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ABSTRACT

The field of digital image processing encompasses the study of algorithms applied to 
two-dimensional digital images, such as photographs, or three-dimensional signals, such as 
digital video. Digital image processing algorithms are generally divided into several distinct 
branches including image analysis, synthesis, segmentation, compression, restoration, and 
enhancement. One particular image enhancement algorithm that is rapidly gaining wide
spread acceptance as a near optimal solution for providing good visual representations of 
scenes is the Retinex.

The Retinex algorithm performs a non-linear transform that improves the brightness, 
contrast and sharpness of an image. It simultaneously provides dynamic range compression, 
color constancy, and color rendition. It has been successfully applied to  still imagery cap
tured from a wide variety of sources including medical radiometry, forensic investigations, 
and consumer photography. Many potential users require a real-time implementation of the 
algorithm. However, prior to this research effort, no real-time version of the algorithm had 
ever been achieved.

In this dissertation, we research and provide solutions to the issues associated with per
forming real-time Retinex image enhancement. We design, develop, test, and evaluate the 
algorithm and architecture optimizations that we developed to enable the implementation 
of the real-time Retinex specifically targeting specialized, embedded digital signal proces
sors (DSPs). This includes optimization and mapping of the algorithm to different DSPs, 
and configuration of these architectures to support real-time processing.

First, we developed and implemented the single-scale monochrome Retinex on a Texas 
Instruments TMS320C6711 floating-point DSP and attained 21 frames per second (fps) 
performance. This design was then transferred to the faster TMS320C6713 floating-point, 
DSP and ran at 28 fps. Then we modified our design for the fixed-point TMS320DM642 
DSP and achieved an execution rate of 70 fps. Finally, we migrated this design to the fixed- 
point TMS320C6416 DSP. After making several additional optimizations and exploiting the 
enhanced architecture of the TMS320C6416, we achieved 108 fps and 20 fps performance for 
the single-scale, monochrome Retinex and three-scale, color Retinex, respectively. We also 
applied a version of our real-time Retinex in an Enhanced Vision System. This provides a 
general basis for using the algorithm in other applications.

xvi
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Chapter 1

Introduction

Digital image processing encompasses the research and application of signal processing 

techniques applied to two-dimensional digital images, or three-dimensional signals such as 

digital video. The field originates from the confluence of large-scale digital computation and 

the requirement to improve the imagery generated by the U.S. space program in the mid- 

f960’s [20]. Over the last 40 years computation technologies have experienced phenomenal 

growth and digital image processing has benefited from this progress to become a tool tha t 

is used in a wide variety of applications. There are now several branches of digital image 

processing, each representing different aspects of the field. These branches include image 

analysis, segmentation, compression, synthesis, restoration, and enhancement [20, 30]. One 

particular image enhancement algorithm that is rapidly gaining wide-spread acceptance as 

a near optimal solution for providing good visual representations of scenes is the Retinex.

The Retinex performs a computationally intensive, non-linear spatial/spectral transform 

that synthesizes strong local contrast enhancement and color constancy [33]. It is used 

to improve the brightness, contrast and sharpness of an image. It has been successfully

2
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applied to still imagery captured from a broad range of sources including aviation safety, 

medical radiometry, forensic: investigations, military operations, homeland security, and 

consumer photography [103, 55]. It is offered in the commercially available software package 

PhotoFlair by TruView [99]. Several users require a real-time, embedded implementation 

of the Retinex, but prior to this research effort, no real-time version of the algorithm 

had ever been achieved. Real-time1 is defined here as continuously capturing, processing 

and displaying 15-30, 256 x 256 sized images2 (frames) per second. Embedded implies a 

system or component that is, in general, relatively small, inexpensive, and consumes very 

little power [19].

One reason tha t a real-time version of the Retinex had not been achieved is because 

the Retinex is inherently computationally intensive due to the large volume of data that 

must be stored, processed, and transferred between processor and memory. The algorithm 

also entails performing multiple, large convolutions and requires orthogonal data accesses 

that exacerbate the problem. Another reason is the inefficiency of most general-purpose 

computing platforms for real-time Retinex processing — as well as for many other digital 

image processing algorithms. Today’s general-purpose processors, such as 2.5 GHz Pentium 

4s, possess sufficient computation power to provide reasonable processing rates for Retinex 

processing of small, still images. However, in general, they do not have the proper archi

tecture, operating system, or development tools to effectively meet the time constraints 

required for real-time Retinex processing. In addition, many applications limit the proces

sor selection to components that can be embedded into a system. Many general-purpose

: A rea l-tim e system  is one th a t  satisfies explicit bounded  response-tim e co n stra in ts  to  avoid failure [89].
2All im age sizes, such as 256 x 256, in th is  d isse rta tio n  are  expressed using 8-bit pixels.
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processors consume too much power or are too expensive to be used for these types of 

applications.

Several specialized, high-performance hardware architectures and technologies are suit

able for this task. Application specific integrated circuits (ASICs) [62] are one-of-a-kind 

custom devices targeted towards a specific task and provide excellent performance at the 

expense of long development times and high cost. Field programmable gate arrays (FP- 

GAs) [58, 51] are an attractive alternative tha t offer relative ease of programming, high 

performance and reconfigurability to support custom applications. Digital signal processors 

(DSPs) [4] are inexpensive, easy to program — usually in common high level languages such 

as C — and offer good performance. DSPs are optimized for processing signals in real-time 

and offer some limited flexibility in architecture configuration. Several other esoteric tech

nologies, such as array processors, are also available [36, 35]. However, for quick, low cost 

development, DSPs are a suitable and sufficient design choice.

In this dissertation, we examine and provide solutions for the issues associated with 

performing real-time Retinex image enhancement. We design, develop, test and evalu

ate the algorithm and architecture optimizations required to enable the implementation of 

the real-time Retinex specifically targeted for specialized, embedded DSPs. This includes 

optimization and mapping of the algorithm to different DSPs and configuration of these 

architectures to support real-time processing. We also develop and apply a particular in

stance of our research efforts for the real-time Retinex into an Enhanced Vision System [98]. 

This provides a general basis for using the algorithm in other applications or missions.

First, we developed and implemented the single-scale monochrome Retinex executing on 

a Texas Instruments TMS320C6711 floating-point DSP and attained 21 frames per second
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(fps) performance [24], This design was later transferred to the slightly faster TMS320C6713 

floating-point, DSP and ran at 28 fps [25]. We then modified our design targeting the fixed- 

point TMS320DM642 DSP and initially achieved an execution rate of 34 fps [25]. Further 

refinements and optimizations improved our performance to nearly 70 fps. This design was 

implemented as part of an Enhanced Vision System (EVS) and demonstrated during EVS 

flight tests in August and September of 2005. Inputs from two single-band cameras were 

Retinex enhanced, registered, and fused. The system operated at over 34 fps. Finally, we 

migrated our design to a TMS320C6416 fixed-point DSP. After making several additional 

optimizations and exploiting the enhanced architecture of the TMS320C6416 we obtained 

108 fps performance for the single-scale, single-band (monochrome) Retinex and 20 fps 

performance for the three-scale, three-band (color) Retinex.

Several different user communities will benefit from this enabling technology. The Avia

tion Safety Program Office at NASA LaRC will continue to support applying the real-time 

Retinex in future technology demonstrations on the NASA LaRC ARIES 757 (NASA 757) 

research aircraft. The Transportation Security Administration is interested in using the 

Retinex in applications to improve Homeland Security. The U.S. Army has provided fund

ing to study using the real-time Retinex as part of a system to find improvised explosive 

devices (IEDs) from unmanned aerial vehicles (UAVs). The real-time Retinex also has been 

identified for potential use in future NASA space programs including lunar and planetary 

exploration missions and autonomous landing systems.

In Chapter 2 of this dissertation, we discuss the mathematics behind the Retinex algo

rithm. In Chapter 3 we give an overview of the architectures of our chosen DSP hardware. 

In Chapter 4 we describe our test environment, and the software tools used to develop,
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implement and measure the performance of the real-time Retinex. Chapter 5 is the heart of 

this dissertation. In it we discuss the optimization techniques we developed and applied to 

achieve real-time Retinex performance. In Chapter C we describe the EVS, and discuss how 

particular instances of the real-time Retinex were used in this context. In Chapter 7 we dis

cuss future Retinex research issues and their potential solutions. This includes discussions 

of distributing the core structures developed for the DSP platforms into a multiprocessor 

environment, and the algorithm and architecture modifications required to process larger 

format images. Finally, in Chapter 8 we give our conclusions to this research.
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Chapter 2

R etinex Image Enhancement

The Retinex is a general-purpose image enhancement algorithm tha t is used to produce 

good visual representations of scenes. The algorithm is derived from the last version of 

Edward Land’s Retinex model [37] of the innate ability of human vision to perceive vivid 

color and detail across widely varying lighting conditions. In addition, this perception is 

relatively independent of the spectral characteristics of the illuminant. Jobson, et al. ex

tended and improved Land’s Retinex into a general-purpose enhancement algorithm that 

simultaneously provides dynamic range compression, color constancy, and color and light

ness rendition. The first version of their work, the single-scale Retinex (SSR), provided 

good performance, but traded-off dynamic range compression for color rendition [33]. They 

improved their design by using multiple scales (multi-scale) within the Retinex (MSR) to 

address this tradeoff, and additionally added a method of color restoration to improve color 

rendition when gray-world violations occur within an image [32]. Other methods, such as 

post-processing using a white balance technique [5G] have also been added. These additions 

extend the potential utility of the Retinex, but they also increase the computational require-

7
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Figure 2.1: The top row of images from left to right have simulated tungsten, fluorescent, and 
sunlight illumination sources. The bottom row has the same images after Retinex processing. The 
effects of the different illumination sources is nearly completely removed.

ments of the algorithm. We concentrate 011 the SSR and MSR versions of the algorithm.

Figure 2.1 is an example tha t shows the color constancy property of the Retinex. The 

top row of images have simulated tungsten, fluorescent, and sunlight illumination sources 

from left to right respectively, and the bottom row is the image after Retinex enhancement. 

The Retinex processing has almost totally removed the effect of different illuminants on the 

scene. Figure 2.2 is a good visual illustration of the dynamic range compression property. 

Retinex processing of the image on the left dramatically brings out the details in the dark 

regions of the image without saturating the bright regions. Both of these examples are 

processed using the color version of the MSR. Figure 2.3 shows an example of monochrome 

SSR processing. The contrast and sharpness of the original is improved significantly.
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Figure 2.2: Many image processing algorithms would either saturate the bright regions or clip the 
dark regions of the image on the left. The Retinex processed image on the right appears almost 
uniformly illuminated without exhibiting these effects.

The Retinex is a member of the class of center/surround functions which are similar to 

well known difference-of-Gaussian (DOG) functions [27, 54], For the Retinex, the center is 

one pixel wide and its magnitude is the pixel value and the surround is a Gaussian. The 

single-scale Retinex is given by

Ri(x i .x 2) =  lo g (/,(x i.x 2)) -  log(/,;(xi,;r2) * F(x  i , .r2)), i =  1 , . . . . 5  (2.1)

where I, and 11, are the 7th spectral band of the input and output image, respectively. For

a grayscale image 5 = 1  and for a standard color image 5  =  3. The log is the natural

logarithm function and represents convolution. F  is a Gaussian surround (or kernel) 

function defined by

F{xl . x2) = K exp[-(.rf +  :r2)/<x2] (2.2)

where a controls the spatial extent of the surround, and k =  1 / ( 23Xl 23X2 F( x i,:r2)) is a
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Figure 2.3: On the left is a low contrast, dimly lit grayscale digital image; 011 the right is the 
single-sc.ale Retinex processed image — single-scale processing increases the contrast and sharpness.

normalization factor. Canonical gain, a , and offset, f3, values are applied to convert the 

Retinex output into the user display domain, so the final form of the single-scale Retinex is

Rd{x\,x2) = a (lo g (7 j(x i,x 2)) -  lo g (/i(z i,x 2) * F ( x i , x 2))) -  ft, i = l , . . . , S  (2.3)

Values for a , ft, and a are application dependent and determined empirically. For example, 

in normal room light conditions values of 200, -120, 80 respectively produce good results.

The multi-scale Retinex is defined as the weighted sum of K  SSR outputs, where K  is 

the number of scales. Thus the MSR is given by

K

Ri(*  1 , 2 :2 ) = ^ I T \ ( l o g (Ii(xl , x 2)) -  \og(Ii( x l, x 2) * Fk(x i , x2))) (2.4)
k =  1

where the Fk are now defined as

Fk(x 1 , x2) =  Kk exp[—(x'f +  x l (2.5)

The Wk are the weighting factors and the Kk are the normalization factors associated with 

each scale. Jobson et al. [32] have shown, empirically, tha t three scales with reasonable local
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to global coverage, and equal weights provide good performance for most images. Again a 

canonical gain a , and offset, j3, are applied thus the final form of the MSR is

K

Ri(xI ,x2) = w k{\og(Ii{xi ,x2)) -  \og(Ii(xi,x2) * Fk(x i , x2))) -  f3. (2.6)
k =  i

The derivation of the computational complexity of the Retinex is straightforward. As

sume that the input image dimension size is N  x N,  the extent of the surround, F . is 

M  x M,  circular convolution is performed in the spatial domain, and ignore the operations 

involving o, fj, W k and the computations required to generate Fk. We show in Section 5.1.2, 

that these are all valid assumptions. Then for the single-scale monochrome Retinex, there 

are M 2 multiplies and M 2 — 1 additions for every pixel. There are also 2 N 2 logarithm 

operations — two logarithms for each pixel, and N 2 subtractions. Thus, the running time 

of the algorithm is driven by the convolution operation and the complexity is 0 ( N 2M 2). 

As the extent of F  approaches the size of the image, i.e. M  —> N,  the complexity becomes 

0 ( N 4). For the one scale, multi-spectral case, the monochrome algorithm is performed S  

times, once for each spectral band. The complexity remains the same, 0 ( N 2M 2). For the 

multi-scale, multi-spectral case, the convolution and the other arithmetic operations are 

performed K  times, once for each scale. This is subsequently repeated S  times, once for 

each spectral band. Additionally, as discussed in Section 5.4, for any multi-spectral case, 

functions may be required to divide the spectrum into its individual component parts for 

processing, and to combine the processed components back together again. However, the 

complexity still remains the same -  ( ) ( N2M 2). Methods to reduce the running time of the 

algorithm are discussed in Chapter 5.
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Chapter 3

D igital Signal Processors

For our research we have selected four state-of-the-art Texas Instruments (TI) DSPs for 

implementation and performance evaluation of the real-time Retinex (RTR). TI processors 

were chosen because of their flexible and powerful architecture, good support tools, avail

ability of the DSPs to the researchers, low cost of evaluation boards, and our past familiarity 

with using TI processors. Many other DSPs, such as Analog Devices SHARC processors, 

would also provide' reasonable hardware platforms for implementation. All of the TI DSPs 

that were chosen are based on an advanced very-long-instruction-word (VLIW) [71] archi

tecture. This type of architecture achieves high performance by exploiting instruction-level 

parallelism. Multiple execution units operate in parallel to execute multiple instructions 

during a single clock cycle. Our four target DSPs are the TMS320CG711, TMS320C6713, 

TMS320DM642, and TMS320C6416. In this chapter we discuss the relevant details of each 

of these processors.

12
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F ig u re  3.1: Prim ary  DSP com ponents include th e  CPU , L I D ata  Cache, L I Program  Cache, L2 
m emory (SR A M /C ache) and EDM A Controller.

3.1 T M S320C 6711

Our first target, the TMS320C6711B (C6711) DSP, is a 32-bit floating point processor 

that offers up to 1200 millions instructions per second (MIPS)/900 million floating point 

operations per second (MFLOPs) performance at a clock rate of 150 MHz (6.67 ns cycle 

time) [73], As shown in Figure 3.1 the processor is divided into three main components: 

the CPU (or core), memory, and peripherals.

The CPU has eight independent functional units and a 256-bit, wide instruction word 

that allows up to eight 32-bit instructions to be supplied to the units during every clock 

cycle. The functional units are mapped into two sets where each set contains four units and 

a register file. In total the eight functional units provide four fixed/floating point arithmetic 

logical units (ALUs), two fixed-point ALUs, and two fixed/floating-point, multipliers. Two 

multiply-and-accumulate (MACs) per cycle can be performed for a total of up to 300 Million 

MACs (MMACs) per second. Each of the two register files contains sixteen 32-bit registers
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for a total of 32 general-purpose registers. Six of the functional units have access to the 

register file on the opposite side via a cross path. Like a MIPS processor, the CPU uses a 

load/store architecture, where all instructions operate on registers. There are dual 64-bit 

load data paths and dual 32-bit store data paths.

The DSP has a two-level memory architecture for both program and data [88]. Figure 3.2 

is a general outline of the architecture. This hierarchical architecture is used to reduce the 

average memory access time by exploiting the temporal or spatial locality of data [87]. The 

Level 1 data cache (LID) is a 32-Kbit 2-way set associative cache tha t services data accesses 

from the CPU. It has a 32-Byte line size and 64 sets. The LID is implemented with a single 

bank of dual-ported 64-bit memory and can service up to two data accesses from the CPU 

on every cycle. The LID is a read-allocate cache, but does not write-allocate1. A 32-bit 

by 4-entry write buffer between the LID and the L2 memories is used to capture write 

misses. The Level 1 program cache (LIP) is a 32-Kbit, direct-mapped, read-allocate cache 

that services program fetches from the CPU. It has a 64-Byte line size and 64 sets.

The Level 2 (L2) memory space is 64-KByt,es that can be configured as all SRAM, all 

cache, or combinations of the two in 16-KByte increments. This memory services requests 

from the LIP, LID, enhanced direct memory access (EDMA), or internal cache operations, 

with request priority from highest to lowest as listed. It is divided into four 64-bit, banks 

that operate at the CPU’s clock rate, 150 MHz, but pipelines accesses over two cycles. Any 

portion of L2 configured as cache (L2 Cache) is organized as 128 sets with 128-Byte line 

size. The associativity varies from 1-way for when the cache capacity is 16-KBytcs, up

: A read /w rite -a llo ca te  cache a llocates space (i.e. selects a  location in th e  cache) on a re a d /w rite  miss 
according to  th e  cache allocation  policy.
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F ig u re  3.2: G eneral outline of 2-level in ternal m emory architecture of C67x processors. The dashed 
boxes are user addressable memory.

to 4-way at 64-KBytes. The different configuration modes are shown in Figure 3.3. The 

operation of L2 Cache is similar to tha t of both the L IP  and LID caches. On a cache hit 

the L2 cache services the request directly. The L2 Cache is a writeback 2 cache so external 

memory is not updated until the line is either evicted or written back using cache control 

registers. Unlike the LID, the L2 Cache is read-allocate and write-allocate. A least-recently 

used policy (LRU) is used for line selection.

Several peripherals are located within the processor. There is a multichannel EDMA 

controller that supports up to 16 channels of data transfers There is a host port interface 

(HPI) that allows a host processor to directly address the CPU’s memory space. There is 

also a 32-bit external memory interface (EMIF) that provides an interface to external devices 

such as synchronous dynamic random access memory (SDRAM) and read-only memories 

(ROMs) [78].

2W riteback is th e  process of w riting  d a ta  th a t  has been m odified from a  valid, b u t now d ir ty  cache line to  
lower-level m em ory. W rite h its  to  a  w riteback  cache are  not im m ediately forw arded to  lower-level mem ory.
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F igu re 3.3: Configuration modes for th e  C6711 L2 memory.

3.2  T M S 320C 6713

Our second target, the TMS320C6713 (C6713), is a 32-bit floating point processor that 

performs up to 1800 MIPS/1350 MFLOPS at a clock rate of 225 MHz (4.4 ns instruction 

cycle time) [84]. The architecture of the C6713 is very similar to the C6711, and code 

operating on one device directly ports over to the other [92]. The most relevant differences 

in the two devices are listed below.

• The C6713 operates at 225 MHz while the C6711 only operates at 150 MHz.

• The C6713 has a larger internal memory. The LI caches are the same, but the C6713 

has an additional 192-KBytes of SRAM in L2 that only functions as mapped memory.

• The C6713 has a software-configurable Phase-Loek Loop (PLL) controller that can 

be used to select different clock frequencies for the DSP core, peripherals and the 

EMIF [94], Speeding up EMIF transfers can enable faster throughput.
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F ig u re  3.4: Block diagram  of prim ary DM642 com ponents. The DM642 has special instruction 
extensions to  accelerate video applications.

3.3  T M S 320D M 642

Our third target is the TMS320DM642 (DM642). The DM642 is a 32-bit fixed-point pro

cessor that performs up to 4800 MIPS at a clock rate of 600 MHz (1.67 ns instruction cycle 

time) [86]. A block diagram of the processor is shown in Figure 3.4. The DM642 also has 

eight independent functional units consisting of six ALUs and two enhanced multipliers. 

In addition to standard multiplies, the multiply units include hardware that can perform 

bit-count, rotates, and bidirectional variable shifts. Four 32-bit, MACs per cycle can be 

performed for a total of 2400 MMACs per second, or eight 8-bit, MACs per cycle for a total 

of 4800 MMACS. There are new instruction extensions to accelerate video and imaging 

applications, and to improve the parallelism of the architecture [79]. This includes support 

for packed 8-bit, and 64-bit data types, and instructions that perform non-aligned loads and 

stores of words or double words.

The DM642 also has a two-level cache [95]. The LIP is a 16-KByte direct-mapped
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cache with 32-Byte line size and 512 sets. Multiple cache misses are pipelined. The LID 

is lG-KBytes deep and is 2-way set associative with a 64-Byte line size and 128 sets. It is 

implemented as eight 32-bit wide banks of single-ported memory, as opposed to the single 

bank of dual-ported memory of the C671X devices. Each single-ported bank allows only 

one access per cycle. The LID is a read-allocate only cache where new lines are allocated 

for LID read misses but not write misses. The LID implements a LRU line allocation policy 

for read misses and pipelines multiple misses. A 64-bit by 4-entry write buffer between LID 

and L2 memory captures data from write misses. This buffer is an enhanced version of the 

one in the C671X in that the L2 can process a new request from the write buffer every 

cycle, as opposed to every 2 cycles on the C671X, provided that the L2 bank is not busy. 

Additionally, the DM642 write buffer allows merging of write requests, thus effectively 

increasing the write buffer capacity, reducing the stall penalty, and reducing the overall 

number of write operations the L2 must process.

The L2 memory is 256-KBytes that can be configured as local SRAM, cache or combi

nations of the two. This memory services cache misses from the LIP, the LID, the EDMA 

controller and internal cache operations with request priority from highest to lowest as 

listed. It is divided into eight 64-bit, banks that operate at the CPU’s clock rate, 600 MHz, 

but pipelines accesses over two cycles. Four L2 Cache configuration modes are supported: 

32-KByte capacity organized as 64 sets, 64-KByte capacity as 128 sets, 128-KByte capacity 

as 256 sets, and 256-KByte capacity as 512 sets. L2 Cache is always 4-way set associative 

with 128-Byte line sizes and operates as a write-back cache. A cache line is allocated for 

both read and write misses, and a LRU policy is used for line selection.

The DM642 also has many of the same peripherals as the C671X devices with several
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extensions and additions including a 64-bit, EMIF and three configurable video port pe

ripherals [89]. The video ports provide a glue-less interface to common video decoder and 

encoder devices. Each video port can be configured for either video capture or display, and 

each port supports up to two channels with a 5120-Byte buffer that is shared between the 

two channels.

3.4  T M S 320C 6416

Our fourth target is the TMS320C6416 (C6416). The C6416 is a 32-bit fixed-point processor 

tha t performs up to 8000 MIPS at a clock rate of 1000 MHz (1 ns instruction cycle time) [97]. 

A block diagram of the processor is shown in Figure 3.5. The C6416 has eight independent 

functional units consisting of six ALUs and two enhanced multipliers capable of performing 

four 16-bit, x 16-bit multiplies every clock cycle with add/subtract operations. Four 32-bit 

MACs per cycle can be performed for a total of 4000 MMACs per second, or eight 8-bit 

MACs per cycle for a total of 8000 MMACS. . The C6416 also includes support for packed 

8-bit and 64-bit data types, and allows for non-aligned loads and stores of words/double 

words [79]. There are two register files, each containing 32, 32-bit registers for a total of 

64 general-purpose registers. All eight of the functional units have access to the opposite 

register file and the dual load and store data paths are 64-bit,s wide.

The C6416 also has a two-level cache [97]. The LIP and LID are the same size and 

operate the same as the respective memories on the DM642. The L2 memory has been 

increased to 1024-KBytes and can be configured as all mapped memory or combinations 

of cache (up to 256-KBytes) and mapped memory. Any portion of L2 memory partitioned
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as cache has the same modes as on the DM642. The C6416 has two EMIFs: one 64-Bits 

wide and one 16-Bits wide. The total external addressable memory space of 1280-MBytes. 

Table 3.1 summarizes the pertinent parameters of the DSPs.

DSP Type Frequency
(MHz)

LI
(K-Bytes)

L2
(K-Bytes)

EMIF
(Width)

EMIF Clk 
(MHz)

C6711 Floating-pt 150 8 64 1 32-bit 100
C6713 Floating-pt 225 8 256 1 32-bit 90
DM642 Fixed-pt 720 32 256 1 64-bit 133
C6416 Fixed-pt, 1000 32 1024 1 32-bit 

1 64-bit
100
100

T a b le  3.1: D SP Specifications
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Chapter 4

Test Environment

We now describe the platforms tha t support each DSP and the general hardware and soft

ware test environment. This environment will be used to test, analyze and evaluate our 

optimization techniques discussed in Chapter 5.

4.1 D S P  E valuation  M od u les

Each DSP is embedded on a different printed circuit board for test and evaluation. The 

circuit boards are called EVMs (evaluation modules). Figure 4.1 shows the EVM for the 

DM642. The other EVMs look similar to this. As can be seen in the figure, each EVM has 

several components and interfaces to support the associated DSP. We will briefly describe 

the EVMs for each of our selected DSPs only defining the parts relevant to our discus

sion. We will then describe the tools used for software development, optimization, and 

performance analysis.

The C6711 EVM has 16-MByt,es of SDRAM clocked at 100 MHz that is used as exter

nal memory for the chip. There are 128-KBytes of flash memory which is usually used to

21
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F ig u re  4.1: P icture  of DM642 EVM board. Num erous com ponents are on the  EVM circuit board 
to  support testing  the  DSP for a wide variety of applications. We prim arily  use the  peripherals 
associated w ith video cap tu re  and display.

hold application code and parameters when power is disconnected from the board. Com

munication to a host PC — primarily for downloading code and gathering statistics — is 

through a parallel port. An embedded Joint Test Action Group (JTAG) controller is used 

for emulation and debugging [28]. The board also has an expansion connector to support 

adding additional memory, peripherals, or daughter-cards [77].

The C6713 EVM has 8-MBytes of SDRAM clocked at a default rate of 90 MHz and 512- 

KBytes of flash memory. Communication to a host PC is performed through a Universal 

Serial Bus (USB) port. An embedded USB JTAG controller is provided for debugging [66]. 

The EVM also has an Intel LXT971 Ethernet port for data transfers to an external device.

The DM642 EVM lias 32-MBytes of SDRAM clocked at 133 MHz, 4-MBytes of flash 

memory, an Intel LXT971 Ethernet interface, and a standard JTAG connector for external 

emulation [67]. The C6416 EVM has 256-MBytes of SDRAM on the 64-bit EMIF bus 

and 8-MBytes on the 32-bit wide EMIF bus. Both busses are clocked at 100 MHz. The
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board also has 4-MByt,es of flash memory, and a dedicated JTAG connector for external 

emulation [3].

4 .1 .1  V id e o  C a p tu re  an d  D isp la y  for C 6711  an d  C 6 713  E V M s

For the C6711 and CG713 EVMs, video capture, display, and data formatting are performed 

by an imaging daughter-card (IDC) [76] that connects to each board’s expansion connectors. 

The main components of the IDC are a TI TVP5022 digital video decoder chip [74], a TI 

TVP3026 RAMDAC digital video encoder chip [70], a Xilinx FPGA for control, buffer 

management and interface logic, and 2-MBytes of SDRAM for capture frame memory. The 

IDC also has a female Radio Corporation of America (RCA) connector tha t is used to 

receive video, and a standard 15-pin female video graphics array (VGA) connector tha t is 

used to supply red, green, blue (RGB) [69] video output to a monitor.

Figure 4.2 is a block diagram of the video capture subsystem [72]. A video input signal 

from an NTSC (or Phase Alternating Line (PAL)) source is digitized by the TVP5022 

decoder chip into a standard Y ' C r C r  4:2:2 format1. The Y ' C r C r  is a color space used 

to represent digital component video where color is represented by a luma component (Y'), 

and two chroma components (C r  and C r ).  The 4:2:2 notation2 designates the ratio of Y', 

Cb and C r  signals where C r  and Cr  are co-sited and subsampled at half the horizontal 

resolution of Y' [53].

*The IT R -R  BT.G01 s ta n d a rd  defines th e  Y ' C b C r  color space and  th e  4:2:2 sam pling  o rganization  and 
resolutions. T h e  BT.656 s ta n d a rd  defines th e  serial and  paralle l interfaces for tra n sm ittin g  Y 'C bO /? 4:2:2 
d ig ita l video [29. 100].

2T he num ber 4  o rig inates from a m ultip lier of th e  BT.601 chosen baseline frequency of 3.375 M Hz and 
corresponds to  a  sam pling ra te  of 13.5 M Hz, a  s tan d a rd  frequency for d igitizing N TSC  or PAL; sim ilarly  the 
2s correspond to  6.75 MHz [100]. O th e r com m on subsam pling  ra tio s include 4:4:4, 4:1:1 and  4:2:0 (w here 
th e  chrom a com ponen ts are  sited  in te rs titia lly )
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Video
Source

F ig u re  4.2: IDC video cap ture  subsystem

The 8-bit wide Y 'C r Cr pixel stream — interleaved as Cb , Y' ,  Cr , Y' ,  . . . ,  is fed into 

the FPGA. The FPGA separates and stores the stream into capture frame memory buffers 

as two separate fields (odd and even) in three separate blocks (Y', C b , C r ) as shown in 

Figure 4.2. The TVP5022 chip also controls all video input timing including a vertical 

synchronization signal that generates a CPU interrupt once per frame, and a blanking 

signal tha t indicates the presence of data  on the pixel bus to the FPGA.

The capture frame memory buffers are memory-mapped into the DSP address space 

as read-only and are accessed via the EMIF. A triple buffering scheme is used to allow an 

application to obtain a new buffer of the most recently captured data without waiting. The 

“active” buffer is currently receiving data from the TVP5022. The “last active” buffer is 

the last buffer that was filled by the TVP5022. The “user” buffer is owned and read by the 

user application. If the application can maintain a full 30 fps processing rate, the buffers are 

physically walked through in a circular sequence by the FPGA and user application. If the 

user application attem pts to access the buffers faster than 30 Hz, then duplicate frames will

ID C

TVP5022 FPGA

IDC SRAM
Active Last Active User

Y1 Y1 Y1
Cbl Cbl Cbl
C rl C rl C rl

Field 1 Field 1 Field 1
Y2 Y2 Y2
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F ig u re  4.3: IDC video display subsystem

be returned. If the application executes slower, then captured frames will be overwritten.

Figure 4.3 is a block diagram of the video display subsystem [72]. Video display is 

limited to a max size of 800 x 600 pixels with 8-bits per pixel for grayscale or 16-bits per 

pixel for RGB 565 color3. A total output frame display buffer size of 2.88-MBytes (800 x 

600 x 16-bits for 3 buffers) is allocated and linked into the DSP’s external memory space. 

Timing signals for video readout include a vertical synchronization (VSYNC) signal and a 

horizontal synchronization (HSYNC) signal. The VSYNC signal triggers a CPU interrupt 

and the associated interrupt service routine posts a display semaphore which is used to wait 

for new frames. The HSYNC signal triggers an EDMA event to copy one line of display data 

from the display buffer to the IDC display first-in-first-out (FIFO) buffer. The TVP3026 

RAMDAC chip then transmits this line to the output port.

Analogous to the video capture system, a triple buffering scheme is used for data trans

fers. The “user” buffer is owned by the user application. The “next active” buffer will be

3R G B  505 rep resen ts color values using 5-b its for red, 6 -b its for blue and  5-b its for green
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returned on the next buffer request. The “active” buffer is being used for EDMA transfers, 

ff the application attem pts to access buffers too fast, frames will be dropped. If access is 

too slow, frames will be displayed repeatedly.

4 .1 .2  V id e o  C a p tu re  an d  D isp la y  for D M 6 4 2  an d  C 6416  E V M s

The DM642 has three on-chip video ports. On the EVM two of the ports are configured 

as capture ports (video ports 0 and 1) and one is configured as a display port (video port 

2). The capture ports interface to TI TVP5146 [96] and TVP 5150A [91] video decoders. 

The TVP5146 supports composite4 or Y /C  format5 inputs, and the TVP5150A supports 

composite inputs only on the EVM. The output of the display port is routed through an 

FPGA (for functions such as on-screen display or overlays) to a Phillips SAA7105 video 

encoder. The SAA7105 drives either NTSC/PAL composite video, S-video, RGB, or liigh- 

definition component video. Figure 4.4 is a block diagram of the system. Analog input video 

is digitized into planar Y ' C r C r 4:2:2 component video and buffered in external memory 

similar to the method used for the IDC.

A block diagram of the C6416 EVM is shown in Figure 4.5. Analog video is digitized by 

a Conextant, BT835 decoder into a Y'C/A'/f 4:2:2 format and stored by the FPGA into the 

capture FIFO buffer. Instead of being written in planar form as on the C6711 EVM, the 

captured data is stored in C«, Y'. Cb ■ ■ - interleaved order. The FIFO is memory-mapped 

into the address space of the DSP and accessed via the EMIF. Similarly, output data to be 

displayed is stored in Y ' C r C r 4:2:2 format and written using a EDMA channel into the

4 C om posite video com bines lum a, chrom a and  sync signals in to  a single waveform carried  on a single wire 
pair.

5Y /C  has th e  lum a and  ch rom a com ponents carried  on sep a ra te  signal w ire pairs  to  reduce signal crosstalk . 
Y /C  is often incorrectly  referred to  as S-video, a  m agnetic  ta p e  m odu la tion  form at.
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F ig u re  4.4: DM642 EVM  block diagram

display FIFO by the DSP. The pixel stream is then transfered to a Conextant BT864 for 

digital-to-analog conversion (DAC) and NTSC/PAL encoding.

4.2  D ev e lo p m en t T ools

Several software development tools are used on all of the EVMs, including a C-compiler, 

assembly optimizer, and a debugger for visibility into source code execution. These tools are 

incorporated into T I’s Code Composer Studio (CCS). Other rapid prototyping software tools 

used include a chip support library (CSL) [81] to configure and control on-chip peripherals, 

an image data manager (for the IDC) for DMA abstraction, and a C-callable DSP library 

(DSPLib) [90] that contains a collection of highly optimized functions such as the well- 

known Fast Fourier Transforms (FFT) [7, 49, 64]. A scalable real-time operating system 

(OS) kernel called DSP/BIOS (basic input output system) is used to provide preemptive 

multi-threading, hardware abstraction and real-time analysis [80].
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Compiler options are used to control speculative loading, auto in-lining thresholds, data 

alignment/placement information, and advanced loop optimizations [82], Significant perfor

mance improvements can be gained by using target-specific instructions called intrinsics [93], 

Intrinsics are special functions that allow certain assembly statements to be easily embed

ded in application code. For example to find the maximum value of two variables x l  and 

x,2 we simply use the optimized in-line intrinsic function call for max2 — max2{x\ , x2) .

4 .3  T est-B ed  C om p on en ts and O p eration

A test-bed is used to implement and analyze the real-time Retinex algorithm and to support 

testing the algorithm within the context of the EVS for our case study. The baseline test-bed 

is composed of

• a standard NTSC video source (for example a video camera, DVD player or VCR),

• a monitor that accepts a composite video input to display the processed output,
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EVM; after in itiation, the DSP executes independently.

• a host personal computer (PC) running CCS for code development and analysis,

•  a JTAG emulator for communication and debugging, and

• the target DSP on an EVM as discussed in Section 4.1.

Figure 4.6 shows general outlines of the test-bed using the C6711 and C6713 EVMs with 

IDCs, and the DM642 and C6416 EVMs. The host PC is not part of the image processing 

chain.

General operation of the test-bed is as follows. C code to perform the Retinex is written 

on the PC using the CCS software. This code is compiled, assembled and linked into a 

common object hie format (COFF) and is downloaded into the DSP on the EVM. Execution 

of the algorithm is then triggered from the PC. From this point on, the EVM operates 

totally independent of the PC. The functions for performance analysis are (1) video frames 

are captured from the source, (2) a 256 x 256 pixel sized portion of the captured frame 

buffer is Retinex processed, and (3) the output product displayed.
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4 .4  P erform an ce A n alysis

The execution time of the Retinex is measured by using the real-time analysis tools within 

DSP/BIOS. These tools are composed of instrumentation code tha t is integrated into the 

target application. The code is executed at run time, and the events of interest are stored 

in memory on the target. This information is transferred to the host PC for display, further 

processing, or post-exec.ution analysis. All instrumentation operations have fixed, short 

execution times and communication between the target and host is performed in the back

ground using a low priority idle thread thus minimizing the impact 011 performance and 

program behavior.

The instrumentation modules can be called explicitly by the application through ap

plication programmer interfaces (API)s or implicitly through the calls used internally by 

D SP/BIOS[80]. Explicit instrumentation API modules include a statistics (STS) object 

manager and a trace (TRC) manager. STS objects store statistics about data variables or 

system performance including capturing count, maximum, total, and average values in real

time. The TRC module provides a means to enable or disable data acquisition in real-time 

through querying a set of bits.

Implicit instrumentation is built into DSP/BIOS and allows the user to display several 

values including CPU loading. CPU loading is defined as the percentage of instruction 

cycles that the CPU spends performing application related work — running interrupts, 

tasks, periodic functions, performing I/O  to the host, or running any other user routine. 

For the remaining time, the CPU is considered idle. CPU load is be expressed by

CPUload  =  (cw/(cw +  Cj)) x 100 (4-1)
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where cw and c% are work and idle instruction cycles, respectively. CPU loading can be 

viewed graphically in a window with continuous updates if the there are enough idle cycles 

to transfer this statistic to the host. Otherwise the values can be obtained after halting the 

target and retrieving the stored loading values.

4.5 R ea l-tim e  P aram eter U p d a tes

A useful capability to test the Retinex algorithm is to be able to update parameters in 

real-time. TI provides a mechanism to interact with an application in real-time called 

real-time data exchange (RTDX)[80]. RTDX plug-ins provide a means to transfer data  

between a host computer and DSP devices via the JTAG interface with minimal interference 

with the target application. A small RTDX library runs on the target DSP while another 

runs on the host. An application executing on the target makes function calls to the 

RTDX target library’s API to send or receive data. The host library, working within CCS, 

provides a component object model (COM)6 API for communication. Any object linking 

and embedding (OLE)' automation client on the host can be used for display or analysis. 

We developed our own OLE client using Visual Basic to update Retinex parameters (a), 

offset (/J), and the standard deviation of the Gaussian surround (cr).

6C O M  is a  Microsoft, developed technology th a t allows com m unication  bet ween softw are com ponents. 
‘O LE is a  M icrosoft developed s ta n d a rd  enables th e  crea tion  of an ob jec t in one app lica tion  th a t  can  be 

linked or em bedded in a second application .
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4.6  R e tin ex  Task W ith in  D S P /B IO S

Our code for the Retinex is written to execute as a task within the DSP/BIOS environment. 

This allows explicit use of the real-time analysis tools. In general, two tasks, “main” 

and “video processing” are scheduled. First, “main” performs a few initializations, such 

as setting up the chip support library, configuring the cache, and opening up an EDMA 

channel, and then returns. The “video processing” task is then set to run automatically by 

the DSP/BIOS scheduler. The video processing task consists of the following steps:

• set up several video parameters such as capture and display frame sizes,

• receive a frame from the capture frame buffer,

•  call (and waits on) the Retinex processing function,

• display the Retinex output and optionally displays the unprocessed frame,

• exchange capture and display buffers, and then returns to read another frame.

STS objects are coded within the “video processing” task to determine the overall exe

cution time of the Retinex processing function. Several STS objects are also placed within 

the Retinex processing function to determine internal performance characteristics. This 

helps to isolate the primary time consumers or “tall-poles” within the algorithm. STS API 

calls to set the time 0 11 an STS object, and then to check the change in time after execution 

of some portion of code requires approximately 18 and 21 instructions respectively. These 

values can be removed for a more accurate measure of performance.
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Chapter 5

O ptim izations and Performance 

R esults

We now describe the optimization techniques we developed and applied to implement the 

real-time Retinex. This discussion is the core of our research. Our discussion will focus 

on the major algorithm and architecture optimizations that significantly improved perfor

mance. Additionally, each optimization was developed under the basis tha t it would not 

cause any perceptible loss in image quality.

Our baseline algorithm and architecture targets are the single-scale monochrome version 

of the Retinex (SSMR) and the C6711 DSP on the C6711 EVM in our test-bed. The 

SSMR is the simplest form of the Retinex and the C6711 has the lowest performance 

of the processors in this study. However both allow us to establish our core algorithm 

and architecture techniques and provide a basis for future optimizations, extensions, and 

adaptation to other platforms. One change in the architecture at this point is to configure 

the L2 memory as 32-KBytes of cache and 32-KBytes of SRAM. The 32-KBytes of SRAM

33
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arc sufficient to store all the required variables in our first implementation.

5.1 S in g le-S ca le  M on och rom e R etin ex  O p tim iza tion s

5 .1 .1  A p p ly  C o n v o lu tio n  E q u iv a len ce

A fundamental component of the Retinex computation is to convolve the input image with 

a Gaussian kernel. Good single-scale Retinex renditions are obtained with a large kernel 

(a > 80), so performing this operation in the spatial domain is extremely time consuming. 

The first, and most obvious, optimization then is to use the well-known equivalence between 

convolution in the spatial domain and multiplication in the spatial-frequency domain [7, 20]

f ( x ,  y) * g(x,  y) F(g,  v)G{g, u) (5.1)

where F  and G are the spatial frequency domain representations of /  and g respectively. 

We apply this concept to convolve an input image with a Gaussian kernel by employing the 

2-dimensional M  x N  forward and inverse Discrete Fourier Transforms (DFTs) [20] defined 

by

M - l N - l

=  T i n  ^  ^  f{LX, y )ex^[ - j2 i z {gx / M + uy/N)]  and (5.2)
x = 0  ,r= 0  

At —1 N - l

/ ( * ’ V) = E E  cxP[.y2vr(/t:r/A/ +  uy/N)\ ,  (5.3)
fi= 0 u = 0

respectively, to rewrite the SSMR equation as:

R( x i , x2) = a(log(I(xi ,  x 2)) — log[iF_1(/(/t, v)F(g,  zz))]) — f3. (5.4)
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The I (n , v )  and F(fi. v) represent the DFTs of an input image I  (x i, x^). and a Gaussian 

kernel F(x \ . :r2), respectively, and F  1 represents the inverse DFT.

Exploiting the separability of the DFT and the computational efficiency of the FFT, 

we compute 2-dimensional transforms by applying 1-dimensional FFTs to first the rows 

and then the columns of the image. The computational complexity of the FFT for the 

1-dimensional case is 0( ( N/ 2 )  log(IV)) where N  is the size of the complex input [20]. Thus 

the computational complexity of the 2-dimensional case (where the input image dimensions 

are IV x N)  is reduced to ( ) (N‘2 log (A7)). The FFTs are computed using the optimized T1 

DSPLib. This library restricts the number of input points to a power of two so we have 

chosen to process a 256 x 256 portion of each input frame to closely match the resolution 

of the cameras used in our case study as discussed in Chapter 6.

The specific FFT  algorithm used is the floating-point radix-2 FFT [90]. TI benchmarks 

the number of cycles to compute this operation by

C = (2n log2 n) +  42 (5-5)

where C  is the number of cycles, log2 is the base 2 logarithm, and n is the length of the 

complex input array [90]. For a 256-point FFT this corresponds to 4138 execution cycles, 

thus the C6711 operating at 150 MHz performs this operation in 27.6 microseconds (/rs) 

under ideal benchmark conditions. To forward transform the 256 rows of a 256 x 256 

image requires £» 7 milliseconds (ms). All of the 256 columns of the transformed image 

must then be forward transformed and later, both the rows and columns must be inverse 

transformed (IFFT) resulting in a total of 1024, 256-point, forward and inverse transforms 

for the input image. The Gaussian kernel must also be forward transformed resulting in and
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additional 512 FFTs, so the total number of transforms is 1,536. Prior to implementation, 

we felt tha t of all the calculations performed within the algorithm, performing the 1,536 

FFTs would consume the majority of the execution time. However, experimental evidence 

showed otherwise as we discuss in Section 5.1.3.

5 .1 .2  P r e -C o m p u te  th e  K ern el

To reduce the number of FFTs performed we developed our first optimization for the al

gorithm. As is commonly done in practice we pre-compute and store the coefficients (or 

“twiddle-factors” [61]) used to calculate the F F T /IF F T . Our basic idea then was to use a 

similar technique for the Gaussian surround functions. For the SSMR there is only one scale 

so we only had to generate one surround function. Two key concepts were implemented that 

not only reduced the number of FFTs, but also significantly reduced the amount of memory 

tha t must be used by the algorithm. First, the Gaussian kernel is directly generated and 

applied in the spatial frequency domain thus eliminating the requirement to perform the 

FFT of the kernel. Second, the Gaussian is separable and circularly symmetric [63], and is 

its own (scaled) Fourier transform so it can be expressed as the product of two 1-dimensional 

functions and can be decomposed into horizontal and vertical projections along these di

mensions. Circular symmetry implies that the two projections are the same, and the left 

half of either projection is the same as the right half flipped about the halfway point. Thus 

we only need to keep a single 128-point array of surround values to multiply with the spatial 

frequency domain image data. In practice we used a 256-point array to simplify indexing. 

Using this array instead of the full spatial frequency domain representation of the kernel 

saves ~  0.5-MByt,es.
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5 .1 .3  B a se lin e  A lg o r ith m  P er fo rm a n ce

Using our ideas for the Gaussian kernel we implemented the first DSP version of the Retinex. 

Table 5.1 summarizes the actual measured execution time of the overall algorithm and 

selected components within the algorithm. These times were obtained by placing STS 

objects, discussed in Section 4.4, within the algorithm.

Time (ms)
retinex 1333.42 (0.75 fps)

fwdprocessrows 476.11
fftrows 9.76
logorig 461.72

fwdprocesscols 170.77
multkernel 13.46

invprocesscols 157.83
invprocessrows 528.71

rtxeq 507.80

Table 5.1: In itial perform ance results from the  first im plem entation of th e  SSMR.

The “retinex” item is the total time to perform the SSMR for one frame. The time 

to “fwdprocessrows” is the summation of (1) reading a row of image data from external 

memory into local memory, 2) preparing a complex input array for the FFT, (3) performing 

the FFT on the data, (4) storing the transformed row data back in external memory for 

processing at a later stage of the algorithm, and (5) calculating the logarithm of each pixel 

in the row and storing it in external memory. The row FFTs are computed as the first stage 

of transforming the image data from the spatial domain into the spatial frequency domain. 

The time to perform just the FFTs of the rows (256, 256-pt FFTs) is the “fftrows” item in 

the table. The 9.76 ms time is relatively close to the 7 ms benchmark.

The logarithm computations on the input image are also performed at this point since1
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the input image pixel is already in the cache for the FFT. Like the FFT data, the results 

are used later in the computation of the SSMR so the values are stored in external memory. 

These calculations represented as the “logorig” item in the table, take a very long amount of 

time, 461.5 ms. This time is much larger than originally anticipated. We discuss a method 

that we developed and applied to reduce this time in Section 5.1.4.

Similar to the “fwdprocessrows” , the “fwdprocesscols” time is the summation of (1) 

reading a column of image data (that has already been row transformed) from external 

memory, (2) performing an FFT on the data completing the 2-dimensional image transform, 

(3) multiplying the now spatial frequency domain image data with the kernel, and (4) storing 

the processed image data back into external memory for further processing at a later time. 

The multiplication of the spatial frequency domain image data with the kernel also takes 

a considerable amount of execution time — 13.46 ms shown as “multkernel” in the table. 

We discuss a method that we developed and implemented to significantly reduce this in 

Section 5.1.6. The “invprocesscols” and the “invprocessrows” times are the summations 

of (1) reading a column/row from external memory (2) performing an inverse FFT on the 

column/row, and (3) storing the column/row in external memory. The “invprocessrow” 

item also includes the time to calculate the last stage of the algorithm - the final equation 

to generate each output pixel value after all preliminary values have been calculated. The 

time for the “rtxeq” item represents this value. The time to compute this stage is also very 

long because it contains the second calculation of the logarithm function applied to the 

convolved image data within it.
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5 .1 .4  P r e -C o m p u te  th e  L o g a r ith m

Directly executing the logarithm function is an expensive operation. The C6711 run-time 

support library benchmarks 952 execution cycles for a double-precision (64-bit) natural log

arithm calculation and 152 execution cycles for a single precision (32-bit) calculation [85]. 

Thus with a clock speed of 150 MHz, each double-precision log operation requires 6.35/ts. 

This operation is performed for every pixel so the total benchmark time is 415.93 ms corre

sponds closely to the value obtained1. Our initial implementation used this double-precision 

function call. However, using the single-precision function does not sacrifice image quality. 

Changing to the single-precision function reduced the “log_orig” time from 461.72 ms to 

69.05 ms, and the “rtxeq” time from 507.80 ms to 92.82 ms. This reduced the total Retinex 

execution time, “retinex” , from 1333.42 ms (0.75 fps) to 525.83 ms (1.90 fps). This is a 

substantial decrease in the execution time of the algorithm, but the logarithm computation 

is still a significant portion of the total time.

To further eliminate this bottleneck we used the fact that the input to the logarithm is 

limited to integer values in the range of 0 to 255, and formulated the idea of pre-computing 

the logarithm values and storing the values in look-up tables (called log tables). We gen

erated another optimization by embedding the Retinex parameters o and /I into the log 

tables. In observing the SSMR equation from Chapter 2 (repeated here for convenience),

R i ( x i , x 2) =  a ( lo g ( /i (:r1,x 2)) -  log (T (x i,x 2) * F( x i , x 2))) ~  (5.6)

1The slight, d iscrepancy  is due to  m inor ad d itiona l opera tions, such as d a ta  type conversions, th a t  are 
perform ed w ith in  th e  m easurem ent interval, and  loop indexing and  STS ob jec t overhead.
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we can distribute a  and group (3 witli the first term to produce

Ri(x 1 ,X2) = (a log (/i(x i, x 2)) -  (3) -  (a\og(Ii(xu x 2) * F ( x i , x 2))) . (5.7)
'------------------ v------------------ ' '------------------------ v------------------------ '

P i { x i , X 2) Q i (x i ,X2)

where

Pi{x i , x2) -  (a log(Ii(xi,  x 2)) — [3) (5.8)

for Ii(x, i ,x2) € {1, ■ •. ,255}

and

Qi ( x i , x2) =  (alog(Ii ( x l , x 2) * F ( x u x 2))) (5.9)

for (Ii (x i ,.t 2) * F ( x i , x2)) £ {1, — , 255}.

If I i ( x \ , x 2) = 0 then we assign Pi (x \ , x2) =  —/?, and if ( I i (x i , x2) * F ( x \ , x 2)) = 0 then we 

assign Qi ( x \ , x2) =  0. We can generate two log tables: the first one for Pi (x i , x2) and the 

second one for Qi ( x \ , x2). The tables require 1-KByte each, so the additional memory for 

two tables instead of one is insignificant. The simple regrouping and embedding of a  and (3 

eliminates one multiplication and one addition per pixel per band (i in the equations above) 

and and could save up to 131,042 execution cycles per band depending upon the order of 

implementation2. The most im portant reduction though is just from using table look-up. 

The measurement results are shown in Table 5.2. The time to perform the logarithms is 

now 18 times less than when using direct single-precision logarithm calculations! The total

2If properly  o rdered  th e  m ultip ly -accum ulate  function  of th e  D SP  can perforin  th is  o p era tion  in 65,536 
execution cycles p e r band.
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execution time is now 385.05 ms which corresponds to 2.59 fps. This is still well below from 

our minimum target value of 15 fps for real-time processing.

Time (ms)
retinex 385.05 (2.59 fps)

fwdprocessrows 21.0
fftrows 9.94
logorig 3.67

fwdprocesscols 170.85
multkernel 12.39

invproc.esscols 157.65
invprocessrows 35.52

rtxeq 14.46

Table 5.2: Performance measurements after using logarithm tables and combining a and p.

As can be seen from Table 5.2, there is a large discrepancy in the time it takes to process a 

row versus a column: the “fwdprocesscols” time is eight times that of the “fwdprocessrows” 

time! If the principal cost of computations were the FFT, the time to perform both of these 

operations should be roughly the same. We determined that the row and column times 

are substantially different because the processing is not driven by FFT computations, but 

rather by data transfers. To quantify this, additional STS objects were added to directly 

measure the column read and write times. To read a complex 256-point integer column 

from external memory and to write it back required 148.3 ms. This represents over 93% of 

the “fwdprocesscols” time.

The primary cause of the discrepancy between row and column execution time can be 

determined by examining the memory requirements of the algorithm and the DSP architec

ture. The most, efficient data processing operations occur when the processor has very fast 

access to the data, i.e., when the data is located in the cache or in L2 memory. While we
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do not have direct write access to the L IP  or LID caches, we do have access to, and some 

control over, the next fastest access location: L2 memory. The C6711 has a 64-KByte L2 

memory that can be configured as cache, SRAM, or a combination of the two as discussed 

in Section 3.1. Optimum performance can be obtained if all of the transformed image data 

is located in the L2 memory, but unfortunately, 64-KBytes is nowhere near the required ca

pacity: the input image itself is 64-KBytes. Additionally, the DSPlib FFT routines require 

input and output data in complex format, i.e. each point must have a real and imaginary 

(zero for our input purposes) component, which doubles the storage size. Also, the data is in 

floating point (four byte) format, so the actual memory required to store a transformed 256 

x 256 image is 512-KBytes. Thus the image data must be kept and fetched from external 

memory.

Operating directly on data located in external memory incurs a large performance 

penalty, so for performing the FFT efficiently on a row of an image requires reading all 

the contiguous pixels of the row from external memory into a buffer located in L2 memory. 

The first pixel read of a row is accompanied by reading in 3 additional pixel points into 

the 32-Byte line size of the LID cache. Accessing the first pixel causes LID cache and L2 

memory misses, but accessing the next three pixels in the row returns a cache hit and the 

data is retrieved in one clock cycle. To process a column requires accessing lion-contiguous 

pixels with a stride difference equal to the number of columns. So, transferring a column 

of image data from external memory generates a LID and L2 memory miss for each pixel 

thus severely degrading performance. Additionally, we cannot take advantage of any tem

poral locality for the data since we are only using the data once at this point within the 

algorithm. In order to improve the L2 memory transfer time for column-wise image data
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we must change the mechanism for access.

5 .1 .5  U se  D M A  to  T ransfer C o lu m n s

Our next idea was to use the EDMA controller in the C6711 to handle data transfers 

between L2 memory and external memory. This saves processor cycles used to transfer the 

data, and, since the transfer can be performed in the background, this enables overlapping 

processor execution with data transfers if coordinated correctly. The chip support library 

for the C6711 provides the capability to perform 2-dimensional transfers by specifying the 

number of bytes per line, the number of lines, and the number of bytes between the start 

of one line and the next. If we set these parameters to transfer a column of image data, we 

can exploit the efficiency of this transfer to speed up column processing of the image.

Time (ms)
r e t in e x 134.44 (7.44 fps)

fwdprocessrows 19.05
fftrows 9.90
logorig 3.27

fw d p r o c e s s c o ls 39.24
multkernel 9.84

in v p r o c e s s c o ls 28.73
invprocessrows 47.86

rtxeq 16.21

T ab le  5.3: Perform ance results after using 2D DMA d a ta  transfers.

The improvements gained by using this method are shown in Table 5.3. The total time to 

transfer and perform processing on the columns is now only 67.97 ms as compared to 328.5 

ms earlier, thus reducing the total SSMR execution time down to 134.44 ms (7.44 fps). Note 

tha t the “multkernel” execution time is reduced because the processor does not have to wait 

for data to arrive from external memory to begin execution. However, the “invprocessrows”
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time lias increased. This occurs because the next processing stage must now wait until 

the last column transfer is complete to begin execution. In the prior implementation this 

function was part of the “invprocesscols” but was composed of execution cycles to transfer 

data rather than wait cycles. We discuss methods tha t we developed to eliminate this and 

other wait cycles in Section 5.1.8.

5 .1 .6  R e d u c e  G a u ssia n  K ern e l C o m p u ta tio n s

A property of the Gaussian function tha t we can exploit to significantly improve perfomance 

is that the tails of the function rapidly decrease to zero for large a. This implies that a large 

percentage of values in the 256-point Gaussian kernel array will be zero. If we preset (to 

zero) the buffer that will hold the convolution result, the loop to process the convolution can 

be terminated early with proper indexing and checks for the first zero value in the surround 

array. Table 5.4 shows the result of implementing this optimization. The time to multiply 

the kernel is reduced from ~  9 ms to 150//S with a =  80. We should note that this time is 

dependent upon the extent of the surround, and the performance will degrade, ultimately 

back to 9 ms, as narrower surrounds3 are chosen.

We also discovered that performance can be improved by changing the way one initiates 

the complex array. To generate the complex input array for the FFT we must interleave a 

real (image data) value with an imaginary (zero) value. Ordinarily one would simply zero 

out the array by using some function call and then fill in every even indexed array value 

with the real components. We found tha t it is more efficient to write the real component 

and then immediately write zero into the next array value. This occurs because we only

!A narrow surround in the spatial domain is wide in the spatial frequency domain and vice versa.
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Time (ms)
r e t in e x 125.04 (7.41 fps)

fwdprocessrows 18.99
fftrows 9.91
logorig 3.29

fwdprocesscols 29.33
m u ltk e r n e l 0.15

invprocesscols 28.96
invprocessrows 47.76

rtxeq 16.29

T ab le  5.4: Perform ance results after using 2D DMA d a ta  transfers.

have to load and access the input array in the LID cache once instead of twice plus function 

call overhead for the first method.

5 .1 .7  M erg e  A lg o r ith m  C o m p o n en ts

The next significant performance increase was obtained by identifying redundant transfor

mation cycles in the algorithm. In our original implementation we performed the following 

sequence of operations:

• For all rows: read in row, FFT, and write the result to external memory,

• For all columns: read a column, FFT, and write the result to external memory,

• For all columns: read a column, convolve with the Gaussian kernel, and write the 

result to external memory

• For all columns: read in column, IFFT, and write the result to external memory,

• For all rows: read a row. IFFT, and write the result to external memory.
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The remainder of SSMR calculation is then performed. We can take advantage of the 

independence of each column of image data by merging some of the preceding steps and 

thus eliminating several stages of data transfers. As soon as we have performed the FFT of 

a column, we can continue processing this column, multiplying it with the kernel, and then 

immediately perform an IFFT of the column. The processing stages then become:

• For all rows: read in a row, FFT, and write the result to external memory.

• For all columns: read in a column, FFT, multiply with the Gaussian kernel, IFFT, 

and write the result to external memory.

• For all rows: read in a row, IFFT, and write the result to external memory.

This saves four read and write transfers to external memory. Table 5.5 shows the results 

of implementing this optimization. The “fwdprocesscols” and “invprocesscols” items are 

now merged into the “processcols” item. Additional optimizations were also performed to 

reduce the “rtxeq” time. This includes moving all tables into L2 memory and performing 

a 1-dimensional DMA transfer for the final output values. The total execution time of the 

algorithm is down to 83.06 ms (12.04 fps). This is now approaching real-time performance.

5 .1 .8  M in im ize  D a ta  T ransfer O verh ead

We then focused on formulating and applying a method to minimize the overhead of trans

ferring data between external and internal memory. Instead of using processor cycles to 

perform this function, we used the DMA capability within the processor to perform all 

external-to-internal memory transfers. We were already using this function to perform 2- 

dimensional column transfers as mentioned in Section 5.1.5 and 1-dimensional array trans-
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Time (ms)
re tin e x 83.06 (12.04 fps)

fwdprocessrows 17.42
fftrows 9.8
logorig 3.25

processcols 41.14
multkernel 0.16

invprocessrows 34.11
rtxeq 5.3

T a b le  5.5: Perform ance results after merging algorithm  stages. Since the  forward and inverse 
column execution tim es are effectively merged together, the  tim e to  process columns is now in item  
“processcols”

fers for the final output values of the algorithm as discussed in Section 5.1.7. We now add 

additional DMA transfers for the row data  transfers of FFT data and for the logarithm 

of the input image data. Storing the logarithm of the input data requires 256-KBytes, far 

larger than the memory available in the L2 memory, so these values must be kept in external 

memory.

Performing DMA transfers and waiting for completion obviously reduces the effective

ness of using DMA. To avoid this we implemented a double buffering scheme to move from a 

data I/O-limited algorithm to a execution cycle-limited algorithm. As noted earlier, DMA 

allows data transfers to occur independently or in the background of any processor activity. 

We developed an algorithm and implemented a series of buffers so tha t as we process one 

buffer, we simultaneously transfer in the next data to be processed. This double buffering 

scheme was used for all DMA transfers and removed the requirement to wait for any DMA 

transfer. W ithout having to wait, reading in more than one unit of transfer (e.g. two rows 

or two columns) did not improve performance.
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5 .1 .9  U se  C a ch e -o p tim ize d  F F T s

After all of the previous optimizations, we returned to trying to improve the FFT. We 

identified and applied a more efficient form of the FFT algorithm, a cache-optimized (SP x 

SP) algorithm that allows the use of mixed radix FFTs that can be calculated in multiple 

passes. A 256-point FFT only needs one pass and can be effectively calculated using the 

cache-optimized FFT  in radix-4 mode. The benchmark equations for the cache-optimized 

FFT suggested that we could obtain better performance from this version versus the radix-2 

form. Ttie number of cycles C  to compute the FFT using this equation is given by:

C  =  (3|"log4(n -  l)]n ) +  (21|"log4(n -  1)] +  (2n) +  44 (5.10)

where C  is the number of cycles, log4 is the base 4 logarithm, and n is the length of the 

complex input array. For a 256-point FFT C  =  2923 cycles, or 19.5 /rs, corresponding to a 

30% increase in FFT performance. To forward transform the 256 rows of an image 256 x 

256 image takes 5 ms.

Implementing the double buffering scheme and changing the FFT algorithm for the 

C6711 allowed us to achieve our final C6711 SSMR execution time of 48.33 ms or 20.7 fps. 

Table 5.6 shows the timing for the individual components of the algorithm. A sample output 

image frame from a video taken of a bookcase is displayed in Figure 5.1. The input image 

is shown on the left while the Retinex enhanced image is shown on the right. The enhanced 

image has greatly improved contrast and sharpness. Details that are indistinguishable in 

the original are easily noticed in the enhanced image.
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Time (ms)
re tin e x 48.33 (20.7 fps)

fwdprocessrows 12.83
fftrows 6.98
logorig 3.20

processcols 20.55
multkernel 0.16

invprocessrows 14.92
rtxeq 5.59

T ab le  5.6: Final SSMR perform ance results using th e  C6711 DSP.

5.2 M ap O p tim ized  S S M R  to  C 6713

To improve and compare performance we mapped the same optimized SSMR code developed 

for the C6711 onto the C6713. Considering the similarity in architectures this should provide 

a near linear increase in performance corresponding to the increase in clock speeds between 

the devices. Thus performance should improve by 50% (225/150) and the expected frame 

rate should be close to 31 fps. The larger L2 memory on the C6713 is not used because 

all of the memory allocated in the current implementation fit, in 64-KBytes, and the extra 

192-KBytes of L2 SRAM on the C6713 are not large enough to move any of the significant 

data structures into on-chip memory.

After porting the code to the C6713, the algorithm ran successfully and we obtained a 

frame rate of only 28 fps. The 35% increase is sub-linear. This occurs because the C6713 

EVM has a slower EMIF clock that controls the transfer rate to external memory. The 

C6711 EVM uses a 100 MHz EMIF clock while the C6713 EVM uses a 90 MHz clock. This 

reduces the external data transfer rate to the extent tha t the processor must now wait for 

DMA transfers to complete.
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F ig u re  5.1: C apture  Video Fram e w ith inpu t from cam era on the left, and R etinex o u tp u t on the  
right. R etinex param eters are a  =  175, j3 = 135, and a  =  80 — note th a t we are nearly reaching 
the  noise lim it of the  cam era.

5.3 M ap O p tim ized  S S M R  to  D M 642

Although either of the C671X platforms would perform adequately for many applications, 

it is obvious tha t neither has the performance capability to meet real-time multi-spectral, 

multi-scale Retinex processing requirements. So next, we ported the SSMR algorithm to the 

DM642 platform. Although the DM642 uses different image capture and display drivers, 

DMA mechanisms, and FFT algorithms than the C6711/C6713, the core structures and 

methods developed and implemented on the C6711 remained the same. Directly comparing 

DM642 MIPS with the C6711 shows a potential four-fold increase in performance. However, 

other factors such as extra computations to handle fixed point arithmetic, and different 

processor specific instructions, libraries, and EMIF bus speeds affect performance. These 

modifications do not allow a direct comparison with C67X performance but we should 

anticipate approximately 70 to 90 fps performance.
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Fixed-point arithmetic limits the dynamic range of the DM642 to 231 — 1. This is 

sufficient for some portions of the algorithm. For example, the input to a 256 point radix-4 

FFT  is processed in 4-stages where each stage gives 2 bits of growth. Our 8-bit image data 

input will then only grow to a maximum of 16 bits for one forward transform. Since we 

generate a 2-dimensional Fourier transform, a second 256-point FFT is also performed. This 

increases the growth to 32 bits which still fits in a standard integer data type. However, 

the now spatial frequency domain image data is then multiplied with a kernel. The largest 

numbers from the FFT operation are on the order of 108. The smallest numbers from the 

normalized spatial frequency Gaussian kernel are truncated4 at 10~6. Thus we must process 

values on the order of 1014 which, without scaling, is well beyond the capability of 32-bit, 

fixed point representation.

To perform scaling we invoke a few simple arithmetic conventions. For example, to 

multiply an integer number I  by 0.6913 (which equals log(2)) one could perform

R = ((1*6913) +  5 ,000)/10,000 (5.11)

where 5,000 is added to perform rounding. If I  =  46, floating-point, multiplication yields 

31.7998 while our fixed-point method yields R  =  32. Because a shift left operation is 

equivalent to division by 2, we can improve the efficiency of this operation by dividing by a 

number that, is a power of 2. Using 8192 (213) in our previous example our new multiplier 

becomes 0.6913 * 8192 =  5663.1296. We could chose 5663 or 5664 depending upon which

S ignifican t, d ig its beyond 10-6  are  tru n c a te d  w ithout affecting im age quality.
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value is more accurate. Choosing 5663, our scaling equation above becomes

R =  ((7*5663) +  4 ,096)/8192 (5.12)

and if I  — 46 again, then R  = 32. When scaling one must also be careful with proper 

selection of the storage classes used to hold intermediate results. Recall from Section 5.1.2 

tha t we exploit the symmetry of the Gaussian to save memory space, so to compute the 

kernel values in the spatial frequency domain we multiply two of the properly indexed 

array values together. We scale each individual array value by 2 19 in order to retain as 

much resolution as possible, so the final spatial frequency domain kernel values are on the 

order of 238. Multiplying by the maximum spatial frequency domain image values (~  224) 

results in values on the order of 262. Fortunately the TI compiler supports 64-bit signed 

and unsigned integer (long-long) data types. An alternative, but less efficient, method 

to minimize the size of internal values is to generate the inverse of the spatial frequency 

domain kernel values and use division instead of multiplication. The division operation is 

implemented on the DM642 by repeatedly issuing a conditional subtract operation (SUBC) 

instruction. After carefully balancing scaling and truncation tradeoffs a fixed-point version 

of the algorithm was implemented with the log values scaled by 220 and Gaussian kernel 

table values are scaled by 219. These values maximize the retained precision without causing 

overflow in intermediate or final output calculations.

5 .3 .1  A p p ly  In tr in sics

Another algorithm optimization implemented at this stage was to use intrinsics, originally 

mentioned in Section 4.2, at strategic points within our code. For example, to clamp final
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Retinex output data to values between 0 and 255, we used two intrinsics, min2 which returns 

the lesser of two inputs and max2 which returns the greater of two inputs, and formed an 

instruction similar to min2(max2(output_value,0),255). Measuring the performance5 of this 

instruction using STS objects results in 8.8 ns per pixel (2.24/txs per 256 x 256 image). 

As a comparison, to clamp the Retinex output using a standard if-then-else expression (if 

output .value < 0 output.value =  0, else if output.value > 255 output_value =  255) requires 

27.4 ns per pixel (7.01/xs per image). The instruction using intrinsics is over 3 times faster. 

After implementing the proper scaling operations and embedding intrinsics, we achieved an 

execution time of 17.89 ms (55.89 fps) for the SSMR on the DM642. This is still below our 

anticipated 70 to 90 fps.

5 .3 .2  M o d ify  th e  A r c h ite c tu r e

We determined tha t I/O  was again limiting performance. The faster DM642 processor, 

even performing the additional scaling calculations, executes the algorithm quicker, thus at 

various points in the code the processor now has to wait for DMA transfers to complete. We 

eliminated this by making an architectural change on the DM642 EVM. The default EMIF 

bus rate is 133 MHz. We were able to increase the EMIF bus rate to a chip maximum 200 

MHz, effectively over-clocking the SDRAM, by strapping the appropriate resistors onto the 

DM642 EVM module and changing memory access timing parameters. Implementing this 

modification increased SSMR performance to 69.15 fps effectively meeting our anticipated 

performance.

°T h is m easurem en t was perform ed on th e  C6416 processor, b u t th e  ra tio  rem ains th e  sam e for th e  o th e r 
processors.
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5 .4  M u lti-S p ectra l M u lti-S ca le  R etin ex  O p tim iza tion s

The performance achieved for the SSMR on the DM642 platform provided a baseline to 

pursue real-time multi-spectral, multi-scale Retinex (MSR) performance. Expanding from 

a single scale to multiple (three) scales primarily involves two additional computational 

requirements — (1) performing the additional convolutions and (2) weighting and combining 

the convolution results. We implemented the same technique previously developed for the 

SSMR except we pre-compute a series of Gaussian kernels directly in the spatial frequency 

domain and store the values in tables. The range of a was constrained to values between 

from 5 to 260 in steps of 5. Each scale would then use a pointer to the appropriate table of 

the associated cr value. Since a is static for each scale, the pointers are set prior to calling 

the Retinex function. The total size of all the Gaussian tables is now 52-KBytes. We could 

not keep this number of tables in memory on the C671X processors.

5 .4 .1  R e u se  T ran sform ed  In p u t Im age

Since the same input image data is convolved with each kernel, the optimum stage to 

perform this function is as each column is read from external memory and transformed. 

The sequence of operations at the convolution stage then becomes

• Read a column, FFT, multiply with kernel 1, IFFT, and DMA result to external 

memory.

• Multiply the same column with kernel 2, IFFT, and DMA result to external memory.

• Multiply the same column with kernel 3, IFFT, and DMA result to external memory.
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This not only reuses the same spatial frequency domain image data, but also allows DMA 

transfers to be overlapped with processor activity. Double buffering is still implemented on 

column reads to ensure that column data is always present in local memory for process

ing. We improved the buffering scheme by accumulating the first spatial frequency domain 

column earlier during the first stage of row processing. The amount of memory needed to 

hold the convolved image data is now 1.5-MBytes — three times the previous requirement 

of 512-KBytes. After the convolution stage, the image data for each scale must then be 

transferred back into local memory, inverse transformed, weighted, and combined with the 

other scales. Again, we use DMA to retrieve the data back into local memory, and double 

buffering to perform this transfer in the background.

5 .4 .2  R e d u c e  C o m p u ta tio n s

One major optimization idea we developed and applied for weighting and combining the 

scales is to rearrange the Retinex equation to reduce the number of operations that must 

be performed. It has been shown that using equal weighting factors provides good Retinex 

enhancement in many conditions [32]. We exploit this fact by distributing the weighting 

factors in the Retinex equation

I<
Ri{xu x2) = ^  W ^ lo g t/itx i,. '^ ))  -  log(A (xi,^ 2 ) * Fk(xu x2))) (5.13)

k =  1

K  K

=  ] T  W fcOogt/iOri,^))) -  ^  W,.(log(/2(* i,* 2 ) * Fk(xu x 2))) (5.14)
A - = l  A : = l
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and noting tha t if the W^s are equal (Wk = W)  and 22k=i =  1 then our equation

becomes

K

R i ( x i , x 2) =  (\og(Ii ( x i , X 2 ) ) ) - W ^ 2 ( l o g { I i { x 1,X 2)*Fk(x l , x 2))) (5.15)
f c = i

This saves two logarithm computations, two subtractions, and two multiplications per pixel.

An additional reduction in calculations is gained by combining the proper weighting 

factors into the tables already used for the two pre-computed log tables discussed in Sec

tion 5.1.4. To pre-compute the second log table (the log table combined with /I only) values, 

if two or three scales are used, then simply divide these values by the associated number of 

scales, 2 or 3, respectively.

The next requirement is to add to the multi-scale algorithm the capability to process 

in real-time multiple (three) spectral bands, i.e. color video. This addition is not quite as 

simple as just executing the same multi-scale algorithm on each band, particularly when 

embedding optimizations to improve performance. First, to perform color processing the 

image data should be in the RGB color space. The video decoders and encoders on the 

EVMs only work in the Y'C/;C/i> color space. For monochromatic processing we only have to 

extract the luma component from the Y 'C b C r input stream. As discussed in Section 4.1.2, 

on the C671X and DM642 EVMs the Y 'C b C r data is stored in planar format so only a 

pointer is required to address the Y'  component. On the C6416 EVM the Y 'C /jC /; data is 

stored in interleaved format so the Y '  component must be extracted from the frame data. 

This is easily accomplished by using 2-dimensional DMA calls discussed in Section 5.1.5. 

However whether the image data is in planar or interleaved format, the Y'  data does not 

need to be converted as it does if color processing is to be performed.
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For color processing, the Y 'C r Cr  input data must be converted [53] into the RGB 888 

color space6 and the processed RGB data must be converted back into the Y 'C b C r color 

space for output into the video encoders. The following equations from Poynton [53] are 

used to convert between Y ' C r Gr and gamma-corrected7 8-bit computer8 RGB (R ’G 'B '):

R'  = 1.1644(Y' -  16) +  1.5960(G/? -  128) (5.16)

G' = 1.1644(Y' -  16) -  0.3918(Cb -  128) -  0.8129(6/;? -  128) (5.17)

B' = 1.1644(Y/ — 16) +  2.0172(6/# — 128) (5.18)

then converting into fixed-point format using a scaling factor of 213, the conversion equations 

above become

R' = ((9539(Y '-  16) +  13075(6/# -  128) +  4096) »  13) (5.19)

G' =  ((9539(Y' -  16) -  3209(6/# -  128) -  6660(6/# -  128) +  4096) »  13) (5.20)

B'  =  ((9539(Y/ -  16) +  16525(6/# -  128) +  4096) >  13). (5.21)

To encode 8-bit Y'C/jC/i’ from R 'G 'B ' we use the following equations:

Y '  =  0.2568R' +  0.5041G' +  0.0979B' +  16 (5.22)

CB = —0.1482R' -  0.2910G' +  0.4392R' +  128 (5.23)

C R = 0.43927?/ -  0.3678G' -  0.0714R' +  128. (5.24)

6In RGB 888, each pixel is represented by an 8-bit red, green, and blue component
7G anirna-correction  refers to  th e  non-linear tran sfe r function  applied to  R G B  values in m ost im aging 

system s. T h is  is used to  m im ic p ercep tual response [53]
“C om pu ter R G B  uses th e  full 8-bit, range w ith  black a t  code 0 and  w h ite  a t code 255.
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Again, converting into fixed-point, format, using a scaling factor of 213 yields

Y '  =  ((2104# +  4130#  +  8 0 2 #  +  4096) >  13) +  16 (5.25)

CB =  ( ( -1 2 1 4 #  -  2384#  +  3598#  +  4096) »  13) +  128 (5.26)

CR = ((3598# -  3013#  -  5 8 5 #  +  4096) >  13) +  128. (5.27)

All RGB and Y 'C r C r values should be clamped between 0 and 255, and 16 and 235 respec

tively. In practice we simplify these equations by eliminating the redundant calculations.

5 .4 .3  B u ffer  A cro ss  S p ectra l B a n d s

Another technique we developed to maintain our I/O  performance is to modify our row 

doublerbuffering scheme to buffer data across spectral bands. This modification is done 

only on the row output processing stage since we need data simultaneously from all three 

bands during this stage. When processing a row of data for the red spectral band, instead 

of performing a DMA of the next row of red spectral data, we DMA the next row of green 

spectral data. Similarly, when processing the green band, we DMA the next blue band, and 

when processing blue band, we DMA next red band. So our buffering sequence becomes

• DMA the red band

• loop start,: DMA the next, green band; process the red band

• DMA the next blue band; process the green band

• DMA the next red band; process the blue band; combine bands; end loop.
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After all three channels for a row are processed, i.e. the blue band is complete, the 

bands are combined and converted to Y 'C b Cr . This optimization continues to maximize 

the processing load by keeping data transfers in the background.

5 .4 .4  A llo c a te  L og V a lu es  in  L2 M em o r y

The additional transfer buffers and tables used in the optimizations discussed so far are 

statically allocated in L2 memory. All of these data structures easily fit in the 256-KBytes 

of L2 memory 0 11 the DM642 with a nominal allocation of ~  175-KBytes used in our 

implementation. However the DM642 L2 memory is still not large enough to hold all of the 

processed image data at any stage of the algorithm. As mentioned in Section 3.4, the C6416 

is not only faster but has a larger L2 memory of size 1-MByte. We exploit this feature by 

keeping all of the logarithm of the original image data, 768-KBytes, in L2 memory. This 

uses nearly all of the L2 memory with a total allocation 1,011,904 Bytes, but by keeping this 

data local we eliminate all of the associated DMA transfers and thus improve performance.

5 .4 .5  M S R  P er fo rm a n ce  R e su lts

To measure the performance of the MSR we used both the DM642, with EMIF bus speeds 

of 133 MHz and 200 MHz, and the C6416 processors 0 11 their respective EVMs in our test

bed outlined in Chapter 5. The graphs in Figures 5.2, 5.3, and 5.4 show the performance 

obtained 011  the processors for the Retinex with 1 to 3 scales and 1 to 3 spectral bands. The 

vertical lines are the cutoff points for real-time performance based on 15 fps and 30 fps. The 

same data  is shown in tabular form in Table 5.7. Execution time is shown in milliseconds, 

and in frames per second in parenthesis. The values for the Gaussian surrounds, a, are 5
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for 1 scale, 5 and 80 for 2 scales, and 5, 80 and 200 for 3 scales. The gain a  and offset (3 

values are 250 and -100 respectively.

For 1 spectral band, implementations of the algorithm on both processors meet the 15 

fps, and 30 fps real-time requirements for all scales. For 2 spectral bands implementations 

on both processors again meet the 15 fps target. W ith 2 or 3 scales, only the C6416 meets 

the 30 fps target. The DM642 with a 200 MHz EMIF only meets this target for 1 scale. 

For 3 spectral bands, only the implementation on the C6416 with 1 scale meets the 30 fps 

target. Performance for 3 bands, 3 scales is 20.25 fps. For the 200 MHz EMIF DM642, 

3 band 3 scale performance is at 13 fps, just missing the 15 fps target. Interestingly, 

although all implementations on each processor performed linearly, the slopes progressively 

decrease from the plots for the C6416 to the 200 MHz DM642, and to the 133 MHz DM642 

respectively on all three graphs. This may be due to the fact that more data is kept local to 

the processor for the C6416. When there are more Retinex computations, there is more data 

to be transferred, and so the algorithm becomes more I/O  driven, degrading performance 

at a faster rate than if it was more controlled by processing cycles as it is for the C6416.

For comparison purposes we placed STS objects in the code on the C6416 to measure 

the execution time of the different stages of algorithm like we did earlier for the C6711. 

Table 5.8 shows the best single-scale, monochrome Retinex performance on the C6711 and 

on the C6416 DSPs. Note the significant decrease in the time required to process the FFT. 

The specific FFT  used from the DSPLib for the C6416 is the mixed-radix 16x32-bit FFT 9.

9T he 16 x32  refers to  th e  b it w id th  of th e  coefficients, and  th e  input, and  o u tp u t d a ta , respectively.
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F ig u re  5.2: R etinex perform ance in tim e (bottom  axis) and frames per second (top axis) to  process 
1 spectral band of image d a ta  on DM642 w ith 133 MHz EM IF (dotted  line), DM642 w ith  200 MHz 
EM IF (dashed line), and C6416 (full line).

The benchmark number of cycles to compute this FFT is given by [83]:

C  =  (13n/8 +  24)(log4(n) -  l]n ) +  (n +  8)1.5 +  27. (5.28)

For n =  256, the length of the FFT, C  =  1743 cycles. This corresponds to 1.743//S on 

the 1 GHz C6416. So based on the benchmark equation, to forward transform the 256 

rows of a 256 x image takes ss 446/rs. Our measured FFT time is 516/is nearly meeting

the benchmark. Also note the significant decrease in time for “rtxeq” is due to the use

of intrinsics, loop index and equation simplifications, and the increase in processor speed. 

Finally, we also note the increase in time to multiply by the kernel. This occurs because 

of the scaling operations performed at this stage of the algorithm and the required use of
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F ig u re  5.3: R etinex perform ance in tim e (bottom  axis) and frames per second (top axis) to  process 
2 spectral bands of image d a ta  on DM642 w ith  133 MHz EM IF (dotted  line), DM642 w ith 200 MHz 
EM IF (dashed line), and C6416 (full line).

inefficient long-long data types to hold intermediate values. As one final execution time 

measure we also tested the algorithm without any internal measurement instrumentation 

and only for 1 scale and 1 band. W ith these simplifications we obtained an execution time 

of 8.9 ms (112.36 fps).

We also measured CPU load for the C6416. Unlike the previous Retinex timing measures 

which only encompass the Retinex task, this is a global measure which includes frame 

acquisition. Table 5.9 shows the values obtained under different Retinex configurations. 

For the lower computational requirement configurations (1 spectral-band,or 2 spectral bands 

and 1 or 2 scales, or 3 spectral bands and 1 scale) the processor is underutilized. Only a 

small percentage of these unused execution cycles are spent waiting for DMA to complete
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F ig u re  5.4: R etinex perform ance in tim e (bo ttom  axis) and frames per second (top axis) to  process 
3 spectral bands of image d a ta  on DM642 w ith 133 MHz EM IF (dotted  line), DM642 w ith 200 MHz 
EM IF (dashed line), and C6416 (full line).

due to the highly optimized code at this point. Only one or two DMA wait statements have 

to be inserted into the algorithm to achieve correct operation, and this is only for the single 

band, single scale case. The majority of the unused execution cycles are spent is simply 

waiting for the next frame from the input camera.

To visible demonstrate the performance of the real-time algorithm we processed a video 

of an outside scene at NASA LaRC in Hampton, Virginia. The video was taken on November 

the 8th, 2005 between 5:15 PM and 5:30 PM using a standard Sony TRV-20 videocamera. 

Sunset on this day was at 5:02 PM. For presentation in this dissertation, we have extracted 

3 snapshots from the processed video. The first snapshot, shown in Figure 5.5 is taken 40 

seconds into the video. The second snapshot, shown in Figure 5.6, is taken 6 minutes and
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Retinex Execution 
Time Table

Bands
1 2 3

1 scale
DM642/133 MHz EMIF 17.89 (55.9) 35.54 (28.1) 52.77 (18.9)
DM642/200 MHz EMIF 14.46 (69.1) 28.39 (35.2) 41.84 (23.9)

C6416 9.24 (108.2) 17.5 (57.1) 25.66 (38.9)

2 scales
DM 642/133 MHz EMIF 25.54 (39.1) 50.55 (19.8) 75.04 (13.3)
DM642/200 MHz EMIF 19.98 (50.1) 39.74 (25.2) 58.96 (16.9)

C6416 12.68 (78.9) 25.06 (38.9) 36.83 (27.1)

3 scales
DM642/133 MHz EMIF 33.11 (30.2) 66.32 (15.1) 98.25 (10.2)
DM642/200 MHz EMIF 25.79 (38.8) 51.85 (19.3) 76.86 (13.0)

C6416 17.03 (58.7) 33.11 (30.2) 49.37 (20.3)

T able 5.7: M easured R etinex perform ance on DM642 and C6416 processors. The 133 and 200 refer 
to  the  clock speed of the  EM IF bus. M easurem ent units are in bo th  milliseconds, and frames per 
second in parentheses.

C6711 
Time (ms)

C6416 
Time (ms)

retinex 48.33 (20.7 fps) 9.24 (108.23 fps)
fwdprocessrows 12.83 1.3

fftrows 6.98 516/xs
logorig 3.20 141/rs

processcols 20.55 6.43
multkernel 0.16 2.18

invprocessrows 14.92 1.49
rtxeq 5.59 571/rs

T able 5.8: Com parison of final SSMR perform ance using the C6711 and th e  CG416 DSPs.

28 seconds into the video. The third snapshot, shown in Figure 5.7, is taken 14 minutes 

and 28 seconds into the video. The unprocessed video frames are on the left. They show 

the scene as captured by the video camera. The progressive darkening of these images is 

due to the sunset. The real-time Retinex enhanced frames using the C6416 EVM are on 

the right. The processed frame in the first snapshot shows a moderate enhancement over 

the unprocessed scene. Note the non-linear dynamic range compression performed by the 

enhancement. The very dark areas are enhanced without severe blooming around the bright
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Spectral Bands Scales C6416 CPU Load
1 1 31.24%
1 2 39.97%
1 3 51.22%
2 1 52.37%
2 2 71.48%
2 3 100.00%
3 1 73.77%
3 2 100.00%
3 3 100.00%

T ab le  5.9: C6416 C PU  Loading for different Retinex configurations.

car lights. In the unprocessed frame of the second snapshot, the colors are nearly completely 

indeterminable and objects are becoming difficult to distinguish. The processed frame of 

the second snapshot retains most of the contrast and brightness of the first processed frame. 

Colors are still clearly perceptible and objects are still defined. For example, the vehicle 

that is nearly unseen in the unprocessed image is clearly seen in the processed image. The 

unprocessed frame of the third snapshot is almost completely dark. The processed frame 

of the third snapshot is nearly reaching the noise limit of the camera, but still provides 

significant information about the scene. Objects such as the wind tunnel spheres, that are 

not discernable in the unprocessed frame are clearly perceived in the processed frame.

The aim of our research was to achieve real-time multi-scale, multi-spectral Retinex 

image enhancement. We started by developing, implementing and analyzing several algo

rithm optimizations, and using the C6711 DSP we achieved 20.7 fps performance of the 

single-scale, monochrome Retinex. Building upon this effort, we continued to optimize and 

refine the algorithm and configuration of the architecture, and using the C6416 DSP we 

were able to achieve 20.3 fps performance of the multi-scale, multi-spectral Retinex.
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F ig u re  5.5: First snapshot taken 40 seconds into the  video recorded a t NASA LaRC. The fram e as 
captured by th e  cam era is on the  left and the  real-tim e Retinex processed fram e is on the  right.

F ig u re  5.6: Second snapshot taken  6 m inutes and 28 seconds into the  video. Colors are nearly 
completely indeterm inable and objects are difficult to  distinguish in the  unprocessed image. Colors 
and objects are still clear in the  processed frame.
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F ig u re  5.7: T hird  snapshot taken  14 m inutes 28 seconds into the video. T he only distinguishable 
object in the  unprocessed frame is the  tail-lights on the vehicle. A lthough noisy, the  real-tim e 
Retinex processed image still clearly shows most of the  m ajor objects in the  first snapshot including 
spheres, tree  lines, and parked vehicles.
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Chapter 6

Enhanced V ision System  Case 

Study

6.1 B ackground

The real-time Retinex can be used to enable a wide variety of applications. We have chosen 

a NASA LaRC developed Enhanced Vision System (EVS) to demonstrate the performance 

of the real-time Retinex in an actual system. The EVS is a new aviation safety technology 

that is used to provide enhanced images of the flight environment to assist pilots flying in 

low visibility conditions such as rain, snow, fog, or haze [98]. During August and September 

of 2005, the EVS, and many other new technologies, were demonstrated during flight tests 

on the NASA 757 as part of the Follow-On Radar. Enhanced and Synthetic Vision Systems 

Integration Technology Evaluation (FORESITE) program.

The EVS contains a long-wave infrared (LWIR), a short-wave infrared (SWIR), and a 

visible-band camera, all mounted in an enclosure tha t is flown beneath a NASA 757 aircraft.

08
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F ig u re  6.1: The EVS LWIR, SW IR, and visible-band cam eras m ounted to  a baseplate, and the 
enclosure shell. Inaccurate bore-sighting can cause image registration problems.

Figure G.l shows the cameras mounted to a baseplate and the enclosure shell. Figure 6.2 

shows the enclosure installed on the aircraft. Figure 6.3 shows the aircraft during a runway 

approach with the simulated shaded area depicting the field of view (FOV) of the cameras. 

The LWIR. is a Lockheed Sanders LTC500 thermal imager and senses radiation in the 7.5- 

14 fi.m band. It can image background scenery, terrain features and obstacles at night and 

in other low visibility conditions. The SWIR is a Merlin Near-Infrared (NIR.) camera that 

senses in the 0.9-1.68 fj,m region and is optimal for detecting peak radiance from runway 

and taxiway lights even in poor visibility conditions. The visible-band camera is a Bowtech 

BP-L3C-II CCD that detects the 0.4-0.78 /im band and covers imaging runway markings, 

skyline and city lights in good visibility conditions. A frame from each of the three video 

streams generated by the cameras in clear weather conditions is shown in Figure 6.4.
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F ig u re  6.2: EVS cam era enclosure m ounted forward-looking underneath  the  NASA 757.

6.2 Im age P ro cessin g  F unctions

The image processing architecture for the EVS is outlined in the top of Figure 6.5 [26]. The 

analog National Television System Committee (NTSC) RS-170 outputs of the SWIR and 

LWIR cameras are routed from the EVS camera enclosure (mounted beneath the NASA 

757) to the processing board through a video distribution box. The processing board is 

situated in a pallet within the NASA 757 approximately 120 feet away from the EVS 

camera enclosure. Similarly, the digital RS422 outputs of the cameras are transferred to 

the processing board using optical fibers. We do not use these outputs, but for future 

implementations they may have a better signal-to-noise ratio than the analog outputs.

The functions performed by the processing components are shown in the bottom of Fig

ure 6.5. The multi-spectral data streams from the EVS cameras must be resized, enhanced, 

registered, and fused into a single image stream. The images are resized into dimensions that 

are a power-of-two to fit the input requirement for the FFT (see Section 5.1.1). Methods
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F ig u re  6.3: The EVS acquires d a ta  during the  entire flight but take-oflF and landing phases are 
critical. The sim ulated shaded area depicts th e  field of view (FOV) of th e  cameras.

for resizing are discussed in Sections 6.3 and 6.4. Enhancement is performed to improve the 

information content of the images particularly in poor visibility conditions. For enhance

ment we use the real-time Retinex. The Retinex provides an ideal solution for enhancing 

EVS imagery because of its superb peformance in improving low-contrast, dimly-lit images.

Registration is used to remove field of view (FOV) and spatial resolution differences 

between the cameras, and to correct bore-sighting inaccuracies [23]. Table 6.1 gives charac

teristics of the sensors tha t are relevant to registration. Registration is performed by first 

manually selecting a set of control points based on corresponding features in a LWIR and 

SWIR frame acquired at the same time. The control points are analyzed using multiple 

linear regression to approximate the coefficients of an affine transform which is applied to 

the LWIR image. The transformed image is then resampled using bilinear interpolation to 

align the registered LWIR image data to the same grid as the reference SWIR image. The 

same transform can then be used on all other LWIR frames since the optical parameters
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LW IR SW IR VIS

F ig u re  6.4: Exam ples of the  im agery generated by each cam era in good w eather conditions. The 
images from cam eras m ust be registered, enhanced, fused and displayed to  th e  pilot in real-tim e.

and the camera alignment are assumed to remain constant during flight. Appendix A gives 

a more detailed discussion of the registration procedure.

SWIR LWIR CCD
Image Dimensions (pixels) 320H  x 240V 320H  x 240V 542H  x 497V

Optics FOV U ° H  x 25° V 39°H  x 29°V U ° H  x 25°V
Detector Readout Frame Rate 60 Hz 60 Hz 30 Hz (interlaced)

T ab le  6.1: Sensor Specifications

The two enhanced and registered video streams from the SWIR and LWIR cameras 

are then fused into a composite video stream that contains more information than either 

input spectral band. This also provides the additional benefit of producing a single output 

to observe instead of multiple images from multiple video sources. The Retinex could be 

used as a fusion engine for this application since the algorithm performs nearly symmetric 

processing on multi-spectral data. Multiple camera inputs could be distributed onto these 

multi-spectral processing chains and fused using the weighting and summation properties 

of the Retinex [57]. However, for EVS processing the image streams are fused by effectively
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F ig u re  6.5: Im age processing arch itecture  and functions of th e  EVS. Analog NTSC cam era ou tpu ts 
are currently  processed. T he SW IR d a ta  is used as the  baseline for registration  since it lias the  
sm allest field of view.

performing a weighted sum of the two processed outputs since a different Retinex is applied 

to each channel. Pixels are summed on an inter-frame basis. Other methods such as 

interleaving frames or fields causes sever flicker. The fused data stream is output as a 

standard composite NTSC signal into a display.

6.3  A d d ition a l R eq u irem en ts

Several other EVS parameters complete our baseline requirements and constraints for real

time Retinex processing. First, our initial performance goal is to achieve a display rate of 15 

fps, instead of the de facto standard of 30 fps for real-time video. We can use this reduced 

rate because our final processed output will be sent to a pilot’s display and several human 

factor studies have shown that an update rate of 15 fps is more than sufficient to avoid flicker,
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accurately portray motion [100], and not cause pilot induced oscillations (PIOs) [34, 40] of 

the aircraft. A PIO can occur when a pilot views and reacts to an instrument or display 

that is updated too slowly (< 12 fps) [2, 44].

Second, the cockpit displays are low-resolution (320 x 240). This significantly reduces 

the amount of image data that must be processed. Fitting the closest power-of-two input 

requirement for the FFT to this frame size dictates that we process a 256 x 256 portion 

of each frame. Only 20 percent of the horizontal component of the image is lost and the 

vertical component is zero-padded to fill 256 pixels.

Third, only the SWIR and LWIR cameras are targeted for processing by the current 

EVS sponsors. The visible band camera is only used to provide context. Use of the visible 

band data in conjunction with the infrared cameras to improve the information provided 

to a pilot is an open research topic. For now, processing only the monochrome SWIR and 

LWIR cameras reduces the number of bands that have to be processed from 5 (1 each for 

the LWIR and SWIR, and 3 for the visible-band camera) to 2. Only processing the SWIR 

and LWIR cameras also enables the use of the SSMR version of the Retinex since it provides 

good enhancement of single-band infrared imagery with the additional benefit of minimizing 

computational requirements.

Several environmental parameters are defined for the EVS. The space allocated is ap

proximately 17 wide by 8 inches deep by 3 inches high. This is enough space to hold a 

standard PCI board, thus allowing a board-level (vs. chip-level) solution, but eliminates 

multiple board or cluster solutions. The operational temperature range falls within the 

standard commercial temperature range of 0 to 70 degrees C. The maximum power allo

cated for image processing is approximately 5 watts with a standard input voltage of 5
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F ig u re  6.6: DM642 EVM, signal sp litter boards, and F ig u re  6.7: Flight box in flight pallet 
power supply in flight box. on NASA 757.

volts and current limited to 1 amp. If other input voltages are required DC/DC converters 

can be used within the space allocated. Waivers for additional power can also be requested 

since the NASA 757 has many power resources. However, general aviation aircraft have 

significantly fewer resources and it is beneficial to limit our resource allocation for potential 

use in these environments also.

Each EVM discussed in Section 4.1 easily fits within the physical constraints of the 

EVS, however only the DM642 EVM has two video inputs to accept the two infrared 

camera outputs. The DM642 EVM was flight hardened1 and the board was encased in a 

rack-mountable box with interfaces and switches extended to the front and rear panels. A 

power supply and signal break-out cards are also enclosed in the box. Figure 6.6 shows the 

DM642 EVM and other devices in the flight box and Figure 6.7 shows the box in the flight 

pallet on the NASA 757.

A new method to update parameters was developed for the DM642 EVM because a host 

PC with a JTAG emulator was not available for continuous use during flight test to perform 

RTDX based updates. Instead of using the JTAG port, our new method uses the Ethernet

1 F ligh t-harden ing  m eans th a t com ponents are  secured to  prevent being shaken loose during  flight.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

port on the DM642 for communication with an external PC thus eliminating the need for 

a JTAG emulator. A new task was written to process messages received via Ethernet using 

the mailbox module in DSP/BIOS. The mailbox module provides a set of functions that 

are used to pass synchronized messages from one task to another on the same processor. In 

this case, the parameter update messages are passed from the Ethernet task to the main 

frame processing task discussed in Section 4.6.

6.4  R esu lts

The EVS was tested during FORESITE flight demonstrations in August and September of 

2005. All flights were performed in good weather and although this was not ideal for testing 

the performance of the EVS, this still enabled a thorough evaluation of the functionality 

of the EVS components including the real-time Retinex. As mentioned in Section 6.2 we 

have to individually resize and enhance the monochrome output images of the SWIR and 

LWIR cameras, register the LWIR to the SWIR, and then fuse the two channels together. 

Since both cameras are flown upside-down underneath the NASA 757, the images must 

be rotated 180° for normal viewing. This is usually performed using embedded routines 

in the cameras but unfortunately, the camera integrators were unable to rotate and place 

the corresponding gamma look-up tables in ROM for the LWIR camera. We decided to 

perform the rotation of the LWIR image within our image processing routines on the DSP. 

We modified our Retinex routine to read in the LWIR image data starting at the end of 

the image data and proceeding to the first, pixel. This causes a 180° rotation of the image. 

Our sequence of tasks is as follows:
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• resize the LWIR input image to 256 x 256 pixels,

• Rotate and Retinex the LWIR image,

• resize the SWIR input image to 256 x 256 pixels,

• Retinex the SWIR image,

• register the enhanced LWIR image to the enhanced SWIR image,

• interpolate the LWIR image to the SWIR grid,

• fuse and output the final processed image.

Higher quality imagery is achieved by enhancing the LWIR image before performing reg

istration, instead of registering first, since registration may eliminate part of the original 

image when it is transformed.

Our algorithm performed the above sequence of tasks on the DM642 at 33.89 fps. Sample 

input frames2 from the SWIR and LWIR cameras are shown in Figure 6.8 and Figure 6.9, 

respectively. The LWIR input is actually received from the LWIR camera rotated (upside 

down) 180°, but is shown right-side up for viewing purposes. The same SWIR frame after 

SSMR enhancement is shown in Figure 6.10. It is easy to see the improved contrast and 

brightness in the image. Similarly, a frame of the enhanced and registered LWIR channel is 

shown in Figure 6.11. Registration can be seen by noting the large vortical shift downward 

at the top of the image. Both of the SWIR and LWIR enhanced frames shown are captured 

as intermediate results for demonstration purposes and not the final output product of our

2We w rote a  sm all u tility  to  send im age d a ta  from th e  D SP to  th e  host to  c ap tu re  fram es a t various 
stages of processing.
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F ig u re  6.8: A fram e from the  EVS SW IR cam era before processing. The faint vertical lines were 
p a rt of the  input image and probably caused by subsam pling in the  video d istribu tion  system.

processing. The filial fused output is shown in Figure 6.12. This image has significantly 

better contrast, brightness, and sharpness than any of the original inputs, and provides a 

single enhanced output for the pilot to view. Enhancement and registration parameters 

were determined empirically.

Our fused output image is actually a 512 x 512 image, but we are only processing 256 

x 256 pixels per image. The CCD arrays for both the imagers are approximately 320 x 240 

pixels, but the NTSC composite inputs received are upsampled to 640 x 480 through pixel 

replication (horizontally) and line duplication (vertically). We used this information and 

modified our core Retinex routine to generate a 512 x 512 image by 2:1 subsampling the 

horizontal and vertical components of our input images. This process retains the majority 

of the original resolution of the cameras.
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Figure 6.9: A frame from the EVS LWIR camera before processing. The LWIR camera output is 
actually rotated 180° from what is shown.

An additional interesting addendum to this process was the requirement to store the 

algorithm in non-volatile flash memory so that the algorithm would automatically execute 

at system power-up. As discussed earlier, an Ethernet client was added to the code to 

facilitate communication with a host to update Retinex parameters. This expanded the 

size of the executable beyond the flash page boundary so we developed a new multi-page 

bootloader algorithm to implement this feature. Development of this algorithm is discussed 

in Appendix C. This information will be used in a new TI application report on bootloaders 

for their C6X processors.
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1

F ig u re  6.10: SW IR fram e after enhancem ent.

F ig u re  6.11: LW IR fram e after enhancem ent and registration to  the  SW IR image.
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F ig u re  6.12: Enhanced, registered and fused o u tp u t image.
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Chapter 7

Future Research

As with most research topics, there is always the question of “how can we make it better?” . 

For our real-time Retinex, improvements can basically be categorized as (1) increasing the 

performance of the algorithm on DSPs to provide 30 fps MSR performance, (2) processing 

larger format images, and (3) migrating to a multi-processor environment. It would also 

be beneficial to integrate additions tha t augment the Retinex, such as color restoration or 

white balance techniques, into our real-time version of the algorithm, but the three primary 

areas listed above should be solved first.

7.1 L um a-on ly  R etin ex

Before addressing these issues we briefly digress to discuss a method that can immediately 

provide a near Retinex quality enhancement at full 30 fps performance for certain appli

cations. This alternative version of the Retinex is called the luma-only Retinex (LOR). In 

the LOR algorithm, only the luma, Y' ,  component of an image is processed. The chroma 

components are left unchanged and passed directly from input to output. The enhancement

82
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quality of this algorithm is very good because the majority of spatial detail is contained in 

the luma component of an image.

Processing only the luma component eliminates all of the Y 'C b Cr to RGB input and 

output conversions. As discussed in Section 4, the DM642 EVM stores image data in planar 

form and the C6416 EVM stores image interleaved. Thus for the DM642 only a pointer 

to the Y '  component is required to access the input and to generate the output. The Y'  

must still be extracted from the input image data and embedded in the output data on 

the C6416, but this is performed very efficiently. Since only the Y '  component is processed 

using three scales, the performance is analogous to that shown for the DM642 and C6416 

for 1 band and 3 scales — 38 fps for the DM642 at 200 MHz and 58 fps on the C6416.

7.2 Im proving  C urrent P erform ance

To improve our full, real-time Retinex to meet 30 fps performance on DSPs would require 

moderate speed-ups in processor performance (by ~  33 percent) and either a similar speed

up in EMIF bus rates and external memory access times or a L2 memory large enough to 

remove at least some of the DMA requirements. Our final algorithm execution time is driven 

by processor cycles, not I/O  bandwidth. However, as we showed in migrating our code 

from the C6711 to the C6713, when processor clock speed is increased, the I/O  bandwidth 

needs to improve1 also or it will become the bottleneck on performance. Having a larger 

L2 memory and placing larger segments of data there implicitly improves I/O  bandwidth 

because it removes the requirement to transfer that particular data. We demonstrated this 

by keeping the logarithm of the input image in the L2 memory on the C6416.
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Extending this concept, to store the FFT of a color input image requires 1.5-MBytes 

of memory with 512-KBytes per band. Retaining our current technique of storing the 

image logarithm data locally implies tha t we would need a L2 memory size of between 

2 and 3-MBytes, well within the reach of next generation DSPs. Storing the FFT  in L2 

memory would eliminate the transfer of the FFT of each row to external memory, and the 

2-dimension read of external memory to form the column data. Just looking at the rows 

and ignoring function call overhead, theoretically to DMA a row requires 1.92 microseconds 

through a 64-bit wide EMIF bus clocked at 133 MHz. To DMA 256 rows requires 4.93 

ms. Measured 2-D transfer times were on the order of twice the row transfer time or ~  10 

ms. Placing the FFT data in L2 memory would not directly achieve a 15 ms increase in 

performance because these transfer are currently performed in the background. However it 

does mean tha t any additional processor improvements wonld then be immediately effective, 

thus with a commensurate increase in processor performance, 30 fps MSR would be easily 

achievable. An alternative idea is to attem pt to store all of the convolved data, but this 

would require 512-KBytes per scale per band equating to 4.5-MBytes for the MSR. Local 

DSP memories on this order are probably years away.

7.3 P ro cessin g  Larger Form at Im ages

Processing larger format images exacerbates the issues address above. First, significantly 

more processing cycles are required. Using the calculation of the FFT as an example, 

Table 7.1 shows the number of cycles and the associated processing time for different FFT 

sizes executing on the C6711, DM642, and the C6416 processors. The benchmark equation
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for the out-of-place cache-optimized mixed radix FFT executing on the C6711 originally 

given in Section 5.1.9 is repeated here as

C = (3[log4(n -  1)"|n) +  (21|"log4(n -  1)] +  (2n) +  44. (7.1)

and the benchmark equation for an extended-precision, mixed radix 16 x 32 FFT with

rounding, and digit reversal executing on the DM642 and C6416 is repeated here as

C = (13n/8 +  24)( [log4(n) -  1]) +  (n +  8)1.5 +  27. (7.2)

The processing time for FFTs ranging in size from 256 to 2048 are shown in Table 7.1.

Referencing the information in Table 7.1, Table 7.2 gives benchmark FFT performance

FFT Benchmarks C6711 @ 150 MHz DM642 @ 720 MHz C6416 @ 1 GHz
FFT Size cycles /iS cycles flS cycles //s

256 2923 19.49 1743 2.42 1743 1.74
512 7296 48.64 4231 5.88 4231 4.23
1024 14464 96.43 8327 11.56 8327 8.33
2048 34965 233.10 19871 27.60 19871 19.88

T a b le  7.1: F F T  Benchm arks for CG711, DM642 and C6416.

values for various input image sizes. As can be seen from this data, to perform a 512 x 

256 FFT on the C6711 takes nearly the full 33.33 ms time alloted to process a frame at 30 

fps. Initially looking at the data the DM642 and C6416 perform significantly better and 

seem to be potential solutions for 512 x 512 sized images. However, this is only the forward 

FFT of the input image. Subsequently three inverse FFTs (one for each scale) must be 

performed for each band, each taking the same time as the forward FFT. This drives the 

FFT processing time for a 512 x 512 image to 60.02 for the DM642 and 43.33 ms for the
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FFT linage Benchmarks C6711 @ 150 MHz DM642 @ 720 MHz C6416 @ 1 GHz
x-dim y-dim ms ms ms

256 256 9.98 1.23 0.89
512 256 29.89 3.63 2.61
512 512 49.81 6.02 4.33
1024 512 123.64 14.85 10.7
1024 1024 197.48 23.67 17.06
2048 1024 576.13 68.36 49.24
2048 2048 954.78 113.04 81.43

T able 7.2: F F T  Processing T im e Benchm arks using C6711 and DM642 for various sized images.

C6416 exceeding the 33.33 ms boundary. Again, this is just the time to process FFTs, other 

computations must be included to perform Retinex enhancement.

The second issue that the size of the images are considerably larger, thus requiring more 

memory for storage and more bandwidth for transfers. Table 7.3 shows typical FFT storage 

requirements and 64-bit, 133 MHz EMIF transfer times for various sized images. As shown, 

the FFT of a 512 x 512 image requires 2-MBytes for storage eliminating any possibility of 

keeping this data in current DSP L2 memory.

FFT Image Size Memory Requirement EMIF Transfer Time
x-dim y-dim MBytes ms

256 256 0.5 4.93
512 256 1 9.86
512 512 2 19.72
1024 512 4 39.44
1024 1024 8 78.88
2048 1024 16 157.76
2048 2048 32 315.52

T able 7.3: F F T  storage requirem ents and transfer tim es (based on row oriented data) for various 
sized images. Storage is based on complex image d a ta  stored as integers. Transfer tim es are based 
on a 64-bit EM IF bus clocked a t 133 MHz.

Incremental increases in performance could also be achieved by modifying the FFT. Since
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our image signal is real-valued we could use the imaginary part of the FFT input and exploit 

the symmetry of the frequency spectrum to compute either a 2N-point, sequence using an 

N-point FFT  or compute two, N-point FFTs simultaneously [7, 75, 63], This technique can 

perform the FFTs «  30—40% faster [63] than the conventional method, but the overhead 

associated with interlacing the input and unscrambling the output reduces the effectiveness 

of this method. The FFT routine currently used could be rewritten to take advantage of 

alternative fast bit-reversal techniques such as those introduced by Zhang [104], Pitas and 

Strintzis [52] discuss an interesting method to build up the column transform in steps while 

selectively processing rows to reduce the I/O  operations between hard disk and internal 

memory. Although hard disk access is several orders of magnitude slower than external-to- 

internal memory transfers, an adaptation of this method could be used for external-t,o-L2 

memory transfers.

There is no fundamental reason why we have to use the row-column method to decom

pose the 2-D DFT. We could possibly reduce the number of arithmetic operations performed 

by using other algorithms such as a vector-radix Fast Fourier algorithm [22], a polynomial 

transform FFT [48], or a fast 2-D Hartley transform [5]. Other techniques, such as using fast 

matrix transposition methods to reduce the number of I/O  operations [16, 15], could also be 

explored. While all of these methods are worthwhile, revolutionary increases in performance 

will probably only be addressed through using alternative processing platforms.
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7.4  M igratin g  to  a M u ltip rocessor  E nvironm ent

Another strategy is to map the MSR algorithm into a multiprocessor system [35, 6] and 

take advantage of the parallelism of the algorithm. Most multiprocessor systems in general, 

exceed our initial constraint of performing the MSR on a small, embeddable, low-power 

system. However as newer technologies emerge this may become a viable alternative. Even 

today, several relatively small multiprocessor boards are available from vendors such as 

MangoDSP, Sundance or Vitecmm.

A system tha t completely distributes the primary tasks of the MSR could resemble a 

design similar to that in Figure 7.1. The first level task splits the input image into its RGB 

spectral components. The next two levels perform forward row and column transforms, 

respectively. The output of this level is fed into three other tasks, each performing convolu

tion of the now spatial frequency domain image data with the associated kernel. The next 

two levels perform inverse FFTs of the columns and rows respectively, for each convolved 

output. The next level combines the data for each scale, computes the log and subtracts 

this from the log of the original image. The final task combines the processed data from 

each band. Each task could be mapped to an individual processor or assigned to a pool 

of processors. Similar to our EMIF bus bandwidth issues, iuterprocessor communication 

and data sharing will need to be carefully balanced. The processors used to perform these 

tasks could be DSPs, FPGAs (see Appendix B), or a mixture of both. In a heterogeneous 

system, FPGAs could perform pre- and post-processing tasks, while DSPs perform the core 

FFTs and convolutions. In this dissertation we have established a core set of techniques 

that could easily be used to implement the Retinex in this multiprocessing environment.
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F ig u re  7.1: D ata  flow diagram  of MSR tasks

Ultimately, it would be beneficial to develop an embeddable single chip-level imple

mentation of the processing components of the algorithm. We would start by using the 

techniques we developed to place the MSR tasks described above into one or more FPGAs. 

Commercial tools are available from companies such as Celoxica, Accelchip, and Catalytic, 

that automatically convert C code developed for DSPs into VHDL, the current language of 

choice for FPGAs, and multi-FPGA boards are available from companies such as Sundance 

and Nallatech. Implementation in an FPGA would enable the full customization of our 

design and a direct migration path to an ASIC.
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Chapter 8

Conclusions

In the last few years the multi-spectral, multi-scale Retinex has provided outstanding image 

enhancement of still imagery for numerous users. Literally thousands of images have been 

processed. The first, versions of the multi-scale, color Retinex, coded on a Windows NT 

200 MHz Pentium Pro PC and processing a 512 x 512 image, executed in ~  45 seconds 

— more than three orders of magnitude slower than required for real-time performance. 

Current PC implementations of the Retinex for a 512 x 512 image execute in ~  3 seconds, 

still two orders of magnitude too slow to be considered for real-time applications. It was 

my thesis that a real-time, 15 fps multi-scale, multi-spectral Retinex could be achieved on a 

single-processor embedded system through proper algorithm and architecture optimization. 

The summation of this dissertation is that we have successfully achieved this goal.

Throughout this research a series of optimizations were developed, investigated, and 

implemented on progressively faster DSPs, each with more capability. These techniques 

were discussed in Chapter Five. We began by focusing on the single-scale monochromatic: 

Retinex targeting the floating-point, C6711 and CG713 DSPs and achieved 20.7 fps and 28

90
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fps performance, respectively. Although the C671Xs platforms did not allow us to obtain 

real-time MSR performance, the core algorithm structures and techniques developed for 

them, such as merging algorithm components to reduce I/O  and performing effective DMA 

routines, were used repeatedly in future implementations. We then changed our hardware 

target to the fixed-point DM642 DSP. After modifying our single scale Retinex design into 

a fixed-point implementation and adding addition optimization techniques, we obtained 69 

fps performance on this platform.

Using the knowledge gained from our previous experiences, we focused our research 

on the more computationally intensive multi-scale Retinex, while continuing to target the 

DM642 DSP and adding the more powerful C6416. We again developed and implemented 

additional optimizations into our core algorithm focusing on constructs specific to multi

scale, multi-band processing and taking advantage of the additional resources within the 

processors. This includes restructuring the mathematics of the algorithm to enable exploit

ing the pre-computation of additional parameters and modifying our buffering scheme to 

keep DMA processes from driving the algorithm computation time. Our best performance 

on the most computational intensive version of the Retinex (the MSR) was 20.25 fps using 

the C6416 platform. This exceeded our baseline target of 15 fps but still requires further 

exploration to meet, 30 fps.

We applied our real-time algorithm in actual flight hardware during demonstrations at 

NASA LaRC enhancing, registering, and fusing two infrared video camera outputs. This 

was a significant achievement however, the accomplishment of this research extends beyond 

this one application. It provides a new tool for image enhancement to a broad range of 

users and will provide the basis for further academic research. Future implementations can
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use the core techniques we have developed and demonstrated and will hopefully achieve 

even better performance through the use of multi-processor systems, FPGAs, or ASICs.
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A ppendix A

M ulti-Im age R egistration

Coupling infrared sensors with visible band sensors — for frame of reference or for additional 

spectral information — and properly processing the multiple information streams has the 

potential to provide valuable information in night and/or poor visibility conditions. In 

Chapter 6, we discussed an EVS that is being developed to test this concept. A set of 

images consisting of an image from each of the cameras of the EVS taken during one time- 

aligned frame is fused into a single image that contains more information than any individual 

spectral band. This process is then repeated for all the image frames making up a video 

sequence. To properly perform fusion it is critical to ensure that the information from each 

sensor refers to the same features in the environment [8, 43]. The different sensors of the 

EVS have different acquisition lattices and optics, therefore they capture information in 

data structures that are substantially different from each other. Thus, the images must 

first be registered before any fusion is performed. Several authors have addressed image 

registration problems with innovative, but often complex, general solutions [42, 60, 41]. In 

this appendix, we describe two straightforward solutions for registering EVS images.
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A .l  B ackground

Image registration is the task of aligning images taken at different times, from different 

sensors, or from different viewpoints so tha t all corresponding points in the images match. A 

transform must be defined tha t relates the points in one image to their corresponding points 

in another. This transform depends upon the characteristics of the differences between the 

images being registered, and is computed with respect to a reference or baseline image. The 

images that are to be matched to the reference are called the sensed, or, distorted image.

More particularly, image registration is defined as a mapping between two or more im

ages both spatially (geometrically) and with respect to intensity. Expressed mathematically 

we have:

h  = g ( h  x 2))), (A .l)

where I\ and I 2 are two-dimensional images (indexed by xi ,x,2 ), /  : (^ 1 ,^ 2 ) —* ( # 1 1  # 2 ) 

maps the indices of the distorted frame to match those of the reference frame, and g is a 

one-dimensional intensity or radiometric transform [9]. We assume that we do not need 

to make any radiometric adjustments, so g — I ,  the identity transform. Hence we are 

concerned only with the spatial transformation, / .  In generating a spatial transform for the 

EVS, our primary difficulty is the lack of fiducial markers within the images generated by the 

EVS sensors. The cameras are, however, assumed to be bore-sighted so they are expected 

to have a common center of alignment. The spatial transform should, then, properly align 

the images, but should not affect any characteristic differences that should be exposed by 

registration.
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Spatial transforms may take on different forms depending upon the application. Simple, 

common transforms specified by analytic expressions include rigid-body, affine, projective 

or perspective, and polynomial [59, 47]. The distortions between the images of the EVS 

in general seem constrained to those correctable by affine transforms. They also appear 

to be characterizable by a global (versus local [21]) transform where a single transform 

correctly maps all the points on the distorted image to match the corresponding points on 

the reference image. An affine transform fulfills the requirements for the needed transform.

An affine transform can perform rotation, translation, scaling and shearing operations. 

It offers six degrees of freedom when selecting six unknown coefficients and solving a system 

of six linear equations. In general, it can perform triangle-to-triangle mappings. A general 

representation of an affine transform is [3/1 , 2/2 1 1] =  [^ii^2i 1 ]T where

:r,\ and x,2 reference the input coordinate system, y\ and 2/2 reference the output coordinate 

system, and a\j are transform coefficients [102],

The forward mapping functions are

Geometric, image-to-image registration can be summarized in three general steps:

1. Feature identification and matching is performed to establish a correspondence be

tween features in the distorted image to those in the reference image;

a n  a\2  0
T  =  0 2 1  « 2 2  0

«31  a 32 1

(A.2)

2/1 =  c q i - 'E i  +  ( I2 1 X 2 +  « 3 i  a n d (A.3)

2/2 =  a i 2 X j  +  (l22'X2  +  ° 3 2 - (A-4)
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2. A spatial transformation is selected and the transformation coefficients are computed 

based upon the feat tire matching criteria;

3. The distorted image is inverse-mapped using the computed transformation and re

sampled to register it with the reference image.

Feature identification and matching are often performed by selecting pixel locations called 

control points. Identification of control points can be accomplished in several different 

ways [18, 21]. Manual identification of control points is commonly performed. The images 

are displayed, normally side-by-side, and corresponding points usually based on features 

such as lines, edges, or contours are selected from both images.

The spatial transform coefficients tha t represent the unknown image distortions are de

termined from the control points. A minimum of three non-collinear control points are 

required to determine the six unknown coefficients of an affine transformation. Wolberg 

and Jensen [102, 31] describe several techniques to solve for unknown coefficients includ

ing pseudo-inverse solutions, least squares with ordinary and orthogonal polynomials, and 

weighted least squares with orthogonal polynomials.

Image resampling is the process of transforming a sampled image from one (input pixel 

grid) coordinate system to another (output pixel grid), where a sampled image is the dig

itization of the spatial coordinates of an image function / ( j / i , jr/a) — a two-dimensional 

intensity function [102, 13, 20]. The two coordinate systems are related to each other by 

the mapping function of a spatial transformation.

To perform image resampling, initially, the output pixels are inverse mapped using the 

transformation function to a new grid which (usually) doesn’t correspond to the input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

grid. Thus an interpolation (image reconstruction) procedure is used to generate a con

tinuous surface through the samples of the new grid. Then the input image is sampled 

(digitized) at these points to provide the discrete output pixel values of the process. Three 

common methods of interpolation are nearest neighbor, bilinear, and parametric cubic con

volution [102, 50].

Table A.l shows the relevant manufacturer characteristics of the sensors [98]. The 

images from the three sensors obviously need to be be registered because of the differences 

in these characteristics. The solutions developed to resolve these differences are discussed 

in Section A.2.

SWIR LWIR CCD
Image Dimensions (pixels) 320H  x 240V 320H  x 240V 542H  x 497V

Optics FOV 34°H  x 25°V 39°H  x 29°V 34°H  x 25°V
Detector Readout Frame Rate 60Hz (typical) 60Hz 30Hz (interlaced)

T a b le  A .l :  Sensor Specifications

The characteristics of the actual images obtained for registration differ from the initial 

manufacturer specifications because of data acquisition and storage to tape. First, all images 

have a nominal image size of 640 x 480 pixels corresponding to the NTSC format of the 

recorded images. However, the actual size of the images is quite different after the images 

are cropped so tha t the FOVs match the “visible1' part of the images (see Section A.2). 

Second, ground test measurements of the cameras1 FOVs differed from the manufacturer 

provided values. These updated characteristics are shown in Table A.2, and need to be 

included in the computations for proper registration of the data streams.

The algorithms operate on a set of three, time-aligned images where each image is 

acquired by an individual camera of the EVS. Each of the video streams is recorded, or
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SWIR LWIR CCD
Image Dimensions (pixels) 640#  x 480V 640# x 480V 640# x 480V

Optics FOV 31.5°# x 23.5°V 4 1 °#  x 30.75°V 33.5°# x 25°V
Detector Readout Frame Rate 60Hz (typical) 60Hz 30Hz (interlaced)

T able A .2: U pdated  Sensor Specifications

post-processed, with video tirnecode information in each frame. The frames are time-aligned 

simply by finding the frames with matching time codes. This set of time-aligned frames 

is then used to obtain the registration parameters with respect to the baseline frame. All 

other frames of the video sequence can be processed with the same parameters. Each frame, 

including the ones from the color CCD sensor, is converted to grayscale before registration 

and further processing.

A .2 R eg istra tio n  a lgorith m s

Our first solution for image registration is based solely on camera sensor specifications. The 

cameras were assumed to be properly bore-sighted at installation thus the only distortion 

parameters to account for in registration are the differences in FOVs and resolutions. This 

algorithm, called the SS (sensor specifications) algorithm, performs registration by first 

equalizing the FOVs and then resampling the distorted image to match reference resolu

tions. Based upon the lessons learned from the SS algorithm, a geometric image-to-image 

registration algorithm was implemented. Both of these algorithms are discussed below. For 

each of the algorithms, we use the SWIR image as the baseline since it has the “worst” 

image parameters (the smallest FOV and poorest spatial resolution). The size of an image 

can be modified through interpolation but we cannot increase the FOV.
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A .2.1 SS a lg o r ith m

The first step of the SS algorithm is to equalize the instantaneous FOVs (IFOV)s of the 

sensors. The FOV is the angular extent of the full image on the sensor and the IFOV is 

the angular extent on an individual detector element, i.e., the solid angle through which a 

detector element is sensitive to radiation.

From Figures A .l, A.2, and A.3, we observe that the visible portion of the images 

is actually smaller than the full image capture window. The FOVs listed in Table A.2 

are assumed to correspond to the visible portion and not the capture window. Thus, the 

first stage of processing is to crop the images to the visible portions. The second stage of 

processing is to ensure that the two images are representing the same portion of the scene. 

Since the FOVs of the SWIR and the LWIR sensors differ — LWIR has the greater FOV and 

hence captures a wider swath of the scene — the LWIR image needs to be cropped so that 

it encompasses the same FOV as tha t encompassed in the SWIR image. The dimensions 

of the cropped LWIR images — the number of columns and rows — are determined by 

a simple scaling operation. The horizontal and vertical IFOVs of the LWIR image are 

obtained using

FOV-LWIR-HORIZONTAL
IFOV-LWIR-HORIZONTAL =  -------------------------------  (A.5)

LWIR-COLS v '

and

FOV-LWIR-VERTICAL , ,
IFOV-LWIR-VERTICAL =  ---------------------------- , (A.6)

LWIR-ROWS

respectively. The number of cropped columns and rows for the LWIR image is then deter-
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mined by

colum ns =
F0V-SWIR-H0RIZ0NTAL
IF0V-LWIR-H0RIZ0NTAL (A.7)

FOV-SWIR-VERTICAL
(A.8)rows = IFOV-LWIR-VERTICAL

After cropping, the SWIR and LWIR FOVs are equal, but since the dimensions of the 

cropped LWIR are different from the dimensions of the SWIR, the IFOVs of the LWIR 

and the SWIR images are still different. To make the IFOVs the same we must resample 

the cropped LWIR image so tha t it is the same size as the SWIR image. This entails: (1) 

computing an expansion factor tha t will make the dimensions of the cropped LWIR image 

greater than the dimensions of the SWIR (2) pixel replicating the cropped LWIR based 

on the expansion factor and (3) downsampling the expanded LWIR image to the SWIR 

dimensions. We use the bi-linear interpolation method [10]. Nearest neighbor interpolation 

can also be selected if desired but bilinear interpolation is more spatially accurate and 

results in images that are slightly smoother.

A similar sequence of operations is performed between the SWIR image and the visible 

image. If the FOVs are the same, as in Table A .l then the visible image is simply down- 

sampled to match the SWIR resolution. The initial results from the SS algorithm clearly 

indicated that the distortions present in the images were not excessive, but they also were 

not limited to FOV and resolution differences.

A .2.2  M L R  a lg o r ith m

Based on the results obtained from the SS algorithm a more general, geometric image to 

image registration algorithm is implemented. The distortions between the images seem to 

be due to sensor translation, (slight) rotation, scale change, and, possibly, shear. An affine
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transform is, thus, used to model the spatial transformation. Control points are manually 

selected for identifying and matching corresponding features between the reference and 

distorted images. Since we assume that the sensors do not change alignment over time, we 

only need to register one baseline set of images tha t can subsequently be used for the rest 

of the image frames.

We use point mapping without feedback [9] to approximate the global affine transfor

mation. The first stage of the MLR algorithm is to select a minimum of three non-collinear 

control points from two input images. More points can be chosen to make the coeffi

cients more representative of the distortions throughout the overall image if the points are 

well distributed. Global distortion representation is also improved by choosing pixels on 

the perimeter if possible. The control points are then analyzed using multiple linear regres

sion [65, 101] to approximate the coefficients of the affine transform. Residuals to determine 

the accuracy of the regression model obtained are calculated. The defined affine transform 

provides a mapping between the baseline and distorted images. The distorted image is 

then resampled using the transform parameters to create the registered image. Bilinear 

interpolation is used for resampling.

A .3 R esu lts

To demonstrate the performance of the algorithms we processed a set of videos taken by 

the EVS cameras during a flight test at Patrick Henry airport in Newport News, Virginia. 

The video sequence was taken as the NASA 757 aircraft approached a runway, and was 

digitized using a Canopus Video Board. Three images (one from each camera) time-aligned
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at 00:26:14:18 were used for registration. As stated earlier, the SWIR image is used as the 

baseline for registration since it has the poorest spatial resolution and FOV. The SWIR, 

LWIR and visible images are shown in Figures A .l, A.2 and A.3 respectively. To provide 

a similarity metric to validate the performance of the registration algorithms we display the 

absolute difference of the reference and corrected images. This provides a visible validation 

of the registration process since features such as runway edges should align if registration 

is performed correctly.

vTCR 00 :26 . 14:18

I
VTCR 0 0 :2 5 .1 4 :1 8

H I 1
—

F ig u re  A .l:  O riginal SW IR F ig u re  A .2: O riginal LW IR F ig u re  A .3: Original Visible

A .3.1 SS a lg o r ith m

Applying the SS algorithm with the SWIR image as the baseline, and the LWIR and visible 

images as distorted images yields the “registered” SWIR, LWIR and visible images shown 

in Figures A.4, A.5 and A.6 respectively. The FOV of the LWIR image has been made 

smaller to match the FOV of the SWIR image. This change in FOV can clearly be seen in 

the horizontal direction of Figure A.5, by observing that the blurred artifact (which is an 

antenna in the FOV of the camera) in the upper left corner of the original LWIR is now 

almost completely removed in the registered image. In the vertical direction, the decrease 

in FOV is noted by the missing timecode at the top and the missing ground features at the 

bottom of Figure A.5 that are in the original imago. The IFOVs have also been matched
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though resampling. The general effects of resampling can be seen by observing the expansion 

of image features from Figure A.2 to Figure A.5. The FOV of the original visible image 

in Figure A.3 has been made slightly smaller, again to match the FOV of the SWIR, in 

Figure A.6. Since the FOVs nearly match and the image dimensions are the same, there 

is only a small expansion to match IFOVs, hence the registered image features are only 

slightly increased from the original.

Figure A.7 is the differenced SWIR and SS registered LWIR, and Figure A.8 is the 

differenced SS registered LWIR and SS registered visible image. The misalignment between 

the images after registration can clearly be seen in Figure A.7 by observing the difference 

in the outline of the runway from the LWIR component of the image, and the runway lights 

from the SWIR image. There is at least a large translation and a small rotation difference 

between the SWIR and registered LWIR. Similarly, the misalignment between the registered 

LWIR and visible images differenced in Figure A.8 can also be seen by noting the difference 

in the outline of the runway from the LWIR image, and the runway lights from the visible 

image. Again, there is an obvious translation between the images. Figures A.7 and A.8 

clearly display the misalignment between the images thus indicating that differences in 

sensor design characteristics are not the only cause of distortion between the images.

F ig u re  A .4: Cropped SW IR F ig u re  A .5: SS Reg. LW IR F ig u re  A .6: SS Reg. visible
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F ig u re  A .7: SW IR and SS Registered LW IR F ig u re  A .8: SS Registered LW IR and visible

A .3.2  M L R  a lg o r ith m

First we applied the MLR algorithm to the original (uncropped) SWIR and visible images, 

again using the SWIR as the baseline. Due to the lack of features around the perimeter of 

the SWIR image we used the runway lights as control points. Note tha t we are only using 

three control points for demonstration purposes. Figure A.9 repeats the original SWIR 

image for reference. Figure A.10 shows the registered visible image and Figure A .11 is 

the differenced SWIR and registered visible image. The coefficients obtained are given in 

Table A.3.

bo hi b‘2
x' -0.546156 1.021212 -0.004578
v' -20.440557 -0.007477 0.972837

T a b le  A .3: Visible to  SW IR MLR Coefficients

A close look at the runway and the runway lights in the two images shows tha t they are 

now registered. In particular, in the lower right corner of the SWIR image there are four 

runway lights lined up horizontally. In the visible image there are three runway lights in 

the same position, except the second light from the left is not visible. Figure A. 11 shows
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the four lights differenced in a horizontal line with the missing visible light filled in from 

the SWIR image. It is clear to see the warp performed during registration by observing 

the timecode size and location differences in the differenced images. The timecodes are the 

same size and at the same location in the original images. Figure A.9 and Figure A. 10 could 

now be equally cropped to remove disjoint pixels around the perimeter to obtain the final 

images to be fused.

VTCR 00:25 . 14:18

F ig u re  A .9: R epeated F ig u re  A .10: M LR Reg. F ig u re  A .11: SW IR and
SW IR visible M LR Reg. visible

Next we applied the MLR algorithm to the registered visible and LWIR images using the 

visible image as the baseline. Since: the runway lights are not visible in the LWIR image, we 

use the intersecting lines at the bottom and top of the runway, and a stripe at the beginning 

of the runway towards the right in the LWIR image as control points. Figure A. 12 repeats 

the MLR registered visible image for reference. Figure A.13 is the registered LWIR image 

and Figure A. 14 is the differenced registered visible and the just registered LWIR images. 

The coefficients obtained are given in Table A.4.

K h h
s ' 8.347350 0.850628 0.037684
!/ 9.G37629 -0.012015 0.779082

T ab le  A .4: LW IR to  visible SW IR M LR Coefficients

As is evident in Figure A. 14 the runway portion of the LWIR image is aligned with the
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runway portion of the registered visible image. Also, the runway lights from the visible 

image border the perimeter of the LWIR runway. The one runway stripe selected as a 

control point is aligned. The taxiways on the right side of the image and the horizon 

across the image are also aligned. Again, any disjoint pixels around the perimeter could be 

removed by cropping. At this point all three original images are registered.

v rc a  nn-^e

F ig u re  A . 12: R epeated F ig u re  A . 13: M LR Reg. F ig u re  A . 14: M LR Reg.
M LR Registered visible LW IR visible and LWIR

As a final test of the MLR algorithm we applied the same control point coefficients 

to a later frame in the video sequence. Figures A .15, A.16 and A .17 are the SWIR, 

LWIR and visible images at time 00:26:14:28, 10 seconds later in the sequence. Figure A.18 

shows the MLR registered visible image. Figure A .19 is the differenced SWIR and MLR 

registered visible images. Figure A.20 is the MLR registered LWIR image. Figure A.21 is 

the differenced MLR registered visible and MLR registered LWIR image. As in the previous 

set of images, the registration can be observed by noting the alignment of the runway and 

runway lights in Figures A. 19 and A.21.

A .3.3  D iscu ss io n

The images shown visually demonstrate the performance of the two algorithms on typical 

image data from the EVS. The registration inaccuracies of the SS algorithm are obvious.
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F igu re A .15: Orig. SW IR F ig u re  A .16: Orig. LW IR F ig u re  A .17: Orig. visible 
a t Tim e 26:14:28 a t T im e 26:14:28 a t Tim e 26:14:28

r*n . o c  * a  ’ Ccs

F igu re A . 18: M LR Registered visible a t F ig u re  A . 19: SW IR and M LR Registered
Tim e 26:14:18 visible

The differing FOV and resolution specifications given do not take into account the other 

distortions within the images. W ith this much discrepancy there seems to be either a 

fundamental problem in the bore-sighting or alignment of the cameras, or the alignment 

is changing during flight. If the sensors were actually bore-sighted and aligned, the SS 

algorithm should be able to match the performance of the MLR algorithm and in addition, 

not require any manual intervention like selection of control points. True FOV values could 

be obtained from a thorough ground calibration, and lion-interpolated pixels of the actual 

image dimensions could be obtained from raw digital data streams from the cameras.

The MLR algorithm provides better registration of the images than the SS algorithm 

configured with the current set of specifications and with the current EVS alignment. In
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F ig u re  A .20: M LR Registered LWIR a t F ig u re  A .21: M LR Registered visible and
Tim e 26:14:18 LWIR

our examples the runway and runway lights are clearly aligned. The coefficients obtained 

with only three points indicates that there are rotation, translation, scale and possibly shear 

distortion components found between the images. These distortions can be seen by viewing 

the timecode warps at the top of the differenced images. The application of the same MLR 

control points to a set of time-aligned images later in the same video sequence produced 

the same level of registration. This indicates that we could successfully use the registration 

coefficients obtained from one set of time-aligned images to apply to, at least, a group of 

frames from the video sequence. If the alignment is not changing substantially during flight 

then all frames could be processed with the same transform.

A .4 Sum m ary

Image registration is an essential prerequisite to subsequent image fusion. We have produced 

two algorithms to perform multi-image registration for the EVS. The SS algorithm uses 

EVS camera specifications and performs registration based solely on these parameters. The 

performance of this algorithm indicates that there is a sever inaccuracy in the boresighting
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or alignment of the cameras. Correction of these issues should improve the performance 

of the algorithm and allow it to be used to automatically register all images across the 

cameras, or as validation of the MLR algorithm.

The MLR algorithm uses control point selection and linear regression to compute the 

coefficients of an affine spatial transformation. This transformation is then used to register 

the LWIR and visible images to the SWIR image. In addition, the MLR registration 

algorithm provides a means to generate a base set of coefficients for post processing of the 

full video stream across all cameras. We have subsequently used a set of baseline coefficients 

to process an entire 20 second video clip from each of the three cameras.

In addition, the coefficients obtained could also be used to back out the actual distor

tion values (translation amount, rotation angle, etc.) for feedback to the EVS designers. 

Improvements could also be made in the computation of the coefficients by using point 

selection with feedback or other more robust feature selection mechanisms. Manual con

trol point selection can be improved by MSR enhancement of the images to emphasize 

and sharpen features prior to registration. This was done for another EVS data set and 

greatly improved the ability to select corresponding points. Most importantly, the actual 

boresighting and alignment can be checked against the values obtained from MLR and SS 

registration, and adjusted appropriately. This procedure could be performed both before, 

and after, EVS flight opportunities and used to verify and validate system alignment.
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A ppendix B

Field Program m able Gate Arrays

In the future we can capitalize on the lessons learned from mapping the real-time Retinex 

algorithm into a DSP architecture, and possibly use an alternative technology that will allow 

full customization of our design. One of these technologies is field programmable gate arrays 

(FPGAs). Architecture optimization usually implies performing the process of improving 

a system by properly allocating resources, such as memory or DMA channels, to improve 

execution speed or bandwidth. FPGAs redefine this term to apply at a much lower level 

of abstraction. Specifically, FPGAs are composed of a large matrix of logic cells, routing 

resources, and I/O  blocks that must, be selected, configured and interconnected. Figure B .l 

is a block diagram of a typical FPGA architecture. A logic cell can be as simple as a 

transistor pair or 2-input, nand gate, or as complex as a full microprocessor core. Logic cells 

are typically based ou multiplexers and basic logic gates, or SRAM-based look-up tables 

(LUTs), and are generally used to implement, combinatorial or sequential logic functions.

The routing resources implement the “field-programmable” portion of the FPGA defini

tion. They are the interconnect fabric (wires) and electrical switches tha t are programmed
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F ig u re  B .l :  High-level block diagram  of a typical FPG A  A rchitecture

and can (usually) be reprogrammed in-situ, i.e. after its manufactured or even during 

active operation. This concept leads to the idea of chip-level reconfigurable computing. 

Three primary programming technologies are used to implement the switches [58]: pass 

transistors controlled by the status of an SRAM bit. electrical programmable read only 

memory (EPROM) floating-gate transistors, or small antifuse switches electrically formed 

once by creating a low resistance path to ground. FPGAs tha t use write-once antifuses 

are tedious to use because the design must be complete and verified before programming, 

but they provide the benefits of low resistance and parasitic capacitance, high reliability 

and density, and can be relatively easily fabricated in a radiation-hardened foundry. Xilinx 

is large manufacturer of SRAM-based FPGAs. the Altera Max products are CPLDs, and
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Ac.tel is a major vendor of antifuse based FPGAs. The I/O  blocks are special-purpose logic 

cells generally spread around the peripheral of the device that are used to buffer input and 

output signals. They can usually be configured to transfer input, output, or bi-directional 

signals.

The logical functionality of an FPGA is programmed into the device through a number 

of design stages [51]. First, a high-level design is entered as a structural design, normally 

through a schematic, or as a behavioral design using hardware description languages, such as 

VHDL or Verilog. Computer-aided electronic design automation tools exist for both, and 

often offer alternative entry methods, such as state-machine or waveform editors. Logic 

synthesis is performed next, where the high-level design is compiled into a netlist and 

translated into the available cells and technologies provided 011  the FPGA. Several issues 

are addressed during this stage, such as design size checks and redundancy elimination. 

After this, place and route is performed where cell placement is determined and the routing 

interconnect is defined. Finally, a configuration bit file is generated and downloaded into the 

device for programming. Because of the complexity of most FPGA architectures, functional 

and timing simulations are often performed concurrently and iteratively with the design 

stages. This allows the designer to correct errors before programming the device and is 

critical to ensure the successful implementation of antifuse-based devices. Test vectors that 

provide stimulus to both the simulator and actual device are also often generated to aid in 

debugging and to verify and validate behavior.

FPGA capacities in the late 1980’s were on the order of thousands of usable gates [51]. 

They were often used as “glue logic” , absorbing the functionality of a variety of miscel

laneous logic, and performed functions like providing interfaces to external memories or
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peripherals. Over the last few years the density and capabilities of FPGAs have increased 

tremendously. As an example, the XC2VP100 is the largest FPGA in the Xilinx Virtex- 

II Pro family of devices first introduced in January 2002. It contains 99,216 logic cells, 

7,992-kbits of BRAM, 444 dedicated 18 x 18 multipliers, 12 digital clock managers (DCMs), 

1164 user I/O  pins, 2 PowerPC RISC processors, and 20 3.125 Gbps Rocket I/O  serial 

transceivers. Each logic cell contains a 4-input LUT, a flip-flop and carry logic. BRAM is 

block RAM comprised of distributed and global dual-port SRAM. As FPGA densities have 

increased, so have the number of potential uses. They are now often used as co-processors, 

hardware accelerators, or custom, reconfigurable computing architectures. Several authors 

have suggested and implemented individual image processing functions [45, 46, 11, 12] as 

well as full platform and system solutions [1, 17, 38, 14, 68]. Xilinx and other vendors 

offer several DSP cores, such as 2-D 1024-point, FFTs and YCrCb-to-RGB converters, that 

perform complex processing functions and can be easily inserted into a design.

We could design and map a new version of the algorithm into this technology taking 

advantage of its’ capabilities. We may be able to properly utilize a single high-density FPGA 

to parallel process three spectral bands of image data. Otherwise, we could use a multi- 

FPGA platform that would allow pipelining the major components of MSCR processing. 

Bandwidth issues could be reduced since we could create and optimize internal bus widths 

to our data transfer requirements. High-level code could be written using VHDL and 

synthesized using Synplicity FPGA development tools. We also have access to other high- 

level tools, such as Matlab, tha t could be used for design, simulation, and test. An FPGA 

Retinex processing core could eventually be developed for widespread use in other Xilinx 

platforms.
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A ppendix C

DM 642 EVM  Flash Program m ing  

Guidelines

Many embedded applications require the need to execute automatically at system power-up 

after reset without outside intervention. This is often accomplished by storing application 

code in a non-violatile memory such as a read only memory (ROM) or flash memory. At 

power-up (or boot) the stored code is automatically copied into a runtime memory location 

in random access memory (RAM) and then the beginning program address is branched to 

to begin execution. We require this automatic start-up capability for our DM642 EVM 

based implementation used in the EVS system. The EVS system is required to work as an 

embedded, autonomous system. Power-up and power-down cycles are performed frequently 

during pre-flight check-outs and when the plane has stopped at other airport facilities. No 

operator is continually available to monitor the system and repeatedly reload code from a 

host, therefore loading and executing code autonomously is required.

The DM642, like all the other TI DSPs, has a set of facilities to support bootloading.
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Three boot configuration modes are supported — no boot, ROM boot,, and host boot. In no 

boot mode no action is performed at boot, and in host boot, an external host controls the 

boot process. In ROM boot mode after reset is released, the CPU is stalled until 1-KByte 

of memory is copied from the beginning of an external ROM to RAM address 0 using the 

EDMA controller. After this transfer is complete the CPU is released and starts to execute 

code at address 0.

Many applications will not fit in 1-KByte of memory. In this case, the code that is 

copied is usually a second-level bootloader that in turn, copies the rest of the application 

into RAM. The DM642 EVM has 4-MBytes of 8-bit wide flash. The flash is mapped into 

the 0x90000000 to 0x9007FFFF (lower CE1 space) address range of the DM642 using 19 

address bits (A0-A18). This is smaller than the memory space available in the flash so 

an FPGA on the EVM is used to create 3 additional address lines extending the address 

range to 4-MBytes. These 3 lines effectively act as page bits dividing the address space 

into 0.5-MBvte pages. Unfortunately, they default to 000 at power-on reset because the 

SRAM-based FPGA becomes unconfigured at reset and tri-states the output of all I/O . We 

discuss the ramifications of this next.

The size of most of the first executable files generated for our implementations were 

about 500-KBytes, and would fit on the first page of flash. After adding ethernet service 

components (and the large libraries required by them) to allow a user to perform parameter 

updates from any available laptop, our executable code size grew to ss 677-KBytes. To 

place these executables in flash memory requires using a Flashburn utility provided by TI. 

This utility requires the file to be burned to be in one of several specific formats. We choose 

the hex format and used the TI supplied liexbx utility to perform the conversion.
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TI supplies a sample second-level boot loader (boot.asm) assembly file tha t is used to 

load a users application. When the boot.asm file is included with the application, the liexbx 

conversion routine properly allocates the boot code (at address 0x00) and the application 

code (defaulting to address 0x400, immediately after the 1-KByte boot code). When burned 

into flash, the flashburn utility physically places the code in memory according to the values 

in the hex file and any offsets selected at burn time by the user.

The EVM board manufacturer,Spectrum Digital, supplies a default flash program that 

contains the configuration bits (of size 0x393D0 or ~  234-KByt,es) for the FPGA, and a 

program (fpgaJoader) that loads the FPGA with these configuration bits. So the default 

setup would have boot.asm at address 0, the fpgaJoader code at address 0x400 and the 

configuration bits at address 0x40000. The boot code would be loaded into RAM at reset. 

After reset, it would copy the fpgaJoader code into RAM and branch to the entry point of 

the fpgaJoader, which subsequently loads the configuration bits into the FPGA.

The main issue is tha t the FPGA controls the addressing used for the flash (the page 

bits) and if it is not properly configured, the upper pages of flash cannot be accessed. So 

attempting to use flash above page 0 (above 512-KBytes) becomes a lion-trivial issue. Our 

first attem pts failed because our standard routine had been to erase flash, burn the FPGA 

configuration bits and our application (with boot.asm embedded in it), and then restart 

the system. This worked because our application fit on one page of flash. Now that our 

code was greater than one page, the burn failed because the address lines are all at zero and 

addresses above 512-KBytes are mapped into lower memory. In addition after getting data 

burned on more than one page, we needed a method to copy the upper pages of information 

into RAM and restart execution.
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Our solution was to first, burn the fpgaJoader with the default boot code and the FPGA 

configuration bits into the first page of flash and reboot thus configuring the FPGA. This 

gives us full access to all of flash memory. We then modified the default fpgaJoader program 

so that at the end of the program execution it now (1) changes the FPGA page bits from 0 to 

1 and (2) branches to a third-level bootloader at address 0x90000000 to load our application. 

To change the register that controls the page bits to 1 we use a function supplied in the 

dm642 board support library: evmdm642_rset(evmdm642Jlashpage,l). To branch, we use 

three simple assembly language instructions in C code: asm (“ MVKL 0x90000000,A15” ); 

asm (“ MVKL 0x90000000,A15” ); and asm (“ BNOP,0x5”);.

Next we burned into memory the FPGA configuration bits at 0x90040000, the modified 

fpgaJoader with the default second-level boot code, and our application code embedded with 

the third-level boot code at address 0x90080000. The address change is performed using 

an offset of (0x80000) in the Flashburn utility. When the modified fpgaJoader branches to 

the address 0x90000000 with the page bits set to page 1, we are actually addressing address 

0x80000 of the flash. The third-level bootloader simply loads into R AM our application from 

flash address OxCOOOO, branches to the start of the application code and begins execution.

Finally, here are a few miscellaneous notes on the discussion above. When burning the 

configuration bits, the default hex file already has the 0x40000 offset built in so nothing 

has to be done to place the data there in the Flashburn utility. Similarly the default and 

modified fpgaJoader hex files instruct Flashburn to place the boot code at 0x00 and the 

application code at 0x400. The application hex hie is also built under the assumption that 

the boot code is placed at 0x00 and the application code is placed at 0x400. We force the 

Flashburn tool to provide the offsets of 0x80000 and 0x80400 respectively.
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Our current method executes the third-level bootloader out of slow flash memory. Al

though this only requires a few seconds, we could speed up the loading process by copying 

third-level bootloader (the first 1-KByte of memory at 0x80000) into RAM in the same way 

that the first bootloader does at power-up. Executing the third-bootloader out of RAM 

would then provide faster loading time. The information we developed for this guide will 

be used in a new TI application report on bootloaders for their COX processors.
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