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ABSTRACT PAGE 

Carbon nanosheets are a novel two-dimensional nanostructure made up of 2-20 graphene 
atomic planes oriented with their in-plane axis perpendicular to the growth substrate. 
Previous efforts in developing nanosheet technology have focused on the characterization 
of the system and their development as an electron source due to the high atomic 
enhancement factor (beta) and low turn on field. Further investigation of nanosheets as 
high surface area electrodes revealed poor wetting by polymeric material and extreme 
hydrophobic behavior. 

Because nanosheet technology has promise as a high surface area electrode material, this 
thesis research has focused on three areas of interest: the enhancement of nanosheets 
through chemical modification, the incorporation of the nanosheets into a polymeric 
composite and the delivery of a proof of concept measurement. We have successfully 
introduced defects into the graphene lattice of the nanosheet system via an acid treatment. 
Inspection of these defects by x-ray absorption near-edge spectroscopy (XANES) shows 
the introduction of two features in the spectra assigned to C=O pi* and C-0 sigma* 
transitions. Thermal desorption spectroscopy (TDS) was used to identify the oxygen 
containing groups created during the functionalization as carboxylic and hydroxyl functional 
groups. These groups were identified through the combination of carboxylic, hydroxyl, 
anhydride and lactone peaks in the C02, CO and H20 TDS spectra. Deconvolution of the 
TDS spectra using 1st and 2"d order Polanyi-Wigner equations enables the calculation of 
desorption energy values for individual features and for the estimation of the number of 
atoms desorbing from the surface during a particular event. Identification of the exact 
nature of the functional groups was attempted through high resolution x-ray photoelectron 
spectroscopy (XPS) of the C(1s) and 0(1s) peaks. Though the pairing of sub-peaks with 
specific functionalities of the system was not possible due to the complexities of the 
spectra, the trends observed in the data support the data gathered via the XANES and 
TDS experiments. 

Also, a procedure for the classification of defect density and exact functionality was 
outlined. Deconvolution of the TDS spectra using 151 and 2"d order Polanyi-Wigner 
equations enabled the calculation of desorption energy values for individual features and 
for the estimation of the number of atoms desorbing from the surface during a particular 
event. This information along with the changing sub-peak areas from dedicated and 
calibrated XPS system would allow for not only a more accurate estimation of defect 
density I but also for the identification of sub-peaks in the C( 1 s) and 0( 1 s) spectra. 

Finally I photoluminescence measurements of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-
phenylene vinylene] (MEH-PPV) and MEH-PPV/nanosheet systems showed a quenching 
of three orders of magnitude for the MEH-PPV/nanosheet system suggesting that 
nanosheets are a viable option for excition separation in organic photovoltaics. 
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Chapter 1 

Introduction 

1.1 Carbon nanostructures 

The fabrication and use of nanostructures has received a lot of attention recently be

cause the limits of traditional microstructures are being pushed by current technology. 

A nanostructure is defined as a structure that has at least one of the three dimensions 

between 1 and lOOnm as illustrated by Figure 1.1. If all three of the dimensions fall 

in this range, the structure is considered a zero-dimensional (OD) structure. Con

versely, if all three dimensions are outside of this range, the structure is considered 

bulk, or three-dimensional (3D). A one-dimensional (1D) nanostructure will have two 

dimensions that are nanometer in scale and a two-dimensional (2D) structure will 

only have one dimension that is in the range. A carbon nanostructure is simply a 

structure that fits the preceding criteria and is composed of carbon. Carbon is unique 

in that there is at least one allotrope in all four categories as shown in Figure 1.1. 

Well known carbon nanostructures include the OD fullerenes and1D carbon nanotubes 

and nanofibers. The 3D forms of carbon-diamond and graphite-are also commonly 

known. The discoveries of 2D carbon nanostructures, including nanosheets, nanowalls 

and graphene are more recent and complete the nanostructure group. 

Fullerenes are a class of material made up of hollow spheres or ellipsoids. The 

Buckminsterfullerene ( C60 )-named for the futurist Richard Buckminster Fuller best 

known for his geodesic dome design-is a OD carbon nanostructure discovered by Kroto 
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et al. in 1985 [1] that is made up of pentagons and hexagons of carbon. C60 (Fig. 1.1 

(a)) is the smallest structure to obey the isolated pentagon rule, meaning that no two 

pentagons are adjacent and each pentagon is surrounded by five hexagons. If carbon 

atoms are added to the central axis, an ellipsoid is formed. As the number of atoms 

added to the axis (j) increases, the size of the ellipsoid (C6o+j) increases as well until 

a nanotube (Fig. 1.1 (b)) is formed. 

Carbon nanotubes can be single-walled as seen in Figure 1.1 (b) or they can be 

multi-walled with concentric tubes layered inside one another. Though they have 

been used for centuries [2) Iijima is given credit for their discovery in 1991 after 

successfully characterizing such structures via transmission electron microscopy [3]. 

The formation of a single-walled nanotube can be imagined by taking a graphene 

plane and wrapping it around an axis that is parallel to this plane so that the edges 

are seamlessly mated (Fig. 1.2 - point 0 overlaps point A and point B overlaps point 

B'). The chiral angle (8) is measured relative to the direction defined by a1 . The 

chiral vector ( OA) is then defined by the relationship of the lattice vectors ( a1 and 

a2 ) and the integers n and m represented in Equation 1.1: 

(1.1) 

When n or m is equal to zero, the chiral angle of the nanotube is 0° and the 

nanotube is called a zigzag tube. When n = m, however, the nanotubes are called 

armchair and have a chiral angle of 30°. For all other combinations of n and m, the 

tubes are considered chiral. This is illustrated in Figure 1.3. Due to their diameter and 

geometric structures, nanotubes can also be metallic or semiconducting as predicted 

early on by theory [4]. If (2n + m) = 3q, where q is an integer, then the nanotube 

is considered metallic, otherwise the tube is semiconducting. All armchair nanotubes 

are metallic. 

2 
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<IOOnm )& y . 
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d e 

Figure 1.1: The different allotropes of carbon representing the different dimensional 
structures. The OD allotrope is represented by a C60 fullerene (a), the lD by a 
single-walled nanotube (b), 2D by single graphene plane (c) and the 3D structures 
of diamond (d) and graphite (e) are shown. The dimensions are represented on the 
lower left of the image. For a OD structure, all dimensions (x, y and z) must be below 
lOOnm. 
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Figure 1.2: To form the nanotube, the graphene sheet is rolled up so that 0 meets 
A and B meets B'. The chiral angle ( 0) is defined by the angle between the zigzag 
direction and the chiral vector ( OA). The unit vectors are represented by a1 and a2 . 
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Zigzag 

-..... 
Armchair 

Figure 1.3: To form the nanotube, the graphene sheet is rolled up so that 0 meets 
A and B meets B'. The chiral angle (B) is defined by the angle between the zigzag 
direction and the chiral vector ( OA). The unit vectors are represented by a1 and a2 . 

The two-dimensional nanostructures were not observed until 1997 when Ando et 

al. reported the observation as a bi-product of nanotube synthesis [5]. Our group 

was one of the first to report the intentional growth of a two-dimensional struc

ture which we termed carbon nanosheets [6, 7]. Conceptually, these nanosheets are 

graphene layers that grow vertically oriented from the substrate as illustrated in Fig

ure 1.4. Ultrathin epitaxial graphene films have been grown by vacuum graphitiza

tion of single-crystal silicon carbide, but typically produces several layers [8, 9]. Single 

graphene layers (Fig. 1.1 (c)), although hypothesized for years, were once thought to 

be thermodynamically unstable. However, Novoselov et al were able to isolate them 

in 2005 [10] via mechanical exfoliation. 

Chemical vapor deposition ( CVD) is a process commonly used for the deposition 

of thin film materials. During a typical process, gas phase reactants decompose and 

react on a substrate surface to create the desired film. There are various types of 

CVD available that are distinguished by the processing parameters and by means in 

which the chemical reactions are activated (e.g., low-pressure CVD vs. ultrahigh vac-

5 



1 -7 Layers 
--+ +-----

500- 8000nm 

} 
10-20 
layers 

Figure 1.4: Schematic of carbon nanosheets illustrating the vertical nature of the 
graphene layers. 

uum CVD and microwave plasma assisted CVD vs. radio frequency plasma enhanced 

CVD). Though carbon nanosheets have been obtained by other methods [5, 11-13], we 

use a radio frequency plasma enhanced chemical vapor deposition (RF PECVD) pro

cess [6]. This process utilizes an inductively coupled plasma to enhance the reaction 

rates of the precursor materials which allows for lower temperature processing. Our 

carbon nanosheets are the thinnest reported for structures not classified as graphene 

with two-layer edges commonly observed in transmission electron microscopy (TEM). 

Our nanosheets also do not require a catalyst for growth, thus eliminating the need 

for removal of non-carbon species after the growth. 

The chirality (armchair, zigzag or chiral) and the curvature of nanotubes define the 

electronic properties of the material. These properties, along with remarkable thermal 

and mechanical properties make nanotubes interesting for a variety of applications. 

To date, the properties of graphene are a result of the edges of the sheets where 
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interesting electronic properties emerge [14]. Due to the structure of the material these 

sites are inherently limited, however. The same can be said of carbon nanosheets. 

Recently, because of their high atomic enhancement factor ({3) and low turn on field, 

most research has focused on their development as an electron source. Therefore, this 

work focuses on the functionalization of carbon nanosheets and the characterization of 

resulting structures for the purpose of developing nanosheet technology as high surface 

area electrodes. By controllably creating defects and functional groups in the lattice 

of the material new opportunities open up. This thesis also includes a process for 

transferring the carbon nanosheets to zero thermal-budget substrate-a substrate that 

has experienced no thermal treatment-without damaging the original morphology. 

Additionally, as a proof-of-concept, measurements illustrating the effectiveness of 

carbon nanosheets as an exciton separation interface were also performed. Finally, 

carbon nanosheets were also used as templates for the growth of nanostructured Ti02 

during an atomic layer deposition (ALD) process. 

1. 2 Organization 

For the purposes of this research, carbon nanosheets were synthesized via RF PECVD. 

The as-deposited nanosheets were functionalized for the development of nanosheet 

technology and their use in advanced graphene devices. Chapter 2 focuses on the 

fundamentals of the techniques that were employed throughout the course of this 

work. The experimental setups used for our purposes are also outlined when appro

priate. 

Chapter 3 focuses on the experimental results of three major characterization 

techniques, include x-ray absorption near-edge spectroscopy (XANES), thermal des

orption spectroscopy (TDS) and high resolution x-ray photoelectron spectroscopy 

(XPS). With the use of these techniques, we were able to identify that defects were 
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successfully created in the graphene lattice of the carbon nanosheets and we were also 

able to define the nature of the functional groups created. 

Chapter 4 is representative of the functionality of functionalized carbon nanosheets. 

The work is also representative of the collaboration developed with U ppsala U niver

sity in Sweden during the lifetime of this research. 

Chapter 5 introduces a novel process for the transfer of carbon nanosheets to zero 

thermal-budget substrate while retaining the original morphology of the material. 

Experimental support for the use of carbon nanosheets as high surface area electrodes 

in organic photovoltaics is also presented. 

Finally, Chapter 6 provides a summary of all the work and possible directions for 

future work. The functionalization of carbon nanosheets-including the identification 

of the functional groups-provides ample opportunity for the progression of nanosheet 

technology. 
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Chapter 2 

Materials analysis tools used for 
the inspection of carbon 
nanosheets 

2.1 Introduction to materials analysis 

Throughout the course of this research, several techniques were used to investigate 

the morphology, composition, quality and properties of the carbon nanosheets. Two 

of these techniques, Raman spectroscopy and scanning electron microscopy (SEM) 

were utilized throughout the course of study for all of the various experiments. 

Others, however, were utilized as a more direct part of the experiments, such as 

Fourier-transform infrared (FT-IR), four point probe, x-ray absorption near-edge 

spectroscopy (XANES), x-ray photoelectron spectroscopy (XPS), and thermal des

orption spectroscopy (TDS). In this chapter, we provide an introduction to the growth 

of carbon nanosheets and the basic characterization of these novel structures. A brief 

background concerning the underlying fundamental principles for each technique uti

lized in subsequent experiments is also presented. 
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2.2 Growth of carbon nanosheets via radio fre
quency (RF) plasma enhanced chemical vapor 
deposition (PE CVD) 

Carbon nanostructures are labeled as zero dimensional (OD) and as one dimensional 

(1D) nanostructures, respectively, because of the number of dimensions that are less 

than 100nm. Figure 2.1 provides a schematic representation of a fullerene (a) and 

a nanotube (b), illustrating their size ranges and corresponding to their labeled di-

mensions. Graphite and diamond are well-known, 3D carbon structures, but a 2D 

structure was not. Sheet-like carbon structures were noticed as co-deposits in car-

bon nanotube (CNT) synthesis [15, 16], but it was not until Ando et al. [5] reported 

the petal-like sheets as a by-product of CNT synthesis that the synthesis of these 

structures were investigated. 

The synthesis of 2D carbon nanostructures has been reported by several methods. 

Shang et al. [13] reported the synthesis of carbon nanofiake films via hot filament 

CVD and Wu et al. [17] and Chuang [12] reported using microwave assisted PECVD 

for the synthesis of carbon nanowalls. Novoselov et al. [18] manufactured atomi

cally thin graphene via mechanical exfoliation of graphite. Our group has previously 

reported the synthesis of a novel, 2D carbon nanostructure via an inductively cou-

pled, radio frequency plasma enhanced chemical vapor deposition (RF PECVD) pro

cess [6, 7, 19-21] and has also reported a proposed mechanism for their growth [20,22]. 

Unlike the other 2D carbon nanostructures mentioned above however, our carbon 

nanosheets are atomically thin, vertically free-standing from the substrate, and do 

not require a non-carbon catalyst for growth. Throughout the course of this research, 

the nanosheets used were synthesized in the manner briefly introduced below for the 

purpose of familiarizing the reader with the growth parameters available. The ex-situ 

characterization of typical carbon nanosheets via Raman spectroscopy and scanning 

electron microscopy (SEM) will also be provided as a reference for later experiments. 
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Figure 2.1: A schematic representation of a fullerene (a) and a nanotube (b) repre
senting the sizes of the material and the labeling of the respective structures as OD 
and lD. 
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2.2.1 Experimental setup for the growth of carbon nanosheets 

As previously reported [6, 7, 19-21], nanosheets were grown via RF PECVD. We are 

capable of depositing nanosheets on various substrates, ranging from metals to in

sulators [7]. For the functionalization experiments, metal substrates were needed 

to enhance the nanosheet/substrate interaction so that the system would withstand 

the treatment. Thngsten was used for the high resolution XPS and XANES exper

iments while tantalum was used for the TDS experiments. Quartz was utilized for 

the photoluminescence experiments and for all other experiments silicon wafers were 

utilized. Using water cooled copper tubing as a coiled antenna, RF power was induc

tively coupled into the deposition chamber. Substrates were used as received with 

no special treatment or catalyst prior to growth. Using a resistive heater, substrates 

were heated in a hydrogen atmosphere(~ 60mTorr) to a temperature around 700°C. 

Upon reaching the desired temperature, methane gas, used as the carbon feedstock, 

was introduced into the system. The gas flow rate of hydrogen was kept constant at 

6 seem during the heating and during the deposition. The flow rate of methane was 4 

seem. Standard growth conditions consisted of an RF power of 900W, a pressure of~ 

100mTorr and substrate temperatures from 650oC- 800°C for times ranging from ten 

to twenty minutes. The methane flow was cut to zero with the plasma still ignited, 

for a brief time, to allow hydrogen to remove any amorphous carbon. After growth, 

the substrates were allowed to cool in a hydrogen atmosphere before removing to 

atmosphere. The samples were subject to no post-deposition treatments before being 

analyzed via SEM and Raman. A schematic of the deposition chamber is provided 

in Figure 2.2. 

An SEM of typical carbon nanosheets can be seen in Figure 2.3, both plan view 

(a) and a cross-section (b) view. A schematic of typical carbon nanosheets is provided 

in Figure 2.3 (c). These micrographs reveal the smooth sides and atomically sharp 

edges of the nanosheets. The overall translucent to transparent character of the sheets 
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shown in the image suggests the thin nature of the material. 
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Figure 2.2: Schematic of the growth chamber used for the deposition of carbon 
nanosheets [7] 
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Figure 2.3: SEM image of a typical nanosheet sample. The top panel (a) is a canopy 
view and the bottom panel (b) provides a cross-sectional view. The SEMis operating 
at 15ke V and in SE mode. The schematic (c) represents a single, typical nanosheet 
in the system. 
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2.3 Functionalization of carbon nanosheets via acid 
treatment 

The functionalization of carbon nanostructures to increase the utility of the structures 

in applications is an area of current interest. Products such as Methanofullerene 

Phenyl-C61-Butyric-Acid-Methyl-Ester (PCBM), a functionalized fullerene, has been 

shown to increase the efficiency of organic photovoltaics (OPV) and is now one of 

the most commonly used n-type semiconductors used in OPVs [23]. The use of 

oxygen containing compounds on the surface of carbon nanotubes (CNTs) to act as 

chemical [24~26] and biological [27] sensors has also been reported. Graphene is a 

new and emerging material that is being investigated for use in device applications. 

As of now, arguably the most usable feature of graphene has been the edges of the 

sheets and ribbons, where the differences between armchair and zigzag edges present 

unique opportunities and sites available for functionalization. The number of these 

sites is obviously limited however, due to the edge to volume ratio, limiting the use 

of the structures. By creating defects over the entire nanosheet surface area new 

possibilities are created and are available [14]. 

Acid treatment is known to result in oxygen created defects in carbon nanotubes 

and graphite [28] and this is expected to also work for nanosheets. The creation of 

defect sites and the addition of functional groups around the defect site would not 

only allow for further functionalization of the graphene sheets, but may also allow for 

the tailoring of the electronic properties of the nanosheets. 

Initial investigations into the use of nanosheets as high surface electrodes have 

produced poor results. As shown in Figure 2.4(1eft), nanosheets were grown on carbon 

fiber paper for use in fuel cell applications. An attempt to deposit platinum catalyst, 

which is dispersed in a water solution, was then made resulting in extremely low 

loading of the catalyst material as illustrated by the lack of Pt present in the high 

resolution SEM image of Figure 2.4 (right). This was due to the extreme hydrophobic 
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behavior of the carbon nanosheets. The introduction of oxygen containing defects 

should offer control over the hyrdophobicity of the material and permit the use of 

carbon nanosheets in a range of new applications. The experimental verification of 

acid-treatment created defects on carbon nanosheets is the focus of this research. 
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Figure 2.4: Carbon nanosheets were successfully grown on carbon fiber paper (left), 
but due to the extreme hydrophobic behavior of the nanosheet system, the Pt catalyst 
that is dispersed in a water solution was not successfully deposited on the nanosheets. 
This is illustrated by the lack of Pt in the SEM image (right). 
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2.3.1 Experimental setup for the functionalization of carbon 
nanosheets 

The acid-treatment setup is shown schematically in Figure 2.5. The nanosheets are 

grown on tungsten and tantalum substrates and are then subjected to analysis via 

SEM and Raman. The substrate is then placed in a round bottom flask and approx

imately 3mL of concentrated hydrochloric acid (HCl) is added via pipette in such a 

manner as to keep the substrate from floating. The flask is then attached to a Gram

type condenser and lowered into the oil bath. The oil bath is kept around 100°C ( + /-

5°C) and is stirred using a magnetic stir bar. The acid-treatment ranges from 3 hours 

to 24 hours and then the flask is removed from the oil bath and the acid removed 

via pipette with careful attention paid to not damaging the substrate. The flask is 

washed with 5mL of deionized water three separate times. Approximately 3mL of 

deionized water is then placed in the flask, again in such a manner as to keep the 

substrate from floating. After this simple acid treatment, the nanosheets are much 

more hydrophilic than before. The hydrophobicity is measured only by observation 

of the substrate's interaction with water. The flask is then returned to the condenser 

and the oil bath. The substrate is allowed to reflux in water overnight for a period 

of 15-20 hours. After refluxing, the substrate is removed from the flask and placed in 

an oven at 150°C for three minutes to dry. For the water-treated samples, the three 

hour reflux in acid was replaced with 3hrs in deionized water. The water was then re

moved and the flask rinsed. The substrates are also subject to the overnight reflux in 

deionized water. As can be seen in Figure 2.6 no apparent change in the morphology 

of the nanosheets can be seen in the SEM. As represented in Figure 2.7 however, an 

increase in the disorder of the graphene system can be seen via Raman spectroscopy 

as revealed with the increase in the D and G'(2D) peaks and the reduction of the G 

peak. 
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Figure 2.5: Schematic representation of the chemical hood setup used for the func
tionalization of carbon nanosheets. 
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Figure 2.6: SEM micrograph of nanosheets before (left) and after (right) acid
treatment. The change in brightness is due only to the contrast settings on the 
SEM and not due to charging. 
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Figure 2. 7: Raman spectrum of nanosheets on tantalum, pre- and post-acid treatment 
showing the detectable increase in disorder of the system after acid-treatment. This 
is expected with the creation of defects in the graphene lattice of the nanosheets. The 
spectra are offset for ease of viewing. 

20 



2.4 Scanning electron microscopy (SEM) and en
ergy dispersive x-ray spectroscopy (EDS) 

Zworykin et al are given credit for first developing the modern SEM in 1942. The first 

commercial instrument was developed in 1965 by Cambridge Scientific Instruments. 

SEM has now become one the most useful tools for the characterization of materials. 

Much like a traditional optical microscope the SEM creates a picture that allows the 

viewer to discern details from a three dimensional-like image that are too small to 

see with the naked eye. However, where as the resolution of an optical microscope 

is limited by the wavelengths of visible light ( 400nm - 800nm, enabling a resolution 

down to ~ 200nm) an SEM utilizes electrons to create the image, resulting in a much 

higher resolution ( < 1 - 5nm). The resolution of the SEM is based on the de Broglie 

wavelength (A) of the electron. The mathematical description is 

A=!!_ 
mv 

(2.1) 

where h is Plank's constant (6.625 x 10-34), m is the mass of the particle and v 

represents the velocity of the particle. From this equation, it is easily seen that a 

particle's wavelength is inversely proportional to its velocity and that as the velocity 

of the electrons is increased, the wavelength is decreased, which should allow for 

extremely high resolution. Other instrumentation limitations, such as the size of the 

focused electron beam, determine the resolution of the microscope. 

During the operation of an SEM, the primary electron-beam strikes the sample, 

creating elastic scattering events which produce backscattered electrons and inelas

tic scattering events that are responsible for producing secondary electrons, auger 

electrons and characteristic x-rays (shown schematically in Fig. 2.8). Through the 

elastic interactions, the electrons from the beam are deflected by the atoms of the 

samples and can be deflected back out of the surface with a kinetic energy close to 

21 



that of the primary electron beam. These electrons are called backscattered electrons 

(BSEs) and can provide important information about the elemental makeup of the 

sample. At the same time, inelastic events are taking place as well. When this energy 

is transferred to the sample, some electrons near the surface can escape due to the 

large mean free path relative to their distance from the surface. These electrons, 

whose kinetic energy is not close to that of the primary beam, are called secondary 

electrons (SEs). Because the escape depth of SEs is small, as the beam energy is 

decreased, the interaction volume of the beam with the sample, the number of SEs 

increases. Though BSEs, Auger electrons, SEs and x-rays are present, usually the 

primary imagining mode utilizes the SEs, which can provide extremely high resolu

tion images. These electrons are gathered by a collector and used to produce a 2D 

intensity distribution that can be viewed as a digital image. The image is created by 

the rastering of the primary electron beam and the variation in secondary emission 

coefficients ( 8). If the beam is incident to the sample, a certain number of secondary 

electrons will escape the surface. As the beam moves over a feature and the angle of 

incidence increases, the escape depth will decrease on one side of the beam, producing 

more secondary electrons, which creates a brighter image. Therefore, sharp edges or 

surfaces will appear brighter in the image. This provides a very useful depth of field 

perception, allowing the viewer to discern important features of a sample's surface. 

A schematic representation of the components of an SEMis shown in Figure 2.9. 

A Hitachi S-4700 field emission SEM (Fig. 2.10) was used for most of the sample 

imaging throughout the course of this study. A working distance of 12 mm provides 

a resolution as high as 2.1 nm at 1kV accelerating voltage and 1.5 nm at 15 kV. The 

S-4700 is capable of detecting secondary electrons, backscattered electrons, X-rays, 

and transmission electrons, making it a valuable instrument. However, the maximum 

voltage of the electron gun is only 30 kV so high resolution scanning transmission 

electron microscopy (STEM) is not possible in this instrument. 
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Also during the electron beam - sample interaction, some core electrons can be 

ejected from atoms due to the collisions, as also shown in Figure 2.8. When this 

occurs, a core level hole is created that is then filled with an electron from a higher 

energy level. This energy can then be released by ejecting another electron (Auger 

electrons) or by releasing x-rays. These x-rays have kinetic energies that are charac

teristic of the elements from which they originate, allowing for elemental identification 

by collecting these x-rays. These x-rays can be generated from a very deep region 

(~111m) compared to our thin carbon film. This process is called Energy Dispersive 

X-ray Spectroscopy (EDX). The EDX used in this work is an EDX PV 7746/61 with 

an energy resolution of~ 2.5 eV. It is shown in the top left of Figure 2.10. 
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Figure 2.8: The different signals resulting from the electron beam interactions with the 
atoms of the sample are shown schematically. Backscattered electrons and secondary 
electrons are represented by BSE and SE respectively. The holes left by leaving 
electrons are represented by the red rings. The characteristic x-rays utilized during 
EDS are represented by the wavy blue line and are denoted X-rays in the schematic. 
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Figure 2.9: Schematic representation of the major components of a typical scanning 
electron microscope [29]. 
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Figure 2.10: Digital picture of Hitachi S-4700 located in Small Hall at the College of 
William and Mary. The EDS is labeled EDAX in the top left of the image. 
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2.5 Introduction to Raman spectroscopy 

Indian physicist, Chandrasekhara Venkata Raman, is given credit for first discovering 

the radiation effect known as the Raman Effect in 1928. The discovery of this effect led 

to the development of the now widely used Raman Spectroscopy. Raman spectroscopy 

is based on the inelastic scattering of monochromatic light: in most modern systems a 

laser. As the sample is irradiated, the laser interacts with the phonons of the material 

and excites them into a virtual state that is below the first excited electronic state. 

Relaxation of the material produces three types of scattering: Rayleigh, Stokes and 

anti-Stokes. If the scattering is of the same energy as the incident photon, i.e. it 

is excited from a ground electronic state and relaxes to the same ground electronic 

state, it is called Rayleigh scattering. If the material is excited from the ground 

electronic state and relaxes to an excited vibrational state, the scattering is called 

Stokes. If the lattice was already in an excited vibrational state and then relaxes 

to the ground state, the scattering is called anti-Stokes (see Fig. 2.11). Because the 

number of phonons in an excited vibrational state at room temperature is small, the 

signal for anti-Stokes scattering is very small and the measurements are rarely used. 

It is important to note that the shifts of the Stokes and anti-Stokes from the Rayleigh 

line are identical and equals .6.E in Figure 2.11. Both peaks are much less intense 

than the Rayleigh line and the anti-Stokes less intense than the Stokes. 

In order for the material to be Raman active a molecular polarizability change 

with respect to the vibrational coordinate is required. The amount of the change 

will determine the intensity of the peaks while the Raman shift is determined by the 

vibrational level involved. The vibrational information of a molecule is very specific 

for particular molecules. Therefore, Raman is very effective as a fingerprint or quality 

control technique. It should be noted that while the intensities of the peaks observed 

during Raman depend on the absorption coefficient of the material for the particular 

wavelength of laser being used, the Raman shifts do not depend upon the excitation 
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wavelength of the laser. 

Raman spectroscopy has also been shown to be a particularly useful tool in deter

mining the disorder of carbon based systems. Graphite crystals exhibit two features 

in a Raman spectrum, the E292 mode at 1582 cm-1, the G- band, and under spe

cial conditions the E291 at 42 cm-1 . However, even a modest amount of disordered 

carbon gives rise to another feature around 1350 em - 1
, known as the D - band [30]. 

The ratio between the two bands can be used to characterize different types of it sp2 

carbon, such as carbon fibers, carbon nanotubes and ion implanted carbons. This 

ratio (R = ID/ Ic) can also be related to the in-plane crystallite size [31], which is 

normally determined by x-ray diffraction measurements [30]. 

The Raman setup used in throughout this study was an in Via dispersive Raman 

(Renishaw, Inc.) with three laser sources and four different wavelengths (488 nm and 

514 nm from an Ar+ ion laser, 633 nm from a He-Ne laser and 785 nm from a diode 

laser). Our setup utilized a charge-coupled device ( CCD) detector. A schematic of 

the major components of a typical Raman instrument is provided in Figure 2.12. 
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Figure 2.11: Raman Spectroscopy involves the inelastic scattering of monochromatic 
light. The green lines represent the Anti-Stokes scattering, the red represent the 
Rayleigh scattering and the blue lines represent the Stokes scattering events. 
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Figure 2.12: Schematic representation of the major components of a typical Raman 
spectrometer [32]. During this study a Renishaw Raman spectrometer was used, 
located at the College of William and Mary. 
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2.5.1 Experimental use of Raman spectroscopy 

For the purpose of this study, Raman has been used mainly as a quality control 

instrument. Complete investigation via Raman has been reported by our group pre

viously [6, 7]. As can be seen in Figure 2.13, nanosheets possess similar spectra to 

that of carbon nanotubes (Figure 2.14). The D band (1350 cm-1 ), the G band (1580 

cm-1 ) and the D' band (the shoulder on the G band at ~ 1620 cm-1 ) which have all 

been previously recognized in microcrystalline graphite [31, 33] identifying nanosheets 

as having a crystalline, but defective graphitic structure. It is also important to note 

that ID/ Ic (the intensity ratio of the D to G peak) can be used to determine the 

relative crystallinity of the nanosheet samples [6, 33], but only holds true for laser 

excitation wavelengths around 514 nm. Therefore, with little to no damage to the 

sample, it can be compared to previous samples for analysis. The effects of procedures 

such as the transfer process (Chapter 5), the functionalization (Chapter 2.3) or vac

uum firing (Chapter 2.10) can be quickly and easily investigated without damaging 

the nanosheet film. 
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Figure 2.13: Raman spectrum of a typical nanosheet sample. The laser excitation 
wavelength utilized is 514nm. The ratio of the D and G peaks is commonly used for 
the determination of quality for a particular sample. 
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Figure 2.14: Raman spectrum of typical carbon nanotube sample for comparison to 
carbon nanosheets [20]. 
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2.6 Fourier transform infrared spectroscopy (FT
IR) 

Infrared spectroscopy is another method used to gather information about the chem

ical structure of materials by measuring vibrations in the sample. However, unlike 

Raman, in order for a vibration to be active in the infrared region, the vibration must 

involve an oscillation in the electric dipole moment. Multiplex instruments-techniques 

in which all the components of the response are collected simultaneously-rely on the 

Fourier transform (FT) for signal decoding. There are three main advantages of 

using a FT instrument. The first is the throughput. Because FT instruments have 

no slits to attenuate radiation, the power of the radiation that reaches the detector 

is much higher than that in dispersive instruments, resulting in a much higher signal 

to noise ratio. The second advantage is the high resolving power and wavelength 

reproducibility. The third advantage is the time involved. All elements of the source 

reach the detector simultaneously allowing for an extremely quick collection time. 

From a mechanical perspective, systems can be thought of as masses (atoms) 

connected by springs (chemical bonds). These systems can absorb energy and thereby 

certain frequencies are excited. These frequencies can be described in the simple-

harmonic-oscillator approximation of two atoms (Eq. 2.2) of mass m and M, where 

k is the force constant and J-L is the reduced mass (defined by Eq. 2.3). 

( k) 1/2 
Vm = (27r)-l M (2.2) 

and 

mlm2 
(2.3) J-l= 

(m1 + m2) 

Therefore, the vibrational frequencies for a two mass system connected by a spring 

can by related by 
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(2.4) 

While these calculations are fairly accurate, they do not completely describe the 

system, such as the quantized nature of the molecular vibrational energies. However, 

this can be developed by utilizing potential energy equations of the form 

(2.5) 

where his Planck's constant and vis the vibrational quantum number, which can only 

be a positive integer including zero. This means that quantum mechanical vibrators 

can only take discrete values. Therefore, the difference between vibrational levels is 

identical and is given by the equations 2.6 and 2. 7 

(2.6) 

(2.7) 

and because the energy of radiation is given by 

Eradiation = hv (2.8) 

it follows that the frequency of the radiation (v) that will excite the classical vi

brational frequency of the bond (vm) can be expressed as a combination of these 

equations as 

Eradiation = hv = ~E = hvm = ( 2~) ( ~) 
112 

(2.9) 

or 
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(2.10) 

If we want to express the frequency as a wavenumber we simply divide the frequency 

(v) by the speed of light (c) as illustrated in equation 2.11. The use of (2.9) along with 

experimental values for v allow for the calculation of the force constant for systems 

(k) which is of course a measure of the stiffness of a bond [20, 34]. 

c 
V=-

A 
(2.11) 

2.6.1 Experimental setup of the FT-IR for the inspection of 
functionalized nanosheets 

For the purpose of these experiments, nanosheet samples were pressed into KBr pellets 

and analyzed using a Nicolet Nexus 670. Analysis of typical nanosheet systems were 

previously completed and reported [20]. The nanosheets used in this experiment 

were grown on tungsten foil substrates as previously described (section 2.2.1) and 

then subjected to acid-treatment as described in section 2.3.1. The samples utilized 

for this experiment were treated for 3 hours. After acid-treatment, the nanosheets 

were removed from the growth substrate with a razor blade and pressed into the 

KBr pellets. Reference samples were as-deposited nanosheets prepared in the same 

manner. A schematic of a typical FT-IR is provided in Figure 2.15. 

Results representative of the FT-IR of functionalized carbon nanosheets are shown 

in Figure 2.16. As is expected for the nanosheet system, C-H stretching is observed in 

the range of 1340 - 14 70 em - 1 . Also illustrated is the stretching of a C-0 bond found 

in alcohols, ethers, esters and carboxylic acids (1000- 1260 cm-1). Though these 

signals are not strong enough to make an identification of the functional groups alone, 

these results support the results that will be discussed in Chapter 3. A spectrum of 
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as-deposited nanosheets can be found in reference [20]. 
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Figure 2.15: Schematic representation of a Fourier Transform Infrared Spectrometer 
[34]. 
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Figure 2.16: Typical FT-IR spectrum of functionalized carbon nanosheets. As can 
be seen, stretching for the C-H bonds in the nanosheet system is illustrated by the 
peak in 1340- 1470 cm-1 . The stretching associated with C-0 bonding of alcohols, 
esters, ethers and carboxylic acids (1000 - 1260 cm-1 ). 
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2. 7 Four-point probe 

The four-point probe is a quick and easy way to determine the sheet resistance of a 

thin film material that can then be used to determine the resistance of the material. 

For our setup, four metal tips, which are part of auto-mechanical stage, are placed 

in contact with the sample. The force of the tips can be adjusted via springs that 

connect the tips to the stage. A schematic of the probe setup is shown in Figure 2.17 

below. During the experiment, a current is passed through outer two probes while 

the inner two probes measure the voltage drop to determine the resistivity. 

In this work, the sheet resistance of the basal layers was measured. This mea

surement was made before and after the transfer of nanosheet films to determine the 

success of the process (section 5.4). 
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Figure 2.17: Schematic illustration of the four-point probe setup. The gray disc 
represents the transferred nanosheet film and the red disc represents the polymer 
substrate. 
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Figure 2.18: Photo of the four-point probe setup utilized at Luna Innovations Incor
porated, Advanced Materials Division, Blacksburg, VA. Picture provided via courtesy 
of Dr. Jonas Gunter. 
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2.8 X-ray absorption near-edge spectroscopy (XANES) 

X-ray absorption near-edge spectroscopy, or XANES, is a form of x-ray absorption 

spectroscopy (XAS) that is differentiated from extended x-ray absorption fine struc

ture (EXAFS) - which considers the absorption spectrum out to much higher elec

tron kinetic energies - by its energy range and is illustrated schematically in Figure 

2.19. The near-edge region is normally considered the range between the absorption 

threshold and about 50eV above the threshold. This is about the range where the 

wavelength of the excited electron is equal to the distance between the absorbing 

atom and its nearest neighbors [35]. Therefore, the difference between the near-edge 

(XANES) and the extended fine-structure (EXAFS) is that the photoelectron gener

ated by the absorption of x-rays undergoes multiple scattering events in the XANES 

experiment and only a single scattering event during the EXAFS experiment. 

Most XANES experiments are completed at synchrotron sources where the x-ray 

beam energy can be easily tuned. During the experiment, the beam energy is scanned 

across a region of interest and either the electrons or fluorescence of the sample 

measured. This process is shown schematically in Figure 2.20. As depicted in the 

figure, when the x-ray is absorbed, a core level electron is ejected (the photoelectron) 

creating a core level hole and an electron from a higher energy level relaxes to fill 

the hole. This energy can either be released as fluorescence or by emitting another 

electron from a higher level, known as the Auger electron. 

For XANES experiments, we can measure either the fluorescence yield or electron 

yield. During fluorescence yield measurements, the photons emitted during the re

laxation of the absorbing atom are measured. However, the diode sensitivity is not 

as good and other events, such as scattering, can affect the measurements. Therefore 

fluorescence is not normally measured. The electrons can be measured in two ways, 

total electron yield (TEY) or partial electron yield (PEY). During the PEY mode 

the low energy electrons are filtered out. This is useful if trying to obtain depth 
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Figure 2.19: Schematic representation of the energy ranges for near-edge (XANES) 
versus extended (EXAFS) absorption. The schematic is not drawn to scale or for any 
particular system. 
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Figure 2.20: Schematic representation of x-ray absorption. As the x-ray photon is 
absorbed by the atom, a core-level electron is ejected (photoelectron, red dot), leaving 
behind a core-hole (red circle). This hole is filled by an electron from a higher energy 
level, resulting in the emission of a fluorescent photon (bright green arrow) or of an 
Auger electron (blue dot). 
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sensitivity. For the purposes of these experiments, TEY mode was utilized because 

there was no concern about depth profiling. This measurement is basically measuring 

all the electrons ejected from the sample. 

As the energy of the beam is scanned, the transitions of core electrons to un

occupied states can be seen by the absorption of the x-rays. A schematic of these 

transitions for a theoretical C-C system are shown schematically in Figure 2.21 and 

Figure 2.22. These transitions can be measured against known materials, such as 

highly oriented pyrolytic graphite Figure 2.23, for comparison. When the atoms have 

different chemical environments, the energy levels will shift, resulting in corresponding 

shifts of the measured transitions. 

Our XAS experiments were conducted at beamline DlOll at MAX II, MAX-Lab, 

Sweden with a modified SX-700 plane grating monochromator as shown in Figure 

2.24. 
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Figure 2.21: Molecular orbital diagram of C-C system. The transitions from core 
levels to 1r* and to e7* levels are marked by the green arrows. These transitions are 
seen in a typical XANES spectrum of a graphite system (Fig. 2.23) at 285 eV and 
291 eV respectively. The schematic is not drawn to scale and is representative of the 
transitions on a molecular scale. 

• Unoccupied Orbitals ______ ___,_<_______ x* and cr* 
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Figure 2.22: Absorption of the x-ray in XANES spectrum. The core electron is excited 
to an unoccupied orbital, either the 7r* or e7* transition. As the chemical structure of 
the sample changes, so will Etronsition. 
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Figure 2.23: XANES spectrum of highly oriented pyrolytic graphite. The two predom
inate peaks at 285 eV and 291 eV are the result of 7r* and CJ* transitions respectively. 
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Figure 2.24: A digital image (top) and schematic [36] (bottom) of the beamline 
DlOll at MAX II, MAX-Lab, Lund, Sweden. The measurements were made in the 
back station, labeled in the upper left of the image. Samples were also loaded into 
the front station (right side) for analysis, but the spectra gathered from the front 
station are not capable of being corrected by the incident beam. Image is taken from 
the beamline's website- http:/ jwww.maxlab.lu.se/beamlines/bldlOll/ 

46 

http://www.maxlab.lu.se/beamlines/bldl011/


2.8.1 Experimental setup for the investigation of functional
ized nanosheets using XANES 

Angular dependent XANES measurements about the carbon K-edge and prelimi-

nary theoretical modeling were utilized to study the defects created in the graphene 

planes of the nanosheets. These defects were intentionally created using the treat-

ment described in 2.3.1 for the purposes of taking the first step towards improving 

the functionalizing graphene and graphene-like materials for new properties in the 

materials. 

For these experiments, the nanosheets were grown via RF PECVD as previously 

described (section 2.2.1) on tungsten foil (0.1mm thick). The substrates were in

spected ex-situ via Raman and SEM techniques for verification of growth quality 

before functionalization. The samples used include the 3hr acid-treated sample, the 

3hr water-treated sample and as-deposited samples. 

Prior to all measurements, the samples were heated insitu to 170°C overnight to 

remove surface absorbates. The measurements around the C K-edge were recorded 

in total electron yield (TEY) mode. Measurements were made with the incident 

beam perpendicular to the surface (0°) and at grazing angles ( 45° and 70°). The 

incident photon flux was monitored on a clean Au grid and was used to correct the 

XANES spectra. Spectra were pre-edge normalized at 270eV, a linear background was 

subtracted and then post-edge normalized at 320e V. Peak identification was based 

on the known value for copper (cleaned Cu sample holder, see Fig. 2.25). 
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Figure 2.25: Photograph of the copper sample holder used for the x-ray adsorption 
analysis of as-deposited and functionalized nanosheets. 
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2.9 Thermal desorption spectroscopy (TDS) 

Thermal desorption spectroscopy (TDS), also known as temperature programmed 

desorption (TPD), is a method used to measure the activation energy for desorption 

(t:l.Ed) from a material's surface. In order to obtain this information experimentally, 

the material of interest is heated in ultra-high vacuum (UHV) with a linear tem

perature (T) ramp in the time domain. As the temperature increases, atoms and 

molecules on the surface of the material will increase in energy, allowing for surface 

diffusion, recombination and finally desorption from the surface. The partial pressure 

variations of these adsorbates is recorded by a mass spectrometer. When the pressure 

of adsorbates is plotted versus the time, a TDS spectrum is obtained. The mass spec

trometer is capable of analyzing several mass/charge ratios during the experiment, 

allowing for the identification of several different species within a 25 ms period. A 

schematic of the experimental setup is provided in Figures 2.26 and 2.27. A digital 

image of a sample holder is provided in Figure 2.28. 
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Figure 2.26: Schematic representation of the TDS experimental setup. 
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Figure 2.27: Schematic of Feulner and Menzel cup used (2mm diameter aperture) for 
enhanced resolution of TDS spectra. The cup is labeled (a), the sample (b) and the 
mass spectrometer (c). 
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Figure 2.28: Photograph of the custom sample holder with sample used during the 
TDS experiments. The sample holder is mounted on a carousel and is then placed 
below the appeture of the Feulner and Menzel cup (as depicted in Fig. 2.27) 
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2.9.1 Experimental use of TDS for the inspection of func
tionalized car bon nanosheets 

Due to the complexity of the curve that is obtained, a theoretical model is required 

for the specific desorption process. The desorption process is a sequence of surface 

reactions. For instance, as reported in [37] and [38], the focus was on the desorption of 

H2 molecules which contains three surface reactions-the surface diffusion of H atoms, 

the recombination of the H atoms and the desorption of H2 molecules-described by 

the Langmuir-Hinshelwood mechanism [39]. 

The rate of desorption ( r d) can be expressed as 

rd = kd. rr (2.12) 

where kd is the rate constant, e is the adsorbate fractional coverage and n is the kinetic 

order of desorption ( n = 1 for thermal decomposition and n = 2 for recombination 

desorption). The rate constant (k) can be expressed in Arrhenius form, 

( ~) kd = v. e - kT (2.13) 

where vis the pre-exponential factor, k is Boltzmann's constant, ~Ed is the activation 

energy of desorption, t is time and T is the temperature in Kelvin. Equations (2.12) 

and (2.13) are combined to form the Polanyi-Wigner equation 

de (~) 
T d = -- = 1/ • en . e- kT 

dt 
(2.14) 

where (-de/ dt ) is the desorption rate. The pre-exponential factor (v) represents the 

total probability of desorption per second and is related to the adatom's vibrational 

frequency on the surface. Because each stretching movement of an adsorbate-surface 

bond in vibrational mode can be considered an attempt to break the bond, the fre-

quency of the strength movement is equivalent to the total probability of desorption 
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per second. Equations (2.12) through (2.14) are the basis of the mathematical model 

used to deconvolute TDS data. 

However, during the TDS experiments, the partial pressure is measured. The 

partial pressure is related to the desorption rate via 

-V (~~) +Q=S·p (2.15) 

where V is the volume of the chamber, Q is the mass flow rate of desorption, S is the 

pumping speed and p the pressure. For our system, the pumping speed to volume 

ratio is so large that dp/dt << (S/V)p, allowing us to ignore the contribution of 

- V( ?t) [37]. Equation (2.15) can then be reduced to 

(2.16) 

Assuming a single desorption energy for each mass to charge unit in question (e.g., 

C02 , CO and H20) the desorption processes follow the Polanyi-Wigner equation 

(Eq. 2.14) [40]. The desorption rate is then given by 

(de) ( ~) 
T (e) = - dt = V • en • e - kT (2.17) 

with the variables represent the same values as mentioned before. Combining (2.16) 

and (2.17), the partial pressure (Pi) and adsorbates fractional coverage (e) of a species 

can be related by 

(2.18) 

where C (Torr · sec) is a constant and Ni represents the total number of atoms 

diffusing with the same desorption activation energy. For ease of numeric computation 

in our process, Pmax was scaled by arbitrary units so that Pmax is set to 1000. The 
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relationship between the temperature ( T) and time ( t) is 

T = 300 +a· t (2.19) 

where Tis in Kelvin and a is the temperature ramp rate (for our system 10 K/sec). 

Combining (2.17- 2.19) we get equation 

(K·C) ( ~) p* (T) = -- . """" N· . V· • en . e - kT total a ~ 2 2 2 

2 

(2.20) 

K, C and a are constants in the equation and Ni, vi and ~Ed,i are the key parameters 

that we are interested in as previously mentioned. 

As discussed in [37,38], the work of Jong et al. [40] discussed different methods for 

the evaluation of desorption spectra. However, as was identified, there are problems 

with both 1st and 2nd order processes. For instance, 1st order processes are commonly 

described by the Redhead peak maximum equation, 

(2.21) 

but this equation requires a value for v to be assumed-commonly values ranging from 

1012 - 1014 Hz are chosen. However, researchers have reported an electron transition 

[37] component in addition to the vibrational energy transfer which affects the value 

of v. The use of Gaussian curves does not accurately describe the kinetics of the 

desorption processes [37,38]. Conversely, the Polanyi-Wigner equation (Eq. 2.14)can 

conveniently be used to interpret both 1st and 2nd order processes by changing the 

value of n (1 for pt order and 2 for 2nd order). 

During the acid treatment, carboxylic acids and hyrdoxyls are formed (as discussed 

in section 3.3.1). As the samples are heated, surface reactions take place that allow 

for the formation of additional functional groups. During this process water is formed 

as a by-product and can be seen the H20 spectra. This is known as dehydration and 
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is illustrated schematically in Figures 2.29 and 2.30. As demonstrated, the results of 

the dehydration event depend on the starting material. Either a carboxylic anhydride 

can form as the result of the dehydration between an acid and acid (Fig. 2.29), or 

a lactone can form as the result of the dehydration between an acid and a hydroxyl 

(Fig. 2.30). As the nanosheets continue to heat, enough energy is eventually provided 

for the decomposition-breaking apart-of the anhydrides and lactones as illustrated 

in Figures 2.31 and 2.32. These results and assignments are discussed in detail in 

section 3.3.1. 

Our data involves both the thermal decomposition of defects and desorption of 

water created via the thermal decomposition of two functional groups as depicted 

schematically in Figures 2.31 and 2.32. In order to deconvolute the data, we must 

assume an order of the reaction and then confirm through our experimental studies. 

As illustrated in equations 2.22 through 2.24, we assume that the decomposition of 

functional groups is a 1st order process because the atomic masses that we measure 

in the mass spectrometer are already formed. The production of water is a 2nd 

order process because the OH must combine with H during the dehydration. Though 

[37] and [38] focus on hydrogen desorption and use only a 2nd order Polanyi-Wigner 

equation to describe the Langmuir-Hinshelwood mechanism, we can easily use the 

Polanyi-Wigner to describe a 1st order process as well by simply letting n = 1. 

(2.22) 

(COOC) + .6.----* CO+ COin= 1 (2.23) 

(2.24) 

Previous reports on the thermal desorption of hydrogen from the surface and bulk 

55 



Hp 

L ) 

.:1 
-2oooc 

Figure 2.29: Schematic of dehydration event taking place on the surface of the carbon 
nanosheets between two carboxylic acid groups to form a carboxylic anhydride. H20 
must form from the combination of OH and H and is therefore assumed to be 2nd 

order. 
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Figure 2.30: Schematic of dehydration event taking place on the surface of the carbon 
nanosheets between a carboxylic acid and a hydroxyl to form a lactone group. H20 
must form from the combination of OH and H and is therefore assumed to be 2nd 

order. 
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Figure 2.31: Schematic representation of the mechanism involved during the evolution 
of absorbed species leaving the surface of the functionalized nanosheets. Because the 
CO and C02 are already formed the thermal decomposition of the anhydride group 
is assumed to be 1st order. 
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Figure 2.32: Schematic representation of CO leaving the surface of the functionalized 
nanosheets during the thermal decomposition of a lactone functional group. Because 
the CO species are already formed the process is assumed to be pt order. 
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of carbon nanosheets have identified six different peaks for the bonding of hydrogen 

in the nanosheet system [37, 38]. The CH4 /H2 plasma used for the growth of the 

carbon nanosheets generates hydrogen atoms and ions that are readily incorporated 

into the nanosheet system, either on the surface or in the bulk or the system. As 

the temperature of the system is increased, the hydrogen absorbed on the surface at 

different sites and in the bulk is released and can be quantitatively measured. This 

same concept forms the foundation of using TDS for identification of oxygen-decorated 

defects. However, due to the amount of hydrogen that is incorporated in the growth 

process, there is a concern about blocking information from the functionalization of 

the nanosheets. Therefore, the samples were vacuum fired after nanosheet deposition 

and before acid-treatment to remove as much of the hydrogen from the system before 

functionalizing the samples. 

The tantalum foil substrates (6x6x0.075mm3
) used during the TDS work were 

sanded (1200 grit) and cleaned with acetone and then isopropanol (with sonication) 

to remove large inherent structures for the surface and to create a relatively smooth 

surface for growth. Post-deposition, the samples were inspected ex - situ via Raman 

and SEM to insure quality growth. The samples were then vacuum-fired. After 

the firing, nanosheet samples were placed in the acid-treatment setup as previously 

described (Section 2.4). 

Rhenium wires (0.125mm diameter) were spot welded to the tantalum substrates 

so that they could be resistively heated from room-temperature to 1000°C. Individual 

samples were admitted into the preparation chamber (p :::::: lx10-8Torr) and aligned 

with the RGA ion source aperture (Feulner-Menzel cup). Afterwards, the samples 

were placed in the analysis chamber (p < lxl0-10
) for inspection. The samples 

were heated at a ramp rate of lOK/sec from room temperature to 1000°C. The data 

presented is only up to 700°C to separate the sample emission from the heating of 

the Feulner-Menzel cup. 
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The sample was positioned on one of the two carousel stations to which power can 

be supplied and placed on axis with the ion source of an SRS RGAlOO™quadrupole 

mass spectrometer (QMS) for TDS analysis. 
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2.10 X-ray photoelectron spectroscopy (XPS) 

Originally coined ESCA (electron spectroscopy for chemical analysis) by Siegbahn 

and co-workers [41], XPS is one of the most commonly used surface analysis tech

niques currently in use today because the exceptional combination of quantitative 

and qualitative information that is provided by the technique, its ease of operation 

and its availability for commercial use. 

The fundamental principles of the technique are quite straightforward, but the 

interpretation of the data can become quite convoluted and difficult. The sample's 

surface is irradiated with soft x-rays, as low as 21.22 eV for Rei sources and high 

as 1487 e V for Al Ka or 1254 e V for Mg Ka sources. When the photon, with the 

energy hv, interacts with an electron in level X of the sample, the entire energy is 

transferred to the electron which is then ejected with a kinetic energy (Ekin) that can 

be measured, assuming that Ekin is greater than the binding energy of the electron 

(EB) and that there is enough energy to overcome the small work function term, <I> s. 

This interaction can be explained by (Eq. 2.25) below and is shown schematically in 

Figure 2.33. 

Ekin (hv, X) = hv- EB- <I>s (2.25) 

The photoelectrons of interest for XPS come from the core levels of atoms and 

because no two elements share the same set of energies as their binding energies, 

measurement of these photoelectrons provides elemental analysis. As can also be seen 

from (2.25), the measured energy (Ekin) is strongly dependent on the binding energy 

of the electron. Therefore, changes in the kinetic energy of the photoelectrons are a 

reflection of changes in the chemical environment of the atom, leading to chemical 

analysis of the system. 

While XPS is concerned with the primary photoelectron and their kinetic en-
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Figure 2.33: Schematic representing the three processes that can occur during an 
XPS experiment. The initial x-ray photon is represented by the black line and the 
initial photoelectron and hole created during photoionization are represented by the 
red dot and circle respectively. The blue dot represents a higher level electron that 
can fill the hole and release energy as another photon during x-ray fluorescence (blue 
line) or as another electron (Auger electron, green dot) during the Auger process. 
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ergies, there are two other processes that can occur during photo-ionization, x-ray 

fluorescence and the Auger process. During x-ray fluorescence, the core electron is 

emitted and the hole is filled by the relaxation of a valence electron, releasing radi

ation equal to the energy difference between the shells. Analysis of this energy can 

provide information about the energy levels of the sample. 

During the Auger process, again, a core-level electron is emitted and a higher 

energy electron relaxes to fill the hole. However, instead of releasing energy in the 

form of a photon, another electron, with a binding energy equal to the transition, 

is released. This is called the Auger electron. The energy of the Auger electron 

is independent of the source energy, but the kinetic energy of the photoelectrons 

resulting from direct photoionization increases as the energy of the source is increased. 

This difference allows for the differentiation of Auger and photoelectrons. Auger 

Electron Spectroscopy (AES) is often used in conjunction with XPS. 

The distance traveled by an electron, through a material matrix (M) with some 

kinetic energy (E), before making an inelastic collision is called the inelastic mean 

free path (imfp) >.M(E). This distance depends only on M and E and for the electrons 

utilized by XPS and AES the value for >. is quite small, which enables use of these 

techniques for the surface analysis of samples [42]. Previous results from XPS and 

AES are presented in the following section. A schematic representation of the three 

processes (direct photo-ionization, the Auger process and X-ray fluorescence) can 

be found in Figure 2.33. The XPS used during the course of these experiments 

is located at Stanford University, Palo Alto, California and housed in Stanford's 

Nanocharacterization Laboratory, courtesy of Professor Michael Kelly. A schematic 

representation of a typical XPS system is show in Figure 2.34. 
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Figure 2.34: Schematic representation of a typical XPS system [43]. The XPS used for 
these experiments is located in Stanford University's Nanocharacterization Labortory 
(SNL). The instrument is an SSI S-Probe Monochromatized XPS Spectrometer, which 
uses Al(Ka) radiation (1486 eV) as a probe. This instrument permits the analysis 
of areas as small as 100 microns in diameter, and features high sensitivity and good 
energy resolution. A Leybold Hereaus ion gun for depth profiling and software for 
automatic spectral identification is also available. The instrument was operated by 
Dr. Michael Kelly. http:/ jwww.stanford.edu/group/snl/ 
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2.10.1 Experimental setup for XPS inspection of functional
ized car bon nanosheets 

XPS was used to determine the surface composition of as-deposited carbon nanosheets 

and the functionalized carbon nanosheets. Previous characterization of the as-deposited 

nanosheets [20] showed only a carbon peak and a small oxygen peak associated with 

absorbed water. As is shown via previous studies of nanotubes, XPS can illustrate the 

presence of oxygen containing functional groups such as lactones, quinones, hydroxyls 

and carboxylic acids [44]. The XPS investigation of functionalized nanosheets con

sisted of three types of samples, as-deposited nanosheets, 3hr acid-treated nanosheets 

and 3hr water-treated nanosheets. 

Samples were loaded into the XPS and pumped down to a base pressure of ::::::: 

lxl0-8 Torr. Each sample was subject to a room temperature survey scan, varying 

the detector energy from OeV to 1400eV. Each sample was then heated to 150°C and 

held for 10 minutes to remove water absorbed on the surface. Samples were heated 

to 200°C, 350°C and finally 450°C with the C(ls) and O(ls) high resolution spectra 

taken at each interval. 
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2.11 Summary 

In this chapter, the techniques and procedures used throughout the course of this 

research were discussed for reference and the experimental setup as it applies to 

our research was outlined. As the complexity of the systems under investigation 

grows combinations of techniques must be utilized to confirm orientations, bonding 

structures and chemical environments. The next chapter will present the results of 

the above mentioned experiments and the impact on the functionalization of carbon 

nanosheets. 
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Chapter 3 

Experimental results and 
discussion of XANES, TDS and 
XPS experiments 

3.1 Introduction 

In the previous chapter, the fundamental principles of different materials characteriza

tion tools were presented. The setup and experimental design used to study the effects 

of acid-treatment towards the functionalization of carbon nanosheets was also out-

lined. Raman spectroscopy demonstrated an increase in the disorder of the graphene 

system via an increase in the D and G' peaks and a decrease in the G peak after acid 

treatment. Fourier transform infrared spectroscopy supports the presence of oxygen 

in the chemically modified nanosheets. These results suggest that the acid treatment 

is controllably introducing oxygen decorated defects into the graphene lattice of the 

carbon nanosheets, however, they are not definitive enough to make this assignment 

based on this data alone. In this chapter, the results of the XANES, TDS and high 

resolution XPS experiments are presented and discussed in detail. The XANES re

sults illustrate oxygen created defects in the nanosheet system. Deconvolution of the 

TDS spectra identifies the defects as carboxylic acid and hydroxyl groups. Finally, 

inspection via high resolution XPS and sub-peak identification supports these assign

ments. The impact of these identifications and assignment are discussed along with 

67 



future experiments that could continue the characterization of the functionalization 

experiments. 

3.2 X-ray absorption near-edge spectroscopy 

As was discussed in the section 2.7, x-ray absorption near-edge spectroscopy is a 

technique that involves the irradiation of a sample with soft x-rays, followed by the 

excitation of core electrons to unoccupied molecular orbitals. This absorption is 

measured through the ejected electrons and a spectrum is produced. When a material 

has a different local environment, a shift of the available transitions will be noticeable. 

For this purpose, XANES was chosen to identify the creation of defects by an acid 

treatment in the carbon nanosheet system. 

3.2.1 Results and interpretation of data from x-ray absorp
tion near-edge spectroscopy (XANES) 

As-deposited carbon nanosheet samples compare well with highly oriented pyrolytic 

graphite (HOPG) as shown in Figure 3.1. However, the acid- and water-treatment of 

samples produces peaks not seen in the HOPG or as-deposited spectra, Figure 3.2. 

The experiments reveal three distinct features that are of interest. The first at 

~ 284.5 eV is a result of the C=C ls - 1r* transition [45, 46]. The last feature is 

composed of two peaks which are attributed to the C-C ls - a* transition [45, 46]. 

The second feature is also composed of two peaks and has been contributed to inter-

layer interactions in the graphitic system [47], a* C-H resonances or more recently to 

oxygen containing groups, 1r* C-0 resonances [45,46,48,49]. For ease of reference, we 

designate these features as A, C and B respectively. The middle features, Bl and B2 

(Fig. 3.3), are the focus of our study as we correlate these peaks to oxygen-containing 

functional groups as well. 
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Figure 3.1: XANES spectra comparing HOPG (spectrum provided by Dr. Alexei 
Preobrajenski, MAX-Lab) and as-deposited nanosheets. Note the alignment of the n* 
and u* peaks at 285eV and 291eV respectively. The spectra have been pre- and post
edge normalized and a linear baseline subtracted for ease of viewing and comparison. 
The y axis is a normalized intensity and has been removed to avoid confusion. 
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Figure 3.2: XANES spectra of as-deposited, acid-treated and water-treated 
nanosheets. Notice the creation of the two peaks between the 1r* and a* peaks. 
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Figure 3.3: XANES spectra of the acid-treated, water-treated and as-deposited 
nanosheets with the 1r* and a* peaks labeled as A and C respectively and the defect 
peaks labeled as Bl and B2. All spectra were collected at 90° from grazing. 
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For the nanosheet system, it is clear that the n* and (]"* peaks do not show the 

angular dependence expected for a free-standing graphene system or for a horizontal 

graphene system. In a system composed of only vertical graphene sheets, the n* res

onance (A) would have a maximum intensity at normal incidence (to the substrate) 

and a minimum at grazing incidence. While the (]"* resonance would have a maximum 

at grazing incidence (to the substrate) and a minimum at normal. In an only hori

zontal system, the exact opposite would be true. However, as shown in Figure 3.1, we 

see a strong n* and (]"* resonant intensities at grazing and normal angles. This is due 

to the contribution of both horizontal and vertical graphene planes (as illustrated in 

Figure 2.3 (c)). 

As is shown in Figure 3.4, both the acid-treated and water-treated samples exhibit 

the B1 and B2 peaks, though the B2 peak is much more pronounced in the acid-treated 

samples. The B1 peak appears to remain constant. This suggests that the B2 peak is 

a result of defects more strongly introduced to the graphene system during the acid 

treatment. We have assigned the B2 resonance to (]"* resonances of C-0 bonds, formed 

by bond cleavage in the C-C network during the acid treatment. Our identification 

is supported by the improved wetting of the nanosheet samples, the relative decrease 

in the intensity of the A and C peaks to the B features, corresponding to a relative 

decrease in the C-C n* and (]"* transitions. Initial XPS characterization indicates 

that the acid-treated samples have a 30% higher O:C ratio compared with the water

treated samples and a 100% higher O:C ratio compared to the as-deposited sample, 

which contained up to 2-3% 0 (with no heating). Also, the absence of Cl in the XPS 

spectra rules out C-Cl bonds as the origin of the B2 peak. 

As seen in Figure 3.5, the B2 resonance is most pronounced at grazing incidence. 

We assume that the free-standing graphene sheets of the nanosheet system are more 

susceptible to electrophilic attack by the hydronium ion [50] due to pyramidalization 

and n misalignment that is present at the edges and curvatures of the sheet walls 
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Figure 3.4: Close up of the Bl and B2 features observed in the XANES spectra. As 
can be seen, both Bl and B2 peaks are absent from the as-deposited sample (black), 
but present in both the acid- (green) and water-treated (blue) samples with different 
intensities. 
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[51, 52). Therefore, most defects will be created on the surface layers of the vertical 

sheets, leaving the basal layers mostly unaffected. However, while the strong angular 

dependence that we see supports this assertion, a more rigorous investigation would 

need to be undertaken to prove it. The angular dependence demonstrated could be 

the result of a surface area phenomenon, but this was not considered to be of critical 

importance. Our results suggest that the B2 resonance possesses a* character, i.e. 

involving bonds within the plane of the sheets. In Figure 3.6 the angular dependence 

exhibited by the water-treated nanosheet sample is shown. These results suggest that 

the Bl resonance of the water-treated samples exhibits a* character as well. However, 

the strong dependence shown by the B2 feature is not present. The lack of the Bl 

feature in the as-deposited nanosheet samples tends to rule out assignment of the 

Bl peak to a* C-H bonds. As shown previously, as-deposited nanosheets possess 

C-H bonding on the surface [37) and we would expect to see the Bl feature in the as

deposited samples if this feature arose from the C-H bonds. Therefore, while tentative, 

we have assigned the Bl feature to 1r* resonances of C=O. These assignments agree 

with our preliminary calculations [14) and with assumption that the sidewalls of 

the nanosheets provide a more reactive surface based on pyramidalization and the 

possibility of 1r misalignment that is observed with nanotubes. 

We can see a difference in the Bl and B2 peaks based on time and temperature 

of acid-treatment, with B2 being more pronounced with acid-treatment, than with 

water-treatment, and increasing with longer treatments. However, a direct compari

son can not be made by plotting the spectra at this time. The angular dependence 

measurements were made without monitoring the initial beam and therefore its con

tribution can not be subtracted out of the spectra. As the sample is heated, the 

intensity of the Bl and B2 peaks decrease as shown in Figure 3. 7 and Figure 3.8. The 

ratio of Bl/B2 is dependent upon the type of functionalization treatment (water vs. 

acid) that the sample received, (Fig. 3.4). After heating to a very high temperature 
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Figure 3.5: XANES spectra of acid-treated nanosheets. As the angle of incidence 
from normal increases (towards grazing) the B2 feature becomes more pronounced 
with respect to the other features. This indicates the a nature of bonds that are the 
cause of the B2 resonance. 
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Figure 3.6: XANES spectra of water-treated nanosheets. As the angle of incidence 
from normal increases the Bl feature becomes more pronounced with respect to the 
other features. This should indicate a ~ nature of the bonds that are the root of 
the B2 resonance. However, no Bl feature is observed in the as-deposited samples, 
indicating that the feature is not a C-H ~* resonance and because the resonance is 
not as strong as the dependence of the B2 peak, the feature is tentatively assigned to 
C=O 1r* resonance, in agreement with previous nanotube work. 
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(»320°C), the spectra compare well to that of HOPG, Figure 3.9. 

Preliminary calculations and modeling, using density functional theory, of a di

vacancy introduced in the graphene plane has successfully reproduced the spectro

scopic features (in simplified form) that we see in the XANES results. In Figure 3.10 

(left) a schematic of a di-vacancy defect is provided. The blue dots represent the 

carbon atoms and the yellow represents the charge density of the electron states near 

the defect. As can be seen from the density of states calculations (Fig. 3.10 right), 

the carbon atoms near the defect site have an increase in states available near the 

Fermi level, while the atoms away from the defect do not experience this shift and 

present the density of states expected for a pure graphene layer. The presence of 

these calculated mid-gap states not only supports the XANES spectroscopic features, 

but also suggests that the defects created in the nanosheet system can increase the 

conductivity of the system. 

In order to further investigate these theories, acid-treated and as-deposited nanosheets 

were electrically contacted with a tungsten nano-manipulator inside a focused ion 

beam/scanning electron microscope (FIB/SEM). The tip was polished in-situ to 10-

20nm by using the Ga+ beam, which led to a reduction of oxygen on the tip and better 

definition of the tip/nanosheet contact area. Strong contact between the tip and the 

individual nanosheets was observed through a slight bending of the nanosheet. When 

contact was not sufficiently strong, tip vibrations and drift led to a delamination of 

the tip and was observed as a current drop in the measurements. A current- voltage 

(I/V) measurement of the sheet was performed by flowing current from the tip to 

the grounded substrate. The voltage was scanned from -1 to 1 V in 30-40 seconds. 

Three to five measurements were taken at the same location. Because of the density 

of nanosheets, it was possible to obtain multiple measurements ( ~400) per sample. 

Representative results are shown in Figure 3.11. As shown, the conductivity of the 

functionalized nanosheets has increased by an order of magnitude over that of the 
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as-deposited nanosheets. These experimental results have shown that we were able to 

tune the properties of the carbon nanosheets through the introduction of defects. The 

introduction of the mid-gap states seen in Figure 3.11 produces a regime of metallic 

character in the nanosheets, allowing for the increase in conductivity. 
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Figure 3.7: XANES spectra of 3 hour acid-treated nanosheets that are being heated 
stepwise. Notice the decrease in the B2 feature and the start of the deconvolution of 
the shoulder (the Bl peak). 
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Figure 3.8: XANES spectra of 23 hour acid-treated nanosheet samples that are being 
heated stepwise. These spectra were taken in the front chamber of the beamline and 
therefore the initial beam can not be subtracted out. However, the clear evolution of 
the Bl and B2 peaks can be seen after heating the sample above ~320°C. 
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Figure 3.9: XANES spectra taken of acid-treated carbon nanosheets after heating 
samples to very high temperature »320°C showing the disappearance of the Bl and 
B2 defect features. 
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Figure 3.10: A schematic of the di-vacancy defect created in a graphene layer (left). 
The blue represents the carbon atoms that make up the graphene layer and the yellow 
is representative of the charge density of the electron states near the defect site. The 
density of states (DOS) as calculated for a pure graphene layer and a graphene bi
layer with a di-vacancy (right top). The DOS for atoms near the defect (right middle) 
and far away from the defect (right bottom) [14]. 

Figure 3.11: SEM image (left) of modified AFM/SEM tip making contact with a 
single carbon nanosheet. By sweeping the voltage and measuring the current of the 
nanosheet systems (functionalized and as-deposited), the increased conductivity of 
an order of magnitude is shown (right). 
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3.2.2 Summary of XANES experiments 

Defect creation in the carbon nanosheet system via acid treatment was confirmed via 

XANES and supported with density functional theory calculations. The Bl feature 

that has previously been assigned to both C-H a-* and C=O 1r* transitions was ten

tatively assigned to C=O 1r* transitions because no such feature was observed in the 

as-deposited samples. The B2 feature was assigned to C-0 a-* transitions in agree

ment with previous literature. Calculation of the local density of states predicts the 

features observed in the experimental data, offering further support of defects created 

by the acid and water treatments. 

These calculations suggest that the defects introduced via the functionalization 

of the nanosheets could enhance the conductivity of the carbon nanosheets by the 

introduction of new levels close to the Fermi level of the system. In support of this 

hypothesis, experimental evidence showing the increased conductivity of the carbon 

nanosheet system was shown. These results lend credence to the calculations and our 

assumptions. Based upon the results from the XANES and density functional theory 

calculations we have developed a novel way to introduce functionality and new prop

erties to a graphene layer [14]. However, identification of the exact chemical nature 

of the functional groups is needed to further nanosheet technology. This classifica

tion will allow for the tailoring of electronic and chemical properties of the nanosheet 

material through further chemical reactions. Thermal desorption spectroscopy was 

employed for the identification and the results will be discussed in the next section. 
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3.3 Thermal desorption spectroscopy 

Thermal desorption spectroscopy (TDS) is a technique that involves the heating of a 

substrate in a vacuum environment and by measuring the pressure of different gases 

that desorb from the surface. For the following work, TDS was employed in an effort 

to classify the exact chemical functionality of the defects identified with XANES. By 

using TDS, we are able to not only categorize the composition of the defects, but also 

the stability of the defects. 

3.3.1 Identification of the TDS features 

As mentioned previously in section 2.3, Raman spectroscopy of the nanosheet samples 

was utilized to investigate the effects of the functionalization on the nanosheet system. 

As was shown in Figure 2.7-and again in Figure 3.12 for convenience-the D peak and 

G'(2D) increases while the G peak intensity decreases as expected during the creation 

of defects that shorten the order of the graphene system. Though we can identify the 

creation of defects via Raman, we can not quantify the functional groups with Raman 

alone. The functional groups can also be created on the edges of the nanosheets. 

Because these edges already contribute to the disorder of the graphene system, their 

contribution does not increase when they are functionalized and a method such as 

TDS is required. 

A TDS spectrum of a typical Ta substrate is shown in Figure 3.13. Notice the large 

C02 peak around 250°C that dominates the spectrum. This peak was not expected 

and has caused a complication in the deconvolution of the TDS data. Due to the 

substrate's contribution to both the C02 and CO spectra, peaks before 280°C will be 

left out of our analysis. 

A comparison of the CO spectra for as-deposited, water- and acid-treated carbon 

nanosheets is shown in Figure 3.14. The literature indicates that the presence of a 
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Figure 3.12: Representative Raman spectra of pre-- and post-functionalization carbon 
nanosheets. The blue line represents the nanosheets after being vacuum fired, but 
before the functionalization treatment. The red line represents the same sample after 
undergoing functionalization through a three hour acid treatment. The data of the 
functionalized nanosheets (red) has been offset by 50 cm-1 to aid in viewing. 

84 



-6 

1.2 X 10 

-co 

0.96 

t:, 0.72 
!!! 
~ 

~ 
Q. 
1ii 0.48 
:e 
~ 

0.24 

0 
0 140 280 420 

Temperature (C) 
560 

-H2 
-H20 
-co 
-C02 
-02 

700 

Figure 3.13: TDS spectrum of a tantalum substrate. Notice the dominating C02 

peak (green) and large contribution to CO (blue). Because of these contributions, 
the features in the acid- and water-treated nanosheets appearing before 280°C will 
be left out of the analysis. 
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CO peak around 400oC is the result of the decomposition of anhydrides and that 

peaks around 570°C are the result of hydroxyl groups [44, 53-55]. Both are present 

in the spectrum of the acid-treated sample. However, only the anhydride peak at 

~ 400°C is present in the as-deposited samples. The water-treated sample is more 

complicated with a peak falling in between the values for anhydrides and hydroxyls. 

This peak can be assigned to a high binding anhydride or to a low binding hydroxyl. 

Figure 3.15 contains the C0-2 spectra of the as-deposited, water- and acid

treated samples. The acid-treated spectrum produces three areas of interest. The 

first feature of interest is around 280°C - 290°C. It is possible that this peak results 

from the decomposition of carboxylic acids though due to the large contribution from 

the substrate the identification of this peak is not possible at this time. The second 

peak of interest is the peak located at 400°C, representative again of the decompo

sition of an anhydride group. The final peak of interest is the peak located at ~ 

530°C. Due to the presence of a hydroxyl peak in the CO spectrum, it is possible that 

this C02 peak results from desorption of lactone groups, formed during a dehydration 

process of a carboxylk acid and a hydroxyl. The literature does not identify a specific 

peak for lactones, but instead offers that the desorption of lactones will be seen in 

the C02 spectra after anhydrides (400°C), but before pyrone type groups [53, 55]. 

The water-treated spectrum offers two peaks of interest; both centered around 

400°C. The presence of two peaks so close to 400°C indicates the presence of high 

and low binding anhydride groups. The assignment of these peaks to anhydrides 

supports the assignment of the previously observed CO peak to a high binding energy 

anhydride instead of hydroxyl groups and is further supported by the lack of a lactone 

type peak in the C02 spectra that is seen with the acid-treated sample. 

The presence of a C02 peak at 400°C in the as-deposited spectrum is again rep

resentative of anhydride groups. Both the CO and C02 feature in the as-deposited 

spectra is unexpected. The nanosheet system does not contain oxygen as shown by 
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Figure 3.14: Comparison of the CO spectra for as-deposited, water- and acid-treated 
carbon nanosheet samples. The peaks at 400oC are representative of anhydrides 
and the peak in the acid-treated spectra at 570°C is deemed the result of hydroxyl 
groups. The peaks before 280°C are not considered in the discussion due to substrate 
contribution (not shown here). 
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previous characterization experiments (i.e. Auger and XPS) [20]. Their presence 

suggests surface reactions taking place on the surface of the nanosheets during the 

heating of the substrates. Boehm [55] suggests a possible aging mechanism that may 

cause the incorporation of water into the nanosheet matrix. This process in combina

tion with surface reactions could explain the observed anhydride peaks after heating 

in the as-deposited sample. 

Inspection of the H20 spectra from the as-deposited, water- and acid-treated sam

ples offers insight to the presence of anhydride and lactone type functional groups. As 

can be seen in Figure 3.16, the H20 spectrum of the as-deposited carbon nanosheets 

possesses a single peak with its maximum at 120°C. This peak is used as the reference 

for all other data and is assigned to desorbing atmospheric water. However, this peak 

does tail, supporting the identification of surface reactions taking place on the as

deposited nanosheets, which explain the presence of the anhydride peak at 400°C in 

the C02 and CO spectra. The water- and acid-treated samples both possess a second 

water peak that has an even higher intensity than that of the peak at 120°C. The 

second peak in the water-treated spectrum is located at 160°C while the second peak 

in the acid-treated sample is located at 210°C. The presence of these peaks support 

the assertion that there is a dehydration event taking place, resulting in the creation 

of anhydride-type defects in both the water- and acid-treated samples (schematic 

shown in Figure 3.17) and possibly in lactone type defects (acid only). This proposed 

reaction is supported by the presence of the CO and C02 peaks at 400°C in both 

water- and acid-treated samples, as well as the hydroxyl peak at 570oC (CO spec

trum) and lactone peak at 53ooc (C02 spectrum) in the acid-treated spectra. For 

ease of reference, schematics of the functional groups mentioned in this section are 

provided in Figure 3.18. 
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Figure 3.15: Comparison ofthe C02 spectra for as-deposited, water- and acid-treated 
carbon nanosheet samples. The acid-treated spectrum (green) produces three areas 
of interest. The first around 280°C, the second at approximately 400°C and the 
third at 530°C. The water-treated spectrum (blue) has two peaks associated with the 
anhydride location around 400°C and the as-deposited spectrum (red) has only the 
peak at 400°C. The substrate spectrum (black) shows no structure after 280°C. 
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Figure 3.16: Comparison of the H20 spectra for the as-deposited (red), water- (blue) 
and acid-treated (green) carbon nanosheet samples. The second peak in the water
treated spectrum is centered at 160°C and the second peak of the acid-treated sample 
is centered at 210°C. The presence of these peaks suggest a dehydration event between 
carboxylic groups, possibly a carboxylic and hydroxyl (acid only), resulting in the 
presence of anhydride and lactone groups respectively. The increase of the peak 
intensity at 120°C supports the hypothesis of the decreased hydrophobic behavior of 
the functionalized carbon nanosheets. 
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Figure 3.17: Schematic of dehydration event taking place on the surface of the carbon 
nanosheets between two carboxylic acid groups to form a carboxylic anhydride. 

-----OH 

Hydroxyl Carboxylic Acid Carboxylic Anhydride Lactone 

Figure 3.18: Schematic of possible functional groups created by the acid treatment as 
well as by subsequent surface reactions induced by thermal treatment of the nanosheet 
samples. The junctions in the schematic represent carbon atoms unless otherwise 
labeled. 
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3.3.2 Deconvolution of the TDS spectra 

As was mentioned in section 2.9.1, deconvolution of our TDS spectra is complicated 

by the combination of both 1st and 2nd order processes. The thermally activated 

decomposition of anhydride, lactone and hydroxyl defects are assumed to be 1st order 

processes, but desorption of the water molecules produced during the dehydration 

is a 2nd order process. Section 2.9.1 mentioned that we can use pt and 2nd order 

Polanyi-Wigner equations to help deconvolute and analyze the spectra. 

Utilizing code generated previously [37], small modifications were made to adjust 

to the different spectra. Inspection of the acid-treated C02 spectrum via this mech

anism can be used to identify b.Ed, the desorption energy of the molecules, Ni, the 

number of desorbing molecules and v, the pre-exponential factor associated with the 

vibrational frequency of the molecule. However, using a first order equation did not 

produce a satisfactory fit, as shown in Figure 3.19. A second order equation was 

then used to fit data producing a much better fit as shown in Figure 3.20. This fit 

suggests that desorption of C02 from the functionalized carbon nanosheets in indeed 

a second order process. In order to determine the validity of this assumption, how

ever, a more rigorous study would need to be completed. One should be able to plot 

the rate of desorption vs. one over the temperature in Arrhenius form to determine 

the order of the process. For this fitting routine, the number of peaks to be used 

in the deconvolution must be entered before beginning. For our purposes, we began 

with a small number and increased the number until we received a satisfactory fit. 

For example, for the C02 acid-treated spectrum, we started with four peaks and in

creased to six. The sixth peak is not visible because it fits the tail of the data. This 

was observed with all of the fits. We stopped with the lowest satisfactory number. 

More experiments are suggested, involving not only inspection of the application of 

the Polanyi-Wigner equations in the MATLAB™program, but also of the TDS work 

itself, utilizing another substrate such as gold that does not contribute to the CO and 
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C02 spectra. 

The results of the second order fit are shown in Table 3.1. The values for Ni allow 

for the calculation of the total number of desorbing molecules for the sample. From 

this a percentage of molecules per defect feature allows for the calculation of defect 

specific density calculations by relating the total number of molecules (Ntotaz) to the 

pressure (p) by (3.1) 

2S lao 
Ntotal = kT: · P · dt 

room 0 
(3.1) 

However, with the current setup, such a calculation requires a specific knowledge 

of the pumping speeds for each of the relevant chemical species desorbed. This is 

experimentally difficult. However, one can assume that the variation follows equation 

3.2, where S1 is known. Experimental results with no contribution from the substrate 

would be required for an accurate assessment of e.g., carboxylic type defects vs. 

hydroxyl type defects. The results of fitting the CO spectrum (Fig. 3.21 and Table 

3.2) as well as the H20 spectrum (Fig. 3.22 and Table 3.3) are provide for comparison. 

(3.2) 
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Figure 3.19: Deconvolution of the C02 acid-treated spectrum using a first order 
Polanyi-Wigner equation, producing an unsatisfactory fit. The program did not run 
for more than 300 iterations before kicking out with the above fit, suggesting that 
was the best fit possible with the current parameters. The x-axis is temperature and 
the y-axis is in arbitary units as described previously in section 2.9.1. 
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Figure 3.20: Deconvolution of the C02 acid-treated spectrum using a second order 
Polanyi-Wigner equation, producing a satisfactory fit. With larger iterations and 
more peaks, a better fit is possible. However, there is a trade off based on the fit and 
computational time and for the purposes of these experiments the requirements were 
met with fewer iterations and peaks. The x-axis is temperature and the y-axis is in 
arbitary units as described previously in section 2.9.1. 
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Table 3.1: Results for the calculation of ~Ed,i, Ni, and vi for the acid-treated carbon 
nanosheet C02 spectrum fit with a second order Polanyi-Wigner equation. 

Peak i log10Ni loglOvi ~Ed,i (eV) 
1 5.2717 0.0000 0.0534 
2 4.7677 8.9488 1.1347 
3 4.7400 11.4148 1.6243 
4 2.7959 2.6388 2.7827 
5 4.5572 6.3161 0.5690 
6 4.9309 7.3698 0.8024 
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Figure 3.21: Deconvolution of the acid CO spectrum using a second order fit, provid
ing a satisfactory fit. 

Table 3.2: Results for the calculation of llEd,i, Ni, and vi for the acid-treated carbon 
nanosheet CO spectrum fit with a second order Polanyi-Wigner equation. 

Peak i logwNi logwvi 6-Ed,i (eV) 
1 4.3704 8.4692 0.8048 
2 5.1370 7.7492 1.3940 
3 4.5564 8.8479 1.1147 
4 5.1258 6.4498 1.4227 
5 4.8035 8.0128 1.1964 
6 4.7748 9.0988 1.0009 
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Figure 3.22: Deconvolution of the acid H20 spectrum assuming second order, provides 
a satisfactory fit. The second feature is fit with the largest peak, supporting the 
dehydration events. 

Table 3.3: Results for the calculation of b..Ed,i, Ni, and vi for the acid-treated carbon 
nanosheet H20 spectrum fit using a second order Polanyi-Wigner equation. 

Peak i logwNi logwvi b..Ed,i (eV) 
1 5.2441 2.9020 0.3636 
2 4.5555 11.3348 0.9181 
3 5.1911 0.0032 0.2184 
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3.3.3 Summary of TDS experiments 

Inspection of the oxygen decorated defects created by acid- and water-treatments 

to the carbon nanosheet system via TDS appears to be successful. From the data 

gathered, we were able to identify that the defects were terminated with both car

boxylic acid and hydroxyl groups. We were also able to recognize surface reactions 

taking place on the surface of the carbon nanosheets for both functionalized and as

deposited nanosheet systems. These reactions created carboxylic anhydride groups on 

both functionalized and as-deposited sheets and with the functionalized nanosheets 

lactone groups were created as well. We were also able to show reduced hydrophobic 

behavior in the functionalized carbon nanosheets as evidenced by the large water 

peak (Fig. 3.16) at 120oC for both the acid- and water-treated samples. This data 

is in agreement with the XANES data and supports the assignment of the B1 and 

B2 feature to C=O 1r* and C-0 a* transitions respectively. Because oxygen has a 

higher effective nuclear charge, its orbitals lie at lower energies than the ones of the 

corresponding carbon atom. This results in overlap between the oxygen's 2p orbital 

with the carbon's 2s orbital. Therefore, the 1r* transition of C-0 will be slightly closer 

to the fermi level, but also the a* transition will be closer to the fermi level. There

fore, the DOS near the fermi level and just above the fermi level are increased for a 

C-0 functional group. Using the Polanyi-Wigner equation and MATLAB™we were 

able identify the stability of these defects-via their binding energies-in the nanosheet 

system and give a quantitative guess as to the number of defects created. 

Due to the complications arising from both 1st and 2nd order processes occurring 

simultaneously in the spectra, contributions from the substrate and surface reactions 

exact quantification of defect density and defect classification was not possible. As a 

result of the interference from the substrate, high resolution XPS was utilized in an 

attempt to make an exact identification of the functional groups and the results are 

discussed in the next section. 
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3.4 High resolution X-ray photoelectron 
spectroscopy 

Even though the TDS work was successful in the identification of the functional 

groups introduced via acid- and water-treatment of carbon nanosheets, there was a 

desire to know the exact local environment of the defects. The contributions from the 

substrate affected the deconvolution of the TDS spectra. Hence, due to its extreme 

surface sensitivity, x-ray photoelectron spectroscopy (XPS) was chosen for further 

investigation of these defects. 

3.4.1 Interpretation of XPS data 

The literature reveals numerous accounts of high resolution XPS studies on oxy

genated carbon systems. The characterization of the graphene systems in [44, 53, 55] 

is representative of these systems. For these systems, the main peak at 284.6 eV 

is assigned to the C=C environment that dominates these systems. Shoulders that 

result at or around 286 eV are assigned to carbon atoms that are bound to a single 

oxygen atom via a single bond, such as with ether or alcohol type defects (Fig. 3.23 

(a) and (b) respectively). Shoulders at 287 eV are assigned to carbon atoms that are 

double bonded to an oxygen atom, e.g. a carbonyl type defect (Fig. 3.23 (c)) and 

features at 289 e V assigned to carbon atoms that are bound to two oxygen atoms, 

e.g., a carboxylic acid (Fig. 3.23 (d)) [44]. 

As can be seen in Figure 3.24, a room temperature survey scan shows only car

bon and oxygen present in the as-deposited, water- and acid-treated samples. The 

acid-treated spectrum shows oxygen content of 7.7% while the water-treated spec

trum reveals content only a little lower at 6.8%. The as-deposited spectrum shows 

extremely high oxygen content of 6.8%. Previous results have shown values around 

1% [20]. However, upon heating the samples to remove water absorbed on the surface 
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of the nanosheets from the atmosphere, the percentage of oxygen drops to < 2% for 

the as-deposited, 3.6% for the water-treated and 4.5% for the acid-treated spectra. 

Inspection of the high resolution C(1s) spectra of the as-deposited nanosheets 

(Fig. 3.25), the acid-treated nanosheets (Fig. 3.26) and the water-treated nanosheets 

(Fig. 3.27) samples with sub-peak identification reveal structure similar to that illus

trated by reference [44]. The sub-peaks of the acid- and water-treated samples show 

a fourth peak (illustrated in purple), that the literature has identified as a carbon 

atom bound to two oxygen atoms, not present in the as-deposited nanosheet spectra. 

After heating the nanosheet samples to ~ 150°C, we see that this fourth sub-peak of 

interest disappears in the acid- and water-treated spectra (Fig. 3.28 and Fig. 3.29 re

spectively). However, this sub-peak appears in the as-deposited spectrum (Fig. 3.30), 

supporting our surface reaction hypothesis. Continued heating of the samples pro

duces only the three sub-peaks for the as-deposited, acid- and water-treated samples 

as shown by the representative spectrum shown in Figure 3.31. 
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Figure 3.23: Schematic representation of the possible functional groups and bonding 
configurations of carbon atoms seen in high resolution XPS from sp2 type carbon 
systems with oxygen defects. A) an ether type defect, B) an alcohol type defect, C) 
a carbonyl type defect and D) a carboxylic acid defect. 
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Figure 3.24: Room temperature survey scans of as-deposited (black), water-treated 
(blue) and acid-treated (green) carbon nanosheets. Oxygen and carbon are the only 
observable features in the spectra. 
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Figure 3.25: High resolution C(ls) spectrum of as-deposited carbon nanosheets with 
sub-peak identification. The blue sub-peak is assigned to the C=C of the system, the 
green sub-peak assigned to the C-0 of the system and finally the red sub-peak to the 
C=O of the system. The y-axis has been removed to avoid confusion, but is in units 
of electron counts. 
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Figure 3.26: High resolution C(ls) spectrum of acid-treated carbon nanosheets with 
sub-peak identification. The blue peak is assigned to the C=C of the system, the 
green sub-peak to the C-0, the red sub-peak to the C=O, and finally the purple 
sub-peak to the COO of the system. The fourth sub-peak is not present in the as
deposited nanosheets implicating the change bonding of the C atoms in the system 
with defect creation. 
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Figure 3.27: High resolution C(ls) spectrum of water-treated carbon nanosheets with 
sub-peak identification. The blue peak is assigned to the C=C of the system, the 
green sub-peak to the C-0, the red sub-peak to the C=O, and finally the purple 
sub-peak to the COO of the system. The fourth sub-peak is not present in the as
deposited nanosheets illustrating the change in bonding of the C atoms in the system 
with defect creation. The presence of the fourth sub-peak in the high resolution 
C(ls) spectra supports our findings of defect creation via a water-treatment as well 
as acid-treatment. 
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Figure 3.28: High resolution C(ls) spectrum of acid-treated carbon nanosheets after 
heating to ~ 150°C, with sub-peak identification. The blue peak is assigned to the 
C=C of the system, the green sub-peak to the C-0, and the red sub-peak to the C=O. 
The fourth sub-peak, assigned to the COO of the system, has disappeared. This 
supports the disappearance of the oxygen signal from the survey scan and supports 
the surface reaction theory. 
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Figure 3.29: High resolution C(ls) spectrum of water-treated carbon nanosheets, 
after heating to ~ 150°C with sub-peak identification. The blue peak is assigned to 
the C=C of the system, the green sub-peak to the C-0, and the red sub-peak to the 
C=O. The fourth sub-peak, assigned to the COO of the system, has disappeared, 
supporting the surface reaction hypothesis. 
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Figure 3.30: High resolution C(ls) spectrum of as-deposited carbon nanosheets after 
heating to ;:::;J 150°C with sub-peak identification. The blue peak is assigned to the 
C=C of the system, the green sub-peak to the C-0, the red sub-peak to the C=O, 
and finally the purple sub-peak to the COO of the system. The appearance of the 
fourth peak in the as-deposited sample after heating supports the surface reaction 
hypothesis as well. 
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Figure 3.31: High resolution C(1s) spectrum of acid-treated carbon nanosheets after 
continued stepwise heating to ~ 450°C. This spectrum is characteristic of all samples 
during and after the completion of the heating process. 
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High resolution O(ls) spectra are also present in the literature, but it is much more 

difficult to differentiate and assign these peaks. There are W03 impurities created 

during the acid treatment so we expect to see peaks at 530eV resulting from the W03 

crystals (<I> Electronics). However, the peaks of interest are at 532e V for the CO 

peak generated by the creation of defects on the graphene walls of the nanosheets. 

The peaks at 532eV are expected to decrease as the temperature of the sample is 

increased, signifying desorption of oxygen from the surface. However, because no 

signature from the tungsten substrate is present in the survey scan, the W03 cannot 

be responsible for sub-peaks and its contribution is considered negligible due to a 

very low concentration of the crystals. 

In agreement with the literature, however, exact assignment of the high resolution 

O(ls) sub-peaks is difficult. As shown in Figures 3.32 - 3.34, the as-deposited, acid

treated and water-treated spectra all produce two sub-peaks during the fitting routine. 

The relative intensities of the lower energy sub-peaks from the spectra support the 

association of the lower energy sub-peaks with water from the ambient absorbed on 

the surface of the samples. As shown in Figures 3.32 - 3.37 the percentages of the 

lower energy sub-peaks are 46% (as-deposited), 59% (acid-treated) and 63% (water

treated) at room temperature and 30% (as-deposited), 34% (acid-treated) and 18% 

(water-treated) after heating to ~ 150°C, respectively. 

With continued step-wise heating, all of the samples do not follow the same trend. 

When the as-deposited sample is heated to ~ 350°C, the higher energy sub-peak 

becomes the weaker of the two peaks (Fig. 3.38). This stays the same when the 

sample is heated to ~ 450°C (not shown). For the acid-treated samples, the higher 

energy peak remains the stronger of the two peaks throughout the heating process as 

illustrated in Figure 3.39 (heating to ~ 450°C). The water-treated samples produce 

yet another trend. The higher energy peak is the weaker of the two after heating 

to ~ 200°C (Fig. 3.40), but then becomes the stronger sub-peak after heating to ~ 
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450°C (Fig. 3.41). The complications of the sub-peak fitting routine make a direct 

assignment too difficult. However, the trends expressed by the changing relative 

percentages between the lower and higher energy peaks supports the data gathered 

from XANES and TDS in the assignment of oxygen decorated defects and the presence 

of surface reactions. 
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Figure 3.32: High resolution O(ls) spectrum of the as-deposited carbon nanosheets 
with sub-peaks. In our spectra, the high binding energy peak is attributed to C=O 
and the lower binding energy peak is attributed to both C-0 and atmospheric water. 
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Figure 3.33: High resolution O(ls) spectrum of acid-treated nanosheets with sub
peaks. The change is relative peak intensity compared to the as-deposited nanosheet 
spectrum suggest that the lower energy sub-peak is associated with atmospheric wa
ter. 
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Figure 3.34: High resolution O(ls) spectrum of water-treated nanosheets with sub
peaks. The change is relative peak intensity compared to the as-deposited nanosheet 
spectrum suggest that the lower energy sub-peak is associated with atmospheric wa
ter. 
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Figure 3.35: High resolution O(ls) spectrum of as-deposited nanosheets with sub
peaks after heating to 150°C. The intensity of the lower energy sub-peak has de
creased, supporting the association of this sub-peak with atmospheric water. It should 
be noted that the overall intensity of these peaks is much lower than the intensities 
shown previously, but has been adjusted for the ease of viewing. 
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Figure 3.36: High resolution O(ls) spectrum of acid-treated nanosheets with sub
peaks. The intensity of the lower energy sub-peak has decreased, supporting the 
association of this sub-peak with atmospheric water. It should be noted that while the 
overall intensity of these peaks is less than for the room temperature acid spectrum, 
it is larger than the intensity for the 150°C as-deposited sample. 
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Figure 3.37: High resolution O(ls) spectrum of water-treated nanosheets with sub
peaks. The intensity of the lower energy sub-peak has decreased, supporting the 
association of this sub-peak with atmospheric water. Also, the appearance of the 
third sub-peak (represented in purple) supports the hypothesis of surface reactions 
taking place during the heating of the samples. 
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Figure 3.38: High resolution O(ls) spectrum of as-deposited nanosheets with sub
peaks after heating to~ 350oC in which the lower energy peak becomes the stronger 
of the two sub-peaks (based on percentages, 51%) . 
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Figure 3.39: High resolution O(ls) spectrum of acid-treated nanosheets with sub
peaks after heating to~ 450°C showing that the higher energy sub-peak remains the 
dominant peak (based on percentages, 60%). 
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Figure 3.40: High resolution O(ls) spectrum of water-treated nanosheets with sub
peaks after heating to :::::: 200°C at which point the lower energy sub-peak becomes 
the dominant peak. 
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Figure 3.41: High resolution O(ls) spectrum of water-treated nanosheets with sub
peaks after heating to :::::: 450°C at which point the higher energy sub-peak becomes 
the dominant peak. 
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3.4.2 Summary of XPS results 

The high resolution XPS experiments resulted in sub-peaks for both the C(ls) and 

O(ls) spectra that are in agreement with values previously reported for carbon sys

tems with oxygen defects. Sub-peak fitting of room temperature, high resolution 

C(ls) scans produced three sub-peaks in the as-deposited nanosheets and four sub

peaks in both the acid- and water-treated samples. The fourth sub-peak that is 

present in the acid- and water-treated samples, but missing from the as-desposited 

samples, supports our assertion of functionalization via acid- and water-treatments. 

The literature has identified this fourth sub-peak as corresponding to a COOR-type 

functional group. As the samples are heated this fourth sub-peak disappears from 

the acid and water spectra. However, after heating the as-deposited nanosheets to ~ 

150°C, the fourth sub-peak appears in the spectrum. After subsequent heating the 

sub-peak is no longer present. These trends support the presence of surface reactions 

that take place on the carbon nanosheets during the XPS and TDS experiments. The 

temperature at which these changes are observed ( ~ 150°C) also supports dehydra

tion events. These events result in the creation of additional functional groups, i.e. 

anhydrides and lactones. 

The sub-peak fitting of high resolution O(ls) scans also produced results in agree

ment with the TDS experiments. The lower binding energy sub-peaks were associated 

with atmospheric water and with the CO functional groups. The higher binding en

ergy sub-peaks were associated with the COOR-type functional groups. This is in 

agreement with the literature. However, the presence of the C-0 and the C=O sub

peak in the as-deposited nanosheets complicates deconvolution of the data. Because 

there are peaks in the TDS spectra that we associate with anhydrides, we would ex

pect to see C-0 and C=O sub-peaks in the XPS spectra, but only after heating the 

samples and creating functional groups. 

Due to the complications of the sub-peak fitting, an exact assignment of the struc-
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tures to specific bonding arrangements is difficult. Also, the atomic percentages of 

oxygen present in the samples are not enough to account for the sub-peak structure 

seen in the C(1s) spectra alone. However, the trends observed from the C(1s) and 

0(1s) spectra both provide evidence for surface reactions that take place during the 

heating of the nanosheet samples, in agreement with the results of the TDS work. 

Only oxygen and carbon are seen in the survey scans which also support the assign

ment of the defects created to oxygen decorated defects first made as a result of the 

XANES work. 

The sizes of the resulting sub-peaks of the XPS spectra can be used to give an esti

mation of the relative surface concentrations. However, this requires the XPS system 

to be calibrated to an extent that was not possible for these experiments. Further 

calibration of a system dedicated only to the study of functionalized nanosheet, along 

with samples treated for varying amounts of time are required for a more conclusive 

identification of the surface composition of the functionalized nanosheets. 
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3.5 Summary and discussion of functional group 
characterization 

The nature of defects created in the graphene system of carbon nanosheets was char

acterized via x-ray absorption near-edge spectroscopy (XANES), thermal desorption 

spectroscopy (TDS) and high resolution x-ray photoelectron spectroscopy (XPS). As 

a result, it was shown that functional groups are created by both acid- and water

treatments of the nanosheet system. The spectroscopic features observed via XANES 

were attributed to C-0 a* transitions (B2) and C=O 1r* transitions (Bl). The removal 

of the defect features was observed by heating the samples to > 320°C, suggesting 

that the oxygen containing groups could be removed by thermal activation. The pres-

ence of oxygen containing functional groups was verified and the nature of the groups 

identified using TDS as defined in Table 3.4. Signature peaks observed in the acid

treated spectra consisted of carboxylic acids (C02 , ~ 280°C), anhydrides (CO and 

C02 , ~ 400°C), lactones (C02 , ~ 530°C) and hydroxyls (CO,~ 570°C). These peaks 

along with the H20 spectrum allowed for the identification of surface reactions on the 

nanosheets, resulting in the anhydride and lactone type peaks, therefore assigning the 

defects created to carboxylic acids and hydroxyl groups which is in agreement with 

the literature and supports the XANES findings. Signature peaks observed in the 

spectra of the water-treated samples were anhydrides (CO and C02 , ~ 400°C), along 

with the second peak in the H20 spectrum, again supporting surface reactions. Due 

to the lack of carboxylic acid peaks (C02 , ~ 280°C) or hydroxyls (CO, ~ 570°C) in 

the spectra, however, these surface reactions become more important. It is likely that 

the signal from the carboxylic acid type defects was ignored due the C02 spectrum 

from the substrate and that the water-treatment did not result in the formation of 

hydroxyl groups. The final support for the surface reactions during the heating of the 

samples came from the as-deposited nanosheets with the presence of an anhydride 

peak (CO and C02 , ~ 400°C) with no defects observed in the room temperature 
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Table 3.4: Results of TDS peak identification 

Spectrum Peak Temp (oC) As-deposited Acid-treated Water-treated 
C02 280 n/a carboxylic acid n/a 

400 anhydride anhydride anhydride 
530 n/a lactone n/a 

co 400 anhydride anhydride anhydride 
570 nja hydroxyl n/a 

H20 120 atmospheric H20 atmospheric H20 atmospheric H20 
160 n/a n/a dehydration rxns 
210 n/a dehydration rxns n/a 
tail dehydration rxns dehydration rxns dehydration rxns 

XANES spectra. This again supports surface reactions on the nanosheet samples. 

The observed trends in the H20 spectra for all samples show evidence supporting the 

reduction of the hydrophobic behavior of carbon nanosheets after functionalization. 

High resolution XPS was not able to specifically identify changes in bonding through 

the sub-peak fitting routine due to difficult deconvolution. As-deposited samples pre-

sented a higher O:C ratio than previously observed. One concern is the "aging" of the 

carbon nanosheets as mentioned in Boehm et al [55] and the incorporation of oxygen 

into the material. The oxygen content of the acid- and water-treated samples was 

identified as being higher than that of the as-deposited samples. This agrees with the 

TDS and XANES data. Though quantification is not possible without calibration, it 

may be possible to quantify the reduction in hydrophobicity via the oxygen content. 

Also, the observed trends and values supports the presence of oxygen decorated de

fects in the functionalized nanosheets and the surface reactions that take place during 

the heating of the samples. 

In summary, based on our data we were able to identify the functional groups 

created via the acid-treatment as carboxylic acids and hydroxyls while the water

treatment only produced carboxylic acids. The idea of creating functional groups via 

water treatment however is quite counter intuitive. As mentioned previously, the as-
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deposited nanosheets are quite hydrophobic and graphene structures are chemically 

inert, making interactions with deionized water unlikely. However, this is not without 

precedent. Yang et al [56] found that sonication of nanotubes in deionized water 

produced functional groups as well. The primary (CH3 ) carbon atoms can oxidize 

to primary alcohols (C-OH), then aldehydes (C=O) and finally to carboxylic acids 

(COOH). Secondary carbon atoms (CH2 ) can oxidize to secondary hydroxyls (C-OR) 

and then to ketones ( C=O) while the tertiary carbon atoms ( CH) can only oxidize 

to alcohols (C-OH). The findings in reference [56] support our assignments, with the 

B1 XANES peak being representative of C=O 1r* transitions due to the presence of 

carboxylic acid groups and ketone groups. Also, the lack of hydroxyl groups for the 

water-treated samples in the CO TDS spectrum suggests that there is not enough 

energy to oxidize the tertiary CH atoms. From the TDS work of Zhao et al [37] we 

know that there are CH sites available for this oxidation process in the as-deposited 

nanosheets at lower binding energies, making these sites more likely to be oxidized 

with low energy (heating only to~ 100°C). 

The presence of the hydroxyl feature in the acid treated samples supports our claim 

that we are creating di-vacancy defects, decorated with hydrogen and hydroxyl groups 

as well. By creating these decorated defects, we should see a larger contribution of 

OH than observed with the water-treated samples. We do in fact see a large B2 

feature in the XANES (assigned to C-0 0'*) that is a result of these hydroxyl groups 

as well as the COR in the carboxylic acids. We also see the hydroxyl peak in the CO 

TDS spectra. 

Density functional theory calculations were applied to the system and reproduced 

the spectroscopic features (in simplified form) observed in the XANES spectra [14]. 

From the density of states calculations it was suggested that the conductivity of the 

nanosheets could be increased through the introduction of defects in the graphene 

system of the nanosheets. Experimental evidence, for the first time, was provided that 
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measured the conductivity of the vertical graphene layers of the nanosheet system. 

The increased conductivity of the nanosheet system through chemical modification 

was shown by the modified and unique procedure. 

Finally, a routine for the further investigation of defect control, including the con

centration of defects, was outlined. It was shown that by using a MATLAB™script, 

data from the TDS experiments were fit with 2nd order Polanyi-Wigner equations and 

values such as the number of molecules desorbing from the surface for a particular 

temperature were calculated. With further calibration of the XPS system, it would 

be possible to compare the atomic percentages of oxygen (and decreases based on 

heating) to the values seen from the TDS work. These values could then be used 

to identify concentrations of different defects created at similar sites, i.e. both car

boxylic and hydroxyl defects at Stone-Wales defects, versus the same defects (i.e. 

hydroxyls) present on different sites (i.e. Stone-Wales or vacancy). Because this was 

not considered critical for the identification of these defects and in supporting the 

development of carbon nanosheets as a viable option for high surface area electrodes, 

a more rigorous investigation is needed. 

In the next chapter, the applicability of functionalized carbon nanosheets is il

lustrated by their use as nanostructured templates during an ALD process. The 

procedure and results of this process will be presented and discussed. 
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Chapter 4 

Atomic layer deposition of 
titanium dioxide nanostructures 

4.1 Introduction to atomic layer deposition (ALD) 
of titanium dioxide 

Atomic layer deposition (ALD) is a process for depositing thin films on substrates 

of varying composition. ALD makes use of self-limiting, sequential surface reactions 

to maintain precise control over the thickness of the films. ALD is similar to CVD, 

however, ALD is split into two half-reactions and the precursor materials are kept 

separate. This allows for atomic-scale deposition control. The use of ALD makes it 

possible to deposit atomically thin films of uniform thickness over porous substrates, 

inside deep trenches and around particles [57]. 

High surface area films are of importance to a variety of applications. ALD allows 

for the growth of uniform films over substrates with varying geometries, including 

nanostructured substrates. Therefore, as proof of concept for the applicability of 

functionalized carbon nanosheets, ALD was used to deposit Ti02 films using carbon 

nanosheets as a template. The results are uniform, high surface area Ti02 films which 

can be used in a variety of applications. 
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4.2 Motivation for deposition of Ti02 on carbon 
nanosheets 

Metal oxides are an important group of materials with a wide range of thin film 

applications. One example is Ti02 which can be used in photocatalysis [58], pho

tovoltaics [59] and in gas sensors [60]. Many of these applications require a nanos

tructured film with a very large surface area and with good control of grain size and 

phase composition. Several authors have reported on the deposition of such nanos-

tructured Ti02 films. This includes both depositions of nanobowls, nanotubes and 

other structures using atomic layer deposition (ALD) [61], as well as anodization of 

titanium to fabricate nanoporous Ti02 films [62]. An alternative method to produce 

nanostructured Ti02 with a large surface area is to use a template structure in com-

bination with a deposition process with very good step coverage such as ALD. In 

the ALD technique, reactant pulses are separated by purging pulses. Reactant gas 

species saturate the surface of the substrate during each pulse and growth is achieved 

through self-limiting surface reactions. This enables the ALD technique to confor-

mally cover geometrically complicated surfaces since gradients in the partial pressure 

of the reactant gas species can be compensated with longer gas pulses. 

Recently, a new type of carbon nanostructure, called carbon nanosheets, has been 

produced using radio frequency plasma enhanced chemical vapor deposition (RF 

PECVD) [22]. As can be seen in the scanning electron microscopy (SEM) image 

in Figure 4.1, the nanosheets consist of standing structures made up of 1-7 graphene 

layers perpendicular to the substrate. 

The sheets are typically ~ 1 J-Lm high and are formed on top of a ~ 10- 20 nm 

thick graphite-like film. Surface areas of about 1000 m2 /g have been observed for 

the nanosheets [22] making these structures suitable as a template for oxide films. 

Furthermore, the nanosheets are conducting which can be an important requirement 

in many applications (e.g. photovoltaics). For a more detailed description of the 
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synthesis and characterization of nanosheets, see references [6, 7]. 

A problem with using carbon nanosheets is that nucleation of an oxide film from 

molecular precursors in, e.g. an ALD process, may be limited on the fairly inert 

graphene-like surfaces. In principle, this can be handled by the introduction of defects 

which would increase the sticking coefficient of precursor molecules. In this chapter 

we demonstrate ALD of nanostructured Ti02 on nanosheet templates and also show 

how the nucleation of the oxide film can be controlled by an acid-treatment which 

induces defects in the graphene surface. 
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Figure 4.1: Left: SEM image of carbon nanosheets deposited on a tungsten substrate. 
Right: Schematic figure of the nanosheet structure. 
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4.3 Experimental setup 

Carbon nanosheets were grown using a Radio Frequency Plasma Enhanced Chem

ical Vapor Deposition (RF PECVD). RF power was inductively coupled into the 

deposition chamber using a copper, planar coiled antenna. Tungsten foil as-received 

(purchased from Alfa Aesar, 0.1 mm, 99.95% metal basis) was used as substrates 

for the purpose of this study. No special treatment was applied before or after the 

acid treatment of the nanosheets. Using a resistive four-inch heater, substrates were 

heated in a hydrogen atmosphere to a growth temperature around 700°C. Once the 

desired temperature was reached, methane was introduced as the carbon feedstock 

at a flow rate of 4 seem. The hydrogen flow rate was kept at a constant 6 seem 

throughout the growth process. Growth time was kept at 15 minutes for these exper

iments. After growth, the methane flow rate was returned to zero, with the plasma 

still ignited for 3-5 seconds, to remove any amorphous carbon from the surface of 

the nanosheets. The samples were then inspected via scanning electron microscopy 

(SEM Hitachi S-4700) operating at 15kV and Raman spectroscopy (Renishaw in Via, 

excitation laser 514nm) for a morphological background. 

Ti02 thin films were deposited using the precursor combination Til4 and H20 in 

an onsite-built hot-wall horizontal flow-type ALD reactor that has been described 

in detail elsewhere [63]. Til4 (Alfa Aesar, 99.9% purity) was used as the titanium 

source and evaporated from a semi-open quartz boat inserted at 108°C. Prior to 

the deposition the Tii4 was heat treated at 100°C at 2 Torr to remove any water. 

Deionized water was used as the oxygen source and was evaporated from an external 

container at room temperature. N2 was used as purging gas and carrier gas for the 

Tii4 and H20. Four pulses were used to deposit the Ti02 and these four pulses are 

referred to as a cycle. The first pulse was a Til4 pulse, the second and fourth pulses 

were purging pulses and the third pulse was the H20 pulse. All pulses were 30 seconds 

to ensure saturation of the surface. 50, 75 and 100 cycles were used to deposit Ti02 
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on the nanosheets. The nanosheets were placed on a TiN-coated titanium substrate 

holder and all depositions were made at a deposition temperature of 300oC and a 

total pressure of 2 Torr. 

The non acid treated carbon nanosheets were used as-received. The acid treatment 

was made in concentrated HCl at 95oC for 6 hours, a more detailed description can 

be found elsewhere [14]. Samples used for the TEM study were deposited on tungsten 

TEM grids. TEM images and EELS were made on a FEI Tecnai F30ST (300 kV) 

instrument. A LEO 1550 instrument was used to make the SEM images. GIXRD 

were made on a Philips Xpert X-ray diffractometer using Cu Ka radiation. The 

relative Ti content in the films was examined by XRFS using a Spectrolab X2000 

spectrometer. 

4.4 Results and discussion 

Figure 4.2 shows an SEM picture of a titanium oxide film deposited on a carbon 

nanosheet template at 300oC using 100 ALD cycles with Til4 and H20 as precursors. 

A detailed description of the Ti02 ALD process can be found in reference [64]. The 

first pulse is the metal source pulse, the second pulse is a purging pulse, the third 

pulse is an oxygen containing pulse and the fourth and final pulse is a second purging 

pulse. If the process parameters are properly chosen, the number of cycles used rather 

than the concentrations of precursors in the gas phase determines the growth rate. As 

can be seen in Figure 4.2, a more or less continuous film is obtained after 100 cycles 

with fairly large crystallites, about 5-20 nm. However, these films contain pinholes 

suggesting that the conducting nanosheet substrate is not completely covered. 

The lack of adsorption sites, defects, on the inert surface of sp2 hybridized carbon 

can cause nucleation problems [65] and lead to an island growth mechanism. This 

was also observed in this study as illustrated in Figure 4.3. It can be seen that 50 
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ALD cycles result in a film of sparsely separated islands of titanium dioxide. After 

75 ALD cycles the film still consists of islands and a continuous film requires at least 

100 ALD cycles (see Fig. 4.2). Furthermore, all films deposited in this study on as

deposited nanosheets contained pinholes which can be explained by a slow nucleation 

rate during the initial stages of growth. 

The nucleation can be improved by increasing the defect density on the carbon 

nanosheets. Recently, Coleman et al. have demonstrated that an acid-treatment 

of the nanosheets with HCl induce defects in the graphene structure [14]. Such 

defects can be favorable adsorption sites for precursor molecules and an improved 

nucleation rate is therefore possible. This was investigated in a set of experiments 

using carbon nanosheet samples acid treated in HCl at 95°C for 6 hours. A more 

detailed description of the acid treatment can be found in reference [14]. As can 

be seen in Figure 4.4, the nucleation density was considerably improved by the acid 

treatment and a more or less continuous film of titanium dioxide is obtained after 

only 50 ALD cycles. 

The film appears to consist of separated crystallites of titanium dioxide surrounded 

by an amorphous matrix of the same material although some short range order is no

ticeable. Furthermore, no indication of pinholes can be seen in the films deposited 

on the acid-treated nanosheets. X-ray fluorescence spectroscopy (XRFS) showed that 

the amount of Ti02 deposited also increased for the acid-treated samples. The in

tensity of the Ti peak in the XRFS spectra for acid-treated samples was about 70% 

higher compared with non-acid treated samples deposited in the same experiment. 

X-ray diffraction (XRD) analysis showed that titanium oxide films on both the 

as-deposited and acid-treated nanosheets contained the anatase phase of Ti02 (see 

Fig. 4.5). XRD measurements on samples deposited with only 50 ALD cycles did not 

show any crystalline peaks, which can be explained by the small crystallite sizes as 

well as the small amount of material deposited. 

132 



Figure 4.2: Left: SEM image of a titanium dioxide film deposited on as-received 
nanosheets deposited on W at 300°C using 100 ALD cycles. The nanosheets are 
viewed from the top. Right: TEM image of a sample with carbon nanosheets grown 
on a tungsten TEM grid using the same deposition parameters as the sample in the 
SEM image. The single nanosheet is viewed from the side. Pinholes are highlighted 
in the TEM image. 

Figure 4.3: Samples deposited with Ti02 at 300°C on as-received carbon nanosheets 
showing a non-continuous film after 50 ALD cycles (left) and 75 cycles (right). The 
sheets are viewed from the side. 
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Figure 4.4: TEM image of acid-treated nanosheets deposited with 50 ALD cycles of 
Ti02 at 300°C. Left: Sample viewed from the side perpendicular to the graphene 
planes. Right: Sample viewed from the side showing the graphene layers of a carbon 
nanosheet. 
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Figure 4.5: Diffractogram of samples deposited with 100 ALD cycles on acid-treated 
nanosheets and non acid-treated nanosheets. Peaks attributed to anatase, nanosheets 
and tungsten are marked with A, C and W, respectively. 
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No rutile reflections could be found in any of the deposited films. This agrees 

with an earlier ALD study using the same precursor combination and a deposition 

temperature of 300°C, where anatase was also deposited [64]. It should be mentioned 

that if there is a lattice match between the substrate and any of the Ti02 phases, 

rutile may be formed [66]. However, in this study there is no lattice match between 

the substrate used and either of the two titanium dioxide phases. 

The Raman study confirmed that anatase is present in all films. Typical Ra

man spectra of samples deposited on both acid-treated and non acid-treated carbon 

nanosheets can be seen in Figure 4.6. The samples were deposited under the same 

conditions using 50 ALD cycles while the spectrum in the insert in Figure 4.6 was 

deposited using 100 ALD cycles. The well known bands of anatase can be seen at 

147, 404, 521 and 635 cm-1 [67]. The intensity is higher on the acid-treated samples 

since more material is deposited on this substrate. 

The results above clearly show that the nucleation of the Ti02 film is improved by 

acid-treatment. As discussed above, this procedure is known to introduce defects [14] 

and we can therefore attribute the improved nucleation to the presence of such de

fects. They can act as reactive adsorption sites, especially if they are OR-terminated. 

Gas phase species will thus have more adsorption sites on acid-treated samples, which 

will result in a higher initial growth rate. The adsorbed species also adsorb stronger 

to these sites and the surface mobility of the adsorbed precursor molecules becomes 

significantly reduced. This fact together with the higher nucleation rate will result 

in the initial formation of a larger number of smaller crystallites on the acid-treated 

nanosheets, in agreement with the results above. Furthermore, the difference in nu

cleation rate can also explain the difference in crystalline quality observed in Figures 

4.2-4.4. The slower initial nucleation and growth on the non acid-treated nanosheets 

result in larger, well-defined crystalline grains and a film with many pinholes while 

the defect-rich acid-treated substrate initially yields a less well-crystallized film with a 
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Figure 4.6: Raman spectra of Ti02 deposited on acid-treated and non acid-treated 
carbon nanosheets using 50 ALD cycles. The insert shows a Raman spectrum of an 
acid-treated sample deposited using 100 ALD cycles. 
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mixture of crystalline grains and amorphous matrix, but without pinholes. It should 

be noted, however, that amorphous regions were also occasionally observed on the 

non acid-treated sample. In general, this was found on edges where the top of the 

sheets has been broken off and where the edge was several nanometers thick (see 

Fig. 4.7). 

This can be explained by the fact that edges of the as-deposited carbon nanosheets 

are H-terminated [37],Bagge-Hansen:2008aa since the deposition is carried out in a 

methane/hydrogen atmosphere. These H-terminated edges are not very reactive ad

sorption sites. However, thicker edge regions created by the damaged nanosheets will 

expose highly reactive edge atoms with dangling bonds. The unsaturated bonds will 

quickly react with the ambient and to a large extent be terminated by OH groups due 

to dissociative adsorption of H20. Thus the damaged edges will resemble the defects 

in the acid-treated samples and also give similar nucleation and growth conditions. 
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Figure 4. 7: TEM image of carbon nanosheet where the top has been broken off and 
the titanium dioxide deposited on the top is amorphous. 
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4.5 Summary of carbon nanosheets as nanostruc
tured template 

In summary, thin films of nanostructured Ti02 have been successfully deposited with 

ALD using carbon nanosheets as a template. The initial nucleation and growth of the 

films could be controlled by an acid-treatment process prior to film growth which is 

known to introduce defects in the nanosheets. The Ti02 on the defect-rich nanosheets 

nucleated faster and resulted in a film with no observable pinholes consisting of crys

talline grains in an amorphous matrix. XRD and Raman spectroscopy confirmed that 

the crystalline parts of the films contained the anatase Ti02 phase. Although we have 

yet not measured the surface area of the Ti02 it is clear that the nanosheet template, 

together with the ALD technique makes it possible to make nanosheet-like structures 

of this oxide with surface areas similar or higher than the surface area of the template 

( :;::::j 1000 m 2/ g). We propose that the carbon nanosheets in combination with ALD 

can be used to deposit a wide range of sheet-like nanostructures of different metal 

oxides for a potential use in numerous applications. 

In further support of carbon nanosheets being used as high surface area electrodes, 

the nanosheets were spin cast with a variety of polymers to study the nanosheet 

polymer surface interactions. As a result, the conformal coating of carbon nanosheets 

and incorporation into polymeric films was confirmed. During this investigation, a 

process to transfer as-deposited nanosheet films to zero thermal-budget substrates 

was identified. As a proof of concept measurement, the nanosheets were spin cast 

with polymers commonly used in organic photovoltaics (such as MEH-PPV) and 

photoluminescence measurements made. These results will be presented and discussed 

in the next chapter. 
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Chapter 5 

Conformal coating and transfer of 
carbon nanosheet films to a zero 
thermal budget substrate 

5.1 Introduction 

The previous chapter addressed the applicability of functionalized carbon nanosheets. 

We successfully demonstrated the effects that functionalizing the nanosheets can have 

on the creation of nanostructured Ti02 films and illustrated the continuous films that 

were a result of the acid-treated nanosheets. In this chapter, the process of confor

mally coating the carbon nanosheets with a polymeric material and the transfer of the 

as-deposited nanosheet film to a zero, thermal-budget substrate is described. A brief 

introduction to the materials and process used is provided, but not discussed in detail. 

This work was performed in support of the development of carbon nanosheets as a high 

surface area electrode material. As a proof of concept, carbon nanosheets were incor-

porated into a polymeric film of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene 

vinylene] (MEH-PPV) and the photoluminescence of the composite measured. 
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5.2 Motivation for the conformal coating of carbon 
nanosheets 

Recently carbon-based nanostructures and materials have become a poplar subject of 

research due to their unique thermal, mechanical, electrical, and optical properties. 

For example, the strong C-C bonds of graphene-based systems allow for excellent ther

mal conduction at room temperature and the conjugation of the sp 2 lattice enables 

extremely high electron mobility. The use of carbon nanostructures as a compo-

nent in polymer composites has been limited by several factors including the lack 

of ability to control the alignment of the structures, poor dispersion of the material 

in the polymer matrix, incompatibility with the high temperatures required for the 

nanostructure growth, and the presence of, or complication of removing, non-carbon 

species. 

Carbon nanosheets are new class of carbon nanostructure composed of free-standing, 

vertical graphene structures (1 - 7layers) and horizontal basal planes (10- 20 layers) 

with a measured surface area of 1086 m2 
/ g [20]. Because of their high surface area 

and electronic robustness [68], carbon nanosheets offer unique possibilities for use as 

high surface area electrodes. However, initial experiments involving the incorporation 

of the nanosheets into a polymeric film revealed some difficulties (Fig. 5.1). Polymers 

were spin cast onto the nanosheet films, resulting in the formation of large voids and 

air bubbles in the films. 

Because nanosheets, like other carbon nanostructures, require a high growth tern-

perature, growth of carbon nanosheets on temperature sensitive substrates is not a 

viable option. Therefore, the ability to easily transfer the nanosheets and pattern 

them via standard photolithography techniques [69, 70], without the use of a heat 

treatment step [71], greatly increases the potential of nanostructures in various ap

plications. 

Several approaches currently being investigated for the transfer of other carbon 
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nanostructures include solution based printing methods [72], self-assembly [73], sur

face modification [74], micro-contact printing, hot embossing [75, 76] and electric 

field assisted patterning [77]. However, the largest of the problems is retaining the 

substrate normal morphology during the transfer process. Recent success has been 

reported via casting a polymer solution around the nanotube arrays, but removal of 

the polymer [78, 79] is not mentioned. Other attempts have also been made to create 

free films of carbon nanotubes and to transfer them to different substrates [76, 80], 

but each offer difficulties of their own. Sunden et al [76] showed success in transfer

ring carbon nanotubes via a micro-contact procedure. The nanotubes retained their 

vertical orientation, but because of the catalyst involved in the growth, the nanotube 

tips were broken when the growth substrate was removed. Huang et al [80] were 

able to transfer nanotubes but needed to float the films in a HF /H20 solution and 

then had to lift off the films with a grid which is then used as a stamp during the 

micro-contact procedure. 

In this chapter we illustrate the use of novel spin-coating techniques to confor

mally coat and fill nanosheets with a variety of polymers. A thermosetting polyimide 

was chosen for its chemical resistance and thermal properties. Room temperature 

vulcanizing (RTV) silicone was chosen for its widespread use in applications and sol

vent resistance. Polystyrene was chosen for its solubility in comment solvents. As a 

result of the conformal coatings, carbon nanosheet films were successfully transferred 

to zero thermal-budget substrates without damaging the original morphology. 
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Figure 5.1: Unsuccessful spin casting of carbon nanosheets with polymeric material. 
The surface interactions between the polymer and the nanosheets produced poor wet
ting and no filling between the nanosheets with polymeric material. Further support 
for the poor incorporation of the nanosheets into the polymeric material is the high 
density of nanosheet edges visible from these cross-sectional images. 
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5.3 Experimental 

For the purposes of this study, carbon nanosheets were grown using a standard ra

dio frequency plasma enhanced chemical vapor deposition (RF PECVD) chamber 

previously described in detail in [6, 7, 19] and in section 2.2.1. Typical deposition 

parameters were a substrate growth temperature of~ 700°C, a RF power of 900W, 

and a total pressure of~ lOOmTorr. Growth times ranged from ten to twenty min

utes depending on the desired sheet height and density. The substrates were heated 

to growth temperatures in a hydrogen atmosphere (flow rate of 6 seem). Once the 

desired temperature was reached, methane was introduced into the chamber at a 

flow rate of 4 seem. After deposition, the methane rate was cut to zero with the 

plasma still ignited in order to remove any amorphous carbon that was present on 

the side-walls of the sheets. Finally, the substrates were allowed to cool in a hydrogen 

atmosphere before removing to ambient. During these experiments, silicon wafers 

(100mm, (100), SSP, both doped and un-doped were used as growth substrates. The 

substrates were used as-received with no special treatment prior to deposition. The 

samples were not subjected to any post-deposition treatments before characterization 

or the start of the transfer process. Samples ranged from 5mm x 5mm wafer pieces 

to whole 101.6mm wafers, therefore allowing the successful transfer of large areas of 

nanosheet films. 

The surface morphology of the deposited carbon nanosheets was characterized 

via scanning electron microscopy (SEM Hitachi S-4700) operating from 5kV to 30kV 

in SE collection mode. The degree of graphitization was determined using Raman 

(Renishaw in Via, excitation laser 514nm). Use of the Ferrari method, as described in 

reference [33], allowed for the comparison of various growths utilizing the ID/ Ic ratio 

obtained via Raman spectroscopy. 

Polystyrene (Alfa Aesar, FW 125000-250000, beads) was used as the transfer 

agent. The transfer substrates were made from room temperature vulcanizing (RTV) 

144 



silicone. 2-Butanone (MEK), N-methylepyrrolidone (NMP) and mineral spirits were 

the solvents used during these experiments. Spin casting was accomplished using a 

Chemat KW-4A Precision Spin-Coater with a GAST, model DOA-PlOl-AA, vacuum 

pump. 

5.4 Results and discussion 

Spin casting is a simple technique that can be used to produce very thin, and uniform, 

polymeric films. The technique utilizes centrifugal force, linear shear stress, and 

homogeneous evaporation of a solvent on a substrate that is rotating about its central 

axis. The speed at which the substrate is spinning, volatility of the solvent, along 

with viscosity of the polymer solution and the substrate size typically determine the 

thickness of the film, as illustrated by Figure 5.2. However, during the spin casting 

of carbon nanosheets, it was determined that in order for a conformal coating and 

complete wetting of the nanosheets, particular interest must be paid to the solvent 

of choice and the viscosity of the polymer solution. A solvent that was too volatile 

did not allow for complete coverage of the nanosheet film and resulted in only partial 

coatings. Solvents that were too effective, i.e. a solvent that the polymer material 

had an extremely high solubility in, quickly re-dissolved the already cast polymer, 

resulting in poor film quality and large material consumption. Polymer solutions 

that were too viscous did not allow for the filling between sheets and solutions that 

were too dilute produced no coating at all. 

Also, the standard practice for addition of the polymeric material involves adding 

the material while the substrate is spinning at what is considered a low spin rate (e.g., 

~ 1000 rpm) for a small amount of time and then ramp to a high spin rate (e.g., ~ 

4000 rpm) for a longer period of time. For coating of the carbon nanosheets, this 

practice was not followed. The polymer solutions were found to incorporated into 
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Figure 5.2: Schematic illustrating the spin casting setup and procedure that results 
in the creation of a uniform film. During spin casting, the substrate (light blue) is 
placed on a chuck and is held in place via vacuum. As the substrate is spinning, 
material (dark blue) is added to the center of the substrate and the film is created. 
Typically, the thickness of the film will depend upon the viscosity of the solution, the 
volatility of the solvent, and the speed at which the film is cast. 
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the nanosheets best when initially added to a stationary substrate and then ramped 

to a low and finally high spin rate. Subsequent loadings need to be applied via the 

standard method to prevent the solvent from re-dissolving the already cast polymeric 

material. 

By casting the initial film with a stationary substrate, ramping to a low spin rate 

( < 400 rpm) and finally ramping only to a moderate rpm (~ 1000 rpm) we were able 

to conformally coat the nanosheets as shown in Figure 5.3 (a). Subsequent loadings 

gradually filled the spaces between the sheets and resulted in uniform films, free of 

voids (Fig. 5.3 (b), (c)). 

As mentioned previously, polystyrene was chosen as a polymer for casting because 

it is cheap, readily available and can be easily dissolved in common solvents. One 

of the areas of concern was the role of the solvent in the spin casting and wetting 

process. The polystyrene solutions were made using different solvents (MEK and 

NMP) and at different viscosities. As a result many different polystyrene/nanosheet 

films were made and then set aside for subsequent inspection. During this process, 

it was observed that as the polystyrene films-cast as previously described-dried, the 

composite films appeared to buckle, as illustrated in Figure 5.4. Further investiga

tion demonstrated that this process occurred more frequently on un-doped silicon 

wafers and that the film could be removed with forceps without damaging the film. 

Inspection of the growth wafer after removal of the film showed no sign of a graphene 

structure left on the surface. Also discerned was the ability to control the cracking 

of the film (as seen in Fig. 5.4) by removing the excess polystyrene from the edges of 

the growth wafer. During the spin casting the excess polystyrene wraps around and 

under the edge of the substrate. If this is removed before it dries then the film does 

not undergo the stress created by contraction towards the center of the substrate and 

towards the edge which results in the cracking. 

These observations resulted in a new branch of research focused on the transfer 
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of the carbon nanosheet films to non-growth substrates. Of obvious significance were 

polymeric substrates, because, as discussed above, the temperatures required for the 

growth of carbon nanosheets eliminated polymeric substrates as an option. Due to 

its resistance to solvents and flexibility, silicone (PDMS) was of interest. 

Silicon wafers, for support, were placed on top of the drying polystyrene and then 

removed after the polystyrenejnanosheet composite had formed. Other wafers were 

then spin cast with solutions of RTV silicone and mineral spirits (it is important to 

note that the silicone solutions were prepared by placing the silicone in the solvent 

before it vulcanized) and then placed in contacted with the exposed basal layers of 

the nanosheet film. The polymer solutions were given time to dry and then the top 

wafer was removed. Our first efforts resulted in tearing of the polystyrene/nanosheet 

film (as shown in Fig. 5.5). To avoid this issue, the top 'support' wafer was placed on 

a hot plate and heated to ~ 200°C, above the T 9 , but below the Tm of polystyrene. 

This allowed for the removal of the top wafer with minimal damage to the underlying 

nanosheet film. The polystyrene was then washed away with MEK and/or NMP

MEK showed the best results-by immersing the film in solvent and then using a 

pipette and clean solvent while holding the substrate at an angle (as demonstrated 

in Fig. 5.6). The clean nanosheet films could then be left on the silicon wafer or the 

silicone adhesive layer could be removed. This process is outlined in the schematic in 

Figure 5.7. 

Continued work with this process resulted in the creation of flexible substrate, 

nanosheet films. As outline by the schematic in Figure 5.8, we were able to remove 

the polystyrenejnanosheet composite film and place the adhesive layer directly on 

the basal layers without spin casting as well. These flexible substrates were created 

through solution as well as by doctor blading the silicone across the back of the 

composite film with a razor blade (as shown in Fig. 5.9). 
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Figure 5.3: The conformal coating of nanosheets (a) as made evident by the thickness 
of the individual sheet in the center of the image (thickness :::::; 40nm as compared to 
as-deposited thickness :::::; lnm). Subsequent loadings fill the spaces between sheets 
(b) and produce films with no voids (c). 

Figure 5.4: Buckling of polystyrene/nanosheet composite films as observed during 
the drying process. 
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Figure 5.5: Damaged nanosheet/polystyrene film as a result of removing the support 
wafer without prior heating. 

Figure 5.6: Pipette technique used to rinse away remaining polystyrene film after 
removal of the support substrate. These images are taken from smaller samples early 
during the testing of this technique but are representative of the process. 
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Raman spectroscopy (Fig. 5.10) and SEM (Fig. 5.11) were used to characterize 

the post-transfer nanosheets. As illustrated, during the described transfer process the 

nanosheets retain their original morphology. The nanosheets are not charging during 

the SEM imaging process, suggesting that the inherent electronic properties of the 

nanosheets are preserved as well. However, in order to support this, four-point probe 

measurements were made on transferred films. By measuring the sheet resistance for 

the nanosheet samples the resistivity (p) was obtained using the relationship (Eq. 5.1) 

P = Rsquare · d (5.1) 

where Rsquare and d are the sheet resistance and film thickness, respectively (20]. 

Based on SEM and profilometry measurements of other samples, a film thickness 

of 12nm was used for all calculations. The results are presented in Table 5.1 and 

support the retention of nanosheet properties through the transfer process. Due to 

the thin nature of the nanosheet films, the soft polymeric substrate and the nature 

of the four-point probe measurements, it is extremely difficult not to puncture the 

nanosheet films. This could explain the increase in the observed sheet resistance. 

The expansion of this transfer process to thermoplastic polymers and stiff substrates 

such as silicon wafers are also of interest and are being investigated. The four-point 

probe measurements were carried out using a Jandel Multi-height Probe, linear probe 

instrument from Luna and a comparable instrument at NRL. 
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Figure 5. 7: Schematic of transfer process using a supporting substrate (c) and a 
polymeric adhesive layer (e). The nanosheets are grown on a silicon wafer (a) and then 
cast with polystyrene (b). The support substrate is applied while the polystyrene film 
is drying (c) and afterwards the growth substrate is removed (d). The stiff substrate 
of interest is cast with a polymeric adhesive layer and then placed in contact with 
the exposed basal layers of the nanosheet film (e). The support substrate is removed, 
aided by heating, and the polystyrene washed away leaving a nanosheet film on a zero 
thermal-budget substrate (f). 
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Figure 5.8: Schematic representation of the transfer of nanosheet films without the 
aid of supporting substrates to a flexible polymeric substrate. The nanosheets are 
grown of a silicon substrate (a) and then spin cast with polystyrene (b). The 
polystyrene/nanosheet film is then removed (c) and a silicone substrate is put in 
place (d). The polystyrene is then washed away (e) without damaging the silicone 
substrate. 
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Figure 5.9: Photographs of tho creation of silicone substrates. The flexible, solvent 
resistance substrates were manufactured without the aid of supporting substrates by 
applying the silicone solution (left) or by doctor blading the silicone (right) directly 
to the exposed basal layers of the nanosheet film. 
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Figure 5.10: Raman of post-transfer carbon nanosheets. As is illustrated via the D 
and G peaks, the graphitic nature of the nanosheet structure is maintained. Also 
shown is that Raman can be used to determine how clean the sample is. The blue 
line represents a transferred nanosheet sample inspected with only a slight rinsing 
and the read represents a sample after immersion and rinsing, showing the clean, 
transferred nanosheet film. 
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Figure 5.11: SEM images of transferred nanosheets. As can be seen, the vertical 
morphology of the nanosheets is retained throughout the process. The lack of charging 
suggests that the nanosheets have retained their electronic properties as well. The 
image on the right reveals that the transfer of large areas is possible. 

Table 5.1: As-deposited sheets and transferred sheets have a resistivity close to that 
of graphite. Values reported are best values based on experiments with varying force 
of probes. Average is based on varying the outer probe current from 0.1mA to 1.5mA. 

Sample Sheet Resistance (n / D) Resistivity (10 5 n em) 
Graphite 41.7 5 [20] 

As-deposited nanosheets 67.53 81.0 
Transferred nanosheets 108.77- 272.5 130- 327 
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5.5 Photoluminescence measurements as a proof 
of concept for carbon nanosheet as high sur
face area electrodes 

For organic photovoltaics (OPVs), conjugate polymers are used in the active layer. 

During the absorption of a photon, an electron is excited from a lower energy level to 

a higher energy level, creating an electron-hole pair, termed an exciton. This exciton 

typically has a lifetime of hundreds of picoseconds before the electron and hole radia-

tively recombine releasing another photon. This process is called photoluminescence 

(depicted schematically in Fig. 5.12) and is quenched when the excitons are disso-

ciated. Therefore the photoluminescence intensity of an organic photovoltaic device 

can be used to determine the effectiveness of charge separation in the device. This 

efficiency is representative of the quality of the donor-acceptor interface. 

To show the feasibility of an organic photovoltaic (OPV) device using nanosheets 

as an ultra-high surface area electrode, nanosheets were incorporated into poly[2-

methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) films (Fig. 5.13). 

MEH-PPV is a common polymer used in OPV bulk heterojunction devices. The 

unique structure of the nanosheets offers the possibility of their use as a nanostruc-

tured electrode in a bulk-heterojunction device setup (demonstrated schematically in 

Fig. 5.14). The full incorporation of their dense canopy into a photoactive polymer 

would allow for increased charge collection and the conductive properties of both the 

vertical sheets and horizontal basal planes suggest more efficient charge transport to 

the electrodes. The use of nanosheets in an OPV device could offer several advan-

tages, such as ease of processing, multi-layer device fabrication and photon trapping. 

Previous work has shown the interface between other carbon nanostructures, such as 

fullerenes [81,82] or carbon nanotubes [83], and the polymer to be an effective dissocia

tion interface for the photoexcited excitons (Fig. 5.14), with transfer of electrons from 

the 1r-conjugated polymer to the carbon structures. Carbon nanosheets are composed 
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of a sp 2 -conjugated carbon lattice like fullerenes that would allow the nanosheets to 

act as electron acceptors. Also, since nanosheets are composed of graphene layers and 

graphene is a zero bandgap semiconductor [18], they may be more efficient. Finally, 

nanosheets have been shown to possess a work function ~ 4.8 e V therefore enabling 

the maintenance of the built-in electric field between the electron and hole-collecting 

electrodes. 

Photoluminescence measurements were performed on a Perkin Elmer LS-55 Lu

minescence spectrometer equipped with a solid sample holder and the results are 

shown below in Figure 5.15. As illustrated, the photoluminescence of the MEH-PPV 

system is quenched by three orders of magnitude, suggesting that nanosheets can be 

effectively used for exciton separation. 
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Figure 5.12: representation of the photoluminescence process for illustration. 

Figure 5.13: The structure of MEH-PPV, a common conjugated polymer used m 
organic photovoltaics, showing one repeat unit (n = 1) of the polymer. 
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Figure 5.14: Typical photovoltaic device setup with the electron donor represented 
in light blue and the acceptor represented in red. The device depicted in the upper 
left is a planar heterojunction where the interface of the materials represents the 
junction. The upper right is bulk heterojunction, with the acceptor material (e.g., 
fullerenes) blended into the donor (polymer) material. The bottom device represents 
the nanosheet device, illustrating the decreased distance excitons would need to travel 
before encountering an interface for separation. 
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Figure 5.15: Photoluminescence results of nanosheets incorporated into MEH-PPV, a 
common polymer used in organic photovoltaic devices. The spectrum for the polymer 
alone is represented by the black line while the nanosheet composites are in blue and 
green with the only difference being the solvent. 
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5.6 Summary 

We have shown the ability to conformally coat individual carbon nanosheets with a 

variety of polymers and then incorporate the sheets into films, creating unique com

posites. As a specific example we demonstrated the proof-of-concept for nanosheets 

as a high surface area electrode for OPV applications through the quenching of pho

toluminensence of MEH-PPV in a polymer/nanosheet composite thin film. We have 

also shown the ability to retain the original morphological and electrical properties 

of the nanosheets during a transfer from growth substrates to polymer substrates 

which have seen no thermal budget. These achievements demonstrate the versatility 

of carbon nanosheets as an ultra-high surface area electrode material. 
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Chapter 6 

Summary and future work 

6.1 Summary 

The work described in this dissertation focused on the development of carbon 

nanosheets as high surface area electrodes via three main approaches-the chemical 

modification of the carbon nanosheet material, the complete incorporation of the 

nanosheets into a polymeric film and a proof-of-concept measurement. The chem

ical modification of the nanosheets represents a large portion of this work and can 

be divided into four main areas, i.e., the functionalization treatment (section 2.3), 

inspection via x-ray absorption near-edge spectroscopy (XANES) (section 3.2), inves

tigation of the defects with thermal desorption spectroscopy (TDS) (section 3.3) and 

finally the examination of the functional groups through high resolution x-ray pho

toelectron spectroscopy (XPS) (section 3.4). The wetting and conformal coating of 

nanosheets with different polymers and finally building to composite films is discussed 

in section 5.4. It was also shown that the nanosheets can be transferred to a non

growth substrate with zero thermal budget. Finally, as proof-of-concept, nanosheets 

were used as nanostructured templates (section 4.4) for the growth of Ti02 thin films 

and as a means of exciton separation (section 5.5) for organic photovoltaics. 

The functionalization of the nanosheets via acid-treatment (section 2.3) was the 

first step in developing carbon nanosheets as a viable option for advanced graphene 

electronics. Because graphene is effectively chemically inert, the edge states offer the 
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most serviceable areas and produce interesting electronic properties. By introducing 

defects into the graphene lattice of the carbon nanosheets we were able to effectively 

introduce other avenues of interest. However, in order to pursue these interests, more 

information pertaining to the chemical nature of the defects was needed, which brings 

us to the characterization of the defects, the largest contributor to this research. 

Through XANES (section 3.2) we were able to identify the defects as oxygen 

decorated defect sites that created available unoccupied states just above the Fermi

level in the nanosheet system. These defects observed in the spectra were assigned to 

C=O 1r* (B1 peak) and C-0 a* (B2 peak) transitions. These features were observed in 

the acid-treated as well as the water-treated samples though with varying intensities. 

This suggests that the acid treatment creates a different type of defect, or a higher 

density of one of two defects, than does the water treatment. Density functional 

theory was able to reproduce in simplified form the spectral features observed in 

the XANES experiments, lending credence to our primary assumptions. This work 

also suggested that the conductivity of the nanosheets-and also graphene-could be 

increased by the controlled introduction of defects into the lattice. We were able to 

confirm this via a measurement made for the first time by a modified AFM tip in a 

focused ion beam - scanning electron microscope setup (section 3.2.1). Also during 

the XANES study, we were able to identify that the defects-or functional groups 

present as a result of the treatments-could be removed via thermal annealing. These 

observations lend us to state that we have developed a novel way to controllably 

introduce defects and functionality into the nanosheet system. 

TDS (section 3.3) was employed for the determination of the chemical nature of 

the functional groups that were introduced into the nanosheet lattice via the acid 

treatment. Through TDS it was determined that the functional groups created are 

carboxylic acid and hydroxyl groups. It was also shown that we were able to introduce 

functionality through the water-treatment of the nanosheet material. Both of these 
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treatments resulted in the decrease of hydrophobic behavior of the carbon nanosheet 

material. During the course of the TDS experiments, we were able to identify the pres

ence of surface reactions taking place when the nanosheets are heated. These reactions 

themselves are a step towards the further functionalization of the carbon nanosheet 

material because they produce other functionalities, i.e., carboxylic anhydrides and 

lactones, in the nanosheet lattice. Deconvolution of the TDS spectra utilizing the 

Polanyi-Wigner equation produced interesting results. The 1st order equations that 

were expected to depict the thermal decomposition of anhydride structures did not 

produce a satisfactory fit. However, use of 2nd order equations did produce a quality 

fit and resulted in the calculation of values for the number of molecules desorbing 

from the surface and for energy values of the desorption process. This study was 

complicated due to 1st and 2nd order processes being represented in the same spectra 

and by the contribution of the substrate which was not expected has produced an 

avenue of research of its own. This process has outlined a procedure that could be 

used for the qualitative and quantitative calculation of the functional groups. 

In support of the identification of carboxylic acid and hydroxyl functional groups 

high resolution x-ray photoelectron spectroscopy was utilized. Survey scans of the 

as-deposited, acid-treated and water-treated samples demonstrated the presence of 

carbon and oxygen only. The sub-peak identification of the C(1s) and 0(1s) spectra 

however proved to be difficult. Calibration of the XPS system for only the nanosheet 

system would need to be undertaken for a more accurate assignment. However, 

with calibration, it would be possible to correlate the atomic percentages of oxygen 

and carbon sub-peaks and their relative changes with heating to the molecules seen 

desorbing from the samples during the TDS experiments. Despite the lack of stand

alone assignment via XPS, the trends observed in the data support the assignments 

made through the XANES and TDS work. 

In Chapter 4, the functionality of the treated nanosheets was demonstrated by 
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depositing Ti02 onto as-deposited and functionalized nanosheets via atomic layer de

position (ALD). This process not only illustrated the ability of carbon nanosheets 

to be used as nanostructured templates, but also effects of the acid treatment. It 

was shown that the as-deposited sheets were successful in supporting the creation of 

nanostructured Ti02 films, though pinholes and defects were observed in the film. 

However, the acid-treated nanosheets, when used as a substrate, produced an amor

phous layer of Ti02 about 5nm in width before giving way to crystalline growth. 

This resulted in a continuous nanostructure Ti02 film. Ti02 films are of interest 

in applications ranging from gas sensors to photovoltaics and the ability to grow 

nanostructured films greatly increases the chance of success of this material. 

Finally, Chapter 5 illustrated the complete incorporation of the nanosheets into 

polymeric material to form polymer/nanosheet composite films. This was accom

plished via the conformal coating of the nanosheets with varying polymeric mate

rials, e.g., silicone and poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] 

(MEH-PPV). By controlling the spin-casting process and the viscosity of the cast

ing material, wetting of the nanosheets was obtained and utilized. The success of 

this process also resulted in the transfer-for the first time-of carbon nanosheets films 

to a non-growth substrate, including a polymeric substrate. As a proof-of-concept, 

the MEH-PPV /nanosheet films were inspected via photoluminescence (PL) measure

ments and the nanosheet composites showed a PL quenching of three orders of mag

nitude greater than the MEH-PPV films alone. These results suggest that carbon 

nanosheets can be used as an effective interface for the separation of electron-hole 

pairs in organic photovoltaic devices. 

Overall, this work has produced several advances in the understanding of carbon 

nanosheets science and their implementation as high surface area electrodes. The 

introduction of carboxylic acid and hydroxyl groups into the graphene lattice of the 

carbon nanosheets was shown. The ability of these groups to increase the conductiv-
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ity of the nanosheets was also demonstrated. A process for the calculation of defect 

type and quantity was outlined and the presence of complicated surface reactions was 

identified using TDS and high resolution XPS. We have shown the ability to sue-

cessfully transfer the nanosheet film to a non-growth, zero thermal-budget substrate 

in addition to conformally coating the nanosheets with polymeric material. Finally, 

we were able to establish nanosheets as a nanostructured template for the growth of 

Ti02 films and as an interface for the separation of excitons in organic photovoltaics. 

This work is not only applicable for carbon nanosheets, but should also advance the 

knowledge of other fullerene type structures such as graphene and graphene oxide. 

6.2 Avenues for future work 

As a result of this work, there are several areas of follow on research that are sug-

gested. In this section, five directions will be identified and discussed. The first has 

already been identified in previous sections and is the quantification of defect density 

and quality through TDS, MATLAB™and high resolution XPS. The second is the 

further functionalization of carbon nanosheets. Third, continued development of car

bon nanosheets as high surface area electrodes in organic photovoltaics. The fourth 

area is the epitaxial growth of graphene via RF PECVD and finally, the fifth is the 

development of carbon nanosheets as chemical sensors. 

6.3 Defect concentration and quality in carbon 
nanosheets 

As mentioned in section 3.3.2, 3.4.2 and 3.5, we were able to successfully outline a 

procedure for defect control and quantization. The first step for this procedure is 

eliminating the substrate's contribution to the spectra. Using a substrate with no 
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native oxide would be ideal. This would also involve extensive characterization to 

ensure that the acid treatment does not damage or react with the substrate as well. 

Gold may be one substrate of interest as it has no native oxide and should not react 

with just HCl acid (though HCl is one of the components in aqua regia, one of the 

few reagents that can dissolve gold). 

The next step involves deconvoluting the TDS spectra. By utilizing a straight 

line fitted to a ln(r/Bn) vs. 1/T plot, we would be able to determine if the process 

is 1st or 2nd order per desorption energy. This identification would then allow us to 

accurately apply the Polanyi-Wigner equation via our MATLAB™ routine. 

Finally, by using a calibrated and dedicated instrument, the sub-peak analysis of 

the high resolution XPS C(1s) and 0(1s) peaks could in fact result in exact functional 

group identification as illustrated in the work of Zhang et al. [84]. In reference 

[84], they outline a mechanism for the oxidative process that occurs when using a 

sulfuric/nitric acid combination with sonication and are they are able to identify 

transition states that evolve over time. With peak fitting, there is a trade off of 

a better fit through more peaks and computational time consumed. However, it 

is possible that we simplified our analysis too much with too few sub-peaks. An 

inspection of fit parameters including number of sub-peaks would have to be involved 

in this work. 

This analysis should also include water-treated samples. Yang et al. report [56] 

the functionalization of multi-walled carbon nanotubes through sonication in deion

ized water. This treatment does not result in the cleavage of a sp2-hybridized C-C 

bond, but the oxidation of sp3-hybridized CH2 and CH3 groups already present. As 

reported by Zhao et al. [37, 38] these groups are also present in carbon nanosheets 

and offer sites for functionalization. During our treatment of nanosheets (section 

2.3.1), the nanosheets do not undergo extreme heating and the functionalization via 

the water-treatment was unexpected. However, it may be possible that the inherent 
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defects present in the carbon nanosheets experience localized heating and therefore 

offer more reactive sites for functionalization. It is more likely however, that the 

functionalization of water-treated carbon nanosheets occurs due to the heating of the 

samples during analysis. This is supported by the work reported in [84]. The outlined 

procedure above would allow for defect control and quantization as well as lay the 

ground work for the true mechanism of nanosheet functionalization. 

6.4 Further functionalization of carbon nanosheets 

The functionalization of carbon nanosheets was an important step in the development 

of nanosheet technology. As is illustrated by the reviews of references [51] and [52], a 

vast array of possible functionalization experiments of single-walled nanotubes exist. 

These chemical modifications offer a controllable pathway for the tailoring of the 

desirable properties of nanotubes. Through these experiments, scientists are capable 

of making nanotubes components in applications ranging from molecular sensing to 

catalyst supports. Until now, the same could not be said for carbon nanosheets. 

The identification of the functional groups introduced during our acid-treatment 

will allow organic chemists to tailor properties of the nanosheets for their desired 

application. We have already shown that the carboxylic acid and hydroxyl groups 

introduced during our acid and water treatments have the ability to decrease the 

hydrophobic behavior of the nanosheets. We have also shown that the defects in

troduced during the acid treatment are capable of improving the conductivity of the 

nanosheets. These are just two properties that already show significant potential for 

aiding the advancement of nanosheet technology. 
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6.5 Carbon nanosheets as high surface area 
electrodes 

As was illustrated in section 5.5, carbon nanosheets offer the ability to successfully 

separate electron-hole pairs for use in photovoltaic devices. However, much is left to 

be explored. One advantage of using organics in photovoltaics is the ability to tailor 

the bandgaps of the material for the desired match. We were able to demonstrate 

that the introduction of defects can change these properties of the nanosheets [14], 

offering yet another tool for tuning the adsorption capabilities of the material. 

Delivery of a working device remains extremely difficult however. Complications 

include drying of the polymeric material without delamination occurring, contacting 

the external circuit without creating shorts via pinholes in the polymeric material 

and encapsulation of the material for device characterization. These concerns are 

mostly engineering concerns, but must be addressed for the advancement of nanosheet 

technology. There are other polymeric materials that need to be investigated and the 

effects of functionalized nanosheets needs to be systematically studied in combination 

with extended functionalization of the carbon nanosheets (section 6.4). 

Carbon nanosheets also hold the potential to be used in dye-sensitized solar cells 

as well. Wang et al. [85] successfully demonstrated the use of graphene films as 

transparent electrodes in these devices. Combining these observations with the results 

that we have presented in Chapter 4 suggest that nanosheets could be used as well. 

Photovoltaics are not the only opportunity for the use of carbon nanosheets as an 

electrode material. As demonstrated in references [86-88] and as was illustrated in 

Figure 2.4, carbon nanostructures can be grown on carbon paper for use in fuel cell 

applications. However, due to the extreme hydrophobic behavior of the nanosheets, 

the Pt catalysts that were dispersed in a water solution were not deposited on the 

nanosheet surface (Figure 2.4 (right)). 

Post-treatment nanosheets do not display the same hydrophobic behavior however. 
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Therefore, the chemically active sites that have been introduced into the graphene 

lattice of the sheets not only offer reduced hydrophobic behavior for the casting of the 

Pt catalyst, they also offer potential high energy binding sites for the catalyst as well. 

Though the amount of Pt loading should depend on the length of the functionalization 

treatment and the stability of these structures would then need to be investigated via 

a systematic approach, the need for alternative fuel sources at this time and the 

potential for carbon nanosheets to be high surface area catalyst support warrant 

investigation. 

6.6 Epitaxial growth of graphene 

As mentioned in the introduction (section 1.1), the isolation of single-layer graphene 

was not seen experimentally until quite recently when Novoselov et al. were able 

to do it [10, 18] by mechanical exfoliation. However, this process is tedious and the 

production and manipulation of large area films is difficult [89]. Since that time, others 

have also been able to fabricate graphene via the sublimation of silicon from single 

crystal silicon carbide [9, 90-92] though the size domains and uniformity of these films 

remain an issue, not to mention the cost and the temperatures required ( 11 00°C). 

Because of these limitations it would be unlikely for these processes to be scaled up for 

industrial use. Another approach is the use of chemically modified graphene material, 

such as graphene oxide (GO) to produce large area films [85, 93-97]. However, in 

order to produce these films, the films must undergo long chemical reductions via 

exposure to hydrazine hydrate vapor to recover C-C and C=C bonds, after which the 

conductance is still not that of graphene [94]. 

Initial results of the transfer process described in section 5.4 suggest that large 

graphene grains are present in the basal layers of the carbon nanosheets. By under

taking a systematic study that includes matching the lattice parameter of graphene 
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(0.246nm) to various substrates-such as Si02 (0.49nm) and MnS (0.5011nm)-and 

growth parameters, such as temperature and time, it is possible that a cheap, large

area process for the synthesis of graphene could be developed. This process would 

greatly increase the opportunity for the industrial scale up of graphene production 

for advanced electronic applications. 

6.7 Carbon nanosheets as chemical sensors 

Single-walled carbon nanotubes (SWNTs) are cylinders of carbon, ~ 1nm in diam

eter, microns long and with a wall thickness of one atom. These structures have 

shown remarkable electrical and mechanical properties as well as the ability to detect 

trace levels of molecules through both conductance [24, 25) and capacitance [26) based 

methods when a molecule interacts with the tube sidewalls. Continued inspection of 

chemical sensing utilizing SWNTs revealed that random networks of nanotubes are 

capable of sensitivity for a wide range of analyte materials at extremely low detection 

limits [26). It has also been shown that molecular interactions with defect sites dom

inate the SWNTs' sensitivity in both detection schemes, that the interaction varies 

based on the site and that by controlling the defect density, the sensor sensitivity and 

selectivity can be modified [98). However, with SWNTs, as the sensitivity is increased 

with defect density, the cost is the loss of conductance. 

Chemically modified graphene (CMG)-a sp2-bonded graphene sheet with at

tached functional groups-allows for another approach to the problem. Two dimen

sional graphene can be chemically modified with any number of molecules ranging 

from atomic hydrogen, to carboxylic acids, to DNA. In particular, graphene oxide 

(GO)-a CMG with many epoxides, alcohols and carboxylic acids groups [28]-is at

tractive since these functional groups are particularly favorable as chemically active 

defect sites. However, even though the ability to produce continuous thin films has 
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been shown [85, 93-97], GO offers its own disadvantages. Even after chemically re

ducing the films to recover the C-C and C=C bonds for increased conductivity, the 

conductance is still not as high as graphene [94] and the total area available for 

molecular interactions is limited to a single flat surface. 

Carbon nanosheets present another promising opportunity for graphene-based 

chemical sensing. N anosheets are composed of vertical free-standing graphene lay

ers and horizontal basal layers with an extremely high surface area [22] that can 

be patterned using standard photolithographic techniques [69, 70]. Our recent work, 

as discussed earlier, has demonstrated that chemically active defect sites useful for 

molecular detection can be controllably introduced into the graphene lattice of the 

nanosheets [14] and enhance the conductivity of the nanosheets. The characterization 

work of XANES, TDS and XPS discussed previously in this dissertation has identified 

these defects as carboxylic acid and hydroxyl type functional groups. 

The use of nanosheets for sensing applications offers advantages over both SWNTs 

and GO in conductance based systems. The morphology of the nanosheets allows 

for the creation of a multitude of chemically active sites like the SWNT networks, 

but without the degradation in conductance. Nanosheets are a pure carbon sp 2
-

system with defects being added, unlike the GO systems that require long reductions 

to recover a mixture of C-C single and double bonds. It may be possible to take 

advantage of these defects and the inherent nanosheet properties in the creation of 

novel, nanosheet-based chemical sensors. 

Graphene planes, in graphene [99, 100] and SWNTs [24, 26], have shown significant 

responses to molecular adsorbates and though there is no prior sensing technology 

available for nanosheets, their field emission properties have shown dependence on 

adsorbates as well [37, 38]. These observations support the use of nanosheets as 

chemical sensors since molecular adsorbates will affect their conductance, as well as 

their capacitance to produce a sensitive detection scheme. 
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Despite the availability of literature on SWNT sensing technology, questions and 

difficulties remain, such as the ability to tailor chemical specificity and reducing 1/ f 

noise. Because all the atoms in a SWNT are surface atoms their sensitivity to molecu

lar adsorbates is exceptional, but it is also a source of large 1/ f noise [101]. Graphene 

oxide is still yet unproven in the chemical sensing realm and offers its own concerns 

about being able to reproduce reliable devices. Because nanosheets are a graphene

based carbon nanostructure, capabilities similar to SWNTs and GO should be ex

pected. However, nanotube networks involve inter-nanotube contacts that produce 

excess low-frequency noise, known as 1/ f noise, and reduce signal strength by in

troducing series resistance [101]. On the other hand, the nanosheet systems are a 

continuous network and it is expected that 1/f noise will be significantly reduced 

over SWNT devices. Secondly, improved sensitivity is expected for functionalized 

nanosheets as their defect density is readily controlled, which provides an advantage 

of GO-based systems. N anosheets also offer a higher surface area for detection than do 

GO-based systems. The further functionalization of nanosheets (section 6.4) makes 

the molecular sensitivity of the nanosheet system an asset as well. Finally, because 

nanosheets can be transferred to polymeric substrates, they offer unique opportunities 

for large scale device production. 
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Afterword 

Much of the material presented in this disseration has been, or is currently in the 
process of being, submitted for peer review. Part of the contents of Chapter 3 have 
been published in the Journal of Physics D: Applied Physics. The remaining data is 
currently being prepared for publication. The results of Chapter 4 have been submit
ted to Advanced Materials. The study presented in Chapter 4 was supported by the 
Swedish Research Council (VR), in part by the U.S. Department of Energy (Grant#: 
DE-FG02-07ER84806) and the U.S. AFOSR (Grant#: FA9550-06-C-0010).Chapter 
5 is currently being prepared for publication. The research presented in this thesis 
was supported by the U.S. AFOSR under contract FA9550-07-C-0050. Any opinions, 
findings, and conclusions or recommendations expressed in this material are those of 
the authors and do not necessarily reflect the views of the United States Air Force. 
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