
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

2008 

Synthesis and field emission properties of carbon nanostructures Synthesis and field emission properties of carbon nanostructures 

Kun Hou 
College of William & Mary - Arts & Sciences 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Condensed Matter Physics Commons, Electrical and Computer Engineering Commons, 

and the Materials Science and Engineering Commons 

Recommended Citation Recommended Citation 
Hou, Kun, "Synthesis and field emission properties of carbon nanostructures" (2008). Dissertations, 
Theses, and Masters Projects. Paper 1539623523. 
https://dx.doi.org/doi:10.21220/s2-dn2g-zn95 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at 
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an 
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=scholarworks.wm.edu%2Fetd%2F1539623523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.wm.edu%2Fetd%2F1539623523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=scholarworks.wm.edu%2Fetd%2F1539623523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-dn2g-zn95
mailto:scholarworks@wm.edu


Synthesis and Field Emission Properties of Carbon Nanostructures 

Kun Hou 

Harbin, Heilongjiang Province, P.R. China 

M.E., Materials Science and Engineering, Zhejiang University, 2003 
B.E., Materials Science and Engineering, Zhejiang University, 1998 

A Dissertation presented to the Graduate Faculty 
of the College of William and Mary in Candidacy for the Degree of 

Doctor of Philosophy 

Department of Applied Science 

The College of William and Mary 
January, 2008 



APPROVAL PAGE 

This Dissertation is submitted in partial fulfillment of 
the requirements for the degree of 

Approved by the Committee, September, 2007 

Committee Chair 
CSX Professor Dennis Manos, Applied Science 

College of William and Mary 

Professor Mark Hinders, Applied Science, 
College of William and Mary 

Research ro ssor on Outlaw, Applied Science 
College of William and Mary 

o essor Jack Kassler, Physics 
College of William and Mary 



ABSTRACT PAGE 

This dissertation focuses on developing carbon nanostructures for application as the 
electron emissive material in novel back-gated triode field emission devices. The 
synthesis, characterization, and field emission properties of carbon nanostructures, 
including 1-D carbon nanofibers (CNF), 2-D carbon nanosheets (CNS), and chromium 
oxide coated carbon nanosheets (CrOx-CNS), are presented in this work. 

First, we have fabricated aligned carbon nanofiber based back-gated triode field emission 
devices and confirmed the operation of these devices. 1-D carbon nanofibers were 
directly synthesized on blank TiW substrates using direct current plasma enhanced 
chemical vapor deposition. It was found that the morphology of carbon nanofibers could 
be tuned from spaghetti-like to aligned by adjusting the applied plasma power. Field 
emission properties of spaghetti-like and aligned carbon nanofibers on blank TiW 
substrates were studied using the cartridge holder assembly. Results demonstrated that 
spaghetti-like carbon nanofibers had better field emission performance than aligned 
carbon nanofibers, however, the electrostatic simulation of the triode device 
demonstrated that aligned carbon nanofibers should yield the best device performance. 

Second, we have demonstrated that carbon nanosheets, a 2-D carbon nanostructure 
developed by our group, were a competitive electron emissive material for application as 
the cold cathode in vacuum microelectronic devices. Carbon nanosheets were 
synthesized on a variety of substrates, without the need for catalysts, by radio frequency 
plasma enhanced chemical vapor deposition. Materials characterization results revealed 
that carbon nanosheets consisting of vertically oriented ultra-thin graphitic sheets 
terminating with 1-3 graphene layers were hundreds of nanometers in length and height 
but less than 4 nm in thickness. By using the diode holder assembly, field emission 
properties of carbon nanosheets were studied from a broad perspective, including turn-on 
and threshold field, maximum total current, emission lifetime and stability, and emission 
uniformity. The results revealed that the threshold field of nanosheets ranged from 3.5 to 
5.2 Vl~-tm, which was in the same range as 1-D carbon nanotubes and 3-D diamond. 
Moreover, the lifetime of nanosheets showed milliampere current emission (1.5 mA in a 
de mode and 13 mA in a slow pulse mode) for hundreds of hours without significant 
current degradation after the conditioning process. However, the emission uniformity of 
nanosheets was quite poor due to the existence of "hot runners" during PEEM and FEEM 
observations. Further, the effectiveness of carbon nanosheet based back-gated triode 
field emission device was briefly studied. 

Third, we have demonstrated that the emission uniformity of nanosheets could be 
improved by incorporating a thin chromium oxide coating. The chromium oxide coated 
carbon nanosheets were fabricated by vacuum evaporating thin chromium films on 
carbon nanosheets and sequentially exposing them to the atmosphere. The stoichiometry 
of the oxide was estimated to be 0.37, very close to Cr20 3. PEEM and FEEM 
observations showed excellent emission uniformity of chromium oxide coated carbon 
nanosheets. The field emission properties of chromium oxide coated carbon nanosheets 
were dependent on the coating thickness. The enhanced field emission performance of 
chromium oxide coated carbon nanosheets was observed with an appropriate thickness 
(from 1.5 nm to 15 nm). An explanation for this thickness dependence is suggested. 
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Synthesis and Field Emission Properties of 

Carbon N anostructures 



CHAPTER I 

INTRODUCTION 

1.1 INTRODUCTION TO VACUUM MICROELECTRONICS 

Vacuum microelectronics is a rapidly growing research area that utilizes new 

materials, new microelectronic fabrication techniques, and new approaches in order to 

achieve record levels of performance and reliability. In contrast to solid state 

microelectronics, which operate by virtue of electron movement in the lattice of the 

semiconductor material, vacuum microelectronics relies on the electric field to control 

electron transport in the vacuum [ 1]. To date, vacuum microelectronics has become the 

most important technology for entire classes of high-power, high-frequency amplifiers 

with the most demanding specifications for use in both military and commercial systems. 

The core component of a vacuum microelectronic device is the electron source, also 

called the cathode, which emits free electrons into the vacuum. Traditional cathodes in 

these devices are thermionic emitters operated at temperatures between 950°C and 

2000°C. Although thermionic emitters are relatively inexpensive, demonstrate high 

reliability, and provide high current densities, they have a number of significant 

drawbacks. First, the direct modulation of emitted electrons is rather slow since 

thermionic emission is controlled via emitter temperature. Second, the energy 

consumption of thermionic emitters is quite high. Third, the miniaturization of devices 

equipped with thermionic emitters is almost impossible because of the high heat load. 
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Currently, field emission emitters are considered a better choice to use as the 

electron source in vacuum microelectronic devices because of their high emission current 

density (up to 10 7 A/cm2 at the emission site), low energy spread of emitted electrons 

(less than 500 meV), and simultaneous device response [2]. Since field emission electron 

sources do not require thermal excitation, they can significantly reduce energy 

consumption and increase the lifetime of vacuum microelectronic devices. Moreover, the 

capability of field emission electron sources fabricated to submicrometer scales results in 

the development of very small vacuum microelectronic devices. 

1.2 INTRODUCTION TO FIELD EMISSION 

Field emission is a process by which electrons are extracted from a solid material 

into the vacuum by an intense electric field (1 0 7-108 VI em). It is a quantum-mechanical 

phenomenon in which electrons tunnel through a potential barrier at the surface of a solid, 

as a result of the electric field. The external electric field lowers the surface barrier that 

confines the electrons within the solid so that the barrier becomes nearly triangular in 

shape. As the width of the surface potential barrier at the Fermi energy approaches 2 nm, 

electrons will have a significant probability to tunnel from the highest occupied states of 

the solid into the vacuum. A diagram of the potential energy of electrons at the surface of 

a solid is presented in Figure 1.1 [3]. 

In 1928, Fowler and Nordheim proposed the first widely accepted theory to explain 

field emission from a planar metal cathode [4]. Their theory is based on the following 

assumptions: (1) The metal obeys the Sommerfeld free electron model; (2) The metal 

surface is planar. Therefore, only one-dimensional problem is considered; (3) The 
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Figure 1.1 Diagram of the potential energy of electrons at the surface of a metal [3]. 

potential within the metal is treated as constant, while the potential outside the metal 

changes with regard to the image force and the externally applied electric field. The 

externally applied electric field does not penetrate the metal, and therefore has no effect 

on the electron state inside the metal; (4) The calculation is performed assuming the 

Fermi-Dirac electron distribution in the solid remains at T=O K. 

Under these assumptions, the current density (J) is given by integrating the product 

of the transport probability function of an electron with a given energy tunneling through 

the potential barrier and the electron supply function in the available range of electron 

energies, as given by [5] 

(1.1) 

where n(Ex) is the supply function in the form of [ 6] 
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(1.2) 

and D(Ex,F) is the transport probability function presented as [5] 

1/2 IE 13/2 
D(Ex,F) = exp[- 8.7r(2m) ] x tJ(y) . 

3he F 
(1.3) 

where, m is the electron mass, Tis the absolute temperature, Ex is the electron kinetic 

energy normal to the metal surface, cp is the work function of the metal, F is the 

externally applied electric field, and l't(y) is the Nordheim (elliptic) function. The 

Nordheim function has an expression of 

(1.4) 

where 

(1.5) 

and 

Jr/2 da Jrt2 112 
E(k)= f 2 • 2 112 , K(k)= f (1-esin2 a) da. 

0 (1- k sm a) 0 
(1.6) 

Substituting (1.2) and (1.3) into (1.1) and integrating (1.1) give 

(1.7) 

where t(y) = tJ(y) - (2y I 3)( dtJ(y) I dy), <1> is the work function of the metal, and F is the 

external electric field. This general expression is called the Fowler-Nordheim equation. 

Even though the Fowler-Nordheim equation has been widely used to study field 

emission performance of emissive materials, the validation of the equation is strictly 

limited to perfect conductors that have flat surfaces and are held at T=O K. Therefore, 
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efforts that aim to apply the equation to practical surfaces have to extend the equation to a 

range of applications far beyond the assumptions used to derive it. 

In theory, a high external electric field, on the order of 3000 V /IJ.m, would be 

required to achieve detectable field emission current. Such a high electric field is very 

difficult to generate on flat surfaces, but it can be generated by the field enhancing effect 

of a sharp tip-like structure. If a tip-like structure is exposed to an electric field F0, the 

local electric field Fat the tip apex is higher by a multiplication factor of {3. In the case of 

carbon nanostructures, the most geometrically realistic model of this field enhancing 

effect is a "hemisphere on a post" model, as shown in Fig. 1.2. In this model, a post of 

L 

Emitter Plane 

Figure 1.2 "Hemisphere on a post" model for the field enhancing effect. 
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height L capped by a hemispherical tip is located on a larger emitter plane. The potential 

of the post is equal to that ofthe emitter plane. Forbes et al[7] calculated the field 

enhancement factor ofthis model using conventional finite-element analysis of the field 

and potentials. For Lip in the range from 4 to 3000, the field enhancement factor f3 can be 

represented as 

L o.9 {3 !!! 1.2(2.15 + -) . 
p 

For Llp>3000, the field enhancement factor can be approximately expressed as 

L 
{3 =-. 

p 

(1.8) 

(1.9) 

In the case of thin film emitters where a multiplicity of closely-spaced emitters may exist, 

the field enhancement factor of a given emitter is significantly decreased in comparison 

to the value calculated by this model, due to a screening effect to be described later in this 

thesis. 

When the aspect ratio LIP exceed a thousand, the required electric field of3000 

V/!Jm for electron field emission will occur at the apex of the tip at actual fields as low as 

a few volts per micron. 

A field emission electron source of this sort was developed by Spindt and his co-

workers in 1968 [8]. Spindt-type field emission sources are arrays of thousands or even 

millions of metal cones with sub-micron tip radii formed on silicon substrates using 

conventional lithographic patterning techniques. By placing an electrode a few microns 

away from the emitters, electrons can be extracted at very low applied voltages. 

Unfortunately, Spindt-type arrays have drawbacks that have made them unreliable for 

vacuum microelectronic devices. A catastrophic failure of a single tip often destroys the 
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whole Spindt-type arrays. Also, Spindt-type field emission arrays suffer from high 

manufacturing costs and limited lifetime even in the absence of catastrophic failures. 

Consequently, there is a strong incentive to simplify both the production and design 

of the cathode in vacuum microelectronic devices by replacing Spindt-type field emission 

arrays with carbon nanostructure based thin film emitters. Carbon nanostructures have the 

right combination of properties to make them excellent electron emitters: nanometer-size 

tips, high electrical and thermal conductivity, chemical stability, and potentially low 

manufacturing costs [9]. 

1.3 INTRODUCTION TO CARBON NANOSTRUCTURES 

Carbon nanostructures are material forms composed of carbon atoms, which have at 

least one dimension less than 100 nm [10]. Depending on the morphology, a carbon 

nanostructure is said to be zero-dimensional (0-D), one-dimensional (1-D), or two

dimensional (2-D) nanostructure when it has one or more of its dimension less than a 

hundred nanometers. Conventional forms of carbon, like graphite or diamond, are 

generally referred to as "bulk" material. 

Fullerenes are well-known 0-D carbon nanostructures. Fullerenes were first 

discovered and developed by Smalley and co-workers at Rice University in 1985 [11]. A 

fullerene is a geometric cage-like structure of carbon atoms composed of hexagonal and 

pentagonal faces. The first fullerene discovered was the C6o molecule, a closed cage of 60 

carbon atoms where each side of a pentagon is adjacent to one side of a hexagon. This 

pattern is similar to a soccer ball. An image ofC6o is illustrated in Figure 1.3(a) [12]. 

Carbon nanofibers (CNF) and carbon nanotubes (CNT) are 1-D carbon 
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nanostructures. The earliest reference to carbon fibers is an 1889 patent by Hughes and 

Chambers describing the growth of "hair-like carbon filaments" from carbon-containing 

gases in an iron crucible [13]. The existence of carbon nanotubes in materials engineering 

can be traced back to the seventeenth century with the application as a strengthening 

component in Damascus blades [14]. However, it was not until 1991 that Iijima first 

imaged carbon nanotubes using high-resolution transmission electron microscopy [15]. 

Carbon nanotubes exist in two classes: single-walled and multi-walled. Single-walled 

nanotubes consist of one graphene sheet rolled up in the form of a cylinder with a 

diameter of 1 to 2 nm. Multi-walled nanotubes are formed from arrays of single-walled 

nanotubes that are concentrically nested like rings of a tree trunk. Images of single-walled 

and multi-walled nanotubes are shown in Figure 1.3(b) and 1.3(c), respectively [16, 17]. 

Carbon nanofibers differ from nanotubes in the orientation of their graphene layers with 

respect to the cylinder axis. A nanofiber has an orientation angle between its graphene 

layers and its axis, while a nanotube has graphene layers parallel to its axis. An image of 

carbon nanofibers is displayed in Figure 1.3(d) [18]. 

Carbon nanosheets, consisting of 1-3 graphene layers, are 2-D carbon nanostructures. 

Even though 2-D carbon nanostructures have been used in theoretical calculations for 

graphite related materials for years, it was in the 1990s that petal-like graphitic sheets 

were first discovered by Ando et al [19]. Our group, together with others, first reported 

the existence of self-assembled multilayer graphitic sheets with thickness less than 1 nm 

[20-28]. These carbon nanosheets consist of 1-7 graphene layers, which are usually 

hundreds of nanometers in height and length but only ~1-2 nanometer in thickness. 

During growth, nanosheets may be composed of several graphene layers, but often 
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Figure 1.3 (a) A schematic ofC60[12], (b) A HRTEM image of a single-walled carbon 

nanotubes[16], (c) A HRTEM image of a multi-walled carbon nanotubes[17], (d) A 

HRTEM image of carbon nanofibers[18], (e) A HRTEM image of carbon nanosheets[20]. 
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grow and terminate as 1-2 nanosheets. An image of carbon nanosheets is shown in Figure 

1.3( e) [20]. 

1.4 WORK SCOPE AND ORGANIZATION 

This dissertation focuses on field emission performances of selected carbon 

nanostructure thin films to develop a novel high brightness electron source for the 

application in vacuum microelectronic devices. This application requires that the electron 

source has greater than 10 rnA total emission current and stable emission for hundreds of 

hours. To achieve these requirements, the synthesis, material characterization, and field 

emission properties of carbon nanostructures-including 1-D carbon nanofibers and 2-D 

carbon nanosheets-are studied in this work. 

Chapter II briefly introduces the materials characterization apparatus used for 

carbon nanostructure analysis and the operational principles of these apparatus, including 

scanning electron microscopy (SEM), Raman spectroscopy (Raman), Auger electron 

spectroscopy (AES), energy dispersive X-ray spectroscopy (EDX), photoelectron 

emission microscopy (PEEM), field emission electron microscopy (FEEM), and field 

emission (FE) test system. 

Chapter III outlines the synthesis, structure, and field emission properties of 1-D 

carbon nanofibers directly deposited on blank TiW substrates by direct current plasma 

enhanced chemical vapor deposition (DC PECVD) together with the field emission 

performance of nanofiber based back-gated triode devices. 

Chapter IV presents the synthesis, structure, and field emission properties of 2-D 

carbon nanosheets grown on Si substrates by radio frequency plasma enhanced chemical 
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vapor deposition (RFCVD) and the field emission performance of nanosheet based back

gated triode devices. The turn-on field, maximum total current, emission stability and 

lifetime, and emission uniformity of carbon nanosheets are discussed in detail. 

Chapter V demonstrates the synthesis, structure, and field emission properties of 

chromium oxide coated carbon nanosheets fabricated by vacuum evaporation of a thin 

chromium layer on nanosheets and subsequently exposing to the atmosphere. 

Chapter VI summarizes the overall work of this dissertation and suggests future 

research directions for developing carbon nanostructure based high brightness electron 

source for the application in vacuum electronic devices. 
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CHAPTER II 

MATERIALS CHARACTERIZATION TECHNIQUES FOR CARBON 

NANOSTRUCTURE ANALYSIS 

2.1 INTRODUCTION 

The carbon nanostructures of interest in this work are only nanometers in 

dimensions; thus they can not be observed by optical microscopy. Therefore, a variety of 

materials characterization techniques have been applied to investigate the field emission 

properties of carbon nanostructures with respect to their morphologies, microstructures, 

and components. These techniques include scanning electron microscopy (SEM), Energy 

dispersive X-ray spectroscopy (EDX), Raman spectroscopy (Raman), Auger electron 

spectroscopy (AES), photoelectron emission microscopy (PEEM), field emission electron 

microscopy (FEEM), and field emission (FE) measurement, etc. In this chapter, a brief 

introduction to the materials characterization techniques used for carbon nanostructure 

analysis and their operational principles is presented. 

2.2 SCANNING ELECTRON MICROSCOPY (SEM) AND ENERGY DISPERSIVE X

RAY SPECTROSCOPY (EDX) 

Scanning electron microscopy is one of the most widely used imaging techniques in 

material surface analysis because of its high magnification and high resolution. A 

scanning electron microscope (SEM) uses electrons as the light source and collects 

15 



ejected electrons from the specimen surface for imaging. The microscope takes advantage 

of the short wavelength of the electron to achieve high spatial resolution of the specimen 

surface. A state-of-the-art SEM has a spatial resolution of 0.4 nm at an accelerating 

voltage of 30 KV. 

Beam electrons of SEM are either generated via field emission or thermal emission 

from the cathode material that is usually tungsten or lanthanum hexaboride (LaB6). 

Electrons are then accelerated toward the anode and tuned to a focused electron beam, 

with a diameter on the order of nanometers, through a series of electromagnetic lenses. 

The deflection coil connected to a scan generator makes the primary electron beam raster 

across the specimen surface. Therefore, the magnification of SEM is achieved by 

variation of the length of the primary beam scan as a function of the length displayed on 

the viewing screen. 

When the electron beam strikes the surface of the specimen, it produces two 

separate groups of "reflected" electron that can be used for imaging: backscattered 

electrons and secondary electrons. Backscattered electrons with energies similar to the 

primary electrons originate from the elastic scattering of the beam electrons in the 

specimen. They are used to form images to provide direct information on compositional 

heterogeneity of the sample surface. Secondary electrons, ejected from the specimen 

during the inelastic scattering of beam electrons in the 5-50 nm outermost layer of the 

specimen, have energies in the range ofO to 50 eV. Secondary electrons are commonly 

used for surface topography imaging. All SEM images presented in this work are 

generated from secondary electrons ejected from the specimen. 

An SEM can be subdivided into several component systems that perform various 
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functions, including electron optical and beam control systems, sample manipulation 

system, vacuum system, electron detector, signal processing, and recording systems. A 

schematic drawing of the electron optics of a SEMis displayed in Figure 2.1. 

An SEM can only precisely image conducting solid specimens. Nonconducting 

specimens require some pre-treatments to eliminate or reduce the electric charge build-up 

for SEM imaging when a nonconductor is scanned by the primary electron beam. 

Normally, a thin conformal layer (several nanometers in thickness) of conducting 
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DEFLECTION COIL 

MAGNIFICATION CONTROL 

Figure 2.1 Schematic drawing of the electron optics of a SEM [1 ]. 
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materials such as Au and C is deposited on nonconducting specimens to suppress the 

charge build-up. 

A Hitachi S-4 700 field emission SEM was used in this work to conduct most of 

studies. A picture of this S-4700 SEMis displayed in Figure 2.2. The magnification of 

this microscope ranges from 20 to 500K at an accelerating voltage of 15 KV, yielding a 

spatial resolution of ~1.5 nm at a working distance of 12 mm. 

Figure 2.2 A picture of Hitachi S-4 700 field emission scanning electron 

microscope used in this work. 
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In addition to secondary electrons and backscattered electrons, characteristic X-rays 

can also be ejected from the specimen when a high energy (15-30KV) electron beam of 

SEM strikes a specimen surface. When beam electrons collide with the inner shell 

electrons of specimen atoms, they eject some of these inner shell electrons. The vacancy 

generated in the inner shell is eventually occupied by a high energy electron from an 

outer shell. During this process, the outer shell electron can release its excess energy by 

emitting an X-ray. The X-rays have kinetic energies highly specific to individual 

elements. These characteristic X-rays are detected by energy dispersive X-ray 

spectroscopy (EDX), which allows identification of the elemental composition of the 

specimen. The characteristic X -rays are generated in a region about 2 ~m in depth, so 

EDX measures a very thick layer relative to the thickness of our CNS thin film. 

The EDX spectroscopy used in this work is an EDX PV 7746/61 with an energy 

resolution of ~2.5 eV, which can be seen at the top left (labeled EDX) in Fig. 2.2. 

2.3 RAMAN SPECTROSCOPY 

Raman spectroscopy can provide information of the vibrational frequencies of solid 

materials that depend on the mass of atoms, the strength of interatomic bonds, and the 

geometrical arrangement of atoms in the crystal structure. Raman spectroscopy is a 

conventional material characterization technique used to analyze the microstructure of 

carbon materials. 

Raman scattering, first discovered by Raman in 1928 [2], occurs during the 

interaction between the incident light and the specimen. Raman scattering is a two

photon process that involves the simultaneous absorption of an incident photon and the 
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emission of a secondary photon. If the frequency of the secondary photon, oo5, is smaller 

than that ofthe incident photon, WL, a quantum of energy li(wL- w5)is added to the 

medium and the event is referred to as a Stokes process. If oos>ooL, an elementary 

excitation of the medium is annihilated and this event is called as anti-Stokes process. 

Raman scattering, as an inelastic scattering process, satisfies the conservation of 

momentum. Therefore, the momentum conservation for Raman scattering can be written 

as 

(2.1) 

where kL is the incident wave vector, ks is the scattering wave vector, and qj is the 

individual wave vector ranging from zero to the values at the Brillouin zone boundary. In 

the first-order process, only a single quantum of excitation in the medium participates. 

Therefore, their Raman spectra display a discrete set of peaks that are associated with 

elementary (single-quantum) excitations at the center of the Brillouin zone. However, 

higher-order (multi-quantum) Raman spectra give continua consisting of wave vectors 

that span the whole Brillouin zone of the crystal and correlate to structure in the density 

of states of representative modes. 

Raman scattering can be studied by analyzing the induced polarization P in the 

scattering medium that oscillates at the frequency ws. The polarization is expressed as 

PJws) = 2l5xu E /WL)' 
j 

(2.2) 

where E(wJ is the electric field ofthe incident beam and l5xu is the modulated Raman 

susceptibility. This Raman susceptibility is a second-rank tensor with non-zero 

components determined by the symmetries of the scattering medium and of the 
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elementary excitations. The displacement of an atom in the unit cell at r is written as 

(2.3) 

where Qm( w, q) is the phonon coordinate or the amplitude of the mode of frequency w 

and wave vector q belonging to the mth-branch. For a small amplitude, the modulated 

Raman susceptibility ~xu can be expanded as a function of Qm, written as 

(2.4) 
m mn,qp 

Here, Rjjm) and R&mn) are first-order and second-order Raman tensor, respectively. If the 

first term in the right hand side does not vanish for a particular mode, this mode is said to 

be Raman active. 

When incident laser photons or scattered laser photons have the same kinetic 

energies as the energy separation between two electronic energy states, resonance Raman 

(RR) scattering occurs. The resonance Raman scattering can enhance the intensities of a 

Raman mode by a factor of 103 to 105
• 

Under ambient condition, the crystalline structure of graphite belongs to nth 

hexagonal space group. Therefore, the Brillouin zone-center optical phonon modes for 

3D graphite can be represented by the following combination of irreducible 

representations [3] 

(2.5) 

which are first-order Raman scatterings. Among these irreducible representations, only 

the doubly degenerate E2g mode is Raman active. The corresponding atomic displacement 

for E2g mode is displayed in Fig. 2.3. The E2g
1 
mode occurs at 42 cm-1 and is usually not 

present in the spectrum. The E2g
2 

mode at 1582 cm-1
, the so-called G band, is the most 
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prominent feature in the Raman spectrum of graphite. 

Since impurities and defects break the translation symmetry of the crystal in the 

host material, they can lead to scattering by phonons that have wave vectors far away 

from the zone center. In the case of graphite, a so-called disorder induced band, D band, 

appears at 1350 cm-1 for a laser excitation wavelength of 488 nm. The D band represents 

a second-order Raman scattering consisting of one-phonon and one-elastic event. Since 

the laser excitation wavelength can alter the phonon frequencies, the frequency ofD band 

changes by 53 cm-1 corresponding to a change of the laser energy by 1 eV. The so-called 

G' band is also a second-order Raman scattering that mixes q and -q scattering wave 

vectors. Since the G' band is located at 2700 cm-1
, almost twice frequency ofthe D band, 

the G' band can also be thought as a harmonic overtone ofD mode. 

In addition, a small disorder induced feature, the so-called D' band, is sometimes 

observed at 1620 cm-1
• This feature originates from the high phonon density of states near 

the maximum optic phonon frequency, which is forbidden under defect-free conditions. 

A Raman spectrometer commonly consists of four major components, including 

Figure 2.3 Atomic displacements for the zone-center optical modes for graphite [4]. 
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excitation source, sample illumination and collection system, wavelength selector and 

detection system, and computer control/processing system. 

In this work, all spectra were collected using a Renishaw in Via Raman Microscope 

equipped with four wavelength excitation sources, including Ar+ laser (488 and 514 nm), 

He-Ne laser (633 nm), and NIR laser (785 nm). A picture of this spectrometer is shown in 

Figure 2.4. 

Figure 2.4 A picture ofRenishaw in Via Raman Spectrometer 

at College of William and Mary. 
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2.4 AUGER ELECTRON SPECTROSCOPY (AES) 

Auger electron spectroscopy (AES) is a widely used chemical analysis technique of 

the solid surface. This spectroscopy employs a primary electron beam with typical 

energies between 3 and 30 keV to focus and scan across the top-most atomic layers of a 

conducting sample. Emitted Auger electrons with energy characteristics of the surface 

atom are generated by electron bombardment in a process similar to that producing X

rays for EDX. 

Figure 2.5 displays a schematic of the Auger process. When a primary electron 

beam with sufficient kinetic energy impinges a solid surface, a core level W (i.e. K, L, 

.... ) electron of a surface atom with energy of Ew is ionized and leaves a hole there. This 

empty position can be filled by an electron from a higher energy level Ex. The transition 

of the electron between levels Wand X releases an energy corresponding to !!E=Ew-Ex 

that excites a third electron of the same atom at energy level Ey. This third electron is 

called an Auger electron. The kinetic energy of the Auger electron is the difference of 

energy between three electronic levels involved minus the work function of the solid 

sample 

(2.6) 

As a result, the kinetic energy of the Auger electron characterizes the emitting element of 

the solid surface. 

The Auger peaks are usually small and are superimposed on a slowly-varying 

energy distribution spectrum of secondary electrons that is much higher in intensity, 

which makes them hard to distinguish. Therefore, the spectrum is differentiated to 

enhance the peak features enabling detection of subtle differences and fine structure of 
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Figure 2.5 A schematic of the Auger process [5]. 
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the spectrum. Therefore, the normal representation of Auger spectra is dN(E) against E. 
d(E) 

Auger peaks of light elements are often more easily identified than those of heavier 

elements because a large number of transitions ofheavier elements often overlap with 

those of other atoms. 

An Auger electron spectrometer usually consists of five components, including 

electron source, electrostatic energy analyzer, sample manipulating system, ultra-high 

vacuum chamber, and data collecting system. 

A Physical Electronic 590 surface analysis system was used to collect Auger 

spectra in this work, which has a base pressure of ~1 xi0- 11 Torr. The electron gun of the 

system can provide a 5 kV /50 fJA electron beam with a minimum beam spot size of 25 

!Jm. A double pass cylindrical mirror analyzer (DP CMA) is employed to measure the 

kinetic energy of Auger electrons. More information about the system can be found 

elsewhere [ 6]. 

2.5 PHOTOELECTRON EMISSION MICROSCOPY (PEEM) AND FIELD EMISSION 

ELECTRON MICROSCOPY (FEEM) 

Photoelectron emission microscopy (PEEM) is a non-destructive surface 

microscopic imaging technique that uses photons for illumination. Without the photon 

source, PEEM can be deployed as a field emission electron microscope (FEEM) to 

investigate the field emission property of the specimen. 

PEEM uses both photoelectrons and field emission electrons ejected from the 

specimen surface for imaging. When photons with kinetic energy larger than the work 

function of the specimen strike the surface of the specimen, photoelectrons can be 
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emitted from the specimen surface with a kinetic energy, usually on the order of several 

e V s, defined by 

Ek = hv-cf.> (2.9) 

where t:P is the work function of the specimen. To the extent that t:P varies with 

topography and surface composition, these low energy photoelectrons provide local 

topographical information about the specimen surface and compositional surface 

sensitivity of PEEM observations. An accelerating electric field on the order of several 

V 1~-tm is applied between the specimen mounted in the cathode lens and the first objective 

lens (the extractor) to collect low energy photoelectrons for imaging. Therefore, field 

emission electrons escaping from the surface are captured by the microscope to form 

surface images. These field emission electrons give information about emission sites in 

the form of a single spot or clusters of bright spots. Even though PEEM images both 

photoelectrons and field emission electrons simultaneously using the same electron 

optics, photoelectrons can be made to dominate the image by lowering the extraction 

field to values near (or below) the field emission threshold field of the specimen. 

FEEM images can be captured by simply increasing the accelerating voltage with 

the illumination source switched off. Information about the distribution of emission sites 

and emission uniformity of the specimen can be acquired from these FEEM images. 

PEEM instruments usually consist of five major components, including UV light 

source, sample manipulation system, electron optical system, imaging system, and 

vacuum system. A schematic section view of a typical PEEM is presented in Figure 2.6. 

The ultimate resolution of PEEM is limited by aberrations associated with the cathode 

lens and the accelerating electric field. To date, a state-of-the-art PEEM has a resolution 
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Figure 2.6 Diagram of major components ofPEEM [7]. 

on the order of -2 nm. However, most PEEM instruments, including those used in this 

study, come nowhere near this best-case. 

Two PEEM systems were used to conduct studies presented in this work. One is a 

modified Elmitec PEEM III with electromagnetic lenses at Ohio Univeristy, the other one 

is a modified Staib PEEM with electrostatic lenses at NIST. Photographs of these two 

systems are displayed in Figure 2.7. Both PEEM systems have a spatial resolution on the 

order of -1 f!m at the operation pressure of -10-8 Torr with an accelerating electric 
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Figure 2. 7 Pictures of applied PEEM systems. (a) A modified Elmitec PEEM III at Ohio 

University, (b) a modified Staib PEEM at NIST. 
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field of ~5 V/f.!m. When these two PEEM systems work as FEEM, the spatial resolution 

is usually significantly degraded. 

2.6 FIELD EMISSION MEASUREMENT 

Field emission (FE) measurement is a characterization technique concentrating on 

the spatially average electrical properties of specimens. By measuring the emitted current 

from the specimen with respect to the applied field, comparative studies aimed at 

optimizing field emission performances of device-sized samples (0.1-1 0 mm) can be 

conducted. 

FE measurement is conducted by applying an electric field between the sample and 

the anode and measures the current collected in the anode. FE test requires a high vacuum 

environment, usually with the pressure of the testing chamber on the order of 1 x 1 o-8 Torr 

or better, to minimize gas effects on the sample performance. Neutral and ionized 

residual gas molecules can strike the sample surface during the FE test, causing gas 

adsorption, changes of work function, and ion bombardment damage to the sample. 

Meanwhile, outgassing of the anode due to electron bombardment produces molecules or 

ions that may also affect the sample via adsorption and bombardment effects that degrade 

its field emission performance. 

A FE test system normally consists of five major components, including ultra-high 

vacuum (UHV) testing chamber, sample holder assembly, high voltage power supply 

unit, current measurement unit, and PC-based data collection system. A schematic of the 

automated FE measurement system used in this work is presented in Figure 2.8. The 

sample is placed in an UHV vacuum test chamber equipped with an OSAKA 
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magnetically levitated 1 000 1/s turbo molecular pump that gives a base pressure of 

~1 xi0-10 Torr. Vacuum compatible electric feedthroughs allow application ofhigh 

voltage to the cathode and measurement of the current collected by the anode. The 

cathode and anode are part of the sample holder assembly that is cooled by a NESLAB 

UL T -80 ultra low temperature bath to dissipate the heat at the anode that is generated by 

the electron bombardment. A negative bias is supplied to the specimen (the cathode) by a 

Glassman PS/EQOIOR120-22 high voltage power supply that can provide up to 10 kV at 

1 A. The emitted current is measured by a Keithley 6485 Picoammeter that can measure 

down into the pA range. A 12 kQ resistor is connected in series between the Glassman 

power supply and the specimen to protect the power supply and the picoammeter by 

limiting transient currents. In triode device tests, a floating, battery-driven power supply 

of up to 120 V is inserted into the circuit to supply a positive bias to the gate relative to 

the cathode. Data collection is automated by Labview PC programs. Twice each second, 

31 



the collecting system records the measured anode current (I), applied voltage (V), and 

applied electric field (F) into a text file. The recorded anode current is an average over 

one hundred such measured anode currents. A picture of the FE test system is displayed 

in Figure 2.9. 

The sample holder assembly is the core component of the FE test system, which 

usually consists of an anode, a cathode (the specimen under test), a sample stage, spacers, 

and other parts. Three kinds of sample holder assemblies were used in this work: a 

cartridge holder assembly, a diode holder assembly, and a 24-pin header assembly. 

Figure 2.9 A picture of the automated FE test system. 
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The cartridge holder assembly was designed to accommodate the carousel of a 

Physical Electronic 590 surface analysis system. A schematic of the cartridge sample 

holder is shown in Figure 2.1 0. The specimen, usually carbon nanofibers deposited on 

TiW substrates, forms the cathode in the assembly. The cathode is insulated from the 

grounded stainless steel cartridge and a stainless steel plate by two Ah03 spacers that are 

each 125 !Jffi thick. The stainless steel plate anode is parallel to the cathode to construct a 

plane-to-plane diode testing configuration. Since the assembly is close packed, the gas 

conductance between the anode and the cathode is poor. As a result, arcing frequently 

occurs and damages the sample in the process of high current (over rnA range) 

measurements. 

The 24-pin header assembly was originally designed for the triode test of carbon 

nanostructure based field emission devices, but was also employed for diode test of 

samples. The device, or the sample, is placed on top of two 500 !Jm Si rectangular 

Figure 2.10 A schematic of the cartridge holder assembly. 
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spacers in the well of the 24-pin header, between which indium solder is located. When 

the temperature ofthe assembly is raised to ~160°C, the stack is pressed until it joins the 

two spacers with melted indium. The device or the specimen is therefore firmly soldered 

to the well ofthe 24-pin header (Evergreen Semiconductor Materials, Part No. KD-

78516-C). The cathode and gate of the device are connected to the specific pins of the 24 

pin header by double wire bonding. A photograph of the 24 pin header assembly is 

displayed in Figure 2.11. In the case of diode test, no wire bonding is required. A 

tantalum plate anode is positioned over the well, parallel to the device, or the specimen, 

to form a plane-to-plane test configuration. The time-consuming hand-assembling 

procedures of the 24-pin header limit the number of tests that can be done. Moreover, the 

i 

1 ... Back-
: gate 

Figure 2.11 A photograph of the 24 pin header assembly [8]. 
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dielectric breakdown on the 24-pin header itself can occur when a high voltage (> 5000V) 

is applied. Nevertheless, the 24-pin header assembly is the preferred sample holder 

assembly for triode tests. 

The diode holder assembly was designed to maximize the gas conductance between 

the anode and the specimen during the diode test. A polyimide or mica cube, 32 cmx32 

cmx 15 em in size, is used as the sample stage in the assembly. The cube is machined to 

form a vacuum conductance hole with a diameter of 12 mm in the center of the stage. A 

top view schematic ofthe diode holder assembly is displayed in Figure 2.12(a). The 

specimen is laid over the central hole of the stage and held by two copper clamps. An 

electrically grounded copper bar, 6 mmx 32 cmx 6 mm, is used as the anode, which is 

placed above two 254 ~-tm Alz03 spacers on top of two 500 ~-tm Si rectangular spacers to 

generate an anode and cathode spacing of 254 ~-tm. The copper anode is laid across the 

specimen and also held by two copper clamps, as shown in Figure 2.12(b). To remove the 

heat generated in the test, especially during direct current lifetime tests, a 10 mm wide 

copper belt is mounted on the anode by tightening a bolt through a larger copper bar to 

ensure that the upper surface of the anode is completely and firmly contacted by the belt. 

Meanwhile, the other end of the belt is mounted onto a vacuum-compatible copper 

electric-feedthrough that is cooled by the ultra low temperature bath. A picture of the 

diode holder assembly mounted with the copper electric-feedthrough is shown in Figure 

2.12( c). The open space between the anode and the cathode together with the cooling 

setup for the anode allow this assembly being employed for the high emission current 

measurement up to tens of milliamperes and for the direct current lifetime test at the 

current level of more than 1 rnA for hundreds of hours. 
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Figure 2.12 (a) The top view schematic ofthe diode holder assembly, (b) the cross-

sectional view schematic of the diode holder assembly, (c) a picture of the diode holder 

assembly mounted with the copper electric-feedthrough. 
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2.7 Summary 

In this work, a variety of materials characterization techniques have been employed 

to investigate the morphology, microstructure, composition, and functional properties of 

carbon nanostructures, including SEM, EDX, Raman, AES, PEEM/FEEM, and FE. An 

introduction to these characterization techniques together with their operational principles 

is briefly summarized here. 

Since this thesis focuses on the field emission properties of carbon nanostructures, 

FE and SEM are the most frequently used methods to understand the relationship 

between the material morphology and its field emission properties. PEEM/FEEM are also 

applied to investigate the field emission uniformity of carbon nanostructures through the 

observation of emission site distributions. In addition, Raman provides microstructure 

information of carbon nanostructures. XRD and Auger is applied to investigate the 

surface component of coated carbon nanostructures. 
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CHAPTER III 

FIELD EMISSION PROPERTIES OF CARBON NANOFIBERS 

3.1 INTRODUCTION 

This chapter outlines the synthesis, structure, and field emission properties of 

carbon nanofibers (CNF) directly deposited on blank TiW substrates by direct current 

plasma enhanced chemical vapor deposition (DC PECVD), as well as the field emission 

performance of a CNF based back gate triode device. The mechanism of achieving 

aligned CNF by manipulation of the local electric field across the plasma sheath and the 

growth rate of CNF through the adjustment of input plasma power is also presented. 

Carbon nanofibers (CNF) [1], also called bamboo-like carbon nanotubes, are 

distinguished from carbon nanotubes (CNT) by the orientation of graphene layers with 

respect to the cylinder axis. Unlike CNT whose graphene layers are parallel to the tube 

axis, a CNF has an orientation angle less than 90° between its graphene layers and its 

axis. Carbon nanofibers are typically synthesized using thermal chemical vapor 

deposition (TCVD), which is a process whereby a solid material is deposited from a 

vapor by a chemical reaction occurring on or in the vicinity of a substrate surface [2]. 

Conventional CVD solely relies on the thermal energy to activate the chemical reactions 

and requires a high substrate temperature of more than 800oC in the case of CNF and 

CNT deposition. However, such a high CNF deposition temperature is not compatible 

with field emission device processing that requires lower temperatures. A high substrate 
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temperature in the process of emissive material deposition on field emission devices can 

cause metal atoms to diffuse into the dielectric layer used to separate the cathode and the 

gate that is usually a Si02 film with a thickness of hundreds of nanometers, leading to the 

device failure in future tests. Therefore, a plasma enhanced chemical vapor deposition 

(PECVD) is employed for the CNF synthesis for field emission devices, in which a 

chemical reaction is activated by a plasma. Consequently, the deposition temperature is 

substantially decreased. Our group, as well as others, have successfully synthesized CNF 

on various substrates such as Si, Ti, W, Ta, and Au, using PECVD [3-6]. In general, a 

buffer layer has been required between the catalyst film and the substrates to prevent the 

catalyst from diffusing into the substrate. For example, buffers such as TiN and Si02 [7], 

have been commonly used. However, the introduction of these layers in field emission 

devices not only complicates device fabrication, but the high resistance of these layers 

also degrades performance. 

Carbon nanofibers have been considered as an electron emissive material for 

vacuum electronic devices due to their unique combination of physical, electronic and 

thermal properties, as well as their high geometrical aspect ratio [8-10]. Traditional field 

emission triode devices have their gates situated between the anode and cathode, 

providing the field necessary to initiate electron emission at an applied voltage on the 

order of several hundreds volts [ 11]. However, some shortcomings of this type of device, 

such as the complicated processing steps and frequent failure from arcing and ion 

sputtering, are well known. Therefore, the use of a field emission device geometry called 

a back gate triode, where the perturbing gate field is generated by an electrode hidden 

behind the cathode rather than situated between the anode and the cathode as in 
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traditional triode devices have been proposed [12-16]. Such a back gate triode structure is 

able to protect the gate from catastrophic arcs and the influence of electron or ion 

bombardment, which improves the device robustness and reliability. Moreover, a 

carefully shaped cathode geometry combined with a layer of CNF along the central ridge 

of the cathode lines can overcome the high gate voltage required for device operation and 

the dielectric layer breakdown caused by charge-injection during the operation. Two

dimensional electrostatic modeling of the field above the cathode crest suggests that the 

highest electric field points are expected to concentrate on aligned CNF along the crest. 

Therefore, successful operation of back gate triode devices require the ability to directly 

synthesize aligned CNF on the top of the cathode crest without using a buffer layer. 

3.2 DIRECT CURRENT PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION 

(DC PECVD) APPARATUS 

A plasma is a collection of free charged particles moving in random directions that 

is, on the average, electrically neutral [17]. The types of plasma employed together with 

CVD are microwave (MW), radio frequency (RF), and direct current (DC) according to 

the type of power coupled to the plasma. In this section, we describe a DC PECVD 

apparatus designed and constructed for the purpose of CNF deposition. 

A schematic of the DC PECVD apparatus is displayed in Figure 3.1. The apparatus 

is built upon a stainless steel chamber equipped with a LEYBOLD turbo pump and an 

Edwards two-stage mechanical pump, which can offer a base pressure of ~2xl0"7 Torr. 

Two stainless steel plates parallel to each other are the cathode and the anode in the 

apparatus, respectively. One stainless steel plate fits with the sample holder that contains 
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Figure 3.1 Schematics of DC PECVD apparatus. 

a commercial four-inch GE ceramic heater, serving as the cathode. Another stainless steel 

plate of equal diameter functions as an electrically grounded, movable anode whose 

position can be adjusted to provide a plasma gap from 0 to 4 em wide by adjusting a 

linear motion feedthrough. Gases, including Ar, NH3, C2H2, H2, and CH4, are introduced 

to the apparatus by separate mass flow controllers (MFC). A picture of the DC PECVD 

apparatus is displayed in Fig. 3.2. 

Using a negative de bias applied to the cathode, a de glow discharge is generated 

between two electrodes. The generation of the de glow discharge is as follows. When an 

electric field is applied to the gas species between the electrodes, a small number of 

initial charge carriers in the gas start moving towards the electrodes. Since ions are 

heavier than electrons, energy is transferred more rapidly to the electrons than the ions. 
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Figure 3.2 A picture of the DC PECVD apparatus. 

Therefore, electrons can accumulate sufficient kinetic energy to have a high probability 

of producing excitation or ionization during collisions with neutral particles on their way 

to the electrodes. Meanwhile, the ions collide with the cathode to release secondary 

electrons. When enough of the electrons generated produce sufficient ions to regenerate 

the same amount of electrons consumed, the discharge becomes self-sustaining. 

The electrons tend to flow from the plasma to adjacent electrodes at a faster rate 

than the ions. Consequently, a nonneutral potential region between the plasma and the 

cathode is formed, which is called as a cathode sheath. In the region of this sheath, most 
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of voltage drop occurs. 

The electric field generated across the cathode sheath has been shown to provide 

carbon nanofiber alignment by inducing dipole moments preferentially along the axis of 

carbon nanofibers [18, 19]. These dipole moments act to align the fiber in the direction of 

the field and combat any randomizing effects during CNF growth. The sheath electric 

field can be estimated from the Child's Law, which gives the space-charge-limited 

current between two plane electrodes as a function of the potential difference between 

them with fixed spacing. Below we review the derivation of the sheath electric field 

given by Lieberman and Lichtenberg beginning with the Child's law [17]: 

J = 4 E (2e)l/2 V~
12 

o 9 o M sz (3.1) 

where J0 is the ion current density, M is the ion mass, Vo is the applied bias, and s is the 

sheath thickness. Since the bias applied to the cathode is highly negative with respect to 

the plasma-sheath edge, only ions are present in the cathode sheath [17]. Moreover, the 

ion flux conservation can written in the form as 

(3.2) 

where no is the ion density at the plasma-sheath edge, and un is the Bohm velocity 

defined by 

(3.3) 

The sheath thickness, s, therefore can be obtained by substituting Eq. 3.3 into Eq. 3.2, and 

introducing the electron Debye length at the plasma-sheath edge in the form of 

(3.4) 

where 
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(3.5) 

is the electron Debye length and Te is the electron temperature. A typical glow discharge 

is characterized by I: ... 1 - 1 OV and n0 ... 1 08 
- 1013 cm-3 

[ 17]. Hence, the cathode sheath 

can be of order of 100 De bye lengths in a glow discharge. 

Typical deposition parameters applied for CNF synthesis in this chapter are 4.8 Torr 

chamber pressure, 635°C substrate temperature, and 400-600 V applied negative bias. By 

taking a representative ion energy about half of the bias voltage, the working plasma 

density (no) is derived to be ~ 101° Cm-3 from the plasma Current density at -600 V bias, 

which is 2.16 mA·cm-2. The electron temperature (Te) here is taken as 1.5 eV [3]. 

Consequently, the cathode sheath is roughly estimated to be at least 1 mm in thickness, as 

visually observed during the deposition. Correspondingly, the electric field generated 

across the plasma sheath is several tenth volts per micron depending on the negative bias 

applied to the cathode. 

3.3 DEPOSITION OF CARBON NANOFIBERS 

Two types of substrates are used for this study: blank TiW substrates and back gate 

triode field emission devices using TiW crests as the cathode, displayed in Fig. 3.3. In 

both cases, there are no buffer layers applied between the catalyst layer and TiW layer. 

Blank TiW substrates were fabricated on heavily doped n-type Si wafer (resistivity 

of 0.001 ~0.005 Q.cm) with a 0.5 f.tm Si02 dielectric layer formed by thermal oxidation. 

Afterward, a 400 nm thick TiW film is sputtered over the Si02 dielectric layer. Then a 10 

nm Ni film is evaporated on the TiW film as catalysts for the CNF growth. 
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(a) blank TiW substrate 

(b) back gate triode device 

I 0 nm Ni luyer 

400 nm TiW luyer 

500 mn Si02 layer 

tl-type heavily doped Si 

10 nm Ni luyer 

400 nm ·n W luyer 

500 nm Si02 layer 

tHype heavily doped Si 

Figure 3.3 Schematics of blank TiW substrate and back gate triode device. 

The fabrication process for the back gate triode field emission device is similar to 

that for the back-gated buried line device reported elsewhere [20, 21]. In this work, the 

sequence starts with a heavily doped n-type Si wafer with a 0.5 !-till SiOz dielectric layer 

formed by thermal oxidation. Subsequently, positive photo-resist is patterned to form a 

series of lines and streets having 4!-tm line widths and a 12 !-till center-to-center distance. 

After sputtering a 400 nm thick TiW layer and evaporating a 10 nm Ni film as a catalyst 

for CNF growth over the patterned resist, a lift-off process was used to remove the 

photoresist to complete the back gate triode fabrication. 

To deposit CNF on both blank TiW substrates and back gate triode devices, the DC 

PECVD apparatus was initially pumped down to 10-4 Torr. The substrates were placed on 
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the cathode of the apparatus and the distance between the anode and the cathode was held 

constant at 1 em. The temperature of the substrate was maintained at 635°C. Acetylene 

(C2H2) and ammonia (NH3) were used as the carbon source and the etchant gas, 

respectively. The carbon nanofiber synthesis was performed at a pressure of ~4.8 Torr. 

NH3 flow was first introduced to the chamber at 40 seem, the plasma was then initiated 

by applying a negative de bias to the sample holder. The desired plasma power in the 

range of 16-IOOW was achieved by varying the applied de bias from 400 V to 600 V. 

Afterward, 10 seem C2H2 was immediately introduced to the chamber by a separate mass 

flow controller. The CNF deposition lasted 10 miuntes. 

In the case of CNF synthesis on back gate triode devices, co-deposited amorphous 

carbon on these devices was removed after the synthesis by soaking in a hydrofluoric 

solution for 5 minutes, followed by rinsing in de-ionized water, and then placed in an 

ultrasonic bath for 30 seconds. 

3.4 CHARACTERIZATIONS OF CARBON NANOFIBERS 

SEM images of carbon nanofibers are shown in Figure 3.4(a)-(d), which are 

synthesized on blank TiW substrates at ~635°C with plasma powers of 16W, 51 W, 72W, 

and lOOW, respectively. Only spaghetti-like (twisted) CNF are observed on TiW 

substrates at a plasma power of 16W. The bottom part of the spaghetti-like CNF is 

vertical to the TiW substrate; the top has a random orientation. At 51 Wand 72W of 

plasma power, both spaghetti-like and aligned CNF are observed on the TiW substrate. 

Interestingly, it can be seen that CNF grown at 72 W plasma are more aligned than those 

grown in a 51 W plasma, a trend which continues until 100 W, where only aligned CNF 
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Figure 3.4 SEM images of carbon nanofibers synthesized on blank TiW substrates 

under different plasma powers, (a) 16W, (b) 51 W, (c) 72W, (d) lOOW. 
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Figure 3.5 Average growth rate ofCNF as a function of plasma power. 

are observed. The growth rate of CNF can be calculated by dividing the average height of 

CNF as observed from the SEM image by the growth time, shown in Figure 3.5. The 

results reveal that the CNF growth rate declines with increasing plasma power. It is found 

that aligned CNF are fabricated when their average growth rate is lower than 150 

nm/min. 

The HRTEM image of a typical CNF grown on the TiW substrate is shown in 

Figure 3.6. It can be seen that CNF has a bamboo-like structure, in good agreement with 

the observations described elsewhere [1]. The graphene layers ofthe CNF are not 

perfectly aligned parallel to the fibers long axis and a thin amorphous carbon surface 

layer can also be seen in the image. The misalignment of graphene layers and the 

existence of the amorphous carbon layer indicate that CNF grown on the TiW substrate 

have more disorder compared with multi-walled carbon nanotubes presented in the 
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literature. 

Raman spectra of CNF synthesized on blank TiW substrates under different plasma 

powers are displayed in Figure 3.7. Two peaks are presented in the spectra: one is located 

at~ 1356 cm-1 representing a disorder-induced D-band, the other is located at~ 1584 cm-1 

and represents the tangential-mode G-band of well-ordered graphite. The ratio of the 

intensity of the D-band to the G-band has been widely used to determine the degree of 

disorder in carbon nanofibers and carbon nanotubes [22]. In this work, the intensities of 

D-band and G-band are calculated from the respective peak areas. The ratios of the 

intensity ofD-band toG-band are 0.88, 1.00, 1.11, and 1.27 for plasma powers of 16W, 

51 W, 72W, and lOOW, respectively. The increasing ratios of the intensity of the D-band 

to the G-band with increasing plasma power shows the higher the plasma power applied, 

the more disorder in the CNF structure. 

Figure 3.6 HRTEM image of a representative CNF grown on blank TiW substrate. 
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Figure 3.7 Raman spectra ofCNF grown on blank TiW substrates 

with regarding to various plasma powers. 

SEM images of spaghetti-like and aligned CNF based back gate triode devices 

grown at ~635°C using a 75 mm-diameter cathode before and after post-treatment are 

displayed in Figure 3.8. Here, the back gate triodes were formed on 4 ~-tm wide TiW lines 

having trapezoidal cross-sections separated by 12 ~-tm streets. With this configuration the 

highest field points are expected to concentrate on carbon nanofibers present at the top of 

the cathode crests where the electrostatic screening effect on the nanofibers is reduced. 

Figs. 3.8(a) and 3.8(b) illustrate that both spaghetti-like and aligned CNF can be 

selectively grown on the top of TiW lines, decorated with a 10 nm thick Ni catalyst, using 

a 30W plasma and a 60W plasma, respectively. It is also observed that amorphous carbon 
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Figure 3.8 SEM images of spaghetti-like and aligned CNF based back gate triode 

device before and after post-treatments applied to clean the co-deposited amorphous 

carbon between two nearest TiW cathode crests. (a) spaghetti-like CNF based back 

gate triode device before post-treatments, (b) aligned CNF based back gate triode 

device before post-treatments, (c) spaghetti-like CNF based back gate triode device 

after post-treatments, (d) aligned CNF based back gate triode device after post

treatments. 
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is co-synthesized on the Si02 dielectric layer in the streets between the cathodes. The 

existence of the amorphous carbon on the dielectric layer not only can cause dielectric 

layer breakdown during the device operation, but also can significantly decrease the gate 

electric field penetration at the top of the cathode. Therefore, it is essential to remove the 

co-deposited amorphous carbon after the CNF growth. Figs. 3.8(c) and 3.8(d) show that 

soaking and ultra-sound cleaning steps successfully remove amorphous carbon. However, 

this post-processing procedure also can be seen to remove spaghetti-like CNF from the 

TiW back gate triode devices. Thus spaghetti-like CNF can not be used for such triode 

structures. Fortunately, although the density of aligned CNF is also diminished by the 

aggressive post-treatment, enough of the deposited aligned CNF survive to permit 

effective triode operation. 

3.5 PLASMA DIAGNOSTICS 

Generally speaking, carbon nanofibers are formed through a "solution-diffusion

precipitation" process with participation of various radicals generated by the plasma [1]. 

Knowledge of radicals in the plasma provides insight into not only understanding CNF 

formation, but also predicting morphology, structure, and property of CNF. Therefore, it 

is important to study radicals by plasma diagnostics. Optical emission spectroscopy 

(Ocean Optics USB2000) is employed here for this purpose. Emission peaks in the 

spectra allow us to identify corresponding radicals appearing in the plasma. A series of 

optical emission spectra of the working plasma were gathered with 1 0 seem C2H2 and 40 

seem NH3 gas flow under 4.8 Torr at a substrate temperature of ~635°C under various 

plasma powers. All spectra are averaged over a minimum of three individual 
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measurements to improve the signal-to-noise ratio. To compare with the spectra obtained 

from the working plasma, spectra of pure acetylene and pure ammonia plasmas were also 

collected in the same pattern. The optical emission spectra of pure acetylene plasma, pure 

ammonia plasma, and the working plasma of CNF deposition with a power of 72W are 

displayed in Figure 3.9(a)-(c). The emission peaks are summarized in Table 3.1. 

All emission peaks listed in Table 3.1 have been observed from spectra of the 

working plasma under various plasma powers. But only some of them could be observed 

from spectra of pure NH3 and pure C2H2 plasma. Emission peaks ofN2, NH, N2+, Ha, and 
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Figure 3.9 Optical emission spectra of (a) pure C2H2 plasma, (b) pure NH3 plasma, and 

(c) a typical working plasma used for CNF synthesis on blank TiW substrates. 
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Table 3.1 Summary of emission peaks observed from the pure NH3 plasma, 

the pure C2H2 plasma, and the working plasma [21]. 

Emission Wavelength 
System Transition Occurrence 

Peak (nm) 

391.4 B2I: -x2:L; pure NH3 plasma 
N2+ First negative system 

427.8 working plasma 

388.3 
CN Violet system B2:L-A2D working plasma 

415.8 

516.5 A3ng -x3n pure C2H2 plasma 
c2 Swan system 

473.7 working plasma 

315. 9 pure NH3 plasma 
N2 Second positive system C

3D -B3D 
357.7 working plasma 

pure C2H2 plasma 
CH 431.0 4300 A system A2~ -x2n 

working plasma 

pure NH3 plasma 
NH 335.5 3360 A system A3n -x3L 

working plasma 

Ha 656.3 
pure NH3 plasma 

Hydrogen atomic line pure C2H2 plasma 

H~ 485.3 working plasma 
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H~ are observed in the spectrwn of the pure NH3 plasma. Meanwhile, emission peaks of 

CH, C2, Ha, and H11 are found in the case of the pure C2H2 plasma. The absence of 

emission peaks of CN violet system in both spectra of pure NH3 and pure C2H2 plasma 

indicates that the CN radical must be formed through chemical reactions in the working 

plasma by conswning both nitrogen bearing and carbon bearing radicals generated from 

The relative nwnber density of radicals appearing in the plasma can be evaluated by 

the intensities of their corresponding emission peaks in spectra. Therefore, the intensities 
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Figure 3.10 Intensities of CN violet system, N2 + first negative system, and H" line 

detected from the working plasma as a function of plasma powers. 
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of CN violet system, N2 + first negative system, and Ha line representing the amount of 

CN radical, N/ radical, and H radical as a function of plasma powers are shown in 

Figure 3.10. It is found that all intensities increase with increasing plasma power from 

16W to 88W, then stay roughly constant until the plasma power reaches the supply limit 

of lOOW. The results are consistent with the observations of Hash et al [23], who found 

that the percentage of decomposed ammonia and acetylene increased rather than linearly 

in the working plasma as a function of the increasing DC plasma power in the low and 

medium plasma power range. Meanwhile, the percentage of decomposed ammonia and 

acetylene stayed constant in the high plasma power range. Hash et al found that almost 

80% of the acetylene and 60% of the ammonia were decomposed at the highest plasma 

power. 

Since the mass flow rate of C2H2 and the chamber pressure were the same during all 

CNF depositions, the total amount of carbon remains unchanged under various plasma 

powers. However, it has been suggested that hydrocarbon radicals are more readily 

decomposed on Ni catalysts compared to cyanogens given that the C-N bond strength is 

748 kJ/mol and C-H bond strength is only 338.4 kJ/mol [24]. Therefore, the increasing 

amount of cyanogen as a function of plasma power indicates a correspondingly reduced 

density of hydrocarbon radicals in the working plasma. As a result, the growth rate of 

CNF declines as a function of plasma power, consistent with the result shown in Fig. 3.5. 

Fig. 3.10 also demonstrates that the amount of N/ and H increases with the plasma 

power, which is consistent with the higher decomposition rate of ammonia and acetylene 

at high plasma power. The increasing amount of N2 + and H are likely to affect CNF 
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crystallinity. The atomic hydrogen plays an important role in removing co-deposited 

amorphous carbon from CNF, but can also lead to undesirable etching of nanofibers 

when a large amount of the atomic hydrogen is generated in the working plasma. Teo et 

al [24] pointed out that this undesirable etching causes nanofibers to be slightly undercut, 

which may generate nanoscale disorders in nanofibers. Further, when N2+ ions travel 

through the cathode sheath, they gain substantial kinetic energy on the order of hundreds 

of eV. Even though collisions occur in the sheath, some fraction of energetic N2+ ions can 

lead to damage in nanofibers. As more N2+ ions are generated in the working plasma, a 

more intense ion bombardment occurs on nanofibers, consistent with our observation of 

ion current increasing from 40 rnA at 16W plasma to 170 rnA at 1 OOW plasma. 

Therefore, much higher nanoscale disorder is expected to be observed from aligned CNF 

synthesized in an 1 OOW plasma. This explains the increasing ratio of the D-band to the 

G-band with increasing plasma powers in Raman spectra, Fig. 3.7. 

3.6 ALIGHMENT OF CARBON NANOFIBERS 

We expect that the electric field generated in the plasma sheath and the growth rate 

of CNF play a significant role in determining the morphology of CNF synthesized by DC 

PECVD. The sheath width of the de plasma used in this work is estimated to be at least 

on the order of 1mm, while carbon nanofibers are only a few micrometers in length. A 

strong electrostatic force acts on the nanofibers due to the induced polarization in the 

direction of the nanofiber axis. This electrostatic force creates a uniform tensile stress 

along the catalyst particle-nanofiber interface for the entire duration of CNF growth 

leading to a well-aligned vertical growth of CNF [19]. 
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But vertical growth of CNF can not be maintained if there is a fluctuation in the 

tensile stress. This tensile stress fluctuation is thought to originate from the non-uniform 

carbon precipitation around the perimeter of the catalyst particle [25], causing nanofibers 

to bend and lose their alignment. 

When the growth rate of CNF is fast, the electrostatic force acting on nanofibers is 

not large enough to overcome the misalignment caused by the tensile stress fluctuation 

before defects are locked into nanofibers by addition of more atoms. Then, spaghetti-like 

CNF is expected to synthesize on the substrate, as seen in cases of CNF grown on TiW 

substrates at plasma powers of 16W, 51 Wand 72W. On the other hand, when the growth 

rate of CNF is slow, the electrostatic force can overcome the tensile stress fluctuation. 

Thus, aligned CNF are expected to grow on TiW substrates, as seen in the case of CNF 

grown at the plasma power of 1 OOW. 

3.7 FIELD EMISSION OF CNF ON BLANK TiW SUBSTRATES 

Field emission tests were conducted with a diode configuration in an UHV 

chamber. Samples were mounted into the cartridge holder assembly acting as the cathode. 

An electrically-grounded stainless steel plate, separated from the cartridge sample holder 

by a 300 ~m thick aluminum oxide spacers, serves as the anode. During the test, the 

cathode was biased by a high-voltage power supply (Glassman PS/EQ010R120-22) 

Figure 3.11 shows the emission current as a function of the applied electric field 

and the corresponding Fowler-Nordheim (F-N) plot (inset) for the CNF grown on blank 

TiW substrates at different plasma powers. The turn-on field of CNF is defined here as 

the applied field required for an emission current of 1 ~A. The observed turn-on fields of 
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CNF samples grown at plasma powers of 16W, 51 W, 72W, and 1 OOW are 3.20 V /~m, 

5.40 V/~m, 8.15 V/~m. and 12.10 V/~m, respectively. The results indicate the turn-on 

field ofCNF increases with increasing plasma powers. The corresponding F-N plots 

presented in the inset show the approximate linear relationship in the measurement range. 

Thus the observed field dependence of the emission current is most likely non-linear 

consistent with a tunneling mechanism. The increasing turn-on field with increasing 

plasma power might be caused by a change of the field enhancement factor f3 of the 

nanofiber thin film. Here, the field enhancement factor f3 refers to the average geometric 

enhancement factor of the nanofiber thin film by averaging aspect ratios through all 

nanofibers and taking into account the screening effects from neighboring 
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nanofibers (See Sec. 4.6). The field enhancement factor f3 can be estimated from the 

slope of the F-N plot according to the normal expression of Fowler-Nordheim (FN) 

equation [26] defined as 

I= 1.54 X 10-
6 
Af3

2
V

2 
ex c6.83 X 10

7 
<1>

312
) 

<l> p f3V , (3.6) 

where A is the emission area and f3 is the field enhancement factor. Therefore, the slope 

-6 83 107
<1>

312 

of the F-N plot is equal to · x . Ifwe assume that regardless of the 
f3 

morphology, and independence of the degree of disorder, the average work function for 

these CNF materials is equal to that ofbulk graphite (~5 eV) [27, 28], then the computed 

equivalent field enhancement beta factors would be 1938, 1164, 905 and 658 for CNF 

synthesized at plasma powers 16W, 51W, 72W and IOOW, respectively. It seems more 

likely that the lower field enhancement factor can be attributed to the change in the 

average length of nanofibers that leads to the change in the aspect ratio of CNF and in the 

screening effect from neighboring nanofibers. We will discuss this in detail in a later 

chapter. 

3.8 LIFETIME IN A DC MODE 

The emission lifetime and current stability of CNF grown on blank TiW substrates 

was studied using the diode sample assembly. The 6 mm wide copper anode, electrically 

grounded and cooled by a chiller with a fixed temperature of -3.5°C, was laid 

orthogonally above the long axis of the CNF sample in the assembly. The aligned CNF 

thin film was prepared on a blank TiW substrate under the CNF synthesis parameters 

introduced in Sec. 3.3 with a width of 6.8 mm. The test was conducted for twenty-two 
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hours by continuously applying a constant -2800V to the sample. The emission current 

versus time was recorded and shown in Figure 3.12. The emission current drops very 

dramatically from 4.6 rnA to 0. 7 rnA in the first four hours. Then the emission current 

decreases at a lower rate from 0.7 rnA to 0.3 rnA in the next ten hours. Thereafter, the 

emission current remained around 0.3 rnA for the rest of the test period. A drop in current 

of ~96.5% occurred during the total testing period. 

The emission lifetime is defined here as the operation period within which an 

emission current of more than 1 rnA is sustained. Consequently, the lifetime of CNF 

grown on blank TiW substrates is only ~3.1 hours, which is insufficient for device 

operation. Moreover, random data points and spikes observed in the figure are suspected 
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to be caused by arcing that occurred on the surface of the sample. 

3.9 FIELD EMISSION OF CNF BASED BACK GATE TRIODE DEVICES 

To test the validation of back gate triode devices, they were measured in a diode 

and a triode mode by using the 24-pin header assembly. Representative I-V 

characteristics of an aligned CNF-based back-gated triode device are demonstrated in 

Figure 3.13. A 2.3mm x 2.7mm area of the part ofthe device was measured in a diode 

configuration, and the same region was then tested in a triode configuration. The diode 

test result shown in Fig. 3.13(a) indicates that the turn-on field of aligned CNF 

synthesized on TiW crests in the back-gated triode structure is 7.45 V/!-tm, which is much 

lower than that measured using aligned CNF grown on blank TiW substrates. We believe 

that the pronounced decrease in turn-on field can be attributed to the profile of the TiW 

lines which yield a reduced electrostatic screening by neighboring CNF on those that 

remain on the tops of the well-separated lines. In the diode configuration a total emission 

current of 81 !-!A was measured at 10 V 1!-tm. To test the device in the triode configuration, 

a 7.3 V/!-tm electric field was applied between the anode and the cathode, slightly lower 

than the turn-on field of CNF measured in the diode configuration. At this applied field, 

the aligned CNF yield only 0.8 !-!A of emission current when no back gate voltage is 

applied, see Fig. 3 .13(b ). When the back gate voltage increases from OV to +80V, the 

measured emission current in the triode configuration increases non-linearly. At a back 

gate voltage 80V, an observed emission current of267 !-!A was obtained for a diode field 

of7.3 V/!lm. Therefore, the validation ofthe back-gated triode device has been 

confirmed by the test above. 
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3.10 SUMMARY 

We have directly synthesized spaghetti-like and aligned CNF directly on blank TiW 

substrates without using a buffer layer by DC PECVD. We are able to control the degree 

of alignment of the resulting CNF by variation of plasma power, with spaghetti-like CNF, 

having a high degree ofnanoscale graphitic ordering growing at lower power, and 

aligned CNF, having a higher degree of nanoscale disorder, growing at higher plasma 

powers. The morphology of CNF synthesized on blank TiW substrates is determined by 

the electric field generated in the plasma sheath and the growth rate of CNF, which can 

be tuned by the plasma power. The field emission properties of carbon nanofibers grown 

on blank TiW substrates are also measured using the cartridge holder assembly. 

We have also described a process to fabricate both spaghetti-like and aligned CNF 

on TiW lines of controlled cross-sectional profiles to create back gate field emission 

triodes. However, only aligned CNF based back gate triode device survive our present 

post-processing wet-cleaning steps that are necessary to remove amorphous carbon from 

the dielectric layer. Devices using under-dense coatings of aligned CNF as cathodes in 

back gate triode device were tested for diode and triode field-emission operation 

indicating that back gate triode operation yield greatly enhanced performance. 
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CHAPTER IV 

FIELD EMISSION PROPERTIES OF CARBON NANOSHEETS 

4.1 INTRODUCTION 

This chapter presents the synthesis, structure, and field emission properties of 

carbon nanosheets (CNS) grown on Si substrates by radio frequency plasma enhanced 

chemical vapor deposition (RF PECVD), and their applications in back gate triode 

devices. A detailed study on the field emission behavior of CNS is also presented. 

Two-dimensional carbon nanostructures, consisting of several graphene layers, are 

usually hundreds of nanometers in height and length, but only a few nanometers in 

thickness. The synthesis of graphitic sheets can be traced back to the beginning of this 

century. However, it was not until 1997 when Ando et al [ 1] reported the existence of 

petal-like graphitic sheets in the soot of carbon nanotubes prepared by arc discharge that 

the synthesis of graphitic sheets started being studied. Since then, many methods to 

fabricate graphitic sheets have been developed by various research groups. 

Shang et al [2] reported that the synthesis of carbon nanoflakes that are 10-20 nm in 

thickness could be achieved by hot filament plasma enhanced chemical vapor deposition 

(HFCVD). They also presented the field emission performance of these nanoflakes, 

indicating that the tum-on field is 17 V/f..lm. Wang et al [3] deposited nano-carbon films 

with about 10 nm in thickness on Si substrates by microwave plasma assisted chemical 

vapor deposition (MPCVD). From these films, they obtained a current density of 
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20 mA/cm2 at an applied electric field of 10 V 1~-tm, but the field emission characteristic of 

these films did not follow the linear relationship predicted by the Fowler-Nordheim 

theory. 

Chen et al [4], and Shang et al [5] also fabricated carbon nanoflakes and nanowalls 

using MPCVD while Hiramatsu et al [6] synthesized carbon nanowalls by capacitively 

coupled radio frequency plasma enhanced chemical vapor deposition (RFCVD) assisted 

by hydrogen radical injection. Kurita et al [7] were the first to grow carbon nanowalls by 

direct current plasma enhanced chemical vapor deposition (DC PECVD). All these 

graphitic sheets were vertically oriented relative to their substrates and were hundreds of 

nanometers in thickness. No evidence of these graphitic sheets thinner than 5 nm were 

presented. 

Novoselov et al [8, 9] and Zhang et al [1 0] fabricated atomically thin carbon films 

by mechanical exfoliation, and Berger et al [11, 12] synthesized ultrathin epitaxial 

graphite films on SiC substrates through thermal decomposition in vacuum. Berger et al 

also studied electronic properties of these graphitic sheets. Their measurements indicate 

that a current density of ~108 A/cm2
, roughly two orders of magnitude greater than 

copper, can be carried by these graphitic sheets. Chemical stability, inertness, and 

crystallinity of graphitic sheets under ambient conditions have also been confirmed in 

their works. Instead of standing vertically on the substrates, these atomically thin carbon 

films lie down on the substrate surface. 

Our group has presented a way to prepare graphitic sheets, called carbon 

nanosheets, by inductively coupled radio frequency plasma enhanced chemical vapor 

deposition [13-21]. Our nanosheets are less than 4 nm in thickness, free of catalysts, and 
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free-standing (on edge) approximately normal to the growth surface. We have succeeded 

in regularly depositing CNS on four-inch substrates, a substrate size compatible with 

conventional device processing techniques used in semiconductor industries. Therefore, 

the application of carbon nanosheets may expand to a variety of devices. Among them, 

CNS based field emission devices have been developed by our group in last few years. 

The CNS is a promising candidate as the electron source in the application of field 

emission devices due to its atomic scale edge structure, high purity, and uniform height 

distribution [ 15, 19]. Previous field emission tests on CNS show that their field emission 

properties are at least equivalent to, or better than, the field emission properties of carbon 

nanotubes and nanofibers. This chapter presents a systematic study of the field emission 

properties of CNS by examining various characteristics, including turn-on field and 

threshold field, maximum total current, current density, lifetime in a slow pulse mode, 

lifetime in a de mode, and emission uniformity. These test results have lead to an 

advanced understanding of the field emission behavior of CNS. 

4.2 RADIO FREQUENCY PLASMA ENHANCED CHEMICAL VAPOR 

DEPOSITION (RFCVD) APPARATUS 

Here, we describe the radio frequency plasma enhanced chemical vapor deposition 

(RFCVD) apparatus used for CNS synthesis. Unlike the DC PECVD apparatus used for 

CNF synthesis in Sec. 3 .2, the plasma in a RFCVD is generated by applying the rf power 

to a planar coil and coupling the power through a dielectric window. Depending on the 

mechanism of power coupling, RFCVD is able to operate under two modes, the 

capacitively coupled mode or the inductively coupled mode. The plasma density of 
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inductively coupled plasma is usually in the order of 1011 cm-3
, 10 times higher than that 

of capacitively coupled plasma. In this work, we used inductively coupled plasma to 

synthesize carbon nanosheets. Principles followed to design our RFCVD apparatus can 

be found elsewhere [22]. 

A schematic of the RFCVD apparatus is displayed in Figure 4.1. The apparatus is 

built upon a grounded stainless steel chamber equipped with a mechanical pump and a 

turbo molecular pump, creating a base pressure of~ 1 o-6 Torr. A quartz window polished 

on both faces, with a thickness of 1.27 em, lies on top of the chamber. This window 

works as a dielectric medium for the power transfer from the rf coil antenna to the 

plasma. 

Roughing 
Pump 

Turbo 
Pump 

Cooling 
Water 

1--1>4-,--I><H~~ Ar. He 

H2, N2 , NH3 

H>+-c=:::r CH,.. C2H2 
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BCI3, etc. 

Figure 4.1 Schematics of RFCVD apparatus. 
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A 13.56 MHz RF power up to llOOW is coupled into the RFCVD apparatus 

through a 3-turn planar-coil antenna above the window housed in an aluminum top-hat 

used to prevent RF radiation leaks. A matching box containing two variable vacuum 

capacitors is connected between the RF power supply and the antenna in order to tune the 

operation mode of the plasma. 

A commercial four-inch GE ceramic heater serves as the sample stage, whose 

distance to the quartz window can be adjusted from 3 em to 1 0 em. The heater allows the 

substrate temperature to reach~ 1200 °C, higher than the temperature required for CNS 

deposition. Gases, including Ar, He, N2, NH3, H2, CH4, and C2H2, are introduced into the 

chamber by separate mass flow controllers. A photograph of the RFCVD apparatus is 

shown in Figure 4.2. 

4.3 DEPOSITION OF CARBON NANOSHEETS 

By using the RFCVD apparatus, carbon nanosheets have been successfully 

deposited on a variety of substrates including Si, Ah03, Si02, Ni, Ti, W, TiW, Mo, Cu, 

Au, Pt, Zr, Hf, Nb, Ta, Cr, 304 stainless steel, and graphite. Results of the parametric 

studies on CNS deposition can be found elsewhere [22]. Here, we briefly describe the 

standard CNS deposition conditions used in this chapter. 

A four-inch, heavily-doped Si wafer (resistivity of 0.003-0.005 Q·cm) is loaded on 

the sample stage (the four-inch heater) before the RFCVD apparatus is pumped down to 

~ 1 m Torr. H2 is first introduced into the system at 6 seem while the substrate is heated up 

to ~ 700°C, where it is held for at least 30 minutes to ensure uniform heating. Then, CH4 

is added to the chamber at 4 seem and the apparatus pressure is stabilized at ~100 mTorr, 
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Figure 4.2 A picture of the RFCVD apparatus. 

An RF plasma is ignited and tuned as the power is increased to 900W over the course of 

about one minute. Thereafter, the deposition is conducted for twenty minutes. The 

apparatus is cooled down for at least 30 minutes in a hydrogen atmosphere before the 

sample is taken out. 

4.4 CHARACTERIZATION OF CARBON NANOSHEETS 

Carbon nanosheets have been measured by our group using a variety of materials 

characterization methods, including scanning electron microscopy (SEM), transmission 
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electron microscopy (TEM), Auger electron spectroscopy (AES), X-ray photoelectron 

spectroscopy (XPS), particle induced X-ray emission (PIXE), elastic recoil detection 

analysis (ERDA), thermal desorption spectrometry (TDS), Raman spectroscopy, Fourier 

transform infrared (FTIR) spectrometer, X-ray diffraction (XRD), and Brunauer-Emmett

Teller (BET) surface area measurements. The results have been described elsewhere in 

detail [22]. Below we summarize some of these observations. 

AES and XPS measurements of CNS detect only C. Since no catalysts are used, 

there is no source of contamination except possible sputtering from the chamber wall of 

the window, which appears not to occur. PIXE, ERDA, and TDS further confirm that 

carbon nanosheets are catalyst free and contamination free except for the presence of 

hydrogen. XRD results prove that CNS are crystalline graphitic structures with some 

defects. BET measurements suggest that the specific area of typical CNS is 1 086± 194 

m2/g, consistent with the theoretical calculation of the surface area of double- and triple

layered graphite sheets. SEM, TEM, and Raman measurements will be more thoroughly 

discussed below. 

SEM images of typical CNS grown under standard deposition conditions are shown 

in Figure 4.3. The top view image, Fig. 4.3(a), shows the representative CNS is less than 

4 nm thick and ~ 1000 nm long with a smooth surface topology and a corrugated nature, 

standing roughly vertical to the substrate. The high magnification image, Fig. 4.3(b), 

indicates the thickness of an individual CNS edge is ~ 1 nm, and may be even thinner 

(limited by the SEM resolution). The cross-section image, Fig. 4.3(c), shows that the 

average height of CNS is ~800 nm, corresponding to a growth rate of 40 nm/min. 

Moreover, the standard deviation in the height for the whole sample surface, in Fig. 
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Figure 4.3 SEM images of representative nanosheets fabricated with the standard CNS 

deposition conditions. (a) Top-view image, (b) high magnification image, 

(c) cross-section view image. 
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Figure 4.4 (a) TEM image ofCNS grown on a grid, (b) HRTEM image of 

a piece of CNS. 
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4.3( c), is less than 10%. Therefore, the aspect ratio of CNS edges, defined by dividing the 

height of a CNS to its thickness, is on the order of -800. 

HRTEM images of representative CNS deposited directly on aNi TEM grid under 

standard deposition conditions are displayed in Figure 4.4. The low magnification image 

shown in Fig. 4.4(a) reveals CNS growth vertical to the grid surface. The HRTEM image 

in Fig. 4.4(b) displays the cross section of a portion of the planar nanosheet that has 

rolled back over itself. Two parallel fringes (marked by arrows) with a distance of 0.34 

nm are found at the edge of this nanosheet. The spacing between these two fringes is 

close to the (002) spacing of graphite, 0.335 nm, so we can see that this CNS consists of 

only two graphene layers. Nanosheets having one or two graphene layers at their edges 

have been routinely observed. 

Raman spectrum ofnanosheets is presented in Figure 4.5. Four major peaks are 

found in the spectrum: one peak is located at 1350 cm-1 representing a disorder-induced 

D peak, the second peak is located at 1580 cm-1 and indicates a tangential-mode G peak 

of superfine graphite, the third peak is located at 1620 cm-1 representing aD' shoulder 

frequently seen in microcrystalline graphite, and the fourth peak is located at 2700 cm-1 

and represents overtone of the D peak [23, 24]. Second order Raman peaks, including the 

overtone of D' band and the combination of D and G band, are also observed in the range 

of 2000-3500 cm-1
• Further, peaks representing radial breathing modes were found in the 

range of220 to 360 cm-1 [16]. The sharp D and G peaks indicate the defective, crystalline 

nature of carbon nanosheets. The defects may include vacancies, "grain" boundaries, and 

distortions in graphene sheets that cause the nonuniformity, corrugation, and twisting of 

nanosheets. The intensity ratio of the D peak to the G peak, lo/Ia, is used to evaluate the 
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Figure 4.5 Raman spectrum of a typical CNS sample using a 514 run 

excitation laser wavelength. 

degree of disorder in nanosheets. The method used to calculate the intensity ratio of the D 

peak to the G peak follows the principle applied in Sec. 3.4, which uses the respective 

peak areas for calculating. In the case of the spectrum displayed here, I0 /I0 is ~0.6. This 

intensity ratio is quite representative of CNS. 

4.5 FIELD EMISSION PROPERTIES OF CARBON NANOSHEETS 

Even though CNS have the same sharp atomic edge as CNF or CNT, the field 

emission properties of CNS have not yet been fully studied. Some key questions affecting 
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the field emission performance ofCNS have not been answered, in particular, how 

uniform their emission is, how stable it is over time, and what physical attributes govern 

these properties. In order to further improve the engineering performance, the field 

emission behavior of CNS must be examined from various perspectives, including turn

on field, maximum total current, emission lifetime, and emission uniformity. 

Field emission properties of CNS are measured in an UHV chamber with a base 

pressure of~ 1 x 1 0" 10 Torr. The diode holder assembly is used through all tests presented 

in the following sections. A CNS sample is used as the cathode in the assembly and 

separated from a 6 mm wide copper anode with a distance of 254 Jlm. The long axis of 

the copper anode is laid orthogonally above the long axis of the CNS sample. The anode 

is cooled to less than 0 °C throughout the measurements. The CNS sample is biased by a 

programmable high voltage power supply and the emission current is automatically 

collected using a picoammeter. 

4.5.1 TURN-ON FIELD AND THRESHOLD FIELD 

Both turn-on field and threshold field represent the applied electric field required to 

initiate electron emission from emitters. Lower values of turn-on and threshold field yield 

better emission performances of emitters. The turn-on and threshold field are arbitrarily 

defined values on the basis of the specific application. In this section, the turn-on field is 

defined as the applied electric field at which a total emission current of 10 nA is obtained. 

The threshold field is the applied electric field at which a current density of 10 f-tA/cm2 is 

measured. Many factors, such as the test method used, details of the test apparatus and 

sample holder, sample manipulation, and sample size, affect these test results, so 
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statistical averages of large numbers of tests are required. Since the sample size has a 

great impact on the measured emission current and the threshold field of CNS is defined 

in a way to minimize the effect of the sample size on the test results, we suggest here that 

the threshold field is a more accurate parameter to determine the field emission 

characteristics of CNS than the turn-on field. Tum-on and threshold field of CNS were 

recorded as soon as nanosheets first time emitted electrons in this work so that temporal 

variation of the material was minimized. 

Twenty-six pairs of tum-on field and threshold field of CNS were collected from 26 

individual experiments using CNS samples made in 10 separate runs of CNS deposition. 
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Figure 4.6 Tum-on fields of CNS samples as a function of their threshold fields, 

revealing that the turn-on and threshold field of a typical nanosheet lie in the range 

from 3 to 4.7 V/J.Lm and 3.5 to 5.2 V/J.Lm, respectively. 
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A plot of turn-on field vs threshold field is shown in Figure 4.6. Two CNS samples had 

turn-on and threshold fields below 3 V 1~-tm. Three CNS samples had turn-on fields larger 

than 4. 7 V 1~-tm and threshold fields larger than 5. 7 V 1~-tm. The rest had turn-on fields 

ranging from 3 V/~-tm to 4.7 V/~-tm and threshold fields varying from 3.5 V/~-tm to 5.2 

V/~-tm (circled in the figure). 

To compare CNS with other dimensional carbon materials, we summarize the test 

data of the threshold field ofSWNT, MWNT, and diamond from the literature and the 

test data of CNS in Table 4.1. The comparison suggests that CNS have the same level of 

threshold field as 1-D carbon nanotubes and 3-D diamond. 

4.5.2 TOTAL CURRENT AND CURRENT DENSITY 

Total current and current density are two relevant specifics to evaluate field 

emission properties of electron emissive materials. The average current density is 

determined by dividing the total current by the test area. Depending on test techniques, 

Table 4.1 Threshold fields of carbon materials. 

Dimensions Carbon material Threshold field (V /Jlm) 

SWNT 0.9-4 [25] 
1-D 

MWNT 3-21 [26] 

2-D CNS 
3.5-5.2 

(this work) 
3-D Diamond 5-20 [27] 
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the test area can be calculated using either the cathode area or the anode area. For 

instance, Zhu et al [28] used an anode consisting of a molybdenum probe with a radius of 

~250 fA-ill to measure the emission current of single-walled carbon nanotubes thin film 

deposited on Si substrates in an UHV chamber. They calculated the effective test area on 

the basis of the radius of the anode probe to report their current density. Their number, 4 

Ncm2
, is likely the highest current density ever detected from CNT or CNF thin film in 

the literature, but must be used with caution to project to device applications since the 

total current does not increase linearly with increasing sample area. Phenomena, such as 

field screening effect, outgassing induced arcing, and thermal effects, significantly 

degrade the total current so total currents over ~ 1 0 rnA are rarely found in the literature 

for CNT or CNF thin film cathodes. In this work, we calculate the current density by 

dividing the total current by the cathode area. Moreover, we emphasize the total current 

rather than the current density because the total current is the key parameter that 

determines device applications so long as the current density is high enough for a given 

application. 

With the newly designed diode holder assembly and the cooling system added to 

the anode, total currents of more than 20 rnA were achieved routinely from ~30 mm2 test 

area of CNS samples while maintaining a useful current density of ~0.1 Ncm2
• The peak 

current (highest total current) achieved in this work is shown in the data of Fig. 4.7(a) 

below, which plots emission current as a function of the applied electric field. At an 

applied field of26.8 V/f-tm, apeak current of33 rnA was measured on a sample that had 

been intensively conditioned by repetitively ramping the voltage. The corresponding F-N 

plot is displayed in Figure 4.7(b), showing that this sample very closely follows the 
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prediction of the form of Fowler-Nordheim equation [29]. This relationship also suggests 

that the field emission of CNS is not saturated at this field value, but is limited by our test 

apparatus. Although the current density for this sample was only 0.103 A/cm2
, this 

material has achieved a current density of 0.28 A/cm2 when a small anode is used. Thus, 

although the current density limits of the material have not been rigorously established, 

and the physics of the limitation are as yet undetermined, the total current from CNS is 

still quite promising for device applications. 

4.5.3 LIFETIME IN A SLOW PULSE MODE 

The emission stability and lifetime of emissive material is critical for device 

applications. Device operations require emitters producing high current for thousands of 

hours without significant current degradation. However, it is difficult for nanotubes and 

diamonds to achieve stable electron emission when the current level is in the milliampere 

range. 

The emission stability and lifetime of CNS can be studied in a slow pulse mode by 

applying a series of identical voltage ramps over a long time period. Our previous results 

revealed that carbon nanosheets could operate at a maximum emission current of~ 1.3 

rnA with a duty factor of 14.9% for at least 200 hours in a slow pulse mode [15]. In this 

section, we present our latest measurements taken in this mode. 

The CNS sample used here is 5.7 mm wide and fabricated by standard CNS 

deposition conditions as described in Sec. 4.3. The test is conducted with 23,379 voltage 

ramps over 200 hours, which yield a series of time-varying electric fields from 0 to 23 

V /Jlm. As a result, the peak current of around 13 rnA in one ramp is achieved at an 
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Figure 4.7 (a) Field emission current of a CNS sample as a function of the 

applied electric field, (b) its corresponding F-N plot. 
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applied electric field of 23 VI !lm. An illustration of two consecutive voltage ramps 

versus time is displayed in Figure 4.8, showing that each voltage ramp lasts 14 seconds 

followed by a 15 second rest (cooling off) period during which no bias is applied. The 

duration within which the emission current is larger than 1 !lA is 6.3 seconds in each 

voltage ramp. Consequently, the duty factor, defined as the ratio of the electron field 

emission time (> 1 !lA) to the total duration of a testing sweep, is 21% in this case. 

Field emission devices often do not need to operate with a duty factor of 100%. For 

instance, devices like field emission displays and microwave tubes operate with a 0.5% 

(30] and a 5% [31] duty factor, respectively. The test above was designed to satisfy such 

a practical device need. 
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Figure 4.8 Two consecutive ramps versus time. 
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The peak current as a function of time in the first 98 hours is shown in Figure 4.9. 

The peak current is 18.46 rnA in the first ramp, then rapidly decreases to 13.27 rnA in the 

following half an hour, which is defined as the conditioning period. After conditioning, 

the peak current stabilizes at ~ 13 rnA for the remaining experiment period. During the 

stable emitting period, no significant current degradation is discovered and the standard 

deviation of the peak current is less than 2.1 %. Although the emission is highly stable, we 

observed many current spikes that we attribute to the unstable ac line voltage in our 

building during the numerous electrical storms that occurred during these tests. Future 

tests will attempt to provide more stable filtered ac power. 
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Figure 4.9 Peak current as a function oftime in a slow pulse mode. 
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Characteristics of the emission current(!) versus the applied electric field (V) of the 

CNS sample are illustrated in Figure 4. 10. Eleven 1-V curves are recorded in Fig. 4.10(a) 

with their corresponding F-N plots demonstrated in Fig. 4.1 O(b ). These eleven I-V curves 

were recorded every ten hours during the stable emission period with the first ramp 

measured after the CNS sample went through the conditioning period. The field required 

to generate a predetermined current does not significantly vary between each individual I

V curve, indicating excellent emission stability and reproducibility of the CNS sample. 

The approximately linear relationship of corresponding F-N plots indicates that CNS 

field emission properties follow the Fowler-Nordheim mechanism and the overlapping 

portions of the F-N plots also indicate excellent emission stability and reproducibility of 

CNS. 

The lifetime tests suggest that CNS can operate at more than 10 rnA with a duty 

factor of 21% for a very long time. 

4.5.4 LIFETIME IN A DC MODE 

We also investigated the emission stability and lifetime of CNS under de operation 

by applying a continuous negative bias to the CNS sample. Thermal effects from de 

operation often limit field emitters to operate at or below 1 rnA, so such results are 

seldom reported in the literature. 

For these tests, a CNS sample with a width of 5.3 mm was measured using the 

diode holder assembly and subjected to a constant negative 3400 V bias, which generated 

an applied electric field of 13.3 V/!J.m between the anode and the cathode. In order to 

mimic device operation environment, we did not bake the test apparatus before we started 
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the test. For 203 hours, the emission current was collected and recorded every half a 

second by a picoammmeter. In total, over one million current data points were collected 

during this test. 

The emission current as a function of time is presented in Figure 4.11. The emission 

current started at 5.8 rnA and quickly dropped to ~1.5 rnA during the conditioning period. 

Then, the emission current reached the stable emission period and maintained at~ 1.5 rnA 

without significant degradation over the following 200 hours. Meanwhile, the chamber 

pressure increased from 2x10"7 Torr to 2.3x10"6 Torr as soon as the test started, then 

gradually decreased to 6.5x10"8 Torr at the end of the test. A statistical analysis of the 
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Figure 4.11 Field emission current as a function of time in de mode. 
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200 hours of stable emission result reveals a mean emission current of 1.49 rnA with a 

standard deviation ofless than 3.6%. Two additional CNS samples have been tested 

above 1 rnA in de mode, also yielding similar stability. 

These tests indicate that, unlike CNF samples that appear to last only a few hours at 

current near 1 rnA, CNS is stable for a much longer time. 

4.6 STUDY ON FIELD EMISSION BEHAVIOR OF CNS 

The study on field emission behavior of CNS is conducted by using I-V curves and 

their corresponding F-N plots collected immediately before and after the 203 hours de 

lifetime test. Figure 4.12 illustrates these I-V curves and corresponding F-N plots. The I-V 

curves, shown in Fig. 4.12(a), were recorded in nine consecutive sweeps by varying the 

applied negative bias from 0 to 3400 V to yield a time-varying series of applied electric 

field from 0 to 13.3 V 1!-tm. Results reveal that I-V curves after the lifetime test are as 

reproducible as those before the test. The peak currents measured at an applied electric 

field of 13.3 V/!-1-m are 5.8 rnA and 3.56 rnA before and after the lifetime test, 

respectively. This peak current drop is consistent with the general observation of the 

emission current decrease during the conditioning process in Sec. 4.5.3 and 4.5.4. In 

addition, the threshold field increases from 6. 9 V /!A-m to 8.1 V /!A-m after the lifetime test. 

The corresponding F-N plots over the field emission range of these I-V curves is shown 

in Fig. 4.12(b), displaying a linear relationship in close accord with the form of the 

Fowler-Nordheim equation. The slopes of F-N plots before and after the lifetime test are 

-102.826 and -134.819, respectively. 
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The Fowler-Nordheim equation is applied here to study the field emission behavior 

change of the CNS sample before and after the de lifetime test, 

1.54 X 10-6 Af32V 2 -6.83 X 107
<1> 

312 

I= exp( ), 
<I> {3V 

(4.1) 

where A is the emission area ( cm2
), {3 is the field enhancement factor, (]) is the work 

function ( e V), I is the emission current (A), and Vis the applied electric field (V /em). In 

Eq. 4.1, elliptical functions are taken to be unity, corresponding to a triangular surface 

potential barrier [32]. The Fowler-Nordheim equation has been successfully used to 

predict the field emission behavior of a single metal tip with its known field enhancement 

factor and emission area [33, 34]. In order to accurately and fully study the field emission 

behavior of CNS through measured I-V curves and corresponding F-N plots, the Fowler-

Nordheim equation would have to be applied to each individual emitter in the CNS 

sample. Such an application of the Fowler-Nordheim equation to CNS is very 

challenging since there are thousands of emitters with different values of field 

enhancement factors, emission areas, and work functions in a CNS sample. 

Some assumptions have to be made before the Fowler-Nordheim equation is used to 

study the field emission performance of CNS that have an ensemble of emissive 

structures randomly distributed on the surface. First, the emission current from each of 

the emitting sites follows the Fowler-Nordheim equation. Second, all emitters have the 

same work function, which presumes that all emitters have the same composition and 

microstructure. Third, the emission area of each emitter is the same since the edges of 

CNS have the same dimensions. 

Rewriting Eq. 4.1, we arrive at 
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In(_!_) = In( 1.54 X 1 o-6 Af32
) - 6.83 X 10 

7 
4»

312 
• _.!._ 

V 2 cp {3 v (4.2) 

-68304»312 

The slope (k) of the F-N plot is therefore equal to where the current is in !-1-A, 
{) 

the field is in V/!-1-m, and A is in !1m2
• Meanwhile, the intercept (s) ofthe F-N plot with 

In(~) axis equals ln( 
1
·
54 A/3

2

) in these units. Therefore, the field enhancement factor {) v cp 

of the CNS sample before and after the lifetime test may be calculated from the 

corresponding slopes of F-N plots indicated by Eq. 4.3 if the work function of carbon 

nanosheets were known: 

-68304»312 

/)=--
k 

(4.3) 

Moreover, with an assumed work function lP and the calculated field enhancement factor 

{3 before and after the lifetime test using Eq. 4.3, the corresponding emission area may be 

estimated from 

(4.4) 

For these purpose, we assume that the work function of CNS before the lifetime test is 

4.8 eV, a value that is close to the middle of the range of graphite [35]. During the de 

lifetime test, the work function of CNS may change due to severe gas desorption and re-

absorption. Because of the lack of experimental evidences, the work function of CNS 

after the lifetime test can not be clearly defined in this work. However, it is reasonable to 

believe that the work function can fall in the range from 4.3 eV to 5.6 eV, which covers 

work function values of the tips reported in the literature for carbon nanotubes [35-39]. 

Table 4.2 presents the field enhancement factor/), the emission area A, and 
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effective current density of the emission area Jeffi calculated from the F-N plots before 

and after the lifetime test. The field enhancement factor, the emission area, and the 

effective current density before the lifetime test are 700, 0.528 ~-tm2, and 1.1 x 106 A/cm2 

by substituting the assumed work function ofCNS 4.8 eV into Fowler-Nordheim 

equation. The field enhancement factor after the lifetime test ranges from 451 to 671 

corresponding to work function changes from 4.3 to 5.6 eV. Meanwhile, the emission 

area varies from 8.01 to 4.72Jlm2
• The effective current density changes from 4.4xl04 to 

7 .5x 104 A/cm2
, which is only 4-6.8% of the effective current density before the lifetime 

test. To verify the accuracy of the field enhancement factor and emission area calculated 

from the work function of CNS, I-V curves and F-N plots before and after the lifetime 

test are simulated by substituting the work function, the corresponding field enhancement 

factor, and the corresponding emission area into Fowler-Nordheim equation. Here, the 

simulated I-V curve and F-N plot after the lifetime test are generated by using a work 

function of 4.8 eV, a field enhancement factor of 533, and an emission area of 6.43 11m2
• 

The simulated/-V curves and F-N plots are plotted in red in Fig. 4.12, fitting the original 

data very well. 

The calculated smaller emission areas and measured larger current before the 

lifetime test suggest that there are some emitters in the CNS sample carrying a larger 

amount of measured current before the lifetime test. We define these emitters as "hot 

runners" in the CNS sample, which have extremely high field enhancement factors and 

contribute most emission current measured. In the case of carbon nanosheets, there may 

be mainly two possible types of hot runners co-existed in the sample. One represents an 

extremely high nanosheet; the other one represents an extremely thin nanosheet. 
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Table 4.2 Calculated field enhancement factor {3, the emission area A, and the 

effective current density of the emission area Jeff from the F-N plots before and after the 

lifetime test by substituting the work function into Fowler-Nordheim equation. 

Work function ( e V) f3 A (~-tmL) Jeff(Aicm2
) 

Before lifetime test 4.8 700 0.53 1.1 xlO() 

4.3 451 8.01 4.4xl04 

4.4 468 7.65 4.7xl04 

4.5 484 7.31 4.9xl04 

4.6 500 7.00 5.1 xi 04 

4.7 516 6.71 5.3xl04 

4.8 533 6.43 5.5xl04 

After lifetime test 
4.9 549 6.17 5.8xl04 

5.0 566 5.92 6.0xl04 

5.1 583 5.69 6.3xl04 

5.2 601 5.48 6.5xl04 

5.3 618 5.23 6.8xl04 

5.4 636 5.08 7.0xl04 

5.5 653 4.90 7.3xl04 

5.6 671 4.72 7.5xl04 

The effects ofhot runners on the field emission behavior of the CNS sample is 

primarily studied using Maxwell SV (Ansoft) software to visualize 2D electrostatic field 

at the tips of nanosheet emitters when a negative bias is applied. We assumed nanosheets 

were 800 nm in height with a tip thickness of 10 nm and separated from each other by 1.5 

~-tm. The substrate used for this simulation is Si with a relative permittivity of 11.9 and 

assigned to the same potential as nanosheet emitters. Meanwhile, a grounded copper bar 

is placed 254 ~-tm above the Si substrate to mimic the real test environment of the diode 

sample holder assembly. The negative bias applied to nanosheet emitters and the Si 

substrate is 4000 V in this case. The field emission current from emitters is not taken into 

account by this simulation. 
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Figure 4.13( a) shows the 2D electrostatic electric field generated at tips of identical 

carbon nanosheet emitters. Here, identical emitters refer to those nanosheets with same 

height, tip thickness, and inter-sheet distance. The result reveals that each tip of these 

identical nanosheet emitters is equally exposed to the electrostatic field ( ~ 18 V /11m). As a 

result, a spatially uniform emission would be expected from these identical nanosheets. 

Moreover, this result is consistent with simulation results on carbon nanotube films 

proposed by Nilsson et al [ 40]. They pointed out that an electrostatic screening effect 

exists, from the proximity of neighboring emitters, causing the degraded field emission 

performance when the density of carbon nanotubes is high. However, they have not 

studied the shielding effect that hot runners may enact on their neighboring emitters. 

When there is one high nanosheet emitter (hot runner) among identical emitters, the 2D 

electrostatic field generated at tips of emitters is shown in Fig. 4.13(b ). Here, the high 

nanosheet emitter is 1600 nm in height (twice as high as its neighbors), but still identical 

10 nm in thickness. The inter-sheet distance of emitters is maintained at 1.5 11m. The 

result indicates that the hot runner is exposed to a high electric field (about 18 VI 11m) but 

its neighboring emitters see a much lower electric field (less than 1 V/llm), too low to 

turn on emitters. So hot runners shield their neighboring emitters from the electric field 

and suppress their neighbors' contributions to the emission current. We refer to this as the 

"shielding effect" in this work. It is only after hot runners are damaged or have 

disappeared that their neighboring emitters will start emitting electrons. A second 

independent case might involve one thin nanosheet emitters of a height equal to all other 

thicker emitters. 
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Figure 4.13 2D electrostatic electric field simulation conducted by Maxwell SV 

at tips of(a) identical emitters, (b) one high hot runner, 

(c) one thin hot runner. 

Fig. 4.13( c) shows the 2D electrostatic field in this case for a 5 nm thick and 800 nm high 

hot runner in a field of emitters taken to be 800 nm high and 10 nm thick. The resulting 

field reveals a less severe shielding effect than the high nanosheet emitter. Only the 

nearest neighbors are completed suppressed. In general, "hot runners" shield their 

neighboring emitters and thereby cause spatially non-uniform emission from a CNS 
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sample. 

As presented in Table 4.2, we calculated the effective current density of 1.1 x 106 

A/cm2 before the lifetime test associated with a very small effective emission area. The 

local current density of a hot runner indeed may be much higher than 1.1 x 1 06 A/cm2
• 

Purcell et al pointed out that the equilibrium temperature at the tip of a multi-walled 

carbon nanotube could be as high as 2000 K when the current density at the tip was on 

the order of~ 8.5x104 A/cm2 [41]. Huang et al pointed out that the self-heating process of 

a nanotube can lead to a cathode initiated vacuum breakdown process [42]. When the 

apex temperature of a nanotube is over the equilibrium temperature, a thermal runaway, 

such as subliming and melting, will occur on nanotubes. The critical current density for a 

nanotube to start thermal runaway was found to be on the order of ~106 A/cm2
• Therefore, 

thermal runaway may have been occurring on nanosheet hot runners at the beginning of 

our de lifetime test. This is supported by our observations of light emission from 

nanosheets during the test and by traces of carbon deposited on the anode after the test. 

"Conditioning", then, is likely to be the removal process ofhot runners [43], leaving a 

larger number of neighboring emitters having a much lower f3 expose to the electric field, 

which turn on sequentially. This accounts for the apparent increase in the effective 

emission area (about an order of magnitude after the de lifetime test) extracted in our 

calculation. Our calculation also indicates these emitters with a lower effective f3 factor 

later turned on. Consequently, the threshold field of the CNS sample increases, as 

observed in Fig. 4.12. Once hot runners are efficiently removed and the surface is 

stabilized, no further current drop was observed in the de lifetime test, as indicated in Fig. 

4.11. This, too, is consistent with our proposed explanation. 
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SEM images of the test area of the CNS sample before and after the de lifetime test 

are displayed in Figure 4.14. Images ofthe CNS sample taken in a top view, shown in 

Figs. 4.14(a)-(b), reveal no evident morphology changes. The average CNS thickness is 

almost the same before and after the lifetime test. However, SEM images taken in the 

cross-section of the CNS sample, Figs. 4.14( c)-( d), show that the average height of CNS 

falls from 1.8 !J.m at the beginning of the test to 1.46 !J.m in the end. This is a substantial 

change on average, which may be a consequence of the thermal processes during the 

conditioning process. 

Figure 4.14 SEM images ofthe CNS sample before and after the de lifetime test. 

(a) top view image before the de lifetime test, (b) top view image after the de lifetime 

test, (c) cross-section view image before the de lifetime test, (d) cross-section 

view image after the de lifetime test. 

100 



>. ...... 

After the de lifetime test 
ID/IG=0.65 

·;n 
c Before the de lifetime test 
~ 
c IDIIG =0.60 

1500 2500 

Raman Shift (nm-1
) 

3000 

Figure 4.15 Raman spectra ofthe CNS sample before and after the de lifetime test. 

Raman spectra of the CNS sample before and after the de lifetime test are shown in 

Figure 4.15. The ratio of the intensity ofthe D peak to the G peak increases only a small 

amount from 0.60 at the beginning of the test to 0.68 in the end. Moreover, the D and G 

peaks are similar in detail before and after the de lifetime test, suggesting that the 

microstructure of the CNS sample does not change dramatically. 

In summary, we studied the field emission behavior of CNS by calculating /-V 

curves before and after the de lifetime test. The results indicate that hot runners having 

high field enhancement factor are present initially, which dominate the initial emission 

current. During the conditioning, these hot runners are removed, most likely through a 

101 



thermal runaway mechanism. With the elimination of hot runners in the CNS sample, 

emitters with lower field enhancement factors start turning on and sustain a steady and 

stable emission for a long period. Moreover, the spatially non-uniform emission can be 

expected from CNS until hot runners have been conditioned away. 

4.7 PEEM AND FEEM OBSERVATION ON CNS 

To date, all field emission studies on CNS were conducted by recording the 

emission current versus the applied electric field or test time. Although a persuasive case 

can be made for the existence of hot runners in our CNS by the Fowler-Nordheim 

equation, the actual observation of hot runners on carbon nanostructure emitters has 

never been done. Therefore, a direct, real time, in-situ field emission study of hot runners 

is required. Here, we present our study on hot runners in CNS samples using PEEM. 

As introduced in Sec. 2.5, photoelectron emission microscopy (PEEM) is a non

destructive microscopic surface analysis technique that impinges photons on a surface 

and creates images of the surface by collecting ejected photoelectrons using electron 

optic lenses. When the photon source is absent during the observation, field emission 

electrons can be used to form images. Thus, a PEEM apparatus provides a second form of 

microscope called a field emission electron microscope (FEEM). Moreover, the multi

channel plate with a central hole, used in the modified Elmitec PEEM III at Ohio 

University, allows in-situ measuring I-V curves of the CNS sample. Therefore, PEEM 

observation can provide real-time in-situ information about the field emission 

characterization ofCNS. The presence and field emission behavior ofhot runners in CNS 

can be studied directly. 
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A pair of PEEM and FEEM images is displayed in Figure 4.16. The pair of images 

is captured in the same area of the CNS sample with an applied electric field of 3.9 

V 1~-tm. Only one bright spot is found in the field of view that has a diameter of 300 ~-tm 

from both PEEM and FEEM images. Only emitters located within the bright spot in the 

images are emitting electrons. Since the applied electric field is the same everywhere 

within the field of view and the work functions of material over so small an area is most 

likely to be the same, the bright spot must be a direct observation of hot runners with high 

{3 factors in that region of the CNS sample. This also confirms that the emission 

uniformity of non-conditioned CNS samples is poor. Although we can not precisely 

count the exact number of emitters in the bright spot due to the limited spatial resolution 

of PEEM apparatus, we propose that the bright spot is most likely to originate from just 

one emitter. 

The I-V characteristic of this hot runner was measured using a Faraday cup installed 

right behind the central hole of the multi-channel plate and illustrated in Figure 4.17. The 

hot runner starts emitting electrons at an applied electric field of 3.4 V/~-tm, yielding a 

current of 0.2 pA and becoming clearly visible in PEEM and FEEM images. The 

emission current of this hot runner gradually increases to 1.5 pA as the applied electric 

field increases to 3.9 V/~-tm. When the applied electric field increases to 4.1 V/~-tm, the 

maximum field generated in PEEM, the emission current abruptly jumps to 580 pA. The 

non-exponential I-V behavior of this hot runner disobeys the Fowler-Nordheim theory, 

but the thermal runaway is not expected to behave in any events according to the Fowler

Nordheim mechanism. Similar behavior was observed for another hot runner on a 

different CNS sample. 
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Figure 4.16 PEEM and FEEM images captured in the same test area in a typical CNS 

sample. Only one bright spot is found in the field of view. This bright spot reveals the 

existence of hot runners in CNS. (a) PEEM image, (b) FEEM image. 
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Figure 4.17 Field emission current of the hot runner as a function of the 

applied electric field. 

The emission stability of the hot runner was studied through a short term de lifetime 

test. A constant negative bias of 7000 V was applied to the CNS sample to generate an 

applied electric field of 3. 5 VI !J.m between the sample (the cathode) and the extractor (the 

anode) of the PEEM apparatus. The current was measured from the hot runner in the field 

view of FEEM image and manually recorded from a Keithley picoarnmeter every twenty 

seconds for the span of an hour. The emission current as a function oftime is presented in 

Figure 4.18. The result reveals that the emission current from this hot runner varies quite 

abruptly in time, spanning three orders of magnitude (from 0.007 nAto 20 nA) during 

this test period. In previous sections, we observed stable emission having a standard 
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Figure 4.18 Emission current of the hot runner as a function of time in a de mode. 

deviation in current of less than 4% in the absence of hot runners. However, no periods of 

stable emission were observed in the presence of a hot runner. 

Because of their unpredictable and unstable emission nature, hot runners must be 

eliminated by conditioning CNS samples. The lifetime test results suggest that the 

gradual electrical conditioning can efficiently remove hot runners from CNS samples to 

yield stable and uniform emission. 

4.8 FIELD EMISSION OF CNS BASED BACK GATE TRIODE DEVICES 

Because of their excellent high current performance, robustness, and compatibility 

with standard semiconductor processing techniques, CNS were tested for field emission 

applications in back-gated triode devices. 
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The back-gated devices described here have an improved "buried-line" 

configuration. This configuration can reduce dielectric breakdown caused by the high 

electric field generated at the edge of trapezoid-shape cathodes in previous back-gated 

devices, as discussed in detail in Ref. 19. The fabrication of back-gated triode device 

starts with a 4-inch n-type heavily doped Si wafer with a 1 !lffi thermal oxide. Positive 

photoresist is then applied to develop the pattern for the cathode lines. 0.5 !lffi deep 

trenches are formed by isotropic etch. Afterward, thin Cu/ Au plating base is evaporated 

into the trenches. The bare buried-line back-gated device is produced after the removal of 

the photoresist. 

The CNS deposition on bare buried-line back-gated device is performed using 

standard CNS deposition conditions described in Sec. 4.3. The CNS is then patterned and 

etched so that the material only remains in the center of the cathode lines. A SEM image 

ofCNS based back-gated device is show in Figure 4. 19. 

For testing, the CNS based back-gated devices are mounted into the well of the 24-

pin ceramic header [ 19]. A diode electric field of 9 V /!lm is applied between the anode 

and cathode lines of CNS based back-gated device. An emission current of~ 12 !lA is 

first measured at a back gate voltage of zero volts. Then, with the back gate voltage 

increased to 120 V, an emission current of~ 220 !lA was repeatedly achieved. This is 

almost an eighteen fold increase in the emission current. The emission currents as a 

function of the back gate voltage are shown in Figure 4.20. 

The result confirms the effectiveness of the "buried-line" triode geometry for CNS 

based back-gated device. Moreover, ~ 1.3 rnA emission current has been measured from 

our CNS back-gated device at a back gate voltage of 180 V, which is an increase in 
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Figure 4.19 SEM images of CNS based "buried-line" back-gated triode device. 

(a) top view image, (b) cross-section view image. 
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emission current of almost three orders of magnitude compared with the emission current 

without the back gate voltage [15]. To date, short-term failures ofCNS based back-gated 

device have been associated with the dielectric layer (0.5 ~-tm Si02) breakdown between 

the cathode lines and the back gate during field emission tests. This is possible to 

eliminate using a thicker or more stable dielectric layer in future generations of back-

gated devices. 

4.9SUMMARY 

We have synthesized a novel two-dimensional carbon nanostructure, carbon 

nanosheets, by radio frequency plasma enhanced chemical vapor deposition. Typical 

CNS are synthesized on four-inch Si wafer without the need for catalysts in inductively 
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Figure 4.20 Emission current as a function of back gate voltage. 
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coupled plasma using 40% CH4 in H2 atmosphere, at a substrate temperature of 700 °C, a 

total gas pressure of 100 mTorr, and an input RF power of900 W. Materials 

characterization methods, including SEM, TEM, AES, XPS, PIXE, ERDA, TDS, Raman, 

FTIR, XRD, and BET, have been applied to study the morphology, composition, and 

structure of CNS. The results indicate that CNS are hundreds of nanometers in length and 

height, but only <1-4 nm in thickness, which are vertically oriented with respect to the 

growth surface. The results confirm a honeycomb like morphology, graphitic structure, 

and atomic thickness of CNS synthesized on a variety of substrates. 

We have investigated the field emission properties of carbon nanosheets from 

various perspectives, including turn-on and threshold field, maximum total current, 

lifetime in a slow pulse mode, and lifetime in a de mode. In summary, the turn-on and 

threshold field of typical CNS lie in the range from 3 to 4.7 V/f!m and 3.5 to 5.2 V/f!m, 

respectively. To date, the maximum peak current of a typical CNS sample with a testing 

area of 32 mm2 is 33 rnA measured at an applied electric field of 26.8 V /f!m. The lifetime 

test in a slow pulse mode suggests that typical CNS can operate at an emission current of 

~ 13 rnA with a duty factor of 21% for more than 200 hours after they are initially 

conditioned for approximately half an hour. Furthermore, typical CNS can continuously 

emit ~ 1.5 rnA current for more than 200 hours in a de mode after 3 hours conditioning 

process. These test results reveal that carbon nanosheets have at least the same level of 

field emission performance as cathode materials currently in the market. 

The study on field emission behavior of CNS has been carried out by applying 

Fowler-Nordheim equation to field emission characteristics (I-V curves) of typical CNS 

collected immediately before and after the de lifetime test. The slope of F-N plots 
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originated from I-V curves and the intercept of F-N plots with ln( 4) axis are used to 
v 

determine the field enhancement factor f3 and emission area A with substituting an 

estimate ofthe work function ofCNS into the Fowler-Nordheim equation. The results 

suggest the existence of hot runners with high field enhancement factors. However, these 

hot runners are removed most likely through a thermal runaway process during the 

conditioning process, leading to a large number of neighboring emitters with low field 

enhancement factors turning on thereafter. As a result, a stable field emission in a current 

level of more than 1 rnA can be achieved from typical CNS. PEEM and FEEM 

observations directly confirm the existence of hot runners in CNS. The in-situ 1-V 

measurements of the hot runner in carbon nanostructure samples are reported for the first 

time. The result confirms the unpredictable and unstable emission nature of hot runners. 

The validation and effectiveness of CNS based back gate device has also been 

studied. 
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CHAPTER V 

FIELD EMISSION PROPERTIES OF CHROMIUM OXIDE COATED 

CARBON NANOSHEETS (CrOx-CNS) 

5.1 INTRODUCTION 

This chapter outlines the synthesis, structure, and field emission properties of 

chromium oxide coated carbon nanosheets (CrOx-CNS) fabricated by vacuum 

evaporating a thin chromium layer onto nanosheets and subsequently exposing them to 

atmosphere. 

Carbon nanosheets, carbon nanotubes or nanofibers, and metallic single tips are 

three important candidates for use as the electron source in field emission devices such as 

field emission displays (FEDs), microwave power amplifier tubes, and compact x-ray 

sources [ 1-7]. Even though these candidates feature a high emission current at a low 

applied electric field, their practical application in commercial devices remains limited 

due to issues such as field emission uniformity and stability. Therefore, many efforts 

have been devoted to improving the intrinsic field emission properties of these candidates 

by incorporating a low work function material coatings, such as ZrC, HfC, and et al. 

Mackie et al [8, 9] reported that the work function of ZrC and HfC film are 3.5 eV and 

3. 34 e V, respectively. They also studied the field emission properties of ZrC and HfC 

coated Mo single tips. Their results revealed that a 50% lower voltage resulted in the 

same emission currents relative to pure Mo single tips. They confirmed that the enhanced 
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field emission performance of their carbide-coated Mo single tips originated from the low 

work functions of ZrC and HfC. However, the emission uniformity from carbide-coated 

Mo single tips was not discussed. 

Our group has studied the field emission properties of ZrC coated carbon 

nanosheets (ZrC-CNS)[10], but no enhanced field emission performance was observed. 

This failure is probably caused by the trade-off between the lower work function of ZrC 

nanobeads and a decreased local field enhancement factor due to the geometry ofthese 

nanobeads. The results showed the importance of forming conformal coating on CNS in 

order to enhance their field emission properties. We are currently studying the field 

emission properties of carbon nanosheets conformally coated with 1 nm MozC film. 

These test results indicate that the Mo2C-CNS samples have much lower turn-on field 

than as-grown CNS, which is consistent with ~3.7 eV low work function ofMo2C. 

Wide bandgap semiconductors, as alternative coating materials for field emitters, 

have also stimulated considerable attentions in recent years because of their remarkable 

physical and chemical stability during the electron emission process. 

Zhirnov et al [11, 12] and Krauss et al [13] reported that only 25% ofthe voltage 

was needed to achieve the same amount of field emission current after Mo and Si single 

tips were coated with a thin wide-bandgap nanocrystalline diamond film. They suggested 

that this enhanced field emission performance originated from the negative electron 

affinity of diamond, resulting in decreasing the effective work function of coated single 

tips. Zhirnov et al [11] also applied a band diagram model, a theoretical model describing 

the quasi-thermionic emission of electrons to vacuum [14], to explain the mechanism 

behind the enhanced field emission performances of nanocrystalline diamond film coated 
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single Si tips. 

Moon et al [15] utilized a chemical synthesis route to fabricate SiOx-coated 

multiwalled carbon nanotubes. They reported a greatly enhanced current density of 5.8 

mA/cm2 from SiOx-coated carbon nanotubes at an applied electric field of 2.5 V/Jlm as 

compared to a current density of 1.75 mA/cm2 from raw carbon nanotubes. Yi et al [16] 

demonstrated that Si02- and MgO-coated carbon nanotubes had not only a lower turn-on 

field but also a better emission stability against exposed 0 2 gas than raw nanotubes. They 

also revealed that the emitted electrons originated from the conduction band of MgO 

coating. 

Even though very little is known about the field emission behavior of wide bandgap 

materials, their enhanced, stable, and uniform emission make them attractive to 

incorporate with CNS. Chromium oxide, a wide bandgap semiconductor (Eg=4 eV)[17] 

with an electron affinity of 3. 7 6 e V [ 18], has been proposed as a promising coating 

material for carbon nanostructures[19], but no details have been reported in the literature. 

Here, we introduce a simple way to fabricate a conformal CrOx coating on as-grown 

CNS by initially vacuum evaporating a thin Cr layer on as-grown CNS and subsequently 

exposing them to air. We refer to chromium oxide coated CNS as CrOx-CNS in this 

study. The enhanced field emission performances of CrOx-CNS are presented. Moreover, 

we report the spatial uniformity of the emission from CrOx-CNS, which is reported for 

the first time. 

5.2 SYNTHESIS OF CrOx-CNS 

Carbon nanosheets are synthesized on a heavily doped Si wafer (resistivity of 
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0.003-0.005 Q·cm) under typical CNS deposition conditions, as described in Sec. 4.3. In 

brief, the CNS deposition is conducted for 20 minutes at a substrate temperature of 

~ 700°C, a chamber pressure of 100 mTorr, and a radio frequency plasma power of 900W. 

The feedstock gases are 40% CH4 in H2 atmosphere with a total gas flow rate of 10 seem. 

The as-grown CNS samples are air-transferred into the vacuum evaporator (Ladd 

Research Industries) and a chromium layer is thereafter evaporated on the surface of 

CNS. A tungsten wire twisted into a conical shape is applied as the resistance heater in 

the evaporator. A high-purity chromium chip (99.999%, Ladd Research) is used as the 

evaporation source in this work. The evaporator is first pumped down to ~ 1 0"6 Torr and a 

direct current of 20 amperes is applied to the tungsten wire. The evaporation is conducted 

for several seconds, and the coated CNS is then exposed to the atmosphere. A color 

change from black to grey was visually observed after Cr evaporation and subsequent 

exposure to the atmosphere. We take this as an evidence of the formation of a CrOx thin 

film. 

5.3 CHARACTERIZATIONS OF CrOx-CNS 

The elemental analyses of as-grown CNS and coated CNS were conducted by 

Energy Dispersive X-ray (EDX) analysis accompanied with SEM images. Here, the 

coated CNS was fabricated using 15 seconds Cr evaporation. Figure 5.1(a) shows the 

elemental distribution profile extracted from the EDX survey across the sample area of 

as-grown CNS seen in the SEM image (inset). Peaks associated with C and Si are 

observed in the profile. The Si peak originates from the substrate on which nanosheets 

grow and the C peak comes from CNS itself. No other elements are detected within this 
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Figure 5.1 EDX spectra of as-grown and coated CNS samples and their corresponding 

SEM images ofthe survey area. (a) as-grown CNS, (b) coated CNS. 
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sample area. In contrast to as-grown CNS, the EDX spectrum of coated CNS shown in 

Fig. 5.1(b) not only has peaks associated with C and Si but also has peaks of Cr and 0, 

which confirms the formation of chromium oxide coating on CNS. However, the 

stoichiometry of chromium oxide can not be accurately determined from these EDX 

spectra. 

An Auger spectrum of the coated CNS fabricated using 1 0 seconds Cr evaporation 

is displayed in Figure 5.2. The spectrum is collected using a Physical Electronic 590 

surface analysis system with a 3 kV/1 ~-tA electron beam. Instead of a single C peak as 

observed from as-grown CNS [10], Cr and 0 peaks are also found in the spectrum, again 
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Figure 5.2 Auger spectrum ofCrOx-CNS. 
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confirming the formation of CrOx thin layer on the surface of CNS. The atomic 

concentration of the layer is determined from the amplitudes of Cr and 0 peaks in the 

spectrum and their relative sensitive factors, which are 0.33 for Cr and 0.5 for 0 with the 

electron beam at an incident energy of 3 kV [20]. Therefore, the composition ratio for Cr 

to 0 is estimated to be 0.37, very close to the composition ratio ofCr203. The small 

deviation from the expected value of 0.4 may be the indication of chromium oxide with 

other stoichiometry present in the coating. Thus, we continue designating the film as 

CrOx in this work. 

Raman spectra of as-grown CNS and CrOx-CNS, shown in Figure 5.3, are collected 

from a CrOx-CNS sample that has a patterned structure by using a TEM grid as the mask 

on top ofthe CNS sample during the vacuum evaporation. Square pads ofCrOx-CNS and 

streets of as-grown CNS are alternatively formed on the same sample. Spectra are 

obtained from a square pad of CrOx-CNS (indicated by the black arrow) and its nearest 

as-grown CNS street (indicated by the white arrow) by focusing the incident laser beam 

inside them to reduce the spatial-induced spectrum deviation. Three peaks are found in 

the spectrum of as-grown CNS, including a disorder-induced D peak at 1355 cm-1
, a 

tangential-mode G peak at 1583 cm-1
, and aD' shoulder at 1620 cm-1

• The intensity ratio 

of the D peak to the G peak (Io/Ia) in the spectrum of as-grown CNS is -0.50, consistent 

with the value of typical CNS reported in Sec. 4.4. In addition to these three peaks 

originating from as-grown CNS, one additional peak is observed from CrOx-CNS that is 

located at 551 cm-1
• According to published Raman data [21, 22], Cr203 has a strong peak 

at 551 cm-1 and two weak peaks at 397 and 609 cm-1
• Therefore, we assign the 551 cm-1 

peak to Cr20 3. The broad band between 551 cm-1 and 800 cm-1 suggests the existence of 
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other stoichiometric chromium oxide, such as, Cr02 [23]. Further, the intensity ratio of 

the D peak to the G peak in the spectrum ofCrOx-CNS increases to 0.68. The result 

suggests that more disorder is generated in the CNS by Cr evaporation and oxidation. We 

believe that these disorders are most likely to be found at the interface between the CrOx 

coating and CNS. 

SEM images ofCrOx-CNS and as-grown CNS are shown in Figure 5.4. Here, the 

CrOx-CNS were fabricated using different evaporation time. The top view image of as-

grown CNS, shown in Fig. 5.4(a), reveals that typical nanosheets are corrugated 

assemblies of folded graphitic sheets with smooth surfaces that are ~ 1000 nm long and on 

average ~ 2 nm thick. Top view images of CrOx-CNS with a Cr evaporation time of 2, 5, 
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Figure 5.4 SEM images of as-grown CNS and CrOx-CNS with a variety of 

evaporation time. (a) T=O second (as-grown CNS), (b) t=2 seconds, (c) t=5 seconds, 

(d) t=10 seconds, (e) t=15 seconds. 

10, and 15 seconds are displayed in Figs. 5.4(b)-(e), respectively. These images reveal 

that a conformal CrOx coating are formed in each case. Even though the CrOx coatings 

do not appear as highly contrasted features in Figs. 5.4 (b) and (c), the observed edges 
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indicate that the coating must be conformal, as also confirmed by other characteristic 

methods. The thicknesses of CrOx coating were determined from the average value of the 

thickness for the individual coated CNS taken throughout the sample. Since CrOx layers 

are fabricated on both sides of nanosheets, the thickness of the coating is close to the half 

thickness difference of CNS before and after the evaporation. The results are summarized 

in Table 5.1. We note that the thickness of CrOx-CNS is quite uniform along the length of 

each individual nanosheet for each value of the evaporation time. 

5.4 PEEM AND FEEM OBSERVATIONS ON CrOx-CNS 

As described in Sec. 2.5, PEEM captures both photoelectrons generated by the 

photon source and field emission electrons extracted by the applied electric field to form 

images while FEEM only uses field emission electrons for imaging with the absence of 

photon source in PEEM. The contrast information of PEEM and FEEM images yields the 

spatial distributions of electron source in the sample and thereby determines the emission 

uniformity of the sample. In Sec. 4. 7, PEEM and FEEM observations present the 

existence of hot spots in as-grown CNS, suggesting that their emission uniformity is quite 

poor. Here, we will show that CrOx-CNS films have the excellent emission uniformity 

and enhanced field emission performance. 

Table 5.1 The thickness of CrOx coating with regard to various evaporation time. 

Evaporation time ( s) 2 5 10 15 

Coated CNS thickness (nm) 3 5 32 42 

CrOx thickness (nm) ~0.5 ~1.5 ~15 ~20 
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To directly compare the field emission performance of CrOx-CNS and as-grown 

CNS, patterned CrOx-CNS samples were used for PEEM and FEEM observations. 

Patterned CrOx-CNS samples were fabricated by using an evaporation time of 10 seconds 

through a TEM grid over as-grown CNS samples to form alternating CrOx-CNS squares 

and as-grown CNS streets. Two PEEM systems (modified Elmitec PEEM located at Ohio 

University and modified Staib PEEM located at NISI) operating at a pressure on the 

order of~ 1 o-s Torr were used to conduct these observations with four CrOx-CNS 

samples. Results show the same pattern for all observations. In addition to imaging, the 

in-situ 1-V measurements of the patterned CrOx-CNS sample were conducted in the 

modified Elmitec PEEM. 

Figure 5.5 shows SEM, PEEM and FEEM images of the patterned CrOx-CNS 

sample. The SEM image, Fig. 5.5(a), reveals that a well-patterned structure was formed 

on the CNS sample. The CrOx-CNS squares are 50 ~-Amx50 !-Am in area and separated with 

each other by 25 !-Am wide as-grown CNS streets. Here, an electric field of ~4 VI ~-Am was 

applied between the patterned CrOx-CNS sample (cathode) and the extractor of PEEM 

(anode) during PEEM and FEEM observations. The PEEM image, Fig. 5.5(b), shows the 

dark CrOx-CNS squares and bright as-grown CNS streets. According to the in-situ 

emission current measurements of the patterned CrOx-CNS taken in the field of view 

with a diameter of 300 ~-Am that contains alternating squares and streets, the collected 

currents are 2.4 pA for photoelectron emission and 0.1 pA for field electron emission. 

Photoelectrons are therefore the dominant electron source for imaging in this case. The 

PEEM image suggests that CrOx-CNS squares generate fewer photoelectrons than as

grown CNS streets, which is consistent with the fact that the wide-bandgap CrOx coating 
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Figure 5.5 SEM, PEEM, and FEEM images of patterned CrOx-CNS, (a) SEM image, 

(b) PEEM image, (c) FEEM image. 
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can suppress the photoelectron production from the wavelength of light used in this 

instrument [24]. The FEEM image shown in Fig. 5.5(c), on the other hand, presents 

bright CrOx-CNS squares and dark as-grown CNS streets, suggesting an enhanced field 

emission property of CrOx-CNS. The turn-on field of CrOx-CNS is less than 4 V /j.lm 

since the patterned structure has already been visible in the FEEM image. Moreover, the 

almost equal brightness of CrOx-CNS squares over the entire field of view indicates their 

excellent emission uniformity. The slight brightness variation among CrOx-CNS squares 

is caused by the electron optics of the microscope. 

1-V characteristics of patterned CrOx-CNS and as-grown CNS in the field of view of 

the microscope (300 1-1m in diameter) were measured during the FEEM observations. As 

noted, the patterned CrOx-CNS and as-grown CNS come from the same sample. Figure 

5.6 shows the collected emission current of patterned CrOx-CNS and as-grown CNS as a 

function of the applied electric field. The error bars origin from the collected current 

fluctuation recorded at each measured field. No electron emission from as-grown CNS is 

detected in FEEM observations while the collected emission currents from as-grown 

CNS are less than 0.3 pA at all applied electric fields. We conclude that CNS do not turn 

on at the low applied electric fields of this instrument. On the other hand, the CrOx-CNS 

squares start emitting electrons at an applied electron field of3.86 V/j.lm. Even though 

the collected emission current from the patterned CrOx-CNS is only 0.2 pA at this field, 

the CrOx-CNS squares are clearly visible in FEEM images. A turn-on field of 3.83 V /1-1m 

is quite consistent with our previous observations of CrOx-CNS. Thereafter, the collected 

emission current increases to 3.3 pA at an applied electric field of 4.61 V/j.lm. 

PEEM and FEEM observations were also conducted on the CrOx-CNS sample with 
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Figure 5.6 Collected emission currents of patterned CrOx-CNS and as-grown CNS 

as a function of the applied electric field. 

a coating thickness of 1.5 nm (5 seconds Cr evaporation). Figure 5.7 displays FEEM 

images of the CrOx-CNS sample taken at various applied electric fields and the PEEM 

image taken from the same sample area at 4.33 V/j.!m. Here, the PEEM image, Fig. 

5.7(a), is used as a reference for FEEM images, Figs. 5.7(b)-(e). The field of view in 

PEEM and FEEM images is 300 ~-tm in diameter. The electron optic system and imaging 

system of PEEM were fixed during these observations. All FEEM images, shown in Figs. 

5.7(b)-(e), indicate that the electron emission from CrOx-CNS is spatially uniform over 

the field of view with only a slight brightness variation caused by the electron optics. 
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Figure 5.7 PEEM and FEEM images ofCrOx-CNS with a coating thickness of 1.5 nm. 

(a) PEEM image taken at 4.34 V/11m as a reference for FEEM images, (b) FEEM image 

taken at 4.34 V/f...Lm, (c) FEEM image taken at 4.08 V/f...Lm, (d) FEEM image taken at 

3.58 V/1-!m, (e) FEEM image taken at 3.33 V/1-!m. 
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FEEM observations over the whole surface of the sample at various applied electric fields 

yield no hot runners, further confirming the spatially uniform emission of CrOx-CNS. 

Although FEEM images of the CrOx-CNS start being observed at an applied electric field 

of2.33 V/J.lm, the PEEM imaging system could not record them until the field increased 

to 3.33 V/J.lm. So we conclude that the turn-on field of 1.5 nm CrOx-CNS is -2.33 V/J.lm. 

The in-situ 1-V characteristic of 1.5 nm CrOx-CNS from the field of view of the 

microscope was measured during FEEM observations. Figure 5.8 displays the collected 

emission current of the CrOx-CNS as a function of the applied electric field. The 

collected current increases from 1 pA to 43 pA as the applied electric field increases from 

2.33 to 4.33 V/J.!m, consistent with the increasing brightness ofFEEM images 

demonstrated in Figs 5.7 (b)-(e) as the field increases. The error bars in the figure 

represent the collected current fluctuation recorded at each measured field. 
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Figure 5.8 Collected emission current of CrOx-CNS with a thickness of 1.5 nm as a 

function of the applied electric field. 
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Since the electron emission from CrOx-CNS with a coating thickness of 1.5 nm and 

15 nm are uniform, a direct comparison of their spatially averaged field emission is valid 

so long as we count for the actual area incorporated in the field of views. Figure 5.9 

displays the J-V characteristics of CrOx-CNS with a coating thickness of 1.5 nm and 15 

nm. The low collected current density measured here results from the electron loss 

during the transport in the electron optic system ofPEEM. The 1.5nm CrOx-CNS has a 

far better field emission performance than the 15 nm CrOx-CNS according to the lower 

turn-on field and higher emission current at every value of the applied electric field. 
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Therefore, we suggest that the field emission performance of CrOx-CNS should depend 

on the coating thickness. 

5.5 EFFECTS OF COATING THICKNESS ON FIELD EMISSION PERFORMANCE 

OF CrOx-CNS 

The field emission properties of CrOx-CNS samples with a variety of coating 

thicknesses were studied using the diode holder assembly in the UHV test system. CrOx

CNS samples were used as the cathode and separated from a 6 mm wide copper anode by 

alumina spacers having a thickness of254 ~-tm. The chamber pressure was ~4x10"8 Torr 

at the beginning of each test and the test area of samples was 30 mm2
• The coating 

thickness of CrOx-CNS samples used in this study were controlled by Cr evaporation 

time, which are 2 seconds, 5 seconds, 10 seconds, and 15 second, respectively. The 

corresponding coating thicknesses are estimated to be 0.5 nm, 1.5 nm, 15 nm, and 20 nm, 

respectively (See Fig. 5.4). The as-grown CNS samples used to produce CrOx-CNS were 

cleaved from a central area of an as-grown CNS wafer four inches in diameter in order to 

minimize the height and morphology variation of CNS so that the change of the field 

emission of coated samples can be completely attributed to the thickness variation of 

coatings. 

Figure 5.10 shows the emission current ofCrOx-CNS having different thicknesses 

as a function of the applied electric field (I-V curves). Here, each 1-V curve is the average 

of ten measurements from CrOx-CNS with the same coating thickness. The field emission 

data of these I-V curves are also summarized in Table 5.2. The as-grown CNS is used 

here as the reference for CrOx-CNS. The 1-V curve of as-grown CNS shows a turn-on 
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field of 4.25 V l!lm, consistent with our previous test results (See Sec. 4.5.1 ). Meanwhile, 

the applied electric field required for as-grown CNS to generate a peak current of 1.45 

rnA is 8.9 V/~J.m. The I-V curves of CrOx-CNS with a coating thickness of 1.5 nm and 15 

nm reveal that their turn-on fields are 2.4 V/~J.m and 3.9 V/!lm. The turn-on fields 

measured here are almost the same as those measured by FEEM (see Figs. 5.6 and 5.8), 

which are 2.33 V /~J.m for the 1.5 nm coating and 3.83 V/~J.m for the 15 nm coating. The 

applied electric fields to generate a peak current of 1.45 rnA are 5.0 V/~J.m and 8.5 V/~J.m 

for the 1.5 nm coating and the 15 nm coating, respectively. Thus, CrOx- CNS in thickness 
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Figure 5.10 Emission currents of CrOx-CNS with a variety of coating thicknesses as a 

function of the applied electric field. These I-V curves show that the best field emission 

performance is achieved from CrOx-CNS with a coating thickness of 1.5 nm. 
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up to 15 run shows better field emission performances than as-grown CNS. Moreover, 

CrOx-CNS with a coating thickness of 1.5 nm shows a better field emission performance 

than those with a coating thickness of 15 nm, consistent with our previous results shown 

in Fig. 5.9. 

The 1-V curves of CrOx-CNS with a coating thickness of 0. 5 nm and 20 nm have 

turn-on fields of 4.3 V /IJ.m and 6.1 V /IJ.m, respectively. The applied electric fields to 

generate a peak current of 1.45 rnA are 9.3 V/IJ.m for the 0.5 nm coating and 13.2 V/IJ.m 

for the 20 nm coating. Thus, CrOx-CNS with a coating thickness too thin or too thick 

degrade CNS field emission performance. Only CrOx-CNS with appropriate coating 

thicknesses possess enhanced field emission performances compared to the as-grown 

CNS. In our case, the optimum thickness of CrOx coating on CNS appears to be 1.5 nm. 

Latham et al[25] proposed a quasi-thermionic band diagram model to explain the 

enhanced electron emission performance of field emitters coated with a nano-scale 

dielectric film on the basis of field-induced band bending of the dielectric. There are two 

Table 5.2 Turn-on fields and applied electric fields required to generate 1.445 rnA 

emission current of CrOx-CNS samples with a variety of coating thicknesses. 

0.5nm 1.5 nm 15 nm 20nm 
as-grown 

CrOx CrOx CrOx CrOx 

Turn-on field* 
4.25 4.3 2.4 3.9 6.1 

(V/ 1-1m) 

Field required to generate a 
peak current of 1.45 rnA 8.9 9.3 5.0 8.5 13.2 

(V/ 1-1m) 
*Tum on field is defined as the applied electric field under which 10 nA emission current IS measured 
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main features of this model: (1) electron tunneling from emitters into the conduction band 

of the dielectric through a depletion layer at the emitter/dielectric interface, and (2) 

electron escape from the conduction band of the dielectric into vacuum quasi

thermionically through a small potential barrier. The 1-V characteristic of this model is 

nearly indistinguishable from the form originating from the Fowler-Nordheim 

mechanism. To apply this model to the experimental data, the dielectric requires a carrier 

concentration of 1017 cm-3 in its conduction band in order to form a thin depletion layer. 

Therefore, flat-band conditions may be assumed for the emitter/dielectric interface in the 

case of CrOx-CNS. A schematic of the highly simplified planar band diagram of CrOx

CNS with onset of electron emission is displayed in Figure 5.11. This model shows 

electrons ejection from CNS through two interfacial potential barriers to the vacuum. The 

electron emission of CrOx-CNS in this model can be described as following processes: 

(1) electron tunneling from Fermi level ofCNS into the conduction band ofCrOx, (2) 

electron thermalization during the transport from CNS/CrOx interface to CrOxlvacuum 

interface, (3) electron thermally-assisted tunneling from CrOx into vacuum. The 

tunneling width of electrons ejected from the Fermi energy level of CNS is postulated to 

increase at the CNS/CrOx interface with the increasing coating thickness because of the 

negative charge generated by the uncompensated electrons present in the dielectric. As a 

result, the field emission properties of CrOx-CNS generally degrade with regard to 

increasing coating thicknesses. If the CrOx coating is thinner than the tunneling width of 

electrons ejected from the Fermi energy level of CNS, as in the case of CrOx-CNS with a 

thickness of 0.5 nm, electrons may not gain kinetic energy during their transport from 

CNS/CrOx interface to CrOxlvacuum interface. We suspect that the probability of 
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Figure 5.11 The band diagram of CrOx-CNS with onset of electron emission. 

Here, <l>cNs is the work function of CNS, Xerox is the electron affinity of CrOx, 

and Eg is the bandgap of CrOx. 

electrons tunneling through these two barriers is smaller than that of electrons tunneling 

through the potential barrier acted on the surface of as-grown CNS, resulting in the 

degraded field emission performance of CrOx-CNS with a coating thickness of 0.5 nm as 

demonstrated in Fig. 5.10. 

5.6SUMMARY 

We have fabricated a conformal CrOx coating of nano-scale thickness on carbon 

nanosheets using vacuum evaporation and subsequent atmospheric exposure. By 

controlling the evaporation time, a variety of CrOx coating thicknesses from 0.5 nm up to 
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20 run were achieved. Material characterization methods, including SEM, EDX, AES, 

and Raman, were employed to study the morphology, composition, and structure of 

CrOx-CNS. The results reveal that CrOx is formed after Cr coated CNS is exposed to the 

atmosphere after vacuum evaporation of Cr. 

PEEM was used to study the field emission properties of CrOx-CNS. FEEM 

observations revealed that a spatially uniform emission could be achieved from CrOx

CNS and suggest that the field emission performance of CrOx-CNS depended on the 

coating thickness. The in-situ I-V measurements during FEEM observations reveal that 

the field emission performance of CrOx-CNS with a coating thickness of 15 nm is better 

than as-grown CNS but worse than CrOx-CNS with a 1.5 nm coating. 

The field emission properties of CrOx-CNS with a variety of thicknesses were 

studied by using the diode holder assembly in the UHV test apparatus. The results 

confirm that their field emission properties are closely related to the thicknesses of these 

coatings. Field emission properties of CrOx-CNS degrade when the coating is either too 

thin (0.5 nm) or too thick (20 nm), but field emission properties ofCrOx-CNS improve 

when the thicknesses of the coating lies between 1.5 nm and 15 nm. According to the 

study, CrOx-CNS with a coating thickness of 1.5 nm has the best emission properties 

among all samples tested, which has the lowest tum on field (2.36 V 1~--tm) and the lowest 

applied electric field (4.99 V/~-tm) to generate ~1.445 rnA. Moreover, the test results of 

CrOx-CNS with a coating thickness of 1.5 nm and 15 nm are quite consistent with those 

measured during FEEM observations. A two-barrier model may account for the variation 

of field emission performance with regard to the coating thickness. 
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6.1 SUMMARY 

CHAPTER VI 

SUMMARY AND FUTURE WORK 

During the course of this work, the synthesis, characterization, and field emission 

properties of carbon nanostructures, including 1-D carbon nanofibers (CNF), 2-D carbon 

nanosheets (CNS), and 2-D chromium oxide coated carbon nanosheets (CrOx-CNS), have 

been studied as the electron source in vacuum microelectronic devices. The application of 

CNF and CNS as the emissive materials embedded in a novel back-gated triode field 

emission device has also briefly introduced. 

We have employed a variety of materials characterization methods and apparatus to 

investigate the morphology, microstructure, composition and field emission properties of 

carbon nanostructures. These methods and apparatus are SEM, EDX, Raman, Auger, 

PEEM, FEEM and an FE test system. An introduction to these apparatus as well as their 

operational principles was briefly introduced in Chapter II. Three types of sample holder 

assemblies were used in FE measurements: cartridge holder assembly, diode holder 

assembly, and 24-pin header assembly. The merits and drawbacks of each sample holder 

assembly were discussed. 

We presented the synthesis, characterization, and field emission properties of 1-D 

CNF. A direct current plasma enhanced chemical vapor deposition (DC PECVD) system 

was designed and constructed for the purpose of direct CNF growth on metallic 
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substrates. We have successfully synthesized both spaghetti-like CNF and aligned CNF 

on blank TiW substrates without using a buffer layer. By adjusting the plasma power, we 

found that the degree of alignment of deposited CNF could be controlled. Spaghetti-like 

CNF with a high degree of nanoscale graphitic ordering were fabricated at lower plasma 

powers, while aligned CNF with a higher degree of nanoscale disorder were grown at 

higher plasma powers. We suggested that the morphology of CNF deposited on TiW 

substrates is determined by the electric field generated in the plasma sheath and by the 

growth rate of CNF, which can be tuned by the plasma power. The field emission 

properties of CNF deposited on blank TiW substrates were measured. 

The processes to fabricate both spaghetti-like and aligned CNF on TiW lines of 

controlled cross-sectional profiles to create back-gated triode field emission devices were 

described. Only aligned CNF based back-gated triode field emission devices survive our 

present wet-cleaning post processing steps to remove co-deposited amorphous carbon 

from the dielectric layer. These devices, using aligned CNF as the cathode, were 

measured for diode and triode field emission operations by using the 24-pin header 

assembly. The results indicated that back gate triode operation yielded greatly enhanced 

field emission performance of these devices. 

We also presented the synthesis, characterization, and field emission properties of 

2-D CNS. In this study, CNS were deposited on four-inch Si wafers in inductively 

coupled plasma using 4 seem CH4 and 6 seem H2 gas composition with a chamber 

pressure of 100 mTorr and an input RF power of900W at a substrate temperature of 

700 °C. Materials characterization revealed that CNS was hundreds of nanometers in 

length and height, but only <1-4 nm in thickness. Further, these measurements show that 
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the honeycomb-like morphology, graphitic structure, and atomic thickness of CNS can be 

fabricated on a variety of substrates, including Si, Ah03, Si02, Ni, Ti, W, TiW, Mo, Cu, 

Au, Pt, Zr, Hf, Nb, Ta, Cr, 304 Stainless steel, and graphite, without the need for 

catalysts. 

The field emission properties of as-grown CNS have been studied using the diode 

holder assembly from a broad range of perspectives, such as turn-on and threshold field, 

maximum total current, lifetime in a slow pulse mode, lifetime in a direct current mode, 

and emission uniformity. We showed that the turn-on and threshold field of as-grown 

CNS lie in the range from 3 to 4.7 V/f-1-m and 3.5 to 5.2 V/f-1-m, respectively. So far, a peak 

current of 33 rnA has been measured from an as-grown CNS sample with a test area of 32 

mm2 at an applied electric field of 26.8 V /f-1-m. Further, we routinely achieved a total 

current of more than 20 rnA from as-grown CNS samples with test areas of ~30 mm2
. 

After an as-grown CNS sample was electrically conditioned for half an hour, we showed 

more than 200 hours of stable emission in a slow pulse mode. These test results suggest 

that CNS may have better field emission properties than single metal single tips, carbon 

nanotubes/nanofibers, and diamond when high total-currents and long-life are required. 

The study of the field emission behavior of CNS was carried out by applying 

Fowler-Nordheim equation to field emission characteristics (1-V curves) of the as-grown 

CNS sample collected immediately before and after the de lifetime test. The slope of F-N 

plots and the intercept of F-N plots with ln(IIV2
) axis were used to determine the field 

amplification factor and emission area by substituting an assumed work function of as

grown CNS into the Fowler-Nordheim equation. The results suggest that a small number 

of the numerous possible nanosheet emission sites (hot runners) dominate the emission 
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current. These hot runners are most likely removed through the thermal runaway process 

during the conditioning process, leading to the turn-on of more emitters with lower field 

amplification factors. Therefore, removal of hot runners leads to a very stable field 

emission of 1.5 rnA on as-grown CNS samples. PEEM and FEEM observations 

confirmed the existence of hot runners in unconditioned CNS. The in-situ I-V 

measurements of hot runners reveal their unpredictable and unstable emission. In 

addition, these studies validated the effectiveness of back-gated triode field emission 

device design. 

This thesis presented the synthesis, characterization, and field emission properties 

of chromium oxide coated carbon nanosheets (CrOx-CNS). A conformal chromium oxide 

coating in a nanoscale thickness was fabricated on as-grown CNS by vacuum evaporating 

a thin Cr layer and subsequently exposing to the atmosphere. A variety of CrOx coating 

thicknesses from 0.5 nm to 20 nm are achieved by controlling the evaporation duration. 

The material characterizations confirm the formation of CrOx, most likely Cr203, on as

grown CNS after the coating process. PEEM observations and simultaneous in-situ/-V 

measurements presented that CrOx-CNS with a coating thickness of 1.5 nm and 15 nm 

had not only enhanced field emission properties but also excellent emission uniformity. 

This was probably the first time that such an excellent emission uniformity has ever been 

seen on a wide-field carbon nanostructure. These observations suggest that the field 

emission performance of CrOx-CNS depends on the coating thickness. 

The field emission properties of CrOx-CNS were also studied using the diode holder 

assembly for various coating thicknesses. Field emission properties of CrOx-CNS 

degraded when the coating is too thin (0.5 nm) or too thick (20 nm), but enhanced when 
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the coating thickness ranging from 1.5-15 nm. A CrOx-CNS sample with a coating 

thickness of 1.5 nm had the best emission property among all samples with various 

coating thicknesses with respect to the lowest turn-on field (2.36 V I!J.m) and the lowest 

field to generate specified current. We proposed a two-barrier model to interpret the 

effect of coating thickness on the field emission performance of CrOx-CNS. 

6.2 FUTURE WORK 

In this work, a 2-D carbon nanostructure that we have called carbon nanosheets 

has been confirmed as a promising candidate for the application as the electron source in 

vacuum microelectronic devices. Future work should focus on improving emission 

stability, uniformity, and lifetime of CNS at currents of tens (or hundreds) of 

milliamperes. 

6.2.1 STUDY ON WORK FUNCTION OF CARBON NANOSHEETS 

We studied the field emission behavior of carbon nanosheets by applying the 

Fowler-Nordheim equation to collected I-V curves and their corresponding F-N plots 

before and after the de lifetime test. In this work, we assumed that the value of the work 

function of carbon nanosheets was equal to that of graphite ( 4.8 e V). However, the work 

function ofCNS may be considerably different from 4.8 eV as a result of hydrogen 

adsorbates at the terminating edges of CNS. Therefore, it remains an open challenge to 

accurately measure the work function of CNS. 

One technical approach to measure the work function of CNS is to acquire the field 

emission energy distribution (FEED) using field emission energy spectrometry (FEES). 
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From an accurate measurement of the peak position of FEED, the work function of CNS 

could be accurately determined. Moreover, the peak width can tell the energy spread of 

emitted electrons from CNS, which is important for the device applications. Preliminary 

work along these lines was begun in our laboratory [1], but needs to be continued for a 

wider variety of conditions. 

6.2.2 PEEM AND FEEM MEASUREMENTS ON CNS 

This thesis has demonstrated that emission sites of as-grown CNS samples and their 

I-V curves can be measured during PEEM and FEEM observations. However, FEEM 

observations after conditioning could not be done because the maximum applied electric 

field of the instrument we had available was limited by the high voltage power supply 

applied due to safety considerations. Conditioning has been studied on wide area emitters 

by using phosphor screens to form emission images [2], but the resolution of the 

phosphor screen is too low to provide enough details for quantitatively analysis of the 

field emission performance of emissive materials. Therefore, a higher voltage PEEM 

apparatus will be necessary for this purpose. 

By comparing PEEM and FEEM observations and in-situ I-V measurements of 

CNS sample before and after the conditioning process, some important parameters and 

phenomena with regard to the conditioning process can be discovered. These include 

details on the processes that eliminate hot runners, increase emission site density, and 

decrease the emission current. Learning the details of these processes would guide the 

development of more efficient conditioning procedures. 
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6.2.3 EFFECTS OF H20 ON FIELD EMISSION PROPERTIES OF CNS 

All field emission tests presented in this work were conducted in an un-baked UHV 

test system. As a result, a large amount of residual H20 was present in the test system, 

affecting the field emission properties of CNS. Dean et al[3] reported that H20 can 

initially improve the field emission performance of CNT by introducing an adsorbate 

energy state to CNT, but in the longer run degrades the performance by ion 

bombardment. Thus, at times of tens of hours, these workers saw emission instability 

during their de lifetime test. 

One simple technical approach to study H20 effect is through comparing I-V curves 

and de lifetime test results collected from the same sample in un-baked and baked test 

system, respectively. Meanwhile, the H20 pressure change must be carefully monitored 

and recorded during these tests to determine whether such changes correlate with the 

field emission properties of CNS. 

6.2.4 EFFECT OF ANODE AND CATHODE TEMPERATURE ON FIELD EMISSION 

PROPERTIES OF CNS 

One experimental observation during de lifetime tests was that the temperature 

increased in the copper anode. At 5 rnA and 5000 V, the continuous 25 W causes the 

chamber pressure to change from ~lxl0-9 Torr to ~5xl0-6 Torr. This enhanced 

outgassing from the anode and the nearby structures is indicative of a much higher 

pressure still in the anode-cathode gap. Such a pressure leads to arcing and irreversible 

damage to the CNS cathode. Consequently, we have not yet found the intrinsic limitation 

of the maximum field emission current density for this material. 
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In this work, we have described a thermal runaway process associated with the 

existence of hot runners. The peak temperature of a hot runner is determined not only by 

the emission current density at emitters but also by the thermal transport along CNS to 

the substrate. Therefore, if more efficient the thermal transport can be achieved, a higher 

stable emission current might be achieved even in the presence of a small number of hot 

runners. Consequently, measuring the local surface temperature of the cathode is an 

important improvement to the current level of experiments. 

To do so, the test chamber and sample holder assembly have to be modified to 

permit thermocouples, or other thin-film devices to contact multiple locations of the 

anode and cathode. A multiplicity of current-time and temperature-time measures could 

then be used to construct an accurate thermal model of the surface temperature. 

6.2.5 STUDY ON FIELD EMISSION PROPERTIES OF WIDE-BANDGAP 

MATERIAL COATED CNS 

We have presented field emission properties of CrOx-CNS. The results indicated 

that CrOx-CNS had improved turn-on field and lowered field levels to achieve a given 

current. We also showed that emission uniformity of CrOx-CNS is much better than 

CNT/CNF and as-deposited CNS. Unlike the Mo2C-CNS that takes advantage of low 

work function of MozC, we suggested that CrOx-CNS depends on a combination of field

induced band bending in a dielectric overlayer, coupled to a quasi-thermionic 

enhancement of tunneling through that dielectric. Therefore, wide-bandgap coating 

materials may be useful to improve field emission performance of carbon nanostructures. 

CrOx may not be the best wide-bandgap material for such a purpose. Therefore, a 
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systematic study of a variety of wide-bandgap materials should be measured as the 

functional coating of CNS. These would include SiOz, MgO, ScOx, YOx, and perhaps a 

sequence of heavier oxides such as Rh20 3• 

6.2.6 CNS GROWTH PARAMETERS OPTIMIZATION 

So far, we have shown that CNS have competitive field emission properties to be an 

electron emissive material for application as electron source in vacuum microelectronic 

devices. The field emission properties of CNS can be improved by optimizing their 

growth parameters in order to synthesize dispersive nanosheets on substrates, resulting in 

the minimum screening effects originated from the similarity of neighboring emitters. 

One approach is making aligned CNS on the whole substrate surface. We have 

successfully synthesized aligned CNS in a small peripheral area by contacting a grounded 

electrode to the substrate. It is suspected that the change of the plasma sheath surrounded 

the contact point of grounded electrode causes alignment of the CNS. To achieve a large 

scale growth of aligned CNS, the change of plasma sheath surrounding the grounded 

electrode has to be experimentally studied while the grounded multi-electrode system on 

Si substrates has to be carefully designed. 

Another approach is altering the emitter characteristics using photolithographic 

techniques to control emitter densities with designed pattern. Systematic studies would be 

needed to find the optimal emitter density of CNS. 
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