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ABSTRACT

Time-domain signals form the basis of analysis for a variety of applications, 
including those involving variable conditions or physical changes that result in 
degraded signal quality. Typical approaches to signal analysis fail under these 
conditions, as these types of changes often lie outside the scope of the domain's 
basic analytic theory and are too complex for modeling. Sophisticated signal 
processing techniques are required as a result. In this work, we develop a robust 
signal analysis technique that is suitable for a wide variety of time-domain signal 
analysis applications. Statistical pattern classification routines are applied to 
problems of interest involving a physical change in the domain of the problem 
that translate into changes in the signal characteristics. The basis of this 
technique involves a signal transformation known as the Dynamic Wavelet 
Fingerprint, used to generate a feature space in addition to features related to 
the physical domain of the individual application. Feature selection techniques 
are explored that incorporate the context of the problem into the feature space 
reduction in an attempt to identify optimal representations of these data sets.
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C hapter 1

Introduction

Time-domain signals are the basis of analysis in a wide variety of useful real-world 

applications. Often times there exist variable conditions within these applications 

tha t degrade signal quality, resulting in the features of interest being buried in noise. 

In this work we investigate the effect th a t physical changes within the domain of a 

problem have on the resulting signals. This is studied through the implementation 

of advanced signal processing techniques, developing an analysis routine th a t applies 

pattern  classification to feature sets extracted from time-domain signals.

Typical approaches to signal analysis involve cross-correlation measures, ampli­

tude thresholding, and baseline subtraction. As variation is introduced into the signals 

through variation in the signal’s underlying physical mechanics, these approaches be­

gin to fail. Often these types of changes lie outside the scope of the dom ain’s basic 

analytic theory and are too complex for modeling. As a result, sophisticated sig­

nal processing techniques are required to identify the  features of interest from the 

resulting degraded signals.

In this work we explore the development of a robust signal analysis technique, 

suitable for a wide variety of time-domain signal applications. Pattern  classifica­
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tion is a subset of artificial intelligence tha t assigns labels to  raw d a ta  based 011 

multivariate statistical measures of th a t da ta  set. Since these algorithms consider 

multi-dimensional feature spaces, many characteristics of a  signal can be considered 

simultaneously in the decision process. The classification abilities are therefore di­

rectly related to the choice of feature representation for a da ta  set. The a priori choice 

of optimal features is often unknown, and in practice, features are chosen based on 

intuition of the problem a t hand. Feature selection techniques are designed to reduce 

the size of the feature space by identifying which subsets produce the best classifi­

cation performance. This dissertation applies pa ttern  classification techniques to a 

variety of applications involving a physical change in the d a ta  collection th a t trans­

lates to change in the signal characteristics. We explore feature selection techniques 

tha t incorporate the context of the problem into the feature space reduction.

1.1 P attern  C lassification

Pattern  classification is the subset of machine learning th a t involves taking in raw 

data and grouping it into categories. Many excellent textbooks exist on the subject 

[1—6], while several review papers have explored the topic as well [7 9]. Emerging 

applications in the fields of biology, medicine, financial forecasting, signal analysis, 

and database organization have resulted in the rapid growth of pattern  classification 

algorithms. We focus our research here on statistical pattern  recognition, but other 

approaches exist including tem plate matching, structural classification, and neural 

networks [9].

Statistical pattern classification represent d a ta  by a series of measurements, form­

ing a one-dimensional feature vector for each individual da ta  point. A general ap­

proach for statistical pattern classification includes the following steps: preprocessing.

2



feature generation, feature extraction/selection, learning, and classification. Prepro­

cessing involves any segmentation and normalization of da ta  th a t leads to a compact 

representation of the pattern. Feature generation involves creating the feature vector 

from each individual pattern, while feature extraction and selection are optional steps 

that reduce the dimension of the feature vector using either linear transformations or 

the direct removal of redundant features. The learning step involves training a given 

classification algorithm, which then outputs a series of decision rules based on the 

data supplied. Finally, new da ta  points are supplied to the trained classifier during 

the classification step, where they are categorized based on their own feature vector 

relative to the defined decision rules.

There exists a theorem in pattern  classification known as the  Ugly Duckling The­

orem, which states th a t in the absence of assumptions there is no ‘best’ feature rep­

resentation for a data set, since assumptions about what ‘best’ means are necessary 

for the choice of features [10]. Appropriate features for a given problem are usually 

unknown a priori, and as a result, many features are often generated without any 

knowledge of their relevancy [11]. This is frequently the motivation behind generating 

a large number of features in the first place. If a specific set of features is known that 

completely defines the problem and accurately represents the input patterns, then 

there is no need for any reduction in the feature space dimensionality. In practice, 

however, this is often not the case, and an intelligent feature reduction technique 

can simplify the classifiers th a t are built, resulting in both increased computational 

speed and reduced memory requirements. Aside from performance gains, there is a 

well-known phenomenon in pattern  classification affectionately called the Curse of 

Dimensionality that occurs when the number of objects to be classified is small rela­

tive to the dimension of the feature vector. A generally accepted practice in classifier 

design is to use at least ten times as many training samples per class as the number of

3



features [12]. The data  set becomes sparse when represented in too high of dimension 

feature space, degrading classifier performance.

It follows tha t an intelligent reduction in the dimension of the feature space is 

needed. There are two general approaches to reducing the feature set: feature extrac­

tion and feature selection. Feature extraction reduces the feature set by creating new 

features through transformations and combinations of the original features. Principal 

component analysis, for example, is a commonly used feature extraction technique. 

Since we are interested in retaining the original physical interpretation of the feature 

set, we opt not to use any feature extraction techniques in our analysis.

There are three general approaches for feature selection: wrapper methods, em­

bedded methods, and filter methods [13]. W rapper m ethods use formal classification 

to rank individual feature space subsets, applying an iterative search procedure tha t 

trains and tests a classifier using different feature subsets for accuracy comparison. 

This continues until a given stopping criterion is met [14]. This approach is compu­

tationally intensive, and there is often a trade-off among algorithms between compu­

tation speed and the quality of results tha t are produced [15 17]. Additionally, these 

methods have a tendency to over-train themselves, where d a ta  in the training set is 

perfectly fitted and results in poor generalization performance [18]. Similar to wrap­

per methods, an embedded m ethod performs feature selection while constructing the 

classification algorithm itself. The difference is tha t the feature search is intelligently 

guided by the learning process itself. Filter methods perform their feature ranking by 

looking at intrinsic properties of the da ta  w ithout the input of a formal classification 

algorithm. Traditionally, these methods are univariate and therefore don’t account 

for multi-feature dependencies.

Regardless of feature selection, once a feature set has been finalized, the selection 

of an appropriate classification algorithm depends heavily on w hat is known about the

4



domain of the problem. If the class-conditional densities for the problem at hand are 

known, then Bayes decision theory can be applied directly to design a classifier. This, 

however, is rarely the case for experimental data. If the training da ta  set has known 

labels associated with it, then the problem is one of supervised learning. If not, then 

the underlying structure of the da ta  set is analyzed through unsupervised classification 

techniques such as cluster analysis. W ithin supervised learning, a further dichotomy 

exists based on whether the form  of the class conditional densities is known. If it 

is known, parametric approaches such as Bayes plug-in classifiers can be developed 

th a t estimate missing parameters based on the training data  set. If the form of the 

densities is unknown, nonparametric approaches must be used, often constructing the 

decision boundaries geometrically from the training data.

1.1.1 F eature G en eration

In this dissertation we include a variety of methods for feature generation. First order 

statistics are commonly used as features for pattern  classification. Lambrou et al. use 

statistical measures of audio signals for genre classification by identifying statistical 

characteristics common among like-genres of music [19]. We include several common 

first-order statistical measures from each time-domain signal in many of our feature 

sets, including the mean of the raw waveform, the variance, the Shannon entropy, 

the second central moment, the skewness, and the kurtosis [20,21]. Additionally, we 

include features extracted from the Mellin domain of each signal. These are generated 

by applying a scale-invariant integral transform  known as the Mellin transform. Mellin 

transform features have been successfully used to identify defects in pipes under 

varying pressure loads [22, 23], and are useful in identifying uniform time-scaling 

effect on the recorded signals.

Wavelets are very useful for analyzing time series da ta  because wavelet transforms



allow us to keep track of the time localization of frequency components [24]. Unlike 

the Fourier transform, which breaks a signal down into sine and cosine components to  

identify frequency content, the wavelet transform  measures local frequency features in 

the time domain. One direct advantage the wavelet transform  has over the fast Fourier 

transform is th a t the time information of signal features can be taken directly from 

the transformed space without an inverse transform  required. One common wavelet- 

based feature used in classification is generated by Wavelet Packet Decomposition 

(WPD) [25]. Yen and Lin successfully classify faults in a helicopter gearbox using 

W PD features generated from time-domain vibration analysis signals [26]. The use 

of wavelet analysis for feature extraction has also been explored by Jin et al. [27], 

where wavelet-based features have been used for damage detection in polycrystalline 

alloys. Gaul and Hurlebaus also used wavelet transforms to identify the location of 

impacts on plate structures [28].

Wavelets were first applied to ultrasonic signal analysis by Abbate, who was able 

to perform peak detection on signals dom inated by added white noise through the 

application of a wavelet transform [29]. Since then, wavelets have been used commonly 

in the field of structural health monitoring. Sohn et al. review the statistical pattern 

classification models currently being used in structural health monitoring [30]. Most 

implementations involve identifying one specific type of ‘flaw’, including loose bolts 

and small notches, and utilize only a few specific features to separate the individual 

flaw classes within the feature space [31-33]. Biemans et al. detected crack growth in 

an aluminum plate using wavelet coefficient analysis generated from guided waves [34]. 

Legendre et al. found th a t even noisy electromagnetic acoustic transducer sensor 

signals were resolvable using the multi-scale m ethod of the wavelet transform [35]. 

The wavelet transform has also been shown to outperform other traditional time- 

frequency representations in many applications. Zou and Chen compared the wavelet

6



transform to the Wigner-Ville distribution for identifying a cracked rotor through 

changes in stiffness [36], identifying the wavelet transform  to be more sensitive to 

variation and generally superior to the Wigner-Ville distribution.

We employ a particular implementation of the wavelet transform  known as the 

Dynamic Wavelet Fingerprinting (DW FP) technique [37]. This approach renders 

time-domain data in a two-dimensional time-scale binary image, from which subtle 

signal characteristics can be identified and tracked through standard  image processing 

techniques. This technique has been applied to a wide variety of applications with 

success, including acoustic microscopy [38], a periodontal probing device [39 41], 

time-domain reflectometry for wiring flaw detection [42], the analysis of multi-mode 

Lamb wave signals [43,44], and Lamb wave tomography [45,46].

1.2 C om putational H om ology

The algorithms developed within the field of com putational homology provide insight 

into the topological makeup of a space. Combining algebra, combinatorics, and topol­

ogy, these algorithms arc fast and efficient at computing global properties of spaces, 

specifically a measure of connectedness. Several variations of com putational homology 

exist, including those based on both simplical and cubical complexes. Most exper­

imental data translate well to  cubical representations (image pixels, error bounds, 

etc.), and as a result, many applications of com putational homology involve those 

algorithms based on cubical sets. Com putational homology has been previously im­

plemented in a variety of analysis applications. Miller et al. generated isosurface 

reconstructions of the atomic structure of thermally treated alloys, identifying a cor­

relation between the number of cavities in each surface and the am ount of therm al 

aging undergone by the alloy [47]. More recent im plementations span a range of
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applications including image processing and recognition [48 51], sensor network anal­

ysis [52], materials science [53], biomedical analysis [54], and image-based pattern  

classification [55,56]. The m ajority of current applications for com putational homol­

ogy theory in the sciences revolves around the analysis of 1-, 2-, or 3-dimensional 

spaces, most commonly in image analysis.

1.3 A pplications

In this dissertation we explore the use of pattern  classification routines in real-world 

applications using wavelet transforms. We then develop feature selection routines 

based on the underlying structure of a da ta  set’s feature space representation. In 

Chapter 2 we provide a formal introduction to pattern  classification. Chapter 3 

summarizes the Dynamic Wavelet Fingerprint (DW FP) technique which uses a time- 

scale wavelet transform to generate two-dimensional binary image representations of 

time-domain signals. We dem onstrate the advantages of this technique through an 

example in structural health monitoring, where different types of flaws in metals are 

identified using guided waves. In C hapter 4 we describe an analysis th a t identifies in­

dividual radio-frequency identification (RFID) tags from cloned copies using pattern  

classification routines. Several sources of variability inherent to  RFID usage are dis­

cussed and their effects studied, including tag /an tenna  orientation, communication 

frequency fluctuation, and environmental damage. A statistical pattern  classifica­

tion routine designed to characterize flaw severity in aluminum plates using Lamb 

waves is presented in Chapter 5. The concept behind intelligent feature selection is 

also introduced and explored. Finally, Chapter 6 describes the  implementation of a 

novel feature selection routine involving algorithms from the field of computational 

homology. Chapter 7 provides conclusions and suggestions for future work.
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C hapter 2

P attern  C lassification

In the subsequent chapters, we employ statistical pa ttern  classification to analyze 

complex data sets. This chapter provides an introduction to the  mathem atics behind 

the algorithms as well as terminology from the field of pa ttern  classification used 

throughout this work.

2.1 W h ite  W ine E xam ple

As an example da ta  set, we consider the multivariate white wine data  set [57] com­

posed of results from a chemical analysis of many wines grown in the same region in 

Italy, but derived from three different grape cultivars. The goal of a classifier devel­

oped on this data  set is to  be able to identify the cultivar of unidentified wines based 

solely on their chemical makeup.

The white wine data set contains data  from 178 different wines (observations), 

originating from three different grape cultivars (classes). From each wine sample, th ir­

teen characteristics (features) were recorded. The measurements include alcohol con­

centration, malic acid concentration, ash, alkalinity of the ash, magnesium concentra­
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tion, to tal phenols concentration, flavanoicls concentration, nonflavanoid phenols con­

centration, proanthocyanine concentration, color intensity, color hue, OD280/OD315 

of diluted wines (the ratio between absorbency at 280 and 315 nm), and proline 

concentration. Table 2.1 shows a limited selection from the white wine data set.

Table 2.1: The matrix arrangement of the white wine data set. Each the row of the matrix 
represents a wine sample, while each column represents one of the thirteen variables.

Alcohol Malic Acid Ash • Proline Cultivar
Sample 1 14.23 1.71 2.43 • 1065 1
Sample 2 13.20 1.78 2.14 • 1050 1
Sample 3 13.16 2.36 2.67 • 1185 1

Sample 59 13.72 1.43 2.50 • 1285 1
Sample 60 12.37 0.94 1.36 • 520 2
Sample 61 12.33 1.10 2.28 • 680 2
Sample 62 13.64 1.36 2.02 • 450 2

Sample 130 12.04 4.30 2.38 • 580 2
Sample 131 12.86 1.35 2.32 • 630 3
Sample 132 12.88 2.99 2.40 • 530 3
Sample 133 12.81 2.31 2.40 • 560 3

Sample 178 14.13 4.10 2.74 • 560 3

The data m atrix in Table 2.1 can then be thought of as a  representation of the 

wine samples in a multi-dimensional space (feature space), where each row is a single 

point in a thirteen-dimensional space and each variable represents an axis in this 

space. Along these terms, the coordinates of each point in this space can be thought 

of as th a t observation’s feature vector, where each entry in the feature vector is a 

single measurement value. Since each wine sample is from one of three cultivars, each 

sample is given its own class label of cultivar 1, 2 or 3.

Figure 2.1 shows histograms of several of the measurements divided among the 

three known cultivars. The histograms show th a t there is significant overlap of proan-
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thocyanine values between the three cultivars. The alcohol concentration values sep­

arate the wine samples between grape cultivar 1 and 2, however the samples from 

cultivar 3 overlap both of these. The flavanoid concentration values similarly do a 

good job separating samples from cultivar 1 and 3, however those from cultivar 2 are 

mixed into both other groups. There is no single feature in this da ta  set th a t com­

pletely separates the three cultivars. Similarly, we have no reason to believe th a t this 

data  set is even representative of the entire population of these three grape cultivars. 

We therefore require more advanced analysis techniques in order to  identify these 

wines by their chemical makeup, specifically those of statistical pattern  classification.

2.2 S tatistica l P a ttern  C lassification

In short, statistical pattern classification uses statistical measures to  learn from a 

training set of examples. A set of rules are generated, usually defined by a series of 

decision boundaries within a multi-dimensional feature space, th a t are then applied 

to new, unseen observations. This process is not well defined w ithout a sense of 

context for the problem at hand. For example, if a  com puter were simply given 

the white wine data  set introduced above, it would have no reason to assume the 

goal is to  identify is the grape cultivar. This concept is summarized by the ugly 

duckling theorem [58], which states th a t in the absence of assumptions there is no 

‘best’ feature representation for a d a ta  set, since assumptions about what ‘best’ means 

are necessary for the choice of features. Appropriate features for a given problem are 

usually unknown a priori, and as a result many features are often generated without 

any true knowledge of their relevancy.

In designing a pattern  classification routine, one of two general routes can be taken: 

supervised classification in which predefined classes are used to  identify new patterns.
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Figure 2.1: Bar graphs of the wine measurements.
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or unsupervised classification where the d a ta ’s natural structure is used to determine 

class values for which new patterns are assigned. The choice of which approach to 

take is usually subjective and depends on the application and the structure of the 

data at hand. Most of our applications involve da ta  th a t corresponds to a variety of 

well-defined classes, making supervised pattern  classification a natural choice. Since 

the goal of a classifier is to determine labels for new, unknown d a ta  vectors, we first 

assign a unique label to each known class, u)j for j  = 1 , . . .  ,3, for each of the three 

grape cultivars.

W ithin supervised pattern  classification, there exist several general approaches 

for applying pattern  classification routines. One approach involves tem plate match­

ing, where a similarity measure is used to associate new patterns with a predefined 

library of templates th a t is learned from the training set. This often involves match­

ing general properties, such as curves or shapes within the d a ta  set. We opt not to 

use template matching as it tends to fail when large intraclass variations are present 

among the patterns [9]. Another popular approach uses neural networks, which cre­

ate weighted directional graphs between artificial neurons. A m ajor disadvantage of 

neural networks is th a t they are “black box” in nature, often creating overly complex 

nonlinear inout-output relationships th a t conceal the physical interpretation of the 

data. We choose not to use neural networks because of this loss of physical interpreta­

tion. A third approach is that of statistical pattern  classification, where each pattern 

is represented in a multi-dimensional feature space where each class ideally occupies a 

disjoint region. The final goal in this approach is to determine decision boundaries in 

this feature space relative to the classes, from which new patterns are assigned labels 

based on their location in the divided space. Additionally, this approach retains the 

physical interpretation of the features. Statistical pattern  classification is therefore an 

appropriate apprach to take for our applications. In statistical pa ttern  classification.
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each pattern is represented as a point in a multi-dimensional feature space (Table 

2 .1).

A further division of statistical pattern  classification lies in whether or not the 

form of the class-conditional densities is known. Param etric techniques assume a 

known density function (e.g. Gaussian) for each object class, and in practice replace 

any unknown parameters in th a t density function w ith estim ated values. Similar 

to the ugly duckling theorem, there exists the no free lunch theorem which states 

tha t in the absence of assumptions about the learning domain, no single classification 

or learning algorithm should be preferred over another. Most of our experimental 

data does not have any underlying density function associated with it, however we 

often include both parametric and nonparam etric density estim ation classifiers in our 

analysis, keeping to this general rule.

2.3 Bayes D ecision  T heory

We next present an introduction to Bayes decision theory, followed by the fundamental 

concepts behind several of the classifiers used throughout this work. This description 

is adapted from [1,5].

For a given da ta  set, each n  =  1 , . . . ,  N  observation has M -m any feature values 

x nj  for j  =  1 , . . . ,  M .  Together, these feature values make up a  single M-dimensional 

feature vector x„ =  {£„, ! , . . . ,  x n M}- The overall goal of p a ttern  classification is thus: 

given a set of measurements collected through an observation, i.e. feature vector x 

(dropping subscript n for generality), we wish to assign th a t observation to one of C 

possible classes ujj, where j  =  1, . . .  , C. For the white wine da ta  set, we have N  =  178, 

M  = 13, and (7 =  3 corresponding to the 178 individual wine samples collected, each 

of which was used to measure 13 properties of the wine, from the 3 different grape
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cultivars. Let P(u>j) represent the a priori probability of class u)j. In practice, the 

prior probabilities are usually unknown and must be estim ated from a set of correctly 

classified samples. For example, we can use the population distribution of the three 

classes in the white wine example,

p{uJl) = ( r l ) = °-332’ P M  = { i k ) = °-399; p{uJ3) = ( r l ) = °-2m

Since we have both an observation as well as a feature vector, we wish to assign 

x  to class u>j if the probability of class Uj given the observation x, denoted p(ujj|x),

is greatest over all classes wi , . . . ,  loq,

p(w>|x) >  p(wfc|x) k  = . ,C \ k ^ j ,  (2.1)

effectively splitting the feature space into C  regions.

Bayes’ theorem allows us to express the a posteriori probabilities P(u>j|x) in terms

of the a priori probabilities and the class-conditional density functions p(x\ojj). The 

probability th a t the object belongs to class ujj given the feature vector x  is:

F k  =  (2-2)

The parametric subset of pattern  classification assumes a knowledge of the class- 

conditional probability density functions. If this assumption is violated, by using bad 

density estimates for example, the classifier may be far from optimal. If there is no 

known theoretical probability density function for the features, then nonparametric 

approachs can be used. For example, the experimental distribution of the features in 

each class may be used (such as in Figure 2.1 where the probabilities sum to unity).

Bayes’ theorem allows us to rewrite the decision rule in Equation 2.1. We assign
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x  to u>k if

p(x\uj)P{ojj) > p(x.\ujk)P(uJk) k = l , . . . , C \  k ^ j . (2.3)

Equation 2.3 allows a decision to  be made on the feature vector under considera­

tion given its measured features. We now present several classifiers, both parametric 

and nonparametric, tha t are used in the following chapters.

Q uadratic and Linear D iscrim in an t C lassifiers

As the probabilistic structure of a given problem is rarely known for real applications, 

a solution involves estimating the unknown probabilities and probability densities. In 

supervised pattern  classification, estim ating the prior probabilities P{u>3) is straight­

forward to do (using the known sample distributions), however accurate estimation 

of the class-conditional densities p(x.\u)j) is less straightforward. If it is assumed tha t 

p(x|wj) is a normal (Gaussian) density with mean fXj and covariance m atrix S ;-, the 

problem simplifies from one of estimating an unknown function p(x\ujj) to one of 

estimating the param eters pLj and £ r

One way of representing a pa ttern  classifier is in term s of a set of discriminant 

functions, Pj(x), for j  = 1, . . .  , C. The classifier is said to assign a feature vector x 

to class ujj if

Using this, Equation 2.3 can be reproduced by allowing gj(x)  =  p(x\ujj)P(ujj). By 

assuming a Gaussian distribution for p(x|cjj), a discriminant function <?j(x) can be 

derived th a t assigns x  to cOj if <?j(x) >  tffc(x) for all j  ^  k, [5], where

^ • ( x ) > . g fc(x) when k ^ j . (2.4)
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The estimative approach replaces the quantities and S j  w ith estim ates based on 

a training set, given by

1 Tr-yJV
m  =  i v E i = i x i , x

(2 -6 )
s  = j/ EjLite - m)(xi - m)T

Plugging these estimates into Equation 2.5 results in the quadratic discriminant clas­

sifier (QDC), given by

gfix) = log(P(wj)) -  \  lo g (|S j|)  -  ^ (x  -  m J-)r S i *(x -  m j). (2.7)

This form of classifier development is often referred to as Bayes plug-in method. Fig­

ure 2.2 shows the resulting decision boundaries defined by the quadratic discriminant 

classifier using a two-dimensional feature subset of the white wine d a ta  set, with 

alcohol and malic acid as the two features considered.

Problems can occur in this analysis if any of the 57, matrices are singular, as 

these matrices are inverted in the com putation of the QDC. Several alternatives are 

employed, one of which assumes th a t the class covariance matrices .. ., X c are 

all the same. This allows the class covariance matrices to  be substitu ted with the 

common group covariance matrix Spy, resulting in the linear discriminant classifier 

(LDC):

,9j(x) =  log(P(wj)) -  SH 'm j +  x r SH1m J (2.8)

where Spy is given by

^  “  N  -  C ~N j 
j =i

and Nj is the number of observations in class luj. Figure 2.3 shows the resulting deci­

sion boundaries defined by the linear discriminant classifier using a two-dimensional
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Figure 2.2: Decision boundary generated by the quadratic discriminant classifier (QDC) for 
a two-dimensional feature subset of the white wine data set, with alcohol and malic acid as 
the two features considered.

feature subset of the white wine d a ta  set, w ith alcohol and malic acid as the two 

features considered.

N ear M ean C lassifier

A special case of Equation 2.8 occurs when class priors P{uij) are equal for all C  

classes, and the matrix Sw is taken to be the identity. In this case, known as the 

near mean classifier, we assign x  to class uij if

—2x7 m*, +  m £ m k > —2x7 rrij +  m j m,- when j  ^  k. (2-10)

In other words, to classify a feature vector x, measure the Euclidean distance ||x  — /x -|| 

from each x  to each of the C  mean vectors ^ , and assign x  to the class of the nearest

A  Cultivar 1 
O Cultivar 2 
*  Cultivar 3

%%
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Figure 2.3: Decision boundary generated by the linear discriminant classifier (LDC) for a 
two-dimensional feature subset of the white wine data set, with alcohol and malic acid as 
the two features considered.

mean. Figure 2.4 shows the resulting decision boundaries defined by the near mean 

classifier using a two-dimensional feature subset of the white wine da ta  set, with 

alcohol and malic acid as the two features considered.

k-N  ear est-N eigh b  or

Nonparametric classifiers do not assume a form for the class-conditional probability 

densities. In practice, the common param etric forms rarely fit the densities actually 

encountered. Nonparametric classifiers can be used with arb itrary  distributions, w ith­

out assuming the form of any underlying densities. One particular density estimation 

technique can be defined by the A'-nearest neighbor (ANN) approximation,

(2 . 1 1 )
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Figure 2.4: Decision boundary generated by the near mean classifier (NMC) for a two- 
dimensional feature subset of the white wine data set, with alcohol and malic acid as the 
two features considered.

where k G Z is the number of samples, out of N  to tal samples, tha t fall within a 

volume V  centered at x. If x*, is the kth. nearest-neighbor point to x, then V  is the 

volume of a hyper-sphere centered at x  of radius ||x — x^||.

We can relate this density estim ate back to a decision rule. If we let kj be the 

first k samples in class ojj, and let Nj be the to tal number of samples in class uj: (out 

of N  to tal samples), then we can estimate the class-conditional density and the prior 

probability as

P ( * K )  =

p M  =  # •

Using Bayes’ decision rule (Equation 2.3), we can then assign observation x to u>j if

k  At. b, JV,
3 3 <  "T~~TT ~ ~  Vfc.

N jV  N N kV  N (2 -12)
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In other words, assign x  to the class th a t receives the largest vote amongst the k 

nearest neighbors. Any instances of a tie are broken randomly. Figure 2.5 shows the 

resulting decision boundaries defined by the A:-nearest neighbor classifier for k =  3 

using a two-dimensional feature subset of the white wine d a ta  set, with alcohol and 

malic acid as the two features considered.
6
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Figure 2.5: Decision boundary generated by the fc-nearest-neighbor with k = 3 (3NN) for a 
two-dimensional feature subset of the white wine data set, with alcohol and malic acid as 
the two features considered. This classifier is prone to over-training, as is evident by the 
very irregular decision boundary fit to the training data set here.

2.4 Sum m ary

In this chapter we have introduced an example classification problem based on a 

data set containing various properties of white wine. Bayes formula was provided 

for use with statistical pattern  classification, and several classification routines were 

presented with example decision boundaries for the supplied example. We will apply 

these classifiers and more in the following chapters to various time-domain signals.
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Features included for each application are specific to the fundam ental properties of 

each signal being considered, but all include several features generated using the 

DW FP technique, presented in detail in Chapter 3. In what follows, the specifics on 

how features can be generated from the fingerprint images will be discussed.
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C hapter 3

T im e-D om ain  Signals A nalysis  

using W avelet Transform s

Our motivation is to identify subtle features within time-domain signals collected from 

real-wo rid applications, where signals degrade due to any number of factors, includ­

ing physical interactions, aging, decoupling, etc. The often complex raw waveforms 

are first transformed using the Dynamic Wavelet Fingerprinting (DW FP) technique, 

taking the one-dimensional time-domain signal and outputting  a two-dimensional 

time-scale binary image. This chapter discusses the fundamentals behind the DW FP 

technique, and then provides two example applications of how it can be used to ex­

tract specific features of interest for structural health monitoring (SHM) using guided 

waves.

3.1 W avelet Transform s

Wavelets are ideally suited for analyzing non-stationary signals, originally developed 

to introduce a local formulation of time-frequency analysis techniques. The contin­

23



uous wavelet transform (CWT) of a square-integrable, continuous function s(t) can 

be written

where 0(f) is the m other wavelet, * denotes the complex conjugate, and ipa,b(t) is 

given by

Here, the constants a i e l ,  where a is a scaling param eter defined by p > 0, and 

6 is a translation parameter related to  the tim e localization of 0 . The choice of p is 

dependent only upon which source in the literature is being referred to, much like the 

different conventions for the Fourier transform, so we choose to  implement the most 

common value of p = 1/2 [59]. The m other wavelet can be any square-integrable 

function of finite energy, and is often chosen based on its sim ilarity to the inherent 

structure of the signal being analyzed. The scale param eter a can be considered to 

relate to different frequency components of the signal. For example, small values 

of a result in a compressed m other wavelet, which will then highlight many of the 

high-detail characteristics of the signal related to  the signal’s high-frequency compo­

nents. Similarly, large values of a result in stretched m other wavelets, returning larger 

approximations of the signal related to the underlying low-frequency components.

To better understand the behavior of the CW T, it can be rew ritten as an inverse 

Fourier transform,

where S(u;) and 0 (cj) are the Fourier transforms of the signal and wavelet , respectively. 

From Eq. 3.3, it follows tha t stretching a wavelet in time causes its support in

(3.1)

(3.2)

eJujbduj (3.3)
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the frequency domain to shrink as well as shift its center frequency toward a lower 

frequency. This concept is illustrated in Figure 3.1. Applying the CW T with only a 

single m other wavelet can therefore be thought of as applying a bandpass filter, while 

a series of mother wavelets via changes in scale can be thought of as a bandpass filter 

bank.

Figure 3.1: Frequency-domain representation of a hypothetical wavelet at scale parameter 
values of a = 1,2,4. It can be seen that increasing the value of a leads to both a reduced 
frequency support as well as a shift in the center frequency component of the wavelet toward 
lower frequencies. In this sense, the CWT acts as a shifting bandpass filter of the input 
signal.

An infinite number of wavelets are therefore needed for the CW T to fully repre­

sent the frequency spectrum of a signal s ( t), since every time the value of the scaling 

param eter a is doubled, the bandwidth coverage is reduced by a factor of 2. An effi­

cient and accurate discretization of this involves selecting dyadic scales and positions 

based on powers of two, resulting in the discrete wavelet transform (DWT). In prac­

tice, the DWT requires an additional scaling function to act as a low-pass filter to 

allow for frequency spectrum coverage from u  =  0 up to the band-pass filter range of 

the chosen wavelet scale. Together, scaling functions and wavelet functions provide 

full spectrum coverage for a signal. For each scaled version of the  mother wavelet 

'f(t), a corresponding scaling function 4>{t) exists.
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Just as Fourier analysis can be thought of as the decomposition of a signal into var­

ious sine and cosine components, wavelet analysis can be thought of as a decomposi­

tion into approximations and details. These are generated through an implementation 

of the wavelet and scaling function filter banks. Approximations are the high-scale 

(low-frequency) components of the signal revealed by the low-pass scaling function 

filters, while details are the low-scale (high-frequency) components revealed by the 

high-pass wavelet function filter. This decomposition process is iterative, with the 

output approximations for each level used as the input signal for the following level, 

illustrated in Figure 3.2. In general most of the information in a time-domain signal 

is contained in the approximations of the first few levels of the wavelet transform. 

The details of these low levels often have mostly high-frequency noise information. If 

we remove the details of these first few levels and then reconstruct the signal with 

the inverse wavelet transform, we will have effectively de-noised the signal, keeping 

only the information of interest. This is the process behind wavelet filtering.

3.1.1 W avelet F ingerprin ting

Once a raw signal has been filtered, we then pass it through the DW FP algorithm. 

Originally developed by Hou [37], the DW FP applies a wavelet transform on the 

original time domain data, resulting in an image containing “loop” features tha t re­

semble fingerprints. The wavelet transform coefficients can be rendered in an image 

similar to a spectrogram, except tha t the vertical axis will be scale instead of fre­

quency. These time-scale image representations can be quite helpful for identifying 

subtle signal features th a t may not be resolvable via other time-frequency methods.

Combining Eq. 3.1 and 3.2, the CW T of a continuous square-integrable function
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D3 Level 3

Figure 3.2: The signal is decomposed into approximations (Ai) and details (D2 ) at the first 
level [60], The next iteration then decomposes the first-level approximation coefficients into 
second level approximations and details, and this process is repeated for the desired number 
of levels. For wavelet filtering, the first few levels of details can be removed, effectively 
applying a low-pass filter to the signal.
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s(t) can be written

(3-4)

Unlike the DWT, where scale and translation param eters are chosen according to 

the dyadic scale (a =  2m,b =  n2m, n ,m  £  Z 2), the MATLAB implementation of 

the CWT used here utilizes a range of real numbers for these coefficients. A normal 

range of scales includes a = 1 , . . . ,  50 and b — 1,. . . ,  N  for a signal of length N .  This 

results in a two-dimensional array of coefficients, C(a, b), which are normalized to the 

range of [—1,1] (Fig. 3.3(b)). These coefficients are then sliced in a “thick" contour 

manner, where the number of slices and thickness of each slice is defined by the user. 

To increase efficiency, the peaks (C(a, b) >  0) and valleys (C (a , b) < 0) are considered 

separately. Each slice is then projected onto the time-scale plane (Fig. 3.3(c)). The 

resulting slice projections are labeled in an alternating, binary manner, resulting in 

a binary “fingerprint” image, I(a,b) (Fig. 3.3(d)):

The values of slice thickness and number of slices can be varied to  alter the appearance 

of the wavelet coefficients, as can changing which m other wavelet is used. The process 

of selecting mother wavelets for consideration is application-specific, since certain 

choices of 0(f)  will be more sensitive to certain types of signal features. In practice, 

mother wavelets used are often chosen based on preliminary analysis results as well 

as experience [37,39,42,46,61 64].

(3.5)
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Figure 3.3: A visual summary of the DWFP algorithm [37]. A time-domain signal (a) for 
which a set of wavelet coefficients (b) is generated via the continuous wavelet transform. The 
coefficients are then “thickly" sliced and projected onto the time-scale plane (c), resulting 
in two-dimensional binary images (d), shown here with white peaks and gray valleys for 
distinction.
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3.1 .2  Feature E x tra ctio n  from  W avelet F in gerp rin ts

The problem of time-domain signal analysis has thus been transform ed from a ID 

signal identification problem to  a 2D image recognition scenario. This concept is the 

underlying advantage behind the D W FP technique, as the ou tpu t is a binary m atrix 

tha t is easily stored and transferred. The ability to select specific m other wavelets to 

highlight different features in the signals provides a robustness to  the algorithm as 

well.

The last step in applying the DW FP technique to signal analysis is identifying 

features within the binary images tha t correspond to the waveform features of interest. 

A ridge counting algorithm applied to  the 2D images is a straightforward way to 

compare fingerprint images and identify some of the features of interest. An example 

of ridge counting is shown in Figure 3.4. For each column of the binary image matrix, 

the number of connected “on” regions corresponds to  the number of ridges for tha t 

point in time. In Figure 3.5 we show two longer fingerprint images generated from 

ultrasonic waveforms with and without flaw interaction. For the  m ajority of the 

signal, the number of ridges between the flawed and unflawed waveforms match. The 

signature of the flaw is easily identified here in the region indicated by the dashed 

rectangle. A simple threshold can be applied to the ridge-counting metric for damage 

detection.

Representing a one-dimensional time-domain signal as a two-dimensional time- 

frequency image is an inherent advantage of time-frequency representations, allowing 

for the application of image processing methods to assist in the analysis. Full false- 

color images are both computationally expensive and generally difficult to analyze 

when the goal is to automatically identify features of interest within a signal. Im­

age segmentation is usually a hurdle with autom ated processing, especially when 

the flaw’s signature is identified by a specific feature shape or size within the im-
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age, as is often the case. A binary image requires significantly less computer storage 

than a corresponding gray-scale or color image, and segmentation is trivial. While 

this sort of fingerprint image can be formed from any time-frcquency representa­

tion, wavelets have been shown to work quite well for a wide variety of applications 

previously investigated, including an ultrasonic periodontal probe [39 41], structural 

health monitoring with Lamb waves [43, 44], RFID signal analysis [64], and robot 

navigation [65,66].

We have introduced the principles of using the DW FP wavelet transform technique 

for time-domain signal analysis. We next apply this technique to two real-world 

industrial structural health monitoring (SHM) applications. First, we explore how the 

DW FP technique can be utilized to distinguish dents and the resulting rear surface 

cracks generated in aircraft grade aluminum plates. We then show how wavelet 

fingerprints can be used to identify corrosion in marine structures beneath layers of 

insulation.

3.2 A pplications in N on d estru ctive  E valuation

Originally explored by Lord Rayleigh in 1885 while investigating the propagation of 

surface waves in a solid, e.g. as in earthquakes, the study of guided waves has been 

advanced over the years [67 71]. Guided waves occur when vibrations propagate at 

stress-free boundaries, or boundaries between two differing media. Deriving from the 

same fundamental equations as bulk waves, guided waves experience mode conversion 

and interference due to the guiding boundaries, which result in an infinite number of 

dispersive guided wave modes [72]. Lamb waves are a subset of guided wave found 

in plate-like structures. The basic derivations and discussions of Lamb waves can 

be found in various texts [43,72 81], while a more thorough discussion of current
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techniques can be found in literature reviews [82,83]. Lamb waves are confined by 

a structure’s boundaries and so follow its shape and curvature, with sensitivity to 

material discontinuities a t either surface as well as in the interior of the solid. The 

Rayleigh-Lamb wave equations, derived in Appendix A, can be numerically solved 

to generate plots of the modal group velocity as a function of a combined frequency- 

thickness product. Also known as dispersion curves, these plots relate a combined 

frequency-thickness param eter to the phase and group velocities of both the symmet­

ric and antisymmetric families of modes, and are shown in Figure 3.6 for aluminum.

The key technical challenge to using Lamb waves effectively is automatically iden­

tifying which modes are which in very complex waveform signals. As seen in the 

dispersion curves, there are usually several guided wave modes present a t any given 

frequency-thickness value, often having overlapping mode velocities. Since each mode 

propagates with its own modal structure, modes traveling w ith the same group ve­

locity result in a superposition of the individual displacement and stress components. 

The resulting signals are inherently complex, and sophisticated analysis techniques 

need to be applied to make sense of the signals. Contrary to  traditional bulk-wave 

ultrasonics, standard peak-detection approaches often fail for Lamb wave analysis.

Numerous methods have been developed in an a ttem pt to  simplify Lamb wave 

analysis. One often used approach is to use a statistical comparison in which a base­

line measurement is compared to the damaged state  signal. The main problem with 

baseline-dependent data  is th a t it is usually not practical for real-world situations 

where environmental and operational conditions result in deviations from baseline 

data tha t do not correlate to damage. Also, the dependence on a previously estab­

lished baseline makes it difficult to implement w ith current technologies. Alternative 

inspection techniques to a baseline method exist, but often include an assumption 

or restriction that renders them impractical. Examples include assuming uniform
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Figure 3.6: Dispersion curves for an aluminum plate. Solutions to the Rayleigh-Lamb wave 
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for both phase (a) and group (b) velocity.
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thickness in the plate of interest, greatly reducing the number of possible real-world 

applications [84], restricting the inspection frequency by exciting a specific Lamb 

wave mode and analyzing the reflected and mode-converted waves [85], and expand­

ing the ray coverage to damaged as well as undamaged areas for an instantaneous 

cross-correlation difference analysis [86,87].

3.2 .1  D en t and Surface C rack D e te c tio n  in  A ircraft Skins

Aircraft manufacturers and operators have concerns over fuselage damage commonly 

called “ramp rash” . This damage occurs in the lower fuselage sections, and can 

be caused by incidental contact w ith ground equipment such as air stairs, baggage 

elevators, and food service trucks [88]. Ram p rash costs airlines billions of dollars 

per year in both damage repair costs and downtime [89]. Even minor damage can 

become the source of serious mechanical failure if left unattended [90]. The formation 

of dents in the fuselage is common, bu t the generation of rear cracks can lead to 

serious complications. Repairing this subsequent damage is critical for aviation safety, 

however the hidden extent of the damage is initially unknown. In order to  accurately 

estimate repair requirements, and therefore reduce unnecessary downtime losses, an 

accurate assessment of the damage is required.

A continuously monitoring inspection system at fuselage areas prone to impact 

would provide an alternative to conventional point-by-point inspections. Guided 

waves have previously shown potential for damage detection in metallic aircraft com­

ponents [62], We test a guided wave-based SHM technique for identifying potential 

flaws in metallic plate samples. We employ the DW FP to generate time-scale sig­

nal representations of the complex guided waveforms, from which we extract subtle 

features to assist in damage identification.
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E xperim ental Setup

The samples tested were aircraft-grade 1.62 mm thick aluminum 2024 plates (with 

primer), approximately 45 cm x 35 cm in size. Some of them  had dents and some also 

had simulated cracks of varying length and orientation, images of which are shown in 

Figure 3.7, including the following flaw types:

• Dent without crack

• Dent with crack between 2-40 mm

• Dent with crack larger than  40 mm

• Crack between 2-40 mm

• Crack larger than 40 mm

(a) (b) (c)

Figure 3.7: A plate with no flaw present (a), a plate with a shallow, large crack present (b), 
and a plate with both a dent as well as a crack present (c).

Angle beam transducers were used to generate surface waves th a t produce shear 

waves normal to the surface of the sample. These waves propagate exclusively along 

the surface of thicker materials and are known as Rayleigh waves. In thin plates, when 

they are guided by boundary layers as they are in aircraft skins, they are referred to 

as Rayleigh-Lamb waves. Angle beam transducers focus their propagation energy in 

one direction using Snell’s law, unlike contact transducers th a t spread their energy in 

all directions. This focused, directed energy can be favorable when specific areas are 

being considered tha t are known in advance to  be prone to damage.
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Experimental data  was collected using transducers m anufactured by Olympus1. 

Signals were generated and received using a Nanopulser 3 (NP3) from Automated 

Inspection Systems2. The NP3 integrates both a pulser/receiver and a digitizer into a 

portable USB-interfaced unit, em itting a spike excitation instead of a traditional tone 

burst often used in NDE. The spike excitation then relies on the  resonant frequency 

of the transducers in order to generate the ultrasonic waves w ith a broad frequency 

content to maximize scattering interaction with the surface cracks. The compact size 

of the NP3 makes it favorable for in-field use for aircraft damage analysis. A graphical 

user interface was developed in MATLAB to control the NP3 system.

We explore both a pitch/catch scanning configuration, where one transducer is 

the transm itter while a second transducer is the receiver, as well as a pulse/echo 

configuration where one transducer acts as both the transm itter and receiver. We 

control the position of each transducer by attaching two individual transducers to 

linear slides, controlled by stepper-motors tha t advance them  along the edges of the 

test area. The test area was centered around the flaw, with the  transducers placed 

215 mm apart from each other and advancing through 25 individual locations in 8.6 

cm increments for a total scan length of 215 mm. An illustration of this is shown in 

Figure 3.8. For the pitch/catch configuration, two transducers are stepped in parallel. 

For the pulse/echo configuration, only one transducer is present.

Each waveform is run through the DW FP algorithm to generate a fingerprint 

representation. This process is dem onstrated for a typical waveform in Figure 3.9, 

and involves windowing the full signal 3.9(a) around the first arriving wave mode 

3.9(b), which is then used as an input signal for the DW FP transform ation 3.9(c).

'Waltham, MA (http :/ /w w w .o lym pus-im s.com /en /)
2Ma.rtinez, CA (h ttp : / /w w w .a is4 n d t .c o m /)
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Figure 3.8: Scanning apparatus for both a pitch/catch configuration (a) as well as a 
pulse/echo configuration (b). Transducers are attached to linear slides controlled by stepper 
motors on either side of the sample, allowing for systematic scanning to be performed (c).
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Figure 3.9: A raw Rayleigh-Lamb waveform collected from an unflawed plate sample (a). 
The signal is first windowed to the region of interest, here the first mode arrival (b), from 
which a DWFP image is generated (c).
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D en t D etectio n  - P itch /C a tc h  Scanning

We first present results here from the p itch/catch scanning configuration. The first 

sample considered contained a crack only, and the raw waveforms can be seen in 

Figure 3.10. It can be seen th a t these signals are all very similar to each other, and 

little information is readily available to  identify the crack in the time-domain. Figure 

3.11 provides the DW FP representations of these same signals. For each individual 

DW FP image, a specific feature is identified and autom atically tracked throughout 

the scan progression. The feature in this case is the first arriving mode, indicated by 

the first “peak” (in white) in time. For each following DW FP image, this feature is 

identified and highlighted by a red star (*), with the corresponding position in time 

given to the right of each fingerprint image. This first plate sample again shows no 

variation in the DW FP representations as the transducers are moved along the edges 

of the plate. The feature of interest highlighted varies little in its position. This 

indicates th a t the p itch/catch scanning configuration is inadequate for identifying 

surface cracks in the material.

The second plate scanned contained a dent only. Raw waveforms collected as 

the pair of transducers progress along the sample edges can be seen in Figure 3.12. 

It can be seen again tha t these signals are all very similar to  each other, with the 

time-domain representations unable to  highlight the dent. Figure 3.13 provides the 

DW FP representations of these same signals. The same feature described above, the 

first arriving mode indicated by the first DW FP peak, is identified and tracked again. 

It can be seen th a t there is a region of the sample where this feature shifts, indicating 

the presence of a discontinuity in the propagation caused by the dent. It follows 

th a t the pitch/catch scanning configuration is adequate for identifying dents in the 

material.
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Figure 3.11: DWFP representations of the pitch/catch raw waveforms showm in Figure 3.10 
from a sample with a crack only. For each individual DWFP image, a specific feature is 
identified and automatically tracked throughout the scan progression. The feature in this 
case is the first arriving mode, indicated by the first “peak" (in white) in time. For each 
following DWFP image, this feature is identified and highlighted by a red star (*), with the 
corresponding position in time given to the right of each fingerprint image.
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Figure 3.13: DWFP representations of the pitch/catch raw waveforms shown in Figure 
3.12from a sample with a dent only. For each individual DWFP image, a specific feature is 
identified and automatically tracked throughout the scan progression. The feature in this 
case is the first arriving mode, indicated by the first “peak" (in white) in time. For each 
following DWFP image, this feature is identified and highlighted by a red star (*), with the 
corresponding position in time given to the right of each fingerprint image.
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Crack D e tec tio n  - P u lse /E ch o  Scanning

We now use the same transm itting transducer in pulse/echo mode to determine if any 

energy is being reflected from either type of flaw to aid in detection. We again present 

results here for the two samples previously considered: one w ith a crack, and one with 

a dent. We first present the raw waveforms collected from interaction with the crack 

only, shown in Figure 3.14. The raw waveforms contain an initial high-amplitude 

portion th a t is a result of energy reflecting within the transducer itself. We window 

our search in the time-frame where a reflection would be expected to exist if present. 

It can be seen th a t these signals are all very similar to  each other, and all have a low 

signal-to-noise ratio making it difficult to easily detect any features identifying a flaw.

Figure 3.15 provides the DW FP representations of these same signals. For each 

individual DW FP image, a specific feature is identified and automatically tracked 

throughout the scan progression. The feature in this case is the  first peak “doublet” 

feature after the 65 //s mark, where a doublet is indicated by two fingerprint features 

existing for different scales at the same point in time. For each following DW FP image, 

this feature is identified and highlighted by a red star (*), w ith the corresponding 

position in time given to the right of each fingerprint image. If no such feature is found, 

the end point of the window is used. We can see th a t the D W FP representations of 

the pulse/echo signals are able to identify waveforms th a t correlate with the position 

of the crack if present.

The second plate under consideration contains a dent only. Raw waveforms col­

lected as the transducer progressed along an edge of the sample can be seen in Figure 

3.16. It is again clear th a t these signals are all very similar to  each other, with the 

low signal-to-noise ratios making it difficult to easily extract any information from 

them. Figure 3.17 provides the DW FP representations of these same signals. The 

same feature described above, the first peak “doublet” feature after the 65 fis mark, is
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Figure 3.14: Raw waveforms collected from a plate sample with a crack only, using a 
pulse/echo scanning configuration. The low signal-to-noise ratio makes it difficult to analyze 
these raw time-domain signals. The dotted lines indicate the windowed region used for the 
DWFP image generation.
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Figure 3.15: DWFP representations of the pulse/echo raw waveforms shown in Figure 3.14 
from a sample with a crack only. For each individual DWFP image, a specific feature is 
identified and automatically tracked throughout the scan progression. The feature in this 
case is the first peak “doublet” feature after the 65 /is mark, where a doublet is indicated 
by two fingerprint features existing for different scales at the same point in time. For each 
following DWFP image, this feature is identified and highlighted by a red star (*), with the 
corresponding position in time given to the right of each fingerprint image.
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again identified and tracked. It can be seen th a t there is no region in this scan where 

the feature is identified, indicating th a t this pulse/echo approach is not sufficient to 

identify dents.

For each of the DW FP images, we have identified and autom atically tracked in 

time a specific feature within the image. We summarize the extracted time locations 

of these features in Figure 3.18, where the extracted times are plotted against their 

position relative to  the plate. Vertical dotted lines indicate the actual (known) loca­

tions of each flaw present. We can clearly see th a t the p itch/catch waveforms are able 

to identify the dent, while the pulse/echo waveforms are able to identify the crack. 

This follows from the concept th a t the surface crack is not severe enough to  distort 

much of the propagating waveform, but still reflects enough energy to be identified 

back at the initial transducer location.

Crack A ngle D ependence

In order to  determine how the angle of the crack affects the reflected signal's energy 

with respect to the incident wave angle, an angle-dependence study was performed. A 

sample containing a large crack only, a dent without a crack, and a dent with a large 

crack were included here. A point in the center of the flaw (either the center of the 

dent, or the center of the crack) was chosen as the center of rotation, and the Rayleigh- 

Lamb transducers were placed 10 cm from this center point in 10° increments around 

the point of rotation up to a minimum of 120° away from the starting location. A 

pulse/echo measurement was taken at each location to  measure any energy reflected 

from the flaw.

Two features we extracted from the recorded pulse/echo signals are the arrival 

time of the reflected signal and the peak instantaneous am plitude of th a t reflection. 

The instantaneous amplitude is calculated by first calculating the discrete Hilbert
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transform of the signal s(t), which returns a version of the original signal with a 

90circ phase shift (preserving the am plitude and frequency content of the signal) [91]. 

The magnitude of this phase-shifted signal and the original signal is the instantaneous 

amplitude of the signal, another name for the signal’s envelope. The maximum of 

this instantaneous amplitude is what will now be referred to as the “peak energy” of 

the signal.

The first sample (Figure 3.19(a)), which did not have a crack present, did not re­

turn  any measurable reflected energy at any angle (Figure 3.19(b)). The two samples 

with cracks (Figure 3.19(c) and Figure 3.19(e)) both show a measurable reflection 

from the crack when the incident angle is normal to the crack, regardless of whether 

or not a dent is present (Figure 3.19(d) and Figure 3.19(f)). Incident angles tha t 

are 0-20° from normal still had measurable reflection energy, however incident angles 

beyond th a t did not have a significant measurable reflection. These results agree with 

expectations th a t the cracks would be highly directional in their detection.

3.2 .2  C orrosion D e te c tio n  in M arin e S tru ctu res

Structural health monitoring is an equally im portant area of research for the world’s 

navies. From corrosion due to  constant exposure to harsh salt-water environments, to 

the more recent issue of sensitization due to the cyclic day/night heat profile exposure 

of the open water, maritime vessels are in constant need of repair. The biggest cost 

in maintenance of these ships is often having to  pull them  out of services in order to 

characterize and repair any and all damage present. Navies and shipyards are actively 

researching intelligent monitoring systems th a t will provide constant feedback on the 

structural integrity of areas prone to these damages.

Lamb waves provide a natural approach to identifying corrosion in metals. Each 

mode’s group velocity is dependent on both the inspection frequency used as well
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Figure 3.19: A plate sample with a dent only (a). Results show no reflection above the 
noise level at any angle due to no crack being present (b). A plate sample with a dent and a 
large crack (c). Results show significantly higher reflection energy when the Rayleigh-Lainb 
waves were incident at an angle close to broadside (d). A plate sample with a large crack 
only (e). Results show highest reflection energy at normal incidence to the crack (f).
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as the material thickness (see Appendix A). Since corrosion can be thought of as a 

local material loss, it follows th a t mode velocities will change when passing through 

a corroded area. They will either speed up or slow down, depending on the modes 

and frequency-thickness product being used. Often several modes will propagate 

simultaneously within a structure and will overlap each other if they share a similar 

group velocity. As long as a frequency-thickness regime is chosen so th a t a single 

mode is substantially faster than the rest and therefore arrives earlier, most of the 

slower, jumbled modes can be windowed out of the signal. Key to utilizing Lamb 

waves for SHM is understanding this dispersion-curve behavior since this is what 

allows arrival time shifts to be correlated directly to m aterial thickness changes.

In order to reliably identify these arrival time shifts in Lamb wave signals, we 

again employ the dynamic wavelet fingerprint (DW FP) technique. The patterns in 

DW FP images then allow us to identify particular Lamb wave modes and directly 

track subtle shifts in their arrival times.

E xperim ental Setu p

Apprentice shipbuilders fabricated a ‘T ’-shaped plate sample made of 9.5 mm (3/8- 

inch) thick mild steel for testing, shown in Figure 3.20. The sample was first ground 

down slightly in several different areas on both  the top and bottom  surfaces to simulate 

the effects of corrosion. The sample was then covered in yellow paint, and a 1-inch 

thick green foam layer was bonded to both the top and bottom  surfaces. The sample 

was intended to be representative of bulkhead sections found in active Navy ships.

Shear wave contact transducers in a parallel pitch/catch scanning configuration 

were used to systematically scan the full length of the T-plate. A M atec3 TB1000 

pulser/receiver was paired with a Gage4 CS8012a, A /D  digitizer to collect data. We

3Northborough, MA (http://w w w .m atec .com /)
4Lockport, IL (h t tp : / /w w w .g a g e -a p p lie d .c o m /)
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Ground areas on bo th  sides

Figure 3.20: A 9.5 mm (3/8-inch) thick steel bulkhead sample used in this analysis (a). 
Several areas on the sample were ground down to introduce simulate wastage or corrosion. 
The sample was then covered in yellow paint and then a 1 inch thick insulating layer of 
green foam was bonded to the surface (b). In this picture, a section of the green foam has 
been removed over one of the several underlying thinned regions.
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selected a 0.78 MHz tone-burst excitation pulse for this inspection, giving a frequency- 

thickness product of 7.4 MHz-mm. This corresponds to an area of the dispersion 

curve where the S 2 mode is fastest and its group velocity is a t a maximum, shown 

in Figure 3.21. As the thickness of the plate decreases, i.e. a corroded region, the 

frequency-thickness will decrease resulting in a shifted, slower S 2 group velocity and 

therefore a later arrival time of the S2 mode. Because the entire T-plate sample was 

covered in the thick foam insulation, we removed a narrow strip  from the edges of 

the plate in order to have direct contact between the transducers and the material. 

The remaining foam was left on the sample for scanning. This insulation removal 

could be avoided if transducers were bonded to the material during the construction 

process. The transducers were stepped in parallel along opposing exposed edges of 

the T-plate in 1 cm steps through 29 to tal locations, covering the full length of the 

sample (projection 1). The sample was rotated 90° and the process was repeated for 

the remaining two edges (projection 2). This is illustrated in Figure 3.22.

In order to extract mode arrivals from the raw waveforms, we used the DW FP 

technique. We first filtered the raw waveforms with a 3rd-order Coiflets m other 

wavelet. We then used the DW FP to  generate 2D fingerprint images. These are 

used to  identify the features of interest, here the S 2 mode arrival, in the signals. 

Proper mode selection is especially im portant for this plate sample because of the 

thick rubbery coating on each surface. Some modes are strongly attenuated by such 

coatings, although we found th a t the S 2 mode was able to both propagate well and 

detect the thinning flaws.

R esu lts

The raw waveforms were converted to  DW FP fingerprint images for analysis. The 

mode of interest is the first arriving S2, so the signals were windowed around the
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Figure 3.21: Group velocity dispersion curve for steel. At a frequency-thickness product 
of 7.4 MHz-mm, the S2 mode is the fastest and therefore first arriving mode. If the wave 
propagates through an area of reduced thickness, the frequency-thickness product drops as 
well. This results in a slower S'2 mode velocity, and therefore a later arrival time.
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Projection 1

Transmit

Receive

Projection 2

Transm it Receive

Figure 3.22: Scanning layout of the steel bulkhead section. Two transducers are stepped in 
parallel down opposing edges of the sample, collecting a pitch/catch signal at each location 
(top). Their orientation is then rotated 90° relative to the sample, and they are similarly 
stepped down the remaining two edges of the sample (bottom).
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expected S 2 arrival time in order to observe any changes due to damage. A raw 

waveform is shown in Figure 3.23, with a windowed DW FP representation for both 

an unflawed raypath as well as one th a t passes through a flaw on the test sample. 

In each DW FP image, the red circle and corresponding red triangle indicate the 

automatically identified S 2 arrival time, provided to the right of each image. It was 

found th a t several areas along the length of the plate in each orientation had easily 

identifiable changes in S 2 mode arrival time from the 132.0 ps arrival time for the 

unflawed waveforms.

We can apply a simple threshold to these extracted mode arrival times, where any 

waveforms with arrival times later than  134.0 ps are labeled as “flawed” , and any tha t 

arrive before this threshold are labeled as “unflawed” . Since we collected data  along 

two spatial directions in projections 1 and 2, we can map out the  flawed vs. unflawed 

raypaths geometrically and identify any hot-spots where raypaths in both orientations 

identify a suspected flaw. This is illustrated in Figure 3.24, where “flawed” waveforms 

from each projection are indicated by gray, and any spatial areas th a t indicated 

“flaw” in both orientations highlighed in red. We also provide a photograph of the 

actual sample with the foam insulation completely removed for final identification 

of the flawed regions, indicated by the blue/w hite ovals in each subfigure. Excellent 

agreement was found between the suspected flaw locations and the sample’s actual 

flaws.

It should be noted th a t these results were collected by w ith transducers stepping 

in parallel (keeping straight across from each other) in two orthogonal directions, 

allowing us to do a reasonably good job of localizing and to some extent sizing the 

flaws. Two of the expected flaw areas are over-sized and there is one ‘ghost flaw" 

which isn’t actually present, but is due to  an artifact of the ‘shadows’ created by two 

alternate flaws. In order to more accurately localize and size flaws, it is necessary
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Figure 3.23: A raw Lamb wave signal (top) is first windowed around the region of interest, 
here the first mode arrival time. DWFP images of this region can then be compared 
directly between unflawed (middle) and flawed (bottom) signals. A simple tracking of the 
mode arrival time can be applied, shown here as the red dot and triangle with corresponding 
arrival time on the right of each image, allowing for identification of any flawed regions.
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Figure 3.24: Spatially overlaying the individual raypaths onto a grid of the bulkhead sample 
and thresholding their first mode arrival time, we can see agreement between our experi­
mentally identified “flawed” areas highlighted in red and the known thinned regions of the 
plate identified by the blue (top) and white (bottom) ellipses.
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incorporate information from Lamb wave raypaths at other angles. The formal way 

to do this is called Lamb wave tomography, which will be discussed in later sections.

3.3 Sum m ary

In this chapter, we have dem onstrated the usefulness of the dynamic wavelet finger­

printing technique for analysis of time-domain signals, w ith two specific applications 

in the field of structural health monitoring provided. We have discussed the advan­

tages of time-frequency signal representations, and the specific subset associated with 

time-scale wavelet transformations. We dem onstrated how the DW FP technique can 

be used to automatically identify differences between dents and subtle surface cracks 

in aircraft-grade aluminum through a combination of p itch /catch  and pulse/echo in­

spection configurations. Combined with straightforward image analysis techniques 

identifying and tracking specific features of interest within these DW FP images, we 

have shown how to implement a low-power, portable Rayleigh-Lamb wave inspec­

tion system for mapping flaws in airplane fuselages caused by incidental contact on 

runways. Additionally, we have presented a similar approach for the identification 

and localization of corrosion in marine structures. Even when the material is under­

neath a bonded layer of insulation, the guided wave modes were shown to reliably 

propagate the full length of the sample w ithout significant distortion of the wavelet 

fingerprints. Multiple simulated corrosion regions were identified using DW FP image 

analysis, again by identifying a specific feature of interest and tracking it.

These examples both make use of a DW FP feature identification technique, where 

the feature identified is specific to the application at hand. This is an im portant point, 

in that there is no one ‘magic’ feature we can identify th a t works across all applica­

tions. Here we had insight into the underlying physics of Lamb wave propagation,
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and were able to predict what types of features in the signals would correlate with 

the changes we were interested in identifying, i.e. changes in mode arrival time or 

structure due to some form of m aterial damage. For many time-domain signals we 

either do not have prior knowledge of expected signal changes, or they are too compli­

cated for analytical solutions th a t might provide insight into the physical interaction 

at hand. The DW FP analysis technique provides enough freedom for generating and 

isolating useful features of interest, however only an exhaustive search would guar­

antee the inclusion of the best features for a given application. Additionally, some 

feature changes may not be related to their position in time. For example, the shape of 

the fingerprint itself may change as a result of some physical interaction. Advanced 

processing techniques are therefore required for use in conjunction with the power 

behind the DW FP image representation. In the next chapter, we apply this DW FP 

framework to RFID signal analysis and introduce pattern  classification routines to 

distinguish between extracted DW FP features.
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C hapter 4

C lassification o f R adio-Frequency  

Identification  (R F ID ) Tags w ith  

W avelet F ingerprinting

4.1 Introduction

Radio frequency identification (RFID) tags are widespread throughout the modern 

world, commonly used in retail, aviation, health care, and logistics [92]. As the price 

of RFID technology decreases with advancements in m anufacturing techniques [93], 

new implementations of RFID technology will continue to arise. The embedding of 

RFID technology into currency, for example, is being developed overseas to poten­

tially cut down on counterfeiting [94]. Naturally, the security of these RF devices has 

become a primary concern. Using techniques th a t range in complexity from simple 

eavesdropping to reverse engineering [95], researchers have shown authentication vul­

nerabilities in a wide range of current RFID applications for personal identification 

and security purposes, with successful cloning attacks made on proximity cards [96],
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credit cards [97], and even electronic passports [98].

Basic passive RFID tags, which lack the resources to  perform most forms of cryp­

tographic security measures, are especially susceptible to privacy and authentication 

attacks because they have no explicit counterfeiting protections built in. These low- 

cost tags are the type found in most retail applications, where the low price favors 

the large quantity of tags required. One implementation of passive RFID tags is to 

act as a replacement for barcodes. Instead of relaying a sequence of numbers identi­

fying only the type of object a barcode is attached to, RFID tags use an Electronic 

Product Code (EPC) containing not only information about the  type of object, but 

also a unique serial number used to individually distinguish the  object. RFID tags 

also eliminate the need for line-of-sight scanning th a t barcodes have, avoiding scan­

ning orientation requirements. In a retail setting, these RFID rags are being explored 

for point-of-sale terminals capable of scanning all items in a passing shopping cart 

simultaneously [99]. W ithout security measures, however, it is straightforward to 

surreptitiously obtain the memory content of these basic RFID tags and reproduce a 

cloned signal [100].

An emerging subset of RFID short-range wireless communication technology is 

near field communication (NFC), operating within the high-frequency RFID band at 

13.56 MHz. Compatible with already existing RFID infrastructures, NFC involves 

an initiator tha t generates an RF field and a passive target, although interactions 

between two powered devices are possible. The smartphone industry is one of the 

leading areas for NFC research, as many manufacturers have begun putting NFC 

technology to their products. W ith applications enabling users to  pay for items such as 

groceries and subway tickets by waving their phone in front a machine, NFC payment 

systems are an attractive alternative to the m ultitude of credit cards available today 

[101]. Similarly, NFC-equipped mobile phones are being explored for use as boarding
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passes, where the passenger can swipe their handset like a card, even when its batteries 

are dead [102],

A variety of approaches exist to solve this problem of RFID signal authentication, 

in which an RFID system identifies an RFID tag as being legitim ate as opposed to a 

fraudulent copy. One such method involves the introduction of alternate tag-reader 

protocols, including the installation of a random number generator in the reader and 

tag [103], a physical proximity measure when scanning multiple tags simultaneously 

[104], or re-purposing the kill PIN in an RFID tag, which normally authorizes the 

deactivation of the tag [105].

Rather than changing the current tag-reader protocols, we approach this issue of 

RFID tag  authentication by applying a wavelet-based RF fingerprinting technique, 

utilizing the physical layer of RF communication. The goal is to identify unique 

signatures in the RF signal th a t provide hardware specific information. First pi­

oneered to identify cellular phones by their transmission characteristics [106], RF 

fingerprinting has been recently explored for wireless networking devices [107], wired 

Ethernet cards [108], universal software radio peripherals (USRP) [109] and RFID 

devices [64,110 112].

Our work builds on th a t of Bertoncini et al. [64], in which a classification rou­

tine was developed using a novel wavelet-based feature set to identify 150 RFID tags 

collected with fixed tag orientation and distance relative to the reader with RF shield­

ing. That da ta  set, however, was collected in an artificially protected environment 

and did not include physical proximity variations relative to the reader, one of the 

most commonly exploited benefits of RFID technology over existing barcodes. The 

resulting classifier performance therefore can’t be expected to translate  to real-world 

situations. Our goal is to collect signals from a set of 40 RFID tags with identical 

Electronic Product Codes (EPC) at a variety of orientation and RFID reader frequen­
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cies as well as over several days to test the robustness of the classifier. The effects of 

tag damage in the form of water submersion and physical crumpling are also briefly 

explored. Unlike Bertoncini et al., we use a low-cost USRP to record the RF signals in 

an unshielded RF environment, resulting in more realistic conditions and SNR values 

than previously examined.

4.2 C lassification O verview

The application of pattern  classification for individual RFID tag  identification begins 

with data collection, where each individual RFID tag is read and the  EPC regions are 

windowed and extracted from all of the tag-reader events. A feature space is formed by 

collecting a variety of measurements from each of the EPC regions. Feature selection 

then reduces this feature space to a more optimal subset, removing irrelevant features. 

Once a data  set has been finalized, it is then split into training and testing sets via a 

resampling algorithm, and the classifier is trained on the training set and tested on 

the testing set. The classifier output is used to predict a finalized class label for the 

testing set, and the classifier’s performance can be evaluated.

Each tag is given an individual class label, however we are only interested in 

whether or not a new signal corresponds to an EPC from the specific tag of interest. 

The goal for this application is to identify false, cloned signals trying to emulate the 

original tag. We therefore implement a binary one-against-one classification routine, 

where we consider one individual tag at a time (the classifier tag), and all other tags 

(the testing tags) are tested against it one at a  time. This assigns one of two labels 

to a testing signal, either uj =  1 declaring th a t the signal corresponds to an EPC 

from the classifier tag, or u  — —1 indicating th a t the signal does not correspond to 

an EPC from the classifier tag.
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4.3 M aterials and M eth od s

Avery-Dennison AD-612 RFID tags were used in this study, which follow the EPC- 

global UHF Class 1 Generation 2 (EPCGen2) standards [113]. There were 40 in­

dividual RFID tags available, labeled AD01, AD 02 , . . . ,  ADAQ. The experimental 

procedure involves writing the same EPC  code onto each tag  with a  Thing Magic 

Mercury 5e RFID Reader1 paired with an omni-directional antenna (Laird Technolo­

gies2). Stand-alone RFID readers sold today perform all of the signal amplification, 

modulation/demodulation, mixing, etc. in special-purpose hardware. While this is 

beneficial for standard RFID use where only the dem odulated EPC is of interest, it 

is inadequate for our research because we seek to extract the raw EPC  RF signal.

Preliminary work [64] collected raw RF signals through a vector signal analyzer 

recording 327.50 ms of data a t a 3.2 MHz sampling frequency, a laboratory-grade 

instrument often used in the design and testing of electronic devices. While the 

vector signal analyzer proved useful for da ta  collection in the preliminary work, it is 

not a practical tool tha t could be implemented in real-world applications. We thus 

explore the use of an alternate RF signal recording device, a software-defined radio 

(SDR) system. Software-defined radios are beneficial over standard RFID units as 

they contain their own A /D  converters and the m ajority of their signal processing 

is software controlled, allowing them to transm it and receive a wide variety of radio 

protocols based solely on the software used. The SDR system used here is from the 

Universal Software Radio Peripheral (USRP) family of products developed by E ttus 

Research LLC3, specifically the USRP2, paired with a GnuRadio [114] interface. W ith 

board schemes and open source drivers widely available, the flexibility of the USRP

1 Cambridge, MA (h ttp :/ /w w w .th ingm agic.com )
2St Louis, MI (h t tp : / /w w w .la ir d te c h .c o m )
3Mountain View, CA (h t tp : / /w w w .e t tu s .co m )
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system provides a simple and effective solution for our RF interface.

Antenna

Figure 4.1: Experimental setup for RFID data collection is shown, with the RFID reader, 
tag, antenna, connection to the VSA, and USRP2 software defined radio.

Data was collected in two separate sessions: the first taking place in an environ­

ment tha t was electromagnetically-shielded over the span of a  week, and the second 

without any shielding taking place a t William and Mary (W&M) over the span of 

two weeks. The first session included twenty-five individual AD-612 RFID tags la­

beled AD01 — AD25. The same EPC code was first w ritten onto each tag with the 

Thing Magic Mercury 5e RFID Reader, and no further modifications were performed 

to the tags. D ata was collected by placing one tag a t a tim e in a fixed position 

near the antenna. Tag transmission events were recorded for 3 seconds for each tag 

using the USRP2, saving all data  as a MATLAB format. Each tag was recorded 

at three different RFID reader operating frequencies (902, 915, and 928 MHz), with 

three tag orientations relative to the antenna being used at each frequency (parallel 

(PL), upside-down (UD), and a 45° oblique angle (OB)). The second session of data
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collection at W&M included a second, independent set of fifteen AD-612 RFID tags 

labeled AD26  — AD40. Similar to  before, the same EPC code was first w ritten onto 

each tag with the Thing Magic Mercury 5e RFID Reader.

The second session was different from the first in th a t the tags were no longer 

in a fixed position relative to the antenna, bu t rather simply held by hand near the 

antenna. This introduces additional variability into the individual tag-reader events 

throughout each signal recording. Tag transmission events were again recorded for 3 

seconds for each tag. D ata was collected at a single operating frequency (902 MHz) 

with a constant orientation relative to  the antenna (parallel (PL)), however data  was 

collected on four separate days allowing for environmental variation (tem perature, 

humidity, etc.). These tags were then split into two subsets, one of which was used 

for a water damage study while the other was used for a physical damage study. For 

the water damage, tags AD26  — AD32  were submerged in water for three hours, at 

which point they were patted  dry and used to record da ta  (labeled as Wet). They 

were then allowed to dry overnight, and again used to record d a ta  (Wet-to-Dry). For 

the physical damage, tags A D33 — AD 40  were first lightly crumpled by hand (Light 

Damage) and subsequently heavily crumpled (Heavy Damage). Pictures of the tag 

orientation variations as well as the tag damage can be seen in Figure 4.2.

From these data sets, four separate studies were performed. First, a frequency 

comparison was run in which the three operating frequencies were used as training 

and testing da ta  sets for the classifiers, collected while maintaining a constant PL 

orientation. Second, an orientation comparison was performed in which the three 

tag orientations were used as training and testing da ta  sets, collected at a constant 

902 MHz operating frequency. Third, the four days worth of constant PL and 902 

MHz hand-held recordings were used as training and testing d a ta  sets. Finally, the 

classifiers were trained on the four days’ worth of recordings, and the additional
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(a) Parallel (PL) (b) Oblique (OB) (c) Upside-down (UD)

(d) Water Damage (e) Light Damage (f) Heavy Damage

Figure 4.2: Tag orientations used for data collection. Parallel (PL) (a), oblique (OB) (b), and upside-down (UD) (c) can be seen, 
named because of the tag position relative to the antenna. Real-world degradation was also applied to the tags in the form of 
water submersion (d), as well as both light (e) and heavy (f) physical deformation.



damage da ta  sets were used as testing sets. The specific tags used for each comparison 

are summarized in Table 4.1.

Table 4.1: There were 40 individual Avery-Dennison AD 612 RFID tags used for this study, 
split into z subsets T>z for the various comparisons. Tag numbers r, are given for each 
comparison.

Comparison Type v z Tags Used (r,)
Frequency Variations 902, 915, 928 MHz i =  1, . . . , 25

Orientation Variations PL, UD, OB i =  1, . . . , 25
Different Day Recordings Day 1, 2, 3, 4 i =  26, . . . ,40

W ater Damage Wet, W et-to-dry i =  26, . . . ,32
Physical Damage Light, Heavy damage i =  33, . . . ,40

4.4 E P C  E xtraction

In most RFID applications, the RFID reader only has a few seconds to  identify a 

specific tag. For example, consumers would not want a car’s key-less entry system 

th a t required the user to stand next to the car for half a minute while it interrogated 

the tag. Rather, the user expects access to their car within a second or two of being 

within the signal’s range. These short transmission times result in only a handful of 

individual EPCs being transm itted, making it im portant th a t each one is extracted 

efficiently and accurately.

In our data  set, each tag’s raw recording is a roughly 3 second tag-to-reader 

communication. During this time there is continuous communication between the 

antenna and any RFID tags within range. This continuous communication is com­

posed of repeated individual tag-reader (T<t=>R) events. The structure and duration of 

each T<t4>R event is pre-defined by the specific protocols used. The AD-612 RFID tags 

are built to use the EPCCen2 protocols [113], so we can use the inherent structure 

within these protocols to automatically extract the EPCs within each signal.
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Previous attem pts at identifying the individual EPC codes w ithin the raw signals 

involved a fixed-window cross-correlation approach, where a manually extracted EPC 

region was required for comparison [64], W ith sm art window sizing, this approach 

can identify the majority of EPC regions within a signal. As the communication 

period is shortened and the number of EPCs contained in each recording decreases, 

however, this technique becomes insufficient.

We have developed an alternative technique th a t autom atically identifies compo­

nents of the EPCGen2 communication protocols. The new extraction algorithm is 

outlined in Program 1, with a detailed explanation to follow. It should be noted 

tha t the region identified as [EPC+] is a region of the signal th a t  is composed of a 

preamble which initiates the transmission, a protocol-control element, the EPC itself, 

as well as a final 16-bit cyclic-redundancy check.

The first step in the EPC extraction routine is to  window each raw signal by locat­

ing the portions tha t occur between reader transmission repetitions. These periods 

of no transmission are referred to here as “downtime” regions. These are the portions 

of the signal during which the RFID reader is not communicating with the tag at 

all. An amplitude threshold is sufficient to  locate the downtime regions, which divide 

the raw signal into separate sections, each of which contains several individual T<t4>R 

events. There is another short ‘dead’ zone between each individual T<t=>R event where 

the RFID reader stops transm itting briefly. Because of this, the upper envelope of 

the active communication region is taken and another am plitude threshold is applied 

to identify these dead zones, further windowing the signal into its individual T o R  

events.

Each individual T<t=>R event is then processed to  extract the  individual [EPC+] 

region within. First, the envelope of the T ^ R . event is taken, which highlights the 

back-and-forth communicating between the tag  and the RFID reader. The [EPC+]
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Program  1 The EPC extraction routine used to  find the EPC regions of interest for 
analysis.

For each tag AD01-AD40  {
Raw recorded signal is sent to  getEPC.m

o Find and window “downtime” regions between tag /reader 
communication periods 

o Envelope windowed sections, identify individual T<=»R events 
For each T43-R event

• Envelope the signal, locate flat [EPC+] 
region

•  Set start/finish bounds on [EPC+]
•  Return extracted [EPC+] regions 

Each extracted [EPC+] is sent to windowEPC.m
o Generate artificial Miller (M =4) modulated preamble 
o Locate preamble in recorded signal via cross-correlation 
o Identify all subsequent Miller (M =4) basis functions via cross­

correlation 
o Extract corresponding bit values
o Verify extracted bit sequence matches known EPC  bit sequence 
o Return s tart/end  locations of EPC region 

Save EPC regions
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region, being the longest in time duration out of all the communication, is relatively 

consistent in amplitude compared to the  up-and-down structure of the signal. There­

fore, a region is located tha t meets a flatness as well as time duration requirements 

corresponding to this [EPC+]. Once this [EPC+] region is found, an error check is 

applied th a t envelopes the region and checks this envelope for outliers th a t would 

indicate an incorrectly-chosen area.

The next step in this process is to extract the actual EPC from the larger [EPC+] 

region. For all Class 1 Gen 2 EPCs, the tags encode the backscattered data using ei­

ther FMO baseband or Miller m odulation of a subcarrier, the encoding choice made by 

the reader. The Thing Magic Mercury 5e RFID Reader uses Miller (M =4) encoding, 

the basis functions of which can be seen in Figure 4.3. The Miller (M =4) preamble is 

then simulated and cross correlated with the [EPC+] region to  determine its location 

within. From the end of the preamble, the signal is broken up into individual bits, 

and cross correlation is used to determine which bits are present for the remainder 

of the signal (positive or negative, 0 or 1). Upon completion, the bit sequence is 

compared to a second known bit sequence generated from the ou tput of the RFID 

reader’s serial log for verification, shown in Table 4.2. The bounds of this verified 

bit sequence are then used to window the [EPC+] region down to the EPC only. A 

single T<t=>R event as well as a close-up of a [EPC+] region can be seen in Figure 4.4.

The goal of the classifier is to identify individual RFID tags despite the fact tha t all 

the tags are of the same type, from the same manufacturer, and w ritten with the same 

EPC. The raw RFID signal s(t) is complex-valued, so an am plitude representation 

a(t)  is used for the raw signal [115]. An ‘optim al’ version of our signal was also 

reverse-engineered using the known Miller (M =4) encoding methods, labeled so(t). 

We then subtract the raw signal from the optim al representation, producing an EPC
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Miller Basis Functions 

data-0 data-1

i
1

•T3
a

»i(t) *j(t)
ii■i T

f  ° T time (t) time (t)

1<

«4(t) ■ -»,(t) Sj(t)*-*2<t)

Mlller-Slanallng S tate  Diagram

Figure 4.3: Excerpt from the EPC Class 1 Gen 2 Protocols showing the Miller basis functions 
and a generator state diagram [113].
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Figure 4.4: A single T »R . event with the automatically determined [EPC+] region high­
lighted in gray (a). Close-up view of a single [EPC+] region with the EPC itself highlighted 
in gray (b).
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Table 4.2: T h ing  M agic M ercury 5e R F ID  R eader Serial Log

17:05:
17:05:
17:05:
17:05:

30
17:05:
17:05:
17:05:
17:05:
17:05:
17:05:
17:05:
17:05:
17:05:
17:05:

30
17:05:
17:05:
17:05:
17:05:

31.625
31.671
31.671 
31.718 
08 33 
31.734
31.765
31.765
31.796
31.796
32.093
32.093
32.140
32.140 
32.187 
08 33 
32.203
32.234
32.234 
32.265

- TX(63))
- RX(63))
- TX(64))
- RX(64))
B2 D D  D 9 01 40 35 05 00 00 42 E7 CRC:4F31

00 29 CRC-.1D26
04 29 00 00 00 00 00 01 CRC:9756
03 29 00 07 00 CRC:F322
19 29 00 00 00 07 00 01 07 72 22 00 80 30 00

- TX(65))
- RX(65))
- TX(66))
- RX(66))
- TX(67))
- RX(67))
- TX(68))
- RX(68))
- TX(69))
- RX(69))

00 2A CRC:1D25
00 2A 00 00 CRC:01E8
00 2A CRC:1D25
00 2A 00 00 CRC:01E8
05 22 00 00 00 00 FA CRC:0845
04 22 00 00 00 00 00 01 CRC:7BA9
00 29 CRC:1D26
04 29 00 00 00 00 00 01 CRC:9756
03 29 00 07 00 CRC:F322
19 29 00 00 00 07 00 01 07 72 22 00 80 30 00

B 2 D D  D 9 01 40 35 05 00 00 42 E7 CRC:4F31
TX(70))
RX(70))
TX(71))
RX(71))

00 2A CRC:1D25 
00 2A 00 00 CRC:01E8 
00 2A CRC:1D25 
00 2A 00 00 CRC:01E8

EPC code (in hex) is in bo ld .
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error signal as well, labeled e p p c • These are summarized by:

s(t.) = r(t) +  ic(t)

a{t) = y / r2(t) + c2(t) (4.1)

eEPc(t) =  S o ( t )  — s(L)

This signal processing step of reducing the complex-valued s(t)  to  either a(t)  or

gepc(I-) will be referred to  as EPC compression. A signal th a t has been compressed 

using either one of these methods will be denoted s(t) for generality. Figure 4.5 

compares the different EPC compression results on a typical complex RFID signal.

4.5 Feature G eneration

For each RFID tag r i? where i is indexed according to the range given in Table 4.1, the 

EPC extraction routine produces iV-many different EPCs Si j ( t ), j  = 1 , . . . .  TV. Four 

different methods are then used to extract features from these signals: Dynamic

Wavelet Fingerprinting (DW FP), Wavelet Packet Decomposition (W PD), higher- 

order statistics, and Mellin transform  statistics. Using these methods, M  feature

values are extracted which make up the feature vector X  = k = 1 M. It

should be noted here tha t due to the com putation time required to  perform this anal­

ysis, the computer algorithms were adapted to run on William and M ary’s Scientific 

Computer Cluster4.

D W F P

The DW FP technique described in Section 3.1.1 are used to generate a subset of the 

features used for classification. Wavelet-based measurements provide the ability to

4h ttp ://w w w .com psci.w m .edu/SciC lone/
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Figure 4.5: The different EPC compression techniques are shown here, displaying the real 
r(t) and imaginary c(t) components of a raw [EPC+] region (black and gray, respectively, 
top), the amplitude a(t) (middle), and the EPC error eEPc{t) (bottom). The EPC portion 
of the [EPC+] signal is bound by vertical red dotted lines.

80



decompose noisy and complex information and patterns into elem entary components. 

To summarize this process, the DW FP technique first applies a continuous wavelet 

transform on each original time domain signal [37]. The resulting coefficients

are then used to generate “fingerprint”-type images Ii j(a,b)  th a t are coincident in 

time with the raw signal. Mother wavelets used in this study include the Daubechies- 

3 (db3), Symelet-5 (sym5), and Meyer (meyr) wavelets, chosen based on preliminary 

results.

Since pattern  classification uses one-dimensional feature vectors to  develop deci­

sion boundaries for each group of observations, the dimension of the binary fingerprint 

images Iij(a,  b) th a t are generated for each EPC signal needs to be reduced. A sub­

set of v individual values th a t best represent the signals for classification will be 

selected. The number v [v < M)  of DW FP features to select is arbitrary, and can be 

adjusted based on memory requirements and computation tim e restraints. For this 

RFID application, we consider all cases of u G [1, 5,10, 15, 20, 50, 75,100].

Using standard MATLAB routines5, the feature extraction process consists of 

several steps:

1. Label each binary image with individual values for all sets of connected pixels.

2. Re-label concentric objects centered around a common area (useful for the ring­

like features found in the fingerprints).

3. Apply thresholds to  remove any insignificant objects in the images.

4. Extract features from each labeled object.

5. Linearly interpolate in time between individual fingerprint locations to generate 

a smoothed array of feature values.

5MATLAB’s Image Processing Toolbox (MATLAB, 2008, The Mathworks, Natick, MA.).
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6. Identify points in time where the feature values are consistent among individual 

RFID tags yet separable between different tags.

The binary nature of the images allows us to consider each pixel of the image as 

having a value of either 1 or 0. The pixels with a value of 0 can be thought of as 

the background, while pixels with an value of 1 can be though of as the significant 

pixels. The first, step in feature extraction is to assign individual labels to each set 

of 8-connected components in the image [116], dem onstrated in Figure 4.6. Since 

the fingerprints are often concentric shapes, different concentric "rings” are often not 

connected to each other, but still are components of the same fingerprint object. 

Therefore, the second step in the process is to re-label groups of concentric objects 

using their center of mass, which is the average time-coordinate of each pixel, demon­

strated in Figure 4.7. The third step in the feature extraction process is to remove 

any fingerprint objects from the image whose area (sum of the pixels) is below a 

particular threshold. Objects th a t are too small for the com putations in later steps 

are removed, however this threshold is subjective and depends on the m other wavelet 

used.

At this point in the processing, the image is ready for features to be generated. 

Twenty-two measurements are made on each remaining fingerprint object, including 

the area, centroid, diameter of a circle with the same area, Euler number, convex im­

age, solidity, coefficients of 2nd and 4th degree polynomials fit to  the  fingerprint bound­

ary, as well as m ajor/m inor axis length, eccentricity, and orientation of an ellipse tha t 

has the same normalized second central moment as the fingerprint. For more details 

on these features, see Reference [63]. The property measurements result in a sparse 

property array 'Pi,j,„[£], where n  represents the property index n =  1 , . . .  ,22, since 

each extracted value is matched to  the time value of the corresponding fingerprint's 

center of mass. Therefore, these sparse property vectors are linearly interpolated to
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(b)

Figure 4.6: An example of 8-connectivity (a) and its application on a binary image (b).
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Figure 4.7: An example of the fingerprint labeling process. The components of the binary 
image (a) and the resulting 8-connected components (b), where each label index corresponds 
to a different index on the ’hot’ colormap in this image. Concentric objects are then re­
labeled (c), resulting in unique labels for each individual fingerprint object, shown here as 
orange and white fingerprint objects for clarity.

84



produce a smoothed vector of property values, Vij,n(t). This process is shown for a 

typical time-domain EPC signal in Figure 4.8.

Once an array of fingerprint features for each EPC has been generated, it still 

needs to be reduced into a single vector of Z/'-many values to be used for classification. 

W ithout this reduction, not only is the feature set too large to process even on a 

computing cluster, but most of the information contained within it is redundant. 

Since we are implementing a one-against-one classification scheme, where one testing 

tag (rt) will be compared against features designed to identify one classifier tag (rc), 

we are looking for features values th a t are consistent among each individual RFID 

tag, yet separable between different tags.

First, the dimensionality of the property array is reduced by calculating the inter­

tag mean property value for each tag r,.

Each inter-tag mean vector is then normalized to the range [0,1]. Next, the difference 

in inter-tag mean vectors for property n  are considered for all binary combinations of 

tagS T jj , Tj2 ,

for values of i shown in Table 4.1. We are left with a single vector representing the 

average intra-class difference in property n  values as a function of time.

Similarly, we compute the standard deviation within each class,

We next identify the maximum value of standard deviation among all tags r t at each

(4.2)

(4.3)

(4.4)
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Figure 4.8: The DWFP is applied to an EPC signal Si,j(t), shown in gray (a). A close-up of 
the signal is shown for clarity (b), from which the fingerprint image (c) is generated, shown 
here with white peaks and gray valleys for distinction. Each fingerprint object is individually 
labeled and localized in both time and scale (d). A variety of measures are extracted from 
each fingerprint and interpolated in time, including the area of the on-pixels for each object 
(e), as well as the coefficients of a fourth-order polynomial (vix4 + pox3 + p-ix2 + m  +Ps) 
fit to the boundary of each fingerprint object, with coefficients ps shown here (f).
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point in time t, essentially taking the upper envelope of all values of cr^n{t),

an(t) = max (cri>n( t ) ) . (4.5)
i

Times tm, where m  = 1 , . . . ,  u, are then identified for each property n at which the the 

average intra-class difference dn(tm) is high while the inter-class standard deviation 

0n(tm) remains low. The resulting DW FP feature vector for E PC  signal is

=  P * {tm)■

W avelet P acket D eco m p o sitio n

Another wavelet-based feature used in classification is generated by Wavelet Packet 

Decomposition [25]. First, each EPC signal is filtered using a stationary wavelet 

transform and removing the first 3 levels of detail as well as the highest approximation 

level. A Wavelet Packet Transform (W PT) is applied to the filtered waveform with 

a specified m other wavelet and the number of levels to  decompose the waveform, 

generating a tree of coefficients similar in nature to  the continuous wavelet transform. 

From the W PT tree, a vector containing the percentages of energy corresponding to 

the T  terminal nodes of the tree is computed, known as the wavelet packet energy. 

Because the W PT is an orthonorm al transform, the entire energy of the signal is 

preserved in these terminal nodes [117]. The energy m atrix Ej  for each RFID tag r, 

for can then be represented as

Ei =  [ej.j, e 2.i, - • ■, eyv,i] (4-6)
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where N  is the number of EPCs extracted from tag tu and ejj[fe] is the energy from 

bin number 6 =  1 , . . .  , T  of the energy map for signal j  =  1, , N.  Singular value 

decomposition is then applied to each energy m atrix E x:

E i =  U & iV ;  (4.7)

where Ul is composed of T-element left singular column vectors ip,,

Ui =  [ui,i,u2>j, . . .  , u . (4.8)

The £j m atrix is a T  x N  singular value matrix. The row space and nullspace of E, 

are defined in the N  x  N  m atrix V * , and are not used in the analysis of the energy 

maps. For the energy matrices E ix we found th a t there was a dom inant singular value 

relative to the second highest singular value, implying th a t there was a dominant 

representative energy vector corresponding to the first singular vector uq From the 

set of all singular vectors u^i, the significant bins th a t have energies above a given 

threshold are identified. The threshold is lowered until all the vectors return a com­

mon significant bin. Finally, the W PT elements corresponding to the extracted bin 

are used as features. In the case of multiple bins being selected, all corresponding

W PT elements are included in the feature set. Wavelet packet decomposition uses

redundant basis functions and can therefore provide arbitrary  time-frequency resolu­

tion details, improving upon the wavelet transform  when analyzing signals containing 

close, high frequency components.

S ta tistica l F eatures

Several statistical features were generated from the raw EPC signals [20]:



1. The mean of the raw signal

1 1 t

where |s| is the length of Sjj(f)

2. The maximum cross-correlation of s, j ( / )  with another EPC  from the same tag, 

suk(t), where Tj = rk

3. The Shannon entropy

max (e

]rs^(f)in(i^(t))
t

4. The unbiased sample variance

~  E (-mo -

5. The skewness (third central moment)

3 | si — f c j ) 3
t

6. The kurtosis (fourth central moment)

=  rrA I SI ^  ~~ A*ij)
4

Statistical moments provide insight by highlighting outliers due to any specific flaw- 

type signatures found in the data.
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M ellin  F eatures

The Mellin transform is an integral transform, closely related to the Fourier transform 

and the Laplace transform, tha t can represent a signal in terms of a physical a ttribu te  

similar to frequency known as scale. The /3-Mellin transform is defined as [119]

for the complex variable p  =  —j c  +  8 . w ith fixed param eter (3 € R and independent 

variable c e f .  This variation of the Mellin transform  is used because the (3 param eter 

allows for the selection of a variety of more specific transforms. In the case of (3 = 

1/2, this becomes a scale-invariant transform, meaning invariant to compression or 

expansion of the time axis while preserving signal energy, defined on the vertical line 

p = —jc  + 1 / 2 .  This scale transform is defined as

This transform has the key property of scale invariance, which means th a t s' is a scaled 

version of a function ,s, they will have the same transform magnitude. Variations in 

each RFID tag ’s local oscillator can lead to slight but measurable differences in the 

frequency of the returned RF signal, effectively scaling the signal. Zanetti et al. call 

this the time interval error (TIE), and extract the TIE directly to use as a feature for 

individual tag classification [111]. We observed this slight scaling effect in our data  

and therefore explore the use of a scale-invariant feature extraction technique.

The Mellin transform ’s relationship with the Fourier transform can be highlighted

(4.9)

(4.10)
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by setting ft = 0, which results in a logarithmic-time Fourier transform:

■jc( In t) (4.11)

Similarly, the scale transform of a function s(t) can be defined using the Fourier 

transform of g(t) = S(el):

References [119,120] discuss the complexities associated w ith discretizing the fast 

Mellin transform (FMT) algorithm, as well as provide a MATLAB-based implemen-

step along with the number of samples needed for a given signal in order to ex­

ponentially resample it, an example of which can be seen in Figure 4.9. Once the 

exponential axis has been defined, an exponential point-by-point, multiplication with 

the original signal is performed. A fast Fourier transform (FFT) is then computed, 

followed by an energy normalization step. This process is summarized in Figure 4.10.

Once the Mellin transform is computed, features are extracted from the resulting 

Mellin domain including the mean of the Mellin transform, as well as the standard de­

viation, the variance, the second central moment, the Shannon entropy, the kurtosis, 

and the skewness of the mean-removed Mellin transform [22,23].

Since the goal of our classification routine is to distinguish individual RFID tags from 

nominally identical copies, each individual RFID tag is assigned a unique class label.

6h ttp ://p ro fs .sc i.u n iv r.it/~ d esen a /F M T

(4.12)

tation6. The first step in implementing this is to  define both an exponential sampling

4.6 Classifier D esign
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Uniform sampling
*-----•-----*-----*-----*-----*-----*-----*-----m

Exponential resampling
»  ♦  «  «  »  »— * — *  *  *  *  *  *

I--------------1_________ 1_________ !_________
0 2 4 6 8 10

Time (s)

Figure 4.9: An example of uniform sampling (in blue, top) and exponential sampling (in 
red, bottom).

This results in a multiclass problem, with the number of classes being equivalent 

to the number of tags being compared. There are two main methods which can 

be used to address multiclass problems. The first uses classifiers th a t have multi­

dimensional discriminant functions, which often output classification probabilities for 

each test object th a t then need to be reduced for a final classification decision. The 

second method uses a binary comparison between all possible pairs of classes utilizing 

a two-class discriminant function, w ith a voting procedure used to  determine final 

classification. We have discussed in Section 4.2 our choice of the binary classification 

approach, allowing us to include intrinsically two-class discriminants in our analysis. 

Therefore, only two tags will be considered against each other at a time, a classifier 

tag rc £ V R and a testing tag  rt £  P T, where V R represents the training data set 

used and T>t  the testing data set, outlined in Table 4.1.

For each binary combination of tags (rc, r t ), a training set (R) is generated com­

posed of feat ure vectors from fc-many EPCs associated with tags rc and rt from data 

set T>r . Corresponding known labels (a^) are =  1 when k  £ c, and cj/t =  — 1 when
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right), the signal resampled according to the exponential axis (middle, left), this same 
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resulting Mellin domain representation (bottom).
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k  G t. The testing set (T) is composed of feature vectors of tag  rt only from data  

set T>t , where predicted labels are denoted yp =  ±1. In other words, the classifier is 

trained on data from both tags in the training d a ta  set and tested on the testing tag 

only from the testing da ta  set. W hen T>r =  V-p■ which means the classifier is trained 

and tested on the same da ta  set, a holdout algorithm is used to  split the data  into R  

and T  [63].

The problem of class imbalance, where the class labels uip are unequally distributed 

(i.e. |uik =  1| |o'k =  — 11, or vice versa), can affect classifier performance and has 

been a topic of further study by several researchers [121 123]. While the number of 

EPCs extracted from each tag here does not present a significant natural imbalance 

as all recordings are approximately the same length in time, it is not necessarily true 

tha t the natural distribution between classes, or even a perfect 50:50 distribution, are 

ideal. To explore the effect of class imbalance on the classifier performance, a variable 

p is introduced here, defined as

N  =  k e R
K  = i|

This variable defines the ratio of negative versus positive EPC  labels in R, with 

p £ Z +. When p =  1, the training set T  contains an equal number of EPCs from tags 

r c as it does rt where under-sampling is used as necessary for equality. As p increases, 

additional tags are included at random from r m, m  ^  c , t  w ith u>m =  — 1 until p is 

satisfied. When all of the tags in T>r are included in the training set, p is denoted as 

‘all’.

The process of selecting which classifiers to use is a difficult problem. The No Free 

Lunch Theorem states that there is no inherently best classifier for a particular ap­

plication, and often times in practice several classifiers are compared and contrasted.
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As previously discussed, there exists a hierarchy of possible choices th a t are applica­

tion dependent. We have previously determined th a t supervised, statistical pattern  

classification techniques using both param etric and nonparam etric probability-based 

classifiers are appropriate for consideration.

For parametric classifiers, we include a linear classifier using normal densities 

(LDC) and a quadratic classifier using normal densities (QDC). For nonparametric 

classifiers, we include a fc-nearest-neighbor classifier (KNNC) for k = 1,2,3, and a 

linear support vector machine (SVM) classifier. The m athem atical explanations for 

these classifiers can be found in [1,2,4-6,9,124-127]. For implementation of these 

classifier functions, we use routines from the MATLAB toolbox PRTools [126].

For the above classifiers th a t output densities, a function is applied tha t converts 

the output to a proper confidence interval, where the sum of the  outcomes is one for 

every test object. This allows for comparison between classifier outputs. Since each 

E PC ’s feature vector is assigned a confidence value for each class, the final label is 

decided by the highest confidence of all the classes.

4.7 Classifier Evaluation

Since we have implemented a binary classification algorithm, a confusion matrix 

C(c, t), where r c is the classifier tag and r t is the testing tag, can be used to view the 

results of a given classifier. Each entry in a confusion m atrix represents the number 

of EPCs from the testing tag th a t are labeled as the classifier tag, denoted by a label 

of yt =  1, and is given by

C(c.t) = — ——  ̂ when t c 6 R , r t E  T  (4.14)b/i Ii i
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A perfect classifier would therefore have values of C =  1 whenever rc =  rt (on the 

diagonal) and values of C =  0 when rc ^  rt (off-diagonal). Given the number of clas­

sifier configuration parameters used in this study, it does not make sense to compare 

individual confusion matrices to  each other to determine classifier performance. Each 

entry of the confusion matrix is a measure of the number of EPCs from each testing 

set that are determined to belong to each possible training class. We can therefore 

apply a threshold h to each confusion matrix, where the value of h lies within the 

range [0,1]. All confusion m atrix entries th a t are above this threshold are positive 

matches for class membership, and all entries below the threshold are identified as 

negative matches for class membership. It follows th a t we can determine the number 

of false positive (/+), false negative, ( /_),  true positive(£+), and true negative (£_) 

rates for each confusion matrix, given by

f+(h)  =  |£(c, t) > h \ , c ^ t

t+(h) = \C(c,t) > h\, c =  t
(4.15)

f - ( h )  = \C(c,t) < h\,c = t

t - ( h ) =  |£(e, t) < h\, c t

From these values, we can calculate the sensitivity (x) and specificity (t/>),

x W  - t + ( h ) + f ~ ( h )  jgN

th(h) =  ^ _V W  t - ( h ) + f + ( h )

The concept of sensitivity and specificity values is inherent in binary classification, 

where testing data is identified as either a positive or negative m atch for each possible 

class. High values of sensitivity indicate th a t the classifier successfully classified most 

of the testing tags whenever the testing tag  and classifier tag were the same, while
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high values of specificity indicate th a t the classifier successfully classified most of the 

testing tags being different than  the classifier tag whenever the testing tag and the 

classifier tag were not the same. Since sensitivity and specificity are functions of the 

threshold h, they can be plotted with sensitivity (x(h))  on the y-axis and 1—specificity 

(1 — ip(h)) on the x-axis for 0 <  h < 1 in what is known as a receiver operatic 

characteristic (ROC) [128]. The resulting curve on the ROC plane is essentially a 

summary of the sensitivity and specificity of a binary classifier as the threshold for 

discrimination changes. Points on the diagonal line y = x  represent a result as good as 

random guessing, where classifiers performing better than  chance have curves above 

the diagonal in the upper left-hand corner of the plane. The point (0,1) corresponding 

to  x  =  1 and tjj =  1 represents perfect classification.

The area under each classifier’s ROC curve (|AUC|) is a common measure of a 

classifier’s performance, and is calculated in practice using simple trapezoidal inte­

gration. Higher |AUC| values generally correspond to classifiers with better perfor­

mance [129]. This is not a strict rule, however, as a classifier with a higher |AUC| 

may perform worse in specific areas of the ROC plane than  another classifier with a 

lower |AUC| [130]. Several example confusion matrices can be seen in Figure 4.11, 

where each corresponding |AUC| value is provided to highlight their relationship to 

performance. It can be seen th a t the confusion m atrix with the highest |AUC| has a 

clear, distinct diagonal of positive classifications while the lowest |AUC| has positive 

classifications scattered throughout the matrix.

The use of |AUC| values for directly comparing classifier performance has recently 

been questioned [131,132], identifying the information loss associated with summa­

rizing the ROC curve distribution as a main concern. We therefore do not use |AUC| 

as a final classifier ranking measure. Rather, they are only used here to narrow the 

results down from all the possible classifier configurations to a smaller subset of the
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Figure 4.11: A comparison of confusion matrices C for classifiers of varying performance, 
with 0 —> black and 1 —> white. A perfect confusion matrix has values of C = 1 whenever 
rc = rt, seen as a white diagonal here, and values of £  =  0 whenever t c +  r t , seen as a 
black off-diagonal here. In general, jAUC| =  1 corresponds to a perfect classifier, while 
|AUC| =  0.5 performs as well as random guessing. This trend can be seen in the matrices.
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‘best’ ones. The values of x ( h )  and vj(h') are still useful measures of the remaining top 

classifiers. At this point, however, they have been calculated for a range of threshold 

values tha t extend over 0 < h < 1. A variety of methods can be used to determine 

a final decision threshold h for a given classifier configuration, the choice of which 

depends heavily on the classifier’s final application. A popular approach involves 

sorting by the minimum number of misclassifications, m in (/+ +  /_) ,  however this 

does not account for differences in severity between the differnt types of misclassifica­

tions [133]. Instead, the overall classifier results were sorted here using their position 

in the ROC space corresponding to the Euclidean distance from the point (0,1) as a 

metric. Formally, this is

dROc ( h )  = v / ( x - l ) 2 +  ( l - ^ ) 2- (4-17)

For each classifier configuration, the threshold value h  corresponding to the minimum 

distance was determined,

h  =  argm indROc(h) =  { h \ \ / t i  : d ROC{ t i )  >  d ROC( h ) } .  (4.18)
h

In other words, h is the threshold value corresponding to  the point in the ROC space 

tha t is closest to the (0,1) ‘perfect classifier’ result. The classifier configurations are 

then ranked by the lowest distance d Ro c ( h ) .  Figure 4.12 shows an example of the

ROC curves for the classifiers th a t are generated from the confusion matrices found

in Figure 4.11. In it, the point corresponding to h, is indicated by a circle, with the 

(0,1) point indicated by a star.
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Figure 4.12: ROC curves for the classifiers corresponding to the confusion matrices in Figure 
4.11, with |AUC| =  0.9871 (dotted line), |AUC| =  0.8271 (dash-dot line), |AUC| =  0.6253 
(dashed line), and |AUC| =  0.4571 (solid line). The ‘perfect classifier’ result at (0,1) in 
this ROC space is represented by the black star (*), and each curve’s closest point to this 
optimal result at threshold h is indicated by a circle (o).

4.8 R esu lts

Frequency C om parison

The ultra-high-frequency (UHF) range of RFID frequencies spans from 868-928 MHz, 

however in North America UHF can be used unlicensed from 902-928 MHz (±  13 MHz 

from a 915 MHz center frequency). We test the potential for pattern  classification 

routines to uniquely identify RFID tags at several of operating frequencies within 

this range. D ata collected at three frequencies (902, 915, and 928 MHz) while being 

held at a single orientation (PL) were used as training and testing frequencies for 

the classifier. Only amplitude (a(t)) signal compression was used in this frequency 

comparison.

Table 4.3 shows the top individual classifier configuration for the RFID reader 

operating frequency comparison. Results are presented as sensitivity and specificity 

values for the threshold value h th a t corresponds to  the minimum distance dptoc ’n 

the ROC space. Similarly, confusion matrices are presented in Figure 4.13 for each
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classifier configuration listed in Table 4.3.

The classifier performed well when trained on the da ta  set collected at 902 MHz, 

regardless of what frequency the testing data  was collected. Accuracies were above 

94.6% for all three testing frequencies, and sensitivity (x(h))  and specificity (^(h))  

values were all above 0.943, very close to the ideal value of 1.000. These confusion 

matrices shown in Figure 4.13(a) - (c) all display the distinct diagonal line which 

indicates accurate classification. W hen the classifier was trained on either the 915 

MHz or 928 MHz data  sets, however, the classification accuracy was low. Neither 

case was able to identify tags from other frequencies very well, even though they did 

well classifying tags from their own frequency. When D R =  915 MHz and DT = 928 

MHz, for example, the |AUC| value was only 0.5195, not much higher than  the 0.5000 

value associated with random guessing. The corresponding confusion m atrix (Figure 

4.13(f)) shown no diagonal but instead vertical lines a t several predicted tag labels, 

indicating tha t the classifier simply labeled all of the tags as one of these values.

O rientation C om parison

A second variable tha t is inherent in real-world RFID application is the orientation rel­

ative to the antenna at which the RFID tags are read. This is one of the main reasons 

why RFID technology is considered advantageous compared to  traditional barcodes, 

however antenna design and transmission power variability results in changes in the 

size and shape of the transmission field produced by the antenna [134], It follows 

that changes in the tag orientation relative to this field will result in changes in the 

pre-demodulated RF signals. To test how the pattern  classification routines will be­

have with a changing variable like orientation, data  was collected at three different 

orientations (PL, OB, and UD) while being held a t a common operating frequency 

(902 MHz). This data  was used as training and testing sets for the classifiers. Again.
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Table 4.3: The classifier configurations ranked by dnoc{h) over all values of the classifier configuration variables when trained 
and tested on the frequency parameters 902, 915, and 928 MHz. V r  and T>t  correspond to the training and testing data sets, 
respectively, p represents the ratio of negative versus positive EPCs in the training set. The threshold h corresponding to the 
minimum distance oc is presented, along with the values of x(fi) and ip(h).

V r V r
Classifier Configuration

|AUC|
Results

Accuracy
(%)

#D W FP 
Features (v)

Classifier P X(h) i)(h) h (%)

902 902 100 QDC (MATLAB) 3 0.9983 1.000 0.997 96.6 99.7
902 915 1 LDC (PRTools) 5 0.9898 1.000 0.943 8.5 94.6
902 928 50 3NN 1 0.9334 0.960 0.950 10.9 95.0
915 902 1 LDC (PRTools) 12 0.4571 0.640 0.543 2.3 54.7
915 915 1 QDC (MATLAB) 9 0.9977 1.000 0.995 82.2 99.5
915 928 10 LDC (MATLAB) all 0.5195 0.720 0.538 1.9 54.6
928 902 10 INN 3 0.4737 0.520 0.757 9.1 74.7
928 915 1 LDC (MATLAB) 7 0.6587 0.880 0.498 2.0 51.4
928 928 75 QDC (MATLAB) 2 1.0000 1.000 1.000 86.9 100.0
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Figure 4.13: Confusion matrices (£) for the classifier configurations corresponding to the 
minimum distance dYioc{h) over all combinations of ( V r , Vr)  where V r , V t  € 902, 915, 
928 MHz (a) - (i). Values of C range from [0, 1] with 0 —> black and 1 —> white here.
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only amplitude (oc(t)) signal compression was used.

Table 4.4 shows the top individual classifier configuration for the RFID tag ori­

entation comparison. Results are presented as sensitivity and specificity values for 

a threshold value h tha t corresponds to the minimum distance dROc in the ROC 

space. Similarly, confusion matrices are presented in Figure 4.14 for each classifier 

configuration listed in Table 4.4.

Similar to the frequency results, the classification results again show a single orien­

tation th a t performs well as a training set regardless of the subsequent tag orientation 

of the testing set. When trained on data  collected at the parallel (PL) orientation, 

the classification accuracies range from 94.9% to  99.7% across the three testing tag  

orientations. Values of x(h)  range from 0.880 - 1.000, meaning th a t over 88% of the 

true positives are correctly identified, and ift(h) values range from 0.952 - 0.997, in­

dicating th a t over 95% of the true negatives are accurately identified as well. These 

accuracies are verified in the confusion m atrix representations found in Figure 4.14(a) 

- (c). When the classifiers are trained on either the oblique (OB) or upside-down (UD) 

orientations, we again see th a t the classifiers struggles to  identify testing data  from 

alternate tag orientations. The best performing of these results is for D R = OB and 

D t  =  PL, where x{h) =  0.920 and tp(h) =  0.770 suggesting accurate true positive 

classification with slightly more false positives as well, resulting in an overall accuracy 

of 77.6%. When DR = UD, the testing results are again only slightly better than 

random guessing, with |AUC| values of 0.5398 for DT =  PL and 0.5652 for DT =  OB.

D ifferent D ay C om parison

We next present classification results when data  recorded on multiple days were used 

as training and testing data sets. The following analysis provide a better understand­

ing of how signals taken from the same tag, same frequency, same orientation, but in
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Table 4.4: The classifier configurations ranked by dRocUO over all values of the classifier configuration variables when trained and 
tested on the orientation parameters PL, UD, and OB. V r and V r correspond to the training and testing data sets, respectively, p 
represents the ratio of negative versus positive EPCs in the training set. The threshold h corresponding to the minimum distance 
dftoc is presented, along with the values of y(h) and ip{h).

V R V T
Classifier Configuration

|AUC|
Results

Accuracy
(%)

#D W FP 
Features (u)

Classifier P X $ h (%)

PL PL 1 QDC (MATLAB) 13 0.9979 1.000 0.997 88.9 99.7
PL UD 75 3NN 1 0.9489 0.960 0.953 12.1 95.4
PL OB 20 INN 1 0.8627 0.880 0.952 2.8 94.9
UD PL 10 LDC (MATLAB) 19 0.5398 0.680 0.658 2.9 65.9
UD UD 1 QDC (MATLAB) 5 0.9994 1.000 0.995 73.6 99.5
UD OB 5 LDC (MATLAB) 15 0.5652 0.680 0.622 1.9 62.4
OB PL 10 LDC (MATLAB) 13 0.8250 0.920 0.770 5.8 77.6
OB UD 5 INN 4 0.6042 0.760 0.622 1.9 62.7
OB OB 75 QDC (MATLAB) 2 1.0000 1.000 1.000 47.7 100.0
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Figure 4.14: Confusion matrices (£) for the classifier configurations corresponding to the 
minimum distance c?roc(^) over all combinations of ( V r ,  V r )  where V r , V r  e PL, UD, 
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subsequent recordings on multiple days are comparable to each other. It is im portant 

to note tha t the data  used here was collected w ith the RFID tag  being held by hand 

above the antenna. While it was held as consistently as possible, it was not fixed 

in position. Additionally, each subsequent recording was done when environmental 

conditions were intentionally different from the previous recordings (humidity, tem ­

perature, etc.). D ata was collected on four different days (Day 1, 2, 3, and 4). This 

data was used as training and testing sets for the classifiers. Amplitude (a(t)) as well 

as EPC error (eEPc(t)) were both used as signal compression methods.

Table 4.5 shows the top individual classifier configuration for the different day 

tag recording comparison. Results are presented as sensitivity and specificity values 

for a threshold value h tha t corresponds to  the minimum distance c/roc in the ROC 

space. Similarly, confusion matrices are presented in Figure 4.15 for each classifier 

configuration listed in Table 4.5.

The first thing to note in these results is the prevalence of the  EPC error (ep p c i i )) 

signal compression compared to the am plitude (a(t))  signal compression. This sug­

gests th a t eppcit)  is more able to  correctly classify the RFID tags than the raw signal 

amplitude is. Unlike the two previous sets of results, where one frequency and one 

orientation classified well compared to the others, there is no dominant subset here. 

All the different days classified similarly when tested against each other. This is ex­

pected, since there should be no reason d a ta  trained on a specific day should perform 

better than any other. |AUC| values were mainly above 0.6700 yet below 0.7500, with 

accuracies ranging from 63.6% to  80.9% when V R % V T-

The confusion m atrix representations of these classification results (Figure 4.15) 

again indicate there is no single dom inant training subset. We see tha t T>p =  T>p 

results all show distinct diagaonl lines, even with 'Dr . T>t  = Day 4 where there are 

additional high off-diagonal entries in the matrix. This is indicated in Table 4.5 by
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Table 4.5: The classifier configurations ranked by dnoc(h) over all values of the classifier configuration variables when trained and 
tested on the different day parameters Day 1, 2, 3, and 4. V r and Vr  correspond to the training and testing data sets, respectively. 
p represents the ratio of negative versus positive EPCs in the training set. The threshold h corresponding to the minimum distance 
dROC hi presented, along with the values of y(/i) and ip(h).

V r V r
Classifier Configuration

|AUC|
Results

Accuracy
(%)

EPC
Comp. # DWFf  , Classifierfeatures [is) P X ip h (%)

Day 1 Day 1 a,eEPc 15 QDC (MATLAB) 2 0.9949 1.000 0.986 23.9 98.7
Day 1 Day 2 eEPC 20 LDC (MATLAB) 4 0.7432 0.867 0.657 39.5 67.1
Day 1 Day 3 cepc 10 INN 12 0.6735 0.800 0.662 9.1 67.1
Day 1 Day 4 £epc 10 QDC (MATLAB) 5 0.7287 0.667 0.724 37.6 72.0
Day 2 Day 1 eEPC 20 LDC (MATLAB) 10 0.7443 0.800 0.748 42.4 75.1
Day 2 Day 2 eppc 20 QDC (MATLAB) 2 0.9990 1.000 0.986 42.4 98.7
Day 2 Day 3 eEPC 20 3NN 1 0.7990 0.800 0.790 52.6 79.1
Day 2 Day 4 eEPC 1 SVM 1 0.7083 0.800 0.733 20.1 73.8
Day 3 Day 1 eEPC 1 SVM 1 0.7014 0.867 0.619 21.9 63.6
Day 3 Day 2 eppc 15 3NN 8 0.6919 0.800 0.719 4.6 72.4
Day 3 Day 3 eppc 50 QDC (MATLAB) 5 1.0000 1.000 1.000 72.8 100.0
Day 3 Day 4 eppc 50 3NN 7 0.6390 0.800 0.648 4.6 65.8
Day 4 Day 1 <*, e£pc 1 3NN 3 0.7705 0.800 0.710 17.9 71.6
Day 4 Day 2 eEPC 5 INN 3 0.7395 0.733 0.719 29.8 72.0
Day 4 Day 3 a 1 3NN 1 0.7422 0.667 0.819 57.6 80.9
Day 4 Day 4 «, eEPC 50 LDC (PRTools) 1 1.0000 1.000 1.000 95.7 100.0
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a relatively high threshold (h)  value of 95.7. W hen V r  ±  V T , there are still faint 

diagonal lines present in some of the confusion matrices. For example, when V r  =  

Day 2 and V t  = Day 3 (Figure 4.15(g)), diagonal entries coming out of the lower 

left-hand corner are somewhat higher in accuracy (closer to white in the confusion 

matrix) than their surrounding off-diagonal entries. We see in Table 4.5 tha t this 

classifier has an |AUC| equal to  0.7990 and a 79.1% overall accuracy.

D am age C om parison

We next present the results of the RFID tag damage analysis to  explore how physical 

degradation affects the RFID signals and the resulting classification accuracy. The 

data sets from Day 1, 2, 3, and 4 are combined and used here as a single training set. 

The tags which make up this da ta  set, AD26  -  AD40,  are split into two subsets: tags 

AD26 — AD32  were subjected to water damage study, while tags AD33  — AD40  were 

subjected to a physical damage study. The AD-612 tags are not waterproof nor are 

they embedded in a rigid shell of any kind, although many RFID tags exist tha t are 

sealed to the elements and/or encased in a shell for protection. For the water damage, 

each tag was submerged in water for three hours, at which point they were patted  

dry to remove any excess water and used to collect d a ta  (labeled as Wet). They were 

then allowed to air-dry overnight, and were again used to  collect d a ta  (Wet-to-dry). 

For the physical damage, each tag was first gently crumpled by hand (Light damage) 

and subsequently balled up and then somewhat flattened (Heavy damage), with data  

being collected after each stage.

Table 4.6 shows the top individual classifier configuration for the two RFID tag 

damage comparisons. Results are presented as sensitivity and specificity values for 

a threshold value h  th a t corresponds to the minimum distance duoc the ROC 

space. Similarly, confusion matrices are presented in Figure 4.16 for each classifier
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co n fig u ra tio n  l is te d  in  T a b le  4 .6 .

The RFID tag damage classification results provide similar to  the previous differ­

ent, day comparison. The water damage did not seem to  have a severe effect, on the 

classification accuracy, while the more severe physical damage showed lower classifier 

accuracy. However, rather than relatively equal y(fi) and U(A) values, the heavy 

damage resulted in values of x(h) = 1.000 and tp(h) — 0.589, which means tha t the 

classifier was optimistically biased and over-classified positive matches. This lower 

accuracy was not unexpected, as deformation of the tag ’s antenna should distort the 

RF signal and therefore the classifier’s ability to identify a positive match for the tag.

4.9 D iscussion

The results presented above suggest th a t a dominant reader frequency, 902 MHz in 

this case, may exist at which da ta  can be initially collected for the classifier to be 

trained on and then used to correctly identify tags read a t alternate frequencies. In 

our analysis, we have explored reader frequencies th a t span the North American UHF 

range, yet were only part of the full 865-928 MHz UHF range for which the AD-612 

tags used here were optimized. Therefore, the dominant 902 MHz read frequency 

we observed lies at the center of the actual tags operating frequency range. It is 

of no surprise tha t the tags perform best at the center of their optimized frequency 

range rather than at the upper limit. Similarly, a classifier can be trained on a tag 

orientation (relative to the reader antenna) tha t may result in accurate classification of 

RFID tags regardless of their subsequent orientation to the reader antenna. Antenna 

design for both the readers and the tags is an active field of research [93], and it 

is expected tha t the RF field will be non-uniform around the antennas. This could 

explain why only one of the experimental orientations used here performs better than

111



112

Table 4.6: The classifier configurations ranked by cZroc(h) over all values of the classifier configuration variables when trained and 
tested on the tag damage comparisons for both water and physical damage. V r  and V r  correspond to the training and testing 
data sets, respectively, p represents the ratio of negative versus positive EPCs in the training set. The threshold h corresponding 
to the minimum distance c Ir o c  Is presented, along with the values of y ( h )  and tp(h).

Classifier Configuration Results
V r V T EPC

Comp.
#DW FP 

Features (i/) Classifier P
|AUC|

X V; h (%) Accuracy
(%)

Day 1, 2, 3, 4 Wet a 1 SVM 1 0.6361 0.714 0.786 80.1 73.8
Day 1, 2, 3 ,4 Wet-to-dry a 1 3NN 17 0.7789 0.857 0.738 4.8 75.5
Day 1, 2, 3 ,4 Light Damage a 5 INN 16 0.7589 0.750 0.839 17.9 82.8
Day 1, 2, 3, 4 Heavy Damage a 20 LDC (PRTools) 7 0.7980 1.000 0.589 44.5 64.1
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Figure 4.16: Confusion matrices (£) for the classifier configurations corresponding to the 
minimum distance dRoc(^) over all combinations of ( D r , D r ) where D r  = Day 1, 2, 3, 
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the others. Regardless of the field strength, however, the unique variations in the 

RF signature of an RFID tag should be present. It is promising th a t the classifier 

still had an accuracy of over 60% with these variations, and up to 94.9% accuracy if 

trained on the parallel (PL) orientation.

Changes in the environmental conditions, like ambient tem perature and relative 

humidity, were also allowed in the different day study where the RFID tags were 

suspended by hand near the antenna (in generally the same spot) for data  collection 

on successive afternoons. It is im portant to note th a t the tags were not in a fixed 

location for this study, and th a t slight variations in both  distance to the reader as 

well as orientation were inherent due to the human element. Even so, the classifier 

was generally able to correctly identify the m ajority of the RFID tags as being either 

a correct match or a correct mismatch when presented with a  da ta  set it had never 

seen before, with accuracies ranging from 63.6% to 80.9%. This study represents a 

typical real-world application of RFID tags due to these environmental and human 

variations.

As previously mentioned, the EPC compression m ethod tended to favor the EPC 

error signal e^pc(t), although there was not a large difference in classifier performance 

between the different day comparison tha t used both a(t)  and eEPc(t) compression, 

and the frequency/orient at ion comparisons th a t used only a(t)  compression. The 

parameter p had a large spread of values across the classifiers, indicating tha t the 

classification results may not be very sensitive to class imbalance within the training 

set. The number of DW FP features also shows no consistent trend in our results, 

other than  being often larger than  1, indicating th a t there may be room for feature 

reduction. W ith any application of pa ttern  classification, a reduction in the feature 

space through feature selection can lead to improved classification results [9]. In­

dividual feature ranking is one method th a t can be used to identify features on a
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one-by-one basis, however it can overlook the usefulness of combining feature vari­

ables. In combination with a nested selection m ethod like sequential backward floating 

search (SBFS), the relative usefulness of the DW FP features, as well as the remaining 

features, can be evaluated [16].

The results in Tables 4.3 - 4.5 where T>r =  T>t  are comparable to those observed 

by Bertoncini et al. [64], with some classifiers having 100% accuracy and the rest near 

99%. In these instances, the classifier was trained on subsets of the testing data, so 

it is expected th a t the classifier performs better in these cases.

It is also im portant to note th a t the final decision threshold h used can still vary 

greatly depending on the classifier’s application. It is im portant to note th a t adjust­

ing the classifier’s final threshold value does not alter the classification results of said 

classifier. The |AUC| takes into account all possible threshold values, and is therefore 

fixed for each classifier configuration. The threshold values only determine the dis­

tribution of error types, x vs. 4>, within the results. Aside from the  minimum (/roc 

metric, weights can be applied to determine an alternate threshold if the application 

calls for a trade-off between false negatives and false positive results. For example, if 

a user is willing to  allow up to five false positives before allowing a false negative, a 

minimizing function can be used to identify this weighted optim al threshold.

A comparison of different methods to determine a final threshold can be seen 

in Table 4.7, where the classifier configuration trained on Day 1 data  and tested 

on Day 4 data  from Table 4.5 is presented for several alternate threshold values. 

First, the threshold is shown for the minimum distance dRoc(h)- as was previously 

presented in Table 4.5. The threshold is then shown for the minimum number of to tal 

misclassifications (/+  +  /_ ) , followed by minimum number of false positives (/+), and 

then by tha t of the lowest number of false negatives ( /- )•  Several weighting ratios are 

then shown, where the cost of returning a false-positive (/+ ) is increased compared
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to the cost of returning a false negative (/_ ). For example, a weighting ratio of 1 : 5 

[/_ : /+] means tha t 5 f+ cost as much as a single /_ ,  putting more emphasis on 

reducing the number of /_  present. It can be seen th a t the values of x(/i) and ip(h)  

change as the threshold h  changes. An overly optimistic classifier is the result of 

threshold values tha t are too low, when all classifications are identified as positive 

matches ( x  ~  1 and ip «  0). Alternatively, an overly pessimistic classifier is the 

result of threshold values tha t are too high, resulting in all classifications identified 

as negative matches (y ~  0 and ip ~  1). The weighting ratio 1 : 10 [/_ : /+] returns 

the most even values of x  and ip, which matches the h  threshold. Figure 4.17 shows 

an example of the trade-off between the values of x ( h )  and i p(h)  as the threshold h 

is increased, where two examples from Table 4.7 are highlighted.

0.5

200 40 60 80 100
Threshold (%)

Figure 4.17: A plot of sensitivity x(h) (solid line) and specificity 1p(h)  (dashed line) versus 
threshold for the classifier trained on Day 1 and tested on Day 4 from Table 4.5. Threshold 
values are shown corresponding to the m in(/+ + /_ ) (h = 63.4, dash-dot line) as well as 
h (h — 37.6, dotted line). The threshold value determines the values of x  and ip, and is 
chosen based on the classifier’s final application.

It is useful to discuss a few examples here to be tter understand the different 

threshold results. In a security application, for example, where RFID badges are 

used to control entry into a secure area, it is most im portant to  minimize the number 

of f + results because allowing a cloned RFID badge access to a secure area could be 

devastating. In this situation, we would want the value of ip to be as close to 1.0
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Table 4.7: The classifier configuration trained on Day 1 and tested on Day 4 data from Table 4.5 using several different metrics to 
determine the final threshold h. Metrics include min(/+ + /_), min(/+), m in(/..), a weight of 1:5, 1:10, 1:15, and 1:20 for [/+ : /_], 
meaning that up to 20 /+ are allowed for each The choice of metric used to determine the final threshold value depends on 
the classifier’s final application.

T>r V r
Classifier Configuration

|AUC| Sorted by
Results

Accuracy
(%)

EPC #DW FP„  ' , Classifier p Comp, features X ip h (%)

Day 1 Day 4 eEPC 10 QDC (MATLAB) 5 0.7287 min dR0C(h) 0.667 0.724 37.6 72.0
min (/+ +  /_ ) 0.133 0.995 63.4 93.8

min(/+) 0.067 1.000 65.3 93.8
min(/_) 1.000 0.000 0.1 6.7

1:5 [/+ : f - 0.200 0.981 56.7 92.9
1:10 [/+ : f - 0.667 0.724 37.6 72.0
1:15 [/+ : /- ] 0.867 0.529 30.8 55.1
1:20 [/+ : /_] 0.933 0.443 28.2 47.6



as possible. In Table 4.7, this result corresponds to a threshold value of h, =  65.3. 

Unfortunately, the value of y at this threshold is 0.067, which means th a t almost all 

of the true ID badges would also be identified as negative matches. Therefore, th a t 

specific classifier is not appropriate for a security application.

An alternate example is the use of RFID-embedded credit cards in retail point 

of sale. To a store, keeping the business of a repeat custom er may be much more 

valuable than  losing some merchandise to a cloned RFID credit card. In this sense, 

it is useful to determine an appropriate weight of [/_ : /+] th a t evens the gains and 

losses of both cases. If it were determined th a t a repeat customer would bring in 20 

times as much revenue as it would cost to  refund a fraudulent charge due to a cloned 

RFID account, then a weight of 1 : 20 [/_ : /+] could be used to  determine the optimal 

classifier threshold. From Table 4.7, it can be seen th a t a corresponding threshold 

is h =  28.2, resulting in values of y =  0.933 and ip =  0.443. This classifier would 

incorrectly identify 7% of the repeat customers as being fraudulent while correctly 

identifying 44% of the cloned signals as being fraudulent. This specific classifier could 

be useful in this retail example.

4.10 C onclusion

The USRP software defined radio system has been shown to capture signals at a usable 

level of detail for RFID tag classification applications. Since the  signal manipulations 

are performed in software, this allows us to extract not only the raw RF signal, but 

it also allows us to generate our own, ideal signal to compare against. A new signal 

representation has been created this way th a t is the difference between the recorded 

and ideal signal representations, eEpc{t). and has proven to  be very useful in the 

classification routines.
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The binary classification routine has been explored on more real-world grounds, 

including exposure to a variety of environmental conditions w ithout the use of RF 

shielding to boost the SNR level. To explore classifier robustness without fixed prox­

imity and orientation relative to  the RFID reader, several validation classifications 

were performed, including an RFID reader frequency comparison, a tag orientation 

comparison, a multi-day data  collection comparison, as well as physical damage and 

water exposure comparisons. The frequency comparison was performed to determine 

the effect th a t the variability of potential RFID readers inspection frequencies would 

have on the classification routines. The results were promising, although not per­

fect, and suggest tha t while it is best to  train  a classifier on all possible scenarios, a 

main frequency (i.e. center frequency) could potentially be used for a master classi­

fier training set. A similar orientation comparison was done, altering the RFID tag ’s 

orientation relative to the antenna. Again, the results showed it was best to  train  

the classifiers on the complete set of data, however there was again promise for a 

potential single main orientation tha t could be used to  train  a classifier.

In the multi-day collection comparison, da ta  was collected by hand in an identical 

fashion but on separate days. The results showed th a t the inconsistency associated 

with holding an RFID tag near the antenna cause the classifiers to have trouble 

correctly identifying EPCs as coming from their correct tag. Two further comparisons 

were performed to assess the degree th a t physical degradation had on the RFID tags. 

When subjected to water, promising classifier configurations were found tha t were 

on the same level of accuracy as results seen for undamaged tags, suggesting tha t 

the water may not have a significant effect on the RFID classification routines. A 

separate subset of the RFID tags were subjected to a similar degradation analysis, 

this time with physical bending as a result of being crumpled by hand. The results 

show that, as expected, bending of the RFID tag ’s antenna caused degradation in the
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raw signal th a t caused the classifier to misclassify many tags.

Applications of RFID technology th a t implement a fixed tag  position are a po­

tential market for the classification routine we present. One example of this is with 

ePassports, which are embedded with an RFID chip containing digitally signed bio­

metric information [98]. These passports are placed into a reader th a t controls the 

position and distance of the RFID chip relative to the antennas. Additionally, pass­

ports are generally protected from the elements and can be replaced if they undergo 

physical wear and tear. We have dem onstrated a specific em itter identification tech­

nique tha t performs well given these restrictions.

We have applied the DW FP framework to generate a potentially innumerable 

amount of features for input into a pattern  classification routine. We then used these 

features to study the effect of variations in the physical act of recording RFID tag 

signals. We have shown through reduced classification accuracies th a t these changes 

manifest themselves in the data  in an unforeseen way. The framework to system ati­

cally study these changes has been established here. In the next chapter, we continue 

building our analysis technique through a new set of time-domain signals for Lamb 

wave damage characterization.
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C hapter 5

C haracterization o f F law  Severity  

using P attern  R ecogn ition  for 

G uided W ave-B ased S tructural 

H ealth  M onitoring

We have discussed the application of pattern  classification routines for time-domain 

signal analysis, and have shown th a t physical changes in the collection of data can 

result in changes in the data itself. These changes were shown to have a negative 

effect on the classification accuracy, as the manifestation of these physical changes in 

the data was not fully understood. To explore this concept in a systematic manner, 

we turn to the field of structural health monitoring. Corrosion in materials can be 

thought of as an effective reduction in material thickness resulting in reduced struc­

tural integrity. Since corrosion is a function of time, it follows th a t corrosion provides 

a representative process for studying a physical change over time. We simulate cor­

rosion to an aircraft-grade aluminum plate by introducing a thinning at a variety
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of intermediate severities, ranging from unflawed to  a through-hole. By measuring 

guided waves which interact with the flaw at each level of severity, we construct a 

da ta  set which we then use to explore how this physical process manifests itself within 

a given feature space.

5.1 Introduction

Flaw detection in metals remains an im portant area of research as the world’s avi­

ation and naval fleets continue to age [135]. It is critical th a t flaws be discovered 

before structural failure, and accurate maintenance planning requires knowledge of a 

structure’s state of health. Lamb waves [73,81] have proven to be a popular technique 

in structural health monitoring (SHM) [82,83] due to their multi-mode propagation 

and dispersive properties. Of interest in SHM is th a t Lamb waves are confined by 

a structure’s boundaries and so follow its shape and curvature, giving sensitivity to 

material discontinuities at either surface as well as in the interior of the plate, pipe 

or shell. Lamb waves have the ability to propagate relatively long distances [136] 

and beneath layers of insulation or other coverings [43]. Together these properties 

allow Lamb waves to rapidly cover large areas of interest, providing a useful tool for 

identifying defects in a variety of structures. However, their multi-mode nature is 

often too complex for direct interpretation. A typical multi-mode waveform is shown 

in 5.1, with predicted mode arrival times highlighted.

The m ajority of the Lamb wave literature side-steps the complexities associated 

with multi-mode Lamb wave signals. Some inspection techniques include specific 

assumptions or restrictions tha t can render them im practical for field use. Many 

assume a uniform thickness of the plate [84] or rely on comparing signals from dam­

aged and undamaged areas in an instantaneous cross-correlation analysis [87]. A
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Figure 5.1: A raw waveform from the unflawed plate is shown here with predicted mode 
arrival times, indicated for both symmetric (solid vertical lines) and antisymmetric modes 
(dashed vertical lines). The portion of the signal that is of interest often lies buried in noise 
(from 25-45 [is here), while the higher-amplitude portion of the signal (45-60 /is) contains an 
overlap of both slower, low velocity modes as well as faster edge-reflected modes due to the 
finite size of the plate sample. For the deeper flaw, mode conversion and scattering effects 
prevent an accurate prediction of arrival times in addition to reducing the signal-to-noise 
ratio of the waveform.

common implementation of Lamb waves for damage detection involves restricting the 

frequency-thickness product to a regime where only the fundamental modes exist [83]. 

Doing so promises easier analysis of mode arrival-time shifts, since mode overlap is 

less likely when the lower-order modes are spread far apart in group velocity. Larger 

frequency-thickness values gives rise to higher-order modes, bu t result in signals th a t 

often prove quite difficult to analyze. Nevertheless, each mode propagates with a 

unique through-thickness displacement and stress profile [72]. It can therefore be 

beneficial to use multi-mode Lamb wave signals since each mode has different disper­

sion characteristics and sensitivity to defects.

Tomographic reconstructions have been shown to  produce quantitative maps of 

damage in regions of interest in both single-mode and multi-mode Lamb wave signals 

[45,46,61, 137 150]. By considering the dispersion curves for a material, shown in 

Figure 5.2 for aluminum, it can be seen th a t decreasing frequency-thickness values 

gives fewer Lamb wave modes, eventually reducing down to two fundamental zeroth- 

order modes. Changes in material thickness can be directly linked to  changes in wave



speed for these two modes, making them  attractive to use for NDE applications. 

As frequency-thickness values are increased, higher order modes overlap and mix 

together, quickly masking the direct association w ith m aterial thickness. Even though 

their behavior is not always predictable, these modes are still sensitive to material 

thickness changes. By extracting Lamb wave mode arrival times directly from raw 

signals, tomographic reconstructions generate a slowness m ap th a t highlights any 

changes in mode speed. These can then  be geometrically related to m aterial changes 

in the plate.

It is im portant to note here th a t for shallow flaws (relative to  the plate thickness), 

the main effect of mode interaction is a change in group velocity and hence arrival time 

for the various modes. For deeper flaws, the mode interaction becomes much more 

complex with three-dimensional scattering and mode mixing occurring. This behavior 

is not accounted for in Lamb wave tomography reconstructions. Malyarenko and Hin­

ders [144] present an improvement on straight ray tomography by incorporating ray 

bending though diffraction tomography, however th a t is presented for relatively low 

frequency-thickness values and does not account for the mode mixing and scatter tha t 

dominates the behavior for deeper, strongly scattering flaws. This higher-order com­

plexity is explored further by Leckey et al. [151], who present multi-mode Lamb wave 

scattering through 3D elastodynamic finite integration (EFIT) simulations. They 

show th a t for even for the relatively simple geometries, supercom puter simulations 

are required to explain the 3D behavior of the wave fields.

Because Lamb wave tomography reconstructions are able to  size and localize flaws, 

including strongly scattering flaws, they present a mechanism to autom atically iden­

tify which waveforms have interacted w ith any m aterial defects present. Pattern  

classification is the study of how machines can be taught to observe and learn from 

an environment in an attem pt to recognize and identify patterns in sensor data. Pat-
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Figure 5.2: Dispersion curves for an aluminum plate. Solutions to the Rayleigh-Lamb wave 
equations are plotted here for both symmetric (solid lines) and antisymmetric (dashed lines) 
modes for both phase (a) and group (b) velocity. The value of frequency-thickness used in 
the data collection for this analysis is indicated by the vertical dotted line, where several 
modes can be seen to exist.
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tern classification techniques [1,3,4,9] can then be used to provide a formulism which 

exploits the scattering and/or mode mixing information in the waveforms in order to 

determine the flaw depth.

In most applications of pattern  classification, the distribution of classes within a 

feature space is not im portant as long as the classes are optimally separated. For a 

process like incremental damage detection, each class can be thought of as a step in 

a physical process which changes over time. For example, corrosion is a continuous 

process where severity of damage can only increase with time. If the damage caused 

by corrosion is discretized into individual thickness loss steps, each can be given a 

different class label. In a feature space, these classes should not only be optimally 

separated but should remain sequentially ordered. T hat is, each class should ideally 

border the classes before and after it when sequentially ordered with respect to sever­

ity. By introducing this restriction, new d a ta  from interm ediate severities will fall 

between their bounding classes in the feature space. This concept is referred to here 

as the ‘sequential’ ordering of classes, and will be im portant in down-selecting the 

feature space.

5.2 D iscussion  on Feature Selection

From the Rayleigh-Lamb wave equations (Appendix A), we know th a t the Lamb wave 

mode structures and velocities are functions of a frequency-thickness parameter. Since 

the inspection frequency can be considered a constant, and the thickness change due 

to corrosion can be considered a continuous function, it follows th a t any changes to 

the waveform will also be continuous. Therefore, properties extracted from these 

waveforms will change continuously as well. This means th a t a point in the feature 

space will “move” continuously as a function of m aterial loss over time. Each class,
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therefore, represents a region of this curve in the feature space, shown conceptually 

in Figure 5.3.

If the feature space is chosen so th a t this curve is nearly linear, as is seen in Figure 

5.3(a), then it can be discretized neatly into successive classes. W hen new data is 

introduced, seen as the red dot between classes 6 and 7 in Figure 5.3(b), the data 

will lie between these successive classes only and the classification is straightforward. 

If this curve is bunched up together or even overlapping itself, as seen in Figure 

5.3(c), several problems can arise when classifying new data. We present one possible 

issue in Figure 5.3(d), where the same new da ta  is introduced between classes 6 and 

7, however this time it is located in an area where several alternate classes exist. 

Rather than correctly being classified as between classes 6 and 7 only, it could also 

be classified as classes 2 and 3 here. To the user, this jum p in classification results 

would appear to be a significant error which could be dangerous in SHM.

It should be clear by now th a t there are many complications associated with the 

concept of classification for a sot of classes th a t are essentially a discrete representation 

of a continuous function. This problem presents itself prim arily in the feature selection 

step of classification, where a subset of “ideal” features is chosen th a t result in the 

optimal value of a specific metric, a common choice being the minimal classification 

error of a given classifier. It follows th a t a classifier would likely be overtrained 

using this approach, identifying a feature subset th a t best classifies the training data  

alone without taking into account the introduction of new da ta  existing between 

established classes. For this reason, we explore a variety of novel feature selection 

techniques based on measures of the various class da ta  within the feature space itself 

in an attem pt to select a more appropriate feature set for general application.

There exists a theorem in pattern  classification known as the Ugly Duckling The­

orem which states that in the absence of assumptions there is no ‘best’ feature rep-
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Figure 5.3: An example of possible class distributions in a two-dimensional feature space 
(/i vs- f “i)- Here, flaw thickness is a function of time, represented by g(t), where class 1 
corresponding to g(ti), class 2 corresponding to gfo),  etc. with t\ < ^  < - ■ • < tg. Two 
possible class distributions are presented here, the first being a more linear distribution (a) 
and the other a more complicated distribution (c). For both cases, a new data point is 
considered that lies between existing classes 6 and 7, seen here as a red dot. For the linear 
case, this new data lies within the class boundaries of classes 6 and 7 only (b), making the 
classification of this new data straightforward. In the more complicated distribution, this 
new data lies not only within class 7, but also within classes 2 and 3 (d), resulting in an 
apparent error in the classification.
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reservation for a data set, since assumptions about what ‘b est’ means are necessary 

for the choice of features [58]. Appropriate features for a given problem are usually 

unknown a priori, and as a result many features are often generated without any 

knowledge of their relevancy [11]. This is the motivation behind generating a large 

number of features in the first place. It is also im portant to  take into account the rel­

ative size of the number of objects to be classified and the  size of the feature space to 

be used for classification. Including too many features may degrade the performance 

of a classifier if the number of samples per class is comparatively small, resulting in a 

sparse distribution of data  within the feature space. This concept is better known as 

the curse of dimensionality [12]. While an exact relationship is difficult to  determine, 

a generally accepted limit is to use at least ten times as m any training samples per 

class (N ) as there are dimensions in the feature space (d), seen as N / d  > 10.

It follows th a t an intelligent reduction in the size of the  feature space is needed. As 

discussed in Chapter 2, there are two general approaches to reducing the size of the 

feature set: feature extraction and feature selection. Feature extraction reduces the 

feature set by creating new features through transform ations and combinations of the 

original features. Principal component analysis is a commonly used feature extraction 

technique. Since we are interested in retaining the original physical interpretation of 

the feature set, we opt not to use any feature extraction techniques in our analysis.

There are three general techniques within feature selection: wrapper methods, em­

bedded methods, and filter methods [13]. W rapper methods use formal classification 

to rank individual feature space subsets, applying an iterative search procedure which 

trains and tests a classifier using different feature subsets for accuracy comparison. 

This search continues until a given stopping criterion is met [14]. This approach is 

computationally intensive, and there is often a trade-off among algorithms between 

computation speed and the quality of results th a t are produced [15 17]. Additionally,
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these methods have a tendency to over-train themselves, where data  in the training 

set is perfectly fitted and results in poor generalization performance [18]. Similar to 

wrapper methods, embedded methods perform feature selection while constructing 

the classification algorithm itself. The difference is th a t the feature search is intel­

ligently guided by the learning process, reducing the com putation time but relying 

heavily on the choice of classification algorithm. Filter m ethods perform their feature 

ranking by looking at intrinsic properties of the data, w ithout the input of a formal 

classification algorithm. Traditionally, these methods are univariate and therefore 

don’t account for multi-feature dependencies.

Our feature selection approach explored here can be most appropriately considered 

a multivariate filter method, as it considers features in combination with each other 

and does not directly depend on the classification model used. A main difference here 

is tha t we redefine what it means for a feature to be ‘relevant’. Typically, relevant 

features are identified by their contribution toward class separability. While still 

important, we add a requirement th a t the features in combination must result in a 

sequential class distribution.

5.3 D ata  C ollection

The da ta  used in this study was collected from a 305 m m  x 305 m m  x 3.15 m m  

sample of aluminum, shown in Figure 5.4(a). The scanner consisted of two 2.25 MHz,

6.4 m m  diameter longitudinal transducers arranged in a p itch /catch  configuration 

to transm it and receive the signals. Each transducer was fitted with an 11.5 m m  

cylindrical acrylic delay line w ith glycerin couplant used at bo th  the transducer sur­

face and the plate surface. The signals were generated and received using a M atec1

1Northborough, MA (http://www.matec.com/)
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TB1000 pulser/receiver and then digitized with a Gage2 CS8012a A /D  card sampling 

at 100 MHz. The transducers were found to  have a peak frequency response at 2.15 

MHz, which was used as a center frequency to  drive the toneburst. A 76 m m  x 

30 m m  rounded rectangular flat-bottom  flaw was incrementally introduced into the 

plate, which can be seen in Figure 5.4(b).

The transducers were stepped through 100 locations per axis in 2 m m  increments 

in a double-crosshole geometry [45]. This technique uses linear slides to mimic a four­

legged perimeter array of transducers surrounding an area of interest. The motion of 

both the transm itting and receiving transducers was controlled by a Velmex3 VP9000 

motion controller. Each individual scan was performed in two projections. For each 

projection, the two linear slides are placed parallel to each other on opposing edges 

of the scan area. The transm itting transducer is advanced one position along a 

particular edge while the receiving transducer is stepped through all positions on 

the opposing edge (Fig. 5.5(a)). The transm itting transducer is then advanced to 

the next position, and the receiving transducer again steps through all positions on 

the opposing edge (Fig. 5.5(b)). This continues until all transm itting  transducer 

positions have been reached (Fig. 5.5(c)), completing the projection 1 scan. For the 

projection 2 scan, the slides on which the transducers are relocated so they are in 

a second orientation tha t is 90° relative to the first (Fig. 5.5(d)), and the plate is 

scanned again. The resulting two datasets are then combined for the full double­

crosshole scan (Fig. 5.5(e)). The flaw depth was increased after each full scan, with 

data  sets from fourteen total flaw depths recorded (including 0% and 100% material 

loss), labeled Dj where j  = 1 , . . . .  14, summarized in Table 5.1. The experimental 

apparatus used to collect data  is shown in Figure. 5.6.

2Lockport, IL (h t tp : / /w w w .g a g e -a p p lied .co m /)
3Bloomfield, NY (www.velmex.com/)
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Figure 5.4: An image of the plate sample in the scanner (a). The flaw severity shown here 
corresponds to class D\$. the through-thickness hole. The dimensions of the scan area as 
well as the flaw, relative to the plate (b).
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(d ) (e)

Figure 5.5: The double-crosshole scanning procedure for lamb wave tomography in the 
laboratory. The transmitting transducer remains fixed while the receiving transducer steps 
along the length of the plate (a). The transmitting transducer is then advanced one position, 
and the receiving transducer again steps along the length of the plate (b). This process is 
repeated until all transmitting transducer locations have been reached (c), an orientation 
referred to as projection 1. This scan is then performed in a second orientation that is 90° 
relative to the first (d), referred to as projection 2. Finally, the two datasets are combined 
for the full double-crosshole scan (e). Although only four transducers positions are show 
along each side here for clarity, the full scan used in this study contains 100 transducer 
positions along each side.
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Table 5.1: Thickness of the flaw region corresponding to each double-crosshole scan,
D U. . . , D U. A Starrett digital micrometer was used to measure to thickness in three 
locations within the flaw, with the average value reported here. The percent thickness loss 
relative to the full plate thickness is also presented.

Class D i 0 2 0 3 D4 05 06 07
Flaw Depth (mm) 
Percent Thickness Loss

0.00
0%

0.16
6%

0.33
11%

0.56
18%

0.67
21%

0.94
30%

1.14
36%

Class D8 d 9 f lu 012 013 014
Average Flaw Depth (mm) 
Percent Thickness Loss

1.34
43%

1.59
51%

1.86
59%

2.16
69%

2.47
78%

2.69
86%

3.15
100%

Receiving
Transducer

Transmitting
Transducer

Sample

Figure 5.6: Experimental setup block diagram, in which the computer controlled pulser 
sends a voltage pulse to the transmitting transducer, exciting guided waves in the sample. 
The receiving transducer converts the sample’s vibrations back into voltage charges that 
are sampled by the A/D converter and stored in the computer. Linear stepper motors allow 
for the transducers to move in controlled steps along the side of the sample.

134



5.4 Lamb W ave Tom ography

Tomographic reconstructions were generated for each data set Dj  using the raw 

double-crosshole scan data [45]. From each waveform, a specific mode arrival time was 

extracted, usually the first-arriving using an am plitude threshold. These arrival times 

were used as input for the simultaneous iterative reconstruction technique (SIRT) to 

tomographically reconstruct an image of the scanned region [143]. Each image is a 

gray-scale representation of the scanned region, where the color map of each image 

spans the range of mode velocities as determined by the SIRT algorithm. By nor­

malizing the color map of each reconstruction this way, any areas of the scanned 

region with differing material properties are highlighted in the  reconstruction. An 

over/under color intensity threshold was then applied to each of the reconstruction 

images th a t allowed the flaw to be highlighted and sized. This was done for all the 

images, building a database of extracted flaw dimensions. The overlapping area for 

all extracted flaw locations was determined, i.e. the area where every scan indicated 

a flaw was present. Every raypath from the double-crosshole scan tha t crossed this 

common flaw region was then identified and extracted into a “flaw-only” subset of 

waveforms, reducing the number of waveforms per scan from 20,000 down to  2,919, 

consistent across all 14 depths. It is im portant to note tha t this reduced set of wave­

forms does not correspond to the to ta l number of raypaths th a t actually cross the 

flaw according to the known geometry of the flaw, but rather the raypaths th a t have 

a high confidence of having interacted with a flaw in each of the 14 reconstructions 

extracted automatically from the raw data. Since this process is autom ated, there is 

no need to physically access more than  the perimeter of the scan area. This is an im­

portant advantage of the technique, allowing for areas th a t are covered by insulation 

or inaccessible due to complex structural geometries to  be checked for flaws. While
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there exist many applications of SHM th a t do not require LWT analysis, it serves 

here as a convenient way to build a training d a ta  set to be used for classification. A 

variety of the raw tomographic reconstruction images from our plate sample can be 

seen in Figure 5.7. An example of the how the common flaw region is determined as 

well as a single raypath identified as passing through this common flaw region can be 

seen in Figure 5.8.

(a) £h  (b) D 2 (c) D 3

t

(d) A> (e) D 7 (f) d 9

(g) D 1 1  (h) D 13 (i) D 14

Figure 5.7: Tomographic reconstructions of the plate at selected flaw depths (a)-(i).

Due to  the computation tim e required to  perform feature generation for each 

-waveform, this set of 2,919 ‘flaw-only’ raypaths was reduced further by selecting 100
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(a) D4 Raw (b) £>5 Raw (c) £ > 1 4  Raw

(d) £ > 4  Threshold

7\ IT

(d) £ > 4  Threshold (e) £ > 5  Threshold

(g)

( h )

Figure 5.8: An example of finding the “common flaw” region. Raw tomographic reconstruc­
tions from selected flaw depths (a)-(c) are shown with their over/under threshold equivalents 
(d)-(f). These thresholded representations are stacked (g) into a composite image, with the 
overlapping flaw regions seen here as the darkest shade of gray. This overlapping area is 
sized in the x- and //-dimensions, and then used to identify the subset of raypaths that pass 
through the flaw. An example of an extracted raypath crossing the flaw (h) in both the raw 
reconstruction (left) and the common flaw region only (right).
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raypaths at random, consistent across all depths. The random selection was also used 

to minimize geometric bias associated with this specific flaw. This process resulted in 

100 waveforms per flaw depth, or 1,400 to tal waveforms, which were used for feature 

generation. Waveforms are denoted where i = 1, . .  ., 100 corresponds to the

raypath number relative to the scan and j  =  1 , . . . ,  14 corresponds to the flaw depth. 

A visualization of the raypaths selected can be seen in Figure 5.9.

198 inm

X

Figure 5.9: The 100 randomly selected raypaths that pass through the flaw region used in 
this study overlaying the location of the common flaw region (in gray). It is clear that there 
is no relation between the geometry of the flaw and the orientation of the raypaths being 
considered for classification.

5.5 Feature G eneration

The tomographic reconstruction image analysis routines result in 1400 different wave­

forms Wij(t) over the range of individual flaw depths. The next step in processing the
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raw data involves extracting features from the raw d a ta  and selecting M  of them for 

classification. The resulting feature vector is denoted Xi j (k ), A: =  1, . . .  , M.  In this 

application, we generate 78 individual feature values from each waveform (M  =  78). 

Several methods are used to extract these features from the raw signals: higher-order 

statistics, Mellin transform statistics, Wavelet packet Decomposition, and Dynamic 

Wavelet Fingerprinting (DW FP). All of these m ethods provide a specific set of values 

th a t have direct physical relation back to the raw data, and each has shown promise 

in various applications for damage detection [23,44,64,152,153].

Several statistical features commonly used in ultrasonic signal analysis are gener­

ated from the raw waveforms [21]. Standard time-domain features include the mean 

of the raw waveform the variance, the Shannon entropy, the second central

moment, the skewness, and the kurtosis of each waveform [20,118]. More details can 

be found in Section 4.5. Statistical moments provide insight by highlighting outliers 

due to any specific flaw-type signatures found in the data.

The Mellin transform is an integral transform  closely related to the Fourier trans­

form that can represent a signal in terms of a physical a ttrib u te  similar to frequency 

known as scale. This transform has the key property of scale invariance. Small vari­

ations in mode velocity due to environmental changes, like tem perature fluctuations 

or applied strain, can be approximated as a uniform time-scaling effect on the trans­

m itted signals. By considering the Mellin domain, features can be compared th a t 

are robust to environmental effects. While there are complexities associated with 

discretizing the fast Mellin transform  algorithm, a MATLAB-based implementation 

is used [119].

The Mellin transform was formally introduced in Section 4.5, and will be sum­

marized here. The first step in implementing this is to define both an exponential 

sampling step along with the number of samples needed for a given signal in order to

139



exponentially resample it. Once the exponential axis has been defined, an exponen­

tial point-by-point multiplication with the original signal is performed. A fast Fourier 

transform (FFT) is then computed, followed by an energy normalization step. This 

process is summarized in Figure 5.10.

After the Mellin transform is computed, features are extracted from the resulting 

Mellin domain for classification. These features include the mean of the Mellin trans­

form, as well as the standard deviation, variance, second central moment, Shannon 

entropy, kurtosis, and skewness of the mean-removed Mellin transform  [22,23].

A set of N  (N  < M)  features are extracted from the waveforms using the DW FP 

technique [37]. By applying a wavelet transform to the raw waveforms, binary images 

often resembling fingerprints are generated. Image processing techniques are then 

applied to extract useful information from to make the feature vectors Xij(k).  W ith 

the intention of performing feature selection at a later step to reduce the feature space 

size, we set N  = 50 here.

The first step in the DW FP algorithm applies a band-pass filter to each waveform 

using a stationary wavelet transform. This removes a low-frequency feedback 

observed in our apparatus as well as high-frequency noise. Next, the DW FP technique 

applies a continuous wavelet transform to the filtered signals resulting in a set of 

wavelet coefficients Cij(a,b),  where a > 0 is a scaling param eter and b € R is a 

translational param eter for the m other wavelet tp(t) being used. These coefficients 

are then sliced in a “thick” contour manner and projected onto the time-scale plane. 

These resulting contour lines are labeled in an alternating, binary manner, resulting 

in a “fingerprint” image for each waveform, Ii j (a.  b), th a t are coincident in time with 

the raw signal. The choice of m other wavelets is application-specific, since certain 

choices of yj{t) will be more sensitive to certain types of signal features. Mother 

wavelets used in this study are the Daubechies-3 (db3), Symelet-5 (sym5), and Meyer
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Figure 5.10: A raw signal Wij(t) (top, left), the exponentially resampled axis (top, right), 
the signal resampled according to the exponential axis (middle, left), this same signal af­
ter point-by-point multiplication of the exponential axis (middle, right), and the resulting 
Mellin transformed signal (bottom).
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(meyr) wavelets, chosen based on preliminary results as well as past experience [37, 

39,42,46,61 64],

Since pattern  classification uses combinations of one-dimensional feature vectors 

to develop decision boundaries for each group of observations, the dimension of the 

binary fingerprint images Ihj(a,b) th a t are generated for each waveform are first re­

duced. Each image b) is composed of a series of individual fingerprint objects,

spaced apart in time. Twenty-two measurements are made on each fingerprint ob­

ject, including the area, centroid, diameter of a circle w ith the same area, Euler 

number, convex image, solidity, coefficients of 2nd and 4th degree polynomials fit to 

the fingerprint boundary, as well as m ajor/m inor axis length, eccentricity, and ori­

entation of an ellipse tha t has the same normalized second central moment as the 

fingerprint. For more details on these features, see Reference [63]. The property 

measurements result in a sparse property array where n  represents the prop­

erty index n =  1 , . . .  ,22, since each extracted value is matched to the time value 

of the corresponding fingerprint’s center of mass. Therefore, these sparse property 

vectors are linearly interpolated to  produce a smoothed vector of property values, 

■p,j.n(f).This process is shown for a typical time-domain waveform in Figure 5.11.

Once an array of fingerprint features for each waveform has been generated, it 

still needs to be reduced into a single vector of N  =  50 individual values to be used 

for classification. The goal is to  select features from th a t will have the best

chance to classify each flaw depth. Since this is a multi-class system, feature values are 

desired th a t are consistent among each individual flaw depth, yet separable between 

different flaw depths. First, the dimensionality of the property array is reduced by 

averaging within each flaw depth, over index i = 1. . . .  , 100, so V  = Vj,n(t)- Then for
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Figure 5.11: A visual summary of the dynamic wavelet fingerprinting (DWFP) [37] feature 
extraction technique. A typical ultrasonic signal is shown (a), with a close-up portion of the 
DWFP output shown in (b). Each waveform is first filtered (c), from which the fingerprint 
image (d) is generated, shown here with white peaks and gray valleys for distinction. Within 
each fingerprint image, a variety of measures are extracted from each fingerprint object and 
are interpolated in time, including the area of the on-pixels for each object (e), as well as 
the coefficients of a second-order polynomial (p\ x x2 4- P2 x x +  P3 ) fit to the boundary 
of each fingerprint object, with coefficients p\ (solid line), P2  (dashed line), and pz (dotted 
line) shown (f).
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each property n, the mean (5.1) and standard deviation (5.2) are calculated by

1 N
H n { t ) =  “TT ^   ̂^J,n(Q  (5-1)

t=l

and

o-„(0 =
\ ^  ,J=1

Times are then identified trn: where m  = 1, . .  ., N,  a t which the the values of the 

mean /x„(£m) vary for each flaw depth while the  standard  deviation an(tm) remains 

low. The resulting DW FP feature vector for waveform Wij( t ) is

‘̂ ' i j ( ^ r n )  ^ V j , n m ( £ m ) ’

Wavelet-based measurements provide the ability to  decompose noisy and complex 

information and patterns into elementary components, m aking them  favorable for 

multi-mode ultrasonic signal analysis where subtle features can be highlighted with 

the optimal choice of a m other wavelet.

Another wavelet-based feature used in classification is generated from wavelet 

packet decomposition [25], Details of this algorithm can be found in Section 4.5. 

Wavelet packet decomposition uses redundant basis functions and can therefore pro­

vide arbitrary time-frequency resolution details, improving upon the wavelet trans­

form when analyzing signals containing close, high frequency components. Wavelet 

Packet Decomposition features are included to provide insight into the generation of 

high-frequency modes as a result of mode conversion at flaw boundaries.

Several other features were included in the feature set. The first of which was 

the arrival time of the first arriving mode as determ ined by the  Lamb wave tomogra­

phy algorithms [146]. The tomographic reconstructions are generated from slowness
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maps, of which determining each waveform’s mode arrival tim e in an intermediate 

step. These times were extracted and used as features. In addition, several methods 

were considered for computing the power spectral density (PSD) from which features 

are extracted [154], The power spectral density of the signal is a measure of the the 

power carried by the guided wave, per unit frequency. Calculation techniques include 

the Welch PSD, the periodogram, the Thompson m ultitaper PSD, and the covariance 

PSD. For all of these, the maximum am plitude value and the corresponding frequency 

were included as features. While several of these m easurements can be seen as re­

dundant, for example Welch’s m ethod is simply an improvement on the periodogram 

in tha t it reduces noise in the power spectra in exchange for a reduction in frequency 

resolution, referring back to the Ugly Duckling Theorem provides us reason to not 

favor any specific variation and include all of them in the initial feature set.

A final feature included for consideration is the area under the  instantaneous am­

plitude curve as defined by the Hilbert transform  [91]. The Hilbert transform returns 

the original signal with a 90° phase shift, which means it has the same amplitude and 

frequency content as the original data. The m agnitude of the Hilbert transform and 

the original signal is known as the instantaneous amplitude, which is another name 

for the envelope of the signal. The area under this curve was used here as a feature 

value.

5.6 Classifier D esign

In designing a pattern  classification routine, one can take one of two general routes: 

supervised classification in which predefined classes are used to  identify new patterns, 

or unsupervised classification where the d a ta ’s natural structure is used to determine 

class values for which new patterns are assigned. The choice of which approach to
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take is usually objective and depends on the application and the structure of the 

data at hand. Here, we have data th a t correspond to a variety of well-defined flaw 

depths, which makes a supervised approach a natural choice. Therefore, we first need 

to assign class labels to the waveforms. Since the goal of the classifier is to  determine 

flaw severity, it follows tha t each flaw depth will be assigned a unique class label, 

where waveforms corresponding to  the unflawed plate are grouped in a unique class 

(uq), waveforms from the shallowest flaw depth are in another class (uq), and so on 

resulting in 14 different classes with labels Uj, j  = 1, 2, 3 , . . .  , 14.

In statistical pattern  classification, each pattern  is represented as a point in a 

multi-dimensional feature space. This space is referred to here as a feature matrix, 

an example of the feature m atrix can be seen in Table 5.2. In this example, each 

row corresponds to  an individual pattern, while each column represents an individual 

feature. We have generated 78 individual feature values for each waveform, resulting 

in a 78-dimensional feature space. Referring back to  the curse of dimensionality, 

if we follow the generally accepted limit to  use at least ten  tim es as many training 

samples per class (N)  as there are dimensions in the feature space (d), summarized as 

N / d  > 10, then we should achieve the best classification results w ith a 10-dimensional 

feature space. Before we can begin classification, we therefore need to apply feature 

selection routines in order to reduce the size of our 78-dimensional feature space.

5.6.1 F eature S election

The only feature selection routine guaranteed to return  the optim al subset of a given 

feature space is an exhaustive search, where a criterion value is calculated for every 

possible subset of features [9]. This technique is extremely com putationally intensive, 

and is not practical for our 78-dimensional feature set. We instead use the sequential 

floating backward search algorithm (SFBS) to perform an initial reduction in feature
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Table 5.2: A limited selection of the feature space generated from raw waveforms Wij(t) 
is presented here to illustrate features and classes. Each row corresponds to a different 
waveform and each column corresponds to a different feature k =  1 , . . . ,  M.  The
waveforms are divided into classes Uj, each composed of i = 1 , . . . ,  100 different waveforms. 
The classifier’s goal is to generate partitions in this feature space that accurately separate 
the classes from each other, allowing for new data to be assigned a class label based on 
where it lies relative to these partitions.

Features Xij(fc)

i
k -  1 
WPD

k =  2
Mean o f Wi j ( t )

k =  M 
• DW FP #5 0 Class Uj

1 1.1272 -2.8623 1.6116 CUl

2 1.0704 -1.6196 1.2391 U i

3 1.1693 -1.6277 2.4858 CJi

99 1.1693 -0.3029 1.7567 U>1
100 -0.0372 3.4129 1.5786 UJi

1 0.3731 1.0484 0.2062 UJ 2
2 1.1332 1.0305 0.1272 U>2
3 0.5196 0.2728 1.2579 U>2

99 1.1259 1.4728 1.1702 U)2

100 0.0745 -1.7211 1.0354 U)2

1 -0.2638 0.9387 1.5261 UJ3

2 1.1693 1.0190 0.9328 UJ3

3 0.4310 -0.8075 -0.2722 UJ3

99 0.0813 0.1574 -1.0070 UJ13

100 -0.2383 0.1584 -0.9236 UJ 13
1 -2.6853 0.1497 -1.0612 UJ\A

2 0.2176 0.2463 -1.0426 UJ\A

3 -3.4866 -0.5856 -0.9856 UJ\A

99 -0.2638 0.3636 -1.0448 UJ\A

100 -2.0391 0.2913 -1.0437 UJ\A
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space dimension. The SFBS technique was first introduced by Pudil et al. [155], and 

has been shown to provide close to  the optimal solution while having a reasonable 

computational cost [9]. The SFBS technique is a version of the plus-Z-takeaway-r 

algorithm, where the values of I and r  are updated dynamically. We use classification 

accuracy of the 1-nearest neighbor classifier (INN) as a criterion function, which the 

algorithm maximizes through an iterative search of feature subsets. Results from 

the SFBS feature selection routine can be seen in Figure 5.12 as a plot of criterion 

value versus the feature space dimension d for d = 1 , . . . ,  78. It can be seen th a t the 

SFBS determines a subset of 10 features to  be optimal, as expected, with the curse 

of dimensionality phenomenon clearly seen as an increase in feature space dimension 

leads to lower classification accuracies. From these results, we identify the best 25 

features, indicated by the dotted line in Figure 5.12. This reduced space is more 

appropriately sized to perform an exhaustive search on, and will allow us to compare 

several feature selection routines in an a ttem pt to  identify a more optimal feature 

space of roughly 10 dimensions.

We explore feature selection metrics th a t use geometric measures on the class 

distribution within the feature space itself, for all feature space subsets of dimension 

d =  1 , . . . ,  25. For each feature space subset of dimension d, we first calculate each of 

the 14 class centroid locations. These centroids are then used to  measure several val­

ues, including average interclass distance, average angle between vectors constructed 

between successive class centroids, and the tortuosity  of a line connecting all centroids 

sequentially.

We include the average distance between centroids under the assumption th a t 

classes tha t are spaced farther apart in the feature space will be easier to distinguish 

between, reducing the misclassifieation rate. This measure breaks down when the 

classes have large variance and still overlap significantly within the  feature space. We
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Figure 5.12: Results of the SFBS feature selection algorithm. The feature selection criterion 
here is the minimum nearest neighbor classification accuracy. The curse of dimensionality 
can be seen here, where the criterion value peaks at 10 features and then slowly drops off 
as more features are included.
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first calculate the corresponding vectors between successive n-dimensional centroids, 

Cj — [cj a , Cj-,2 , • ■ ■, c,->n] where j  = 1 , . . .  , 14, using

(_l Ci
(5.3)

=  (^t+1,1 C-i, l j  ^i+1,2 Q ,2i ■ ■ ■ i Cj+1,71 Cj,n)

for * =  l , . . . , | j |  — 1, where |j | indicates the magnitude of j .  We then take the 

Euclidean norm of each vector, ||vj||, and average them to get a single average centroid 

distance value for each feature space,

Tm T =  | - p r r  5 E  iiv > n -  <5 -4 >

These values are sorted by highest average distance, w ith the maximum value corre­

sponding to the top feature subspace of each dimension.

We include the average angle between vectors constructed between successive class 

centroids under the assumption th a t a linear spread of classes would allow new data  

corresponding to an intermediate flaw depth to lie correctly between classes. For 

example, if data  corresponding to a flaw 54% of thickness loss is introduced to this 

classifier, it would ideally fall somewhere in the feature space between classes Dg (51% 

thickness loss) and D w (59% thickness loss). If the classes are linearly distributed in 

sequential order within the feature space, then this new data would have the highest 

probability to be associated with either of these bounding classes. If the classes are 

not linearly distributed in the feature space, there is opportunity  for an alternate 

class to lie in this intermediate area, which would result in a miselassification. From 

equations (5.3) and (5.4) we calculate the angle between successive vectors using the
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dot product

dm = cos 1
‘ V m _|_ i

for rn — 1, . . .  , |z| — 1. (5.5)
Vni || || VTO+1

From these, we calculate the average angle between successive vectors

(5.6)
m

We sort these values by lowest average angle in order to identify a feature space where 

the classes are most linearly distributed, with the minimum value corresponding to 

the top feature subspace of each dimension.

Additionally, we calculate the tortuosity of each centroid curve. Tortuosity (r) 

is defined here as the ratio of the length of the curve connecting the successive class 

centroids to the distance between the ends of it,

A value of t =  1 corresponds to  a linear sequential centroid curve. We sort tortuosity 

in ascending order, with the minimum value corresponding to th e  top feature subspace 

of each dimension. An example of these measures can be seen in Figure 5.13.

Since we have already calculated its results, we include the SFBS routine as well. 

One drawback of using a formal feature selection m ethod is th a t it is directly depen­

dent on the training data  set as well as the criterion selection. We have reservations 

about relying on a feature selection m ethod tha t uses formal classification accuracy as 

a criterion value due to the ‘sequential’ ordering of the classes in our data set. That 

is, formal classification accuracy is highest when class separation within the feature 

space is optimized, without regard to the specific ordering of those classes.

T = where 1 <  r  < inf . (5.7)
l|Cw -  C,
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Figure 5.13: An example of a 4-class data distribution in a 2-dimensional feature space, with 
classes i (A), i + 1 (v ), i + 2 (0), and i + 3 (□). Class centroids are denoted Q , Cj+i, Cj+2 , 
and Ci+3 , respectively. Vectors v* = Ci+i - Q ,  vi+1 = Ci+2 -Ci+1, and vi+2 = Cl+3 - C l+2 
are shown here. The angle between vectors v, and vl fi is 0l: while that between vectors 
Vj+i and Vj+ 2 is &i+i- The tortuosity (r) is defined here as the sum of the length of vectors 
that make up the curve, ||vj|| + ||vj+i || +  ||vj+2||, divided by the distance between end points 
of the curve, ||Ct + 3 — Ct\\.
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The number of distinct rf-feature subsets th a t can be formed is given by the 

binomial coefficient ( ^ ) -  For each of these subsets, criterion values for each of these 

metrics are calculated. If a dimension d is being considered where > 200, only 

the top 200 criterion values are stored. Once all calculated, the top metric criterion 

values are identified and their corresponding feature sets are used to determine an 

overall classification accuracy tha t can be compared between m etrics and classifiers. 

Before we do this, however, we must select which classifiers to use.

5.6 .2  C lassifier S election

The No Free Lunch Theorem states th a t there is no inherently best classifier for a 

particular application, and often times in practice several classifiers are compared 

and contrasted. As previously discussed, there exists a hierarchy of possible choices 

that are application dependent. We have previously decided th a t supervised, sta­

tistical pattern  classification techniques using both param etric and nonparametric 

probability-based classifiers are appropriate for our application.

For parametric classifiers, we include a linear classifier using normal densities 

(LDC), a quadratic classifier using normal densities (QDC), an uncorrelated quadratic 

classifier using normal densities (UDC), a multi-class implementation of a logistic 

linear classifier (LOGLC), as well as a linear classifier using an initial principal com­

ponent analysis projection step (PCLDC). For nonparametric classifiers, we include a 

nearest mean classifier (NMC), a fc-nearest-neighbor classifier (KNXC) for k =  1, 2,3, 

and a minimum least square linear classifier (FISHERC). The m athem atical explana­

tions for these classifiers can be found in [1,2,4-6,9,124-126]. For implementation of 

these classifier functions, we use routines from the MATLAB toolbox PRTools [126],

For the above classifiers th a t output densities (LDC, QDC, UDC, etc.) or unnor­

malized confidences (FISHERC), a function is applied th a t converts the output to
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a proper confidence interval, where the sum of the outcomes is one for every test 

object. This allows for comparison between classifier outputs. Since each waveform's 

feature vector is assigned a confidence value for each class, the  final label is decided 

by the highest confidence of all the classes. Often there will exist several peaks in 

this confidence vector for a single feature vector, an indication th a t the classifier is 

having difficulty distinguishing between classes. This sim ilarity is the reason compli­

cated classification techniques are needed in the first place, and still often result in 

miselassifications. Since our motivation is structural health monitoring, the goal here 

is then to  develop a classifier th a t is accurate enough to  predict labels within a safe 

bound (e.g. ±1 flaw depth) of their true severity.

5.7 R esu lts

As previously mentioned, the originial 78-dimensional feature set was reduced to a  25 

feature subset using a sequential floating backward search (SFBS) algorithm. From 

these reduced features, all possible subsets of dimensions d =  1 , . . .  ,25 were used 

to calculate the three geometric feature selection criterion values: average distance 

between class centroids (||v ||), average angle between successive connecting class cen­

troid vectors (9), and tortuosity of each centroid curve (r). The feature subsets 

corresponding to the ‘best’ 200 criterion values (highest ||v||, lowest 9, and lowest 

r )  for each dimension d =  1,. .  ., 25 are compared using each of the classification 

algorithms presented in Section 5.6.2. The waveforms included in each training set 

T  are subm itted to the individual classifiers as training data using only the features 

identified by the feature space under consideration. A corresponding testing subset 

R  is then subm itted to the trained classifier, again using only those features defined 

by the feature space, and the resulting predicted labels are stored in an array. These
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labels can be easily viewed in a confusion m atrix £ ( j i ,  J 2 ), whose entries are the per­

cent of testing waveforms from class DJ1 (known label ujJi ) th a t are predicted to be 

in class D j 2 (predicted label uj j2 ) .  This is given by

£ ( j i , h )  = — i when j i ,  j 2 e  j  =  1 , . . .  ,25 (5.8)
I

A perfect classifier would therefore have values of C = 1 whenever ujn = u J2 (on the 

diagonal) and values of C = 0 when u)j1 % uij2 (off-diagonal). An example confusion 

matrix for a classifier can be seen in Table 5.3. In this confusion matrix, the number 

of waveforms accurately predicted to be their correct known label lie on the diagonal 

entries, while the number predicted to be within ±1 flaw depth also include the 

waveforms within one predicted label on either side of the diagonal. For example, 

this classifier corretly assigned labels of uju  for only 9 waveforms from class D n  out 

of the 20 tested, resulting in 45% accuracy. W hen accuracy w ith ±1 flaw depth is 

considered, this accuracy rises to  85% since 17 to tal waveforms were given labels of 

co>!0 - W12 (5 labeled uqo, 9 labeled u>u , and 3 labeled W12).

Given the number of classifier configuration param eters used in this study, it does 

not make sense to compare individual confusion matrices to each other to determine 

classifier ability. Instead, we compute the overall classifier accuracy for all testing 

waveforms (Exact) as well as the accuracy of labels within ±1 flaw depth for all testing 

waveforms (±1 Depth). Results for each classifier using feature spaces corresponding 

to the 200 highest ||v||, lowest 9. and lowest r  are presented in Tables 5.4 - 5.12. 

These results are given in terms of the mean (p) plus or minus the  standard deviation 

(a) of the classifier accuracy under ten repetitions of a bagging resampling technique, 

where randomly selected subsets of both the testing and training waveforms are used 

to test and train each classifier, respectively. This allows us to  establish a sense of
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Table 5.3: A confusion matrix C(j\ . j'2 ) for the QDC classifier corresponding to the 6-dimensional feature subspace identified by the 
SFBS algorithm. The values in the matrix are the number of waveforms from the true flaw depth j\ that are labeled as flaw depth 
;/2 - A perfect classifier would have 100% accurate labels 011 the diagonal (j 1 = J2 ), and zero misclassifications for any off-diagonal 
elements (j, /  j 2).

1 2 3 4 5
Predicted Labels 
6 7 8 9 10 11 12 13 14 Totals

14 1 2 0 0 0 0 0 0 0 0 1 0 1 11 16
13 0 0 2 0 0 3 0 0 0 0 0 3 11 1 20
12 0 1 0 0 0 0 3 0 0 1 5 10 0 0 20
11 0 0 2 0 0 0 0 0 0 5 9 3 0 1 20
10 0 0 0 0 0 0 0 0 1 11 5 3 0 0 20

Fa3 9 0 0 0 1 2 0 0 0 13 1 1 2 0 0 20
eSt -1 8 0 0 0 0 0 0 0 20 0 0 0 0 0 0 20
CP 7 0 0 1 0 2 0 11 0 0 1 1 3 1 0 20

£ 6 0 0 2 3 0 10 0 0 0 0 0 0 4 1 20
5 0 0 0 0 14 0 0 0 0 0 0 3 0 0 17
4 1 0 1 12 1 1 2 0 1 0 0 0 1 0 20
3 0 0 13 2 0 1 0 0 0 0 0 0 3 1 20
2 0 15 0 0 0 0 1 0 0 0 0 0 0 0 16
1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 20

Totals 22 18 21 18 19 15 17 20 15 19 22 27 21 15 269



bounds on the stability of the classification accuracy. Results with high standard 

deviations here correspond to classifiers th a t are unstable in their performance, while 

those with low standard deviations returned consistent classification performance. We 

have included classification accuracies for the optimal SFBS feature subset for each 

dimension d = 1,. .  . , 25 as well. This provides a basis for comparison to determine 

how well the geometric feature selection metrics perform against the formal SFBS 

routine. For each metric as well as the SFBS results, the feature subset dimension 

corresponding to the highest classification accuracy (for both exact and ±1 depth) is 

highlighted in gray.

For almost all of the classifiers tested, the maximum average distance between cen­

troids (|| v ||) returns the highest classification accuracy of the three geometric metrics 

(tortuosity r ,  average angle d, average centroid distance ||v||). Additionally, with 

the exception of the three fc-NN classifiers, the  average distance between centroids 

metric even outperformed the SFBS ‘optim al’ feature set. This follows from the fact 

tha t A;NN classifier accuracy (specifically, INN) was used as a criterion function for 

developing the SFBS feature set. If an alternate classifier had been used as a criterion 

function, the results would change accordingly. This shows th a t even formal feature 

selection techniques may not always identify the ‘best’ feature space subsets.

Several of the individual classifiers performed noticeably poorer than the rest. 

The near mean classifier (NMC) computes the Euclidean distance from each feature 

vector to each of the j  class mean vectors, assigning the feature vector a label to the 

class of the nearest mean. While similar in nature to  the better-perform ing but more 

computationally intensive A;-NN classifiers, overlapping classes in the feature space 

(as previously discussed) will clearly result in misclassifications th a t have potential 

to be avoided in the fc-NN classifiers This is seen as lower classification accuracies 

across the board for the NMC classifier relative to the rest of the classifiers.
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Table 5.4: Classification accuracies for the LDC classifier using the top feature set of dimension d as determined by the lowest 
average tortuosity (r), lowest average angle (6), and highest average distance between class centroids (||v||) feature selection metrics, 
along with the ‘optimal’ feature space classification accuracy as determined by the sequential floating backward search (SFBS). 
Results are presented as the mean (fi) plus or minus the standard deviation (a) of the classifier accuracy under ten repetitions of 
a bagging resampling technique for both an exact classification label (Exact), as well as the accuracy to within ±1 flaw depth (±1 
Depth) The highest classification accuracy per column is highlighted in gray.

LDC Classification Accuracy (fi ± a)  [%]
Tortuosity (r) Avg. Angle (0) Centroid Dist. (||v||) SFBS - INN

Dimension Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth
1 17.5 ±2.0 33.5 ± 3.6 17.5 ± 2.0 33.5 ±3.6 17.5 ±2.0 33.5 ±3.6 15.0 ± 1.3 29.8 ± 2.6
2 32.1 ±3.6 42.5 ±4.6 32.1 ±2.7 44.9 ±4.1 32.1 ±3.0 44.9 ±3.9 26.9 ±2.6 36.7 ±3.4
3 28.7 ±2.8 43.8 ±3.4 29.7 ±3.5 40.9 ± 4.4 43.2 ±2.8 53.3 ±4.2 41.2 ±2.6 56.7 ±2.9
4 23.5 ±2.8 42.5 ±3.3 31.7 ± 3.8 44.9 ± 4.4 48.8 ±3.1 57.7 ±3.7 44.1 ±2.1 58.0 ±2.1
5 21.5 ±2.6 37.5 ±3.1 33.0 ± 3.8 47.5 ±4.7 50.8 ±3.2 60.4 ±3.8 43.6 ± 1.3 56.7 ±0.9
6 21.6 ±2.5 37.8 ± 3.4 34.6 ±4.1 48.3 ±4.7 52.4 ±3.1 63.1 ±4.0 44.3 ±2.0 58.0 ±1.8
7 24.5 ± 2.8 41.8 ±3.4 37.1 ±4.0 50.0 ±4.7 55.1 ±3.3 66.4 ±4.0 44.0 ± 1.2 58.2 ± 1.5
8 25.1 ±3.2 42.0 ±3.5 37.5 ± 3.8 50.3 ±4.7 58.1 ±3.5 68.4 ±3.7 50.3 ± 1.7 64.1 ±2.7
9 25.1 ± 3.5 42.0 ±3.6 39.3 ± 3.8 53.2 ±4.3 59.4 ± 3.5 68.9 ± 3.8 51.8 ±2.5 64.8 ±2.4
10 29.1 ±3.5 44.0 ± 3.6 39.8 ± 3.6 53.3 ±4.2 60.5 ±3.5 71.0 ±3.5 51.8 ±2.5 64.8 ± 2.4
11 30.1 ± 3.2 45.2 ±3.5 40.0 ±3.8 53.3 ±4.4 61.3 ±3.7 71.5 ±3.6 55.8 ±2.3 66.8 ± 2.8
12 33.5 ±3.1 44.8 ± 3.4 42.3 ±3.9 55.4 ± 4.4 62.4 ± 3.6 72.3 ± 3.4 55.8 ±2.3 66.8 ± 2.8
13 37.3 ± 3.2 49.3 ±3.4 46.0 ± 4.4 60.3 ±5.0 63.1 ±3.4 73.1 ±2.9 59.8 ± 1.6 69.4 ±1.5
14 38.0 ± 3.5 49.4 ± 3.2 47.5 ±4.1 61.5 ±4.5 63.8 ±3.2 73.3 ±2.8 61.0 ±2.8 70.6 ± 2.0
15 38.7 ±3.5 50.2 ± 3.2 51.7 ±3.9 65.1 ±4.3 64.3 ± 3.3 73.5 ±2.8 60.8 ± 2.9 70.4 ±2.1
16 41.9 ±3.7 53.9 ± 3.6 52.0 ± 4.0 65.4 ±3.8 64.7 ± 3.3 74.1 ±2.7 55.3 ±2.1 65.6 ±2.6
17 47.3 ± 3.9 57.4 ± 3.6 52.0 ±4.0 65.4 ±3.2 64.8 ±3.3 74.1 ±2.9 55.4 ± 2.0 65.8 ±2.4
18 54.1 ±3.9 62.6 ± 3.2 52.1 ±3.9 65.5 ±3.3 65.1 ±3.5 74.6 ±2.9 55.4 ± 2.0 65.8 ±2.4
19 54.1 ±3.9 62.6 ±3.0 57.4 ± 3.7 69.0 ±3.1 65.1 ±3.6 74.6 ± 2.9 59.5 ±2.3 69.7 ±2.1
20 59.3 ± 3.2 67.2 ± 2.9 58.1 ±4.5 69.9 ±3.1 65.2 ±3.7 74.7 ±3.2 59.5 ± 2.3 69.7 ±2.1
21 62.0 ±3.7 69.8 ± 2.8 63.0 ±3.9 71.3 ±2.8 65.3 ± 3.8 74.8 ± 2.9 59.4 ± 3.0 69.2 ± 2.8
22 64.2 ±3.5 73.0 ±3.1 65.1 ±3.5 73.3 ± 2.7 65.1 ±3.6 74.5 ±3.1 63.4 ± 2.9 72.3 ±2.7
23 65.1 ±3.4 73.4 ± 2.6 65.1 ±3.7 73.8 ± 2.8 64.9 ±3.2 74.4 ± 2.9 61.4 ±2.6 71.0 ± 1.9
24 65.0 ± 3.5 73.8 ± 2.8 65.0 ± 3.5 73.8 ± 2.8 65.0 ±3.5 73.8 ± 2.8 64.1 ±2.9 73.3 ± 2.4
25 64.3 ±2.5 73.5 ± 2.4 64.3 ±2.5 73.5 ±2.4 64.3 ± 2.5 73.5 ±2.4 64.3 ± 2.5 73.5 ± 2.4
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Table 5.5: Classification accuracies for the QDC classifier using the top feature set of dimension d as determined by the lowest 
average tortuosity (r), lowest average angle (9). and highest average distance between class centroids ( | |v | | )  feature selection metrics, 
along with the ‘optimal’ feature space classification accuracy as determined by the sequential floating backward search (SFBS). 
Results are presented as the mean (p) plus or minus the standard deviation (a) of the classifier accuracy under ten repetitions of 
a bagging resampling technique for both an exact classification label (Exact), as well as the accuracy to within ±1 flaw depth (±1 
Depth). The highest classification accuracy per column is highlighted in gray.

QDC Classification Accuracy (p ± ex) [%]
Tortuosity (r) Avg. Angle (0) Centroid Dist. (||v||) SFBS - INN

Dimension Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth
1 17.9 ±2.2 33.5 ±3.0 17.9 ±2.2 33.5 ±3.0 17.9 ±2.2 33.5 ±3.0 15.8 ± 1.7 30.6 ± 2.3
2 36.0 ±3.1 48.5 ±3.2 41.0 ±2.9 54.1 ±3.8 41.0 ±4.1 54.1 ±6.0 32.2 ± 1.7 44.3 ± 3.0
3 42.8 ±3.1 55.5 ±4.0 40.1 ±3.4 52.3 ±4.2 51.4 ±7.7 64.2 ±9.8 57.7 ±2.3 68.7 ±2.1
4 27.4 ±3.5 43.9 ±4.3 43.0 ± 3.0 53.6 ±3.5 58.7 ± 12.2 68.2 ± 13.7 60.0 ± 1.6 70.0 ± 1.6
5 21.2 ±3.4 40.3 ±4.0 43.0 ±3.1 55.0 ±4.0 60.9 ± 16.1 70.7 ± 16.9 53.0 ±8.7 64.9 ± 10.0
6 20.8 ±3.0 39.8 ±4.2 44.3 ±3.1 56.0 ± 4.0 61.8 ± 16.1 71.9 ± 17.3 54.6 ± 5.6 65.6 ±7.7
7 26.5 ±3.2 41.4 ±4.4 45.6 ±3.0 57.1 ±3.7 67.9 ± 15.6 75.7 ± 17.0 55.4 ±5.5 64.8 ± 6.8
8 26.2 ±2.8 42.2 ±4.3 46.4 ±3.1 57.9 ± 3.4 66.3 ±12.5 74.2 ± 13.2 66.3 ±4.7 74.3 ± 4.6
9 26.1 ±2.9 43.1 ±4.1 48.6 ±3.0 60.7 ±3.4 70.2 ± 11.5 77.4 ±11.6 68.2 ±4.1 75.5 ± 4.0
10 37.9 ± 2.5 51.3 ±3.5 50.7 ± 3.0 61.0 ±3.4 72.7 ±9.7 78.8 ± 9.2 68.3 ±4.1 75.6 ± 3.9
11 39.4 ±3.1 53.0 ± 3.5 52.5 ±3.1 62.2 ±2.9 73.3 ±8.6 79.9 ± 7.6 68.3 ±3.8 74.8 ± 3.5
12 40.4 ± 2.9 53.5 ± 3.5 53.4 ±3.2 62.8 ±2.8 74.3 ± 7.2 80.3 ± 6.6 68.2 ± 3.7 74.8 ± 3.4
13 43.8 ±3.4 55.9 ±3.2 56.9 ±3.3 67.2 ±2.8 74.8 ± 5.9 80.3 ± 5.2 69.1 ±4.0 75.7 ± 3.9
14 47.5 ±3.1 58.3 ± 3.2 59.1 ±3.4 68.7 ±3.1 75.3 ±5.9 80.4 ±5.2 72.2 ±4.7 79.1 ±4.2
15 50.9 ± 3.4 62.2 ±2.6 62.2 ±3.5 71.6 ±3.0 75.2 ± 5.1 80.4 ±4.6 72.1 ±4.7 79.4 ± 4.0
16 53.9 ±3.9 64.1 ±3.0 62.7 ±3.5 71.7 ±3.0 75.6 ± 5.0 80.7 ±4.9 64.5 ± 5.3 72.5 ±6.0
17 55.5 ±3.9 65.9 ±2.8 62.9 ±3.3 71.7 ±2.8 74.8 ±5.1 80.5 ± 4.8 66.1 ±3.9 74.5 ± 4.5
18 65.0 ±3.7 71.8 ±3.2 62.9 ±3.4 71.4 ±3.0 74.9 ± 5.0 80.4 ± 4.8 66.1 ±4.0 74.5 ±4.5
19 65.6 ±3.8 72.1 ±3.2 71.1 ±2.8 77.6 ±2.8 74.8 ± 4.8 80.7 ±4.5 67.1 ±4.2 74.7 ±4.5
20 70.1 ±4.1 77.0 ± 3.4 71.8 ±2.8 77.7 ±2.8 74.5 ± 4.6 80.4 ±4.5 67.0 ±4.2 74.6 ±4.5
21 72.4 ± 3.3 79.1 ±3.1 72.9 ±3.3 78.5 ±2.8 74.5 ± 4.6 80.3 ±4.3 67.5 ±3.7 74.8 ± 4.2
22 74.4 ± 4.2 80.0 ±4.7 75.5 ±3.1 80.7 ± 2.9 74.2 ±4.1 80.4 ± 4.3 71.4 ±4.1 77.9 ± 3.9
23 75.2 ±4.1 80.7 ± 4.6 75.2 ± 3.9 80.7 ±4.6 74.4 ± 3.9 80.3 ±4.3 72.3 ±3.1 79.1 ±3.3
24 74.6 ± 3.8 80.4 ±3.9 74.6 ± 3.8 80.4 ± 3.9 74.6 ± 3.8 80.4 ±3.9 72.9 ± 3.4 79.1 ±3.5
25 73.2 ±3.3 79.2 ± 3.6 73.2 ±3.3 79.2 ± 3.6 73.2 ± 3.3 79.2 ±3.6 73.2 ± 3.3 79.2 ± 3.6



Table 5.6: Classification accuracies for the INN classifier using the top feature set of dimension d as determined by the lowest 
average tortuosity (r), lowest average angle (6), and highest average distance between class centroids (||v||) feature selection metrics, 
along with the ‘optimal’ feature space classification accuracy as determined by the sequential floating backward search (SFBS). 
Results are presented as the mean (//) plus or minus the standard deviation {a) of the classifier accuracy under ten repetitions of 
a bagging resampling technique for both an exact classification label (Exact), as well as the accuracy to within ±1 flaw depth (±1 
Depth). The highest classification accuracy per column is highlighted in gray.

INN Classification Accuracy (/r ± a)  [%]
Tortuosity (r) Avg. Angle (6) Centroid Dist. (||v||) SFBS - INN

Dimension Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth
1 19.3 ±2.4 33.5 ± 2.6 19.3 ±2.4 33.5 ±2.6 19.3 ±2.4 33.5 ±2.6 11.2 ±1.4 26.7 ±2.1
2 35.6 ± 3.0 45.9 ± 3.4 38.2 ±2.7 50.6 ± 3.3 38.2 ± 3.5 50.6 ±3.7 34.1 ±1.8 45.1 ±2.6
3 38.7 ±3.2 51.3 ±3.7 44.1 ±3.0 55.0 ±3.4 56.1 ±3.0 65.6 ±3.6 59.2 ±2.2 69.4 ±1.8
4 30.2 ± 3.0 45.5 ± 3.8 45.2 ± 3.3 55.9 ±4.1 58.9 ±3.3 69.6 ± 3.9 62.6 ±2.0 72.5 ±2.1
5 26.1 ±3.1 42.1 ±4.0 45.9 ±3.5 58.8 ± 4.3 62.3 ±3.1 71.8 ±3.0 64.2 ±2.8 74.1 ±2.8
6 25.4 ±3.3 41.2 ±3.7 44.5 ±3.5 55.2 ±4.0 64.2 ±2.9 73.9 ±3.0 65.8 ± 2.3 75.4 ± 2.4
7 28.8 ±3.3 44.3 ±4.1 46.2 ± 3.4 58.9 ±3.8 65.6 ±2.7 75.2 ± 2.9 65.9 ±2.2 75.5 ±2.4
8 29.5 ±3.4 46.2 ±3.9 44.2 ±3.5 56.8 ± 4.0 66.4 ± 2.7 75.4 ± 3.2 67.3 ±2.1 76.8 ±2.1
9 29.7 ± 3.5 46.3 ± 4.0 43.6 ± 3.4 55.0 ±4.0 66.5 ±2.5 75.5 ± 2.6 67.7 ± 2.0 77.0 ±2.1
10 34.1 ±3.8 48.7 ± 4.0 44.6 ± 3.5 57.0 ± 3.8 66.6 ± 2.5 75.3 ±2.5 68.0 ± 2.0 77.1 ±2.0
11 35.0 ±4.0 49.0 ± 3.9 44.3 ±3.4 56.6 ± 3.5 63.8 ±2.5 74.7 ±2.5 67.7 ±2.0 76.9 ± 1.9
12 37.9 ±3.8 50.4 ± 4.0 46.1 ±3.5 58.2 ± 3.4 64.0 ± 2.5 75.0 ± 2.6 67.7 ±1.9 76.8 ± 1.8
13 39.7 ±3.3 51.4 ±3.4 45.4 ± 3.4 58.3 ± 3.6 64.1 ±2.3 74.8 ±2.5 68.3 ±2.7 77.2 ±2.1
14 39.9 ± 3.4 51.7 ±3.7 50.0 ± 3.4 61.3 ±3.7 64.3 ± 2.4 74.7 ± 2.4 62.1 ± 1.9 74.2 ±2.5
15 41.7 ±3.2 53.5 ±3.5 54.7 ±3.6 67.5 ± 3.4 64.3 ±2.5 74.7 ± 2.4 61.9 ±2.1 74.0 ±2.3
16 44.8 ±3.2 57.5 ±3.7 56.1 ±3.7 67.6 ± 3.4 64.4 ± 2.6 75.0 ± 2.4 61.3 ±2.8 73.3 ± 2.9
17 49.7 ±3.7 61.4 ±3.7 56.0 ±4.1 68.4 ±3.5 64.5 ±2.6 75.1 ±2.6 61.3 ±2.8 73.3 ± 2.8
18 50.4 ± 3.3 62.2 ±3.8 55.9 ±4.1 68.2 ± 3.5 64.3 ± 2.6 74.9 ± 2.9 61.3 ±2.8 73.4 ± 2.8
19 52.3 ± 2.8 64.2 ±3.2 55.2 ±4.0 68.4 ± 3.3 64.1 ±2.4 74.9 ± 2.9 61.4 ±2.7 73.7 ±2.9
20 53.8 ± 2.8 65.8 ±3.4 57.4 ± 3.7 69.8 ± 3.0 63.5 ±2.8 74.3 ± 2.9 61.2 ±2.8 73.5 ± 2.9
21 56.3 ±2.5 67.0 ± 3.2 60.5 ±4.1 70.8 ± 3.4 62.8 ± 2.9 74.1 ±2.9 61.2 ±2.8 73.3 ± 2.9
22 60.1 ±2.6 71.3 ±3.0 61.5 ±3.3 72.3 ± 2.8 62.6 ± 3.0 74.2 ±2.9 61.2 ±2.6 73.0 ± 3.0
23 62.0 ±2.5 73.1 ±2.9 62.3 ± 3.0 73.5 ± 2.8 62.5 ± 2.9 73.9 ± 2.6 60.3 ±2.3 71.7 ±2.1
24 62.2 ± 2.7 73.4 ± 2.6 62.2 ±2.7 73.4 ± 2.6 62.2 ±2.7 73.4 ± 2.6 60.4 ± 2.3 71.6 ± 1.9
25 60.1 ± 2.3 71.2 ±2.0 60.1 ±2.3 71.2 ±2.0 60.1 ±2.3 71.2 ±2.0 60.1 ±2.3 71.2 ±2.0



Table 5 7: Classification accuracies for the 2NN classifier using the top feature set of dimension d  as determined by the lowest 
average tortuosity (r), lowest average angle (8) .  and highest average distance between class centroids (||v||) feature selection metrics, 
along with the ‘optimal’ feature space classification accuracy as determined by the sequential floating backward search (SFBS). 
Results are presented as the mean (f i ) plus or minus the standard deviation ( a )  of the classifier accuracy under ten repetitions of 
a bagging resampling technique for both an exact classification label (Exact), as well as the accuracy to within ±1 flaw depth (±1 
Depth). The highest classification accuracy per column is highlighted in gray.

2NN Classification Accuracy (fi ± a)  [%}
Tortuosity (r) Avg. Angle (6) Centroid Dist. (||v||) SFBS - INN

Dimension Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth
1 17.3 ±2.7 32.7 ±3.1 17.3 ±2.7 32.7 ±3.1 17.3 ±2.7 32.7 ±3.1 11.0 ± 1.6 25.2 ±2.0
2 38.1 ±2.7 47.4 ±3.7 37.7 ±2.8 50.0 ± 3.4 37.4 ± 3.0 50.0 ±3.6 35.3 ±2.1 45.9 ± 1.9
3 36.9 ±3.2 49.3 ±3.7 43.8 ±2.9 54.8 ±3.1 55.5 ±3.0 64.7 ±3.8 59.3 ±2.5 69.3 ±2.5
4 30.9 ±2.7 44.9 ± 3.4 44.3 ±3.0 54.5 ±3.3 58.8 ±3.1 67.8 ±3.2 61.4 ±1.8 71.3 ±2.1
5 25.8 ±2.6 41.3 ±3.4 44.4 ± 3.4 56.8 ± 3.5 63.0 ±3.2 71.7 ±3.2 62.9 ± 1.8 73.1 ± 1.9
6 24.9 ±2.7 40.9 ± 3.4 42.1 ±3.5 53.8 ±3.7 64.3 ± 3.6 73.0 ± 2.8 63.2 ±1.9 73.3 ±2.0
7 28.1 ±2.6 41.6 ±3.3 44.1 ±3.5 56.4 ±3.8 64.4 ±3.1 73.0 ± 2.8 63.2 ±1.9 73.3 ±2.0
8 28.5 ± 2.6 43.6 ±3.5 42.9 ±3.4 55.4 ±3.8 66.1 ±2.4 74.0 ±  2.6 65.4 ± 1.3 75.1 ±1.6
9 29.7 ±2.9 43.3 ± 4.0 42.4 ±3.7 54.3 ±3.8 65.5 ± 2.2 73.9 ±2.2 65.9 ± 1.6 75.5 ±1.8
10 31.7 ±3.0 45.0 ± 3.3 43.4 ± 3.3 56.1 ±3.8 65.6 ±2.1 74.0 ± 2.5 65.8 ±1.4 75.5 ± 1.7
11 33.0 ± 3.3 46.4 ± 3.2 43.0 ± 3.3 56.1 ±3.8 61.7 ±2.5 72.3 ±2.5 66.2 ±1.5 75.8 ±1.7
12 35.8 ±3.3 48.0 ± 3.0 45.6 ± 3.5 57.9 ±3.9 61.9 ±3.3 72.6 ±3.1 66.1 ± 1.6 75.7 ±1.6
13 37.9 ±3.1 49.9 ±3.1 43.2 ±3.3 56.1 ±3.5 61.8 ±2.7 72.3 ± 2.8 66.4 ±1.7 75 .0 ±1.6
14 39.1 ±3.5 51.0 ±3.7 47.2 ±3.5 59.2 ± 3.6 61.6 ±2.0 71.9 ±2.5 60 .3 ± 1.2 71.5 ±1.5
15 41.2 ±3.8 52.1 ±4.3 52.6 ±3.7 64.5 ±3.6 61.8 ±2.7 72.1 ±2.5 59.6 ± 1.6 70.5 ± 1.6
16 44.1 ±3.5 55.0 ±4.0 52.6 ± 3.2 64.8 ±3.4 61.8 ±2.9 72.3 ±2.7 59.2 ±2.3 70.1 ±2.0
17 46.6 ±3.6 57.7 ±4.1 53.5 ± 2.8 65.4 ±3.2 61.9 ±3.0 72.2 ±2.6 59.1 ±2.3 70.0 ±2.1
18 49.2 ±3.6 59.6 ± 3.9 52.5 ±2.9 64.6 ±3.1 61.9 ±3.0 72.3 ±2.9 58.8 ± 2.3 69.7 ± 1.9
19 50.1 ±3.5 60.8 ± 3.0 52.8 ±2.9 64.5 ±2.7 61.9 ±3.0 72.1 ±2.9 58.8 ±2.2 69 .7 ±1.6
20 51.9 ±3.3 62.9 ± 2.9 55.1 ±2.6 66.8 ±3.0 61.6 ±3.0 71.9 ±3.0 58.7 ±2.1 69 .6 ±1.5
21 55.1 ±2.9 64.7 ±2.7 60.3 ± 2.6 68.4 ± 2.6 61.3 ±2.9 71.6 ±2.9 58.7 ±2.3 69.5 ± 1.7
22 58.5 ±2.9 67.7 ±2.5 59.1 ±2.8 68.6 ± 2.7 61.0 ±2.9 71.2 ±2.6 58.8 ± 1.7 69.6 ± 1.8
23 60.4 ± 3.0 70.2 ± 2.6 60.1 ±3.1 71.0 ±2.5 60.8 ± 2.8 70.6 ± 2.5 59.0 ± 1.9 69.3 ± 1.3
24 59.9 ± 2.6 70.3 ± 2.5 59.9 ± 2.6 70.3 ± 2.5 59.9 ± 2.6 70.3 ±2.5 58.3 ±2.1 68.9 ± 1.5
25 58.4 ± 1.9 68.8 ±1.2 58.4 ± 1.9 68.8 ±1.2 58.4 ± 1.9 68.8 ± 1.2 58.4 ± 1.9 68.8 ± 1.2



Table 5.8: Classification accuracies for the 3NN classifier using the top feature set of dimension d as determined by the lowest 
average tortuosity (r), lowest average angle (#), and highest average distance between class centroids (||v||) feature selection metrics, 
along with the ‘optimal’ feature space classification accuracy as determined by the sequential floating backward search (SFBS). 
Results are presented as the mean (ju) plus or minus the standard deviation (a) of the classifier accuracy under ten repetitions of 
a bagging resampling technique for both an exact classification label (Exact), as well as the accuracy to within ±1 flaw depth (±1 
Depth). The highest classification accuracy per column is highlighted in gray.

3NN Classification Accuracy {fi ±  cr) [%]
Tortuosity (r) Avg. Angle (0) Centroid Dist. (||v||) SFBS - INN

Dimension Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth
1 17.6 ±2.5 30.9 ±3.1 17.6 ±2.5 30.9 ±3.1 17.6 ±2.5 30.9 ±3.1 12.4 ± 1.7 25.9 ± 1.3
2 38.9 ± 3.0 47.2 ±3.7 39.6 ± 3.2 50.4 ±3.1 39.6 ± 3.3 50.4 ±3.9 37.0 ± 1.9 47.0 ± 1.6
3 37.5 ±2.9 48.1 ±3.3 44.1 ±3.6 55.3 ±3.4 56.8 ±3.3 66.4 ± 3.5 59.3 ±1.4 69.7 ±2.0
4 30.8 ± 2.9 43.8 ±3.5 45.4 ± 3.0 55.7 ±3.6 59.3 ±3.3 68.9 ±3.3 61.6 ± 1.9 71.4 ±2.2
5 25.2 ±3.0 40.0 ±3.1 46.1 ±3.4 57.3 ±4.1 62.5 ±3.1 71.3 ±3.2 62.9 ±2.2 72.6 ± 2.4
6 24.5 ±3.0 39.3 ±3.0 45.2 ±3.1 55.5 ±3.7 63.3 ±3.2 72.3 ±2.7 63.5 ± 2.0 73.3 ±2.5
7 28.3 ±3.1 41.6 ±3.6 46.1 ±3.4 57.8 ±4.2 63.8 ±2.7 72.4 ± 2.8 63.6 ±2.0 73.3 ±2.1
8 28.9 ±2.6 42.9 ±3.6 44.3 ± 3.3 56.3 ±3.7 64.7 ± 2.6 72.6 ± 2.6 65.2 ±2.5 74.2 ±2.3
9 29.1 ±2.8 42.0 ± 3.4 44.4 ±3.3 55.1 ±3.7 64.4 ±2.5 73.0 ± 2.6 65.4 ±2.4 74.1 ±2.3
10 33.1 ±3.0 44.9 ± 3.6 44.3 ±3.1 56.8 ±3.7 64.1 ±2.6 72.6 ± 2.8 65.5 ± 2.4 74.3 ± 2.2
11 34.3 ± 3.4 46.3 ± 3.3 44.5 ±3.1 56.8 ±3.7 61.4 ±2.5 71.9 ±2.9 66.0 ± 2.7 74.6 ± 2.5
12 36.5 ±3.2 48.4 ± 3.6 46.8 ± 3.0 58.9 ±3.6 61.4 ±2.4 72.0 ± 2.9 65.7 ±2.9 74.4 ± 2.8
13 37.7 ±3.5 48.8 ± 3.4 45.4 ± 3.3 57.5 ±3.4 61.4 ±2.6 72.0 ±2.9 65.0 ± 1.5 73.7 ± 1.8
14 39.3 ± 3.0 50.4 ± 3.4 48.8 ± 3.8 60.2 ± 3.9 61.4 ±2.5 72.0 ± 3.0 59.9 ± 1.5 70.9 ± 1.7
15 42.0 ±3.2 52.2 ± 3.9 54.3 ± 3.8 65.4 ±3.5 61.5 ±2.5 72.0 ± 2.9 60.4 ± 1.5 70.8 ± 1.2
16 44.0 ± 3.2 53.1 ±3.8 54.6 ± 3.8 65.6 ±3.5 61.6 ±2.7 72.1 ±2.9 59.5 ±1.8 70.4 ±1.5
17 48.1 ±3.1 58.1 ±3.8 55.1 ±3.6 65.6 ±3.6 61.8 ±2.6 72.2 ± 2.8 59.9 ± 1.8 70.9 ± 1.7
18 50.3 ± 3.3 60.7 ± 3.6 54.5 ± 2.9 65.4 ±3.5 61.7 ±2.8 72.0 ±3.0 59.8 ± 1.9 70.7 ± 1.7
19 51.6 ±3.3 61.9 ±3.2 54.4 ± 3.0 65.3 ±3.4 61.6 ±2.8 72.2 ±3.0 59.4 ± 1.8 70.3 ± 1.6
20 53.6 ± 3.3 64.2 ±3.6 56.5 ± 3.3 67.6 ±3.0 61.3 ±2.7 72.1 ±3.1 59.5 ± 1.7 70.4 ± 1.4
21 56.5 ±3.1 65.4 ± 3.4 60.4 ±  3.3 69.4 ±3.0 61.3 ±2.6 71.8 ±2.9 59.6 ± 1.6 70.4 ± 1.4
22 59.5 ±2.7 69.3 ± 3.0 59.3 ± 3.2 69.2 ±3.0 61.0 ±2.7 71.8 ±3.0 59.9 ± 1.6 70.6 ±0.7
23 61.0 ± 2.9 70.9 ± 3.3 60.6 ± 2.9 71.0 ± 3.1 60.6 ± 2.3 71.0 ±2.7 59.6 ±1.1 69.2 ± 1.7
24 60.4 ± 2.6 70.7 ±3.1 60.4 ± 2.6 70.7 ±3.1 60.4 ± 2.6 70.7 ±3.1 59.1 ±0.9 69.1 ± 1.7
25 59.2 ± 1.0 69.3 ± 1.8 59.2 ± 1.0 69.3 ± 1.8 59.2 ±1.0 69.3 ± 1.8 59.2 ± 1.0 69.3 ± 1.8



Table 5.9: Classification accuracies for the PCLDC classifier using the top feature set of dimension d as determined by the lowest 
average tortuosity (r), lowest average angle (0 ), and highest average distance between class centroids (||v||) feature selection metrics, 
along with the ‘optimal’ feature space classification accuracy as determined by the sequential floating backward search (SFBS). 
Results are presented as the mean (/i) plus or minus the standard deviation (a) of the classifier accuracy under ten repetitions of 
a bagging resampling technique for both an exact classification label (Exact), as well as the accuracy to within ±1 flaw depth (±1 
Depth). The highest classification accuracy per column is highlighted in gray.

PCLDC Classification Accuracy (fi ± a)  {%}
Tortuosity (r) Avg. Angle (8) Centroid Dist. (|jv||) SFBS - INN

Dimension Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth
1 17.5 ±2.0 33.5 ± 3.6 17.5 ±2.0 33.5 ±3.6 17.5 ±2.0 33.5 ±3.6 15.0 ± 1.3 29.8 ±2.6
2 32.1 ±3.6 42.5 ±4.6 32.1 ±2.7 44.9 ±4.1 32.1 ±3.0 44.9 ±3.9 26.9 ± 2.6 36.7 ± 3.4
3 28.7 ± 2.8 43.8 ± 3.4 29.7 ±3.5 40.9 ±4.4 43.2 ± 2.8 53.3 ±4.2 41.2 ±2.6 56.7 ±2.9
4 23.5 ± 2.8 42.5 ±3.3 31.7 ±3.8 44.9 ±4.4 48.8 ±3.1 57.7 ±3.7 44.1 ±2.1 58.0 ±2.1
5 21.5 ± 2.6 37.5 ±3.1 33.0 ± 3.8 47.5 ±4.7 50.8 ±3.2 60.4 ± 3.8 43.6 ± 1.3 56.7 ± 0.9
6 21.6 ± 2.5 37.8 ± 3.4 34.6 ±4.1 48.3 ±4.7 52.4 ±3.1 63.1 ±4.0 44.3 ± 2.0 58.0 ± 1.8
7 24.5 ±2.8 41.8 ±3.4 37.1 ±4.0 50.0 ±4.7 55.1 ±3.3 66.4 ± 4.0 44.0 ± 1.2 58.2 ± 1.5
8 25.1 ±3.2 42.0 ±3.5 37.5 ± 3.8 50.3 ±4.7 58.1 ±3.5 68.4 ± 3.7 50.3 ± 1.7 64.1 ±2.7
9 25.1 ±3.5 42.0 ±3.6 39.3 ± 3.8 53.2 ±4.3 59.4 ±3.5 68.9 ± 3.8 51.8 ±2.5 64.8 ± 2.4
10 29.1 ±3.5 44.0 ± 3.6 39.8 ± 3.6 53.3 ±4.2 60.5 ± 3.5 71.0 ±3.5 51.8 ±2.5 64.8 ±2.4
11 30.1 ±3.2 45.2 ± 3.5 40.0 ± 3.8 53.3 ±4.4 61.3 ±3.7 71.5 ±3.6 55.8 ±2.3 66.8 ± 2.8
12 33.5 ±3.1 44.8 ± 3.4 42.3 ± 3.9 55.4 ±4.4 62.4 ± 3.6 72.3 ±3.4 55.8 ±2.3 66.8 ± 2.8
13 37.3 ±3.2 49.3 ± 3.4 46.0 ± 4.4 60.3 ± 5.0 63.1 ±3.4 73.1 ±2.9 59.8 ±1.6 69.4 ±1.5
14 38.0 ± 3.5 49.4 ± 3.2 47.5 ±4.1 61.5 ±4.5 63.8 ±3.2 73.3 ± 2.8 61.0 ±2.8 70.6 ± 2.0
15 38.7 ± 3.5 50.2 ± 3.2 51.7 ± 3.9 65.1 ±4.3 64.3 ±3.3 73.5 ±2.8 60.8 ± 2.9 70.4 ±2.1
16 41.9 ±3.7 53.9 ± 3.6 52.0 ±4.0 65.4 ±3.8 64.7 ±3.3 74.1 ±2.7 55.3 ±2.1 65.6 ± 2.6
17 47.3 ±3.9 57.4 ±3.6 52.0 ± 4.0 65.4 ±3.2 64.8 ±3.3 74.1 ±2.9 55.4 ± 2.0 65.8 ± 2.4
18 54.1 ±3.9 62.6 ±3.2 52.1 ±3.9 65.5 ±3.3 65.1 ±3.5 74.6 ± 2.9 55.4 ±2.0 65.8 ±2.4
19 54.1 ±3.9 62.6 ±3.0 57.4 ± 3.7 69.0 ±3.1 65.1 ±3.6 74.6 ± 2.9 59.5 ±2.3 69.7 ±2.1
20 59.3 ±3.2 67.2 ± 2.9 58.1 ±4.5 69.9 ±3.1 65.2 ±3.7 74.7 ± 3.2 59.5 ±2.3 69.7 ±2.1
21 62.0 ±3.7 69.8 ± 2.8 63.0 ± 3.9 71.3 ±2.8 65.3 ±3.8 74.8 ± 2.9 59.4 ±3.0 69.2 ±2.8
22 64.2 ± 3.5 73.0 ±3.1 65.1 ± 3.5 73.3 ±2.7 65.1 ±3.6 74.5 ±3.1 63.4 ±2.9 72.3 ±2.7
23 65.1 ± 3.4 73.4 ± 2.6 65.1 ±3.7 73.8 ± 2.8 64.9 ±3.2 74.4 ± 2.9 61.4 ±2.6 71.0 ± 1.9
24 65.0 ±3.5 73.8 ± 2.8 65.0 ±3.5 73.8 ± 2.8 65.0 ±3.5 73.8 ± 2.8 64.1 ±2.9 73.3 ± 2.4
25 64.3 ± 2.5 73.5 ± 2.4 64.3 ± 2.5 73.5 ± 2.4 64.3 ±2.5 73.5 ±2.4 64.3 ±2.5 73.5 ± 2.4
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Table 5.10: Classification accuracies for the LOGLC classifier using the top feature set of dimension d as determined by the lowest 
average tortuosity (r), lowest average angle (8 ), and highest average distance between class centroids (||v||) feature selection metrics, 
along with the ‘optimal’ feature space classification accuracy as determined by the sequential floating backward search (SFBS). 
Results are presented as the mean (p) plus or minus the standard deviation (a) of the classifier accuracy under ten repetitions 
of a bagging resampling technique for both an exact classification label (Exact), as well as the accuracy to within ±1 flaw depth 
(±1 Depth). The highest classification accuracy per column is highlighted in gray. The (••■) symbol represents a classification 
algorithm that failed to converge.

LOGLC Classification Accuracy (/u± a )  [%]
Tortuosity (r) Avg. Angle (0) Centroid Dist. (||v||) SFBS - INN

Dimension Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth
1 17.1 ± 2.2 32.9 ±3.6 17.1 ±2.2 32.9 ± 3.6 17.1 ±2.2 32.9 ±3.6 14.5 ± 1.3 30.7 ± 2.2
2 32.5 i  2.6 42.5 ±3.8 36.0 ±2.9 48.4 ±4.1 35.7 ±2.9 48.4 ±4.1 30.1 ± 2.2 41.2 ±3.7
3 39.1 ±2.7 47.5 ±3.6 37.1 ± 13.9 47.7 ± 11.5 45.0 ± 2.8 57.2 ±3.8 49.1 ±2.9 59.3 ± 2.9
4 26.4 ± 2.7 44.1 ± 3.2 38.3 ± 11.2 48.1 ± 9.4 50.5 ±2.7 61.6 ±3.3 52.9 ± 3.5 61.7 ±3.0
5 23.0 ±3.0 40.2 ± 3.6
6 22.8 ± 2.9 39.4 ±3.3 43.2 ± 12.9 54.1 ± 10.6 57.1 ±3.0 67.1 ±3.5 54.1 ±8.3 63.6 ± 7.6
7 25.8 ± 2.6 42.8 ±3.5 39.8 ± 13.2 50.4 ± 11.4 60.9 ± 15.2 69.7 ± 12.9 42.6 ± 13.6 52.8 ± 12.3
8 27.0 ± 3.0 43.2 ±3.4 40.3 ± 14.1 51.3 ± 12.1 62.2 ± 19.2 71.6 ±16.2 61.6 ± 1.9 70.6 ± 2.3
9 27.5 ±3.2 43.2 ±3.5 40.7 ± 13.8 51.0 ± 12.3 62.8 ± 18.4 72.8 ± 15.2 58.1 ± 15.7 65.9 ± 16.8
10 39.3 ±3.2 48.3 ±3.8 43.5 ± 13.7 53.3 ± 12.2 64.0 ±20.4 73.6 ± 16.6 58.1 ± 15.7 65.9 ± 16.8
11 39.6 ± 3.8 48.9 ±4.2
12 40.8 ± 7.4 49.8 ±6.0 44.5 ± 16.4 54.3 ± 14.8 66.3 ± 25.4 75.8 ± 24.8 49.4 ± 20.5 60.3 ± 16.9
13 40.8 ± 10.0 49.9 ±8.5
14 42.7 ± 10.6 53.6 ±9.1 51.9 ± 17.8 61.8 ± 16.4 64.2 ± 24.6 73.0 ± 22.9 61.9 ± 10.8 72.7 ± 7.5
15 45.5 ± 14.2 54.7 ± 13.4
16 43.5 ± 14.3 52.8 ± 13.0 58.6 ± 22.2 68.1 ±19.7 63.3 ±24.7 72.9 ± 22.9 39.7 ± 15.5 52.5 ± 14.5
17 43.5 ± 16.3 52.9 ± 14.3
18 50.7 ± 17.9 60.5 ± 15.4
19 50.7 ± 18.4 60.5 ± 15.3 59.0 ± 18.5 68.3 ± 17.6 68.6 ± 22.2 76.6 ± 20.1 46.9 ± 18.0 58.7 ± 17.5
20 56.3 ± 19.7 66.2 ± 18.3
21 60.3 ±21.4 68.8 ± 18.9
22 66.1 ± 24.0 74.0 ± 23.7 68.4 ± 20.3 76.1 ± 20.3
23 64.2 ±21.2 72.6 ± 18.7 64.7 ± 22.5 73.4 ±21.8 68.6 ± 20.8 76.7 ± 21.8 56.4 ± 17.3 66.5 ± 14.5
24 60.9 ± 22.5 70.4 ±21.6 60.9 ±22.5 70.4 ±21.6 60.9 ± 22.5 70.4 ±21.6 54.7 ±20.1 62.6 ±21.6
25 56.0 ± 14.3 65.2 ± 13.5 56.0 ± 14.3 65.2 ± 13.5 56.0 ± 14.3 65.2 ± 13.5 56.0 ± 14.3 65.2 ± 13.5
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Table 5.11: Classification accuracies for the FISHERC classifier using the top feature set of dimension d as determined by the 
lowest average tortuosity (r), lowest average angle (6 ), and highest average distance between class centroids ( | |v | | )  feature selection 
metrics, along with the ‘optimal’ feature space classification accuracy as determined by the sequential floating backward search 
(SFBS). Results are presented as the mean (/i) plus or minus the standard deviation (a) of the classifier accuracy under ten 
repetitions of a bagging resampling technique for both an exact classification label (Exact), as well as the accuracy to within ±1 
flaw depth ( ± 1  Depth). The highest classification accuracy per column is highlighted in gray.

FISHERC Classification Accuracy (p ±  <r) [%]
Tortuosity (r) Avg. Angle (9) Centroid Dist. (||v||) SFBS - INN

Dimension Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth
1 17.6 ±2.2 32.2 ±3.1 17.6 ±2.2 32.2 ±3.1 17.6 ±2.2 32.2 ±3.1 13.1 ± 1.3 29.8 ± 2.2
2 28.8 ± 2.5 41.1 ±3.9 28.8 ± 2.6 42.7 ±4.0 28.8 ± 2.5 42.7 ±3.5 22.6 ± 1.6 34.4 ±2.3
3 25.1 ±2.9 41.0 ±3.6 26.3 ± 2.6 38.9 ± 2.9 41.2 ±3.2 53.2 ±3.5 37.6 ± 2.4 51.7 ± 2.1
4 23.1 ±2.8 39.0 ± 3.4 30.4 ± 3.2 42.8 ±3.6 44.5 ±3.0 57.1 ±3.6 39.2 ± 2.4 51.7 ±2.4
5 22.0 ± 2.7 37.8 ±3.0 32.2 ±3.9 45.1 ±3.6 46.7 ±3.1 60.1 ±3.2 41.8 ±2.0 55.0 ±2.0
6 22.0 ± 2.8 37.8 ±3.3 33.9 ±3.5 47.9 ±3.7 49.1 ±3.5 61.7 ±3.7 44.6 ± 1.5 57.7 ± 1.6
7 23.5 ± 2.8 39.7 ±3.0 35.7 ±3.1 49.8 ± 3.7 51.1 ±3.5 64.1 ±4.3 42,8 ± 1.6 56.7 ± 1.5
8 23.7 ± 3.2 39.6 ±  3.7 35.7 ±3.1 50.3 ± 3.5 52.7 ±3.1 66.3 ± 4.2 46.8 ± 2.6 62.0 ±3.5
9 23.6 ±3.2 39.6 ± 3.6 36.2 ±3.3 50.7 ±3.5 54.6 ±3.3 67.5 ±3.9 47.4 ± 2.6 62.2 ±3.1
10 26.5 ± 3.2 40.2 ± 3.6 37.4 ± 3.4 51.9 ±3.8 56.4 ±3.1 68.9 ± 3.5 47.4 ±2.6 62.2 ±3.1
11 27.3 ±3.0 41.4 ± 3.4 39.0 ±3.2 52.2 ±3.8 57.0 ±3.2 68.9 ± 3.8 50.6 ±2.9 65.1 ±2.9
12 32.1 ±3.3 44.3 ± 3.5 40.0 ± 3.3 53.8 ± 3.8 58.4 ±3.1 70.7 ±3.6 50.6 ±2.9 65.1 ± 2.9
13 34.6 ± 3.3 47.4 ± 3.5 43.7 ±3.3 58.4 ± 3.8 59.6 ±2.8 71.4 ±2.8 54.7 ±2.4 66.5 ± 2.6
14 35.5 ± 3.5 48.4 ± 3.5 45.9 ±3.3 59.4 ± 3.6 60.7 ±2.8 72.7 ±2.8 56.8 ± 2.0 68.4 ±1.7
15 36.4 ± 3.3 49.4 ± 3.2 45.8 ±3.9 60.6 ±3.6 60.7 ±3.0 72.7 ±2.4 56.2 ±2.1 67.8 ± 1.9
16 39.5 ±3.1 52.3 ±3.3 47.8 ± 4.0 60.9 ±3.5 60.7 ±3.0 72.8 ± 2.5 50.9 ± 2.2 62.1 ±2.5
17 43.0 ± 3.2 54.7 ±3.3 48.0 ±4.0 61.0 ±3.1 60.7 ±3.2 72.8 ± 2.7 51.0 ±2.4 61.7 ± 1.9
18 49.2 ± 3.4 59.6 ± 3.3 47.8 ± 3.9 60.9 ±3.1 60.9 ± 3.3 72.7 ± 2.6 51.0 ±2.4 61.7 ± 1.9
19 49.2 ± 3.3 59.6 ± 3.4 51.6 ±3.7 63.5 ±3.1 60.7 ±3.4 72.4 ± 2.4 54.8 ±1.8 66.5 ± 1.8
20 52.7 ±3.4 62.6 ± 3.2 52.5 ± 3.8 64.2 ± 3.0 60.6 ± 3.3 71.7 ±2.4 54.8 ±1.8 66.5 ± 1.8
21 55.7 ±3.2 64.9 ± 3.0 56.1 ±3.6 66.4 ±3.2 60.4 ± 3.4 71.1 ±2.3 54.6 ± 1.8 65.9 ±2.0
22 58.0 ± 3.5 67.9 ± 2.7 58.7 ± 3.4 68.4 ±2.7 60.1 ±3.3 70.9 ± 2.2 59.2 ± 2.6 69.8 ± 2.0
23 58.4 ± 3.6 69.3 ± 2.7 59.1 ±3.9 69.6 ± 2.7 60.0 ±3.4 70.5 ±2.1 56.4 ± 2.0 66.9 ± 1.8
24 59.1 ± 3.1 69.6 ± 2.0 59.1 ±3.1 69.6 ± 2.0 59.1 ±3.1 69.6 ± 2.0 58.6 ± 3.0 68.9 ± 1.5
25 58.4 ± 2.9 68.7 ± 1.4 58.4 ± 2.9 68.7 ± 1.4 58.4 ±2.9 68.7 ± 1.4 58.4 ± 2.9 68.7 ±1.4



Table 5.12: Classification accuracies for the NMC classifier using the top feature set of dimension d  as determined by the lowest 
average tortuosity (r), lowest average angle (9), and highest average distance between class centroids ( | |v | | )  feature selection metrics, 
along with the ‘optimal’ feature space classification accuracy as determined by the sequential floating backward search (SFBS). 
Results are presented as the mean (p) plus or minus the standard deviation (er) of the classifier accuracy under ten repetitions of 
a bagging resampling technique for both an exact classification label (Exact), as well as the accuracy to within ±1 flaw depth (±1 
Depth). The highest classification accuracy per column is highlighted in gray.

NMC Classification Accuracy (/r ± a)  [%]
Tortuosity (r) Avg. Angle (0) Centroid Dist. (||v||) SFBS - INN

Dimension Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth Exact ±1 Depth
1 18.2 ±2.3 31.6 ±3.2 18.2 ±2.3 31.6 ±3.2 18.2 ±2.3 31.6 ±3.2 16.7 ± 1.8 31.0 ±2.8
2 25.3 ±2.8 40.1 ±3.9 25.8 ±3.5 38.3 ± 4.4 26.7 ±3.5 40.1 ±4.4 25.0 ±2.7 35.8 ±3.9
3 24.8 ±2.7 41.6 ±3.7 26.5 ± 3.4 37.7 ±4.5 31.5 ±3.3 43.9 ± 3.6 28.1 ± 1.9 40.2 ±2.7
4 23.3 ± 2.9 39.3 ± 3.7 25.0 ± 2.8 36.5 ± 3.8 33.7 ±3.0 45.0 ± 3.6 28.0 ±2.7 40.1 ±2.8
5 20.6 ±2.6 34.6 ± 3.6 25.5 ±2.7 36.9 ±3.9 34.8 ±2.7 46.3 ±3.7 27.5 ±2.1 39 .7 ±1.6
6 20.7 ±2.5 34.7 ±3.6 24.5 ±2.4 36.7 ±4.2 35.2 ±2.8 46.8 ± 3.5 27.4 ±2.3 39.6 ± 1.5
7 23.3 ±2.5 39.3 ± 3.4 24.4 ± 2.6 36.4 ±4.3 35.7 ±2.7 47.3 ± 3.3 27.4 ±2.4 39.4 ± 1.9
8 23.7 ±2.5 39.6 ± 3.6 24.3 ±2.7 36.5 ±4.3 35.9 ±2.7 47.2 ±3.1 28.8 ±3.2 41.6 ±3.0
9 24.1 ±2.4 41.2 ±3.1 24.7 ±2.8 36.6 ±4.1 35.7 ±2.7 46.5 ±3.2 28.4 ±2.8 41.2 ±2.9
10 25.8 ±2.1 41.1 ±2.8 25.5 ±2.6 36.7 ±4.1 35.4 ±2.8 46.6 ± 3.3 28.3 ± 3.0 40.9 ± 3.2
11 26.1 ±2.3 42.5 ±2.8 26.0 ± 2.7 37.1 ±3.8 35.4 ±2.8 46.5 ± 3.0 28.8 ±3,1 41.4 ±3.2
12 26.7 ± 2.6 43.6 ± 2.6 26.1 ±3.0 37.5 ±3.7 35.1 ±2.6 46.2 ± 2.8 29.1 ±2.7 41.6 ±2.9
13 27.8 ± 2.6 43.6 ±2.7 26.0 ± 3.0 37.6 ±4.0 35.2 ±2.7 46.2 ± 2.9 29.8 ± 1.8 39.9 ± 2.7
14 29.1 ±2.5 44.0 ±2.7 26.1 ±3.3 37.5 ±4.0 35.4 ±2.8 46.1 ±2.9 34.9 ±2.6 45.8 ±2.7
15 28.8 ± 2.7 43.5 ±2.6 28.2 ±3.5 40.2 ± 3.8 35.5 ±2.6 46.0 ± 2.8 34.9 ±2.5 45.8 ±2.6
16 31.3 ±3.4 45.2 ±3.6 28.2 ± 3.6 40.4 ±3.7 35.5 ±2.7 46.2 ± 2.8 34.9 ±2.4 45.7 ±2.6
17 31.7 ±3.5 45.6 ± 3.4 28.3 ±3.6 40.4 ±3.7 35.4 ±2.8 45.9 ± 2.9 35.0 ±2.3 45.9 ±2.5
18 32.5 ±3.4 45.2 ±3.5 28.1 ±3.5 40.4 ±3.9 35.5 ±2.7 45.9 ±2.8 35.2 ±2.4 46.0 ±  2.7
19 33.2 ±3.3 43.0 ± 3.4 28.0 ± 3.2 40.6 ± 3.9 35.5 ±2.9 45.9 ±3.0 35.4 ±2.5 45.9 ±2.5
20 33.5 ± 2.9 43.1 ±3.2 27.9 ± 3.3 40.5 ±3.8 35.6 ±2.9 45.9 ±2.9 35.5 ±2.5 45.8 ±2.6
21 33.6 ± 2.9 43.0 ± 3.3 29.7 ±3.1 42.2 ±3.5 35.6 ±2.8 45.9 ±2.9 35.6 ± 2.6 45.9 ±2.8
22 35.7 ±3.0 45.8 ± 3.2 34.2 ± 2.9 45.3 ±3.4 35.6 ±2.8 45.9 ±2.9 34.9 ± 2.8 45.3 ±2.9
23 36.0 ± 2.7 46.5 ±3.3 35.5 ± 3.5 47.4 ± 3.5 35.5 ±2.8 46.2 ±3.0 35.0 ±2.5 45.5 ±2.7
24 35.5 ±3.1 46.7 ±3.2 35.5 ±3.1 46.7 ±3.2 35.5 ±3.1 46.7 ± 3.2 35.3 ± 2.7 45.7 ±2.8
25 35.3 ±2.7 45.7 ±2.8 35.3 ±2.7 45.7 ±2.8 35.3 ±2.7 45.7 ±2.8 35.3 ± 2.7 45.7 ±2.8



The logistic linear classifier is an inherently binary classifier th a t implements lo­

gistic regression to find a linear classifier between two classes. It is extended to our 

multi-class scenario by computing j  individual classifiers between each of the j  classes 

in the data  set and the remaining j  — 1 classes (one-vs-all). We observe convergence 

issues here for many of the class distributions using the logistic linear classifier, a 

well-documented occasional problem with logistic regression [156]. Since we have 

included the logistic classifier for completeness and had no reason to depend on the 

LOGLC results specifically, we do not explore alternate m ethods for detection of false 

convergence in linear regression methods in this work. We will no longer explore the 

logistic linear classifier for this application because of this.

The quadratic discriminant classifier (QDC) returned the overall highest classifica­

tion accuracies, reaching 75.6% correct classification (Exact) and 80.7% classification 

within ±1 depths (±1 Depth) with a 16-dimensional feature set identified using the

top centroid distance metric (||v ||). The entire set of classifiers were all reasonably 

consistent in their performance, with accuracy standard deviation (a) values all be­

low 5%, ranging from 1.7% to 4.9%. The three fc-NN classifiers show clear signs 

of the curse of dimensionality in Tables 5.6 - 5.8, where the classification accuracy 

peaks around d = 10 features and then drops off as the feature size increase. The 

other classifiers seem to not lose accuracy with increased dimension as quickly, al­

though they do not improve much either. This is possibly due to  the fact tha t the 

original feature reduction from 78 to 25 features was done using 1-NN accuracy as 

a criterion, meaning th a t the starting 25-feature set is not necessarily optimal for 

the alternate classifiers. There may exist alternate feature space subsets of the origi­

nal 78-dimensional feature space th a t would result in higher classification accuracies 

for these classifiers. As previously discussed, identifying these without performing a 

brute-force search may not be possible. Rather, we are exploring the potential for
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simple geometric measurements to identify the more optim al feature subsets given an 

initial starting set (the 25-feature SFBS results here).

A summary of these results can be found in Table 5.13, where only the top classifi­

cation accuracy among all feature subspace dimensions is presented for each classifier 

and feature selection metric combination. This table considers only the accuracy 

within ±1 flaw depth (±1 Depth), and each entry corresponds to the highlighted 

values from Tables 5.4 - 5.12.

Table 5.13: Classification accuracy for the lowest average tortuosity (r), lowest average angle 
( 0 ) ,  and highest average distance between class centroids (||v||) feature selection metrics, 
along with the ‘optimal’ feature space classification accuracy as determined by the sequential 
backward floating backward search (SFBS) for each classifier. Results are presented in terms 
of the mean ( g )  plus or minus the standard deviation ( a )  of the classifier accuracy under 
ten repetitions of a bagging resampling method, where randomly selected subsets of both 
the testing (T) and training (R ) sets are used to test and train each classifier, respectively. 
The corresponding feature space dimension (d ) is provided in parenthesis.

Classification Accuracy g  ±  a  (d) [% w ithin ± 1  flaw depth]
Classifier T 0 IMI SFBS
LDC 73.8 ± 2 . 8 (24) 73.8 ± 2 . 8 (23) 74.8 ±  2.9 (2 1 ) 73.5 ± 2.4 (25)
QDC 80.6 ± 4.6 (23) 80.6 ± 2.9 (2 2 ) 80.7 ± 4 . 9 (16) 79.4 ± 4.0 (15)
INN 73.4 ± 2 . 6 (24) 73.5 ± 2 . 8 (23) 75.5 ± 2 . 6 (9) 77.2 ± 2 . 1 (13)
2NN 70.3 ± 2.5 (24) 71.0 ± 2.5 (23) 74.0 ± 2 . 6 ( 8 ) 75.8 ± 1.7 (1 1 )
3NN 70.9 ± 3.3 (23) 71.0 ± 3.1 (23) 73.0 ±  2.6 (9) 74.6 ± 2.5 (1 1 )
PDLCD 73.8 ± 2 . 8 (24) 73.8 ± 2 . 8 (23) 74.8 ±  2.9 (2 1 ) 73.5 ± 2.4 (25)
FISHERC 69.6 ± 2 . 0 (24) 69.6 ± 2.7 (23) 72.8 ±  2.5 (16) 69.8 ± 2 . 0 (2 2 )
NMC 46.7 ± 3.2 (24) 47.4 ± 3.5 (23) 47.3 ± 3 . 3 (7) 46.0 ± 2.7 (18)

Although the No Free Lunch theorem states th a t there is no benefit in “simple” 

classifiers over “complex” ones, the principle of satisficing creating an adequate 

though possibly non-optimal solution is accepted and widely practiced in pattern 

recognition [1]. To th a t extent, the INN classifier is both simple and provides reason­

able accuracy compared to the other classifiers. Since com putational complexity and 

speed are usually restrictions, then this could be the most appropriate classification 

technique to use. Otherwise, the quadratic discriminant classifier (QDC) returns the
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highest general classification accuracies here.

5.8 Independent Sam ple V alidation

The above analysis is useful to explore how well a classifier can be expected to perforin 

given a limited data set. We next seek to  test the resulting classification abilities when 

new data are used to test the classifiers. We use a training set composed of the full 

14-classes outlined in Section 5.3. Once trained, we test each classifier with a series 

of independent plate samples, each w ith a milled flaw of varying depth and shape. 

The classifier algorithms considered are those discussed in Section 5.6.

We introduce six new testing plates V x for x  =  1 , . . . ,  6  [148] w ith fiat-bottom  hole 

flaws, and collect a double-crosshole scan da ta  set from each. These plates are all 

identical in material and size as the plate used in the training d a ta  set. Plates Vi, V 2 , 

Vzi and V 4  all contain flaws th a t are rectangular in shape and are approximately the 

same size as the flaw used to train  the classifiers, although not necessarily in the same 

position or orientation as that used to  train  the classifiers. P la te  V 5 contains a flaw 

that is not rectangular, but circular in shape. Plate is physically the same plate 

as th a t used in the training d a ta  set, however it is here scanned by a different person 

many months after the initial training da ta  set was collected, making the waveforms 

distinct. Details of these flaws are summarized in Table 5.14. Each plate's double­

crosshole scan is tomographically reconstructed, results of which can be seen in Figure 

5.14. The reconstruction image over/under color intensity threshold described in 

Section 5.4 is applied to each new reconstruction, autom atically identifying the subset 

of raypaths which pass through each of these flaws. It should be noted again tha t 

this process requires no user input other than  the physical scanning of the plate, as 

the reconstruction and image thresholding param eters have already been established
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in  S e c tio n  5 .4 .

Table 5.14: Testing plates used in the independent sample test, V \ , . . .  ,Vq.  The closest 
corresponding class from the training set is provided for each plate for reference, where a 
range indicates the testing flaw severity lies between those of the training set.

Plate Average Corresponding Flat-B ottom
Number Flaw Depth Training Class Flaw Shape

V i 1 0  % D 2-D 3 Rectangular ( 3 x 5  cm)
v 2 1 0  % d 2- d 3 Rectangular ( 5 x 3  cm)
v 3 45 % D s-D9 Rectangular ( 3 x 5  cm)
v 4 45 % Ds-Dg Rectangular ( 5 x 3  cm)

60 % Dig-On Circular (4 cm radius)
1 0 0  % D l4 Rectangular (2.9 x 7.6 cm)

Features are extracted from waveforms identified as crossing a flaw for each test 

plate. The statistical, Mellin transform, and W PD features are extracted as before. 

For the DW FP features used previously in training the classifier, an intermediate 

feature selection step w'as performed th a t identified the times and DW FP measure­

ments for which the largest inter-class separation was present. These same times and 

DW FP measurements are used to collect the DW FP features from the new plates, 

remaining consistent with the previous analysis as well.

Our training set is composed of the 14 classes D \ , . . . ,  £>14 to include a gener­

alization of the varying degrees of material loss possible in a plate. As previously 

discussed, it is unreasonable to assume a training set can contain a comprehensive set 

of flaw depths, shapes, sizes, etc. and therefore should not be assumed th a t a testing 

plate will necessarily fall into one of the existing training classes. While several of 

new these testing plates have flaws similar in shape to th a t used for training, their 

flaw depths fall inbctween those in the training set. This is a result of the inter- 

class continuity previously discussed. For example, testing plate TVs flaw severity 

of 45% material loss lies between classes D 8 and Dg  (43% and 51% material loss, 

respectively) of the training data. Predicted labels of uj8  or cj9 would therefore be
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(a) Test Plate V\ (b) Test Plate V2

0 I □
(c) Test Plate V3  (d) Test Plate V4

(e) Test Plate P 5 (f) Test Plate Vq

Figure 5.14: Tomographic reconstructions of testing plates V\ (a) - Vq (f). Known flaw 
locations are indicated by white outlines.

171



considered correct labels, while uj7 or coi0 are considered to be within ± 1  flaw depth.

The features spaces used here consist of an average of the top  ten ‘b est’ subspaces 

of each dimension d = 1 , . . . ,  25 as determined by the three geometric feature selection 

metrics. By best, we mean the feature spaces corresponding to  the ten lowest average 

tortuosity (r), ten lowest average angle (9), and ten highest average distance between 

class centroid (||v||) class distributions. Each set of ten feature spaces were indi­

vidually used to tra in /tes t the classifier, and the resulting accuracies were averaged. 

While this averaging is expected to reduce the accuracies presented here (since the 

feature spaces are already sorted based on how well we expect them  to perform ), th a t 

assumption relies on the accuracy of our intuition behind the geometric measures. 

We have already described how each metric could (individually) identify non-optimal 

feature subspaces, so there is no reason to expect the ‘best' feature space identified by 

each metric to identify the single best feature subspace of th a t dimension. We there­

fore average the ten best feature subspaces for each dimension to produce a general 

accuracy result tha t can be used to compare the performance of each feature selection 

metrics. For the SFBS feature selection results, we use only the  single feature space 

of dimension d tha t has been identifed by the SFBS algorithm.

We again expect highest accuracies to be around dimension d = 10 due to the 

curse of dimensionality rule-of-thumb. A classification configuration consisting of 

both an individual classifier and a feature set of dimension d would be considered 

ideal here if it returned 100% accuracy for each of the six test plates V\ - V%. This 

is not a requirement for an acceptable result, nor is it a realistic result since 1 0 0 % 

accuracy would indicate this to be a much simpler problem th a t we believe it to be. 

Rather, only a majority vote (or some other voting method) needs to by implemented 

to identify a correct class from each test set.

Table 5.15 provides a summary of these results, where the classifier configurations
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sorted by the highest average accuracy (within ± 1  flaw depth) across all six testing 

plates are shown. Results are presented for the lowest average tortuosity (r),  lowest 

average angle (9), and highest average distance between centroid (||v ||) metric feature 

selection routines as well as the sequential floating backward search (SFBS) feature 

selection routine.

Several general trends can be seen in these results. For the geometric feature 

selection metrics, the average angle between centroids (6 ) and the tortuosity (r) 

provide lower average accuracy values across all six testing plates than  the average 

distance between centroids (||v ||). These peak at accuracies of 38.0%, 38.4%, and 

44.3%, respectively. This is in agreement w ith earlier results in Section 5.7, where 

both of these metrics performed worse than the average centroid distance metric. 

Since this generally lower performance has translated to the validation data  sets, 

we will no longer consider either the tortuosity or average angle metrics as optimal 

measures of classifier performance, and do not explore their results further.

The highest six-plate average classification accuracy comes from the INN SFBS 

results, where 51.7% of the testing waveforms are correctly identified to be within 

±1 flaw depth of the actual testing flaw. Again, this result makes sense considering 

th a t the SFBS routine uses the maximum INN accuracy as a  criterion function. It 

can be seen, however, th a t these results almost all favor high classification accuracies 

for plates V\ - V 5  while returning very low accuracy values for plate TV This is an 

unexpected result, since plate Ve corresponds directly to  class D i 4  of the training 

set. Scanning with individual contact transducers is prone to variation in the signal, 

however, from unintentional changes in pressure and coupling of the guided wave 

energy in and out of the plate. This is a known drawback of using a simulated double­

crosshole scanning technique [45]. In service, using the full array of transducers we 

mimic here would eliminate inconsistencies in coupling and pressure, resulting in more
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Table 5.15: Classifier configurations sorted by the highest average accuracy (within ±1 flaw 
depth) across all six testing plates for feature subspaces of dimension d = 1 , . . . ,  25. Results 
are presented for the lowest average tortuosity (r), lowest average angle (9), and highest 
average distance between centroid ( | |v | | )  metric feature selection routines as well as the 
sequential floating backward search (SFBS) feature selection routine. For each classifier, 
the feature subset dimension corresponding to the highest average accuracy is presented as 
d.

Dim. Feature Accuracy [% within ±1 flaw depth]
Classifier d Selection v1 Vi Vs v2 V 6 Avg.

LDC 2 T 78.6 77.0 2 2 . 0 17.9 2 2 . 0 6 . 1 37.3
QDC 16 T 90.6 94.0 14.4 1 2 . 8 0 . 2 14.8 37.8
INN 2 0 T 7.9 53.9 50.2 30.7 72.6 1.9 36.2
2NN 19 T 29.4 81.4 35.9 24.3 56.0 0.9 38.0
3NN 2 T 2 2 . 2 15.6 68.3 54.3 42.7 6.4 34.9

PCLDC 2 T 78.6 77.0 2 2 . 0 17.9 2 2 . 0 6 . 1 37.3
FISHERC 2 T 80.1 78.7 19.3 13.9 23.5 7.4 37.1

NMC 2 T 87.4 89.2 1 0 . 0 14.2 14.2 12.5 37.9
LDC 25 9 9.0 28.0 57.0 63.0 52.0 2 . 0 35.2
QDC 19 9 94.8 93.2 22.4 17.1 0 . 0 0.9 38.1
INN 13 9 89.9 90.6 9.4 7.3 25.9 7.4 38.4
2NN 2 1 9 22.7 67.0 37.3 35.5 61.6 3.4 37.9
3NN 1 2 9 89.4 91.4 6.4 8.7 7.1 6 . 8 35.0

PCLDC 25 9 9.0 28.0 57.0 63.0 52.0 2 . 0 35.2
FISHERC 2 9 61.8 47.7 30.5 12.7 27.8 2 . 6 30.5

NMC 25 9 61.0 46.0 39.0 4.0 29.0 27.0 34.3
LDC 3 I M I 49.0 38.0 54.5 28.8 52.5 3.3 37.7
QDC 1 2 l|v|| 68.4 69.0 31.7 41.5 12.4 19.7 40.5
INN 14 I M I 38.7 52.3 52.8 34.0 49.6 10.5 39.6
2NN 5 I M I 25.6 30.2 76.4 52.9 6 8 . 2 12.3 44.3
3NN 5 I M I 24.7 27.4 78.7 49.5 67.9 14.1 43.7

PCLDC 3 I M I 49.0 38.0 54.5 28.8 52.5 3.3 37.7
FISHERC 3 I M I 49.9 39.8 56.9 31.4 54.7 4.4 39.5

NMC 6 I M I 67.2 51.1 49.6 2 2 . 2 43.2 5.6 39.8
LDC 23 SFBS 1 . 0 25.0 62.0 63.0 63.0 2 . 0 36.0
QDC 13 SFBS 85.0 90.0 31.0 60.0 0 . 0 3.0 44.8
INN 13 SFBS 38.0 39.0 63.0 83.0 78.0 9.0 51.7
2NN 13 SFBS 44.0 47.0 69.0 84.0 63.0 1 . 0 51.3
3NN 13 SFBS 41.0 47.0 6 6 . 0 80.0 62.0 4.0 50.0

PCLDC 23 SFBS 1 . 0 25.0 62.0 63.0 63.0 2 . 0 36.0
FISIIERC 8 SFBS 77.0 39.0 31.0 23.0 47.0 1 . 0 36.3

NMC 14 SFBS 74.0 57.0 40.0 6 . 0 29.0 18.0 37.3
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consistent scans between different users. For the feature spaces identified using the 

centroid distance ( ||v ||) feature selection routine, the highest average accuracy across 

all six plates is from the 2NN classifier at 44.3%.

The centroid distance (||v ||) feature selection results appear to  be the best at 

evenly distributing the classification accuracies across all six plates, and even then 

only with a couple of the classification algorithms. This supports our suspicion tha t 

formal feature selection routines which optimize classification accuracies based on a 

specific training set may not be appropriate for damage characterization, which in­

volve data  sets containing sequentially distributed classes. Another pattern  observed 

in the results is tha t the centroid distance (||v ||) feature selection routine identified 

lower-dimensional (d) feature spaces when compared to  the formal SFBS routine, 

even though many of the highest classifier accuracies are comparable between the 

two routines.

We now take a closer look a t the average centroid distance results and the top 

SFBS results for testing plates V\  - V q in Tables 5.16 - 5.23. Each table shows the 

classification accuracies of the given classifiers for all dimensions and all testing plates 

using both the average centroid distance and the top SFBS results as feature selection 

metrics. For ease of analysis, we highlight any configurations th a t correctly classify 

at least 50% of a test se t’s waveforms as being within ±1 depth  of the actual flaw 

severity for a given plate. Correctly classifying over 50% of the  waveforms guarantees 

an accurate final damage characterization assuming a simple m ajority vote among 

class probabilities is used.

There is a trend in these results th a t supports the curse of dimensionality. As 

feature space dimension d increases, there is always one or two plates whose accuracy 

drops to below 10%. It is most often plate V(> th a t has these low accuracies, however 

the NMC accuracies actually increase for as d increases while V 4  accuracy decreases
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Table 5.16: Validation plate results using the LDC classifier with feature spaces identified by the highest average distance between 
centroid (||v||) metric as well as the sequential floating backward search (SFBS) feature selection routines. Accuracies (within ±1 
flaw depth) for each plate V\ - as well as the average accuracy across all six plates are shown for each feature subspace of 
dimension d = 1 , . . .  ,25. Any classification accuracy above 50% is highlighted in grey.

LDC Classification Accuracy ( ± 1  Depth) [%]
Dim. Top Centroid Dist Top SFBS

d V 1 v 2 v 3 VA v 6 V 6 Avg. VL V 2 v 3 Vi V, V 6 Avg.
1 51.0 50.0 23.0 15.1 31.4 3.6 29.0 72.0 61.0 1 2 . 0 4.0 15.0 1 0 . 0 29.0
2 54.7 48.3 39.8 2 0 . 6 33.2 1.7 33.1 55.0 33.0 18.0 5.0 9.0 16.0 22.7
3 49.0 38.0 54.5 28.8 52.5 3.3 37.7 24.0 30.0 42.0 16.0 36.0 9.0 26.2
4 61.6 43.3 49.6 2 2 . 6 43.8 2.5 37.2 6 6 . 0 51.0 34.0 7.0 7.0 1 0 . 0 29.2
5 66.4 48.9 32.8 19.3 41.3 4.9 35.6 82.0 56.0 23.0 2 . 0 5.0 28.0 32.7
6 71.6 51.5 27.1 15.8 35.7 7.0 34.8 83.0 55.0 23.0 1 . 0 2 . 0 17.0 30.2
7 65.8 43.4 25.7 2 0 . 1 41.5 7.5 34.0 40.0 29.0 31.0 9.0 2 0 . 0 2 . 0 2 1 . 8

8 51.4 25.4 27.4 20.5 45.4 5.3 29.2 57.0 35.0 30.0 28.0 49.0 6 . 0 34.2
9 48.5 25.9 24.8 20.4 45.0 7.6 28.7 55.0 35.0 37.0 27.0 48.0 0 . 0 33.7

1 0 37.1 18.8 29.2 24.9 47.5 4.8 27.1 55.0 35.0 37.0 27.0 48.0 0 . 0 33.7
11 52.5 28.1 27.1 16.0 39.1 7.9 28.4 53.0 28.0 39.0 29.0 55.0 0 . 0 34.0
1 2 31.2 16.1 30.0 28.5 48.4 3.7 26.3 53.0 28.0 39.0 29.0 55.0 0 . 0 34.0
13 22.7 1 1 . 8 26.7 34.0 49.6 2 . 8 24.6 1 . 0 13.0 26.0 32.0 60.0 2 . 0 22.3
14 13.3 1 0 . 0 30.2 40.0 52.4 3.2 24.9 26.0 9.0 38.0 26.0 48.0 4.0 25.2
15 13.4 13.0 32.6 39.6 53.8 3.8 26.0 33.0 19.0 38.0 23.0 47.0 4.0 27.3
16 14.2 11.4 33.2 43.0 53.8 3.0 26.4 7.0 3.0 61.0 60.0 54.0 8 . 0 32.2
17 8 . 6 18.8 34.2 47.0 55.2 3.0 27.8 8 . 0 4.0 64.0 58.0 56.0 7.0 32.8
18 8 . 1 18.7 34.4 47.5 55.1 3.2 27.8 8 . 0 4.0 64.0 58.0 56.0 7.0 32.8
19 8 . 2 15.8 35.3 48.9 54.3 2.4 27.5 8 . 0 3.0 62.0 57.0 48.0 7.0 30.8
2 0 8.4 18.8 35.3 49.8 55.4 2.5 28.4 8 . 0 3.0 62.0 57.0 48.0 7.0 30.8
2 1 8 . 6 19.1 36.1 50.2 55.8 2 . 6 28.7 9.0 23.0 6 6 . 0 57.0 50.0 7.0 35.3
2 2 1 0 . 2 2 1 . 2 38.6 50.8 55.7 2.7 29.9 6 . 0 32.0 46.0 45.0 52.0 3.0 30.7
23 1 0 . 6 22.7 44.2 53.3 55.3 1 . 8 31.3 1 . 0 25.0 62.0 63.0 63.0 2 . 0 36.0
24 9.6 27.9 54.8 60.9 53.3 1.9 34.7 4.0 26.0 60.0 64.0 53.0 2 . 0 34.8
25 9.0 28.0 57.0 63.0 52.0 2 . 0 35.2 9.0 28.0 57.0 63.0 52.0 2 . 0 35.2
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Table 5.17: Validation plate results using the QDC classifier with feature spaces identified by the highest average distance between 
centroid (||v||) metric as well as the sequential floating backward search (SFBS) feature selection routines. Accuracies (within ±1 
flaw depth) for each plate V\ - Ve as well as the average accuracy across all six plates are shown for each feature subspace of 
dimension d = 1,. . .  ,25. Any classification accuracy above 50% is highlighted in grey.

QDC Classification Accuracy (ilD epth) [%]
Dim. Top Centroid Dist Top SFBS

d v x v 2 v 3 v 4 v , V* Avg. v 1 v 2 v 3 v 4 v 5 v 6 Avg.
1 83.6 82.5 13.6 9.1 14.8 4.6 34.7 79.0 73.0 6 . 0 1 . 0 1 2 . 0 3.0 29.0
2 62.4 57.9 25.3 5.7 16.9 16.0 30.7 58.0 39.0 34.0 8 . 0 23.0 9.0 28.5
3 32.3 30.3 39.6 23.0 28.3 23.1 29.4 2 1 . 0 50.0 19.0 18.0 40.0 13.0 26.8
4 27.3 25.4 28.1 18.4 17.5 43.3 26.7 42.0 31.0 2 1 . 0 6 . 0 33.0 28.0 26.8
5 34.9 36.1 29.6 2 0 . 6 25.2 36.3 30.4 24.0 29.0 28.0 26.0 38.0 28.0 28.8
6 18.1 24.4 45.9 30.8 34.1 42.5 32.6 1 1 . 0 16.0 67.0 2 1 . 0 6 . 0 25.0 24.3
7 9.9 15.9 6 6 . 0 53.8 34.2 42.4 37.0 43.0 70.0 51.0 23.0 13.0 28.0 38.0
8 18.7 15.0 73.6 58.1 21.3 30.1 36.1 43.0 18.0 80.0 63.0 2 . 0 4.0 35.0
9 2 1 . 0 1 2 . 8 82.1 74.4 14.4 2 1 . 0 37.6 40.0 9.0 87.0 8 8 . 0 0 . 0 6 . 0 38.3

1 0 28.6 15.1 82.3 69.0 1 0 . 8 14.3 36.7 40.0 9.0 87.0 8 8 . 0 0 . 0 6 . 0 38.3
11 44.4 39.7 55.9 58.6 16.0 6.5 36.8 26.0 4.0 91.0 92.0 0 . 0 0 . 0 35.5
1 2 68.4 69.0 31.7 41.5 12.4 19.7 40.5 26.0 4.0 91.0 92.0 0 . 0 0 . 0 35.5
13 70.8 67.2 30.7 36.9 9.1 2 1 . 8 39.4 85.0 90.0 31.0 60.0 0 . 0 3.0 44.8
14 73.9 70.6 28.5 36.9 8.3 17.0 39.2 84.0 69.0 30.0 1 1 . 0 8 . 0 51.0 42.2
15 8 6 . 6 94.8 13.9 23.5 0 . 8 1 . 2 36.8 45.0 48.0 30.0 15.0 1 0 . 0 38.0 31.0
16 87.7 94.3 16.4 2 2 . 1 0 . 1 0.5 36.9 55.0 57.0 80.0 35.0 27.0 0 . 0 42.3
17 91.5 96.0 18.2 18.4 0 . 0 0.7 37.5 96.0 91.0 2 2 . 0 15.0 1 . 0 0 . 0 37.5
18 90.2 91.4 15.3 17.3 0 . 0 1 .1 35.9 96.0 90.0 2 2 . 0 15.0 1 . 0 0 . 0 37.3
19 91.6 94.1 18.4 17.1 0 . 0 0 . 8 37.0 96.0 90.0 25.0 13.0 1 . 0 0 . 0 37.5
2 0 92.8 95.3 15.3 16.0 0 . 0 1 . 0 36.7 96.0 90.0 25.0 14.0 1 . 0 0 . 0 37.7
2 1 92.9 93.6 13.0 16.9 0 . 0 1 .1 36.3 98.0 96.0 18.0 9.0 0 . 0 0 . 0 36.8
2 2 94.4 94.2 6.7 16.7 0 . 0 1 . 2 35.5 98.0 99.0 15.0 15.0 1 . 0 1 . 0 38.2
23 96.5 98.0 3.2 15.3 0 . 0 1 . 0 35.7 98.0 1 0 0 . 0 8 . 0 14.0 0 . 0 1 . 0 36.8
24 97.7 99.3 1 . 8 11.9. 0 . 0 1 . 0 35.3 98.0 1 0 0 . 0 5.0 1 2 . 0 0 . 0 1 . 0 36.0
25 98.0 1 0 0 . 0 1 . 0 1 1 . 0 0 . 0 1 . 0 35.2 98.0 1 0 0 . 0 1 . 0 1 1 . 0 0 . 0 1 . 0 35.2
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Table 5.18: Validation plate results using the INN classifier with feature spaces identified by the highest average distance between 
centroid ( | |v | | )  metric as well as the sequential floating backward search (SFBS) feature selection routines. Accuracies (within ± 1  

flaw depth) for each plate V\ - V& as well as the average accuracy across all six plates are shown for each feature subspace of 
dimension d = 1 , . . . ,  25. Any classification accuracy above 50% is highlighted in grey.

INN Classification Accuracy (ilD epth) [%
Dim. Top Centroid Dist Top SFBS

d v x v 2 Vs V.4 V 6 Avg. Vx v 2 Vs v , Vs V6 Avg.
1 38.0 38.5 36.9 34.7 38.9 17.5 34.1 38.0 42.0 29.0 24.0 28.0 23.0 30.7
2 42.9 32.7 35.5 23.1 25.4 24.3 30.7 31.0 2 1 . 0 32.0 18.0 2 1 . 0 23.0 24.3
3 24.2 19.5 60.6 29.8 46.5 23.5 34.0 17.0 23.0 62.0 36.0 37.0 2 1 . 0 32.7
4 34.9 32.6 31.6 2 1 . 2 46.0 34.9 33.5 36.0 35.0 38.0 23.0 14.0 28.0 29.0
5 35.1 33.9 24.3 27.6 48.4 32.2 33.6 8 . 0 2 . 0 8 8 . 0 85.0 49.0 23.0 42.5
6 31.2 33.6 24.7 30.6 44.7 26.0 31.8 8 . 0 2 . 0 90.0 87.0 54.0 1 1 . 0 42.0
7 32.4 33.2 23.9 28.3 40.2 23.5 30.3 8 . 0 2 . 0 89.0 8 8 . 0 56.0 5.0 41.3
8 37.3 34.5 32.8 29.5 40.6 2 1 . 1 32.6 29.0 27.0 65.0 39.0 30.0 8 . 0 33.0
9 42.3 35.1 34.6 19.0 37.4 14.1 30.4 27.0 26.0 6 6 . 0 39.0 31.0 6 . 0 32.5

1 0 43.1 40.2 41.4 21.7 41.6 13.4 33.6 27.0 27.0 69.0 39.0 32.0 6 . 0 33.3
1 1 39.4 39.8 45.9 20.7 45.5 10.5 33.6 28.0 27.0 6 8 . 0 37.0 29.0 6 . 0 32.5
1 2 25.5 47.1 48.7 31.1 53.3 7.0 35.4 29.0 27.0 6 6 . 0 34.0 30.0 6 . 0 32.0
13 26.1 45.0 48.8 29.7 52.5 7.3 34.9 38.0 39.0 63.0 83.0 78.0 9.0 51.7
14 38.7 52.3 52.8 34.0 49.6 10.5 39.6 17.0 2 0 . 0 58.0 13.0 46.0 18.0 28.7
15 35.8 49.1 50.8 29.9 50.4 9.5 37.6 39.0 30.0 59.0 15.0 61.0 27.0 38.5
16 25.3 48.0 49.5 37.1 53.9 7.0 36.8 57.0 40.0 78.0 24.0 80.0 17.0 49.3
17 14.7 47.7 47.5 45.9 57.4 4.4 36.3 56.0 39.0 79.0 25.0 80.0 17.0 49.3
18 19.1 46.1 47.8 40.6 56.9 5.3 36.0 56.0 39.0 79.0 24.0 80.0 17.0 49.2
19 15.2 36.4 51.8 36.9 56.6 7.2 34.0 56.0 40.0 79.0 25.0 80.0 18.0 49.7
2 0 21.9 47.9 43.0 35.7 57.3 6 . 6 35.4 57.0 40.0 79.0 26.0 79.0 16.0 49.5
2 1 17.6 41.4 48.7 42.7 61.2 5.6 36.2 59.0 40.0 79.0 27.0 79.0 15.0 49.8
2 2 17.3 38.3 50.3 36.5 65.2 4.8 35.4 56.0 43.0 58.0 2 2 . 0 6 8 . 0 16.0 43.8
23 13.4 41.0 46.6 33.5 68.9 3.2 34.4 5.0 24.0 62.0 61.0 73.0 2 . 0 37.8
24 10.5 36.8 46.9 30.6 71.0 3.2 33.2 6 . 0 24.0 62.0 56.0 72.0 3.0 37.2
25 9.0 37.0 44.0 28.0 71.0 3.0 32.0 9.0 37.0 44.0 28.0 71.0 3.0 32.0



Table 5.19: Validation plate results using the 2NN classifier with feature spaces identified by the highest average distance between 
centroid (||v||) metric as well as the sequential floating backward search (SFBS) feature selection routines. Accuracies (within ±1 
flaw depth) for each plate V\ - Vq as well as the average accuracy across all six plates are shown for each feature subspace of 
dimension d = I , ...  ,25. Any classification accuracy above 50% is highlighted in grey.

2NN Classification Accuracy (ilD epth) [%]
Dim. Top Centroid Dist Top SFBS

d Vi v 2 v 3 Vi Vs v 6 Avg. Vi V2 V3 V 4 V, V6 Avg.
1 61.8 60.9 31.7 29.7 21.3 5.9 35.2 57.0 67.0 24.0 16.0 18.0 1 0 . 0 32.0
2 48.4 37.4 39.7 23.5 26.1 9.1 30.7 51.0 36.0 35.0 1 0 . 0 17.0 9.0 26.3
3 44.9 32.6 51.4 24.0 39.9 1 2 . 6 34.2 2 2 . 0 27.0 67.0 42.0 18.0 1 1 . 0 31.2
4 36.1 34.6 61.4 39.6 52.0 14.9 39.8 40.0 36.0 43.0 2 0 . 0 1 0 . 0 19.0 28.0
5 25.6 30.2 76.4 52.9 6 8 . 2 12.3 44.3 8 . 0 2 . 0 8 8 . 0 85.0 50.0 19.0 42.0
6 39.1 39.1 60.1 23.7 49.4 1 2 . 6 37.3 1 0 . 0 4.0 90.0 8 6 . 0 53.0 6 . 0 41.5
7 46.6 40.8 48.8 2 0 . 8 38.6 1 2 . 2 34.6 9.0 7.0 90.0 85.0 56.0 4.0 41.8
8 51.6 42.5 49.7 26.1 37.8 1 0 . 1 36.3 32.0 29.0 65.0 31.0 28.0 5.0 31.7
9 55.9 42.9 44.7 19.1 35.3 11.7 34.9 31.0 30.0 65.0 30.0 29.0 3.0 31.3

1 0 57.3 40.7 44.0 17.1 35.2 11.5 34.3 30.0 30.0 6 8 . 0 31.0 31.0 2 . 0 32.0
1 1 49.1 42.9 45.8 24.9 41.8 10.9 35.9 32.0 29.0 67.0 27.0 29.0 4.0 31.3
1 2 40.9 57.1 49.0 37.0 45.3 8.4 39.6 32.0 29.0 6 6 . 0 24.0 30.0 4.0 30.8
13 44.4 43.6 44.8 28.0 43.6 1 0 . 0 35.7 44.0 47.0 69.0 84.0 63.0 1 . 0 51.3
14 47.9 55.5 49.7 32.1 41.3 9.8 39.4 50.0 41.0 46.0 1 0 . 0 47.0 15.0 34.8
15 46.6 53.7 49.0 30.3 41.9 9.3 38.5 58.0 40.0 47.0 1 0 . 0 61.0 13.0 38.2
16 32.9 56.0 48.7 43.9 50.2 6 . 0 39.6 69.0 48.0 70.0 2 2 . 0 63.0 6 . 0 46.3
17 36.3 61.7 42.3 33.8 46.1 6.9 37.9 69.0 48.0 70.0 2 2 . 0 64.0 6 . 0 46.5
18 25.9 50.7 47.1 42.7 50.9 4.3 36.9 70.0 48.0 70.0 2 1 . 0 64.0 6 . 0 46.5
19 24.5 55.7 40.8 37.6 51.2 4.8 35.8 71.0 48.0 70.0 19.0 63.0 6 . 0 46.2
2 0 2 1 . 6 52.2 43.4 40.8 54.1 2 . 1 35.7 72.0 47.0 70.0 19.0 62.0 7.0 46.2
2 1 20.4 50.7 41.7 38.3 58.8 1 . 6 35.3 71.0 48.0 69.0 2 0 . 0 64.0 7.0 46.5
2 2 26.4 55.7 39.4 32.7 59.1 2 . 0 35.9 6 6 . 0 49.0 60.0 17.0 59.0 6 . 0 42.8
23 26.0 53.9 38.4 30.3 62.9 1 . 0 35.4 1 1 . 0 36.0 35.0 39.0 73.0 1 . 0 32.5
24 25.7 57.9 38.0 28.7 63.7 1.5 35.9 1 1 . 0 36.0 35.0 38.0 72.0 1 . 0 32.2
25 26.0 57.0 40.0 30.0 64.0 1 . 0 36.3 26.0 57.0 40.0 30.0 64.0 1 . 0 36.3



Table 5.20: Validation plate results using the 3NN classifier with feature spaces identified by the highest average distance between 
centroid (||v||) metric as well as the sequential floating backward search (SFBS) feature selection routines. Accuracies (within ±1 
flaw depth) for each plate V\ - as well as the average accuracy across all six plates are shown for each feature subspace of 
dimension d = 1,.. .  ,25. Any classification accuracy above 50% is highlighted in grey.

3NN Classification Accuracy ( ± 1  Depth) [%]
Dim. Top Centroid Dist Top SFBS

d Vi v 2 v 3 V, V 5 V 6 Avg. v l V 2 V 3 V4 V 5 V 6 Avg.
1 71.6 67.5 24.6 2 1 . 0 14.3 7.7 34.4 63.0 74.0 19.0 8 . 0 13.0 1 1 . 0 31.3
2 45.5 37.7 43.2 25.5 25.9 14.4 32.0 55.0 35.0 33.0 7.0 1 2 . 0 9.0 25.2
3 31.8 26.1 59.0 27.9 50.5 17.0 35.4 27.0 25.0 60.0 38.0 26.0 1 2 . 0 31.3
4 30.0 29.2 67.0 36.2 54.7 19.8 39.5 39.0 37.0 38.0 2 1 . 0 8 . 0 2 2 . 0 27.5
5 24.7 27.4 78.7 49.5 67.9 14.1 43.7 7.0 2 . 0 8 6 . 0 85.0 49.0 2 2 . 0 41.8
6 32.4 33.0 54.0 2 1 . 0 47.0 16.7 34.0 9.0 5.0 89.0 85.0 51.0 1 0 . 0 41.5
7 40.0 36.5 54.2 20.7 43.2 15.5 35.0 8 . 0 8 . 0 90.0 87.0 56.0 5.0 42.3
8 46.8 40.3 51.6 24.0 39.9 14.6 36.2 33.0 27.0 62.0 32.0 28.0 1 0 . 0 32.0
9 53.1 41.6 47.4 16.3 37.0 13.7 34.8 32.0 29.0 65.0 31.0 30.0 8 . 0 32.5

1 0 51.2 39.5 47.9 16.0 38.1 13.9 34.4 31.0 29.0 65.0 28.0 31.0 5.0 31.5
1 1 49.1 38.3 46.2 18.2 42.7 1 2 . 8 34.5 31.0 28.0 65.0 25.0 29.0 5.0 30.5
1 2 58.5 39.9 44.4 14.1 42.9 16.0 36.0 32.0 28.0 65.0 25.0 30.0 4.0 30.7
13 57.6 39.7 44.7 14.4 41.3 16.0 35.6 41.0 47.0 6 6 . 0 80.0 62.0 4.0 50.0
14 29.2 31.4 52.8 30.2 45.6 8.4 32.9 51.0 40.0 48.0 9.0 44.0 15.0 34.5
15 29.0 39.7 43.0 19.7 45.5 8 . 8 31.0 57.0 42.0 48.0 1 0 . 0 52.0 15.0 37.3
16 30.6 44.6 48.2 29.8 49.4 6.4 34.8 80.0 47.0 64.0 16.0 54.0 6 . 0 44.5
17 27.3 46.2 48.8 32.5 50.3 6 . 8 35.3 80.0 47.0 64.0 15.0 53.0 6 . 0 44.2
18 23.9 41.4 48.7 34.0 50.7 5.7 34.1 81.0 48.0 64.0 14.0 53.0 6 . 0 44.3
19 29.8 43.3 47.3 33.5 52.9 5.4 35.4 81.0 47.0 63.0 14.0 53.0 6 . 0 44.0
2 0 27.3 55.4 38.0 34.7 54.1 3.6 35.5 81.0 45.0 63.0 16.0 55.0 6 . 0 44.3
2 1 2 1 . 6 47.8 39.9 36.7 54.5 2 . 6 33.9 80.0 46.0 63.0 16.0 54.0 6 . 0 44.2
2 2 37.4 60.6 36.8 23.2 49.9 3.2 35.2 78.0 51.0 49.0 14.0 48.0 6 . 0 41.0
23 24.7 53.7 36.7 23.0 59.2 1.5 33.1 25.0 59.0 30.0 2 2 . 0 53.0 1 . 0 31.7
24 25.1 48.8 37.0 2 2 . 0 55.4 1.3 31.6 25.0 58.0 29.0 23.0 48.0 1 . 0 30.7
25 24.0 47.0 39.0 24.0 54.0 1 . 0 31.5 24.0 47.0 39.0 24.0 54.0 1 . 0 31.5



Table 5.21: Validation plate results using the PCLDC classifier with feature spaces identified by the highest average distance 
between centroid (||v||) metric as well as the sequential floating backward search (SFBS) feature selection routines. Accuracies 
(within ± 1  flaw depth) for each plate V\ - Vq as well as the average accuracy across all six plates are shown for each feature 
subspace of dimension d = 1, . . . ,  25. Any classification accuracy above 50% is highlighted in grey.

PCLDC Classification Accuracy (ilD epth) [%]
Dim. Top Centroid Dist Top SFBS

d V i v 2 V 3 V, Vs V* Avg. V x V 2 v 3 v 4 Vs Vs Avg.
1 51.0 50.0 23.0 15.1 31.4 3.6 29.0 72.0 61.0 1 2 . 0 4.0 15.0 1 0 . 0 29.0
2 54.7 48.3 39.8 2 0 . 6 33.2 1.7 33.1 55.0 33.0 18.0 5.0 9.0 16.0 22.7
3 49.0 38.0 54.5 28.8 52.5 3.3 37.7 24.0 30.0 42.0 16.0 36.0 9.0 26.2
4 61.6 43.3 49.6 2 2 . 6 43.8 2.5 37.2 6 6 . 0 51.0 34.0 7.0 7.0 1 0 . 0 29.2
5 66.4 48.9 32.8 19.3 41.3 4.9 35.6 82.0 56.0 23.0 2 . 0 5.0 28.0 32.7
6 71.6 51.5 27.1 15.8 35.7 7.0 34.8 83.0 55.0 23.0 1 . 0 2 . 0 17.0 30.2
7 65.8 43.4 25.7 2 0 . 1 41.5 7.5 34.0 40.0 29.0 31.0 9.0 2 0 . 0 2 . 0 2 1 . 8

8 51.4 25.4 27.4 20.5 45.4 5.3 29.2 57.0 35.0 30.0 28.0 49.0 6 . 0 34.2
9 48.5 25.9 24.8 20.4 45.0 7.6 28.7 55.0 35.0 37.0 27.0 48.0 0 . 0 33.7

1 0 37.1 18.8 29.2 24.9 47.5 4.8 27.1 55.0 35.0 37.0 27.0 48.0 0 . 0 33.7
1 1 52.5 28.1 27.1 16.0 39.1 7.9 28.4 53.0 28.0 39.0 29.0 55.0 0 . 0 34.0
1 2 31.2 16.1 30.0 28.5 48.4 3.7 26.3 53.0 28.0 39.0 29.0 55.0 0 . 0 34.0
13 22.7 1 1 . 8 26.7 34.0 49.6 2 . 8 24.6 1 . 0 13.0 26.0 32.0 60.0 2 . 0 22.3
14 13.3 1 0 . 0 30.2 40.0 52.4 3.2 24.9 26.0 9.0 38.0 26.0 48.0 4.0 25.2
15 13.4 13.0 32.6 39.6 53.8 3.8 26.0 33.0 19.0 38.0 23.0 47.0 4.0 27.3
16 14.2 11.4 33.2 43.0 53.8 3.0 26.4 7.0 3.0 61.0 60.0 54.0 8 . 0 32.2
17 8 . 6 18.8 34.2 47.0 55.2 3.0 27.8 8 . 0 4.0 64.0 58.0 56.0 7.0 32.8
18 8 . 1 18.7 34.4 47.5 55.1 3.2 27.8 8 . 0 4.0 64.0 58.0 56.0 7.0 32.8
19 8 . 2 15.8 35.3 48.9 54.3 2.4 27.5 8 . 0 3.0 62.0 57.0 48.0 7.0 30.8
2 0 8.4 18.8 35.3 49.8 55.4 2.5 28.4 8 . 0 3.0 62.0 57.0 48.0 7.0 30.8
2 1 8 . 6 19.1 36.1 50.2 55.8 2 . 6 28.7 9.0 23.0 6 6 . 0 57.0 50.0 7.0 35.3
2 2 1 0 . 2 2 1 . 2 38.6 50.8 55.7 2.7 29.9 6 . 0 32.0 46.0 45.0 52.0 3.0 30.7
23 1 0 . 6 22.7 44.2 53.3 55.3 1 . 8 31.3 1 . 0 25.0 62.0 63.0 63.0 2 . 0 36.0
24 9.6 27.9 54.8 60.9 53.3 1.9 34.7 4.0 26.0 60.0 64.0 53.0 2 . 0 34.8
25 9.0 28.0 57.0 63.0 52.0 2 . 0 35.2 9.0 28.0 57.0 63.0 52.0 2 . 0 35.2



Table 5.22: Validation plate results using the FISHRC classifier with feature spaces identified by the highest average distance 
between centroid (|jv||) metric as well as the sequential floating backward search (SFBS) feature selection routines. Accuracies 
(within ±1 flaw depth) for each plate V\ - Pe as well as the average accuracy across all six plates are shown for each feature 
subspace of dimension d=  1, . . . ,  25. Any classification accuracy above 50% is highlighted in grey.

FISHERC Classification Accuracy (ilD ep th ) [%]
Dim. Top Centroid Dist Top SFBS

d Pi P2 P3 P4 Pt> Pe Avg. Pi P 2 P3 P4 P, Ps Avg.
1 63.0 61.6 11.3 8.5 24.8 0.7 28.3 79.0 56.0 15.0 8 . 0 6 . 0 0 . 0 27.3
2 70.5 62.5 27.6 2 1 . 6 27.9 2.7 35.5 65.0 39.0 17.0 4.0 1 0 . 0 1 . 0 22.7
3 49.9 39.8 56.9 31.4 54.7 4.4 39.5 24.0 30.0 45.0 14.0 34.0 7.0 25.7
4 63.6 46.5 45.1 24.5 44.9 4.1 38.1 74.0 53.0 29.0 8 . 0 0 . 0 0 . 0 27.3
5 64.0 48.7 25.8 17.3 42.5 6 . 2 34.1 81.0 56.0 15.0 0 . 0 0 . 0 33.0 30.8
6 69.1 57.9 23.1 19.8 44.9 1 0 . 8 37.6 78.0 55.0 1 2 . 0 0 . 0 3.0 23.0 28.5
7 6 6 . 8 51.2 24.2 24.5 44.5 1 0 . 0 36.9 37.0 2 2 . 0 30.0 5.0 15.0 1 . 0 18.3
8 69.2 49.0 22.3 21.5 45.6 8.5 36.0 77.0 39.0 31.0 23.0 47.0 1 . 0 36.3
9 52.6 33.3 16.5 17.9 43.5 1 0 . 2 29.0 73.0 37.0 36.0 2 2 . 0 44.0 0 . 0 35.3

1 0 48.4 27.2 23.2 23.8 46.1 7.1 29.3 73.0 37.0 36.0 2 2 . 0 44.0 0 . 0 35.3
1 1 62.4 37.1 18.5 2 0 . 0 36.0 9.1 30.5 6 8 . 0 32.0 40.0 25.0 52.0 0 . 0 36.2
1 2 44.0 25.4 29.0 30.8 45.4 4.9 29.9 6 8 . 0 32.0 40.0 25.0 52.0 0 . 0 36.2
13 35.4 22.5 28.6 33.1 43.6 3.8 27.8 1 . 0 0 . 0 23.0 33.0 52.0 5.0 19.0
14 19.6 9.2 34.2 38.4 46.2 3.0 25.1 1 2 . 0 6 . 0 41.0 29.0 44.0 4.0 22.7
15 1 2 . 8 8 . 6 35.2 41.1 46.1 3.0 24.5 36.0 28.0 39.0 24.0 43.0 7.0 29.5
16 9.3 5.7 34.8 41.9 46.0 4.4 23.7 8 . 0 3.0 67.0 62.0 58.0 9.0 34.5
17 14.3 6.5 37.0 41.5 45.8 3.7 24.8 8 . 0 3.0 65.0 60.0 54.0 8 . 0 33.0
18 12.3 7.8 34.3 41.6 45.8 3.5 24.2 8 . 0 3.0 65.0 60.0 54.0 8 . 0 33.0
19 12.7 5.7 39.7 44.6 46.8 3.9 25.6 8 . 0 3.0 70.0 60.0 41.0 7.0 31.5
2 0 9.7 2.3 49.5 50.9 48.5 6 . 6 27.9 8 . 0 3.0 70.0 60.0 41.0 7.0 31.5
2 1 12.9 2 . 2 50.3 52.0 49.0 6 . 8 28.9 7.0 4.0 72.0 59.0 44.0 9.0 32.5
2 2 8 . 0 3.4 41.5 50.4 45.7 4.4 25.6 8 . 0 6 . 0 48.0 45.0 47.0 8 . 0 27.0
23 6.5 2.3 49.6 53.3 45.5 5.3 27.1 2 . 0 1 . 0 59.0 57.0 58.0 7.0 30.7
24 5.1 1 . 6 57.9 56.8 45.4 4.8 28.6 2 . 0 1 . 0 63.0 58.0 45.0 5.0 29.0
25 4.0 1 . 0 60.0 58.0 44.0 5.0 28.7 4.0 1 . 0 60.0 58.0 44.0 5.0 28.7
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Table 5.23: Validation plate results using the NMC classifier with feature spaces identified by the highest average distance between 
centroid ( | |v | | )  metric as well as the sequential floating backward search (SFBS) feature selection routines. Accuracies (within ±1 
flaw depth) for each plate V\ -V s  as well as the average accuracy across all six plates are shown for each feature subspace of 
dimension d = 1, . . . ,  25. Any classification accuracy above 50% is highlighted in grey.

NMC Classification Accuracy (ilD epth) [%]
Dim. Top Centroid Dist Top SFBS

d V i v 2 v 3 v b n Avg. V i v 2 V 3 V 4 V 5 v G Avg.
1 69.1 70.5 13.9 7.9 20.7 1 1 . 2 32.2 6 8 . 0 58.0 8 . 0 3.0 24.0 1 2 . 0 28.8
2 87.8 8 6 . 8 9.1 12.5 1 2 . 0 12.9 36.9 57.0 42.0 15.0 6 . 0 6 . 0 1 2 . 0 23.0
3 73.9 76.1 23.7 19.4 15.8 14.4 37.2 45.0 44.0 2 0 . 0 7.0 18.0 8 . 0 23.7
4 78.4 74.1 2 2 . 0 12.3 18.9 13.2 36.5 58.0 55.0 27.0 6 . 0 2 . 0 1 1 . 0 26.5
5 64.4 48.5 52.2 25.0 38.6 5.2 39.0 1 0 . 0 2 . 0 89.0 76.0 2 . 0 19.0 33.0
6 67.2 51.1 49.6 2 2 . 2 43.2 5.6 39.8 9.0 2 . 0 89.0 76.0 2 . 0 15.0 32.2
7 73.1 55.6 42.7 15.7 42.0 6 . 8 39.3 9.0 2 . 0 90.0 76.0 9.0 1 2 . 0 33.0
8 73.8 55.5 40.4 1 2 . 1 41.2 8 . 6 38.6 47.0 38.0 45.0 1 . 0 7.0 1 1 . 0 24.8
9 74.6 56.8 32.4 7.2 31.8 13.1 36.0 47.0 38.0 46.0 1 . 0 9.0 9.0 25.0

1 0 75.9 56.9 36.7 6.7 29.0 14.2 36.6 48.0 38.0 44.0 1 . 0 1 1 . 0 7.0 24.8
1 1 76.0 58.5 32.6 6 . 0 23.1 15.7 35.3 48.0 38.0 44.0 1 . 0 9.0 9.0 24.8
1 2 75.4 56.0 39.5 6 . 0 27.2 19.2 37.2 49.0 38.0 45.0 2 . 0 7.0 9.0 25.0
13 75.0 55.7 39.5 6 . 0 27.8 19.2 37.2 63.0 46.0 43.0 8 . 0 32.0 6 . 0 33.0
14 74.6 56.1 40.3 5.0 28.4 16.8 36.9 74.0 57.0 40.0 6 . 0 29.0 18.0 37.3
15 73.3 55.2 39.7 4.1 28.4 18.0 36.5 74.0 57.0 39.0 6 . 0 25.0 18.0 36.5
16 72.8 54.6 39.2 4.2 27.8 18.6 36.2 67.0 48.0 42.0 5.0 2 1 . 0 19.0 33.7
17 72.3 52.0 39.6 5.0 29.2 18.4 36.1 6 8 . 0 49.0 42.0 5.0 2 2 . 0 19.0 34.2
18 72.4 52.4 40.0 4.8 29.4 18.8 36.3 6 8 . 0 49.0 41.0 6 . 0 2 2 . 0 19.0 34.2
19 70.6 50.5 39.4 4.6 29.7 2 0 . 2 35.8 6 8 . 0 49.0 42.0 5.0 2 1 . 0 19.0 34.0
2 0 72.0 51.3 39.0 4.7 30.4 18.9 36.0 6 8 . 0 49.0 43.0 5.0 25.0 19.0 34.8
2 1 70.7 50.0 39.0 4.5 30.3 20.3 35.8 6 8 . 0 47.0 42.0 4.0 28.0 19.0 34.7
2 2 67.7 48.1 39.1 4.2 29.1 23.3 35.3 71.0 54.0 39.0 4.0 31.0 2 0 . 0 36.5
23 64.0 46.2 39.0 4.3 27.1 26.7 34.5 65.0 46.0 40.0 5.0 30.0 26.0 35.3
24 62.4 45.0 39.5 4.0 26.1 26.5 33.9 65.0 46.0 40.0 4.0 29.0 26.0 35.0
25 61.0 46.0 39.0 4.0 29.0 27.0 34.3 61.0 46.0 39.0 4.0 29.0 27.0 34.3



instead. This apparent trade-off supports the concept th a t feature spaces of dimension 

d that follow n /d  > 1 0  are among the best performing.

There exist several feature spaces th a t are able to  better classify plate TV For

example, the QDC results for ||v|| feature space of dimension d = 4 returns 43.3% 

accuracy for plate TV There is again a trade-off here as accuracies across the other 

five plates are somewhat lower, however, resulting in a lower average accuracy of 

26.7% for the six plates together.

To explore the differences between the || v j  j feature selection metric and the SFBS 

feature selection routine, we present Table 5.24. Ideally, all 6  plates would be classi­

fied evenly and accurately. However we have already shown th a t is not the case. We 

therefore consider the top 5 plate subsets in our results, followed by the top 4 plate 

subsets, etc. for all classifiers. We present in Table 5.24 the top  n-plate subset accu­

racy shown as accuracy-per-plate for n = 1 , . . .  , 6 . For each value of n, the feature 

subset dimensions d = 1 , . . .  ,25 are considered from Tables 5.16 - 5.23 for both the 

CD metric and the SFBS results.

The trend of decreasing average classifier performance as the number of plates 

is increased from n =  1 to n =  6  is due to the fact th a t no classifier was able to 

correctly identify all six plates simultaneously. Individual plate performance was 

highest (n =  1), with two plate performance second highest (n  =  2), and so on. We 

see here tha t the highest 6  plate classifier performance is w ith the INN and 2NN 

classifiers with the SFBS feature set of dimension d = 13. Looking back to  Tables 

5.18 and 5.19, we can see tha t these correspond to a rather high accuracy for plates 

V\ - V 5 but essentially zero accuracy on plate TV

Another trend th a t we see here is th a t of the performance of the ||v || metric 

compared to the standard SFBS feature selection routine. In general, the full six

plate test set (n = 6 ) shows split results between the ||v|| and the SFBS feature
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Table 5.24: average distance between centroid (||v||) metric classification accuracies compared to the top SFBS classification 
accuracies. Each row represents an n-plate subset, while each group of columns corresponds to an individual classifier. Results are 
presented as the top n-plate accuracy (with the corresponding feature subset dimensions d).

n - p la te s LDC QDC INN 2NN

IMI SFBS M l SFBS IMI SFBS IMI SFBS
1 71.6 (6) 83.0 (6) 100.0 (25) 100.0 (23) 71.0 (24) 90.0 (6) 76.4 (5) 90.0 (6)
2 61.5 (6) 69.0 (5) 99.0 (25) 99.0 (23) 59.0 (24) 88.5 (6) 72.3 (5) 88.0 (6)
3 57.3 (25) 62.7 (23) 69.9 (23) 78.3 (13) 52.2 (23) 77.7 (7) 65.8 (5) 77.0 (7)
4 50.0 (25) 53.3 (23) 56.0 (17) 66.5 (13) 49.6 (17) 65.8 (13) 56.9 (5) 65.8 (13)
5 44.6 (3) 43.0 (23) 46.1 (12) 53.8 (13) 45.5 (14) 60.2 (13) 50.7 (5) 61.4 (13)
6 37.7 (3) 36.0 (23) 40.5 (12) 44.8 (13) 39.6 (14) 51.7 (13) 44.3 (5) 51.3 (13)

n - p la te s 3NN PCLDC FISHERC NMC
M l SFBS |v | SFBS |v SFBS |v SFBS

1 78.7 (5) 90.0 (7) 71.6 (6) 83.0 (6) 70.5 (2) 81.0 (5) 87.8 (2) 90.0 (7)
2 73.3 (5) 88.5 (7) 61.5 (6) 69.0 (5) 66.5 (2) 68.5 (5) 87.3 (2) 83.0 (7)
3 65.4 (5) 77.7 (7) 57.3 (25) 62.7 (23) 57.3 (6) 62.3 (16) 62.5 (2) 61.3 (5)
4 55.9 (5) 63.7 (13) 50.0 (25) 53.3 (23) 50.3 (3) 49.0 (16) 53.3 (7) 50.0 (14)
5 49.6 (5) 59.2 (13) 44.6 (3) 43.0 (23) 46.5 (3) 43.4 (8) 46.7 (6) 43.6 (14)
6 43.7 (5) 50.0 (13) 37.7 (3) 36.0 (23) 39.5 (3) 36.3 (8) 39.8 (6) 37.3 (14)



selection routines in terms of higher accuracy for a given classifier. The greatest 

disparity occurs for the k -NN classifiers, where the SFBS accuracies are noticeably 

higher than  the j|v||. This is not an unexpected result, since the k ~NN accuracy was 

used as a criterion function (with k  =  1) to select the SFBS features. The resulting 

feature set should be close to optimal for those classifiers. It is encouraging th a t for 

the remaining classifiers, the ||v || metric results are higher than  the corresponding 

SFBS feature sets. This indicates th a t there is potential for a geometric feature 

space-based selection routine to use with flaw depth classification applications.

The fcNN classifiers and the QDC perform best for overall higher-dimensional 

feature spaces (d > 3). The fcNN classifiers return  the highest average accuracies for 

all six plates at 51.7%, as well as the highest accuracies for 5-out-of-6 plates at an 

average accuracy per plate of 61.4%. However we have shown th a t this corresponds 

to an uneven spread in classifier accuracy across the six plates. The QDC results are 

more evenly spread out across the six plates, and therefore represent a better classifier 

configuration for the problem at hand.

Since the goal of this classification system is to be able to identify all testing 

plate samples with relative accuracy, the most even spread of accuracies across all six 

plates is of interest to us as well. Table 5.25 presents the highest minimum  individual 

plate accuracy across all six plates for each classifier over all feature space dimensions 

considered. By sorting the results in this manner, we remove those classifiers which 

sacrifice an individual plate performance to  achieve better average accuracies. This 

table is presented only for the centroid distance feature selection routine (||v ||) results.

We can see tha t average accuracies drop to  just below 40% when considering the 

highest minimum performance across all plates. This represents a more even classifier 

performance, where feature spaces have been identified tha t returned accuracies for 

all individual plates of at least 24.7% (INN, d =  6 ). It is im portant to note th a t while
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Table 5.25: Classifier configurations for the highest minimum accuracy for each classifier 
under consideration for the centroid distance feature selection routine (||v||). As the goal 
of this classifier is to perform well for any testing plate submitted, we sort the classifier 
configuration results by the highest minimum accuracy to show classifiers with the most 
even spread of accuracies across all six testing plates. For each classifier, the feature subset 
dimension corresponding to the highest average accuracy is presented as d.

Dim. Accuracy [% within ± 1  flaw depth]
Classifier d Vx v 2 V3 v 4 V5 V6 Avg.

LDC 1 1 52.5 28.1 27.1 16.0 39.1 7.9 28.4
QDC 3 32.3 30.3 39.6 23.0 28.3 23.1 29.4
INN 6 31.2 33.6 24.7 30.6 44.7 26.0 31.8
2NN 4 36.1 34.6 61.4 39.6 52.0 14.9 39.8
3NN 4 30.0 29.2 67.0 36.2 54.7 19.8 39.5

PCLDC 1 1 52.5 28.1 27.1 16.0 39.1 7.9 28.4
FISHERC 6 69.1 57.9 23.1 19.8 44.9 1 0 . 8 37.6

NMC 3 73.9 76.1 23.7 19.4 15.8 14.4 37.2

we present classification accuracies for each plate individually here, these values do 

not provide information on the distribution of the incorrectly classified labels. As 

discussed in Section 5.6.2, the classifier outputs are converted to  confidence intervals 

across the full span of possible testing classes D\ - D 1 4 .  We have reduced these to 

a final predicted label for each waveform, decided by which class has the highest 

predicted confidence. These predicted labels for each waveform therefore span the 

range of possible classes (D\  =  D 1 4 ) ,  resulting in an ou tput label distribution for 

each testing plate V\ - V§.  It is natural to think th a t a majority-vote is appropriate 

to further reduce this output label distribution to a single class Dj.  This may have 

an effect on these results.

Determining whether or not a m ajority vote is appropriate for final predicted label 

reduction depends on the final application of a classifier. For example, technicians will 

not be interested in considering the raw output label distribution among the classes 

D\ - £>1 4 . Instead, their interest would be in a single output from the classifier, 

where a combination algorithm reduces the predicted labels to  a single flaw depth
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value. Alternatively, they may be interested in the percent of waveforms given a label 

corresponding to a flaw th a t is more severe than  a specific threshold, i.e. only those 

labeled uin 14 where n is determined by the user.

5.8.1 E xam p le D em o n stra tio n

We now illustrate the classifier capabilities in the context of an example demonstration 

of SHM where Lamb waves are used to  determine structural integrity throughout a 

lifetime of use. The capacity to carry a specific load is unique to each individual 

structure, and is usually over-engineered with a factor of safety (FoS) to account for 

unexpected loads and inherent defects in the structure. The FoS is formally defined 

as the ratio of the structure’s strength over the expected maximum load. In the 

aviation industry, a factor of safety standard 4 is 1.5, a relatively low value th a t is the 

result of engineering o reduce weight and increase efficiency [157]. As a result, aircraft 

structures require frequent inspection due to the narrow m argin of error associated 

with material loss from damage.

By identifying material losses th a t reach a given threshold level, we can evalu­

ate the classifier’s potential for use as a damage identification system. We present 

over/under classification accuracy threshold results for the six testing plates using 

two different damage thresholds of 15% and 30% m aterial loss using the QDC classi­

fier. For a structure with an initial FoS value of 1.5, any damage resulting in material 

loss will reduce the effective FoS. If enough damage occurs to  reduce the FoS down 

to an effective value of 1 .0 , then the damage can be thought of as critical since the 

structure’s strength would only be equal to the expected maximum load level. Any

4The FAA standard currently used states “Unless otherwise specified, a factor of safety of 1.5 
must be applied to the prescribed limit load which are considered external loads on the structure.” 
A irw o r th in e s s  S ta n d a rd s: T ra n sp o rt C a teg o ry  A irp la n e s , FAA Federal Aviation Regulations, Sec. 
25.303 “Factor of Safety”, (1970).
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unexpected load fluctuations would then result in failure. Thresholds of 15% and 

30% material loss explored here correspond to effective FoS reductions in aerospace 

applications of 1.25 and 1.0, respectively. For each threshold value, we determine the 

number of waveforms from each testing plate th a t get identified as being above and 

below the threshold thickness. This translates to  determining the  number of predicted 

labels of ujn where n =  4 , . . . ,  14 and n  =  7, . .  . , 14 for the 15% and 30% thresholds, 

respectively. If over 50% of the waveforms from a testing plate are classified as being 

more severe than the threshold, we feel confident assigning a ‘more severe’ label to 

tha t plate. If less than 50% of the waveforms are classified as being more severe than  

the threshold, we assign a ‘less severe’ label to th a t plate. For both  15% and 30% 

material loss threshold levels, we expect plates V\  and V 2  (both 10% thickness loss) 

to be identified as ‘less severe’ while plates V 3 , V 4 , V 5 , and V& (45%, 45%, 60%, and 

100% thickness loss, respectively) should be labeled as ‘more severe’. Results are 

presented in Table 5.26.

Plates V\  and V 2 , which are known to  have only 10% thickness loss, are both cor­

rectly identified as having damage th a t is less severe than  the 15% damage threshold 

for feature spaces of dimension d — 13 and d =  14. Similarly, plates V 3, P 4, V 5 , and 

Vq have thickness losses of 45%, 45%, 60 %, and 100% and are all correctly identified 

as having flaws th a t are beyond the 15% damage threshold limit. Similar results exist 

for the 30% damage threshold limit, where all six plates are correctly determined to 

be either above or below each damage threshold considered. We have demonstrated 

here a classification routine tha t accurately identifies six individual test plates as be­

ing either under or over the damage threshold limits of 15% and 30% material loss, 

corresponding to roughly a 50% and 100% reduction in the FoS used in aerospace 

applications.
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Table 5.26: Over/under flaw severity thresholding results using the QDC classifier for fea­
ture spaces of dimension d =  13,14 selected using the average centroid distance (||v||) metric 
for plates V\ - V%. Two thresholds are considered, 15% material loss and 30% material loss. 
The percentage of waveforms labeled above each threshold from a given test plate is shown 
here.

QDC

Dimension > 15% Damage Threshold > 30% Damage Threshold

r 1 v 2 P 3 VA v6 Pe Pi V 2 Pa Va v 5 v 6

1 39.0 44.1 51.0 38.2 52.3 62.1 16.4 17.5 24.1 16.0 27.1 25.2
2 43.3 49.6 61.0 32.9 54.5 70.7 37.6 42.1 52.9 29.3 44.2 50.5
3 70.5 73.2 84.3 53.7 80.1 80.7 67.7 69.7 81.6 52.9 77.6 79.6
4 77.6 76.0 90.0 73.4 90.9 83.1 72.7 74.6 87.4 71.5 86.9 81.6
5 71.1 67.1 8 6 . 1 6 8 . 0 91.8 83.4 65.1 63.9 81.2 62.4 85.1 81.4
6 8 8 . 2 79.9 87.9 73.9 92.5 81.6 81.9 75.6 82.5 67.5 85.6 79.5
7 95.2 90.2 95.6 86.4 93.9 80.5 90.1 84.1 92.9 79.0 89.2 78.6
8 94.5 90.4 96.8 89.7 95.2 78.5 81.3 85.0 93.1 73.4 89.9 75.2
9 88.4 91.1 92.6 92.3 91.2 85.3 79.0 87.2 90.9 81.2 88.4 81.8

1 0 83.0 91.3 92.1 87.7 90.1 82.0 71.4 84.9 90.0 75.0 8 8 . 2 76.4
1 1 74.6 74.2 74.6 81.5 73.6 84.7 55.6 60.3 6 6 . 6 65.9 70.9 74.2
1 2 48.4 50.8 59.9 59.6 60.6 83.4 31.6 31.0 48.8 51.6 58.9 67.0
13 43.4 50.0 72.6 61.1 67.1 94.2 29.2 32.8 60.0 55.2 65.5 79.6
14 42.3 49.3 71.7 60.8 6 8 . 8 91.6 26.1 29.4 55.6 53.6 6 6 . 0 72.3
15 20.3 2 1 . 1 34.9 34.5 55.9 86.5 13.4 5.2 27.7 31.2 54.1 52.7
16 23.1 22.4 36.5 35.1 57.1 84.6 12.3 5.7 25.9 29.5 54.0 51.9
17 27.6 28.6 47.7 49.6 53.9 71.9 8.5 4.0 23.5 35.7 45.8 49.2
18 21.5 24.8 40.8 54.3 47.7 65.6 9.8 8 . 6 25.8 37.5 41.7 49.5
19 25.2 28.6 44.4 55.6 49.1 67.2 8.4 5.9 26.2 36.3 41.3 48.0
2 0 22.3 27.1 38.4 59.0 37.5 56.3 7.2 4.7 21.7 35.6 30.4 44.1
2 1 17.9 23.3 29.5 60.6 29.4 47.2 7.1 6.4 19.0 40.2 23.4 38.9
2 2 1 0 . 6 12.4 17.1 63.2 18.3 28.7 5.6 5.8 11.9 51.2 13.1 26.2
23 5.7 3.6 8.4 56.7 8.9 12.9 3.5 2 . 0 7.4 50.8 4.5 12.9
24 2.5 0.7 4.5 47.4 5.6 7.0 2.3 0.7 4.4 42.9 2.9 7.0
25 2 . 0 0 . 0 3.0 42.0 2 . 0 6 . 0 2 . 0 0 . 0 3.0 40.0 1 . 0 6 . 0

190



5.9 D iscussion

We have presented here a study of multiple-mode Lamb wave interactions with sim­

ulated corrosion thinnings for autonomous classification of flaw severity. Lamb wave 

tomography was used to first reconstruct an image of the flaw and thereby locate 

and size it. Waveforms of interest were identified autom atically using raypaths th a t 

had passed through the flaw area in each tomographic reconstruction. Using these 

waveforms, several feature selection methods were explored to  extract information 

about the complex scattering and mode conversion th a t can happen. These wave­

form features were then evaluated using formal classification accuracies as a measure 

of performance. The fundamental concept of class distribution within each feature 

space with respect to the sequential ordering of classes was discussed. Measurements 

using the class centroid locations within the various feature space subsets were found 

that allow intelligent selection of those subsets which result in high classification ac­

curacies. Using this selection metric, six validation da ta  sets were subm itted to the 

classifier to assess the classifier’s ability to correctly label new da ta  when it falls be­

tween existing flaw depths (classes). We found th a t most of these validation sets 

were correctly identified with respect to  their flaw severity, however most classifier 

configurations struggled to simultaneously label all of the validations sets correctly. 

Classifiers often sacrificed the performance on one validation set to increase the ac­

curacy of the remaining sets. Classifiers which performed best for all validation sets 

were then used in an example application more relevant to  structural health monitor­

ing, where the multi-class problem was reduced to a binary output of ‘more’ or ‘less’ 

severe than a given damage threshold. All validation d a ta  sets were correctly assessed 

using this thresholding, indicating the potential use of this classification scheme to 

identify damaged structures in a straightforward way.
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We have concluded th a t formal feature selection routines rely too heavily on the 

concept tha t the testing set is a representative collection of da ta  for a particular 

problem domain. In the case of damage detection, it is not feasible to provide training 

sets representing all possible flaw types to the classifiers. Classifiers are guaranteed to 

be tested on data  from unknown flaws, yet are still expected to accurately asses their 

severity. Our work suggests exploring topological measures of the class distribution 

within the feature space as a way to predict classifier accuracies for testing new data. 

Our work provides the framework for a classification routine which is able to pull 

features from complex, multi-mode Lamb wave signals to identify signatures related 

to flaw severity.

W ith the promising performance of the average centroid distance (||v||) metric 

relative to the formal SFBS routines for feature selection, we next explore the concept 

of class separation within a feature space using techniques th a t do not involve the 

comparison of formal classification results as an interm ediate step. It makes sense 

th a t a topological analysis of the class distribution within the  feature space could 

provide further insight into a more ideal feature selection routine for this analysis. 

To explore this concept, we introduce the field of com putational homology for use as 

a feature selection routine in the next chapter.
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C hapter 6

C om putational H om ology Feature  

Selection

W ith the promising performance of the average distance between class centroid feature 

selection metric relative to the formal SFBS routine, we further explore the concept 

of class separation within a feature space using techniques th a t do not involve the 

comparison of formal classification results as an interm ediate step. A topological 

analysis of the class distribution within the feature space could provide further insight 

into a more ideal feature selection routine for this analysis. To explore this concept, 

we introduce computational homology for use as a feature selection routine.

6.1 C om putational H om ology

The application of computational homology as a feature selection tool continues from 

the work of Chapter 5, where several geometric measures on the class distribution 

within the feature space were used as feature selection metrics for ultrasonic inspection 

flaw classification. None of the feature selection metrics used previously were ideal in
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the sense that there exist cases for each m ethod where the m etric value is high yet 

the class distribution is poor. For example, using the average distance between class 

centroids is appropriate if the classes are linearly distributed w ithin the feature space. 

If, however, a feature value increases for interm ediate values and then decreases for 

higher values, one would end up with classes th a t ‘tu rn  back’ on themselves and 

overlap significantly. The centroid distance may rem ain high between classes, but 

there is no measure of class overlap taken into account using this metric. Therefore, 

rather than  simply calculate direction or m agnitude of the vectors from class centroids 

within a given feature space, we wish to extract a value which compares a measure 

of how much the classes in the feature space overlap each other. We turn  to the 

calculation of Betti numbers (/?), where the n th  B etti number is given by

Pn = dim H n. (6.1)

Here I ln is the n th  homology group of a topological space. The elements of //„  are 

equivalence classes of n-cycles th a t do not bound any n +  1 chains, which is another 

way of characterizing n-dimensional holes. Therefore, for n =  0 , . . .  , d — 1, the n th  

Betti number of a d-dimensional space is a coarse measurement of the number of dis­

connected n-dimensional surfaces in th a t space. For example, d0 measures the num­

ber of individual connected components, measures the num ber of circular ‘loops’ 

(two-dimensional holes), /?2 measure the number of spherical voids (three-dimensional 

holes), etc. effectively measuring the higher dimensional connectedness of a space. It 

is im portant to point out here th a t a d-dimensional space can have at most d nonzero 

Betti numbers, from /30 • ■ ■ fid-1 - For example, a space of dimension d — 2 cannot 

contain any 2-holes, or spherical voids, which require three dimensions to define. A 

formal introduction to computational homology can be found in Appendix B, which
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follows [158]. There, we formally define homology groups and their elementary prop­

erties. Specifically, we define topological spaces th a t are built out of d-dimensional 

unit cubes with vertices on the integer lattice, known as cubical sets. These will be 

the building blocks of our work.

A simple example of how Betti numbers correlate to  the spatial distribution of 

classes within a feature space is presented in Figure 6.1. Here, three objects repre­

sented as squares are presented in a two-dimensional space for three different degrees 

of overlap: no overlap, slight overlap, and severe overlap. Each object can be thought 

of as a bounding box representation of an individual class. Because this space is 

two-dimensional, fin =  0 for all values of n > 1. As the degree of object over­

lap increases, so does the number of two-dimensional holes (fii), while the number 

of individual connected components (0O) decreases. Similarly, as classes overlap in­

creasingly within a feature space, they will be more difficult to  distinguish between, 

reducing classification accuracy. This results in an inverse correlation between 0i 

and classification accuracy. In a three-dimensional feature space, each class would 

be bounded by a cube. The number of cavities (three-dimensional holes) indicated 

by fa  would then provide the relevant measure of class overlap. This concept can 

be extended to d-dimensional feature spaces, where each class is represented by a 

d-dimensional hypercube. In d-dimensions, it is the value of fid-i th a t we expect to 

provide a relevant measure of class overlap within the feature space.

The mathematical tools we use here are not novel. Rather, we present a unique 

application of them in the context of feature selection. Several publicly available 

software packages exist for the com putation of homologies and their Betti numbers, 

including CHomP [159], the GAP homology package [160], JavaPlex [161], Diony­

sus [162], and the RcdHom library [163]. Several of these packages build topological 

spaces using simplical complexes, while others allow the use of cubical complexes. For
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(a) f a  =  3, 0 X =  3
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(b) A) = l, A  = 5
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(c) 00 =  1, fa  = 7

Figure 6.1: Three examples of Betti numbers /?o and ;3i for three objects in a two- 
dimensional feature space ( /i  vs. / 2 ). Each object can be thought of as a class centered at 
its mean vector and bounded by its standard deviation in each dimension. Betti number 0 q 

corresponds to the number of connected objects in the space, while 0 \  corresponds to the 
number of 1-dimensional holes (enclosures) in the space. If the three objects are disjoint, 
then there exist three separate connected components, each of which is a 1 -dimensional hole 
(a). As the objects begin to overlap, the number of connected objects decreases and the 
number of 1-dimensional holes increases (b). Further overlap again increases the number of 
1 -dimensional holes again (c).
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a given class distribution in a d-dimensional feature space, each class can easily be 

centered at its centroid and bound in each dimension by its standard  deviation. This 

results in a d-dimensional hypercube, which can be represented easily by a cubical 

complex. We therefore restrict our software choice to those th a t allow cubical complex 

inputs. Specifically, we use settled on software developed by the computational ho­

mology project (CHomP). The CHomP software used here applies several reduction 

algorithms tha t are combinatorial in nature, allowing for the rapid computation of 

homology groups based on input of an elementary cubical complexes. Specifically, the 

algorithm used here is written by Pawel Pilarczyk [159] and computes the homologies 

over the ring of integers.

6.2 Cubical Set R ep resen tation  o f D a ta

Before we can use the CHomP algorithms, we first need to transform  our data  set 

from clusters of points in the feature space into a form th a t can be read by the 

computational homology algorithms. The goal is to  tu rn  this d a ta  into a cubical 

set, where each class is represented by a hyper-rectangle embedded in the space 

Rd. The first step in this transform ation is to  identify each class's centroid and its 

standard deviation in each dimension of a d-dimensional feature space. Each class 

can then be represented by a d-dimensional hyper-rectangle (referred to here as a 

d-rectangle), centered at the centroid and bound by the standard deviation in each 

dimension. Each d-rectangle is composed of 2 x d individual (d — l)-dimensional faces. 

On this set of d-rectangles in a given feature space, we apply a homology-preserving 

map that transforms the bounds defined by the standard deviations onto an integer 

lattice. Next, each 2 x d individual (d — l)-face is divided into a set of d-dimensional 

elementary cubes, which themselves are the finite product of d elementary intervals,
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one of which is degenerate and d — 1 of which are non-degenerate. An example of t his 

process for a two-dimensional feature space (d =  2) can be seen in Figure 6.2. The 

number of elementary cubes required to define each (d — l)-face depends on the size 

of tha t face within the integer lattice representation. In other words, if a transformed 

hyper-rectangle has a dimension larger than unit length, it is defined in terms of 

several smaller elementary components.

0.7
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0.5
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0.2

0.2 0.4 0.6 0.8 1
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(c)

Figure 6.2: The first step in computing the homology is to establish the class bounds in the 
feature space (a). Then, a mapping is applied that maintains the homology of the space 
and sets these bounds to the integers Z (b). Finally, faces of each class are divided into 
elementary cubes of dimension d — 1 (c).

To summarize, each d-rectangle is represented by a set of 2 x d individual (d — 1 )~ 

faces, each of which is composed of elementary cubes, where each elementary cube is
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defined as the Cartesian product of one degenerate and d — 1 non-degenerate elemen­

tary intervals.

For each feature space, the set of elementary intervals defining the hyper-rectangles 

in I R d  is written into a tem porary file which is used as input for CHomP. The resulting 

output of Betti numbers is extracted from the CHomP program and saved in an 

array, along with the corresponding features th a t make up th e  given feature space. 

The class distribution in this feature space is then used to tra in  and test the formal 

classification functions described previously, with the classifier accuracy saved in the 

same array. This process is repeated for every feature space subset of dimension 

d, building an array of feature space subsets and their corresponding classification 

accuracies and Betti numbers. Any correlation present between the selected feature 

space’s classification accuracy and any trends present in the B etti numbers can be 

made from these values.

6.2.1  C om p u tation a l R estr ic tio n s

There are computational restrictions th a t need to be taken into account before the 

CHomP algorithms are used. For the most part, the restrictions are based on the fact 

tha t each class has to be composed of elementary cubes, defined on the set of integers. 

It follows th a t a large number of classes results in a large number of elementary 

components required to build the resulting hyper-rectangles in the feature space. 

This number increases exponentially w ith dimension. For example, a 3-dimensional 

box has 23 =  8 corner nodes, while a 15-dimensional hyper-rectangle has 215 =  32768 

corner nodes. This exponentially increasing number of elem entary cubes required to 

define a higher-dimensional feature space translates to an exponential increase in the 

memory required to define the space. Additionally, the number of elementary cubes 

required in each dimension depends on number of classes present, which defines the
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range in each dimension for the feature space. For example, a  6 class feature space 

will have 12 boundaries in each dimensions (an upper and lower bound per class). 

This further increases the memory required to define a class distribution as a cubical 

set. It is easy to see how the size of this problem increases drastically as the number 

of classes and dimensions increase.

We therefore explore a subset of the original problem instead of the entire original 

14-class feature space. We consider a subset of 6 classes, taken from the original da ta  

set. From the original 100 waveforms per class, 50 were selected randomly to  reduce 

the problem space further. The 6 classes were selected to  provide a full spread of flaw 

thicknesses while still being a manageable set of data. A sum m ary of these reduced 

classes can be found in Table 6.1

Table 6.1: The flaw thickness corresponding to the subset of double-crosshole scans used to 
explore the computational homology feature selection results. A Starrett digital micrometer 
was used to measure to thickness in three locations within the flaw, with the average value 
reported here. The percent thickness loss relative to the full plate thickness is also presented.

D ata set A d 5 Ds Dio D u D u
Average Flaw Depth (mm) 
Percent Thickness Loss

0.00
0%

0.67
21%

1.34
43%

1.86
59%

2.47
78%

3.15
100%

Because we have reduced our d a ta  to 50 waveforms per class, the N /10 > d 

expected ‘optim al’ feature set dimension estimation suggests th a t  we can find a feature 

subset of dimension d — 5 or less with reasonable performance. Therefore, we explore 

all possible feature subsets of dimensions d = 2 , . . .  ,5  here. To make the computation 

time reasonable, we must first reduce the original d = 78 feature set again, since 

(758) >  21 x 106 possible combinations which, at 3 minutes p er computation, would 

take over 120 years to compute on a single machine. Theoretically this could be 

reduced through a combination of serial and parallel processing techniques down to
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approximately 6 months of continuous runtim e if the full power of the SciClone1 

computing cluster was reserved exclusively for this project. This is not a realistic 

request, however, so we reduce the size of our original feature set down to d =  10 

features using the previously defined SFBS feature selection routine. W ith these 

top ten features, we calculate both the classification accuracy as well as the Betti 

numbers for the class distribution in th a t feature space for all possible feature subsets 

of dimension d =  2 , . . . ,  5 in order analyze the relationship between accuracy and 

Betti numbers. Dimension d = 1 is not considered here because the only non-zero 

Betti number do =  1 f°r ah feature spaces of dimension d = 1, and no trends can be 

extracted from a constant value.

For each feature space, classification accuracy is determined in a m ethod similar 

to before. Of the 300 waveforms in the d a ta  set (50 waveforms per class, 6 classes), 

20% is randomly selected and withheld for testing, preserving class distributions in the 

original data set. T hat means th a t a proportional number of waveforms are randomly 

selected from each class compared to the original distribution. The remaining 80% 

of the data is used to train the classifier, using only the features identified by the 

feature space under consideration. Once trained, the testing set is subm itted to the 

classifier, again using the features defined by the given feature space, and the resulting 

predicted labels are stored. Classification accuracy is determined to  be the number 

of labels predicted to be within ±1 step of their actual label, presented here as a 

percentage of the total waveforms tested. 

xh t t p ://www. com psci.wm. ed u /S c iC lo n e /
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6.3 R esu lts

Initial Betti number results for the 3NN and QDC classifiers, previously identified as 

performing superior to the rest, can be seen in Figures 6.3 and 6.4. For each classifier, 

a series of plots is presented. Each row of plots corresponds to feature space dimension 

d — 2 , . . .  ,5 from top to bottom, while each column corresponds to B etti numbers of 

dimension (3n where n  =  0, . .  ., d — 1 from left to right. Each subplot contains the 

Betti number of dimension n (y-axis) as a function of classifier accuracy (%) (rr-axis) 

for each possible feature space combination of dimension d. We expect the number of 

d-dimensional holes present in each d-dimensional feature space, measured by fld-i, 

to provide a measure of class separability as a linear relationship. Roughly speaking, 

the higher the number of n-holes, the more class overlap present in the feature space, 

and the lower the expected classification accuracy.

The first thing to note in these results is th a t the range of accuracies for the various 

feature spaces here are generally higher than  the previous larger analysis due to the 

reduced number of classes (and overall dimension of the problem). By including only 

6 classes, there is statistically higher chance of separation within the feature space.

Both classifiers return similar sets of results. W ith one exception, the values of 

fto =  1, indicating th a t there is always overlap between classes in the feature space. 

This is verification th a t a sophisticated analysis technique, like pattern  classification, 

is required for analysis of this da ta  in the first place. If the values of /30 were consis­

tently larger than 1, tha t would mean there are disjoint classes in the feature space, 

and a simple clustering analysis would be more appropriate.

For plots of Pd- 1  over all d =  2 , . . . ,  5 (the left-hand subplot of each row), there 

seems to be an unusual pattern  in the data. It appears that for these (3d- 1 plots, a 

linear fit may not have been the best choice to  analyze the data, but rather a higher-
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Figure 6.3: Betti number results for the QDC classifier. Each row corresponds to dimension d where d = 2,3,4,5 from top to 
bottom, while the columns represent the Betti number f3n where n = 0, . . .  , d — 1 from left to right. Each plot shows two lines: 
the blue line is the Betti number of dimension n (y-axis) as a function of classifier accuracy (%) (x-axis), while the black dotted 
line is a linear best-fit line for the Betti numbers provided for easy visualization of any relationship present between the classifier 
accuracy and the Betti numbers. There is a general trend of an increasing slope for the best-fit line, indicating a relationship 
between lower Betti number and higher classification accuracy.



204

d =  5

38

31

24

17
60 80

Accuracy (%)
60 80 

Accuracy (%)

uUi/'ik lIiJ liI

i i
60 80 

Accuracy (%)
60 80 

Accuracy (%)

Figure 6.4: Betti number results for the 3NN classifier. Each row corresponds to dimension d where d = 2,3,4,5 from top to 
bottom, while the columns represent the Betti number /?„ where n = 0, . . . ,  d -  1 from left to right. Each plot shows two lines: 
the blue line is the Betti number of dimension n (y-axis) as a function of classifier accuracy (%) (x-axis), while the black dotted 
line is a linear best-fit line for the Betti numbers provided for easy visualization of any relationship present between the classifier 
accuracy and the Betti numbers. There is a general trend of an increasing slope for the best-fit line, indicating a relationship 
between lower Betti number and higher classification accuracy.



order polynomial may fit the d a ta  better. However, closer inspection reveals th a t 

this is not exactly the case. In both the 3NN and the QDC results, the classification 

accuracies are split into a  group of higher accuracies w ith a slight gap to a second 

group of lower accuracies. This splits the B etti numbers into two disjoint sections. 

These sections, when isolated, display the general increase in B etti number relation­

ship we were expecting to find. An example of this is shown in Figure 6.5, where 

the subplot of fid-\ for d =  5 from 6.3 is enlarged. The two disjoint sections of data  

are highlighted, with bounds of each individual cluster of feature spaces indicated by 

vertical lines. The gap in classification accuracy from just above 70% to roughly 80% 

can be seen easily here. Individual linear best-fit lines are included to highlight the 

general trend of the data. The linear fit for the feature spaces in the lower range 

of accuracies, bounded by the dotted lines, has a best-fit slope of -0.84. Similarly, 

the linear fit for the feature spaces in the  higher range of accuracies, bounded by the 

dashed lines, has a best-fit slope of -1.61. These both  indicate the  negative correlation 

between Betti number fid- 1  and classification accuracy wc hoped to find.

The cause of this gap in classification accuracies is unknown, but it may be related 

to the concept of nested classes in the feature space being topologically identical to 

disjoint classes. In other words, only classes which overlap each other contribute to the 

increase in n-holes and therefore B etti number fin- \ .  Disjoint and nested classes do 

not. If a class is nested within the bounds of a separate class, it follows th a t it would be 

difficult to distinguish between the two classes using formal classification techniques. 

Nested classes therefore result in a lower classification accuracy while maintaining an 

identical topological makeup when compared to  similar disjoint classes.

If we could identify the specific feature spaces th a t correspond to the higher of the 

two sections only, we could then sort these feature spaces by fid-i and have generally 

higher-to-lower classification accuracies from these results. To further explore this

205



Accuracy (%)

Figure 6.5: A plot of 0d-i for d — 5 as a function of QDC classification accuracy for all 
feature space subsets of dimension d = 5. There is a gap in the classification accuracies 
dividing the feature space subsets into a group of lower accuracy feature spaces and a second 
distinct group of higher accuracy feature spaces. These two sections are bounded here by 
dotted and dash-dot vertical lines, receptively. Individual linear best-fits lines are applied 
to each group, shown here as dashed lines. The linear fit for the lower range of accuracies 
has a best-fit slope of -0.84. Similarly, the linear fit for the higher range of accuracies has a 
best-fit slope of -1.61. These both indicate the negative correlation between Betti number 
and classification accuracy we expected to find.
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concept, we will investigate utilizing both com putational homology to  explore topo­

logical features of each feature space as well as geometric measurements of the class 

distribution from within each feature space, as was explored in C hapter 5. T hat is, we 

will combine the tortuosity, average angle, and average centroid distance feature se­

lection metrics with a fourth, Betti number-based metric. By combining methods, we 

will hopefully be able to account for variations within each individual metric method 

tha t result in lowered classification accuracies.

To begin exploring this concept, we first calculate the  geometric measurements 

(tortuosity between class centroids, average angle between class centroids, and average 

distance between class centroids) for this reduced data  set for all possible feature 

spaces of dimension d = 2 , . . . ,  5 from the top 10 SFBS features previously discussed. 

We then match these feature spaces up w ith their corresponding B etti numbers and 

classification accuracy.

It should be noted here th a t we can perform this analysis because we have con­

sidered all possible subsets of dimension d =  2 , . . . ,  5 in our results. Previously, with 

the larger 14-class problem, we were only considering the top feature spaces as deter­

mined by each metric for comparison of classification accuracy due to the large size 

of the problem at hand. A ttem pting to  compare those limited results in this manner 

would not be complete, and would not be reliable in determining general trends in 

the data as we are here.

We restrict ourselves to using the QDC classifier for this analysis because of how 

similar its Betti number results were compared to the 3NN classifier, as well as how 

consistent the QDC classifier performance was throughout the  previous chapter. For 

each feature space dimension d =  2 , . . .  , 5 we first plot the three sets of geometric mea­

surement values against their QDC classification accuracy. A threshold is applied for 

each metric tha t allows inclusion of the highest feature space classification accuracies
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but removes as many of the lower classification accuracy feature spaces as possible. 

A formal threshold analysis to determine ideal threshold levels is not performed in 

this study. Instead, thresholds are selected based only on the da ta  at hand in an 

attem pt to provide a proof-of-concept for this technique. The B etti numbers 8 n for 

n = 0 , . . . ,  d —1 are also plotted against classification accuracy, and a similar threshold 

is applied for 8 n of n  < d — 1. Finally, (3d-1 is plotted against classification accuracy, 

and feature spaces that have met all threshold values are highlighted. Ideally, only 

those corresponding to the higher-accuracy ‘section’ described above remain, which 

can then be sorted by fid-1 with higher accuracies corresponding to lower fid-1 -

These results are presented in Figures 6.6 - 6.8 for d = 2, Figures 6.9 - 6.11 for 

d = 3, Figures 6.12 - 6.14 for d — 4, and Figures 6.15 - 6.17 for d =  5. After an initial 

analysis of the data, threshold values were selected for each metric. For the three 

geometric measures (tortuosity, avg. angle, and avg. centroid distance), a threshold 

level was chosen that was consistent across all dimensions. For the Betti number 

results, since the Betti numbers are dimensionally dependent, individual thresholds 

were selected. For each of these sets of figures, the first figure shows the three geomet­

ric measures plotted against their QDC accuracy, with applied thresholds represented 

by black dotted lines and any feature spaces th a t meet each threshold highlighted by 

a black star. Any feature space w ithout a black star is removed from consideration. 

A plot of ftd-i is provided, where any feature spaces which meet all three of the ge­

ometric thresholds are highlighted by a red star. Next, a similar plot is given for 

Betti numbers f3n where n = 0 , . .  . ,d  — 1. For each fin where n < d — 1, a threshold 

is applied and all feature spaces tha t meet each threshold are highlighted by black 

stars. A plot of fid-i is provided, where any feature spaces which meet all of the

I n r i m r  i  r y o  o p c i n n  Q 1 R p t f  1 n n r n K n r  f l i r p e V » A l / ^ c !  o r p  V n r r K l i f r U t n / ^  K t t  o  f t a r  T T i n o l l t i ’ ol o y v v i  C x x x i x ^ i x o x y J x x c i x  D C i t x  x x c x x i x i ^ v _ , x  t i x r C o x x v J x u o  c x x  C  x x x ^ i x x x g >x x o ^ - ' _ x  k) j  c x  o c c t x .  x  x i i c t x x ^ y ,  c t

plot is given of fid- 1  versus classification accuracy, where any feature space that has
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not been removed by either the combined geometric thresholding or the Betti number 

thresholding is highlighted by a red star.

For the geometric results, we have chosen threshold values th a t are consistent 

across all dimensions. For the tortuosity metric, the values are limited to r  < 4.7. 

Average angle between centroid values are limited to  [77° <  9 < 107°]. Finally,

average distance between class centroid values are limited to  ||v || >  0.12. There 

are several trends in these results th a t are consistent across all dimensions. For 

the tortuosity metric, the group of feature spaces th a t have the highest accuracy, 

above any gap in accuracy th a t may be present, are all clustered together below 

the t =  4.7 limit. Those corresponding to lower classification accuracies tend to 

produce significantly higher values of r ,  which are mostly filtered out with the applied 

threshold. For each dimension, there still exist several lower accuracy feature space 

points tha t also meet the threshold limit. These results indicate tha t the tortuosity 

metric is a promising technique for identifying feature spaces th a t result in high 

classification accuracy, however alone it is not perfect.

The average angle between centroid results also have a trend  th a t is consistent 

across all dimensions. Most of the feature spaces corresponding to  high classification 

accuracy are clustered within the [77° < 6  < 107°] range we have identified. Higher­

dimensional feature spaces show a second cluster of average angle values up around 

130°, however we have chosen not to include this range of angles because it tends 

to be the lower-end of the highest accuracy cluster in addition to  many of the lower 

accuracy points as well. Because we can still identify the highest accuracy values in 

all dimensions, we believe this metric also shows potential for use in parallel with 

other metrics for removing the lower accuracy feature spaces from consideration.

T ' V i o  p v o r o r r o  K p + w £ * £ v p  n l a c c  p p r i t r n i ^ c  Vi » -u p  I p c q  r » f  q  c r p r j p r a l  t r p r j r lX iiO ClV Oi VAIO O Wiiicv OVU »» VVyil VlCiOu OViiVi y | j *  j  |  J  iit* « ^ 1WW Vi Ci QVA1 Vi < a iL  ua vaIva

in the data th a t allows us to separate the higher accuracies from the lower. We
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Figure 6 .6 : Values of the three geometric feature space values versus QDC classification 
accuracy (% ± 1  flaw depth) for all feature spaces subsets of dimensions d  =  2 . Average 
distance between class centroids (||v ||, top), average angle between class centroids (9 , upper- 
middle), and tortuosity relative to class centroids ( t , lower-middle) are shown. Thresholds 
represented by the black dotted lines have been applied at ||v|| >  0.12, [77° <  0  <  107°], 
and r  < 4.7, respectively, to isolate data corresponding to the highest accuracies. Feature 
spaces which meet each of thresholds are highlighted by black stars (*), while those which 
meet a ll  th r e e  are highlighted in the plot of /3d - 1  (bottom) as red stars (*). It can be seen 
that the majority of feature spaces identified by this method correspond to higher classifi­
cation accuracies, however several of the feature spaces corresponding to lower classification 
accuracies are also included.
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Figure 6.7: Betti numbers f tn for n =  0 ,1 plotted against QDC classifier accuracy (% ±1  
flaw depth) for all possible feature spaces of dimensions d =  2. A threshold has been applied 
for /3n for n < d — 1, shown as a black dotted line in each respective subplot. Feature space 
combinations that meet this threshold are indicated by black stars (*), while those which 
meet all thresholds are highlighted in the plot of fid-x- It can be seen that only a single 
feature space was removed using this technique.

had expected the higher values of ||v || to correlate to better class separation, so we 

apply a lower-bound threshold here. The spread of high-accuracy ||v || values for the 

higher-dimensional cases is similar to th a t of the low-accuracy values, restricting the 

usefulness of this data set. Lower-dimensional spaces, however, do exhibit a lower 

||v|| lower accuracy relationship th a t we can exploit the application of a threshold 

to identify these lower accuracy points, so we include this metric in our analysis.

The Betti numbers values are unique to each dimensional space, as the number 

of nonzero /?„ is related to d by (3n ^  0 for n  <  d — 1. Therefore, we determine 

the threshold values for each dimension on an individual basis. The same principle 

applies, however, in tha t we are looking for a straightforward am plitude threshold to 

apply which separates as many of the higher accuracy feature spaces from the lower 

accuracy ones. We apply these thresholds only to ftn for n < d — 1, since we have 

already seen tha t fid- i  displays behavior th a t prevents us from using a simple selection 

criterion such as a threshold. For d = 2, we see th a t /30 =  1 for all but a single feature
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Figure 6 .8 : A plot of / ? < * _ 1 for d =  2  sorted by classification accuracy (% ±1 flaw depth), 
where each possible feature subspace of dimension d  — 2 represented by a blue circle. The 
average centroid distance, average angle, and tortuosity. thresholding techniques seen in 
Figure 6 . 6  as well as the Betti number threshold technique seen in Figure 6.7 are both 
applied here, with only those feature space subsets which meet all of these threshold values 
highlighted by red starts. It can be seen that using these thresholds allows us to identify 
the feature space combinations that produce the highest classification accuracies, as well as 
several corresponding to lower accuracies.
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Figure 6.9: Values of the three geometric feature space values versus QDC classification 
accuracy (% ±1 flaw depth) for all feature spaces subsets of dimensions d = 3. Average 
distance between class centroids (||v||, top), average angle between class centroids (0 , upper- 
middle), and tortuosity relative to class centroids (r, lower-middle) are shown. Thresholds 
represented by the black dotted lines have been applied at ||v|| > 0.12, [77° < 6  < 107°], 
and r  < 4.7, respectively, to isolate data corresponding to the highest accuracies. Feature 
spaces which meet each of thresholds are highlighted by black stars (*), while those which 
meet all three are highlighted in the plot of Pd-i (bottom) as red stars (*). It can be seen 
that the majority of feature spaces identified by this method correspond to higher classifi­
cation accuracies, however several of the feature spaces corresponding to lower classification 
accuracies are also included.
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Figure 6.10: Betti numbers /3n for n =  0 , . . .  , 2 plotted against QDC classifier accuracy (% 
± 1  flaw depth) for all possible feature spaces of dimensions d  =  3. A threshold has been 
applied for 3 n for n  <  d — 1, shown as a black dotted line in each respective subplot. Feature 
space combinations that meet this threshold are indicated by black stars (*), while those 
which meet all thresholds are highlighted in the plot of f i d - i -  It can be seen that only a 
single feature space was removed using this technique.
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Figure 6.11: A plot of fid-\ for d = 3 sorted by classification accuracy (% ±1 flaw depth), 
where each possible feature subspace of dimension d = 3 represented by a blue circle. The 
average centroid distance, average angle, and tortuosity thresholding techniques seen in 
Figure 6.9 as well as the Betti number threshold technique seen in Figure 6.10 are both 
applied here, with only those feature space subsets which meet all of these threshold values 
highlighted by red starts. It can be seen that using these thresholds allows us to identify 
the feature space combinations that produce the highest classification accuracies, as well as 
several corresponding to lower accuracies.

215



0.4 

_  0.3 

1=  0.2 

0.1

180 
160 
140 

,<3i 120 
100 
80 
60

io2 

S’ io1

100
" 7  80
S  60
<=S 40

40 45 50 55 60 65 70 75 80 85 90 95
Accuracy (%)

Figure 6.12: Values of the three geometric feature space values versus QDC classification 
accuracy (% ±1 flaw depth) for all feature spaces subsets of dimensions d =  4. Average 
distance between class centroids (||v||, top), average angle between class centroids (9.  upper- 
middle), and tortuosity relative to class centroids (r, lower-middle) are shown. Thresholds 
represented by the black dotted lines have been applied at ||v || > 0.12, [77° <  9 <  107°], 
and r < 4.7, respectively, to isolate data corresponding to the highest accuracies. Feature 
spaces which meet each of thresholds are highlighted by black stars (*), while those which 
meet all three are highlighted in the plot of / ? < * - 1  (bottom) as red stars (*). It can be seen 
that the majority of feature spaces identified by this method correspond to higher classifi­
cation accuracies, however several of the feature spaces corresponding to lower classification 
accuracies are also included.
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Figure 6.13: Betti numbers fin for n = 0 , . . .  ,3 plotted against QDC classifier accuracy {% 
±1 flaw depth) for all possible feature spaces of dimensions d =  4. A threshold has been 
applied for fin for n < d — 1, shown as a black dotted line in each respective subplot. Feature 
space combinations that meet this threshold are indicated by black stars (*), while those 
which meet all thresholds are highlighted in the plot of fid-1 - It can be seen that only a 
single feature space was removed using this technique.
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Figure 6.14: A plot of (3d-i for d — 4 sorted by classification accuracy (% ±1 flaw depth), 
where each possible feature subspace of dimension d = 4 represented by a blue circle. The 
average centroid distance, average angle, and tortuosity thresholding techniques seen in 
Figure 6.12 as well as the Betti number threshold technique seen in Figure 6.13 are both 
applied here, with only those feature space subsets which meet all of these threshold values 
highlighted by red starts. It can be seen that using these thresholds allows us to identify 
the feature space combinations that produce the highest classification accuracies, as well as 
several corresponding to lower accuracies.
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Figure 6.15: Values of the three geometric feature space values versus QDC classification 
accuracy (% ±1 flaw depth) for all feature spaces subsets of dimensions d = 5. Average 
distance between class centroids (||v||, top), average angle between class centroids (0, upper- 
middle), and tortuosity relative to class centroids (r, lower-middle) are shown. Thresholds 
represented by the black dotted lines have been applied at ||v|| > 0.12, [77° < 0 < 107°], 
and r  < 4.7, respectively, to isolate data corresponding to the highest accuracies. Feature 
spaces which meet each of thresholds are highlighted by black stars (*), while those which 
meet all three are highlighted in the plot of fld-i (bottom) as red stars (*). It can be seen 
that the majority of feature spaces identified by this method correspond to higher classifi­
cation accuracies, however several of the feature spaces corresponding to lower classification 
accuracies are also included.

219



1 . 1

°  1

0.9

2

oj 1

0

3

1

0

8
6
4
2
0

~  boi■o
S  60

40 45 50 55 60 65 70 75 80 85 90 95
Accuracy (%)

Figure 6.16: Betti numbers f tn for n =  0 . . . .  , 4 plotted against QDC classifier accuracy (% 
dtl flaw depth) for all possible feature spaces of dimensions d  — 5. A threshold has been 
applied for (3n for n < d  — 1, shown as a black dotted line in each respective subplot. Feature 
space combinations that meet this threshold are indicated by black stars (*), while those 
which meet all thresholds are highlighted in the plot of f i d - i -  It can t>e seen that only a 
single feature space was removed using this technique
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Figure 6.17: A plot of P d - \  for d =  5 sorted by classification accuracy (%  ±1 flaw depth), 
where each possible feature subspace of dimension d  =  5 represented by a blue circle. The 
average centroid distance, average angle, and tortuosity thresholding techniques seen in 
Figure 6.15 as well as the Betti number threshold technique seen in Figure 6.16 are both 
applied here, with only those feature space subsets which meet all of these threshold values 
highlighted by red starts. It can be seen that using these thresholds allows us to identify 
the feature space combinations that produce the highest classification accuracies, as well as 
several corresponding to lower accuracies.
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space. We apply a threshold of fto <  1 anyway, which removes only a single feature 

space as seen in Figure 6.7. For d — 3, we again have th a t 3o — 1 and therefore no 

room to apply a threshold. The values of 3 however, allow us to identify several of 

the low-accuracy feature spaces by using a threshold limit of 3i < 0.5. Since /?„ e  Z  

for all n, this selects only values of 3\ =  0. This is shown to remove a variety of the 

low-accuracy feature spaces from consideration, as seen in Figure 6.10.

For d =  4, a similar trend is seen. No threshold can be applied to the constant 

/30, however thresholds are applied to fti and 32- It can be seen th a t the threshold 

applied for d2 removes a small number of the higher accuracy feature spaces. At this 

dimension, there is a trade-off between how many lower accuracy feature spaces we 

remove and how many higher accuracy spaces we keep. It can be seen th a t if we 

were to lower the threshold limit to include all the higher accuracy spaces, we would 

include a much larger number of lower accuracy spaces as well. We have chosen a 

threshold value tha t only removes a small number of higher accuracy spaces here, as 

seen in Figure 6.13.

We again see similar trends for d = 5. We again have th a t 3o = 1 for all feature 

spaces, and thus no threshold can be applied. The values of 3\ are approaching a 

similar spread, as only a couple have values above 0. We are also again faced with a 

trade-off between the number of high accuracy spaces to include versus the number 

of low accuracy spaces to remove for and 3%. It can be seen th a t we have chosen 

threshold values th a t again remove a small number of the higher accuracy feature 

spaces in an attem pt to remove a larger number of lower accuracy spaces, seen in 

Figure 6.16.

These threshold results are summed up in the final figure for each dimension, 

Figure 6.8 for u =  2, Figure 6.11 for d — 3, Figure 6.14 for d =  4, and Figure 6.17 

for d — 5. Each figure shows the plot of 3d- i, with all feature spaces tha t met all the
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previous thresholds highlighted by red stars. It can be seen th a t for each dimension, 

the feature spaces corresponding to the highest classification accuracies are identified 

by red stars. In addition, a smaller number of the lower-dimensional spaces make the 

cut as well.

6.4 D iscussion

We have presented a feature selection technique using com putational homology for 

multi-mode Lamb wave damage characterization.- We utilize Lamb wave tomography 

to generate reconstruction images of each plate sample, autom atically identifying and 

sizing the flaws at each depth. Waveforms which pass through the flaw region are 

automatically identified and extracted. Features are generated from these waveforms 

using a variety of signal analysis techniques including the D W FP technique. We 

then explore a feature selection technique th a t uses topological measures of the class 

distribution within the feature space to identify those most appropriate for Lamb 

wave flaw severity analysis.

We have created a filter-type feature selection routine th a t is able to  identify sub­

sets of a larger feature space th a t correlate with the highest possible classification 

accuracies for a several subset dimensions. We have approached the problem of the 

sequential ordering associated with a physical process th a t is a  function of time, such 

as progressive damage in materials. To do this, we have combined measurements of 

the class distribution within each potential feature space w ith the topological con­

nectedness of th a t distribution. We apply thresholds to  these measures, identifying a 

subset of feature spaces th a t correlate with high classification accuracy. From these 

remaining feature spaces, we can use the negative correlation between Betti num­

bers of dimension d — 1 and classification accuracy to identify those which are most
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appropriate for use with pattern  classifiers.

Our work provides insight into the potential use of com putational homology al­

gorithms for studying the topological structure of class distributions within various 

feature spaces. For applications where the sequential ordering of classes is impor­

tant, as it is in Lamb wave structural health monitoring, comparing the Betti number 

(3d- 1 of each feature space under consideration shows potential for identifying feature 

subspaces which return the highest classification accuracies.
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C hapter 7

C onclusions & Future W ork

7.1 C onclusions

In this work we have shown how intelligent feature selection techniques are needed for 

real-world applications of signal analysis using pattern  classification. The motivation 

for performing this work was to study the manifestation of physical changes in signal 

characteristics as they translate to a representative feature space. All time-domain 

signals have an element of deviation from their baseline form under real-world condi­

tions. When the underlying physics behind the signal of choice is very complicated 

to begin with, these changes can be difficult to  accurately m onitor if an optimal set 

of identifying features is not chosen.

We have demonstrated the ability of the DW FP technique for generating image 

representations of raw time-domain signals. These images are created using a con­

tinuous wavelet transform and projecting the three-dimensional coefficients onto the 

time-scale plane. Properties are measured from the resulting two-dimensional binary 

images using a variety of image processing techniques. These measurements are used 

to create feature vectors for each individual signal, which can be monitored to iden­
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tify changes in the signal. We found th a t we were able to  identify specific features 

in DW FP-transformed Rayleigh-Lamb wave signals th a t identify the interaction with 

both dents and surface cracks in aluminum plates. This processing technique was 

developed to monitor the damage generated from minor runway incidents.

This analysis technique was then applied to  radio-frequency signals, where the 

DW FP technique was again used to generate signal features in an a ttem pt to uniquely 

identify individual RFID tags from cloned copies. The difficult problem of identifying 

subtle tag signatures within the noisy recordings required the use of advanced p a t­

tern classification routines. A multi-dimensional feature space was generated using a 

series of DW FP features in addition to several statistical measures th a t represented 

the original data  set. We introduced tag-to-reader variability commonly associated 

with RFID applications, including changes in environmental conditions and tag ori­

entation/proxim ity to the RF antenna. We established the framework to  study how 

these intra-class physical changes result in changes in the class structure within the 

feature space.

This framework was then applied to ultrasonic flaw characterization. Instead of 

simply identifying a possible flaw, we developed a pattern  classification routine with 

the aim of characterizing the severity of a flaw. The concept of feature space re­

duction was explored. Once a feature space had been generated from the data  set, 

an intelligent reduction in dimension was required for sufficient classification perfor­

mance. The curse of dimensionality provides a relationship between the size of a da ta  

set and the dimensionality of the space representing it, suggesting i t’s necessary to 

have at least 10 times as many samples as there are features for reliable performance. 

Formal feature selection methods rely heavily on a representative training data  set, 

but when an endless number of physical changes can occur th a t manifest themselves 

in a data set's feature space, such as interm ediate flaw severities due to corrosion in
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metals, the concept of a representative training set becomes unrealistic. Rather than 

creating a fully representative set, we explore an alternate approach involving the 

intelligent selection of a feature space based on available training data  where only a 

handful of intermediate classes exist. Features are then selected based on their ability 

to not only separate these classes, but to  do so in a way th a t preserves the underlying 

class structure. We found that we were able to train a classifier using this intelligent 

feature selection th a t was then able to  correctly identify the severity of new da ta  that 

was not represented in the training set, but in fact was from an “interm ediate” class.

This concept of intelligent feature selection was expanded upon with the intro­

duction of computational homology theory. By including a measure of inter-class 

connectedness which relates directly to  class separability in multi-dimensional fea­

ture spaces, we provide a new approach to the problem of reducing a feature space 

into a more optimal subspace. Betti numbers were extracted from each class dis­

tribution, relating the multi-dimensional connectedness of the space to the formal 

classification accuracy. Wc found a general trend of decreasing B etti numbers with 

increasing classifier accuracy, however artifacts in the higher-dimensional Betti num­

ber distributions indicate this m ethod is not as straightforward as originally expected. 

The technique of combining three geometric measures along w ith the Betti number 

metric proved a useful approach for identifying a subset of the possible feature spaces 

of various dimensions.

7.2 Future W ork

The RFID results presented in C hapter 4 provide an upper bound on the classification 

potential to correctly identify EPCs extracted from RFID tags. We observed how a 

variety of physical changes in the way RFID tags are used effect the RF signal and
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the resulting classification accuracy. Future work could focus on exploring how these 

changes manifest themselves in the data. Rather than  introducing more variability 

in how data  is collected, we suggest an analysis on the class distribution within the 

feature space for the physical variables described in this work. For example, an 

understanding of how the RFID tag position relative to the antenna changes the 

class distribution in the feature space could provide insight into how feasible this 

classification routine is for most real-world applications.

An intelligent feature selection routine should be explored for this application. 

We have already applied an interm ediate feature selection step in the DW FP feature 

extraction process, however the inclusion of statistical, Mellin transform, and wavelet 

packet decomposition features results in a feature space of relatively high dimension. 

It has been shown that the size of the feature space relative to  the number of objects 

per class can have an effect on a classifier’s ability to distinguish between classes [9]. If 

the feature space is too large, the data  within the feature space can become sparse as 

dimension increases, effectively over-complicating the decision boundary construction. 

One im portant step in the classification process th a t could benefit from refinement as 

the feature set grows is the intermediate D W FP feature selection. A lternate methods 

to identify and extract features of interest should be explored and tested against the 

Euclidean distance metrics in use currently.

Improvements to the classifier are also suggested. Further refinement of the EPC 

extraction routines could be performed, as our technique is specific to the encoding 

algorithm used by our RFID reader. A lternate readers types will potentially use 

alternate encoding techniques, so the EPC extraction should be generalized to ac­

commodate these as well as alternate transmission protocols. New classifiers could 

be introduced to test against the group already in use.

The characterization of flaw severity analysis provided in Chapter 5 was able
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to classify the severity of several testing samples th a t were not represented by the 

training set. Testing additional validation plates is an obvious next step for this 

analysis. Determining how the classifier is able to  identify gradual thickness losses 

like those found in corrosion would be a useful exercise. The training set may prove to 

be inadequate for these flaw types, and if so it should be determined what additional 

level of training is required to expand the potential flaw base able to be characterized 

by this algorithm.

Suggested future work also includes further development of the feature set used to 

represent the ultrasonic waveforms. Including additional time-frequency representa­

tions like the spectrogram could prove useful. We discuss a damage threshold analysis 

in Section 5.8.1, which reduces the multi-class problem at hand to a binary one of 

over/under a specific damage level. Therefore, classifiers th a t are inherently binary 

like support vector machines (SVM) could be explored and may prove useful for this 

application.

W ith regard to the geometric measures used for feature selection th a t were dis­

cussed in Section 5.6.1, other measures could be explored. We used intuition to  select 

the three measures explored here, including the distance between class centroids, the 

average angle between sequential class centroids, and the tortuosity of the sequential 

class ‘curve’ within the feature space. Each is known to have its drawbacks, but more 

sophisticated measure could be applied which account for all three of these measures 

simultaneously. For example, a vector-like value could be assigned th a t accounts for 

both centroid distance as well as the direction of the next sequential class location 

relative to  the previous classes. Additionally, for each of these measures, we apply 

a threshold to identify those feature spaces which are favorable for classification. A 

formal analysis of metric threshold values could be considered as this technique is fur­

ther explored. Additionally, a weighing scheme rather than  a threshold cutoff could
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be included, where the different geometric measures are assigned a weight based on 

their value for a given feature space

The computational homology feature selection technique introduced in Chapter 6 

provides the framework to include further non-traditional measures in the selection of 

optimal feature space subsets. We use the standard deviation of each class to define 

the boundaries for the cubical set form of the class distribution, however additional 

methods to define each class boundary could be explored. These could include the 

skewness and kurtosis (or any of the higher-order moments) to provide usable bounds. 

Along these lines, different shapes may be used to define the classes as well. We used 

hypercubes because they are the simplest to implement using cubical data  sets (which 

serves as input to the CHomP software), however the fact th a t the hypercubes larger 

than unit length are simply composed of multiple unit length elem entary cubes means 

tha t alternate shapes can be constructed using these elem entary cubes as well. Hyper­

spheres tha t are ‘pixelated’ in boundary could be defined around the class centroids, 

or even hyper-ellipsoids tha t vary in eccentricity based on intra-class dimensional 

variance.

In order to avoid some of the com putational overhead associated with the cur­

rent implementation of this algorithm, the CHomP algorithms could be implemented 

into MATLAB (or the MATLAB code could be implemented into C + + , which would 

result in a less user-friendly interface but would reduce overhead associated with 

MATLAB). This would remove the interm ediate processing step of creating a tempo­

rary input file and switching between computing languages. This would cut down on 

the computation time and memory requirements for the larger-dimensional feature 

spaces.

We have developed a robust signal analysis technique th a t is suitable for a wide va­

riety of time-domain signal analysis applications. We have applied statistical pattern

230



classification routines to problems of interest involving a physical change in the do­

main of the problem tha t translated into the signal characteristics. We have explored 

intelligent feature selection techniques in an attem pt to identify optim al representa­

tions of these da ta  sets.
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A p pend ix  A

R ayleigh-Lam b Frequency  

E quation D erivation

In Cartesian coordinates, the three governing equations of linear elasticity for an 

isotropic homogeneous material are [164]

pdfui  -  djVij =  0 (A .l)

eki =  t^(dkui +  diuk) (A.2)

O’ij — C'ijkl^kl (A.3)

with

C i j k l  =  S i j S k l X  ( S i k S j i  - f -  & U & j k ) P

where (A .l) is the equation of motion, (A.2) is a strain-displacement relation for 

linear-elastic solids assuming infinitesimal strains, and (A.3) is the generalized Hooke’s 

Law. In these equations, tq is the displacement vector in a three dimensional elastic 

material, is the stress tensor, p is the m aterial density, and A and p  are the Lame

parameters. Equations (A.2) and (A.3) can be substituted in (A .l) to derive Navier’s
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eq u a tio n

pd\ui — p d 2Ui — (A +  fj,)di(djUj) =  0, (A.4)

or in vector notation,

pd2u — pX/2u — (A +  /r)V (V  ■ u) = 0. (A.5)

Harmonic time variations are suppressed by setting

u(x , t )  =  u(x)e~lult, dt =>■ —iu>, d 2  => —to2

and it follows th a t (A.5) becomes

—oo2pu — p V 2u — (A 4- p )V (V  • u) =  0. (A-6)

A Helmholtz decomposition can be applied,

u = u i  +  wr =  V $  +  V x H  (A.7)

since any vector field can be written as the sum of two parts: having no curl, and

ut being a vector having no divergence. Using the vector identities

V2A  =  V (V  • X )  -  V x (V x X )  

v  • (V X / ? )  =  0 

V x (V<f>) =  0 

v  • (V$) =  V 2<f>
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an d  s u b s t itu t in g  (A .7) in to  (A . 6 ) r e su lts  in

V [[-u)2 p -  (A +  2p)V 2] $] =  V  x [uj2p + p V 2] f l  (A.8)

which is only satisfied when

h
A -t- 2/i

V 2d> +  ^  -ff-- ci> 0 (A.9)

2

V 2/ /  +  —  H  = 0 . (A.10)
P

These two equations are longitudinal and transverse wave equations with velocities

P

H
P

The resulting linearly independent scalar wave equations

^  =  (A. 11)

CT  = J ~ .  (A .12)

1

(A ' 13)

^ 2 H n = - ^ - ^ r  n — x , y , z  (A .14)

show tha t longitudinal and transverse waves propagate independently in an infinite 

homogeneous elastic medium. However, mode coupling does occur at m aterial bound­

aries, where a propagating longitudinal wave will generate transverse waves and vice 

versa. This mode coupling is included implicitly in the boundary conditions. In 

plate-like or pipe-like structures, with two parallel traction-free surface boundaries, 

this mode coupling gives rise to the development of guided wave modes; when the 

material thickness is on the same order as the wavelength, the  superposition of the
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longitudinal and transverse waves as well as their coupled reflections mix to  produce 

wave packets tha t propagate throughout the m aterial, better known as Lamb waves. 

The following analysis examines the derivation of the Lamb wave solutions. For a 

more complete discussion, see Graff [165].

A  y

Figure A.l: Coordinate system for a plate in the x — z plane with thickness y = 2b.

Consider a coordinate system with a plate in the x  — z  plane with upper and lower 

traction-free boundaries at y = ±5, as seen in Figure A .l. Boundary conditions are 

given by

o-yy = (Txy = a zy = 0, y = ±b. (A.15)

If variations with respect to z are excluded, displacements can be written

8 $  d H z
dx  d y

d H z

u, dH x
dy

+

dx
dH v

(A .16)

dx

For plane waves in the x — z plane, consider solutions of the general form

$  =  /(y )e iKz- wt)

//* =  hx{ y ) e ^ ~ ^  

I iy =  hy(y)e‘̂ - ^  

Hz = hz{ y ) e ^ x- ^ .

(A. 17)
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Substitution of these in (A. 13) and (A. 14) gives

$  =  (A cos a y  + B  sin a y )e l^ x~UJ0 

H x = (C cospy  +  D sin /fy )e i(«x- wt) 

Hy =  (E  cospy  +  F s m p y ) e l^ x- Wt) 

H z =  {G cospy  +  H sin P y )e i(*x- ui)

where

From (A.3), the stresses are

d u z

(A.18)

a 2 = ^ - e  and p 2 =  ^  -  £2. (A. l 9)
cL c.T

The displacements then become

ux =[i£(A cos ay  +  B  sin ay)  +  P(—G sin Py + H  cos/3y)]e*^x_u;^

uy =[ck(—A  sin ay  +  B  cos ay) — i£,{G cos py  + H  sin p y ^ e 1̂ 1^ 1̂ (A.20)

uz =[—/?(—C  sin Py +  Dcos Py) + i£{E  cos Py +  F  sin/5y)]e,^ I_u'^.

,. „ . duv , duxv m = ( \  + 2,l ) ~ + \ —

,duv dux. ..
= m ( +  (A -21)

ayz _ /i  dy  •

The boundary conditions provide six equations to solve for the eight unknown con­

stants, A, B , ... , H . The final two equations come from the divergence condition on 

H , given by
dHr OH,. n , , .  x
~dx +  ~7hf “  at y =  (A.22)
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The resulting system of eight homogeneous equations is

{(A +  2fi)a2 + A£2}(A c o s  ab +  B  sin ab) +  2ifj,(3£(—G sin (3b + H  cos fib) = 0 

{(A +  2f i ) a 2 +  A£2}(A c o s  ab — B  sin ab) +  2i(i(3£>(G sin (3b + H  cos (3b) = 0 

2 i a ( ( -  A sin ab + B  cos ab) + (£2 — (32)(G cos (3b +  H  sin (3b) =  0 

2 ia G A s m  ab + B  cos ab) +  (£2 — (32){G cos (3b — H  sin (3b) =  0
(A.23)

(32( C cos (3b 4- D sin  (3b) + i(3^(—E  sin/36 +  F  cos(3b) =  0 

(32(C cos (3b — D  sin (3b) +  i(3^(E sin (3b +  F  cos (3b) — 0 

i£(C cos (3b +  Z/sin (3b) -f (3( — E s in  (3b + F  cos (3b) =  0 

i£(C cos (3b — D  sin (3b) +  (3{E sin (3b + F  cos (3b) = 0.

The determinant of the coefficient m atrix must vanish in order to  ensure a solution 

to this system other than  the trivial one:

c cos a b  csinafe 0 0 —/sin/36 /  cos 3b  0  0

c cos a b  — c  sin a b  0 0 /sin/36 /cos/36 0 0

0 0 —h  sin 0 b  h  cos (3b 0 0 (32 cos (3b /32 sin/36

0 0 —h  sin  (3b 6. cos (3b 0 0 /32 cos/36 — /32sin/36

—d s i n a b  d cos a b  0 0 g e o s  (3b g s in  (3b 0 0

d  sin a b  d  cos a b  0 0 g e o s  (3b — g s in  (3b 0 0

0 0 — (3 s in  (3b (3 cos (3b 0 0 i£cos/?6 il; s in  (3b

0 0 (3 sin  (3b (3 cos (3b 0 0 i£cos/36 —it; s in  (3b

where

= 0

(A.24)

c =  {(A +  2fi)a2 +  A£2}, d =  2ia£, /  =  2i(i(3£, g = £ 2 — 8 2, h = i(3£.

Each of the columns of the determ inant are associated with constants A , B, E, F, G, 

H , C, D respectively. By applying standard m atrix manipulations, the determinant
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can be written as the product of four sub-determ inants,

i f  cos 0 b (3 cos 0b
X

— 0  sin 0 b if/ sin 0 b
X

c cos ab f cos 0 b
X

g cos 0 b d cos ab

/32 cos (3b h cos 0 b h sin 0 b 0 2  sin 0 b — d sin ab g sin 0 b f  sin 0 b c sin ab
(A.25)

where the coefficients associated with the subdeterm inants are

1C, F | x \E ,D\  x \A, H\  x |B, G\ = 0 (A.26)

It follows tha t four families of solutions exist for various non-zero combinations of the 

constants:

Solution I : A, B, D, E,  G, H  =  0 C , F ^  0 (A.27)

Solution II : A, B, C, F, G , H  =  0 D , E  ^  0 (A.28)

Solution III : B, C, D , E , F , G  = 0 A , H  ^  0 (A.29)

Solution IV : A, C, D , E , F , H  =  0 B , G  7̂  0 (A.30)

Solutions I and II are pure shear waves with displacement in the z direction corre­

sponding to antisymmetric and symmetric shear horizontal (SH) modes, respectively, 

further details of which can be found in texts by Auld [74], Graff [165], and Rose [72]. 

Solutions III and IV are coupled longitudinal and shear vertical waves, usually referred 

to as Lamb waves. Solution III presents a case where the motion occurs symmetrically 

with respect to the 2  =  0 plane, with displacements defined as

ux —{if A  cos ay  +  0 H  cos 0y)e l^ x~ujl̂

uy =  — ( a A s i n a y  +  f H  sin 0y )e l^ x~jjt'> (A.31)

uz =0
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while solution IV describes waves in which the motion is antisym m etric with respect 

to z  =  0, with displacements defined as

u x = (i€B  sin a V — 0 G sin 0 y)el^ x~ulL'> 

uy = (aB  cos ay  — i£G cos 0y)e'l^ x~ujt'> 

uz =0,

(A.32)

Each of these solutions results in a subsystems which can be presented as a system of 

linear equations itself, both of which have a solution when the determ inant of their 

coefficient matrices vanish, as given by

c cos ab f  cos 0 b 

—dsinab g sin 0 b

geos 0 b d cos ab 

f  sin 0 b c sinab

0 Solution III : Symmetric

0. Solution IV : Ant isym m etr ic

(A.33)

(A.34)

Equations (A.33) and (A.34) can be re-w ritten in the following dimensionless form

tan/36 —Aa0£0
ta n a6  (£2 — 0 2) 
tan 0 b ( e - 0 2) 
tan  (*6 —4 a 0 £ 2

Symmetric

Antisymmetric.

(A.35) 

(A.36)

These equations are known as the Rayleigh-Lamb frequency equations. Since the 

wavenumber, £, is numerically equal to the frequency (cj) divided by the phase velocity 

(cp), equations (A.35) and (A.36) provide a way to  relate phase velocity to frequency- 

thickness, resulting in dispersion curves. The real valued solutions to  these dispersion

relations represent the undamped propagating modes of llllV OltUV/UUlO q t i H  p a n  h p^ v u i i i

found by numerically applying a root-finding algorithm to determ ine the existing
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phase velocity values for a given frequency, applied over a range of frequency values 

[72,166]. The group velocity can then be found from the phase velocity by

du> 2 
C° = d k =C»

(A.37)

Since A and p  are material properties, dispersion curves are unique to the material 

of interest. As an example, phase velocity and group velocity dispersion curves are 

shown for A1 2024 (p = 2.78 g/cm 3, Young’s modulus E  = 73.1 GPa, Poisson’s ratio 

v =  0.33)1 in Figure A.2. It can be seen th a t as the frequency-thickness product 

increases, so does the number of existing Lamb wave modes. All of these higher-order 

modes, aside from A q and So, have cutoff frequency-thickness values where the phase 

velocity approaches infinity and the group velocity approaches zero, i.e. whenever 

standing longitudinal or shear waves are present. If the plate thickness is known, an 

inspection frequency can be chosen th a t generates a highly dispersive mode where 

any changes in thickness or m aterial properties will result in a change of propagating 

group velocity. For example, a 2.5 mm thick aluminum plate sample excited with a 

1 MHz toneburst would result in an f d  value of about 2.5 MHz-mm, which from the 

group velocity dispersion curve (Figure A.2(b)) can be seen to  correlate with three 

existing modes, A\, A q, and So- Any changes in the thickness in the plate would 

result in a proportional change in the f d  value. If a slight thinning was present, the 

f d  value would decrease slightly, resulting in a slower A\  mode velocity, no change 

in the A q mode velocity, and an increase in the So mode velocity. This dispersive 

property is one of the reasons Lamb waves are so fitting for use in NDE applications. 

By propagating Lamb waves across a region of interest, changes in the various mode 

arrival times can help identify the location of flaws or corrosion, and often directly

1 h ttp : / /asm . m at wr>b. corn/search /  Spocifir M aterial. asp7bassnum —M A ‘2024T4
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Figure A.2: Phase (a) and group (b) velocity dispersion curves for aluminum 2024. Anti­
symmetric modes are shown in in blue, symmetric modes are shown in red.
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correlate to changes in material thickness. This allows for the detection of structural 

weaknesses before serious failure occurs.

While modes will often overlap each other in time, if a frequency-thickness regime 

is being used where modes are expected to  be separated in time, a modal analysis 

can be performed to help identify which modes will be most sensitive to  the flaws at 

hand. The constants A , B, C, and H  can be solved using the  boundary conditions 

(A.23), resulting in

(A.38) 

(A.39) 

(A.40)

(A.41)

It follows tha t for both the symmetric (Solution III) and anti-symmetric (Solution IV) 

families of solutions, displacement components (A.20) as well as stress components 

(A.21) can be determined for a given mode and frequency-thickness value. Using 

these, the time-averaged projection of the Poynting vector onto the x  coordinate as 

a function of the depth can then be w ritten as [167]

< Px >=  + u>xx) (A-42)

A  =  cos ftb

B = sin/36

(£2 -  f t2) . u
G = - ~ ^ r sm a b

(C -  ft2)H  = KV  „ cos ab.
2 l i f t

where * denotes complex conjugation. This value represents the rate a t which energy 

is transported by a given mode per unit cross-sectional area. Integrating across the 

thickness of the plate yields the time averaged power flow in the  x  direction



which is then used as a “percent” energy function

f  < Px > dy
%PnniC) =  “  p---------- X  100 (A.44)

M m  !>

which gives the percent of the total energy flow rate  included in the plate from the 

top surface to a depth £. In other words, this function provides a measure of the 

localization of the energy of a mode.

An example of how these param eters are useful is provided here, using the dis­

persion curves for aluminum, seen in Figure A.2. The structure of each wave mode 

changes as the frequency thickness value changes, seen by the normalized mode dis­

placement components calculated for several f d  values for both  the So and Aq modes 

in Figures A.3 and A.4. The in-plane (x) component of the S 0 mode is essentially 

constant across the plate thickness at lower fd values, however it becomes much more 

concentrated at the center of the plate as the fd  value increases. Meanwhile, the out- 

of-plane (y) component is close to zero on the outside surfaces for small f d  values, but 

becomes dominant on the outside surface as the f d  value increases. A similar analysis 

can be made for the Aq mode. This type of mode structure analysis can be im portant 

in determining an inspection frequency. An increase in sensitivity at various depths 

of a plate can be gained by adjusting the modal in-plane or out-of-plane displacement 

at that depth. In situations where a plate is surrounded by w ater or insulation, it is 

advantageous to use modes tha t have dominant in-plane displacement w ith minimal 

out-of-plane displacement on the outside surface since shear waves cannot propagate 

in fluids, thereby reducing the leakage of wave energy into the fluid. If the detection 

of surface defects was a goal, increasing the concentration of energy on the outside 

surface of a plate is advantageous. In this case, percent energy flow comparisons could 

be made to determine which of the possible modes had the highest concentration of
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energy at the surface. An example of this can be seen in Figure A .5 where the percent 

energy flow versus depth is presented for the So and A q modes at f d  =  2.5. The A q 

mode has more of its energy located near the upper and lower surfaces of the plate, 

making it appropriate to use to use for surface defect detection, while the less ideal 

S0 mode has its energy concentrated near the center of the plate. These types of 

applications of mode-related features can prove to be very useful in NDE testing to 

interrogate structures for flaws.
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A ppendix  B

C om putational H om ology T heory

We define homology and i t ’s elementary properties here. Specifically, we explore 

topological spaces tha t are built out of c?-dimensional unit cubes w ith vertices on the 

integer lattice. We begin by establishing the notion of cubes, the building blocks for 

cubical homology. This introduction follows [158].

D efin ition  1. An elementary interval is a closed interval /  C R  of the form

I = [IJ + 1] or I = [l,l]

for some / € Z.

D efin ition  2. An elementary cube Q is a finite product of elem entary intervals, tha t 

is

Q  =  h  x / 2 x • • • x Id C R d,

where each /, is an elementary interval. The set of all elem entary cubes in R d is 

denoted by )Cd. Also, let K,k = {Q e  K \  d im Q  =  k } and K.d =  JCk H lCd.

248



P rop osition  1. Let Q £ Kf  and P  £  Kft .  Then

Q x  P  6  K i l t .

D efin ition  3. A set X  £ R d is cubical if X  can be w ritten as a finite union of 

elementary cubes.

Now we need definitions th a t can be used to pass from the topology of a cubical 

set to the algebra of homology. W ith each elementary fc-cube Q £  tCf we associate 

an algebraic object Q called an elementary k-chain  of R d. The set of all elementary 

A:-chains of R d is denoted by

K dk = { Q \ Q £ K , i \ .

Given any finite collection of |Q i ,  Q2, • • •, Q m | C /Cd of A:-dimensional elementary 

chains, we can consider the sum

C =  O r iQ i  +  C X 2Q 2  +  • • • +  & m Q m ,

where are arbitrary integers. These can be thought of as A>chains, the set of which

is denoted by C f. It should be noted th a t C d is a free abelian group with basis K dk. 

Each elementary cube is used to generate a basis element called an elementary chain, 

and therefore a chain is just defined as a finite sum of elementary chains.

rn ^  in ^
D efin ition  4. Consider ci, c2 € Ck , where cx =  ctiQi and c2 =  l iQi-  The scalar

i=l  i=1
product of the chains c\ and c2 is defined as

til
{ci,c2) =

i = 1
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D efin ition  5. Given two elementary cubes P  G K,jj? and Q G ICf, set P  o Q =  P  x Q.

This definition extends to arbitrary chains cx G and C2  G Cf, by

C i O c 2 =  ^ 2  { c^  P )  (c2, Q j  P  x Q

The chain c\ o c2 G is called the cubical product of c\ and c2.

D efin ition  6. Given k G Z, the cubical boundary operator

dk : Ct -* C l,

is a homomorphism of free abelian groups. This is defined for an elementary chain 

Q  G ICf by induction on d as follows.

Let d =  1. Then Q is an elem entary interval and therefore Q =  [/] G /Cq or

Q = [/, I +  1] G K \ for some I G Z. Define

0 ifQ=[i],
dfcQ

1 + 1 -[/] ifg =[/,/+!].

Now assume th a t d > 1. Let I = I\(Q) and P  =  h{ Q)  x • • • x Id{Q)- Then we have 

that

Q = To P.

Now define

dkQ = dklToP + ( - l )dimlTodk2P,

where ki = dim /  and k\  =  dim P.  Finally, we extend the definition to all chains by
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linearity; if c =  o-iQi +  ot2 Q 2 +  • • • +  otmQm, then

dkC =  OtidkQl +  +  • • • +  o:mdkQm-

Prop osition  2. Let c and d  be cubical chains. We then have

d ( c o d )  = d c o d +  { - l f imcc o d d .

P rop osition  3.

dod = 0

This is a crucial property of the boundary operator and simply says th a t the boundary 

of a boundary is always zero.

D efin ition  7. The boundary operator for the cubical set X  is defined to be

d£  : Ck(X)  ^  C k - ^ X )

by restricting dk : Ck —> Ck - 1 to Ck{X) .  The lack of superscript X  in d*  was 

intentionally left out due to the clear context here.

We now introduce the concept of homology groups. Let X  C R d be a cubical set. 

A fc-chain z  € Ck(X)  is called a cycle in X  if dz  =  0. The kernel of a linear map is the 

set of elements th a t are sent to zero and is a subgroup of the domain. Therefore, the 

set of all /c-c.ycles in A", which is denoted by Zk(X) ,  is ker 3*  and forms a subgroup 

of Cfe(A). This can be summarized by the follow relations:

Zk{X)  = kerSjf =  Ck( X ) Pi ker dk C Ck{X).
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A fc-chain z £ Ck( X)  is called a boundary in X  if there exists c £ Ck+i (X)  such 

that dc = z. The set of boundary elements in Ck(X) ,  which is denoted by Bk(X) ,  

therefore consists of the image of dk+1. Since d k + 1  is a homomorphism, B k( X)  is a 

subgroup of Ck(X) .  Again, this can be summarized by

B k( X)  =  im d& j =  dk+i (Ck+1( X )) C Ck(X) .

By Proposition 3, dc = z implies th a t dz  =  d2c = 0, meaning th a t every boundary 

is a cycle and B k( X)  is a subgroup of Z k(X).  Since every boundary is a cycle, we 

treat all cycles tha t are boundaries as trivial. We are therefore interested in cycles 

th a t are not boundaries. To give nontrivial cycles an algebraic structure, we introduce 

an equivalence relation by saying tha t two cycles Zi, z2 € Z k{X)  are homologous and 

we write z\ 2 2  if zi ~  ~2 is a boundary of X , th a t is, Zi — z2 € B k(X) .  The equivalence 

classes are elements of the quotient group Z k( X ) / B k(X) .

D efin ition  8. The fcth cubical homology group is the quotient group

Hk(X)  = Z k( X ) / B k(X).

We will use the homology groups of the cubical set X  to gain information about the 

topological structure of X  by introducing Betti numbers. Betti numbers are generated 

by the homology groups of a topological space, where the fcth Betti number measures 

the dimensions of the kth  homology group

ftk = d im /4 .

We now present an example to illustrate how homology groups, and therefore 

Betti numbers, are computed.
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B .l  Exam ple C alcu lation  o f H om ology  G roups

(0 ,1) ( 1,1)

(0 ,0) ( 1 ,0 )

Figure B.l: Cubical set T.

Consider the cubical set F = [0] x [0,1] U [1] x [0,1] U [0,1] x [0] U [0,1] x [1] 

associated with Figure B .l. The elementary set of cubes are

ACo(n = {[0]x[0] , [0]x[ l ] , [ l ]x[0] , [ l ]x[ l ]}  

K i(r) =  {[0] X  [0,1], [1] X [0,1], [0,1] X  [0], [0,1] x [1]}

from which the bases for the sets of chains are

K o(r)

M O

= { [oiTTo], [opTTi], [ijTjo]. I W I }

= {[opTjo; i], [i]T[T.: i], [o.lflT [o], [o,lf>T [i]}

We next compute the boundary of the basis elements

3([0]o[0,l]) =

<9(tl] o  |57T ]) =  

£?([a i]o io j) =

d ( M  <>]!]) =

-[0]o[0] + [0]o[l]

- f i ] o [ 5 ]  +  [ i ] o [ I ]

— [0]o[0]  +  [ l ] o j o ]

— [oj o  [1] +  [1] o  [1]
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Which we can put into matrix form:

- 1 1 0 0

0 0 - 1 1

- 1 0 1 0

0 - 1 0 1

We need to know kerd\ in order to understand Z\(Y).  We therefore solve

- 1 1 0  0 Oi\ 0

0 0 - 1 1 c*2 0

- 1 0  1 0 «3 0

0 - 1 0 1 a  4 0

which gives

Otl =  — Oi2 — — 0 :3  =  C*4-

and therefore

Z1(r) = { a [ l , - l , - l , l ] T | a G Z } .

Since 6 2 (1") =  0, Bi(T) =  0 and hence

H X{Y) =  Zi{T) =  Z.

It follows tha t /?! =  1.

Next, we compute H 0(T). It should be first noted th a t there is no solution to the
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e q u a tio n

- 1 1 0  0 Op 1

0  0 - 1 1 0 : 2 0

- 1 0  1 0 0 : 3 0

1
r"H

O

1

0
1

Of 4 0

which implies th a t [0] © [0] ^ B q(F). Meanwhile,

ad o ]© Im 1 ) 

i o f i + M o [ 5 )  

dm © M  + [oTi] © [l] -  [T] © |M )

and therefore

-[0 ]o [0 ] +  [0]©[l],

-[o]©Jo] + [T]©fI],

- I 5 ] © [ 5 ]  +  H © E

{[0] © [0] -  [0] © [1], [0] © [0] -  [1] © [0], [0] © [0] -  [1] © [1]} C B q { T ) .

In particular, all the elementary chains are homologous: [0] © [0] ~  [0] © [1] [1] o [0]

[1] © [1], Consider an arbitrary chain z € Co(T). Then we have th a t

2  = »ifo] © [0] + Of2|o] © [T] + a 3jlj©[6] + ct4[T]©fI].

From the homologies identified above, it follows th a t

[-z]r =  c*i[0 ] © [0 ] +  0 :2 (0 ] © [1] +  0 :3 (1] © [0 ] +  0 :4 (1] 0  (1]

—  Ot\

= («! + 0 2 + 0:3 +  0 :4 ) [0 ] © [0 ]

We can therefore think of every element of H0 (F) = Z 0 (F) /  B 0 (F) as being generated 

by [0] © [0] and therefore dim H0 (F) — 1. It follows th a t /30 =  1.

JO] © [0] +  0 - 2V
(0] © [1] +  0:3r

[1] © [of +  o 4r [1] 0  [1]'
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This example shows th a t homology groups essentially measure the number of k 

-dimensional holes within a set. /^corresponds to  the num ber of connected compo­

nents, Pi corresponds to the number of enclosed loop, 8 2  corresponds to  the number 

of enclosed cavities, etc. Here, 8 q = 1 agrees with the one connected component in 

Figure B .l, while 8 1  = 1 agrees with the one enclosed loop in Figure B .l.
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