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ABSTRACT

The internal magnetic field distributions for a type II superconductor (a single crystal 
Y B a zC u zO is)  with large normal inclusions (Y^BaCuO^) are studied. A model based on 
the London Equations has been successfully developed and applied to the interpretation of 
the //SR data on this system. In our model, these inclusions are assumed to be cylindrical in 
shape and infinite in length. Therefore, this model should be especially appropriate for the 
prediction of field distributions in single crystal superconductors in which columnar defects 
have been purposely introduced to enhance pinning.

/iSR experiments on a large single crystal sample of YBa^Cu^Oj^s with non-conducting 
YzBaCuOs inclusions show some interesting characteristics, especially the magnetic field 
distribution in the inclusion regions. In our model, the difference between the field value 
in the inclusions and the value at the saddle point is sensitive to the penetration depth. 
Comparing the calculated to observed field differences provides a new method of determining 
the penetration depth.

xiii
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Chapter 1

Introduction

The magnetic flux structures in superconductors show interesting properties in the pres­

ence of an applied magnetic field. In 1933 Meissner and Ochsenfeld [l]observed complete 

expulsion of magnetic field from a superconducting material placed in a weak magnetic 

field, now known as the Meissner effect. However this complete flux expulsion only occurs 

when the magnetic fields axe weak and/or the demagnetizing effects are small. When these 

conditions are not met, for example when the applied magnetic field is strong enough or the 

demagnetization effects cannot be ignored such as for a thin superconducting disk placed 

perpendicular to the applied magnetic field, then the magnetic flux penetrates part of the 

superconducting material, and as a result, the material divides into normal and supercon­

ducting domains.

The domain structures in superconductors in the presence of applied magnetic fields 

possess interesting properties. There is an energy associated with the interface between the 

normal and superconducting regions that is called the wall energy. The wall energy can 

be either positive or negative. When the wall energy is positive, the amount of quantum 

flux, #o =  =  2.07 x 10- 7Gcm2, contained in a single domain can be greater than one.

This type of material is called type I superconductor. The domain structure of type I

2
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CHAPTER 1. INTRODUCTION  3

superconductor is referred to as intermediate state [2]. When the wall energy is negative, 

the magnetic flux can only penetrate the superconducting material in the form of a single 

flux quanta <f>o- This type of superconducting material is called a type II superconductor. 

The domain structure of type II superconductors is referred as the mixed state [3, 4],[5].

Muons were used as probes of magnetism in matter as early as 1944 [6]. However, it 

was the discovery of the violation of parity symmetry in Kaon decay by Lee and Yang in 

1956 [7] that made the properties of muons clearly understood, and opened the way for 

widely using muon as probes of matter. The parity nonconservation decay of a 7r+ (tt~) 

produces a ju+ (/i“ ) which has a large asymmetry when it decays. The e+ (e~) is emitted 

preferentially along (opposite to) the muon spin direction. The experiments of Garwin et al. 

[8], Friedman and Telegdi [9], and Wu et al. [10] not only confirmed Lee and Yang’s theory, 

but also suggested that the asymmetry of positive /i+ decays could be used as a probe for 

the magnetism of matter.

Negative muons are rarely used, because after being stopped in a sample, they normally 

undergo nuclear capture from a low-lying orbital of muonic atoms before they have a chance 

to decay.

The modern /iSR technique - Moun Spin Rotation (pSR also stands for Muon Spin 

Relaxation and Resonance, but here we axe only interested in Moun Spin Rotation) most 

commonly uses a transverse magnetic field (TF), applied perpendicular to the muon po­

larization; The muon spins then precess about the internal magnetic field of the magnetic 

material. TF-/iSR has been widely used to study the magnetic flux structures of High 

Temperature Superconductors among other materials. We use /iSR technique to study the 

temperature dependence of London penetration depth of the type II high Tc superconduct­
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CHAPTER 1. INTRODUCTION  4

ing material.

The temperature dependence of London penetration depth is of particular interest since 

at low temperature it reflects changes in the superfluid density which is responsible for the 

screening of electric magnetic field. The energy gap in the excitation spectrum of a BCS 

paring state shows exponential temperature dependence at low temperature. In s-wave BCS 

paring the deviation of London penetration depth from its zero temperature value follows 

[12] A(T) — A(0) ~  (^■)1̂ Iexp(—1.76Tc/T). By studying the temperature dependence of 

London penetration depth we can study the deviation from BCS s-wave paring, therefore, 

the measurement of temperature dependence of magnetic penetration depth provide an 

experimental method to study the unconventional BCS paring state.

Microwave techniques have been commonly used for measuring of the temperature de­

pendence of the penetration depth.

Unlike other techniques, the /iSR provides a microscopic measure of the flux lines dy­

namic and is a powerful tool to study the magnetic field properties of superconducting 

material. The study in this paper provides a new method to determine the temperature 

dependence of the London penetration depth of a type II superconducting material with 

nonconducting inclusions using n SR techniques.

It has become possible to grow large single crystals of YBa^Cu^O 7 - 5  with Y^BaCuOs 

inclusions [11]. These crystals have strong pinning, can carry large currents, trap large fields 

and provide moderately strong levitation forces on magnets. Because of these properties 

this material is thought to be advantageous for a variety of practical applications[13, 15].

The included non-superconducting material, “green-phase” Y^BaCuOs, is needed to 

provide a source of Y  as the crystal grows. The internal magnetic fields in pure Y^BaCuO^
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CHAPTER 1. INTRODUCTION  5

have been observed in the zero-field /xSR study of Weidinger et a/. [16]. These authors 

observe at least 5 different fields and an ordering temperature of about 15 K. Mossbauer 

effect studies[17] have observed this material to order magnetically at about 15.5(3) K. 

Neutron scattering [18] has found this ordering to be 3D anti-ferromagnetic and to occur at 

16.2(5) K.

Muon spin rotation, pSR, has been used to measure internal magnetic field probability 

distributions, n(h), for a large single crystal of YBclzCuzO ts  with non-superconducting 

inclusions. For pure YBa^CuzOi-s, when the applied field is parallel to the c axis of 

the crystal, this would be expected to have a single peak[22], below the applied field, 

corresponding to the saddle point of the magnetic field spatial distribution. However, our 

YBCO sample showed two peaks: a left peak, which is below the applied field and at the 

saddle point field as expected for a pure YBCO sample; and a right peak, which is above 

the applied field, see Fig.1.1. We argue that the right peak reflects the magnetic field 

distribution in the non-conducting Y^BaCuOs inclusions. The separation between the two 

peaks goes to zero near the transition temperature(90 K), and reaches 50 Gauss at 18 K. 

Below 18 K the green phase material undergoes a transition to an antiferromagnetic state. 

In these now antiferromagnetic inclusions randomly directed large fields take the muon 

precession signal out of our frequency window. The data shown in Fig.1.1 indicate that the 

volume of the inclusions could be up to 20 percent of the total volume of the sample.

In the this study we seek to characterize the microscopic internal magnetic field distri­

butions in these materials, including the effects of large inclusions. When inclusions are not 

present, it has been found that the London equation is a good approximation in describing 

magnetic fields and magnetic properties of type II superconducting materials for applied
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Figure 1.1: Fourier transformations of ûSR data on a single crystal YBa^Cu^Ojs-  The applied 
field was 100 Gauss (oj = 7^h), and was parallel to the crystal c axis. The left peak corresponds 
to the saddle point of the magnetic field distribution. The right peak corresponds to the internal 
magnetic distribution inside non-conducting inclusions.

fields in the range of HCl < H  < HC2, where Hc 1 and Hc2 are lower and higher critical field 

of type II superconducting material, respectively. We have developed a model based on 

the London equations with the following assumptions: 1). the ” green phase” inclusions are 

cylindrical and infinite in length; 2). they axe non-conducting; 3). they do not change the 

overall vortex lattices structure so that the near neighbors are still hexagonally arranged; 

4). for a given temperature, the more distant vortices contribute a constant average field
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CHAPTER 1. INTRODUCTION  7

within the hexagonal array, and this filed is ignored in the model.

Assumptions 1 and 2 are basic assumptions of the model to be discussed, and are generic. 

Assumption 3 and 4, as one can see in chapter 6 where the model is compared with /iSR 

experiment, are good approximations for the lower applied magnetic field case. When the 

applied field is too high, for example when vortex spacing is less than the penetration depth, 

assumptions 3 and 4 may need to be modified. Also, since inclusions provide strong pinning, 

possible temperature modification of the vortex density is not considered in our model.

In our model the separation between the two peaks in Fig.1.1 depends on the assumed 

inclusion radius and penetration depth A. We can independently determine A just below 

18 K where the second peak disappears, and then use this value at 18 K to determine the 

inclusion size. Then, with this now known inclusion radius we can determine the tempera­

ture dependence of the penetration depth from the variation of the separation between the 

two peaks. This provides a new method to measure the temperature dependence of the 

penetration depth[14].

This paper is organized as follows. In Chapter 2, we briefly review /iSR techniques and 

our experimental set up for measuring the internal magnetic field distribution. In chapter 3, 

we briefly discuss the Intermediate State, Mixed State and the London Model. In chapter 

4, we calculate the magnetic field and energy of an isolated cylindrical non-conducting 

inclusion with a flux vortex trapped in its center, and compare with that of a free isolated 

vortex line. Interaction between a cylindrical inclusion and a vortex line is also obtained. In 

Chapter 5, we consider the case that is closer to the experimental environment, a cylindrical 

inclusion surrounded by hexagonally placed superconducting vortices. The model and pSR 

experimental data will be compared in Chapter 6.
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Chapter 2

f iSR Experiment

2.1 fi S R  tech n iqu es

2.1.1 Muon production

In pSR experiments we use muons to probe the magnetic properties of matter. This requires 

that muons stop in the sample. Muons produced from various high-energy process and 

elementary particle decays normally have much higher energy, which prevents them from 

stopping in a sample of normal thickness used in the fiSR experiments. In order for muons 

to stop in the sample of thickness of a few mm, the incoming jj+ beam must have a relatively 

low energy. These low energy p are available from the two-body decay of charged pions 

stopped near the surface of the pion production target -  these muons are called surface 

muons.

In the two-body pions decay, a pion decays into a muon and a neutrino.

7T+ =  yU+ +

(2 . 1)
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CHAPTER 2. /iSR EXPERIMENT  9

Where is the neutrino associated with /i+ , and is the antineutrino associated with

/r .

A muon produced in the rest frame of the pion has a kinetic energy of 4.119 MeV and 

a momentum of 29.79 MeV/c. This low kinetic energy allows muon to have a short range, 

and thus to stop in thin samples.

Since a ir~ stopping in the production target normally undergoes nuclear capture from 

low-lying orbital of a pionic atom before it has chance to decay, a surface beam of is not 

practical. Therefore, most of the muon beams used in /jSR experiments today are produced 

by 7T+ decay.

2.1.2 Spin Polarization of Muon

We know that in nature the neutrino has only negative helicity in which its spin is antipar­

allel to its momentum, and the antineutrino is only produced with positive helicity in which 

its spin is parallel to its momentum. Thus, the conversation of both linear and angular 

momentum requires that the /i+ have negative helicity. Therefore, in the rest frame of pion, 

the fj,+ emitted from tt+ decay is 100 percent spin polarized opposite to the direction of its 

momentum. This gives //SR the great advantage of using a perfectly polarized probe.

2.1.3 Muon Decay

In its rest frame, a muon has a life-time of 2.19 jj,s. A positive muon decays into a positron, 

a neutrino and an antineutrino:

= e+ +  ve + Uf,; (2.2)
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CHAPTER 2. fj,SR EXPERIMENT 10

where ve is the neutrino associated with the electron and is the antineutrino associated 

with the muon.

Due to parity non-conversation in weak interactions, the positron produced in 3 body

fore, by recording the angular distribution of emitted positrons, one can read out the spin 

polarization of muons at the moment of decay. This property is critically important to /zSR 

experiments.

The probability distribution P (9) of the muon decay depends on the energy of positron 

x  =  (Emax=52.83 MeV is the maximum possible total energy of the positron,and Ee 

is the positron energy), as well as the angle 6  between the positron emitting direction and 

muon spin direction [31].

muon decay is emitted with an asymmetric angular distribution relative to /j +  spin. There-

dP(9) = i£(:r)[l +  a(x)cos9]dxd(cos9). (2.3)

where a(x) is the asymmetry factor:

(2.4)

and E(x) = 2x2 (3 — 2x) is normalized e+ or e energy spectrum.

2.1.4 Muon Rotation

The muon is a fermion with spin quantum number equal to It has a magnetic moment

of
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CHAPTER 2. /iSR EXPERIMENT 11

pf)
Hn =  1.001165932-------. (2.5)

C

where m fl is the mass of Muon.

In presence of a magnetic field, muons will experience a torque

T = j l x H .  (2.6)

Since the torque is equal to the time rate of change of the muon’s spin angular momentum

? = f ’ <2-7>

we have

f = * x *  <2-8>

which means that the muon’s spin will rotate(precess) about the direction of the local 

magnetic field H , see Fig.2.1.
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CHAPTER 2. fiSR EXPERIMENT 12

B

Figure 2.1: Muon spin rotate about the direction of the external magnetic field.

2.1.5 Time Differential juSR

Ideally, in a /iSR experiment, one wants to count one yu+ decay event at a time. A time 

to digital converter(TDC) is used to digitize the time difference between a ju+ stop and 

the detection of the decay e+. Events are only recorded if the ji+ stop is not preceded or 

followed by a second fi+ within 10 pS, and if only one e+ occurs in the time following the 

fi+ stop.

Fig.2.2 shows a typical experimental set up in a TD-/iSR. For simplicity, the Helmholtz 

coils to produce external magnetic field axe not shown. In Fig. 2.2, B is the backward 

positron detector and F is the forward detector. S is a scope scintillator, and V is a veto
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Target
muon spm

Figure 2.2: //SR experimental setup

scintillator. S and V are placed very close to the sample. When a //+ traverses S, a signal 

will be generated. If the //+ does not stop in the sample, a second signal will be generated 

shortly in V when it traverses the veto scintillator, the event then will be discarded. If //+ 

does stop in the sample, the signal from S will then start the TDC.

2.1.6 Time-Differential //SR in Transverse Field

The most commonly used time-differential //SR is the transverse field(TF) //SR. In TF-//SR, 

a magnetic filed H  is applied perpendicular (transverse) to the initial muon spin polarization, 

causing Larmor precession of the muon spin about the direction of the applied field H.  There 

may be as many as six positron detectors arranged around the sample. Defined to their 

position relative to the incoming muon beam, they are called Forward(F), Backward(B), 

Up(U), Down(D), Left(L), and Right(R). Depending on the orientation of the applied field 

and //+ polarization, at least two of those six detectors will record muon precession frequency 

signals,
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w =  (2 .9)

where ~  2 n ■ 1 3 5 . 5 is the gyromagnetic ratio of muon spin, and h is the local 

magnetic field where muon stops. Since the muon precession frequence is directly observable 

in a n SR experiment,the local magnetic field where muon stops can be determined.

000933 T= 90 K

1200

1000

800

^  600

400

200

Figure 2.3: Real time spectrum from a TF-//SR experiment.

Fig.2.3 shows the histogram from a TF-yuSR experiment. The muon lifetime is reflected 

in the overall exponential decay. The oscillation superimposed on the exponential curve is 

produced by the Larmor precession of the //+ spin about the local magnetic field h.

Fig.2.4 shows the asymmetry spectrum from the same set of data as in Fig.2.3. The 

background exponential decay has been subtracted.
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000933 T= 90 K

T i m e  ( / / . s e c )

Figure 2.4: An asymmetry spectrum of Fig.2.3.

Often one needs to analyze the //SR data in the frequency domain rather than in the 

time domain. A Fourier Transform is employed for this purpose. Fig.2.5 shows the Fourier 

Transform(FT) of the //SR data as shown in real time space in Fig.2.4. Both real part(top) 

and imaginary part(bottom) of the Fourier amplitude axe shown in Fig.2.5.
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Figure 2.5: Complex Fourier transform of the real time pSR data in fig. 2.4.

2.2 E xp erim en ta l

The experiments were carried out at the TRIUMF facility in Vancouver, BC, using the 

M20 beam line of polarized muons. The muons were spin rotated and we measured their 

polarization to be approximately 14 degrees from vertical; that is they were spin-rotated by 

about 76 degrees.

The single crystal Y B a 2 C u ^ O js  sample with non-conducting YzBaCuO*, inclusions 

was provided by M. Strasik of Boeing. It was mounted with its c axis parallel to the 

incoming beam in a horizontal cryostat which used flowing He vapor to provide cooling. 

Temperature was monitored by means of a LakeShore GaAlAs Diode near the sample and 

was accurate to less than 0.1 K.

A pair of Helmholtz coils provide up to 5 kG magnetic filed with its axis parallel to the
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incoming beam and crystal c axis. The experiments that are reported here were carried 

out at approximately 100 Gauss. The fields were measured by a Hall probe, but ultimately 

were determined by the yuSR itself. That is, above Tc the precession frequency was used. 

At the field used the atomic position scale, which determines where the muon stops, is 

much smaller than the penetration depth, vortex spacing, or inclusion size. Thus, one may 

assume the muon to sample the internal fields uniformly.

Since the sample was a thin plate placed perpendicular to the applied field, the de­

magnetization coefficient is near 1.0 [19]. This means that the applied magnetic field will 

penetrate the sample even if it is much lower than the lower critical field H&. The field 

is applied before the temperature is lowered through Tc. At temperatures slightly below 

Tc the vortices become pinned in YBCO which does not allow any field to escape as the 

temperature is lowered, thus the average field inside should be very close to the applied 

field.

The present measurements were transverse field measurements. While forward, back­

ward, up, and down positron detectors were in place, only the up and down detectors were 

used for the measurements described here. Calling the up-detector time-histogram after 

subtracting background: U(t), and for the corresponding down-detector: D(t), we obtained 

the asymmetry function from:

_  U ( t ) - a D { t )
U(t) + aD(t). (2‘10)

In this equation a  is a factor to correct for relative detector efficiencies. From these we 

obtained the cosine and sine Fourier transforms, using the above T c data to determine the 

appropriate phase so that the cosine transform is the field distribution n(h):
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c o s (t nht)A(t)dt (2-11)

in which 7^ is the muon’s gyromagnetic ratio, and h is the local magnetic field. The 

proportional constant can be easily obtained by requiring that n(h) integrate to unity.

For a crystal without inclusions we have been able to fit the n(h) to that produced by 

a triangular vortex lattice for which the effects of pinning are treated by varying the local 

average field with a Gaussian distribution function of variance a. The effects of finite core 

size and longitudinal vortex disorder are included by means of a Debye-Waller factor [20] 

in the reciprocal lattice sum. Here for simplicity the Debye-Waller factor was set to a 

small value. Also it should be noted that this factor tends to narrow the Fourier transform 

distribution. These field calculations follow closely the method described by Thiemann 

et a/.,[21]. For more details on our calculation see the monograph of Greer and Kossler[22].

n(h) oc j
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Chapter 3

Intermediate State, Mixed State 

and London Model

The complete flux expulsion(Meissner State) from a superconductor happens only when the 

magnetic fields axe weak or the demagnetization factor is small. The Meissner State occurs 

in type I superconductors when the applied field H is less than the critical field Hc under 

the condition that the demagnetization factor is negligible. If the demagnetization factor D 

is appreciable, magnetic flux starts to penetrate the superconducting material even if the 

applied field is less than the critical field, but greater than Uc(l-D).

For type II superconductors, magnetic flux starts to penetrate when the applied field H 

is greater than the lower critical field HCl when the demagnetization factor can be ignored. 

If the demagnetization factor is appreciable, magnetic flux starts to penetrate the super­

conducting material even if the applied field is less than the lower critical field, but greater 

than HCl (1-D). A type II superconductor goes into the mixed state when the applied field is 

in the range of HCl (1 — D) < H  < HC2. Because the wall energy of type II superconductor 

is negative, the magnetic flux can only penetrate the material in the form of single flux 

quanta <&o-

19
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3.1 G ibbs free energy

The first law of thermodynamics for materials with magnetization M  in applied magnetic 

field B  can be written as

dU =  TdS  +  B  ■ dM  (3.1)

where dU is the differential of internal energy, T is the temperature, and S is the entropy. 

We then get the Gibbs free energy,

dF =  - S d T  - M - d B .  (3.2)

Assuming isothermal conditions, dT =  0; The Gibbs free energy becomes

dF = —M  ■ dB. (3.3)

The material magnetization M  is directly linked to the thermodynamic critical field Hc, 

at that point the superconducting state becomes energetically unfavorable. The difference of 

free energy in the normal phase Fn (T) and in superconducting state Fs (T) in zero magnetic 

field is

(Fn(T) -  Fs(T))\h=o =  -  [ HC M(h)dh. (3.4)
Jo

From the above, we can determine the thermodynamic critical field Hc,

(Fn( T ) - F s(T))\h=Q = ^ t .  (3.5)
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Thus it is energetically favorable to transfer from the normal phase to superconducting

H (T)2phase. The unit volume of condensation energy gained through this phase transfer is .
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3.2 W all en ergy

Complete flux expulsion from superconductors only happens when the demagnetization 

effect is negligible. When this condition is not met, such as when a thin superconducting 

plate is placed perpendicular to the external magnetic field, magnetic flux will penetrate 

the superconducting materials. The demagnetization effect results in a field at the edge of 

the sample that is

=  r i s ’ <36)

where 0 < D < 1 is the demagnetization coefficient.

The demagnetization effectively reduces the critical field Hc to Hc( 1 — D). So when the 

field is greater than Hc( 1 — D), the superconductor splits into normal and superconducting 

domains, see Fig.3.1. Such a mixture of normal and superconducting states is called the 

intermediate state or mixed state, which will be discussed in detail in the next two sections.

The energy associated with the interface between the normal and superconducting state 

is called the wall energy. The wall energy is closely related with the condensation energy. 

Let’s consider the interface between a normal and superconducting domain. The super­

conducting electron density and magnetic field at the interface between the normal and 

superconducting domains is shown in Fig.3.2.

On the left hand side of Fig.3.2, the superconducting electron density n s decreases to 

zero at the S-N interface -  the distance over which this occur is approximately equal to the 

coherence length £. The decrease of n s reflects the loss of condensation energy, which makes 

a positive contribution to the wall energy. Since the unit volume condensation energy is
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A h  n  A i  a  A h  n  /l a  A A

Figure 3.1: The mixture of normal and superconducting domains.

| j r i , the contribution to the wall energy is ^  ■/£.

On the right hand side of the S-N interface in Fig.3.2, the external magnetic filed 

penetrate S-N interface to the superconducting domain; the distance is characterized by 

the penetration depth X. The associated energy is proportional to §),. A. This part of the 

energy will enhance the condensation energy, this makes the negative contribution to the 

wall energy.

From the above discussion, we can define the wall energy as

H 2c{T)
8-7T ( £- A) . (3.7)
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Figure 3.2: Superconducting electron density and magnetic field near the normal and supercon­
ducting interface .

3.3 T yp e-I su p ercon d u ctor  and In term ed iate  S ta te

For a superconducting material, if £ > A, then the wall energy is positive, this type of 

material is called type-I superconductor. The co-existence of normal and superconducting 

states in type-I superconductors is called the intermediate state.

Since the wall energy of type-I superconductors is positive, this indicates that in inter­

mediate states it is energetically favorable to form normal domains with large dimensions 

in order to minimizes the areas of interface between S-N. Those large domains can contain 

many flux quanta.

A type I superconductor in the Meissner State has zero internal magnetic field, Bin=0. 

From a general relation of B and H field,

Bin = (Hin +  4ttM) (3.8)

where M  is the material magnetization. Given Eq. 3.8, for Meissner state, we have
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M  — Hin,
47T

Hin < B c- (3.9)

When Hin > B c, magnetic flux starts to penetrate the material, and the superconductor 

goes into Intermediate State, where

Bin -  Be =  47rAf, (3.10)
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3.4 T yp e-II S up ercon d u ctor and M ixed  S ta te

If £ < A, the material is called a type-II superconductor. The wall energy of type-II 

superconductors is negative, which implies that it is energetically favorable to form many 

small domains such that each contains single flux quantum to maximized the interface areas 

between S-N.

When the applied field is less than the lower critical field and the demagnetization factor 

can be ignored, the Meissner State is observed in type II superconductor with

Hin — 0;

Hin =  -47rM. (3.11)

When the applied field is greater than the lower critical field HCl, the material goes 

into the mixed state, where the magnetic flux penetrates the superconductor in the form of 

vortex lines, each carrying a single flux quantum <E>o- The material remains in the mixed 

state when the applied field is in the range of HCl < H  < HC2. Superconductivity disappears 

when the field exceeds the upper critical field HC2.

Abrikosov first predicted the existence of a mixed state in type II superconductors where 

flux lines are arranged in the from of triangular lattice. This prediction has been verified 

by a number of experiments[23, 24].

To qualitatively understand the vortex state in type II superconductors, one needs to 

employ Ginzburg-Laudau Theory[4]. However, a simple theoretical model (London Model) 

based on the London Equations is sufficient to describe the vortex state in the limit of k
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1, where k is the Ginzburg-Landau parameter
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3.5 T w o F lu id  M od el

Two fluid model was proposed by C. J. Gorter and H. B. C. Casimir [29] to account with 

the observed second order phase transition of superconductor at Tc. In two fluid model 

the total electron density is divided into superconducting electron density ns and normal 

electron density nn.

n = n s + nn. (3.13)

The fraction ^  represent the electrons that have been condensed into a ” superfluid” 

state, while the rest of the electrons remains in the normal state. The fraction ^  goes from 

zero above the Tc to unity when temperature approaches to zero. As we have discussed 

earlier in section 3.2, the superconducting electron density ns drops to zero at S-N interface.

As a simple model, the two fluid model describes the electrodynamic properties of the 

”normal” and ’’superfluid” electrons in the alternating electromagnetic fields.
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3.6 L ondon M od el

Meissner effect points to the importance of diamagnetic properties of the superconductors. 

In contrast to the two fluid model, the phenomenological theory proposed by Fritz and Hans 

London[30] in 1934 assuming the diamagnetic aspects are more fundamental to supercon­

ductors than the electric properties. In London model the supercurrent Js is related to the 

magnetic vector potential A  by

(3-14)

where A is a constant depends on material, and c is speed of light in vacuum. The divergence 

of A  is chosen to be zero to ensure current conversation. It follows from 3.14 that a magnetic 

field penetrates only a thin layer of distance

Xl = VAc2/47r (3.15)

through superconductor, which is refereed as London penetration depth.

Follows the Maxwell’s equation, the electric and magnetic fields in a superconductor can 

be expressed as London Equations [25].

-  47rA2 d Js
Jtt/

c2 dt ’

h = x Js (3.16)

where A is the London penetration depth, Js is the supercurrent, and c is the speed of light 

in vacuum.
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The London model can be used to study the vortex lattices if the diameter of a vortex 

core is small so that most of the volume of the sample is in superconducting phase. This 

condition requires that the coherence length £ is much smaller than the penetration depth 

A since the diameter of a vortex core is proportional to £, or, the inter-vortex spacing is 

larger compare to the coherence length £.

The average magnetic field density is then:

B  = 7100, (3.17)

where n is the vortex density.

The magnetic field outside of the vortex core of radius £ is assumed to satisfy the London 

equations Eqs. 3.16 which can be written as:

X2 W2 h(r) + h(r) = $ 0 S(r)(r>C) (3.18)

where 0o is parallel to the direction of vortex line. A § function is added to satisfy the flux 

quantization condition, since integration of the London Equation over an area S with radius 

r > A  surrounding the vortex line must equal $o-

The London equation has an exact solution outside of the vortex core area

« r> = S 5 * *  (D  ’ (3'19)

where K q (j ) is zero order Modified Bessel Function of the second kind.

We can obtain the current density J  associate with magnetic field h via the Maxwell 

equation
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—* n/TT —*
V x f t  =  - J .  (3.20)

c

Therefore, the supercurrent outside of the vortex core can be written as

-  8 ^ * '  (D  ' <3-21)

where K\  (^) is the first order modified Bessel function of the second kind.

Both equations 3.19 and 3.21 diverge at the center of the vortex cores. This divergence 

results from the fact that the suppression of the order parameter to zero at the vortex core 

center is not built into the London model. There are a number ways to fix this, one is 

suggested by Clem[26].

In the model we are going to describe in the next chapter, we deal with non-conducting 

inclusions of very large core areas -  their radii could be more than 1000 A. The boundary- 

conditions and flux quantization require that the magnetic field inside an inclusion of given 

radius be constant. When the London equations are applied, the magnetic fields and super­

currents are both finite inside and outside of the inclusion. Therefore, there is no divergence 

in our model.

The justifications of using London model in this case is given by the fact that the external 

magnetic field in our experiment is low and therefore the inter-vortex spacing is large; and for 

a non-conducting inclusion, although its diameter is large, we can use boundary conditions

to determine the magnetic field inside the inclusion. In the superconducting regions the

London equations can be applied.
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Chapter 4

Magnetic field of isolated vortex 

and inclusion

4.1 M agn etic  field  o f  an iso la ted  vortex  line w hich  has b een  

trap p ed  in a cy lindrica l n on -con d u ctin g  inclusion

If the applied magnetic field is slightly higher than the lower critical field HCl, the vortex 

separation will be large enough that the interaction between vortices can be neglected, so 

that we can treat each vortex as an isolated vortex line. It is interesting to know that in 

the presence of cylindrical inclusions in the vicinity, will the isolated vortex line be trapped 

into the inclusion or remain free? If the vortex line is trapped into the inclusion, will it be 

free to move out? We will answer these questions in this section and the next. We are also 

going to calculate the energy of isolated cylindrical inclusion with a vortex line trapped in 

its center and the interaction between such a inclusion with a neighboring vortex.

The conducting and non-conduction cylindrical material in superconductor studied by 

Mkrtchan and Shmidt[27] (1972) using image technique and by Nordborg and Vinokur[28]

32
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(2000). For an infinitely long cylindrical non-conducting inclusion, the field inside the 

inclusion is produced by the supercurrents surrounding the boundary of the cylinder, since 

there are no currents inside. The situation is analogous to an infinitely long solenoid with 

current surrounding it. We know that the magnetic field inside the infinitely long solenoid 

is constant. We’ll show that the magnetic field inside the infinitely long cylindrical inclusion 

is also constant.

Current

ft (\ h (\ (\ [\ [\ (\

)
^  J  B = Constant

1 1 1 1 1 1/ 1 y /

Infinitely long solenoid

Supercurrent

B = Constant

Infinitely long cylindrical inclusion

Figure 4.1: Magnetic field inside an infinitely long cylindrical non-conducting inclusion. In analogy 
with the internal magnetic field of the infinitely long solenoid with constant current surrounding it, 
we can see that the internal magnetic field of infinitely long non-conducting cylindrical inclusion 
with supercurrent surrounding it should be constant as well.

4.1.1 Boundary conditions

Since there is no current inside the non-conducting inclusion, the perpendicular component 

of current at the cylindrical boundary of the inclusion is zero. The magnetic field h(r, 0)
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satisfies the homogeneous London equation,

V 2 h(r,9) + ± h (r ,9 )  = 0. (4.1)

with boundary condition:

J  ■ n|r=r0 =  0 (4.2)

Since (V x h(r, 9)) • 6  = [IqJ, the boundary condition can be written as

(V x h(r,6 ) -n)  = 0  (4.3)\  /  r=ro

In cylindrical coordinate, the above boundary condition becomes

1 ( d h z dhe\  ( d hr dhz \ ~  ( l d h e l d h r \ ^  
nVW-  1 7 ) r + i  8 7  “  8 r ) e + ( r a 7 - ; w ) d - ’‘ |— = 0' <4-4)

which gives

( w - S L - 1

For an infinitely long cylindrical inclusion, there is no z dependence of h, so = 0. 

Therefore,

^ | r = r o = 0 ;  (4.6)

Which means that hz has no 9 dependence at the boundary of the cylindrical inclusion. 

When ro is given, hz is constant on the boundary. For an infinitely long cylindrical inclusion
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along z, the magnetic field inside the inclusion has only a z  component from symmetry 

considerations, therefore, at the boundary,

h(r,o,0) =  hz (ro) =  constant. (4.7)

Since the inclusion is non-conducting, the supercurrent J  =  0 for r < ro, and the 

magnetic field inside the inclusion has only a z  component, as previously stated, that gives 

=  0 for r < tq. As h(r) is constant on the boundary and has no r dependence for 

r < ro, we reached the conclusion that h(r) is constant inside the inclusion.

4.1.2 The magnetic field of an isolated cylindrical inclusion with a vortex 

line at center

As we have mentioned at the beginning of the chapter, when the applied field is slightly 

higher than Hci , the vortex lines are far apart from each other so that they can be treated 

as isolated vortex lines. In the following, we are going to show that it is energetically 

favorable for a vortex line to be trapped inside of a cylindrical inclusion. First, we are going 

to calculate the magnetic field distribution of an isolated cylindrical inclusion.

The magnetic field inside the cylindrical non-conducting inclusion is a function of the 

radius of the inclusion. The magnetic field outside the inclusion, in the superconducting 

region, satisfies homogeneous London equation:

h = h0 (r < r 0) (4.8)

V2h(r, 9) +  h(r, 9) =  0 (r > r 0) (4.9)
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Figure 4.2: An isolated infinitely long cylindrical non-conducting inclusion with radius ro.

where r<j is the radius of the inclusion. For an infinitely long cylindrical inclusion, the 

symmetry enables us to discuss the problem in 2D space.

The solution of the London equation can be written as

hin{r) = ho ( r < r 0) (4.10)

hmit(r,6 ) = 'Y ^A mK m{^)em 6  (r > r0) (4.11)
m

where hin(r) is the magnetic field inside the inclusion, which is a constant for a given r; 

houtifiQ) is the magnetic field outside the inclusion produced by the supercurrent (outside 

the cylindrical surface of the inclusion), and K m(j)  is to order Modified Bessel Function of 

the Second Kind.

It is convenient to define a dimensionless variable x  =  -^y, where A(0) is the zero degree 

temperature penetration depth. In units of A(0), the radius of the inclusion can be written 

as ro =  xq A(0). We can then re-write the solution of London’s equations as
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hin(x) = ho {x < xo) (4.12)

hout(x,0) = 'Y ^A mK m(xy™*> {x> x$)  (4.13)
m

with boundary condition

hout\x o =  hin =  h(j. (4.14)

Applying this boundary condition we have

ho = AoK0 (x0) V  Y  AmK m(x0 )eim6. (4.15)
m̂ O

Which gives

ho = A 0 K 0 (x0) m  = 0; (4.16)

0 =  Y  AmKm(xo)e im 6  m / 0 .  (4.17)
TÔO

where K q(j ) is zero order Modified Bessel Function of the Second Kind.

Solving the above equations, we get Aq and Am-

4 ) =  (4-18)
Ko(xo)

A m = 0. (4.19)

The magnetic field outside of the inclusion(superconducting region) can then be written

as
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h0ut{x) = k ^ Xq^K o(x ) (x  > *<))■ (4-20)

Here, ho is the magnetic field inside the inclusion, which is a constant for a given ro- Its 

value will be determined by using the fluxoid quantization condition.

F. London [30] introduced the concept of the flux quantum and flux quantization to 

describe the mixture of normal and superconducting domains. For a normal domain in 

the type-II superconductor, the fluxoid <F/ equals the ordinary magnetic flux through the 

non-superconducting region plus magnetic flux induced by supercurrents via any contour 

integration enclosing the non-superconducting region. It can be written as

§' = § + < [  A2X ■ dl, (4.21)

where $  =  f  h ■ dS  is the magnetic flux through the non-superconducting region. The

fluxoid quantization condition states that fluxoid &  can only have integral multiples of a

fluxoid quantum 4>o,

=  n $ 0, (4.22)

where

hr
$ 0 =  — =  2.07 x 10~15W& (4.23)

is the fluxoid quantum constant. The path integral in equation can be any closed path 

surrounding the non-superconducting area. Normally it is convenient take this just outside 

the non-superconducting region.
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Applying the fluxoid quantization condition to the cylindrical non-conducting inclusion, 

we have

$  +  A2 ^ ( V  x h) ■ dl = n $ 0. (4.24)

In polar coordinate, the fluxoid quantization condition becomes

$  +  A2 j  r0 ( - ^ ) d 9  = n $ 0. (4.25)

By inserting hout into the above equation, and using a contour that just encloses the 

non-superconducting region, we can then determine the value of ho

'Krlho -  \ 2x 0 j) Xo(x0) K '0^  = n $ °‘ 4̂'26^

Using relation K'0 (x) — —K\(x), we have

h $o nK 0 (x0)
0 2TT\‘2x o K 1(xo) + f K o ( x 0y  }

ho is the magnetic field inside the inclusion area, which is a constant for a given inclusion 

radius.

Outside the inclusion, the magnetic field is

h -  #0 nK 0 {x)
hout 2 ^ x o K 1(xo) + fKo(xoV [ >

where x — is the distance from a field point to the center of the inclusion.

We see here that the magnetic fields inside and outside of the inclusion have finite values; 

there is no divergence in our model.
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4.1.3 Magnetic field energy of an isolated cylindrical inclusion with a 

vortex line at its center

The magnetic field energy per unit length of a cylindrical inclusion with a vortex line at 

its center consists of the magnetic field energy of the inclusion and the contributions from 

outside of the inclusion (which include magnetic field energy in the superconducting region 

and the kinetic energy of the currents).

E = h  l <ro h°dS+/  ( b + r ”*"*)dS
= \ r l k l  +  ^  (h2 + A2(V x h f )  dS. (4.29)

The first term is the contribution from the inclusion core, and the second term

E 1 = ^ -  f  (h2 +  A2(V x h)2) dS, (4.30)
oTT Jr>ro

is the contribution from superconducting region. Prom the London equation

h +  A2V x  V x h  =  $ 0£>(ri,0), (4.31)

we have

E 1 = ^ -  f  (h2 +  A2(V x h)2)) dS
07T Jr>ro

=  L J  (h  +  A2V x V X pj ■ hdS +  L £  (h  x (V X £)) ■ dS

= h  ST W2{Tu °̂ dS + £  /  0 * X (V X ^ 2) ' d̂  (4‘32)
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For an isolated inclusion, the first term vanishes. The surface integral is taken along 

the inner(cylindrical surface of inclusion) and the outer boundaries of the integration area. 

Since the outer boundary goes to infinity, the surface integral at the outer boundary makes 

no contribution. The inner boundary is chosen along the border of the cylindrical inclusion. 

Note that dS  here is pointed to the center of the inclusion. We have

Ei = f  h x ( V x h ) - d S  
07T J

= (4 .33)
8-7T Jr=ro dr 4 K 0(xo)

where x0 =

Finally, the total energy of an isolated inclusion with a vortex line at it center is

T7i l_ 2t 2 , A2/loX0 Ki(xo)
E  -  8^ °  +  4 « ,(*„)

_  n2$ l  K 0(xo)2 (4.34)
16tt2A2 x 0K q(x 0) ( K i (x q) +  f K 0( x 0 ) ) '

For comparison, we are going to calculate the magnetic energy of an isolated normal 

vortex line. The magnetic field of an isolated vortex line is given by

'‘C> = 2 ^ * » ( D -  <4'35>

Following the steps similar to above, we can show that the energy of an isolated vortex 

fine is similar to that of an isolated inclusion, except that for a vortex line, the contribution 

from the vortex core can be neglected. The only contribution to the integral is from the 

vortex core boundary,
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E  =  ^ j { h x  ( V x h ) ) - d § = ~  ( 27rrMr)^) , (4.36)

where £ is the coherence length. For £ < r «  A, the energy can be written as

(437)
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Figure 4.3: Energies (relative value) of an isolated vortex line with xq = = 0.01 (solid line)
and an isolated cylindrical inclusion with xq = as functions of xo, where ro is the radius of 
the inclusion. For a:0 > the energy of isolated cylindrical inclusion is lower than that of isolated 
vortex line.
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Fig. 4.3 shows the total energy of an isolated cylindrical inclusion (with one flux quantum 

trapped in its center) as function of xq = For comparison, the energy of an isolated 

vortex line with £ =  14 A is also shown as function of xq =  . The energy of an isolated

vortex line is constant for a given £, see Eq.4.37. One can see that for xo > £, the energy of 

an isolated cylindrical inclusion is lower than that of an isolated vortex line. This indicates 

that it is energetically favorable for an isolated vortex line to be trapped into an nearby 

inclusion.

For ro < £, we let both ro and £ vary, see Fig. 4.4 where we compare the total energy 

of an isolated vortex line with that of an isolated cylindrical inclusion of small radius with 

one flux quantum in its center. When the radius of the inclusion is very small, the total 

energy of an isolated inclusion should approach the total energy of an isolated normal vortex 

line. We see in Fig. 4.4 that in the range x q  from 0.001 to 0.01, which corresponds to £ 

range from 1.4 A to 14 A, there is good agreement in total energy between an isolated 

cylindrical inclusion and an isolated vortex line. In many practical applications of high-Tc 

superconducting materials, column defects axe introduced to create strong pinning in order 

to pin the vortices even when strong currents exert strong forces transverse to the vortex 

axis. To effectively capture the vortex lines, the radii of theses column defects should be 

large enough so that the energy of a column defect with a vortex line trapped in it is lower 

that the energy of an isolated vortex line.

It is energetically favorable for an isolated vortex line to be trapped into inclusions of 

larger radii. For inclusions of small radii(up to 10 £ for YBCO), the energy of an isolated 

vortex line is similar to that of an isolated inclusion with a vortex line trapped in its center.
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Figure 4.4: Energies (relative value) of isolated vortex line as function of xq = compares with 
energies of isolated cylindrical inclusion as function of x0 = For very small x0 they are identical.

4.2 In teraction  b etw een  a cy lindrica l inclusion  and one n eigh ­

bor vortex

4.2.1 Magnetic field

In this section we discuss the magnetic field distribution of a cylindrical non-conducting 

inclusion with a single neighboring vortex. From now on, when we talk about an inclusion, 

by default there is a vortex line trapped in it. We also discuss the interaction energy between
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the inclusion and a neighboring vortex. For the same reason as was discussed in 4.1.1, the 

magnetic field inside the inclusion has a constant value which depends on the radius of the 

inclusion. However, the field in the superconducting region now has contributions from the 

supercurrents surrounding the inclusion as well as from the neighbor vortex located at r \ , 

Fig.4.5.

Figure 4.5: Infinitely long cylindrical non-conducting inclusion of radius tq with one neighbor 
vortex located at r \ .

The magnetic field outside the inclusion satisfies the London equation

V 2h(r, 9) + ± h ( r ,  9) = | ^ ( n ) .  (r > r0) (4.38)

If we limit our discussion to the superconducting region between the inclusion and its 

neighbor vortex, i.e. ro < r < n ,  then this equation is homogeneous. The solution inside 

and outside of the inclusion can be written as:
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hin(r) = h 0 (r < r 0); (4.39)

hout(r, 0) =  Y ,  AmK m( j ) e ime (r  > r 0); (4.40)
m

m

Here, hin(r) is the constant magnetic field inside the inclusion of radius ro; hout(r, 6) is 

the magnetic field outside the inclusion due to the supercurrent surrounding the boundary 

of inclusion produced by the flux quanta trapped in the inclusion, and, hVOrtex{r,Q) is the 

magnetic field produced by the vortex located at f[. K m(j )  is m order Modified Bessel 

Function of the Second Kind and Im(j )  is m  order Modified Bessel Function of the First 

Kind.

The magnetic field in the superconducting region between ro and r i is the superposition 

of houtir.O) and hvortex{r,Q),

hsc(r,0) =  Kout(r, 0) + hvoHex{r, 0) (r0 < r < n ). (4.42)
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With xq =  ro/A(0), x =  r j A(0) and xi =  ri/A(0), we have

hin{x) =  ho (x < xo); (4.43)

hout(x, 6) =  ^ 2  AmK m(x)etmd (x > x0); (4.44)
m

hVOrtex(x,0) =  -^ ^ Y l ,I m {x )K m{xi)e%m6 (x0 < X <  a n ) ;  (4.45)
m

hsc(x,6) =

Y2 (A mK m(x) +  ^ 2 Im{x)Km{xi)em6\  (xQ < x < xi), (4.46)
m ' '

with the boundary condition

hsc\x o =  hin = ho- (4.47)

Ao and Am can be determined by applying the above boundary condition.

^  = lo k y  ~ ^ /o<io)Xo(ii))  m=0; (4-48)
- 1

Am = K m(x0 ) 2 ^ Im^ K m ^  m ^ ° -  (449)

The magnetic field in the superconducting region can be written as

_  h0K 0(x) 
h‘c{x) -  K ,(x0)

+ ^ 2  E  (~ ^ (x c )K m(x) +  Km(x„)Im(x)) eM , (4.50)

where ho is the magnetic field inside the inclusion. Although it is a constant, its value yet 

to be determined. The sum of m goes from — oo to +oo.
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Next, we will use the fluxoid quantization condition to determine ho- In 2D polar 

coordinates, the fluxoid quantization can be written as

$  + \ 2 ro( - ^ ) d 0  = n $ 0- (4.51)

Inserting hac into the above fluxoid quantization condition, one can determine ho- Us­

ing a contour that just encloses the non-superconducting region (along the border of the 

cylindrical inclusion), we get

=  n $ 0. (4.52)

Since ff etm6dd =  0, for m ^ O ,  carrying out the integration over 6, we get:

0 t o
7rr0 / i0 — 2ir\ xo

h o  r P  t  \  i * o  f  T> ,  X7ir  ,  \  I o ( x o )  K o ( x i )
+  ( /o < * o )* o (s i) --------- K m ) )

= q. (4.53)

Solving the above equation we get the expression for ho'-

h -  $o nK 0(xo) + Kpjxi)
0 2 tt\ 2 x o  K i ( x q ) +  ^ § - K o ( x o ) '
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This expression is similar to that for an isolated inclusion except that now the neigh­

boring vortex at location n  also contributes a term K q{x \) to the magnetic field inside the 

inclusion.
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Magnetic Field Distribution 
(Applied field is around 300 Gauiss)
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Figure 4.6: 3D Magnetic field(Gauss) distribution of an inclusion-vortex system. The Penetration 
depth is chosen to be 1450 A, the applied field is 300 Gauss.

Fig. 4.6 shows the 3D magnetic field distribution of an inclusion-vortex system. The 

dimensionless radius of the inclusion is xq = ro/Ao =  0.2 and the normal vortex is located 

at x\ =  ri/Ao =  1.78. The value of the vortex separation r\ is determined by applied field 

which is higher than the lower critical field Hci of Y B azC usO js-
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Magnetic Field Distribution 
(Applied fileld is around 300 Gauss)
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Figure 4.7: Contour plot of Magnetic field distribution of an inclusion-vortex system. The applied 
field is 300 Gauss, and the penetration depth is chosen to be 1450 A.

Fig.4.7 shows the contour plot corresponding to Fig.4.6. Along the line between the 

center of the inclusion and its neighbor vortex, the saddle point can be clearly seen.

We can further investigate the properties of the saddle point by setting 6 =  0 in Eq.4.50. 

The magnetic fields between inclusions of various radii and a normal vortex located at a 

fixed point n  are plotted in Fig.4.8. The minimum field corresponds to the saddle point.

When the vortex separation is fixed, we can see from Fig.4.8 that the saddle point 

position is not sensitive to the changing of the inclusion radius. This result is a little 

surprising -  we would expect that when the radius of the inclusion increases the saddle point 

would be pushed further away from the center of the inclusion. This can be understood as
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Figure 4.8: Magnetic field (relative value) in the superconducting regions as function of x =
The minimum field corresponding to the saddle point field. Inclusions of several radii(a:o — ro/A(0)) 
values are shown.

follows. The constant field inside the inclusion is higher than the field in the superconducting 

regions except for points close to the vortex core located at r\. The inclusions tha t have 

smaller radii have higher internal field than those tha t have larger radii. The average internal 

field is the weighted average of the field inside inclusions and the field in the superconducting 

regions.

have — ^ihin  “F ^ 2hsc (4.55)
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r2 r2—r2where w\ =  and are weights, and rs is the distance from the center of the

inclusion to the saddle point. Applying the fluxoid quantization condition, we have

v{r2s ~ r l)hsc + nrlhin = n $ 0. (4.56)

If we combine with Eq.4.55, the average field can be written as

have = \  (4.57)Trr-2

The average field depends on rs■ If the changing of the inclusion size does not change 

the average field significantly, the saddle point position will remain at the same place.

4.2.2 Magnetic field energy of a cylindrical inclusion with one normal 

vortex neighbor

Early in Chapter 3.1.3 we found the energy of an isolated cylindrical inclusion with a 

vortex at its center. Here, we will extend that development and find the energy of an 

inclusion/normal vortex system.

When an inclusion is placed next to a vortex, the magnetic field energy per unit length 

of a cylindrical inclusion includes the magnetic field energy of the inclusion, the magnetic 

field energy in the superconducting region and the kinetic energy of the currents. This

energy can be expressed as:
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E=i L j is+I % +lmv-n‘) ds
= l r i h 20 + ^- f  (h2 + A2(V x h)2 dS. (4.58)

° 07T Jr>ro

Here h(r) is the magnetic field in the superconducting region that includes contributions 

from the neighbor vortex and the supercurrents surrounding the inclusion. The first integral 

gives the magnetic field energy inside the inclusion. The integration area of second integral 

includes the normal vortex located at r \ . Using the London equation, the second and third 

integrals give:

E 1 = -L  [  (h2 +  A2(V x h)2) dS
07T Jr>ro

= ^  /  (h  +  A2V x V x h) ■ hdS +  ^  j  (h  x (V x h)) ■ dS

= h  Sr ®Qh52(ri^ dS + ^  /  0* X X ‘ d (4‘59)

The first integral in the above equation is integrated over an area S  that includes vortices 

at (xi,Qi)\ doing so with the help of Eq.4.50 gives:

[  ^oh(x1 , 6 )6 2 (x i ,0 )dS
° 7 r  J r> r o

  §oho K 0(xi)
87r ifo(a:o)

+  I ^ A 2 S  ( - I m i x o ^ i x r )  + K m(xo)/m(*1) ) . (4.60)
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The surface integral is taken along the inner(cylindrical surface of the inclusion) and 

the outer boundary of the integration area. Since the outer boundary goes to infinity, the 

surface integral at the outer boundary gives no contribution. The inner boundary is along 

the border of cylindrical inclusion, note that dS  here is pointed to the center of inclusion.

In polar coordinates with h =  hsc, the second integral gives

—  f  rph— dQ 
8tt Jr=ro dr

=  * * ( * » > dQ
Ko(x0)

+ 8 KX°ho2 ^ ?  f  d9em6 5  ( ”  +  Krn(xi)Im(xo) )  .

(4.61)

Since for m / 0 , etm6dO =  0, we have

a2 /  , dh
87r Jr=ro T° d r C. -d6

/ r=ro Of

\ 2x QhlKi(xQ) , x0ho$o { Io(x0)K0(xi) Tyr , , ,
= ------ 4 *„(* .) 8ir \  Kcixc) K M + X o ( * l ) I o M j

X^xphlK^xo) ho^oKojx-i)
4K0(xo) 8tt K 0(xoY  1 *

The magnetic field energy in the superconducting region can be written as
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1 * , / X A2 /
=  8^ 0 (^J _  8^ f r=ro Ifr

_ X2x0h lK i(xQ) 
4K0(x0)

+ Y ,  f ^ y  {-Im(xo)Km{xi) + K ^ I m i x ^ )  . (4.63)

The total magnetic energy of an inclusion with one neighbor vortex is

3g (nX0(a;o)+Jfo (a ;i ) )2

167r2A2 x 0Jfo(jco) (■K'i(ico) +  f - M ^ o ) )

+  167T2A2 ^  ^m(go) + • (4.64)

The sum of m goes from — oo to +oo.

Fig. 4.9 shows the total energy of an inclusion - vortex system; several radii of inclusions 

are shown. The energy is plotted as a function of vortex separation for a given inclusion 

radius. When a vortex line approaches an inclusion, the interaction energy increases. When 

xi becomes less than .To, where the figure indicates a maximum of energy, the calculation 

is no longer physically meaningful, though formally possible.
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Figure 4.9: Total energy(relative value) of inclusion - vortex system. Several inclusion radii are 
shown. For a given inclusion radius, the energy is plotted as function of vortex separation x\.
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4.2.3 Interaction force between an inclusion and a vortex

The force between an inclusion and a vortex can be directly obtained from the interaction 

energy. Using Eq.4.64, the force that a vortex at n  feel due to the interaction with the 

inclusion at ro is

where E is the total magnetic field energy of inclusion - vortex system as in Eq.4.64. If the 

inclusion is replaced by a vortex, we get the force between two vortices.

In experiments, the vortex spacing x\ is fixed by the applied field. The force experienced 

by a vortex at x\ of an inclusion-vortex system is plotted as function of inclusion radius xo 

in Fig.4.10.

For a given vortex separation, the repulsive force experienced by a vortex decreases 

as the radius of the inclusion increases. Larger inclusions have less repulsive force on the 

vortices near by. In another words, vortices are easier to move into inclusions with larger 

radii.

The force experienced by a vortex for a given inclusion radius as a function of vortex 

separation is shown in Fig.4.11.

When a vortex approaches an inclusion from a distance, the repulsive force increases. 

For a vortex to be trapped into an inclusion that already has a flux quantum in the center, 

it must overcome a force barrier. This force barrier decreases as the radius of the inclusion 

increases. Therefore, for a large inclusion it is easier to have another vortex trapped into it 

than for smaller inclusions. But on the other hand, inclusions with smaller radii will hold
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Figure 4.10: Interaction forces (relative value) between an infinitely long cylindrical non-conducting 
inclusion and a neighbor vortex. For fixed vortex separation r l5 the force experienced by vortex 
located at x± = is plotted as function as inclusion radius xq = The interaction force
decreases for large inclusions.

flux quanta tighter once trapped in, since the flux vortex lines need to overcome a larger 

force barrier in order to move out.

One can also see from Fig.4.11, that when a vortex is not too close to an inclusion, 

the force it experiences has a very weak dependence on inclusion radius. This means that 

when the applied field is not too high, inclusions may not alter the vortex lattice structure 

significantly.
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Figure 4.11: Interaction forces (relative value)between an infinitely long cylindrical non-conducting 
inclusion and a neighbor vortex. For several inclusion radii(x0 = ro/A(0)), the forces experienced 
by vortex located at x \  are plotted as function of vortex separations X \ .
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Chapter 5

Inclusions in an hexagonal array of 

vortices

We now generalize to the case where an inclusion, containing at least one quantum of flux, 

is surrounded by an hexagonal array of vortices -  see figure 5.1.

The model described below is based on the London equation with the following assump­

tions: 1. The ” green phase” inclusions are cylindrical and infinite in length; 2. They are 

non-conducting; 3. They do not change the overall vortex lattice structure so that the 

near neighbors are still hexagonally arranged; 4. For a given temperature, the more distant 

vortices contribute a constant average field within the hexagonal array shown in Fig. 5.1; 

this constant field is ignored in the model.

The assumptions 1 and 2 are basic assumptions of the model, and are generic. As­

sumptions 3 and 4, as one can see in Chapter 6 where the model is compared with the //SR 

experiment, are good approximations for lower applied field cases. When the applied field is 

too high, for example when vortex spacing is less than the penetration depth, assumptions 

3 and 4 may need to be modified. Also, since inclusions provide strong pinning, possible 

temperature modification of the vortex density is not considered in our model.

61
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5.1 M agn etic  field

The magnetic field inside non-conducting inclusions is produced by the surrounding su­

percurrents since there are no currents inside. It is again required that the perpendicular 

component of current at the cylindrical boundary is zero. For an infinitely long cylindrical 

inclusion with axis along z, from symmetry considerations, as shown in Chapter 3, the 

magnetic field inside the inclusion has only a z  component and has no 9 dependence. Also, 

this boundary condition requires that the magnetic field h(r) be constant on the boundary 

and inside the inclusion (see Chapter 4).

r5 r6

Figure 5.1: An infinitely long cylindrical non-conducting inclusion of radius ro in an hexagonal 
array of superconducting vortices. These vortices are located at

Without inclusions, the vortices would likely form the hexagonal flux-line lattice pre­

dicted by Abrikosov [3]. The inclusion of interest thus has six nearest neighbor vortices 

which are assumed not to thread inclusions. These six superconducting vortices are located 

at (rj, (i — 1) -7r /3) for i = 1. . .  6 and all |rj| are equal, as in Fig.5.1. While the magnetic field 

inside an inclusion is constant, the field outside has contributions from the supercurrents
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surrounding the inclusion as well as from the neighboring vortices. This field satisfies the 

London equation and boundary conditions:

hin = ho (r < r 0); (5.1)

V2h(r,0) +  ^h{r,Q ) = ~ r,) (r > r 0); (5.2)

h(r,Q)\r0 =  h0, (5.3)

where hin is the field inside the inclusion of radius fo, and <&o is the flux quantum. For an 

infinitely long cylindrical inclusion, this problem can be solved in two dimensional space.

In the superconducting region between the inclusion and its six neighbor vortices, i.e. 

ro < r < ri(i =  1,2,..., 6), Eq.5.2 becomes homogeneous. The magnetic field in this 

superconducting region between tq and r, can then be conveniently written as:

hsc(r, 0) — hout(r, &) +  hvortex{r->@)- (5-4)

We have

hin(r) = h0 (r < r0); (5.5)

hout(r ,0) = ] T  AmK m£ ) e ime (r > r0); (5.6)

{  )  ~  2rr A2 ( A J 2iA 2 "

2ttA2 u V A 
$o t ( r \  „  ( r \ \  _imB ,

-  2tA2 E ' »  ©  ( x )  + d ?  E * .  0  ( x )  * *  +m m

-  +  ^ 2  E 7™ ( j )  Km ( ? )  eim66 (r° < r < ^  = 1»2,..., 6), (5.7)
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where 9\ = 8 , 0 2  =  \0  — f  |, O3 =  \B — 0 & = \0  — ^ | .  h,n (r) is the magnetic field inside

the inclusion. hout(r ,0 ) is the magnetic field outside the inclusion due to the supercurrents 

surrounding the boundary of the inclusion produced by the flux quanta trapped in the 

inclusion. hVm-tex{fi0 ) is the magnetic field produced by vortices located at f\, i= l ,2,...,6.

The magnetic field in the superconducting region between tq and r\ is the superposition 

of hout(r,6 ) and hvortex(r, 0)■, as described in Eq.5.4.

Since ri =  r2 =  ... =  r6, we can rewrite hvortex as

hvartexW) = ^  E ( j )  Km ( j )  + ^  + -  +  ^  ^
m

The magnetic field in the superconducting region is

h s c { x j0 ') — hout{%->&) h vorteX { ^ i 0 ) — ' ^ j ^ A m K m {x)&  +
m

(5-9)
m

where Xq =  ro/A(0), x  =  r / A(0) and X{ =  rj/A(0), i=l,2,...,6.

Applying the boundary condition

hsc(x)\Xo = h0, (5.10)

we have

= m = 0  <5-n > 

_1  $0 r l(x0 )Kn (x1) ( l  + eim**-° + ... + j m6*-e)  m / 0. (5.12)A m —K m(x0) 27rA2J
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The magnetic field in the superconducting region can then be written as

hSc{x) —
h0 K 0 (x)
Ko(x0)

Hm{x o)

+ eim6\ . .  + eim6&), (5.13)

where ho =  constant is the magnetic field inside the inclusion -  its value will be determined 

by the fluxoid quantization condition. The sum of index m is running from — oo to +oc.

Magnetic Field Distribution 
(Applied Field is arpund 300 Gauss)

0)3(0O
2v

a>co>to

r =290  A

-1 .5 -1 .5

Figure 5.2: 3D contour plot of the magnetic field distribution of a cylindrical inclusion in hexagonal 
array of normal vortices near lower critical field hcl. The penetration depth is 1450 A.

In 2D polar coordinates, the fluxoid quantization can be written as
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$  +  A2 y  r0( - ^ ) d d  =  n $ 0- (5.14)

We’ll insert hsc into the above fluxoid quantization condition to determine ho- When m / 0 ,  

the integration over 9 gives

£  eim6id6 i =  0, * =  1,2, ...6. (5.15)

Carrying out the integration over 6  we get:

nrlho -  2 nXx0 T̂ h,° . K 0 (x0) 
Ko{xo)

+ 6$ozo ^l'o(xo)Ko(xi) -  ^ | ^ | ^ l f o ( i o ) j  =  o- (5.16)

Solving the above equation we get the expression for ho

h _  $o nKo(x0) + 6 K 0 (xi)
0 2 ^ x 0 K ^xo) + f K 0(xoY ‘

Comparing with Eq.4.54, we see that in hexagonal array all six neighbor vortices have 

contributions to the magnetic field inside the inclusion. Therefore, hp will be higher in an 

hexagonal array than that given by Eq.4.54 where there is only one vortex neighbor.

The 3D magnetic field distribution of a cylindrical inclusion in hexagonal array of vor­

tices is shown in Fig.5.2. The external magnetic field was chosen to be higher than the 

lower critical field H&, around 300 Gauss for YBaiCuzOi-b-  The vortex separation near 

H d  is given by d = \/2$o/\/3-Bci), where B is the average field, which gives d =  1.78Aq.
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Magnetic Field Distribution 
(Applied field is around 300 G auss, rQ=290 A ^

1.5

1

0.5

0

-0.5

•1

-1.5

-0 .5 0.5 1.5 2-2 -1 .5 ■1 0 1

Figure 5.3: Magnetic field distribution of a cylindrical inclusion in hexagonal array of vortices near 
lower critical field hc i- The radius of the inclusion is 390 A. The penetration depth is 1450 A.

So we have x\ =  ri/Ao =  1.78 and xq = ro/Ao =  0.2. A single flux quantum was assumed 

to thread the inclusion.

Fig.5.3 portrays in 2D space the magnetic field distribution of a cylindrical inclusion in 

an hexagonal array of vortices when the applied field is higher than the lower critical field 

Hcl. Along the path from the center of the inclusion to the next vortex, the 2D contour 

plot clearly shows the saddle points.

Along the direction from the center of the inclusion to a next neighbor vortex in the 

hexagonal array, we get a one dimensional field distribution where the lowest point cor­

responds to the saddle point, see Fig.5.4. It is interesting to see again that the radius
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4.5

- 0-  x0 = 0.2 
x = =0.4

3.5

2.5

0.4 0.80.2 0.6

Figure 5.4: Relative values of the magnetic field in the superconducting region outside of the 
inclusion in hexagonal array of vortices as function of a; = . The field is shown in the direction
of 0 = 0. a?o = , where tq is the radius of inclusion. The minimum field correspond to the saddle
point.

of the inclusion has little impact on the field distribution in the superconducting regions. 

As discussed in the previous chapter, this means that the average field is not sensitive to 

changes in inclusion radius when the applied field is low. Therefore the saddle point is 

approximately at the same position for inclusions of different radii.
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5.2 T h e M agn etic  field p rob ability  d istr ib u tion  o f a cy lindri­

cal in clu sion  in a h exagon al array o f vortices

The probability density function n(h) is usually chosen so that n(h)dh gives the probability 

that, when randomly sampling over a unit cell of the vortex lattice, one will find the local 

magnetic field to be between h and h + dh. Here we used for our unit cell the area shown 

with contours in Fig. 5.3. It is defined so that n(h)dh =  1, and / 0°° n(h)hdh — have. 

where haVe is the average field.

When the applied field is low (h <C Hc2), the contribution from the vortex core of 

radius of order £-the superconducting coherence length, is negligible and the magnetic 

field distribution is little changed for any reasonable value of £. Therefore we choose an 

arbitrarily small value for £. The magnetic field spatial distribution of an ideal flux line 

lattice is given by:

The field probability distribution, n(h), of the ideal lattice without inclusions is shown 

in the bottom graph of Fig.5.5. Field distributions closely related to this have been observed 

in /iSR experiments[36, 37, 38, 39]. The maximum field hmax corresponds to the field in 

the small vortex cores of radius of coherence length £, which have the highest field. Muons 

have small probability of seeing these maximum fields since the cores have small relative 

areas. The minimum field hmin is the field in the superconducting areas far away from the 

cores. The sharp peak in the distribution corresponds to the saddle point field.

(5.18)
k

where happ is the applied field and k axe the reciprocal lattice vectors.
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O u r m odel

Ideal vo rtex  la ttic es

100 200 
Magnetic field (Gauss)

Figure 5.5: Top: Magnetic field probability distribution of cylindrical inclusion in hexagonal array 
of vortices. The inclusion radius was chosen to be ro = 1200A. Bottom: Magnetic field probability 
distribution based on isotropic London model for an ideal triangle lattice. The external field was 
100 Gauss for both cases.

The top graph of Fig.5.5 shows the magnetic field probability distribution obtained with 

our model system of an infinitely long cylindrical inclusion surrounded by 6 superconducting 

vortices using Eq. 5.7 and 5.17 in an applied field of 100 Gauss parallel to the crystal c axis. 

In addition to all the features of a field distribution of an hexagonal lattice of vortex lines, 

it has a sharp peak above the applied field that corresponds to the field inside the inclusion. 

The position of this peak is a function of the inclusion radius. Therefore, presuming one 

has a good estimate of the penetration depth, the position of this peak in the experiment, 

see Fig. 1.1, tells us the average size of the inclusions. The relatively broad distribution of
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the right peak in the experiment reflects the distribution of inclusion radii.

That we use an hexagonal array of superconducting vortices for our field calculations, 

see Fig.5.1 and Fig.5.3, rather than a proper unit cell, and only consider the nearest vortices, 

leads to an enhanced area associated with the minimum field. This leads to the minimum 

field peak in the top portion of Fig. 5.5 rather than the shoulder seen in the lower portion. 

The drop off above the inclusion field seen for our calculation, again as compared with that 

of a regular vortex lattice field distribution, has the same origin.

Combining Fig.5.4 and the top graph of Fig.5.5, we can see clearly that the second 

peak in the field probability distribution corresponds to the constant magnetic field in the 

inclusion area; see Fig.5.6.

LL ■y

0.5 1

Vortex Seperation x1
1.5 2 0.5 0.4 0.3 0.2 0.1

F ie ld  P ro b a b il i ty  D is tr ib u tio n

Figure 5.6: Left: Magnetic field from center of inclusion to the near by normal vortex core. Right: 
Magnetic field probability distribution. The inclusion radius was xq — r jAq = 0.4.

Our model considers only a cylindrical inclusion and its six closest neighbors. Yet if we
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compaxe the top and bottom graphs of Fig. 5.5, we can see that saddle points of the model 

and that of ideal triangle lattice are almost identical, and that the overall shape of the field 

distribution in superconducting regions is similar. Thus most of the field distribution is 

the same with or without the inclusions, the effect of the inclusions is mostly to produce a 

second peak as observed in the experiment.
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5.3 T h e m agn etic  field en ergy  o f a cylindrical in clu sion  in  an  

h exagon al array o f vortices

When a non-conducting inclusion is placed in an hexagonal array of vortices, the magnetic 

field energy per unit length of a cylindrical inclusion includes the magnetic field energy 

of the inclusion, the magnetic field energy in the superconducting region and the kinetic 

energy of currents. The energy can be expressed as

E = s  L . h l d S + /  ( i + d s

= \ r l h l  + ^~ f  (h2 + A2 (V x h2)) dS  (5.19)
O 07T J r > ro

Here h(r) is the magnetic field in the superconducting region that includes contribution 

from neighbor vortices and supercurrents surrounding the inclusion. The first integral gives 

the magnetic field energy inside the inclusion. The integration area of the second integral 

includes the vortices located at rj, i = 1,2,..., 6. Using the London equation, the second 

and third integrals give:

E l = ^~ [  (h2 +  A2(V x h)2) dS
8-k  J r>rQ

= ^  /  (h  +  A2V x v  x h j ■ hdS + ^  y  (h x  (v  x h)) • dS 

= ir f $oM<^(rL,0) +  S2(r2, 7r/3) + ... +  <56(ri, 57r/3)) dS
87T J r>rQ

+  ^  y  (k  X (V X ft)) • dS. (5.20)
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The first integral in the above equation is integrated over an area S  that includes vortices 

at (Xi, 9i)] doing so with the help of Eq.5.13 gives:

8?r ./r>ro
f  $0 (h(xi, 9)S2(x i , 0) +  ... +  h(xQ, 9)6q(x i, 57t / 3)) dS

Jr>ro
_  3 ^ o h p  K q(x i )

47r Ko(xo)

+ ^ 2  E  (-Im(xo)Km(xi) + K m(x0)Im(xi)) . (5.21)

The surface integral is taken along the inner (cylindrical surface of the inclusion) and 

the outer boundary of the integration area. Since the outer boundary goes to infinity, the 

surface integral at the outer boundary makes no contribution. The inner boundary is along 

the border of cylindrical inclusion, note that dS  here is pointed to the center of the inclusion.

In polar coordinates with h =  hsc, the second integral gives

87r Jr=ro dr 87t y  J  K 0{x0)

■ / £ ( - Im̂K̂ Z)Xl) Km(iX o)/+K̂ X1̂ X̂')

r—r 0

$0
27rA2

“  m

me +  eim62 +  ___ +  eirnu&)de_ (5.22)

Since for m / 0, JQ27r e*m^ ^  =  0, n  =  0 ,1 ,2 ,... 5. We have therefore

r /  r°hT # >87T Jr=ro dr
A2xohlKi(xo) 3x0ho$o f  Io(x0)K0(xi)

4 K q(x q )
, 3a;o/io^o / 7o(a;o)^o(*i) , \  , Ty  t \ T f \ \

+ ^ ^ (  *„(*„) K M  + K M i o M )
X2x0hlKi(x0) Sho$oKo(xi) , ,

4 if0(x0) +  4tt K 0(x0y
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The magnetic field energy in the superconducting region then can be written as

1 4 f f o ( s o )

+ ̂ 2  E  i - U ^ K m i x i )  + K m(x0)lm(x i) ) . (5.24)

The total magnetic energy of an inclusion with 6 neighbor vortices is

E  = _ ? L  ( I  +  0nK0(xo) + 6K0(x1))2
4tt2A2 \8  4a:oi!:o(a:o)y ( ^ ( 2:0) +  ^ ^ 0(3:0))2

+  E  Y T T ^  (-Im{xo)Km{Xl) +  K m(x0)Im(xi) ) . (5.25)87T A ^  KffiyX0)

Fig. 5.7 shows the total energy for inclusions of several radii in an hexagonal array of 

vortices. The energy is plotted as function of vortex separation 2:1 =  ri/A(0) for a given 

inclusion radius 2:0 =  ro/A(0). There are similarities and differences between the case of an 

inclusion in an hexagonal array of vortices and an inclusion with only one vortex neighbor. 

When the distance between the normal vortex and the inclusion decreases, the interaction 

energy increases in both cases. However, when one compares Fig. 4.9 with Fig. 5.7 we 

can see that in an hexagonal array of vortices, the interaction energy is not sensitive to the 

inclusion radii, while in the case where there is only one vortex neighbor the interaction 

energy increases when the radius of inclusion decreases. We believe that this is due to the

fact that the magnetic field inside the inclusion now has contributions from six neighbors

instead of just one neighbor. When a vortex line moves towards an inclusion in hexagonal 

array of vortices, it needs to overcome forces from all other five vortices, as compared with
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Figure 5.7: Relative values of the total energy of an inclusion among an hexagonal array of vortices. 
Several radii of inclusions are shown. For a given inclusion radius, the energy is plotted as function 
of vortex separation x \ .

an inclusion with just one vortex system. Also in this case the impact of self energy of the 

inclusion on the total energy of the system is lesser than where there is only one vortex 

neighbor.
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5.4 In teraction  force b etw een  an inclusion  and an  hexagonal 

array o f vortices

The force between an inclusion and a vortex in an hexagonal array of vortices can be directly 

obtained from the interaction energy. Assuming the vortex at r\ moves towards the center 

of the inclusion along the - f{ direction, it experiences a force due to the interaction with 

the inclusion and the other five vortices in the hexagonal array,

F = ~ § -  <5-26> 

where E is the total magnetic field energy of inclusion in an hexagonal array of vortices as

in Eq.5.25.

In Fig.5.8, vortex spacing X \  is fixed by the applied field. The force experienced by 

normal vortex at x \  of is plotted as function of inclusion radius x q .

Compare Fig.5.9 with Fig.4.10 one can see that the difference between the energies 

corresponding ri= 2 .5  and .Xi=3.5 is smaller in case that the inclusion is in an hexagonal 

array of vortices. This is also due to the decreasing of the impact of inclusion self energy 

on the total energy of the system when there are more then one vortices.

In fig. 5.9, the force experienced by a normal vortex is expressed as a function of 

vortex separation x\  for a given inclusion radius. The repulsive force between an inclusive 

and vortices in an hexagonal array is similar to that for an inclusion with single vortex 

system as discussed in section 4.4.3. When a normal vortex approaches the inclusion from a 

distance, the repulsive force increases. For a normal vortex to be trapped into an inclusion,
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Figure 5.8: Interaction forces (relative value) between infinitely long cylindrical non-conducting 
inclusion and neighbor vortices in hexagonal lattice. For fixed vortex separation (ri), the force 
experienced by vortex located at x \  is plotted as function as inclusion radius x q .

it must overcome a force barrier. This force barrier decreases as the radius of the inclusion 

increases. It is energetically easier for large inclusions to contain multiple flux quanta as 

compared to smaller inclusions.
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Figure 5.9: Interaction forces (relative value)between infinitely long cylindrical non-conducting in­
clusion and neighbor vortices in hexagonal lattices. For several inclusion radius (xo) values, the 
forces experienced by vortex located at x\ are plotted as function of vortex separations x\ (distance 
between vortex and the center of inclusion).

5.5 N on -in teraction  M od el

In section 4.1, we have discussed the situation that a isolated vortex line is trapped in the 

cylindrical non-conducting inclusion. The magnetic field inside and outside of the inclusion 

is expressed in Eq. 4.27 and Eq. 4.28 respectively.

In section 5.1, we have considered the case that the inclusion is placed in an hexagonal 

array of vortices. The interaction between the inclusion and its six vortices neighbors has
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been considered to get the magnetic field distribution inside and outside of the inclusion, 

see Eq.5.13 and Eq. 5.17.

When the applied magnetic field is weak, the interaction between the inclusion and its 

neighboring vortices can be ignored. In this non-interaction model, the magnetic field in the 

superconductor is simply the superposition of the field distribution for a vortex threading 

an isolated inclusion and the field of single vortices located at n  through r$.

Referring to equations 4.27, 4.28, 4.41 and 3.19, we see that the magnetic field dis­

tribution inside and outside of the inclusion in the non-interaction model can be written 

as

h -  nKpjxo)
n° 2-KX^x0 K 1(xo) + f K 0(xoy  {b ()

and

, _  $o nK 0(x)
mt ~  2n\*x0 K ^xo) + f K 0(xo)

+ (’■0 < r < r i). (5.28)
m

The magnetic field distribution for an inclusion of radius 1200 A among six vortices in 

an hexagonal array is shown in Fig. 5.10. The applied magnetic field is 100 Gauss. The 

penetration depth is 1450 A. For comparison, the field distribution is calculated here using 

a method that considers the interactions between the inclusion and its neighboring vortices 

as in section 5.1, and the results are shown in Fig. 5.11.

We can see that when the applied field is low, the overall field distribution given by 

the non-interaction model in Fig. 5.10 is similar to that in Fig. 5.11 where the interaction
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Magnetic Field Distribution, N on-interaction Model 
(Applied field is around 100 G auss, rQ=1200

- 3 - 2 - 1 0 1 2 3

Figure 5.10: Magnetic field distribution of a cylindrical inclusion in hexagonal array of vortices in 
non-interaction model. The applied field is around 100 Gauss. The radius of the inclusion is chosen 
to be 1200 A. The penetration depth is 1450 A.

has been considered. Since the non-interaction model does not consider correct boundary 

conditions, the field inside of the inclusion is no longer constant. The similarity implies that 

at low fields superposition of fields for a vortex threading spherical inclusions and fields from 

surrounding normal vortices may be close to the fields appropriates to this geometry.
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Magnetic Field Distribution 
(Applied field is a round 100 G auss, rg=1200 fir)
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Figure 5.11: Magnetic field distribution of a cylindrical inclusion in hexagonal array of vortices in 
interaction model as discussed in section 5.1. The applied field is around 100 Gauss. The radius of 
the inclusion is chosen to be 1200 A.
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Chapter 6

Comparison with //SR experiments

In this chapter we compare the calculated internal magnetic field in the cylindrical non­

conducting inclusion with the measured results from /iSR experiments. We use the model 

developed in the previous Chapters to calculate the magnetic field probability distribu­

tion inside the inclusion and in the superconducting regions. By analyze the temperature 

evolution of the two peaks of the magnetic field probability distributions in the inclusion 

and superconducting regions and compare them with the temperature dependent peaks 

positions from fj,SR experiment, we can directly obtain the temperature dependence of the 

penetration depth A (T).

6.1 Sam ple P rep aration

The sample was grown using a single crystal, Sm B a 2 CuzOi-x (SBCO) seed to induce 

crystallization during the melt-growth process, similar to that demonstrated by Murakami, 

et al.[11]. The SBCO seed was grown with the a-b plane parallel to the surface. A disk 

made from melt quenched powders was melt-processed, yielding a single crystal extending 

to the edge of the sample. No low angle or high angle grain boundaries were observed

83
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as determined by SEM, high resolution TEM, and x-ray analysis. Crystals up to 5 cm in 

diameter have been grown by this technique.

Addition of excess Y^BaCuO^ (211 or the green phase) helps in the crystal growth 

kinetics. At high temperatures, the sample consists of a liquid phase plus 211 particulates. 

As the crystal nucleates, the grain begins to grow and 123 solidifies, consuming most of 

the 211 phase. However, some of the 211 particulates become encapsulated before they are 

consumed. An excess of 211 is necessary to continue grain growth over a large area since, if 

excess 211 is not present, the continued growth of 123 is arrested by yttrium depletion prior 

to 123 formation throughout the entire sample. The fractional content of 211 is between 

0.1 and 0.5 for typical samples. These inclusions are thought to strongly pin the vorticies 

associated with the internal magnetic field.
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6.2 M od el

/j,SR and analysis techniques has been discussed in detail in Chapter 2. We are going 

to use model developed in the previous Chapters to compare with the /iSR experimental 

data. Using Eqs. 5.2 and 5.7 to calculate the magnetic field distribution, we get the 

field probability distributions shown in the lower portion of Fig.6.1. The field distribution 

depends on the penetration depth, A, the inclusion radius and the vortex separation. For 

comparison, the Fourier transform of n SR data taken on Y B C O  at 18 K is shown in the 

upper portion of the same graph.

The vortex spacing is determined by the applied field. For an hexagonal lattice of 

vortices, the average field have is given by[41]

7 _  2 ^ 0have — n: 2 • (6-1)
v3  rf

have can be measured from /jSR data, or calculated based on Eq.5.3 and 5.7. The /j,SR 

data (Fig.1.1) gives the average field around 91.3 Gauss, which corresponds to a vortex 

separation r\ =  5117A.

Although our model considers only six hexagonally arranged nearest neighbors, the 

experimentally applied field is so low that the lattice spacing is very large (about 4 times Ao). 

So those six vortices are the major contributors to the magnetic field in the neighborhood 

of the inclusion. Therefore it is appropriate to ignore the contributions from more distant 

vortices.

One may see that the magnetic field distribution in the superconducting region is not 

strongly affected by the presence of a large inclusion by considering the results shown in the
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lower portion of Fig. 6.1. While varying the radius of the inclusion dramatically changes 

the inclusion peak position, the remainder of the distribution is not much affected.

0.02

E x p erim en t

0.01

0
200 3000 100

0.02

0.01

0 3000 100
Magnetic field (Gauss)

200

Figure 6.1: Bottom graph: Magnetic field probability distribution of cylindrical inclusions of 
two different radii in an hexagonal array of vortices. Top graph: Fourier transformation of //SR 
experiment data. The sample was a thin disk and the external field was approximately 100 Gauss.
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6.3 In clu sion  R adii and Low T em perature A

Just below 18 K the second peak disappears due to the anti-ferromagnetism in the “green 

phase material” . Prom this lower temperature data we determined A at 16 K by fitting our 

pSR data to a function related to Eq.5.18. This gives A to be around 1450 A.

Assuming that A(16Ar) «  A(18JK’) we determine ro from ra = xq ■ A. Two different ro 

values are shown on the graph. We can see that inclusions of radius ro ~  1200 A have their 

peaks at the corresponding peak of the Fourier transformation of /iSR data. We will use 

this value of inclusion radius for later determination of A(T).

The size of the inclusions is much larger than that of the superconducting vortex core, 

therefore the introduction of inclusions might cause some distortion to the vortex lattice. 

However, when the vortex spacing is much larger than the radii of inclusions, which is the 

case for the low applied magnetic field used here, this distortion should be small. When the 

applied field is high, the distortion introduced by an inclusion can no longer be neglected.
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6.4 T em perature E vo lu tion  o f  th e  Tw o P eaks

Figure 6.2 displays the temperature dependent splitting of the experimental peaks. As 

temperature decreases, the two peaks move apart, i.e., the saddle point peak moves to the 

left (lower field direction) and the new right peak moves further to the right, i.e., higher 

field direction. The separation between the two peaks is zero at the transition temperature, 

increases with decreasing temperature, and reaches 50 Gauss at 18 K. This separation is 

shown in Fig. 6.2.

The experimental separation between the peaks as a function of temperature is plotted 

in Fig. 6.2. The smooth curve in that figure corresponds to the separation using our model 

with ro =  1200A, \(0K ) = 1450 A, and the two-fluid[40] temperature dependence of A(T). 

Note, that we have assumed that A(OAT) ~  A(16Ff), which is certainly true if the two-fluid 

model is appropriate.
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Figure 6.2: Temperature evolution of the separation between the two peaks. The inclusion radius 
in the model was ro = 1200A, and the penetration depth was Ao = 1450A.

6.5 T em perature D ep en d en ce  o f A

We can directly obtain the temperature dependence of A(T) from our model and n SR data 

without using the two-fluid model. The relation between the temperature and penetration 

depth is determined by comparing the separation of the two peaks obtained from exper­

iment at different temperature to the separation calculated from our model for different 

penetration depths. Using this relationship we obtain the temperature dependence of the 

penetration depth, A(T), shown in Figure 6.3.

These data are again compared in Fig. 6.3 to the two fluid model for which we used 

A(18iT) «  \(16K). The agreement is striking, further justifying our assumption that 

A(0FQ »  \(16K).
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Figure 6.3: Temperatures dependence of the penetration depth. The solid line is obtained from Ao 
and two-fluid model. The diamond points are A(T) directly obtained from the experiment and our 
model.

It is known that the two fluid model fits well with the powder sample but does not so 

well with uncorrected data for high quality single crystals. The technique we have developed 

fits well with the single crystal samples. Since the sample we used has large nonconducting 

inclusions that cause strong pins, it is expected that its temperature dependence of the 

magnetic penetration depth to be like powder samples, although it is still a single crystal. 

Therefore the techniques we have developed especially useful to measure the temperature 

dependence of London penetration depth for signal crystal samples with strong pins.
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6.6 Conclusions
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In this study we have characterized the microscopic internal magnetic field distribution 

of high-Tc superconducting material Y B a 2 CuzOi-$ with non-conducting inclusions. The 

magnetic field trapped in inclusions produces a second peak in the Fourier transform of 

the pSR data above the applied field. We have developed a model based on London equa­

tions to account the magnetic field probability distribution inside the inclusion and in the 

superconducting regions and reproduced the two peaks observed in /iSR experiments.

We have also reproduced the temperature evolution of the separation between the two 

peaks observed in experiment. This separation depends on the inclusion radius and Ao. 

From the lower temperature data we determined A at 16 K by fitting our pSR data to the 

field of ideal lattices. Assuming that A (16 K) approx A (18 K) we determine inclusions 

radii. If the inclusions’ radii are known, fitting the temperature dependent separation 

between the two peaks provides a new way to measure the temperature dependence of 

London penetration depth. This new technique is especially useful to study the temperature 

dependence of London penetration depth of single crystal samples with strong pins.

In many practical applications of high-Tc superconducting materials, column defects are 

introduced to create strong pinning in order to pin the vortices even when strong currents 

exert strong force transverse to the vortex axis. This type of materials have strong pinning, 

can carry large current and trap large filed, therefore it is thought to be advantage for a 

variety of practical applications. The model we have discussed is suitable to study these 

types of applications and it may provide a new method to determine the penetration depth 

of those materials.
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