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ABSTRACT PAGE 

The AdS/CFT correspondence relates a strongly coupled gauge theory in four dimensional 
space-time with a weakly coupled gravity theory in five dimensional space-time. This correspon­
dence provides a way to access the strongly coupled regime of a gauge theory via a perturbative 
approach in its gravity dual theory. In this dissertation, the gravity dual of Quantum Chro­
modynamics(QCD) is discussed. The so-called bottom-up approach (AdS/QCD) successfully 
reproduces the low energy observables at 10-20% accuracy. 

An AdS/QCD model with two flavors of quarks is considered, assuming isospin symmetry. 
Pions and rho mesons masses and decay constants are obtained. We calculate the stress tensor, 
or energy-momentum tensor, form factors. Mesons appear strikingly more compact measured 
by the gravitational form factor than by the electromagnetic form factor. 

Extension of the model to three flavors of quarks, incorporating quarks with differing 
masses (including the strange quark), is also considered. Dynamical properties of mesons such 
as electromagnetic form factors, strangeness-changing form factors, and gravitational form fac­
tors are obtained from 3-point function calculations. The results agree well with experimental 
data (when available) and with calculations from other methods (when available). 

Electromagnetic and gravitational form factors for baryons are calculated, in a scheme 
where the baryons are treated as independent particles in AdS space. The form factors were 
calculated both in the case of so called hard-wall and soft-wall model. The simplest fermion 
Lagrangian for the five dimensional curved space does not contribute to the F2 form factor 
unless one adds a Pauli term, which also contributes to the F1 form factor. 
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CHAPTER! 

Introduction 

Until the early 1940s, only a few elementary particles were known: photons, elec­

trons, muons, protons, and neutrons. Subsequent observations, from cosmic ray and parti­

cle accelerators, show the existence of a large number of new particles. Most of these new 

particles, together with protons and neutrons are classified as hadrons. These are particles 

that can interact through the so-called strong force (interaction), a force that was previ­

ously proposed to explain how positively charge protons packed together in the atomic 

nucleus overcoming their electromagnetic repulsion. Other non-strongly-interacting par­

ticles such as electron, muon, tau, and neutrinos, belong to a different classification called 

leptons. Furthermore, the observed hadrons can be classified into two groups: mesons 

which are hadrons with integer spin and baryons with half-integer spin. 

The observed regularity in hadrons mass spectra suggested that hadrons are not ele­

mentary objects but are made of constituent particles with spin-1/2 called quarks, bound 

by strong interactions. According to the quark model [ 1], every meson is made of a quark 

and an anti-quark, while every baryon is made of three quarks. Up through the 1960's only 

three types (or flavors) of quarks were known: up, down, and strange, although some had 

suggested the existence of the fourth flavor, the charm quark. The up quark carries an 

1 
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electric charge of 2/3 (of a proton charge), while the down and the strange quark carry 

a charge of -1/3. To each quark flavor there is an anti-quark with opposite charge. The 

concrete evidence for the existence of quarks came in 1968, from scattering experiments 

at high momentum transfer at the Stanford Linear Accelerator Center. This quark model 

among other things successfully predicts new hadronic states and explains the strength of 

electromagnetic and weak-interaction transitions among different hadrons. 

Despite the phenomenological success, the quark model seems to violate Fermi­

Dirac statistics, which states that fermions should be described by totally anti-symmetric 

wave functions. As an example, consider a .6. ++hadron, which is a hadron with spin-3/2 

and made of three up quarks. The ground state should be in the zero angular momentum 

state, that is, a spatially symmetric wave function. Also, the only way to obtain spin-3/2 

from three spin-1/2 particles is that the spin of the three quarks align in the same direc­

tion, which can only be in a symmetric combination. Hence, overall, we have a totally 

symmetric wave function. One way out of this dilemma is to introduce an additional de­

gree of freedom. This degree of freedom is called color, and each quark in the .6. ++ is 

assigned different color in an anti-symmetric combination. 

It was generally believed that the theory of strong interactions may not be described 

by a perturbative method. However, experimental measurements in a process called deep 

inelastic electron-proton scattering, reveal that certain functions, which parametrize the 

cross-sections, become dependent only on a single variable at high momentum transfer. 

This behavior known as "Bjorken scaling" [2], with the single variable dependence called 

"Bjorken x". One way to understand Bjorken scaling is to assume that the point-like 

electron scattered off almost-free point-like constituents. Hence, it appears that although 

quarks are not free particles, their interaction is quite weak at short distances. This dimin­

ishing strength of the strong interaction is known as asymptotic freedom. The discovery 

of asymptotic freedom subsequently established quantum chromodynamics (QCD) as the 

theory of the strong interaction. This is in contrast with the theory of quantum electrody-
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namics (QED), in which the coupling strength increases at short distances. 

In the case of QED, intuitively, the increase of the coupling strength at short distances 

can be understood as analogous to the screening effect in dielectric materials. Pairs of vir­

tual electrons and positrons created in the surrounding of any electrically charge particles 

screen the bare electric charges. In the case of QCD, the decrease of coupling strength at 

shorter distance should be understood as anti-screening effects. 

The fact that at large distance (low energy) we observe hadrons but not individually 

free quarks leads physicists to hypothesize color confinement, i. e., quarks are confined in 

colorless hadrons. As the two quarks that form a meson are separated from one another, 

the force between them remains finite, hence the energy required to separate the two 

quarks to infinity is infinite. Instead, at some separation with sufficient energy, another 

quark-anti-quark pair will be produced. 

Apparently, the perturbative method as in QED is not possible for QCD at large 

distances. In this regime, solving QCD is a big challenge. One approach is by introducing 

an effective Lagrangian guided by symmetry assumptions, expecting that it reproduces 

many of the properties of QCD. Instead of using the coupling strength as the expansion 

parameter, the smallness of the mass of the pions to the mass of typical hadrons is used 

as the expansion parameter. This approach is known as chiral perturbation theory [3], 

since the perturbation is performed around the massless pion limit, which is believed to 

be associated with massless quark limit, where the QCD Lagrangian has symmetry known 

as chiral symmetry. 

A different perturbation expansion was proposed by t ' Hooft in 197 4 [ 4]. He noticed 

that QCD simplified when number of quark colors, Nc, becomes large. The real world, 

where Nc = 3, can be obtained by performing perturbation in power of N(/. Although, 

the expansion parameter, Nc/ = 1/3, is not as small as the expansion parameter in QED, 

aQED = 1/137, perturbation theory is still useful in the analysis of hadronic processes. 

Detailed calculations show that the leading order contributions to the amplitude of a par-
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ticular process are the planar diagrams with a minimum number of quark loops [5, 6]. A 

meson in the large N c limit can be viewed as two quark lines connected by dense sheet 

of gluons. This description resembles a string moving in space-time and sweeping out a 

world-sheet. 

Preceding QCD as the theory of strong interactions, string theory was introduced 

to describe the large number of hadrons that were discovered around 1960's. The idea of 

string theory is that the various hadrons are the excitation modes of vibrating strings. This 

stringy description of hadrons among other things successfully explains Regge behavior 

of the hadron spectrum, that is the mass of a hadron with a given spin satisfies m2 
rv 

T J, with J is the spin and T is a constant. This Regge behavior can be reproduced 

by the properties of a rotating relativistic string, with tension T. However, in the early 

1970's the theory of Quantum Chromodynamics emerges and is generally recognized 

as the correct theory of hadrons, with hadrons described as composite particles made of 

quarks. Subsequently, string theory is no longer identified as a theory of hadrons. Instead, 

it was suggested that string theory should be identified as a theory of quantum gravity. In 

the 1990's Polchinski introduced the concept of D-branes [7]. Dp-branes can be viewed 

asp-dimensional hypersurfaces where open strings can end. The letter "D" stands for 

Dirichlet and the "brane" is as in membrane. 

In 1997, by examining type liB string theory with stack of N coincident D3-Brane, 

J. M. Maldacena conjectured relations between a weakly-coupled gravity theory in an 

anti-de Sitter (AdS5 ) space and a strongly-coupled SU(N) gauge theory in a fiat 4-

dimensional space [8]. The gauge theory also turns out to be conformal, that is, the 

coupling strength of the theory does not change with energy scale. In addition, it is super­

symmetric, that is, the theory is symmetric under a particular transformation of fermion 

into boson fields and vice versa. 

The duality becomes a very promising tool to access the strong regimes of a gauge 

theory from its weakly coupled gravity dual. However, QCD is neither conformal, nor 
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supersymmetric. Inspired by the original AdS/CFT (conformal field theory) correspon­

dence, a plethora of models have been proposed for the dual of QCD. Model building 

applications of the strong-weak duality to QCD can be classified in two categories. The 

first, dubbed as top-down models, start from string theory in ten dimensional space, con­

structing a D-brane configuration to reproduce a QCD like theory [9, 10, 11, 12]. The 

second, dubbed as bottom-up models, anticipates the five dimensional Lagrangian, based 

on simplicity and symmetry arguments [13, 14, 15]. 

Progress in computer technology open the possibility to approach the strong coupling 

regime of QCD numerically, using the lattice gauge calculations. Four dimensional space­

time is represented by set of lattice points with as small as possible a lattice spacing. This 

approach requires intense calculation by a cluster of computers. However, at present, 

extrapolation to the chiral limit is still difficult. In order to perform the extrapolation, 

another method is used, such as the chiral perturbation theory. 

In this dissertation, some properties of low energy QCD are calculated using the 

bottom-up AdS/QCD correspondence. Remarkable agreement with experimental data 

and other methods is obtained. 

The organization of the rest of this dissertation is as follows: for the rest of this chap­

ter, the theory of QCD is reviewed, an introduction to the extra-dimensional space with 

anti-de Sitter geometry is provided, some basic knowledge in AdS/CFT correspondence 

is given, finally the bottom-up AdS/QCD model is discussed. In the next few chapters ap­

plications of the AdS/QCD model are presented to obtain some dynamical properties of 

hadrons, such as the gravitational form factors, electromagnetic form factors, and strang­

ness changing form factors. Chapter 2 contains the application of AdS/QCD in obtaining 

gravitational form factors for vector mesons. Similar application of the correspondence 

in obtaining the gravitational form factors for pion and axial-vector mesons is presented 

in Chapter 3. Generalization of the model to include the strange meson is discussed in 

Chapter 4. In Chapter 5, the spatial density of energy-momentum tensor is calculated 
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for rho meson based on theoretical AdS/QCD results, and for nucleon based on semi-

empirical results. In Chapter 6, the AdS/QCD correspondence application to the nucleon 

is considered. We also calculate the electromagnetic and the gravitational form factors of 

proton and neutron. 

1.1 Theory of Quantum Chromodynamics 

Quantum chromodynamics is a non-Abelian, SU(3)c, gauge theory. The letter 'C' 

stands for color, while the number three in SU(3)c represents number of colors. Quarks 

are in the fundamental representation of the gauge symmetry. Gluons, the force carriers, 

are in the adjoint representation. The Lagrangian is given by 

Nf 

£ = -~G~vGaJ.Lv +it ;jjf (if1-L8J.L + 9sr'"G~Ta- mf) 'l/Jt, (1.1) 

where 

(1.2) 

There are N1 different flavors of quarks, each represented by a Dirac fermion field, 'l/Jt 

with mass m1. Greek letters represent the space time index J.l = 0, 1, 2, 3. The Dirac 

matrices, 'YJ.L, satisfy the anti-commutation relations 

(1.3) 

where rJJ.L11 = diag(1, -1, -1, -1). 

A distinctive feature of non-Abelian gauge theory compared to the Abelian one is 

that the gluon field, denoted by G~. may interact with other gluons. This is apparent in 

the last term of equation (1.2). The QCD coupling constant is given by 9s, often written 

in the form of a 8 = g;/(47r'). The SU(3)c generators and structure constants are denoted 

by ya and rbc respectively; the group index a runs from one to eight. The normalization 
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condition for the SU(3)c generators in the fundamental representation is given by 

(1.4) 

In addition to SU(3)c color symmetry, QCD also has approximate SU(3)F flavor sym­

metry. The generators of SU(3)F will be denoted by ta, to distinguish them. 

1.1.1 Symmetries of QCD 

The QCD Lagrangian (1.1) constructed based on gauge invariance. Of course, it 

is also Lorentz invariant as well as symmetric under parity, charge conjugation and time 

reversal transformations separately. The possibility of adding terms of higher dimensional 

operators is eliminated by imposing renormalizability. As a gauge invariance theory, the 

Lagrangian (1.1) is invariant under local symmetry transformations 

'1/Jt ----* U(x)'l/Jt, 

G~Ta ----* U(x)G~Taut(x) + ig- 1U(x)a11Ut(x), (1.5) 

where U(x) is an element of SU(3) 0 . 

If the mass of different quark flavors were identical, QCD will also be invariant 

under global vectorial flavor symmetry. It is currently believed that there are six flavors 

of quarks. Three of the quarks denoted by charm, bottom, and top are heavy compared 

to QCD confinement scale, AqcD "' 300 MeV and they are far from identical in mass. 

However, up, down and strange quarks are light enough that SU(3)F symmetry is useful. 

Different quark flavors can be combined into a column matrix, 

u 

d (1.6) 

s 

where each component represents a Dirac spinor and the color index is implicit. The 

symmetry would be manifest as mass degeneracy of hadron SU(3) multiplet. The QCD 
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Lagrangian is also invariant under global U ( 1) symmetry 

1/J ----t exp ( -iB)'lj;, (1.7) 

which gives rise to baryon number conservation. The associated currents for these sym-

metries can be written as 

(1.8) 

the iso-singlet and the iso-octet currents, respectively. The relative difference of the 

strange quark mass from the up and down quark masses breaks the SU(3)F symmetry 

significantly. While predictions of the SU(3)F hold only to about 30%,those of SU(2)F 

isospin subgroup hold to about 1%. 

The fermion field can be split into left and right handed chirality as follows 

1- ,s 
-2-'lj;, 

1 +rs 
--1/J. 

2 

(1.9) 

(1.10) 

where 1 5 = if0r 1r 2r 3. If quarks were massless, the QCD Lagrangian will also be 

invariant under separate left and right global flavor symmetry 

(1.11) 

Separating the SU(3) and the U(1) part of the U(3) transformation, the symmetry of 

massless QCD Lagrangian can be written as SU(3)Lx SU(3)Rx U(l)Lx U(l)R. Con-

served currents associated with these symmetries are Jf,R = {;L,Rrll-1/JL,R and J~~R = 

1/JL,Rrll-fa'l/JL,R· The sums of left and right handed currents give equation (1.8). In addi-

tion, the difference of right and left handed currents give axial-vector currents 

(1.12) 

This symmetry must be broken, otherwise, we should have observed doubling in the 

hadrons spectrum, that is, for every positive parity state there is a negative parity state with 
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the same mass. Nambu and Jona-Lasinio hypothesized that the axial-vector symmetries 

are broken spontaneously, that is, although the QCD Lagrangian is symmetric under the 

axial-vector transformation, the QCD ground state is not. 

In the theory of superconductivity, pairs of electrons with opposite spins form scalar 

bound states which condense in the ground state of a metal. In QCD, pairs of quark and 

anti-quarks are created from the vacuum and condense. This condensation of quark-anti-

quark pairs can be explicitly expressed as the non-vanishing vacuum expectation value of 

the quark bilinear operator, 

(1.13) 

The QCD vacuum breaks the full U(3)Lx U(3)R symmetry down to diagonal subgroup, 

U(3)v. 

Goldstone's theorem states that for every spontaneously broken continuous sym-

metry there exists a massless spinless particle. Such particles are referred as Nambu-

Goldstone bosons or simply Goldstone bosons. This implies that there are nine Goldstone 

bosons, for nine generators ofthe broken axial symmetry, i.e., eight from SU(3)A and one 

from U(l)A· The nine Goldstone bosons should be the pseudo-scalar octet: 1r+, 1r-, 1r0 , 

K+, K-, K 0 , 1?0 ,7]8 , which correspond to: ud, du, uu-dd, us, su, ds, sd, uu+dd-2ss 

quark-anti-quark pairs, respectively; and a pseudo-scalar singlet T}o which corresponds to 

a uu + dd + ss quark-anti-quark pair. 

It turns out that, although U(l)A is a symmetry of the classical QCD action, it is 

not a symmetry of the full quantum theory, since certain quantum corrections (a trian-

gle diagram in which the current couples to two gluons through a quark loop) introduce 

anomalous terms. The anomaly prevents the iso-singlet axial-vector current from being 

conserved; instead it satisfies 

(1.14) 
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This prevents the fJo meson from being a Goldstone boson. Thus, we may expect that 

the pseudo-scalars octet are massless in the limit of massless quarks, but not necessar-

ily for fJo. The exception is when N F < < N c, the triangle diagram that leads to the 

U(1)A anomaly is suppressed by 1/Nc, hence, restoring U(3)A symmetry [6]. In reality, 

although they are light compared to typical hadrons, none of the pseudo-scalars are mass-

less. The SU(3)Lx SU(3)R symmetry must be broken, explicitly, by quark mass terms. 

The observed pseudo-scalars: pions(140 MeV), kaons(496 MeV), and rJ(549 MeV) are 

light, compared to typical hadrons mass at around 1 GeV. The rJ(549 MeV) and 'r/'(960 

MeV) are a mixture of fJo and fJs, with fJ1 mostly fJo. 

The eight Goldstone bosons are coupled to the broken axial-vector currents through 

a, b = 1, 2, ... , 8. (1.15) 

where the constants, rb, are also known as the decay constants of the corresponding 

pseudo-scalars. The usual notations for pseudo-scalar mesons can be written as n° = n 3 , 

By taking the divergence and imposing the conservation of the axial-vector currents, we 

obtain p2 = 0 for on-shell pions. Thus, we obtain massless pseudo-scalars as required by 

Goldstone's theorem. 

Restoring the quark mass terms, the axial-vector currents are no longer exactly con-

served. The masses of the pseudo-scalar mesons, the decay constants, the masses of the 

quarks and the quark condensates are related through Gell-Mann-Oakes-Renner relations 

(1.16) 

where equality for the up and the down quark's mass is assumed, mq = mu = md, but 

not with the strange quark's mass, m 8 =/= mq. 
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1.1.2 Asymptotic Freedom 

The perturbative method is applicable to the so-called hard processes, since QCD 

is asymptotically free, that is, the coupling constant is diminishing for higher energy 

(shorter distance). One can calculate amplitudes of various processes such as quark -quark 

scattering, by utilizing the Feynman rules of QCD. The amplitude should be dominated 

by tree level diagrams. 

Up to one loop corrections, the dependence of the QCD coupling strength on energy 

scale is given by [16] 

(1.17) 

where Q2 = J-L2 is an arbitrary renormalization point. The constant b0 is related to color 

and flavor degrees of freedom by 

(1.18) 

We see that as long as NF < llNc/2, the coupling constant is diminishing as Q2 is 

increasing. 

We can further define the parameter AQcD, via 

2 2 47r 
In AQcD = ln J-l - ( ) b . 

as J-l o 
(1.19) 

Then, rewrite QCD coupling constant as 

(1.20) 

The coupling constant becomes infinite at Q2 = A~cn. However, one should note that the 

perturbative approach, which is how equation (1.17) is derived, breaks down for large as. 

Even so, the parameter AQcD is still a useful measure of where the QCD coupling constant 

becomes large. In fact, the quark masses and AQcD are the entire set of parameters of the 

theory. 
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The physical reason for the behavior of a 8 can be described as follows. Quark-anti-

quark vacuum polarization shields the color charge, just as the case with electric charge 

in QED. However, in QCD, gluons also carry color charge and they themselves can emit 

other gluons. Hence, the charge is no longer located at definite point in space but spread 

out in space due to gluon emission and absorption. Further from the source, or at smaller 

Q2
, we see more charge. Closer to the source, or at larger Q2

, it become less likely to 

see the charge. It turns out that, in QCD, this effect overcomes the shielding effect by the 

quark-anti-quark vacuum polarization. 

The rate of change of the coupling constant with renormalization scale, is usually 

represented in terms of a j3 function as 

(1.21) 

A vanishing j3 function corresponds to a conformal gauge theory, in which the coupling 

strength does not change with energy scale. A negative j3 function, which is the case in 

QCD, means that the coupling constant decreases when the energy scale increases, and 

increases when energy scale decreases. The second equality in the above equation is for 

QCD up to one-loop. 

1.1.3 Deep Inelastic Lepton-Hadron Scattering 

Evidence for asymptotic freedom comes from a process called deep inelastic scat-

tering. The process can be described as follows. Consider an electron scattered off a 

proton, exchanging one photon, with final hadrons unobserved (we sum over all possible 

hadronic final states). The unpolarized differential cross section of the process is given by 

d(J ( d(J) [ 1 2 2 () xMp 2 ] 
dOdE' = dO Matt Mp Fl(x, Q ) tan 2 + Q2 F2(x, Q ) . (1.22) 

where () is the scattering angle in the laboratory frame. F1(x, Q2 ) and F2 (x, Q2 ) are 

Lorentz invariant structure functions, which carry the strong-interaction information of 
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the proton. The structure functions depend on Q2 = -q2
, the 4-momentum transfer 

squared in the laboratory frame, and scaling variable 

Q2 Q2 
X=--=--

2p · q 2Mpv' 
(1.23) 

where p = (Mp, 0) is the target proton momentum (Mp is the proton mass), and q = (v, if) 

is the photon momentum in the laboratory frame (v = E - E', where E and E' are the 

energy of the incoming and outgoing electron, respectively). The Mott differential cross 

section is given by 

( 
da ) a; cos2 

( () j 2) 
drl Matt- 4E2 sin4 (()/2) · 

(1.24) 

This is the differential cross section for elastic scattering of a relativistic electron from a 

point-like spinless particle with recoil effect neglected. 

Bjorken scaling is the statement that in the large Q2 limit with x fixed, the F/s are 

functions of x only. The simplest way to obtain Bjorken scaling behavior is by assuming 

that the proton was a point-like particle. The scattering cross section for elastic electron-

proton scattering would be given by 

da ( da ) [ Q
2 

2 () ] E' 
drl = drl 2M2 tan 2 + 1 E ' 

Matt p 

which can be rewritten as 

da ( da ) [ Q
2 

2 () ] ( Q2 ) 
drldE' = drl Matt 2M; tan 2 + 1 8 

v - 2Mp 

Thus, the corresponding structure functions would be 

yielding, 

F1(x, Q2
) 

Fz(x, Q2
) 

x8(1- x), 

28(1- x), 

(1.25) 

(1.26) 

(1.27) 

(1.28) 
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which dependent upon a single variable x. That is the most elementary Bjorken scaling. 

In spite of the fact that the above assumption is too simple, it suggests the existence 

of free point-like constituents inside the proton, i.e., quarks. Assume that the photon 

struck an almost free point-like quark. In the limit of large Q2
, the quark momentum 

transverse to the proton can be ignored. Hence, the momentum of the i-th quark can be 

written as 

(1.29) 

where pis the target proton momentum. 

Thus, defining vi =Pi· qjmi = v and mi = xiMp, one obtains the structure function 

for the i-th parton 

(1.30) 

Now, let f(xi)dxi be the probability of i-th quark carries momentum fraction between Xi 

and xi + dxi. The corresponding structure functions for the hadron becomes 

N 1 p(i)( Q2) N j( ) 
~F ( Q2) ="" { d ·f( ·) 1 Xi, ="" 2~ M 1 x' L.....t j o Xt xt m. L.....t et M ' 

p i=1 ° t i=1 p 

(1.31) 

Similarly for F2 . In summary, we obtain 

i=1 

N 

F2 = 2 L eTxf(x). (1.32) 
i=1 

I. e., from a point-like quark assumption, we have obtained Bjorken scaling. The function 

f ( x) is usually referred as the part on distribution function. 
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1.2 Anti-de Sitter Space 

Five dimensional anti-de Sitter space (AdS5) can be realized as a hyperboloid 

(1.33) 

embedded in six dimensional space with metric, 

ds~ = dX6 - dX~ - dX~ - dXj - dXl + dX; . (1.34) 

A "Lorentz" transformation, 

xm----+ A'; xn' AGAT = G' G = diag(1, -1, -1, -1, -1, 1)' (1.35) 

where m, n = 0, 1, ... , 5, and A": E S0(4,2), moves a point in the hyperboloid into 

another point which is also in the hyperboloid. Furthermore, the transformation preserves 

distance in the the sense of equation (1.34). 

Let us write four of the embedding coordinates as X~-' = (X0 , X 1 , X2 , X3) and the 

other two as 

(1.36) 

The hyperboloid can be parametrized by five dimensional coordinates (x~-', z) as follows, 

(1.37) 

The AdS metric becomes 

0 < z < oo, (1.38) 

where rJ~-'11 =diag(1, -1, -1, -1). One should note, however, that this parametrization 

does not cover the entire hyperboloid. In this parametrization, the boundary at z = 0 is 

four dimensional Minkowski space x~-' = (t, x), while at z = oo, we have a single point, 

since the metric in x~-' directions vanishes in the limit z ----+ oo. 
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Anti-de Sitter space is a space with constant curvature. The curvature is described 

by a quantity called the Ricci scalar, 

,.,-, MN,.,-,L 
''- = g ''- M LN , M, N, L = J-L, z, (1.39) 

where RL MPN is the Riemann tensor defined as follows 

(1.40) 

The Christoffel symbols rft. N related to the metric of the space via, 

(1.41) 

In particular for AdS5 space, 9MN = rJMN I z2 , where rJMN = diag (1, -1, -1, -1, -1). 

The resulting Ricci curvature is R = -20 I R2 . 

Now, consider a field theory defined in xll space, i.e., flat four dimensional space. 

For example, the action for free massless scalar field is given by 

(1.42) 

It is invariant under scaling xll ----* )..xll, and cjJ ----* ).. - 1¢. Field cjJ has energy dimension one, 

and x has inverse energy dimension. On the AdS side, this symmetry should correspond 

to a symmetry of the metric. Notice that the metric (1.38) is invariant under scaling, 

x 11 ----* >.x11 and z ----* )..z, simultaneously. The implication is that in the AdS5/CFT4 

correspondence, a different value of z represents a field theory with different energy scale. 

From now on, the boundary at z = 0 will be referred as ultraviolet boundary, and the 

boundary at z = oo will be referred as infrared boundary. Later, in order to simulate 

confinement in QCD, a cutoff at z = z0 is introduced. In addition, the AdS radius R will 

be set to one. 

Let me end this section by mentioning another AdS metric 

2 R2 ( 2 ~2 dz2 ) 
ds = -;2 f(z)dt - dx - f(z) , (1.43) 
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where f ( z) = 1 - ( z I zh)4. This is the black-hole AdS metric, with the event horizon at 

z = zh. One can check that the Ricci curvature for this metric is also n = -20 I R2 
. 

1.3 The holographic QCD 

AdS/CFT was originally motivated by heuristic arguments. Although the correspon-

deuce has not yet been proven rigorously, it has been tested extensively, and there is no 

reason to believe that it fails. 

One of the motivations for the· duality comes from matching symmetries of the four 

dimensional conformal field theory with the symmetries of five dimensional AdS space. 

In the CFT side, we have fifteen generators. Ten of them come from the generators of the 

usual Lorentz transformation, one comes from the generator of scaling transformation, 

and the rest come from the so-called special conformal transformations. Overall, they 

satisfy an SO( 4, 2) algebra, which is, as mentioned previously, also the isometry of the 

AdS5 . 

The conjecture of Maldacena can be stated as follows: 

N = 4 U(N) super-Yang-Mills in four dimensions is 

dual to type liB superstring theory on AdS5 x S5 , 

Duality means that the two seemingly different theories can be considered as two different 

points of view to describe the same physical system. In this case, in one point of view, 

D-branes are considered as hypersurfaces where open strings can end, while in the other, 

the D-branes are considered as non-trivial solutions of a gravitational theory. 

Parameters of the string theory and the gauge theory are related as follows 

(1.44) 

where a' is the inverse string tension, R is the AdS radius, and gyM is the coupling 

constant of the super-Yang-Mills. The limit Rl yiC;i---> oo is taken. In this limit, the string 
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theory can be approximated by a supergravity theory. Later, only the AdS5 geometry is 

considered; the extra five dimensions with geometry S5 will be dropped. The isometry of 

S5 is S0(6), which matches the so-called R-symmetry describing how the scalar fields 

are rotated among themselves and the fermion fields are rotated among themselves in the 

N = 4 super Yang-Mills. Dropping the S5 corresponds to removing the R-symmetry of 

the model. 

1.3.1 AdS/CFT dictionary 

The precise relation between gravity theory in AdS5 and CFT4 is that the generating 

functional in CFT, with a source ¢ 0 ( x) for operator 0 ( x), is equal to partition function 

in AdS5 with field content cp(x, z), which approaches ¢0 (x) up to some factor of z at 

UV-boundary. This statement can be expressed as [17] 

/ exp (i J d4x¢0(x)O(x))) = exp (iS Ads) I · 
\ </>(x,c:)=z>.<f>D(x) 

(1.45) 

In the right hand side of the equality, the classical approximation for the partition function 

is used. The AdS action is evaluated using the classical solution. Utilizing the correspon-

dence, one can calculate n-point correlator of the operator, 

(1.46) 

As an example, consider a massless scalar field in AdS5 , 

(1.47) 

where g is the determinant of the AdS metric. Field¢ satisfies, 

(1.48) 

The action, evaluated on the solution of the equation of motion, can be written as a surface 

integral 

(1.49) 
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where the AdS radius has been set to one. Note that there is no surface term at z = oo, 

since the metric in the xll direction vanish as z ---+ oo. 

First, let us assume that ¢ only depends on z. The solution can be expressed as 

(1.50) 

We can identify c1 , the boundary value at z = 0, as ¢ 0 , the source for some CFT operator 

(). Using the correspondence ( 1.46), and the five dimensional action (1.49), one can 

identify the vacuum expectation value of the operator, (0) = 2c2 . 

Turning on the dependency of¢ on x, the solution can be written as [17] 

where 

¢(x, z) = J d4x' K(x, x'; z)¢0 (x'), 

z4 
K(x, x'; z) = c3 x ---------,­

((x- x')2- z2 )
4 

· 

(1.51) 

(1.52) 

which can be verified by substituting (1.52) into (1.48). One can check that this solution 

satisfies ¢(x, z ---+ 0) = ¢0 (x), by noting that K(x, x'; z ---+ 0) behaves like a delta 

function. The action (1.49) becomes 

(1.53) 

Again using the correspondence (1.46), one obtains the 2-point correlator 

(1.54) 

which implies that the CFT operator() has mass dimension~ = 4. For a scalar field¢ 

with mass m5 , similar analysis yields [17] , 

(1.55) 

In general for a p-form operator, the mass of the corresponding five dimensional field 

satisfies [ 17] 

m~ = ( ~ - p) ( ~ + p - 4) . (1.56) 
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1.3.2 Bottom-up: AdS/QCD 

The correspondence involves an SU(N) gauge theory which has supersymmetry as 

well as conformal symmetry. Quantum chromodynamics, an SU(3) gauge theory, has 

neither of these symmetries. Hence, some sort of departure from the original string theory 

setup is required. First of all, these modifications should break supersymmetry. As for 

the running of the coupling constant, we might assume that the QCD coupling does not 

run for a small enough region of energy. This is one of the approximations that is used in 

the AdS/QCD bottom-up approach. 

The bottom-up AdS/QCD model can be described as follows [13, 14]. Instead of 

starting with a setup of D-branes in ten dimensional spacetime, we anticipated what the 

five dimensional Lagrangian would be, based on symmetry arguments and simplicity. We 

want to reproduce most of QCD properties. Here, let us consider QCD with two flavors 

of quarks. A generalization to three flavors will be discussed Chapter 4. In the two-

flavor model, a gauge theory with SU(2)LxSU(2)R symmetry is introduced in the AdS 

side to reproduce the approximate global SU(2)L xSU(2)R symmetry of QCD. A cutoff 

is introduced in the AdS geometry to reproduce the confinement of QCD. The AdS metric 

becomes 

0 < z < zo. (1.57) 

where we have set AdS radius to one. 

In the previous section, we have discussed that an operator 0 in the four dimensional 

theory corresponds to a field ¢ in the five dimensional theory. There are an infinite num­

ber of five dimensional fields corresponding to an infinite number of operators in QCD. 

However, there are only several crucial operators involved in the dynamics of sponta-

neously broken SU(2)L x SU(2)R symmetry. One of these crucial operators is the quark 

bilinear if;L'l/JR, whose non-vanishing expectation value breaks the full symmetry down 

to SU(2)v. The corresponding five dimensional field should be a scalar field, X, which 
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transforms as bifundamental. The conserved current operators of the SU(2)LxSU(2)R 

symmetry, J(L) and J(R), correspond to the gauge fields, L 11 and R 11 , respectively. We will 

also be interested in the stress tensor operator, T11v, which corresponds to the perturbation 

of the AdS metric, g11v = ( rhw + h11v) j z2 . The operators and fields correspondence are 

summarized in Table 1.1 

TABLE 1 .1: Operator/field of the model 

O(x) cp(x, z) ~ m2 
5 

'l/JL/'11ta'l/JL Lll 3 0 
1/JR/'f.lta'l/JR Rll 3 0 

1/;£'1/J~ (2/z)Xa(J 3 -3 
Tf.lV hf.lV 4 0 

The simplest possible gauge invariant five dimensional Lagrangian constructed out 

of these fields is given by 

SsD = j d
5xJ9{ Tr[IDXI 2 + 3IXI 2

- 4~g(F?L) + F(~))]}, (1.58) 

where the covariant derivative is defined by DM X = aM X - iLM X + iX RM' while 

the field strength is defined by Fl:'1 = 8MLN - {)NLM - i[LM, LN] and analogously 

for FJ:1. The gauge field is LM = LMta, where ta is the generator of SU(2). The 

bifundamental scalar field X can be written in terms of pseudo~scalar field 1r(x, z) and 

scalar field X 0 (z), 

(1.59) 

When assuming isospin symmetry, one can take X 0 as a multiple of the identity, and one 

doesn't have to worry about the ordering. Solving the equation of motion for X 0 (z), one 

obtains 

(1.60) 

where Ma(j = mqba(j can be identified as the quark mass matrix, sourcing the bilinear 

operator {;a'lj;(j and Ea(j = aqba(j as the vacuum expectation value of the quark bilinear 
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operator. The rescaling factor, ( = ../NC/(27r), will be discussed below [18, 19, 20]. For 

later convenience, let us define v(z) = ((mqz + crqz3 j(). As shown later in Chapter 4, 

this model automatically reproduces the Gell-Mann-Oakes-Renner relations. 

1.3.3 Meson Mass and Decay Constant 

We will give some technical details here in the introduction. Since the AdS geometry 

is cut at z0 , a boundary condition has to be specified. A simple gauge invariant boundary 

condition, Fz11 (z0 ) = 0, is used, which is nothing but the Neumann boundary condition, 

aZLJl(zo) = aZRJl(zo) = 0, in the Lz = Rz = 0 gauge. The boundary condition for 

the 1r field will follow from the equation of motion. Hadrons will appear as normalizable 

modes satisfying this boundary condition. The vector field, axial-vector field, pseudo-

scalar field will give rise to vector mesons, axial-vector mesons, and the pseudo-scalar 

meson, respectively. 

Define V = (L + R)/2 and A= (L- R)/2, and one obtains the equation of motion 

for the vector field 

( az( ~az v:'(q, z)) + q
2 v:) = 0. 

z z ~ 
(1.61) 

where qll is the momentum, that is the Fourier conjugate of the coordinate xll. For the 

axial sector, one obtains 

(1.62) 

(1.63) 

(1.64) 

where qP is the longitudinal part of A~, defined by A~11 = 811</Ja. The boundary conditions 

at z0 are Neumann for the V11~, A11~, and <jJ fields, while for the 1r field the boundary 

condition follows from equation of motion, which is also Neumann. The value of the 

fields in the z -+ 0 limit will be identified as the source for the corresponding operators. 
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Each of the fields can be written in terms of its boundary value multiplying a profile 

function, which is usually called the bulk-to-boundary propagator. Hence, 

v:_L(q, z) V(q2
, z) V~f(q), 

A~1_(q,z) A(q2
, z) A~'i(q), 

A~11 (q, z) ¢(q2, z) A~~(q), 
. J.L 

7r(q, z)a -zq ( 2 )Aoa( ) (1.65) -2-7r q ,z J.tll q . q 

Note that due to isospin symmetry, the bulk -to-boundary propagators are free of any flavor 

index. For the vector field the solution is 

2 7r (Yo(qzo) ) V(q , z) = 2qz Jo(qzo) J1(qz)- Y1(qz) (1.66) 

The other bulk-to-boundary propagators can be calculated numerically. 

Evaluating the action on the solution gives, 

(1.67) 

where PJj:v = (rtv- q11 qv jq2 ) and Pfv = qJ.Lqv jq2 are the transverse and the longitudinal 

projectors, respectively. Performing functional derivatives with respect to the sources, 

one can obtain n-point correlators of the current operators. 

The n-th Kaluza-Klein modes of mesons can be obtain from the normalizable modes 

of ( 1 .61-1.64). The normalizable wave functions are denoted by 1/Jn ( z), 1/J~1 
, and ¢n ( z) (or 

7rn(z)) for the rho mesons, the a1-mesons, and the pions, respectively. The eigenvalues, 

q2 = m~, are identified as the mass of the corresponding mesons in the n-th Kaluza-Klein 

state. These normalizable wave functions satisfy Neumann boundary condition at z = z0 
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and vanish at z = 0. The wave functions for the rho mesons and the a1 mesons normalize 

as J ( dz / z) 7./Jn 2 = 1, while the wave functions of the pions normalize as 

(1.68) 

Using this normalization, the dimension of the normalizable pion modes is different from 

the dimension of the bulk-to-boundary propagator. We use it because it is well behaved 

for the ground state in the chirallimit (despite the 1/m; in the right-hand-side). 

The bulk-to-boundary propagator can be written as infinite sum over normalizable 

wave functions. For the transverse vector bulk-to-boundary propagator, we have 

V( 2 ) = -l: (az7./Jn(E)/c) 7./Jn(z) 
q 'z 2 2 q -m 

n n 

(1.69) 

where E ---t 0. An analogous expression can be obtained for the transverse axial bulk-to-

boundary propagator. For the longitudinal part and the pseudoscalar, we have 

(1.70) 

The wave function for the pion can be obtained numerically. For vector meson, the wave 

function is given by Bessel function, 

(1.71) 

where the mass of the vector meson in the n-th Kaluza-Klein state is given by the root of 

Bessel function, Jo(mnzo) = 0. 

Performing functional derivative twice on the action (1.67), one obtains the 2-point 

function. In particular, for the vector field 

i J d4xeiqx (0 IT Jfa(x)Jfb(O)I o) = -P#v 6abf)Z vg~q:, c)' 

= _pp,v Q2 ln(Q2) 
T 2gg 

(1.72) 
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where the last equality is for large Q2 = -q2 and the contact term has been dropped. This 

can be compared with the QCD calculation, in the limit of large Q2 , where the leading 

order contribution comes from the quark bubble diagram. This matching fits one of the 

parameters of the model, gg = 121r2 / Nc = 47r2 . 

From the 2-point functions, one can extract FP, the vector meson decay constant, 

and j"', the pion decay constant. They are defined via the following matrix elements 

(OIJ~(O) IP~ (p, .X)) 

(o II~~tll(0)17r~(q)) if7rq 8ab 
n It ' 

(1.73) 

(1.74) 

where E~t(P, .X) is the polarization vector of a rho meson with helicity A. One obtains the 

decay constant for the vector meson, 

F~ = Oz'l/Jn(z) I . 
9sZ z----.0 

(1.75) 

Similar calculations for a1 mesons and pions yield 

8z'l/J~1 (z) I ' 
gsz z----.0 

(1.76) 

_ 8z¢~(z) I . 
9sZ z----.0 

(1.77) 

The rescaling factor ( in (1.60) can be obtained by matching the 2-point correlator 

of the if;L'l/JR operator obtained from AdS/QCD calculation with that of the perturbative 

QCD calculation, both in the large Q2 limit. 

If the x dependence of the X 0 field is turned on, the equation of motion becomes 

(1.78) 

where the solution can be written in terms of Bessel functions, 

(1.79) 
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This solution can be matched with equation (1.60) in the limit of small q2
, fixing the 

coefficient d2 = -1rq( M I 4. Furthermore, imposing Neumann boundary condition at 

z = z0 , one can determine d1 . 

The relevant part of the action can be written as 

S = j d
4
q Tr (x ( )8zX0 (q, z)) 

5D ( 2 )4 0 q, Z 3 7r z z-o 
(1.80) 

Differentiating over the source, M, twice, one obtains the 2-point correlator, 

(1.81) 

where large Q2 limit has been taken and the contact term has been dropped. Comparing 

this with the perturbative QCD result, one obtains ( = ~I (21r). 

The two-flavor AdS/QCD model has three free parameters, z0 , mq, O"q. Parameter z0 

can be chosen to fit the calculated rho meson mass with experimental data. Parameters 

mq and CJ q can be chosen to fit the calculated pion mass and pion decay constant with 

experimental data. One obtains, 

z0 11(322.5 MeV) 

mq (27riJ3) 2.29 MeV= 8.31 MeV, 

( J31(27r)) (328.3 MeV)3 = (213.7 MeV) 3
. (1.82) 

The results are displayed in Table 1.2. 

1.3.4 Electromagnetic Form Factors 

Electromagnetic form factors and gravitational form factors of mesons can be ob­

tained from 3-point correlator involving J~M• the electromagnetic current operator, and 

T"v, the stress-energy tensor operator, respectively. In this section, we will discuss the 

former and postpone the discussion for the latter to the next two chapters. Electromag-

netic form factors for rho mesons are first calculated in [21], and for pions in [22, 23]. 
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TABLE 1.2: Masses and decay constants. 

Observable AdS/QCD Measured 
(MeV) (MeV) 

m7r (fit) 139.6 
f7r (fit) 92.4 

mp (fit) 775.5 
Fl/2 

p 329 345± 8 
mal 1366 1230 ± 40 
F112 

a1 489 433 ± 13 

The matrix element of the current operator for spin-1 state can be extracted from the 

3-point function using 

and for spin-0 state using 

The relevant terms of the action are 

(1.85) 

and 

(1.86) 

For spin-1 state, the general form of the electromagnetic current matrix element can 
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be written in terms of three form factors, 

(p~ (p2, A2) I JkM(O) IP~ (pl, Al)) = -~:;a(P2, A2)Clf3(Pl, A1) [ 17af3 (Pl + P2Y' G1 ( Q2) 

+ ( 17~Jaqf3 - 17/J/3 qa) G2( Q2) - 2~~ qaq/3 (Pl + P2)1' G3( Q2)] . (1.87) 

The three form factors are related to, electric G c, magnetic G M, and quadrupole G Q form 

factors via 

Gc 

(1.88) 

For spin-0 state, there is only one form factor for the current matrix element, 

(1.89) 

The 3-point functions in (1.83) and (1.84) can be calculated by performing functional 

derivative over the sources three times to (1.85) and (1.86), respectively. The AdS/QCD 

model yields, for the rho meson, 

(1.90) 

where 

1
zo d 

p 2 - z 2 Fnn(Q ) - - V(Q , z)'I/Jn(z)'I/Jn(z), 
0 z 

(1.91) 

and for the pion, 

The pion charge form factor is shown in Figure 1.1. 

When Q2 = 0, the AdS/QCD results normalize correctly, to give a correct unit 

charge of the p+ and 7r+. The model also "predicts" the magnetic moment J-L = G M(O) = 

2 and the quadrupole moment D = GQ(O)jm~ = -1/m~, for the rho mesons, which are 

just what we expect for point-like spin-1 particle. 
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FIG. 1.1: Plot of pion charge form factor. Solid line is the AdS/QCD result. Diamonds are 
from [24], circles and triangle are from [25], boxes are from [26] 

The charge RMS radius is defined from 

1 2 ) 8Gc I \r c = -6 8Q2 . 
Q2_->0 

(1.93) 

with analogous expressions for the a 1 and for the pion. In the limit of low Q2 , the vector 

bulk-to-boundary propagator can be expanded as 

2 Q
2 

z2 ( ( z2 ) ) V(Q , z) = 1- -
4

- 1 -In z& (1.94) 

This gives, (r~)0 = (0.73fm) 2 for the rho meson, (r~1 ) 0 = (0.62fm) 2 for the a1 meson, 

and (r;)c = (0.57fm) 2 for the pion. These can be compared with a lattice calcula­

tion [27] for the rho meson charge radius, (r~) 
0 

= (0.77 fm) 2
, and with experimental 

data [28] for the pion charge radius, (r;) 0 = (0.67 fm) 2
• 

The scaling behavior of the form factors at large Q2 can be figured out by noting that, 

in this limit, the vector bulk-to-boundary propagator (1.66) is essentially (Qz)K1(Qz), 

where the modified Bessel function falls asymptotically like e-Qz. Hence, the form factor 

integrals in (1.91) and (1.92) are supported mainly in the low z region. Furthermore, in 
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thecaseofvectormeson,near z = O,?j;n(z) = ?j;~(O)z2 /2. Therefore, 

(1.95) 

where 'Yo,n is the n-th zero of J0 • Accordingly, 

(1.96) 

One can calculate the ratio among the form factors in the limit of large Q2 and obtains 

Gc:GM:Gq=(1- Q
2

2
):2:-1, 

6mP 

which agrees with perturbative QCD result [29, 30]. 

For the pion form factor, defining 

and noting that for small z, p(z) = p(O) + p'(O)z + ... ,one obtains 

which is the an expected scaling behavior from perturbative QCD. 

1.3.5 Soft-wall Model 

(1.97) 

(1.98) 

(1.99) 

The meson spectrum in the hard-wall AdS/QCD model arises as eigenmodes, satis-

fying Neumann boundary conditions on theIR boundary and vanishing sufficiently fast 

on the UV boundary. We have shown that for vector mesons, the mass eigenvalue is 

mn = 'Yo,n/ zo, where 'Yo,n is the n-th root of Jo. For large n, this becomes, mn "'n. Sim-

ilar behavior is obtained for a1 mesons and pions. However, data shows that the meson 

masses satisfy, m~ "'n. 

A solution to this problem is to introduce a background dilaton field [31], 4>(z) = 

"'
2 z2

, instead of cutting off the AdS metric. The dilaton field will provide some kind 
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of confinement effect to the mesons wave function. The five dimensional action can be 

written as 

S5D = J d5x e-<I>(z) L, 

where£ is the Lagrangian density appears in (1.58). 

Consider the vector part of the action. The equation of motion now reads, 

(1.100) 

(1.101) 

The corresponding normalizable wave functions, denoted by '1/Jn ( z), solve the above equa­

tion with q2 = (m~) 2 . Defining '1/Jn = N1~Ln(~). where~= K,
2z 2 and N1 is a normaliza-

tion constant, one obtains, 

(1.102) 

which is just the equation for the generalized Laguerre polynomial, L~a), with a = 1. The 

wave function becomes, 

(1.103) 

where the normalization factor has been set such that J ( dz I z) exp( -/'\,2 z2)#1 = 1. The 

resulting mass eigenvalue is (m~) 2 = 4/'\,2 (n + 1), for n = 0, 1, .... Hence, the constant 

/'\,can be fixed by identifying the lowest state as the rho meson, yielding K, = 388 MeV. 

The bulk-to-boundary propagator of the vector field is given by Kummer's func­

tions [32]. However, one uses only the Kummer's function of the second kind that is not 

singular near z = 0, 

(1.104) 

where a = -q2 I 4/'\,2 • The Kummer function can be written in integral representation 

(1.105) 
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where in our case b = 0. In the limit,~ ---+ 0, one obtains U( a, b; 0) = f(1- b) /f( a- b + 

1) . Hence, by demanding V ( 0, z) = 1, the coefficient N2 can be fixed to be N2 = a r (a). 

As in the case of the hard-wall model, the bulk-to-boundary propagator can be ex-

panded as a sum over normalizable modes. To see this, one can write the bulk -to-boundary 

propagator as 

V(q2,z) = K?z2 {1 dxexp (- "'2z2x) ( xa )2' lo 1- X 1- X 
(1.106) 

by integration by parts. The integrand contains the generating function for Laguerre poly-

nomials 

1 (--X ) _L00 

(1)() n 
( ) 2 

exp ~ - Ln ~ x . 
1-x 1-x n=O 

(1.107) 

Performing the integrals, one obtains, 

V(q2,z) = -4K,4Z2f L~1)("'2z2) = -4K,2f /n+T 'lj;n(z) . (1.108) 
n=O q2- 4"'2(n + 1) n=O V ~ q2- m~2 

This result can be compared with equation (1.69) and equation (1.75) in the case of hard-

wall model to obtain the decay constant of the vector mesons, 

/"\,2 

Ff: = -J8(n + 1). 
95 

For the lightest state, we have F(; = (260 Me V)2 . 

In the soft-wall model, the form factor (1.91) becomes, 

The solution is analytic. In particular for the lightest state, F(;0 , we have [32] 

F.P (Q2)- 2 
oo - 1 + Q2 / mg2 

1 

Hence, only the lowest two bound states contribute to the form factor. 

1.3.6 Various AdS/QCD models 

(1.109) 

(1.110) 

(1.111) 

The bottom-up AdS/QCD model used in this dissertation is based mainly on [13] and 

[14], where a bifundamental scalar field is introduced to break the full symmetry down 
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to its vector subgroup. Other bottom-up models omit the scalar field, instead, they use 

modified geometry [33] and appropriate choice of boundary conditions [15] to break the 

full symmetry. 

The AdS/QCD calculation of electromagnetic form factors is originally from [21] in 

the case of rho mesons, and from [22, 23] in the case of pions. The gravitational form 

factor calculations discussed in Chapter 2 and Chapter 3 of this dissertation is essentially 

taken from [34, 35]. This is also discussed in [36]. Generalization to three flavors is 

considered in [37], with subsequent improvement given in [38], which will be discussed 

in Chapter 4. 

As a reference, let me mention other AdS/QCD phenomenological models. AdS/QCD 

relations to light-front QCD is discussed in [39, 40, 41]. A soft-wall model was proposed 

in [31] and they also considered higher spin mesons. A soft-wall model with a dynamical 

dilaton field is considered in [ 42]. The axial anomaly, in particular for the decay of neu­

tral pions into two photons, is discussed in [ 43]. The four point correlator, specifically the 

calculation of the B K parameter is analyzed in [ 44]. 

The AdS/CFT correspondence has been applied to baryons in [ 45], where a fermion 

field is introduced in the AdS space, and baryons arise as eigenmodes of the fermion 

fields. In [46, 47], using five dimensional action with gauge field only and Chern-Simons 

term added, the baryon arises as a stable soliton solution. 

In [48, 49], a bottom-up holographic model for confinement/deconfinement is built. 

In short, they consider thermal AdS metric, which is metric (1.57) with periodicity in 

time direction. This corresponds to the confinement phase of QCD. In addition, they also 

consider the black-hole AdS metric (1.43), which corresponds to the deconfinement phase 

ofQCD. 



CHAPTER2 

Gravitational Form Factors of Vector 

Mesons in an AdS/QCD Model 

2.1 Introduction 

In this chapter we calculate gravitational form factors- form factors for the stress or 

energy-momentum tensor-of vector mesons using a hard-wall model of AdS/QCD. 

There has been much interest in the AdS/CFT, or gauge/gravity, correspondence be­

cause it offers the possibility of relating nonperturbative quantities in theories akin to 

QCD in 4 dimensions to gravitationally coupled 5-dimensional theories that are treated 

perturbatively [8]. Many applications have already been made; see references [12, 15, 

9, 13, 14, 45, 40, 31, 50, 21, 32, 51, 52, 53] and other works cited in those references. 

However, for objects of particular interest to hadron structure physics such as ordinary 

parton distribution functions, form factors, transverse momentum dependent parton dis­

tribution functions, and generalized parton distributions, there is a smaller body of work, 

particularly for the latter two topics. 

Part of the interest in gravitational form factors comes because of their connections 

34 
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to generalized parton distributions (GPDs). GPDs are an important metric of hadron 

structure, and can be loosely described as amplitudes for removing a parton from a hadron 

and replacing it with one of different momentum. Moments of the GPDs are related to 

gravitational form factors. In particular, one of the gravitational form factors measures 

the total angular momentum carried by partons, and historically the possibility to find the 

summed spin plus orbital angular momentum of particular constituents of hadrons is what 

keyed the current experimental and theoretical interest in GPDs [54, 55]. 

The original AdS/CFT correspondence [8] related a strongly-coupled, large Nc, 4D 

conformal field theory with a weakly-coupled gravity theory on 5D AdS space. In QCD, 

Nc is not large, nor is it a conformal field theory, as evidenced by the existence of hadrons 

with definite mass. Nonetheless, results obtained treating Nc as large work surprisingly 

well, and one can argue that QCD behaves approximately conformally over wide regions 

of Q2 
[ 40]. The AdS/CFT correspondence has been studied in both a "top-down" ap­

proach, starting from string theory [12, 9], and a "bottom-up" approach, which uses the 

properties of QCD to construct its 5D gravity dual theory [ 13, 14, 45, 40, 31]. We follow 

the latter approach, particularly as implemented in [13, 14]. Some of the salient results 

include the meson spectrum, decay constants and electromagnetic form factors for both 

the rho and the pi [21, 23, 22, 32, 41]. 

The model uses a sharp cut-off in the AdS space to simulate the breaking of con-

formal symmetry. The unperturbed metric and relevant slice of 5-dimensional AdS space 

is 

E: < z < z0 , (2.1) 

where T}p,v = diag(1, -1, -1, -1). The z = c wall, withE~ 0 understood, corresponds 

to the UV limit of QCD, and the wall located at z = z0 = 1/ A qeD sets the scale for the 

breaking of conformal symmetry of QCD in the IR region. [Lower case Greek indices 

will run from 0 to 3, and lower case Latin indices will run over 0, 1, 2, 3, 5.] 
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Within AdS/CFT, every operator O(x) in the 4D field theory corresponds to a 5D 

source field <P(x, z) in the bulk. Following the model proposed in [13, 14] two of the 

correspondences are 

J(L) 11 (x) +-+ La11 (x, z), 

J(R) 11 (x) +-+ Ra11 (x, z), 

where J(Lt = '¢L "(11 ta'lfJL and J(R) 11 = '¢R"f11ta'lfJR are the chiral flavor currents. 

(2.2) 

In Lagrangian formulations of general relativity, the source for the stress tensor T11v is 

the metric g 11v, whose variation is given in terms of hllv. We will use h11 ~.~ in the Randall­

Sundrum gauge, wherein h11v is transverse and traceless (TT) and also satisfies h11z = 

hzz = 0. Variations of the metric tensor in a TT gauge will only give us the transverse­

traceless part of the stress tensor. This will, we shall see below, to uniquely determine 

4 of the 6, for spin-1 particles, form factors of the stress tensor, including the two form 

factors that enter the momentum and angular momentum sum rules. 

The layout of this chapter is as follows. Sections 2.2, 2.3, and 6.4, obtain the form 

factors of the stress tensor using the AdS/CFT correspondence. Specifically, Sec. 2.2 

obtains some necessary results for the purely gravitational parts of the theory, and Sec. 2.3 

similarly focuses on the vector parts of the action, reviewing necessary results originally 

obtained in [13, 21]. Section 6.4 works out the three-point functions, and extracts from 

them the stress tensor matrix elements. 

Section 3.4 begins by giving the general expansion of the stress tensor for spin-1 

particles, as constrained by the conservation law and symmetries, and then relates five 

combinations of stress tensor form factors to integrals over the five vector GPDs that exist 

for spin-1 particles [56]. One of these relations is the spin-1 version ofthe X. Ji or angular 

momentum sum rule [54]. The relations as a whole are a set of constraints upon the spin-1 

GPDs. We also determine the radius of the vector meson from the form factors that enter 

the momentum and angular momentum sum rules, and compare it to the electromagnetic 
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radius. Some conclusions are offered in Sec. 3.5. 

2.2 Gravity Sector 

The action on the 5-dimensional AdS space is 

SsD = j d
5xy'g{ R + 12 + Tr [IDXI 2 + 3IXI 2

- 4~g (F(~l + F(~l)]}, (2.3) 

where FiJ'~ = oMLN - oNLM - i[LM, LN], LM = Dfvtta (analogously for RM), with 

Tr(tatb) = Jab/2 and DMX = EJMX- iLMX + iXRM. Only the gravity and vector 

sectors of the above action are needed in this chapter, and we impose Neumann boundary 

conditions on the z0 boundary. 

In the purely gravitational part of the action, 

(2.4) 

the metric is perturbed from its AdS background according to 

(2.5) 

where (so far) hzz = 0, hz1-1 = 0 gauge choices have been used. The linearized Einstein 

equations are 

0 -h/-lv,zz + ~h/-lv,z + h/-lv,/- 2hP(!-I,v)p 

- 3- - -
+rJ1-1v(h,zz - -;h,z- h,/ + hp(j,P(j) + h,/-IV 

0 h,/-IZ - h/-lv,z v 

0 
3 h- h- p h p(j - z+ p- p(j z ' ' ' 

(2.6) 

which come from the JLV, J.LZ, and zz sector of the Einstein equation. The trace of h1-1v 

is denoted by h. In transverse-traceless gauge, hl-lv,v = 0 and h~ = 0. The equation of 

motion becomes 

(2.7) 
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We do a 4D Fourier transform, and factor the transformed solution as h~-tv ( q, z) = 

h(q, z)h~~.~(q). With h(q, E) = 1, then h~~.~(q) is the Fourier transform of the UV-boundary 

value of the graviton. TheIR boundary condition becomes ozh(q, z0 ) = 0. The surface 

term from theIR boundary obtained when varying the action then vanishes. One finds 

7r 2 2 ( Y1 ( qzo) ) 
h(q, z) = "4q z J

1
(qzo) h(qz)- Y2 (qz) . (2.8) 

For spacelike momentum transfer q2 = -Q2 < 0 the solution is conveniently rewritten as 

1 2 2 (KI(Qzo) ) H(Q, z) = 2,Q z 
11

(Qzo) I2 (Qz) + K 2 (Qz) . (2.9) 

Symmetry of the two-index tensor T~-t" implies that there are 10 independent com-

ponents. Conservation of energy-momentum, q~-tT~-t" = 0, reduces this to 6 independent 

components. Ti-t" can be decomposed into transverse-traceless part TI-t" with 5 indepen-

dent components, which leaves the transverse-not-traceless part with one independent 

component given by TI-t"= ~(rt"- q~-tq" jq2 )T, where Tis the trace ofT~-t": 

(2.10) 

This conserved operator couples only to a transverse source. A variation h~v which is 

transverse and traceless can couple only to TI-t". 

2.3 Vector Sector 

Define the vector field V = (L + R)/2 and the axial-vector field A = (L- R)/2, 

and consider only the vector part of the action, Eq. (2.3): 

(2.11) 

where (Fv )MN =OM VN- ON VM up to quadratic order in the action. The metric used in 

this section is non-dynamical, i.e., only the unperturbed part of Eq. (2.5). 
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In the Vz = 0 gauge, the transverse part of the vector field satisfies the following 

equation of motion, 

(2.12) 

The solution can be written as 

(2.13) 

where V~(q) is the Fourier transform of the source of the 4D vector current operator 

Jfr 11 = i{ry11ta'ljJ. Current conservation, q11 Jt = 0, requires that the source is transverse. 

Therefore only the transverse part of the UV-boundary of 5D vector field will be consid-

ered as the source of Jt. 

V(q, z) is called the bulk-to-boundary propagator for the vector field, and has bound­

ary conditions V(q, E)= 1 and az V(q, zo) = 0. The bulk-to-boundary propagator is 

1r (Yo( qzo) ) 
V(q, z) = 2zq Jo(qzo) J1(qz)- Y1(qz) . (2.14) 

Evaluating the action, Eq. (2.11), on the solution leaves only the surface term 

S = j d
4
q Vo11( )Vo ( ) (- az V(q, z)) 

v (2 )4 q J1 q 2 2 . 
7r 9sZ z=t 

(2.15) 

The Kaluza-Klein tower of the p mesons can be obtained from the normalizable 

solutions of Eq. (2.12) with q2 = m;. The boundary conditions for 1/Jn(x, z), the n-th 

KK-mode p-meson's wave function, are 1/Jn(z = 0) = 0 and 8z1/Jn(zo) = 0. The solutions 

are 

(2.16) 

and satisfy normalization conditions J ( dz/ z)'ljJ~ (z) = 1. 

Using Green's function methods to solve Eq. (2.12), one can show that the bulk-to-

boundary propagator can be written in terms of a sum over the infinite tower of KK -modes 

of the p-meson as 

( ) 2: 
Fn'l/Jn(z) 

v q' z = -95 2 2 ' q -m 
n n 

(2.17) 
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where Fn = (1/g5)( -~Oz'~n(z'))lz'=<· Similar results can be obtained by incorporating 

the Kneser-Sommerfeld expansion of Bessel functions. The constant Fn is the decay 

constant of the vector meson, defined by 

(2.18) 

This can be seen by calculating 2-point function of vector currents. Taking functional 

derivatives with respect to V 0 in the 5D action in Eq. (2.15), and changing V0~-'V0 J.L to 

V0~-' P~ V 0 v using the restriction that V 0 is transverse, one finds 

(2.19) 

where P~ = (TJJ.Lv - qJ.Lqv/ q2
) is the transverse projector, and 

(2.20) 

Using Eq. (2.18), the left hand side of Eq. (2.19) can be written as 

(2.21) 

which confirms the interpretation of Fn in Eq. (2.17) as the decay constants of the p-meson 

tower. 

2.4 Gravitational Form Factors of Vector Meson 

Stress tensor matrix elements of spin-1 particles defined by (p~ (PI) IT~-'v( q) IP~ (P2)) 

can be extracted from 3-point function 

(2.22) 

The Fourier transform of the above 3-point function can be expressed as 
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In order to pick up the correct term for the elastic stress tensor matrix elements, we apply 

the completeness relation 

(2.24) 

twice, then multiply by 

c::(P2,,\2)ci3(PI,,\l) (Pi -m;) (p~ -m;) ; 2 , 
n 

(2.25) 

and take the limit Pi -+ m~ and p§ -+ m~. 

Consider the following part of the full action, Eq. (2 .3), 

(2.26) 

Only hVV terms contribute to the 3-point functions, 

(2.27) 

where the functional derivative is evaluated at h0 = V 0 = 0. 

The relevant terms in the action that contribute to the 3-point function can be written 

as 

Sv ~ 2~g J d:x ( T]fYYr( 15 h715 [- FCizFpz + Tla/3 FCiaFp!3]) , (2.28) 

The energy-momentum tensor from Eq. (3 .21) must be conserved and traceless. Therefore 

one may apply the transverse-traceless projector 

Taking the functional derivatives and then extracting the gravitational form factor 

from the 3-point function, one obtains 

(P~(P2,-\2)1T'w(q)IP~(PI,-\l)) = (27r) 48(4)(q+pl-P2)8abc:;ac:li3 

X [ _ A(q2) ( 4q[aTJ!3](Jtpv) + 2T]ai3pftpV) _ ~C(q2)TJai3 ( q2T]JtV _ qftqV) (2.30) 

+ D( q2) ( q2T]Oi(JtTJV)i3 _ 2q(JtTJV)(aqi3) + TlftV qOiq/3) _ F( q2) q:f ( q2T]JtV _ qftqV)] , 
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where p = (Pl + P2)/2, q = P2 - Pl• a[nb,B] = (a0 b,8- a.8b0 )j2, and a(nb,B) = (a0 b,8 + 

a.8b0 )j2. The invariant functions are given by 

(2.31) 

with 

(2.32) 

for spacelike momentum transfer. 

The matrix element ofTJ.w in Eq. (2.30) is indeed traceless. It is not traceless term by 

term, but rather is written in a form that allows easy contact with the general expression 

for spin-1 matrix eh!ments of the stress tensor, to be given shortly. 

The difference between j11-v, the traceless part of the stress tensor, and the full stress 

tensor is a term proportional to ("711-v- qll-qv jq2 ), shown in Eq. (2.10). Adding such a 

term can only affect the terms C(q2 ) and F(q2 ) in Eq. (2.30). The form factors A(q2 ) and 

D(q2
) will not change. 

2.5 Sum rules for the GPDs 

2.5 .1 Stress tensor 

The stress tensor is a symmetric and transverse two-index object, and is even un-

der parity and time reversal. As such has six independent components, which can be 

composed as a spin-2 operator plus a spin-0 operator. Its matrix elements with spin-1 
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particles may in general be expanded in terms of six Lorentz structures multiplying six 

scalar functions, 

The second listed component has coefficient (A + B) to notationally match the cor-

responding expansion for spin-1/2 particles. Four ofthe scalar functions were given from 

the gauge-gravity correspondence in the last section, and one also learns 

(2.34) 

This is consistent with the proof given in [57] that the anomalous gravitomagnetic moment 

B(O) vanishes for any composite system, although here we find B vanishes for all q2
• 

2.5.2 Vector GPDs for spin-1 particles 

For a spin-1 particle, there are five vector GPDs, defined by [56] 

Each of the GPDs has arguments, Hi = Hi ( x, ~, t), where q+ = - 2~p+ and t = q2 , and 

they are related to form factors for spin-1 particles by 

1~ dx Hi(x, ~' t) = Gi(t), 

1~ dx Hi(x, ~' t) = 0, 

i=1,2,3, 

i = 4,5. (2.36) 
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The form factors are defined by the matrix elements of the vector current, 

(2.37) 

The Gi are in tum related to the charge, magnetic, and quadrupole form factors by (TJ = 

-t/(4m~)) [58], 

GM, 

-Gc + GM + ( 1 + ~TJ) Gq, (2.38) 

normalized by Gc(O) = 1, GM(O) = /-Ld (magnetic moment in units (2mn)-1
), and 

Gq(O) = Qd (quadrupole moment in units m;; 2
). 

2.5.3 Sum rules 

For spin-1/2 constituents, 

(2.39) 

or, 
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so that there is a direct relation between the scalar functions in the stress tensor matrix 

elements and integrals over the GPDs. These read, 

11 t 
xdx H1 (x, ~' t) = A(t)- ec(t) + - 2 D(t), 

-1 6mn 1: xdx H2(x, ~' t) = 2 (A(t) + B(t)), 

1: xdx H3 (x, ~' t) = E(t) + 4e F(t), 

1: xdx H4 (x, ~' t) = -2~D(t), 

11 t 
xdx H5(x, ~' t) = +-2 D(t). 

-1 2mn 
(2.41) 

(By time reversal invariance, H 4 is odd in ~ while the other vector GPDs are even in 

~[56, 55].) 

2 Z2 , Z1/m 1 
1 ' 
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FIG. 2.1: Plot of Z2 (solid blue curve) and ZI/M 2 (dashed red curve), with momentum transfer 
in units of AQcD = 1/ zo. 

The relations between the stress tensor and the momentum and angular mometum 
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operators lead to the sum rules (for any spin) [54], 

(2.42) 

i{ [)[)x (p2, A2l T02 IP1, A1) - [)[)Y (p2, A2l T01 IP1, A1)} , 
q q q=O 

where the latter is written for pin the z-direction. Applied to spin-1 particles, this gives 

the normalizations 

A(O) 1, 

A(O) + B(O) (2.43) 

When connected to the GPDs, the first of these is just the momentum sum rule, 

1: xdxH1(x,O,O) = 1, 

and the second gives the spin-1 version of the X. Ji sum rule [54] 

1: xdx H2(x, 0, 0) = 2(Jz)max = 2. 

(Recall that 0:::; ~:::; J -t/(4M2 - t).) 

(2.44) 

(2.45) 

Away from t = 0, the gauge-:gravity correspondence has led to a set of constraints, 

of which we will explicitly quote, 

1: xdx ( H1(x, 0, t)- ~H5 (x, 0, t)) = Z2(t), 

1: xdx H2(x, 0, t) = 2Z2 (t), 

where the Zi(t) are explicitly known, and are shown graphically in Fig. 2.1. 

2.5.4 Radii 

(2.46) 

The RMS radius obtained from the gravitational form factor A(q2 ) is defined from 

(2.47) 



For small Q2 we expand 

and for the lightest vector meson obtain 

(r 2 \ = 3
·
24 = 0.21 fm2 

/grav m2 ' 
1 

where we identified m 1 = mp. 
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(2.48) 

(2.49) 

This is quite small. The charge radius of the rho-meson obtained from AdS/CFT 

in [21] (and verified by us) is (r2
) 0 = 0.53 fm2

. Similar charge radius results are obtained 

by a Dyson-Schwinger equation study [59] and from lattice gauge theory [60]. The result 

indicates that while the charge is spread over a certain volume, the energy that contributes 

to the mass of the particle is concentrated in a smaller kernel. 

2.5.5 High Q2 behavior 

Asymptotically the non-zero form factors obtained from AdS/QCD fall like 1/ Q4 

for A, C, and D and like 1/Q6 for F. 

To see this [23], note that at high Qz, the function 'H is essentially ~Q2 z2 K 2 ( Qz), 

and K 2 falls asymptotically like e-Qz. Hence the integrals for Z1,2 ( q2), given in Eq. (2.32), 

are dominated by low z. Also note that the wave function 'l/Jn, shown in Eq. (2.16), is pro­

portional to z2 as z-----* 0. Hence, for high Q2
, 

(2.50) 

where /'o,n is the nth zero of J0(z). One can similarly show that Z1 rv 1/Q2 , and the 

results for C, D, and F follow. 
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The perturbative QCD (pQCD) predictions for the gravitational form factors are not, 

to our knowledge, available in the literature, but can be shown to be 

A,B,C,D rv 1/Q4 

E, F rv 1/Q6
. 

The AdS/CFT results are in precise accord with this. 

(2.51) 

A complete explication of the pQCD results for the stress tensor form factors would 

require extensive space and is beyond the scope of the comments in this subsection. 

However, as a reminder, for electromagnetic form factors of vector mesons, the pQCD 

predicted scaling behavior is [61] 

(2.52) 

with an additional result from hadron helicity conservation that G c rv ( Q2 
/ 6m;) G Q [ 61]. 

One may examine [21] and find that these scaling relations also follow from the AdS/CFT 

correspondence. 

A more detailed prediction follows if the 0---> 0 helicity amplitude, in the light front 

frame, is highly dominant [29, 30]. This is 

(2.53) 

a result that also obtains in AdS/CFT [21]. (One may further wish to examine some 

comments about this relation in [62].) 

It was first pointed out in [63] that AdS/CFT could give scaling results that are in 

accord with pQCD. It is interesting that AdS/CFT can obtain scaling results identical 

to dimensional analysis results, which depend on the number of quarks in a a bound 

state [64], when there are no quarks explicitly present in the AdS/CFT correspondence. 
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Reference [63] also pointed out, however, that the powers of the perturbative QCD cou­

pling were not the same in the two predictions, which we also see here, as the perturbative 

QCD coupling is not seen in the AdS/CFT results. 

2.6 Conclusions 

We have worked out the gravitational form factors of the vector mesons using the 

AdS/CFT correspondence, and have given the sum rules connecting the gravitational form 

factors, which can also be called stress tensor or energy-momentum tensor form factors, 

to the vector meson GPDs. 

A striking numerical result is the smallness of the vector meson radius as obtained 

from A( q2), the gravitational form factor that enters the momentum sum rule. This sug­

gests that the energy that makes up the mass of the meson is well concentrated, with the 

charge measured by the electromagnetic form factors spreading more broadly. 



CHAPTER3 

Gravitational Form Factors in the Axial 

Sector from an AdS/QCD Model 

3.1 Introduction 

In this chapter we calculate gravitational form factors, which are form factors of 

the stress or energy-momentum tensor, in the axial sector using a hard-wall model of 

AdS/QCD. 

The gauge/gravity or AdS/CFT correspondence is studied because it offers the pos­

sibility of relating nonperturbative quantities in theories akin to QCD in 4 dimensions 

to weakly coupled 5-dimensional gravitational theories [8, 65]. Some applications that 

particularly involve mesons are found in [63, 12, 15, 9, 13, 14, 45, 40, 31, 50, 21, 32, 

66,51, 52, 53] and other works cited therein. The mesons studied are mainly vector and 

scalar mesons and topics studied include masses, decay constants, coupling constants, and 

electromagnetic form factors. Less studied to date are parton distributions, be they ordi­

nary ones, or transverse momentum dependent ones, or generalized parton distributions 

(GPDs). 
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The present authors [34] have studied gravitational form factors and the connection 

to GPDs for vector mesons, obtaining sum rules for the GPDs and finding that the vector 

meson radius appeared notably smaller when measured from a gravitational form factor 

than from the electromagnetic form factor. We wish to obtain the corresponding results 

for the pion, a particle for which it may be easier to obtain experimental information 

about the GPD [67] and for which there is already information on the electromagnetic 

form factor [26]. 

Technically, studying the pion is more involved than studying the vector mesons 

because there are a~ditional terms in the action involving the chiral fields. The ground 

has been broken by workers who have studied the pion electromagnetic form factor [41, 

22, 23]. Our work is similar in its basic approach to the latter two references, but we 

have attempted to make the present chapter reasonably self-contained. Also, as we are 

studying the axial sector to learn about the pion, it requires only a small extra effort to 

also study the axial vector mesons a1 , and we quote results for these in this chapter. We 

have limited ourselves to the chirallimit, where one can obtain analytic results for many 

of the quantities of interest. 

In general, in AdS/CFT there is a correspondence between 4-dimensional operators 

O(x) and fields in the 5-dimensional bulk ¢(x, z), where z is the fifth coordinate. The 4D 

sources used in the 4D generating function Z4n we will call ¢0 (x), and 

(3 .1) 

The correspondence may be written as 

(3.2) 

where on the right, S[¢cd is the classical action evaluated for classical solutions ¢cZ to the 

field equations with boundary condition 

(3.3) 
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The constant .6. depends on the nature of the operator 0, and is zero in simple cases [68]. 

The original correspondence [8] related a strongly-coupled, large Nc, 4D conformal 

field theory to a weakly-coupled gravity theory on 5D AdS space. In QCD, Nc is not 

large, nor is the theory conformal, as evidenced by the existence ofhadrons with definite 

mass. Nonetheless, results obtained treating Nc as large work surprisingly well, and one 

can argue that QCD behaves approximately conformally over wide regions of Q2 
[ 40]. 

We simulate the breaking of conformal symmetry, following the so-called "bottom-up" 

approach as implemented in [13, 14], by introducing a sharp cutoff in AdS space at z = 

z0 . The unperturbed AdS space metric is 

d 2 d Md N 1 d Md N S = gMN X X = 27JMN X X , E < Z < Zo, 
z 

(3.4) 

where 7JMN = diag(1, -1, -1, -1, -1). The z = E wall, withE______. 0 understood, corre­

sponds to the UV limit of QCD, and the wall located at z = z0 = 1/ Aqco sets the scale 

for the breaking of conformal symmetry of QCD in theIR region. [Lower case Greek 

indices will run from 0 to 3, and upper case Latin indices will run over 0, 1, 2, 3, 5.] 

The 0 to¢ operator correspondences of particular interest here are [13, 14, 68] 

(3.5) 

where Jgi-L = i{ryJ.L'"'(5ta'ljJ is an axial current with flavor index a, AaJ.L is an axial field, TJ.Lv 

is the stress tensor, and hJ.Lv represents variations of the metric tensor, 

(3.6) 

We will use hJ.Lv in the Randall-Sundrum gauge [69], wherein hJ.Lv is transverse and 

traceless (TT) and also satisfies hJ.Lz = hzz = 0. Variations of the metric tensor in a 

TT gauge will only give us the transverse-traceless part of the stress tensor. This will 

determine uniquely one of the two gravitational form factors of the pion, the one that 
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enters the momentum sum rule, and correspondingly 4 of the 6 gravitational form factors 

for spin-1 particles, including the two that enter the momentum and angular momentum 

sum rules. 

Relevant details regarding the pion and axial-vector mesons, including the wave 

functions and the two-point functions, are worked out in Sec. 3.2, and Sec. 6.4 works 

out the three-point functions, and extracts from them the stress tensor matrix elements. 

Sum rules and stress tensor form factor radii are given in Sec. 3.4 and some conclusions 

are offered in Sec. 3 .5. 

3.2 Pion and Axial-Vector Meson 

3.2.1 AdS/QCD Model 

The action on the 5-dimensional AdS space is [13] 

This action contains the X field, which corresponds to 4D operator ?f.RqL and, through 

F('f{ = aM LN- aN LM- i[LM, LN] (analogously for F('t_t), also contains the La {L 

and Ra/1- fields, which correspond to operators J(L)/1- = ?f.Li'Jl.taqL and J(R)/1- = ?f.R/'/1-taqR 

respectively. We define LM(x, z) = LM(x, z)ta and RM(x, z) = RM(x, z)ta, where the 

group generators satisfy Tr(tatb) = r5ab /2. The covariant derivative of the X field is given 

by DM X = aM X - iLM X + iX RM. Moreover, the X field can be written in expo-

nential form as X(x, z) = X 0 (z) exp(2ita7ra). Solving the equation of motion of X 0 (z), 

one obtains X 0 = ~Kv(z), where v(z) = mqz + O"z3 . Using the AdS/CFT prescription 

and the fact that ?f.RqL appears in the mass term of QCD Lagrangian, parameter mq can 

be identified as the quark mass and parameter O" as the quark condensate (qq). In this 

chapter, we will discuss only the chirallimit of the AdS/QCD model, i.e m1r = 0 case, or 

equivalently mq = 0. 



54 

The axial-vector and pseudoscalar sector of the action up to second order is given 

by [13] 

3.2.2 Equations of Motion 

Using the unperturbed 5-dimensional AdS space metric, and taking the variation 

over AM- of equation (3.8), one obtains the equations of motion, which are expressed in 

4D momentum space as 

(3.9) 

(3.10) 

(3.11) 

where the gauge choice Az = 0 has been imposed. The ¢field comes from the longitudi­

nal part of A~= A~j_ + 8J-L¢a. 

The fields above can be written conveniently in terms of bulk-to-boundary propaga-

tors as follows 

A~(q, z) A~0 (q) j_A(q, z) + A~0 (q) 11¢(q, z), 
. /-l 

zq2 A~o(q) 7r(q, z), 
q ,- II 

with A~0 
( q) j_ and A~0 

( q) 
11 

are the Fourier transform of the source functions of the 4D 

axial current operators JA.,J-L(xh and JA.,J-L(x) 11 respectively. 

The nth KK-mode axial-vector meson's wave function, denoted by 1/JA,n(z), is the 

solution of equation (3.9) with q2 = m~,n' and with boundary conditions ?j;(O) = 0 

and 8z1fJ(z0 ) = 0. The normalization of 1/JA,n is identical to that of the p-meson's wave 
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function, and is given by J (dz/ z)'lj!A,n(z) 2 = 1 [13]. On the other hand, the pion's wave 

function, denoted by cp(z) or 1r(z), is the solution of the coupled differential equations, 

i.e., equation (3.10) and (3.11), with q2 = 0 in the limit of massless pion. Furthermore, in 

this limit, the boundary conditions for the pion wave functions are ¢(0) = 0, 1r(O) = -1 

and 8z¢(z0 ) = 0. [A careful analysis is given in ref. [13] for m'Tf small. There, the UV 

boundary conditions for the scalar wave functions are ¢(0) = 0 and 1r(O) = 0. However, 

the function 1r(z) away from z = 0 approaches -1 rather quickly. For m'Tf ---+ 0, the 

function 1r( z) equals -1 in essentially the entire slice of 5D AdS space, 0 < z < z0 .] 

Using Eq. (3.11) and the UV boundary conditions, one finds 1r(z) = -1 for all z. 

Therefore equation (3.10) can be rewritten in terms of w(z) = cp(z)- 1r(z) as 

(3 .12) 

The solution is given by [23] 

(3.13) 

where a = g5cr/3, with g5 = 21r as shown in ref [13]. Note that w(z) is identical to 

A(O, z). Parameter z0 = 1/ AQcD is determined by the experimental value of p-meson's 

mass mp = 775.5 MeV [70], which corresponds to z0 = 1/(322 MeV) [13]. 

For the a 1 's wave functions, one has to rely on numerical methods. However, other 

aspects of the axial-vector mesons are analogous to the vector mesons. For instance, the 

bulk-to-boundary propagator of a1 can be written in terms of 'lj! A,n as 

A( ) ='""" (~Oz''lj!A,n(E))'lj!A,n(z) 
q, z L...J 2 2 ' n mA,n -q 

(3.14) 

cf equation (17) of ref. [34] and ref. [13, 21]. The bulk-to-boundary propagator A(q, z) 

satisfiesA(q,c:) = 1 and8zA(q,zo) = 1. 
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3.2.3 Two-Point Functions 

The completeness relation is given by 

(3.15) 

The complete set of states includes IA~(q, .X)), the nth axial-vector state, as well as 

l1ra( q)), the pion state. 

By applying the completeness relation into 2-point functions (OIT J~(x)J_J.4(0)J_IO) 

and (OIT J~(x),JA_(O),IO), then multiplying q2
- m; and taking the limit q2 ---+ m;, one 

can extract the following quantities from the AdS/QCD correspondence [13] 

FA,n Oz1/JA,n(z) I ' (3.16) 
95 Z Z=E: 

r; Oz w(z) I (3.17) 
2 ' 95 Z Z=E 

where FA,n is the decay constant of the nth mode of the a 1 , and frr is that of the pion. The 

latter is obtained in the chirallimit q2 ---+ m; = 0. The decay constants are defined by 

(OIJ~,fl(O)J_IA~(p, .X)) 

( Ol J~,fl (0), 17rb(p)) 

(3 .18) 

(3.19) 

Equation (3 .17) and (3 .13) relate the input parameter rJ to the pion decay constant 

3 r(2/3) ! h(az~) p- (2 2) 3 3 
7r - 47r2 r(1/3) a -=-1_-"-~---;(-a---;z~;-:-)" 

3 

(3.20) 

Using the experimental value fn = 92.4 MeV, we find a = 2.28 AbeD• therefore rJ = 

(332 MeV) 3 . Consequently, other observables can be determined, mA,l = 1376 MeV and 

F~:; = 493 MeV. They are in a good agreement with the experimental values mA,l = 

1230 MeV and F~:; = 433 MeV. 
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3.3 Gravitational Form Factors 

The three-point function that includes the stress tensor follows from 

(3.21) 

and the relevant part of the action (3 .7) that contributes to the 3-point function is linear in 

h'w and quadratic in the non-gravitational fields, 

s~l = j d5x [- v(~::PC7 (8P1ra- A~)(8(71ra- A~) 

+ 
2 

1
2 hPrY [ - FrYzFpz + TJ01.j3 FrYO<FpfJ J] , 

9sZ 
(3.22) 

where hPC7 is the metric perturbation defined analogously to equation (3.6), viz., gPC7 = 

z2 ( TJPC7 - hPC7) . 

To isolate the pion-to-pion elastic stress tensor matrix elements from the Fourier 

transformed 3-point functions ( JOI. ( -p2)T1w ( q)Jf3 (pi)), we apply the completeness rela­

tion (3.15) twice, then multiply by 

01. fJ 1 
P1P2 r;, 

and take the limit PI --t m; = 0 and p~ --t m; = 0. 

(3.23) 

We obtain the transverse-traceless part of the stress tensor matrix elements, for 

TJ.L"(O) at the origin in coordinate space, 

(3.24) 

where p = (p1 + p2 ) /2 and q = p2 - p1 . The gravitational form factor Atr is given by 

(3.25) 

Note that, except for the H, this form factor is similar to the electromagnetic form factor 

given in [22, 23] although they come from different terms of the action (3.7). H( Q, z) is 

the bulk-to-boundary propagator of the graviton for spacelike momentum transfer q2 = 
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-Q2 < 0. It is defined by h1w(q, z) = H(Q, z)h~,Aq), where hf.lv(q, z) is the Fourier 

transform of the metric perturbation hw ( x, z). In transverse-traceless gauge, qf.l hf.lv = 0 

and h~ = 0, the linearized Einstein equation becomes 

(3.26) 

with boundary conditions h(q, c:) = 1 and Bzh(q, zo) = 0. The solution is given by [34] 

(3.27) 

Since H(O, z) = 1, one can check that A7J"(O) = 1, which is a correct normalization for 

Our procedure obtains the transverse-traceless part of the stress tensor; the full stress 

tensor can have a trace, which means there could be a term Hrtv- qf.lqv jq2 )T, where T 

is the trace of T~'v. In general, there are two gravitational form factors for spin -0 particles. 

The expression for the pion matrix elements written in terms of the two independent form 

factors is 

mined here. 

For a 1 , the corresponding matrix element is identical to the p-meson's [34]. The 

only difference is that the p-meson's wave function 1/Jn is replaced by 1/JA,n, the a 1 's wave 

function. The A form factor is now given by 

(3.29) 

The other form factors mirror the p-meson's form factors expression. 

Both A7J"( Q2
) and Aa1 (Q

2
) are shown in Fig. 3.1. 



3.4 Consequences 

3.4.1 Radii 

In the limit Q z0 « 1, one can expand 1t ( Q2
, z) and obtain the radius 

where 

1r2) = 
\ 7r grav -

Gravitational Form Factors 

Aa ,An ,----~--~---~---, 
1 

1 

0.8 

0.6 

0.4 

0.2 

0 ~--~--~---~--~ 
0 5 10 

Qz(AQco2) 

15 20 
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(3.30) 

(3.31) 

FIG. 3.1: Plot of A with momentum transfer squared in units of AQcD = 1/ z0 • The red solid 
line is A1l' and the blue dashed line is Aa, 

We find 

(r;\rav = 0.13 (fm)2 = (0.36 fm) 2
. (3.32) 

M. Polyak:ov, in a different model [71], also found a small gravitational radius for the pion, 

(r;) grav = (0.42 fm) 2
• The gravitational RMS radius is significantly smaller than the 

electromagnetic radius (r;)c = 0.33 (fm)2 = (0.57 fm) 2 , obtained from the AdS/QCD 
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model in chirallimit [23]. Compared to the experimental result (r;)c = (0.67fm) 2 [70], 

the difference is even more apparent. This shows, as in the p-meson case, that the energy 

distribution of the pion is concentrated in a smaller volume than the charge distribution. 

For a1 , the corresponding radius is 

~ J dzz (1- ;:5) ~~, 1 
0.15 (fm) 2 = (0.39 fm) 2

. 

As expected, it is smaller than the charge radius (r~Jc = 0.39 (fm) 2 

calculated from the AdS/QCD model. 

3.4.2 High Q2 limit 

(3.33) 

(0.62 fm) 2 

For high Q2
, the form factor A1l' scales as 1 j Q2

. The precise expression is given by 

A (Q2 ) = 4p(O) = 16Jr
2 
/; 

1l' Q2 Q2 ' (3.34) 

which follows from the fact that at high Q2
, the second term of the function H ( Q, z) 

in equation (3.27) dominates. This term behaves like e-Qz. Therefore, one can allow 

z0 ---+ oo in equation (3.25), and replace p(z) by its value at the origin, p(O), and then do 

the integral analytically. 

One can verify, most easily in the Breit frame, that this scaling agrees with the per-

turbative QCD prediction. It can be shown that [61] 

(3.35) 

eJ.Lv(q, 0) gives the helicity-0 component of the spin-2 part of the stress tensor, with 

Here, ((q, )..) is the polarization vector of a spin-1 particle of momentum q. Equa-

tion (3 .35) is equivalent to 

(3.37) 



For a1 , the high Q2 behavior of the form factor Aa1 is 

12J•i•" 12 A (Q2) = '1-'A,n 
a1 Q4 
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(3.38) 

Similarly Call Da1 rv 1/Q4 , while Fa 1 rv 1/Q6 , which mirror the scaling results for. 

p-mesons, with the notation given in [34]. 

3.4.3 Sum Rules for the GPD 

Deeply virtual Compton scattering process involves a target absorbing a virtual pho­

ton and subsequently radiating a real photon. The virtual Compton scattering amplitude 

can be written in terms of integral involving the generalized parton distributions (GPD) 

H(x, ~, Q2) [55]. In a model with quarks, xis the light-cone momentum fraction of the 

struck quark constituent relative to the total momentum of the target hadron. 

For spin-0 hadrons, there is only one GPD, defined by 

There are sum rules connecting this GPD to the gravitational as well as to the electro-

magnetic form factors. The well known sum rule is for the first moment of the GPD [54] 

(3.40) 

where F(q2 ) is the electromagnetic form factor defined by 

(3 .41) 

A further sum rule exists because the stress tensor element r++ can be related to 

the second moment in x of the operator whose matrix element defines the GPDs. For the 

pion, the result was given in [67] and reads, 

(3.42) 
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Ref. [67] also uses a chiral Lagrangian to show that A1r(O) = 1 (the momentum sum rule) 

and C7r(O) = 1/4. One can set~ = 0 in the above equation so that only the first term, 

which is known from the AdS/QCD model, in the right-hand side survives. There are 

also first-moment sum rules for the axial vector meson GPDs, which precisely parallel 

the ones given for the p-mesons in [34] 

3.5 Conclusions 

We have worked out the gravitational form factors of pions and of axial-vector 

mesons using the AdS/CFT correspondence, and have given the sum rules connecting the 

gravitational form factors, which can also be called stress tensor or energy-momentum 

tensor form factors, to the axial sector GPDs. 

A striking numerical result is the smallness of the pion radius and of the axial-vector 

meson radius as obtained from A( q2
), the gravitational form factor that enters the momen­

tum sum rule. This parallels the results for the ordinary vector mesons [34]. It suggests 

that the energy that makes up the mass of the meson is well concentrated, with the charge. 

measured by the electromagnetic form factors spreading more broadly. 



CHAPTER4 

Strange Mesons and Kaon to Pion 

Transition Form Factors 

4.1 Introduction 

In this chapter, we consider the extension of the anti-de Sitter space/quantum chro­

modynamics model (AdS/QCD) to allow broken flavor symmetry, and apply the model to 

the kaon system and particularly to the Ke3 form factors. 

The connection between 5D gravitational theories on an anti-de Sitter space and 4D 

conformal field theories began as a correspondence between a type liB string theory and 

anN= 4 super Yang-Mills theory in the large Nc limit [8, 17, 65]. This has inspired 

an analytic model referred to as AdS/QCD connecting 5D theories living on an anti-de 

Sitter space to 4D QCD [13, 14]. Interesting results have been obtained for masses, 

couplings, and electromagnetic and gravitational form factors for vector, axial vector and 

pseudoscalar mesons. For a selection of these results, see [63, 72, 39, 45, 40, 36, 21, 32, 

23, 73, 22, 74, 66, 34, 35, 75, 76]. 

The Ke3 form factors describe the decays K ---+ 1rfv and are currently most known 

63 
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for the role they play in high-precision extractions of the Cabibbo-Kobayashi-Maskawa 

(CKM) matrix element Vus. The form factors themselves are the K to 7T transition matrix 

elements of the strangeness changing vector current. There are two Kt3 form factors, 

bespeaking the fact that the strangeness changing current is not conserved, and has a lon­

gitudinal as well as a transverse part. Experiments measure the product of the form factors 

and IVusl· Hence the extraction of IVusl from the K£3-decay measurements depends on 

having a reliable calculation of the form factor normalization. So far, these calculations 

have been from chiral perturbation theory [77, 78, 79, 80] or from lattice gauge the­

ory [81, 82, 83, 84, 85]. Here we will present a first calculation of these form factors 

from AdS/QCD. We will also solidify and extend our ability to calculate quantities in the 

flavor-broken versions of AdS/QCD. 

Our form factor normalizations can be compared to those obtained from other calcu­

lational methods, our slopes can be compared to data as well as to other calculations, and 

since we calculate using an analytic method, we can also obtain a curvature that can be 

compared to experimental data. All comparisons of results to other methods and to data 

show good agreement, as will be detailed below. 

We work with general mass pseudoscalar mesons. Previous results known to us 

worked in the chiral limit or calculated some quantities using expansions valid at small 

mass. In particular, while we can neatly derive the Gell-Mann-Oakes-Renner (GOR) [86] 

relation in the chirallimit, we do not use it to obtain any of our results and can test to see 

how accurate it is at given quark mass. 

Section 4.2 reviews AdS/QCD with notation pertinent to several quarks of differing 

masses. Section 6.3 gives results obtained from two-point functions, including bulk-to­

boundary propagators, masses, and decay constants, focusing on differences from the 

flavor symmetric case, in particular considering scalar mesons along with vector, axial 

vector, and pseudoscalar mesons. Section 4.4 contains algebraic results for the form fac­

tors, with the numerical results given in Sec. 4.5. Closing remarks are offered in Sec. 4.6. 
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4.2 The AdS/QCD model 

We will use the following metric for the 5 dimensional Anti-de Sitter space 

c < z < zo, (4.1) 

where the metric of the 4 dimensional fiat space is 'TJJ.Lv =diag(1, -1, -1, -1). The cut-off 

at z = c (with c ---+ 0 implied) corresponds to UV cut-off in QCD, while the hard-wall 

cut-off at z0 corresponds to IR cut-off, AQcD, to simulate confinement. 

According to the AdS/CFT correspondence, for every operator in 4 dimensional 

theory there is a corresponding field in the AdS5 space. Operators of our interest are 

current operators JfJ.L = '1JnrJ.Lta'l/Jn, JR_J.L = 'tj}qRfJ.Lta'lj;qR and quark bilinear '1Jn'l/Jqw 

In the AdS5 space, these operators correspond to gauge fields L~(x, z), R~(x, z), and 

a scalar field X(x, z) respectively. Following [13], we will consider a 5D action with 

SU(3)L® SU(3)R symmetry as follows 

S = J d5
x ygTr{ /DX/

2 + 3/X/2
- 4~g (Fell+ Fc~l) }. (4.2) 

The field strength is defined by Fj;1 = 8MLN- 8NLM - i[LM, LN] and analogously 

for FJ:-1. The scalar field X and gauge fields interact through the covariant derivative 

DMX = [)MX- iLMX + iXRM in such a way that the action is chiral invariant. We 

also use the vector and the axial-vector field defined from L = V +A and R = V-A. 

The theory begins as one that has SU(3)L® SU(3)R symmetry, and one would like 

to maintain as much of the symmetry as possible even when going to massive quarks and 

in particular to flavor non-symmetric quark masses. In a chirally symmetric world, the 

action is invariant as the X field transforms via 

(4.3) 

One can expand X as 

(4.4) 
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whereupon an axial transformation (which has Ul = U R) induces to leading order a 

shift in the pion field, 1r
1
a = 1ra - ea' where ea is a parameter in the transformation UL = 

e-ioata and is consistent with 1ra being a pseudoscalar field. With flavor symmetry, Xo is a 

multiple of the unit matrix and commuting, so one can easily write X= e2i-rrata X 0 , as has 

often been done. However, in the flavor non-symmetric case, this would make 1ra appear 

to be associated with left-handed transformations rather than with axial transformations, 

and gives it unexpected parity properties and mixing with vector as well as with axial 

vector fields. For example, one obtains a quadratic term in the Lagrangian proportional to 

"lMNTr [X0 , 8M1rbtb] [X0 , VN], which will violate 4D parity when X 0 is not proportional 

to the unit matrix. (With the split exponential, one gets cancellations rather than just 

commutators.) 

Shock and Wu [37] have early on considered three-flavor extensions of AdS/QCD, 

although keeping X = e2i-rrata X 0 . They did not study the more dynamical quantities like 

form factors, but did obtain many good results for masses and decay constants. How­

ever, as they themselves point out, they did not obtain good results for the ground state 

pseudoscalar kaons with the same parameters that gave good results for the more excited 

strange mesons. With the exponential split, as we think it should be, one obtains good 

results for pseudoscalar as well as strange axial and vector (and even scalar) meson states. 

Katz and Schwartz [87] also considered flavor-broken AdS/QCD, although their 

main focus was on the U(l) problem and also did not study form factors. They also 

kept X = e2i-rrata X 0 , but only explicitly studied the part of the action that mixes the 

axial vectors with the pseudoscalars, where problems do not appear. We might remark 

already that they used the GOR relation to get the strange quark mass. The GOR relation 

becomes less valid as the quark mass increases, and using a different method to fix the 

strange quark mass, we find a larger value than they quote. 

Hambye et al. [44] also studied three-flavor AdS/QCD, focusing on quantities that 

are calculated from four-point functions such as the purely hadronic K-rr2 decays or the 



67 

BK parameter needed to calculate K 0-K0 mixing. They work in a limit where all quarks 

are massless, and so have X 0 = X = 0. Hence their subjects and their approximations 

do not greatly overlap with the present work, although we plan to consider quantities 

obtained from four-point functions in future work. 

Turning off all fields except X 0 (z) and solving the equation of motion, one obtains 

1 3 2X0 .. = v· ·(z) = r M· ·z + -L: ·z ~J ~J " ~J ( ~J , (4.5) 

where ( is a rescaling parameter [18, 19] discussed below. From the AdS/CFT corre-

spondence MiJ can be identified as quark mass matrix which responsible for the explicit 

breaking of the chiral symmetry of QCD and L:iJ as the quark condensate (qiq1) which 

spontaneously break the chiral symmetry of QCD to SU(3)v. Assuming u and d symme-

try, we have 

0 

M= 

0 

L:= 

CTq 0 0 

0 CTq 0 (4.6) 

In general CT8 =/= CTq. However, we will also consider the limiting case when CT8 = CTq, as 

an analytic solution for the vector field can be obtained. 

Regarding the quark masses and the quark condensate parameter CT, we adopt a nor­

malization parameter as advocated in [18, 19], wherein quark masses are multiplied by a 

factor ( = .../NC/27T [20] compared to earlier conventions and CT is divided by the same 

factor. One can, of course, view the quark masses and CT in AdS/QCD as parameters 

of this particular model, and many important quantities, including the GOR relation and 

most of the results in this chapter, are unchanged by this rescaling. However, the rescaled 

parameters allow a precise·connection to the two-point correlation function of the quark 

condensate at small distances, which is known from perturbative QCD, and also leads to 

a better agreement with mass parameters at the hadronic scale and with the quark con-

densate as obtained from methods disconnected from AdS/QCD. Quark masses obtained 
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from AdS/QCD had generally been strikingly low and the quark condensate strikingly 

high, but following [18, 19] one can argue that the disagreement was a matter of having 

incommensurate definitions. 

4.3 Two-point function 

Up to second order in fields, the action can be written as 

where contraction over 'f/M L is implicit. The mass combinations come from 

~Ma25ab 
2 v -Tr [ta, Xo] [tb, Xo] , 

~Ma25ab 
2 A 

Tr {ta,Xo} {tb,Xo}, (4.8) 

or, 

0 a=1,2,3 

Ma2 v t (v8 - vq)2 a= 4,5,6, 7 

0 a= 8, 

v2 q a=1,2,3 

Ma2 
A t (vq + V8 )

2 a= 4,5,6, 7 

.!. ( v2 + 2v2) 3 q s a= 8, 

(4.9) 

where 

(J 

vq(z) (m z + __ll_z3 
q ( ' 

V8 (z) CTs 3 
(msz+(z. (4.10) 
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For later convenience we define 

(4.11) 

As shown in Eq. (4.5), the vacuum solution contains both explicit and spontaneous sym-

metry breaking parameters, Mij and L:ij respectively. The parameters mq and ms in the 

5D theory are usually considered to be explicit symmetry breaking, and give quark mass 

terms in the 4D theory that are also explicit symmetry breaking. The condensate param­

eters may be considered spontaneous symmetry breaking, but in the absence of the quark 

mass parameters (i.e., in the chirallimit where the mq and m 8 go to zero), one expects 

that the condensate parameters are all the same. Hence one may argue that the differences 

in the condensate parameters do arise from explicit symmetry breaking. Since the Mf;-

functions depend only on differences V 8 - Vq, one can say that they would be zero ifthere 

were only spontaneous symmetry breaking. In this limit, the masses of the vector mesons 

in the same octet are degenerate. 

The axial sector of action (4.7) is invariant under gauge transformation, 

(4.12) 

Hence, we are free to set A~ = 0. For the vector sector, the mass term destroys the gauge 

freedom for a= 4, 5, 6, 7. Hence, we can set Vza = 0 only for a = 0, 1, 2, 3, 8. We will 

show that the non-vanishing Vz is related to the non-vanishing longitudinal part of the 

vector field. 

4.3.1 Vector sector 

The vector field satisfies the following equation of motion 

(4.13) 
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For the transverse part, 8J.L vJ.Lal_ (X' z) = 0' one obtains 

(4.14) 

where q is the Fourier variable conjugate to the 4 dimensional coordinates, x. 

We shall write the vector field in terms of its boundary value at UV multiplying a 

profile function, or bulk-to-boundary propagator, VJ.Lal_ (q, z) = VJf(q)Va(q2
, z), and set 

va ( q2 , E) = 1 (Note that there is no summation over the group index a of the profile 

function). The boundary value Vt(q) acts as the Fourier transform of the source of the 

4D conserved vector current operator. At theIR boundary, we choose Neumann boundary 

condition az Va( q, z0 ) = 0. In the ~iJ = cr5iJ limit, the solution can be written in terms of 

Bessel function 

(4.15) 

a 2 - (Ko(Qzo) - - ) V (q , z) = Qz Io(ifzo) I1(Qz) + K 1(Qz) , (4.16) 

for q2 < aa, where q = Jq2 - aa and Q = Jaa- q2 • Near the UV boundary, the 

profile function can be written as 

-2 2 
( 2 ) q z ( -2 2) Vq,z =1+ 4 ln qz + .... (4.17) 

The longitudinal part of the vector field, VJ.Lil = aJ.L~a and Vz are coupled as follows 

(4.18) 

(4.19) 

where we define ~a = -az ira and ~a = Ja- ira. The constancy of aa ( z) when ~ij = cr5ij 

simplifies above equations into 

(4.20) 
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This is precisely the equation for the transverse part of the vector field. Fixing boundary 

conditions as ¢a(q, c) = 0 and ira(q, c) = -1 on the UV brane and Neumann boundary 

conditions on the IR brane, one concludes that in the limit where a8 = aq = a the 

profile function for the longitudinal and the transverse part of the vector field are identical, 

~a ( q2
, z) = va ( q2

, z), with a solution given by Eq. ( 4 .15). In general, this is not the case, 

and both ~a and va can be solved numerically. For a = 1, 2, 3, 8, longitudinal vector 

fields are unphysical in the sense that they can be eliminated by fixing the gauge, vza = 0. 

Two-point functions can be calculated from the AdS/QCD correspondence by eval­

uating the action (4.7) with the classical solution and taking the functional derivative over 

VJ twice. One obtains 

i 1 eiqx (o IT J_ia(x)Jrb(O)i o) = -P~vsabaZv:~~2,c), 

i 1 eiqx(OIT Jt(x)JIIb(O)IO) = -Pfv6abaz¢:~~2,c), (4.21) 

where P~v = (rt1w- qJ.Lqv jq2) and Pfv = qJ.Lqv jq2 are the transverse and longitudinal 

projector respectively. Comparing this result with the quark bubble diagram of QCD, one 

can fix parameter g5 of the model [13] 

(4.22) 

Hadrons correspond to normalizable modes of the 5D fields. These modes should 

vanish sufficiently fast near the UV brane such that the action is finite and at IR brane 

satisfy Neumann boundary condition. The eigenvalue, q2 = M~, is the squared mass 

of the n-th Kaluza Klein mode. We expect vector mesons to be normalizable modes of 

equation (4.14) and scalar mesons to be normalizable modes of Eqs. (4.18) and (4.19). 

In the L:ij = a6ij limit, the scalar meson has identical mass with the corresponding vec­

tor meson. However, for a = 1, 2, 3, 8, longitudinal modes are unphysical. Hence, the 

lightest scalar meson obtained from the longitudinal mode of the vector field is a strange 

meson, K0. Regarding scalar mesons in AdS/QCD, see also Ref. [18]. 
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As a remark, we may note that one could include a scalar field explicitly by defining 

X, similarly to [18], as 

(4.23) 

with S = sata (ignoring the scalar singlet). In this case, after some manipulation, the 

quadratic terms in the action involving VM- and Sb for a, b = 4, 5, 6, 7 become 

(4.24) 

where one can show that the square bracket on the last line is zero. Redefining the the 

vector field, 

va -----* va + ~fab88 ( sb ) 
M M v'3 M Mfr ' (4.25) 

one obtains a massive vector field and eliminates the scalar field, and the action becomes 

like the one we use here. 

When the condensate parameters are all the same, wave functions for the vector 

mesons are given by 

";,a( ) = v'2zJ1 (zJ M;t
2

- aa) 
'Yn Z . I 2 ' zoJI(zov M;t - aa) 

(4.26) 

with normalization condition, J ( dz / z )7j;~ 2 = 1. In particular, we obtain an infinite 

tower of KK rho mesons for a = 1, 2, 3, the corresponding tower of K* mesons for 

a = 4, 5, 6, 7, and w0 mesons for a = 8. The Neumann boundary condition on theIR 

gives J0 (Mf:z0 ) = 0. Identifying the lightest mode as the rho meson, we can fix z0 

parameter of the model. 

Figure 4.1 shows wave functions of the three lightest vector mesons. By our choice 

of boundary conditions hadrons wave functions localized closer to IR brane than to UV 

brane. 

The presence of J0 (qz0 ) on the denominator in Eq.(4.15) indicates the existence of 

poles for timelike q. More precisely, the profile function can be written as a sum over 
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FIG. 4.1: Plot of 'lj;1 (solid red curve), 'lj;2 (dashed blue curve), and 'lj;3 (dash-dot green curve), 
with z in units of zo. 

mesons poles 

va( 2 z) =" -g5F;:'lj;~(z) 
q' ~ 2 Ma2 ' 

n q - n 
(4.27) 

where F;: = l8z1/Jn(E)j(g5E) 1- From Eq.(4.21), F;: can be identified as the decay constant 

of the n-th KK vector meson, 

(4.28) 

One can substitute the above expansion of the profile function into (4.21) and obtain 

self energy function as a sum over narrow mesons poles. A well known signature of large 

Nc QCD, which is intrinsic to the AdS/QCD correspondence. 

4.3.2 Axial sector 

Many of our derivations for the axial sector resemble corresponding derivations for 

the vector sector. For example, the equation satisfied by the transverse part of the axial-

vector field is analogous to Eq. (4.14), with aa replaced by f3a(z). 

The profile functions of the longitudinal part of the axial-vector field and the 1r field 
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satisfy the following equations 

(4.29) 

(4.30) 

where longitudinal part of the axial-vector field denoted by A~ 11 (x, z) = 8~'¢a(x, z). The 

boundary conditions are ¢a(q2 , c:) = 0, 1ra( q2 , c:) = -1, and 8z¢a( q2 , zo) = 8z1Ta( q2
, zo) = 

0. Note that these equations as well as boundary conditions are analogous to the longitu-

dinal part of the vector field. 

In order to solve the coupled equations, one can combine Eq. (4.29) and (4.30) into 

a second order differential equation, defining ya ( q2 , z) = 8z(/Ja ( q2 , z) I z, to obtain [22] 

(4.31) 

In this notation, the boundary condition at the IR limit is given by ya ( q2
, z0 ) = 0 which 

is nothing but 8z¢a( q2
, z0 ) = 0. At the UV boundary, Eq. (4.30) and boundary conditions 

of 1T and ¢, give c:8z ya ( q2
, c:) I {3 ( c:) = 1. Near the UV cut-off the profile function can be 

written as 

(4.32) 

Notice that although the above solution blows up logarithmically at UV, the profile func­

tions¢( q2
, z) as well as 1r( q2

, z) do not, because of a multiplication by z in their definition. 

Pseudoscalar hadrons in the axial sector are pions, kaons and etas. Explicitly, ?Ta 

field can be written as follows 

1T (4.33) 

The corresponding normalizable modes, denoted by y~ ( z) , satisfy Eq. ( 4.31). Their 

eigenvalues, q2 = m~2 , are the squared mass of the corresponding hadrons. As in the 
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vector sector, the axial sector allows not a single mode but an infinite tower of KK 

modes. These modes satisfy y~(z0 ) = 0 at theIR boundary, consistent with 8z¢)~(z0 ) = 

az?T~(zo) = 0, and c8zy~(c)/ (Ja(c) = 0 at the uv brane, consistent with ¢~(c)= 7Ta(c) = 

0. Near the UV boundary, the normalizable mode behaves like 

(4.34) 

or equivalently ¢>n rv a0 z2 /2 and ?Tn rv m;a0 z2 /(2(3a(c)). The coeffiecient a0 is deter-

mined by the orthonormality condition 

izo dz (Ja~z) y~(z)y~(z) = ~~ . (4.35) 

These normalizable wave functions can be solved numerically. Using this normalization, 

the dimension of the normalizable modes is different from the dimension of the profile 

function. We use it because it is well behaved for the ground state in the chiral limit 

(despite the 1/m~2 on the right-hand-side). A plot of ?Tn and ¢>n, for n = 1 and n = 2, is 

shown in Fig. 4.2. 

Let us derive how the profile function, ya(q, z), can be written as sum over normal-

izable modes, y~(z). First, we write ya(q, z) = 2:: c~(q2)y~(z). Multiplying the left and 
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the right hand side of the equation by z(q2 - m~2)ym(z)/f3a(z), then integrating over z, 

one obtains 

after integration by parts and imposing the equation of motion (4.31). The second term 

and the upper limit of the first term vanish by the boundary conditions of ya ( q, z) and 

y~(z). Hence, ignoring the non-pole terms, the profile functions can be written as 

a( 2 ) _ L m~2y~(E)y~(z) 
Y q 'E - 2 a2 ' q -m n n 

(4.37) 

which can be integrated to obtain 

(4.38) 

Axial current-current correlators are analogous to Eq. (4.21), 

(4.39) 

from which, one can identify f~ as the decay constant, 

(4.40) 

The experimental value of MP gives the z 0 parameter. Parameters mq and r7q can be 

determined by fitting m~ and ff, for a = 1, 2, 3, with the pion's mass and pion's decay 

constant respectively. In the r7q = r78 limit, fitting m~, for a= 4, 5, 6, 7, with the kaon's 

mass, mK, gives m 8 • We will call this parametrization as model A. Given experimental 
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data for Mf = 775.5, mn = 139.6 MeV, fn = 92.4 MeV, and mK = 495.7 MeV, we 

obtain 

zo (322.5 Mev)- 1
, 

mq (27r/J3) 2.29 MeV= 8.31 MeV, 

aq as= ( v'3/(27r)) (328.3 MeV)3 = (213.7 MeV) 3
, 

(27r/J3) 51.96 MeV= 188.5 MeV. (4.41) 

A global fit to fifteen observables, allowing aq i- as, yields, 

zo (328.0 Mev)- 1
, 

mq (27r/J3) 2.16 MeV= 7.84 MeV, 

aq (J3/(27r)) (312.2 MeV) 3 = (203.2 MeV) 3
, 

ms (21r JJ3) 56.81 MeV= 206.1 MeV, 

as ( J3/(27r)) (322.8 MeV) 3 = (210.1 MeV) 3
. (4.42) 

The fifteen obervables include eleven observable in Table 4.1 and the additional four ob­

servables are f + ( 0) , A~, A~ and Ao, from the kaon to pion transition form factor discussed 

in Sec.4.5. The quark masses given here include the normalization parameter suggested 

in [18, 19]. The AdS/QCD quark masses are renormalization scale independent. In QCD 

the quark masses do evolve with renormalization scale. We should compare our masses 

with experimental QCD values of the quark masses at a low renormalization scale, say 

1 GeV or perhaps a bit below. The quark masses quoted by the particle data group [28] 

evolved to 1 Ge V using their prescriptions are in the range 3.4-7 MeV for mq and 95-175 

MeV for ms. Predictions of the model for masses and decay constants using terms up to 

second order expansion in the fields of the 5D action are summarized in Table 4.1 . These 

may be compared to results in [37, 87, 88]. 



TABLE 4.1: Masses and decay constants. Model A is a four parameter fit to four observables as 
indicated in the Table, and maintains as = a q. Model B is a five parameter fit to 15 observables 
(11 from this Table and 4 from the kaon to pion transition form factors discussed in the next 
section) with a 8 -1 a q. The values of the parameters are given in the text. 

Observable Model A ModelB Measured 
(O"s = O"q) (O"s =/= O"q) 

(MeV) (MeV) (MeV) 

m'lr (fit) 134.3 139.6 

f'lr (fit) 86.6 92.4 
mK (fit) 513.8 495.7 

fK 104 101 113 ± 1.4 
mK0 791 697 672 

fK~ 28. 36 
mp (fit) 788.8 775.5 

pl/2 
p 329 335 345 ±8 

mK· 791 821 893.8 
pl/2 

K* 329 337 
mal 1366 1267 1230 ± 40 
F.l/2 

a1 489 453 433 ± 13 
mK1 1458 1402 1272 ± 7 
pl/2 

K 511 488 

4.3.3 Massless pion limit 
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The AdS/QCD model has consequences of chiral symmetries, such as the Gell-

Mann-Oakes-Renner relation (GOR), as shown in [13]. Here, we will present a slightly 

different derivation, starting from the normalization condition, Eq.(4.35). As noted in 

[13], the weight function z/ (3(z) has significant support only for z close to Zc = Jmq/30", 

hence, the normalizable wave function Yn can be evaluated at z rv c: and moved outside 

the integral. Away from Zc, the weight function decays very fast, hence the upper limit 

integral can be replaced by infinity. Noting that from just after Eq. (4.38), Yn(c:) = -g5!1r, 

we obtain 

2 a2 a2 {
00 

z 
gsfl ml Jo dz (3a(z) = 1. (4.43) 
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The GOR relations immediately follow, J';m; = 2mqO"q for a = 1, 2, 3 and f'km'k = 

(mq + ms)(O"q + 0'8 )/2 for a= 4, 5, 6, 7. However, for the kaon case, our results deviate 

by over 30 percent from the GOR relation. 

As mTC approaches zero, the GOR relation becomes exact. Fixing fTC to experimental 

data, parameter O"q approaches (331.6 MeV) 3 . In this limit, the 1r1 (z) normalizable wave 

function becomes constant, 1r1 (z) = -1/ (g5 fTC), throughout the region of interest with a 

step function-like jump near the UV boundary. The wave function of the lightest mode 

can be solved analytically in terms of modifed Bessel function. Defining TJ = g50" /3, one 

obtains 

where, 

( 
I 2 (r~z3 ) ) 2 3 -- 'I Q 3 

Y1=Nz -I_a(TJz)+ I 3
( 3 )h(TJz) , 

3 a TJZo 3 
3 

2 2 2 ) I~ ( TJ z~) 
N = g50" f(2/3)f(1/3 I ( 3 ) . 

-~ TJZo 

(4.44) 

(4.45) 

Evaluating y1 at UV boundary, we obtain an equation relating fTC and O" in the chirallimit 

which is in perfect agreement with previous result [23]. One should notice that n > 1 KK 

pions still present in the chirallimit. 

4.4 Three point functions and form factors 

The transition form factors for Kt3 decay is defined from [28, 89] 

(7r- (p) IJ~I~SI=l) IKO(k)) 

= f+(q2 )(k + P)p, + f_(q2 )(k- P)p,, (4.46) 

with q = k - p. By isospin, they could equally well be defined using the K+---+ 1r0 

transition. Only the vector part of the current contributes. Further let 

(4.47) 
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so that f+ and fo come from the transverse and longitudinal parts, respectively, of J~IL}.SI=l). 

Unless f_(q 2
) diverges as q2 ---* 0, one has f+(O) = f 0 (0). One may also write 

(4.48) 

to show the SU(3) flavor indices. 

In AdS/CFf or AdS/QCD, the three-point functions involving three currents are ob-

tained by functionally differentiating the 5D action with respect to their sources, which 

are taken to be boundary values of the 5D fields that have the correct quantum num-

bers [17, 65,21, 34]. To wit, 

aa Jlb f3b (i/i3
) b"S(V1m) 

(OITJAII(x)Jj_ (y)JAII(w)IO) = 5Aoa( )5Vob( )5Aoc( ) 
lla X _l_Jl Y llf3 W 

(4.49) 

where S (V rrrr) is the relevant part of the 5D action evaluated using classical fields that 

solve the equations of motion with z = 0 boundary values A~~ ( x) or Vlt (y). 

Matrix elements of the current are obtained from the three-point functions using [21, 

34], 

from which we obtain the form factor f +. 

A similar expression for the longitudinal part of the current J0b ( 0) using Vj~ (y), 

allowing us to obtain the scalar form factor f 0 • 

The relevant part of the action receives contributions both from the gauge terms and 

the chiral terms. Keeping only terms that have one vector field and two pion fields (either 



81 

¢P(x, z) or 1ra(x, z)) one obtains 

S(V1r1r) j d5x{ 
29

1
gzrbc ( 8'"<rv:~~a~~ql + 28z8v(rv:a~~<tl) 

+ :3 [gabc (8~"7ra- 8'"¢a) v:1fc- habc (~a~" (7ra7rc)- 8~"¢a7rc) v:] 

:3 [gabcaz1ravzb1fc- habc~az (7ra7rc) vzb] } (4.51) 

The rbc terms come from the gauge part of the original action, and the other terms 

come from the chiral part. We have defined 

gabc = -2iTr {ta,Xo} [tb, {tc,Xo}] 

habc = -2iTr [tb,Xo] {ta, {tc,Xo}} 

If none of a, b, or cis equal to "8", these become 

where for X 0 = ~co + c8t 8
, 

"" ~ Co + c,d""" ~ { vq, a=1,2,3 

~ (vq + V 8 ) , a= 4, 5, 6, 7. 

(4.52) 

(4.53) 

(4.54) 

The derivatives indicated in Eq. (4.49) are facilitated by going to Fourier transform 

space and using the relations [23, 35], 

7ra(p, z) = 7ra(p2, z) ip: A~~(p)' 
p 

VI'"(q, z) = Vb(q2, z) V1t(q), 

Vii~ ( q) z) = ( J} ( q2 ) z) - ii"b ( q2) z)) Vii~ ( q) ) 

~b(q,z) = -8zii"b(q2,z) iq: Vj~(q)' 
q 

8~" ---* -i (relevant momentum)'" . (4.55) 
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With experience, one can use the above translation dictionary to obtain form factor results 

quite quickly. Incidentally, in the limit of having the same quark condensate parameter cr 

for all flavors of quarks, one can show that the bulk-to-boundary propagator Vb( q2
, z) for 

the transverse case is identical to ;j}(q2, z)- irb(q2, z). 

For the transverse form factor, the Vz terms in the action, Eq. (4.51), do not con-

tribute. One obtains, 

(4.56) 

where cpa and 1ra are now ground state normalizable eigenmodes, with subscript "1" tacit. 

The superscripts on cpa, 1ra, and Vb are the flavor indices for quantities with pion or kaon 

quantum numbers. We are working in the isospin conserving limit, so that the cpa are the 

same for a= 1, 2, 3 and again the same for the set a= 4, 5, 6, 7, and similarly for 1ra and 

As a check, in the equal mass limit, V 8 = Vq = v, the transverse Kc3 form factor 

should by SU(3) symmetry be the same as the electromagnetic form factor. One obtains 

in this limit 

which indeed is the same as F7,:(q2 ) as found in Eq. (3.5) in [22] or to Eq. (38) in [23], 

allowing for the fact that those authors wrote the results using the profile functions and the 

massless pion limit, whereas we used the normalizable eigensolutions [34] and nonzero 

mass. 

The longitudinal form factor is 
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fo(q2) = 1zo dz 

x ( ( ¢4 (q2, z) - ii4 (q2 , z)) { ~8,¢18,¢7 + ggv,~;3+ v,) ( ¢1 - n1 )(¢'- n 7) 

+ 2q2 ¢1¢7 + 8 3( g}q2 2) [(vs- Vq)(3vq + Vs)(¢1- 7r1)(¢7- 7r7) 
z z mK -mn 

- 4v,v,q\1 
( ¢7 

- n 7
) + ( v, + v,)(3v4 - v,)(¢' - n 1 )¢'] } 

azir4 (q2
, z) { m~ + m;- q2 (a ,~.. 1 ,;..7 _ ,;..1a ,;..7) gg(vs- Vq)(3vq + Vs) a ( 1 7) 

+ ( 2 2) 2 z'f/ 'f/ 'f/ z'f/ + 8 3 z 7r 7r mK- mn z z 

(4.58) 

The identity f 0 (0) = f+(O) is apparent after noting that azirb(O, z) = 0 and considering 

the q2 = 0 normalizations of the profile functions. 

4.5 Numerical Results for Ke3 Form Factors 

We obtain numerical solutions for the bulk-to-boundary propagators and the normal-

izable eigenfunctions in the massive quark case using Mathematica or Maple, and then 

use the numerical solutions to obtain f+(q2
) and f 0 (q2

). We present a plot of the results in 

Fig. 4.3. Of particular interest for comparison to data [28, 89] and to chiral perturbation 

theory [77, 78, 79, 80] or lattice gauge theory [81, 82, 83, 84, 85] are the values off+ ( 0), 

the slopes off+ and f 0 , and the curvature off+· 

Our results from models A (0'8 = O'q) and B (0'8 independently fit), as well as the 

results from lattice gauge theory, chiral perturbation theory, and experiment are listed in 

Table 4.2. 

Experiments measure f+(O) times the Cabibbo-Kobayashi-Maskawa (CKM) matrix 

element Vus. If the CKM matrix element is gotten from elsewhere, for example from the 

file:///dtfdrf
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FIG. 4.3: The Kt3 form factors f+ (solid red line) and fo (dashed blue line) plotted vs. q2 over 
the physical range pertinent to K --+ 1rev. The plot is based on the "Model Pl' parameters, where 
O"s = O"q. 

unitarity relation, then all the above values of f + ( 0) are in agreement with experimental 

data. More usually, the calculations are taken to be accurate within the stated limits, and 

are used to extract the most precise available values of IVusl from the data. 

Experiments also measure the slope and curvature of the Kc3 form factors. For f +, 

both the slope and curvature can be fit, and are parameterized as [28] 

(4.59) 

while for f 0 (q2 ) there is a linear fit 

(4.60) 

Values for the parameters are given in the Table. For the experimental data in Table 4.2, 

we took the numbers from the FlaviaNet Working Group on Kaon Decays [89]. 

Additionally, [84] quotes a result J_(O) = -0.113(12). The intercept J_(O) can be 

related to the slope parameters, 

(4.61) 
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TABLE 4.2: Results from our models, compared to lattice gauge theory, chiral perturbation 
theory, and experimental data. 

I Observable I Model A I Model B I Lattice xPT Data [89] I 

f+(O) 0.965 0.936 0.968(11) [82] 0.961(8) [77] 
0.9742(41) [84] 0.978(10) [78] 
0.9560(84) [85] 0.984(12) [79] 

0.974(11) [80] 
A' + 0.0249 0.0227 0.0237(23)(21) [85] 0.0249(11) 
).," + 0.0021 0.0016 0.0016(5) 
Ao 0.0123 0.0140 0.0128(22)(45) [85] 0.0134(12) 

which leads to f _ (0) = -0.141 for model A and f _ (0) = -0.110 for model B obtained 

here or f-(0) = -0.129(18) using the FlaviaNet fits to experimental data for )..0 and)..~. 

4.6 Conclusions 

We have extended the AdS/QCD model of Ref. [13, 14] to SU(3)L x SU(3)R model 

with a broken flavor symmetry. In order to introduce quarks with differing masses, we 

write the X field with the exponentials of the pseudo scalar field split symmetrically about 

the classical expectation value X 0 • We find that neither the longitudinal part of the vector 

field nor Vz can be gauged away for a = 4, 5, 6, 7. If instead of using the symmetric form, 

one expands X = exp( i27rata)X0 , as can certainly be done when X 0 is a multiple of the 

identity, the longitudinal part of the vector field and Vz will in general mix with the 1r 

field, hence with the longitudinal part of the axial-vector field, and give a parity violating 

term in the Lagrangian. 

We have done both a four parameter and a five parameter fit. The four parameter 

fit constrains the condensate parameter to be flavor symmetric, a8 = aq, and the other 

four parameters are fit to the rho meson's mass, pion's mass, pion's decay constant and 

kaon 's mass. Predictions of the model for the non-dynamical properties of mesons such as 
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masses and decay constants are within 20% of the experimental data. There is an infinite 

KK tower of pions present, just as there is for vector and axial vector mesons. For three­

point functions, we have calculated kaon-to-pion transition form factors, f+ and fo and 

obtain excellent agreement with experiment for the slope as well as for the curvature. We 

further find that the intercept, f + ( 0), agrees very well with lattice and chiral perturbation 

theory calculations. 

The five parameter fit allows a 8 to vary from O"q, and we performed a global fit to 

fifteen observables, including the intercept, slope, and curvature of the K to 1r transition 

form factors. The results were again good, comparable to though somewhat improved as 

expected compared to the four parameter fit. The best value of the strange condensate 

parameter was close to the value in the non-strange sector. 

We could perhaps add that we found the intercept f+(O) to be somewhat touchy. A 

drift of either m 8 or as away from the best values could lead to a significant decrease in its 

value. On the technical side, in the chirallimit, f+(O) becomes normalized to unity. This 

is because the profile functions Vb ( q2
, z) in the chirallimit are unity at q2 = 0 for all z and 

all b, so that f+(O) becomes just a wave function normalization integral. However, when 

differing quark masses and differing condensate parameters are used, the profile function 

at q2 = 0 is unity only for z = 0 and can drift quite far from unity as z approaches the IR 

cutoff, particularly if a 8 gets far from O"q. 

A lack within the AdS/QCD framework is the absence of error estimates. On the 

other hand, in the present context, it should be remembered that the form factor at q2 = 0 

is fixed by a normalization requirement in the equal quark mass limit, so what is really 

being calculated for f+,o(O) is the difference away from unity. Here a 10-20% error 

suffices match the error estimates quoted from other methods. 

Possible extensions of present work include calculations of four-point functions to 

obtain the BK parameter and K1r2 decay amplitudes [44], to consider isospin breaking in 

the context of the present model, and to use AdS/QCD as a method to study how differing 
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quark mass and hence differing pion mass affects the calculated results, and compare the 

trends that are found to lattice gauge theory. We hope to return to these topics in future 

work. 



CHAPTERS 

Hadronic Momentum Densities in the 

Transverse Plane 

5.1 Introduction 

Mapping the distribution of matter inside the nucleon is a goal of hadron structure 

physics. For example, one can relate the density of charged and magnetically polarized 

material inside a nucleon to Fourier transforms of charge and magnetic form factors. 

This old area has seen interesting and notable improvement lately, by way of finding 

relativistically exact relations between form factor data and two-dimensional line-of-sight 

projections of the charge density and polarization density [90, 91, 92]. 

In a related fashion, as we study here, one can map out the distribution of momentum 

within a hadron. Here too there is old information, in particular that (at some resolution 

scale) the momentum in a hadron is carried in about equal measures by quarks and gluons. 

More precisely, one reports the fraction x ofthe light-front longitudinal momentum,p+ = 

p0 + p3 , that is carried by individual constituents. In an extended object, one can further 

ask how the total momentum is distributed point by point, either in three-dimensions, or 
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as we shall do here, in a two-dimensional line-of-sight projection. 

We will study the spatial distribution of the momentum component p+, finding rela-

tivistically exact connections to Fourier transforms of gravitational form factors. Gravita-

tional form factors are directly related to empirical data, in that they are matrix elements of 

the stress (or energy-momentum) tensor which can be obtained as second Mellin moments 

of generalized parton distributions (GPDs) [54, 34]. The GPDs are accessible from deeply 

virtual Compton scattering experiments and can be loosely defined as the amplitude for re­

placing a parton in a hadron with one of a different light-front momentum. In the forward 

limit, GPDs reduce to ordinary parton distribution functions, and the first Mellin moments 

give the electromagnetic form factors; for reviews, see e.g. [93, 94, 55, 95, 96, 97]. 

In a light-front formalism, one can kinematically connect the wave functions of 

any hadrons of relevant momentum. Conventionally, the longitudinal direction is the 

z-direction, chosen to point along the vector direction of p = (p1 + p2) /2, where p1 (P2) 

is the momentum of the initial(final) hadron. Further, one chooses the, frame so that the 

momentum transfer q = p2 - p1 has q+ = 0, and satisfies q2 = -q]_ = -Q2
. Within the 

light-front formalism, one can project the probability density into transverse plane [98] 

and show that it is obtained from the 2-dimensional Fourier transform of a form factor. 

Transverse charge densities have been calculated for nucleons [90, 91, 92] and 

deuterons [99], using empirical electromagnetic form factors. Similar to the charge den-

sity, one can observe that the r++ component of the stress or energy-momentum tensor 

is the density corresponding to the p+ component of the 4-momentum, 

(5.1) 

In the transverse plane in position space, the density of momentum p+ can be defined 

from expectation value of the local operator r++ ( x+, x-, x _1_), 

+ ~ t ( ++ ~ I ) p (bj_) = -2 WIT (0, 0, bj_) w ' 
2p+ 

(5.2) 
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such that J d2b J..P+ (b J..) = 1. The state I w) is localized with its transverse center of mo­

mentum located at the origin, and is formed by linear superposition of light-front helicity 

eigenstates iP+, PJ.., .A), 

(5.3) 

Normalization factor N satisfies INI2 J d2fh/(27r) 2 = 1. 

The matrix elements of the stress tensor between momentum eigenstates can be writ-

ten as 

where ..\1 (..\2 ) denotes the initial (final) light-front helicity, and qj_ = Q( cos¢i~x+sin¢qey). 

The p+ momentum density can be written in terms of 2-dimensional Fourier transform of 

the form factor 

(5.5) 

We will calculate the spatial distribution of p+ in the transverse plane for spin-1/2 

and spin-1 hadrons, specifically the nucleons and the rho mesons. 

5.2 Spin-1/2 (Nucleons from GPD's) 

The momentum density results for nucleons will be semi-empirical. We use matrix 

elements of the stress tensor obtained from second moments of GPDs [54]. "Semi" in 

semi-empirical is a reminder that the GPDs are not yet measured in detail. However, the 

models are constrained to accurately represent measured parton distribution functions in 

one limit and to give measured electromagnetic form factors in another. 

For spin-1/2 particles, matrix elements ofthe stress tensor involve three gravitational 
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form factors, 

(5.6) 

For the vector GPDs for spin-1/2 particles, the quarkic contribution is defined by 

+ J dy- ixp+y- ( ). 1•/, ( Y) 1-L.J, (Y)I ). ) -P 27r e P2, 2 'f/q -2 'Y 'f/q 2 P1, 1 y+,y1_=0-

(In the frame we use,~= -2q+ jp+ = 0.) We also have H9 and E9 due to gluons. From 

the definitions, 

A(Q2
) 2::: 11 

xdx Ha(x, ~, Q2
), 

a=g,q -1 

B(Q2
) = 2::: 11 

xdx Ea(x, ~' Q2
). 

a=g,q -1 

(5.8) 

For the GPDs we use the "modified Regge model" of Ref. [100]. There we find, 

with 

Hq(x, 0, Q2) 

Eq(x, 0, Q2) 

K,u = 1.673, 

K,d = -2.033, 

qv(x)xn'(1-x)Q2' 

K,q '( ) 2 
Nq (1- x)11qqv(x)xa 1-x Q , (5.9) 

'r/u = 1.713, 'r/d = 0.566, 

Nu = 1.475, 

Nd = 0.9083. (5.10) 

The values of "'u,d are obtained from "'P = (2/3)"'u- (1/3)"'d and "'n = -(1/3)"'u + 

(2/3)"'d· 
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For the momentum density we need sea and gluon distributions. The gluon GPD 

H9(x, 0, Q2 ) is discussed in [101]. For applications, they give two forms, each of which 

is a gluon parton distribution multiplied by either a dipole form or a gaussian form for the 

Q2 dependence. The results from these two forms are very close to each other. A third 

possibility is to use the same Q2 dependence as for the valence quarks, Eq. (5.9). This 

gives a result in between the results from the two choices in [101], so will be the choice 

we use in this chapter. We follow a similar procedure for the sea quark contributions. 

All quark and gluon distributions are taken from the MRST2002 global NNLO 

fit [102] at input scale J-L2 = 1 GeV2
, 

uv(x) = 0.262x-0
·
69 (1- x)3

·
50 (1 + 3.83x0

·
5 + 37.65x), 

dv(x) = 0.061x-0
·
65 (1- x) 4

·
03 (1 + 49.05x0

·
5 + 8.65x), 

S(x) = 0.759x-u2 (1- x) 7
·
66 (1- 1.34x0

·
5 + 7.40x), 

g(x) = 0.669x- 1(1- x) 3
·
96 (1 + 6.98x0

·
5

- 3.63x)- 0.23x-1.27 (1- x) 8
·
7

. (5.11) 

With these definitions, we calculate 

Pi;2(b) = 1oo ~~ QJo(bQ) A(Q2)' 

where, J0 is the Bessel function, b = [b.l[, and Q = [qj_[. 

(5.12) 

Results for Pi;2 (b) are shown in Fig. 5.1, both as a contour plot and along a line 

through the center of the nucleon. The result is the same for the proton and neutron, 

assuming isospin symmetry. For comparison, the charge density of the proton is also 

shown. 

The RMS radius of the p+ density is 0.61 fm, notably smaller than the Dirac radius 

of 0.80 fm (corresponding to charge radius 0.87 fm) in this parametrization. 

Nucleons can also display density shifts due to polarization. We polarize the nucle­

ons in the transverse plane, and denote the polarization direction by fh = cos ¢sex + 

sin ¢s ey. The state with spin projection s .l = 1/2 in this direction will be [p+, i/.J_/2, s .l). 



by [fm] 
1~--~----------~ 

FIG. 5.1: Upper panel: Momentum density (for "p+") of the nucleon, p1,)2 , projected onto the 

transverse plane. Lower panel: The solid red line is p{12 for the nucleon, along an axis through 
the nucleon's center. For comparison, the proton charge density is also shown, as a dashed green 
line. The charge density spreads out more than the momentum density. 
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The impact parameter direction is denoted by b .l = cos </Yb ex + sin ¢b ey. The p+ density 

of the transversely polarized state is 

For the valence quarks, B(O) ~ -0.02, and P~s1. is essentially the same as p{12 , in 

contrast to the corresponding electromagnetic case [91, 92], and we show no plots. 

http://ti.fi
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5.3 Spin-l(Rho Mesons from AdS/QCD) 

For spin-1 particles, the stress tensor matrix elements can be expanded in term of six 

Lorentz structures multiplying six gravitational form factors, 

where a1ab,8l = ( a0 b,8 - a.Bba) /2. 

The two independent helicity conserving form factors 7;_t, and Tat, defined by 

Eq. ( 5 .4), can be expressed in terms of the above form factors, 

(5.14) 

where 'fJ = Q2 j (4m2). The first equality in each line above is generic; the second uses an 

AdS/QCD model worked out for rho (and other) mesons in [34, 35], where 

(5.15) 

We obtain the densities 

(5 .16) 

In the hard-wall model [13], <I>(z) = 0 and the z-integration in Eq. (5.15) is from 0 

to z0 • The profile function H(Q, z) and wave functions 'lf;(z) are 

H(Q,z) = ~Q2 2 (Kl(Qzo) I (Q ) + K (Q )) 
2 z h(Qzo) 2 z 2 z , 

v'2 
J ( )zJl(mnz). Zo 1 ffinZo 

(5.17) '1/Jn(z) 
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They satisfy the boundary conditions H(Q, 0) = 1, BzH(Q, z0 ) = 0, 'lf(O) = 0, and 

8z'lf(z0 ) = 0. The value of z0 = (323MeV)-1 is fixed by the rho meson's mass, such that 

J0(mnzo) = 0, where the lightest mass (labeled n = 1) corresponds to the rho meson. 

See also [21, 41] 

For the soft-wall model [31], <I>(z) = ""2z2. The mass eigenvalues are given by 

m~ = 4(n + 1)""2
, with now n = 0 corresponding to the rho meson. The integration 

region in Eq. (5 .15) spans from 0 to infinity. Instead of boundary conditions at the upper 

limit, we require a normalizable wave function, j(dzjz)e-"h
2
'lj!2 = 1, and finiteness of 

Hat infinity. Using results of H. Grigoryan [103], 

H(Q, z) = r(4rJ + 2) U(4rJ, -1, z2
) 

'!fn(z) = ""2z2J n! 1 L~1)(""2z2). (5.18) 

where L~a) is the generalized Laguerre polynomial and U(a, b, w) is the 2nd Kummer 

function. 

An analytic form can be obtained for density Pd(b_1_), 

(5.19) 

The other densities can be calculated numerically. They are shown in Fig.(5.2), along 

with the charge density [99]. 

Light-front longitudinal densities as well as charge densities, for helicity-0 rho­

meson are logarithmically divergent at the origin for both hard-wall and soft-wall model, 

which is evident in (5.19) for the soft-wall model. The hard-wall model is more com-

pact than the soft-wall model and the helicity-0 rho mesons are more compact than the 

helicity-1 rho mesons. Overall, the distribution of longitudinal momentum in position 

space is more compact than that of the charge. 

The two independent helicity flip form factors are 

T_"'i,1 = -rJE. (5.20) 
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FIG. 5.2: Upper panel: The red solid line is 27rb times Pci(b), the p+ density of helicity-0 
p-mesons in the hard-wall AdS/QCD model, while the purple dash-dotted line is the correspond­
ing result in the soft-wall model. The blue dashed line is 21rb times P8 (b), the charge density 
of helicity-0 p-mesons in the hard-wall model, while the green dash-dot-dotted line is the corre­
sponding result in the soft-wall model. Lower panel: the same but for p{ (b) and Pi (b). 

However, both Band E vanish in the AdS/QCD model. 

5.4 Conclusions 
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In conclusion, we have studied the distribution within extended objects of the matter 

that carries the component p+ of the momentum, in a light front viewpoint. 

The examples we used were real nucleons, where we used semi-empirical models of 

the nucleon GPDs as underlying input, and spin-1 particles, where the underlying input 

came from AdS/QCD studies of these states. The crucial gravitational form factors can 

be obtained as second moments of the GPDs. There are conceptual similarities to the 

light-front relations of charge distribution in the transverse plane to Fourier transforms of 

the electromagnetic form factors. Differences include using the gravitational instead of 

electromagnetic form factors and weighting the GPDs with x instead of charge. 

We presented plots that showed the p+ density in the entire transverse plane. A 

qualitative result is that the hadrons we study are all more compact when looking at the 
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p+ momentum density than when looking at the charge (or magnetic) density. We had 

earlier calculated "gravitational radii" from the slope of the gravitational form factors 

obtained for several species of mesons in an AdS/QCD model [34, 35]. In addition, we 

have learned that the phenomenon of compactness of the momentum distribution and 

the corresponding smaller root-mean-square radius is not limited to mesons which are 

studied using a purely theoretical AdS/QCD correspondence, but is also seen in nucleon 

distributions based on real data. 



CHAPTER6 

Nucleon electromagnetic and 

gravitational form factors from 

holography 

6.1 Introduction 

The anti de Sitter space/conformal field theory (AdS/CFf) correspondence [8, 17, 

65] is a conjecture which holds the possibility of obtaining accurate results in the strong 

coupling limit of gauge theories from classical calculations of gravitationally interacting 

fields in a higher dimensional space. The original correspondence was between a paricular 

string theory in lOD and a particular conformal field theory in 4D, namely the large Nc 

limit of N = 4 super Yang-Mills theory. 

A particular implementation motivated by the original AdS/CFf correspondence is 

the "bottom-up" approach, introduced in [13, 14], which is a way of using the AdS/CFf 

correspondence as motivation for modeling QCD starting from a 5D space. One may 

think that one has reached the point where the 1 OD string theory of the original AdS/CFf 
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correspondence has been reduced to a gravitational theory on AdS5 , and one then asks 

what terms should exist in the Lagrangian. The terms are chosen based on simplicity, 

symmetries, and relevance to the problems one wishes to study. 

QCD is not a conformal field theory, so one also needs to break a corresponding 

symmetry in the AdS space, in order to obtain, for example, discrete hadron masses. Two 

schemes which have the virtue of being analytically tractable are the hard-wall model, 

where the AdS space is sharply cutoff and a boundary condition imposed, and the soft­

wall model where extra interactions are introduced which have an effect akin to warping 

the metric and suppressing long distance propagation in the fifth dimension. 

Having chosen a Lagrangian and a cutoff scheme, one can study the phenomeno­

logical consequences for the 4D correspondent theory, and compare the results to data. 

Much of the work has focused on the bosonic sector [ 63, 72, 39, 45, 40, 41 , 36, 31 , 21 , 

32, 23, 43, 73, 22, 74, 66, 49, 34, 35]. The works include studies of spin-1 vector and 

axial states, pseudoscalars, and glueballs. Masses, decay constants, and charge radii that 

can be compared to experimental data agree with experimental data at the roughly 10% 

level. 

Studying fermions with the AdS/CFT correspondence is technically more compli­

cated than studying bosons. Two approaches have been pursued. One approach is to fol­

low upon the bosonic studies, and treat the fermions as Skyrmions within the model [104, 

46, 47]. The other approach is to begin with a theory in the 5D sector that has fundamen­

tal fermion fields interacting with an AdS gravitational background [105, 106, 107, 108]. 

One can also consider a hybrid of the two approaches, where one begins with fermions as 

Skyrmions of a 5D model, and uses the Skyrmion model to obtain parameters and interac­

tion terms of another 5D Lagrangian where the fermion fields appear as explicit degrees 

of freedom [109, 110, 111]. 

We here pursue the AdS/CFT correspondence within a model where the fermion 

stands as an explicit field in the 5D Lagrangian. We will particularly be interested in 
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obtaining results for the electromagnetic and gravitational form factors. For the electro­

magnetic form factors, there is already work reported in the literature, particularly for the 

hard-wall model, and we will quote some results from this material, adding some useful 

detail. The derivation of the tensor or gravitational form factors is new. 

One point in mapping fermion fields from a 5D theory to a 4D theory is that not all 

components of the fermion spin or are independent. In both theories, for massive fermions, 

one can obtain the (ill-named) right handed part of the field from the left handed part of 

the field, or vice-versa. An early 4D discussion of this is in [112]. Thus, as one begins by 

finding exact solutions for fermions in an AdS background, one can only choose boundary 

conditions for the independent components, which one can choose to be the left handed 

ones. The left handed 5D fermions on the boundary are sources for right handed fermionic 

currents in the 4D theory, and the corresponding left handed fermion currents can either 

be obtained from these, or can be consistently obtained from the derived right handed 

fermions in AdS space. 

When we study the soft wall model for fermions, the usual procedure of producing 

a "soft wall" by inserting an interaction with a background dilation field via an overall 

exponential factor does not by itself lead to normalizable solutions. (Indeed, it is possible 

to remove the overall exponential factor in the fermion case by rescaling the field.) We 

will introduce an additional interaction with the background field by using an analog of 

a scalar potential, that is, by adding a dilation interaction to the mass term. The resulting 

equations describing the interaction with both AdS gravity and the soft-wall potential can 

be solved exactly in the classical limit, with the normalizable solutions having the fea­

ture common to soft-wall models that their functional dependence in the extra dimension 

contains a generalized Laguerre polynomial. 

Our presentation will focus on the soft-wall model. It is easy to switch our equations 

to the hard-wall model just by dropping the soft-wall interaction term and using a suitable 

boundary condition. We will comment on this and show hard-wall as well as soft-wall re-
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suits. We will obtain expressions for both electromagnetic and gravitational form factors, 

and present the result for the nucleon radii as well as for general momentum transfer. We 

will find that radii obtained from the gravitational momentum form factor is smaller than 

radii obtained electromagnetically, as is also the case for the meson sector [34, 35]. 

The model, focusing on the baryonic degrees of freedom, is outlined in Sec. 6.2, and 

the two-point functions are worked out in Sec. 6.3. The form factors, both electromagnetic 

and gravitational are discussed in Sec. 6.4, and a summary is given in Sec. 6.5. 

6.2 The Model 

In a d-dimensional field theory, the generating function is given by 

(6.1) 

The precise statement of the AdS/CFT correspondence is that the generating function of 

a d-dimensional CFT is equal to the partition function of a field theory in AdSd+l 

(6.2) 

On the right hand side of the above equation, SAds(<I>c~) is the classical action evaluated 

on the solution of the equation of motion with boundary condition 

(6.3) 

The constant ~ depends on the nature of operator 0. 

The metric of d + !-dimensional AdS space is given by 

(6.4) 

where 'fl1w = diag(1, -1, -1, -1), J.L, v = 0, 1, 2, ... , d- 1 and we will set d = 4. The 

z variable extend from E: ___.. 0, which is called the UV-boundary, to oo, which is the 
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IR-boundary. In order to simulates confinement, one can use a hard-wall model [13, 

14, 45, 21], by cutting off the AdS geometry at z0 . The mass spectrum is found to be 

approximately linear at large mass, mn rv n. Alternatively, one can use the soft-wall 

model [31, 32], where the geometry is smoothly cut-off by a background dilaton field 

<I>(z). A choice for the dilaton field solution, <I>(z) = Kh2, gives the mass spectrum that 

is in agreement with Regge trajectory, m~ rv n. 

Consider a Dirac field coupled to a vector field in the d + !-dimensional AdS space 

with the following action 

where for the AdS space, e:4 = z6!4 is the inverse vielbein. Covariant derivative DN = 

aN + ~w NAB [rA, f 3] - iVN ensure that the action satisfies gauge invariance and diffeo­

morphism invariance. The non-vanishing components of the spin connection are WJ-Lzv = 

-wJ-Lvz = ~'TJJ-Lv. The Dirac gamma matrices have been defined in such a way that they 

satisfy anti-commutation relation {fA, f 3 } = 2'T]AB, that is ford = 4, we have fA = 

('y~-', -i'"l). We implement the soft-wall model by adding <I>(z) = "'2z2 to the mass 

term. Both the Dirac and the vector fields have an U(2) isospin structure. In particular, 

VN = ~ VN- + VNta, where ta is an SU(2) generator normalized by Tr(tatb) = c5ab /2. 

The Dirac field satisfies the following equation of motion 

(6.6) 

Evaluating the action on the solution, we obtain 

(6.7) 

where Ill R,L = (1/2)(1 ± ')'5)1l!. For hard-wall model theIR boundary is located at finite 

zrR = z0, while for the soft-wall model the z variable extends to infinity, i.e., ZJR = oo. 
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In the case of hard-wall model, theIR boundary term can be removed by requiring that 

either W L(ziR) = 0 or W R(ziR) = 0. 

Following [105, 106, 107], we add extra term in the UV-boundary 

(6.8) 

This term preserves the 0 ( d + 1, 1) isometry group of the original action and does not 

change the equation of motion. The action becomes 

(6.9) 

The Dirac field W R,L in momentum space can be written in terms of a product of 

d-dimensional boundary fields W~,L and profile functions or the bulk -to-boundary prop­

agators !R,L· i.e., WR,L(P, z) = z~ JR,L(P, z)w0(p)R,L· where pis the momentum in d­

dimensions. We choose w~(p) as the independent source field which corresponds to the 

spin-~ baryon operator OR in the d-dimensional field theory. Hence, ~ is chosen such 

that the equation of motion allows h (p, E) = 1. 

The left handed and the right handed components of the spin-~ field operators in d­

dimensional fiat space are not independent, since they are related by the Dirac equation. 

This is realized by the relationship between w~ and w~. chosen to satisfies pw~(p) = 

p\11~ (p). Ignoring the interaction term with the vector field, the equation of motion for the 

Dirac field becomes (for <I>= f\;
2z2

), 

(6.10) 

wherep=: y'Pi. 

In addition to (6.5) or (6.9), we have the kinetic term of the vector field 

(6.11) 
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where FJ:1N = aMvN- aNvM.The transverse part of the vector field can be written as 

VJ.t(p, z) = V(p, z)V~(p). At the UV-boundary, the bulk-to-boundary propagator satisfies 

V(p,E) = 1. According to the AdS/CFT dictionary, the V~(p) is the source for the 4D 

current operator J/:. The equation of motion in the Vz = 0 gauge is given by [32] 

(6.12) 

The normalizable mode, is a solution of the above equation with eigenvalue p2 = M~ 

which corresponds to the mass of the n-th Kaluza Klein mode of vector meson [ 13]. For 

the soft-wall model [32], the mass eigenvalues are M~ = 4/1;2(n+ 1), where n = 0, 1, .... 

For the hard-wall model the mass eigenvalues are Mn = "(o,nH! z0 , where 'Yo,n+l is the 

n + 1-th zeros of the Bessel function J0 • 

6.3 Two-point function 

6.3.1 Soft-wall Model 

To have fL(p, c) = 1 for ~(0) = 0 and fR not singular requires~ = ~ - M. The 

equation of motions of the profile functions (6.10), with ~(z) = 11;
2 z2

, become 

[8
2- 2 (M + J1;2z2)8 2 (M- !1;2z2) 2] f = 0 
z z+ 2 +p R ' z z 

[a; - 2 ( M : /1;2 z2) Bz + p2] h = 0. (6.13) 

The general solution is given by Kummer's functions of the first and the second kind. 

Requiring that the profile functions vanish at infinity, we obtain 

fL(p, z) (6.14) 

fR(P, z) (6.15) 

where ~ = 11;
2 z2

• From the UV-boundary condition we obtain 

r (a- L) 4~~:2 

NL = r (a) ' (6.16) 
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where a= M +~and we have NR = NL:J"' from Eq. (6.10). 

The normalizable wave function ~t1 for the n-th Kaluza Klein mode can be ob­

tained from Eq. (6.13), by requiring that p2 = m;. One find that solutions exist in terms 

of Laguerre polynomial when m; = 4t;;2 
( n + a) 

~ln)(z) = nL~0L~0)(~), 

~~)(z) = nR~o-~L~- 1)(~). 

Imposing the normalization condition, 

one obtains the normalization factors, 

1 2f(n+1) 
!';;0

-
1 r(a+n+1)' 

nLvfa + n, 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

For the right handed wave function~~), the normalization factor can be obtained either 

by using Eq. (6.10) or by imposing the above normalization condition. 

For the time-like region p2 > 0, the profile functions have infinite number of poles 

which correspond to the tower of infinite Kaluza-Klein mode. To show this, we write the 

profile functions in different forms utilizing the Kummer transformation ([113], p.505), 

h(p,z)=NL~au(a- ::2 ,a+1;~), 
!R(p,z) =NR~a-~u(a- ::2 ,a;~). 

The Kummer function can be written in integral representations, 

h(p, z) = r ~:) 11 dx (1x~+;;:+l exp ( -1 ~ x ~) ' 

(6.22) 

(6.23) 

(6.24) 

where a = -p2 / ( 4t;;2 ). The integrand contains generating function for Laguerre polyno-

mial ([113], p.784) 

1 ( X ) _ ~ (o)( ) n 
(1-x)o+l exp -1-x~ - ~Ln ~X. (6.25) 
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Performing the integrals, one obtains 

_ 4,.,;2 ~a oo L~a) ( ~) 

h(p,z)= r(a) ~p2-4,.,;2(n+a)' (6.26) 

which show that the mass square of the n-th Kaluza-Klein mode is 4,.,;2(n +a), as ex-

pected. Similar expansion for the right handed profile function yields 

-2,.,;p~a-~ oo L~a-1)(0 

fR(P, z) = f (a) ~ p2- 4,.,;2(n +a) . (6.27) 

Notice that the Laguerre polynomials which appears in the expansion precisely match the 

normalizable modes. Defining fn = 2,.,;/(f(a) nR) = 'ljJ~)(c:)jc:2M, the profile functions 

become 

fL(p, z) (6.28) 

fR(P, z) = (6.29) 

The 5D fermion action (6.9) can now be written in terms of sum over modes 

where PR = (1 + '"'!5)/2 is the right handed chirality projector. From the AdS/CFT 

correspondence and the appropriate functional derivatives, we have 

(6.31) 

One may also define the decay constant fn from (0 IOR(O) I p) = fnuR(P) and obtain the 

same result by inserting a set of intermediate states. In order to obtain the complete two­

point function ( 00), one also needs the left handed chirality operator 0 L, which can be 

obtained from the right handed one using OL(p) = (jjp)OR(p). 

6.3.2 Hard-wall Model 

For the hard-wall model,.,;= 0, and IR boundary is at ZJR = z0 . The mass eigenvalue 

of the Kaluza Klein mode depends on which propagator vanish at IR boundary. We will 
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set fR(z0) = 0, such that there is no massless mode. Requiring that fL(p, c:) = 1, the 

solution can be written in terms of Bessel function 

(6.32) 

The normalizable mode, again, settingp2 = m; on Eq. (6.13) with Dirichlet bound­

ary condition ¢Y;l(z0) = 0 and c/Jt)(c) = 0 gives 

v'2z01 JOi(mnz) 
zoJOi(mnzo) ' 

v'2z01 
l01-1 (mnz) 

zoJOi(mnzo) 
(6.33) 

Both satisfy normalization condition given in Eq. (6.19). The mass eigenvalue determined 

by J 01 _ 1 ( mnzo) = 0. One can easily see that the location of the pole of the profile function 

!R,L(P, z), in the time-like region p2 > 0, are precisely at the mass eigenstates m;. 

As in the soft-wall model, the bulk-to-boundary propagators can be written in terms 

of sum over normalizable modes given in Eq. (6.28) and (6.29), where for the hard-wall 

model 

(6.34) 

6.4 Form factors 

6.4.1 Electromagnetic Form Factors 

For spin-~ particles, the electromagnetic current matrix element can be written in 

terms of two independent form factors 

(6.35) 
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where q = p2 - p 1 and Q2 = -q2 . In this chapter, our interest is on the electromagnetic 

current operator of nucleons which can be written in terms of isoscalar and isovector 

currents 

J~n = Xi ( ~ J~5ij + Jf;r 11tfj) Xj, (6.36) 

where x = (1, 0) for proton, and x = (0, 1) for neutron. According to the AdS/CFT 

dictionary, the 4D isoscalar J~ and isovector Jf;r 11 current operators correspond to the 

isoscalar and isovector part of the 5D gauge field respectively. In the simplest model, the 

profile function of both satisfy Eq. (6.12). 

The isovector matrix element can be extracted from the 3-point function by the fol-

lowing relation 

0 
li~n (Pi- m;)(p~- m;) J d4xd4

yei(p2 x-qy-p1w) \OITOk(x)JU11 (y)O~(w)IO) 
P1,2-> 1,2 

= f~xiu(pz, sz) (pz, sziJU11 (0)IPl, s1) u(p1, sl)xj5(4l(pz- P1- q), (6.37) 

and analogously for the isoscalar current. 

Relevant term in the action (6.5) which contribute to the 3-point function is given by 

(6.38) 

However the above term only provides the F 1 form factor. Hence, we should add the 

following gauge invariant term to the action 

(6.39) 

We shall use different parameters: 'r/s for the isoscalar component and 'r/v for the isovector 

component of the vector field. They are fixed by the experimental values of the proton 

and the neutron magnetic moments. 
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FIG. 6.1: The red dashed line and the purple dot-dashed line are the electromagnetic form factors 
of proton from the soft-wall and the hard-wall model of AdS/QCD respectively. The solid blue 
line is the corresponding form factor from the Arrington empirical fit [114] 

Defining invariant functions 

where Q2 = -q2 > 0, we obtain the electromagnetic form factors for the proton 

Fl(P)(Q) 

Ft)(Q) 

C1(Q) + rJPC2(Q), 

r]pC3(Q). 

(6.40) 

(6.41) 

(6.42) 

(6.43) 

(6.44) 

For the neutron, the F1 and the F2 form factors are solely come from (6.39). We have 

Ft)(Q) 

F~N\Q) 

r]NC2(Q), 

r]NC3(Q), 

with parameters rJp and rJN are defined by rJP,N = (rJv ± rJs)/2. 

(6.45) 

(6.46) 

In the soft-wall model, the bulk-to-boundary propagator of the vector field is given 

by[32] 

V(Q, z) = r (1 +a) U (a, 0; ~)=a t dx xa-l exp (--x-~) . Jo 1- x (6.47) 
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where again a= Q2 /(4,;2). Integral in Eq.(6.40-6.42) can be evaluated analytically. For 

the lowest state n = 0, we obtain 

c~ 1 + 1) ( ~ + 1) ... (a + 1) ' 

-a(1- aa) (a+ 2)-1 (a+ 1)-1 

[C~2 +1) ... (a+1)] 
4a 

C3(Q) = 
c~1 +1) (~+1) ... (a+1)" 

One can check that F{P)(O) = 1 and Ft)(O) = 0. 

(6.48) 

(6.49) 

(6.50) 

In the limit of large momentum transverse, the electromagnetic form factors for the 

proton becomes 

a!(2,;)2a 

2
Q2a (1 + 2Tlp a), (6.51) 

4a(a + 1)! (2,;) 2a+2 

Q2n+2 
(6.52) 

Hence, M = ~which corresponds to a = 2 gives the correct large momentum scaling. 

The constant,;, was simultaneously fixed to the proton's and the p-meson's mass. The 

best fit, given by,;= 0.350 GeV, gives the proton's mass 0.990 GeV and p-meson's mass 

0.700GeV. 

Parameters T/P and T/N can be determined by matching the value of F2(0) with the 

experimental data: 1.793 for proton and -1.913 for neutron. One obtain, for a = 2, 

T/P = 0.224 and T/N = -0.239. 

The charge radius for the proton is defined by 

( 2) 6 dGE(O) 
r c P = - G E ( 0) dQ2 ' 

(6.53) 

where GE(Q) = F1(Q)- Q2F2 (Q)/(4m~). One obtains 

5 6F.(P)(0) 
( 

2) T/P 2 2 
rc P = 2,;2 + S,;2 + 4m2 = (0.961 fm) , 

p 

(6.54) 

which, in terms of rms-radius, is about 10 percent larger than the experimental result 

(rc) = (0.877fm). 
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For the neutron, the charge radius is defined by 

111 

5 

; 2 ) = _ 6dGE(O) 
\rC n dQ2 · (6.55) 

One obtains 

(6.56) 

which is an acceptably well result compared to the experiment (rb) = ( -0.112 fm2
). 

For the hard-wall model, the bulk-to-boundary propagator is given by [21] 

(
Ko(Qzo) ) 

V(Q, z) = Qz Io(Qzo) I1(Qz) + K 1(Qz) . (6.57) 

The parameter z0 determines both the mass of the nucleon and p-meson. We set z0 = 

(0.245 Gev)- 1 , which fits the measured proton's mass. 

In the large Q2 region, V(Q, z) -----* QzK1 (Qz), which behaves like exponential. It 

has significant support near z = 0 only. Therefore, one can replace ¢~(z) ± ¢'i(z) by its 
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approximate form near c, that is, ±f~z4a-2 
• One obtains 

(6.58) 

(6.59) 

(6.60) 

where the integral can be solved analytically to obtain 

2a-2a!(a- 1)! £~a, (6.61) 

2a-l(a!)2 £~a' (6.62) 

2a+2(a- 1)'(a + 1)' m2 ___g_ 
· · n Q2a+2 (6.63) 

Just as in the soft-wall model, the F1 form factor falls off correctly like Q-4
, when a= 2. 

Fixing the FY)(O) to the experimental value 1.793, one obtains 'r/P = 0.448. Hence, for 

the proton 

p(P)(Q) = 3.64 
1 Q4 ' (6.64) 

For the neutron, fixing FiN) (0) to the experimental value -1.913, we have 'r/N = -0.4 78. 

In the limit where Q2 ~ 0, the bulk-to-boundary propagator of the vector field can 

be expanded as 

Q2z2 ( ( z )) V ( Q, z) = 1 - -
4

- 1 - 2ln zo , (6.65) 

hence, in this limit, 

OzV(Q,z) = Q
2
zln (~). (6.66) 

Substituting Eq.(6.65) and Eq.(6.66) to Eq.(6.40-6.42) and taking the derivative with re-

spect to Q2
, we obtain the Dirac radius for the proton (ri) P = (0.843 fm) 2

, which 

corresponds to the charge radius (r~)P = (0.910 fm) 2
• For the neutron, we obtain 

(r~)n = ( -0.125 fm2
). These calculated charge radius are in better agreement with 

experimental results compared to the soft-wall model. 
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In Fig. 6.1 we show plots of GE and GM form factors using AdS/QCD model and 

compare it with empirical fit given in [114]. Figure 6.2 shows the corresponding plots for 

the neutron with the empirical fit given in [115]. 

6.4.2 Gravitational Form Factors 

The most general structure of stress tensor matrix element for spin-~ particles can 

be written in terms of three form factors 

(6.67) 

where p = (p1 + p2)/2. This matrix element can be extracted from the following 3-point 

function 

(6.68) 

Stress tensor operator in 4D strongly coupled theory correspond to the metric perturbation 

in the bulk. 

Consider a gravity-dilaton-tachyon action [42, 116], in addition to (6.5). The metric 

is perturb from its static solution according to TJJ.tv -----* TJJ.tv + hJ.tv· The action in the second 

order perturbation becomes 

(6.69) 

where the transverse-traceless gauge conditions, 8J.thJ.tv = 0, and h~ 0, have been 

imposed. The profile function of the metric perturbation satisfies the following linearized 

Einstein equation 

(6.70) 
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For the soft-wall model, the non-normalizable solution is given by 

H(Q, z) f(a' + 2)U(a', -1; 2~), (6.71) 

a'(a' + 1) t dx xa'- 1(1- x) exp (-2~x) , Jo 1- x 

where H ( Q, z) = h( q2 = -Q2
, z) and a' = a/2. It satisfies H (p, c) = 1 and vanishes at 

infinity. For the hard-wall model, imposing Neumann boundary condition OzH(p, z0 ) = 

0, we have [34] 

(6.72) 

In order to calculate (6.68), we will need terms in the 5D action in the form of h~'l!. 

The vielbeins are modified according to eJ.L a ---+ eJ.L a - zh~/2. In the transverse-traceless 

gauge, the determinant of the metric is unchanged from the static solution. It can be 

shown that the following factor in the 5D action (6.5) is unchanged under perturbation 

(6.73) 

Hence, remaining terms in the 5D action (6.5) relevant in calculating (6.68) are 

(6.74) 

Fourier transforming the fields 

where H( Q, z) is the bulk-to-boundary propagator defined by hJ.Lv(q, z) = H(q, z)h~v(q) 

and h~v(q) acts as a source for the 4D stress tensor operator. 

Lorentz structure ofEq.(6.75) shows that only A form factor present. We obtain 

A( Q) = J dz e-:: H( Q, z) ('¢i,(z) + 7/J~(z)) . 
2z 

(6.76) 
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For the soft-wall model, an analytical solution can be obtained. In particular, for n = 0 

A(Q2
) =(a'+ 1) [- (1 +a'+ 2a'2 ) + 2 (a'+ 2a'3 ) <I>( -1, 1, a')], (6.77) 

where <I>( -1, 1, a') is the LerchPhi function. Results are shown graphically in Fig. 6.3 for 

both the hard-wall and soft-wall models, and compared to results obtained by integrating 

a model for the nucleon GPDs [100]. 

The corresponding gravitational radius is 

2 6 dA(O) 3ln(2) 2 \rc) =- A(O) dQ2 = ~ = (0.575 fm) , (6.78) 

which is slightly smaller than the gravitational radius obtained from the second moment 

integral of the modified Regge GPD model, i.e., 0.608 fm, and notably smaller than the 

proton charge radius. 



116 

6.5 Conclusions 

We have studied baryon form factors using the AdS/QCD correspondence, and have 

modeled the baryons using fundamental fermions in the extra dimensional theory. We 

have given results for both the soft-wall and hard-wall models for both electromagnetic 

form factors and for the gravitational form factor A(Q2
), the momentum form factor. 

The soft-wall model has extra interactions whose effect is to effectively cut off prop­

agation as one gets deeply into the extra dimension. Originally, the soft-wall exponential 

modifications were simply inserted [31] in order to obtain an excited hadron spectrum 

more in accord with observation, but it has been shown [42, 116] how to obtain the ex­

ponential factors in a dynamical model including kinetic terms and a scalar potential for 

explicit dilaton and tachyon degrees of freedom. We have followed the latter implemen­

tation here, noting that it leads to different numerical coefficients in the argument of the 

exponential for the vector and graviton sectors. For the baryon sector, we implemented 

the soft-wall model by including also a harmonic oscillator-like scalar potential added to 

the mass term [ 116]. 

In the bottom-up approach to modeling QCD via 5D theories and the AdS/CFT cor­

respondence, the terms in the 5D Lagrangian are chosen based on simplicity, symmetries, 

and relevance to the quantities under study. However, the most simple vector-fermion 

interaction yields only a Dirac form factor, so a Pauli term must be introduced in the 5D 

action. This means that the overall normalization of the F2 form factors is not determined 

ab initio, but the shape of the form factors is fixed. 

Our results for the form factors were presented both algebraically and graphically 

over some Q2 range, with the radii corresponding to each form factor given explicitly. In 

all cases, radii measured from gravitational form factors are smaller that radii measured 

from electromagnetic form factors. This accords with similar observations from lattice 

gauge theory [117], and one may attribute it to the fact that higher momentum fraction 
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matter, quarks or gluons, is more heavily weighted in the momentum sum rule, and high 

momentum fraction partons tend to have a narrower transverse size distribution [118]. 



CHAPTER 7 

Conclusions 

Quantum Chromodynamics (QCD) has been generally accepted as the correct de­

scription of strong interaction. However, the non-perturbative aspect of QCD is far from 

being understood. The gauge/gravity or AdS/CFf correspondence offers the possibil­

ity of relating nonperturbative quantities in theories akin to QCD in four dimensions to 

weakly coupled five dimensional gravitational theories. 

A bottom-up AdS/QCD approach has been used, by constructing five dimensional 

Lagrangian with field contents that match four dimensional operators. Many aspects of 

QCD can be reproduced such as chiral symmetry breaking, confinement. Quantitatively, 

the results obtained from the AdS/QCD model agrees up to 20% with experimental data, 

or other methods (when available). 

In Chapter 2, the gravitational form factors of rho mesons are calculated. These 

provide restrictions on the generalized parton distributions of vector mesons, via the sum 

rules connecting stress tensor form factors to generalized parton distributions. We con­

centrate on the traceless part of the stress tensor, which suffices to fix the momentum 

and angular momentum sum rules. The vector mesons appear noticeably more compact 

measured by the gravitational form factors than by the charge form factor. 
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In Chapter 3, the gravitational form factors of pions and a1 mesons are calculated. 

One (of the two) pion gravitational form factors is directly related to the second moment 

of the pion generalized parton distribution, thus providing a sum rule for the latter. As 

was also the case for vector mesons, both the pion and the axial-vector mesons appear 

strikingly more compact measured by the gravitational form factor than by the electro­

magnetic form factor. 

Generalization of the AdS/QCD model to include the strange quark is performed in 

Chapter 4. We present a calculation of the K 13 transition form factors using the AdS/QCD 

correspondence. The normalization of the form factors is a crucial ingredient for extract­

ing IVuslfrom data, and the results obtained here agree well with results from chiral pertur­

bation theory and lattice gauge theory. The slopes and curvature of the form factors agree 

well with the data, and with what results are available from other methods of calculation. 

In Chapter 5, we examine the spatial density within extended objects of the momen­

tum component p+, and find relativistically exact connections to Fourier transforms of 

gravitational form factors. We apply these results to obtain semiempirical momentum 

density distributions within nucleons, and similar distributions for spin-1 objects based 

on theoretical results from the AdS/QCD correspondence. We find that the momentum 

density in the transverse plane is more compact than the charge density. 

Finally in Chapter 6, we have studied electromagnetic and gravitational form factors 

for baryons, in a scheme where the baryons are treated as independent particles in AdS 

space. The form factors were calculated both in the case of so called hard-wall and soft­

wall model. The simplest fermion Lagrangian for the five dimensional curved space does 

not contribute to the F2 form factor unless one add a Pauli term which also contributes to 

the F1 form factor. 
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