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A B ST R A C T

A measurement of the branching fraction for the rare decay K £ —► 7 r+7 r~e+e_ 
was performed using data collected from experiment E871 which ran at the AGS 
of Brookhaven National Laboratory. Analysis of the data revealed 27.7 ±  7.4 sig
nal events in the signal region, 0.4905 GeV < M nnee < 0.505 GeV together with
13.3 ±  3.7 background events. The branching fractions of (8 .5^  x  10~ 6  us

ing the phenomenological model acceptance and (2.3^° 3 ^*“̂ ) x 1 0 ~ 6  using the chiral 
perturbation model represent the first measurements for K ([ —> 7 r+7 r~e+e~ in the di- 
pion invariant mass region 0.475 GeV<M7r7r < 0.497 GeV. These results support the 
prediction of chiral perturbation theory rather than that of the phenomenological 
model.
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Part I 

Introduction and M otivation
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C H A PT E R  1

Introduction

This thesis describes the measurement of the branching fraction for the rare 

decay K \  —> 7 r+7 r~e+e_ in the phase space for which the pion pair has greater 

than 0.475 GeV of the invariant mass. Interest in this decay mode began in the 

late 1960’s when it was predicted by Dolgov and Ponomarev [2] that a CP violat

ing effect would be manifested as an asymmetry in the angle between the 7r+ 7r~ 

and e+e“ decay planes. A phenomenological model was developed based on a one 

photon intermediate state, K \  —► 7 r+7 r~(7 * —> e+e“ ). Predictions from this model 

have been presented in papers by Sehgal et al. [3], [4] in the early 1990’s. A sec

ond model based on the framework of chiral perturbation theory (xPT) has also 

made predictions for the branching fraction in this channel. This model shows an 

enhancement to the decay rate in the high dipion invariant mass region compared 

with the phenomenological model. An experimental measurement of the branching 

ratio in this phase space region can be used as a test of the predictive powers of the 

two models as the detector acceptances are model-dependent.

The first measurement of the K ([  —> 7 r+7 r_e+e_ branching fraction was based 

on 37 events observed by the KTeV collaboration at the Fermi National Laboratory

3
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4

in 1998 [5]. Further observations by KTeV [1], the NA48 experiment at CERN [6 ], 

and the E162 experiment at KEK brought the total event sample for this decay 

channel to 6175 events. These experiments were designed to accept events through

out the majority of the dipion invariant mass spectrum but had small acceptances 

above > 0.475 GeV. The world average branching fraction determined from 

this sample used acceptances calculated from the phenomenological model. The 

world average and the theoretical predictions agree for dipion invariant mass region 

investigated, 0.279 < < 0.475 GeV. A branching fraction based upon the pre

dictions of the chiral perturbation model was not evaluated for the 6175 events in 

the world sample.

Experiment E871 was performed at the Alternating Gradient Synchrotron (AGS) 

at the Brookhaven National Laboratory in 1995 and 1996 and included a collabo

ration of scientists from five universities (Appendix A contains a list of researchers, 

institutions and publications). The detector was designed to search for the rare 

leptonic decays K \  —> [7] and K ([  —► e+e“ [8 ], and for the forbidden decay

K l  —► /.t±eT [9] using a two-armed spectrometer and particle identification system. 

Although the acceptance was maximized for two-body decays, three and four body 

decays can be measured if two of the decay products carry the majority of the invari

ant mass. The final data set from E871 was reduced such that all events contained 

a pair of tracks that carried at least 0.475 GeV of the kaon’s invariant mass. Thus, 

the K® —> 7r+ 7r- e + e “  branching fraction measurement was limited to the region 

least sensitive in KTeV, NA48, and E162.

The work described here was further motivated by a measurement of the branch

ing fraction for K £ —> p + / i “ e + e ”  in 2004 by A. Norman on E871[10]. In that work, 

an enhancement to the decay rate in the high /x+//_ invariant mass region was ob

served, which was consistent with the chiral perturbation model for a four-lepton 

final state. It was also demonstrated that a four-body decay event could be recon-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



structed from the two-body data set of E871.

This thesis is broadly organized into three parts. The first part includes the 

introduction and the theoretical overview which includes the kaon phenomenology 

and a description of the K £ —> 7:+ir~e+e~ decay models. In the second part, the 

hardware and software that was built to perform the E871 experiment is described in 

detail. The final part provides information on the components necessary to perform 

the branching fraction calculations. This includes a chapter on the Monte Carlo 

simulation of the phenomenological and chiral perturbation models, a chapter on the 

analysis of the signal and normalization samples, and a chapter with the conclusions.
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C H A PTER  2

Theoretical M otivation

2.1 O verview

In this chapter, the theoretical basis for this measurement is given. The first 

sections comprise a summary of the important properties of the neutral kaon system. 

Extensive reviews on the history and phenomenology of the neutral kaon and CP vi

olation can be found in [11],[12], and [13]. Following this summary, the phenomeno

logical and chiral perturbation models are described for the K \  —> 7r+ 7r- e + e ~  decay.

2.2 N eu tra l K aons

In 1946, the neutral kaon was discovered by G. Rochester and C. Butler [14] in a 

cosmic-ray cloud chamber experiment. Two charged tracks, now known to be pions, 

were observed to originate from a neutral particle whose mass was approximately 

900 times the mass of the electron. This was the first observation of a hadron which 

we now know contains a quark other than the up or down quark. The concepts 

developed from this and subsequent discoveries of heavier hadrons form the basis of 

the quark model.

6
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7T

P
U

d

K°

A0

Figure 2.1: Production of a K°  and aA° via the strong interaction.

There are two forms of the neutral kaon, the K ° and its antiparticle, the K°. 

In the quark model they are described by

\K°) = \sd) S  = + 1

\K ° )= \s d )  S  = - 1.

(2 .1)

(2 .2 )

Both states have the same mass, charge, spin, and parity but are distinguished 

by their strangeness quantum number S. The strangeness of a hadron is defined 

by its strange quark content S, with + 1  defining a particle with one anti-strange 

quark. The strong interaction conserves strangeness. In order to produce particles 

with S = 1, an associated particle must also be produced with S  = — 1. A typical 

process by which this occurs is

7T +  p —» A +  K ° . (2.3)

The Feynman diagram for this process can be found in Figure 2.1. This process is 

the dominant method of producing neutral kaons for E871.

Due to the strangeness-conserving nature of strong and electromagnetic inter

actions, the K ° and K°  are unable to decay via those forces, as they are the lightest
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(a) K° —> 7T+7T (b) K°

7T.+

w+

W -

(c) K °-K°  mixing via a A S  =  2 weak process

Figure 2.2: Since K °  (a) and K°  (b) share final states , mixing between the two is 
possible through the second order weak interaction shown in (c).

mesons containing a strange quark. The weak force does not conserve strangeness, 

and thus K ° and K °  decays can proceed by A S  = 1 channels. As shown in Fig

ures 2.2(a) and 2.2(b), both neutral kaons can decay into the same final states. This 

leads to second-order weak interaction processes which allow K °  and K°  to mix 

(Figure 2.2(c)). For an observed final state, the initial state which created it cannot 

be known with certainty, and thus the experimentally observed particles must be a 

linear combination of the |K°) and A 0) states.

Weak interactions do not conserve parity (P), as first confirmed in the beta 

decay of Co6 0  [15], nor do they conserve charge conjugation (C ) due to the explicit 

handedness of the neutrino but, to an approximate extent, the combined symmetry 

operation of P C  is conserved in the weak processes. K °  and K°  are not eigenstates
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of CP,

namely, CP |K °)  =  -  |K °)  and CP |K °) = -  \K°) . (2.4)

We can form linear combinations which are CP eigenstates:

|tfO) =  ~^={\K°) -  \K 0)) with CP \K l)  =  +  \K°) (2.5)
v  2

IK l)  = - )= ( |K °)  +  |/?0)) with CP IK °) = -  i x 2°> . (2.6)

If CP invariance is assumed to hold for weak interactions, the decays of K 3  and 

K% can be distinguished by noting the parity of the final state. In pionic decays, a 

final state of 27r’s must have originated from a K (( since the pion has an intrinsic 

parity of -1, whereas a final state of 37 t’s  must have originated from a K^. By 

examining the allowed phase space for each final state (215 MeV/c for 2n and 78 

MeV/c for 3 7 t), it was predicted that t k o <  r K o by Gell-Mann and Pais [16] and

later confirmed in experiment by Lande et al. [17].

2.3 C P V io lation

In 1964, J. Christenson, J. Cronin, V. Fitch, and R. Turlay detected one —>

7 r+7 r“ event in 500 decays of the long-lived neutral kaon [18]. Up to this point, the

CP eigenstates were thought to be equivalent to the weak eigenstates due to CP 

invariance in the weak interaction. Due to the fact that the violation is at such a 

small level ( ~ 2 x 10-3), the weak states are expected to differ from the CP states 

by only a small amount which can be accounted for by including a small admixture 

of the opposite CP state. The new states are called K <1 and and are defined as

|JCS) =  |K ? ) + e |* S )  (2.7)

| O  =  |S-20) + e | i f » ) ,  (2.8)
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where the normalization has been ignored and e ~  2.284 x 1CT3  [19]. CP violation

can originate from two sources in the neutral kaon system. In indirect CP violation,

The small level at which direct CP violation contributes, it will not be relevant 

to this study and therefore, any further references to CP violation will be for the 

indirect contribution only.

The degree to which CP violation contributes is found by measuring the am

plitude ratio of shared final states as in

The parameters \r]±\ and <p± are relevant to the K {[  —> 7 r+7 r e+e models discussed 

in this thesis. Their measured values [19] are

2.4 K £ —» 7r+7r e+e M odels

2.4.1 Phenom enological M odel

In the late 1960’s papers by Dolgov et al. [2] and Majumdar et al. [23] es

tablished the phenomenological model of the decay K \  —> n +Tv~e+e~ based on the

the weak state decays via the admixture of the minority CP state for that system. 

For example in a K \  —> 7 r+7 r_ event, CP =  +1 final state can be reached if the decay 

occurs through the e | K f)  sector of the initial K ([  state. In direct CP violation, e' 

is non-zero if either the K f  or fC? decays to a final state of opposite CP. The ratio 

e'/e has been measured in K  —> 7 T7 T decays [20, 21, 22] and is given by

^  =  (1.72 ±0.18) x 1(T3  [19]. (2.9)

(2 .10)

(2.11)

|i)±| =  2.286 x 10_s and ^± =  43.51°. (2 ,12)
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CP violating decays K £ —»■ 7r+ 7r~ and In K ([  —> 7 r+7 r~ 7  decays, an

interference between the CP violating and CP conserving decays leads to a CP vio

lating asymmetry in the polarization of the external photon. In K \  —> 7 r+7 r“ e+e~, 

the phenomenological model predicts this same interference, carried now by a vir

tual photon. The asymmetry in the polarization propagates through the decay and 

manifests itself as an asymmetry in the 7 r+7 r-  and e+e~ decay planes. In the early 

1990’s, work by Sehgal et al. in [3, 4] gave predictions for the branching ratio and 

asymmetry as the first experiments to measure both for K'l —> 7r+7 r- e+e~ were 

about to begin. The model described here was taken from P. Heiliger and L. Sehgal 

[4]. Modifications made by the KTeV, and NA48 brought the model into agreement 

with the experimental results.

The decay amplitude of

7 r+(P+) n ~(P~) e+(^+) eT{k-) (2.13)

is described as the sum of the five distinct processes. Four are shown in Figure 2.3 

while the fifth is a direct CP violating term. The matrix element has the form

M  =  M .br  +  M-m i +  M-ei +  M-cr +  -M-sd ■ (2-14)

The bremsstrahlung amplitude, M b r , and the direct emission amplitude, M m i and 

M .eii are analogues of the corresponding amplitudes for K \  —> 7 r+7 r~ 7  where the 

photon is virtual and decays to an e+e_ pair. The internal bremsstrahlung term is

■Adjb r  —  e \ f s \ g B R
P+n P-,

p+ ■ k • k

and corresponds to an E l virtual photon emitted from either of the pion legs as 

shown in [a] of Figure 2.3. The form factor | / s| is determined from the decay rate

r( if»  * + * -) I/s
167rm.fc

1  -

4m: (2.16)
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The parameter gb r  is

9 B R  =  V± eiSo{mk) ( 2 -1 7 )

where r]± is the CP violating parameter described in the previous section and 

Sj ( M 7r7r) is the phase shift for the final state strong interaction between the pion 

pair having an angular momentum J  and an invariant mass Mn7T.

The direct emission amplitude ([b] and [c] in Figure 2.3) is separated into a CP 

conserving piece in which the photon is emitted in the CP =  — 1 M l state,

M m i = e \fs\ ^ e lxl/pakupp+pa_ -^ u (k - )Y v (k +) (2.18)
771̂, K

and a CP violating piece where the photon is in the C P  =  +1 E l state,

M ei = e \ f s \ ^ [ ( V  ■ k)p+ -  (p+ • k)Vp\ ^ u (k -)~ /pv (k+) (2.19)
77Ifc K

where kp is the four-momentum of the virtual photon and the parameter Qm i is

9 m i  =  i \ g M i \ e l S l M  ■ (2 -2 0 )

The kinematic parameter sn7r is the square, M ^ , of the invariant mass of the pion 

pair. In the models of [3, 4], |p m i | was assumed to be constant and was determined 

empirically from the ratio Qm i I q b r  to be 0.76. But, in order to fit the experimental 

results of K £ —> 7 r+7 r - 7  [24, 25, 26] and K £ —» 7 r+7 r~e+e-  [1, 6 ], |p m i |  was modified 

to include a p-propagator vector meson dominance form factor, which is dependent 

on the energy of the lepton pair. Now, in modified form,

ai/fl2
\9m i \ — 9mi 1 + (m2 -  m l)  +  2m k(Ee+ + Ee~) (2 .21 )

where m p is the mass of the p meson and Qmi and a^/a^ are parameters extracted 

from a fit of the data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

[a]
Bremsstrahlung M

e

BR

Direct EmissionM1 M1

[d]

7X

Charge Radius M
7\

CR

Figure 2.3: Diagrams illustrating the contributions of bremsstrahlung, direct emission 
Ml and E l, and K °  charge radius terms to the matrix element of Eq. (2.14)
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The parameter gE i in Eq. (2.19) has the same form as Eq. (2.20), but due

to the suppression imposed by the kinematics of a three-body decay over the two-

body final state of the bremsstrahlung component and the suppression from the CP

violating nature of the decay, the ratio of the E l to M l direct emission amplitudes

is negligible and has been measured in KTeV [1] to have an upper limit of

9 El 
9 Ml

Due to the dominance of gM i over g Ei-, the amplitude M ei  is not included in the 

model.

The term M . c r  in Eq. (2.14) represents the K ° charge radius contribution 

shown in diagram [d] of Figure 2.3. This amplitude includes the transition K \  —» 

K sl*  which is forbidden due to energy-momentum conservation in the case where 

the photon is real. This is followed by the CP conserving decay of the Kg into two 

pions. The amplitude for this process is

M e n  = (^— b ^ f )  ^  ' k ) k ^ ( k . ) - f v ( K )

(2.23)

where

gp =  < R 2 >Ko m 2kei6°^  (2.24)

and < R 2 >Ko is the mean square charge radius of the K° determined from experi

ment.

The final term in Eq. (2.14) involves the direct CP violation in the decay 

K® —> TT+7r~e+e~. From Eq. (2.6), the amplitude can be determined from the linear 

combination of the K °  —> 7 r+7 r- e+e-  and K °  —>■ 7 r+7 r- e+e~ matrix elements origi

nating in the short-distance Hamiltonian of the weak interaction describing s —» d 

transitions. From [4], the result is 

Cj ex
M s d  =  — jLsin(Bc )—  9s d {p + -  p_)Mu(A;_)7 /J(l -  -s5)v(k+) (2.25)

v 2
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where

9sd = i[sin(d2)sin(d3)sin(5)]iV2 ĵ r ' j ; (2.26)

02, 03, and 5 are CKM parameters, ©c is the Cabbibo angle, and fn = 130 MeV is 

the pion decay constant.

From the spin-sum of the matrix elements in Eq. (2.14), the differential decay 

rate for K \  —> 7 r+7 r_e+e~ decays is

_  (  1  \  i 12  d3P+ dZP- d3k+ d3k_ rW/<r)
V2mfc(27r)12J  ' 2E„+ 2En- 2 E e+2Ee-  ̂ P+ P~ + ^ '

(2.27)

The differential phase space volume elements, d3pj are not independent of one an

other and can be re-expressed as a function of five independent variables: s ^  =  

(p+ + p —)2, see =  (k+ +  k —)2, ©7,-, @e, and 0. The first two axe the invariant masses 

of the 7r+7r~ and e+e~ pairs while the last three are angles which depend on the 

frame of reference, as shown in Figure 2.4. ©^ is the angle between the positive 

pion’s momentum vector p+, and the e+e“ decay plane in the 7 r+7 r-  center of mass 

frame. © e  is the angle between the positron’s momentum vector k+ and the 7 r + 7 r ~  

decay plane in the e+e_ center of mass frame, and </> is the angle between the 7 r+7 r~ 

and the e+e_ decay planes in the K \  center of mass frame. Rewriting Eq. (2.27) in 

terms of these five phase space variables gives

d r  I (sTj-n-, <see, ©7T5 ©e> 0)^5^^ dsee d©^ d©e dcfi. (2.28)

The CP violating observable in K \  —> n +/K~e+e~ decays arises from the inter

ference between the inner bremsstrahlung and M l direct emission portions which 

are the dominant contributions to the matrix element. By integrating Eq. (2.28) 

over all variables except 0 , the differential decay rate can be reduced to the sum of 

three terms,

^  =  A cos2{(f)) + B  sin2{cj)) +  C sin((j>)cos((f) ) . (2.29)
CL<p
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+ -

7 \ 7 \  
rest frame rest frame

K

0K
rest frame

Figure 2.4: Definitions of the kinematic variables used to describe the phase space of the 
decay K \
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Under CP, the last term changes sign and leads to an asymmetry in the angle 

between the 7 r+7 r~ and e+e“ decay planes in the K ([ center of mass. Unfortunately, 

the method used to identify K \  —>7 r+7 r_e+e~ decays in E871 (described in Sec. 6.4) 

does not allow for a precise reconstruction of the e+e_ decay plane in the center 

of mass frame, and thus an asymmetry measurement is not possible. W ithout the 

capability to make an asymmetry measurement, there was no need to implement 

either the phenomenological or the chiral perturbation model as a function of the 

angular variables and the the differential decay rate was integrated over 0 ^, 0 e, and 

4>.

Figure 2.5 shows the dependence of the differential decay rate on the invariant 

mass of the pion pair. The first experiments to measure the K°L —» 7 r+7 r_e+e_ 

branching fraction, KTeV and NA48, had detector acceptances which corresponded 

to the broad peak of Figure 2.5, but dropped off at higher invariant masses so that 

the narrow peak near the K \  mass was not observed. The pion invariant mass 

spectra from the full results of KTeV [1] and NA48 [6 ] are shown in Figure 2.6 and 

include the acceptance of the detectors. In the phenomenological model, 15.9% of 

the decay rate is above =  475 MeV where KTeV and NA48 have less than 1% 

of their data. The acceptance for E871 is limited to a region of phase space where 

M n7r > 475 MeV which gives E871 the ability to examine the narrow peak shown in 

Figure 2.5. The phenomenological model parameters gM i  and a.i/a.2 in the magnetic 

form factor of Eq. (2.21) as well as < R2> Ko in the charge radius form factor of 

Eq. (2.24) were extracted from a fit to the results from KTeV [1] and are shown in 

Table 2.1. Although the model fits the experimental results for the pion invariant 

mass region shown in Figure 2.6, it is unknown how well this model predicts the 

K l  —>■ 7 r+7 r e+e phase space region that is accessible in E871.
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in v a r ia n t m ass o f p io n s /M K

(a) d£f  , calculated from theory. Reprinted figure 
with permission from Heiliger, P. and Sehgal L. M., 
Phys. Rev. D, Vol 48, 4146, 1993. Copyright 1993 
by the American Physical Society.

0.015
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0.0025
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(b) j j j —, generated from Monte Carlo

Figure 2.5: The differential decay spectrum from the paper by Heiliger and Sehgal [4] 
and from Monte Carlo generated events after integrating over see, ©7r> ©e> and <j>. The 
broader peak from 0.270 GeV to 0.450 GeV has been used to fit the data from KTeV 
and NA48, whose acceptances match in this region. The present work looks at the M „  
region above 0.475 GeV and corresponds to the narrow peak which makes up 15.9% of 
the decay rate in this model.
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(a) Mjttt, KTeV 2006. Reprinted figure with 
permission from Abouzaid et al, Phys. Rev. 
Lett., Vol 96, 101801, 2006. Copyright 2006 
by the American Physical Society.
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(b) NA48 2003 Reprinted figure with permission from 
Lai et al, Eur. Phys. J. C30, 33-49, 2003. Copyright 2003 by

Figure 2.6: Pion invariant mass distributions from KTeV [1] and NA48 [6] These exper
iments have little acceptance in the region above 475 MeV, the region of relevance for 
this work.
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9  M l  
a i/a 2 

< R  ^>K°

1 . 1 1  ±  0 . 1 2  (stat) ±  0.08 (syst)
(0.744 ±  0.027 (stat) ±  0.032 (syst)) GeV2 /c 2  

(0.077 ±  0.007(stat) ±  0.011(syst))fm2 . 2

Table 2.1: K \  —> 7r+7r e+ e phenomenological model parameters extracted from the 
full data set of KTeV [1]
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2.4.2 Chiral Perturbation M odel

In quantum chromodynamics (QCD), interactions involving the strong force 

are calculated in terms of quarks and gluons which axe the fundamental degrees 

of freedom in the theory. At high energies, QCD can be applied perturbatively 

due to the asymptotically-free nature of the couplings. But at low energies such as 

those involved in kaon decays, the quarks are confined due to the increasing cou

pling constants, making QCD calculations in this regime difficult. Instead, strong 

interactions at energies below 1  GeV can be described in terms of the lowest-lying 

octet of pseudoscalar mesons (7r,K,?7 ) and the approximate chiral symmetry of QCD. 

This framework, called chiral perturbation theory (xPT), is an effective field the

ory in which external momenta and quark masses are treated as small expansion 

parameters compared with the chiral symmetry breaking scale of 1  GeV, allowing 

perturbation theory to be performed in this energy region. Detailed accounts of 

yPT  can be found in reviews by Scherer [27], Pich [28], Leutwyler [29], and Ecker 

[30]. The model used in this experiment is from the work by Elwood, Wise, and 

Savage [31] in 1995, but is further described in papers by Savage [32], Pichl [33], 

and Ecker and Pichl [34].

Similar to the phenomenological model, the K QL —» 7 r+7 r- e+e~ amplitude in 

yPT  is dominated by the single virtual photon process K \  — 7r+7r~j* —> 7 r+7 r~e+e~ 

which has the form

M ii  = s m (®c)Gf°t ^Q en\pap+xp^ q^ + F+pv + F _pt]u(k-)'y,tv (k+) . (2.30)
47Tj -^Q

The Lorentz scalar form factors G and F± are functions of the hadronic kinematic 

invariants q2,q • p+ and q • p_. The contributions from the K® and components 

of the K \  can be examined separately and must have the correct CP symmetry 

properties. The form factors can be expanded as a power series in terms of the
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external momenta and masses,

G = G{1) + G (2) + G (3) +  ... (2.31)

F± = F {± ] +  f£ 2) +  F |3) +  .... (2.32)

The superscript in the expansion denotes the order in xP T  with representing 

Q 2 * - 1  powers of momenta and mass.

The diagrams containing the lowest order contributions to the form factors are 

shown in Figure 2.7 and correspond to the CP violating K ° decays giving

G(1) =  0 (2.33)

and

F m = 32g8/ , V g - m> 2
q2 +  2{q-p±) V 7

The parameter g8 is a constant determined by measuring the decay rate for Kg —► 

7 r+7 r_ with a value of \g8\ =  5.1. The CP conserving decays from K® enter into the 

series at for i =  2 through the one-loop diagrams of the decay rate for K ([ —> 7 r+7 r_ 7  

in which higher order momentum-dependent contributions are neglected. From [32], 

we use a value of 39.3 for G^2\

For this work, only the lowest non-zero contributions for each form factor, G ^  

and F± \  were taken into account. The second order term in F± is included in the 

papers of Elwood et al. [31], Savage [32], and Pichl [33] and was implemented in the 

model. However, due to the insensitivity of the branching ratio in the phase space 

region of E871, the second order electric terms were subsequently removed from the 

model and excluded from this study. The differential decay rate was calculated by 

using the spin-summed squared matrix element of Eq. (2.30) and integrating over 

the angular phase space variables, as in the phenomenological model.
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Figure 2.7: Tree-level Feynman diagrams contributing to the term of the chiral 
perturbation form factors.

The acceptance for K \  —> 7 r+7 r_e+e_ events to enter the E871 data stream is 

dependent on the dipion invariant mass spectrum of the decay. As shown in Fig

ure 2.8(a), 52.6% of the events in the yPT  model have a pion pair that carries more 

than 475 MeV of the invariant mass. This is a factor of three increase over that of 

the phenomenological model Figure 2.8(b), which gives E871 the ability to distin

guish between the two models. If we naively assume all other factors to be equal, 

the number of K \  —► 7r+ 7r_ e + e ~  events observed in the phase space region with 

M™ > 475 MeV should be three times greater if the xPT  model is favored over the 

phenomenological model. The acceptance ratio for the models determined through 

Monte Carlo simulation in the E871 software shows the enhancement expected in 

the total number of events observed. In this work, the number of K \  —> 7 T+7 r~e+e_ 

events measured will be normalized to extract the branching ratios for the decay 

mode in the yPT  and phenomenological models so that a comparison to the world 

average can be performed.
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Figure 2.8: (a) The differential decay spectrum from Monte Carlo generated events. 
The phase space of interest in E871, Mff7r >  0.475GeV, has 52.6% of the decay rate 
accessible, (b) MW7r spectra from Monte Carlo generated events for the phenomenological 
model, xPT  model, and a kinematic model which assumes no structure in the decay. The 
enhancement in the region above 0.475 GeV is evident.
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C H A PT E R  3 

BNL E871 D etector

3.1 O verview

Experiment E871 began taking data at Brookhaven National Lab’s Alternating 

Gradient Synchrotron (AGS) in early 1995. Situated in the B5 secondary beamline 

of the AGS, E871 was allocated 5600 hours of running time using a 24 GeV/c high 

intensity proton beam. Its primary purpose was to measure the branching fraction 

for the rare dileptonic decays of the long lived neutral kaon. To achieve this required 

achieving a a single event sensitivity of 1CT12. A neutral kaon beam was created 

through associated production by impinging a proton beam on a high Z target. The 

background byproducts were removed through a series of magnets and lead foils 

designed to eliminate all charged products and photons in the beam path. The 

kaons decayed in the vacuum environment of the neutral beamline and decay tank 

over the a first 21 meters. The E871 detector was situated downstream of the decay 

tank and allowed for tracking, momentum, and particle identification information 

to be collected. The E871 experimental layout is given in Figure 3.1.

In order to reach a single event sensitivity of 10~12, much care had to be put

26
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into the design of the experiment. First, the intensity of the neutral beam needed 

to be maximized in order to measure as many decays as possible in the limited 

run time. This was accomplished by increasing the intensity of the primary proton 

beam, but at the cost of more background neutrons being produced. Second, the 

detector had to accept and reconstruct as many of the signal decays as possible 

while rejecting background. In order to efficiently record the signal, the decay 

product’s momentum, direction and particle type had to be measured accurately 

to ensure proper event reconstruction. Redundancies in the detector allowed for a 

good tracking resolution and efficient particle identification . The experimental setup 

can be broken into three components: kaon production and beamline, momentum 

and tracking measurements, and trigger counters and particle identification. A 

compressed plan of the E871 neutral beamline and detector is found in Figure 3.2. 

Each part will be addressed in this chapter.

3.2 N eutra l B eam  P rodu ction

3.2.1 Prim ary Proton Beam

Brookhaven’s Alternating Gradient Synchrotron (AGS) provided 24 GeV/c pro

tons to multiple beamlines and experimental halls in spills that lasted approximately 

1.5 seconds and had a variable repetition time ranging from 3.2 to 3.8 seconds. Each 

spill contained 15 x 101 2  protons (15 Tp). The process of creating the primary pro

ton beam began with the acceleration of H~  ions in the tandem facility from 25 

keV to 750 keV. These were injected into the LIN AC which boosted the H~ beam 

to 200 MeV using the accelerating fields of 286 drift tube cells resonating at 200 

Mhz [35]. These spanned a distance of 145 m. At this point, the electrons of the 

H~ ions were removed by a stripper foil which allowed bare protons to enter the
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AGS Booster ring. This ring had a circumference of 201.8 m, and increased the 

proton’s kinetic energy to 1.5 GeV while grouping them into pulses of 15 Tp at a 

repetition rate of 7.5 Hz. Prom the Booster, the pulses were sent into the AGS, 

whose circumference was four times that of the Booster, and could hold four 15 

Tp pulses for further acceleration. In the AGS, the protons were accelerated to an 

energy of 24 GeV/c and sent into a switch-yard of splitting magnets. The primary 

proton beam was then delivered to the B5 beamline, and onto the E871 target. The 

layout of AGS and these other preliminary systems can be seen in Figure 3.3.

3.2.2 Production Target

As described in Chapter 2 , kaons are produced in the strangeness-conserving 

strong interaction p+ +  ir~ —>• K ° + A. To ensure a high rate of production, the 

target material needed to have a high Z, so that the the proton beam would interact
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in a relatively short distance. The E871 production target was made from platinum 

(Z=78), which has a density of 21.45 g/cm 3  and a hadronic interaction length of 

189.7 g/cm 2. As the primary beam entered beamline B, a series of quadrupole 

and dipole magnets focused and directed the beam onto the production target at a 

slight downward angle which could vary from 1-4.5°. In changing the angle at which 

the proton beam impacted the target, a trade-off between beam intensity and the 

neutron to kaon (n : K°) ratio was made. A small angle allowed for a large beam 

intensity but also for a higher n  : K °  ratio. A larger angle decreased the n :K° ratio 

but at the cost of overall kaon beam intensity. To this end, a nominal operating angle 

of 3.75° was chosen to maximize the number of K°  while minimizing the number 

of background-inducing neutrons. For a nominal incident flux of 15Tp/spill, the 

neutral beam consisted of 2 x 108  K°  and 12 x 109  neutrons, for an n : K °  ratio of 

approximately 60 [35].

The initial E871 target had dimensions of 127 mm length by 3.15 mm width by 

2.54 mm height and was brazed onto a water cooled beryllium base with a Ag-Cu-Sn 

alloy (60-30-10%) for efficient heat transfer. A diagram of the target and base can 

be found in Figure 3.4. To allow for asymmetric thermal expansion over the 1.44 

hadronic interaction lengths of the target, the platinum was divided length-wise into 

5 segments. The target cross section was kept small to produce a tight secondary 

beam with a well known origin. To reduce the interaction of the primary beam 

with the target’s base, beryllium [Z =  4) was used in its construction to reduce 

background contamination. In March of 1995, the target overheated during a high 

intensity test (25Tp/pulse). This resulted in the Ag-Cu-Sn alloy melting under the 

front two sections of the target which then fell off of the base. For the remainder 

of the 1995 run and the first half of the 1996 run, a backup target of the same 

design was installed. In May of 1996, a improved target was installed with a larger 

heat sink and a Ag-Cu-Li (92-7.5-0.025%) brazing alloy which could withstand a
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Water Cooled Bt rylliinn

Figure 3.4: E871 Production target and Base The platinum neutral beam production 
target with the water-cooled beryllium base.

higher temperature environment. The new target had the same cross section as the 

original, but was divided into 15 sections, each 10mm long, corresponding to 1.70 

hadronic interaction lengths of platinum.

3.2.3 Neutral Beam  Creation and Colimation

A 10 meter long neutral beamline (Figure 3.5) consisting of two dipole mag

nets, a set of lead foils and 3 brass collimators was used to remove extraneous 

charged particles and photons, and to confine the secondary neutral beam to a tight 

cross section. Immediately following production in the platinum target, the beam 

consisted of neutrons, protons, pions, lambdas, photons, hyperons, and kaons. A 

sweeping magnet (B5P5) was centered one meter downstream of the target to re

move charged particles and send them into a concrete and steel beam dump located 

below the beamline. Inside this magnet, 17 lead foils (2.5mm thick) were spaced 

at one centimeter intervals to induce photon conversion to electron-positron pairs
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which were removed by the dipole magnets. The beam then traveled through the 

first of three precision, lead lined, brass collimators which confined the opening angle 

to 5 milliradians (mrads) in the horizontal (x) direction and 20 mrads in the vertical 

(y) direction. Following the last collimator, a second dipole magnet eliminated any 

remaining charged particles. At this point, the beam covered a solid angle of 100 

millisteradians and consisted of only neutrons and neutral kaons, as neutral pions 

were eliminated upstream due to their rapid decay to two photons ( t„ -o _ + 7 7 ~ 1 0 - 1 7 s ) .

3.2.4 Decay Tank

Once the neutral beam was established, a interaction-free drift volume was 

needed in which the s could decay before reaching the front of the spectrometer. 

A trapezoidal decay tank was constructed to encompass the neutral beam for 10.9 

m (z=10 m to z=20.9 m) following collimation. The upstream end had a cross 

section of 10 cm (x) by 16 cm (y) and it expanded to 193 cm (x) by 86.4 cm (y) 

at the downstream end. To make this region relatively interaction-free, the air was 

evacuated from the tank and a vacuum was held at 2  x 1 0 ~ 4  torr by a mechanical 

turbo pump for the entire run. The side walls were constructed of 5 cm thick, welded 

steel plates and concrete. In order to aid in the absorption of neutrons moderated 

in the side walls, the concrete was borated. To guard against any deflection of 

the neutral beam or the decay products, the upstream and downstream windows 

of the decay tank needed to be as thin as possible while still being strong enough 

to withstand the 775 torr of external air pressure. A 0.0127 cm layer of Mylar was 

sufficient to cover the upstream opening, but the downstream end was reinforced by 

0.0381 cm of Kevlar to withstand the 1.72 x 105  Newtons of force exerted on this 

window. But despite this, during the final week of the 1995 run, the downstream 

window failed, resulting in the implosion of the 18.123 m 3  decay tank. The tank was
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rebuilt for the 1996 run, along with the majority of the straw drift chambers which 

were damaged in the implosion. The downstream window’s 0.381 cm of Kevlar was 

replaced with a stronger, ballistic grade of Kevlar at 0.4318 cm thickness.

Of the 4 x 108  K °  produced, half were K$ with a lifetime of 0.8935 x 10~los 

and half were K \  with a lifetime of 5.17 x 10_8 s. The length and location of the 

tank was selected to maximize the number of K £ decaying inside the tank while 

minimizing the contamination caused by K§ decays. The average decay length (cr) 

of the is 15.51 m, which is situated at the center of the decay tank, while the 

K g ’s decay length is 0.023 m, well upstream of the decay region.

3.3 Sp ectrom eter

In order to fully reconstruct a K \  that decays in the vacuum tank, its daughters 

must be identified and tracked to obtain direction, momentum, and energy informa

tion. The particle identification of the tracks downstream in the final section of the 

detector is described in Sec. 6.3. E871 uses a two armed spectrometer, Figure 3.6, 

which consisted of two dipole magnets to redundantly measure a particle’s momen

tum  as it curves through the magnetic fields. Tracking is accomplished by measuring 

the hits in 4 left/right pairs of straw drift chambers upstream of the second magnet, 

followed by 2  left/right pairs of conventional wire drift chambers downstream of the 

last magnet. Precise measurement of the daughters’ properties allows for proper de

cay vertex reconstruction in the decay tank as well as the ability to associate tracks 

in the spectrometer with hits in the downstream particle identification counters.

3.3.1 Straw Drift Chambers

A straw drift chamber consists of several layers of tightly packed, gas filled 

cylindrical straws which measure the distance a charged particle passes from the
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Figure 3.6: E871 two-armed magnetic spectrometer.

central axis. Each conducting straw is held at ground potential and acts as a cathode 

while a thin tungsten wire stretched down the center of the straw is held at a high 

potential and acts as an anode. As a charged particle passes through a straw, it 

ionizes the gas inside. The freed electrons then move inward along the radial electric 

field lines toward the sense wire. As they travel, the electrons ionize more of the drift 

gas and the process is repeated. The resulting avalanche of charge is collected on the 

sense wire and read out by electronics that calculates the drift time of the electrons 

needed to reach the sense wire. Using the known drift velocity of the electrons in 

the gas along with the measured drift time, the minimum radial distance between 

the charged particle track and the sense wire can be found. Although the cylindrical 

symmetry of the straw creates an ambiguity over which side of the sense wire the 

particle went through, the ambiguity is overcome by using staggered layers of the 

straws as shown in Figure 3.7. Vertical planes of straws give the ^-coordinate while
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horizontal planes give the y-coordinate. Sets of horizontal and vertical planes of 

straws are used in a chamber to give the y and x  position of a track over a short 

distance in z.

Due to the large hit rates in the forward spectrometer produced by the unde

cayed neutral beam and by background decays, the highly segmented nature of the 

straw chambers makes them ideal to provide a low single-cell occupancy for track

ing in the region close to the decay tank. As with the conventional drift chambers 

described later, they are low mass, which minimizes the chance for interaction or 

multiple scattering that can degrade the ability to accurately reconstruct the event.

Four left/right pairs of straw chambers are used in E871 in the forward region 

of the spectrometer as seen in Figure 3.6. SDC1, SDC2, and SDC4 each contain 

horizontal (/(/-coordinate) and vertical (^-coordinate) planes of straws while SDC3 

only has a vertical plane to reduce the cost and mass of the spectrometer. Each 

vertical plane consists of three layers of straws for precise determination of the 

x-position of each track, while each horizontal plane has only two layers for the 

y-position. The momentum calculation depends on the curvature of the track in 

the x  direction, and the extra layer of straws increases the likelihood of a chamber 

making a good position measurement. Each chamber contains between 400 and 500 

straws whose length range from 80 cm to 1 2 0  cm to keep the same solid angle as 

the particle moves downstream.

Each straw was 5 mm in diameter and was made from 25 ym thick Mylar. 

The interior of the straws was coated with a 1 0 0 0  A  layer of copper oxide. The 

2 0  ym diameter sense wires were made from gold-plated tungsten and centered in 

the straws under tension. The voltage on the anode wire varied from 1850 V (out 

of spill) to 1950 V (in spill) to prevent charge accumulation when the beam was 

not present. A 50/50 combination of carbontetraflouride (freon) and ethane gases 

was used in the straws to provide a fast ionizing environment while quenching the
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Figure 3.7: The layout of the straw drift chambers with x and y-viewing straws.

de-excitation photons. At 1950 V, the freon-ethane mixture gives a drift velocity 

of 100 /im /ns which is adequate to deal with the 200 kHz rates per straw typical 

in the drift chambers. The single wire resolution was measured at 160 /tm with a 

efficiency of 96%. After the chambers were damaged by the implosion of the decay 

tank at the end of the 1995 run, they were rebuilt to the same specifications for the 

1996 run except Kapton was used for the straw material instead of Mylar.

3.3.2 M om entum  Analyzing M agnets

Two dipole magnets were used to give the K \  decay products a net 200 MeV/ c 

inward kick of transverse momentum as they travel through the spectrometer. Both 

magnets consisted of an iron yoke and two vertically aligned, water-cooled coils 

that produced a uniform field in the vertical (y) direction (Figure 3.8). Iron plates 

were attached to the upstream and downstream faces of the yoke which acted as 

magnetic mirrors to contain the field to the region defined by the coils. The magnets 

were placed on pedestals to match the beamline with the axis of the iron yoke. The
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Figure 3.8: The Dipole Magnets D02 and D03.

upstream magnet, D02, carried a current of 3600 A and produced a field of 1.4 T • m 

along the vertical. This field imparted 416 MeV/c of transverse momentum in such 

a way that negatively charged particles entering the region beam left and positively 

charged particles entering the region on the beam right would be bent inward toward 

the beam axis. The downstream magnet, D03, carried a current of 1900 A and 

produced a field of —0.7 T • m along the vertical. This field imparted a 216 MeV/c 

kick outward from the beam axis so that the in-bent particles from D02 would be 

out-bent for a net transverse momentum change of 200 MeV/c. The spectrometer 

magnets were specifically tuned to provide this momentum change to maximize the 

acceptance for two body decays. The maximum transverse momenta for the 

decays of interest in E871 are shown in Table 3.1. Daughters from a K ([ decay that 

enter the spectrometer at the maximum j>y, will emerge from the second magnet 

nearly parallel. This specific tuning of the magnets also allows for 4-body decays 

with two tracks carrying the majority of the K ([ invariant mass to be accepted. A 

decay with the maximum transverse momentum produces tracks that traverse the 

spectrometer and enter the rear of the detector parallel to the beamline.
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Decay Branch Fraction Decay p t (MeV/c)
— 4 (38.78 ±  0.27)% 229

K l  -»• t (27.17 ±0.25)% 216

i+T (2.067 ±  0.035) x 10- 3 206
A T £  — 4  7 T + 7 T  7 (4.17 ±0.15) x 10- 5 206

1T (9.413;9) x 10- 1 2 249
K  p+pr (7.2 ±0 .5) x n r 9 22514--Ha.T < 4.7 x 10- 1 2 238

A £  —>• e+e «  2.9 x 10- 9 225
K® —4 n +TT~e+e~ «  3.5 x 10~ 7 206

Table 3.1: Transverse momentum for K L decay modes

3.3.3 Drift Chambers

Downstream of the first magnet, the single cell rates experienced by the cham

bers drops to an average of 100 kHz because of the effectiveness of the compact 

neutral beam stop, which will be discussed in Sec. 3.3.4. These rates are low enough 

to permit the use of conventional wire drift chambers for the final two pairs of po

sition sensitive detectors in the spectrometer. Wire chambers give a better single 

wire resolution and efficiency than the straws, and also add a smaller mass to the 

path a particle travels, reducing the level of multiple scattering. DC5 and DC6  were 

created identically, with 3 planes of 152 cm long x  measuring wires and 2 planes of 

92 cm long y measuring wires in each left/right pair. Unlike the cylindrical straws, 

these cells were created by surrounding a gold-plated tungsten sense wire with six 

aluminum field wires in an irregular hexagonal shape, as shown in Figure 3.9. The 

field wires were 109 /im  in diameter and held at a potential of —2300 V while the 

sense wires had a diameter of 20 jim  and were held at ground potential. Aluminum 

guard wires, held at ground, were positioned around the outside of the planes to 

help shape each cell’s electrostatic field. A mixture of 49% Argon, 49% Ethane, and 

2% Ethanol and water was used as the low-threshold ionizing medium. This gas
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Figure 3.9: The cross section of the a>viewing layers of a traditional drift chamber.

exhibited an average drift velocity of 50 ^m /ns leading to a single wire resolution 

of 120 jiva and an efficiency of 98%.

3.3.4 Beam  Stop

In E791, the forerunner to this experiment, a limit on the intensity of the 

neutral beam was reached because of beam-induced background effects. E791 used 

a two-armed spectrometer with sufficient angle between the arms to leave a path for 

the remnant of the neutral beam to pass through. Even with this precaution, the 

event quality was severely degraded by neutrons and kaons decaying downstream of 

the decay tank and creating hits in the tracking chambers when the beam intensity 

was greater than 5.5 Tp. In an effort to improve the sensitivity, E871 introduced 

a neutral beam stop, or beam plug, inside the first spectrometer magnet to block 

any particles left within the profile of the beam as they left the decay tank. The 

elimination of the neutral beam allowed E871 to increase the intensity of the neutral 

beam by a factor of three over E791, and to measure tracks downstream of the 

beam plug that were close to the beam axis. These factors significantly increased 

the sensitivity and acceptance of the E871 detector.
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Figure 3.10: An x-z cross section of the neutral beam stop.

The beam plug’s goal was to stop all particles that entered, and contain any 

secondaries generated in the process. Mass is the key to stopping neutral particles, 

but the size of the stop was limited by the interior dimensions of the first spectrom

eter magnet. Figure 3.10 shows a cross-section of the beam stop, which had a long 

profile with a narrow opening to shield against back-scattered particles. The core of 

the plug was made from 5000 kg of “Heavimet” a tungsten-nickel alloy (97%-3%), 

which provided twelve hadronic interaction lenghts of material. This was backed by 

1880 kg of copper to add mass at a reduced cost. Surrounding the dense core was 

a layer of zirconium hydride and either borated or lithium-doped polyethylene used 

to capture neutrons moderated or produced in the Heavimet or copper. Finally, a 

layer of lead was wrapped around the entire plug to absorb any photons emitted 

during neutron capture. As seen in Figure 3.11, the effectiveness of the beam plug 

is reflected in the drop in hit rates of the SDC1 and SDC2 (upstream of the stop), 

compared to those of SDC3, SDC4, DC5, and DC 6  (downstream of the stop). The 

first two pairs of straw drift chambers show elevated hit rates in cells close to the 

beam axis where the beam affecting background was more likely, while the remaining
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Figure 3.11: Single channel hit rates for the drift chambers The drop in singles rates 
after the first magnet is significant in the channels close to the beam axis.

four drift chamber’s hit rates are relatively flat across the cells.

3.4 Trigger C ounters and P article  Identification

The second half of the E871 detector includes the triggering mechanism for 

signaling a good event and the means by which particles were identified. A set 

of fast scintillator counters was used to reduce background by triggering on events 

with low transverse momentum. This helped to eliminate the 3-body decays that 

dominate the K® branching ratio. Efficient particle identification was necessary to 

ensure precise event reconstruction. Just as redundant measurements were made 

to find the momenta of daughters, multiple routines were used to tag particles as 

electrons, pions or muons.

Channel
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3.4.1 Trigger Scintillator Counters

In high rate experiments such as E871, trigger detectors are necessary to indi

cate the presence of an event to the data acquisition system (DAQ). The detectors 

had to be fast, to reduce the amount of dead time, and efficient so that no candi

date events were lost. By careful arrangement of the magnetic fields in D02 and 

D03, the trigger system can also screen events to eliminate background before they 

are recorded, saving computing time and storage space. E871’s primary goal was to 

search for rare two-body decay modes of the K ([. As seen in Table 3.1, the maximum 

decay momenta for these modes are all above 200 Mev/c. The main backgrounds 

arise from 3-body semileptonic decays which have maximum decay momenta for the 

lepton and pion of over 200 MeV/c as well, but this is in the limit where the neutrino 

carries no momentum. The majority of these events will have a transverse momen

tum  well below 200 MeV/c. To separate these events, the Spectrometer magnets 

were carefully tuned to provide a net 200 MeV/c transverse momentum kick to the 

decay products. In this system, the 2-body decays will emerge from the spectrom

eter either parallel or slightly out-bent. The majority of 3-body backgrounds will 

leave the spectrometer in-bent (Figure 3.12) or not make it out of the spectrometer 

at all.

Two stations of segmented trigger scintillator counters were arranged perpen

dicular to the beamline (Figure 3.13) and used to record the presence of an event 

with a degree of parallelism (see Chapter 4) to the data acquisition system. The 

first station (TSC1) was located at z — 29.94 m, just downstream of the last drift 

chamber, and contained two planes situated to the right and left of the beamline. 

Each plane in TSC1 contained 32 vertical scintillator slats 165.3 cm long by 3.2 cm 

wide by 0.5 cm thick. The slats were arranged into 2 layers and staggered so that 

adjacent scintillators overlapped by 0.29 cm as in Figure 3.14.
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beamline
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Figure 3.13: The scintillating hodoscope used to trigger properly focused events. TSC1 
contains 32 x-measuring slats while TSC2 contains 32 x-viewing slats and 64 y-viewing 
slats.
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Figure 3.14: A drawing of the layout of TSC2. The x and y-viewing slats were staggered 
to eliminate gaps in the hodoscope.

The second station (TSC2) was located at z — 32.85 m, directly after the 

Cerenkov counter, and was broken into two planes for the beam left and beam right 

components as in TSC1. But, whereas TSC1 could only measure the ^-position, 

TSC2 could measure both the x  and y position. Only the second station contained 

y-viewing scintillators to reduce the chance of multiple scattering or of kicking an en

ergetic electron into the track path which could affect the efficiency of the Cerenkov 

counter. The x-viewing slats in TSC2 had the same arrangement and dimensions as 

those in TSCl except they were 189.7 cm long to present the same angular coverage. 

The 64 y-viewing slats were separated into two layers and arranged on either side 

of the vertical slats as in Figure 3.14 and staggered such that they overlapped by 

0.28 cm. These scintillators were 100.9 cm long by 3.0 cm wide by 0.5 cm thick.

Each slat was made from Bicron BC-408, a polyvinyl toluene scintillator which 

provided a fast signal response with a rise-time of 0.9 ns, a decay time of 2.1 ns, and 

a FWHM pulse width of 2.5 ns. The attenuation length of the 425 nm light emitted 

was measured at 120 cm. Because this length is less than the length of the x-viewing 

slats, a photomultiplier tube was used to read out each end of the scintillators to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

Cerenkov
light

Cerenkov
light

Figure 3.15: The light cone produced through the Cerenkov effect in a dielectric medium, 

reduce the amount of light lost to attenuation.

3.4.2 Cerenkov Counter

Directly following the first plane of trigger scintillator counters was the first of 

four particle identification detectors. The threshold Cerenkov counter was designed 

to select out electrons over pions and muons. This counter relied on the Cerenkov 

effect, which states: if a charged particle travels faster than the speed of light in 

that medium, it will radiate a coherent plane of light as it travels, i.e. radiation 

occurs when

0n  > 1 , (3.1)

where

v  V/3=  -  =  .— 1 ........ =. (3.2)
c y?p2 +  m 2c2

Particles with greater mass will need a larger momentum in order to reach the 

Cerenkov threshold and produce light. The radiation emitted will form a cone, as
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Particle Mass (M eV /c2) Threshold (GeV/c)
e± 0.511 0.031
M± 105.6 6.357
n ± 139.6 8.396
P 938.3 56.233

Table 3.2: Threshold momenta for Cerenkov radiation in Hydrogen ( # 2 )

seen in Figure 3.15, with an opening angle which is dependent upon the particle’s 

velocity and the medium’s index of refraction:

cos(0) =  with (3n> 1. (3.3)
pn

The detector built for E871, shown in Figure 3.16, was approximately 2 m 

square by 2.8 m deep and was constructed from aluminum. The front window 

was made of 127 pm  of Mylar covered with 38.1 pm  of Tedlar to ensure no light 

leakage. A thin front window also reduced the chance for multiple scattering and 

reduced the chance of scattering electrons above the Cerenkov threshold which could 

create a false signal. The interior was filled with hydrogen gas held at 7.6 cm H20  

of overpressure with respect to atmosphere to prevent air from contaminating the 

chamber. The index of refraction for this medium was 1.0001392. The momentum 

thresholds for electrons, pions, and muons in diatomic hydrogen gas can be found 

in Table 3.2. The large momentum difference between electrons and muons leads to 

high efficiency in tagging electrons except in the highest energy events. In order to 

minimize any loss in efficiency in the electron identification, the track momentum 

of an event was limited to be below 6.5 GeV/c to avoid misidentifying a muon as 

an electron.

The Cerenkov radiation was collected by reflecting the light off of 32 spherical 

mirrors covering the interior of the downstream wall into 32 photomultiplier tubes. 

The beam right and beam left sections for the counter were separated by a black
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Figure 3.16: The E871 threshold Cerenkov counter external and internal geometery.

Tedlar curtain hanging vertically along the beam axis to create two active halves. 

Each half’s rear wall contained 16 mirrors hung in a 4 x 4 grid with each reflecting to 

an individual photomultiplier tube. The outer two columns of each half contained 

larger mirrors measuring 25.8 cm x 45.7 cm, while the inner two columns had mirrors 

with dimensions 23.1 cm x 45.7 cm. This allowed for a slight overlap to reduce the 

amount of light lost to gaps. Conical funnels of aluminized mylar preceded the 5 

inch Burle 8854 PMTs to facilitate better light collection as seen in Figure 3.16.

3.4.3 Lead Glass Calorimeter

The lead glass calorimeter (PbG), shown in Figure 3.17, was located at 2 = 3 3 . 2  

m and provided the second method for discriminating electrons from pions and 

muons. To do this, the energy deposited in the calorimeter was compared with the 

momentum measured in the magnetic spectrometer. The ratio j  should be 1 for 

any particles stopping in the lead glass, as all of its energy will be absorbed.

Two planes of lead glass crystals make up the calorimeter. The first plane, or
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Figure 3.17: The E871 lead-glass calorimeter with an external cooling system.

’’converter” plane consisted of 36 blocks arranged in an 18 x 2 array with each block 

measuring 10.9 cm x 90cm x 10.0 cm (x — y — z). The signal from each crystal 

was read out by a 7.62 cm photomultiplier tube aligned vertically along the ± y  

axis. Each block was wrapped in aluminized Mylar and black plastic, except for the 

readout and downstream ends.

The back plane, or “absorber” plane, contained 164 crystals stacked in a 14 x 1 2  

array with each block having dimensions 15.3 cm xl5.3 cmx32.2cm (x — y  — z). 

These blocks were similarly wrapped in aluminized Mylar and black plastic as in 

the converter plane except for the downstream end where a 12.7 cm diameter photo

multiplier tube was used to collect light and the upstream end where an ultraviolet 

light source could be used to cure the blocks as they are damaged by radiation over 

the course of the experiment. The downstream ends of the converter blocks were 

similarly left open to allow for curing.

As electrons enter the converter plane, they will most likely initiate an electro-
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Figure 3.18: Examples of electromagnetic and hadronic showers.

magnetic shower. This shower is caused by bremsstrahlung radiation released as the 

electron slows as it traverses the lead glass. The light released in this process can 

produce an electron-positron pair which will be slowed in the lead glass, releasing 

more bremsstrahlung radiation. This process repeats until the photons released are 

no longer energetic enough to pair produce (Figure 3.18). These showers begin in 

the converter plane and continue on into the absorber plane where the entire shower 

can be stopped and the energy of the initial electron measured. Muons and pions 

can also produce electromagnetic showers but this process is greatly suppressed by 

the their much greater mass. The electromagnetic fields of the atoms in the lead 

glass are not sufficiently strong to produce a shower. For the typical track momenta 

found in E871, muons are minimum ionizing and do not leave a large amount of 

their energy in the crystals. Hadronic showers can occur for the pion, which creates 

a jet of hadrons as shown in Figure 3.18. But with hadronic showers, the jet will not 

be contained inside the calorimeter. The energy measured for this type of process 

will be less than the momentum measured in the spectrometer, giving an j  ratio of 

less than one. The converter and absorber planes contain ~  14 radiation interaction 

lengths for the electron, compared to only 1 . 2  hadronic interaction lengths for the 

pion. Due to the low energy deposition of both pions and muons, no discrimination
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Figure 3.19: The muon hodoscope and muon rangefinder.

can be made between the two.

3.4.4 M uon Identification

The final component of the E871 detector is used to identify muons by mea

suring their range in a horizontal stack of absorber materials. As discussed earlier, 

electrons and pions will both lose energy by showering, electromagnetically for elec

trons, and hadronically for pions. The muon is 200 times heavier than the electron 

which suppresses its ability to induce electromagnetic showers and, as it is a lepton, 

it cannot shower hadronically. In the momentum region accepted in the E871 de

tector, between 1 — 10 GeV/c, muons are minimum ionizing particles; i.e., the rate 

of energy lost due to ionization of atoms as the charged lepton passes through the 

material is at or near its minimum value as described by the modified Bethe-Bloch 

formula:

In Eq. (3.4), Z, A, and p are the atomic number, atomic mass, and density of 

the ionized matter, I  is the mean excitation potential, and Tmax is the maximum

dE  4 7 tNare2m ec2z 2Zp  I" 1 2 mec2 /3 2 7 2 Tr
~dx = A f t  1.2 n P

max
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energy exchanged in a collision. The final two terms, 6 and ^  are used to correct for 

density effects at high particle energy and to correct for the assumption of stationary 

electrons at low particle energy, respectively. W ith the proper choice of absorber 

materials, electrons and pions can be made to give up their energy very quickly, 

while muons continue on for many meters, giving minimal energy to the absorber 

as they travel.

The muon identification system was designed so that the muon would travel 

through a series of absorbers and active detector elements such that it would reach 

each active element after losing 5% of its momentum in the absorber which precedes 

it; see Figure 3.19. In this fashion, the momentum of the particle can be determined 

by noting the last detector element that fired in the stack. The identity of the particle 

can be found by comparing the momentum determined by the muon identification 

system with the momentum determined by the magnetic spectrometer. If these 

two measurements agree, then the track is a muon. If the momentum found in the 

spectrometer is much higher than that found in the range stack, then the track was 

either a pion or an electron which did not shower in the lead glass.

Table 3.3 shows a list of the absorbers used, their thickness and the ^-position 

of each. Also shown are the active detector elements inter-spaced in the absorbers 

(which will be described in the following sections) along with the momentum tha t a 

particle must have to reach tha t deep into the stack. Note that by the time a track 

reaches the active detector element MHO XO, it had to travel through the lead glass 

calorimeter and 45.72 cm of iron. A pion reaching this point had to travel almost 

4 hadronic interaction lengths, at which point 95% would have created a hadronic 

shower and been absorbed, whereas a muon would need a momentum of 1 GeV/c 

to reach the same detector element.
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Z(cm) Material Gap- 
Pstovi GeV/c)

Z(cm) Material Gap-
Pstop(OeV/c)

Z(cm) Material Gap - 
PstopfOeV /  c)

0 12” Fe - 256 3” Fe - 954 21” Marble -

32 MHO XI 1-0.80 267 MRG 19 X 20-2.35 1010 MRG 39 X 40-6.25
41 2” Fe - 270 4” Fe - 1013 21” Marble -

47 MRG 01 Y 2-0.85 282 MRG 20 Y 21-2.45 1069 MRG 40 Y 41-6.75
49 2” Fe - 285 4” Fe - 1072 21” Marble -

55 MRG 02 X 3-0.90 297 MRG 21 X 22-2.60 1129 MHO Y2 42-7.00
59 2” Fe - 300 4” Fe - 1138 24” Marble -

64 MHO X0 4-1.00 312 MRG 22 Y 23-2.75 1201 MRG 41 X 43-7.25
73 MHO Y0 4-1.00 315 4” Fe - 1205 24” Marble -

82 2” Fe - 327 MRG 23 X 24-2.90 1271 MRG 42 Y 44-7.75
87 MRG 03 X 5-1.05 330 4” Fe - 1274 24” Marble -

90 MRG 04 Y 5-1.05 343 MRG 24 Y 25-3.10 1338 MRG 43 X 45-8.00
92 2” Fe - 346 4” Fe - 1341 27” Marble -

100 MRG 05 Y 6-1.10 357 MX2 26-3.25 1413 MRG 44 Y 46-8.30
103 2” Fe - 366 12” Marble - 1417 27” Marble -

108 MRG 06 X 7-1.15 398 MRG 25 X 27-3.35 1490 MRG 45 X 47-8.70
110 MRG 07 Y 7-1.15 401 MRG 26 Y 27-3.35 1493 27” Marble/Al -

113 2” Fe - 403 12” Marble - 1565 MRG 46 Y 48-9.10
120 MRG 08 X 8-1.20 435 MRG 27 X 28-3.55 1569 30” Marble/Al -

123 2” Fe - 438 12” Marble - 1647 MRG 47 X 49-9.50
129 MRG 09 Y 9-1.30 471 MRG 28 Y 29-3.70 1651 30” Marble/Al -

134 2” Fe - 474 12” Marble - 1729 MRG 48 Y 50-9.80
141 MRG 10 X 10-1.35 507 MRG 29 X 30-3.90 1733 30” Marble/Al -

144 2” Fe - 510 15” Marble - 1811 MRG 49 X 51-10.25
151 MRG 11 Y 11-1.40 551 MRG 30 Y 31-4.15 1815 33” Marble/Al -

155 2” Fe - 554 15” Marble - 1902 MRG 50 Y 52-10.80
162 MRG 12 X 12-1.55 596 MRG 31 X 32-4.30 1906 33” Marble/Al -

164 2” Fe - 599 15” Marble - 1992 MRG 51 X 53-11.05
172 MHO Y1 13-1.60 639 MRG 32 Y 33-4.40 1995 21” Marble/Al -

180 3” Fe - 642 15” Marble - 2052 MRG 52 Y 54-11.95
189 MRG 13 X 14-1.65 682 MRG 33 X 34-4.75 2055 3” Marble -

194 3” Fe - 686 18” Marble -

203 MRG 14 Y 15-1.80 735 MRG 34 Y 35-5.00
206 3” Fe - 738 18” Marble -

216 MRG 15 X 16-1.85 787 MRG 35 X 36-5.25
219 3” Fe - 791 18” Marble -

228 MRG 16 Y 17-1.95 840 MRG 36 Y 37-5.50
231 3” Fe - 843 18” Marble -

240 MRG 17 X 18-2.10 891 MRG 37 X 38-5.75
244 3” Fe - 895 21” Marble -

253 MRG 18 Y 19-2.25 950 MRG 38 Y 39-6.00

Table 3.3: Muon range stack material placement and stopping momentum by detector 
plane
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MXO/MYO 
i=35.36m
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Figure 3.20: T he layout o f th e six  planes of scintillators used in the m uon hodoscope. 

M uon H odoscope

The stack of absorbers and detector elements was built as one large unit but ac

tually contains two separate systems: the muon hodoscope and the muon rangefinder. 

The hodoscope is made up of 6  segmented planes of Bicron BC408 scintillator. The 

dimensions and locations of each plane can be found in Figure 3.20. Each scintil

lator was read out by a Phillips XP2262 photomultiplier tube which was attached 

through a light guide and optical cookie to maximize the light collected. The x- 

viewing planes were read out on both ends, while the y-viewing elements were only 

read out on one end. The plane YO was the exception as it consisted of two distinct 

halves, one for beam left and one for beam right so that each half was read out with 

a photomultiplier tube. XO and YO were part of the level 1 trigger, and the separa

tion of the YO plane into two halves allowed for the association of the tracks made 

in the hodoscope with the tracks made in the left and right side of the magnetic 

spectrometer.
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Figure 3.21: A  cross section o f an 8-channel extruded aluminum segm ents used in th e 52 
proportional counters planes o f the m uon rangefinder.

3.4.5 M uon Rangefinder

The muon rangefinder consisted of 52 proportional counters oriented in both 

the x  and y direction interspersed in the absorber material such that the muon 

loses 5% of its momentum between successive counters. Each plane was made up 

of 8 -channel extruded aluminum segments bonded in an edge to edge fashion. Each 

segment was 18.75 cm by 1.55 cm and oriented at a 60° angle from the horizontal 

as seen in Figure 3.21. The angular nature of the extruded planes allows for overlap 

of the active regions without needing multiple layers of counters at each station.

The x-oriented counters were 1 2  extrusions wide and 301 cm long, and the y- 

oriented ones were 16 extrusions wide with a length of 225 cm. Each cell contains two 

evenly-spaced, gold-plated tungsten wires 76.2 pm in diameter held under tension. 

The wires were kept at a potential of +2600V. The cells were filled with an argon- 

ethane gas mixture (49.2%-49.2%) with a small amount of ethanol (1.6%) added. 

Just as in the drift chambers described earlier, the passage of a charge particle in 

the gas-filled cells causes ionization of electrons. The ionized electrons accelerate 

toward the sense wire which further ionizes the gas. The resulting avalanche of 

charge is collected along the sense wires and recorded. The rangefinder will stop 

minimum-ionizing muons with momenta up to 11.95 GeV/c.
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Trigger System

4.1 O verview

Over the two-year run of E871, the products of K \  decay events were recorded 

by the detector at a rate on the order of 106  Hz. The data acquisition system (DAQ) 

was designed to eliminate much of the unwanted background decays in hardware in 

order to reduce the burden on the data tape system. The tape system used to store 

the data could handle a signal rate of «  102  Hz. Several layers of triggers were 

used to quickly sift through information from the trigger scintillator counters and 

particle identification systems and pick out possible two-body events or four-body 

events with two tracks carrying a large fraction of the invariant mass. The process 

begins with the triggering of a valid Level 0 (LO) event which only checks the path 

of the primary tracks. It is then passed to the Level 1 (LI) trigger, which adds a 

particle identification requirement. A signal for a valid LI event is then sent to the 

Readout Supervisor (RS) which is the brains of the triggering system. The RS sends 

the information stored in the data crates to the Dual Port Memory (DPM) system 

to await further processing. The RS then prepares the system for the next event by
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

resetting the LO and LI triggers. The DPM system stores the event data in eight 

crates until retrieved by one of eight high speed Silicon Graphic (SGI) processors 

to begin the crude event reconstruction required in the Level 3 (L3) trigger. Events 

that pass all three triggers are send to an IBM RS/600 computer and stored on 

high-capacity hard drives. Once a 200 megabyte block of data was collected, it was 

written to a 4mm Digital Audio Tape (DAT). An overview of the triggering process 

can be found in Figure 4.1.

4.2 Level 0

The triggering process begins when a charged particle traverses the trigger 

scintillating counters on each side of the beam-line. If the signals from the six 

counters (the left and right sides of TSC1 and TSC2, with TSC2 having both x 

and y-measuring planes) form a coincidence in time, the LO trigger will examine the 

event more closely. The coincidence requirement ensures that the measured tracks 

are from the same K \  decay event. The LO trigger allows two types of events to 

pass, non-parallel decays and parallel decays, and can handle raw event rates «  1 0 6  

Hz.

Non-parallel decays are events which pass the coincidence requirement but no 

cuts are placed on the position of hits in the TSCs. The events are wholly uninterest

ing except for calibration of the detector and for measuring raw filtering rates. The 

signal events for E871 are encompassed in the second type of LO trigger, the parallel 

events. As described in Chapter 3, the E871 spectrometer magnets are tuned to 

have two-body K ([ decay tracks leave the downstream end of the spectrometer par

allel to the beam-line. The Level 0 trigger measures the degree to which two tracks 

are parallel by comparing the x-slat hit in the upstream TSC with the slat hit in 

the downstream TSC (Figure 4.2). The limit set by the LO trigger is 8siat =  ±2
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Figure 4.1: E871 DAQ system overview.
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Figure 4.2: An example of a L0/L1 trigger.

which is a 31 mrad angular deviation from the parallel. Events which satisfy either 

the parallel or nonparallel requirements are sent on to the LI trigger for further 

analysis.

4.3 Level 1

The Level 1 trigger takes the L0 parallel trigger information and adds particle 

identification. By using data from the Cerenkov counter and the muon hodoscope, 

the LI system classifies each event into one of five categories: ye, ey, yy ,  ee, and 7 T7 t 

(minimum bias, MB) with the first listed particle corresponding to the left track. 

The tracks are also required to have a coincidence between the TSC signals and 

signals from the drift chambers DC5 and DC 6 . Each track is assigned a particle 

type by comparing it to the signature for a muon, electron, and pion:

y ^  — Timing coincidence in DC5, DC 6 , and the TSCs, with a signal in the 

muon hodoscope. Loose spatial correlation is required.
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e* — Timing coincidence in DC5, DC6 , and the TSCs, with a signal in the 

Cerenkov counter. Loose spatial correlation is required in each.

'K̂1 — Timing coincidence in DC5, DC6 , and the TSCs, with no signal in 

either the Cerenkov counter or the muon hodoscope. Loose spatial 

correlations are required here as well.

All /xe, e/q /i/i, ee events which passed the LO parallel trigger are sent on to the 

Level 3 trigger system, while only a fraction of the MB events is allowed to pass. 

The parallel MB events are prescaled by a factor of 1000, and the non-parallel MB 

events have a prescale of 104. The LI trigger reduces the ~  250 kHz incoming event 

rate to simlO kHz that is then sent to the Level 3 trigger.

4.4  Level 3

The Level 3 (L3) triggering system was accomplished in ’’software” by using 

eight SGI V35 processors to analyze the hit patterns in the forward spectrometer 

and do a crude event reconstruction. The event data are stored in eight Dual 

Port Memory (DPM) crates connected via a VME backplane. Each can each hold 

information on 3000 events. W ith half of the DPM’s in use every spill, 12000 

events/spill can be reconstructed with the L3 trigger. Upon processing, each event 

is checked for quality by examining the number of hits left by decay tracks in the drift 

chambers. Each plane in the straw drift chambers and hexagonal drift chambers, 

SDC1, SDC2, SDC3, DC5 and DC5, must contain at least two hits for a>viewing 

planes but no more than 250, and one hit for //-viewing planes but no more than 

150. SDC4 had a minimum hit requirement of one for both ^-viewing and //-viewing 

planes and a maximum of 250 for x-viewing and 150 for //-viewing. The ability to 

reconstruct a decay track with precision is directly related to the number of hits in
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each plane. An event with too few hits will not allow for a track’s path to be found, 

and too many will not allow a unique path to be determined.

The simple event reconstruction uses the hit clusters found in the drift chambers 

along with the overall pT kick of the spectrometer magnets to find a track in each 

arm of the spectrometer. The two tracks are then projected back into the decay tank 

to find the vertex by determining their distance of closest approach (DOCA). The 

reconstructed vertex must fall between z =  8 m and z =  21.5 m and have a DOCA 

value of less than 70 cm, or the event is discarded. The transverse momentum of 

the decay and the invariant mass are also used as a determining factor on event 

quality. The total transverse momentum of the event must be less than 60 MeV/c 

and the invariant mass must exceed 460 MeV/c2. These kinematic cuts depended 

on the event’s classification as determined in the LI trigger since the particle’s mass 

figures greatly into the calculations. Events tagged as MB were reconstructed under 

a K l  —>■ 7 r+7 r hypothesis but were not subjected to an invariant mass cut. All 

events passing these cuts were sent to the IBM RS/6000 host computer for storage 

to await being written to 4mm DATs. The L3 trigger had a pass rate of ~  3% 

leading to a data rate of 110 Hz being written to tape.
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Offline Analysis

5.1 O verview

The goal of the E871 offline software is to fully reconstruct an event’s kinematic 

quantities such as track path, energy, momentum, and vertex position from the 

electronic information provided by the detectors during the run. A Monte Carlo 

event generator is incorporated in the software which allows artificial events to be 

analyzed in the same way as real events. Nine stages are used in the reconstruction 

(Figure 5.1) with each stage building a better description of the event based on the 

information gained in the previous one.

Stages one through four are used to create the Monte Carlo events. A K \  

is generated with a random momentum, decay vertex and decay time based on 

the energy spectrum and profile of the neutral beam used in E871. A specific 

decay channel or set of decay channels is supplied by the user. The decay products 

are then ’’swum” through each detector to generate appropriate ADC and TDC 

information that takes into account real detector responses and efficiencies, as well 

as multiple scattering. The hits are then packed for writing in an identical fashion
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as a real event. Stages five and six unpack the hit information and sort it into arrays 

corresponding to the electronics for each detector element. The physical quantities 

such as deposited energy, distance of closest approach of a track to a wire in a drift 

chamber, and event time associated with the electronic information are calculated 

from calibration arrays specific to each detector element. Stages seven, eight, and 

nine reconstruct tracks in the spectrometer based on pattern recognition software, 

associate those tracks with hits in the particle identification counters, and refit the 

tracks using two independent fitting routines. The methods used in the last three 

stages will be discussed further.

5.2 P attern  R ecogn ition

By the end of stage six, the drift times and distances for each wire are calculated 

and stored in an array but up to this point the spatial relationship of the chambers 

that have registered activity has not been taken into account. Stage seven looks 

at the hit information of each wire and attem pts to find a physical path through 

the spectrometer that would account for the signals found in each chamber. This 

process is called Pattern Recognition (Patrec) and is a series of routines which must 

be satisfied if an event is to be considered for further refinement. If an event fails 

any of the Patrec routines, a flag is set and the event is killed. There are 22 planes of 

active drift chambers in the spectrometer, six :r-viewing and five y-viewing on each 

spectrometer half (left/right). In the first step, a check is made to see if there was 

at least one good hit in each active plane, or if the plane was too noisy to retrieve 

any reliable results. A good hit is defined as one whose measured distance of closest 

approach (DOCA) falls in the allowed region. An event that has four planes with 

more than 100 hits each is considered too noisy. Next, each plane is searched for 

groups of at least two geometrically contiguous hit wires in different layers of an
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Figure 5.1: A Flow chart for the stages in the E871 offline analysis software.
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Figure 5.2: An Illustration of three clusters in a drift chamber which demonstrate the 
meaning of “geometrically contiguous”. The yellow cells indicate “good hits”.

active plane, called clusters (Figure 5.2). Each cluster is considered a possible point 

at which a decay product could have passed. Starting at the most downstream x  

(;y) plane in the spectrometer, the search for two-dimensional prototracks is begun 

by considering all possible combinations of six (five) clusters, one from each x  (y ) 

viewing plane. If the slope between consecutive clusters fall within certain toler

ances, the path is kept and stored for further refinement. If no allowed paths are 

found or if too many possible paths are found, Patrec exits and the event is killed.

A cluster can contain up to 20 hit wires for an ^-viewing plane and 10 hit 

wires for a ^/-viewing plane. In order to reach the tracking resolution necessary for 

adequate event reconstruction, the wires hit inside each cluster by a decay product 

must be determined. To this end, a segment is defined as a set of one, two or three 

geometrically contiguous wires that register hits and that is not contained inside 

a larger segment. An example of a set of five segments can be seen in Figure 5.3. 

A search is made for all sets of segments, one segment for each cluster in a path, 

that would best represent the two-dimensional path found from the clusters. To 

find the best segment for each cluster-set, the candidates are scored by performing 

a likelihood calculation using slope matching of clusters to determine whether the 

candidate is noise or a true hit. Once all segment sets are found and scored, they 

are “deghosted” Many of the segment sets found differ by only one or two out of 

the five or six possible segments and are most likely trying to represent the same
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Figure 5.3: An illustration of 5 segments (red cells) inside 1 cluster (yellow cells). Each 
segment is mutually exclusive in that no segment can be fully contained in another.

track but that Patrec picked one of the clusters incorrectly. The differing segments 

are usually in the forward most planes of the spectrometer as these are the most 

noisy. To eliminate the “ghost” set, the one with the best score is kept, unless both 

sets have comparable scores in which case neither can be eliminated and both are 

passed on for further refinement.

At this point, Patrec contains a list of possible two-dimensional x  paths and 

two-dimensional y paths for both the left and right halves of the spectrometer. 

The next step is to consider all possible combinations of x  and y paths to find 

the best three-dimensional tracks (Terminology: “path” or “proto-track” is used 

for two-dimensional fits, while three-dimensional fits will be called “tracks”). Each 

track is separated into three sections, front, middle and rear. Each section contains 

two points in three-dimensions that form a line segment. To test the validity of 

the track, the line segments are projected to a point at the midpoint of the two 

magnets to examine how well they correlate. The line segments in the front and 

middle sections are projected to the midpoint of the first spectrometer magnet where 

the DOCA measurement takes place. Similarly, the line segments in the rear and 

middle sections are projected to the midpoint of the second magnet for another
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DOCA measurement. If the DOCAs are less than 4 cm, then the track is kept. If 

no good tracks are found, Patrec exits. For all remaining tracks, the momentum 

of each track is calculated with a point-line method that uses the curvature of the 

particles path in each spectrometer magnet:

Pkick / r  i  \

p  =  ~ K e '  (5 1 )

In Eq. (5.1), A 9 is the angular difference in the line segments in the ^-direction before 

and after the magnet and pkick is either the constant momentum kick (416 MeV/c 

or 216 MeV/c) or position-dependent momentum kick found in a lookup table. The 

momentum measured in the front and rear magnet must match to within 1 0 % or 

the track is discarded. The actual momentum recorded for each track is a weighted 

average of that measured in the front and rear magnets.

The final step in pattern recognition is to calculate the vertex points for all 

possible left/right combinations of tracks and to rank the results. The vertex point 

is defined as the distance of closest approach between the left and right tracks when

they are projected upstream from the line segments found between SDC1 and SDC2.

The vertex result as well as the track pair information is kept if the vertex calculation 

satisfies the following conditions:

•  The track-to-track DOCA is less than 10 cm.

•  The 2 -position, z0, of the vertex is between 0.0 m and 30.0 m.

• I |<  0.050 and | ^  |<  0.025, where (xo, yo, zq) are the coordinates of the 

vertex.

The surviving tracks are sorted according to the track-to-track DOCA value 

with the tracks having the smallest DOCA listed first.
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The pattern recognition software used in stage seven finds the path that best 

fits the hits in the spectrometer, but the type of particle that traversed the path is 

unknown and irrelevant until this point in the analysis. Stage eight compares the 

path of a decay particle in the spectrometer with the hits registered in the particle 

identification counters at the rear of the detector to determine if a particle traveling 

on that path could have caused the hits seen in the counters, and if so, the type 

of particle that would give those types of hits. For each track tha t passes pattern 

recognition, the track-counter association routine is executed. The path of each track 

is projected forward into the Cerenkov counter, through the lead glass calorimeter 

and into the muon hodoscope and rangefinder. The projected hits are digitized and 

compared to the “real” hits in the event to associate specific hits in each particle 

identification counter with a track in the spectrometer. Counter specific routines 

are called which examine the hits associated with a track and attem pt to determine 

whether the particle was an electron, a muon or a pion. The Cerenkov counter 

and the lead-glass calorimeter are used to identify electrons and decide whether to 

tag a track as a “good” “possible” or “non“ electron. The muon hodoscope and 

rangefinder are used to discriminate muons from pions. These routines will tag a 

track as either a “good” “possible” or “non“ muon. The requirements to classify a 

track as an electron or muon are described in Sec. 6.3. A particle is determined to 

be a pion if it is neither a muon nor an electron.

5.4 E vent F ittin g

While pattern recognition provides a good initial guess at the kinematics of 

a K £ decay and removes obviously bad events, the precision of its calculations is
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limited by the approximations made for the sake of speed. Stage nine employs 

two fitting routines which build upon the track properties found in stage seven and 

uses more comprehensive methods for kinematic calculations. The full magnetic 

field map containing the three dimensional components of the field is used for mo

mentum calculations whereas pattern recognition uses a transverse momentum kick 

approximated by either a constant field or by a field found from a look-up table 

based on position. The non-linear effects of multiple scattering are incorporated to 

account for the deflection of the particle path from a straight line. The two fitters, 

which are described in the following sections, use independent methods to provide a 

check on the consistency of event reconstruction. The FT fitter uses y 2  minimization 

techniques to find the best track and vertex parameters for each event. The QT fit

ter employs track and momentum matching to find the track parameter for the front 

(SDC1, SDC2, SDC3) and rear (SDC4, SDC5, SDC6 ) sections of the spectrometer 

and averages them in an appropriate way to calculate the decay kinematics. The 

object of the following sections is to outline the algorithm used by each fitter. For 

more a detailed description of the FT and QT routines, the reader is directed to 

[36], [37], and [38].

5.4.1 FT Fitter

The FT fitter uses a y 2  minimization technique to find a set of parameters a  

that best describes the “true” path of the particle, where

_ , dx dy q
a = [x,y, — , — , - ) ,  (5.2)dz dz p

x  and y are the coordinates of a point on the downstream end of the vacuum window

on the decay tank, — and ^  measure the direction of the track and ^ gives the charge

and momentum of the particle. The fitter uses the parameters found by the pattern 

recognition routine in stage seven for the initial guess of a. From this initial point
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and momentum, the location that the theoretical track hits each layer of each drift 

chamber is recorded as a theoretical data point, x f 1. In order to describe the degree 

of disagreement between the theoretical track and the data, a formula for a % 2  value 

is introduced:

N p a r  iVp a r

=  E  i > “ “ -  “ -  *?(«>). (5-3)
i 0

where the sums are over the number of layers hit by each track, which can be up to 

28 points (18 rr-layers, 1 0  ^/-layers).

The matrix Wfi is called the “weight matrix” and its inverse, the covariance 

matrix, is a measure of the errors that are introduced when the position of the parti

cle is recorded experimentally. The diagonal components comprise the uncorrelated 

errors, such as the resolution of each drift chamber. The off-diagonal elements are 

the correlated errors which are mainly due to multiple scattering. For example, the 

difference in the position recorded in the downstream drift chambers will depend 

greatly on the amount of deflection caused by the upstream straw drift chambers. 

Since multiple scattering is dependent on the momentum of each track, the weight 

matrix must be recalculated from Monte Carlo each time the routine is called. The 

FT fitter then calls a routine that finds the set of parameters a  which minimizes 

the x 2 formula above. This is done for all tracks that passed pattern recognition.

The second step taken by the FT fitters is to use the track fits to obtain the 

decay vertex kinematics for all possible left/right pairs. A y 2  minimization technique 

similar to the track fitting is used. Instead of having actual data points with which 

to fit, now the track fit parameters aL,R are used as the “data” The y 2  equation to 

be minimized is now:

Npar Npar / \
Xvertex (/ )̂ e e k “ -  a ? )W % {a fta -  a f V  (5.4)

i j
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where a  is now a 1 0 -vector made up of cil and d*R, and

-  dxL dyL qL dxR dyR qR
P - (xL, yL, - j —, - r - ,  — , x R, yR, — ). (5.5)az dz p l  az dz pR

W?  is a block diagonal 1 0  x 1 0  matrix consisting of the two 5 x 5  matrices found in

the track fits. Since the vertex fit takes place inside the decay tank and the fit to

the tracks is done to the downstream end of the vacuum decay window, W-* must be

slightly modified to account for the multiple scattering that would take place in the

window. Once the minimization is complete, the fitted vertices are sorted according

to the minimized y 2  and the vertex with the lowest y 2  is used in the analysis.

5.4.2 QT Fitter

The method used by the QT fitter is fundamentally different from tha t in the FT 

fitter in that it does not do any y 2  minimization. QT fitting follows a process similar 

to pattern recognition but treats the front and rear sections of the spectrometer as 

independent. A hypothesis is made that all the information about the trajectories 

of the particles is found in the analysis of the front, and the back half is only used 

for a second momentum measurement and as a way to check the effectiveness of the 

fit. It is assumed that the data in drift chambers four, five and six are so distorted 

by multiple scattering that no information about the path of the particles in the 

decay tank can be extracted.

To start, the coordinates of the hits in each layer of a plane (either x  or y) are 

averaged. In this manner, three x-points and two y-points are found in the front 

section while three x-points and three y-points are found in the rear (SDC3 does not 

contain a y-viewing plane). The extra y-point from SDC4 is not used in order to 

keep the analysis in both section identical. It will be used later as a measure of how 

well the y-components of the fit match the data. These five data points can be used 

to find the five parameters needed to specify a track from a specific longitudinal
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point: x , y, Beginning with the outer most drift chamber, SDCl in the

front and SDC6  in the back, the path of the particle is projected inward to the next

two drift chambers with the initial track parameter found in stage seven’s pattern

recognition. Based on the difference between the projected path and the data points, 

the track parameters are adjusted for a better match. This is done iteratively until 

the differences are below a threshold (f«10 pm). The two momentum measurements 

for the front and back section of the spectrometer are combined using a weighted 

average with the weights of each half’s momentum being determined from Monte 

Carlo.

The quality of fit is determined by how well the two independent fits for each 

track compare. A x 2 value for both the x  and y  views (Eq. (5.6) and Eq. (5.7)) is 

constructed from the position and direction cosine differences as well as from the 

momentum difference from the average. The x-view x 2 is defined as

x l  = X% + Xsx + Xsex (5‘6)

with

•y2 — f P f ~ p \  ( P b - P \  2 — ( Xf -  x b\  o — ( 0xf - 0 x b\
XS’ ~ \  tfp, )  + {  O'* ) ’ ) '

and the y-view x 2 is

x l  = X% + X259y + X%4 (5-7)

where the position and angular x 2 have the same form as their ^-counterparts and 

Xsy4 measures the error in the y-position at the y-plane in SDC4.

Once all tracks have been fit, vertices are found for all possible left/right pairs. 

The direction cosines from the front half of the spectrometer are used along with 

the averaged momentum to project the path of the tracks into the decay tank. The 

track to track distance of closest approach defines the vertex of the pair. If the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

DOCA is less than 10 cm, the vertex is kept and a % 2  for the quality of the vertex 

fit is calculated. This is defined as

2  5d2
Xvertex  ~~ / \ / , \ (5.8)

\Z S D C  1 Z v e r te x ) \&  T  pj^+p^ )

where 5d is the track-to-track DOCA, zsnci and zvertex are respectively the z- 

positions of the first straw drift chamber and the vertex,pi and J)r  are the respective 

track momenta, and a  and (3 are parameters determined from Monte Carlo. All ver

tices that pass QT for the event are sorted according to the parameter

£ =  Xlertex + V (xl +  Xr ) , (5‘9)

where rj is an empirical parameter and Xl ,r  is the sum of the x l,y f°r that track 

added in quadrature.
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C H A PTER  6

M onte Carlo Studies

6.1 O verview

Monte Carlo analysis is a simulation technique which can be used to explore 

the characteristics of an experiment under controlled situations. In E871, the Monte 

Carlo methods axe coded into the data analysis routine which allows us to examine 

the response of each detector element and to develop event signatures for signal 

and background decays. For each event, a is generated, decayed through a 

user-defined branch, and the daughters transported through the detector. Hits are 

generated in the each element of the spectrometer, TSCs, and particle identification 

subsystems which include detector efficiencies, dead spots and multiple scattering 

to make the results of the simulation match the results of data runs as closely 

as possible. This chapter examines the results of Monte Carlo generated data to 

determine the properties and acceptance of the pion and e+/e “ tracks that will 

enable us to classify an event as signal, normalization or background.

76
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6.2  K°l  —» 7r+7r e+ e E vent Signature

The design of a detector must provide ways to differentiate between decay modes 

of interest such that it is unlikely that two modes would give the same response. In 

an ideal situation, the electronic signature would be unique in that no other mode 

or combination of modes could duplicate it. But in reality, detector resolution and 

efficiencies, accidental hits, and closely-related decay branches lead to background 

contamination.

As the original purpose of the E871 experiment was to search for rare two-body 

leptonic decays of the kaon, its detector was designed to maximize the acceptance 

for these branches while minimizing three-body backgrounds to the two body signal 

events. As described in Chapter 4, the trigger system was designed to limit the 

amount of data written to tape by selecting events that had two tracks with the 

correct charge whose reconstructed invariant mass was greater than 460 MeV under 

a decay hypothesis of —> 7r+7r" “, K°l  -»■ e+e , K°l  -► fj+fi  , or K°t  -»• ^ + e+ . 

W ith this requirement, the search for K £ —► 7 r+7 r- e+e-  is limited to one in which 

two of the four decay products carry the majority of the invariant mass. At first 

glance, this could occur in one of four possible ways:

1. T he 7r+7r_ pair passes through the spectrometer, TSC and particle 

identification counters and is accepted by the trigger with the soft e+ e-  pair partially 

reconstructed or m issing the spectrometer.

2. T he e+ e-  pair passes through the spectrometer, TSC and particle 

identification counters and is accepted by the trigger with the soft 7 T + 7 r-  pair 

partially reconstructed or m issing the spectrometer.

3. The 7T+e- pair passes through the spectrometer, TSC and particle 

identification counters and is accepted by the trigger with the soft 7r- e+pair partially 

reconstructed or m issing the spectrometer.
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4. The 7r~e+ pair passes through the spectrometer, TSC and particle 

identification counters and is accepted by the trigger with the soft 7r+ e_ pair partially 

reconstructed or m issing the spectrometer.

Two of the four products that are fully reconstructed in the spectrometer 

must have at least 460 MeV of the AT£’s invariant mass. Due to this requirement, 

K \  —>• 7 r+7 r_e+e_ events will only be found in the E871 data set from option one. 

Option two is kinematically forbidden while options three and four are allowed, but 

suppressed due to very limited phase space. This work will be limited to searching 

for two full pion tracks and partial e+/e _ tracks. The two pions will be referred to 

as the primary tracks as theirs are the tracks that must be fully reconstructed by 

pattern recognition, the FT and QT fitters, and the particle identification routines 

in order that the event be written to tape. The soft e+e_ pair carries little of the 

A ° ’s invariant mass and is unlikely to create hits in the entire spectrometer. For 

events where the e+e” pair does hit the front two straw drift chambers, their tracks 

will most likely be bent out of the spectrometer or into the beam plug due to the 

strength of the first spectrometer magnet as illustrated in Figure 6.1. These tracks 

will not be fully reconstructed, nor is there any way to positively identify them as 

electron-type. As such, they will be referred to as partial tracking stubs, or stubs 

for simplicity. In the following sections, the characteristic quantities of the primary 

tracks and the partial tracking stubs will be examined under various K £ form factor 

hypotheses (see Chapter 2) to determine cuts that will allow identification of a set of 

tracks with the signal, the normalization or background events. A summary of the 

these cuts along with the efficiency of each can be found at the end of this section 

in Table 6.2 and Table 6.3 for the FT and QT fitters, respectively.
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Magnetic Field Region
Vacuum -------------  SDC3
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Decay Volume
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g n i n

Decay Volume
Magnetic Field Region

Figure 6.1: Possible K \  —> 7r+ 7r” e+e“ events accepted into the front half of the spec
trometer. Due to their soft nature, the e+e“ tracks rarely leave hits in more than SDC1 
and SDC2.

6.3 P rim ary P ion  Tracks

In order to verify that a set of tracks originated from a two-body or a four-body 

K \  decay, we require that the tracks can be projected upstream into the vacuum 

decay region to form a vertex point. The quality of the vertex will depend on 

how well each track’s kinematics are reconstructed in pattern recognition, and how 

they are subsequently fit using the independent FT and QT routines. In order to 

fully describe each track, the fitting routines will provide the track’s momentum 

and direction cosine at the upstream end of the spectrometer, as well as a x 2 value 

describing how well each fit matched the hits in the drift chambers. The tracks 

are then projected upstream into the decay tank where the vertex is formed by 

calculating the distance of closest approach (DOCA) between the tracks.

The track and vertex information of the primary pions is reconstructed inde
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pendently of how the track was created. The set of track properties that describes 

a good pion track in the detector must, therefore, be independent of whether the 

pion originated as part of the signal K {[ —> 7 r+7 r_e+e_ or of the normalization 

K '£ —> 7 T+7 r~. Thus, the cut values derived from the Monte Carlo must include 

data from both to ascertain if the cuts are not rejecting large portions of properly 

reconstructed two-body or four-body events. By applying these cuts to the signal 

and normalization samples equally, any errors introduced by these cuts will cancel 

in the final branching ratio calculation.

Track Q uality

As described in Chapter 5, a track Xt  calculated as a measure of how well 

the projected track matches the hits recorded from each drift chamber. For the 

FT fitter, the Xt  va ûe depends on the number of degrees of freedom in the fit 

which is the number of drift chamber planes hit in the event. This can be anywhere 

from 28, where every plane (18 x-planes and 1 0  y-planes) has a recorded hit, to 

17, where two x-planes are hit per chamber and one y-plane per chamber. The QT 

fitter uses the values for x l  and x l  found in Eq. (5.6) and Eq. (5.7), respectively, 

added in quadrature to find its Xt • The y 2  for the left and right tracks are added 

in quadrature to find a total track Xt  f°r the QT fitter.

The results for the FT and QT fitters be found in Figure 6.2 and Figure 6.3 

respectively. The larger values of Xt  in the plots indicate difficulty in reconstructing 

the track. Pions that decay in flight can cause kinks in the track as well as extra 

hits in the drift chambers caused by the decay electron. Accidental tracks or tracks 

from stub candidates, along with poor hit quality in the drift chamber can cause 

poor reconstruction due to using incorrect hits. A cut value of 25 for the FT Xt  

will exclude less than 1.5% of all events. For the combined Xt  of the QT fitter, a 

nominal cut of 35 will also exclude less than 1.5% of events.
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Figure 6.2: FT fitter Xt distributions for Ai£ —> 7r+ 7r and K £ —> 7r+ 7r e+ e with iF£ 
form factors are presented. A nominal cut value of 25 is shown.
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Figure 6.3: Q T  fitter Xt d istributions for K°L —> 7r+ 7r and K ([  —> tt+tt e+ e w ith  K  
form factors are presented. A  nom inal cut value o f 35 is shown.
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Track M om entum

The design of the E871 detector places requirements on the momentum of each 

pion. The fiducial acceptance in the spectrometer is biased such that few tracks will 

have a momentum below 1 GeV/c. The muon hodoscope and the muon rangefinder 

were built with this acceptance in mind. A muon track must have at least 1 GeV/c 

to travel far enough into the layers of scintillator and iron to be correctly identified. 

Below this threshold, a pion and a muon will appear too similar to be distinguished. 

A low momentum cut of 1.05 GeV/c is placed on the momentum of each pion to 

ensure proper identification. Due to the small acceptance for low momentum events, 

this cut is ~  98% efficient.

On the opposite end of the momentum spectrum, highly boosted kaons will 

produce daughter pions with large momenta. The acceptance of these events is small 

as many of the pions will enter the beam plug due to the decrease in opening angle 

between the pions. This decrease in acceptance, as well as the smaller probability of 

high momentum K \  production, results in the steep drop-off of the high momentum 

tail in the momentum spectra of Figure 6.4 and Figure 6.5. Much of this tail must 

be eliminated due to the decrease in efficiency of the particle identification routines 

as the track momentum gets larger. The lack of statistics in this region did not 

allow for a detailed study of the detector response. High momentum pions and 

muons from pion decay are also more likely to escape from the muon rangefinder 

before depositing their entire energy. To limit the number of misidentified tracks, the 

momentum of each track will be required to be below 6.5 GeV/c. The requirement 

removes less than 2% of the events in the Monte Carlo samples.
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Figure 6.4: Pion momentum distributions for —> w+7r~ and K v[  —> 7r+ 7r~e+ e_ with
K £ form factors calculated using the FT fitter are presented. The efficiency of the 1.05 
G eV /c< |pj <  6.5 GeV/c cut is listed.
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Figure 6.5: Pion momentum distributions for A'£ —> 7T+7T” and K aL —> 7r+ 7r_ e+e_ with 
if® form factors calculated using the QT fitter are presented. The efficiency of the 1.05 
G eV /c< |p| <  6.5 GeV/c cut is listed.
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Vertex Position

Once the momentum and direction cosines of each track have been assigned 

by the fitting routines, the pion tracks are projected upstream into the vacuum 

decay region. The vertex position is defined as the midpoint of the line connecting 

the points at which the two tracks are at their distance of closest approach. The 

reconstructed vertex position must fall inside the decay tank as well as inside the 

neutral beam’s x-y profile, which is defined by the collimators described in Sec. 3.2, 

for it to be accepted. In order to describe the position of vertex inside the decay 

tank with relation to the neutral beam profile, the vector that describes the vertex 

position, (x , y , z ) will be replaced with angular positions (vx,v y,v z) (see Figure 6 . 6  

for a view of this change), where

£ — Tx y — Tv ^  _.
Vx= _  rp > Vv =  _  rp } and vz = z - T z . (6.1)z l z z l z

The vector T in Eq. (6.1) is the point at which the K°L was produced in the platinum

target. As the beam diverges from the target into the decay tank, the angular limits

on vx and vy stay constant while the limits on x  and y depend on the ^-position of

the vertex.

The E871 fitting routines provide a method for extrapolating T  from the sum 

of the pion momentum vectors at the vertex point but this routine was specifically 

written for two-body decay. The momentum sum in the two-body case will equal 

the momentum of the decay K ([  due to conservation of momentum. The routine 

projects the K ([  track backward to the midpoint of the target, z =  0. This point is 

used for T. For a four-body decay, the momentum sum of two of the pions will not 

necessarily equal that of the AT£, even for events in which the primary tracks carry 

the bulk of the momentum. Even a small deviation in momentum will translate to 

a large difference in position at the target as the vector is projected 15 m upstream. 

For consistency between the two and four body decay channels, we will assume that
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vertex point (x,z)
Kaon production Point

(TX,TZ)

Origin

Figure 6 .6 : Top: The neutral beam profile from the platinum target is shown as defined 
by the brass collimators. Bottom: A pictorial description of how the vertex angles in 
Eq. (6.1) are calculated.

the neutral beam always originates from the center of the target, T =  (0,0,0). 

The limits on the reconstructed K \  vertex are defined by the upstream collimators 

as ±0.0027 mrad for vx and ±0.01 mrad for vy. These cuts remove background 

from poorly fit tracks due to pion decay, accidentals, and events with large scatters. 

Figure 6.7 and Figure 6.9 show the distributions for the vertex positions in x, y, and 

2  and the distribution of the vertices in the vx-vy plane, respectively. In order to 

limit the acceptance of late-decaying K$ into two pions, an upstream cut of 9.55 m 

is placed on the reconstructed 2 -position of the vertex. The likelihood of a Kg 

surviving into the decay tank is small, but it will decay into a pair 68.60%

of the time [19]. At the downstream end of the decay tank, the 2 -position of the 

vertex is cut at 2 0 . 6  m since there is little fiducial acceptance for events decaying 

any further downstream.

As a compliment to the cuts made on vertex position, a limit can be placed 

on xltx values calculated to measure of how well the vertex point is fit from the 

reconstructed tracks. The methods used to calculate the xltx values can be found
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represented by the dashed lines.
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Figure 6.9: The distribution of the FT-reconstructed vertices in the vx-vy plane for the 
normalization Monte Carlo. This plot is typical of results for the QT-fitted events as 
well as for the two models of signal Monte Carlo. The blue box represents the —0.0027 <  
vx <  0.0027 rad and —0.01 < v y <  0.01 rad cuts on the angular vertex position.

from Eq. (5.4) and Eq. (5.8) for the FT and QT fitters, respectively. A cut of 30 

for the FT fitter and 15 for the QT fitter eliminate poorly reconstructed events and 

have an efficiency of greater than 96% as shown in Figure 6.10 and Figure 6.11. 

Due to pion decay, the efficiency of these cuts is lower than those for purely leptonic 

events studied in E871, where the loss from this cut is less than 2%.

Particle Identification

Once two tracks in the spectrometer have been properly identified and recon

structed, their species must be determined to be able to classify the event. The 

particle identification detectors described in Chapter 3, Sec. 6.3 were built to pos

itively identify electrons and muons over pions using the Cerenkov detector, lead-
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red and represents less than 4% of the sample.
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possible good

Cerenkov
(TKXIDK)

Simulated positions match actual 
corrected time is within ±4  ns

Passes requirements for possible 
pass pulse height cut

Pb Glass 
(TKXIDG)

Passes — cutP
passes ^  /  -p contour cut

Passes requirements for possible 
passes energy centroid to hit position cut

Muon ID 
(TKXIDM)

Pass momentum matching (gap cut) 
hits in X0,Y0 or XI MHO planes

Passes requirements for possible 
passes space and time cuts

Table 6.1: Particle identification routine requirements for full tracks in the E871 detector.

glass calorimeter, muon hodoscope and muon rangefinder. Routines specific to each 

detector compare their hits to those expected if the given track were an electron for 

the Cerenkov and lead-glass portions, or a muon for the hodoscope and rangefinder. 

The routines will evaluate the hit information and compare it to what would be 

expected given the track properties found in the spectrometer. A hypothesis will be 

made based on the comparison and a value of “good” or “possible” will be assigned 

for each detector element (Table 6.1). In order to identify a track as a pion, the 

track must fail the “possible” cuts associated with being a muon or an electron. 

The efficiencies of the particle identification routines have been extensively studied 

in [39, 35, 40] and include the efficiency’s dependence on momentum and x-position 

and ^-position for both beam left and beam right tracks. Due to the similarities in 

the momentum distributions shown in Figure 6.4 and Figure 6.5, the difference in 

these efficiencies between K \  7 r+7 r~e+e_ signal decays and K \  —» 7 r+7 r~ normal

ization decays is very small, on the order of 1 0 -4 .
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FT Fitter

Parameter Cut Value
Normalization

Model
Phenomen.

Model
Chiral Pert. 

Model
Xj,, left track 25 0.989 0.989 0.988

Xt , right track 25 0.988 0.989 0.989
7T— track momentum 1.05 <  p <  6.5 GeV/c 0.951 0.965 0.966
7r+ track momentum 1.05 < p <  6.5 GeV/c 0.950 0.970 0.968

vertex position, vx \vx\ <  2.7 mrad 0.991 0.990 0.990
vertex position, vy Uy| <  10 mrad 0.996 0.996 0.996
vertex position, vz 9.55 < v x <  20.6 m 0.980 0.974 0.977

Xvtx 30 0.968 0.972 0.970
Efficiencies for events 
passing all cuts above 0.859 0.872 0.872

Table 6.2: Cut values and efficiencies associated with a good pion track in the spectrom
eter (FT fitter).

QT Fitter

Parameter Cut Value
Normalization

Model
Phenomen.

Model
Chiral Pert. 

Model
tracks 35 0.988 0.989 0.988

7T— track momentum 1.05 < p <  6.5 GeV 0.951 0.965 0.966
7r+ track momentum 1.05 < p <  6.5 GeV 0.950 0.970 0.968

vertex position, vx <  2.7 mrad 0.991 0.990 0.990
vertex position, vy \vy \ <  10 mrad 0.996 0.996 0.996
vertex position, vz 9.55 < v x <  20.6 m 0.980 0.974 0.977

Xvtx 15 0.976 0.978 0.977
Efficiencies for events 
passing all cuts above 0.856 0.868 0.866

Table 6.3: Cut values and efficiencies associated with a good pion track in the spectrom
eter (QT fitter).
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6.4 P artia l Tracking Stub Search

As described earlier, there is very little acceptance for four-body events in which 

either the positron or electron is able to traverse the entire spectrometer and pass 

all of the triggers. The low energy nature of the e+e“ pair makes it unlikely that 

they will leave significant tracks in SDC3 or in elements further downstream. This 

fact limits the search for the e+e~ tracks to the front of the spectrometer, or more 

specifically to SDC1 and SDC2. As such, the momentum of these tracks is not 

directly measurable and will have to be inferred from the transverse momentum of 

the primary track pair. A stub finding routine was written which employed both 

pattern recognition and the FT and QT fitters to perform an exhaustive search 

of all extra hits in the first two straw drift chambers. To limit the processing 

time, the stub finder was run only on events in which two pion tracks had been 

properly reconstructed (as described in the earlier section), thus limiting the search 

for K £ —> 7T+ 7r~e+ e -  to the AT£ —> 7r+ 7r~ data tapes.

The stub search begins in stage nine of the analysis code by re-running pattern 

recognition and the FT and QT fitters to find all cluster associated with extra 

hits in the first two left and right straw drift chambers. The hits associated with 

the primary pion tracks are masked out so they are not reused. For each extra 

cluster, segments are created using the same method as Sec. 5.2. SDC2. Stub 

candidates are formed by taking each x-segment in SDCl and combining it with all 

possible combinations of segments from the y-plane of SDCl and the x-plane and 

y-plane from SDC2. A simple example of the search for stub candidates is shown 

in Figure 6.12 for a situation involving only two planes of x -viewing straws. Events 

with excess noise can have well over 1 0 0 0  possibilities, but events with less than 

1024 are passed on for further analysis.
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SDCl - Right 
(x-view)Decay Tank SDC2 - Right 

(x-view)

Figure 6 .1 2 : A simplified example of the search for stub candidates with three extra 
segments found in SDCl and two extra segments in SDC2. A segment can only be used 
for one stub candidate. The selection is made based on a log-likelihood scoring system.

Partial Tracking Stub M om entum

The only information obtained by pattern recognition and the fitting routines 

in the stub search is the trajectory of each partial track from the hits left in the first 

two straw drift chambers. Since the momentum of the K £ is unknown, conservation 

of momentum can not be used to calculate the momentum carried by we e+e~ 

pair. However, by using the vertex position of pion pair and assuming the K \  was 

produced in the center of the target, the sum of the momentum of the decay products 

that is transverse to the line connecting these points is invariant in the laboratory 

frame and should sum to zero. Figure 6.13 shows this graphically.

The transverse momentum of the pion and electron-positron pair can be calcu-
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ee

7T7T

7T7T

Figure 6.13: An illustration of the collinearity angles and vectors used to calculate the 
momentum of the e+e_ momentum sum.

lated from

Pt  = \P*+ + P*- I s in ( ^ )  

Pt  = \Pe+ + Pe-1 sin(#ee) ,

(6 .2 )

(6.3)

where collinearity angles 9 ^  and 9ee are the angle between the direction and 

the pion and electron-positron momentum sums, respectively. Since the momentum 

transverse to the K ([ direction must sum to zero, the magnitude of the e+e_ pair’s 

momentum can be inferred to be

s i n ^ )
|Pe+ +p7~ | =  |Pk+ +  Pv- sm = ) '

(6.4)

To find the momentum of the individual stubs, we must assume that they have 

equal momentum in the laboratory frame. In the virtual photon’s center of mass, 

the e+ and e~ of each e+e_ pair are emitted isotropically and with equal momentum. 

When the pair is Lorentz boosted into the laboratory frame, the maximum difference 

between the momentum of the e+ and e~ can be approximately 2'pf1 which is small 

compared to the boost. Figure 6.14 examines the difference between the e+ and e~
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Figure 6.14: The Monte Carlo distribution for the momentum carried by the electron 
and positron in the lab frame is shown in (a). The momentum difference, jp<T+1 — \pe~\, 
for all events in (a) is shown in (b).

momentum from Monte Carlo. Due to the soft nature of the virtual photon in both 

models, the phase space is dominated by events in which the momentum difference 

is small. The momentum of each stub from Eq. (6.4) is then

l * l  =  5 lp’ + + p ; - l ^ | j '  (6'5)

Stub to  V ertex D O C A

The reconstruction phase of the analysis begins with only the location of each 

stub candidate in the first two straw drift chambers known, along with the trajectory 

formed from these points. The most potent indicator of a correlation between the 

stub candidate and the pion tracks is the impact parameter of the partial track 

to pion vertex. A track to point minimization technique is used to calculate the 

distance of closest approach (DOCA). Given the point r  as a point on the stub’s
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Point on 
the track

V e rte x
P o in t

Origin
( 0 , 0 , 0 )

Figure 6.15: An illustration of the vectors used to calculate the DOCA value of a track 
to a point using the minimization technique.

track at SDC2, d as the direction cosine of this track (assume d points upstream 

into the decay tank), the point along the stub’s path which is closest the the vertex 

point V  is

x = f — S d , (6 .6 )

where S  is the pathlength from r to the DOCA point x. The DOCA is the distance

between V and x, \x — V\. Figure 6.15 is an illustration. The minimization condition

is then

We can find the solution to Eq. (6.7) by solving for S  in

■̂ l(i-Sl)-V]2 = 0 (6.8)

which gives a pathlength at the DOCA of

S  -  d ' { V - $ )  ' (6.9)
d2
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Once the pathlength is known, it can be combined with Eq. (6 .6 ) to find the DOCA 

value, \x — V\ as

D O CA = 10)

Monte Carlo generated samples were analyzed to study the number of stub can

didates along with the DOCA values found for each. Figure 6.16 shows the number 

of stub candidates found per event for each model and the DOCA calculated for 

each. These samples include multiple scattering but do not include accidental hits 

in the straw drift chambers from background sources. Although the most numerous 

events are those with only one stub candidate, these must be removed as there is 

not enough information to reconstruct where the missing track should be without a 

momentum measurement on the stub. Reconstructing events with one stub is possi

ble if the opening angle between the tracks is so small that they appear overlapped. 

In this case, it is assumed that one stub represents the trajectory of both, but the 

probability for this is small regardless of which model is used. The search will be 

limited to events where at least two candidate tracks are found.

The stub candidates are sorted according to the minimized DOCA. The two 

candidates with the smallest DOCAs are assumed to be the tracks for the electron 

and positron. Distinguishing the electron from the positron is impossible since 

the tracks do not make it into the magnetic field region of the spectrometer, but 

particle-track particle identification is also irrelevant to this analysis. Figure 6.17 

and Figure 6.18 show the distribution of the DOCA values in each model for the best 

stub and the second best stub, respectively. Each distribution is fit to a log-normal 

function of the form

/  \  7-. - I I  l o 9 ( * ) - l ° 9 ( P 2 )  I . .N  (  events A Px _ ^  p3  J (6.11)
\channel J P3-\/27r
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dates (red).

Figure 6.16: Distributions for the number of partial track candidates per event and the 
e+/e~  to vertex DOCA for each are shown for the phenomenological model using the FT 
fitter. Plots using the chiral perturbation model and the QT fitter show similar results.

where x  is the channel number, and Pi through P 3  are the fit parameters. The stub 

to vertex DOCA is used as the primary figure of merit when deciding which events 

should be studied further and those events which will be discarded. A cut of 1 2  cm 

was chosen for the best stub candidate DOCA value so that the average efficiency 

of both models and fitters was approximately 90%. The cut associated with the 

second stub candidate was set at 18 cm and used to reduce the acceptance of events 

in which the track had a large scatter. Due to their low energy, multiple scattering 

in the downstream vacuum window and the straw drift chambers will increase one or 

b o th  of th e  im pact param eters of th e  partia l tracks into a region where background 

events are more likely to occur. The efficiencies of these and all the following cuts 

are summarized in Table 6.4 at the end of this section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ev
en

ts
/0

.0
1 

E
ve

nt
s/

0.
01

1 0 2

Phenom

4000

0.1 2 m eters
3000

B e s t  S t u b2000

1000

0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.
e+/e' to nn Vertex DOCA '

I.35 0.4 
m eters

Xpt

2000

0.12 m eters
1500

B e s t  S t u b1000

500

m eterse+/e‘ to nn Vertex DOCA

(a) Phenomenological Model, FT fitter. (b) Chiral Perturbation Model, FT fitter.

Xpt
QT1 2500

2000

0.12 m eters
1500

B e s t  S t u b1000

500

m eterse+/e" to nn Vertex DOCA

Phenom

4000

0 .12  m eters
3000

B e s t  S t u b2000

1000

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.

e+/e' to nn Vertex DOCA '
I.35 0.4 
m eters

(c) P henom enolog ical M odel, Q T  fitte r. (d) C h ira l P e r tu rb a tio n  M odel, Q T  fitte r.

Figure 6.17: Stub to vertex DOCA of the stub candidate with the smallest stub to vertex 
DOCA for each event.
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7r+7 r Decay Plane

e+e Decay Plane

Figure 6.19: An illustration of the 7r+ 7r and e+e decay planes formed by the momen
tum vectors of the 7r+ 7r_ and e+ e_ pairs, respectively.

Stub Correlation Angles

Due to the large momentum of the kaon in the laboratory frame, the daughters 

in the four body decay process will have their momentum highly boosted in the 

^-direction. This, along with the high invariant mass requirement for the 7 r+7 r~ pair 

leads to a correlation between the stub momentum sum and pion decay plane as well 

as a correlation between the individual stub directions and the pion decay plane. 

As shown in Figure 6.19, the pion decay plane is described by the vector normal to 

the plane defined by the two pion momenta,

"̂7TTT --
Ptt+ X Pft—
Ivl*  x jC - 1

(6.12)

If d is the direction cosine of a single stub, the correlation angle between d and
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the primary decay plane (nW7r) can be described as

Oicorr — ^ * ^ 7T7r • (6.13)

The distribution of correlation angles for the individual stubs can be found in Fig

ure 6.20 and Figure 6.21. The histograms were fit to Gaussian functions and values 

of ± 6 ° and ±6.7° were found to agree with ~  3a cut for both models and both 

fitters with only the two-body cuts applied.

Stub to  Stub O pening Angle

For much the same reasons that a correlation exists between the stub and pion 

momentum sums, the angle between the stub pairs also displays an interconnection. 

The three body nature of the intermediate K \  —> 7r+7r- 7 * state and the need for the 

pions to carry at least 460 MeV of the invariant mass leads to the virtual gamma 

having only a small fraction of the available energy in the kaon center of mass for 

events accepted into the detector. The virtual photon undergoes a Dalitz decay 

and the products are Lorentz boosted into the laboratory frame. Since the virtual 

photon’s energy is small compared to the energy associated with the boost, the 

Dalitz pair formed in its decay will be thrown forward with a very small angle 

between them. The distribution of stub opening angles for both models can be 

found in Figure 6.22.

By limiting the maximum opening angle to 8 °, we can take advantage of the 

correlation between the stubs to remove background. The opening angle between 

partial tracking stubs from K e 3  and pileup events will not have any such correla

tion as the lepton tracks are wholly uncorrelated. Partial tracks from Kg, neutron, 

and A decay products at the end of the neutral beamline or in the decay tank 

which are in time with a K \  —» n +n~ events will be limited by such a cut as well 

(Chapter 7). The opening angle distributions for the e+e~ pairs in the four-body
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Figure 6.20: The stub to primary decay plane angle for the best two stub candidates 
using the FT fitter.
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Figure 6.21: The stub to primary decay plane angle for the best two stub candidates 
using the QT fitter.
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decays were fit to a log-normal distribution (Eq. (6.11)). The efficiencies of this cut 

varies widely across the two models (Table 6.4) but is necessary due to background 

considerations.

Stub to  Stub DO CA

To determine further correlation between the best and second best partial 

tracks, their DOCA value is calculated using a track to track method similar to 

the track to point method described in Sec. 6.4. From the stub candidate search, 

the direction cosine (di) and a reference point along the path (rl) are known for each 

track. If the point along each track where the DOCA occurs is Xi where i = lor2, 

then

Xi = fi -  di ■ S i . (6-14)

Si is the pathlength from the reference point to the DOCA point, and is found by 

minimizing the distance between x\ and x 2 to be

51 =

52 =

(rfi • d2)(d2 • (rl -  rl)) -  (rii • (rl -  rl))

i-(d~ i-< f 2 ) 2

(d2 ■ (f[ -  f 2)) -  (cfi • d2)(dx ■ (rl -  f 2))

1  -  (di • d2y

Substituting this into Eq. (6.14), the DOCA point for each track is found to be

\ d x ■ d2)(d2 ■ (rl ~ r 2) ) ~  (<£ • (rl -  f 2))

(6.15)

(6.16)

x i = f[ — d\ 

x 2 = f*2 -  d2

1  -  (di • d2)2 
(d2 ■ (rl -  f 2)) -  (di • d2)(di • (rl -  rl))

(6.17)

(6.18)
1  -  (di • d2f

and the DOCA between the stub pair is then cc\ — x 2.

In an ideal situation, one would expect that all tracks originating from a K ([ —> 

7 r+7 T_e+e_ event to have a DOCA value of zero, but resolution effects and multiple
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FT fitter:
Phenom. Model Xpt Model

Quantity of Interest Cut Values efficiency efficiency
stub-vertex DOCA, best stub 0 . 1 2  m 0.944 0.879
stub-vertex DOCA, 2nd stub 0.18 m 0.699 0.626

stub-7r+7r_ decay plane Z (best) 6 ° 0.989 0.988
stub-7 T+7 r_ decay plane Z (2nd 6.7° 0.986 0.986

stub opening angle 8 ° 0.846 0.626
stub to stub DOCA 0 . 2 0  m 0.873 0.810

QT fitter:
Phenom. Model ypt Model

Quantity of Interest Cut Values efficiency efficiency
stub-vertex DOCA, best stub 0 . 1 2  m 0.932 0.878
stub-vertex DOCA, 2nd stub 0.18 m 0.694 0.630

stub-7 r+7 r_ decay plane Z (best) 6 ° 0.986 0.986
stub-7 r+7 r_ decay plane Z (2nd 6.7° 0.988 0.981

stub opening angle 8 ° 0.848 0.631
stub to stub DOCA 0 . 2 0  m 0.881 0.816

Table 6.4: Cut values and efficiencies for the four-body reconstruction in each fitter and 
model.

scattering smear the distribution to values as large as 70 cm. The stub to stub 

DOCA distributions are shown in Figure 6.23. A cut value of 20 cm keeps the 

efficiency above 80% for all models.

6.5 A cceptances

The acceptance for a given decay channel is a defined as the number of events 

which are geometrically admitted to the spectrometer, trigger scintillating counters, 

and the particle identification systems consecutively and pass all imposed recon

struction requirements. Geometrically for both the K \  —► 7 r+7 r“ normalization and 

—> 7 T+7 T e+e signal, the two pions must have an opening angle which allows
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them to enter the spectrometer and create hits in all detector elements. This requires 

that they have the correct charge and meet the transverse momentum criteria. An 

extra geometric provision is imposed for the four-body signal in that the e+ and e~ 

tracks must hit the first two straw drift chambers.

The detector and reconstruction efficiencies are folded in with the geometric 

acceptance in the E871 Monte Carlo. The effect of dead or missing wires and 

the finite resolution of the drift chambers is included, as well as effects from the 

inefficiency of the trigger system, kinematic cuts from data reduction and pion decay. 

The branching ratio calculation for —> n +7r~e+e~ depends on the acceptance 

ratio between the normalization and signal in order to compensate for the increase 

in the number of K \  —► 7 r+7 r” e+e~ events lost compared to K \  —»• 7 r+7 r- . For the 

K \  —► n +n~e+e~ signal, the acceptance

4 ™  =  A f m ‘ric • U , ■ e— , (6-19)

can be measured from the ratio of simulated events that pass all requirements in 

Table 6.2, Table 6.3, and Table 6.4 to the total number of events generated. The 

stub-detection efficiency is included in this ratio by inclusion of the four-body cuts. 

Figure 6.24 shows the distribution of the selected events in invariant mass and 

transverse momentum. The signal region for K \  —> 7 r+7 r_e+e_ events is centered 

on the mass of the K® and is defined as 0.4905 < M ^ ee <  0.505 GeV for the FT 

fitter and 0.490 < M nnee < 0.5055 GeV for the QT fitter. All events accepted 

events must also have p ^ ody < 0.01 GeV/c to ensure momentum conservation. In 

order to keep the signal and normalization samples mutually exclusive, an additional 

requirement is placed on the four-body reconstruction. If the event satisfies the two- 

body selection criteria and falls in the normalization’s signal region, it is cut from 

the K \ —f 7 r+7 r- e+e-  candidate sample. Figure 6.25 shows the projection of plots 

in Figure 6.24 onto the mass axis.
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For the K \  —t ir+n~ normalization, the acceptance

=  A f  (6 .2 0 )

is calculated in the same manner as the signal acceptance. Figure 6.26 and Fig

ure 6.27 show the distribution of all events passing the two-body selection criteria 

in invariant mass and transverse momentum squared. The signal region for normal

ization events is defined as events having two-body pf. less than 0.0001 (GeV/c ) 2  

and 0.4935 < M ww < 0.502 GeV for the FT fitter and 0.493 < M V7T <  0.5025 GeV 

for the QT fitter. The acceptance ratio between the normalization and signal is 

found from

A japassed ATgenerated
7!"7r 7T7T 7T7T ( 6  21)

A -\jpassed -\jgenerated ’■n-TTitee iV7nree -‘*7r7ree

where Nf'assed is the number of Monte Carlo events passing all selection requirements 

and falling in the signal region for a decay mode and ]\[^enerated is the total number 

of Monte Carlo events simulated. The results for the acceptance ratio using each 

fitter and model is shown in Table 6.5.
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(a) Phenomenological Model, FT fitter. (b) Chiral Perturbation Model, FT fitter.
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Figure 6.24: Invariant mass versus transverse momentum distributions for Monte Carlo 
events which pass all two and four body cuts are shown. The box represents the signal 
region of 0.4905 <  M„vee <  0.505 GeV and p^odv <  0.01 GeV/c for the FT fitter and 
0.490 <  M,T7ree <  0.5055 GeV and p^ ody <  0.01 GeV/c for the QT fitter.
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Figure 6.25: Invariant mass distributions for Monte Carlo events which pass all two and 
four body cuts are shown. The red lines represents the signal region of 0.4905 <  MW7ree <  
0.505 GeV for the FT fitter and 0.490 <  Mvvee <  0.5055 GeV for the QT fitter.
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Figure 6.26: Invariant mass versus transverse momentum distributions for Monte Carlo 
K l  —> 7T+7T events which pass all two-body cuts are shown in (a) and (c). (b) and
(d) are the projections of the distributions in (a) and (c) onto the mass axis. The box 
represents the signal region of 0.4935 <  Mn7ree <  0.502 GeV and p?r  <  0.0001 (GeV/c ) 2  

for the FT fitter and 0.493 <  Mn7tee <  0.5035 GeV and pj, <  0.01 (GeV/c ) 2  for the QT 
fitter.
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Figure 6.27: Transverse momentum squared distributions for Monte Carlo K \  —> 7r+ 7r 
events which pass all two-body cuts are shown for the FT and QT fitters.
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FT fitter:
Normalization 
K \  —> tt+tt-

Phenomenological
model

xpt
model

events pass all cuts 684313 13864 8807
& in signal region
events generated 57 510 000 134 869 000 23 393 000

Acceptance (1.190 ±0.001) x 10“ 2 (1.028 ±  0.009) x 10" 4 (3.765 ±  0.041) x 10- 4

A.irttpp - 115.75 ±1.00 31.60 ±  0.34

QT fitter:
Normalization Phenomenological xpt
K \  —> 7r+7r“ model model

events pass all cuts 617002 13784 8706
& in signal region
events generated 52 090 000 124 965 000 23 284 000

Acceptance (1.185 ±0.002) x 10- 2 (1.103 ±  0.009) x 10" 4 (3.739 ±  0.040) x 10“ 4

± r 7 r 107.39 ±  0.92 31.68 ±0.34
1 -■ .JX-rrttPP ..............................................1

Table 6.5: Acceptance summary for events reconstructed using the FT and QT fitter.
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Background

The background processes for this analysis comprise any non-signal event that 

can mimic a four-body final state and whose reconstructed properties allow the 

event to pass all the analysis cuts and enter the signal region for K \  —» 7r+7 r“ e+e". 

For these events to be written to the 7 r+7 r" data stream, the trigger must identify 

two of the tracks, correctly or incorrectly, as pions. The final state products must 

also be consistent with originating from a common vertex which falls inside the 

neutral beam profile. In this chapter, the maximum level at which these processes 

contaminate the K \  —> 7 r+7r_e+e_ signal region is investigated through Monte Carlo 

analysis. Due to the complicated nature of most of the decays and the need to track 

photons and neutral particles in many of them, a Geant3 toy Monte Carlo was used 

to model the geometric acceptances of these backgrounds in order to supplement 

the E871 analysis routines.

7.1 K ql  —> 7r+ 7r_ 7T°

In other K \  —> 7 r+7 r- e+e~ searches such as KTeV and NA48, —» 7 r+7 r~ 7 r°

was the most troublesome background, as it occurs 4 x 105  times more frequently.

119
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Two charged pions are created in the initial decay which can satisfy the two-body 

trigger requirements. The neutral pion can decay to two photons (98.80%) or to 

e+e _ 7  (1.20%). For the former mode, it is necessary for one of the two photons to 

pair produce upstream of the first straw drift chamber to create an electron-positron 

tracks which can satisfy the partial track requirements. In the latter decay mode of 

the neutral pion, the e+e_ pair is create initially and has a much high probability 

of projecting upstream to satisfy the four-body selection criteria. Fortunately, the 

tight trigger requirements that reduces the phase space for the signal also eliminates 

this background from the data sample. Only events with a two-body invariant mass 

hypothesis of at least 460 MeV are written to tape. The creation of a 7 r° limits the 

charged pion pair to a maximum invariant mass of 362 MeV. Consequently, there is 

no acceptance for this decay due to the limited phase space.

7.2 P ileu p  E vents

The background due to accidental coincidence between multiple K \  decays is 

classified as pileup. The daughters from one K {[ are accepted into the spectrometer 

and satisfy the trigger requirements for a two-body decay. These two tracks must 

be identified as pions. Next, tracks from a separate temporally correlated K'l decay, 

which may or may not be spatially correlated, create hits in the first and second 

straw drift chambers such that the stub-finding routine recognizes and accepts the 

partial tracks as originating from the two-body vertex. Another way in which a 

pileup event can occur is for a daughter from each of two different decays to 

be accepted into the spectrometer such that the pair of tracks satisfies the two- 

body trigger and particle identification requirements. Due to the resolution of the 

pattern recognition and FT and QT fitting routines, the K {[  decays must be highly 

correlated in space and time. The remaining charged daughters must create hits in
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the first and second straw drift chambers that are reconstructed as an e+e“ pair 

from a four body decay.

A pileup event which occurs according to the first mechanism is much more 

likely to be accepted into the data stream, but requires inefficiency in the stub- 

finding routines or accidental coincidence to mimic the four-body signal. The sec

ond mechanism is suppressed due to the geometric acceptance as well as the low 

probability of two K ([ decays showing a large spatial and temporal correlation.

In order to model the contribution of pileup events to the background, the E871 

Monte Carlo routine was modified to simulate multiple K ([  decays per event. In the 

modified simulation, two K \  are emitted from the target with random momentum 

distributed according to the E871 parameterization of the neutral beam [41] and 

are forced to decay inside the vacuum decay region. Each kaon was allowed to 

decay through one of seven modes listed in Table 7.1 according to their normalized 

branching fractions.

This simulation did not measure the single event sensitivity for pileup decays 

in E871, but did allow the shape of the expected background distribution for the 

four-body invariant mass to be generated. The Monte Carlo background’s shape 

was used to fit the candidate event set’s invariant mass distribution (Chapter 8 ) 

so that the number of background events could be measured. In order to calculate 

the expected number of pileup events in the E871 data set, the structure of the 

neutral beam must be known. But due to the fluctuations in the intensity and 

pulse structure of the AGS, the precise distribution of AT£’s in time for a spill is not 

known. In order to determine if these events would contribute to the background of 

K l  —* 7 r+7 r e+e , the effective branching ratios for pileup decays were found to be 

at the on the same order of magnitude as the signal. This was done using a Geant3 

Monte Carlo simulation which used the most generic geometric acceptance.

The E871 pileup simulation was run over a period of 8  weeks on the 8  duel-
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Decay Channel Branching Ratio
K l  - >

K°l  -»• 7 

K l  - >  t t V t t 0

K l  —>■ 7r+ 7T_ 7T0 

K l  7T+ 7T~

40.53%
27.02%
19.56%
12.56%

0.1976%

Table 7.1: Branching fractions for the decay channels used in the pileup event simulation.

processing nodes of the NOVA cluster at The College of William and Mary. Ap

proximately 50 billion events were generated and analyzed using the FT fitter. The 

resulting sample consisted of 125 events which pass the K \  —> 7r+ 7r_ e + e _  selection 

requirements and have a four-body transverse momentum less than 10 MeV. The 4- 

body invariant mass spectrum is shown in Figure 7.1. Since the muon identification 

routines were not implemented in the E871 Monte Carlo, an artificial muon veto 

was imposed using the measured efficiency of the muon rangefinder and hodoscope 

to cut 97% of all the events which contain a track known to be a muon.

7.3 K ® —> 7r+7T_7

—» 7r+ 7r 7  decays, with a branching fraction of 4.17 x 10 5, can contribute 

as background to K ([ n +K~e+e~ in E871 if the photon converts to a Dalitz 

pair upstream of the second layer of straws in the first drift chamber. In this 

case, the final products are the same as those of the signal. These events would 

be difficult to remove from the sample as the tracking resolution for stubs is not 

sufficient to conclusively differentiate the Dalitz pair’s vertex as originating from the 

material in the downstream end of the vacuum decay tank rather than matching 

the primary pion vertex. Due to the large Lorentz boost and subsequent small 

opening angle between the positron and electron, the pair leaves hits in the front drift
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Figure 7.1: Invariant mass spectrum for pileup background events which pass the K \  —> 
7r+7r_ e+ e_ acceptance criteria.

chambers that axe nearly parallel to the photon that produced it. When projected 

upstream into the decay tank, the stub tracks can satisfy the stub to vertex DOCA 

requirement. The invariant mass for such a decay should reconstruct close to the 

K \  mass with low transverse momentum, leading to contamination of the sample.

The probability for a photon to undergo pair production as it travels in materials 

with fractional interaction length f \ T is

A is the number of interaction lengths that the photon passes through for a given 

material and A0  is the momentum dependent pair production cross section [42] for

P paU hA E )) = 1  -  e - ' w ) , (7.1)

where

materials
(7.2)
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that material. The total fractional interaction length is a function of momentum 

and is shown in Figure 7.3(a). The pair production probability is also dependent 

on the energy of the photon and is plotted in Figure 7.3(b). Table 7.2 lists the 

materials present for conversion of the photon as well as the number of interaction 

lengths of each.

To find the total pair-production probability Ptotai upstream of the first drift 

chamber, Eq. (7.1) must be weighted by the energy distribution of the photon and 

integrated over all possible energies as in

p&GeV

Ptotai = /  ' Ppair( £ )P 7 ( £ ) d £ .  (7.3)J 0.002 GeV

P~({E) is the probability that the decay K ([  —> n +n~’y produces a photon of energy 

E. It was calculated from the photon energy spectrum, Figure 7.4, determined 

from a Geant3 simulation. From Eq. (7.3), the total probability of a photon from 

K l  —r 7 r+7 r 7  giving a Dalitz pair that could mimic the signal is 1.237 x 10 3.

The stub-finding routine requires that the each cluster of hits in a straw drift 

chamber can be associated with one partial track. An e+e_ pair produced in the 

downstream vacuum window must have the tracks open up enough to create hits in 

the first x-viewing layer of straws that are consistent with two separate clusters. A 

Geant4 simulation was performed to measure the properties of the e+ and e~ tracks 

in SDC1 and SDC2. The critical quantities are the distance between the tracks 

at the downstream end of the x-viewing straws in the first drift chamber and the 

opening angle between the tracks. The minimum separation necessary for hits in 

the third layer of x-viewing tracks to register as separate clusters is 10 mm. If the 

hits are any closer, the straws will be geometrically contiguous and only show up as 

one cluster. Similarly, if the opening angle between the tracks is less than 2.8°, the 

separation distance can not be greater than 10 mm. This assumes tha t the photon 

pair produces at the upstream end of the Kevlar/Mylar vacuum decay windows.
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(a) Opening angle versus Separation dis- (b) Separation distance at third straw
tance. layer of SDC1.

Figure 7.2: (a) The opening angle for the e+ and e~ tracks created from the pair pro
duction of a photon in K \  —> events versus the separation distance at the first
straw drift chamber, (b) Track separation distance for pair produced e+ and e” tracks 
at the front layer of SDCl.

Figure 7.2 shows the distribution of 7  —> e+e_ events for these critical quantities. 

The probability of the e+ and e~ tracks passing both requirements is 0.1075.

The effective branching ratio of for the process K \  —> 7 r+7 r~ ( 7  —> e+e~) is 

5.544 x 1 0 “9. An upper bound of 0.02 events is placed on the expected background 

from this channel using the effective branching ratio combined with the geometric 

acceptance computed with Geant3.

7.4 K°l -> f+r 7 and K°L (£+r ) ( t + r )

The leptonic decays K ([ —>• and K ([ —» e+e“ 7  have branching ratios of

3.59 x 10- 7  and 1.0 x 10”5, respectively, and can contaminate the signal in a manner 

similar to K \  —> 7 r+7 r_ 7 . In each case, the photon must convert to a Dalitz pair to 

create the required four daughter particles. In addition, the primary lepton tracks
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-HO. 0014

0 . 0 0 1 2

0 . 0 0 1

■U0.0008
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0.0004

0.5 1 1.5 2 2.5 3 3.5 4
Photon Energy (GeV), log(E)

(b) Probability of a photon undergoing pair production, calculated from 
Eq. (7.1) using the total fractional interaction length (Eq. (7.2).

Figure 7.3: Fractional Interaction lengths and pair production probabilities for photons 
in the material prior to the second layer of x-viewing straws in SDC1.
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Material Thickness
(cm)

Density
(g/cm3)

Interaction Length 
(g/cm2)

Kevlar 29 0.0432 1.44 0.06218
Mylar 0.0127 1.40 0.1778

Polyethylene 0.0254 0.94 0.2388
Helium 18.3 1.79 x l0 ~ 4 0.003276

Mylar Straw 0.003 1.40 0.0042
Copper 1 .0 x l 0 ~ 5 8.92 8.92 x l0 ~ 5

Drift Gas 
(■C F & H e )

0.4 0 . 0 0 2 0.0008

Tungsten 8 .0 x 1 0 "® 19.25 0.000154

Table 7.2: Properties of materials prior to the second layer of straws in SDC1 for use in 
pair production calculations.

>  25000

20000

10000

5000

0 1 2 3 4 5
GeV

P h o t o n  Energy

Figure 7.4: The Photon energy distribution for —> 7r+ 7r 7  in the lab frame, from
Geant3 MC.
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Decay Branch Branching
Ratio

MisID
Probability

Pair Production 
Probability

Expected
Background

K l -»■ V>+K ~l 3.59 x 10~ 7 1.09 x 10~ 3 1 . 2  x 1 0 ~ 3 < 1.812 x 1 0 ~ 4

K l  —>e+e _ 7 1 . 0  x 1 0 ~ 5 1 . 2 1  x 1 0 “ 4 1 . 2  x 1 0 ~ 3 < 5.61 x 10“ 4

K \  —* n +n~e+e~~ 2.69 x 10~ 9 1.09 x 10“ 3 < 1.13 x 10“ 3

—> e+e~e+e~ 3.56 x 10“ 8 1 . 2 1  x 1 0 ~ 4 < 1 . 6 6  x 1 0 “ 3

Table 7.3: Properties of the leptonic background decay inodes along with the expected 
number of background events for each.

must both be misidentified by the particle identification routines in order for the 

E871 trigger to accept the event into the 7 r+7 r~ data stream. In order to get an 

upper limit on the contamination of these decays, the conversion probability for a 

2 GeV photon was found from Figure 7.3(b) and combined with the probabilities 

for misidentification of the dilepton tracks as dipion tracks.

a t  —>■ 7 ) • Pmisid ’ Py->e+e- / n
background — -‘*7r7r ‘ B(K®__> 7T~*~7r—) v '-̂ /

N™ is the number of K°L —* 7 r+7 r~ events found in the normalization analysis 

(Sec. 8 .2 ). Pmisid, is the probability of misidentifying both of the primary tracks 

as pions, and P7^ e+e- is the probability of pair production forward of the second 

layer of straws in SDC1. Table 7.3 lists the misidentification and conversion proba

bilities along with the upper limit on the expected number of background decays in 

the signal region.

The background due to the four body leptonic decays is small in the 7 r+7 r-  data 

stream. In this case, the four-daughter final state is produced initially, but two of 

the four leptons must be misidentified as pions. As with K \  —> 7 r+7 r~e+e~, there is 

an enhancement to the acceptance for K \  —> /P p ~ e+e_ due to form factors which 

increase likelihood of the jJL+n~ invariant mass being above the trigger threshold. 

But, the branching ratios for the leptonic four-body decays are already smaller 

than the signal’s before the misidentification probability is even taken into account.
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Table 7.3 shows the branching ratios and the upper limit on the expected number 

of background events for these decay modes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H A PTER  8

Event Counting

8.1 O verview

To calculate the branching fraction for K ([ —> 7r+n~e+e~, it is necessary to find 

the number of events in the data sample which can be classified as the normalization 

K \  —> 7 r+7 r- , A,T7r7r and the number of events which can be classified as the signal 

K°L —> 7 r+7 r e+e , Nnnee. These sets of events are mutually exclusive. The can

didate samples are found by applying the kinematic and particle ID requirements 

described in Chapter 6  and examining the resulting distributions in invariant mass 

and transverse momentum. Each sample contains background which must be ac

counted for by matching the expected background distributions from Monte Carlo 

to the candidate distributions. The procedure used for calculating and iVT7ree 

is outlined in the following sections.

8.2 N orm alization  Sam ple

In order to measure the branching fraction of a decay mode, the total number 

of particle decays must be known, which in the case of E871 was not possible.

130
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The number of K ([  which decay in the vacuum region, N ^ ay, can be calculated 

by measuring the number of events for a decay channel whose branching ratio and 

acceptance are well known. The ideal choice for this calculation is the K £ —► 7 r+7 r~ 

mode as it has a high acceptance and a well-measured branching fraction (B (K l  —> 

7 r+7 r_) =  (1.976 ±  0.008) x 10- 3  [19]). In this case,

a tdecay _  __________ K nlT  1 \

^  "  B { K l  -  TT+O • ’ (8J)

where is the number of K \  —> 7 r+7 r_ events occuring within the vacuum tank 

fiducial volume and is the related Monte Carlo measured acceptance. The 

K°L —> 7 r+7 r events were reconstructed from the same data sample as the signal 

events and were reconstructed from pattern recognition and the FT and QT fitters. 

The same requirements were applied to the pion tracks in the K l  —»■ 7 r+7 r-  events 

as in K l  —» 7 r+7 r e+e events. Details for this are given in Chapter 6 .

The selection criteria for counting K l  —> 7r+7r” events are summarized in Ta

ble 8.1. As the electron particle identification routines were implemented in the 

E871 Monte Carlo, the electron identification requirements (Sec. 6.3) were imposed 

on the data as well. The efficiency of the electron veto reduces the background 

from K ez decays to negligible levels (on the order of 1%). The muon identification 

requirement is not included in the selection criteria because the routines for the 

muon rangefinder and the muon hodoscope are not fully implemented in the E871 

Monte Carlo. Due to this exclusion, the dominant background for the normaliza

tion sample are K ^  events which contaminate the signal region at a level of 1 0 %. 

The invariant mass for K ^  under a 7 r+7 r~ hypothesis has a kinematic endpoint of 

514 MeV/c2. This results in a broad-shaped spectra for both Mn7: and p? as shown 

in Figure 8.1.

After applying the analysis cuts as well as the transverse momentum require

ment of Pi, <  0.0001 (GeV/c ) 2  to the minimum bias data, a spectrum peaked at
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Selection Quantity Cut Value
\VX\, vertex angle - x 
\Vy\, vertex angle - y 

V2, vertex position - z 
x L  (FT) 
x L  (FT) 
x i t (QT) 
x L  (QT)

|p|, track momentum

< 0.0027 radians 
< 0 . 0 1  radians 

9.55 < V X < 20.6 meters
< 25
< 30
< 35
< 15

1.05 < \ p \ <  6.5 GeV/c

Table 8.1: Selection criteria for reconstructing normalization events. The choice of fitter 
will determine whether the FT or QT x 2  cuts will be used.

the K \  mass is formed for the invariant mass of two pions (Figure 8.2(a) for the FT 

analysis and Figure 8.3(a) for the QT analysis). This peak stands upon a slowly 

varying background of events. In order to measure and subtract this back

ground from the signal region, the 3  Monte Carlo distribution is area-normalized 

to the sideband regions of 0.475 < <  0.488 GeV and 0.505 < M n7T <  0.520

GeV where the background is dominant. The buffer regions are necessary to sepa

rate iV£ —> 7 r+7 T-  events which have been shifted out of the signal region from the 

background region. This shift is evident mainly in a low mass tail which is due to 

bremsstrahlung interactions of the pions and accounts for a reduction in the invari

ant mass. The number of background events in the signal region can be found 

from

jySideband
njSigReg. _  iirSigReg. / o

K/j, 3  K/rSideband ’ \  • /
K/j.3

where N ^ 9̂ 9' and Tsf^fM,and are the number of background events in the signal and 

sideband regions, respectively and M ^ ^ 9' and M ^ band are the number of Monte 

Carlo background events in the signal and sideband regions, respectively. The error
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Figure 8.1: Mis-identified K M 3  and K e 3  reconstruction under a 7r+ 7r~ hypothesis. The 
relative contribution of 3  to K e 3  is not represented here. The plots are area normalized 
to show the shape of the distributions.
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on the number of background events in the signal region is

2 (K T ^nzT'"4 K l T ^ V g 1” *1)2
Obkgd 3  -^Sideband j  ^j^Sidebandy^ ^j^Sidebandy* ’

(8.3)

which assumes binomial statistics and independence of errors [35]. The tables in 

Figure 8.2(b) and Figure 8.3(b) give the background subtracted results as well as 

the statistical errors on both the signal and background. The statistical error on 

the signal was found by adding in quadrature those from the total sample and from 

the background.

The sideband analysis was done for the signal region projected onto the trans

verse momentum axis as well. Events must have passed all the cuts in Table 8.1 and 

must be in the invariant mass signal region for the appropriate fitter. The sideband 

region was set to 0.00015 <  p? <  0.0006 (GeV/c)2 with a buffer region beginning 

at p^ =  0.00005 (GeV/c)2 down to the signal region (pf, < 0.0001 (GeV/c)2). Fig

ure 8.2(d) and Figure 8.3(d) show the results and errors from sideband analysis in 

the transverse momentum sector.

The number of —> 7r+7r-  events was found by averaging the results from the 

invariant mass and transverse momentum methods and taking the larger statistical 

error. The difference in the normalized backgrounds from the transverse momentum 

and mass methods was 4.4% for the FT fitter and 5.5% for the QT fitter and was used 

as a measure of the systematic error in using this background subtraction method. 

The total error was found by adding the statistical uncertainty in quadrature with 

half of the normalized background difference. Table 8.2 shows the results and errors 

associated with the FT and QT fitters.
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§10 5 o Data
nn

I 4  

10 4

M C

310

Sideband i !
Region i

Signal
Region

S ideband
Region

0.48 0.49 0.5 0.51 0.52

(a) MW7r sideband analysis.

<o

MC

■Signal
Region

S ideband
Region

0 0.1 0.2 0.3 0.4 0.5
(GeV/c) 2  x 10

0.6

N ± a
Total: 871474 ±  933

Background
low sideband: 77632 ±  758
high sideband: 77032 ±  952

average: 77332 ±  608

Signal: 794144 ±1114

Bkgd/Sig: 0.0978

(b) analysis results.

Pt N ± a
Total: 871474 ±  933

Background: 80788 ±  632

Signal: 790687 ±  1127

Bkgd/Sig: 0.1022

(c) pij, sideband analysis. (d) p^ analysis results.

Figure 8.2: Background subtraction results for the K ([  —> w+n sample analyzed with 
the FT fitter.
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Sideband
Region

(a) sideband analysis.

QT

Data

MC

■Signal
Region

S id eb an a
Region10 3

0 0.1 0.2 0.3 0.5
(GeV/c)2 x 10

0.4 0.6

N ± a
Total: 871560 ±  933

Background
low sideband: 85005 ±  686
high sideband: 83451 ±  872

average: 84228 ±  555

Signal: 787332 ±  1086

Bkgd/Sig: 0.1071

(b) Mnir analysis results.

P t N ± a
Total: 871560 ±  933

Background: 89004 ±  551

Signal: 782556 ±  1083

Bkgd/Sig: 0.1137

(c) pj* sideband analysis. (d) analysis results.

Figure 8.3: Background subtraction results for the K \  —> 7r+7r-  sample analyzed with 
the QT fitter.
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FT fitter Ns ±  aa [Vs/Ns] Nb ±  <rb [ab/N b]

Mtt,,- Region: 

pfi Region: 

Average:

794114 ±1114 [0.0014] 

790687 ±  1127 [0.0014] 

792416 ±  2063 [0.0026]

77332 ±  608 [0.0079] 

80788 ±  632 [0.0078] 

asys = i  A N b = 1728

QT fitter N s ±  crs [cTs/N s] Nb ±  ab [ab/N b]

Region:

Region:

Average:

787332 ±  1086 [0.0014] 

782556 ±  1083 [0.0014] 

784994 ±  2623 [0.0033]

84228 ±  555 [0.0066] 

89004 ±551 [0.0062] 

&sys = |A  N b = 2388

Table 8.2: K \  —> 7r+ 7r events in  the norm alization sam ple when reconstructed w ith  the  
F T  and Q T fitters.
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E ntries 107
in 14 o o o 
«12 QT

0.52 0.54 0.560.48 0.5
GeV

E ntries
(5 25

0.52 0.54 0.560.48 0.5
GeV

(a) F T  F itter (b) Q T F itter

Figure 8.4: C andidate sam ples for th e F T  and Q T fitters. None o f the events in  the  
sam ples are part o f the norm alization sam ple and have passed two and four-body selection  
requirem ents as w ell as particle ID.

8.3 K® —> 7r+7r- e+e~ Sam ple

Figure 8.4 shows the K \  —> 7r+7r_e+e~ candidate event samples as functions 

of the four-body invariant mass in the region 0.475 >  M ^ ee > 0.575 GeV. These 

samples include the pion track cuts, shown in Tables 6.2 and 6.3, and the e+/e~ 

partial track cuts, shown in Table 6.4, along with the particle identification require

ments described in Chapter 6, Sec. 6.3. The four-body transverse momentum of 

each event was required to be less than 10 MeV/c. To ensure that the K £ —> n +n~ 

normalization and —> 7r+7r~e+e_ signal samples were mutually exclusive, any

events which were accepted into the normalization signal region described in the 

previous section were removed from the K £ —> 7r+7r_e+e_ sample. The remaining 

events form the candidate event samples that contain 113 and 107 events for the 

FT and QT fitters, respectively.

To extract the number of K £ —> 7r+7r~e+e“ events in the candidate sample, the
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background in the signal region, 0.4905 >  M ^ee > 0.505 GeV, must be measured. 

The dominant background is expected to be composed of pileup events in which 

two uncorrelated K \  produce daughters that axe accepted in the spectrometer, as 

described in Sec. 7.2. The invariant mass spectrum for the pileup background was 

simulated using the E871 Monte Carlo code for uncorrelated K \  in the decay tank, 

but the sample contains 125 events. Due to the low statistics, the histogram match

ing method used with the normalization analysis was not practical. Instead, three 

sets of functions were used to fit the background sample. Each set contained a Gaus

sian distribution to match the peaked structure and either a Gaussian, a constant, 

or a second order polynomial to match the diffuse background under the peak:

At '2 Ao l(x~»2\2
B q =  7= e~ *( } + ----- 7=e a( 'a } 8.4

9 2?r
A i  1 /  M l \ 2

B c = ---- ^ = e ~ ( -i } +  C  (8.5)
criV27r

A 1 1 \2
Bp = ---- l = e-3(— ) + (P0 + PlX + P2x  2 ) .  ( 8 . 6 )

<Ti v 27T

To remove any bias in the fit introduced by the bin choice for the histogram, bin 

widths of 4 MeV, 5 MeV, and 6 MeV as well as two different bin starting position. 

Two sets of histograms were constructed, one with a starting position of 0.475

GeV and a second with the starting position shifted by half of a binwidth. The

18 fits to the Monte Carlo background sample from pileup decays are shown in 

Figures 8.5 and 8.6.

The FT and QT candidate event samples shown in Figure 8.4 were fit to a 

distribution containing a Gaussian for the K ([ —> 7r+7r“ e+e-  peak and one of the 

three background functions. The distribution has the form

A ■ 1 /x~lisiq\2
Si ~ -------- £ £ = e  5 (  } + J 3 i ,  ( 8 . 7 )

®sig V 27T

where i = g, c,p. Fits were performed for bin widths of 4  MeV, 5 MeV, and 6 MeV 

and for shifted and unshifted bin starting positions. The mean, A sig, and stan-
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Figure 8.5: The pileup event sample from Monte Carlo plotted against four-body invari
ant mass was fit using three functions and three separate bin widths. The first bin in 
each histogram starts at 0.475 GeV. The plots in the first, second and third columns use 
the fit function Bg, Bc, Bp respectively, described in Equations (8.4), (8.5) and (8 .6 ). 
The bin width for each plot is shown along the x-axis.
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Figure 8 .6 : The pileup event sample from Monte Carlo plotted against four-body invari
ant mass was fit using three functions and three separate bin widths. The first bin in 
each histogram is shifted by one half of a bin compared to those from Figure 8.5. The 
plots in the first, second and third columns use the fit function Bg, Bc, Bp respectively, 
described in Equations (8.4), (8.5) and (8 .6 ). The bin width for each plot is shown along 
the a:-axis.
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dard deviation, aSig were determined for each fitter from the accepted Monte Carlo 

four-body invariant mass distributions shown in Figure 8.7, and were fixed in all 

fits. The average of the phenomenological and yPT  model fits was used. The 

mean, Ai, and standard deviation, cy for the background Gaussians determined in 

Figures 8.5 and 8.6 were used for the corresponding bin width and shift in the can

didate sample fits, and were held fixed. The amplitude of the signal and background 

Gaussians as well as all parameters in the constant and the parabolic diffuse back

ground functions were allowed to vary. Figures 8.8 and 8.9 and Figures 8.10 and 8.11 

show the 18 fits to the FT and QT candidate samples, respectively.

The number of pileup events in the signal region for each fit was found by 

integrating the background function over the region 0.4905 > M nTee > 0.505. The 

results are shown in Tables 8.3 and 8.4. The average over all fit types and binning 

strategies was taken as the total number of background events in each of the FT 

and QT signal region:

F T :  N ^ f e9round =  13.32 ±3.65(sfaf) ± 3 .1 8 (sys) (8.8)

Q T : N ll fe9round =  14.05 ±  3.74(stat) ±  2.59(sys) . (8.9)

The systematic error in the background arises from two sources, the bin choice and 

the fit. For the bin choice, the average of the results for one bin width and shift is 

used, and then the maximum deviation above and below the mean determined. The 

systematic error on the bin is defined as half of the difference between the high and 

low deviations. The unshifted and shifted histograms were examined separately and 

then averaged. The analogous method was used for the systematic fitting error. The 

background results were averaged over the bin widths and half of the difference in the 

deviations was determined as the systematic error in the fit. The total systematic 

error on the background was the RMS of the fitting and binning systematics.

For the FT fitter, 41 of 113 candidate events fall in the invariant mass signal
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Figure 8.7: Gaussian fits to the K°  —> 7r+ 7r~e+e_ Monte Carlo data for each fitter and 
model are shown. The average of the mean and standard deviation for each fitter type, 
FT and QT, were used in the fits to the candidate events samples in order to model the 
background in the signal region.
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Figure 8 .8 : The candidate event sample for the FT fitter plotted against four-body 
invariant mass was fit to the distribution defined in Eq. (8.7). The first bin in each plot 
starts at 0.475 GeV. The plots in the first, second and third columns use the function Sg, 
Sc, Sp respectively. The mean and standard deviation were fixed for the signal Gaussian 
and the peaked-background Gaussian. The bin width for each plot is shown along the 
a;-axis.
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Figure 8.9: The candidate event sample for the FT fitter plotted against four-body 
invariant mass was fit to the distribution defined Eq. (8.7). The first bin in each 
plot is shifted by one half of a bin compared to those from Figure 8 .8 . The plots in 
the first,second and third columns use the function Sg, Sc, Sp respectively. The mean 
and standard deviation were fixed for the signal Gaussian and the peaked-background 
Gaussian. The bin width for each plot is shown along the a;-axis.
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Figure 8.10: The candidate event sample for the QT fitter plotted against four-body 
invariant mass was fit to the distribution defined in Eq. (8.7). The first bin in each plot 
starts at 0.475 GeV. The plots in the first, second and third columns use the function Sg, 
Sc, Sp respectively. The mean and standard deviation were fixed for the signal Gaussian 
and the peaked-background Gaussian. The bin width for each plot is shown along the 
a;-axis.
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Figure 8.11: The candidate event sample for the QT fitter plotted against four-body 
invariant mass was fit to the distribution defined in Eq. (8.7). The first bin in each 
plot is shifted by one half of a bin compared to those from Figure 8.10. The plots in 
the first,second and third columns use the function Sg, Sc. Sp respectively. The mean 
and standard deviation were fixed for the signal Gaussian and the peaked-background 
Gaussian. The bin width for each plot is shown along the x-axis.
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Unshifted histograms FT fitter
Fitter types

Bin Width 59 sp Average over fits
4 MeV 16.6 14.7 15.0 15.5
5 MeV 12.1 12.5 11.2 11.9
6 MeV 13.4 12.7 13.3 13.1

Average over
bin widths 14.0 13.3 13.2 13.5

Shifted histograms FT fitter
Fitter types

Bin Width Sg 5C sp Average over fits
4 MeV 11.1 8.8 11.0 10.3
5 MeV 11.6 11.0 11.7 11.4
6 MeV 18.2 18.2 16.7 17.7

Average over
bin widths 13.7 12.7 13.1

Average Number
of Background events: 13.3 ±  7A{stat) ±  3.2(sys)

Table 8.3: The number of background events in the K ([  —> 7r+ 7r e+ e FT candidate 
event sample extracted using the fits of Figures 8 . 8  and 8.9.
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Unshifted histograms QT fitter
Fitter types

Bin Width sa -5c sp Average over fits
4 MeV 15.8 15.8 16.1 15.9
5 MeV 13.5 14.4 13.9 13.9
6 MeV 14.3 13.9 16.7 15.0

Average over
bin widths 14.5 14.7 15.6

Shifted histograms QT fitter
Fitter types

Bin Width s9 Sc sP Average over fits
4 MeV 11.3 10.1 13.6 11.7
5 MeV 11.4 11.0 13.5 12.0
6 MeV 16.1 16.3 15.0 15.8

Average over
bin widths 12.9 12.5 14.1

Average Number
of Background events: 14.1 ±  6.6(stat) ±  2.6(sys)

Table 8.4: The number of background events in the K \  —> 7r+7r e+e QT candidate 
event sample extracted using the fits of Figures 8.10 and 8.11.
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region while 30 of 103 events are in the same region for the QT fitter. These results 

along with the total number of background events calculated above allow us to 

calculate the number of K £ —>• 7r+ 7r- e + e~  signal events to be

F T  : =  27.7 ±  7A(stat) (8.10)

Q T  : =  16.0 ±  6.6(stat) . (8.11)

One possible reason for the large difference between the results of the FT and QT 

fitters could be from the pileup background fits. The Monte Carlo sample used for 

the shape of the background was produced using the FT fitter, primarily because 

of computational restrictions. The 125 events in the pileup background sample was 

generated using at least half of an 8-node, dual processing cluster continuously for

over eight weeks. As seen in Figures 8.10 and 8.11, the background is much more

diffuse than its FT counterpart.
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CHAPTER 9

Results

9.1 B ranching Fraction M easurem ent

The number of normalization events, their Monte Carlo measured acceptance 

in the detector, and the world average of the K £ —> n +n~ branching fraction are 

used to measure the total number of K \  that decay in the fiducial volume of the 

E871 vacuum tank. The branching fraction of the K {)L —> 7r+7r_e+e_ decay channel is 

calculated as the ratio of the number of events observed, corrected by its acceptance 

in the E871 detector, and the total number of K \  decaying in the vacuum tank as,

B (K l T+n~e+e~) = ( T p )  ( A )
\  7T7r /  V ^-T T T ree /  \  / -'7T7ree /  \  J - ' T r n e e  /

(9.1)

where Cabs and £ 7rdem:y are the likelihoods of a pion to not be absorbed in the detector 

through hadronic interactions and not to decay upstream of the trigger scintillating 

counters, respectively, and R ef f  is

f L l  \  /  f L3 \  /  f trk  \  /  f vtx  \  /  /  f e—id
C 7777 \ I ^"7777 \ I t 7T7r \ I 7777 \  I 7777 \  I 7777D  / ^7777 \  I 7777 \  /  ^7777 1 I ^7777 I /  ^7777 \  /  ^7777 I / A  ‘'A^ / /  =  ( J ( ^ 3 -  1 I J ( ) I I I — d J • I9-2)

\  7777ee/ \  7777ee/ \ c 7777ee/ \ c 7777ee/ \M 777ee/ \ c 7777ee/

The ratio i?e/ /  includes the efficiencies for the pion tracks in the normalization
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and signal samples to pass the Level 1 and Level 3 triggers, the track and vertex re

construction, and the muon and electron identification requirements. As the primary 

pions have similar kinematic profiles with the same set of reconstruction selection 

criteria as applied to the samples, all the ratios in R ef f  except one are treated as 

unity. Since the muon identification routines were used to eliminate muon tracks in 

the K \  —> 7r+7r“ e+e_ sample but not in the K \  —>■ 7t+tt~ sample (Chapter 8), the 

efficiency for a pion to be identified as a muon and removed from the sample must 

be taken into account. The efficiency ratio term then reduces to

<9'3>

The muon identification efficiency was measured using the K ^  decays in the lower 

sideband of the normalization sample. The events in this set were subjected to the 

two-body track requirements and electron identification, and were then submitted to 

the muon identification routines. K ([ —> events having two tracks identified

as muons were assumed to have one of the tracks misidentified. Of the 76,205 

events, 4176 were identified as K \  —> p +/i_ which gives an efficiency in the muon 

identification routines of 0.945 ±  0.015(stat). This result agrees with those from 

the thesis of Ambrose [35].

If the probabilities for a pion track to be lost due to decay or absorption in the 

spectrometer are represented by pmdecay and P abs, then the likelihoods for the tracks 

to survive the reconstruction process without undergoing decay or being absorbed 

due to hadronic interactions are £ Kdecay =  l  — p ^ dccav ancj £ abs =  l  — p ab-\ Both of 

these processes are dependent on the momentum of the track but are independent 

of the origin of the pion, whether it be from K ([ —> 7T+7r- e+e~ or from K ([  —>■ 7r+7r- . 

As shown in Figures 6.4 and 6.5, the momentum distributions for the pions in 

K l —>• 7r+7r and K°L —»■ 7r+7T e+e decays accepted by the spectrometer have the 

same shape and are peaked around 2 GeV/c. Due to this similarity, the likelihood
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FT fitter QT fitter
27.68 ±  7.37 15.95 ±  6.64

N™ 792416 ±  2063 784994 ±  2623
&~id 0.945 ±  0.015 0.945 ±  0.015

B (K°l 7T+7T-) (1.976 ±  0.008) x 10~3 (1.976 ±  0.008) x 1(T3
A-7r7r/-A-7i

phenomenc 
mode]

XPT model 31.60 ±0 .34  31.68 ±0 .34
PhenZodne°i10SiCal H5.75 ±  1.00 107.39 ±  0.92

Table 9.1: The quantities used in the branching fraction calculations and their statistical 
uncertainty.

ratios of Eq. (9.1) are taken to be one.

The values used in the branching fraction calculations with their statistical 

errors are summarized in Table 9.1. From Eq. (9.1), the branching fraction for 

K l  —> 7r+7r e+e was determined to be

F T  : B (K l —>■ 7r+7r_ e+e_ ) =  (8.5 ±  2.3(stat) ±  l.O(sys)) x 10-6 (9.4)

Q T : B (K l —> 7r+7r_e+e_) =  (4.6 ±  1.9(sfaf) ± 0 .8 (sys)) x 1CT6 (9-5)

using the acceptance ratio from the phenomenological model and

F T  : B(K*l —»• 7r+7r~e+e~) =  (2.3 ±  0.6(stat) ±  0.3(sys)) x 10-6 (9.6)

Q T  : B (K l 7r+ir~e+e~) =  (1.4 ±  0.6(stat) ±  0.2(st/s)) x 10-6 (9.7)

when the acceptance ratio from the chiral perturbation model is used. The statistical 

errors were calculated using the sum of the squares of the relative uncertainties 

in Table 9.1. The error from the number of —► 7r+7r_e+e_ events observed

dominates these results.

The systematic uncertainty in the branching fraction is due to two sources: the 

acceptance ratio / 7r7r , and the fit and bin selection used in the the background
7T-7T7ree

extraction from the K l  — 7r+7r~e+e_ candidate event sample. The systematic error 

in the acceptance ratio can be decomposed into the geometric and reconstruction
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efficiency uncertainty in the acceptance ratio of the primary pion tracks and the 

uncertainty associated with the kinematic reconstruction of the lepton pair. The 

pion track uncertainty was measured to be 0.97% for the FT fitter and 0.91% for 

the QT fitter. These errors were taken from the K \  —» /i+/i” analysis in [35] in 

which K® —> 7r+7r-  events were used as the normalization. In the partial track 

reconstruction routines, it is assumed that the leptons in the pair shares the total 

momentum available equally. In order to measure the systematic effect of this choice, 

the K'l —>7r+7r- e+e-  Monte Carlo was reanalyzed using many different momentum 

sharing hypotheses to a maximum of ±20% asymmetry to determine the effect on the 

acceptance. The uncertainty in the four-body track cuts was determined by varying 

the cut by ±10% to measure the effect on the acceptance. The systematic errors for 

each cut were added in quadrature to the error from e+e~ momentum sharing error 

and determined to be 2.93% (phenomenological model) and 3.59% (yPT model) for 

the FT fitter while the QT fitter had errors of 2.85% (phenomenological model) and 

3.43% (yPT model). The systematic uncertainty in Nnree is due to the method of 

extracting the background and was determined in Chapter 8 to be 11.50% for the 

FT fitter and 16.26% for the QT fitter. It is these last effects that dominate the 

systematic uncertainty in the branching fractions.

Both the FT and QT fitters were used to analyze the K ([ —► n +n~e+e~ event 

sample in order to provide a consistency check on the final result. However, the 

pileup background Monte Carlo was not completed for the QT fitter. The shape of 

the background determined using the FT fitter was assumed to be the same shape as 

the background which would be determined using the QT fitter. While this provided 

a method for extracting a background estimate for the QT data, the validity of such 

an assumption remains in question. Thus, for this work, the branching fraction
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constructed using the FT fitter will be taken as the final result:

B(K® —> 7r+7r- e+e- ) =  (8.5 ±  2.3(stat) ±  l.O(sys)) x 10~6 (9.8)

for the phenomenological model and

B (K ° —>■ 7r+7r_e+e_ ) =  (2.3 ±  0.6(stat) ±  0.3(sys)) x 10~6 (9.9)

for the xP T  model.

9.2 C onclusions

In the signal region 0.4905 < M ^ ee < 0.505 GeV, 27.7 ±  7.4 —> ir+Tr~e+e~

signal events were obtained with a background of 13.3 ±  3.7 events. The signal 

events were contained in a peak consistent with the characteristics of a Gaussian fit 

determined through Monte Carlo simulations. The dipion invariant mass for each 

event was in the region 0.475 GeV < M n7T < 0.497 GeV.

The branching fractions, given in Equations (9.8) and (9.9), are model-dependent 

The phenomenological model result is in disagreement with the current world aver

age, B (K l —► 7r+7r~e+e~) =  (3.11 ±  0.19) x 10-7 [19]. The world average comprises 

a sample of 6175 K £ —> 7r+7r~e+e_ events observed in the KTeV and NA48 ex

periments. In these, the acceptances in the branching fraction measurements were 

calculated using the phenomenological model. The world average agrees with the 

theoretically predicted branching fraction and the theoretically predicted dipion in

variant mass Mttt,. spectrum of Sehgal et al. [4], [3]. The invariant mass region 

encompassed by this sample is determined from the experimental acceptance of 

KTeV and NA48, namely, 0.279 GeV < < 0.475 GeV.

The phenomenological result presented in this work provides the first measure

ment of the branching fraction for events with > 0.475 GeV but is inconsistent
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with the predictions of Sehgal et al. [4], [3] and the world average. In order to 

remove the discrepancy, the model would have to be modified such that the decay 

rate for the phase space region above 0.475 GeV is increased while leaving the shape 

of the differential decay rate d^  in the region below unchanged. Such modification 

would result in the acceptance for K \  —> n +ir~e+e~ events in E871 to increase, while 

decreasing the acceptance in the region accessible to KTeV and NA48. The overall 

effect would then lower the branching fraction measured in E871 and increase that 

from KTeV and NA48.

The branching fraction presented here using the chiral perturbation model is the 

first experimentally determined for K \  —» 7r+7r“ e+e_ . The result is inconsistent with 

the world average, but as noted earlier, the world average is determined by including 

the phenomenological model. In order for direct comparisons to the results of KTeV 

and NA48 to be made, the branching fractions for those experiments would need to 

be determined using the acceptance calculated in yPT. This can be estimated by 

assuming that a change in the model would not change the geometric acceptance, but 

would change the number of K £ that decay in the accepted phase space region. In 

the phenomenological model, 84.1% of the phase space occurs in the region accepted 

by KTeV and NA48 while in the xP T  model used in this work, 47.3% of the phase 

space occurs in that same region. The world average branching fraction in the yPT  

model would then be

B xPt (K°l -» 7r+7r-e+e-) =  B ^ ( K ° L -»• 7r+7r“ e+e“ ) (9-10)

B xpT(K <[ -*• 7r+7r-e+e-) =  5.53 x 1(T7

The xPT  result from this work, (2.3 ±  0.6(siat) ±  0.3(sys)) x 10-6 , is 2.6<r away 

from the world average estimate.
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