verter,

R(v) > psR(w), if v is an R4 verter,
e R(v) > sf(v), if v is an RS vertex.

Proof: \We separate cases according to the type of wv.



e Case 1: v is an R1 or an R2 vertex.

If R1 is triggered, then v is equal to 2. According to Definition 2.7, R(v) is the
distance between v and its closest feature vertex. Vertex v, however, is inserted
only if v is separated from any other feature vertex by a distance of at least

Apq (v) = R(v), and the statement holds.

Otherwise, R2 applies for a tetrahedron t and v is equal to ¢(¢). According to
Definition 2.7, R(v) is the distance between v and its closest neighbor. Because of
the empty ball property, R(v) is at least r(t) > 2Asq (cfp (v)), and the statement
holds.

e Case 2: v is an R3 vertex.

In this case, v is equal to the center cg s (f) of f's surface ball, where f is the
restricted facet that violates R3. According to Definition 2.7, R(v) is the distance
between v and its closest neighbor. Since any surface ball is empty of vertices in
its interior (Remark 2.1), we know that R(v) = |reus(f)]|. The rest of this proof

attempts to bound |re.(f)| from below. We separate three scenaria:

(a) First, consider the case where f is incident to at least on box vertex. Accord-
ing to Definition 2.8, this box vertex can be the parent w of v. By construction,
the distance between cyr (f) and w is at least 2Apq (2) for any feature point z.
Therefore, the surface radius is at least 2A¢, (v) > Apg (v), and the statement

holds.

(b) Second, consider the case where p(f) > ps. According to Definition 2.8, w
is the most recently inserted vertex incident to wq = i, (f). Since p(f) is no
less than gy |r(f)] = p (f) lmin (f)] = 5 [min ().

If w is not an RI1 vertex, from Lemma 2.1, we get that |7(f)| > pf|lmin (f)] =
prR(w).

If wis an R1 vertex and ¢ is a feature vertex (that is. ¢ is either an R1 or an R3
vertex). then from Lemma 2.2, we get that |[r(f)| = 55 |lmin (f)| = prR(w).

If wis an R1 vertex and g is a free vertex then ¢ has to be separated from w

by a distance of at least 24y, (w), because R1 deleted all the free points closer
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than 204 (w) to w. That means that |wq| > 2As (w), a fact that also bounds
[r(t)| from below by I%q_l > Apg (w).

(c) Lastly, consider the case where f’s radius-edge ratio is less than py. Since
R3 is triggered, f has to be incident to at least one free vertex q. According to
Definition 2.8, w is the most recently inserted vertex of f. If w is a feature vertex
(i.e., w is either an R1 or an R3 vertex), then ¢ must be separated from w by a
distance of at least 2Ay(, (w), because w was inserted after g, and by R1 and R3,
all the free points closer than 2Aq (w) to w were deleted. Since wq is an edge

280 (w)
2

of f, the radius of any surface ball of f has to be at least = Apq (w) in

length. Otherwise, w is in fact a free vertex (i.e., it is an R2, R4, or R vertex).

Any vertex w of f is incident to f’s shortest edge (say Li), or f's second shortest

edge (say L), or both. From Lemma 2.5, we have that |r(f)| > ——Z2l— >
4

]

+

S

—£1__ From Lemma 2.1, we finally get that: |r(f)] > =2
/4_,?,1%_+2 / 4—313—+2
e Case 3: v is an R4 vertex.

There has to be a tetrahedron ¢ that violates R4, and therefore, |7(£)] > p; |lmin (t)]-
According to Definition 2.7, R(v) is the distance between v and its closest neigh-

bor. Because of the empty ball property, R(v) = |r(t)] > p¢ |lmin (¢)]. Accord-

ing to Definition 2.8, the parent w of v is the most recently inserted vertex of

wq = lmin (1)

If w is not an R1 vertex, from Lemima 2.1, we get that p; |lmin (¢)] > prR(w).

If wis an R1 vertex and ¢ is a feature vertex (that is, ¢ is either an R1 or an R3

vertex), then from from Lemma 2.2, we get that p |lmin (8)| > peR(w).

If wis an R1 vertex and g is a free vertex then ¢ has to be separated from w
by a distance of at least 2Ay, (w). because R1 deleted all the free points closer
than 2Asq (w) to w. That means that |wq] > 2Asq (w). a fact that also bounds

Ir(t)| from below by 1%"—’ > Ay (w).

e Case 4: v is an R) vertex.

o
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v is the circumcenter of a tetrahedron ¢t with radius no less than sf (¢ (t)) = sf (v).
According to Definition 2.7 and the empty ball property, however, the radius of

t is equal to R(v).

The next Lemma shows that the boundary facets of the output mesh are in fact

restricted facets.

Lemma 2.7 Let V be the set of vertices inserted into the triangulation. The set OM
of the boundary facets of the final mesh M is a subset of Djpu (V).

Proof: It follows directly from Definition 2.6. A facet f is a facet of the mesh
boundary, if it is incident upon a tetrahedron ¢; whose circumcenter lies inside €2;
(see Section 2.1) and upon a tetrahedron t, whose circumcenter lies either outside
2; or on its surface 9§2;. However, this means that the dual Voronoi edge e of f
intersects 9€);, and as a subsequence, e also intersects 9Q (D 912;). Hence, f belongs
to Diag (V). [ |

Theorem 2.2 (Termination and quality) Let pf > 1 and let

Pe = ([ 4/4— 517 + 2 (Z VV3+2= 1.93). The algorithm terminates producing tetra-
\/ ¥

hedra of radius-edge ratio less than p, and boundary facets of planar angles larger than
30°.

Proof: Figure 2.4 shows the insertion radius of the inserted point as a fraction of the
insertion radius of its parent, as proved in Lemma 2.3 and Lemma 2.6. An arrow from
Ri to Rj with label z implies that the insertion radius of an Rj point v is at least
z times larger than the insertion radius of its R7 parent w. The label of the dashed
arrows is the absolute value of R(v), with sf denoting that the insertion radius of v
is no less than sf (v). Note that the labels of the dashed arrows depend on the local
feature size of 92 and the size function sf, and as such are always positive constants.

Recall that during refinement, free vertices might be deleted (because of R1 or
R3). Nevertheless, such deletions of vertices are always preceded by insertion of

feature points. Considering the fact that feature vertices are never deleted from the
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bt -
R4

Agq (2) Pt
A (z)

R1/R2/projection

Figure 2.4: Flow diagram depicting the relationship among the insertion radii of the vertices
inserted because of the rules, where the arrows point from parents to their offspring. A solid arrow
from Ri to Rj with label = implies that the insertion radius of an Rj point v is at least = times
larger than the insertion radius of its Ri parent w. The label of the dashed arrows is the absolute
value of R(v). No solid cycle should have a product less than 1. The dashed arrows break the cycle.

mesh, termination is guaranteed if we prove that the insertion radii of the inserted
vertices cannot approach zero. Clearly {117, 118, it is enough to prove that Figure 2.4
contains no solid cycle of product less than 1. By requiring ps to be no less than 1
(cvele R3 — R3) and f to be no less than /[, /4 — ;):1? +2>vV3+2 (cvele R3 —
R4 — R3), no solid cycle of Figure 2.4 has product less than 1, and termination is
guaranteed.

Upon termination, the tetrahedra reported as part of the mesh have circuincenters
that lie inside Q and therefore thev cannot be skinny, because otherwise R4 would
apply. This implies that anv mesh tetrahedron has radius-edge ratio less than p;.

Since a boundary facet f is a restricted facet (by Lemia 2.7), R3 guarantees that
the radius-edge ratio p (f) of f's diametral ball cannot be larger than or equal to gy.

Also. note that p(f) is equal to 5= 5. where 6 is the smallest angle of f [118]. It

2sin
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follows that the planar angles are larger than 30°. |

2.4 Proof of Good Grading

In this Section, we show that the shortest edge connected to an inserted vertex v is
proportional to v’s local feature size. Although good grading implies size optimality
in 2D [100], the same does not hold in 3D. Nevertheless, it is useful to show that
parts of the domain with large local feature sizes are meshed with larger and fewer
elements than parts of lower local feature sizes. We also wish to show that dense size
functions on certain parts will not affect considerably the density of vertices on other
parts of the domain.

Following similar terminology to [109], we define the general local feature size and

the general size function on a vertex v as follows:

Definition 2.9 (General Local Feature Size) The general local feature size glfsyq (v)

on a verter v is defined as

glfssq (v) = ‘,len(?fﬂ{ [vz] + ifsp, (2)} (2.2)

Definition 2.10 (General Size Function) The general size function gsf(v) on a
vertex v is defined as
£(a) — S 9
gsf (v) = inf {Ipv| + s/ () } (2.3)

The definition of glfs,, () implies that vertices far from 9Q will tend to have
large general local feature sizes. In the case where the vertex lies on the surface,
the general local feature size coincides with the local feature size (see Definition 2.2)
of the vertex, and it increases when the vertex lies far from the medial axis. The
definition of gsf(-) implies that vertices close to parts of the domain on which the
user-defined size function is small will evaluate the general size function to a small
number as well.

The following Remark states a few useful properties of the general local feature

size and the general size function:
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Remark 2.2 (From [8,98]) glfsyq (-) and gsf(-) are 1-Lipschitz. Moreover, glfspq (2) =
fsgg (v), Vz € 05

Following the terminology of [117,118], the density D (v) of a vertex v is defined

as:
D (o) — min{elfsn (v) 857 (1)}
R(v)
Our goal is to bound from above the density of all inserted vertices by a constant

depending only on © and the input parameters. Notice that since D (v) < gl%@(%@

(2.4)

gifsyn(v) gsf(v)
Ry O R -

The following Lemma relates the insertion radius of a vertex with its distance from

and D (v) < g;f((;’)), it is enough to bound from above either

its parent:

Lemma 2.8 Let v be an RS or an R4 verter inserted into the mesh and w be its

parent. Then, R(v) = |vw|.

Proof: If v is an R3 or R4 vertex, then v is the center of an element t’s circumball
or surface ball. According to Definition 2.8, the parent w of v is one vertex of t.
Because of the empty circumball and surface ball property, Definition 2.7 implies
that R(v) = Jvw|. |

The following Lemma relates the density of a vertex v with that of its parent:

Lemma 2.9 Let v be an R3 or R4 verter and R{v) > ¢- R(w), where w = Par(v).

Then
D (w)

C

D(v) <1+

—~
[\
[ba}

~—

Proof: The proof is similar to the proof of Lemma 6 in [118].
Let w = Par(v). Since glfsyq () and gsf(-) are 1-Lipschitz (see Remark 2.2), we
have that:

min{glfsyg, (v),gsf (v)} < min{jvw| + glifsy, (w), [vw] + gsf(w)}
= lvw| + min{glfsy, (w) , gsf (w)}
= R(v) + min{glfs,, (w) .gsf (w)} (from Lemma 2.8)
= R{v) + R{w)D (w) (from Equation (2.4))
< R(v) + @D (w).
and the result follows by dividing both sides by R(v). [ ]

Before we proceed to the proof of good grading. we need two auxiliary Lemmata:

Lemma 2.10 Let v be an R2 vertex. Then. |vefp(v)] < R(v).

31



Proof: Vertex v is an R2 vertex because of an intersecting tetrahedron {. Since ¢ is
an intersecting tetrahedron and v is the center of ¢, we have that |vefp (v)] < |r(2)].

Definition 2.7, however, implies that |r(t)| = R(v), and the statement holds. [

Lemma 2.11 Let v be a verter inserted into the mesh. Then,
e D(v) < l—f%@, if visan R1, R2, or a box vertex,

e D(v) < %—‘5, if v is an R3 vertex and R(v) > min{Ayq (w), Apsq (v)}, where

w = Par(v) € 092, and
e D(v) <1, ifvis an R5 verter.

Proof: We separate cases.

Let v be an R1 vertex. According to the flow diagram of Figure 2.4, we have
that R(v) > Apq (cfp (v)) = Ao (v) = 6 - lfspq (2). From Remark 2.2, we have that
R(v) > 6 - Uspq (z) = & - glfsyq (2), giving that D (v) <} < %@, and the statement
holds.

Let v be an R2 or a box vertex. According to the flow diagram, R(v) > Asq (cfp (v))
d - Ifsgq (cfp (v)) = 0 - glfsyqg (cfp (v)), and from the fact that the general local feature
size is 1-Lipschitz, we have that R(v) > 4 (glfsy, (v) — |vefp (v)]). From Lemma 2.4
and Lemma 2.10, we know that |vefp (v)] < R(v)v3. Therefore, we obtain that
R(v) > 6 (glfsy, (v) — R(v)\/_3—) Dividing both sides by R(v) finally gives that
D(v) < ”g————‘/g, and the statement holds.

Let v be an R3 vertex and R(v) > Agg (v) = 6 - lfsgq (v). It follows directly that
D(v)<l<is

Let v be an R3 vertex and R(v) > Agg (w), where w € 0 is the parent of v.
From Remark 2.2, we obtain that R(v) > Ay (w) = & - sy (w) = 9§ - glfsy, (w) >
d (glfsy, (v) — Jvw|). From Definition 2.8, w is one of the vertices of a restricted facet
whose surface ball has v as the center. From the empty surface ball property and
Definition 2.7. we know that R(v) = |vw|. Therefore, R(v) > 4 (glfs,, (v) — R(v)).
Dividing both sides by R(v) finally gives that D (v) < 1—5—6 and the statement holds.

Let v be an R vertex. According to the flow diagram. all the arrows pointing to

5 are dashed and labeled as sf. The label of dashed arrows is “he absolute value
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of R(v) and therefore, R(v) > sf(v). Since, however, gsf(v) = uelsfz{ lpv| + sf(p) } <
P
lvv] + sf (v) = sf(v), we get that R(v) > gsf(v), and the proof is complete. |

Finally, the following Theorem proves that our algorithm achieves good grading:

Theorem 2.3 (Good Grading) Let py be strictly larger than 1 and let p; be strictly

larger than X = [, /4 — 7‘)17 +2 (2 VV3+2= 1.93). Let v be an Ri vertex inserted
V 5

into the mesh, i = 1,2,3,4,5, proj. Then, right after its insertion, its density D (v)
is bounded from above by a fized constant D; > 0.

Proof: This theorem will be proved via induction.
Initially, only the 8 box corners are inserted into the triangulation. According to
Lemma 2.11, the induction basis holds, if

1+0V3

Dproj = 6

(2.6)

For the induction hypothesis, assume that the density D (w) of v's parent R; vertex
w is bounded from above by D;, where j = 1,2, 3,4, 5, proj. We need to show that one
constant D; bounds from above the density of R; vertex v, where i = 1,2, 3,4, 5, proj.

We separate cases according to the type of v:

e v is an R1, R2, or a box vertex
According to Lemma 2.11, the insertion radius of v is bounded from above by

%‘/} Therefore, no matter what the parent of v is, the induction step holds, if

1+6V3

D] :D2:mej = 5

~~
®)
=
N

e v is an R5 vertex
Similarly to the case above, Lemma 2.11 suggests that no matter what the parent

of v is, the induction step holds, if

Ds = 1. (2.8)

e v is an R4 vertex
From the flow diagram. all the arrows pointing to R4 are labeled with p;. There-

fore. from Lemma 2.9 and Lemma 2.6, we get that D (¢v) < 1+ @ with ¢ equal
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to p; for any parent w. Thus, the induction step would be proved. if Dy was set

to a value that satisfied all the following inequalities:

D
1+ = <D, (2.9)
Pt
D-
1+ —:Li < Dy (2.10)
Pt
D
1+ =2 <D, (2.11)
Pt
D 1
1+ =2 =14=-<D, (2.12)
Pt Pt

Observe that the Ds term in Inequality (2.12) is replaced by 1, according to
Equality (2.8).

e v is an R3 vertex
According to Lemma 2.11, D (v) is bounded from above by 1_;_5 for the rela-
tionships of Figure 2.4 that are depicted by the dashed arrows pointing to R3.

Therefore, for the induction step to be proved, Dj; has to satisfy at least the

following inequality:

— < Dy (2.13)

0

For the rest of the relationships (i.e., solid arrows), we know from Lemma 2.9
and Lemma 2.6 that D (v) < 1+ Q—(EHQ, where ¢ is equal to jy if w is an R3 vertex
or equal to min {%,pf} if wis an R1, R2, Rproj, R4 or R5 vertex.
Therefore, the induction step would be proved, if Dj; was set to a value that
satisfied also the following inequalities:

1
1+D1H1&X{X,-_—} :1+D]XSD;; (214)
Ps
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D

1+ — <D (2.19)
P
1
1+D4II1&X{X,:—}:1+D4XSD3 (216)
P
1 ”
1+D5max{X,~_——}:1+X§D3 (21()
Ps
Observe that X is always larger than 731; when py > 1 and that is why the }317

term is eliminated from Inequalities (2.14), (2.16), and (2.17). Also, the Dj
term in Inequality (2.17) is replaced by 1, according to Equality (2.8).

Putting it all together and simplifying the results, Inequalities (2.9)- (2.17) above

are simultaneously satisfied by choosing:

p 0(pe+1)+X(1+0V3) p(pr — p
D4:max{pt+1w (Pe+1) + X (L+0V3) 7y 1)+Pf} (2.18)

pe— X opt T PPy — 1)

and

S+X(1+6V3) ope(1+X)+X(1+6vV3) 5, p(1+X)
) ’ dpy pr—=1 p—X
(2.19)
Equalities (2.6), (2.7). (2.8), (2.18), and (2.19) satisfy both the induction basis and

Dy = max{

the induction step for any number and type of vertices, and therefore, the proof is
complete.

2.5 Proof of Fidelity

In this section. we derive an upper bound for 4. such that the boundary of the final

mesh is a provably good topological and geometric approximation of 9. Our goal
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Figure 2.5: Illustration to the proof of Lemma 2.12.

is to prove that the mesh boundary OM (see Definition 2.6) is equal to Djsq (£) for
E a 0.09-sample of 02 (see Theorem 2.4 of this section). To see why this is enough,
recall that from Theorem 2.1, the restriction of a 0.09-sample of 92 to 912 is a good
topological and geometric approximation of 99Q.

First, we show that § directly controls the density of the feature vertices. Let V

be the set of vertices in the triangulation and E be equal to V N 0§2.

Lemma 2.12 Let § < %. Then E is a lf‘fm. -sample of O0f).

Proof: Recall that upon termination, there is no tetrahedron for which R1, R2, R3,
R4, or RS apply.

See Figure 2.5. Let p be an arbitrary point on 9§2. Since D (V) covers all the
domain, point p has to lie on or inside the circumsphere of a tetrahedron ¢ (not
shown). Hence, t is an intersecting tetrahedron. Let point p’ be the feature point
closest to ¢(t). Note that |c(t)p] > |c(t)p'| and therefore p' lies on or inside t's
circumsphere. We also know that ¢’s circumradius has to be less than 20y (p'), since

otherwise R2 would apply for t. Therefore, we have the following:

lpp'| < 2r(t) (because both p and p’ lic on or inside B(t))
< 450 (p) (because of R2)
< 46 (|pp’| + Usan (p)) (from Inequality (2.1)).
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and by reordering the terms, we obtain that:

b

Ifsgn (p) , with 0 < =, (2.20)

lpp'] <

W

46
1—-46

Moreover, there must exist a feature vertex v in the triangulation closer than
Ao (p') = 6 - Usgq (p') to p/, since otherwise R1 would apply for ¢. Hence, |vp’] <

d - Ifsaq (p'), and using Inequality (2.1), we have that:

lup'| < & (|pp'| + lfsaq (p)) (2.21)

Applying the triangle inequality for Apuvp’ yields the following:

vl < |pp| + lvp'] :
< |pp’| + 0 (Ipp’| + fsaq (p)) (from Inequality (2.21))
= |pp'| (1+0) +d - lfssq (p)
< I—ﬂ?lfsagl (p) (1 +0) + 90 -lUspg (p) (from Inequality (2.20))
= (401(_1:56 L 5) ifsaq (p)
= ﬁ%lfSasz (P) )
and the proof is complete. ||

Recall from Section 27;1 that the multi-tissue object €2 could be described as a
union of materials €2 = Ufli. Let us denote by Q{, the 7'" connected component of
a specific tissue €, j = 1i, N ¥

Similar to Definition 2.4, D|asz{ (V') denotes the set of those facets in the Delaunay

triangulation of the vertices in V' whose dual Voronoi edge intersects the surface 92!

of . Also. note that 9 = U UHQ{.

i

J
From Lemma 2.12 and Definition 2.3, the following Corollary follows:

Corollary 2.1 Let 6 < 29 ~ 0.0168 and let E! = VN OIQY. Then, E! is a
0.09-sample of BQ{.

As we have already mentioned in Section 2.2, the final mesh M reported consists
of tetrahedra whose circumcenter lies inside 2. Let M{ he the set of tetrahedra whose
circumcenter lies inside €.
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Similar to Definition 2.6, BMf denotes the set of the boundary facets of submesh
M. That is, OM! contains the facets incident to two tetrahedra such that one
tetrahedron has a circumcenter lying inside €/ and the other has a circumcenter

lying either outside Q7 or on 9.

Lemma 2.13 Let t be an intersecting tetrahedron whose circumnball B(t) contains a

point m of OQY’s medial aris. Then, § > ;1;.

Proof: Upon termination, rule R2 cannot apply for any tetrahedron. Therefore, we

have the following:

2-9 - lfsaga (efp(c(t))) > |r(t)] (from R2)
> M%M (since m and cfp (¢ (1)) lie inside B(¢))
> BoulElele®)  (gince m is on the medial axis) =
& > L

Lemma 2.14 Let 6 < ;. Any facet f € AM? belongs to D4 (V') and has its vertices
on O

Proof: Since f belongs to 9M?, f is incident to two tetrahedra ¢, ¢, € D (V), such
that the circumcenter of ¢, lies inside $J and the circumcenter of ¢, lies outside Q! or
BQ{ . However, this means that the Voronoi edge of f intersects OQ{, and therefore,
fe Diaszf (V). This completes the first part.

For the second part and for the sake of contradiction, assume that there is at
least one vertex v of f that does not lie on 97, but on another BQf,/ . Consider the
tetrahedron ¢, one of the two tetrahedra incident to f with circumcenter lving inside
Q. Since v lies on OQ{,I, the circumball B(¢;) of t; intersects d§2 in more than one
connected component. According to Lemma 7 of Amenta and Bern [9], this implies
that B(t) contains a point m of the medial axis of 9€2. Moreover. observe that t;
is in fact an intersecting tetrahedron. From Lemma 2.13. we finally get that 6 > 11

However, this raises a contradiction, since 4 is assumed to be no larger than % n

The next two Lemmas prove a few useful properties for the mesh M and its

LBoundary M. Qur goal is to show that OM? is alwavs non-empty and does not have
. 1 . .
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boundary (Lemma 2.16), a fact that will be used for proving the fidelity guarantees
(Theorem 2.4).

Lemma 2.15 Let 6 < 1. Then, MI # 0.

1
i
Proof: For the sake of contradiction, assume that M{ is empty. That means that
there is no tetrahedron whose circumcenter lies inside €. Since the triangulation
D (V) covers all the domain, the circumballs of the tetrahedra in D (V') also cover the
tissue €. Therefore, there has to be a circumball B(t) (t € D (V')) which contains a
point m on the medial axis of 893 , such that m lies inside Q{ . By our assumption,

the circumcenter ¢ (t) cannot lie inside Q. Therefore, ¢ is an intersecting tetrahedron.

1

From Lemma 2.13, we finally get that 0 > ;. However, this raises a contradiction,

since J is assumed to be no larger than i. n

Lemma 2.16 Letd < % Then OMf s a non-empty set and does not have boundary.

Proof: The fact that 8./\/({ is a non-empty set follows directly from Lemma 2.15:
since Mf cannot be empty, its boundary 8Mf cannot be empty too. For the other
part, since 8./\/1{ is the boundary of a set of tetrahedra, it cannot have boundary.

]

The following Theorem proves the fidelity guarantees achieved by our algorithm:

Theorem 2.4 Let § = 0.0168. Then the mesh boundary OM is a 2-manifold ambient
isotopic to OSY and the 2-sided Hausdor[f distance between the mesh boundary and 02
is O(d?).

Proof: By Theorem 2.1, it is enough to prove that 9M is the restriction to Jf of the
Delaunay triangulation of a 0.09-sample. We will, in fact, show that the boundary
OM? of the submesh M is equal to D aey (E7) (recall that E? is equal to V N 9gY)
which is the restriction to 9% of the Delaunay triangulation of a 0.09-sample of Q7
by Corollary 2.1. This is enough, since this would prove that the boundary of each
submesh M{ is an accurate representation of the interface 8(23, for any i and j.

Let f be a facet in M. From Lemma 2.14. we know that f € Do (V) that f's

vertices lie on 9. Let B be the surface ball of f. From Definition 2.5. the interior
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int (B) of B is empty of vertices in V. Therefore, int (B) is empty of vertices in
V Nos 23 also. Without loss of generality, assume that the vertices in V' are in general
position. Since there is a ball B that circumscribes f and does not contain vertices
of VN GQ{ in its interior, f has to appear as a simplex in D (V N an) Since the
center of B lies on 962, then the Voronoi dual of f intersects 9% in Disa (V N 852{),
as well. Hence, IMJ C Dioqs (VNnos).

For the other direction, we will prove that dM? cannot be a proper subset of
DIE)SZf (V N 80{), and therefore, equality between these two sets is forced. Toward
this direction, we will prove that any proper non-empty subset of D(BQ{ (V N BQf)
has boundary; this is enough, because we have proved in Lemma 2.16 that oM is
non-empty and does not have boundary.

Since V N 8 meets the requirements of Theorem 2.1, D}@Q{ (Vn 8(2{) is a 2-
manifold without boundary. Therefore, any edge in Diasz{ (V N BQ{ ) is incident to
exactly two facets of D;asz{ (Vﬂaﬂf). Since any proper non-empty subset A of
D|aszg (V N 8&2{) has fewer facets, .A contains at least an edge e incident to only one
facet. However, this implies that e belongs to the boundary of A, and the proof is

complete. [}

2.6 Implementation details

We used the Insight Toolkit (ITK) for image processing |7]. ITK provides, among
others, the implicit function f that describes object 2 to be meshed (see Section 2.1).
Specifically, given a real point p, f returns 0 if the voxel enclosing p is in the back-
ground, or it returns the identifier i of the tissue €2; if that voxel belongs to €2;,
i =1,...,n. In order to compute the closest feature point function cfp (p) and iden-
tifv the cloud of points lying on J€2, we make use of the Euclidean Distance Transform
(EDT) as implemented in ITK and presented in [97]. Specifically, the EDT returns
the boundary voxel p’ which is closest to p. Then, we traverse the ray p—;’ and we com-

pute the intersection between the ray and JQ by interpolating the positions where f

changes value [96]. The actual mesh generator was built on top of the Computational
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Geometry Algorithms Library (CGAL) [6]. CGAL offers flexible data structures for
Delaunay point insertions and removals and robust exact geometric predicates.

The rest of this section describes important implementation aspects.

2.6.1 Medial Axis Approximation

Recall that rules R1 and R2 make an extensive use of Ifs g, (-), and therefore, knowl-
edge about the medial axis is needed.

Since the computation of the exact medial axis is a difficult problem [56, 70|, we
seek a good (for our purposes) approximation of it. Precisely, we are interested in

computing fssq (p): the approximation of Ifsaq (p), where p € 9.

Remark 2.3 In this subsection, we do not alter the fidelity guarantees of Theo-
rem 2.4, since the theorem assumes that lfsy, (+) is known and accurate; in this sub-

section, we attempt to provide a fast way to approzimate Ifsy, (+).

For an excellent review of image-based medial axis approximation methods, see
the work of Coeurjolly and Montanvert [49]. The authors also describe an optimal
algorithm (MAEVA!) for the computation of the medial axis, which is a free im-
plementation to download. We found out, however, that although the method is
fast, the resulted discrete medial axis was not accurate enough for our purposes.
We attribute this behavior to the fact that image-based methods do not realize the
underlying shape; they compute the medial axis of volumetric data, which contains
discontinuities and thus, renders the computation unstable.

Amenta et al. [11] and Dey and Zhao [36] (and the references therein) consider
methods that given a set of sample points on the surface, they approximate the
medial axis from their Voronoi diagram. Their key concept is the Pole of a feature
vertex, a technique that we integrate into our algorithm in order to compute l?s;m ()
Boissonnat and Oudot [28] describe a two-phase algorithm that is able to approximate
the medial axis based on the notion of the Lambda-Medial Azis [33]. The Lambda-

Medial Axis makes weaker assumptions about the sample and as such. it is suitable

Yhitp:  liris.enrs.fr david.coeurjolly “doku doku.php?id code:maeva
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for noisy data. Nevertheless, we found that the Pole technique is easier to implement
and quite robust for our purposes in all the input images we tried. It should also
be mentioned that both the Pole and the Lambda-Medial Axis technique focus on
surface recovery and not volume meshing. That means that they assume that only
vertices on the isosurface are allowed (i.e., the sample). This is not the case in this
work, since the quality criteria might dictate the insertion of vertices in the interior
of the domain. As we explain below, this difference necessitates the simultaneous
maintenance of a second triangulation.

Let E be a vertex set on J€2 and consider the voronoi vertices of the voronoi cell of
a feature vertex v € E. The voronoi vertices inside Q (if any) are called internal and
the rest (if any) external. Amenta ef al. [11] shows that if E is dense, the internal pole
(i.e., the furthest from v internal voronoi vertex) is close to the medial axis contained
in 2, and the external pole (i.e., the furthest from v external voronoi vertex) is close
to the medial axis contained in the complement of 2. Therefore, the poles of each
sample point form a good discrete approximation of the medial axis.

The problem with the poles (as a good approximation of the medial axis) is that
E has to be a dense sample of the surface; however, our algorithm needs the approx-
imation of the medial axis, so it can create a graded sample £. Recall that we do
not assume that a starting sample set is known a priori. In fact, when the algorithm
starts, there is not a even a single feature vertex inserted into the triangulation. In
order to resolve this cyclic dependency, our algorithm alternates between two modes:
a “uniform” and a “graded”.

Specifically, the algorithm maintains a second triangulation D (Z) (together with
the triangulation D (V'), see Section 2.2) which contains only feature vertices. To
compute l?Sagz (2). z is inserted into the current set of feature vertices Z, and D (Z)
is updated. Next, the poles of z are computed from D (Z), and the distance from
z to its closest pole is returned as the approximation of the distance from z to the
medial axis. Clearly, in the early stages of the refinement, Z is a very sparse sample
set, and, therefore, the poles of z € Z are not to be trusted as a good approximation
of the medial axis. Note. however, that these poles can only be further from z, than

the poles computed at a much denser sample set. In other words. when Z is sparse.
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lfsan (z) gives a larger value than it should (i.e, lfsau (2) is larger than Ifssq (2)). This
has severe consequences, since it is possible for the resulting sample not to be as dense
as it should.

For this reason, instead of returning just the value of Ifssn (z), we choose to return
the following quantity: min{A,l?san (2)}, where A will be specified shortly. When
s (2) is too large (i.e., larger than A), the value of A is returned. Parameter X acts
as a safety net and simulates the uniform mode of the algorithm: in the worst case,
a uniform sample set will be generated, whose density depends on A. Note that the
uniform mode is triggered mostly in the early stages of the algorithm. Later on, more
and more feature vertices are inserted into the triangulation, and the medial axis is
sufficiently described by the poles; and this is when the graded mode of the algorithm
is activated.

Specifying a value for A is not intuitive. If A is small, then the approximation of
the medial axis would be more accurate, but the graded mode would be activated
fewer times, sacrificing in this way a well-graded surface mesh. On the other hand,
if A\ is large, then we would expect to see better grading, but it is likely for the
approximation of medial axis to be so bad (i.e., it is likely that [fsa (+) is too large),
such that the graded mode would fail to capture the curvature of 9€). Nevertheless,
extensive experimental evaluation on both synthetic and real medical images has
shown that in most cases, setting A to a value 12 times the size of the voxel suffices.

Note that if the users are not interested in achieving grading along the surface,
the second triangulation D (Z) is not needed at all, since they could define Ifso0 (p)

to be simply equal to .

2.6.2 Dihedral angle improvement

Provable theoretical guarantees on the minimum and maximum dihedral angles are
outside the scope of this thesis. Nevertheless. for practical purposes, we felt that the
issue of sliver removal and dihedral angle improvement should be addressed.

We could apply the sliver exudation technique [34] in order to improve the dihedral

angles. Edelsbrunner and Guoy |58]. however. have shown that in most cases sliver
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exudation does not remove all poor tetrahedra: elements with dihedral angles less
than 5° survive. The random perturbation technique [91] offers very small guarantees
and sometimes requires many (random) trials for the elimination of a single sliver as
reported in [81].

A straightforward and inexpeunsive way to eliminate slivers is to try to split them
by inserting their circumcenter. Shewchuk [117] shows that this technique works when
the slivers are far away from the mesh boundary. However, when slivers are close to
the mesh boundary, the newly inserted points alter the boundary triangles. In fact,
the boundary triangles might not have their vertices on the surface any more, or
might not even belong to the restricted triangulation. In this subsection, we propose
point rejection strategies that prevent the insertion of points which hurt fidelity.

Our algorithm first tries to convert illegal facets to legal ones. We define legal
facets to be those restricted facets whose vertices lie precisely on 9€2. Conversely, a
restricted facet with at least one vertex not lying on 02 is called an illegal facet.

Let f be an illegal facet and e its voronoi edge (see Figure 2.6a). Recall that e
has to intersect dS) (see Section 2.1) at a point p. Any vertex v of f which do not lie
precisely on 0L is deleted from the triangulation, while point p is inserted.

In addition, the algorithm tries to keep in the Delaunay triangulation as many
legal facets as possible. Let ¢ be the circumcenter of a sliver considered for insertion.
If the insertion of c eliminates a legal facet f (see Figure 2.6b), then ¢ is not inserted.
Instead, a point p on the intersection of 92 and f’s voronoi edge e is inserted.

[n summary, we cope with slivers by augmenting our algorithm (see Section 2.2)

with the following two rules:

R6: If an illegal facet f appears, then all its vertices that do not lie on the surface

are deleted and a point p on Vor (f) N 9dQ is inserted (Figure 2.6a).

R7: Let ¢t be a sliver and c its circumcenter. If ¢ eliminates a legal facet f, then ¢ is

rejected. Instead. a point on p on Vor (f) N OS2 is inserted (Figure 2.6b).

We define slivers via the optimization metric 7. as described by Liu and Joe [93].
2
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(a) (b)

Figure 2.6: The point rejection strategies. (a) f is an illegal facet. (b) f is a legal facet.

are the lengths of t’s edges. We chose 7, because its computation is robust even when
t is an almost flat element. In [93], it is proved that 0 < 5 (t) < 1. Moreover, n is 0
for a flat element, and 1 for the regular tetrahedron.

We consider a tetrahedron ¢ to be a sliver, if n(¢) is less than 0.06. The reason we
chose this value is because: (a) it introduces a small size increase (about 15%) over the
mesh obtained without our sliver removal heuristic (i.e., without rules R6 and R7),
and (b) it introduces a negligible time overhead. In the Experimental Section 2.7,
we show that this 0.06 bound corresponds to meshes consisting of tetrahedra with
dihedral angles between 4.6° and 171°.

Note that R6 and R7 never remove feature vertices; on the contrary, they might
insert more to “protect” the surface. Hence, they do not violate Theorem 2.4:
the mesh boundary continues being equal to the restricted Delaunay triangulation
Djga (V N OQ), and therefore a good approximation of the surface. In order not to
compromise termination (and the guarantees we give for the radius-edge ratio and
the boundary planar angles), if R6 or R7 introduce an edge shorter than the shortest
edge already present in the mesh, then the operation is rejected and the sliver in

question 1s ignored.



Table 2.1: Performance achieved by our algorithm and CGAL.

(a) Our algorithm. ) is set to 12 times the spacing length of the corresponding image, § to 2. 5 to vV V3 + 2. and bs
to 1.

| Input ]
|[ Embedded Spheres Torus Brain Stomach Skeleton Colon Ruee atlas | Head-neck atlas”|
achieved ]
radius-edge ratio ! 1.93 1.93 1.93 Lad 1.93 1.93 1.93 1.93
achieved planar i
boundary angles :
(degrees) 30.0 30,0 30.0 30.0 30.0 30.0 30.0 30.0
= Vortives 2.428 2.299 6.023 4.712 50, 759 3.917 102,130 36,174
= Boundary facets 3.626 3,808 10,080 8. 204 95.778 11,040 146. 160 T4, 768
= Elements ¥.774 7.727 21,136 15.796 163, 120 18. 545 426, 592 112,778
shortest mesh edge (1) 0.45 .61 2.3 1.78 3.9 319 2.2 R2
achieved diliedral angles
(degrees) 13.13 = 155.34 | 12.2 - 1556 | 120 - 155.7 | 123 - 155.2 | 10.8—156.0 | 11.3 - 153.% | 46— 170.1 | 4.7 - 170.0
Time (sces) 1.4 1.3 4.8 2.6 41.8 5.3 43.9 203

(b) Performance achieved by CGAL on the same set of images. p; is set to vV v/3 + 2, and prtol.

il Input
Ef Embedded Spheres Torus Brain Stomach Skeleton Colon Knee atlas | Head-neck atlas
achioved
radins-edge ratio 14l 1.30 L.x6 1.34 2.63 1.40 2.4 2.71
achioved planar o T I
boundary angles
(degrees) 30.0 30.0 16.5 30.0 20.3 22.6 30.0 10.6
EXertices 7,099 1,634 3,973 3447 12,603 1854 8173 35.755
= Boundary facets 3.682 1,450 2,504 2, 866 54 340 2, 980 33, 186G 60, 674
=« Elements 37,718 7,937 20,271 16. 442 173, 858 19,524 430, 827 127,684
shortest mesh edge (mm) 0.56 1.42 2.63 3.67 0.01 3.19 0.26 0.15
achieved dihedral angles
{degrees) 11.87 — 161.30 14.3-1593 | 113 - 1615 | 11.0 — 1638 | 10.0— 165.7 | 12.0 - 160.5 | 2.1 — 176.1 6.5 — 169.8
Time (sces) 1.0 0.2 0.6 0.5 10.0 1.0 13.7 8.8

We experimentally found that the point rejection strategies were able to generate
tetrahedra with angles more than 5° and less than 170°. We emphasize that neither

fidelity (see Theorem 2.4) nor termination (see Theorem 2.2) is compromised with

this heuristic.

2.7 Experimental Evaluation

This section presents the final meshes generated by our algorithm on synthetic and
real medical data. All the experiments were conducted on a 64 bit machine equipped
with a 2.8 GHz Intel Core i7 CPU and 8 GB of main memory. For the 3D visualization
of the final meshes, we used ParaView [122], an open source visualization application.

Although the fidelity guarantees we give hold for a verv small value of § (see
Theorem 2.4), we wanted to see if our algorithm works well for much larger values of

0. Specifically. for all the experiments, we set 4 to 2. L.e.. we set § to a value about 200
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Table 2.2: Information about the input images.

Immage [ Resolution [ Spacing (mm?) ] Tissues |
Single Sphere 416 x 416 x 416 | 0.04 x 0.04 < 0.04 1
Embedded Spheres || 634 x 416 x 416 | 0.04 x 0.04 x 0.04 3
Torus 147 x 147 x 67 | 0.25 x 0.25 x 0.25 1
Brain 316 x 316 x 188 | 0.93 x 0.93 x 1.5 1
Stomach 140 x 186 x 86 0.96 x 0.96 x 2.4 1
Skeleton 359 x 265 x 218 | 0.96 x 0.96 x 2.4 1
Colon 296 x 167 x 117 | 0.96 x 0.96 x 1.8 1
Knee atlas 413 x 400 x 116 0.27 x 0.27 x 1 49
Head-neck atlas 241 x 216 x 228 | 0.97 x0.97 x 1.4 60

times larger than Theorem 2.4 recommends. A larger value of ¢ also implies that the
size of the output mesh is smaller. Small-size meshes are desirable for two reasons:
first, because the mesh generation execution time is considerably less (as it can be
seen below, see Table 2.1a), and second, because finite element simulations [18,19]
on them run faster. We observed that even though the fidelity guarantees proved in
Section 2.5 do not hold for large 4, the results in fact are pretty good. (We should
also note that in some applications fidelity is not that important. For instance, a
study on the impact of J for the non-rigid registration problem [66] shows that the
accuracy and speed of the solver is not very sensitive to fidelity.)

As mentioned in Section 2.6.1, in all the following experiments, A is set to 12 times
the voxel size (i.e., length of the image spacing). Recall that A is used so that we can
compute an approximation of lfsgg (p). for p € 952

For all the experiments, we set g, to V3 + 2 and Py to 1, and therefore (from
Theorem 2.2) termination is certain, all the output tetrahedra are guaranteed to have
radins-edge ratio less than v/v/3 + 2, and all the boundary facets are guaranteed to
have planar angles larger than 30°. Recall that quality is not affected by any value
of 6. Although these parameters imply infinite grading constants (Theorem 2.3),
grading is much better in practice. an observation that is also reported in [118] and
demonstrated in this Section as well.

The first set of experiments demonstrates the use of custom size functions. Note
that the use of any size function alters neither the quality nor the fidelity guaran-

tees, since it is incorporated in Theorem 2.2 (see Section 2.3) and Theorem 2.4 (see



Section 2.5).

We synthetically created the image of a sphere of radius 10mm and center (0,0, 0).
See Table 2.2 for information about this image. We ran our algorithm on the sphere
image three times, each of which with a different size function: sf; (-),sf; (), and
sf3 (). sfi (+) restricts the radii of the elements to be smaller than 5mm, while sf; ()
restricts the radii of the elements to be smaller than lmm. sf; () is a non-uniform
size function. Specifically, it behaves as sfy () for z > 0 and as sfs (-) for the other
part of the sphere.

Figure 2.7 depicts the results. In all these three experiments, the achieved radius-
edge ratio is less than \/+v/3 + 2, and the planar angles are larger than 30°, as theory
dictates. Moreover, the dihedral angles of the output tetrahedra are between 12.9°
and 155.8°.

Observe that although parameters é and A (the ones directly responsible for the
sampling density) are fixed for all three runs, the sample density varies. In fact, small
size functions (i.e., size functions that take low values) make the boundary vertices
denser (compare Figure 2.7a and Figure 2.7b for example). Figure 2.7¢ shows better
exactly that: the surface is sampled more where the size function takes low values,
and less otherwise. This indirect effect is expected and it is due to R3. Because of a
small size function, more free vertices are inserter close to the surface. This, in turn,
is likely to invalidate more restricted facets; that is, more restricted facets will not
have their vertices on the surface, and thus, R3 is triggered dictating the insertion of
more feature vertices to protect the restricted facets.

The next set of experiments shows the output of our method on difficult geometries
both manifold and non manifold. Although the fidelity guarantees about the topology
of the output mesh are proved only for manifold domains, in this Section we show that
our method behaves fairly well for non-manifold cases (see Figure 2.11 for example)
as well.

The first couple of images are the embedded spheres and a torus we synthetically

created. The third is an MRI brain image obtained from Huashan Hospital?. The

2Huashan Hospital. 12 Wulumugi Zhong Lu. Shanghai. China.
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next three images are CT segmented scans of a skeleton, a colon, and a stomach,
obtained from IRCAD Laparoscopic Center®. The last two images are the MRI knee
atlas [112] and the CT head-neck [80] atlas obtained from the Surgical Planning
Laboratory of Brigham and Women’s Hospital!. Information about the input images
is shown in Table 2.2. Figure 2.8, Figure 2.9, Figure 2.10, and Figure 2.11 show the
meshes produced by our algorithm on these input images.

Table 2.1a reports some statistics for the meshes generated by our algorithm. The
observed largest radius-edge ratio in all the meshes is no more than v/v/3 + 2 and
the observed planar angles of the boundary facets in all meshes is no smaller than
30° corroborating in this way the theory.

Also, for the meshes of Figure 2.8, Figure 2.9, Figure 2.10, and Figure 2.11, notice
that: (a) the interior of the object (i.e. the part away from the surface) is meshed
with fewer and bigger elements (volume grading), and (b) in most cases, more and
smaller boundary triangles mesh parts of the surface close to the medial axis ( surface
grading). Graded meshes greatly reduce the total number of elements, representing,
at the same time, difficult geometries (i.e., geometries with high curvature and/or
non-manifold parts) accurately.

For comparison, Table 2.1b shows the meshes generated by CGAL [6], the state
of the art mesh generation tool we are aware of, able to operate directly on images
as well. We set the quality parameters to the same values with the ones used in our
algorithm. Note, however, that CGAL does not offer surface grading according to the
local feature size. Nevertheless, we were able to set an upper limnit on the radii of all
the tetrahedra, so that the resulting meshes have similar number of elements to the
meshes produced by our algorithm.

Indeed, observe that both Table 2.1a and Table 2.1b report similar mesh sizes on
the same input image, with one exception: the mesh size on the Embedded Spheres
generated by CGAL is more than 4 times larger than the one generated by our method.
The reason for this mismatch is the fact that CGAL found it difficult to recover the

red ball (see Figure 2.8a) with a small number of elements. We had to considerably

3http: ‘www.ircad.fr
thttp:  www.spl.harvard.edu
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increase the size of the whole mesh so that CGAL could represent both connected
components.

Table 2.1a and Table 2.1b suggest that the quality achieved by our method is
comparable to CGAL’s. The execution time of our method is much higher, but
this is expected since the surface grading offered by our algorithm necessitates the
computation of the poles and the maintenance of a second mesh, slowing down the
overall meshing time. Improving the speed of our algorithm is the main focus of the

next chapter.
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a) sfy (+): the radii are smaller than 5mm.

b) sfy (-): the radii are smaller than lmm.

{c) sf3(-): the radii are smaller than 5mm for z > 0 and smaller than 1lmm for
< 0.

Figure 2.7: Demonstrating the use of size functions. The whole mesh and a cross section of it is
displayed. A is set to about 12 times the spacing length of the image {i.e.. A = 12v3-0.042 = 0.83),

5 to 2. g to V3 + 2. and pr to L.



(a) embedded spheres

{b) torus

¢
¢

Figure 2.8: The final meshes produced by our algorithm for the embedded spheres and the torus.
The first mesh of each row illustrates the whole mesh and the second a cross-section of it.
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(a) brain
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Figure 2.9: The final meshes produced by our algorithm for the brain and the stomach.

b) stomach



(a) skeleton

N

{b) colon

J

Figure 2.10: The final meshes produced by our algorithm for the skeleton and the colon.




a) knee atlas
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{
{b) head-neck atlas

Figure 2.11: The final meshes produced by our algorithm for the multi-tissue knee and head-neck
atlases.
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Chapter 3

High Quality Real-Time
Image-to-Mesh Conversion for Finite

Element Simulations

In this chapter, we present a paralilel Image-to-Mesh Conversion (I2M) algorithm
with quality and fidelity guarantees achieved by dynamic point insertions and re-
movals. Starting directly from an image, its implementation is capable of recovering
the isosurface and meshing the volume with tetrahedra of good shape. Our tightly-
coupled shared-memory parallel speculative execution paradigmn employs carefully
designed contention managers. load balancing, synchrounization and optimizations
schemes. These techniques are shown to boost not only the parallel but also the
single-threaded efficiency of our code. Specifically, our single-threaded performance
is faster than both CGAL and TetGen, the state of the art sequential open source
meshing tools we are aware of. The effectiveness of our method is demonstrated on
Blacklight, the Pittsburgh Supercomputing Center’s cache-coherent NUMA machine.
We observe a more than 82% strong scaling efficiency for up to 64 cores, and a more

than 82% weak scaling efficiency for up to 144 cores. reaching a rate of more than
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{b) (c)

Figure 3.1: (a) The virual box is meshed into 6 tetrahedra. It encloses the volumetric object.
(b) During refinement, the final mesh is gradually being carved according to the Rules. (¢) At the
end, the set of the tetrahedra whose circumcenter lies inside §2 is the geometrically and topologically
correct mesh M.

14.3 million elements per second. This is the fastest 3D Delaunay mesh generation

and refinement algorithm, to the best of our knowledge.

3.1 Background: Delaunay Refinement for Smooth Surfaces

Sequential Delaunay Refinement for smooth surfaces is presented in detail in the
literature [109,110] and in our previous work [62,64]. In this Section, we briefly
outline the main concepts.

As is usually the case in the literature |9, 89, 110], we assume that the surface of the
object 00 to be meshed is a closed smooth 2-manifold. To prove that the boundary
oM of the final mesh M is geometrically and topologically equivalent with 9. we
make use of the sample theory [9]. Omitting the details, it can be proved [9,11] that
the Delaunay triangulation of a dense pointset lying precisely on the isosurface 0Of2
contains (as a subset) the correct mesh M. That mesh cousists of the tetrahedra ¢
whose circumcenter ¢ (t) lies inside Q. Formally, the sample theorem could be stated

as follows [11.28. 56]:

Theorem 3.1 Let V be samples of 02 If for any point p € O, there is a sample
v €V such that [v — p| < 6. then the bound.ry triangles of Do (V') is a topologically
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correct representation of 0Q0. Also, the 2-sided Hausdorff distance between the mesh

and 9%) is O(d?).

Typical values for § are usually fractions of the local feature size of 9S2. See |11, 28,
56, 109] for well defined § parameters. In our application, ¢ values equal to multiples
of the voxel size is sufficient.

Therefore, one of the goals of the refinement is to sample the isosurface densely
enough. To achieve that, our algorithin first constructs a virtual bozr which encloses
2. The box is then triangulated into 6 tetrahedra, as shown in Figure 3.1. This is
the only sequential part of our method. Next, it dynamically computes new points
to be inserted into or removed from the mesh maintaining the Delaunay property.
This process continues, until certain fidelity and quality criteria are met. Specifi-
cally, the vertices removed or inserted are divided into 3 groups: isosurface vertices,
circumcenters, and surface-centers.

The isosurface vertices will eventually form the sampling of the surface so that
Theorem 3.1 holds together with its theoretical guarantees about the fidelity of the
mesh boundary. Let c(¢) be the circumcenter of a tetrahedron ¢. In order to guarantee
termination, our algorithm inserts the isosurface vertex which is the closest to ¢ (¢). In
the sequel, we shall refer to the Closest IsoSurface vertex of a point p as cfp (p) € 9.
The isosurface vertices (like the circumecenters) are computed during the refinement
dynamically with the help of a parallel Euclidean Distance Transformation (EDT)
presented and implemented in [123]. Specifically, the EDT returns the surface vozel
g which is closest to p. A surface-voxel is a voxel that lies inside the foreground and
has at least one neighbor of different label. Then. we traverse the ray 5§ on small
intervals and we compute cfp (p) € 9Q by interpolating the positions of different
labels [96]. The density of the inserted isosurface vertices is defined by the user by
a parameter & > 0. A low value for ¢ implies a denser sampling of the surface, and
therefore. according to Theorem 3.1, a better approximation of 9Q.

The circuincenter ¢ (t) of a tetrahedron ¢ is inserted when ¢ has low quality (in terms
of its radius-edge ratio [117]) or because its circumradius r(¢) is larger than a user-
defined size function sf(+). Circumcenters might also be chosen to be removed. when

thev lie close to an isosurface vertex. because in this case termination is compromised.
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Consider a facet f of a tetrahedron. The Voronoi edge V(f) of f is the segment
connecting the circuincenters of the two tetrahedra that contain f. The intersection
V(f) N IS is called a surface-center and is denoted by cgus (f). During refinement,
surface-centers are computed similarly to the isosurfaces (i.e., by traversing V(f) on
small intervals and interpolating positions of different labels) and inserted into the
mesh to improve the planar angles of the boundary mesh triangles {118] and to ensure
that the vertices of the boundary mesh triangles lie precisely on the isosurface [109].

In summary, tetrahedra and faces are refined according to the following Refinement

Rules:

e R1: Let t be a tetrahedron whose circumball intersects 9Q2. Compute the closest
isosurface point z = ¢fp (¢ (¢)). If z is at a distance not closer than ¢ to any other

isosurface vertex, then z is inserted.

e R2: Let ¢ be a tetrahedron whose circumball intersects J€2. If its radius r(t) is

larger than 2 - 4, then c(t) is inserted.

e R3: Let f be a facet whose Voronoi edge V(f) intersects 92 at cgu¢ (f). If either
its smallest planar angle is less than 30° or a vertex of f is not an isosurface

vertex, then cgf (f) is inserted.

e R4: Let { be a tetrahedron whose circumcenter lies inside . If its radius-edge

ratio is larger than 2, then c(¢) is inserted.

e R5: Let ¢t be a tetrahedron whose circumcenter lies inside Q. If its radius r(¢)

is larger than sf(c(¢)), then c(t) is inserted.

e R6: Let ¢ be incident to an isosurface vertex z. All the already inserted circum-

centers closer than 24 to z are deleted.

Rules R1 and R2 are responsible for creating the appropriate dense sample so
that the boundary triangles of the resulting mesh satisfies Theorem 3.1 and thus the
fidelity guarantees. R3 and R4 deal with the quality guarantees, while RS immposes the
size constraints of the users. R6 is needed so termination can be guaranteed. See [62.

64.109] for more details. When none of the above rules applies. then refinement is
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complete. In our previous work [62, 64], we prove that termination is guaranteed, the
radius-edge ratio of all elements in the mesh is less than 2, and the planar angles of

the boundary mesh triangles is less than 30°.

3.2 Parallel Delaunay Refinement for Smooth Surfaces

Algorithm 2: The parallel mesh generation algorithm. It is executed by each thread.

1 Algorithm: GenerateNesh(Z. &. . sf(-). tid)

fnput : I is the image containing §4,
4 is the parameter that determines the density of the surface sampling.
5 (> 2) is the target radius-edge ratio,
sf {-) is the size function,
tid ia the unique identifier of the thread.
Qutput: A Delaunay mesh M that is guaranteed to (a) approximate 3i in a correct topological way with Hausdorff distance within

0(52), (b} be composed of clements with radius-edge ratio less than 5 and (¢} have boundary facets with planar angles larger

than 30°.
2 if hd == 0 then /4 If it is the main thread +/
/% At this moment, both the mesh and all PELs are empty. o/

Insert the 8 vertices of a box which contains §1:
PELg = PELg U NewElements;

while PEL;q # 0 do
t =PELg;q — next();
8 if locking t's vertices 1s not successful then
Unlock related vertices; Invoke Contention Manager; continue;

3
4
5 end
8
7

10 end

11 if t is an initersecting tetrahedron then

12 Compute 2z = cfp (¢ (t}); /% potential Ri element */
13 if there 1s an iso-surface vertex closer than 8 to z then

14 if r(t) > 24 then

185 Compute z = ¢ (t); /% R2 alement */
16 end

17 end

18 olse

18 if t 18 adjacent to a restricted facet f, such that p(f) > 1 or f’s vertices do not lie on 942 then

20 Compute 2 = ag g (F)i /* R3 applies. +/
21 else

22 if ¢ (t) lies inside $1 and either p(t) > 5 or r{t) > sf(c(t)) then

23 Compute z = c (t): /+ R4 or A5 apply. #/
24 else

25 PELygq = PELyq — t: /s t is mot a poor element +/
13 Unlouck all the related vertices: continue;

37 end

28 end

29 end

30 if z 15 a 1s0surface vertezr then

31 Prepare to delete all the free vertices that are closer than 26 to z.

32 ond

33 if tocking the vertices for the operation is not successful then

34 Roltback: Unlock related vertices; Invoke Contention Manager: continue;

35 ond

38 Insesrt 2 and delete the vertices (if anyj: Unlock all the related vertices;

ar if BeggingList # @ then

38 other _tid == BeggingList —first(};

39 PEL,ther id = PELgiher id Y NewElements: /+ Give work to begging Thread other_id +/
40 Wake Thread other _id; /¢ Notify Thread other_id that it can check its PEL again +/
41 Begginglist = BeggingList - {other id}:

42 end

43 end

44 if Begginglast-rsize(+ != # Threads -! then /¢ If I am NOT the last Thread to ask for work */
45 BeggingList->push _at_end(tid}:

46 Wait,

47 continue | /% Now some otber thread gave Thread tid work, so PELy;; is not empty any more */
48 weise /+ The mesh is ready, all PELs are eapty +/
48 Let the final mesh M be equal to the set of the tetrahedra whase circumcenter lies inside (5

50 end

As explained in Section 3.1, before the mesh generation starts, the Euclidean
Distance Transform (EDT) of the image is needed for the on-the-flv computation
of the appropriate iso-surface vertices. For this pre-processing step, we make use of

the publicly available parallel Maurer filter presented and implemented by Staubs et
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al. [123]. It can be shown [97,123] that this parallel EDT scales linearly with the
respect to the number of threads.

The rest of this section describes the main aspects of our parallel code. Algorithm 2
illustrates the basic building blocks of our multi-threaded mesh-generation design.
Note that our tightly-coupled parallelization does not alter the fidelity (Theorem 3.1)

and the quality guarantees described in the previous section.

3.2.1 Poor Element List (PEL)

Each thread T, maintains its own Poor Element List (PEL) PEL;. PEL,; contains
the tetrahedra that violate the Refinement Rules and need to be refined by thread T;

accordingly.

3.2.2 Operation

An operation that refines an element can be either an insertion of a point p or the
removal of a vertex p. In the case of insertion, the cavity C (p) needs to be found and
re-triangulated according to the well known Bowyer-Watson kernel (30, 128]. Specif-
ically, C (p) consists of the elements whose circumsphere contains p. These elements
are deleted (because they violate the Delaunay property) and p is connected to the
vertices of the boundary of C(p). In the case of a removal, the ball Bp needs to
be re-triangulated. As explained in [55], this is a more challenging operation than
insertion, because the re-triangulation of the ball in degenerate cases is not unique
which implies the creation of illegal elements, i.e., elements that cannot be connected
with the corresponding elements outside the ball. We overcome this difficulty bv
computing a local Delaunay triangulation Dp,) (or Dg for brevity) of the vertices
incident to p. such that the vertices inserted earlier in the shared triangulation are
inserted into Dpg first. In order to avoid races associated with writing, reading, and
deleting vertices cells from a PEL or the shared mesh. any vertex touched during the
operation of cavity expansion, or ball filling needs to be locked. We utilize GCC's
atomic built-in functions for this goal. since theyv perform faster than the conventional

pthread try _locks. Indeed. replacing pthread locks (our first implementation) with
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GCC’s atomic built-ins (current implementation) decreased the execution time by
3.6% on 1 core and by 4.2% on 12 cores.

In the case a vertex is already locked by another thread, then we have a rollback:
the operation is stopped and the changes are discarded [105]. When a rollback occurs,

the thread moves on to the next bad element in its PEL.

3.2.3 Update new and deleted cells

After a thread T; completes an operation, new cells are created and some cells are
invalidated. The new cells are those that re-triangulate the cavity (in case of an
insertion) or the ball (in case of a removal) of a point p and the invalidated cells are
those that used to form the cavity or the ball of p right before the operation. T,
determines whether a newly created element violates a rule. If it does, then T; pushes
it back to PEL; (or to another thread’s PEL, see below) for future refinement. Also,
T; removes the invalidated elements from the PEL they have been residing in so far,
which might be the PEL of another thread. To decrease the synchronization involved
for the concurrent access to the PELs, if the invalidated cell ¢ resides in another
thread T;’s PEL;, then T} removes ¢ from PEL; only if T; belongs to the same socket
with T;. Otherwise, T; raises cell ¢’s invalidation flag, so that T; can remove it when
T; examines c.

As Line 49 of Algorithm 2 shows, the final mesh M reported consists of the subset
of tetrahedra whose circumcenter lies inside the object 2. To expedite the process
of finding those elements, each thread maintains a linked list of those elements on
the fly, i.e., from the beginning of mesh generation and refinement. Thus, collecting
those elements at the end costs constant time O( 7 Threads). These linked lists are
updated similarly to the update of the Poor Element Lists (PELs) described in the

previous paragraph.

3.2.4 Load Balancer

Right after the triangulation of the virtual box and the sequential creation of the

first G tetrahedra. only the main thread might have a non-empty PEL. Clearly. Load
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Balancing is a fundamental aspect of our implementation. Our base (not optimized)
Load Balancer is the classic Random Work Stealing (RHW) [26] technique, since it
best fits our implementation design. In Section 3.4.1. we implement an optimized
work stealing balancer that takes advantage of the NUMA architecture and achieves
an excellent performance.

If the poor element list PEL; of a thread T; is empty of elements, T; “pushes
back” its ID to the Begging List, a global array that tracks down threads without
work. Then, T; is busy-waiting and can be awaken by a thread T} right after T gives
some work to T;. A running thread 7}, every time it completes an operation (i.e., a
Delaunay insertion or a Delaunay removal), it gathers the newly created elements and
places the ones that are poor to the PEL of the first thread T, found in the begging
list. The classification of whether or not a newly created cell is poor or not is done
by T;. T also removes T; from the Begging List.

To decrease unnecessary communication, a thread is not allowed to give work to
threads, if it does not have enough poor elements in its PEL. Hence, each thread T;
maintains a counter that keeps track of all the poor and walid cells that reside in
PEL;. T; is forbidden to give work to a thread, if the counter is less than a threshold.
We set that threshold equal to 5, since it yielded the best results. When T; invalidates
an element ¢ or when it makes a poor element ¢ not to be poor anymore, it decreases
accordingly the counter of the thread that contains ¢ in its PEL. Similarly, when T,
gives extra poor elements to a thread, T; increases the counter of the corresponding

thread.

3.2.5 Contention Manager (CM)

In order to eliminate livelocks caused by repeated rollbacks, threads talk to a Con-
tention Manager (CM). Its purpose is to pause on run-time the execution of some
threads making sure that at least one will do useful work so that system throughput
can never get stuck [115]. See Section 3.3 for approaches able to greatly reduce the
number of rollbacks and vield a considerable speedup. even in the absence of enough

parallelism. Contention managers avoid energy waste because of rollbacks and re-
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duce dynamic power consumption, by throttling the number of threads that contend,
thereby providing an opportunity for the runtime system to place some cores in deep

low power states.

3.3 Contention Manager

The goal of the Contention Manager (CM) is to reduce the number of rollbacks and
guarantee the absence of livelocks, if possible [74,115].

We implemented and compared four contention techniques: the Aggressive Con-
tention Manager (Aggressive-CM) [115], the Random Contention Manager (Randoin-
CM), the Global Contention Manager (Global-CM), and the Local Contention Man-
ager (Local-CM).

The Aggressive-CM and Random-CM are non-blocking schemes. As is usually
the case for non-blocking schemes [14, 74, 86,105, 115], we do not prove absence of
livelocks for these techniques. Nevertheless, they are useful for comparison purposes
as Aggressive-CM is the simplest to implement, and Random-CM has already been
presented in the mesh generation literature [14, 86, 105].

The Global-CM is a blocking scheme and we prove that does not introduce any
deadlock. (Blocking schemes are guaranteed not to introduce livelocks [22]).

The last one, Local-CM, is semi-blocking, that is, it has both blocking and non-
blocking parts. Because of its (partial) non-blocking nature, we found it difficult to
prove starvation-freedom |74, 75|, but we could guarantee absence of deadlocks and
livelocks. It should be noted, however, that we have never experience any thread
starvation when using Local-CM: all threads in all case studies are making progress
concurrently for about the same period of time.

Note that none of the earlier Transactional Memory techniques |74, 115] and the
Random Contention Managers presented in the past [14, 86, 105] solve the livelock
problem. In this section, we show that if livelocks are not provably elimminated in our
application, then termination is compromised on high core counts.

For the next of this Section assume that (without loss of generality) each thread
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always finds elements to refine in its Poor Element List (PEL). This assumption
simplifies the presentation of this Section, since it hides several details that are mainly
related to Load Balancing. The interaction between the Load Balancing and the

Contention Manager techniques does not invalidate the proofs of this Section.

3.3.1 Aggressive-CM

The Aggressive-CM is a brute-force technique, since there is no special treatment.
Threads greedily attempt to apply the operation, and in case of a rollback, they just
discard the changes, and move on to the next poor element to refine (if there is any).
The purpose of this technique is to show that reducing the number of rollbacks is
not just a matter of performance, but a matter of correctness. Indeed, experimen-
tal evaluation (see Section 3.3.5) shows that Aggressive-CM very often suffers from

livelocks.

3.3.2 Random-CM

Random-CM has already been presented (with minor differences) in the literature [14,
86, 104, 105} and worked fairly well, i.e, no livelocks were observed in practice. This
scheme lets “randomness” choose the execution scenario that would eliminate live-
locks. We implement this technique as well to show that our application needs con-
siderably more elaborate CMs. Indeed, recall that in our case, there is no much
parallelism in the beginning of refinement and therefore, there is no much random-
ness that can be used to break the livelock.

Each thread T, counts the number of consecutive rollbacks r;. If r; exceeds a
specified upper value r ', then 7; sleeps for a random time interval ¢;. If the consecutive
rollbacks break because an operation was successfully finished then r; is reset to 0.
The time interval ¢; is in milliseconds and is a randomlyv generated number between
1 and r*. The value of r~ is set to 5. Other values yielded similar results. Note that
lower values for r = do not necessarily imply faster executions. A low r~ decreases the
number of rollbacks much more. but increases the number of times that a contented

thread goes to sleep (for ¢, milliseconds). On the other hand. a high r° increases the
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number of rollbacks, but randomness is given more chance to avoid livelocks; that is,
a contented thread has now more chances to find other elements to refine before it
goes to sleep (for ¢; milliseconds).

Random-CM cannot guarantee the absence of livelocks. As noted in [22], this
randomness can rarely lead to livelocks, but it should be rejected as it is not a
valid solution. We also experimentally verified that livelocks are not that rare (see

Section 3.3.5).

3.3.3 Global-CM

Global-CM maiuntains a global Contention List (CL). If a thread T; encounters a
rollback, then it writes its id in CL and it busy waits (i.e., it blocks). Threads
waiting in CL are potentially awaken (in FIFO order) by threads that have made a
lot of progress, or in other words, by threads that have not recently encountered many
rollbacks. Therefore, each thread T; computes its “progress” by counting how many
consecutive successful operations s; have been performed without an interruption by
a rollback. If s; exceeds a upper value s+, then T; awakes the first thread in CL, if
any. The value for s" is set to 10. Experimentally, we found that this value vielded
the best results.

Global-CM can never create livelocks, because it is a blocking mechanism as op-
posed to random-CM which does not block any thread. Nevertheless, the system
might end up to a deadlock, because of the interaction with the Load Balancing's
Begging List BL (see the Load Balancer in Section 3.2).

Therefore, at any time, the number of active threads needs to be tracked down,
that is, the number of threads that do not busy wait in either the CL or the Begging
List. A thread is forbidden to enter CL and busy wait, if it sees that there is only
one (i.e., itself) active thread: instead, it skips CL and attempts to refine the next
element in its Poor Element List. Similarly, a thread about to enter the Begging List
(because it has no work to do) checks whether or not it is the only active thread
at this moment, in which case. it awakes a thread from the CL. before it starts

idling for extra work. In this simple way. the absence of livelocks and deadlocks are
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guaranteed, since threads always block in case of a rollback and there will always be
at least one active thread. The disadvantage of this method is that there is global

communication and synchronization: the CL, and the number of active threads are

global structures/variables that are accessed by all threads.

3.3.4 Local-CM

1 Algorithm: Initialization(7.:)

Input : T is the array of threads, 1 Algorithm: Rollback_Occurred( T, i, conflicting id)
i (> 0})is the id of the running thread Input : T is the array of threads,
b i (> 0) is the id of the running thread T;
/% s tracks down the progress of T;. It m;]hi(‘l:1 attmf}pted to acquire a vertex already locked by
counts the number of consecutive operations the thread Teonficting id-
that finished successfully without /* The number of consecutive successful operations
_ rollback. */ is reset to 0. */
2 Tfi}s = 0 2 Tijs = 0;
/* conflicting_id establishes dependencies. 3 'I[i].conflicting_id -= conflicting_id;
If conflicting_id is not a negat}"’ number 4 't[min(i,conflicting_id)].mutex.lock();
that means T; rollbacks bacause it s T[max(iconflicting_ id)].mutex.lock():
attempted to acquire a vertex already owned e if I'[conflicting_id [ busy_wait then
by Tconflicting _id- */ /% Teonflicting id 18 very likely to be busy
a Tli].conflicting _id = -1; vaiting; to avoid cyclic dependencies, T; is
. . forbidden to busy wait. */
/* busy wait implements the busy waiting. */ . I'[i].conflicting_id = -1;
4 Tiil-busy_wait = false; 8 '['[max(iAconﬂic'ting_id)],mutex.unlock();
] T'[min(i,conflicting _id)].mutex.unlock(});
{a) It is called by each thread. before refinement 10 return;
starts. 11 end
/* Teonflicting id 8 Dot busy waiting; atomically, T;
will. */
. - o 12 Tfi).busy_wait = true;
1 Algorithm: Rollback_Not_Occurred(7'i) 13 ‘T[max(i.conflicting_id)].mutex.unlock():
Input : 'I'is the array of threads, 14 T|min{i.conflicting id)].mutex.unlock();
i (> 0)is the id of the running thread . . ; A ,
Iy which completed an operation successfully, /% Ti writes its id in Tionficting id’3
i.e., without rollbacks. Contention_List (CL). */
Th . 15 'I'[conflicting _id |.mutex.lock(}:
2 Afilsess 16 ‘I[contlicting _id |.CL.push_back(i);
3 if Tfi].s < s then 17 ‘T'|conflicting _id {.mutex.unlock():
/* T d?es not awake any thread yet. / 18 while 'I'Ii[.busy wait do
4 return: X = P .
s ond /* T, is busy waiting until thread ch"«kﬁn‘";d
e wakes it up. */
e ‘['[i].mutex.lock{}: q
7 j = T[il.CL.pop_front(): 1o ?n flicti id = -1
s I'{il.mutex.unlock(): 20 Ii|-conflicting _id — -1:

/* Flip T;’s flag, so it can be awvaken. */
T|jl-busy_wait - false:

©

(b) T completed the operation.

() Ti did not complete the operation because it en-
countered a rollback.

Figure 3.2: Pseudocode elaborating on the implementation of the local Contention Manager (local-

CA).

The local Contention Manager (local-CM) distributes the previously global Con-
tention List (CL) across threads. The Contention List CL; of a thread T; contains

the ids of threads that encountered a rollback hecanse of T; (i.e. they attempted to
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acquire a vertex already acquired by 7;) and now theyv busy wait. As above. if T; is
doing a lot of progress, i.e., the number of consecutive successful operations exceed
s*, then T; awakes one thread from its local CL,.

Extra care should be taken, however, to guarantee not only the absence of livelocks,
but also, the absence of deadlocks. It is possible that 7 encounters a rollback because
of T, (and we symbolize this relationship by writing T} — T3), and T encounters a
roltback because of Ty (i.e., 7o — T)): both threads write their ids to the other
thread’s CL, and no one else can wake them up. Clearly, this dependency cycle
(Ty — To, — T7) leads Ty and T3 to a deadlock, because under no circumstances these
threads will ever be awaken again.

To solve these issues, each thread is now equipped with two extra variables: con-
flicting _id and busy wait. See Figure 3.2 for a detailed pseudo-code of local-CM.

The algorithm in Figure 3.2¢ is called by a T; every time it does not finish the
operation successfully (i.e., it encounters a rollback). Suppose T; attempts to ac-
quire a vertex already locked by T; (T; — Tj). In this case, 7; does not complete
the operation, but rather, it rollbacks by disregarding the so far changes, unlocking
all the associated vertices, and finally executing the Rollback_Occurred function,
with conflicting_id equal to j. In other words, the conflicting_id variables represent
dependencies among threads: T; — T; < T;.conflicting_id = j.

For example, if T; encounters a rollback because of T; and T} encounters a rollback
because of T}, then the dependency path from T; is T; — T; — Ty, which corresponds
to the following values: T;.conflicting _id = j, T}.conflicting _id = k, T..conflicting_id =
—1 (where -1 denotes the absence of dependency).

Lines 4-14 of Rollback_Occurred decide whether or not T; should block (via busy-
waiting). T; is not allowed to block if Teonfiicting_ia has already decided to block (Lines
6-10). Threads communicate their decision to block by setting their busy wait flags
to true. If Tconmctingﬁ;d‘busy_wait has already been set to true. it is imperative that 7;
is not allowed to block. because it might be the case that the dependency of T; forms
a cvele. By not letting 7T; to block. the dependency cycle “breaks™ Otherwise, T;
writes its id to CLconflicting i (Lines 15-17) and loops around its busy_wait flag (Line

18).
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Figure 3.3: Illustration of the local Contention Manager (local-CM). Six Time Steps demonstrate
the interaction among four threads. The contents of their Contention List (CL), the value of the
conflicting _thread variable, and the value of the busy_ wait flag are shown.

The algorithm in Figure 3.2b is called by a T; every time it completes an operation,

i.e., every time 7T; does not encounter a rollback. If 7; has done a lot of progress (Lines

2-5 of Rollback_Not_Occurred), then it awakes a thread 7 from its Contention List

CL; by setting T;’s busy wait flag to false. Therefore, T; escapes from the loop of

Line 18 in Rollback_Occurred and is free to attempt the next operation.

Figure 3.3 illustrates possible execution scenarios for local-CM during six Time

Steps. Below, we describe in detail what might happen in each step:

e Time Step 1: All four threads are making progress without any rollbacks.

e Time Step 2: T) and Tj attempted to acquire a vertex alreadv owned by

T,. Both Tj and T} call the code of Figure 3.2c. Their conflicting _id variables

represent those exact dependencies (Line 3 of Rollback_Occurred).
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e Time Step 3: T) and T} set their busy wait flag to true (Line 12 of Rollback_Occurred),
they write their ids to CLg (Lines 15-17), and they block via a busy wait (Line
18).

e Time Step 4: T, has done lots of progress and executes the Lines 6-9 of

Rollback_Not_Occurred, awaking in this way 7j.

e Time Step 5: A dependency cycle is formed: To — T3 — Ty — T5. Lines 4-14
of Rollback_Occurred will determine which threads block and which ones do
not. Note that the mutex locking of Lines 4-5 cannot be executed at the same
time by these 3 threads. Only one thread can enter its critical section (Lines

6-14) at a time.

e Time Step 6: Here it is shown that T; executed its critical section first, T3
executed its critical section second, and T3 was last. Therefore, Ty and T, block,
since the condition in Line G was false: their conflicting threads at that time had
not set their busy wait to true. The last thread Tj realized that its conflicting
thread T, has already decided to block, and therefore, T3 returns at Line 10,

without blocking.

Note that in Time Step 6, 75 blocks without awaking the threads in its CL, and
that is why both CLy and CLj are not empty. [t might be tempting to instruct a
thread T, to awake all the threads in CL;, when T; is about to block. This could
clearly expedite things. Nevertheless, such an approach could easily cause a livelock
as shown in Figure 3.4.

Local-CM is substantially more complex than global-CM, and the deadlock-free/livelock-
free guarantees are not very intuitive. The rest of this Subsection is devoted to prove
that local-CM indeed can never introduce deadlocks or livelocks.

The following two Remarks follow directly from the definition of deadlock and

livelock |22].

Remark 3.1 If a deadlock arises, then there has to be a dependency cycle where all
the participant threads block. Only then these blocked threads will never be awaken

agein.
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Figure 3.4: A thread about to busy-wait on another thread’s Contention List (CL) should not
awake the threads already in its own CL. Otherwise, a livelock might happen, as illustrated in this
Figure. Time Step 8 leads the system to the same situation of Time Step 1: this can be taking place
for an undefined period of time with none of the threads making progress.

Remark 3.2 If a livelock arises, then there has to be a dependency cycle where all the
participant threads are not blocked. Since all the participant threads break the cycle
without making any progress, this “cycle breaking” might be happening indefinitely
without completing any operations. In the only case where the rest threads of the
system are blocked waiting on these participant threads™ Contention Lists (or all the
system’s threads participate in such a cycle), then system-wide progress is indefinitely

postponed.

The next Lemmas prove that in a dependency cycele. at least one thread will block
and at least one thread will not block. This is enough to prove absence of deadlocks

and livelocks.



Lemma 3.1 (Absence of deadlocks) In a dependency cycle at least one thread
will not block.

Proof: For the sake of contradiction, assume that the threads T;,,7;,, ..., par-

in

ticipate in a cycle, that is, T;, - T;, = -+ —= T, such that all threads block.

i, = Ty,
This means that all threads evaluated Line 6 of Figure 3.2¢ to false. Therefore, since
T;,'s conflicting_id is T},, right before T}, decides to block (Line 12), T;,’s busy wait
flag was false. The same argument applies for all the pairs of consecutive threads:
(T, Tis } ATis, Tia by -« {75, Ty, }- But T;, could not have evaluated Line 6 to false,
because, by our assumption, T;, had already decided to block and T;,.busy wait had

been already set to true when T; acquired T;,'s mutex. A contradiction: T;, returns

n 7

from Rollback_Occurred without blocking. |

Lemma 3.2 (Absence of livelocks) In « dependency cycle at least one thread will
block.

Proof: FLor the sake of contradiction, assume that the threads T; ,T;,,...,T;, par-

ticipate in a cycle, that is, T;, — 13, — --- — T;, — T;,, such that all threads do not

block. This means that all threads evaluated Line 6 of Figure 3.2¢ to true. Consider
for example T; . When T;, acquired T;,'s mutex, it evaluated Line 6 to true. That
means that T}, had already acquired and released its mutex having executed Line 12:

a contradiction because T;, blocks. |

3.3.5 Comparison

For this case study, we evaluated each CM on the CT abdominal atlas of [IRCAD
Laparoscopic Center (http://www.ircad.fr/) using 128 and 256 Blacklight cores (sce
Table 3.2 for its specification). The final mesh consists of about 150 x 10 tetrahedra.
The single-threaded execution time on Blacklight was 1.080 seconds. See Table 3.1.
There are three direct sources of wasted cveles in our algorithm, and all of them

are shown in Table 3.1:

-~}
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Table 3.1: Comparison among Contention Managers (CM). A 150 Million element mesh is gener-

ated.

(a) 128 cores

Aggressive-CM Random-CM Global-CM\ Local-CM
time (secs) n/a 64.2 23.7 19.3
rollbacks n/a 2.48251 x 107 728, 087 680, 338
contention n/a 1330.9 1081.4 545.80
overhead (secs) ’
load balance n/a 872.48 134.62 126.22
overhead (secs) !
rollback overhead n/a 516.81 30 2.9
(secs) ’
total overhead n/a 5720.9 1219.6 675.11
(secs) !
speedup n/a 16.8 45.6 56.0
livelock yes no not possible not possible
deadlock not possible not possible not possible not possible

(b) 256 cores

Aggressive-CM Random-CM Global-CM Local-CM
time (secs) n/a n/a 22.3 14.1
rollbackss n/a n/a 882, 768 1.71197 x 10°
contention n/a n/a 3095.9 1377.1
overhead (secs) ! ’
load balance n/a n/a 285.44 239.98
overhead (secs) !
rollback overhead n/a n/a 36 76
(secs)
total overhead n/a n/a 3385.1 1624.9
(secs) '
speedup n/a n/a 48.4 76.6
livelock yes yes not possible not possible
deadlock not possible not possible not possible not possible

e contention overhead time: it is the total time that threads spent busy-waiting

on a Contention List (or busy-waiting for a random number of seconds as is the

case of Random-CM) and accessing the Contention List (in case of Global-CM).

e load balance overhead time: it is the total time that threads spent busy-

waiting on the Begging List waiting for more work to arrive (see Section 3.2)

and accessing the Begging List, and

e rollback overhead time: it is the total time that threads had spent for the

partial completion of an operation right before thev decided that they had to
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discard the changes and roll back.

Observe that Aggressive-CM was stuck in a livelock on both 128 and 256 cores.
We know for sure that these were livelocks because we found out that no tetrahedron
was refined, i.e., no thread actually made any progress, in the time period of an hour.

Random-CM terminated successfully on 128 cores, but it was very slow compared
to Global-CM and Local-CM. Indeed, Random-CM exhibits a large number of roll-
backs that directly increases both the contention overhead and the rollback overhead.
Also, since threads’ progress is much slower, threads wait for extra work for much
longer, a fact that also increases the load balance overhead counsiderably. As we
have already explained above, Random-CM does not eliminate livelocks, and this is
manifested on the 256 core experiment, where a livelock did occur.

On both 128 and 256 cores, Local-CM performed better. Indeed, observe that
the total overhead time is approximately twice as small as Global-CM’s overhead
time. This is mainly due to the little contention overhead achieved by Local-CM.
Since Global-CM maintains a global Contention List, a thread T; waits for more time
before it gets awaken from another thread for two reasons: (a) because there are more
threads in front of T; that need to be awaken first, and (b) because the Contention
List and the number of active threads are accessed by all threads which causes longer
communication latencies.

Although Local-CM is the fastest scheme, observe that it introduces higher number
of rollbacks on 256 cores than Global-CM. This also justifies the increased rollback
overhead (see Table 3.1b). In other words, fewer rollbacks do not always imply faster
executions. a fact that renders the optimization of our application a challenging task.
This result can be explained by the following observation: the number of rollbacks
(and subsequently, the rollback overhead) and the contention overhead constitute a
tradeoff. The more a thread waits in a Contention List. the more its contention
overhead is, but the fewer the rollbacks it encounters are. since it does not attempt
to perform any operation. Conversely, the less a thread waits in a Contention List.
the less its contention overhead is, bhut since it is given more chances to apply an
operation. it might encounter more rollbacks. Nevertheless. Table 3.1 suggests that

Local-C\ does a very good job balancing this tradeoff on runtime.
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Table 3.2: The specifications of the c¢c-NUMA machines we used.

cores per sockets per memory per

Model socket blade blades socket max hops
Blacklight || Intel Xeon X7560 8 2 128 64GB 5
CRTC Intel Xeon X5690 6 2 1 18GB 0

Although there are other elaborate and hybrid contention techniques |74, 115/, none
of them guarantees the absence of livelocks. Therefore, we chose Local-CM because

of its efficiency and correctness.

3.4 Performance

In this Section, we describe a load balancing optimization and present the strong and

weak scaling performance on Blacklight. See Table 3.2 for its specifications.

3.4.1 Hierarchical Work Stealing (HWS)

In order to further decrease the comununication overhead associated with remote
memory accesses, we implemented a Hierarchical Work Stealing scheme (HWS) by
taking advantage of the cc-NUMA architecture.

We re-organized the Begging List into three levels: BL1, BL2, and BL3. Threads
of a single socket that run out of work place themselves into the first level begging
list BL1 which is shared among threads of a single socket. If the thread realizes
that all the other socket threads wait on BL1, it skips BL1. and places itself to BL2,
which is shared among threads of a single blade. Similarly, if the thread realizes
that BL2 already accommodates a thread from the other socket in its blade, it asks
work by placing itself into the last level begging list BL3. When a thread completes
an operation and is about to send extra work to an idle thread. it gives priority to
BL1 threads first, then to BL2, and lastlv to BL3 threads. In other words, BL1
is shared among the threads of a single socket and is able to accommodate up to
number _of threads per _socket — 1 idle threads (in Blacklight. that is 7 threads).

BL2 is shared among the sockets of a single blade and is able to accommodate up

~1
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to number _of _sockets_per _blade — 1 idle threads (in Blacklight, that is 1 thread).
Lastly, BL3 is shared among all the allocated blades and can accommodate at most
one thread per blade. In this way, an idle thread T; tends to take work first from
threads inside its socket. If there is none, T; takes work from a thread of the other
socket inside its blade, if any. Finally, if all the other threads inside T;'s blade are
idling for extra work, T; places its id to BL3, asking work from a thread of another

blade.

3.4.2 Strong Scaling Results
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Figure 3.5: Strong scaling performance achieved by the classic Random Work Stealing (RWS)
and Hierarchical Work Stealing (HWS). (a)-(b) Comparison between RW'S and HWS on speed-up
(=—tm% ) and on the number of inter-blade accesses. {¢) Breakdown of the overhead time for

e Threads

HWS.

Figure 3.5 shows the strong scaling experiment demonstrating both the Random

Work Stealing (RWS) load balance and the Hierarchical Work Stealing (HWS). The
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Table 3.3: Information about the three input images used for the scaling results of Section 3.4 and
the single-threaded performace comparison of Section 3.5.

voxels spacing (mm?) tissues download from
abdominal atlas || 512 <512 < 219 | 0.96 x 0.96 < 2.4 23 http: www.ircad fr softwares 3Dircadb 3Dircadb?2 3Dircadb22 zip
kuee atlas 312 x 512 x 119 | 0.27 x 0.27 x 1 49 hup: - www.splLharvard.edu publications itemn view - 1953
head-neck atlas || 255 x 255 x 229 | 0.97 x 0.97 x 1.4 60 http:  www.splharvard.edu publications item view 2271

input image we used is the CT abdominal atlas obtained from IRCAD Laparoscopic
Center. Information about this input image is shown in Table 3.3. The final mesh
generated consists of 124 x 10° clements. On a single Blacklight core, the execution
time was 1100 seconds.

Observe that the speed-up of RWS deteriorates by a lot for more than 64 cores
(see the green line in Figure 3.5a). In contrast, HWS manages to achieve a (slight)
improvement even on 176 cores. This could be attributed to the fact that the number
of inter-blade (i.e., remote) accesses are greatly reduced by HWS (see Figure 3.5b),
since begging threads are more likely to get poor elements created by threads of their
own socket and blade first. Clearly, this reduces the communication involved when a
thread reads memory residing in a remote memory bank. Indeed, on 176 cores, 98.9%
of all the number of times threads asked for work, they received it from a thread of
their own blade, yielding a 28.8% reduction in inter-blade accesses, as Figure 3.5b
shows.

Figure 3.5¢ shows the breakdown of the overhead time per thread for HWS across
runs. Note that since this is a strong scaling case study, the ideal behavior is a linear
increase of the height of the bars with the respect to the number of threads. Observe,
however, that the overhead time per thread is alwayvs below the overhead time mea-
sured on 16 threads. This means that Local-CM and the Hierarchical Work Stealing
method (HWS) are able to serve threads fast and tolerate congestion efficiently on

runtime.

3.4.3 Weak Scaling Results

In this section. we present the weak scaling performance of PI2M on two inputs. the
information of which is presented in Table 3.3. The first is the same C’T abdominal

atlas already used in the previous strong scaling Section. The second input image
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Table 3.4: Weak scaling performance. Across runs. the number of elemnents per thread remains
approximately constant.

(a) abdominal atlas

= Threads i 16 32 64 j 128 144 160 176
“Elements | LO7E 07 | L72E 08 | 349FE 0B | 7.44E 08 | 132E 09 | 15IE 09 | LG7E 09 | 18E 09
Time (seen) 9037 B0.03 BT.50 59.93 53,00 103.26 150.03 181.10
1&:(:"(3:;1 LISE 05 | 213E 06 | 3.99E 06 | 7.50E 06 | 142E 07 | 1.46E407 | LLIE 07 | 1L02E 07

Speedup L00 819 33,71 6333 11956 9367 91.10 86.36
Efficiency L.00 W 105 0.99 0.93 0.86 050 .19
Overhead

secs per .90 1.60 2.141 2.98 1.42 176 871 10.55

thread

(b) knee-atlas

= Threads 1 16 32 61 128 11 160 176
sElements || LOGE 07 | L6GE 08 | 3.70F 08 | 80GE 08 | I3IE 00 | L58E 00 | Li0E 00 | 19IE 09
Time (s00s) 37.26 80.67 9836 110.72 97.79 110,00 167.08 190.00
lf:i‘:‘(“(fi:;l 122E-05 | 205E 06 | 3.76E 06 | 7.28£.06 | 134K 07 | 1.43E+07 | LO2E 07 | LOIE 07
Speodinp L0 16.80 30.92 59.90 11061 117.92 8377 8781
Efficiency .00 1.06 097 051 0.56 0,82 0.52 017
Overhead

secs per 0.87 1.46 2.77 3.1 347 6.8 8.90 11.07
thread

is the knee atlas obtained from Brigham & Women’s Hospital Surgical Planning
Laboratory [112]. Other inputs exhibit very similar results on comparable mesh sizes.

We measure the number of tetrahedra created per second across the runs. Specif-
ically, let us define with Elements (n) and Time (n), the number of elements created

and the time elapsed, when n threads are employed. Then, the speedup is defined as

Elements(n)x Time(1)
Time(n)xElements(1) °

With n threads, a perfect speedup would be equal to n [72].

We can directly control the size of the problem (i.e., the number of generated
tetrahedra) via the parameter ¢ (see Section 3.1). This parameter sets an upper limit
on the volume of the tetrahedra generated. With a simple volume argument, we can
show that a decrease of 4 by a factor of x results in an z? times increase of the mesh
size. approximately.

See Table 3.4. Each reported Time is computed as the average among three runs.
Although the standard deviation for up to 128 cores is practically zero on bhoth inputs,
the same does not apply for higher core counts. Indeed. the standard deviation on
the 144-. 160-, and 176-core executions is about 10. 15. and 29 seconds respectively,

for both inputs. We attribute this behavior to the fact that in those experiments.



the network switches responsible for the cache coherency were close to the root of the
fat-tree topology and therefore, they were shared among many more users, affecting
in this wayv the timings of our application considerably. (Note that the increased
bandwidth of the upper level switches does not alleviate this problem, since the
bottleneck of our application is latency.) This conjecture agrees with the fact that
the the maximum number of hops on the experiments for up to 128 cores was 3, while
for 144, 160 and 176 cores, this number became 5.

Nevertheless, observe the excellent speedups for up to 128 threads. On 144 cores,
we achieve an unprecedented efficiency of more than 82%, and a rate of mmore than
14.3 Million Elements per second for both inputs. It is worth mentioning that
CGAL [6], the fastest sequential publicly available Isosurface-based mesh gener-
ation tool, on the same CT abdominal (http://www.ircad.fr/softwares/3Dircadb/
3Dircadb2/3Dircadb2.2.zip) image input, is 81% slower than our single-threaded per-
formance. Indeed, CGAL took 548.21 seconds to generate a similarly-sized mesh
(1.00 x 107 tetrahedra) with comparable quality and fidelity to ours (see Section 3.5
for a more thorough comparison case study). Thus, compared to CGAL, the speedup
we achieve on 144 cores is 751.25.

Observe, however, that our performance deteriorates beyond this core count. We
claim that the main reason of this degradation is not the overhead cycles spent on
rollbacks, contention lists. and begging lists (see Section 3.3.5), but the congested
network responsible for the communication. Below, we support our claim.

First of all. notice that the total overhead timme per thread increases. Since this
is a weak scaling case study. the best that can happen is a constant number of
overhead seconds per thread. But this is not happening. The reason is that in
the beginning of refinement, the mesh is practically empty: only the six tetrahedra
needed to fill the virtual box are present (see Figure 3.1). Therefore, during the
early stages of refinement. the problem does not behave as a weak scaling case study.
but as a strong scaling one: more threads. but in fact the same size. which renders
our application a very challenging problem. See Figure 3.6 for an illustration of the
176-core experiment of Table 3.4a. X-axis shows the wall-time clock of the execution.

The Y-axis shiows the total number of seconds that threads have spent on useless
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umulative contention overhead by all threads

umulative load balance overhead by all threads
umulative roliback overhead by all threads

=~ 73% .
efficiency ~ 100% efficiency. : = 91% efficien
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during execution (secs)

Cumulative overhead by all threads
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Execution Time (secs)

Figure 3.6: Overhead time breakdown with respect to the wall time for the experiment on 176
cores of Table 3.4a. A pair (x. y) tells us that up to the x'" second of execution, threads have not
been doing useful work so far for y seconds all together.

computation (i.e., rollback, contention, and load balance overhead, see Section 3.3.5)
so far, cumulatively. The more straight the lines are, the more useful work the threads
perform. Rapidly growing lines imply lack of parallelismm and intense contention.
Observe that in the first 14 seconds of refinement (Phase,), there is high contention
and severe load imbalance. Nevertheless, even in this case, %%%@ =~ 73% of the
time, all 176 threads were doing useful work, i.c., the threads were working on their
full capacity.

However. this overhead time increase cannot explain the performance deterioration.
See for example the numbers on 176 threads of Table 3.4a. 176 threads run for
181.10s each. and. on average, they do useless work for 10.55s each. In other words, if
there were no rollbacks, no contention list overhead. and no load balancing overhead,
the execution time would have to be 181.10s-10.55s =170.53s. 170.35s. however,
is far from the ideal 90.37s (that the first column with 1 thread shows) by 170.55s-
90.37 80.18s. Therefore. while rollbacks. contention management. and load balancing

introduce a merely 10.55s overhead. the real hottleneck is the 80.18s overhead spent on
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memory (often remote) loads/stores. Indeed, since the problem size increases linearly
with respect to the number of threads, either the communication traflic per network
switch increases across runs, or it goes through a higher number of hops (each of
which adds a 2,000 cycle latency penalty [4]). or both. It seems that after 144 cores.
this pressure on the switches slows performance down. A hybrid approach [46] able
to scale for larger network hierarchies is left for future work.

Table 3.5: Hyper-threaded execution of the case study shown in Table 3.4a. The columns of the

Speedup, TLB misses, LLC misses, and Resource stall cycles reported here are relative to the non
hyper-threaded execution of Table 3.4a on the same number of cores.

= Cores
2 Hhreads pee sore! 1 16 i 32 64 128 | 144 60 | 176
 Elements TOTE 07 | 1.72E - 08 | 3.40E-08 | 7.4k 08 | 1.33E-09 1.51E 09 T.6E-09 | 1.85E - 09
Time (secs) 38.03 53.08 6157 G728 710.36 TRt 136,72 18083
E“‘:’(’::::l""r L8IE 05 | B08E-06 | 367E-06 | LIIE 07 | 548E-06 | 441E-06 | 3.83E 06 | 3.85E. 06
Spoedup 156 113 142 1.47 0.39 030 0.31 038
Overhead secs 116 255 3.64 155 39.60 11.18 91.85 143.37
per thread
TLB misses
increase per -13.20% -16.79% S18.21% -16.63% -22.68% S98.87Y -34.38% 3449
thread 1
LLC niisses T T
increase per 81.72% -39.72% -34L81% -16.63% S6T.TIU -38.014 ST2984 -G308%
theead
Resource stall
cveles increase -16.73% 5024 AT 94 4812 -38.38% 3TA8% 19 14% 4326
per thread

3.4.3.1 Hyper-threading

Table 3.5 shows the performance achieved by the hyper-threaded version of our code.
For this case study, we used the same input and parameters as the ones used in the
experiment shown in Table 3.4a. The only difference is that now there are twice as
many threads as there were in Table 3.4a.

Since the hardware threads share the TLB, the cache hierarchy, and the pipeline,
we report the impact of hyper-threading on TLB misses. Last Level Cache (LLC)
misses, and Resource stall eveles. Specifically. we report the increase of those counters
relativelv to the non hyper-threaded experiment of Table 3.4a. The reported Speedup
is also relative to the non hyper-threaded experiment.

The last three rows of Table 3.5 suggest that the hyper-threaded version utilized

the core resources more efficiently. Surprisingly enough. the TLB and LLC misses
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actually decrease (notice the negative sign in front of the percentages) when two
hardware threads are launched per core. Also, as expected, the pipeline in the hyper-
threaded version is busier executing micro-ops, as the decrease of resource stall cycles
suggest.

Although hyper-threading achieves a better utilization of the TLB, LLC, and
pipeline, there is a considerable slowdown after 64 cores (i.e., 128 hardware threads).
Observe that hyper-threading expedited the execution for up to 64 cores. Indeed, the
hyper-threaded version is 47% faster on 64 cores compared to the non hyper-threaded
version. Beyond this point, however, there is a considerable slowdown. This slowdown
cannot be explained by merely the increase in the number of overhead seconds.

See for example the overhead secs per thread on 176 cores in Table 3.5. It is indeed
13 times higher than its non hyper-threaded counterpart; this is, however, expected
because the size of the problem is the same but now we use twice as many hardware
threads as before. If we subtract the overhead time of the hyper-threaded version on
176 cores, we get that for 480.83s — 143.37s = 337.46s, all hardware threads were
doing useful work. But this is still way longer than the 181.10s — 10.55s = 170.55s
useful seconds of the non hyper-threaded execution (see Table 3.4a).

We attribute this behavior to the increased communication traffic caused not by
the increased problem size (as was mostly the case in the non hyper-threaded ver-
sion), but by the increased number of “senders” and “receivers”. That is, even though
the problem size is the same, the hyper-threaded version utilizes more threads. This
means that at a given moment, there will be more packages (originated by the more
than before threads) in the switches waiting to be routed than before. This phe-
nomenon increases the communication latency. It seems that the network cannot
handle this pressure for more than 64 cores, or equivalently, 128 hardware threads.
Note that this agrees with the fact that in the non hyper-threaded version, the slow-

down occurred on more than 128 cores, which is again 128 threads (see Table 3.4).



3.5 Single-threaded evaluation

Although PI2M introduces extra overhead due to locking, synchronization, contention
management bookkeeping (see Section 3.3), and hierarchical load balance (see Sec-
tion 3.4.1), in this Section we show that the single-threaded performance of our
method (PI2M) is better than the performance of CGAL [6] and TetGen [121], the
state-of-the-art sequential open source mesh generation tools. Moreover, PI2M has
comparable quality with CGAL and much better quality than TetGen. PI2M, CGAL,
and TetGen are very robust Delaunay methods, since they all use exact predicates.
Specifically, PI2M adopts the exact predicates as implemented in CGAL |6, 54].

It should be mentioned that although CGAL is able to operate directly on seg-
mented multi-tissue images (i.e., it is an Isosurface-based method), TetGen is a PLC-
based method (see Section 1.1). That is, TetGen’s inputs are triangulated domains
that separate the different tissues. For this reason, we pass to TetGen the triangulated
iso-surfaces as recovered by our method, and then let TetGen to fill the underlying
volume.

We ran PI2M, CGAL, and TetGen on two different multi-tissue 3D input images
obtained from Brigham & Women's Hospital Surgical Planning Laboratory (http:
//www.spl.harvard.edu/). The first is the MR knee-atlas [112] used in the previous
Section and the second is a CT head-neck atlas [80]. Information about these two
inputs is displayed in Table 3.3. The resulting output meshes generated by our method
PI2M are illustrated in Figure 3.7. We should emphasize that we do not perform any
smoothing as a post-processing step, since smoothing tends to deteriorate quality. In
fact, in our previous work |61, 66|, we show that quality is of great importance in the
speed and accuracy of certain applications, such as non-rigid brain registration, and it
should not be compromised. Nevertheless, mesh boundary smoothing is desirable for
CFD simulations. such as respiratory airway modeling [57.87,88|. The extension of
our framework to support the computationally expensive step of volume-conserving
smoothing [87] and scale invariance [88] in parallel is left for future work.

For fair comparison, we also show the resulting output meshes generated hy CGAL

and TetGen in Figure 3.8 and Figure 3.9. respectively. A close investigation of the
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meshes generated by TetGen (Figure 3.9) reveals that there are fewer labels than
the labels recovered by PI2M and CGAL. In other words, the labels of TetGen do
not correspond to the same labels of PI2M or CGAL. This is attributable to the
way TetGen groups elements together [121] for visualization purposes. As mentioned
earlier, the input PLC for TetGen is the set of the triangulated isosurfaces as recovered
by PI2M. This PLC divides the domain into the subdomains that constitute the
different tissues. In order for the elements of a subdomain A to be colored by a
different label than the elements of a subdomain B, the user needs to specifv two
seed points py and pg, such that pu lies strictly in the interior of A and pg lies
strictly in the interior of B. A straightforward (perhaps not the best) way to compute
these seeds is to traverse the input image and to assign a seed point per tissue. The
unfortunate discrepancy with such an approach is that seeds might not lie in the
intended PLC subdomains, simply because the recovered isosurfaces (that form the
PLC) represent the actual tissue geometry within a tolerance (see Theorem 3.1). This
problem affects only the visualization of TetGen meshes and it becomes more acute
in our case, because there are many tissues that have very little volume, a reality
that renders the computation of the appropriate seed points less accurate and robust
in general. This fact alters the coloring of the TetGen meshes and this is the reason
TetGen coloring does not completely agree with the coloring of the meshes generated
by PI2M and CGAL.

Table 3.6: Statistics regarding the single-threaded performance and the quality /fidelity achieved
by PI2M and CGAL. PI2M includes the extra overhead introduced by synchronization. contention
management, and load balancing to support the (potential) presence of other threads.

knee atlas head-neck atlas
PI2M CGAL TetGen PI2M CGAL TetGen

stetrahedra  seconds 67.609 10.069 0%.658 96. 161 29077 61.903
time 6.5 sees 10,9 seces 4.4 sees 10.3 nees 341 sees 16.0 ~ecs

s tetrahedra 139,158 136.7 19 131,095 993.583 991.509 99(.1 16

miax radius-edge ratio 2 .1 186 2 [ 93.1

smallest boundary planar angle 17.4¢ 2167 1R.0° 15.8° 2.4° 1537

{uiin. max) dihedral angles (4.6, 170.17) | (25,1763 ) | (2.9 173.00 ) (4570 170.27) | (L1, 1739 ) | (0.4, 172.07)
Hausdorff distance 1.7 num 10.3 nun - 15.3 mm 15.2 mm -

Table 3.6 shows timings and quality statistics for PI2M, CGAL. and TetGen. We
used CRTC (see Table 3.2 for its specifications) for this case studyv. The timings

reported account for evervthing but for disk IO operations. The execution time
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reported for PI2M incorporates the 1.9 seconds and 1.2 seconds time interval needed
for the computation of the Euclidean distance transform (see Section 3.1) for the knee
atlas and the head-neck atlas, respectively.

We set the sizing parameters of CGAL and TetGen to values that produced meshes
of similar size to ours, since generally, meshes with more elements exhibit better
quality and fidelity. We access the achieved quality of these methods in terms of
radius-edge ratio and dihedral angles. Those metrics are of great important to us,
because they are shown to improve the speed and robustness of medical application
solvers dealing with isotropic materials [37,61,66,71,119]. Ideally, the radius-edge
ratio should be low, the minimum dihedral angle should be large, and the maximum
dihedral angle should be low. We also report the smallest boundary planar angles.
This measures the quality of the mesh boundary. Large smallest boundary planar
angles imply better boundary quality.

PI2M, CGAL, and TetGen allow users to specify the target radius-edge ratio.
Apart from TetGen, these methods also allow users to specify the target bound-
ary planar angles. We set the corresponding parameters accordingly, so that the
maximum radius-edge ratio is 2 (for PI2M, CGAL, and TetGen), and the smallest
boundary planar angle is more than 30° (for PI2M and CGAL only, since TetGen
does not give this parameter).

Fidelity measures how well the mesh boundary represents the iso-surfaces. We
access the fidelity achieved by these methods in terms of the symmetric (double-
sided) Hausdorff distance. A low Hausdorft distance implies a good representation.
Notice that we do not report the Hausdorff distance for TetGen, since the triangular
mesh that represents the iso-surfaces is given to it as an input. For the input iinages
we used for Table 3.6, the Hausdorff distances achieved by both PI2M and CGAL are
far from ideal. This happens because the values chosen for the sizing parameters at
this comparison did not recover isolated clusters of voxels which seem to be artifacts of
the segmentation anyway. Nevertheless, Theorem 3.1 guarantees (both in theory and
in practice) that if the sample is very dense, then the Hasdorff distance approaches
to zero. The goal of this Section is not to generate meshes of high fidelity. but to

demoustrate the effectiveness of PI2M by comparing P12\ with the state of the art
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open source meshers.

We access the speed of the methods above by comparing the rate of generated
tetrahedra per second. Note that since our method not only inserts but also removes
points from the mesh (thus reducing the number of mesh elements), a perhaps fairer
way to access speed is to compare the rate of performed operations per second. Nev-
ertheless, we do not report this metric for two reasons. First, a high rate of operations
does not always imply a high rate of generated tetrahedra. The later, however, is the
only thing that matters, since comparing the quality /fidelity achieved by meshes of
very different mesh sizes makes no sense. Second, the number of removals performed
by PI2M accounts for only 2% over the total number of operations. Thus, the rate
of generated tetrahedra is very close the rate of operations per second; indeed, we
experimentally found out that those two rates are practically the same.

Observe that the PI2M and CGAL generate meshes of similar dihedral angles,
and fidelity, but our method is much faster. Indeed, the rate of the single-threaded
PI2M is 68.7% higher than CGAL on the knee atlas and more than 3 times higher on
the head-neck atlas. Also note that both PI2M and CGAL prove that the smallest
boundary planar angles are more than 30° and that radius-edge ratio is less than
2 |62]. Due to numerical errors, however, these bounds might be smaller in practice
than what theory suggests. Nevertheless, observe that PI2M yields much better
boundary planar angles and radius-edge ratio than CGAL on the head-neck atlas.

TetGen is faster than PI2M only on the knee atlas by a couple of seconds. For
larger meshes (as is the case with the head-neck atlas), TetGen is slower. Indeed, for
small meshes, the computation of the Euclidean Distance Transform (EDT) accounts
for a considerable percentage over the total execution time, a fact that slows down
the overall execution time by a lot. For example. the actual meshing time on the
knee atlas was just 4.6 secs. very close to TetGen’s time and rate. Another notable
observation is that our method generates meshes with much better dihedral angles
and radius-edge ratio than TetGen. The achieved boundary planar angles are similar
simplyv because the PLC that is given to TetGen was in fact the triangular boundary

mesh of P12\
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(a) The 139,158 element mesh generated for the MR knee atlas.

$

(b) The 993.583 clement mesh gencrated for the CT head-neck atlas.

Figure 3.7: Output meshes generated by PI2M on the MR knee atlas and on the CT head-neck
atlas.



&

) The 436,719 element mesh generated for the MR knee atlas.

$1?

(b) The 991,509 element mesh generated for the CT head-neck atlas.

Figure 3.8: Output meshes generated by CGAL on the MR knee atlas and on the CT head-neck
atlas.
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} The 134,095 element mesh generated for the MR knee atlas.

. 3

(b) The 990.116 element mesh generated for the CT head-neck atlas.

Figure 3.9: Output meshes generated by TetGen on the MR knee atlas and on the CT head-neck
atlas.
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Chapter 4

4D Space-Time Delaunay Meshing for
Medical Images

In this chapter, we present a Delaunay refinement algorithm for 4-dimensional (3D~ t)
segmented images. The output mesh is proved to consist of sliver-free simplices.
Assuming that the hyper-surface is a closed smooth manifold, we also guarantee
faithful geometric and topological approximation. We implement and demonstrate

the effectiveness of our method on publicly available segmented cardiac images.
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4.1 Preliminaries

The input of our algorithm is a segmented n dimensional image Z C R". The object
2 C 7 is assumed to be represented as a cut function f : R" — R, such that its
surface JQ is defined by the set {f(p) = 0} [89.109]. Clearly, from a segmented
image, the zero-surface {f(p) = 0} can be easily computed by interpolating the voxel
values.

We assume that given a point p € R*, we can ask for p’s closest point on 9¢2. This
can be accomplished by an Euclidean Distance Transform (EDT) [52,97|. Specifically,
the EDT returns the voxel p’ € 9Q which is closest to p. Then, we traverse the ray
pp’ and we compute the intersection between the ray and 92 by interpolating the
positions of different signs [96]. Points on 9€) are referred to as feature points.

The local feature size lfsaq, (x) of a point x € I is defined as the (closest) distance
between x and the medial axis of 9€2. Since 9Q is smooth, the local feature size
is bounded from below by a positive constant Ifspg, that is, fspg (z) > lsgy > 0.

Another useful property is that the local feature size is 1-Lipschitz, that is,
Ifsa (p) < |p — q] + Ufsoq () - (4.1)

A point set V C 9€Q is called an e-sample, if for every point p € JQ there is a point
v € V at a distance at most ¢ - Ifsyq, (p) from p [10].

Let V be a finite set of vertices V. = {wvy,...,on} C R*. The Delaunay trian-
gulation of V is denoted by D (V). A k-simplex o = {v1,...,v6:1} € D(V) is a
simplex defined by & 4+ 1 vertices. We denote the length of the shortest edge of a
simplex o with i, (0). The circumball B, of a simplex o is the smallest closed ball
circumscribing o's vertices. R, is the circumradius length of the simplex and ¢ (o) is
its circumcenter. The radius-edge ratio of a simplex o is defined as p (o) = T.fl(?)

The voronoi cell Vor (v) of a vertex v € V' is the set Vor(v) = {p € R" |
[v —p| < lqg—pl|l.Yg € V}. The voronoi dual of a simplex o € D (V) is defined as the
set Vor (o) = {Vor (v;) N Vor (v;) | Vu,v; € o}

The restriction of D (V) to a topological space X is denoted by Djgo (X) V.

Dy (X)V is a sumplicial complex (as is D (V) that contains simplices of D (V)
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Figure 4.1: A 2D illustration. The simplex ¢ = {v, w} and its surface ball B, . i is the midpoint
of o. Observe that since the radius R, , of B, , is larger than the radius R, = |m — v| of B,, the
picking region of o as defined here is larger than the picking region of [90].

whose voronoi dual intersects X' in a non-empty set. Consider a k simplex ¢ and let
Vor (o) intersect X’ at a point z. Any ball centered at z circumscribing o is called a
surface ball [28|. The corresponding surface ball is denoted by B, , and its radius by
R. ., in the sequel. By the definition of Voronoi diagrams, B, , does not contain any
vertex of V in its interior.
Following the definition of [90], the metric we use to characterize the quality of a
Vol,

simplex oy is 7, = l—(—;Lk Low values of 7 imply a poor-quality element.
minlTk

Definition 4.1 (Sliver [90]) Simplezx o is a sliver if it contains a k-simplex o, (k <
4) such that p (ox) < P, T, < 7, and for any m-simplezx o, of o (m < k), p(om) < 7,
> 7.

Taln

The picking region PR (04) of a d-simplex oy is defined as the 4-dimensional solid
ball centered at ¢({oy) with radius (R,,. ¢ < 1. Consider a restricted k-siinplex oy
and its surface ball B, , k < 4. Its picking region PR (o) is the intersection between
0fY and the 4-dimensional solid ball centered at z with radius (R.,. { < 1. Note that
PR (04) and PR (ok) are contained in B, and B, ,. respectively. Observe that the
picking region of o, (k < 4) is a topological k-ball and does not belong (necessarily)
in the affine & dimensional space defined by o,. This is different than the definition
in [90]. where the picking regions are defined inside the intersection of B, with the

affine space of . The reason for this change is the fact that the input of our algoritlun
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is not a Piecewise Linear Complex (PLC) but a cut function.

A good point p € PR (o) is a point that does not introduce smaller slivers. A
sliver is small when its radius is less than bR,,. In [90]. it is proved that (a) the number
of small slivers S(o) possibly created after the insertion of p is constant, and (b) the
volume |F,| (the forbidden region) inside which p forms a small sliver is bounded
from above. The same findings hold in our case too, where the picking region of a
restricted facet o3 is not inside the intersection of B,, and o3’s affine space, but inside

the intersection of B, ,, and 0.

Lemma 4.1 Given an almost-good mesh, a point p inside the picking region of a oy
can be found in a constant number of random rounds, such that any new sliver created

after the insertion of p has circumradius no smaller than bR, if k = 4, or no smaller

than bR, f k = 3.

Remark 4.1 The proof is similar to [90], since |F,| and S(r) do not change and the
volume of the intersection of B,, and o3’s affine space is smaller than the intersection

of B, 5, and 0. See Figure 4.1 for an illustration.

4.2 Algorithm

The user specifies a parameter 0. It will be clear in Section 4.4 that the lower 4 is, the
better the mesh boundary will approximate 9€2. For brevity, the quantity ¢ - lfssg (2)
is denoted by Ay (z), where z is a feature point.

Our algorithm initially inserts the 16 corners of a hyper-box that contains the 4
dimensional object €2, such that the distance between a box corner x and its closest
feature point z = cfpy, () is at least 2A5q (z). After the computation of this initial
triangulation, the refinement starts dictating which extra points are inserted. At any
time, the Delaunay triangulation D (V') of the current vertices V' is maintained. Note
that by construction, D (V') always covers the entire hyper-volume and that any point
on the box is separated from 9Q by a distance at least 20y, (z). where z is a feature

point.
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During the refinement, some vertices are inserted exactly on the box: these vertices
are called box vertices. The box vertices might lie on 1, 2, or 3-dimensional box faces.
We shall refer to the vertices that are neither box vertices nor feature vertices as free
vertices.

The algorithm inserts new vertices for three reasons: to guarantee that (a) 9¢) is
correctly recovered, (b) all the elements have small radius-edge ratio, and (c) there
are no slivers. Specifically, for a 4-simplex ¢4 in the mesh, the following rules are

checked in this order:

e R1: Let B,, intersect 92 and z be equal to cfpy, (c(04)). If z is at a distance

no closer than Ay (2) to any other feature vertex, then z is inserted.

e R2: Let B,, intersect 0§2 and 2z be equal to cfpy, (c(04)). If Ry > 2050 (2),

c(oy4) is inserted.
e R3: Let c(oy4) lie inside Q. If p(04) > p, c(0y) is inserted.

o R4: Let c(o04) lie inside Q. If o4 contains a sliver, a good point inside PR (o4)

is inserted.

e R5: Let o3 (03 C 04) be a restricted facet. If the vertices of o3 are not feature
vertices, then a good point z inside PR (o3) is inserted. All the free vertices

closer than Apq (z) to z are deleted.

For i < j, priority is given to Ri over Rj. That is, right before the insertion of a
point because of Rj, there is no element that violates a rule Ri. Also, in R4, priority
is given to the lower dimensional slivers that o4 might contain.

Whenever there is no simplex for which R1, R2, R3, or R4 apply. the refinement
process terminates. The final mesh reported is the set of pentatopes whose circum-
centers lie inside §Q.

In a nutshell. R1 and R2 is responsible for generating a sufficiently dense sample
on J92. R5 makes sure that the vertices of the simplices restricted to 99 lie on 90
similarly to |109]. Lastly, R3 and R4 deal with the quality guarantees. In Section 4.3.

we will show that there are values for b. (. and g that do not compromise termination.
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To prove termination, no vertices should be inserted outside the bounding box.
Notice, however, that vertices inserted due to R2 may lie outside the bounding box.
To deal with such cases, c(o4) is rejected for insertion. Instead, its projection ¢ (o4)
on the box is inserted in the triangulation. That is, ¢’ (04) is the closest to ¢ (o4) box
point. In Section 4.3 and Section 4.4, we prove that the insertion of projected points
do not compromise either quality or fidelity. Note that these projections are different
than the traditional encroachment rules described in [117,118].

Recall that pentatopes with circumcenters on 9€2 or outside €2 are not part of the

final mesh, and that is why rule R3 and R4 do not check them.

4.3 Termination and Quality

In this section, we will specify the appropriate values for ¢, p, and b, so that the
algorithim terminates. Specifically, we will show during refinement the shortest edge
introduced into the mesh cannot be arbitrarily small.

Suppose that o violates a rule Ri. o is called an R element. Ri dictates the
insertion of a point p (and possibly the removal of free points). Point p is called an
Ri point. According to [117,118|, the insertion radius R, of p is defined as the length
of the shortest edge incident to p created right after the end of Ri and the parent

Par(p) of p as the most recently inserted vertex incident to the shortest edge of o.

Lemma 4.2 Let p and q define the shortest edge of a stmplex o and q being inserted

after p. Then Ry < lyin (0).

Proof: Assume that right after the insertion of ¢. p is the closest point to ¢. In this
case, R, = |p — ¢| = lmin (). Otherwise. there has to be another closest vertex to g,

which implies that R, < |p — ¢| = I, (o). |

The following Lemma bounds from below the shortest edge introduced into the

mesh after the insertion of a box vertex:

Lemma 4.3 Let v be a box vertex inserted into the mesh. Then, R, > 20y (2).

where z is a feature poinl.



Figure 4.2: Proof of Lemma 4.3, a 3D illustration.

Proof: A box point v is inserted only because of R2 The circumcenter c (o) of a
pentatope o lies on or outside the box and its projection ¢ (0) = v falls on the box.
Without loss of generality, assume that the projection lies on the interior of a 3-face
(i.e. a box tetrahedron) F. See Figure 4.2 for a 3D illustration. (If ¢ (o) lies precisely
on the box, ¢/ (o) is equal to v.) Consider the (2D) disk (drawn) of B, which is
coplanar with F. That disk contains v and separates B, in two sides: the side that
contains ¢ (o) and the side that contains a part of the box.

We claim that the closest vertex —-say w—- to v lies on the intersection of B,’s
boundary and the ray CT—')”Z‘ To see why, note that B, is empty of vertices, and
therefore, the closest to v that an arbitrary vertex w’ already in the triangulation can
be is when it lies on the boundary of B, and on the side of B, that contains a part
of the box, as shown. Consider the triangle Aw’ve(o). From the law of cosines, we
have that:
? lc(0) —w'|? + |e (o) — v|* = 2]c (o) = w'||e(0) — v|cosw

(
lc(0) = w2+ e (o) —vf* = 2]c(0) — w'| |c(s) = v|. since cosw < 1

2
(lc(0) — /| ~ le (o) — o)
(R, — |2C (o) — v|)*. since w' lies on the sphere
lv —w

lv — w'

v

i

I

L]

and our claim is proved.
Therefore. anv possible new edge connected to v has length at least |v — w|. Since,
however. o triggers R2. B, has to intersect 9€2. Therefore. there has to be a feature

point g € 09 (illustrated) inside B, and on the same side of F as w. Let us denote
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with ¢', the projection of ¢ to the box face F. By construction, |¢ — ¢’| is at least
2050 (z), where z is a feature point. Observe, however, that |v — w]| is always larger
than |g — ¢'|, because vw || g¢’, and the statement holds. Similar reasoning applies in

the case where ¢/ (o) lies on a box triangle or a box edge. [

The following Lemma proves a lower bound on the lengths created into the mesh

because of R1 and R2:

Lemma 4.4 Let p be a vertex inserted into the mesh because of R1 or R2. Then,

R, > Apq (2), where z is the closest feature point to p.

Proof: If Rl is triggered, then p is equal to z and since there is no other feature
point already inserted in the mesh closer than Qs (p) to p, the statement holds.
Otherwise, R2 applies for a simplex o4 and p is equal to c{o4). Due to the empty

ball property, R, is at least Ry, > 204 (cfpsg, (p)), and the statement holds. [ ]

Lemma 4.5 Let p be a verter inserted into the mesh because R3 applies for an ele-

ment 0. Then, R, > pRpr(p)-

Proof: Since p is equal to ¢(0), R, > R, = p(0)lmin (0) > plmin (o). Lemma 4.2
suggests that lyin (7) > Rpar(p), and the results follows. |

Lemma 4.6 Let p be inserted into the mesh because of R4. Then,
o R, > 1—;§Rpar(p), iof Par(p) is neither R4 nor R5,
o R, > bRperp). otherwise.

Proof: Let o be the simmplex that violates R4.
Suppose that Par(p) is neither R4 nor R5. Since p belongs to the picking region
ofo, R, > (1-Q)R, > %lmm (o). From Lemma 4.2, we have that R, > I'Q;CRpar(p).
Otherwise. consider the case Par(p) is an R4 point. From Lemma 4.1, we know
that the circumradius of o is more than b times the circumradius of the R4 simplex
/

o’ that inserted Par(p). Therefore. R, > (1 — ()R, > (1 — ()bR,. However, the

quantity (1 — ()R, is equal to Rpgpp). and the statement holds.
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Figure 4.3: Flow diagram depicting the relationship among the rules. No solid eycle should have
a product less than 1. The dashed arrows break the cycle.

The exact same logic holds when Par(p) is an R5 point, by just substituting R, .

for R,., where ¢’ is an RS simplex. [

Lemma 4.7 Let p be inserted into the mesh because of R5. Then,
o %Rpar(p), if Par(p) is not an RS point,
o Ay (z), otherwise.

Proof: Let o3 be the simplex that violates R4.

Suppose that Par(p) is not an RS point. Because of Lemma 4.2, the shortest edge
of o3 is at least Rparp). Therefore, any surface ball of o3 has radius at least %Rpar(p).
Since the surface ball does not contain any vertex in its interior, R, > l—gngar(p).

Suppose that Par(p) is an R3 point. Note that when Par(p) is inserted, all the free
vertices closer than Agg (Par(p)) to Par(p) are deleted. Due to R5, o3 contains at
least one free vertex. Since Par(p) is the most recently inserted vertex incident to the

closest edge of oy, the edge that contains Par(p) and the free vertex has to be at least
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Apg (Par(p)). Therefore, any surface ball of o3 has radius at least $Asq (Par(p)).
Hence. R, > L;—QAasz (Par(p)). "

Putting all the Lemmas together, the solid arrows of Figure 4.3 show the insertion
radius of the inserted point as a fraction of the insertion radius of its parent. An
arrow from Ri to Rj with label z implies that the insertion radius of an Rj point
p is at least x times larger than the insertion radius of its Ri parent Par(p). The
label z of the dashed arrows is the absolute value of R,. Note that the labels of the
dashed arrows depend on the local feature size of 9€2, and as such are always positive
constants.

Recall that during refinement, free vertices might be deleted (because of R5).
Nevertheless, such deletions of vertices are always preceded by insertion of feature
points. Considering the fact that feature vertices are never deleted from the mesh,
termination is guaranteed if we prove that the insertion radii of the inserted vertices
cannot decrease indefinitely. Clearly, [90,117,118], if there is no solid cycle of product

less than 1, termination is guaranteed.

Theorem 4.1 The algorithm terminates producing simplices of bounded aspect ratio,

Proof: See Figure 4.3. The smallest product is produced by the solid cycles
R3—R4—-R5—R3 and R4—-R5-+R4. By requiring the label product of these loops

to be more than 1. the desired result follows. [ ]

4.4 Accuracy

In this section. we prove that the mesh boundary is equal to the restriction of a 92
sample A to J€2. In the literature. it is proved that these tetrahedra approximate the

surface correctly. in geometric and topological sense [9.27.35].
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Figure 4.4: Proof of Lemma 4.8.

First, we show that § directly controls the density of the feature vertices. Let V

be the set of vertices in the final mesh and A be equal to V N Of).
Lemma 4.8 Let § < ;. Then A is a 12 -sample of Q.

Proof: Recall that upon termination, there is no tetrahedron for which R1, R2, R3,
R4, or RS apply.

See Figure 4.4. Let p be an arbitrary point on 9. Since D (V') covers all the
domain, point p has to lie on or inside the circumsphere of a pentatope o (not shown).
Hence, B, intersects 0S2. Let point p’ be the feature point closest to ¢ (o). Note that
lc(o) —p| > |e(o) — /| and therefore p’ lies on or inside o's circumsphere. We also
know that ¢'s circumradius has to be less than 2Ayq (p'), since otherwise R2 would
apply for ¢. Therefore, we have the following:

lp—p| < 2R because both p and p lie on or inside B,)

< 4A:)sz (r') because of R2) N
< 40 (Jp — p'| + soqn (p))  (from Inequality (4.1)),

and by reordering the terms, we obtain that:

40
1—-446

1
p—7p| < fsaq (p) . with 6 < 1 (4.2)

Moreover, there must exist a feature vertex v in the triangulation closer than

Aga (p') = 0 - lspa (P') to p'. since otherwise R1 would apply for o. Hence. |v — p'| <
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0 - Ifsag (p'), and using Inequality (4.1), we have that:

lv —p'| < d(lp — P'| + fsaq (p)) (4.3)

Applying the triangle inequality for Apvp’ vields the following:

lp—vl < |=pp|+lv—p| ,
< |p=P|+d(lp—p|+ssa(p))  (from Inequality (4.3))
= |p=p|(1+0)+0-Issq (p)
< 72lfspq (p) (1 +6) + 6 - ifsaq (p)  (from Inequality (4.2))
= (% + (5) lf83g2 (p)
= 22 1fs9q (p),
and the proof is complete. n

Let us denote with w; one of the n connected components that €0 consists of:
n

Q= Uwi. The next two Lemmas prove a few useful properties for the mesh M
i=1

and its boundary OM. Our goal is to show that OM is always non-empty and does

not have boundary (Lemma 4.10), a fact that will be used for proving the fidelity

guarantees (Theorem 4.2).

Lemma 4.9 Let § < 1. Then, for every w; there is a pentatope o € D (V), such that

c (o) lies inside w;.

Proof: Let us consider a single connected component w;. The same reasoning applies
for any connected component of 2.

For the sake of contradiction, assume that there is no pentatope whose circumcen-
ter lies inside w;. Since the triangulation D (V') covers all the domain, the circumballs
of the pentatopes in D (V) also cover the domain w;. Therefore, there has to be a
circumball B, (o € D (V) which intersects a point m on the medial axis of dw;, such
that mn lies inside w;. By our assumption. the circumcenter ¢ (o) cannot lie inside w;.
Therefore. B, intersects dw;. Also, recall that R2 cannot apply to any pentatope.

Hence. we have the following:

2.8 - Ifsyn (¢fpy (e(o))) > R, (from R2)
> wﬂw (since m and cfpyq (e(0)) do not lie outside By)
> E‘—j—”-(—(izﬂ-‘(—(m {since m is on the medial axis) =
s > 1
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which raises a contradiction. [

Lemma 4.10 Let 6 < % Then, OM is a non-empty set and does not have boundary.

Proof: The fact that OM is a non-empty set follows directly from Lemma 4.9: since
M cannot be empty, its boundary dM cannot be empty too. For the other part,

since OM is the boundary of a set of tetrahedra, it cannot have a boundary.

The following Theorem proves the fidelity guarantees:
Theorem 4.2 The mesh boundary OM is the restriction to 0Q of A =V N O

Proof: Let f be a tetrahedron o3 in &M. As such, Vor (o3) intersects 9€). Due to
RS, the vertices of o3 lie on dQ. Recall that the surface ball B, ,, does not contain
vertices in its interior. Therefore, B, ,, is empty of vertices in V' N 92 also. Without
loss of generality, assume that the vertices in V' are in general position. Since there
is a ball that circumscribes o3 and does not contain vertices of V N d€2 in its interior,
o3 has to appear as a simplex in D (V N d€). Since the center z of the surface ball
lies on 02, then the voronoi dual of o3 intersects 9Q in Dy (002) I NV, as well.
Hence, 9IM C Djgq (0Q) 02N V.

For the other direction, we will prove that dM cannot be a proper subset of
Diaq (02) 02NV, and therefore, equality between these 2 sets is forced. Toward
this direction. we will prove that any proper non-empty subset of Dy, (0Q2) 92NV
has boundary; this is enough, because we have proved in Lemma 4.10 that M is
non-empty and does not have boundary.

Dyaq, (092) 02NV is the restriction of a sample of a closed manifold 9€ and there-
fore it is a 3-manifold without boundary [9]. That means that any 2-simplex in
Dy (98) IQ NV is incident to exactly two 3-simplices of Djgq (992) 92N V. Since
any proper non-empty subset A of Djg (9Q) 02NV has fewer 3-simplices, A con-
tains at least a 2-simplex o5 incident to only one 3-simplex. But this implies that oy

belongs to the boundary of A. and the proof is complete. n
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4.5 Experimental Evaluation

The algorithm is implemented in C—+ +. We employed the Bowyer-Watson kernel {30,
128| for point insertions. The removal of a point p is implemented by computing the
small Delaunay triangulation of the vertices incident to p [55], such that the vertices
inserted earlier in the triangulation are inserted into the small triangulation first. It
can be shown [63] that these new created pentatopes can always be connected back
to the original triangulation without introducing invalid elements. For the Euclidean
Distance Transform, we made use of the related filter implemented in ITK [7| and
described in [97]. Lastly, we borrowed CGAL's [6] exact predicates for the accurate

computation of the 4D in-sphere tests.

Table 4.1: Information about the images of the five patients used in this section. The spacing for
all the images is (1.77,1.77,6, L)mm?*.

Case || Patl | Pat2 | Pat3 | Pat. | Pat5
#Voxels || (100 x 100 x 44 ~ 15) | (100 « 100 » 34 x 15) | (100 x 100 x 26 x 15) | {100 x 100 x 31 x 15} | {100 x 100 > 29 x 15) |

We ran our code on five (segmented) images obtained fromn the 4D Heart Databa-
se [103]. The first three represent the moving left ventricle of the patients, while the
last two the ventricle together with the myocardium for 15 cardiac cycles. Information

about these data is given in Table 4.1.

Table 4.2: Statistics of the output meshes generated for each patient.

Patl Pat2 Pat3 Patd Path
= Pentatopes 49.479 13.673 8.883 63.016 56.528
i Boundary Tetrahedra 30.758 20.089 8.271 36.281 33.308
= Vertices 4.709 +.314 1.362 5.567 3,132
Shortest edge (mm) 3.45 3.87 3.90 3.5 1.63

Radius-edge ratio
Guaximum. average. deviation)
Normalized volunre
{minimum. average. deviation)

(1.93. 1.O2. 0.17) | (1L.78.0.98.0.15) | (1.54. 0.92, 0.10) | (2.20. 1.06. 0.18) | (1.87. 1.05. 0.18)

(0.01. 034, 0.18) | (0.01. 0.38.0.18) | (0.02. 043, 0.17) | (0.01. 0.32.0.17) | (001, 0.33. 0.17)

Recall that our algorithm needs the distance of any point on 9€2 from the medial
axis. The robust computation of the medial axis is a very difficult problem (see [56. 70|
for computing the exact medial axis, [19| for a review of image-based medial axis
methods, and [11] for computing the medial axis given a set of surface points) and
out of the scope of this thesis. Therefore. in the implementation, we assume that

fspa (p) is uniform and equal to the unit. which implies that Ayq (p) becomes equal
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to 0. That is, in practice, ¢ determines a uniform and (if small enough) dense sample
of the surface. We experimentally verified that a o value equal to 5 (the length of
five consecutive voxels along the fourth dimension) yielded manifold mesh boundaries
with vertices lying precisely on the iso-surface in accordance with Theorem 4.2.

The quantity 7, determines the aspect ratio of pentatope o [90], but it is not
normalized, and therefore, it is hard to draw comparative conclusions. For this reason,
for a pentatope o of the final mesh, we report its normalized volume 7, defined as the
ratio of its volume over the volume of a regular pentatope with circumradius equal
to the circumradius of o (or alternatively 7, = 38¥le)  Clearly, 7, € [0, 1], where a

24R3/5
value of 0 implies a degenerate pentatope, while 1 implies a perfect quality.
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Figure 4.5: Normalized volume histogram of the output mesh obtained for the input image Patl.

Table 4.2 shows quantitative data for the mesh generated on each image. We set
the radius of the picking regions equal to ¢ = —;— Theorem 4.1 suggests that g be at
least 16 and b at least 4. We experimentally observed that by selecting 4 to 10 random
points within the picking regions (both the 4- and the 3-topological balls), no small
element o was created with 7, less than 0.01. Despite the fact a value of 0.01 is rather
small, it is three orders of magnitude larger than the minimum normalized volume
reported in the case where no picking regions are emploved at all. Also. notice that
the average normalized volume is much higher than the minimum value. This fact
together with the observed small standard deviation implies that most pentatopes
have normalized volume away from the minimum value and very close to the average.
Figure 4.5 shows the histogram of the normalized volumes for the first experiment

of Table 4.2, that is. when the input image Patl was used. Similar histograms are
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observed for all the other inputs as well.

4.6 Real-Time 4D Meshing

During the development of the 4D Delaunay refinement code, we realized that its per-
formance behaves very differently than the performance of the 3D code we developed
and described in Chapter 2 and Chapter 3. This is due to mainly two reasons: (a) the
storage requirements and computations involved in a point insertion or removal are
higher because of the increased dimensionality, and (b) the 4D CGAL predicates we
employed to enforce robustness are not as well optimized as their 3D counterparts.
Indeed, the achieved rate of meshing a 4D hyper-sphere with 40,000 elements is 145
pentatopes per second, while the achieved rate of meshing the hypersphere’s equator
with the same number of elements is 107,037 tetrahedra per second.

In this Section, we improve the speed of our 4D code by optimizing its complexity
and by parallelizing the whole process. Since point removals account for approxi-
mately less than 1% of the total number of operations in all the cases we investigated,

we focus on 4D Delaunay point insertions.

4.6.1 Complexity
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Figure 4.6: The complexity of the 4D code (a) before, and (b) after the Rule reordering.
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Ignoring the time involved for locating the first element in a point’s cavity, the
optimal complexity of a Delaunay insertion is constant. Therefore, inserting n points
costs }(n) time. Although the 3D code reaches the optimal complexity in all the
case studies we experimented on, its 4D counterpart behaves very differently. Indeed,
Figure 4.6a shows the number of deleted and created elements involved so far with
respect to the number of inserted points on the 4D hyper-sphere. If the complexity
was optimal, then the curve should look like a straight line. We observe, however, that
the complexity is far from ideal after the insertion of approximately 2,500 points. We
obtained similar results when we ran our code on other inputs, such as hyper-torus
and the five 4D hearts of Section 4.5.

Nevertheless, it can be proved [99] that it is possible to reach the optimal com-
plexity if, at any given moment of refinement, the radius-edge ratio is bounded from
above. In fact, this technique has already been applied successfully in the litera-
ture [77]. Therefore, we reordered the Rules of our algorithm (see Section 4.2), such
that rule R3 has the highest priority among all the rest of the Rules. In this way, the
mesh is always of bounded radius-edge ratio and as such, the expected complexity
should be close to the optimal. Indeed, Figure 4.6b shows that the complexity curve
behaves linearly. This improvement boosted the performance of the 4D code by 27%
on the hyper-sphere mentioned above, bringing the rate of 145 pentatopes per second

up to 184 for the 40,000 element mesh generated.

4.6.2 Parallelization

In this Subsection, we parallelize the 4D algorithin to take advantage of the multi-core
and many-core platforms already available in the market. To our knowledge, this is
the first attempt to parallelize the mesh generation and refinement of 4D space-time
domains.

We emploved a tightly-coupled approach similar to the concept of the 3D PI2\].
That is. before a thread applies any change, it has to lock all the associated vertices.
An attempt to lock an already acquired vertex results in a rollback. The avoidance

of livelocks is achieved via the Local-CM presented in detail in Section 3.3, since it
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was shown to be the most effective way to eliminate livelocks, even in the presence of
very little parallelism.

We deactivated the picking region technique described in detail in the previous
Sections of this Chapter, because we wanted to perform a 1-to-1 comparison with
the 3D code and investigate which parallelization techniques that were applied suc-
cessfully in 3D benefit the parallelization of the 4D problem as well. Keeping the
picking regions would imply more than one rounds per insertion causing a consider-
able increase in the number of rollbacks, a fact not associated to the nature of the

4D problem, but to the technique of eliminating slivers.

Table 4.3: The performance of the parallel 4D method (a) without, and (b) with fine grained
parallelism.

(a)

Threads [ 1 | 6 | 12 |
#Elements 39,696 40,598 39,870
Time (secs) 207.0 131.5 134.0

Elements per second 191.7 308.8 297.6
Speedup 1.00 1.61 1.55
Contention seconds 0.0 92.0 111.2
per thread
Balance seconds per 0.0 1.3 97
thread
Rollback seconds 0.0 1.3 9.4
per thread
Total overhead 0.0 94.7 123.2
seconds per thread
{b)

Threads | 1 | 6 | 12 |
#Elements 39,696 39,632 39.612
Time (secs) 204.9 74.1 72.8

Elements per second 193.8 534.5 544.0
Speedup 1.00 2.76 2.81
Contention seconds 0.0 348 173
per thread
Balance seconds per 0.0 1.5 6.6
thread
Rollback seconds 0.0 15 0.1
per thread
Total overhead 0.0 378 54.0
seconds per thread
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Table 4.3a illustrates the strong scaling performance of the 4D parallel implementa-
tion on the Pat) input 4D heart. It also shows the average total overhead seconds per
thread (last column) and the exact source of the overhead, i.e.. contention, balance,
and rollback overhead, as defined in Section 3.3.5.

Although the same parallelization techniques scaled the 3D counterpart for a core
count higher than 128, we observe that intensive overhead hampers scalability even
on 12 cores in 4D domains. For example, 91% of the total execution time on 12 cores
was spent waiting on contention lists, balance lists, and rollbacks. Interestingly, the
overhead of the 3D counterpart on a slice of the same 4D input was only 69% on
12 cores, when it generated a mesh of approximately the same size. This different
behavior could be attributed to the fact that now the size of the cavity is much larger
in 4D than it is in 3D. Indeed, we computed that the average size of the 4D cavity
(4D Pat5 heart) is about 72.9 pentatopes, while the average size of the 3D cavity
(slice of Patb) is 18.0.

Nevertheless, the fact that most of the time is spent idling on contention and
balance lists gives us the opportunity to perform cavity expansions in parallel. When
a thread is working on inserting a point, it invites idling threads to perforin the
operation in parallel. This parallelization scheme is called fine grained parallelization
and was successfully employed in the past by our group [13].

Table 4.3b shows the fine grained performance of our implementation. Observe
that the overhead seconds were greatly reduced. For example, on 12 cores, the over-
head seconds were reduced by 2.2X, simply because threads help active threads to do
useful work and therefore, they wait on the contention/balance lists much less. As an
immediate result. the fine grained implementation is 1.7X and 1.8X faster on 6 and

12 cores respectively.
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Chapter 5

Conclusions and Future Work

In this work, we presented a 3D Delaunay refinement image-to-mesh conversion algo-
rithm that operates directly on segmented images. It is able to create an appropriate
sample set on the object’s surface, and to mesh the volume and the surface at the
same time. This flexibility (besides the fact that it solves three distinct problems,
that is, sampling, surface recovery, and volume meshing) results in a generally lower
number of vertices than in the case where the surface is meshed without considering
the rules of quality. For instance, the insertion of points that improve the quality
might help the density requirement at the same time.

Apart from the fidelity guarantees we give (namely, that the mesh boundary is a
good geometric and topological approximation of the object’s surface), our algorithm
provably achieves very low radius-edge ratio without sacrificing fidelity. The planar
angles of the boundary facets are also guaranteed to be larger than 30°. Moreover, by
slightly relaxing the quality guarantees, our algorithin provably exhibits good grading,.

Experimental evaluation on various images shows that the final meshes are free of
slivers and exhibit both volume and (in most cases) surface grading, a fact that greatly
reduces the size of the mesh making the subsequent FEM analysis [18.19. 47| faster.
Lastly. demonstration of the use of custom size functions shows that our algorithm
allows for additional flexibility to meet user-defined mesh density.

We also presented PI2N: the first parallel Iimage-to-NMesh (P12M) Conversion
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Isosurface-based algorithm and its implementation. Starting directly from a multi-
label segmented 3D image, it is able to recover and mesh both the isosurface €2 with
geometric and topological guarantees (see Theorem 3.1) and the underlying volume
Q with quality elements.

This work is different from parallel Triangulators |20, 23, 24, 63], since parallel mesh
generation and refinement focuses on the quality of elements (tetrahedra and facets)
and the conformal representation of the tissues’ boundaries/isosurfaces by computing
on demand the appropriate points for insertion or deletion. Parallel Triangulators
tessellate only the convex hull of a set of points.

Our tighly-coupled method greatly reduces the number of rollbacks and scales up
to a much higher core count, compared to the tightly-coupled method our group de-
veloped in the past [105]. The data decomposition method [43] does not support
Delaunay removals, a technique that it is shown to be effective in the sequential
mesh generation literature [62,64]. The extension of partially-coupled [39] and de-
coupled [92] methods to 3D is a very difficult task, since Delaunay-admissible 3D
medial decomposition is an unsolved problem. On the contrary, our method does not
rely on any domain decomposition, and could be extended to arbitrary dimensions
as well. Indeed, we plan to extend PI2M to 4 dimensions and generate space-time
elements (needed for spatio-temporal siimulations |21, 111}) in parallel, thus, exploit-
ing parallelism in the fourth dimension. As future work, we also leave the mesh
boundary smoothing required for CFD simulations, such as respiratory airway mod-
eling [57, 87, 88.

Our code is highly optimized through carefully designed contention managers, and
load balancers which take advantage of NUMA architectures. Our Global Contention
Manager (Global-CM) and Local Contention Manager (Local-CM) provably eliminate
deadlocks and livelocks. They achieve a speedup even on 256 cores, when other tradi-
tional contention managers, found in the mesh generation literature. fail to terminate.
Local-CM also reduced the number of overhead cvcles by a factor of 2 compared to
the Global-CN on 256 cores, improving energyv-cfficiency by avoiding energy waste
because of rollbacks. Lastly, our Hierarchical Work Stealing load balancer (HWS)

sped up the execution by a factor of 1.45 on 176 cores. as a result of a 22.8% remote
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accesses reduction.

Allin all, PI2M achieves a strong scaling efficiency of more than 82% on 64 cores.
It also achieves a weak scaling efficiency of more than 82% on up to 144 cores. We
are not aware of any 3D parallel Delaunay mesh refinement algorithm achieving such
a performance.

It is worth noting that PI2M exhibits excellent single-threaded performance. De-
spite the extra overhead associated with synchronization, contention management,
and load balancing, PI2M generates meshes 40% faster than CGAL and with similar
quality. Moreover, PI2M achieves better quality than TetGen, and it is also faster
than TetGen for large mesh sizes.

Recall that in our method, threads spend time idling on the contention and load
balancing lists. And this is necessary in our algorithm for correctness and performance

efficiency. This fact offers great opportunities to control the power consumption, or

Elements

alternatively, to maximize the _—22fs

ratio. Since idling is not the time critical
component in our algorithm, the CPU frequency could be decreased during such
an idling. Nevertheless, the appropriate frequency drop, the amount of idling, and
performance is a trade-off, and its investigation is left as future work.

As already explained. for core counts higher than 144, weak scaling performance
deteriorates because communication traffic (per switch) is more intense and passes
through a larger number of hops. In the future, we plan to increase scalability by
employing a hierarchically layered (distributed and shared memory) implementation
design [46] and combine this tightly-coupled method with the decoupled and partially
coupled methods we developed in the past, exploring in this way different levels of
COLCUTTency.

Lastly. in this dissertation, we presented a space-time meshing method for (3D - t)
image data. The method is able to provably clean up slivers and recover the hyper-
surfaces faithfully. Experiments on five 4D cardiac images show that the resulting
meshes consist of elements of bounded aspect ratio.

Efficient Discontinuous Galerkin formulations require that not only the hyper-
surface should be recovered but also the evolving 3D object at certain time steps [48].

This is a more challenging task considering the non-manifold nature of the underlving
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space-time domain and it is left as future work.

Because of the increased memory space needed for high dimensional meshing, our
4D algorithm is rather slow: it is approximately 700 times slower than our three di-
mensional Delaunay mesher, as described in Section 4.6. Nevertheless, the fine grained
parallelization for the 4D code did yield a 2.81 speedup on 12 cores. We argue that the
main bottleneck for its scalability is the excessive amount of contention, a fact that
we did not observe in the 3D counterpart. We attribute this difference in behavior
between the 3D and 4D implementation to the fact that the cavity size increases in
higher dimensions and therefore, tightly-coupled techniques need to lock many more
vertices. In the future, we plan to investigate other parallelization techniques, such as
data decomposition [43] and domain decomposition [39, 92|, since they are expected to
alleviate the increased synchronization overhead observed in high dimensional mesh-
ing. In the future, we also plan to theoretically characterize the complexity of our
parallel methods described in Chapter 3 and Chapter 4, determining in this way their

scalability on machines of different architecture |51].



Appendix A

Installing and Using the Software

In this Appendix, we provide brief instructions regarding the usage of the pieces of software presented
in Chapter 3 and Chapter 4, respectively. In particular, we describe how to use (a) the 3D parallel
Image to Mesh Conversion code (PI2M) and (b) its 4D counterpart (PI2M4). The source code is
located at code/ParallelMeshGeneration3D/ and code/ParallelMeshGenerationdD /. respectively.
The developed software depends on various other libraries which need to be installed prior to
compiling it. Specifically, our software depends on CMake [2], ITK [7]. VTK [3], CGAL [6], PAPI 5],

and BoostC + + [1]. Both executables are invoked as follows:
./Parallel --threads wvalue --input name --delta value [--output name] |--plc name
where:
e threads: the number of threads.

o input: an [TK compatible 3D/4D segmented image.

delta: the 9 parameter that controls the density.

output: the optional output mesh name where the mesh will be stored in the disk. Also.

mesh statistics about the quality of the mesh are reported. In 4D. the sequence of slices are
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generated (name0, namel,...) as extracted from the mesh. If not given, then no output mesh

will be created.

e plc: the optional output PLC name. If not given, then no output PLC will be created. 3D

only.

Next, we list several important macros that affect the performance and the functionality of both
3D and 4D code, depending on whether or not they are on. These macros can be found in either
Config.h or Parallel Mesh Generator.h. Table A.1a and Table A.1b elaborate on these macros and
their effect.

Lastly. under code/ParallelMeshGenerationdD/, we have implemented two PI2Md versions: v12
and v13. The difference is that v13 re-arranges the priority of the Rules for complexity improve-
ment, as described in Section 4.6.1. These versions have been kept separate for maintainability and

readability reasons.
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Table A.1: The list and descriptions of influential macros.

(a) Macros in Config.h that can be activated or deactivated by the user.

macro i description comment
ASSERT sanity checks for the sequential mode oneotnliiea(l
PARALLEL_ ASSERT sanity checks for the parallel mode ]
\MEMORY MANAGER if on, a pool of memory is maintained by each
thread
COMPUTE_MESH _ if.on, tllle fiesi.red mgsh cag be ez:)tr}?cte'(.i frorﬁ t:e

ELEMENTS ON THE triangulation in constant time. Ot er\use,'a the 3D only
e - - elements need to be traversed and classified -

FLY

during a post-processing step

REMOVE_ON_THE
FLY

if on, invalid elements are removed from their
corresponding PEL right away. Otherwise, they

from their PEL when the the responsible thread
examines it for splitting in a lazy manner

are just marked as invalid and they are removed

{b)} Macros in Parallel

Mesh  Generation.h that can be activated or deactivated by the user.

|

macro I description | comment
NO GOOD _ ANGLES if on, no dihedral angle improvement is performed 3D only
NO_REJECTION_ fom. the teosurface 1S ted 3D onls
STRATEGIES if on, the isosurface is not protected only
SLIVER _REMOVAL picking regions are activated 4D1 Otr;l];:; th
FINE_GRAINED fine grained parallelism is activated 4D only
CONTENTION_LOCAL ]
ON Local-CM is on
CONTENTION SIGNAL .
ON Global-CM is on 3D only
CONTENTION_SLEEP ]
ON Random-CM is on 3D only
if on, there is a dedicated thread for
INFINITE THREAD inserting, removing points on the box. This
- decreases the number of rollbacks on the convex
hull
HLDB the Hierarchical work stealing Load Balancer
several statistics are obtained from each thread
REPORT COUNTERS du.ruTg the execution and rep(.)rte('l at the end.
- This introduces zero synchronization overhead.,
but it does introduce some computation overhead
PAPI counters are activated: TLB and LLC
PAPI ON misses are counted per thread, as well as the
- number of resource stall cycles and remote
accesses
if on, then the resulted VTK mesh file marks the
MARK_BOUNDARY _ || faces of each tetrahedron as boundary triangles or 3D only
TRIANGLES not. Useful when applyving boundary conditions. ny
It reguires that the optional mesh name is given
NUMA if on. the hop-wise distance of any node pair is

computed
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