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ABSTRACT PAGE 

In vivo small animal imaging has become an essential technique for molecular biology 
studies. However, requirements of spatial resolution, sensitivity and image quality are quite 
challenging for the development of small-animal imaging systems. The capabilities of the 
system are also significant for carrying out small animal imaging in a wide range of 
biological studies. The goal of this dissertation is to develop a high-performance imaging 
system that can readily meet a wide range of requirements for a variety of small animal 
imaging applications. Several achievements have been made in order to fulfill this goal. 

To supplement our system for parallel-hole single photon emission computed 
tomography (SPECT) based upon a 110 mm diameter circular detector, we have 
developed novel compact gamma cameras suitable for imaging an entire mouse. These 
gamma cameras facilitate multi-head (>2) parallel-hole SPECT with the mouse in close 
proximity to the detector face in order to preserve spatial resolution. Each compact gamma 
cameras incorporates pixellated Nai(TI) scintillators and a pair of Hamamatsu H8500 
position sensitive photomultiplier tubes (PSPMTs). Two types of copper-beryllium parallel
hole collimators have been designed. These provide high-sensitivity imaging of 1-125 or 
excellent spatial resolution over a range of object-detector distances. Both phantom and 
animal studies have demonstrated that these gamma cameras perform well for planar 
scintigraphy and parallel-hole SPECT of mice. 

To further address the resolution limitations in parallel-hole SPECT and the sensitivity 
and limited field of view of single-pinhole SPECT, we have developed novel multi pinhole 
helical SPECT based upon a 11 0 mm diameter circular detector equipped with a pixellated 
Nai(TI) scintillator array. A brass collimator has been designed and produced containing 
five 1 mm diameter pinholes. Results obtained in SPECT studies of various phantoms 
show an enlarged field of view, very good resolution and improved sensitivity using this 
new imaging technique. 

These studies in small-animal imaging have been applied to in vivo biological studies 
related to human health issues including studies of the thyroid and breast cancer. A re
evaluation study of potassium iodide blocking efficiency in radioiodine uptake in mice 
suggests that the FDA-recommended human dose of stable potassium iodide may not be 
sufficient to effectively protect the thyroid from radioiodine contamination. Another recent 
study has demonstrated that multipinhole helical SPECT can resolve the fine structure of 
the mouse thyroid using a relatively low dose (200 Ci). Another preclinical study has 
focused on breast tumor imaging using a compact gamma camera and an endogenous 
reporter gene. In that ongoing study, mammary tumors are imaged at different stages. 
Preliminary results indicate different functional patterns in the uptake of radiotracers and 
their potential relationship with other tumor parameters such as tumor size. 

In summary, we have developed a versatile imaging system suitable for in vivo small 
animal research as evidenced by a variety of applications. The modular construction of this 
system will allow expansion and further development as new needs and new opportunities 
arise. 



TABLE OF CONTENTS 

Page 

Dedication ............................................................................................ v 

Acknowledgements ................................................................................ vi 

List of Tables ..................................................................................... vii 

List of Figures .................................................................................... viii 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 

1.1 Motivation of this project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 2 
1.2 Project Overview .............................................................................. 4 
1.3 Scope of this dissertation ........................................................................ 5 

2 In vivo radionuclide imaging of small animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... 7 

2.1 In vivo small animal imaging ................................................................... 7 
2.2 Radionuclide imaging for small animals ................................................... 9 
2.3 PET ......................................................................................... 10 

2.3.1 Methodology ....................................................................... 10 
2.3.2 Detectors ......................................................................... 12 
2.3.3 PET system design ................................................................. 14 
2.3.4 Image reconstruction .............................................................. 15 
2.3.5 Reported PET systems for small animals ...................................... 15 
2.3.6 PET radiotracers and applications ............................................ 16 
2.3.7 Advantages and disadvantages ofPET ......................................... 17 

2.4 Single photon imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. . 18 

2.4.1 Methodology ....................................................................... 18 
2.4.2 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
2.4.3 SPECT system design ........................................................... 22 
2.4.4 Image reconstruction .............................................................. 23 
2.4.5 Reported SPECT systems for small animals ................................ 25 
2.4.6 SPECT radiotracers and applications ......................................... 29 

2.5 Discussion of small animal radionuclide imaging .................................... 30 

3 Evolution of our imaging system . . . . . ... . . . . .. . . . . . ... . . . . . . . . . . . .. . . . . . . . . . . . . ... . . . . . . . . .. 33 

3.1 X-ray/gamma-ray dual-modality planar imaging ................................... 33 

3.1.1 Performance of gamma and X-ray imaging ................................... 35 
3 .1.2 Mouse bed and formation of the composite image of an entire mouse ... 3 7 



3.1.3 Fusion of gamma-ray and X-ray images ...................................... 38 
3 .1.4 Proof-of-concept studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 
3.1.5 Conclusion ......................................................................... 41 

3.2 Simultaneous parallel-hole/pinhole gamma-ray imaging .......................... 42 

3.2.1 Gamma cameras for parallel-hole and pinhole imaging .................... 44 
3 .2.2 Setup of the imaging system .................................................... 48 
3 .2.3 Image reconstruction for SPECT imaging ................................... 49 
3.2.4 Simultaneous parallel-hole/pinhole planar imaging .......................... 49 
3.2.5 Parallel-hole SPECT imaging- phantom study ............................... 50 

3.2.5.1 Experiment I- snake phantom ........................................ 51 
3.2.5.2 Experiment II- thyroid phantom ..................................... 53 

3.2.6 Single-pinhole SPECT imaging- phantom study ............................ 55 
3.2.7 Simultaneous parallel-hole/pinhole SPECT- animal study ................ 56 
3.2.8 Discussion and conclusion ....................................................... 58 

3.3 Development of compact gamma cameras for biological imaging .............. 59 

3.3.1 Development ofthe first novel "mouse-sized" gamma camera ............. 60 

3.3.1.1 Summary of the first "mouse-sized" gamma camera ............. 60 
3.3.1.2 Calibration of the compact gamma camera ......................... 62 
3.3.1.3 Characterization - efficiency and resolution ...................... 64 
3.3.1.4 Planar and SPECT imaging- animal studies ...................... 66 

3.3.2 Development of the second "mouse-sized" gamma camera ................ 70 
3.3.3 Conclusion ......................................................................... 72 

4 Development of multipinhole helical SPECT ............................................ 73 

4.1 System design .............................................................................. 74 
4.2 Gamma-ray detector for pinhole collimation .......................................... 75 
4.3 Design of a five-pinhole collimator ..................................................... 76 
4.4 Step-and-shoot helical orbit .............................................................. 79 
4.5 Image reconstruction program and validation ......................................... 80 

4.5.1 Simulation test ...................................................................... 81 
4.5.2 Phantom test ......................................................................... 83 

4.6 SPECT scans ................................................................................ 85 
4. 7 Characterization comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

4. 7.1 Field of view ......................................................................... 85 
4. 7.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 
4.7.3 Resolution ............................................................................ 89 

4.8 SPECT imaging- phantom studies ..................................................... 91 
4.9 Discussion and conclusion .............................................................. 95 

11 



5 In vivo gamma imaging in studies of the mouse thyroid ............................... 99 

5.1 In vivo study of KI blocking efficiency in mice .................................... 100 

5.1.1 Gamma-ray detector and imaging ............................................ 101 
5.1.2 Data analysis .................................................................... 102 
5.1.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 102 
5.1.4 Discussion and conclusion ........................................................ 108 

5.2 In vivo multi pinhole helical SPECT imaging of a mouse thyroid ............... 109 

5.2.1 Multipinhole helical SPECT system and scans ............................. 112 
5.2.2 Prallel-hole gamma-ray imaging ............................................... 112 
5.2.3 Phantom studies ................................................................. 113 

5.2.3.1 Resolution ............................................................. 113 
5.2.3.2 Sensitivity ............................................................. 115 
5.2.3.3 Quantification .......................................................... 116 

5.2.4 Mouse studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 118 

5.2.4.1 In vivo multipinhole helical SPECT ............................... 118 
5.2.4.2 Whole-mount immunohistochemistry and RT-PCR ............. 121 

5.2.5 Discussion and Conclusion ..................................................... 122 

6 In vivo gamma imaging in a study of mammary tumors .............................. 125 

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

6.1.1 PET and breast cancer imaging ............................................... 127 
6.1.2 Scintimammography and breast cancer imaging ............................. 129 
6.1.3 NIS and breast cancer imaging . .. . . .. . . . . .. . .. . . .. . .. .. . .. . . . . . . . . . . . . . . . . . .. 132 

6.2 Hypothesis and goals ............................................................................ 133 
6.3 Animals and tumor distribution ..................................................... 135 
6.4 Whole-mount immunofluorescence methodology .................................... 137 
6.5 In vivo gamma-ray imaging of MMTV tumors ....................................... 137 

6.5.1 Data acquisition ................................................................. 137 
6.5.2 Data analysis .................................................................... 138 
6.5.3 Correlation between gamma-ray imaging and immunohistochemistry .... 141 
6.5.4 Results of gamma-ray imaging ............................................... 145 

6.5.4.1 Time for full-size distribution of iodine in MMTV tumors .... 146 
6.5.4.2 Three patterns of 125! distribution in MMTV tumors ............. 148 
6.5.4.3 Relationship among tumor patterns, size, and 125! uptake ....... 148 
6.5.4.4 Difference plots ......................................................... 152 

6.5.5 In vivo gamma-ray imaging and tumor development ....................... 153 

6.6 Discussion and conclusion .................................................................... 154 

111 



7 Future directions and conclusion ............................................................................ 159 

7.1 Future directions .......................................................................... 159 

7 .1.1 Development of a novel LaBr3 detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 9 
7 .1.2 Mouse monitoring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 
7.1.3 Automated pattern recognition for tumor studies .......................... 163 

7.2 Conclusion ........................................................................................... 164 

Bibliography ..................................................................................... 165 

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 

lV 



Dedicated to my beloved 

wife Qian Zhang 

and 

daughter Melody Qian 

v 



ACKNOWLEDGEMENTS 

First and foremost, I would like to express my special thanks to my advisor Dr. 
Robert Welsh of Physics, a gracious, marvelous mentor to me not only in academia but also 
in life. Without his support and guidance this work would not have been possible. I truly 
appreciate his support and efforts to create every possible opportunity for me to make 
progress to complete this work. I thank him for his time spent on reviewing my writings, 
papers and dissertation, for his patience and encouragement, and for his invaluable advice, 
suggestions and help on a number of issues I have met in both this work and in life. I am 
particularly grateful for his invariable kindness, thoughtfulness and care to me and my family 
over these years. 

I would like to thank my other advisors and collaborators, Dr. Margaret Saha and Dr. 
Eric Bradley of Biology for their in-depth advice over the years, careful and critical review of 
this work and countless suggestions for improvement. I will always benefit from their 
rigorous and professional approach to research. I particularly thank Dr. Bradley for his 
constant help in preparing phantoms and mice for imaging studies, for the fruitful discussions 
about many details in animal studies, and for his timely support and action to retain my legal 
status as a foreign student. I especially thank him for playing a vital role to coordinate our 
group spanning different disciplines and all that he has done to ensure my goal to be 
accomplished smoothly. 

I wish to thank Dr. Mark Hinders of Applied Science for being a member of my 
committee and for reviewing my dissertation. I also owe special thanks to Dr. Andrew 
Weisenberger of Jefferson Lab for teaching me the essentials of many aspects of imaging 
system development, for reviewing my papers and dissertation, for answering a number of 
my questions regarding this work, and for constantly supporting and ardently helping me not 
only to complete this work but also to succeed in my future career 

I thank Dr. Mark Smith of University of Maryland School of Medicine for the 
invaluable reviews, discussions and suggestions regarding completion of this dissertation, 
and for making available his code for parts of the image reconstruction work. I thank our 
other Jefferson Lab collaborators, Dr. Stan Majewski whose research has played a major role 
in bringing medical and biological imaging to William and Mary. and Dr. Valadmir Popov of 
for designing and building high-quality detectors for us. I thank Dr. Randy Wojcik for his 
skillful work in the design of our imaging gantry. 

I would like to thank Eric R. Blue of Biology for providing supportive 
immunohistochemistry data for some imaging applications. I am also grateful to Stephen 
Schworer of Biology for providing reverse transcriptase polymerase chain reaction data as 
complementary materials. I sincerely thank Amir Yazdi, Jonathan Sutton, William Hammond, 
Kevin Smith, Julie Cella, Paul Brewer and Amoreena Rank of Physics for their contribution 
in data analysis and system development. I also would like to thank all my friends who 
generously contribute their help and encouragement to me and my family. 

I wish to thank my parents Aihua Wu and Maoshun Qian and my sister Jianling Qian 
in China for their years of encouragement and faith in me. Here, I would like to express my 
great appreciation to my wife Qian Zhang who quit her doctoral program for taking care of 
this family. I thank her for her devotion, encouragement, optimism, endurance, and love. 
Finally, I want to thank our precious daughter Melody for bringing us the joy of life. 

Vl 



LIST OF TABLES 

Page 

2.1 Properties of typical scintillators for PET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

2.2 A summary of PET systems for small animal imaging . .. . .. . . . . . . ... .. . .. .. .. . ..... 16 

2.3 Properties of PET radioisotopes .......................................................... 17 

2.4 Properties of typical scintillators for SPECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

2.5 Typical radioisotopes used inSPECT imaging .......................................... 30 

3.1 Imaging parameters for the experiments using the snake phantom . . . . . . . . . . . . . . . . . 51 

4.1 Total counts in the reconstructed images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 84 

4.2 Characterization comparison among various modes of SPECT ..................... 86 

6.1 Repeated imaging of a right thoracic tumor ............................................... 154 

Vll 



LIST OF FIGURES 

Page 

2.1 A diagram of a PET system .............................................................. . 11 
2.2 A diagram of conventional single-photon imaging system ............................ 19 
3.1. Photograph of the imaging system incorporating both gamma- and X-ray 

modalities .................................................................................... 34 
3.2. A profile of the three hot spots in a one-hour gamma image .......................... 35 
3.3. A picture of the X-ray phantom made with CuBe and its X-ray image ............ 36 
3.4. Photograph of the mouse bed ............................................................. 37 
3.5. Examples of fusion of gamma-ray and X-ray images ................................. 39 
3.6. Gamma images presenting the dynamic change of radioiodine distribution in 

unblocked and KI-blocked mice ......................................................... 41 
3.7. Early photograph of the imaging system ................................................. 43 
3.8. Raw crystal map and crystal lookup table of the scintillator array .................. 45 
3.9. Normalized energy spectrum of~ 35 keV gamma rays emitted by 1251 ............ 46 
3.10. Sample images of simultaneous parallel-hole/pinhole imaging ....................... 50 
3.11. Photograph of the snake phantom containing~ 20 J.LCi Na125I.. ...................... 51 
3.12. Reconstructed images of SPECT scans of the snake phantom using different 

imaging parameters ......................................................................... 52 
3 .13. Photographs of the plastic phantom simulating the thyroid and submaxillary 

glands of a mouse. . ....................................................................... 53 
3.14. Six consecutive reconstructed images of the thyroid phantom ......................... 54 
3.15. Single-pinhole SPECT of a three-capillary phantom ...................................... 56 
3.16. Parallel-pinhole SPECT of a mouse ......................................................... 57 
3 .1 7. Photograph of the detector and the collimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
3.18. The diagram of the inside view of the compact gamma camera ..................... 62 
3.19. Raw crystal map and crystal lookup table of the scintillator array and a three-

capillary image with uniformity corrected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
3.20. A profile image of the three capillaries ................................................ 64 
3.21. Theoretical prediction and experimental measurement of the resolution as a 

function of the distance between source and detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 
3.22. One-hour parallel-hole planar image of a lactating mouse ........................... 66 
3.23. A transaxial image (left) and its surface plot (right) of the thyroid region of a 

mouse ........................................................................................ 67 
3.24. Transverse views of a mouse bearing a mammary tumor .............................. 69 
3.25. Coronal views of the same mouse bearing a mammary tumor ..................... 69 
3.26. Comparison of spatial resolution of two types of parallel-hole collimators ......... 71 
4.1. Photograph of current imaging system ................................................... 74 
4.2. Diagram of the 5-pinhole collimator ................................................... 75 
4.3. Pinholes with knife edge and channel edge ............................................. 76 
4.4. A projection simulation using the five-pinhole collimator ........................... 78 
4.5. Photograph of the five-pinhole collimator ............................................. 79 

vm 



4.6. Photograph of the setup to accomplish step-and-shoot helical orbit. .............. 80 
4.7. Pinhole SPECT of a simulated phantom .................................................. 81 
4.8. Longitudinal profile of the activity in the reconstructed digital tube ............... 82 
4.9. Predicted profile in a projection image of the reconstructed digital tube using 

the values in Fig. 4. 7...................................................................... 83 
4.10. Reconstructed images using Meikle's program and my program, respectively ... 84 
4.11. Reconstruction resolution (FWHM) as a function of ML-EM iteration number 

for various modes of pinhole circular or helical SPECT .............................. 88 
4.12. Six sample profiles ofthe capillary in the transverse reconstructed slices for 1-, 

3-, 5-pinhole helical SPECT and circular SPECT .................................... 90 
4.13. Three-pinhole helical SPECT of a 54J1Ci three-capillary phantom .................. 91 
4.14. Three-pinhole helical SPECT of a six-capillary phantom .............................. 92 
4.15. Single, three-pinhole helical SPECT of a hot-rod phantom ........................... 94 
5.1. The dynamic change of radioiodine uptake during the first hour after injection 

in thyroid, stomach, injection site, thorax and left leg ............................... 104 
5.2. Images which reflect KI blocking effects in different target tissues for five 

mice receivinig KI blocking doses of 0, IX, 3X, 5X, lOX the scaled human 
blocking dose ............................................................................... 104 

5.3. Evaluation of the retention of the 1X and 5X KI blocking efficiency ............ 105 
5.4. Evaluation of 125I retention in thyroid, stomach and thorax .......................... 106 
5.5. Urinary clearance as a function of equivalent human KI dose ....................... 107 
5.6. Whole-body clearance as a function of equivalent human KI dose ................. 107 
5.7. Relationship between the reconstruction resolution (FWHM) and number of 

ML-EM iterations for two-pinhole helical SPECT ................................. 114 
5.8. Two-pinhole helical SPECT of a two-capillary phantom ............................ 114 
5.9. Two-pinhole helical SPECT of a hot-rod phantom .................................. 115 
5.10. Diagram of the two-pinhole collimator and photo of the thyroid phantom ......... 116 
5.11. Two-pinhole helical SPECT of the thyroid phantom ............................... 118 
5.12. Two-pinhole helical SPECT of the thyroid region of a mouse ...................... 119 
5.13. In vivo two-pinhole helical SPECT of the thyroid region of a mouse ............... 120 
6.1. Tumor distribution in the MMTV mice............................................. 136 
6.2. The ROis ofNMGs of two groups of C-57 mice bearing no tumors ............... 143 
6.3. Correlation between gamma image and immunohistochemistry ................... 145 
6.4. Distribution of times for 125I to reach the maximum tumor size within one 

hour ....................................................................................... 146 
6.5. Three typical patterns of 125I distribution in MMTV tumors ..................... 147 
6.6. Association/correlation among tumor patterns, size and 125! uptake during 50-

55 minutes .............................................................................. 149 
6. 7. Correlations between the 125I uptake and different tumor sizes ...................... 150 
6.8. Respective comparison of dynamic 1251 uptake and size between center-to-

edge and multi-spot patterns ............................................................. 151 
6.9. Difference plots at beginning and ending periods of imaging ..................... 152 
6.1 0. Presumed pathway for iodine transfer in a tumor with center-to-edge pattern .... 157 
7 .1. Photographs of the prototype LaBr3(Ce) detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 

lX 



A VERSATILE IMAGING SYSTEM FOR IN VIVO 

SMALL ANIMAL RESEARCH 

1 



Chapter 1 

Introduction 

1. 1 Motivation of this project 

The rapid development of imaging techniques such as computed tomography 

(CT), magnetic resonance imaging (MRI), ultrasound imaging, optical imaging and 

radionuclide imaging indicates that in vivo small animal imaging has become an essential 

tool for molecular biology studies. However, requirements of spatial resolution, 

sensitivity and image quality are quite challenging for the development of small-animal 

imaging systems. The capabilities of the system are also significant for carrying out small 

animal imaging in a wide range of biological studies. Developing a suitable imaging 

modality for a biological lab needs integrative consideration of imaging agents, system 

performance, economy, expandability and compactness. The goal of this work is to 

develop and to apply a high-performance imaging system that can meet different imaging 

requirements for a variety of in vivo small animal studies. 

Radionuclide imaging includes single photon imaging (planar scintigraphy and 

SPECT) and positron emission tomography (PET). When compared to the 

instrumentation, sophisticated radiochemistry and relatively short half-lives of most 

radiotracers for PET imaging, single photon imaging based on collimated gamma 

cameras provides a complementary alternative with high performance. Different 

2 



collimators such as parallel-hole and pinhole collimators can be employed in a gamma 

camera, and each provides unique advantages. Parallel-hole collimation may provide high 

efficiency, acceptable resolution and better sampling completeness over a relatively large 

active area. Parallel-hole planar imaging is especially valuable for whole animal region of 

interest (ROI) quantitative analysis and distribution studies. Single pinhole collimator can 

have both high resolution and high sensitivity if the object is close to the pinhole aperture 

but with a reduced FOV. Multipinhole imaging has been demonstrated in several studies 

to be suitable for high-resolution (near or less than 1 mm) tomographic imaging with high 

sensitivity and enlarged field of view. According to individual imaging requirements for 

a specific preclinical study, researchers may require different modes of collimation. If the 

required mode is readily available, the inconvenience of changing collimators and 

frequently re-calibrating detectors will be dramatically reduced during biological studies. 

As one of the radioisotopes for single photon imaging, 1251 is an excellent choice 

as a gamma imaging agent because of its low energy (~35 keV) for radiation safety and 

relatively long half-life (~60 days) for longitudinal studies. Hundreds of ligands tagged 

with 1251 are commercially available and readily meet the requirements of a variety of 

molecular imaging studies. However, the low energy photons emitted by 1251 can result in 

poor energy resolution for gamma cameras and raise a challenge for the imaging system 

to achieve high resolution. Because of the relatively long half-life of 1251, the prolonged 

radiation exposure of tissues, particularly the thyroid, may require a relatively low 

administration dose. As a consequence, this may impose the need for high sensitivity 

from the imaging system in order to maintain image quality. Therefore, the performance 
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of the imaging system in both resolution and sensitivity becomes significant when a low 

dose of radiotracer is used in small animal studies. 

1. 2 Project overview 

This dissertation describes the development of a versatile compact gamma-ray 

imaging system incorporating multipinhole circular/helical SPECT, parallel-hole imaging 

(planar projection or tomography) and X-ray imaging as well. The system for in vivo 

small animal research using low doses of 1251 has been applied to preclinical studies of 

the mouse thyroid and mammary tumors, both of which potentially involve issues related 

to human health. 

Novel compact gamma-ray cameras [1] with parallel-hole collimation, sized 

particularly for mouse imaging have been developed and utilized in this work. Both 

phantom and mouse studies have demonstrated that such a compact parallel-hole detector 

is particularly suitable for imaging an entire mouse with balanced resolution and 

efficiency. A second compact gamma camera has been constructed and incorporated into 

the system to form a dual-head imager to reduce imaging time. This dissertation deals 

particularly with an application study of gamma-ray imaging in detecting and 

characterizing mouse breast tumors in vivo with the sodium iodide symporter (NIS) as the 

reporter gene. In that study, one of the compact gamma cameras was employed m 

imaging breast tumors in mice infected with the mammary tumor virus (MMTV). 

A novel high-resolution, high-sensitivity multipinhole helical SPECT system [2] 

has been used by incorporating a 110 mm diameter circular detector equipped with a 

multipinhole collimator designed specifically for imaging the mouse thyroid region. A 

translation rack supporting the mouse bed, driven by a stepping motor along the axis of 
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rotation (AOR) of the system, has been implemented so that a helical trajectory is 

accomplished in additional to the conventional circular orbit. Phantom studies indicate 

the potential for an enlarged field of view, good resolution and enhanced sensitivity while 

employing a relatively low dose of the radioisotope 125I. Motivated by our earlier planar 

scintigraphy study of the blocking efficiency of potassium iodide in mice [2], a further 

study [3] has demonstrated the application of in vivo multipinhole helical SPECT in 

imaging the mouse thyroid using a moderate dose ( ~ 200 11Ci) of 1251. These results 

suggested potential applications in molecular imaging of other NIS-expressing tissues 

such as mammary tumors. 

1.3 Scope of this dissertation 

Since imaging system development is a collaborative work, I summarize the 

process made here with focus on the work I have carried out. Though some of this work 

is now seen in other systems, it will be described here as part of the evolution of our 

imaging system. In the section on application studies, details are given of the imaging 

performance of the system and image analysis. It is beyond the scope of this dissertation, 

however, to interpret the biological implications of the imaging results. 

Following this introduction, Chapter 2 introduces the importance of in vivo small 

animal research and the role of radionuclide imaging in this field including single-photon 

imaging (planar scintigraphy and SPECT) and PET. Recent development of radionuclide 

imaging for small animal research is also reviewed in various aspects in Chapter 2. 

Chapter 3 describes those works in which I have taken part during the evolution of our 

imaging system with emphasis on my major responsibilities. The development of X-

5 



ray/Gamma-ray dual-modality planar imaging is first described followed by a discussion 

of simultaneous gamma-ray imaging based on a pair of 110 mm diameter circular 

cameras equipped with parallel-hole and pinhole collimators respectively. The last part of 

Chapter 3 focuses on the development and characterization of novel mouse-sized 

compact gamma cameras. Instrumentation of multi pinhole helical SPECT based on a 110 

mm diameter circular detector is described in Chapter 4 with efficacy validated by results 

of proof-of-concept phantom studies. The application of this imaging system in a mouse 

thyroid study is described in Chapter 5 including a study of the efficiency of stable 

potassium iodide in blocking the uptake of radioiodine in the thyroid of a mouse and in 

vivo multipinho1e helical SPECT imaging of the mouse thyroid. Presented in Chapter 6 is 

an imaging application of the system in the study of MMTV mammary tumors with 

preliminary results reported. Chapter 7 concludes the dissertation with a description of 

ongoing and prospective future work. 
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Chapter 2 

In vivo radionuclide imaging of small animals 

This chapter introduces in vivo radionuclide imaging techniques for small animal 

research and reviews recent developments in this field. Section 2.1 describes the 

significance of in vivo small animal imaging. Section 2.2 is an overall introduction of 

radionuclide imaging techniques for small animals. Two major techniques for 

radionuclide imaging of small animals: positron emission tomography (PET) and single-

photon imaging are reviewed in Section 2.3 and Section 2.4, respectively. This chapter is 

concluded with Section 2.5, a brief discussion of small animal radionuclide imaging. 

2.1 In vivo small animal imaging 

Small animals such as mice and rats are widely used in biomedical research and 

serve vital model systems for understanding organism development, determining gene 

functions, studying numerous human diseases, and developing new pharmaceuticals and 

therapies [ 4, 5]. Among the animal models, mice especially play a key role in biomedical 

studies with advantages of economy, rapid propagation and easy manipulation of the 

genome [6]. Genetically engineered mice mimicking human disorders are well-

characterized models for the fundamental and therapeutic studies of diseases. Rats are 

also a favored animal model, especially in the field of neuroscience because the surgical 

manipulation of their brain is relatively easy along with the historically cumulative 
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knowledge base of the rat brain [ 6]. Small animals are essential for preclinical studies in 

translation to human application. However, the potential of small animal models in those 

studies is not yet fully realized. One significant limitation has been the requirement of 

sacrificing the animal to obtain desired information. Many natural or perturbed 

biomedical processes under study are unobservable ex vivo, which sequentially results in 

less-precise results [7]. Longitudinal studies in a single animal are barely possible in this 

case, leading to increased statistical variability due to the large number of sacrificed 

animals required by the molecular-biologic assays in order to achieve meaningful 

outcomes [5, 6]. At the molecular level, the ex vivo method makes it a formidable task to 

understand the function of numerous genes in the context of complex organisms [8, 9]. 

These intrinsic drawbacks of ex vivo methodology urge investigation of the biological, 

cellular and molecular processes in living animals. 

With the increasing requirement to resolve such issues and the impressive 

development of imaging technologies, non-destructive in vivo imaging stands out as a 

powerful discovery tool and a substantial solution [10, 11]. Though many imaging 

techniques were initially designed for human studies, extension of those techniques to 

small animals makes it possible to acquire functional, quantitative and longitudinal data 

in addition to structural anatomic information in vivo [5]. The living animals can be 

studied non-invasively and thus repetitively. Therefore, the required number of animals 

can be dramatically decreased. The statistical variation brought by the inter-animal 

differences is reduced concurrently owing to the fact that each animal can serve as its 

own control [12]. Biomedical processes related to biochemistry, genetics and 

pharmacology are able to be revealed not only visually but also quantitatively and even 

8 



dynamically in more details [13, 14]. These outstanding advantages have made in vivo 

small animal imaging a very promising tool in drug discovery and development [5, 15], 

in human disease studies using animal models [ 4, 16], and in characterizing gene 

expression and protein function [9, 12, 17]. 

2.2 Radionuclide imaging for small animals 

Major modern imaging techniques for in vivo small animal research include 

magnetic resonance imaging (MRI), ultrasound biomicroscopy (UBM), X-ray computed 

tomography (CT), optical imaging, and radionuclide imaging. Among these techniques, 

radionuclide imaging has shown great promise in small animal imaging for in vivo 

biomedical studies. Radionuclide imaging is a technique detecting gamma rays resulting 

from radiotracers injected and distributed in the body of a small animal. The radiotracer 

distribution may contain significant functional information at the molecular level such as 

gene expression and protein function. Therefore, radionuclide imaging is usually called 

functional imaging in order to distinguish it from other anatomical imaging techniques 

such as CT and MRI [18]. One may note that the recent development has extended MRI 

to functional imaging mainly in neuroscience, i.e. brain activity studies, by measuring 

cerebral blood flow/volume, blood oxygen level dependence or the level of manganese 

contrast agents associated with neuronal electrical activity [19]. However, non

manganese-enhanced functional MRI in brain activity studies is usually carried out under 

anesthesia while, in the manganese-enhanced case, the usage of manganese agents is 

limited to small animals due to the concerns about toxicity [19]. With hundreds of 

biologically targeting ligands labeled with a variety of radioisotopes, radionuclide 

9 



imaging has played a key role in functional imaging and offers numerous opportunities 

for preclinical studies related to human health such as drug discovery, disease diagnosis 

and therapy. 

The production of gamma rays and the way to detect them divide radionuclide 

imaging into two categories: positron emission tomography (PET) and single-photon 

imaging. The latter can be further divided into two approaches: planar scintigraphy and 

single photon emission computed tomography (SPECT). Owing to the advances in 

detector instrumentation, imaging with both high resolution ( < 1 mm) and high sensitivity 

is possible now for either PET or SPECT. However, the major drawback of functional 

radionuclide imaging obviously is lack of anatomical information, which could be 

compensated by an anatomical imaging modality. 

Therefore, a combination of different modalities has been proved to be much 

more synergistic [20-22]. A typical example is to combine a functional imaging modality 

such as PET with another modality such as CT providing high-resolution structure 

information as reference for better interpretation of the molecular data. A variety of 

multi-modality imaging techniques for small animals has been developed or are under 

development including PET/CT, PET/MRI, PET/optical, SPECT/CT, SPECT/MRI, 

SPECT/optical, PET/SPECT/CT [10, 15, 23]. 

In the following sections, the methodology and recent development of 

radionuclide imaging for small animals will be introduced. This review will cover 

different aspects such as detectors, systems and applications. 
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2.3 PET 

2.3.1 Methodology 

PET imaging utilizes the gamma rays coming from annihilation of an electron and 

a positron emitted from radioisotopes such as 18F and 11C. The electron-positron 

annihilation results in a pair of 511 ke V gamma rays emitted in opposite directions 

(approximately 180°), which are detected and paired by PET detectors (called a 

"coincidence event"). A line of response (LOR) can be formed making it possible to 

localize the source. When a PET detector has the response time of the order of 

picoseconds, it is possible to calculate the time of flight of the pair of gamma rays and to 

improve the accuracy in determining the source position along the LOR. All the 

coincidence events detected by a PET scan are grouped into projections which are sorted 

by view angles. Image reconstruction is then carried out based upon those projections. 

A nuihilation Image Reconstruction 

Siuognun/ 
Listmode Data 

Fig. 2.1 A diagram of a PET system. Image courtesy of Jens Langner [24]. 
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2.3.2 Detectors 

Two types of detectors are usually employed for PET imaging: scintillation 

detectors and semiconductor detectors. Scintillation detectors contain scintillators and 

photodetectors such as photomultiplier tubes (PMTs) or solid-state photodiodes. The 

properties of scintillators mainly including high density, high light yield and short decay 

time are important for achieving PET imaging with high spatial, temporal and energy 

resolutions. One of the most commonly used scintillators is Bi4Ge3012 (BGO). However, 

the long decay time (~300 ns) and relatively low light yield (9000 photons/MeV) make it 

not an ideal material for new generations of PET imagers, especially for small animal 

imaging. Therefore, other state-of-the-art materials for PET imaging have been developed 

typically including Gd2Si05:Ce (GSO), Lu2Si05:Ce (LSO), LuAl03:Ce (LuAP), YAP, 

Lm.sYo.2SiOs:Ce (L YSO, Saint Gobain Crystals), LFS (Zecotek Co.), and LaCb:Ce, etc 

[25, 26]. Listed in Table 2.1 are the properties of some typical scintillators for PET 

imaging with respect to density, light yield and decay time, etc. 

Density (g/cmj) Decay time (ns) Light yield(% Nal) Hygroscopic 
Nai 3.67 230 100 Yes 

BGO 7.13 300 15 No 
GSO 6.71 30-60 25 No 
LSO 7.4 40-43 75 No 

LuAP 8.3 183800 32 No 
LaCb:Ce 3.86 25 121 No 
LaBr3:Ce 5.3 23 160 No 

Table 2.1 properties oftypical scintillators for PET [25, 26] 

As conventional photodetectors for PET imaging, PMTs, especially position 

sensitive PMTs (PSPMTs) continue to be widely used owing to their high performance in 
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spatial and timing resolution. The compactness and high quantum efficiency have made 

semiconductor photodetectors such as position sensitive avalanche photodiode (PSAPD) 

a promising alternative for developing high-resolution animal PET system. A variety of 

new PMTs and photodiodes is available now such as the Hamamatsu R9779 [27], 

Photonis XP20DO [27], avalanche microchannel photodiode (AMPD) [28], micro-pixel 

avalanche photodiode (MAPD) [29], and the CMOS Geiger-mode avalanche photodiode 

(GPD) [30]. 

For a scintillation detector, the incident gamma rays are converted through 

scintillators to visible photons, which are measured by the photodetectors assembled with 

the scintillators. There are three ways to set up photodetectors with scintillators. The 

simplest configuration consists of a single plate of continuous scintillator and an array of 

photodetectors. In order to improve spatial resolution and reduce the cost per detector for 

PET imaging, the setup of a block detector has been developed by Jones eta!. [31] which 

consists of an array of four single-channel PMTs and a scintillator empirically cut into 

elements with various lengths. A more effective configuration for high-resolution PET 

imaging of small animals is to employ the position sensitive photodetectors with an array 

of small individual scintillators (0.8- 3 mm width and 5 to 20 mm length) [32]. 

With the advances of detector technology, semiconductor detectors based on 

silicon (Si) [33] or germanium (Ge) [34] have shown great promise for PET imaging of 

small animals. Unlike the scintillation detector with an interim conversion from gamma 

rays to visible photons, semiconductor detectors directly measure gamma rays by 

converting their photon energy into an electrical signal. Because Si and Ge detectors 

usually operate best at cryogenic temperatures, researchers recently have sought to 
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develop animal PET system using room-temperature compound semiconductor detector 

with high efficiency such as CdTe [35] and CdZnTe [36]. 

2.3.3 PET system design 

A PET system usually incorporates a number of detectors to effectively detect the 

coincidence events. There are three basic geometries found in dedicated PET systems [18] 

including hexagonal geometry of large-size detectors, full-ring geometry of a number of 

detectors with discrete scintillators, and rotating partial-ring geometry with fewer 

detectors. Depending on whether the axial collimation is employed or not, data 

acquisition of a PET system can be determined as a 2-D or 3-D imaging mode. For the 2-

D mode where axial collimation is applied, the LORs within each specific plane (direct 

plane) vertical to the axis of rotation (AOR) are considered. This mode results in the 

volume of the subject in each of those specific planes reconstructed individually. A stack 

of those reconstructed images forms the entire volume of the subject in the field of view 

(FOV). Since 3-D PET imaging uses no axial collimation, in addition to the direct planes, 

the LORs in other planes (oblique planes) in the system are also measured. This mode 

mcreases sensitivity and thus allows faster imaging. A disadvantage of this mode, 

however, is that more scattered events are detected after the removal of the axial 

collimation potentially degrading image quality. Also image reconstruction for 3-D PET 

becomes more computationally intensive owing to the larger size of the collected data in 

comparison with 2-D PET [37]. Development in software has helped to alleviate these 

issues [38, 39]. 
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2.3.4 Image reconstruction 

Image reconstruction for PET imaging can be divided into two types: analytic and 

iterative methods. The principle method for analytic image reconstruction is a Fourier 

transform-based backprojection algorithm. Image reconstruction algorithms based upon 

this principle have been developed for 2-D PET such as the filtered-backprojection (FBP) 

algorithm [40] and for 3-D PET such as the three-dimensional reprojection (3DRP) 

algorithm [ 41 ], respectively. The most widely used iterative methods for image 

reconstruction are based on expectation maximization (EM) algorithms [42] such as the 

maximum likelihood EM (ML-EM) algorithm and ordered subset EM (OSEM) algorithm. 

These methods, initially implemented in image reconstruction for 2-D PET, have been 

extended to 3-D PET [43]. Recent research related to image reconstruction focuses on 

developing faster algorithms such as re binning algorithms [ 44] and the techniques for 

better modeling the statistical properties of the noise for 3-D PET. In addition, 

corrections of attenuation and scatter for PET imaging continue to be an interesting field 

to improve the quality and accuracy of reconstructed images for PET (see reviews in 

[18]). 

2.3.5 Reported PET systems for small animals 

The dramatic advances in both hardware and software for PET imaging have led 

to the development of a variety of PET systems with sufficient resolution (0.8 - 2 mm) 

and sensitivity (0.1% - 7%) for imaging small animals such as mice [35, 45-56]. 

Summarized in Table. 2.2 are the recent developed PET systems dedicated for small 

animal imaging. As shown in the table, the most recent development of a "Fine Structure 
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Imaging PET scanner" has achieved sub-millimeter resolution (0.8 mm) full-width at half 

maximum (FWHM) for the first practical semiconductor scanner [35]. One may also 

note the appearance of systems capable of multi-modality imaging including PET/CT 

[57], PET/SPECT [58], and PET-MRI [59]. 

Systems Detector 
Transaxial Resolution· 

Sensitivity notes 
(center ofFOV, mm) 

ratPET BGO/PMT 2.3 1% [47] 

Sherbrooke PET BGO/APD 
2.1 

0.51% [51] 

MMIIPET LSO/PMT 1.3 >0.2% [48] 
ClearPET L YSO+Lu Y AP/PMT 1.3 08-1.5% r461 
YAP-PET YAP/PMT :::;2.0 1.7% [49] 
Tier PET YAP/PMT 2 0.1% r561 

MAD-PET II LSO/APD 1.1 2.8% [52] 
MicroPETII LSO/PMT 0.83 2.26% rss1 

MicroPET Focus 
LSO/PSPMT 1.69 7.1% [50] 120 

Explore Vista DR LGSO+GSO/PSPMT 1.6 4% [54] 
Mosaic GSO/PMT 2.2 1.3% [45] 

quadHIDAC PET HIDAC 1.0 1.8% [53] 
FSI-PET CdTe 0.8 4.1% r351 

* Transaxial resolution is defined as the reconstructed resolution measured in the 
transverse plane 

Table 2.2. A summary of PET systems for small animal imaging 

2.3.6 PET radiotracers and applications 

Many positron radioisotopes have been implemented in PET imaging. The 

properties (half life and energy) of those typical radioisotopes are listed in Table 2.3. A 

number of positron isotope-labeled radiotracers have been developed to target different 

biological or clinical issues [60]. The advent of modem animal PET systems along with 

the development of these radiotracers has facilitated studying those health or biological 

issues using small animals [18]. These studies focus on measuring glucose metabolism in 
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the rat heart and brain, studying the dopaminergic system in rat brain, and imaging gene 

expression. Particularly, the advantages of PET in functional imaging have made it a 

promising technique for oncology applications such as breast cancer study [18]. More 

detail in this respect can be found in Chapter 6. 

Radionuclide Half-life Energy (MeV) 
uc 20min 0.97 
UN 9.9 min 1.2 
Do 122 sec 1.74 
liSp 110 min 0.64 

04Cu 12.7 hr 0.66 
MGa 68.3 min 1.9 
!L'IJ 4.15 day 2.1 

Table 2.3. Properties of PET radioisotopes [60] 

2.3. 7 Advantages and disadvantages of PET 

The most important advantage of PET is its exquisite sensitivity which can be as 

high as 7%. This easily facilitates researchers carrying out dynamic imaging studies by 

using PET scans of a few minutes. Short imaging time also reduces the problems 

resulting from other factors such as the animal's movement. Moreover, the available 

positron radioisotopes provide a variety of choices to develop ligands for different 

cellular targets. However, the properties of those positron isotopes also bring the 

disadvantages. Conjugation of positron isotopes to a wide range of molecules of interest 

may require sophisticated radiochemistry. Owing to the relatively short half-lives of most 

radioisotopes, preparation of radiotracers for PET imaging usually requires a nearby 

cyclotron and radiochemistry lab. Though 18F labeled radiotracers can be produced 

commercially off site now, it is necessary to frequently recalibrate the remaining dose 

and to plan the experiments much more carefully owing to its half-life of 110 minutes. 
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From economical point of view, the cost of PET system and imaging is expensive in 

comparison with SPECT. 

2.4 Single photon imaging 

2.4.1 Methodology 

Single photon imaging including planar scintigraphy and SPECT uses gamma 

cameras to detect the gamma rays emitted by radioisotopes such as 1251 and 99mTc. After 

the radiotracer is injected into an animal, the intensity and position information delivered 

by detected gamma rays from the distributed radiotracer may convey the information of 

biological or pathological interest to researchers. When the gamma camera images an 

animal following injection of a radiotracer, one can achieve a planar gamma image (or 

"projection") of the animal. This imaging method is called planar scintigraphy and is 

shown in the left panel of Fig. 2.2. Planar scintigraphy is useful for a number of studies 

such as determining the presence or localization of the radiotracers in some tissues 

(tumors, thyroid, etc.) or quantitative validation of the efficacy of some 

radiopharmaceuticals. However, since planar scintigraphy is a method of studying the 3-

D subject in 2-D space, useful depth information in the animal is lost along the direction 

vertical to the detector. SPECT has been developed to address that issue. SPECT allows 

researchers to study the animal in 3-D space. Instead of holding the detector at a fixed 

position, conventional SPECT takes a set of projections of the animal at a variety of 

evenly distributed angular positions. The 3-D distribution of the radiotracer in the animal 

is then reconstructed from the set of planar images by using an appropriate algorithm of 

image reconstruction. Shown in the right panel of Fig. 2.2 is a diagram of a SPECT 

system. 
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2.4.2 Detectors 

As with PET, SPECT detectors can be divided into conventional scintillation 

detectors and semiconductor detectors. The scintillation detector originates from the 

gamma detector first described by Anger [61]. The procedure of scintillation detection of 

gamma rays is shown in the left panel of Fig. 2.2. When incident gamma rays at right 

angles pass through the collimators and strike the scintillator, they induce visible photons 

which can be detected by photodetectors such as PSPMT or PSAPD. The spatial 

information and number of counts of the detected incident gamma photons are able to be 

computationally determined to form a 2-D projection. This imaging procedure is almost 

identical to PET imaging except that a collimator is employed between the incident 

gamma rays and scintillators. Therefore, a modem scintillation gamma camera contains 

three critical components: photodetectors (PSPMT, PSAPD or CCD), scintillators and 

collimators. Dramatic advances in gamma cameras have been achieved in each of these 

aspects. 

p~~~:~~~! llllllllllllllllllllllllllllllllll 
11111111 Photons 

PSPMT 
Thansverse view 

Fig. 2.2 A diagram of conventional single-photon imaging system 
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Owing to the need for a collimator, one may instantly note that the sensitivity of 

SPECT detectors dramatically decreases in comparison with PET detectors where only 

axial or even no collimators are employed. Nevertheless, high resolution and/or relatively 

high sensitivity for small animal imaging can readily be achieved using gamma cameras 

equipped with appropriately designed collimators. A variety of collimators have been 

designed and implemented for single-photon imaging of small animals. Most of the 

collimators used are parallel-hole or pinhole collimators as shown in Fig. 2.2. Parallel-

hole collimators with square or hexagonal openings usually provide large FOV, high 

sensitivity and moderate resolution, which are sufficient for a number of studies. By 

incorporating a magnifying factor with a single pinhole collimator, one may achieve sub-

millimeter spatial resolution using a gamma camera with intrinsic spatial resolution in the 

order of millimeters. The geometric sensitivity Ps and spatial resolution Ra of a pinhole 

collimator can be expressed as [62, 63]: 

d cos3 
m p = __..:;_e __ "f"~ 

s l6b 2 
(2.1) 

(2.2) 

with the effective diameter de of the pinhole 

( )

1/2 
2 2d {)) 

de= d +-tan-
Jlc 2 

(2.3) 

Here, b is the distance between an object point and the collimator, cp is the incident angle 

of the photon, dis the diameter of the pinhole, w is the opening angle of the pinhole, Ri is 
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the intrinsic resolution of the detector, M is the magnifying factor employed for the 

pinhole collimation, and !lc is the linear absorption coefficient of the collimator material. 

As indicated in the equation, the smaller the diameter of the pinhole, the higher 

the geometric resolution ofthe pinhole collimator. However, this resolution improvement 

is achieved at the expense of considerably reduced sensitivity. Recently, several groups 

have demonstrated that novel multipinhole collimation substantially improves sensitivity 

while retaining outstanding resolution [64-66]. This achievement significantly extends 

the capabilities of SPECT to image small-scale tissues containing fine structure such as 

pancreas, thyroid and brain. In the past few years, new "slit-slat" collimation has been 

proposed to combine the pinhole's magnification in the transaxial direction with parallel

or fan-beam's complete-sampling properties and large field of view in the axial 

dimension [67]. Such a collimation is especially suitable for imaging mice owing to its 

specific design. 

Position-sensitive PMTs have been widely used in modern gamma cameras. 

Owing to their excellent performance, a variety of PSPMT modules has been developed, 

tested and implemented for single-photon imaging mainly including Hamamatsu R5900 

[68], R2486 [69], R3292 [70], H8500 [1, 71], H9500 [72]. Recently, PSAPD modules 

have become promising photodetectors for developing scintillation gamma cameras. 

Several studies [73, 74] have been carried out to demonstrate the performance ofPSAPD 

modules produced by Radiation Monitoring Device (RMD, www.rmdinc.com). Some 

other studies show that a CCD-based gamma camera can be another promising alternative 

for single-photon imaging with high performance [75, 76]. 
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Common scintillators for single-photon imaging and their properties are listed in 

Table 2.4 [77]. The most widely used scintillator is Nal(Tl) which has an efficient light 

output (38000 photons/MeV). Since long decay time is of relatively less concern for 

SPECT in comparison with PET, Csl-based scintillators are also a good choice for 

SPECT imaging. While short decay time and high light output make LaBr3 a promising 

scintillator for developing time-of-flight PET, this scintillator is also of great interest to 

researchers developing SPECT detectors because of its high energy resolution [77 -79]. 

Density (g/cmj) Decay time ( ns) Light yield (% N al) Hygroscopic 
Nal(Tl) 3.67 230 100 Yes 
Csi(Tl) 4.5 1000 45 No 
Csl(Na) 4.51 630 85 No 

LaBr3(Ce) 5.3 23 160 No 

Table 2.4. Properties of typical scintillators for SPECT [77] 

As in applications to PET, room-temperature semiconductor detectors become 

promising and attractive as an alternative to conventional scintillation detectors because 

of their high energy resolution and compactness. Evaluation of detectors based on CdTe 

and CdZnTe (CZT) has been carried out [80, 81]. Results demonstrate the excellent 

performance of those semiconductor detectors suggesting their potential for small animal 

1magmg. 

2.4.3 SPECT system design 

Unlike PET, there is no need to pair gamma cameras inSPECT. This results in a 

diversity of configuration for SPECT systems. The conventional configuration is a 

rotation system with single/multiple detectors in a circular orbit that is positioned 

perpendicular to the axis of rotation (AOR). Both parallel-hole and pinhole collimation 
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have been implemented in such systems [68]. Effected by incorporating the circular orbit 

with the displacement of the object under investigation along the AOR, a helical orbit 

(helical SPECT) has been introduced to address the issue of sampling completeness in 

pinhole circular SPECT [67]. In contrast to such a rotating system, a stationary system 

has been developed using no detector rotation. Instead, movement of the object under 

investigation is required. A simple stationary configuration similar to a circular rotation 

system can be effected by rotating the object instead of the detector(s) [82]. The 

appearance of novel collimator technology has advanced the development of modem 

stationary configurations. One new configuration translates the object through the FOV 

of single/multiple stationary multipinhole detectors and is referred to as Translatory 

SPECT (T-SPECT) [83]. Another configuration (mouseSPECT) requires no rotation of 

the object but the collimator rotates to achieve complete tomography with stationary large 

annular detectors [84]. Complete stationary systems (USPECT-IIII and FastSPECT II) 

requiring no movement of detectors and the object have been developed by implementing 

both multiple detectors and multipinhole collimators [64, 85]. 

2.4.4 Image reconstruction 

As applied to PET imaging, the same principle algorithms i.e. analytic and 

iterative methods have been widely implemented in SPECT. Analytic methods have 

shown sufficient accuracy and efficiency for parallel-hole SPECT [86]. However, 

iterative methods gather more attention owing to both the complexity of implementing 

analytic methods in pinhole SPECT and the advent of fast computation including high

speed computers and accelerated algorithms such as OSEM [87]. 
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A ML-EM algorithm for emission tomography (PET and SPECT) can be 

expressed as: 

A~n) d yjpij A~n+l) I 

L I d s 

LPij 
J=l LA~n) Pkj (2.4) 

J=l k=l 

where, i: 1, 2, ... , s; the labeling number ofvoxels in the object space for reconstruction 

j : 1, 2, ... , d; the labeling number of detectors. 

A,;n) : estimated radioactivity in ith voxel in the object space after n iterations. 

Pu :probability that a photon emitted by ith voxel is recorded by /h detector 

y 1 : number of photons recorded by /h detector 

As indicated in this equation, the key to reconstruct the unknown object space A,i is to 

determine the transition matrix p u . Li et al. has described in detail an analytic method to 

obtain each entry of this system matrix for pinhole SPECT imaging with a displaced 

center-of-rotation [88]. Siddon's ray-tracing technique has been implemented in that 

work in order to obtain the length of a ray in each voxel it intersects [89]. The 

experimental phantom tests have demonstrated that this method can effectively address 

the problems caused by misalignment of center-of-rotation. Corresponding to the analytic 

ways to determine system matrix p u , some groups have implemented more flexible 

numeric methods that can be easily adapted to complex pinhole shapes [66]. However, 

these numeric methods usually require higher computation resources. 
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2.4.5 Reported SPECT systems for small animals 

Based upon advances in gamma-ray imaging technology, several groups have 

developed novel imaging systems with excellent performance for small animal research. 

These systems have been built with PSPMT or PSAPD-based scintillation detectors or 

semiconductor detectors equipped with a variety of collimators including parallel-hole, 

pinhole, slit and slit-slat. A review in this section indicates that SPECT imaging with 

good resolution and good sensitivity has been the goal of much research. 

Parallel-hole SPECT continues to receive attention as a conventional imaging 

technology and a useful tool for biological studies. Kubo et al. have built a small animal 

SPECT system using CdTe semiconductor detectors equipped with a parallel-hole 

collimator. The achievement of high sensitivity and low scatter radiation by their system 

allows good quantitative analysis [90]. Owing to the increasing requirements of high 

resolution for small animal imaging, pinhole SPECT has received significant attention 

and development in the past several years. 

Qi et al. have reported a desktop single-pinhole SPECT system for small animal 

imaging with a high resolution on the order of 1 mm [91]. The same technology has been 

used in commercial animal SPECT systems, X-SPECT and A-SPECT, from Gamma 

Medica Inc [92]. As mentioned above, high resolution with single-pinhole SPECT is 

achieved at the cost of poor sensitivity. Small animal studies may require a high level 

injection dose or a long imaging time when using single-pinhole SPECT. Therefore, great 

interest has been given to the development of multipinhole SPECT. 
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Several groups have demonstrated the feasibility of multi pinhole SPECT in small 

animal imaging. Schramm et al [66, 93] presented multipinhole SPECT systems based on 

commercial gamma cameras and dedicated multipinhole collimators. They have carried 

out multipinhole imaging with high resolution as well as superior sensitivity based on 

commercial clinical equipment. In the recent report [93], they compared the performance 

of two multipinhole systems based on two commercial SPECT systems: a dual-headed 

Siemens ECAM and a triple-headed Trionix TRIAD. Both systems yield excellent 

performance in resolution and sensitivity. Lackas eta/. developed a translatory SPECT 

system with two orthogonal and stationary multipinhole detectors, taking advantage of 

the movement of the relatively low-mass object instead of the more massive detectors 

[83]. They recently reported progress on the development of a proposed dual-modality 

SPECT/CT system specialized for rat brain studies [94]. Compact commercial gamma 

cameras equipped with multipinhole collimators were incorporated with a cone-beam CT 

system for better orientation in SPECT images. An additional 3D translation stage 

facilitated helical scan orbit for both modalities. Their initial studies achieved a resolution 

about 1.2 mm for SPECT and 300!-lm for CT. Bioscan Corporation is now providing 

commercial NanoSPECT/HiSPECT systems based on the work of the Schramm and 

Lackas group. Meikle eta/. [65, 95] have reported a coded multipinhole SPECT system 

using detectors of their design based on Hamamatsu PSPMT modules. The performance 

has shown its suitability for certain high-resolution imaging applications in small animal 

studies. Using sixteen cameras, each of which was equipped with a single-pinhole 

collimator, Furenlid eta/. developed a completely stationary SPECT system (FastSPECT 

II) presenting great potential for dynamic SPECT imaging [85]. Beekman et a/. [ 64, 96] 
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proposed a novel stationary U-SPECT senes incorporating multipinhole collimation 

without multiplexing. The U-SPECT-I system incorporating 75 gold pinholes and 

standard Nai detectors had demonstrated a combination of ultra-fast, ultra-sensitive and 

ultra-high resolution. Their U-SPECT-II/CT system is commercially available now with 

even better performance. Goertzen et al. [84] designed and constructed a multipinhole 

SPECT system (called "mouseSPECT") with a stationary clinical scanner and a rotating 

collimator, which efficiently balances the resolution and sensitivity and has potential for 

dynamic imaging of small animals. Perterson et al. [97] reported the development of a 

multipinhole SPECT system equipped with silicon strip detectors. The results from their 

prototype system proved its feasibility for small field-of-view studies such as the mouse 

brain. Mok et al. [98] proposed a pinhole collimation system allowing flexible single

and multi-pinhole SPECT of small animals of different size and achieving optimum 

imaging in terms of their size. Hesterman eta!. designed and built a novel multi-module, 

multi-resolution four-head SPECT system (M3R) for small animal imaging. This flexible 

system features interchangeable multipinhole plates for a variety of magnifications and 

pinhole configurations, which allows task-oriented system optimization for imaging 

applications [99]. Kim et al. developed the first full small-animal SPECT imager 

(SemiSPECT) based upon eight compact CZT detectors with high-intrinsic resolution. 

This achievement demonstrated the feasibility of simultaneous operation of multiple CZT 

detector arrays in a practical SPECT, which required solutions to issues including 

electronics, temperature control and mechanical assembly [100]. Funk et al. [101] 

designed a multipinhole SPECT system based on position sensitive avalanche photodiode 
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detectors (PSPADs). Their simulation results suggest submillimeter spatial resolution and 

potential for high throughput and low-dose SPECT imaging of small animals. 

To solve the axial blurring of circular-orbit pinhole SPECT, Metzler et a/. [67, 

102-1 05] reported the application of the helical orbit conventionally used in transmission 

computed tomography (TCT) to imaging with SPECT. They compared the difference of 

sampling completeness and its dependence on radius of rotation between a circular orbit 

and a helical orbit. A laser alignment system was designed and incorporated into the 

setup of a helical SPECT system based on a clinical scanner. Phantom studies and 

molecular imaging of small animals were carried out to demonstrate the capability of 

helical SPECT in accomplishing high resolution and high sensitivity without sacrificing 

sampling completeness. Their recent study evaluated the effect of angular-dependent 

axial-shift correction on the axial resolution of pinhole SPECT. Patil and Metzler [106] 

also compared the improvement in axial resolution between helical SPECT systems with 

step-and-shoot motion and continuous motion. Sun eta!. [107] have presented a helical 

SPECT scanner for small animals which features CZT detectors. Their initial results 

demonstrated improved axial spatial resolution and field of view (FOV). 

Other developments in small animal SPECT systems include slit SPECT and slit

slat SPECT. Zeng eta/. reported their development of SPECT imaging using a CZT strip 

detector equipped with a slit collimator [108]. Preliminary phantom studies indicated that 

this system outperformed pinhole SPECT imaging with a larger scintillation detector. 

Metzler et a!. have recently re-evaluated the resolution and sensitivity of a slit-slat 

collimator [109]. Their results imply a possible niche for slit-slat collimation between 
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pinhole and parallel/fan beam collimation with improvements in sensitivity, resolution 

and sampling completeness [109]. 

To improve the accuracy in locating the radiotracer, dual-modality small animal 

imaging systems are also of interest. Hwang et a!. [11 0] are building a dual-modality 

system incorporating X-ray CT and microSPECT for small animal imaging. Hong et al. 

have reported a SPECT/CT system suitable for functional imaging of small animals with 

high-resolution morphology information [111]. By combining a low-field MR imager and 

a small animal SPECT system, Goetz eta!. [112] proposed a potential low-cost solution 

to achieve dual-modality imaging for preclinical studies. 

2.4.6 SPECT radiotracers and applications 

There is a range of radioisotopes used for SPECT imaging as listed in Table 2.5 

along with their properties. As mentioned before, 1251 is of particular interest to the work 

carried out here because of its low emission energy, long half-life, and commercial 

availability of a large body of 1251-tagged ligands. One disadvantage of 1251, however, is 

that the applicable dose of 1251 should be kept as small as possible while its half life 

broadens the time window for imaging. In addition to 1251-tagged radiotracers, a number 

of ligands labeled with other radiotracers such 99mTc and 1311 have also been developed. 

The large body of available ligands broadens the range of biological targets for SPECT 

imaging and provides a variety of opportunities to study biological or human health 

issues using small animals [86]. 
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Isotope Half-life Energy (ke V) 
'J'JmTc 6.02 hr 140 

lL:li 60.2 day 30 
1231 13.3 hr 159 
Ull 8.2 day 364 

lllln 2.8 day 171/245 

Table 2.5 Typical radioisotopes used in SPECT imaging [86] 

Small animal SPECT has been applied in a number of such studies. A substantial 

portion of these studies focuses on brain [113] and myocardium [114]. Using a mouse 

model, studies of renal function and inflammatory bowel disease have been carried out 

with dedicated SPECT systems [115]. Thyroid function and small-animal tumors are two 

areas receiving considerable attention [116] and are also of interest to the work described 

in this dissertation. Details about specific studies carried out in this project can be found 

in Chapter 5 and Chapter 6 respectively, including a re-evaluation of potassium iodide 

blocking efficiency and visualization of sodium iodide symporter (NIS) in the mouse 

thyroid, and an imaging study of mouse mammary tumors. 

2.5 Discussion of small animal radionuclide imaging 

Among all the available imaging techniques, radionuclide imaging has been the 

most important one to achieve functional information. PET has shown exquisite 

advantage in sensitivity. Recent breakthroughs in spatial resolution to submillimeter 

dimensions makes PET a promising modality for a wider range of applications. However, 

the half-life window of PET radiotracers can limit its application in measuring slow 

biological processes such as cell division occurring over hours or days [86]. The cost of 

PET imaging is relatively high considering system instrumentation and radiotracer 
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preparation. As a complementary approach, SPECT has shown considerable promise to 

meet imaging requirements in a number of preclinical studies. SPECT has unique 

capabilities to probe endogenous ligand interactions, to measure slow kinetic processes 

and to simultaneously probe multiple molecular pathways [86]. 

A diversity of SPECT systems has been developed with different performance 

owing to recent advances. Trade-off always exists among those systems regarding the 

FOV s, sensitivities, resolutions and costs. Different studies can have different 

requirements in those aspects and require adjustment accordingly. However, the available 

small animal SPECT systems are much less flexible and some are unable to make such 

adjustment readily. 

Recent development of multipinhole SPECT has provided new opportunities for 

high-resolution imaging of small animals with high sensitivity. The presence of the 

magnifying factor to improve spatial resolution, however, usually reduces the FOV of the 

detector. A helical orbit can extend the FOV along the AOR while improving sampling 

completeness of the pinhole collimator. Combination of multipinhole SPECT and a 

helical orbit thus provides a promising way to image large objects with high performance 

in resolution and sensitivity. 

The following chapters describe the development and application of a compact 

gamma-ray imaging systems which can readily meet a wide variety of imaging 

requirements for resolution, sensitivity and FOV. This system is the first one 

incorporating multipinhole circular/helical SPECT, parallel-hole imaging (planar 

projection or tomography) and X-ray imaging. In addition to the development of novel 

detectors, unique multipinhole helical SPECT has been incorporated into the system. The 
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system has been evaluated based upon phantom studies. Applications of this system to 

several biological experiments have demonstrated the efficacy and versatility of this 

system for in vivo small animal research. 
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Chapter 3 

Evolution of our imaging system 

This chapter describes the development of our imaging system in which I have 

participated during the past several years. Section 3.1 presents a description of dual

modality imaging, which was achieved by incorporation of a small x-ray fluoroscope, 

followed by the development of simultaneous gamma-ray imaging with parallel-hole and 

pinhole collimation in Section 3.2. Section 3.3 details the calibration and performance 

evaluation of novel "mouse-sized" compact gamma cameras designed particularly for 

biological studies in the mouse model. Some results presented here have been published 

as journal articles [1, 117] or conference records [118, 119]. 

3.1 X-ray/gamma-ray dual-modality planar imaging 

As discussed in Chapter 2, multi-modality imaging combining functional imaging 

with anatomical information can facilitate better interpretation of functional data with 

precise structural detail. This is especially useful in gamma imaging when evaluating the 

physiological or pathological response of a small animal to a given radiotracer. The 

additional anatomical information will enable one to determine the organs or tissues 

where the radioactive compound is distributed. Therefore, in the early stages of this work 

we enhanced our gamma imaging system by incorporating a fluoroscopic X-ray 

apparatus (see Fig. 3.1) in order to achieve dual-modality imaging [117]. We seek more 

33 



precisely to identify the distribution and location of 1251-tagged compounds in the mouse 

through the fused image obtained by superimposing the anatomical X-ray image of a 

mouse with the gamma image. In order to validate the efficacy of this dual-modality 

planar imaging technique, we also carried out a proof-of-concept study of radioiodine 

uptake in mice blocked with stable potassium iodide (KI) in comparison with an 

unblocked control mouse. My major contribution to this work included data acquisition 

and performance evaluation of both gamma and X-ray imaging, design of the mouse bed, 

fusion of gamma and X-ray images, and their application in the proof-of-concept studies. 

Fig. 3.1 Photograph of the 1magmg system incorporating both gamma- and X-ray 
modalities [117]. 
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3.1.1 Performance of gamma and X-ray imaging 

The gamma camera employed in this work had been developed previously and is 

described elsewhere in greater detail [69]. Briefly, the 110 mm diameter circular detector 

was based on a Hamamatsu R3292 PSPMT module air-coupled to an array of pixellated 

Csi(Tl) scintillators, in which each crystal measured 1x1x3 mm3 with 0.2 mm separation 

between adjacent crystals. A 3 mm thick copper-beryllium parallel-hole collimator 

suitable for use with 1251 was employed in this work for high-resolution imaging. That 

collimator was fabricated of Cu-Be with 0.2 mm square holes separated by 0.05 mm 

walls. Programs developed with data acquisition software Kmax (Sparrow, Inc.) were 

implemented to obtain the raw data of gamma imaging. Those data were then analyzed 

using image analysis programs written in IDL language (Research Systems Inc.). 
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Fig. 3.2. A profile of the three hot spots in a one-hour gamma image. The phantom 
contained three spots with 15 mm spacing in a line. Each spot was loaded with 2 f..1Ci of 
125I [117]. 

We determined the resolution of the detector for 125I imaging using a three-spot 

source. Three 1 mm deep, small depressions with 15 mm spacing were drilled in a line in 
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a plastic plate measuring 50 x 50 x 3 mm3
. Each spot was loaded with 2 J.!Ci of 125!. The 

three-spot source was placed 5 mm away from the collimator surface and imaged for one 

hour. Shown in Fig 3.2 is the profile of the three-spot source in the whole-hour image. A 

Gaussian fit to one of the peaks achieved a spatial resolution (FWHM) of just under 2 

mm. The measured efficiency of the detector using the same phantom was 70 ± 10 

cprniJ.!Ci. 

The small Lixi fluoroscopic X-ray apparatus [120] was employed for anatomical 

imaging of the mouse. This device has a 50 mm diameter effective view area. View area 

limitation necessitated making a composite view of the entire mouse with a series of X

ray images. On the other hand, the small size of the X-ray equipment made it an excellent 

choice for easy incorporation into the existing gamma imaging system and development 

of a compact dual-modality imaging system for biological research. 

Fig. 3.3. A picture ofthe X-ray phantom made with CuBe and its X-ray image 

The performance of the fluoroscope was assessed by using the X-ray device to 

image a small copper-beryllium disk shown in left panel of Fig. 3.3. This disk contained 
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etched holes with a variety of diameters. The smallest hole was 100 11m in diameter. As 

demonstrated by the right panel in Fig. 3.3, the smallest holes could be clearly resolved 

indicating that our fluoroscope could provide a spatial resolution of 0.1 mm with 

potential for better results. 

3.1.2 Mouse bed and formation of the composite image of an entire mouse 

Formation of a composite X-ray image of an entire mouse required a reference for 

alignment of the successive X-ray images of a part of the mouse body. A specially 

designed mouse bed served not only to support the mouse during imaging but also as a 

useful tool for formation of the composite image. Presented in Fig.3.3 is such a mouse 

bed made with balsa wood. Fine nichrome wire is imbedded and serves dual purposes as 

both a heater to keep the animal at appropriate body temperature during the imaging 

period and a reference for alignment when making the composite X-ray image. For more 

precise alignment, 1 mm diameter metal spheres were also imbedded in a line on each 

longitudinal side of the bed at 1 em intervals. This design of the mouse bed ensured 

accurate, easy formation of the composite X-ray image of a mouse with negligible side-

effects from the nichrome wire and metal spheres in gamma and X-ray imaging. 

Fig. 3.4. Photograph of the mouse bed. Fine heating wires and 1-mm metal spheres were 
embedded for X-ray image alignment. 
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As Fig. 3.1 shows, the X-ray system positioned near the gamma cameras and the 

track supporting the mouse bed. When imaging, the anesthetized mouse placed on the 

mouse bed could be easily translated to an appropriate position for either gamma or X-ray 

imaging through the track. X-ray imaging was usually carried out immediately after 

gamma imaging of a mouse. A set of raw X-ray planar images from the Lixi fluoroscope 

was captured by a Canon G 1 digital camera with the imaging window of the device 

focusing on 5 to 7 consecutive areas sufficient to cover the whole body of the mouse. The 

data were then transferred and stored in a Macintosh G4 computer for further image 

processing. Using the image processing software Photoshop, each of the X-ray images 

was cropped and corrected for distortion based on the image of a fine metal grid. 

Thereafter, the group of processed images was visually overlaid with opacity of each 

image set to 45% by referring to both the imbedded nichrome heating wires and metal 

spheres. Examples of the composite image of a mouse are shown in the bottom frames in 

Fig. 3.5. 

3.1.3 Fusion of gamma-ray and X-ray images 

Once a composite X-ray image of the entire mouse was produced, it could be 

fused with the gamma image acquired prior to the X-ray imaging to form the dual

modality gamma/X-ray image. However, such fusion requires reference points for co

registration of these two different types of images. Reference points were needed near the 

mouse to be visible in both gamma and X-ray imaging in order to facilitate overlaying the 

two images precisely. Metal toroids of 2 mm inside diameter into which 1251 has been 

loaded play the key role as a reference for fusion of gamma and X-ray images. These 
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Fig. 3.5 Fusion of gamma-ray and X-ray images for unblocked (left) and KI-blocked 
cases (right), respectively. Each case contains a gamma image of the mouse on the top 
and a corresponding composite X-ray image at the bottom with their fused image 
presented in the middle [117]. 

fiducial marks were put in select positions of the mouse bed with negligible effect on the 

imaging and data analysis. Both the gamma camera and the X-ray device could readily 

observe these fiducial marks, which appeared as hot spots in gamma images and as dark 

rings in X-ray images (see Fig. 3.5). This allowed us to overlay gamma images on X-ray 

images easily and visually with opacity set to 30%-50%. The middle frames in Fig. 3.5 

show an example of the fused gamma/X-ray images. 

3.1.4 Proof-of-concept studies 

Potassium iodide (KI) is an FDA-recommended agent to protect the thyroid from 

accumulating radioiodine in the event of accidental release of radioactive contamination. 

The blocking effects ofKI have been reported and evaluated in a number of studies [121-

123]]. In order to validate the efficacy and demonstrate the utility of dual-modality 
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gamma/X-ray imaging in biological research, we carried out in vivo proof-of-concept 

studies of radioiodine uptake in mice blocked with Kl in comparison with control mice 

with no KI administered prior to radioiodine injection. A dose of 1% KI solution was 

administered orally to a mouse 60 minutes before the intramuscular injection of 4.8 1-1Ci 

of radioiodine (as Nai) into the same mouse. Both the KI-blocked and control mice were 

imaged for 60 minutes immediately following the administration of radioiodine. The 

distribution of radioiodine in both KI-blocked and unblocked cases was analyzed and 

compared to assess the blocking effects of stable KI in mice and the advantages brought 

by incorporation of anatomical information in gamma images. 

Presented in Fig. 3.5 are examples of unblocked (left in the figure) and KI

blocked (right in the figure) dual-modality images. Top frames in Fig. 3.5 are gamma 

images obtained during 40-50 minutes post radioiodine injection. Bottom frames are 

composite X-ray images of the entire mouse. Central frames are fused gamma/X-ray 

images. The integrated images precisely indicate that major radioiodine uptake is located 

in the thyroid and stomach regions of the mice. As expected, a KI -blocked mouse 

presented much less uptake of radioiodine in the thyroid than an unblocked mouse. A 

significant portion of radioiodine was accumulated in the stomach region in either case. 

Greater detail about the difference between the two cases can be revealed through region 

of interest analysis [117]. 

Shown in Fig. 3.6 are the dynamic changes of the distribution of radioactive 

iodine in Kl blocked and unblocked mice over the first hour post injection. The three 

gamma images in each group in Fig. 3.6, from top to bottom, represent the radioiodine 
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Fig. 3.6. Gamma images presenting the dynamic change of radioiodine distribution in 
unblocked (left) and KI-blocked (right) mice. The time period from top to bottom were 0-
10 min, 20-30 min and 40-50 min post injection of 14 J..LCi Na125I. Here, sg stands for 
salivary glands, th thyroid, st stomach, fm fiducial mark, is injection site, and bl bladder 
[117]. 

distribution during 0-10, 20-30, 40-50 min imaging periods, respectively. With the 

precise anatomical information provided by dual-modality images (see bottom frames in 

Fig. 3.5), ROI plots can readily determine that most radioiodine was accumulated in the 

thyroid and stomach regions for the unblocked mouse over the time. However, the KI-

blocked mouse presented high quantity of radioiodine in the bladder and slow 

disappearance of radioiodine from the injection site as well as much less uptake in the 

thyroid. 

3.1.5 Conclusion 

By incorporating an X-ray imaging system into our gamma imager, we developed 

an imaging system capable of dual-modality planar imaging. The proof-of-concept 

studies validated the efficacy and demonstrated the advantages of dual-modality imaging 
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in biological research. This system allowed us to image temporal and spatial metabolic 

binding patterns in vivo of 125! -tagged radiotracers accurately with precise structural 

information [117]. Moreover, this real-time gamma imaging system provides a novel 

approach to address the concerns of KI -blocking efficiency and safety in both animal and 

human studies [117], and has been presented in a recently published paper [2] (see also 

Chapter 5). 

3.2 Simultaneous parallel-hole/pinhole gamma-ray imaging 

As indicated in Chapter 2, gamma imaging of small animals has been a promising 

technique in nuclear medical imaging with the capability of providing valuable functional 

information and potential application in biomedical studies. The dual-modality imaging 

described above has demonstrated the utility of planar gamma imaging with parallel-hole 

collimation. Planar imaging can expose the distribution of radiotracer in the whole body 

of a mouse. However, details about the distribution of radiotracer in a specific organ or 

tissue may still remain unclear due to the resolution of parallel-hole imaging in the order 

of 2 mm. Such details may be useful in studying the physiology or pathology of organs or 

tissues such as thyroid or stomach. As one of the methods for collimation, pinhole 

collimation is well known for its suitability for high-resolution imaging. In addition to 

parallel-hole imaging to obtain whole-body information of a small animal, simultaneous 

pinhole imaging focusing on a specific organ or tissue can help researchers to obtain 

organ- or tissue-specific information with greater detail at the same time. Furthermore, 

though planar gamma imaging continues to present utility in numerous biological studies, 

gamma-ray computed tomography, i.e. SPECT is becoming an effective tool to determine 
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the biodistribution of radioactive ligands in three-dimensional space. Researchers will 

certainly benefit from the information from an additional dimension by overcoming the 

potential ambiguity brought by planar imaging. A further development of SPECT 

imaging can significantly expand the capability of the imager in achieving tomographic 

information without sacrificing the animal. 

Fig. 3. 7, Imaging system incorporating two 110 mm diameter circular gamma cameras 
and a fluoroscopic X-ray apparatus. The top gamma camera was equipped with pinhole 
collimator while the bottom camera with parallel-hole detector [118]. 

For these purposes, we sought to accomplish simultaneous gamma-ray imaging 

with parallel-hole and single-pinhole collimation by using a pair of 110 mm diameter 

circular detectors. Attempts to facilitate SPECT imaging were also carried out. Presented 

in Fig. 3. 7 is the developed system incorporating two gamma cameras and a fluoroscopic 

X-ray apparatus. In this work, I have calibrated one of the gamma-ray detectors for 
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pinhole collimation equipped with a new pixellated Nai(Tl) scintillator, incorporated the 

detectors onto a cylindrical gantry for planar imaging or tomography, and carried out 

several proof-of-concept studies using this system. 

3.2.1 Gamma cameras for parallel-hole and pinhole imaging 

Both gamma cameras shown in Fig. 3.7 are 110 mm diameter circular detectors. 

The gamma camera for parallel-hole imaging has been described in subsection 3.1.1. In 

comparison with the parallel-hole gamma camera, the camera employed for pinhole 

imaging was also based on a Hamamatsu R3292 PSPMT module but was equipped with a 

crystal Nal(Tl) array of scintillators and a single-pinhole collimator. Described here is the 

calibration of the detector with the new scintillators employed. Detector calibration 

included three major steps: making the crystal lookup table, energy calibration and the 

uniformity correction. 

The scintillators were a circular array with a diameter of 88 pixels. In this array, 

each crystal scintillator pixel measured 1 x 1 x 5 mm3 with a pitch of 1.2 mm between 

two adjacent elements. Presented in the top panel of Fig. 3.8 is a raw crystal image, 

obtained by using high energy gamma rays ( ~ 660 ke V) emitted from a point source of~ 

15 1-1Ci 137Cs. The source was placed about 50 em above the detector surface and imaged 

for two days. No collimator was employed during this imaging. With the high energy 

gamma rays, nearly each crystal element could readily be identified. A crystal lookup 

table (see Fig. 3.8, bottom panel) was then generated using a program developed with 

Kmax software and this raw crystal map. When this two-dimensional lookup table was 
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Fig. 3.8 Raw crystal map ofthe scintillator array (top) obtained with~ 15 f.!Ci 137 Cs ( ~662 
ke V) and crystal lookup table (bottom) based on this raw image. 
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implemented back into the data acquisition program, the exact crystal element that a 

detected gamma ray intersected could be determined by examining the position of that 

gamma ray. When each of the detected gamma rays was mapped to a two-dimensional 

image by referring to the crystal lookup table, we were able to achieve a gamma ray 

image representing the spatial distribution of the radioactive source. 
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Fig. 3.9 Normalized energy spectrum of~ 35 keV gamma rays emitted by 125!. The 
truncation in the spectrum is because the energy window was set to accept only photons 
from 28 keV to 53 keV. 

Since the crystal elements are not ideally identical and the response of the PSPMT 

not uniform, the energy response of the scintillators was not the same either. In order to 

obtain the best energy resolution of gamma imaging, an energy lookup table was 

necessary for energy calibration of individual scintillators. Because the energy response 

of the scintillators depends on the energy of gamma rays, the source selected for energy 

calibration should be the radioisotope, in our case 1251, intended for use in the biological 

studies. A point source containing 200 !JCi Na125I was placed about 1 meter away from 
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the face of the detector with no collimator. The imaging lasted about 4 hours. Using a 

specific Kmax program for energy calibration, the energy spectrum of each crystal 

element was determined and the maximum value of that spectrum was recorded. The 

energy lookup table is the vector containing the maximum spectral values of individual 

crystals. The energy of each detected gamma ray was calibrated by referring to this 

lookup table implemented in the data acquisition program. Presented in Fig. 3.9 is the 

energy spectrum of 3 5 ke V gamma rays of 1251 after the normalization. 

After both crystal and energy lookup tables were implemented, a flood imaging 

with a uniform source of the target radioisotope is required for correction of non

uniformity ofthe detector. Unlike the case of parallel-hole collimation, the correction did 

not require the collimator to be employed for the case of pinhole collimation. The same 

point source for energy calibration (200 !J.Ci Na125I) was positioned 1 meter away from 

the surface of the detector and imaged 4 hours using the data acquisition program. The 

resulting image presented in the window "Image Full" was saved and implemented back 

into the data acquisition program for non-uniformity correction for future gamma 

imaging. This correction was automatically carried out by an embedded algorithm in the 

program. 

After detector calibration, we designed and built an aluminum barrel which 

allowed us to install the 110 mm diameter detector in combination with a pinhole 

collimator with a select magnifying factor. A tungsten collimator was employed 

containing an array of pinholes. Only the central pinhole was used initially with others 

shielded with 1.5 mm lead sheet, which was sufficient to block the 35 keV gamma 
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photons from 1251. The collimator was 6.5 em away from the surface of the scintillator 

array. 

3.2.2 Setup of the imaging system 

The cylindrical rotating gantry employed for setting up the imaging system has 

been reported previously [118] and is presented in Fig.3.7. Briefly, it measures 45 em in 

diameter and 11 0 em in length. The gantry can hold a variety of detectors such as 25 mm 

square or 110 mm diameter circular detectors and a Lixi fluoroscopic x-ray system [120]. 

Space exists for incorporation of additional compact detectors such as the "mouse-sized" 

detectors we developed recently [1]. The gantry can be rotated by a stepping motor (200 

steps per revolution) which can be controlled manually by a wired remote controller or 

automatically by a G3 Macintosh computer through the stepping motor driver Velmex 

NF90 (Velmex Inc.). The computer communicates with the driver via the RS232 

interface. 

Both parallel-hole and pinhole detectors are positioned onto the gantry face to 

face through mounting rings. The rings are easily be moved along the axis of the 

cylindrical gantry, which facilitates the easy focus of the pinhole detector on a specific 

region of interest of the mouse body while imaging the entire mouse with the parallel

hole detector. The distance from the axis of rotation to either detector was 25 mm for 

SPECT imaging. A magnifying factor of2.6 was used for pinhole imaging. 

A 120 mm long Lexan tube placed horizontally at the center of rotation and in the 

field of view of gamma cameras and X-ray fluoroscope facilitates the transfer of the 

animal among the various imaging devices while supporting a custom-made mouse bed. 

The support tube with ~1.5 mm thick walls absorbs only ~7% of the 35 keV photons 
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from 1251. Its transparency allows easy positioning and visual monitoring of the animal. 

The tube can also serve a dual purpose of keeping the animal in stable condition with 

introduction of warmed, humidified air from one end and preventing contamination of the 

environment by exhaust of gases from the other end via a tube leading to a filtered 

exhaust system [118]. 

3.2.3 Image reconstruction for SPECT imaging 

The approaches to image reconstruction were based on the iterative maximum 

likelihood-expectation maximization (ML-EM) algorithm. The modified EM algorithm 

by Green [124] which was translated from its original C code into the IDL programming 

language by Steven Meikle was adopted for image reconstruction of parallel-hole 

collimation. A program (in Fortran) written by a member1 of our collaboration was used 

for image reconstruction of pinhole collimation. Sidden's ray tracing technique was 

implemented in both programs [89]. No attenuation correction was applied. The 

reconstruction used cubic voxels with edge length 1.2 mm. 

3.2.4 Simultaneous parallel-hole/pinhole planar imaging 

We carried out a proof-of-concept study to test this imaging method. An 

anesthetized mouse was imaged simultaneously with parallel-hole and pinhole 

collimation immediately following the injection of 14 f.!Ci Na125I. The pinhole detector 

was focused on the stomach region of the mouse. Shown in Fig. 3.10 are one-hour images 

from parallel-hole and pinhole detectors, respectively. The three hot spots in the parallel-

1 The program was written by Mark Smith 
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hole image were fiducial marks. One may note the consistency between the parallel-hole 

and pinhole images in the same region of the mouse body. Additionally, the magnified 

pinhole image reveals a clearer boundary and shape of the hot region in the mouse 

stomach area than does the parallel-hole image. 

Fig. 3.10 (Left) one-hour parallel-hole image of the entire mouse injected with 14 f.,tCi 
Na1251. (Right) one-hour pinhole image of the stomach region of the same mouse 
obtained with a magnifying factor of 2.6. Both images were achieved simultaneously 
[118]. 

3.2.5 Parallel-hole SPECT imaging - phantom study 

In order to verify the efficacy of our system for parallel-hole SPECT imaging, two 

studies were carried out with different phantoms. The two experiments were used to 

evaluate the trade-off between the imaging time and image quality, and the performance 

of parallel-hole SPECT for potential application to mouse thyroid imaging. 
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3.2.5.1 Experiment I- snake phantom 

Fig.3.11 Photograph of the snake phantom containing~ 20 ~-tCi Na125I. The top peak is 
about 25 mm and the second peak is ~ 13 mm. 

A series of SPECT tests has been carried out using a snake phantom illustrated in 

Fig. 3.11 to evaluate the interdependence between the imaging time and image quality for 

a fixed quantity of radioactivity. The phantom was made with a flexible plastic tube filled 

with ~20 ~-tCi 1251 source. The series of experiments with this phantom could be roughly 

divided into three groups based on their total imaging time: long-term(> 2 hours), short-

term (1-2 hours), and real-time (15 minutes). As listed in Table 3.1, the different imaging 

time resulted from the different combination of the angular increment around the AOR 

and the imaging time at each position. The results of four experiments are presented in 

Fig. 3 .12. All the slices presented here are at the same location of the phantom. 

Experiment #1 #2 #3 #4 
Angular increment 

2 6 12 12 (degree) 
Imaging time 

at each position 8 5 2 30 
(mins) 

Total imaging time 
24 5 1 1/4 

(hours) 

Table 3 .1. Imaging parameters for the experiments using the snake phantom 
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Experiment #3 (1 hour) Experiment #4 (114 hour) 

Fig. 3.12 Reconstructed images of SPECT scans of the snake phantom using different 
imaging parameters. 

As the results indicated, long term SPECT imaging presented the best 

reconstructed image quality owing to better statistics. The reconstructed result of one 

hour imaging was less accurate and real-time (114 hour) imaging was the poorest in 

quality mainly due to low statistics. However, one may note that a relatively low total 

dose of 20 !JCi was used in these studies. A potential solution to achieve high-quality 
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imaging using short-term or possibly real-time would be to compensate the statistics by 

applying a relatively high dose of radioisotope. 

Fig. 3.13. Photographs of the plastic phantom simulating the thyroid and submaxillary 
glands of a mouse. The three voids, each containing~ 2 11Ci Na125I solution, were spaced 
2.5 mm from one another [118]. 

3.2.5.2 Experiment II - thyroid phantom 

The thyroid is an important biological system in a mouse. The size of the mouse 

thyroid and the spacing between thyroid and submaxillary glands provides an excellent 

test of SPECT imaging. Therefore, the experiment described here was to evaluate the 

performance of parallel-hole SPECT using a phantom simulating the structure of the 

mouse thyroid and submaxillary glands. The overall and end views of the thyroid 

phantom are presented in Fig. 3.13. In the phantom, three small cylindrical voids were 

drilled with their axes in the same plane and spaced 2.5 mm from one another. Each void 

was about 50 mm3 in volume and sealed with nylon screws after being filled with~ 2 f.!Ci 

Na125I solution. 
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The thyroid phantom was placed on the AOR of the imaging system with the 

plane containing three voids perpendicular to the A OR. SPECT imaging of the phantom 

was accomplished with an angular increment of 3° for 120 projections and 5 minutes 

imaging time at each angular position using the parallel-hole detector. Six reconstructed 

images are presented in Fig. 3.14 based on the data from this SPECT scan. The six 

images are consecutive along the AOR and present the tomographic information in the 

section of the phantom containing the three hot voids. Each slice is 1.2 mm thick and 

vertical to the AOR. 

Fig. 3.14. Six consecutive reconstructed images ofthe thyroid phantom. The parallel-hole 
SPECT scan was carried out with 3° increments and 5 minutes at each angular position. 

One may note that the central slices 3 and 4 clearly resolve the three voids 

separated by 2.5 mm (edge to edge), suggesting the reconstructed spatial resolution of the 

parallel-hole SPECT could be better than 2.5 mm. Moreover, the reconstructed voids 
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presented a structure consistent with their physical volumes. Particularly, the 

reconstructed image indicates that there has been some leakage of radiotracer along the 

threads of the nylon screw of the top void, which can also be visually observed in the end 

view of the phantom in Fig. 3.13. 

3.2.6 Single-pinhole SPECT imaging - phantom study 

A preliminary experiment has also been carried out usmg a three-capillary 

phantom to test the validity of single-pinhole SPECT. The three capillaries, each with 

about 16 ~Ci in 8 em, were parallel in three dimensions. One capillary was positioned on 

the intersectional line of two perpendicular planes containing the other two capillaries. 

Those two capillaries were 4 mm and 8 mm away from the first capillary, respectively. 

Single-pinhole SPECT scan was accomplished with an angular increment of 3° for 120 

projections and 3 minutes in duration. Presented in Fig. 3.15 are a planar image of the 

phantom and a transaxial image reconstructed from the SPECT data. 

Consistent with their physical spatial distribution, the three capillaries were 

properly reconstructed as demonstrated in Fig. 3.15. The three hot spots in the 

reconstructed image formed a right angled triangle. The perpendicular sides determined 

from the reconstructed image were about 4 mm and 8 mm, respectively. 
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Fig. 3.15 (Left) a projection of the 48 JlCi three-capillary phantom. (Right) a transaxial 
image of the phantom reconstructed from the data of a single-pinhole SPECT scan with 
3° increments for 120 projections and 3 minutes in duration. 

Further characterization of pinhole SPECT was accomplished later when we 

developed multipinhole circular/helical SPECT. Details are described in Chapters 4 and 5. 

3.2. 7 Simultaneous parallel-hole/pinhole SPECT- animal study 

Encouraged by the phantom studies, a preliminary proof-of-concept study of an 

animal was carried out using simultaneous SPECT imaging with parallel-hole and 

pinhole collimation. A mouse was injected with about 10 f.lCi of 1251 tagged insulin. One 

hour later the mouse was sacrificed and imaged with both detectors. The SPECT scan 

was 3° increments and 3 minutes of imaging at each of the 120 positions. The pinhole 

detector was focused on the stomach region of the mouse. 

Presented in Fig. 3.16 are reconstructed images of parallel-hole SPECT. The left 

two images in Fig. 3.16 are planar views at 0° and 180°, respectively. The three hot spots 

in those images are fiducial marks. The top and bottom image in the right panel of Fig. 
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3.16 are transaxial and sagittal reconstructed images, respectively. Both images indicated 

accumulation of 125!-tagged insulin in the stomach region as can be expected. 

Fig. 3.16. (Left two images) parallel-hole projections of the mouse injected with 10 J.tCi 
at oo and 180°, respectively. (Top-right) transaxial image of the mouse stomach region. 
(Bottom-right) sagittal image of the mouse reconstructed from the parallel-hole SPECT 
scan with 3° increments for 120 projections and 3 minutes of imaging at each angular 
position [118]. 

In contrast with parallel-hole SPECT, reconstructed results of single-pinhole 

SPECT scan presented poor image quality owing to low statistics. As previously noted, 

the mouse was injected with a relatively low dose of 10 J.tCi radiotracer. The accumulated 
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radioactivity probably is less than 1 j.!Ci in the mouse stomach. To obtain useful 

reconstructed images, a higher dose of radioisotope may be required, especially for short 

term imaging to monitor relatively rapid biological processes. 

3.2.8 Discussion and conclusion 

We have developed a versatile imaging system capable of simultaneous gamma 

imaging with parallel-hole and single-pinhole collimation. Preliminary planar imaging 

studies suggest the potential utility of this system in biological research for simultaneous 

investigation of the entire small animal and regions of interest of the animal. Further 

preliminary studies indicated that this imaging system is also promising for SPECT 

imaging of small animals. Reasonably high resolution (better than 2.5 mm) has been 

achieved with a dedicated parallel-hole collimator. However, the dose of radioactive 

ligands employed in the biological study needs to be optimized to achieve the balance 

between high imaging quality and short imaging time. One possible solution for parallel

hole SPECT may be to employ an array of three or four detectors so that each detector 

only need rotate 120° or 90° to obtain the data set of a full 360°. In particular, due to the 

low sensitivity for pinhole imaging, a reasonably high level of radioactivity may be 

required in order to obtain high-quality image reconstruction for in vivo, real-time 

SPECT of animals. An alternative method to improve the sensitivity for pinhole SPECT 

while keeping its high resolution is to employ multiple pinholes, which will be described 

later in Chapters 4 and 5. 

This gantry setup also expresses great flexibility for future system development. 

The small fluoroscopic X-ray apparatus was readily installed onto the gantry to enable 

58 



dual-modality imaging. The mouse-sized compact gamma cameras we developed 

recently were easily incorporated as demonstrated in the following section. 

3.3 Development of compact gamma cameras for biological imaging 

As noted previously, an array of three or four detectors could substantially reduce 

imaging duration for SPECT while allowing a reduced does of radioactivity to be utilized. 

However, detectors based on the 110 mm diameter circular R3292 PSPMT modules may 

be not suitable for this setup. Though this type of detector has proved to be an excellent 

choice for large field-of-view imaging, it will not be cost-effective to incorporate several 

such detectors for parallel-hole SPECT imaging. The large diameter of these detectors 

will prevent them from providing a compact array in proximity to the subject animal or 

the AOR. For parallel-hole imaging, the spatial resolution of the detector at the AOR 

degrades with increased distance from the detector to the AOR. This will consequentially 

cause diminution of reconstructed spatial resolution of parallel-hole SPECT. Considering 

the high cost of a detector based on the Hamamatsu R3292 module and the difficulty to 

place several such detectors close to the subject animal simultaneously, we sought to 

develop a compact, economical detector suitable for imaging an entire mouse or specific 

organs with high performance. In comparison with the 110 mm diameter circular detector, 

this detector should be compact enough and must readily facilitate simultaneous use of 

three or four such detectors arranged in close proximity to the subject mouse for parallel

hole SPECT imaging [1]. 

As indicated by the reviews in Chapter 2, the Hamamatsu H8500, a new 2 inch 

square PSPMT, has become generally available with promising performance [125]. 
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Building upon the reported research based on the H8500 PSPMT, we sought to develop a 

"mouse-size" compact gamma camera suitable for imaging an entire mouse, which also 

can facilitate parallel-hole SPECT imaging with small radius of rotation and permit use 

of several such detectors simultaneously [1]. My contribution in this work has been to 

calibrate and characterize the detectors, to design a new and more effective parallel-hole 

collimator and to evaluate the performance of the detectors based upon proof-of-concept 

studies. 

Two such compact detectors have been developed to date. The difference between 

them lies in the readout circuit and the collimator. The following sections describe in 

detail the calibration and performance evaluation of the first "mouse-sized" detector. 

Based on the results of the first detector, a new parallel-hole collimator providing better 

resolution with acceptable efficiency has been designed and manufactured for a second 

detector. The efficiency and resolution of the new collimator is compared with those of 

the initial collimator based on the second detector. 

3.3.1 Development of the first novel "mouse-sized" gamma camera 

Details concerning the design of this detector can be found in a report presented 

previously [1]. Parameters of this detector will be briefly described here. 

3.3.1.1 Summary of the first "mouse-sized" gamma camera 

This novel gamma camera was developed based on a pair of Hamamatsu H8500 

flat-panel PSPMTs. Each H8500 module measured 52 x 52 x 34 mm3 with a sensitive 

area about 49 x 49 mm2
. The two tubes were placed side by side and optically coupled to 

a 36 x 80 array of Nal(Tl) scintillators. Each crystal element measured 1 x 1 x 5 mm3 
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with 0.2 mm reflective walls in between the scintillators. The outermost row of pixels 

was made 2 mm wide to add strength in the fabrication of the scintillator. The scintillator 

array was encapsulated with a 50 11m aluminum cover causing about 15% attenuation for 

~35 keV (125I) photons and included a 3 mm glass window faced to the PSPMT tubes. A 

5 mm thick CuBe parallel-hole collimator suitable for 125I imaging was employed with 

0.55 mm square openings and 0.11 mm septa. The active area of this collimator was 52 

mm x 105 mm. All the components of this detector including electronic readouts were 

assembled and contained in an aluminum box measuring 140 x 82 x 107 mm3
. The 

assembled gamma camera is presented in Fig. 3.17 along with a sample collimator for 

such detector. 

Fig. 3.17. Photograph of the detector and a collimator identical to the one used in the 
detector. [ 1] 
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Fig. 3.18. The diagram ofthe inside view ofthe compact gamma camera 

3.3.1.2 Calibration of the compact gamma camera 

A diagram of a side view of the detector is presented in Fig. 3.18. One may note 

that an insensitive region ( ~ 3 mm width) exists in between the two H8500 PSPMTs, 

where there were no anode pads but only glass walls. However, the position information 

of a gamma photon entering the gap region could still be determined by referring to a 

crystal lookup table, which represented the geometric response region of the individual 

crystal elements [1]. In order to do that, a raw crystal map of the scintillator array was 

obtained using a high energy (662 keV gamma rays) point source 137Cs placed 150 mm 

above the detector. As shown in the left panel of Fig. 3 .18, each crystal element could be 

clearly identified even including the crystal elements located in the insensitive gap region. 

A crystal lookup table (see the middle panel of Fig. 3 .18) for the scintillator array was 

then generated using a special Kmax program. In a manner similar to the calibration of 

the 110 mm diameter circular detector described earlier in subsection 3.2.1, energy 
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calibration of individual scintillator pixels was carried out followed by correction of the 

non-uniformity of the detector in efficiency using a flood-correction table. This table was 

obtained with a planar, uniform liquid 1251 source ( ~ 40 !J.Ci) sufficient to cover the entire 

sensitive area of the detector. All the tables for detector calibration were implemented in 

the data acquisition program developed with Kmax software. The calibration was 

automatically executed by this program when acquiring data. The energy window for 

imaging in this work included photons with energy between 22 ke V and 40 ke V. 

Fig. 3.19. (Left) raw crystal map using ~15 !J.Ci 137Cs. (Central) crystal lookup table built 
upon the left image. (Right) a three-capillary image with uniformity corrected [1]. 

A three-capillary phantom was used to demonstrate the efficacy of the detector 

calibration. Each capillary contained about 10 !J.Ci Na125I in 11 em. As is evident in the 

right panel of Fig. 3.19, the planar image of the three-capillary phantom indicated neither 
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sensitivity loss nor visible deterioration of performance in the transition region between 

the two PSPMTs [1]. Shown in Fig. 3.20 is a profile image of the three capillaries. The 

similar peak values of the capillaries further suggested uniform sensitivity of the detector 

after calibration. 

Fig. 3.20. A profile image of the three capillaries suggesting uniform sensitivity of the 
detector after calibration. [ 1] 

3.3.1.3 Characterization - efficiency and resolution 

A capillary with 0.3 mm inner diameter loaded with 10 !lCi ofNa125I was used to 

determine the sensitivity of this compact gamma camera. The measured sensitivity was 

1840 cprnl!lCi with the capillary positioned about 4 mm from the surface of the 

collimator. 

For measurement of the spatial resolution of this detector, individual planar 

images were achieved with the capillary positioned at a variety of distances from the 

surface of the collimator, i.e., 4 mm, 17 mm, 32 mm, 47 mm and 62 mm. Three one-

pixel-width profiles of each image were obtained in top, bottom and gap region of the 

detector, respectively. After these profiles were fitted with Gaussian curves three full-

width-at-half-maximum (FWHM) spatial resolutions were then determined and averaged 
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to provide the spatial resolution of the detector at that distance. Presented in Fig. 3.21 is 

the mean spatial resolution (FWHM) of the compact detector as a function of the distance 

between the source and detector. A theoretical resolution curve determined by the 

formulae of Keller [62] and Smith et al. [63] is also presented in Fig. 3.21 in comparison 

with the experimental measurement. One may note the measured resolutions of this 

detector had an overall FWHM difference of about 0.6 mm from the ideal theoretical 

resolutions. 
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Fig. 3.21 Theoretical prediction and experimental measurement of the resolution as a 
function of the distance between source and detector. [1] 
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Fig. 3.22 One-hour parallel-hole planar image of the lactating mouse injected with 10 j.lCi 
Na125I. The detector clearly delineates the accumulation of radioiodine in lactating 
mammary glands as expected. [1] 

3.3.1.4 Planar and SPECT imaging- animal studies 

In order to further verify the efficacy of this detector in biological studies, we 

have carried out animal studies including planar and SPECT imaging. The first study was 

planar imaging of a lactating mouse. Iodine is a significant element for a lactating mouse 

to produce milk in its mammary glands. Since iodine was transported into the mammary 

glands via the sodium iodide symporter (NIS), a well-known protein which is also 

expressed in other tissues such as thyroid glands and stomach [126], imaging of the 

lactating mouse injected with Na125I can delineate its lactating mammary glands 

expressing NIS. Presented in Fig. 3.22 is a 60-min gamma image obtained immediately 

after an anesthetized lactating mouse was injected with 10 j.lCi of Na125I. This image 

indicates the injection site in the left rear leg. As expected, high uptake of 125I is evident 

in the stomach region and thyroid and submaxillary glands. As in the salivary glands, 

individual lactating mammary glands of this mouse showed substantial accumulation of 

radioiodine and were clearly distinguished in the gamma image. In addition, the heart and 

lung region presented some level of accumulation of 125I owing to blood flow in 
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comparison with background tissues. The performance of the detector clearly 

demonstrated its utility in imaging 1251 -tagged ligands used in biological studies. 

Fig. 3.23. A transaxial image (left) and its surface plot (right) of the thyroid region of a 
mouse injected with 14 ~Ci Na125I. Both reconstructed images presenting dramatic 
difference in uptake of 1251 in the thyroid gland from in the submaxillary glands. [1] 

Experiments were also carried out in order to evaluate the performance of this 

detector for SPECT imaging. In the first test, a mouse was euthanized 65 minutes post 

injection of 14 11Ci Na125I. A SPECT scan of the mouse was accomplished with 3° 

intervals and 3 minutes for each of the 120 projections. Presented in Fig. 3.23 are a 

reconstructed image and its surface plot in the region containing both thyroid and 

submaxillary glands. The transaxial image clearly demonstrates the accumulation of 1251 

in the thyroid gland and the two submaxillary glands adjacent to the thyroid [1]. The 

surface plot of the same transaxial image further indicates the dramatic difference in 

uptake of 1251 in the thyroid gland from in the submaxillary glands. These results were 
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entirely consistent with what is expected for active iodine accumulation in these two 

structures [1]. 

The data from a second SPECT scan were obtained with another female mouse 

that bore a mammary tumor. The animal was euthanized 65 minutes after injection of 14 

).!Ci Na125I. Again, the 120 3-min projection images were taken with 3° spacing around 

the mouse. The reconstructed results are presented in Fig. 3.24 and Fig. 3.25. Shown in 

Fig. 3.24 are the reconstructed transaxial images of the mouse in the region containing 

the axillary mammary tumor, the thyroid and submaxillary glands [1]. As is evident from 

those images, NIS activity in this mammary tumor was substantial and higher than in the 

submaxillary glands but lower than the thyroid gland. The coronal views of the 

reconstructed results in Fig. 3.25 represent the distribution of radioiodine in the body 

region containing the thyroid, stomach and tumor. Those images also indicate the high 

level ofNIS activity in both the stomach and thyroid gland as expected. In addition to the 

clear NIS activity in the tumor, there was also clear accumulation of 1251 in the salivary 

glands [1]. 
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Fig. 3.24 Top image is a projection of a 
mouse bearing a mammary tumor at 0°, 
followed by five consecutive transaxial 
images (a-e, from tail to head) in the region 
containing both the thyroid and tumor. [1] 
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Fig. 3.25 Top image is a projection of a 
mouse bearing a mammary tumor at 
90°, followed by five consecutive 
coronal images (f-j, from ventral to 
dorsal side) ofthe entire mouse.[l] 



3.3.2 Development of the second "mouse-sized" gamma camera 

The results of the first compact gamma camera equipped with a 5 mm thick 

collimator (collimator #1) demonstrated the suitability of this detector for biological 

imaging of an entire mouse. However, it would be valuable to facilitate practical SPECT 

imaging of a mouse with such a detector using a shorter period such as 1 or 2 hours and a 

relatively low dose of radioisotope. One may also note from Fig. 3.20 that the resolution 

of this detector decreased substantially over a range of source-to-detector distance from 4 

mm to 4 7 mm. This range of distance is critical for SPECT imaging and the resolution 

degradation over this range may diminish the reconstructed resolution of SPECT. In 

order to achieve better resolution and to reduce imaging time, a second compact gamma 

camera containing a newly designed CuBe parallel-hole collimator has been built and 

installed on the gantry to form a dual-detector array with the newly designed parallel-hole 

collimator. 

The new CuBe collimator (Collimator #2) measures 6 mm thick with 0.3 x0.3 

mm2 openings and 0.05 mm septa. Collimator dimensions including its thickness, the 

hole size and septal thickness were determined based on the formulae of Keller [62] and 

Smith et al. [63]. The efficiency and spatial resolution of the new compact gamma 

camera were measured with a single capillary phantom with an inner diameter of 0.3 mm 

containing an activity of 10 !-LCi in 8 em length. The capillary phantom was imaged for 10 

min at distances of 4 mm, 17 mm, 32 mm, 47 mm and 62 mm from the detector. The 

spatial resolution was obtained from the average of a Gaussian fit to three different one

pixel-wide slices across the line source. The theoretical resolution (Rs) was calculated 

based on the geometric resolution (Rg) of the collimator and the intrinsic resolution (Ri) 
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of the detector, i.e. R/ = R/ + R/. Spatial resolution of collimators #1 and #2 was 

compared based on this new detector. 
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Fig. 3 .26. Comparison of spatial resolution with the newly constructed detector equipped 
with 5 mm thick high-sensitivity collimator #1 and 6 mm thick high-resolution collimator 
#2 respectively. Relatively high resolution was preserved over a useful range with the 6 
mm thick collimator while the efficiency was lessened by a factor about 6 [119]. 

The measured efficiency of compact detector #2 is 1538 cpm/)lCi and 268 

cpm/f.!Ci at 4 mm away from the detector for 5 mm thick collimator #1 and 6 mm thick 

collimator #2 respectively. A plot is presented in Fig. 3.25 of measured detector spatial 

resolution (FWHM) vs. source-collimator separation. This result is in good general 

agreement with theoretical predictions fitted with an intrinsic resolution 2.8 mm which 

takes into account the 3 mm thick optical glass windows of the scintillation array, the 2 

mm thick PSPMT windows and an air gap of 3.2 mm between the collimator and 

scintillator. The difference between theoretical and experimental resolutions at a large 

distance from the detector for collimator #1 results from the 0.3 mm inner-diameter 
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capillary used for resolution measurement positioned at an angle with respect to the 

collimator having 0.55-mm square openings. As one may notice in Fig. 3.26, the 

advantage of collimator #2 is that it provides an acceptable resolution of 2.9 - 4.1 mm 

FWHM over a long range 4-47 mm of the distance between the object and the detector. 

This is significant for SPECT scans because such a range in distance typically exists 

when imaging mice. 

3.3.3 Conclusion 

We have developed novel compact gamma cameras particularly suitable for 

imaging an entire mouse either with planar scintigraphy or SPECT imaging. High 

performance has been demonstrated based on the evaluation of sensitivity, resolution and 

on preliminary animal studies. A collimator has been designed and manufactured in order 

to provide useful resolution with acceptable trade-off in sensitivity over a long range ( 4 -

47 mm) of source-to-detector distance, suggesting the potential for better results of 

SPECT imaging. In addition, the size of this detector makes it possible to employ an 

array of three or four such detectors simultaneously for short-period SPECT imaging of a 

mouse injected with a dose of radioactive ligands at a physiologically safe level. 
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Chapter 4 

Development of multi pinhole helical SPECT 

As mentioned earlier, pinhole collimation in SPECT has a definite advantage in 

achieving high spatial resolution, however, with a significant trade-off in sensitivity and 

sampling completeness. New multipinhole or helical SPECT imaging systems (see 

review in section 2.4) have been proposed to overcome the disadvantages of single

pinhole SPECT in low-sensitivity and sampling completeness while keeping its 

advantage of high spatial resolution. In this work, we have sought to further enhance our 

imaging system by combining multipinhole circular SPECT with a helical orbit. Our 

principle goal has been to achieve enlarged FOV and enhanced resolution and sensitivity 

by taking advantage of that combination to facilitate high-quality imaging of specific 

organs such as the thyroid region of a mouse while retaining the potential of imaging the 

entire body. Shown in Fig. 4.1 is the current system incorporating multipinhole 

helical/circular SPECT in addition to parallel-hole SPECT. 

Described in this chapter are the system design, development, characterization 

comparison including field of view, sensitivity and resolution among various modes of 

pinhole circular or helical SPECT. Phantom studies were also carried out to validate the 

performance improvement. 
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Fig. 4.1. Photograph of the compact parallel-hole and pinhole circular/helical SPECT 
imaging system. Signal processing and storage instruments are not shown in this picture. 
All detectors are incorporated in a cylindrical gantry capable of rotating 360°. Detectors 
#1-2 are "mouse-sized" compact gamma cameras and detectors #3-4 are 110 mm 
diameter circular detectors. 

4.1 System design 

A 110 mm diameter circular detector (#4 in Fig. 4.1) was employed with pinhole 

collimation. Depending on the effective view area of the detectors and the requirements 

for acceptable spatial resolution, researchers have designed multipinhole collimation both 

with and without multiplexing of the image. The experimental results of Meikle et al. [65] 

indicate that the resolution of multipinhole circular SPECT achieved with multiplex 

effects is not appreciably different from that of single-pinhole SPECT. Therefore, we 
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have designed a collimator for multiplexed imaging based on the effective view area of 

this 110 mm diameter circular detector. 

To resolve the sampling incompleteness of single-pinhole SPECT resulting from a 

circular orbit and to enlarge the FOV of the detector, we have implemented a translation 

rack supporting the mouse bed along the axis of rotation (AOR) of the system so that a 

helical trajectory is employed. Such a combination of multipinhole and helical SPECT 

not only provides improved sampling completeness but also increases the field of view in 

both transaxial and longitudinal direction and hence enables large field-of-view imaging 

especially when a large magnification factor is involved. 

4.2 Gamma-ray detector for pinhole collimation 

The 11 0 mm diameter circular detector for pinhole imaging was described in 

section 3.2.1. A five-pinhole brass collimator as shown in Fig. 4.2 was employed for 

multi pinhole collimation. The collimator was 25 mm from the AOR of the gantry with a 

magnifying factor of 3 used in this work. 

12mm 

~ { --. -----r 
0 ; 
'-v---' 

6mm 

Fig. 4.2. Diagram of the 5-pinhole collimator. 
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4.3 Design of a five-pinhole collimator 

A typical pinhole collimator has the knife-edge shape as shown in Fig. 4.3a. For a 

knife-edge pinhole collimator, the analytic formulae of geometric sensitivity Ps, 

resolution Ra and effective diameter de have been previously expressed as equations (2.1-

2.3) in section 2.4.2. 

DcJ 
(a) (b) 

Fig. 4.3 (a) Knife-edge pinhole and the penetration effect; (b) Pinhole with channel edge 

As one may note, the effective diameter de actually takes into account the penetration 

effect at the edge of the pinhole. As indicated by the formula 2.3, the opening angle of the 

pinhole and linear absorption coefficient of the collimator material are the two factors 

affecting the effective diameter, which may degrade the resolution. To reduce the 

penetration effect at the edge of the pinhole, Smith eta!. employed a pinhole channel (see 

Fig. 4.3b) in design of a pinhole aperture instead ofthe usual knife edge [63]. 

The criteria for designing a multipinhole collimator have been proposed by Schramm 

et. al [66]. The projections from the multiple pinholes should be closely packed but with 

reduced multiplexing (especially multiple superposition) in order to take advantage of the 

effective detector area as much as possible and to minimize the uncertainty of the origin 

of a detected gamma ray. The object should also be sampled homogeneously with large 

incident angle avoided [ 66]. 
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The multipinhole collimator desired in our study serves the purpose of SPECT 

imaging of specific mouse tissues, particularly the thyroid, with the potential for whole 

mouse imaging. Therefore, the parameters of this multipinhole collimator have been 

determined accordingly based upon the formulae 2.1-2.3 in section 2.4.2 and criteria. 

Considering the effective detector area ( ~ 106 mm diameter sensitive region of the 

scintillator), a magnifying factor 3 was employed in order to achieve high-resolution 

(near 1 mm) imaging. This setting allows the detector to image a~ 35 mm diameter view 

area in the object plane containing the axis of rotation, which is sufficient to cover the 

mouse thyroid region. To achieve a good balance between resolution and sensitivity, the 

pinhole used in the collimator is 1 mm diameter. Since the geometric sensitivity also 

dramatically decreases with the increased distance between the object and collimator, the 

detector has to be placed as close as possible to the mouse, in this case, 25 mm. An 

opening angle of 90° was determined and employed for the pinhole. This acceptance 

angle is large enough for the detector to accept the incident photons from the effective 

view area in the objective plane. A channel edge was also employed for the pinhole to 

reduce penetration effects at the edge of the pinhole. The material used for the collimator 

is brass which has a linear attenuation coefficient about 60/cm for~ 35 keV photons from 

125!. A pinhole channel height of 0.2 mm can thus effectively reduce penetration effects at 

the edge region of the pinhole. 

Shown in the Fig. 4.2 is the diagram of a five-pinhole collimator chosen for imaging 

specific organs of small animals such as the mouse thyroid based on the sensitive area of 

the 110 mm diameter circular detector. The projection pattern of this multipinhole 

collimator was simulated using a 17.6xl2.8 mm2 rectangular object (see Fig. 4.4) whose 
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area is sufficient to cover the thyroid region of a mouse. Image multiplexing percentages 

were calculated based on this simulation. Multiplexing percentages are defined as the 

overlap area divided by the detector plane area. For the current five-pinhole collimator 

shown in Fig. 4.2, about 85% of the detector area is used to image the simulated object 

which includes a multiplexing area of ~ 20% of the detector area. The area of multiple 

superposition (an order of overlap more than 2) is less than 2%. 

Object (17.6 x 12.8 mm2
) 

... 

Five-pinhole projection on the 
detector with an amplifying factor of 3 

Fig. 4.4. The simulated object (top) and projection (bottom) images using the five
pinhole collimator with a magnifying factor of 3. 
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In summary, a five-pinhole collimator has been designed and fabricated. The 

actual collimator is shown in Fig. 4.5. Each pinhole in the 5 mm thick brass collimator is 

1 mm in diameter with an 0.2 mm (in height) pinhole channel and an opening angle of 

90°. A collimator of 1 to 4 pinholes can readily be effected by shielding the unused 

pinhole(s) with 0.5 mm lead sheet sufficient to block the 35 keV photons from 125!. This 

collimator has met our needs in multipinhole imaging studies. 

Fig. 4.5. Photograph of the five-pinhole collimator 

4.4 Step-and-shoot helical orbit 

A circular orbit for imaging was effected by a stepping motor (Fig. 4.6, Motor 1) 

which controlled rotation of the gantry around the axis of rotation. By adding a second 

SLO-SYN stepping motor (Fig. 4.6, Motor 2, 200 steps per revolution, Superior Electric 

Inc.) to control the displacement of the mouse bed along the AOR, a helical orbit was 

accomplished for step-and-shoot imaging. The second motor drove a steel rack, on one 

end of which the mouse bed was fixed, through a spur gear as seen in Fig. 4.6. This 

combination of the three components resulted in a stepping increment 1 mm per 1 0 steps 

along the AOR. 

79 



Fig. 4.6. Photograph of the setup to accomplish step-and-shoot helical orbit. Motor 1 
controls the rotation of the cylindrical gantry round the AOR. Motor 2 controls the 
displacement along the AOR ofthe rack with a mouse bed fixed to one end. 

4.5 Image reconstruction program and validation 

Image reconstruction programs were developed for multipinhole circular and 

helical SPECT based on an iterative ML-EM algorithm. The ML-EM algorithm was 

implemented using a method extended from that described by Li et al. [88] with Siddon's 

ray tracing technique [89] applied. No attenuation correction was applied. The image 

reconstruction programs were written in IDL language. Part of the program was adapted 

from Steven Meikle's image reconstruction program for pinhole circular SPECT. The 

reconstruction used cubic voxels with edge length 0.4 mm for pinhole collimation. In 

order to ensure that the image reconstruction programs work properly, they were 

validated by both simulation and phantom studies. 
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4.5.1 Simulation test 

As the core routine of image reconstruction is the same for pinhole circular or 

helical SPECT, it was sufficient to test the code using the simple case of single-pinhole 

circular SPECT. A set of projection images of a single capillary was simulated using a 

"perfectly" centered pinhole on the detector. To simplify the test, the simulated tube was 

positioned on the axis of rotation longitudinally. The projected tube in a pinhole image 

(Fig. 4.7a) is set to be uniform with a width of2 pixels (1.2 mm/pixel). The length of the 

tube is 38 pixels with detected activity 10 counts for each pixel. Because the geometric 

sensitivity for a pinhole is proportional to cos3cp (where cp is the incident angle of the 

photon) when this fine capillary is parallel to the axis of rotation, radioactivity in the 

actual digital tube should not be uniform. A total of 120 slices of such projection images 

was simulated with a magnifying factor of 3 used. Shown in Figs. 4.7b and 7c are 

transaxial and coronal images after image reconstruction with the programs. The 

transaxial image shows a reconstructed dot with a diameter of about 2 pixels (0.4 

mm/pixel). The coronal image indicates that the activity in both end regions of the digital 

tube is hotter than the central region. Both reconstructed images present exactly the 

results expected. 

Fig. 4.7. (a) simulated uniform projection of a digital tube; (b) transverse and (c) 
coronal images of the reconstructed non-uniform digital tube 
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To further verify that the program reconstructed the digital tube correctly, the 

longitudinal activity profile of the reconstructed tube was used to predict the activity 

profile of the tube in a pinhole projection image. The presumption is that if the program 

did the reconstruction properly, the predicted profile should be consistent with our initial 

simulation, in other words, that the longitudinal activity profile of the tube should present 

a plateau shape. Shown in Fig. 4.8 is a longitudinal profile of the activity in the 

reconstructed digital tube. Again, because the geometric sensitivity for a pinhole is 

proportional to col cp when the tube is parallel to the axis of rotation, the activity profile 

of the tube in a projection image can be predicted by multiplying the value at each pixel 

in Fig. 4.8 by a factor of col cp corresponding to that pixel. Shown in Fig. 4.9, the 

predicted profile is flat and consistent with the uniform projection of the tube as initially 

simulated, which validates our image reconstruction. 
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Fig. 4.8 longitudinal profile of the activity in the reconstructed digital tube 
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Fig. 4.9 Predicted profile in a projection image of the reconstructed digital tube using the 
values in Fig. 4.8. This predicted profile is consistent with the uniform projection as 
initially simulated. 

4.5.2 Phantom tests 

The image reconstruction program of Steve Meikle is accompanied by a sample 

set of projection images from a single-pinhole circular SPECT scan of a five-capillary 

phantom. The 18 projection images in the data set were obtained at angular positions 

separated by 20° increments. Each projection image is 64 x 64 pixels, in which the 

effective area of the detector takes 4 7 x 4 7 pixels. A magnifying factor of 2 was 

employed for this phantom test with 45 mm between the axis of rotation and the pinhole 

collimator. The single pinhole is located at the center with respect to the detector. The 

results after image reconstruction using my program are compared with those of Meikle's 

program as a standard. Compared are both reconstructed images and the total counts in 

the reconstructed volume after each iteration. The reconstructed images from both 

programs are presented in Fig. 4.1 0. As one may note, these two reconstructed images are 

almost identical and consistent in detail. 
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Fig. 4.10. Reconstructed images after five iterations using Meikle's program (left) 
and my program (right), respectively. 

Listed in Table 4.1 are the total counts in the reconstructed volume after each 

iteration (up to five iterations in this comparison). The results show that the total counts 

and their trend with the iteration number are consistent within errors using both image 

reconstruction programs. 

Iteration number Steven Meikle' Program My Program 

1 84872 81035 
2 83622 80077 
3 83165 79860 
4 83122 79860 
5 83307 79957 

Table 4.1. Total counts in the reconstructed images 

A further quantification test of the image reconstruction program for multi pinhole 

helical SPECT was carried out with a phantom containing three 1251 sources simulating 

the thyroid region of a mouse. Details can be found in section 5.2.3.3. Briefly, using 

image analysis programs, we compared the ratio among the region of interests (ROis) of 

the three sources in a planar gamma-ray image with the ratio based on the reconstructed 

results of a two-pinhole helical SPECT scan of the phantom. Excellent agreement has 
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been achieved between those two ratios, which further trends to verify the efficacy of the 

image reconstruction program I developed. 

4.6 SPECT scans 

Unless stated otherwise, every SPECT run in the following set of experiments 

was taken in 3° increments and with a 3 minute dwell time at each angular position for a 

total of 120 projections. The step increment along the axis of rotation is 0.5 mm for the 

helical orbit. A magnifying factor of 3 was used in each scan with the radius of rotation 

for SPECT imaging set to 2.5 em. The energy window set for gamma-ray imaging was 

from 22 to 40 ke V, which was suitable for the photons emitted from 125I. 

4.7 Characterization comparison 

Characterization comparison was carried out among single-, three-, and five-

pinhole circular and helical SPECT. The central pinhole and the three pinholes on the 

diagonal of the five-pinhole collimator were employed respectively for single- and three-

pinhole collimations by shielding the unused pinholes. 

4.7.1 Field ofview 

In order to simplify the comparison of FOV for the multipinhole case, we 

compared the effective view area (EVA) in the plane passing through the AOR. The FOV 

of the corresponding collimation is simply the volume by rotation of the EVA around the 

AOR. The EVA of pinhole collimation was calculated based on the geometry of the 

pinholes with a magnifying factor of 3. The EV As of three- and five-pinhole collimation 

were compared with single-pinhole collimation as reference. A 17.6xl2.8 mm2 
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rectangular object big enough to cover the thyroid region of a mouse was simulated to 

calculate the multiplexing percentage which is the overlap area divided by the overall 

area of detector plane. 

Collimator Single-pinhole 

Effective 
view area in 
the plane 
pass~ng the 
AORWith 
magnifying 
faotor3 

View area 
1norease 
Multnplexing 
percentage 

SPECT 
efficiency 
(counts/min/I.JCI) 

HSPECT 
efficiency 
(oountslmin/JJCi) 
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E 
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3-pinhole 5-pinhole 

E 
E 
..... 
10 

51 mm 51 mm 

81% 138% 

9w5% 20% 

572 927 

562 893 

Table 4.2. Characterization comparison among various modes of SPECT. One may note 
view area increase is over the single-pinhole case. Multiplexing percentage is the overlap 
area divided by total detector area with a simulated 17.6xl2.8 mm2 rectangular object 
whose area is large enough to cover the thyroid region of a mouse. 

As shown in Table 4.2, EV As of three- and five-pinhole collimation have been 

enlarged by 81% and 138% respectively compared to single-pinhole collimation. For a 

conventional circular orbit, however, one may readily show that the overall FOV is the 

same for both three- and five-pinhole case. The FOV of the helical mode is extended 

86 



from its corresponding circular mode which eventually depends on the displacement of 

the detector along the AOR. By choosing a suitable step increment along the AOR, one 

expects the FOV of a helical mode to cover a specific region of interest or the entire body 

of the animal. 

The enlarged EVA of multi pinhole collimation indicates increased sampling area 

and efficiency for a single projection of the object. However, the five-pinhole collimation 

causes multiple-fold (up to 5-fold) multiplexing though it has about the same total 

multiplexing percentage as the three-pinhole collimation. Such a high-fold multiplexing 

image results in more uncertainty in photon origin and may affect the reconstructed 

resolution adversely. 

4. 7.2 Efficiency 

The efficiency of different modes of SPECT/HSPECT was determined by a 

phantom simulating the thyroid region of a mouse. The phantom measures 15.9 x 15.9 x 

15.9 mm3 and contains three small voids. Each small void holds a hot source. Small 

pellets fitting exactly in the void served as isotope media after being immersed in 

radioisotope solution for homogeneous accumulation of the isotope 125!. The pellets were 

taken out after a few days, allowed to dry naturally in a safety hood and then firmly 

sealed in the void. Such a method minimizes possible radioactive leakage. The bottom 

two voids were separated by 3 mm representing the salivary glands of a mouse while the 

top one simulating the thyroid is spaced 2 mm away from them. The thyroid phantom 

contains a total of 15 JlCi with 5 JlCi at each void. For each mode of SPECT/HSPECT, 

the phantom was imaged at 120 positions with 3° increment and 3 min at each position. 
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The step increment of helical SPECT along the AOR is 0.1 mm with a total of 12 mm 

displacement for the entire imaging. The total counts of all the 120 planar images were 

then collected and averaged over time to obtain the efficiency. 

As expected, the efficiency of pinhole circular SPECT is almost identical to that 

of short-range helical SPECT. Moreover, the efficiency of five-pinhole collimation is 

increased significantly to the level near that of parallel-hole collimation with the 5 mm 

thick high-sensitivity collimator #1, i.e. 1538 cpm/f.lCi, while the single-pinhole 

collimation shows relatively poor sensitivity. 
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Fig. 4.11 Reconstruction resolution (FWHM) as a function of ML-EM iteration number 
for various modes of pinhole circular or helical SPECT 
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4.7.3 Resolution 

Test scans of different modes of pinhole SPECT/HSPECT were carried out using 

the three-capillary phantom shown in Fig. 4.13(a). One of the capillaries was located 5.6 

mm off the AOR and used to determine the reconstruction resolution (FWHM) of each 

mode of pinhole circular or helical SPECT. Each FWHM was obtained through Gaussian 

fit. The step increment along the AOR was 0.5 mm for each 3° rotation of helical SPECT. 

Five transaxial images were reconstructed at different positions of the capillary for each 

scan. The intensity profiles along the line across the center of the reconstructed capillary 

region were then analyzed and fitted to Gaussian curves. Each FWHM was then 

calculated and the group corresponding to each SPECT mode was averaged to obtain the 

resolution of the mode. The relationship was determined between the reconstruction 

resolution and iteration number. 

Presented in Fig. 4.11 is the plot of the overall reconstruction resolution as a 

function of ML-EM iteration number for various modes of pinhole circular/helical 

SPECT. Six sample profiles of the capillary in the transverse reconstructed slices after 13 

iterations are presented in Fig. 4.12 corresponding to 1-, 3- 5-pinhole circular/helical 

SPECT respectively. Each profile was normalized to its peak value. 
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Fig. 4.12. Six profiles (a)- (f) ofthe capillary in the transverse reconstructed slices after 
13 iterations for 1-, 3- 5-pinhole helical SPECT (a, c, e) and circular SPECT (b, d, f) 
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4.8 SPECT imaging - phantom studies 

We have made preliminary performance evaluations based on phantom studies. 

An experiment was carried out to demonstrate the extended field of view. Shown in 

Figure 13(a) is the phantom set up with three capillary tubes, each of which was 0.3 mm 

in inner diameter and contained 18 1-1Ci N a 1251 in 8 em length. One capillary was put on 

the intersecting line of two perpendicular planes. A second capillary in one of the planes 

reconstructed slices separated by 43 mm 

a 

Fig. 4.13. A 54 J..!Ci three-capillary phantom study of 3-pinhole helical SPECT. (a) 
Phantom setup. (b) A 3-min projection (c) Reconstructed slice 1 (d) Reconstructed slice 2. 
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was parallel to it with 8.6 mm separation and a third one was in the other plane at an 

angle of 6.6°. A 3-pinhole collimator was employed and helical SPECT was performed 

with an object translation step increment of 0.5 mm (the total movement along the AOR 

was 60 mm). Shown in Fig. 4.13(b) is a typical 3-min projection of the phantom. Two 

transverse reconstructed slices are presented in figures 13(c)-(d). They were taken at 

positions separated by about 43 mm, which was larger than the 35 mm diameter of the 

EVA of the detector with a single pinhole. 
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Fig. 4.14. (a) A transaxial view of the phantom made with 6 capillary tubes placed side 
by side. Each tube contained ~10 f.!.Ci Na125I in 8 em length. (b) A transaxial image of a 
3-pinhole helical SPECT scan of the phantom. The step increment along AOR is 0.5 mm. 
(c) The profile ofthe six capillaries in the reconstructed image (b). 

To demonstrate that the calculated reconstruction resolution is reasonable, we did 

three-pinhole helical SPECT of the capillary phantom shown in Figure 14(a), which was 

made with six glass capillary tubes placed side by side. The helical increment along the 

AOR was 0.5 mm per step. Each capillary contained~ 10 f.I.Ci Na125I in 8 em length. The 

diameter of each capillary was identical to that used for resolution measurement, namely, 
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0.3 mm in inner diameter and 1.45 mm in outer diameter. Therefore, the center-to-center 

distance of two adjacent tubes was 1.45 mm. The phantom of six capillaries placed side 

by side is shown in Fig. 4.14(a), followed by the reconstructed image presented in Fig. 

4.14(b ). Shown in Fig. 4.14( c) is the profile of the capillaries in the reconstructed image 

of a 3-pinhole helical SPECT scan. Each capillary can be resolved consistent with the 

calculated resolution. 

Performance of the imaging system was further evaluated using an ultra-micro hot 

spot phantom (Data Spectrum Co.) filled with ~270 1-1Ci Na125I, which had a radioactivity 

concentration of 54 J..1Cilml. The phantom is 3.50 em in outer diameter and about 5.5 em 

in height. The rod insert is 2.7 em in diameter with a height of 0.99 em. The hot rod 

diameters of the six wedge-shaped regions in the insert are 0.75, 1.0, 1.35, 1.7, 2.0, and 

2.4 mm, respectively. The center-to-center spacing of the rods in each wedge is two times 

the rod diameter. An additional ~ 1.3 em thick plastic disk insert was used to reduce the 

total volume of solution required to fill the phantom. Helical SPECT scans using this hot

rod phantom were carried out with one or three pinholes with planar projections at 3 ° 

increments and 3 min/projection. The step increment was set to 0.1 mm considering the 

thickness ( ~ 10 mm) of the rod insert. Out of the 120 projections obtained in each scan, 

sixty projections with angular positions at 6° intervals were used to represent a three-hour 

helical SPECT scan with a step increment of 0.2 mm along the AOR. Images were 

reconstructed using 30 and 60 iterations for 1- and 3-pinhole helical SPECT, respectively. 

Reconstructed images with 4.4 mm total thickness are presented in Fig. 4.15. 
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Fig. 4.15. (a) A transaxial view of the hot-rod phantom using single-pinhole helical 
SPECT with 3 ° angular increments and 0.1 mm step increments along the AOR. Each of 
the 120 projections was 3 min/projection. The hot-rod phantom contained 270 ~Ci 125I 
with a concentration of 54 ~Cilml. The hot rod diameters of the six wedge-shaped 
regions in the phantom are 0.75, 1.0, 1.35, 1.7, 2.0, and 2.4 mm, respectively. (b) An 
image reconstructed from 60 slices out of those 120 projections to represent three-hour 
1pHSPECT (c) One 3-min projection of the hot-rod phantom of a three-pinhole helical 
SPECT scan with the same imaging parameters as the 1 pHSPECT scan. (d) A transverse 
image reconstructed from the 120 projections of the 3pHSPECT scan. 

The reconstructed images of the hot-rod phantom are shown in Fig. 4.15 for 

single- and three-pinhole helical SPECT (1pHSPECT or 3pHSPECT). The image from 

six-hour 1 pHSPECT can resolve the 1 mm diameter rods well and a few of the 0. 75 mm 

rods. The image reconstructed from 60 out of the 120 projections of the six-hour 
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1 pHSPECT scan reflects some noise owing to reduced statistics but still resolves the 1 

mmrods. 

Similarly, as shown in Fig. 4.15(d), the reconstructed image of six-hour 

3pHSPECT can also resolve 1 mm rods well and some of the 0.75 mm rods. The enlarged 

field of view using three pinholes facilitates reconstruction of the circular gap region in 

the phantom between the rod insert disk and the inner wall of the container. This hot 

circular region is only partially shown in single-pinhole cases. Some artifacts appear in 

the 3-pinhole cases mainly owing to the fact that there are always parts of the phantom 

truncated in projections through each pinhole as evidenced by a three-pinhole projection, 

Fig. 4.15( c). This results from the relatively large scale of the phantom contrasting 

somewhat with the main focus of the system design on imaging small organs of a mouse 

such as the thyroid with a magnifying factor 3. Multiplexing effects can be another factor 

contributing to artifacts. Results of both the single- and three-pinhole helical SPECT 

clearly demonstrate that the resolution we measured based upon fine capillaries 

containing high radioactivity concentration are also valid for a more conventional case in 

which a radioactivity concentration of a few J.!Ci/ml of radioactivity is used in the hot rod 

phantom. 

4.9 Discussion and conclusion 

We have described the development of a compact gamma-ray imaging system 

incorporating multipinhole helical/circular SPECT in addition to parallel-hole SPECT. 

The characterization of various modes of pinhole SPECT has been investigated using 

radioactive phantoms. As shown in Table 4.2, the diameter of the FOV of 3- or 5-pinhole 
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circular SPECT is increased by a factor of ~ 1.5 compared with the single-pinhole case. 

The FOV is further increased in the longitudinal direction for multipinhole helical 

SPECT depending on the step increment along the AOR. 

The resolution comparison among pinhole SPECT/HSPECT shows that a 

reconstructed spatial resolution of 1.2 - 1.5 mm can be achieved with this system. Both 

the profiles in Fig. 4.12 and the result of 3-pinhole helical SPECT of the six-capillary 

phantom in Fig. 4.14 demonstrate that the calculated FWHM resolution is reasonable. 

The results in Fig. 4.11 indicate that there is no appreciable difference in the 

reconstruction resolution among one-, three- and five-pinhole SPECT using both circular 

and helical orbits. Referring to Table 4.2, the results further indicate that acceptable 

reconstruction resolution can be achieved with this system while the efficiency is 

enhanced substantially with an increase in the number of pinholes from one to five. On 

the other hand, we observed slower convergence of the ML-EM algorithm for multiple 

pinhole data than for a single pinhole in either the circular or helical case. There is also 

slight loss of reconstruction resolution with increasing iteration number. Both these 

results are consistent with the report of Meikle et al., whose simulation result of mean 

squared error versus iteration number indicated both slower convergence of the ML-EM 

algorithm for multipinhole SPECT and increased noise with increasing number of 

iterations [65]. 

The measured resolutions are further demonstrated by experiments using hot-rod 

phantoms. Results from both single- and 3-pinhole helical SPECT can resolve hot rods as 

small as 1 mm in diameter. The reconstructed images of the 3-pinhole case show some 

artifacts in that phantom as explained above. Small organs in the mouse, such as the 
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thyroid, can be fully projected on the detector through two or more pinholes 

simultaneously with little or no multiplexing area, which can substantially improve the 

image quality. The system design is also intended for a relatively low injection dose of 

radioactivity in biological studies. The results here demonstrate that our system has the 

potential for high-resolution SPECT imaging using a radioactivity concentration as small 

as 54 llCi/ml, which is of the same order as in the thyroid of a mouse injected with tens 

of J..lCi of 125!. 

Our system is constructed in an economical, compact and, especially, expandable 

manner. An additional small fluoroscopic X-ray apparatus (Lixi, Inc.) installed on the 

gantry is available to provide dual-modality imaging [117] as described in section 3.1. 

More "mouse-sized" parallel-hole detectors may be incorporated to facilitate faster three

or four-head SPECT of a small animal. The pixellated Nal scintillators for both parallel

hole and pinhole detector are 5 mm in depth, which is adequate for imaging various 

higher energy isotopes such as 99mTc if a suitable collimator is implemented. 

In conclusion, a compact SPECT system has been built and tested incorporating 

multipinhole helical/circular SPECT in addition to parallel-hole SPECT. The variety of 

imaging modes in this system can readily meet the requirements for a range of small 

animal applications. Our phantom studies have demonstrated the feasibility of employing 

multipinhole helical SPECT for small animal imaging. The results indicate that the 

resolution of our system is virtually identical for one, three and five-pinhole SPECT, 

while the efficiency is enhanced by the presence of the additional pinholes. The 

accomplishment of enlarged field of view, very good resolution and improved sensitivity 

with multipinhole circular or helical SPECT suggests the potential for high-resolution 
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imaging of small tissues or entire animals with good sensitivity. Additional work is 

planned with realistic animal phantoms, followed by studies with anesthetized mice. 
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Chapter 5 

In vivo gamma imaging in studies of the mouse thyroid 

Among mouse tissues and organs of interest to investigators, the thyroid is 

particularly useful for imaging studies in biological research as either target tissue or a 

system for proof-of-concept tests. Radionuclide imaging of the thyroid is practicable 

considering the underlying molecular biology of the expression of the sodium iodide 

symporter (NIS), an intrinsic membrane protein facilitating transport of active iodide into 

the thyroid gland. The thyroid is thus particularly suitable for such imaging given that 

NIS-expressing follicular cells take up several radioisotopes, for example, 125!, 99mTc and 

188Re [127]. The thyroid has a relationship to a number of diseases and thyroid imaging 

has potential implications for pathophysiology and therapeutics in those diseases m 

addition to providing a better understanding of thyroid physiology [128, 129]. 

This chapter describes the application and potential of our imaging system in 

thyroid studies. The first section of this chapter briefly describes the application of planar 

gamma imaging in re-evaluation of the use of KI in blocking the uptake of radioiodine in 

the thyroid of living mice. In this discussion the emphasis is on gamma imaging and 

results rather than biological investigation. The remainder of this chapter presents in 

detail the in vivo study of visualizing NIS in the mouse thyroid using the multipinhole 

helical SPECT system (see detail in Chapter 4) with a relatively low dose of 1251. 
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Complementary results from molecular biology assays including immunohistochemistry 

and reverse transcriptase polymerase chain reaction are also presented to verify that 

radioiodine incorporation in the thyroid gland reflects NIS expression, validating the 

SPECT imaging of the mouse thyroid at the molecular level. 

5.1 In vivo study of KI blocking efficiency in mice 

As mentioned previously, low emission energy and the reasonably long half-life 

of 125I make it an efficient tool for imaging a small animal over more extended periods of 

time. However, radioiodine administered into the mouse body usually is transported into 

the thyroid and "trapped" there in the form of thyroid hormones. This can prolong thyroid 

exposure to radiation and could eventually result in thyroid malfunction [2]. To protect 

the mouse thyroid from such potential damage in biological studies, we orally 

administered potassium iodide in order to block the thyroid from taking up radioiodine in 

these studies. Initially we employed the FDA-recommended human blockade dose of KI 

scaled to the body weight of the subject mice. However, we found that the blockade 

efficacy was incomplete. It is worth noting that hundreds of radio-iodinated compounds 

are widely used in biomedicine both with animal and human subjects. In addition, there 

can be a need to protect humans from the potential accidental release of radioiodine 

fission fragments, especially 1311 and 1291 associated with nuclear power [2]. Therefore, 

we have recently carried out a study to re-evaluate KI -blocking efficiency in both thyroid 

and extrathyroidal tissues including stomach, thorax, and leg using the mouse model and 

our imaging system. 
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To achieve these mms, we have designed a set of experiments for the re

evaluation of Kl blocking efficacy and applied in vivo gamma imaging using a 110 mm 

diameter circular detector and image analysis into these experiments. My principle 

contribution in this work was to carry out data acquisition of gamma imaging and image 

processing required by the designed experiments, to determine the relationship between 

whole body clearance and KI dose administered into the mice, and to provide support for 

data analysis including improving ROI programs written in IDL. 

5.1.1 Gamma-ray detector and imaging 

The detector employed in this study has been described in detail in previous 

publications [68, 117] and also briefly in Section 3.3.1. To confirm the accuracy of 

gamma-ray imaging using this detector and its applicability as a tool for in vivo biological 

studies, we compared the ROI data of a mouse thyroid obtained from gamma images with 

the counts of the alternative method, i.e. liquid scintiallation (LS) counting of the 

dissected thyroid tissue[2]. A significant correlation (r2 
= 0.9842, p < 0.05) was found 

between the results of these two independent methods, which validate the efficacy of this 

gamma camera for imaging application in biological studies. 

Planar gamma imaging of the mice was carried out in vivo in this study. Each 

anesthetized mouse was imaged immediately after a dose of ~14 f.!Ci Na125I was 

administered into the mouse body. The data from one full-hour imaging of each mouse 

included information on each individual gamma-ray count, its spatial position and time, 

were collected using a Macintosh G3 computer. The mouse was kept anesthetized and 
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alive during the imaging period. After data collection, the data files were transferred to a 

Macintosh G4 computer for data analysis. 

5.1.2 Data analysis 

Using computer programs written in IDL language (ITT Corporation), the data 

files were grouped into several 5-min interval blocks. Each block is stored in a file (called 

a "timecut") representing the two-dimensional distribution of radioiodine in the mouse 

body accumulated in the corresponding five-minute interval. Therefore, the set of 

timecuts can "re-display" the 2D distribution of radioiodine and its change in the mouse 

body over the full-hour imaging period. By placing a region of interest on an image and 

collecting the total counts, one can quantitatively evaluate the level of cumulative 

radioiodine in target tissues such as the thyroid in vivo and its change over time. The ROI 

size used for analysis of the mouse thyroid gland has been set to 4 x 4 pixels (1.2 x 1.2 

mm2 per pixel). In addition, ROis with a size of 8 x 8 pixels were used for analyzing 

other tissues including thorax, stomach, left leg and injection site. For easy comparison 

among those tissues, all the ROI results were normalized as the percentage of the total 

injection dose (%ID) determined by the total counts of the whole-mouse ROI with a size 

of 30 x 80 pixels. 

5.1.3 Experiments and results 

In this subsection, the purposes and results of the experiments designed to 

evaluate the blocking efficiency of Kl in the thyroid and extrathyroidal tissues are 

described. Those results have been published recently in Health Physics [2]. The figures 
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presented in this subsection except Fig. 5.5 and Fig. 5.6 are reproduced from that 

publication with permission granted by the publisher Lippincott Williams & Wilkins. 

These experiments studied the dynamic change of the radioiodine accumulated in 

the target tissues at different time periods (0 to 1 hour, 1 hour to 24 hours, 1 hour to 7 

days, respectively) after injection of Na125I into the mouse body. A variety of KI 

blockade dosage employed, no KI, IX, 3X, 5X and lOX KI doses, where IX was 

equivalent to the dose scaled from human dose to mouse by body weight. The dynamic 

change of radioiodine level during the first hour after injection was compared among the 

thyroid, stomach and injection site with thorax and left leg as references for background 

(see Fig. 5.1). The KI blocking dose was fed to the mouse orally 60 minutes prior to 

injection of the radioiodine. The results in Fig. 5.1 indicate that, although a IX KI dose 

effectively blocks the radioiodine accumulation in the thyroid, a higher KI dose such as 

5X or 1 OX can substantially increase the blocking efficiency when administered prior to 

exposure to radioactive iodine [2]. As to other tissues, the KI blocking effects are similar 

for the different KI doses. Presented in Fig. 5.2 is a set of five images of mice 

administered a variety ofKI blocking dose prior to injection of radioiodine. These images, 

taken in the time period 50-55 minutes after injection of radioactive iodine, show mice 

administered blocking doses of 0, 1, 3, 5 and lOX the scaled human KI dose prior to 

injection of 1251. 
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Fig. 5.I. The dynamic change of radioiodine uptake during the first hour after injection in 
thyroid, stomach, injection site, thorax and left leg. A variety of KI blockade dosage was 
employed including no KI, IX, 3X, 5X and I OX KI doses, where IX was equivalent to 
the dose scaled from human dosage to mouse based on body weight [2]. 

Fig. 5.2. Images which reflect KI blocking effects in different target tissues for five mice 
receiving KI blocking doses of 0, IX, 3X, 5X, I OX the scaled human blocking dose. The 
images were taken during the period 50-55 minutes after injection of radioactive iodine 
[2]. The KI doses were administered orally 60 minutes prior to 125! injection. 

I04 



For comparison to the evaluation of immediate blocking efficiency in Experiment 

I, a second experiment was carried out to examine the retention of the KI blocking over a 

longer time period at I hour, I day and 7 days following exposure to radioiodine. In this 

experiment, IX and 5X ~I human doses were used with unblocked mice as control 

animals. Consistent with Experiment I, the results presented in Fig. 5.3 show 5X KI 

human dose, administered 60 minutes before injection of 125I, continues to provide a 

higher level of protection than the IX KI dose 7 days after radioiodine injection [2]. 

19 ' 
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Fig. 5.3. Evaluation of the retention of the IX and 5X KI blocking efficiency at times I 
hour, I day and 7 days following blocking dose and exposure to radioiodine with 
unblocked mice as control animals [2]. 

A third experiment was designed to learn whether the significant drop in activity 

between I hour and I day as shown in Fig. 5.3 happened in a precipitous or a more 

gradual manner. This experiment examined the 1251 retention in thyroid, stomach and 

thorax at I, 6, I2 and 24 hours after administration of the blocking dose followed 60 

minutes later by injection of the 125I dose. The blockade dose administered to mice was 

IX KI human dose [2]. The results in Fig. 5.4 indicate that thyroid radioiodine content 
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declined gradually over the first 24 hours after injection while, surprisingly, the 

radioactivity in the stomach increased between hours 1 and 6 [2]. 
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Fig. 5.4. Evaluation of 125I retention in thyroid, stomach and thorax at 1, 6, 12 and 24 
hours after injection using 1X Kl human dose which was administered orally 60 minutes 
prior to 125I injection [2]. 

In an attempt to determine the relationship between urine or whole body clearance 

and KI dose, we carried out Experiment IV using a small sample of mice (n = 2 for each 

group orally administered OX, 1X and 5X human KI dose, respectively). Again, KI dose 

was administered 60 minutes prior to radioiodine injection. After injection, each mouse 

was put back in an individual cage, inside which there was an absorbent paper entirely 

covering the bottom area of that cage in order to collect the urine and feces of that mouse. 

Twenty four hours following radioiodine injection, each mouse was in vivo imaged for 5 

minutes and the image was saved as a timecut. The mouse was then sacrificed 

immediately after imaging. The feces, the paper containing mouse urine and the mouse 

body were collected and imaged separately followed by data analysis. For normalization 

purpose, the sum of the counts of all the three subjects was considered as the total 
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Fig. 5.5 Urinary clearance as a function of equivalent human KI dose 24 hours after 
radioiodine injection. A variety of KI doses (OX, IX and 5X) was orally administered 
into the mouse 25 hours prior to gamma imaging. 
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Fig. 5.6 Whole body clearance as a function of equivalent human KI dose 24 hours after 
radioiodine injection. A variety of KI doses (OX, IX and 5X) was orally administered 
into the mouse 25 hours prior to gamma imaging. 

injection dose in this case. My analysis showed that over 96% of radioiodine in the 

mouse body had been cleared through urine and feces during the first 24 hours after 

injection (see Fig. 5.6). Both urinary clearance (see Fig. 5.5) and whole body clearance 

(see Fig. 5.6) for blocked animals were substantially higher than unblocked animals 24 
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hours after radioiodine injection, which was consistent with our previous results. The data 

also indicated no statistically significant differences between either urinary or whole 

body clearance using IX and 5X human KI doses. 

5.1.4 Discussion and conclusion 

The results of this study re-evaluating the blocking efficiency of KI suggest that 

the KI human dose equivalent provides much less effective protection for the mouse 

thyroid than a higher KI dose. The dose effects are also interesting in extrathyroidal 

tissues, in particular the stomach, and could be important for those tissues-related studies. 

In particular, this study demonstrated the utility and advantages of our imaging system as 

a promising tool in a range of similar biological studies. 

This system allows in vivo gamma imaging of the mice. This significant feature 

facilitates evaluation of the KI-blocking effects on the same animal repetitively over a 

chosen time period. A small number of mice was required in this study as a consequence. 

The real-time feature of the imaging system makes it possible for us to examine the 

distribution of radioiodine content in target tissues in both dynamic and static manners. 

Moreover, owing to the relatively high spatial resolution ( ~ 2 mm), good sensitivity and a 

field-of-view sufficient for whole-mouse imaging, we are able to obtain high-quality 

gamma images using a relatively low dose of radioiodine ( ~ 14 ~-tCi). Those gamma 

images enable us to distinguish the target tissues easily with good detail. Hence, more 

accurate ROI analysis can be carried out as well as comparison among either different 

mice or different tissues in the same mouse. In particular, statistical variation in the study 

108 



arising from the inter-animal differences is reduced since each animal could serve as its 

own control. 

In conclusion, this study, based on a mouse model, suggests the potential value of 

reconsidering KI dosage or alternative thyroid blockade pharmaceuticals for emergency 

I 

protection of human thyroid [2]. On the other hand, since mice have been extensively 

used in preclinical research to study tumor therapy through radioiodine uptake, this study 

may also prove of value in determining the effective and appropriate dosages for mouse 

thyroid protection. 

5.2 In vivo multipinhole helical SPECT imaging of a mouse thyroid 

The study described in Section 5.1 suggested the need for further evaluation ofKI 

blocking efficiency while simultaneously indicating the need of novel, non-invasive 

technologies for further addressing this health issue [2]. Such in vivo study on the mouse 

thyroid may also benefit from higher resolution that can yield data on the three-

dimensional biodistribution of the thyroid's saturation. This information can be provided 

by data obtained through SPECT techniques. Several clinical studies have demonstrated 

the advantages of SPECT in effectively detecting thyroid carcinoma, evaluating tracheal 

compression, finding the extension of multinodular goiter and determining the thyroid 

volume and mass for dosimetry of radioiodine therapy [130-133]. However, the 

requirements of both high resolution and sensitivity and the difficulty in localizing 

radiotracers have limited the utility of SPECT in work with small organs such as brain or 

thyroid using mouse models [134, 135]. 
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This situation has been improved by a SPECT system incorporating high

performance detectors and/or high-resolution pinhole collimation [1, Ill, 116, 136]. As 

demonstrated in section 3.3.1.4, ex vivo parallel-hole SPECT based on a compact gamma 

camera illustrated considerable difference between the uptake of 1251 in the thyroid region 

and in the salivary glands. The first successful in vivo 1251 SPECT image was achieved by 

McElroy et al. [136] using a single-pinhole A-SPECT system and 1 mCi Na1251, and 

clearly delineated both lobes of the thyroid in the reconstructed image. Using a 100 1-1m 

diameter gold alloy pinhole constructed by electron discharge machining, Beekman et al. 

successfully achieved a spatial resolution of 200 1-1m for planar imaging of the thyroid of 

a mouse injected with 250 J.!Ci Na1251 [116]. That work suggested the potential for ultra

high-resolution SPECT of small organs such as the mouse thyroid. Hong et al. reported 

the ex vivo 1251 imaging of the thyroid of a rat using a compact SPECT/CT system and 1 

mCi to localize the isotope [111]. 

The major drawback of high-resolution single-pinhole SPECT is low sensitivity 

[137]. A high dose can compensate for the low sensitivity of single-pinhole SPECT. That 

dose, however, may be a factor affecting physiology and leading to invalid results [138]. 

The use of large amounts of radio tracer brings the potential for pharmacologic effect risk 

and increases radiation burden which can cause tissue damage [139]. The high dose may 

further change the result of imaging studies repeated over time and prevent longitudinal 

studies using the same animal [139, 140]. Cao et al. reported that a dose below 1 mCi is 

suggested for mouse studies using 99mTc-tagged ligands based upon preliminary 

unpublished dosimetry data [137]. The high-dose effect in thyroid imaging using 

radioiodine is a significant issue needing consideration. After being administered into the 
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body, the radioiodine transported into the thyroid is incorporated into the hormones 

triiodothyronine and thyroxine. This prolongs thyroid exposure to radiation and could 

eventually result in thyroid malfunction [2]. Low emission energy (~35keV) and the 

reasonably long half-life (59.4 days) of 125I make it a useful tool for imaging a small 

animal over more extended periods of time, which, however, also requires the applicable 

dose be kept as small as possible. 

As the review in Chapter 2 indicates, recent advances of pinhole SPECT have 

provided a potential path to solve these issues with regard to both resolution and 

sensitivity of mouse thyroid imaging. In Chapter 4, I have described the details of 

development and phantom tests of multipinhole circular/helical SPECT. Herein we 

demonstrate the applicability of multi pinhole helical SPECT to in vivo molecular imaging 

by presenting results of a study of visualizing NIS activity in the mouse thyroid. This 

work has employed a low-level dose of 125! ranging as small as 12 !J.Ci for phantoms to 

130-200 !J.Ci for subject mice in SPECT imaging. This is significantly lower than the 

order of millicuries used in previously reported 1251 SPECT imaging of mouse thyroid 

[111, 136]. In addition, we verify that multi pinhole helical SPECT is a valid tool for 

monitoring biological activity at the molecular level such as NIS expression in the 

thyroid through molecular biology assays. Collaborators Eric Blue and Stephen Schworer 

of Biology have carried out immunohistochemistry and RT-PCR, respectively. 

Correlative results from both imaging and molecular assays can thus validate 

multi pinhole helical SPECT for in vivo molecular imaging of biological processes. 
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5.2.1 Multipinhole helical SPECT system and scans 

The multipinhole helical SPECT system has been described in detail in Chapter 4 

and will be briefly mentioned here. In this work, two pinholes (the central and lower left 

pinholes) are used with no overlapping area of the projections of the mouse thyroid from 

both pinholes. Other unused pinholes were shielded with 0.5 mm lead sheet sufficient to 

block~ 35keV photons from 125!. The radius of rotation was 25 mm from the collimator 

with a magnifying factor of 3 employed in these studies. This setup resulted in a total 

effective view area from using two pinholes of 13.6 cm2 at the axis of rotation. The 

energy window set for gamma imaging was from 22 to 40 ke V. 

SPECT scans in this work have been acquired at 3° increments around the AOR 

for a total of 360°. Both the dwell time at each angular position and the step increment 

along the AOR may be variable and thus are stated in each specific case. We used 10 

iterations for image reconstruction in all the following studies except the hot-rod phantom 

study in which 50 iterations were used. The reconstructed images were smoothed with a 

Hann filter. No attenuation correction was applied in this work. The reconstruction used 

0.4-mm cubic voxels. 

5.2.2 Parallel-hole gamma-ray imaging 

As a reference tool, one compact gamma-ray camera described in section 3.3 was 

used for planar imaging of the phantoms. A 5 mm thick parallel-hole CuBe collimator 

with 0.55-mm square holes separated by 0.11 septa was employed in this detector. This 

collimation provides a spatial resolution about 2.5 mm FWHM on contact with the 
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collimator with an effective area of about 46 x 96 mm2
. As with the circular gamma 

camera, the energy window for gamma rays was from 22 to 40 ke V. 

5.2.3 Phantom studies 

Phantom studies were carried out to evaluate the performance of two-pinhole 

helical SPECT. Each SPECT scan in the phantom studies used a dwell time of 3 minutes 

at each angular position. 

5.2.3.1 Resolution 

The same phantom and method described in section 4.7.3 were employed to 

determine the relationship between the reconstruction resolution and the number of ML

EM iterations for two-pinhole helical SPECT. This relationship as presented in Fig. 5.7 

indicates that the overall resolution after about 10 iterations of image reconstruction is 

around 1.3 mm which is adequate for imaging the bilobal structure of the thyroid of a 

C57-derived mouse. A typical separation between the two lobes of the thyroid is about 

1.8-2.5 mm. 

To demonstrate that this measurement of resolution is reasonable, a test was 

carried out with a phantom of two parallel capillaries separated by 2 mm. The step 

increment along the AOR was 0.1 mm which was also used in the following helical 

SPECT scans of the thyroid phantom and mouse thyroid. 

As shown in Fig. 5.8, a reconstructed image from a further test demonstrates that 

two capillaries separated by 2 mm can clearly be resolved, confirming the feasibility of 

multi pinhole helical SPECT imaging of the mouse thyroid. 
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Fig. 5.7. Relationship between the reconstruction resolution (FWHM) and number of 
ML-EM iterations for two-pinhole helical SPECT 
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Fig. 5.8. (Left) A reconstructed transaxial slice (0.4 nun thickness) of the 2-capillary 
phantom. (Right) A profile along the line across the centers of the reconstructed 
capillaries in the reconstructed image of a two-pinhole helical SPECT scan. The step 
increment along the AOR is 0.1 mm. 

A further test similar to the one described in section 4.8 was carried out using the 

same ultra-micro hot rod phantom to investigate the potential of two-pinhole helical 

SPECT for resolving a more sophisticated structure with a relatively low radioactivity 
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concentration. The phantom contained a solution of 270 f.lCi 1251. A two-pinhole helical 

SPECT scan was obtained with step increments of 0.1 mm along the A OR. 

Even with the collimator designed for imaging small tissues such as the mouse 

thyroid and a low radioactivity concentration employed, two-pinhole helical SPECT of 

the relatively large-scale hot-rod phantom still properly resolves the wedges with rods as 

small as 1 mm in diameter and many of the 0.75 mm diameter rods can be visualized as 

well (Fig. 5.9, right). Some artifacts appear in the figure owing to multiplexing effects 

and the truncation of the phantom in projections as shown in the left panel of Fig. 5.9. 

Fig. 5.9 (left) A 3 min two-pinhole projection of the hot rod phantom. (right) A 4 mm 
thick reconstructed image of two-pinhole helical SPECT of the phantom with 3° 
increments and 3 minutes at each angular position. The step increment along the AOR 
was 0.1 mm. The phantom contained a total radioactivity of 270 f.lCi 1251 with a 
concentration of 54 f.lCi /ml. 

5.2.3.2 Sensitivity 

Single (central pinhole) and two-pinhole helical SPECT were carried out for the 

purpose of sensitivity comparison using a phantom similar to the one described in section 
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5.2.3.2. For the phantom used in this work (see Fig. 5.10), the bottom two voids are 

separated by ~ 2 mm representing the salivary glands of a mouse while the top one 

simulating the thyroid is spaced 3 mm away from them. The phantom measures 14 x 13 x 

17 mm3
• Each void contains a~ 4 ~-tCi pellet (~ 12 ~-tCi in total in the phantom). This 

thyroid phantom was placed in the central region of FOV with the plane of the voids 

perpendicular to the A OR. 
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Fig. 5.10. (Left) Diagram of the two-pinhole collimator. The central and bottom-left 
pinholes were employed in this work. (Right) An example of a three-position thyroid
salivary gland phantom used in this work 

The measured efficiency with the thyroid phantom is 221 cprnl~-tCi and 398 

cprnl~-tCi for one and two-pinhole helical SPECT respectively. We note that the efficiency 

is not exactly doubled for two-pinhole case owing to the fact that the sensitivity is 

proportional to (cos3B!cf) for each pinhole, where B is the gamma-ray incident angle and 

dis the perpendicular distance from the object point to the collimator [89]. 

5.2.3.3 Quantification 

After the two-pinhole SPECT scan, a parallel-hole projection of the thyroid 

phantom was acquired for 30 minutes. A sum of 14 reconstructed slices (a total of 5.6 
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mm thickness) from the two-pinhole helical SPECT scan covering the pellets region of 

the phantom was compared with the 30-min parallel-hole projection. The region of 

interest (ROI) of each pellet was analyzed with the ROI analysis program written in IDL 

language. The ROI counts of the pellets from the parallel-hole projection were compared 

with the data from the sum reconstructed image. A 25-pixel ROI (1.2 x 1.2 mm2/pixel) 

was obtained for each pellet in the parallel-hole projection while a 225-pixel ROI (0.4 x 

0.4 mm2/pixel) was used in the reconstructed SPECT image. 

The 30-min parallel-hole projection of the ~ 12 ).!Ci thyroid phantom is shown in 

the left panel of Fig. 5.11. The ROI ratio of the pellets in clockwise order starting from 

the bottom-right one is 1: 0.92: 0.94 while it is 1: 0.90: 0.99 for the reconstructed case as 

shown in the right panel of Fig. 5.11. The ratios are consistent when one takes into 

account the statistical errors arising from the low level of the isotope in the phantom. 

Both ratios show that the bottom-left pellet is the least hot indicating some 

inhomogeneous absorption of isotope. The 5.6 mm thick sum image of 14 slices of 

images covering the pellets region in the thyroid phantom indicates that the top void was 

not ideally drilled but is slightly off the median of the bottom two pellets as can be 

observed in the left planar image. The reconstructed image also shows that each~ 4 mm 

long pellet is less hot in center than at both ends presumably because the pellet 

inhomogeneously absorbed radioiodine in the solution of Na1251 due to its smooth side 

surface and rough cut ends. 
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Fig. 5.11. The experiment shown in this figure was carried out with a thyroid phantom 
that had ~ 4 11Ci in each void (a total dose of~ 12 11Ci). (Left) a 30-min parallel-hole 
projection of the thyroid phantom. (Right) the 5.6 mm thick sum image of 14 
reconstructed images from a two-pinhole helical SPECT scan covering the pellets region 
in the phantom for comparison with the left projection image. The step increment along 
the AOR is 0.1 mm. 

5.2.4 Mouse studies 

5.2.4.1 In vivo multipinhole helical SPECT 

With two-pinhole helical SPECT, we have imaged to date two mice with a 

moderate-level injection dose of 1251 and 0.1 mm step increments along the AOR. The 

first mouse was injected with 130 !-LCi Na125I and 24 hours later anesthetized and imaged 

with 2 minute dwell time at each angular position (a total of 4 hours). That mouse died in 

the 3rd hour, apparently due to the anesthesia. After the final fourth hour of imaging, the 

mouse was dissected and the thyroid tissue was measured to determine the dose level of 

the isotope and then to verify the presence of NIS protein and mRNA with the whole-

mount immunohistochemistry and RT-PCR, respectively. 

The second mouse was injected with 200 !-LCi Na1251. That mouse was 

anesthetized and imaged in vivo 24 hours later. One-minute acquisitions (a total of 2 
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hours) were obtained at each of 120 angular positions. The mouse was returned to its 

cage after the imaging to confirm that there were no effects due to the anesthetic or iodine 

dose. We compared the sum of 12 reconstructed slices (a total of 4.8 mm thickness) of 

the thyroid region with one of the 1-min projections from the two-pinhole helical SPECT, 

in which the thyroid is near the central pinhole. 

The bilobal structure of a mouse thyroid is shown in the left panel of Fig. 5 .12. As 

shown, the two lobes of the thyroid are separated by the trachea by about 1.8-2.5 mm 

depending upon their shape. The thyroid anatomical structure is well resolved by a 1.2 

mm thick coronal slice reconstructed from the 4-hour two-pinhole helical SPECT scan of 

a mouse shown in the right panel of Fig. 5.12. Measurement of the dissected mouse 

thyroid showed that about 10 1-1Ci remained in the thyroid tissue after imaging. 

Fig. 5.12. (Left) Anatomical display of the thyroid region of a mouse. (Right) A mouse 
was injected with 130!-lCi Na125I and 24 hours later anesthetized and imaged with 2-
pinhole helical SPECT for 4 hours. Although this mouse died in the third hour of imaging, 
it was possible to accumulate SPECT data throughout a four-hour period. A 1.2 mm thick 
reconstructed image on the right presents the coronal view of the mouse thyroid, 
resolving its two lobes separated about 2 mm. The physical measurement of the dissected 
thyroid tissue indicated the accumulated dose in the two thyroid lobes was ~ 1 01-1Ci in 
total. 
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Fig. 5.13. (a)-( c): A C57-derived mouse was injected with 200!-tCi Na125I and imaged in 
vivo after 24 hours for a 2-hour 2-pinhole helical SPECT scan with step increments 0.1 
mm along the AOR and 3° increments around the AOR. A 1-min projection image from 
the scan is shown in (a) with the central pinhole near the thyroid region of the mouse. 
Presented in (b) is a transaxial image ofthe thyroid region. A 4.8 mm thick sum image (c) 
of 12 coronal images fully covering the mouse thyroid region shows agreement in the 
thyroid structure with the projection image (a). Both images (b) and (c) clearly delineate 
the two lobes of the thyroid, which are separated ~ 2 mm. The physical measurement 
after imaging indicated a total of~ 20 !lCi remained in the thyroid region. (d)-(t): An 
overlay (f) of the fluorescent image (e) from NIS immunohistochemistry on the bright 
field (d) of a dissected mouse thyroid, in which the green signal indicates NIS 
localization in the thyroid lobes based on indirect staining of the anti-NIS antibody. 

120 



Shown in Fig. 5.13(a) is a 1-min two-pinhole projection of the thyroid region of a 

mouse injected with 200 jlCi and imaged 24 hours later in vivo. A single transaxial image 

from the two-hour, two-pinhole helical SPECT scan in Fig. 5.13(b) clearly delineates the 

bilobal structure of the mouse thyroid. Fully covering the whole thyroid region of the 

mouse, the 4.8 mm thick sum image Fig. 5.13(c) of 12 reconstructed coronal slices from 

the same helical SPECT scan indicates the consistent shape and separation of the lobes 

with the projection image in Fig. 5.13(a). Measurement after imaging shows that 

approximately 20 jlCi was still present in the thyroid of this mouse. 

5.2.4.2 Whole-mount immunohistochemistry and RT-PCR 

Whole-mount immunohistochemistry was used to localize the NIS protein in the 

thyroid. As shown in Fig. 5.13(d)-(t), immunohistostaining was used to verify the 

presence of NIS protein in the mouse thyroid. The bright field of the dissected mouse 

thyroid is shown in Fig. 5.13(d) while the fluorescent image is in Fig. 5.13(e), in which 

green signal indicates localization of the NIS protein by indirect staining of the anti-NIS 

antibody. A composite thyroid image Fig. 5.13(t) of both the fluorescent image Fig. 

5.13(e) and bright field Fig. 5.13(d) shows the green signal appears only in the lobar 

region, consistent with NIS protein expression that facilitates iodine uptake and 

metabolism. The NIS immunohistochemistry results were further supported by RT-PCR 

outcomes (data not shown), which also corresponded to 1251 uptake measured by the 

gamma camera. 
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5.2.5 Discussion and Conclusion 

In vivo molecular imaging of some tissues such as the thyroid using mice has 

significant physiological and pathological meanings. However, in vivo imaging of the 

mouse thyroid has the simultaneous requirements of high resolution and low radioactivity. 

Using phantoms, we have demonstrated in this work the capability of a multipinhole 

helical SPECT system we developed recently to meet the imaging needs in resolution, 

sensitivity and image quality for such studies. Our further animal studies have 

demonstrated that we have achieved in vivo functional imaging of the mouse thyroid with 

high performance using a relatively low level of radioactivity and two-pinhole helical 

SPECT. The efficacy of the imaging results has been validated by molecular biology data 

from both immunohistochemistry and RT-PCR. 

Our "proof-of-concept" phantom studies show that two-pinhole helical SPECT 

provides reconstructed resolution of about 1.3 mm which can accurately resolve the 

position of three voids containing a total of~ 12 )lCi in a phantom simulating the thyroid 

region. The R01 analysis of the reconstructed images shows an excellent agreement 

between the 2-D projective image and 3-D reconstructed images of the thyroid phantom. 

The test with a relatively large-scale hot-rod phantom further demonstrates that our 

system is capable of high-resolution imaging of a more sophisticated structure containing 

a low 1251 radioconcentration of 54 )lCi/ml, which is typical for actual biological studies. 

The reconstructed image from a two-pinhole helical SPECT scan of a mouse 

clearly delineates the structure of the two lobes of the mouse thyroid which are separated 

by about 2 mm. In vivo two-pinhole helical SPECT of the thyroid of an anesthetized 

mouse was successfully carried out using a relatively low dose of 1251 (200 )lCi), and an 
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imaging period of 2 hours. The summed image sufficient to cover the whole thyroid 

region shows good correlation with the pinhole projection of the mouse thyroid. The 

bilobal structure of the mouse thyroid has been further examined with ex vivo whole

mount immunohistochemistry and the fluorescent anti-NIS indirectly localized the NIS 

protein in the dissected thyroid lobes in the same locations as the pattern of 1251 

distribution. An additional study using RT-PCR verified the correlation between the 

immunohistochemistry results and NIS mRNA expression. The molecular biology data 

have validated the in vivo multi pinhole helical SPECT imaging of the mouse thyroid and 

have further strengthened its potential for studies of other NIS-expressing tissues. 

Recently, studies have been reported in which NIS gene expression has been 

utilized for purposes of imaging or therapy of diseases such as hyperthyroidism or tumors 

[141, 142]. These studies usually require in vivo measurements of the volume and mass 

of the tissues such as the thyroid in Grave's disease for appropriate planning of 

radioiodine therapy [131, 132] or imaging the recurrent or metastatic tumors post 

treatment [127, 143]. The work we presented here suggests the potential of multipinhole 

helical SPECT in accomplishing those goals in in vivo studies using mouse models. 

In conclusion, multipinhole helical SPECT has provided the capability of in vivo 

imaging of the mouse thyroid at the molecular level using a dose of 200 ~J.Ci of 1251 and 

an imaging period of about 2 hours. This work has been verified as an NIS-dependent 

process by molecular biology techniques, i.e. immunohistochemistry and RT-PCR. 

Combining planar scintigraphy to allow quantifying and distinguishing tissue-mass voids 

and tomography for visualizing in situ living tissues, our imaging system has potential 
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application to molecular imaging in a variety of in vivo studies of the mouse thyroid or of 

other NIS-expressing tissues such as the stomach or mammary tumors. 
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Chapter 6 

In vivo gamma imaging in a study of mammary tumors 

Described in this chapter is the application of in vivo gamma-ray imaging in a 

study of mammary tumors using endogenous NIS expression in a mouse model and the 

novel compact gamma camera (see section 3.3) dedicated for mouse studies. The role and 

development of gamma-ray imaging in breast cancer are first introduced followed by the 

goals of this work. The methods of data acquisition and analysis are then detailed and the 

results as well. The final section includes discussion and preliminary conclusions from 

this study. 

6.1 Background 

Breast cancer is one of the most common cancers in women. There are increasing 

requirements of high-performance breast cancer imaging in current studies of this 

significant human health issue. Despite screening and diagnosis of tumors, modem breast 

cancer studies require the imaging technique to detect a tumor at its earliest stage, to 

characterize the heterogeneity of the tumor and to monitor the tumor development over 

time. The overall death rate for breast cancer has steadily declined since the early 1990s 

mainly owing to a combination of screening, improved treatment and better awareness 

[144]. Imaging techniques including mammography, MRI, ultrasonography, optical 
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imaging, and radionuclide imaging (PET and scintimammography) play a key role in this 

achievement. Each imaging technique has made its own contribution to address this 

health issue in different aspects. Mammography is the most established breast cancer 

imaging technique and the primary tool for screening and diagnosis of breast cancer. 

However, mammography has lower sensitivity in those with dense breasts [145]. 

Ultrasonography works as an adjunct to screening and diagnostic mammography. This 

technique is painless and relatively inexpensive but is highly dependent on the operator 

and has a high false-positive rate [146]. The other imaging modality as an adjunct to 

mammography is breast MRI. New breast MR imaging techniques using molecular 

markers of malignancy may help to improve tumor characterization. The limitation of 

breast MRI in specificity may lead to additional work-ups and biopsies [146]. Optical 

imaging such as near-infrared (NIR) tomography has been intensively investigated to 

detect and characterize breast cancer [147]. However, optical mammography has a major 

disadvantage of poor spatial resolution. Moreover, the in vivo optical characteristics of 

common lesions and healthy breast tissues are not yet fully known [148]. 

Radionuclide 1magmg including PET and scintimammography (planar 

scintigraphy or SPECT) has also been a significant method contributing to breast cancer 

studies. The following review indicates that radionuclide imaging has been widely 

applied in a number of studies on breast tumors and its application is usually 

accompanied with molecular techniques such as immunohistochemistry or other 

anatomical imaging modalities such as CT and MRI, etc. Both PET and 

scintimammography have presented advantages in meeting current needs for breast 

cancer research. 
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6.1.1 PET and breast cancer imaging 

Several studies have proven the accuracy of PET in detection of the primary 

tumor and axillary staging [149, 150]. F-18 fluorodeoxyglucose e8FDG), a glucose 

analog, is a standard PET radiotracer used in clinical PET imaging. The property of 

18FDG enables the analysis of the glucose metabolism and blood flow in the cancers [151, 

152]. The increased glucose metabolism of malignant breast cancer cells facilitates 

accurate differentiation of cancer from benign tissues [153]. A review shows that 18FDG

PET presents a sensitivity value ranging between 80% and 90% and a specificity value 

between 71% and 95% in breast cancer diagnosis [154]. PET imaging has also been 

employed to make correlations between imaging and tumor parameters (lesion size, 

proliferative activity, vascularity, multidrug resistance) [155-157] or predictive and 

prognostic factors such as the estrogen receptor [158]. However, since PET images do 

not delineate fine details like a CT or MRI, the most important clinical application of 

PET currently is to determine the presence and extent of metastatic or recurrent breast 

cancer [159, 160], to evaluate multi-drug resistance [161] and to monitor response to 

therapy [162, 163]. 

Despite the obvious utility of 18FDG, additional innovative radiotracers are under 

development. Many radiotracers are aimed at more specific cellular processes in addition 

to glucose metabolism [164]. A number of studies have been carried out to investigate a 

multitude of radiotracers such as C8F]Xeloda for specific imaging of enzymes [165], 

[
18F]FES for hormone receptor expression [166], [11C]methionine for protein synthesis 

[167], e8F]FLT for proliferation rate [167], e8F]fluoride for bone mineralization [167], 

[18F]fluoroetanidazole for hypoxia [168], etc. 
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In addition to new tracers, PET technology is also rapidly evolving. A chief 

advance is the dual-modality PET/CT scanner. Initial studies have shown the advantages 

of PET/CT over either single modality and its particular usefulness in pre-radiation 

therapy planning [ 164, 169, 170]. A series of recent studies have demonstrated the 

advantages of PET/CT in detecting multiple metastases or small tumors, monitoring the 

tumor response to chemotherapy, and accurately localizing lymph node metastasis [171-

173]. PET-MRI has been used to improve the specificity of primary breast cancer 

detection [174]. A few single-case reports indicates that PET/CT or PET/MRI may reveal 

heterogeneity of breast cancer [175, 176]. 

To improve both the sensitivity and specificity, PET dedicated to breast cancer or 

positron emission mammography (PEM) has been developed and employed as a cost

effective alternative [177]. Several groups have proposed and evaluated the performance 

of PEM systems [178-180] and the PEM detectors based on PSPMT [177, 181-184], 

PSAPD [185-188], and CZT [186] with promising results for breast cancer imaging. 

Comparative studies have demonstrated that the clinical impact of PEM is superior to that 

of conventional gamma camera or CT [189, 190]. Studies on detection ofprimary cancer 

[191, 192] have shown excellent sensitivity and specificity. In particular, the PEM Flex 

system developed by Weinberg [177] and commercialized by Naviscan PET Systems, Inc. 

has achieved a high resolution 1.5-2 mm and demonstrated superior performance to other 

modalities, i.e. PET/CT, MRI and gamma camera [193]. The high accuracy of this system 

in primary cancer detection suggests its potential in depiction of primary breast cancer 

[194]. 
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With the advent of preclinical PET systems such as microPET and NIH Atlas 

PET, researchers are able to evaluate preclinical models of breast cancers using small 

animals with improved performance [195]. Several studies have employed MicroPET to 

image integrin, peptide nucleic acid, and multidrug resistance in addition to FDG [196-

200]. A recent report also indicates that small animal FDG-PET is a useful tool to 

monitor mammary tumor development and treatment response through longitudinal 

imaging [201]. Recent progress in developing multi-modality scanners for small animals 

has shown their potential in preclinical studies of breast cancer [202, 203]. 

As this review indicates, PET has presented its advantages in many aspects of 

breast cancer imaging. However, this technique is limited by a low sensitivity to detect 

lobular carcinoma and small tumors [151, 154]. The underlying biochemical mechanisms 

have not been fully clarified for enhanced glucose metabolism in FDG studies [204]. 

Owing to the lack of correlation with significant prognostic markers such as the tumor 

size, FDG uptake might not be used as a prognostic criterion for breast cancer studies 

[167]. Moreover, preparing the radiotracers for PET imaging may require a nearby 

cyclotron and sophisticated radiochemistry techniques [205]. 

6.1.2 Scintimammography and breast cancer imaging 

Similar to PET, scintimammography including planar scintigraphy and SPECT is 

well known as an adjunct to mammography and is effective in reducing the rates of 

negative biopsies [206]. In recent years, 99mTc-sestamibi scintimammography has shown 

a high sensitivity between 84% and 94% and specificity between 69% and 94% in the 

diagnosis of breast cancer [207]. Though scintimammography cannot substitute the 
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current primary imaging techniques for breast cancers mainly due to its low sensitivity in 

detecting breast tumors < 10 mm, it is recommended for patients with equivocal 

mammograms as well as women with dense breasts or implants. These advantages dwell 

on the fact that breast density and implants have much less effect on scintimammography 

owing to the properties of gamma rays [206, 207]. Not only for diagnosis of breast cancer, 

scintimammography plays a significant role in evaluating lymph node status and breast 

cancer metastases [208-210], predicting multidrug resistance[211, 212], assessing tumor 

response to chemotherapy [213, 214], monitoring recurrence of breast cancer [215], and 

potentially developing drugs for tumor therapy [216]. 

To date the most common tracers used in scintimammography are 99mTc

sestamibi and 99mTc-tetrofosmin and a large body ~f studies have been carried out with 

these radiotracers [206]. Considerable effort has also been put on finding new 

radiotracers targeting antibodies or receptors on tumor cells which are suitable for 

scintimammography and potential tumor therapy [217, 218]. These radioligands include 

new EGFR inhibitors [219], Fab [220], somatostatin [221], 99mTc-NC100692 [222], anti

HER2 affibody [223], trastuzumab [224], 67Ga-radiopharmaceutical [199], 99mTc

EDDA/HYNIC-TOC [225], 201-thallium-cloride [226], peptide [227], tamoxifen [228], 

endoglin [229], as well as others. Researchers recently have shown interest in developing 

molecular imaging agents that are dual labeled with nuclear and optical reporters [230-

232]. These ligands can provide unique opportunities for breast cancer imaging with 

SPECT (or PET) agents and for the following intraoperative guidance with near-infrared 

(NIR) fluorophores [231]. 

130 



With the advances in imaging techniques, multi-modality imaging, especially 

SPECT /CT has been recently applied in breast cancer with the attempts to further 

improve the performance of scintimammography. A significant advantage of SPECT-CT 

in breast cancer is that it helps improve sentinel node identification, leading to a better 

plan of therapy [233, 234]. SPECT-CT has also shown improved sensitivity over planar 

scintigraphy [235] and has been found to be more accurate in diagnosing breast tumor 

metastases [236]. A study on breast cancer metastasis using a mouse model with 

bioluminescent imaging and SPECT /CT also indicates that multimodality imaging 

techniques can be very helpful for monitoring bone metastasis [237]. A pilot study 

demonstrated that MRI/scintimammography seems to be more accurate in measuring the 

size of breast cancer than other methods (clinical exam, mammography, MRI alone) 

[238]. 

As several reviews indicate, gamma cameras dedicated to breast cancer imaging 

may improve the accuracy of scintimammography in small breast cancer detection. 

Several groups have developed and evaluated dedicated gamma cameras based on CZT 

detectors with better visualization of objects smaller than 10 mm, suggesting the potential 

for early tumor detection [239-241]. Similar attempts have also been made with 

scintillation detectors using PSPMTs and pixellated Csi(Tl), Nal(Tl), or continuous 

LaBr3(Ce) scintillators with high spatial resolution [242-244]. Clinical systems dedicated 

for breast cancer imaging are available commercially now such as Dilon 6800 gamma 

camera for Breast-Specific Gamma Imaging (BSGI) [245] or LumaGEM digital system 

for molecular breast imaging [246]. Different collimation has been employed including 

pinhole collimator [210, 247], rotating multisegment slant-hole collimator [248], and 
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slant hole collimator [249] with improved visualization of breast lesions. Improved 

accuracy of dedicated gamma cameras in breast cancer detection has been verified in 

several reports [250-252]. 

As with PET, a variety of SPECT systems dedicated for small animals have been 

developed and some of them are available commercially such as nanoSPECT (BioScan 

Inc.), X-SPECT (Gamma Medica Inc.) and U-SPECT II (Molecular Imaging 

Laboratories). These dedicated imaging systems are being introduced into preclinical 

studies of breast cancer with promising results [211, 253]. Particularly in these attempts, 

using a high-resolution SPECT/CT system (X-SPECT), Kim eta!. were able to achieve 

detailed distribution information of a 99mTc-labeled antibody within breast tumor 

xenografts in vivo, which is consistent with ex vivo bioluminescence imaging or histology 

[253]. 

6.1.3 NIS and breast cancer imaging 

Despite the development of new ligands for breast cancer studies, researchers 

recently have shown a growing interest in the sodium iodide symporter (NIS) gene both 

as a molecular imaging reporter gene and as a therapeutic gene [142]. NIS 1s a 

transmembrane ion channel responsible for iodine metabolism. Endogenous NIS 

expression in breast tissues such as mammary glands or tumors has been confirmed by 

many groups [126, 254]. As a potential way of imaging and therapy of breast cancers, 

researchers have sought different stimulators to enhance the NIS expression in breast 

tissues [255, 256]. A multitude of agents such as, oxytocin, prolactin and tRA have been 

found to significantly induce iodide uptake, NIS mRNA or NIS protein production in 
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various cancer cell lines or in vivo. Several studies usmg either PET or 

scintimammography have suggested NIS is a promising molecule for in vivo radionuclide 

imaging of breast cancer [142, 257]. In those studies, radionuclide imaging has been used 

to verify the presence of NIS expression, to locate the NIS-expressing sites, and to 

qualitatively or quantitatively determine NIS gene expression. However, the NIS 

expression in early-stage tumors and its role for early tumor detection remains unclear. 

Moreover, NIS gene expression may also deliver detailed information such as tumor size 

and pattern in gamma images that could benefit breast cancer study for better 

understanding of breast cancer and eventually better treatment. 

6.2 Hypothesis and goals 

As Mankoff pointed out, to better detect early-stage breast cancer, we will need 

equally the development of improved instrumentation for radionuclide breast imaging 

and the development of radiotracers "designed to match the biology of early breast 

cancer" [258]. The previous studies of NIS in breast cancer and gamma-ray imaging 

technology leads us to hypothesize that the patterns of metabolic 1251 uptake presented in 

gamma images correlate with the molecular patterns of tumors as evidenced by functional 

NIS expression. This correlation would facilitate detecting the tumor at its early stage, 

investigating the parameters of the tumor, and learning the tumor progression by in vivo 

gamma-ray 1magmg. 

By combining a novel gamma camera dedicated to biological imaging and the 

unique signatures of endogenous NIS gene expression, the goals of this work are not only 

an attempt to evaluate the potential of NIS as the reporter gene for early breast tumor 
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detection using mouse models, but also an effort to characterize breast tumors and to 

monitor tumor development in vivo using NIS. Specifically, these goals include: 

1. To demonstrate the efficacy of the gamma camera in imaging MMTV mammary 

tumors by correlating the gamma images with immunohistochemical signals representing 

NIS indirectly. 

2. To demonstrate the capability of the gamma camera in detecting small tumors (<10 

mm) and monitoring mammary glands bearing no tumors. 

3. Based upon the underlying functional NIS expression in mammary tumors, to define 

the extent of known breast cancer by tumor sizes and patterns and investigate their 

correlations. 

4. To investigate the kinetic characteristics of tumors by dynamic patterns and trends of 

radiotracer uptake and evaluate their potential correlation with other tumor parameters 

5. To study tumor progression through in vivo, non-invasive imaging of the same tumor 

of the same animal over time (which consequentially requires a low dose of radioisotope). 

Our careful analysis has confirmed that the sodium iodide symporter molecular 

biology data substantiate the 1251 imaging data and demonstrate the validity of in vivo 

radionuclide imaging for mammary tumor study. We have shown the feasibility of 

gamma-ray imaging in a morphological study ofMMTV mammary tumors. Using a low

level dose of 14 ~-tCi and confirmed by immunohistochemistry, we have demonstrated 

that sodium iodide may also potentially be a promising radiotracer for detecting non

palpable tumors at the earliest stage (as small as 3 mm). We have identified three patterns 

of iodine distribution in MMTV tumors and found static correlations among the patterns, 

iodine uptake, and tumor size based upon a population of 40 MMTV mice exhibiting 59 
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tumors in total for a total of 69 gamma-ray imaging cases. This preclinical study has also 

shown that radionuclide scintigraphy using N a 1251 provides a promising method for in 

vivo study of morphological changes such as size and distribution pattern associated with 

tumor development, implying significant therapeutic value such as monitoring tumor 

response to pharmaceuticals over time or at different stages of development. Details 

about this study are described in the following sections. 

6.3 Animals and tumor distribution 

Animal studies were carried out with protocols approved by the WM animal 

research committee. C57BL/6J derived, MMTV -infected mice were employed for this 

study. Tumors appeared randomly and were imaged when monitored visually. 

To date, 40 MMTV mice with a total of 59 tumors have been imaged. A tumor 

was visually determined in vivo or ex vivo. As shown in the left panel of Fig. 6.1, this 

population revealed that most MMTV mice developed one (n=23, 57%) or two tumors 

(n=15, 38%). MMTV mice rarely develop more than three tumors (n=l, 5%). The 

possibilities of developing left (n=19) and right (n=20) thoracic tumors in MMTV mice 

were found to be approximately the same, 32% and 34% respectively (Fig. 6.1, right). A 

few mice developed left (n=2) or right (n=l) cervical tumors. Statistical analysis indicates 

the possibility of developing thoracic tumors (n=39, 66%) is significantly (p< 0.05) 

higher than that of inguinal tumors (n= 17, 29%). 
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Fig. 6.1 tumor distribution in the MMTV mice 
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These mice were divided into three groups. The first group (n=24) were in vivo 

imaged only once with the gamma camera. A second group (n=ll) were randomly 

selected and repeatedly imaged twice (n = 9) or three times (n=2). A third group (n=5) 

were randomly selected, imaged once and then euthanatized. Tumors and also mammary 

glands with no visual tumors were collected and studied, followed by 

immunohistochemistry for comparison with the gamma-ray images. Two sets of 

C57BL/6J female mice with no tumors served as control animals. Each set (n=3) includes 

a nulliparous, a previously lactating and a lactating mouse. After gamma-ray imaging, 

each animal was euthanatized and their mammary glands were collected for 

immunohistochemistry. 

6.4 Whole-mount immunofluorescence methodology 

Whole-mount immunofluorescence methodology was used to confirm the 

presence ofNIS protein in the tissues. The whole-mount immunohistochemistry protocol 

was slightly modified from Johnstone et al. [259]. After the processing according to the 

protocol, normal glands, control glands and tumors were visualized under a dissecting 

scope in both bright and fluorescein filtered fields. An overlay image was created using 

Adobe Photoshop 7.0. 

6.5 In vivo gamma-ray imaging of MMTV tumors 

6.5.1 Data acquisition 

We obtained all the gamma-ray images and data with the compact gamma camera 

briefly described in section 3.3. The 5 mm thick CuBe parallel-hole collimator with 0.55-
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mm square holes separated by 0.11 mm septal walls was employed in this study. This 

collimation provides an effective area of about 46 x 96 mm2 and a spatial resolution 

(FWHM) about 2.5 mm on contact with the detector surface. 

Five minutes prior to gamma-ray imaging, sodium pentobarbital was administered 

IP (intraperitoneally) as anesthetic to the animals. Each animal was then injected with 14 

f..lCi Na125I in NaOH in the femoral biceps followed immediately by one-hour imaging 

with the gamma camera. The animal was monitored and kept stable over the imaging 

period. 

The detector and related data acquisition instruments were interfaced to a 

Macintosh G3 computer via a SCSI port. Each photon detected by the gamma camera 

was referred to as an "event". A program developed with the data acquisition software 

Kmax (Sparrow, Inc.) recorded the time, energy and computationally determined 

coordinates of every event sorted into the data files. These were later transferred to a 

Macintosh G4 for further processing. 

6.5.2 Data analysis 

An analysis program developed with data processing and visualization language 

IDL (Research Systems, Inc, Boulder, Co) was used to group event files into 5-min time 

interval blocks recorded as two-dimensional matrices (referred to as "timecuts"). Each 

matrix represents a 5-min digitized gamma-ray image of that mouse. The coordinates of 

each pixel correspond to the planar position where the isotope decay is visualized in the 

mouse by the detector. The total counts stored at each pixel represent the radioactivity 

detected at that location over the 5-min interval. Another IDL-based program was used to 
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visualize the gamma-ray images and sum the total events in a designated region of 

interest (ROI) in the images. This treatment allowed time-dependent distribution analysis 

of any chosen pathological or physiological region such as tumors or mammary glands. 

Mammary glands 

We chose a square ROI with an area of 9 pixels (each pixel is 1.2 x 1.2 mm2
) to 

analyze the mammary glands. In order to compare the radioactivity contained in the 

mammary glands, we normalized the values by expressing the data as a percentage of the 

total injected dose (%ID) defined by an ROI with 2880 pixels covering the entire body of 

the mouse. In evaluating the relationship between immunohistochemistry and gamma-ray 

imaging, the radioactivity accumulated from the mammary gland over the 50-55 min time 

interval was compared and correlated visually with the intensity of the NIS green signal 

in the overlay image from immunohistochemistry. 

Tumor size, radioiodine uptake and pattern 

Each tumor was analyzed with a rectangular or square ROI with variable size so 

as to fully contain the tumor without including nearby organs such as heart or salivary 

glands. In order to present the actual size and morphology of the tumor, each pixel in the 

tumor ROI was corrected by subtracting a threshold value to exclude the major 

background of radioiodine uptake due to blood flow. A threshold is the mean value per 

pixel of all the four-pixel ROis in the same abdominal or thoracic region of the mouse in 

each gamma-ray image. The usage of this threshold for blood flow correction was 

justified by the statistics indicating that the value of the threshold was in the same range 

as the radioiodine activity in the heart region 55 minutes post injection. We determined 
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the tumor size over each 5-min time interval as the total number of non-zero pixels in the 

corresponding tumor ROI with threshold subtracted and with any negative values set to 

zero. We defined the size over 50-55 min time interval as the actual size (in pixels) of the 

tumor. We regarded the total counts in the corrected tumor ROI as the net uptake of 

radioiodine in the tumor excluding the major effect of blood flow. For the purpose of 

comparing the radioactivity contained in the tumors, we again normalized these values to 

the total injected dose. 

Static correlation between the tumor size and radioactivity in the tumor over the 

50-55 min time interval was evaluated. A 13-level contour map of the corrected ROI was 

used to reveal the patterns of radioiodine distribution in the tumor over each 5-min time 

interval. We identified the radioiodine distribution pattern of each tumor and then 

associate the patterns with tumor size. 

In order to evaluate the potential correlation or association among tumor size, 

pattern, and dynamic trend of radioactivity (over the imaging period of one hour) in the 

tumor, we group the tumor size into three types: small (1-75 pixels), medium (75-150 

pixels) and large (above 150 pixels). For each type, we associated the mean dynamic 

trends of radioactivity with tumor patterns. We then correlated the trends of each pattern 

with the types. 

Difference plots 

As with the tumor pattern contour, we used contour plots of the difference 

between raw tumor ROis without threshold deduction to reveal the regions where 

radioactivity changes occurred over time. Differences were analyzed with three sets of 
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raw tumor ROis between different time intervals: 0-5 min vs. 5-10 min, 25-30 min vs. 

30-35 min, and 50-55 min vs. 55-60 min. The difference between each set of tumor ROis 

was calculated by subtracting the earlier raw tumor ROI from the later ROI. The total 

difference values were obtained and compared. The consequent positive and negative 

values (absolute values) distributed in the "difference ROis" were then visualized as both 

a positive plot (counts increase over time) and a negative plot (counts decrease over time) 

respectively. A hot region in a positive difference plot therefore implies radioiodine 

uptake while a negative plot means loss of radioactivity over that period. We divided the 

regions representing radioactivity change into central regions and edge regions. Central 

regions represent central or near-central areas within a tumor while edge regions are at 

the edge or out of the tumor area defined by the tumor ROI with threshold deducted. 

Potential trends of the change of the difference over time were analyzed and related with 

tumor pattern and/or size. 

Statistical analysis 

Linear regression analysis is used to evaluate possible correlations between 

selected data sets. When appropriate, Spearman's correlation coefficients are used to test 

for significance between some of the measured parameters. P<0.05 is considered 

statistically significant. 

6.5.3 Correlation between gamma-ray imaging and immunohistochemistry 

The prerequisite to apply our imager to this study is that we must first 

demonstrate the validity of in vivo radionuclide imaging of NIS expression in mammary 

tumors. For this purpose, we have evaluated the correlation between the data of gamma-
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ray imaging and immunohistochemistry with normal mammary glands (NMGs, n=6) of 

non-tumor-bearing C57Bl/6J mice, mammary glands bearing no visual tumors (n=5) and 

mammary tumors (n=5) of MMTV mice. Current literature suggests that NIS should only 

be expressed during lactation. A comparative study with an unrelated strain of C57 mice 

was imaged and stained for NIS to test current literature. For each set of C57 NMGs at 

different stages, we first compared their immunohistochemical result visually and then 

their ROI data from gamma-ray imaging quantitatively, followed by correlation between 

immunohistochemistry and gamma-ray imaging. For the purpose of evaluating the 

potential effect of MMTV on normal mammary glands, we semi-quantitatively compared 

the radioactivity difference between the C57 NMGs and MMTV MGs bearing no visual 

tumors. The immunohistochemical results of both the MMTV tumors and MGs with no 

visual tumors were visually correlated with their gamma-ray images. 

The results have demonstrated that the data of gamma imaging correlates 

precisely with molecular biology data from immunohistochemistry. For the strain of C57 

mice, nulliparous mice (n=2) did not incorporate 1251 in their mammary glands nor did 

they stain for NIS. Conversely, lactating C57 mice (n=2) strongly incorporated 1251 into 

lactating glands and stained highly for NIS that reflected the gamma camera image. 

Multiparous C57 mice (n=2) did not incorporate 1251 into previously lactating mammary 

glands, but when staining for the NIS one multiparous animal did have very low 

localization of the NIS and the other did not. The immunohistochemical results are well 
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Fig. 6.2. The ROis ofNMGs of two groups ofC-57 mice bearing no tumors. Each group 
includes a lactating, a previously lactating and a virgin mouse. 
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correlated with the ROI results (Fig. 6.2) from gamma-ray imaging. Based on this 

comparative study the C57 mice strain supports the literature findings that NIS is 

primarily expressed and present during lactation. 

ROI data from gamma-ray imaging indicated that associative mammary glands 

(n=5) ofMMTV tumor bearing mice on occasion incorporated 125I at higher rates than the 

NMG of C57 mice. Localization of 125I in those mammary glands can even be visually 

observed in gamma-ray images (Fig. 6.3), which was further confirmed by 

immunohistochemistry demonstrating NIS expression. Moreover, the patterning of green 

signal produced by indirect antibody staining against the NIS in MMTV tumors (n=5) 

appears highly parallel to the patterning of 125I incorporation visualized by the gamma 

camera for each tumor size. Shown in Fig. 6.3 is an example of this correlation. Two 

tumors have been confirmed in this mouse through dissection. One was a large tumor 

dissected into four pieces with the alignment as shown in the gamma image. The other 

was a non-palpable tumor with 3 mm diameter. The top-right image in Fig. 6.3 shows the 

immunohistochemical result of the dissected large tumor. That pattern of NIS expression 

correlates precisely with the pattern shown in the gamma image. The bottom-right image 

shows the correlation between gamma image and immunohistochemistry even for a 

tumor as small as 3 mm in diameter. Hence, the correlations have been verified between 

immunohistochemistry and scintigraphy of C57 NMGs, associative MGs and tumors of 

MMTV mice, leading to the assumption that the usage of radionuclide imaging is valid in 

studying molecular activities associated with NIS-expressing MMTV tumors. 
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Fig. 6.3. Correlation between gamma image and immunohistochemistry. (Left panel) 
gamma planar image of a MMTV -infected mouse bearing one large thoracic tumor in the 
left and one small non-palpable inguinal tumor in the right. The large tumor was 
dissected according to the alignment in the gamma image. (Right panel) top, 
immunohistochemical data of the dissected large tumor; middle, the right inguinal 
mammary gland bearing no visual tumors as the control; bottom, immunohistochemical 
data of the small tumor measuring 3 mm in diameter. The green signal produced by 
indirect antibody staining against the NIS demonstrates the presence and pattern of NIS 
expression in the mammary tumors. 

6.5.4 Results of gamma-ray imaging 

Following the validation of efficacy of our system for gamma-ray imaging of 

MMTV tumors, we have analyzed the data of all applicable imaging cases and evaluated 

the performance of gamma-ray imaging in studying mammary tumors. Accordingly, the 
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significant parameters of interest have been investigated including radiotracer distribution 

in a tumor, tumor size and pattern, and potential association/correlation among those 

parameters. 
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Fig. 6.4. Distribution of times for 125I to reach the maximum tumor size within one hour 

6.5.4.1 Time for full-size distribution of iodine in MMTV tumors 

R01 analysis shows that 1251 reaches maximum distribution in MMTV tumors at a 

variety of times after the injection of radioactivity. Shown in Fig. 6.4 is the statistical 

diversity of time for 1251 to distribute everywhere (maximum tumor size) in a MMTV 

tumor though about 45% of the tumors (n=31) present full tumor-size distribution during 

the period of 20-30 minutes post injection. The distribution of radioiodine in seven 

tumors was relatively slow and continued even during the period of 55-60 minutes post 

injection. After analyzing all time cuts for imaged tumors the 50-55 minute range 

reflected well maximum tumor dispersal and thus tumor size. 
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(a) Center-to-edge pattern 

(b) Multi-spot pattern 

(c) Ring pattern 

Fig. 6.5. Three typical patterns of 125I distribution in MMTV tumors 
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6.5.4.2 Three patterns of 1251 distribution in MMTV tumors 

We have identified three patterns of 1251 distribution in the tumors from the 69 

imaging cases: center-to-edge (n=24), multi-spot (n=31) and ring (n=4). The center-to

edge pattern as shown in Fig. 6.5a initially presents localization of radioiodine in one 

region. With that region as the center, radioiodine distribution expands nearby and then to 

farther regions until the whole tumor is fully distributed with 125!. For the multi-spot 

pattern presented in Fig. 6.5b, tumors initially present localization of radioiodine at one 

or more spots and then at other spots and/or their nearby regions. The ring pattern (Fig. 

6.5c) is a special case of multi-spot pattern when the multi spots form a ring shape. We 

treat ring-pattern tumors as multi-spot tumors in the following analysis because of the 

small number of samples and similar behaviors as the latter. 

6.5.4.3 Relationship among tumor patterns, size, and 1251 uptake 

Results also indicate that there is an association/correlation among tumor patterns, 

size and uptake of 1251 over the 50-55 min interval. Revealed in Fig. 6.6 is that center-to

edge pattern associated with the tumors with small size ( < 7 5 pixels in area where one 

pixel is 1.2 mm x 1.2 mm) while medium (76-150 pixels in area) and large tumors(> 150 

pixels in area) are all multi-spot pattern. The overall accumulation of 1251 in a tumor 

increases as the tumor size increases. Further analysis shows that 1251 level in the small

size tumors during the period of 50-55 min post injection demonstrates a significant 

correlation between 1251 uptake and tumor size (Fig. 6.7, left; r2 = 0.553, p<0.05). The 

moderate-size tumors present a correlation with the size, but not significant (Fig. 6. 7, 

middle; r2=0.3392, p>0.05). No correlation is found between uptake in the large tumors 

and size (Fig. 6.7, right; r2 =0.0406). 
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We find no overall association of tumor patterns with the mean dynamic trends of 

1251 uptake (n = 9 for each catalog of tumor size). However, for the small-size tumors, 

mean iodine uptake (n= 9, Fig. 6.8, top) is much higher for the center-to-edge pattern 

than for the multi-spot pattern even though the tumors in these two catalogs have 

approximately the same mean size (Fig. 6.8, bottom). 
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mm 

(b) 50_55 min vs. 55_60 min 
Fig. 6.9. Difference plots at beginning and ending periods of imaging 

6.5.4.4 Difference plots 

The difference plots revealed that the most activity change, usually 1251 

accumulation, appeared in the first ten minutes post injection as shown in Fig. 6.9a. The 

regions in the difference plots presenting the greatest local change of 1251 activity usually 

happen at or very near the regions that initially were very active in 1251 uptake. This 

change may also appear at the regions or their vicinity that previously had the locally 

greatest activity change. Negative plots indicate that significant loss of 1251 from some 

regions of the tumor usually appears during the last period of imaging (30-60 minutes, 

Fig. 6.9b ). The dynamic trend of positive/negative area corresponding to radioiodine 
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uptake/loss in that period was correlated with the trend of net counts difference. A variety 

of trends during the same period of time (30-60 minutes) indicated the diversity of the 

appearance of local positive/negative regions presenting the uptake/loss of radioiodine. 

However, no association/correlation of these trends was found with tumor patterns or 

sizes. The analysis results indicate that the regions eventually losing 125I in most tumors 

(n=48 out of 67) were in both central and edge area of the tumor. 

6.5.5 In vivo gamma-ray imaging and tumor development 

In vivo imaging facilitates repetitive study of the same tumor in the same animal. 

Therefore, we employed gamma-ray imaging to monitor the tumor development over 

time. The MMTV mice (n=ll) in the second group were imaged repeatedly with time 

intervals from four to 27 days. We evaluated the change of tumor size over time and 

correlated it with the change of total radioactivity in the entire tumor and the change of 

mean counts per pixel of the tumor respectively. The size change owing to tumor 

development was further associated with the possible pattern change. Moreover, we 

investigated the potential relationship of the tumor location with tumor development. 

Two MMTV tumors had no detectable size change for time i~tervals from six to 

27 days while the rest of the tumors (n = 9) increased their size by 45-185% after four to 

21 days with tumor development. These changes are positively associated with the 

changes of radioactivity of 125I in the entire tumors (Table. 6.1 ). The tumors with no 

detectable change of size had no substantial change of total radioactivity while those 

developing their size increased the total uptake of 125!. However, we found no clear 
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correlation between the change of tumor size and the change of mean counts per pixel of 

a tumor representing the average level of the NIS expression in the tumor. 

Imaging date post Tumor Pattern Tumor size 125I uptake in the 
injection (days) (pixels) entire tumor 

0 Center-to-edge 24 0.00477 
14 Center-to-edge 52 0.01284 
35 Multi-spot 107 0.01918 

Table 6.1. Repeated imaging of a right thoracic tumor 

The results based on the limited samples (n = 11) show no relationship between 

the speed of tumor development and the initial size or pattern of the tumor. Both initially 

small and large tumors can develop their size rapidly. Pattern change (n=2) was observed 

from center-to-edge to multi-spot for initial tumors with a small size. Tumor location was 

not found to be related to these conclusions. In summary, radionuclide scintigraphy is a 

promising method for in vivo study of morphological changes such as size and 

distribution pattern associated with tumor development. 

6.6 Discussion and conclusion 

In an attempt to address the needs of high-performance breast cancer imaging, we 

have investigated in this study the application of in vivo gamma ray imaging for breast 

cancer study using a novel gamma camera and endogenous NIS expression in a mouse 

model. We have validated in this work the efficacy of in vivo gamma imaging of MMTV 

tumors with NIS as the reporter gene through molecular biology assay 

immunohistochemistry. We have demonstrated the capability of the dedicated gamma 

camera in detecting tumors as small as 3 mm and monitoring mammary glands bearing 

no visual tumors. Based upon analyzing the gamma images of endogenous NIS 
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expression in the mammary tumors of MMTV -infected mice, we have determined the 

sizes, patterns and radioactivity of the known tumors and the correlations among those 

parameters. We have also investigated the dynamic patterns and trends of radioactivity of 

the tumors over the one-hour imaging period and their relationship with other tumor 

parameters. We have finally shown the feasibility of in vivo gamma imaging for the study 

of tumor development over time through the same tumor of the same animal using a 

relatively low dose (14 ~-tCi) of 1251. The results suggest that the combination of a 

dedicated gamma camera and endogenous NIS expression has great promise to meet 

current imaging requirements for breast cancer studies. 

Our results show that gamma images correlate with immunohistochemistry data 

not only for moderate tumors but also tumors as small as 3 mm. This is a significant 

achievement because small tumors usually have less NIS expression than larger tumors 

and thus may take up only a small amount of radioactivity for gamma imaging. As shown 

in Fig. 6.3, our dedicated gamma camera clearly shows localization of 1251 in both the 

large and small tumors. The 3 mm diameter small tumor (Fig. 6.3) was actually non

palpable until we confirmed it after the mouse dissection. Interestingly, we also notice 

that the mammary glands bearing no palpable tumors of over 50% MMTV -infected mice 

presented localization of radioiodine. Owing to the limited opportunity of dissection for 

confirmation, it remains unclear whether these mammary glands contain tiny tumors or 

not. Whether this phenomenon results from underlying biological issues related to 

MMTV is also of interest for further studies. However, these results have strongly 

suggested the advantage of our dedicated gamma camera for detecting a breast tumor at 

its earliest stage using NIS as the reporter gene. 
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We have evaluated the relationship among the tumor parameters such as sizes, 

patterns and radioactivity. As many other studies have done, we have correlated the 

tumor size with the total radioactivity in the tumor. We have found a similar general 

relationship that larger tumors accumulate more radioactivity. In addition to that, we 

learned that the small tumors present a relatively stronger correlation with their sizes 

while larger tumors have little or no significant relationship with tumor sizes. These 

results imply that the role of biological parameters beyond size is becoming more 

important in affecting the uptake of radioactivity in tumors with increasing size. Our 

study further reveals tumor patterns and the association with tumor sizes. We have 

identified three patterns of MMTV tumors with tumor size, i.e. center-to-edge (type I), 

multi-spot and ring (type II). These two types of tumors are associated with tumor size 

below and above 75 pixels, respectively. Though the manner in which these types of 

tumors are related to their biological properties requires further investigation, these 

results clearly suggests the feasibility of characterization of such tumors using in vivo 

gamma 1magmg. 

Our study also indicates a possible way to reveal radioiodine transfer in the tumor 

by referring to the positive and negative difference plots. Presented in Fig. 6.10 is a 

presumed pathway for iodine transfer in a tumor with center-to-edge pattern: 

1. Initial uptake of 125I via NIS expression of the active tumor tissues; 

2. Adjacent tumor tissues become hot with 125I transferred from central regions; 

3. 125I transfer continues from the near-central regions to edge regions 

Our preliminary study of tumor progression shows a possible association between the 
development of a small tumor and the change of tumor pattern. We have also found 
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Fig. 6.1 0. Presumed pathway for iodine transfer in a tumor. (Top row:) Uptake of 125I via 
NIS expression of the active tumor tissues in the first ten minutes post injection of 
radiotracers; (Middle row:) adjacent tumor tissues become hot with 125I transferred from 
central regions in the period of 25-35 minutes post injection; (Bottom row:) 125! transfer 
continues from the near-central regions to edge regions in the period of 50-60 minutes. 
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that the diversity of the speed of tumor development has no clear relationship with the 

initial size of the tumor. Though this study was limited by the sample size and a large 

sample size may provide more comprehensive results, the results indicate that gamma 

imaging with a dedicated gamma camera is a promising in vivo method of monitoring the 

morphological changes associated with tumor development. 

In conclusion, we have demonstrated that in vivo gamma 1magmg usmg a 

dedicated gamma camera with NIS as the reporter gene is very promising for breast 

cancer studies based upon mouse models. Specifically, we have confirmed the efficacy of 

gamma imaging of mammary tumors by correlating the distribution of 1251 observed in 

gamma images with the data of immunohistochemistry. We have found that NIS is an 

effective reporter gene for detecting a tumor at its earliest stage. Based on this reporter 

gene, we have identified three patterns of 1251 distribution in tumors, i.e. center-to-edge, 

multi-spot and ring, which are associated with tumor sizes. Our study particularly shows 

that the total 1251 uptake in a tumor has little or no significant correlation with increasing 

tumor size. The dynamic changes of pattern and trends of 1251 uptake in a tumor suggest a 

possible way to reveal the pathway of 1251 transfer in the tumor. Our preliminary results 

also indicate that the imaging method we proposed here has the potential for a range of 

studies of tumor development. 
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Chapter 7 

Future directions and conclusion 

7.1 Future directions 

We have developed a versatile imaging system suitable for biological studies 

using small animals. Our collaboration is pursuing further extension of the capabilities of 

this system in three directions: development of a relatively large field-of-view detector 

interchangeable for parallel-hole or pinhole imaging, incorporation of a mouse 

monitoring system, development of computer-aided pattern recognition program for 

image analysis of mammary tumors. 

7.1.1 Development of a novel LaBr3 detector 

One major improvement we are achieving is the development of a novel high

performance detector readily adaptable to parallel-hole and pinhole SPECT thus meeting 

the different requirements of a variety of biological studies using small animals such as 

mice or rats. The new flat-panel PSPMT, Hamamatsu H9500, has become available 

recently. The H9500 PSPMT has an external size of 52 mm x 52 mm x 33.3 mm with an 

effective view area 49 mm x 49 mm and a 1.5 mm glass window, which results in only a 

small dead space between adjacent tubes. A matrix of 16 x 16 anode pads is utilized in 

this module with anode pitch of 3 mm in both directions. Therefore, H9500 PSPMTs 
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provide better spatial resolution than the earlier H8500 modules from the same 

manufacturer. The quantum efficiency of the H9500 is also good, i.e. 24% at 420 nm. 

These properties make the H9500 PSPMT an excellent choice for developing a new 

detector for small animal imaging. This new tube has demonstrated its applicability to 

gamma-ray imaging [72, 260-263]. Several research groups have carried out studies on 

this tube and have reported on its suitability and feasibility for nuclear medicine imaging 

applications. Inadama et al. [262] and Imrek eta!. [261] have demonstrated the suitability 

of this PSPMT when applied to PET imaging of small animals. The simulations and 

preliminary measurements reported by Garibaldi et al. suggest the feasibility of high

performance gamma-ray detectors for early diagnosis and therapy monitoring of breast 

cancer built from arrays of smaller anode pixel size PSPMTs such as H9500 using their 

new multi-channel electronics [260]. Our collaborators, Popov et al. and Proffitt et a!. 

have developed high-performance readout electronics and high-rate USB data acquisition 

system suitable for the application of H9500 PSPMTs in PET and SPECT imaging, 

respectively [72, 263]. These studies indicated that it was promising to design a high

performance detector based on the H9500. As to scintillators, lanthanum bromide (LaBr3) 

has shown very promising characteristics as a gamma-ray imager and spectrometer. The 

excellent energy resolution of LaBr3 (6% at 140 keV and ~3% FWHM at 662 keV) 

makes it the major competitor of semiconductor detectors working at room temperature. 

LaBr3 scintillator also has high light yield (63000 photons/MeV), flat response as a 

function of incident gamma energy and short scintillation decay time (16ns). These 

features satisfy the principal requirements for gamma-ray imaging such as high light 

output, high photo-fraction and excellent energy resolution [264, 265]. Several groups 
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have proposed LaBr3 detectors for gamma-ray imaging [74, 264, 266]. The report on 

recent advances and future perspectives of gamma imagers for scintimammography by 

Pani et al. [264] indicated that a LaBr3(Ce) gamma camera showed superior spatial and 

energy resolution compared with a previous camera based on a Nal(Tl) scintillator array. 

Despres et al. investigated a PSAPD-based gamma camera using continuous crystals 

including LaBr3(Ce) [74]. Their results suggest that the continuous crystal configuration 

is especially well suited for a small-animal imaging system. A study by Yamamoto et al. 

confirmed that LaBr3(Ce) is promising for low-energy gamma-ray imaging [266]. 

Building upon those reported results, we have designed a novel detector that is 

suitable for either parallel-hole or multipinhole SPECT. Shown in Fig. 7.1 is a 

photograph of the integrated detector including scintillator, PSPMTs and electronics. This 

detector incorporates a single piece of 3 mm thick continuous LaBr3(Ce) scintillator and 

an array of 2 x 2 Hamamatsu H9500 PSPMT modules. High-performance readout 

electronics and high-rate USB data acquisition system have been employed for this 

detector [72, 263]. The preliminary test shows that the intrinsic resolution of the detector 

is around 0.7 mm for 166 keV gamma rays. Owing to the relatively large sensitive area of 

100 x 100 mm2
, the detector (if equipped with parallel-hole collimator) will allow us to 

image a pair of mice simultaneously for immediate comparison of their response to 

radiotracers. Multipinhole collimators can also be easily employed in this detector to 

enable relatively large field-of-view multipinhole circular or helical SPECT with a goal 

of improved performance. 

161 



Fig. 7.1 Photographs ofthe prototype LaBr3(Ce) detector 

Currently we can achieve spatial resolution of 1.2-1.5 mm for multipinhole (up to 

five 1 mm diameter pinholes) circular/helical SPECT using a 110 mm diameter circular 

detector. However, submillimeter resolution would allow us to resolve better the fine 

structure of the tissues we are studying. The novel LaBr3 detector will make it easier to 

further improve the resolution of our multipinhole circular/helical SPECT system. An 

effective way to improve the resolution is to reduce the diameter of the pinhole, which 

consequently reduces the sensitivity of the detector. The relatively large sensitive area of 

the LaBr3 detector enables us to use more pinholes to compensate for the loss of 

sensitivity due to the reduced pinhole diameter. 

7.1.2 Mouse anesthesia vital sign monitoring system improvement 

To optimize imaging conditions for animal subjects, several changes in current 

procedures can be envisioned. They could involve the use of gas anesthesia and 

continuous vital sign monitoring. Future development of this capability is expected as we 
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modify a veterinary monitoring system (Arc 2000, Silogic International Ltd.) and a 

heated anesthetizing gas flow system. The improvement is called in progress in our lab. 

7.1.3 Computer-aided pattern recognition for tumor studies 

In the ongoing study of mammary tumors using MMTV -infected mice, we have 

concluded that it is important to determine the pattern of each individual tumor and to 

correlate that pattern with other parameters such as size or stage of development in order 

to produce an illustrative relationship which may imply biological information for 

researchers. In the imaging study of MMTV tumors as described in Chapter 6, we 

determined tumor patterns visually. With the advances in computer science, a variety of 

computer-aided methods of image analysis have been developed for different imaging 

modalities. Segmentation of ROI (in mammography) [267] or volume of interest (VOl in 

PET and SPECT) [201, 268] are significant to determine the morphological 

characteristics for pattern recognition and for quantitative, objective analysis of the target 

tissues. The segmentation method in dynamic scintigraphy [269] producing a functional 

image representing regions with temporal dynamics, seems interesting though it has been 

proposed for dynamic cardiac imaging. Researchers use a combination of observers such 

as radiologists and physicians for visual pattern determination and semi-quantitative 

methods such as standardized uptake value (SUV) to classify patterns in PET imaging 

data [270]. An alternative approach to evaluate the heterogeneity of tissues in images is 

to use the quantitative output scores of image analysis techniques, i.e. automated 

quantitative analysis (AQUA) score [271], fractal dimension [272], or artificial neural 
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networks (ANNs) output [273]. It is likely, therefore, that there is potential in applying 

some of these pattern recognition techniques to image analysis of MMTV tumors. 

7.2 Conclusion 

A compact imaging system equipped with novel detectors suitable for biological 

imaging of small animals has been developed. This versatile apparatus is capable of dual

modality (gamma ray/X-ray) planar imaging, parallel-hole SPECT, and multipinhole 

circular/helical SPECT. In particular, we have developed compact gamma cameras for 

biological imaging based upon newly available PSPMT modules. We have recently 

extended this system to be capable of multi pinhole helical SPECT based on a 110 mm 

diameter circular detector. The efficacy of this effort has been verified with a number of 

phantom and mouse studies. This imaging system has further been applied to several 

biological studies including mouse thyroid and mammary tumors. Results demonstrate 

that this work can readily meet a number of different requirements for a variety of small 

animal imaging applications. This compact, high-performance imaging system is not only 

suitable for in vivo small animal research as evidenced by the applications described here 

but its modular construction will allow expansion and further development as new needs 

and new opportunities arise. 
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