
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2006

Real -time Retinex image enhancement: Algorithm and Real -time Retinex image enhancement: Algorithm and

architecture optimizations architecture optimizations

Glenn Derrick Hines
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hines, Glenn Derrick, "Real -time Retinex image enhancement: Algorithm and architecture optimizations"
(2006). Dissertations, Theses, and Masters Projects. Paper 1539623490.
https://dx.doi.org/doi:10.21220/s2-zgwv-7r76

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623490&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-zgwv-7r76
mailto:scholarworks@wm.edu

REAL-TIME RETINEX IMAGE ENHANCEMENT: ALGORITHM

AND ARCHITECTURE OPTIMIZATIONS

A Dissertation

Presented to

The Facility of the Department of Computer Science

The College of William <k Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Glenn Derrick Hines

2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Glenn Hines

Approved, January 2006

J. Philip Kearns
Dissertation Advisor

Zia-ur Rahman
Dissertation Co-Advisor

j/\
Weizhen Mao

Mark Hinders
Department of Applied Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my lovely wife Sunita and our adorable children Jordan, Jada and Jamison

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

A cknow ledgm ents viii

List o f Tables x

List o f F igures xv

A bstract xvi

1 Introduction 2

2 R etin ex Im age E nhancem ent 7

3 D igital Signal Processors 12

3.1 TMS320C6711 ... 13

3.2 TMS320C6713 ... 16

3.3 TMS320DM642 ... 17

3.4 TMS320C6416 ... 19

4 Test Environm ent 21

4.1 DSP Evaluation Modules .. 21

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.1 Video Capture and Display for C6711 and C6713 E V M s 23

4.1.2 Video Capture and Display for DM642 and C6416 E V M s 26

4.2 Development T o o ls .. 27

4.3 Test-Bed Components and O peration .. 28

4.4 Performance Analysis .. 30

4.5 Real-time Parameter U p d a te s ... 31

4.6 Retinex Task W ithin D S P /B IO S .. 32

5 O ptim izations and Perform ance R esults 33

5.1 Single-Scale Monochrome Retinex O p tim iz a tio n s ... 34

5.1.1 Apply Convolution Equivalence.. 34

5.1.2 Pre-Compute the K ern e l.. 36

5.1.3 Baseline Algorithm P e rfo rm a n c e ... 37

5.1.4 Pre-Compute the Logarithm .. 39

5.1.5 Use DMA to Transfer C o lu m n s ... 43

5.1.6 Reduce Gaussian Kernel Computations .. 44

5.1.7 Merge Algorithm Components ... 45

5.1.8 Minimize D ata Transfer O v e rh e a d .. 46

5.1.9 Use Cache-optimized F F T s ... 48

5.2 Map Optimized SSMR to C6713 .. 49

5.3 Map Optimized SSMR to DM642 .. 50

5.3.1 Apply Intrinsics ... 52

5.3.2 Modify the A rch itec tu re .. 53

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Multi-Spectral Multi-Scale Retinex O ptim izations... 54

5.4.1 Reuse Transformed Input Image ... 54

5.4.2 Reduce C o m p u ta tio n s ... 55

5.4.3 Buffer Across Spectral B a n d s .. 58

5.4.4 Allocate Log Values in L2 M em o ry .. 59

5.4.5 MSR Performance R esu lts ... 59

6 Enhanced V ision System Case Study 68

6.1 B ackground .. 68

6.2 Image Processing F u n c tio n s .. 70

6.3 Additional R equirem ents... 73

6.4 R esu lts .. 76

7 Future R esearch 82

7.1 Luma-only R e tin e x ... 82

7.2 Improving Current Perform ance.. 83

7.3 Processing Larger Format Im ag es... 84

7.4 Migrating to a Multiprocessor E n v iro n m en t... 88

8 C onclusions 90

A M ulti-Im age R egistration 93

A.l B ackg round .. 94

A.2 Registration algorithms ... 98

A.2.1 SS a lg o r i th m .. 99

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.2.2 MLR a lg o rith m ... 100

A.3 R esu lts .. 101

A.3.1 SS a lg o r i th m .. 102

A.3.2 MLR a lg o rith m ... 104

A.3.3 D iscussion... 106

A.4 S u m m a ry .. 108

B Field Program m able G ate Arrays 110

C D M 642 E V M Flash Program m ing G uidelines 114

B ibliography 119

V ita 127

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

The list of people I wish to acknowlege would require another dissertation but, I will
point out a few. First, and foremost I thank my research advisor, Dr. Zia-ur Rahman
for his guidance, patience, and great ideas. One day the world will know and value your
genius. I also thank Daniel Jobson for his wonderful musings on image processing research,
and Glenn Woodell for always lending a helping hand. The seeds of the Retinex tha t the
three of you planted have grown into quite a tree. Thank you for allowing me to contribute
to a branch.

I also thank my professors at William and Mary, Doctors Torczon, Bynum, Stockmeyer,
Stathopoulos, Zhang, Noonan, Prosl, Rahman, and Kearns, for all of your enlightening
classroom sessions, and patiently satisfying all of my “W hat if you tried this?” questions. In
particular, special consideration is given to Professor Kearns for giving me the opportunity
to continue my research in image processing and serving as my advisor.

Grateful acknowlegement, is given to Vanessa Godwin. Your advice throughout my
tenure as a student was invaluable. Thanks for “penetrating the bureaucracy” for me.
I also sincerely thank my committee members Weizhen Mao, Andreas Stathopoulos, and
Mark Hinders for all of your comments and suggestions, and for your willingness to take
time out of your schedule for me.

The work contained in this dissertation was supported by funding from NASA Langley
Research Center. Sincere appreciation is extended to my managers at NASA LaRC for
giving me the opportunity to pursue my research dreams. This list spans many years now
but includes Dr. Thomas Shull, Pam Rinsland, Steve Jurczvk, Steve Sandford, Randy Rea­
gan, and K athryn Stacy. Thanks also goes to Steven Harrah for project support, Cathryn
Murray-Wooddell for working your magic with resources, and George Allison for keeping
the Ph.D. pipeline going at NASA LaRC. Many thanks also go out to my colleagues at
NASA but especially to my old lunch bunch including Duane, Cy, Danette, Michael, Mar-
ilee, Shelley, Felicia, and Lloyd who is no longer with us. We’ve solved many of the world’s
problems on napkins, now if only we can convince everyone else to listen.

I also wish to thank a few special people — My parents David and Helen Hines for
raising me and my brothers, Ronnie and Brian, in a home that always valued knowledge
and education, and for your good genes! Neville and Dorothy Etwaroo for doing the same
for Sunita! My many extended family members for all of your words of encouragement and
prayers, and my many friends including Roger Bailey, Charles Stump, Shawn Williams,
Steve Green, Kenneth Arrington, Andres Alvarez, Levi Little, and Bruce Hornsby for keep­
ing me laughing throughout the years.

And although I dedicated this document to my immediate family, I again give my
utmost gratitude to my wife Sunita Etwaroo and our children Jordan Milan, Jada Nalini,
and Jamison Glenn for all of your love and support. You are my air.

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

3.1 DSP Specifications.. 20

5.1 Initial performance results from the first implementation of the SSMR....... 37

5.2 Performance measurements after using logarithm tables and combining a and

[3.. 41

5.3 Performance results after using 2D DMA data transfers............................. 43

5.4 Performance results after using 2D DMA data transfers............................. 45

5.5 Performance results after merging algorithm stages. Since the forward and

inverse column execution times are effectively merged together, the time to

process columns is now in item “processcols” ... 47

5.6 Final SSMR performance results using the C6711 DSP............................... 49

5.7 Measured Retinex performance on DM642 and C6416 processors. The 133

and 200 refer to the clock speed of the; EMIF bus. Measurement units are in

both milliseconds, and frames per second in parentheses........................... 64

5.8 Comparison of final SSMR performance using the C6711 and the C6416 DSPs. 64

5.9 C6416 CPU Loading for different Retinex configurations........................... 65

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Sensor Specifications... 72

7.1 FFT Benchmarks for C6711, DM642 and C6416... 85

7.2 FFT Processing Time Benchmarks using C6711 and DM642 for various sized

images... 86

7.3 FFT storage requirements and transfer times (based on row oriented data)

for various sized images. Storage is based on complex image data stored as

integers. Transfer times are based on a 64-bit EMIF bus clocked at 133 MHz. 86

A.l Sensor Specifications... 97

A.2 Updated Sensor Specifications.. 98

A.3 Visible to SWIR MLR C oeffic ien ts.. 104

A.4 LWIR to visible SWIR MLR Coefficients... 105

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 The top row of images from left to right have simulated tungsten, fluorescent,

and sunlight illumination sources. The bottom row has the same images after

Retinex processing. The effects of the different illumination sources is nearly

completely removed.. 8

2.2 Many image processing algorithms would either saturate the bright regions

or clip the dark regions of the image on the left. The Retinex processed

image on the right appears almost uniformly illuminated without exhibiting

these effects... 9

2.3 On the left is a low contrast, dimly lit grayscale digital image; on the right is

the single-scale Retinex processed image — single-scale processing increases

the contrast and sharpness.. 10

3.1 Primary DSP components include the CPU, LI Data Cache, LI Program

Cache, L2 memory (SRAM/Cache) and EDMA Controller............................... 13

3.2 General outline of 2-level internal memory architecture of C67x processors.

The dashed boxes are user addressable m em ory.. 15

3.3 Configuration modes for the C6711 L2 memory... 16

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Block diagram of primary DM642 components. The DM642 has special in­

struction extensions to accelerate video applications... 17

3.5 Block diagram of primary C6416 Components. Note the larger L2 memory

and 64-bit EMIF bus.. 20

4.1 Picture of DM642 EVM board. Numerous components are on the EVM

circuit board to support testing the DSP for a wide variety of applications.

We primarily use the peripherals associated with video capture and display. 22

4.2 IDC video capture su b sy s te m .. 24

4.3 IDC video display s u b s y s te m .. 25

4.4 DM642 EVM block d ia g ra m .. 27

4.5 C6416 EVM block d ia g r a m .. 28

4.6 Block diagram of the test-bed — the Host PC only provides setup information

to the EVM; after initiation, the DSP executes independently.......................... 29

5.1 Capture Video Frame with input from camera on the left, and Retinex output

on the right. Retinex parameters are a — 175, (3 = 135, and cr = 80 — note

tha t we are nearly reaching the noise limit of the camera.................................. 50

5.2 Retinex performance in time (bottom axis) and frames per second (top axis)

to process 1 spectral band of image data on DM642 with 133 MHz EMIF

(dotted line), DM642 with 200 MHz EMIF (dashed line), and C6416 (full line). 61

5.3 Retinex performance in time (bottom axis) and frames per second (top axis)

to process 2 spectral bands of image data on DM642 with 133 MHz EMIF

(dotted line), DM642 with 200 MHz EMIF (dashed line), and C6416 (full line). 62

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Retinex performance in time (bottom axis) and frames per second (top axis)

to process 3 spectral bands of image data on DM642 with 133 MHz EMIF

(dotted line), DM642 with 200 MHz EMIF (dashed line), and C6416 (full line). 63

5.5 First snapshot taken 40 seconds into the video recorded at NASA LaRC.

The frame as captured by the camera is on the left and the real-time Retinex

processed frame is on the right.. 66

5.6 Second snapshot taken 6 minutes and 28 seconds into the video. Colors are

nearly completely indeterminable and objects are difficult to distinguish in

the unprocessed image. Colors and objects are still clear in the processed

frame.. 66

5.7 Third snapshot taken 14 minutes 28 seconds into the video. The only dis­

tinguishable object in the unprocessed frame is the tail-lights on the vehicle.

Although noisy, the real-time Retinex processed image still clearly shows

most of the major objects in the first snapshot including spheres, tree lines,

and parked vehicles........................... 67

6.1 The EVS LWIR, SWIR, and visible-band cameras mounted to a baseplate,

and the enclosure shell. Inaccurate bore-sighting can cause image registration

problems.. 69

6.2 EVS camera enclosure mounted forward-looking underneath the NASA 757. 70

6.3 The EVS acquires data during the entire flight but take-off and landing phases

are critical. The simulated shaded area depicts the field of view (FOV) of

the cameras... 71

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Examples of the imagery generated by each camera in good weather condi­

tions. The images from cameras must be registered, enhanced, fused and

displayed to the pilot in real-time... 72

6.5 Image processing architecture and functions of the EVS. Analog NTSC cam­

era outputs are currently processed. The SWIR data is used as the baseline

for registration since it has the smallest field of view.. 73

6.6 DM642 EVM, signal splitter boards, and power supply in flight box.............. 75

6.7 Flight box in flight pallet on NASA 757... 75

6.8 A frame from the EVS SWIR camera before processing. The faint vertical

lines were part of the input image and probably caused by subsampling in

the video distribution system... 78

6.9 A frame from the EVS LWIR camera before processing. The LWIR camera

output is actually rotated 180° from what is shown.. 79

6.10 SWIR frame after enhancement.. 80

6.11 LWIR frame after enhancement and registration to the SWIR image............. 80

6.12 Enhanced, registered and fused output image... 81

7.1 D ata flow diagram of MSR t a s k s ... 89

A.l Original SWIR.. 102

A.2 Original LWIR.. 102

A.3 Original V is ib le .. 102

A.4 Cropped S W IR .. 103

A.5 SS Reg. L W I R .. 103

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.6 SS Reg. v is ib le .. 103

A.7 SWIR and SS Registered LWIR... 104

A.8 SS Registered LWIR and v isib le.. 104

A.9 Repeated SWIR ... 105

A.10 MLR Reg. v isib le ... 105

A.11 SWIR and MLR Reg. v i s ib l e .. 105

A. 12 Repeated MLR Registered v is ib le ... 106

A.13 MLR Reg. LWIR... 106

A. 14 MLR Reg. visible and LWIR .. 106

A.15 Orig. SWIR at Time 26:14:28 .. 107

A. 16 Orig. LWIR at Time 26:14:28 .. 107

A.17 Orig. visible at Time 26:14:28 .. 107

A.18 MLR Registered visible at Time 26:14:18 107

A. 19 SWIR and MLR Registered v is ib le .. 107

A.20 MLR Registered LWIR at Time 26:14:18.. 108

A.21 MLR Registered visible and L W I R .. 108

B.l High-level block diagram of a typical FPGA A rc h ite c tu re I l l

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

The field of digital image processing encompasses the study of algorithms applied to
two-dimensional digital images, such as photographs, or three-dimensional signals, such as
digital video. Digital image processing algorithms are generally divided into several distinct
branches including image analysis, synthesis, segmentation, compression, restoration, and
enhancement. One particular image enhancement algorithm that is rapidly gaining wide­
spread acceptance as a near optimal solution for providing good visual representations of
scenes is the Retinex.

The Retinex algorithm performs a non-linear transform that improves the brightness,
contrast and sharpness of an image. It simultaneously provides dynamic range compression,
color constancy, and color rendition. It has been successfully applied to still imagery cap­
tured from a wide variety of sources including medical radiometry, forensic investigations,
and consumer photography. Many potential users require a real-time implementation of the
algorithm. However, prior to this research effort, no real-time version of the algorithm had
ever been achieved.

In this dissertation, we research and provide solutions to the issues associated with per­
forming real-time Retinex image enhancement. We design, develop, test, and evaluate the
algorithm and architecture optimizations that we developed to enable the implementation
of the real-time Retinex specifically targeting specialized, embedded digital signal proces­
sors (DSPs). This includes optimization and mapping of the algorithm to different DSPs,
and configuration of these architectures to support real-time processing.

First, we developed and implemented the single-scale monochrome Retinex on a Texas
Instruments TMS320C6711 floating-point DSP and attained 21 frames per second (fps)
performance. This design was then transferred to the faster TMS320C6713 floating-point,
DSP and ran at 28 fps. Then we modified our design for the fixed-point TMS320DM642
DSP and achieved an execution rate of 70 fps. Finally, we migrated this design to the fixed-
point TMS320C6416 DSP. After making several additional optimizations and exploiting the
enhanced architecture of the TMS320C6416, we achieved 108 fps and 20 fps performance for
the single-scale, monochrome Retinex and three-scale, color Retinex, respectively. We also
applied a version of our real-time Retinex in an Enhanced Vision System. This provides a
general basis for using the algorithm in other applications.

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REAL-TIME RETINEX IMAGE ENHANCEMENT: ALGORITHM

AND ARCHITECTURE OPTIMIZATIONS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Digital image processing encompasses the research and application of signal processing

techniques applied to two-dimensional digital images, or three-dimensional signals such as

digital video. The field originates from the confluence of large-scale digital computation and

the requirement to improve the imagery generated by the U.S. space program in the mid-

f960’s [20]. Over the last 40 years computation technologies have experienced phenomenal

growth and digital image processing has benefited from this progress to become a tool tha t

is used in a wide variety of applications. There are now several branches of digital image

processing, each representing different aspects of the field. These branches include image

analysis, segmentation, compression, synthesis, restoration, and enhancement [20, 30]. One

particular image enhancement algorithm that is rapidly gaining wide-spread acceptance as

a near optimal solution for providing good visual representations of scenes is the Retinex.

The Retinex performs a computationally intensive, non-linear spatial/spectral transform

that synthesizes strong local contrast enhancement and color constancy [33]. It is used

to improve the brightness, contrast and sharpness of an image. It has been successfully

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

applied to still imagery captured from a broad range of sources including aviation safety,

medical radiometry, forensic: investigations, military operations, homeland security, and

consumer photography [103, 55]. It is offered in the commercially available software package

PhotoFlair by TruView [99]. Several users require a real-time, embedded implementation

of the Retinex, but prior to this research effort, no real-time version of the algorithm

had ever been achieved. Real-time1 is defined here as continuously capturing, processing

and displaying 15-30, 256 x 256 sized images2 (frames) per second. Embedded implies a

system or component that is, in general, relatively small, inexpensive, and consumes very

little power [19].

One reason tha t a real-time version of the Retinex had not been achieved is because

the Retinex is inherently computationally intensive due to the large volume of data that

must be stored, processed, and transferred between processor and memory. The algorithm

also entails performing multiple, large convolutions and requires orthogonal data accesses

that exacerbate the problem. Another reason is the inefficiency of most general-purpose

computing platforms for real-time Retinex processing — as well as for many other digital

image processing algorithms. Today’s general-purpose processors, such as 2.5 GHz Pentium

4s, possess sufficient computation power to provide reasonable processing rates for Retinex

processing of small, still images. However, in general, they do not have the proper archi­

tecture, operating system, or development tools to effectively meet the time constraints

required for real-time Retinex processing. In addition, many applications limit the proces­

sor selection to components that can be embedded into a system. Many general-purpose

: A rea l-tim e system is one th a t satisfies explicit bounded response-tim e co n stra in ts to avoid failure [89].
2All im age sizes, such as 256 x 256, in th is d isse rta tio n are expressed using 8-bit pixels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

processors consume too much power or are too expensive to be used for these types of

applications.

Several specialized, high-performance hardware architectures and technologies are suit­

able for this task. Application specific integrated circuits (ASICs) [62] are one-of-a-kind

custom devices targeted towards a specific task and provide excellent performance at the

expense of long development times and high cost. Field programmable gate arrays (FP-

GAs) [58, 51] are an attractive alternative tha t offer relative ease of programming, high

performance and reconfigurability to support custom applications. Digital signal processors

(DSPs) [4] are inexpensive, easy to program — usually in common high level languages such

as C — and offer good performance. DSPs are optimized for processing signals in real-time

and offer some limited flexibility in architecture configuration. Several other esoteric tech­

nologies, such as array processors, are also available [36, 35]. However, for quick, low cost

development, DSPs are a suitable and sufficient design choice.

In this dissertation, we examine and provide solutions for the issues associated with

performing real-time Retinex image enhancement. We design, develop, test and evalu­

ate the algorithm and architecture optimizations required to enable the implementation of

the real-time Retinex specifically targeted for specialized, embedded DSPs. This includes

optimization and mapping of the algorithm to different DSPs and configuration of these

architectures to support real-time processing. We also develop and apply a particular in­

stance of our research efforts for the real-time Retinex into an Enhanced Vision System [98].

This provides a general basis for using the algorithm in other applications or missions.

First, we developed and implemented the single-scale monochrome Retinex executing on

a Texas Instruments TMS320C6711 floating-point DSP and attained 21 frames per second

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(fps) performance [24], This design was later transferred to the slightly faster TMS320C6713

floating-point, DSP and ran at 28 fps [25]. We then modified our design targeting the fixed-

point TMS320DM642 DSP and initially achieved an execution rate of 34 fps [25]. Further

refinements and optimizations improved our performance to nearly 70 fps. This design was

implemented as part of an Enhanced Vision System (EVS) and demonstrated during EVS

flight tests in August and September of 2005. Inputs from two single-band cameras were

Retinex enhanced, registered, and fused. The system operated at over 34 fps. Finally, we

migrated our design to a TMS320C6416 fixed-point DSP. After making several additional

optimizations and exploiting the enhanced architecture of the TMS320C6416 we obtained

108 fps performance for the single-scale, single-band (monochrome) Retinex and 20 fps

performance for the three-scale, three-band (color) Retinex.

Several different user communities will benefit from this enabling technology. The Avia­

tion Safety Program Office at NASA LaRC will continue to support applying the real-time

Retinex in future technology demonstrations on the NASA LaRC ARIES 757 (NASA 757)

research aircraft. The Transportation Security Administration is interested in using the

Retinex in applications to improve Homeland Security. The U.S. Army has provided fund­

ing to study using the real-time Retinex as part of a system to find improvised explosive

devices (IEDs) from unmanned aerial vehicles (UAVs). The real-time Retinex also has been

identified for potential use in future NASA space programs including lunar and planetary

exploration missions and autonomous landing systems.

In Chapter 2 of this dissertation, we discuss the mathematics behind the Retinex algo­

rithm. In Chapter 3 we give an overview of the architectures of our chosen DSP hardware.

In Chapter 4 we describe our test environment, and the software tools used to develop,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implement and measure the performance of the real-time Retinex. Chapter 5 is the heart of

this dissertation. In it we discuss the optimization techniques we developed and applied to

achieve real-time Retinex performance. In Chapter C we describe the EVS, and discuss how

particular instances of the real-time Retinex were used in this context. In Chapter 7 we dis­

cuss future Retinex research issues and their potential solutions. This includes discussions

of distributing the core structures developed for the DSP platforms into a multiprocessor

environment, and the algorithm and architecture modifications required to process larger

format images. Finally, in Chapter 8 we give our conclusions to this research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

R etinex Image Enhancement

The Retinex is a general-purpose image enhancement algorithm tha t is used to produce

good visual representations of scenes. The algorithm is derived from the last version of

Edward Land’s Retinex model [37] of the innate ability of human vision to perceive vivid

color and detail across widely varying lighting conditions. In addition, this perception is

relatively independent of the spectral characteristics of the illuminant. Jobson, et al. ex­

tended and improved Land’s Retinex into a general-purpose enhancement algorithm that

simultaneously provides dynamic range compression, color constancy, and color and light­

ness rendition. The first version of their work, the single-scale Retinex (SSR), provided

good performance, but traded-off dynamic range compression for color rendition [33]. They

improved their design by using multiple scales (multi-scale) within the Retinex (MSR) to

address this tradeoff, and additionally added a method of color restoration to improve color

rendition when gray-world violations occur within an image [32]. Other methods, such as

post-processing using a white balance technique [5G] have also been added. These additions

extend the potential utility of the Retinex, but they also increase the computational require-

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

Figure 2.1: The top row of images from left to right have simulated tungsten, fluorescent, and
sunlight illumination sources. The bottom row has the same images after Retinex processing. The
effects of the different illumination sources is nearly completely removed.

ments of the algorithm. We concentrate 011 the SSR and MSR versions of the algorithm.

Figure 2.1 is an example tha t shows the color constancy property of the Retinex. The

top row of images have simulated tungsten, fluorescent, and sunlight illumination sources

from left to right respectively, and the bottom row is the image after Retinex enhancement.

The Retinex processing has almost totally removed the effect of different illuminants on the

scene. Figure 2.2 is a good visual illustration of the dynamic range compression property.

Retinex processing of the image on the left dramatically brings out the details in the dark

regions of the image without saturating the bright regions. Both of these examples are

processed using the color version of the MSR. Figure 2.3 shows an example of monochrome

SSR processing. The contrast and sharpness of the original is improved significantly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.2: Many image processing algorithms would either saturate the bright regions or clip the
dark regions of the image on the left. The Retinex processed image on the right appears almost
uniformly illuminated without exhibiting these effects.

The Retinex is a member of the class of center/surround functions which are similar to

well known difference-of-Gaussian (DOG) functions [27, 54], For the Retinex, the center is

one pixel wide and its magnitude is the pixel value and the surround is a Gaussian. The

single-scale Retinex is given by

Ri(x i .x 2) = lo g (/,(x i.x 2)) - log(/,;(xi,;r2) * F(x i , .r2)), i = 1 , 5 (2.1)

where I, and 11, are the 7th spectral band of the input and output image, respectively. For

a grayscale image 5 = 1 and for a standard color image 5 = 3. The log is the natural

logarithm function and represents convolution. F is a Gaussian surround (or kernel)

function defined by

F{xl . x2) = K exp[-(.rf + :r2)/<x2] (2.2)

where a controls the spatial extent of the surround, and k = 1 / (23Xl 23X2 F(x i,:r2)) is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

Figure 2.3: On the left is a low contrast, dimly lit grayscale digital image; 011 the right is the
single-sc.ale Retinex processed image — single-scale processing increases the contrast and sharpness.

normalization factor. Canonical gain, a , and offset, f3, values are applied to convert the

Retinex output into the user display domain, so the final form of the single-scale Retinex is

Rd{x\,x2) = a (lo g (7 j(x i,x 2)) - lo g (/i(z i,x 2) * F (x i , x 2))) - ft, i = l , . . . , S (2.3)

Values for a , ft, and a are application dependent and determined empirically. For example,

in normal room light conditions values of 200, -120, 80 respectively produce good results.

The multi-scale Retinex is defined as the weighted sum of K SSR outputs, where K is

the number of scales. Thus the MSR is given by

K

Ri(* 1 , 2 :2) = ^ I T \ (l o g (Ii(xl , x 2)) - \og(Ii(x l, x 2) * Fk(x i , x2))) (2.4)
k = 1

where the Fk are now defined as

Fk(x 1 , x2) = Kk exp[—(x'f + x l (2.5)

The Wk are the weighting factors and the Kk are the normalization factors associated with

each scale. Jobson et al. [32] have shown, empirically, tha t three scales with reasonable local

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

to global coverage, and equal weights provide good performance for most images. Again a

canonical gain a , and offset, j3, are applied thus the final form of the MSR is

K

Ri(xI ,x2) = w k{\og(Ii{xi ,x2)) - \og(Ii(xi,x2) * Fk(x i , x2))) - f3. (2.6)
k = i

The derivation of the computational complexity of the Retinex is straightforward. As­

sume that the input image dimension size is N x N, the extent of the surround, F . is

M x M, circular convolution is performed in the spatial domain, and ignore the operations

involving o, fj, W k and the computations required to generate Fk. We show in Section 5.1.2,

that these are all valid assumptions. Then for the single-scale monochrome Retinex, there

are M 2 multiplies and M 2 — 1 additions for every pixel. There are also 2 N 2 logarithm

operations — two logarithms for each pixel, and N 2 subtractions. Thus, the running time

of the algorithm is driven by the convolution operation and the complexity is 0 (N 2M 2).

As the extent of F approaches the size of the image, i.e. M —> N, the complexity becomes

0 (N 4). For the one scale, multi-spectral case, the monochrome algorithm is performed S

times, once for each spectral band. The complexity remains the same, 0 (N 2M 2). For the

multi-scale, multi-spectral case, the convolution and the other arithmetic operations are

performed K times, once for each scale. This is subsequently repeated S times, once for

each spectral band. Additionally, as discussed in Section 5.4, for any multi-spectral case,

functions may be required to divide the spectrum into its individual component parts for

processing, and to combine the processed components back together again. However, the

complexity still remains the same - () (N2M 2). Methods to reduce the running time of the

algorithm are discussed in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

D igital Signal Processors

For our research we have selected four state-of-the-art Texas Instruments (TI) DSPs for

implementation and performance evaluation of the real-time Retinex (RTR). TI processors

were chosen because of their flexible and powerful architecture, good support tools, avail­

ability of the DSPs to the researchers, low cost of evaluation boards, and our past familiarity

with using TI processors. Many other DSPs, such as Analog Devices SHARC processors,

would also provide' reasonable hardware platforms for implementation. All of the TI DSPs

that were chosen are based on an advanced very-long-instruction-word (VLIW) [71] archi­

tecture. This type of architecture achieves high performance by exploiting instruction-level

parallelism. Multiple execution units operate in parallel to execute multiple instructions

during a single clock cycle. Our four target DSPs are the TMS320CG711, TMS320C6713,

TMS320DM642, and TMS320C6416. In this chapter we discuss the relevant details of each

of these processors.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

I SRAM I—

ISBSRAMl—

I ROM f-

Register Files
Functional Units

INT
SEL

Timers

EMIF
32-Bit

McBSPs

HPI

LID Cache 4-KB
2-Way Set Assoc

L IP Cache 4-KB
Direct Mapped

L2
Memory
64-KB

EDMA
Controller

C 671X D S P Core
Instruction Fetch

Instruction Dispatch
Instruction Decode

F ig u re 3.1: Prim ary DSP com ponents include th e CPU , L I D ata Cache, L I Program Cache, L2
m emory (SR A M /C ache) and EDM A Controller.

3.1 T M S320C 6711

Our first target, the TMS320C6711B (C6711) DSP, is a 32-bit floating point processor

that offers up to 1200 millions instructions per second (MIPS)/900 million floating point

operations per second (MFLOPs) performance at a clock rate of 150 MHz (6.67 ns cycle

time) [73], As shown in Figure 3.1 the processor is divided into three main components:

the CPU (or core), memory, and peripherals.

The CPU has eight independent functional units and a 256-bit, wide instruction word

that allows up to eight 32-bit instructions to be supplied to the units during every clock

cycle. The functional units are mapped into two sets where each set contains four units and

a register file. In total the eight functional units provide four fixed/floating point arithmetic

logical units (ALUs), two fixed-point ALUs, and two fixed/floating-point, multipliers. Two

multiply-and-accumulate (MACs) per cycle can be performed for a total of up to 300 Million

MACs (MMACs) per second. Each of the two register files contains sixteen 32-bit registers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

for a total of 32 general-purpose registers. Six of the functional units have access to the

register file on the opposite side via a cross path. Like a MIPS processor, the CPU uses a

load/store architecture, where all instructions operate on registers. There are dual 64-bit

load data paths and dual 32-bit store data paths.

The DSP has a two-level memory architecture for both program and data [88]. Figure 3.2

is a general outline of the architecture. This hierarchical architecture is used to reduce the

average memory access time by exploiting the temporal or spatial locality of data [87]. The

Level 1 data cache (LID) is a 32-Kbit 2-way set associative cache tha t services data accesses

from the CPU. It has a 32-Byte line size and 64 sets. The LID is implemented with a single

bank of dual-ported 64-bit memory and can service up to two data accesses from the CPU

on every cycle. The LID is a read-allocate cache, but does not write-allocate1. A 32-bit

by 4-entry write buffer between the LID and the L2 memories is used to capture write

misses. The Level 1 program cache (LIP) is a 32-Kbit, direct-mapped, read-allocate cache

that services program fetches from the CPU. It has a 64-Byte line size and 64 sets.

The Level 2 (L2) memory space is 64-KByt,es that can be configured as all SRAM, all

cache, or combinations of the two in 16-KByte increments. This memory services requests

from the LIP, LID, enhanced direct memory access (EDMA), or internal cache operations,

with request priority from highest to lowest as listed. It is divided into four 64-bit, banks

that operate at the CPU’s clock rate, 150 MHz, but pipelines accesses over two cycles. Any

portion of L2 configured as cache (L2 Cache) is organized as 128 sets with 128-Byte line

size. The associativity varies from 1-way for when the cache capacity is 16-KBytcs, up

: A read /w rite -a llo ca te cache a llocates space (i.e. selects a location in th e cache) on a re a d /w rite miss
according to th e cache allocation policy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

User
Addressable Write

Buffer

Cache

Data
Cache 4-KB

Program
Cache 4-KB

C67x CPU

LI Cache

Configurable On-Chip L2 Memory

SRAM

External Memory

F ig u re 3.2: G eneral outline of 2-level in ternal m emory architecture of C67x processors. The dashed
boxes are user addressable memory.

to 4-way at 64-KBytes. The different configuration modes are shown in Figure 3.3. The

operation of L2 Cache is similar to tha t of both the L IP and LID caches. On a cache hit

the L2 cache services the request directly. The L2 Cache is a writeback 2 cache so external

memory is not updated until the line is either evicted or written back using cache control

registers. Unlike the LID, the L2 Cache is read-allocate and write-allocate. A least-recently

used policy (LRU) is used for line selection.

Several peripherals are located within the processor. There is a multichannel EDMA

controller that supports up to 16 channels of data transfers There is a host port interface

(HPI) that allows a host processor to directly address the CPU’s memory space. There is

also a 32-bit external memory interface (EMIF) that provides an interface to external devices

such as synchronous dynamic random access memory (SDRAM) and read-only memories

(ROMs) [78].

2W riteback is th e process of w riting d a ta th a t has been m odified from a valid, b u t now d ir ty cache line to
lower-level m em ory. W rite h its to a w riteback cache are not im m ediately forw arded to lower-level mem ory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1G

64-KB
Mapped
Memory

48-KB
Mapped
Memory

16-KB
1-Way
Cache

32-KB
Mapped
Memory

32-KB
2-Way
Cache

16-KB
Mapped
Memory

48-KB
3-Way
Cache

64-KB
4-Way
Cache

F igu re 3.3: Configuration modes for th e C6711 L2 memory.

3.2 T M S 320C 6713

Our second target, the TMS320C6713 (C6713), is a 32-bit floating point processor that

performs up to 1800 MIPS/1350 MFLOPS at a clock rate of 225 MHz (4.4 ns instruction

cycle time) [84]. The architecture of the C6713 is very similar to the C6711, and code

operating on one device directly ports over to the other [92]. The most relevant differences

in the two devices are listed below.

• The C6713 operates at 225 MHz while the C6711 only operates at 150 MHz.

• The C6713 has a larger internal memory. The LI caches are the same, but the C6713

has an additional 192-KBytes of SRAM in L2 that only functions as mapped memory.

• The C6713 has a software-configurable Phase-Loek Loop (PLL) controller that can

be used to select different clock frequencies for the DSP core, peripherals and the

EMIF [94], Speeding up EMIF transfers can enable faster throughput.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

SRAM

ISBSRAMI—

I ROM

Register Files
Functional Units

McBSPs

Video
Ports (3)

HPI

Timers

EMIF
64-Bit

LID Cache 16-KB
2-Way Set Assoc

L IP Cache 16-KB
Direct Mapped

L2
Memory
256-KB

EDMA
Controller

D M 642 D S P Core
Instruction Fetch

Instruction Dispatch
Instruction Decode

F ig u re 3.4: Block diagram of prim ary DM642 com ponents. The DM642 has special instruction
extensions to accelerate video applications.

3.3 T M S 320D M 642

Our third target is the TMS320DM642 (DM642). The DM642 is a 32-bit fixed-point pro­

cessor that performs up to 4800 MIPS at a clock rate of 600 MHz (1.67 ns instruction cycle

time) [86]. A block diagram of the processor is shown in Figure 3.4. The DM642 also has

eight independent functional units consisting of six ALUs and two enhanced multipliers.

In addition to standard multiplies, the multiply units include hardware that can perform

bit-count, rotates, and bidirectional variable shifts. Four 32-bit, MACs per cycle can be

performed for a total of 2400 MMACs per second, or eight 8-bit, MACs per cycle for a total

of 4800 MMACS. There are new instruction extensions to accelerate video and imaging

applications, and to improve the parallelism of the architecture [79]. This includes support

for packed 8-bit, and 64-bit data types, and instructions that perform non-aligned loads and

stores of words or double words.

The DM642 also has a two-level cache [95]. The LIP is a 16-KByte direct-mapped

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

cache with 32-Byte line size and 512 sets. Multiple cache misses are pipelined. The LID

is lG-KBytes deep and is 2-way set associative with a 64-Byte line size and 128 sets. It is

implemented as eight 32-bit wide banks of single-ported memory, as opposed to the single

bank of dual-ported memory of the C671X devices. Each single-ported bank allows only

one access per cycle. The LID is a read-allocate only cache where new lines are allocated

for LID read misses but not write misses. The LID implements a LRU line allocation policy

for read misses and pipelines multiple misses. A 64-bit by 4-entry write buffer between LID

and L2 memory captures data from write misses. This buffer is an enhanced version of the

one in the C671X in that the L2 can process a new request from the write buffer every

cycle, as opposed to every 2 cycles on the C671X, provided that the L2 bank is not busy.

Additionally, the DM642 write buffer allows merging of write requests, thus effectively

increasing the write buffer capacity, reducing the stall penalty, and reducing the overall

number of write operations the L2 must process.

The L2 memory is 256-KBytes that can be configured as local SRAM, cache or combi­

nations of the two. This memory services cache misses from the LIP, the LID, the EDMA

controller and internal cache operations with request priority from highest to lowest as

listed. It is divided into eight 64-bit, banks that operate at the CPU’s clock rate, 600 MHz,

but pipelines accesses over two cycles. Four L2 Cache configuration modes are supported:

32-KByte capacity organized as 64 sets, 64-KByte capacity as 128 sets, 128-KByte capacity

as 256 sets, and 256-KByte capacity as 512 sets. L2 Cache is always 4-way set associative

with 128-Byte line sizes and operates as a write-back cache. A cache line is allocated for

both read and write misses, and a LRU policy is used for line selection.

The DM642 also has many of the same peripherals as the C671X devices with several

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

extensions and additions including a 64-bit, EMIF and three configurable video port pe­

ripherals [89]. The video ports provide a glue-less interface to common video decoder and

encoder devices. Each video port can be configured for either video capture or display, and

each port supports up to two channels with a 5120-Byte buffer that is shared between the

two channels.

3.4 T M S 320C 6416

Our fourth target is the TMS320C6416 (C6416). The C6416 is a 32-bit fixed-point processor

tha t performs up to 8000 MIPS at a clock rate of 1000 MHz (1 ns instruction cycle time) [97].

A block diagram of the processor is shown in Figure 3.5. The C6416 has eight independent

functional units consisting of six ALUs and two enhanced multipliers capable of performing

four 16-bit, x 16-bit multiplies every clock cycle with add/subtract operations. Four 32-bit

MACs per cycle can be performed for a total of 4000 MMACs per second, or eight 8-bit

MACs per cycle for a total of 8000 MMACS. . The C6416 also includes support for packed

8-bit and 64-bit data types, and allows for non-aligned loads and stores of words/double

words [79]. There are two register files, each containing 32, 32-bit registers for a total of

64 general-purpose registers. All eight of the functional units have access to the opposite

register file and the dual load and store data paths are 64-bit,s wide.

The C6416 also has a two-level cache [97]. The LIP and LID are the same size and

operate the same as the respective memories on the DM642. The L2 memory has been

increased to 1024-KBytes and can be configured as all mapped memory or combinations

of cache (up to 256-KBytes) and mapped memory. Any portion of L2 memory partitioned

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

I SRAM I—

1SBSRAMI—

I ROM |-

Register Files
Functional Units

HPI

McBSPs

PCI

EMIF
64-Bit

EMIF
16-Bit

LID Cache 16-KB
2-Way Set Assoc

L IP Cache 16-KB
Direct Mapped

L2
Memory
1024-KB

EDMA
Controller

C 6416 D SP Core
Instruction Fetch

Instruction Dispatch
Instruction Decode

F ig u re 3.5: Block diagram of prim ary C6416 Com ponents. Note th e larger L2 m em ory and 64-bit
EM IF bus.

as cache has the same modes as on the DM642. The C6416 has two EMIFs: one 64-Bits

wide and one 16-Bits wide. The total external addressable memory space of 1280-MBytes.

Table 3.1 summarizes the pertinent parameters of the DSPs.

DSP Type Frequency
(MHz)

LI
(K-Bytes)

L2
(K-Bytes)

EMIF
(Width)

EMIF Clk
(MHz)

C6711 Floating-pt 150 8 64 1 32-bit 100
C6713 Floating-pt 225 8 256 1 32-bit 90
DM642 Fixed-pt 720 32 256 1 64-bit 133
C6416 Fixed-pt, 1000 32 1024 1 32-bit

1 64-bit
100
100

T a b le 3.1: D SP Specifications

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Test Environment

We now describe the platforms tha t support each DSP and the general hardware and soft­

ware test environment. This environment will be used to test, analyze and evaluate our

optimization techniques discussed in Chapter 5.

4.1 D S P E valuation M od u les

Each DSP is embedded on a different printed circuit board for test and evaluation. The

circuit boards are called EVMs (evaluation modules). Figure 4.1 shows the EVM for the

DM642. The other EVMs look similar to this. As can be seen in the figure, each EVM has

several components and interfaces to support the associated DSP. We will briefly describe

the EVMs for each of our selected DSPs only defining the parts relevant to our discus­

sion. We will then describe the tools used for software development, optimization, and

performance analysis.

The C6711 EVM has 16-MByt,es of SDRAM clocked at 100 MHz that is used as exter­

nal memory for the chip. There are 128-KBytes of flash memory which is usually used to

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

F ig u re 4.1: P icture of DM642 EVM board. Num erous com ponents are on the EVM circuit board
to support testing the DSP for a wide variety of applications. We prim arily use the peripherals
associated w ith video cap tu re and display.

hold application code and parameters when power is disconnected from the board. Com­

munication to a host PC — primarily for downloading code and gathering statistics — is

through a parallel port. An embedded Joint Test Action Group (JTAG) controller is used

for emulation and debugging [28]. The board also has an expansion connector to support

adding additional memory, peripherals, or daughter-cards [77].

The C6713 EVM has 8-MBytes of SDRAM clocked at a default rate of 90 MHz and 512-

KBytes of flash memory. Communication to a host PC is performed through a Universal

Serial Bus (USB) port. An embedded USB JTAG controller is provided for debugging [66].

The EVM also has an Intel LXT971 Ethernet port for data transfers to an external device.

The DM642 EVM lias 32-MBytes of SDRAM clocked at 133 MHz, 4-MBytes of flash

memory, an Intel LXT971 Ethernet interface, and a standard JTAG connector for external

emulation [67]. The C6416 EVM has 256-MBytes of SDRAM on the 64-bit EMIF bus

and 8-MBytes on the 32-bit wide EMIF bus. Both busses are clocked at 100 MHz. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

board also has 4-MByt,es of flash memory, and a dedicated JTAG connector for external

emulation [3].

4 .1 .1 V id e o C a p tu re an d D isp la y for C 6711 an d C 6 713 E V M s

For the C6711 and CG713 EVMs, video capture, display, and data formatting are performed

by an imaging daughter-card (IDC) [76] that connects to each board’s expansion connectors.

The main components of the IDC are a TI TVP5022 digital video decoder chip [74], a TI

TVP3026 RAMDAC digital video encoder chip [70], a Xilinx FPGA for control, buffer

management and interface logic, and 2-MBytes of SDRAM for capture frame memory. The

IDC also has a female Radio Corporation of America (RCA) connector tha t is used to

receive video, and a standard 15-pin female video graphics array (VGA) connector tha t is

used to supply red, green, blue (RGB) [69] video output to a monitor.

Figure 4.2 is a block diagram of the video capture subsystem [72]. A video input signal

from an NTSC (or Phase Alternating Line (PAL)) source is digitized by the TVP5022

decoder chip into a standard Y ' C r C r 4:2:2 format1. The Y ' C r C r is a color space used

to represent digital component video where color is represented by a luma component (Y'),

and two chroma components (C r and C r). The 4:2:2 notation2 designates the ratio of Y',

Cb and C r signals where C r and Cr are co-sited and subsampled at half the horizontal

resolution of Y' [53].

*The IT R -R BT.G01 s ta n d a rd defines th e Y ' C b C r color space and th e 4:2:2 sam pling o rganization and
resolutions. T h e BT.656 s ta n d a rd defines th e serial and paralle l interfaces for tra n sm ittin g Y 'C bO /? 4:2:2
d ig ita l video [29. 100].

2T he num ber 4 o rig inates from a m ultip lier of th e BT.601 chosen baseline frequency of 3.375 M Hz and
corresponds to a sam pling ra te of 13.5 M Hz, a s tan d a rd frequency for d igitizing N TSC or PAL; sim ilarly the
2s correspond to 6.75 MHz [100]. O th e r com m on subsam pling ra tio s include 4:4:4, 4:1:1 and 4:2:0 (w here
th e chrom a com ponen ts are sited in te rs titia lly)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Video
Source

F ig u re 4.2: IDC video cap ture subsystem

The 8-bit wide Y 'C r Cr pixel stream — interleaved as Cb , Y' , Cr , Y' , . . . , is fed into

the FPGA. The FPGA separates and stores the stream into capture frame memory buffers

as two separate fields (odd and even) in three separate blocks (Y', C b , C r) as shown in

Figure 4.2. The TVP5022 chip also controls all video input timing including a vertical

synchronization signal that generates a CPU interrupt once per frame, and a blanking

signal tha t indicates the presence of data on the pixel bus to the FPGA.

The capture frame memory buffers are memory-mapped into the DSP address space

as read-only and are accessed via the EMIF. A triple buffering scheme is used to allow an

application to obtain a new buffer of the most recently captured data without waiting. The

“active” buffer is currently receiving data from the TVP5022. The “last active” buffer is

the last buffer that was filled by the TVP5022. The “user” buffer is owned and read by the

user application. If the application can maintain a full 30 fps processing rate, the buffers are

physically walked through in a circular sequence by the FPGA and user application. If the

user application attem pts to access the buffers faster than 30 Hz, then duplicate frames will

ID C

TVP5022 FPGA

IDC SRAM
Active Last Active User

Y1 Y1 Y1
Cbl Cbl Cbl
C rl C rl C rl

Field 1 Field 1 Field 1
Y2 Y2 Y2
Cb2 Gb2 Cb2
Cr2 Cr2 Cr2

Field 2 Field 2 Field 2

Ext Int 5

E V M
C6711/13

DSP

EMIF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Monitor

Display Buffer 2

Display Buffer 0

Display Buffer 1

TVP5022

Display FIFO
TVP3026

C6711/13
DSP

SDRAM
Active

Next Active

User

ID C

VSYNC HSYNC

E V M

Ext Int 6 Ext Int 7 EMIF

F ig u re 4.3: IDC video display subsystem

be returned. If the application executes slower, then captured frames will be overwritten.

Figure 4.3 is a block diagram of the video display subsystem [72]. Video display is

limited to a max size of 800 x 600 pixels with 8-bits per pixel for grayscale or 16-bits per

pixel for RGB 565 color3. A total output frame display buffer size of 2.88-MBytes (800 x

600 x 16-bits for 3 buffers) is allocated and linked into the DSP’s external memory space.

Timing signals for video readout include a vertical synchronization (VSYNC) signal and a

horizontal synchronization (HSYNC) signal. The VSYNC signal triggers a CPU interrupt

and the associated interrupt service routine posts a display semaphore which is used to wait

for new frames. The HSYNC signal triggers an EDMA event to copy one line of display data

from the display buffer to the IDC display first-in-first-out (FIFO) buffer. The TVP3026

RAMDAC chip then transmits this line to the output port.

Analogous to the video capture system, a triple buffering scheme is used for data trans­

fers. The “user” buffer is owned by the user application. The “next active” buffer will be

3R G B 505 rep resen ts color values using 5-b its for red, 6 -b its for blue and 5-b its for green

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

returned on the next buffer request. The “active” buffer is being used for EDMA transfers,

ff the application attem pts to access buffers too fast, frames will be dropped. If access is

too slow, frames will be displayed repeatedly.

4 .1 .2 V id e o C a p tu re an d D isp la y for D M 6 4 2 an d C 6416 E V M s

The DM642 has three on-chip video ports. On the EVM two of the ports are configured

as capture ports (video ports 0 and 1) and one is configured as a display port (video port

2). The capture ports interface to TI TVP5146 [96] and TVP 5150A [91] video decoders.

The TVP5146 supports composite4 or Y /C format5 inputs, and the TVP5150A supports

composite inputs only on the EVM. The output of the display port is routed through an

FPGA (for functions such as on-screen display or overlays) to a Phillips SAA7105 video

encoder. The SAA7105 drives either NTSC/PAL composite video, S-video, RGB, or liigh-

definition component video. Figure 4.4 is a block diagram of the system. Analog input video

is digitized into planar Y ' C r C r 4:2:2 component video and buffered in external memory

similar to the method used for the IDC.

A block diagram of the C6416 EVM is shown in Figure 4.5. Analog video is digitized by

a Conextant, BT835 decoder into a Y'C/A'/f 4:2:2 format and stored by the FPGA into the

capture FIFO buffer. Instead of being written in planar form as on the C6711 EVM, the

captured data is stored in C«, Y'. Cb ■ ■ - interleaved order. The FIFO is memory-mapped

into the address space of the DSP and accessed via the EMIF. Similarly, output data to be

displayed is stored in Y ' C r C r 4:2:2 format and written using a EDMA channel into the

4 C om posite video com bines lum a, chrom a and sync signals in to a single waveform carried on a single wire
pair.

5Y /C has th e lum a and ch rom a com ponents carried on sep a ra te signal w ire pairs to reduce signal crosstalk .
Y /C is often incorrectly referred to as S-video, a m agnetic ta p e m odu la tion form at.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

Composite
S-Video Composite

RGB
S-Video

HD

Composite

Video
Input 1 FPGA Video

Output

Video
Input 2

SRAM

TVP5146
Video

Decoder

TVP5150A
Video

Decoder

SAA7105
Video

Encoder

Video
Port 1

Video
Port 2

DM 642

Video
Port 3

D M 642 E V M

F ig u re 4.4: DM642 EVM block diagram

display FIFO by the DSP. The pixel stream is then transfered to a Conextant BT864 for

digital-to-analog conversion (DAC) and NTSC/PAL encoding.

4.2 D ev e lo p m en t T ools

Several software development tools are used on all of the EVMs, including a C-compiler,

assembly optimizer, and a debugger for visibility into source code execution. These tools are

incorporated into T I’s Code Composer Studio (CCS). Other rapid prototyping software tools

used include a chip support library (CSL) [81] to configure and control on-chip peripherals,

an image data manager (for the IDC) for DMA abstraction, and a C-callable DSP library

(DSPLib) [90] that contains a collection of highly optimized functions such as the well-

known Fast Fourier Transforms (FFT) [7, 49, 64]. A scalable real-time operating system

(OS) kernel called DSP/BIOS (basic input output system) is used to provide preemptive

multi-threading, hardware abstraction and real-time analysis [80].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

Composite
S-Video

Composite

SRAM

Video
Output

Capture
FIFO

Video
Input

Display
FIFO

BT835
ADC

BT864
DAC

F P G A
C6416

C 6416 E V M
S-Video

F ig u re 4.5: C6416 EVM block diagram

Compiler options are used to control speculative loading, auto in-lining thresholds, data

alignment/placement information, and advanced loop optimizations [82], Significant perfor­

mance improvements can be gained by using target-specific instructions called intrinsics [93],

Intrinsics are special functions that allow certain assembly statements to be easily embed­

ded in application code. For example to find the maximum value of two variables x l and

x,2 we simply use the optimized in-line intrinsic function call for max2 — max2{x\ , x2) .

4 .3 T est-B ed C om p on en ts and O p eration

A test-bed is used to implement and analyze the real-time Retinex algorithm and to support

testing the algorithm within the context of the EVS for our case study. The baseline test-bed

is composed of

• a standard NTSC video source (for example a video camera, DVD player or VCR),

• a monitor that accepts a composite video input to display the processed output,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

Host

Host

JTAG Emulator

JTAG Emulator

Encoder

SDRAM

Decoders

Monitor

Video
Source Monitor

Video
Source

SDRAMC671X
DSP

IDC

DM642
C6416

C 671X E V M

D M 6 4 2 / C 6416 E V M

F ig u re 4.6: Block diagram of the test-bed — the Host PC only provides setup inform ation to the
EVM; after in itiation, the DSP executes independently.

• a host personal computer (PC) running CCS for code development and analysis,

• a JTAG emulator for communication and debugging, and

• the target DSP on an EVM as discussed in Section 4.1.

Figure 4.6 shows general outlines of the test-bed using the C6711 and C6713 EVMs with

IDCs, and the DM642 and C6416 EVMs. The host PC is not part of the image processing

chain.

General operation of the test-bed is as follows. C code to perform the Retinex is written

on the PC using the CCS software. This code is compiled, assembled and linked into a

common object hie format (COFF) and is downloaded into the DSP on the EVM. Execution

of the algorithm is then triggered from the PC. From this point on, the EVM operates

totally independent of the PC. The functions for performance analysis are (1) video frames

are captured from the source, (2) a 256 x 256 pixel sized portion of the captured frame

buffer is Retinex processed, and (3) the output product displayed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

4 .4 P erform an ce A n alysis

The execution time of the Retinex is measured by using the real-time analysis tools within

DSP/BIOS. These tools are composed of instrumentation code tha t is integrated into the

target application. The code is executed at run time, and the events of interest are stored

in memory on the target. This information is transferred to the host PC for display, further

processing, or post-exec.ution analysis. All instrumentation operations have fixed, short

execution times and communication between the target and host is performed in the back­

ground using a low priority idle thread thus minimizing the impact 011 performance and

program behavior.

The instrumentation modules can be called explicitly by the application through ap­

plication programmer interfaces (API)s or implicitly through the calls used internally by

D SP/BIOS[80]. Explicit instrumentation API modules include a statistics (STS) object

manager and a trace (TRC) manager. STS objects store statistics about data variables or

system performance including capturing count, maximum, total, and average values in real­

time. The TRC module provides a means to enable or disable data acquisition in real-time

through querying a set of bits.

Implicit instrumentation is built into DSP/BIOS and allows the user to display several

values including CPU loading. CPU loading is defined as the percentage of instruction

cycles that the CPU spends performing application related work — running interrupts,

tasks, periodic functions, performing I/O to the host, or running any other user routine.

For the remaining time, the CPU is considered idle. CPU load is be expressed by

CPUload = (cw/(cw + Cj)) x 100 (4-1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

where cw and c% are work and idle instruction cycles, respectively. CPU loading can be

viewed graphically in a window with continuous updates if the there are enough idle cycles

to transfer this statistic to the host. Otherwise the values can be obtained after halting the

target and retrieving the stored loading values.

4.5 R ea l-tim e P aram eter U p d a tes

A useful capability to test the Retinex algorithm is to be able to update parameters in

real-time. TI provides a mechanism to interact with an application in real-time called

real-time data exchange (RTDX)[80]. RTDX plug-ins provide a means to transfer data

between a host computer and DSP devices via the JTAG interface with minimal interference

with the target application. A small RTDX library runs on the target DSP while another

runs on the host. An application executing on the target makes function calls to the

RTDX target library’s API to send or receive data. The host library, working within CCS,

provides a component object model (COM)6 API for communication. Any object linking

and embedding (OLE)' automation client on the host can be used for display or analysis.

We developed our own OLE client using Visual Basic to update Retinex parameters (a),

offset (/J), and the standard deviation of the Gaussian surround (cr).

6C O M is a Microsoft, developed technology th a t allows com m unication bet ween softw are com ponents.
‘O LE is a M icrosoft developed s ta n d a rd enables th e crea tion of an ob jec t in one app lica tion th a t can be

linked or em bedded in a second application .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

4.6 R e tin ex Task W ith in D S P /B IO S

Our code for the Retinex is written to execute as a task within the DSP/BIOS environment.

This allows explicit use of the real-time analysis tools. In general, two tasks, “main”

and “video processing” are scheduled. First, “main” performs a few initializations, such

as setting up the chip support library, configuring the cache, and opening up an EDMA

channel, and then returns. The “video processing” task is then set to run automatically by

the DSP/BIOS scheduler. The video processing task consists of the following steps:

• set up several video parameters such as capture and display frame sizes,

• receive a frame from the capture frame buffer,

• call (and waits on) the Retinex processing function,

• display the Retinex output and optionally displays the unprocessed frame,

• exchange capture and display buffers, and then returns to read another frame.

STS objects are coded within the “video processing” task to determine the overall exe­

cution time of the Retinex processing function. Several STS objects are also placed within

the Retinex processing function to determine internal performance characteristics. This

helps to isolate the primary time consumers or “tall-poles” within the algorithm. STS API

calls to set the time 0 11 an STS object, and then to check the change in time after execution

of some portion of code requires approximately 18 and 21 instructions respectively. These

values can be removed for a more accurate measure of performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

O ptim izations and Performance

R esults

We now describe the optimization techniques we developed and applied to implement the

real-time Retinex. This discussion is the core of our research. Our discussion will focus

on the major algorithm and architecture optimizations that significantly improved perfor­

mance. Additionally, each optimization was developed under the basis tha t it would not

cause any perceptible loss in image quality.

Our baseline algorithm and architecture targets are the single-scale monochrome version

of the Retinex (SSMR) and the C6711 DSP on the C6711 EVM in our test-bed. The

SSMR is the simplest form of the Retinex and the C6711 has the lowest performance

of the processors in this study. However both allow us to establish our core algorithm

and architecture techniques and provide a basis for future optimizations, extensions, and

adaptation to other platforms. One change in the architecture at this point is to configure

the L2 memory as 32-KBytes of cache and 32-KBytes of SRAM. The 32-KBytes of SRAM

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

arc sufficient to store all the required variables in our first implementation.

5.1 S in g le-S ca le M on och rom e R etin ex O p tim iza tion s

5 .1 .1 A p p ly C o n v o lu tio n E q u iv a len ce

A fundamental component of the Retinex computation is to convolve the input image with

a Gaussian kernel. Good single-scale Retinex renditions are obtained with a large kernel

(a > 80), so performing this operation in the spatial domain is extremely time consuming.

The first, and most obvious, optimization then is to use the well-known equivalence between

convolution in the spatial domain and multiplication in the spatial-frequency domain [7, 20]

f (x , y) * g(x, y) F(g, v)G{g, u) (5.1)

where F and G are the spatial frequency domain representations of / and g respectively.

We apply this concept to convolve an input image with a Gaussian kernel by employing the

2-dimensional M x N forward and inverse Discrete Fourier Transforms (DFTs) [20] defined

by

M - l N - l

= T i n ^ ^ f{LX, y)ex^[- j2 i z {gx / M + uy/N)] and (5.2)
x = 0 ,r= 0

At —1 N - l

/ (* ’ V) = E E cxP[.y2vr(/t:r/A/ + uy/N)\ , (5.3)
fi= 0 u = 0

respectively, to rewrite the SSMR equation as:

R(x i , x2) = a(log(I(xi , x 2)) — log[iF_1(/(/t, v)F(g, zz))]) — f3. (5.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The I (n , v) and F(fi. v) represent the DFTs of an input image I (x i, x^). and a Gaussian

kernel F(x \ . :r2), respectively, and F 1 represents the inverse DFT.

Exploiting the separability of the DFT and the computational efficiency of the FFT,

we compute 2-dimensional transforms by applying 1-dimensional FFTs to first the rows

and then the columns of the image. The computational complexity of the FFT for the

1-dimensional case is 0((N/ 2) log(IV)) where N is the size of the complex input [20]. Thus

the computational complexity of the 2-dimensional case (where the input image dimensions

are IV x N) is reduced to () (N‘2 log (A7)). The FFTs are computed using the optimized T1

DSPLib. This library restricts the number of input points to a power of two so we have

chosen to process a 256 x 256 portion of each input frame to closely match the resolution

of the cameras used in our case study as discussed in Chapter 6.

The specific FFT algorithm used is the floating-point radix-2 FFT [90]. TI benchmarks

the number of cycles to compute this operation by

C = (2n log2 n) + 42 (5-5)

where C is the number of cycles, log2 is the base 2 logarithm, and n is the length of the

complex input array [90]. For a 256-point FFT this corresponds to 4138 execution cycles,

thus the C6711 operating at 150 MHz performs this operation in 27.6 microseconds (/rs)

under ideal benchmark conditions. To forward transform the 256 rows of a 256 x 256

image requires £» 7 milliseconds (ms). All of the 256 columns of the transformed image

must then be forward transformed and later, both the rows and columns must be inverse

transformed (IFFT) resulting in a total of 1024, 256-point, forward and inverse transforms

for the input image. The Gaussian kernel must also be forward transformed resulting in and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

additional 512 FFTs, so the total number of transforms is 1,536. Prior to implementation,

we felt tha t of all the calculations performed within the algorithm, performing the 1,536

FFTs would consume the majority of the execution time. However, experimental evidence

showed otherwise as we discuss in Section 5.1.3.

5 .1 .2 P r e -C o m p u te th e K ern el

To reduce the number of FFTs performed we developed our first optimization for the al­

gorithm. As is commonly done in practice we pre-compute and store the coefficients (or

“twiddle-factors” [61]) used to calculate the F F T /IF F T . Our basic idea then was to use a

similar technique for the Gaussian surround functions. For the SSMR there is only one scale

so we only had to generate one surround function. Two key concepts were implemented that

not only reduced the number of FFTs, but also significantly reduced the amount of memory

tha t must be used by the algorithm. First, the Gaussian kernel is directly generated and

applied in the spatial frequency domain thus eliminating the requirement to perform the

FFT of the kernel. Second, the Gaussian is separable and circularly symmetric [63], and is

its own (scaled) Fourier transform so it can be expressed as the product of two 1-dimensional

functions and can be decomposed into horizontal and vertical projections along these di­

mensions. Circular symmetry implies that the two projections are the same, and the left

half of either projection is the same as the right half flipped about the halfway point. Thus

we only need to keep a single 128-point array of surround values to multiply with the spatial

frequency domain image data. In practice we used a 256-point array to simplify indexing.

Using this array instead of the full spatial frequency domain representation of the kernel

saves ~ 0.5-MByt,es.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

5 .1 .3 B a se lin e A lg o r ith m P er fo rm a n ce

Using our ideas for the Gaussian kernel we implemented the first DSP version of the Retinex.

Table 5.1 summarizes the actual measured execution time of the overall algorithm and

selected components within the algorithm. These times were obtained by placing STS

objects, discussed in Section 4.4, within the algorithm.

Time (ms)
retinex 1333.42 (0.75 fps)

fwdprocessrows 476.11
fftrows 9.76
logorig 461.72

fwdprocesscols 170.77
multkernel 13.46

invprocesscols 157.83
invprocessrows 528.71

rtxeq 507.80

Table 5.1: In itial perform ance results from the first im plem entation of th e SSMR.

The “retinex” item is the total time to perform the SSMR for one frame. The time

to “fwdprocessrows” is the summation of (1) reading a row of image data from external

memory into local memory, 2) preparing a complex input array for the FFT, (3) performing

the FFT on the data, (4) storing the transformed row data back in external memory for

processing at a later stage of the algorithm, and (5) calculating the logarithm of each pixel

in the row and storing it in external memory. The row FFTs are computed as the first stage

of transforming the image data from the spatial domain into the spatial frequency domain.

The time to perform just the FFTs of the rows (256, 256-pt FFTs) is the “fftrows” item in

the table. The 9.76 ms time is relatively close to the 7 ms benchmark.

The logarithm computations on the input image are also performed at this point since1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

the input image pixel is already in the cache for the FFT. Like the FFT data, the results

are used later in the computation of the SSMR so the values are stored in external memory.

These calculations represented as the “logorig” item in the table, take a very long amount of

time, 461.5 ms. This time is much larger than originally anticipated. We discuss a method

that we developed and applied to reduce this time in Section 5.1.4.

Similar to the “fwdprocessrows” , the “fwdprocesscols” time is the summation of (1)

reading a column of image data (that has already been row transformed) from external

memory, (2) performing an FFT on the data completing the 2-dimensional image transform,

(3) multiplying the now spatial frequency domain image data with the kernel, and (4) storing

the processed image data back into external memory for further processing at a later time.

The multiplication of the spatial frequency domain image data with the kernel also takes

a considerable amount of execution time — 13.46 ms shown as “multkernel” in the table.

We discuss a method that we developed and implemented to significantly reduce this in

Section 5.1.6. The “invprocesscols” and the “invprocessrows” times are the summations

of (1) reading a column/row from external memory (2) performing an inverse FFT on the

column/row, and (3) storing the column/row in external memory. The “invprocessrow”

item also includes the time to calculate the last stage of the algorithm - the final equation

to generate each output pixel value after all preliminary values have been calculated. The

time for the “rtxeq” item represents this value. The time to compute this stage is also very

long because it contains the second calculation of the logarithm function applied to the

convolved image data within it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 .1 .4 P r e -C o m p u te th e L o g a r ith m

Directly executing the logarithm function is an expensive operation. The C6711 run-time

support library benchmarks 952 execution cycles for a double-precision (64-bit) natural log­

arithm calculation and 152 execution cycles for a single precision (32-bit) calculation [85].

Thus with a clock speed of 150 MHz, each double-precision log operation requires 6.35/ts.

This operation is performed for every pixel so the total benchmark time is 415.93 ms corre­

sponds closely to the value obtained1. Our initial implementation used this double-precision

function call. However, using the single-precision function does not sacrifice image quality.

Changing to the single-precision function reduced the “log_orig” time from 461.72 ms to

69.05 ms, and the “rtxeq” time from 507.80 ms to 92.82 ms. This reduced the total Retinex

execution time, “retinex” , from 1333.42 ms (0.75 fps) to 525.83 ms (1.90 fps). This is a

substantial decrease in the execution time of the algorithm, but the logarithm computation

is still a significant portion of the total time.

To further eliminate this bottleneck we used the fact that the input to the logarithm is

limited to integer values in the range of 0 to 255, and formulated the idea of pre-computing

the logarithm values and storing the values in look-up tables (called log tables). We gen­

erated another optimization by embedding the Retinex parameters o and /I into the log

tables. In observing the SSMR equation from Chapter 2 (repeated here for convenience),

R i (x i , x 2) = a (lo g (/i (:r1,x 2)) - log (T (x i,x 2) * F(x i , x 2))) ~ (5.6)

1The slight, d iscrepancy is due to m inor ad d itiona l opera tions, such as d a ta type conversions, th a t are
perform ed w ith in th e m easurem ent interval, and loop indexing and STS ob jec t overhead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

we can distribute a and group (3 witli the first term to produce

Ri(x 1 ,X2) = (a log (/i(x i, x 2)) - (3) - (a\og(Ii(xu x 2) * F (x i , x 2))) . (5.7)
'------------------ v------------------ ' '------------------------ v------------------------ '

P i { x i , X 2) Q i (x i ,X2)

where

Pi{x i , x2) - (a log(Ii(xi, x 2)) — [3) (5.8)

for Ii(x, i ,x2) € {1, ■ •. ,255}

and

Qi (x i , x2) = (alog(Ii (x l , x 2) * F (x u x 2))) (5.9)

for (Ii (x i ,.t 2) * F (x i , x2)) £ {1, — , 255}.

If I i (x \ , x 2) = 0 then we assign Pi (x \ , x2) = —/?, and if (I i (x i , x2) * F (x \ , x 2)) = 0 then we

assign Qi (x \ , x2) = 0. We can generate two log tables: the first one for Pi (x i , x2) and the

second one for Qi (x \ , x2). The tables require 1-KByte each, so the additional memory for

two tables instead of one is insignificant. The simple regrouping and embedding of a and (3

eliminates one multiplication and one addition per pixel per band (i in the equations above)

and and could save up to 131,042 execution cycles per band depending upon the order of

implementation2. The most im portant reduction though is just from using table look-up.

The measurement results are shown in Table 5.2. The time to perform the logarithms is

now 18 times less than when using direct single-precision logarithm calculations! The total

2If properly o rdered th e m ultip ly -accum ulate function of th e D SP can perforin th is o p era tion in 65,536
execution cycles p e r band.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

execution time is now 385.05 ms which corresponds to 2.59 fps. This is still well below from

our minimum target value of 15 fps for real-time processing.

Time (ms)
retinex 385.05 (2.59 fps)

fwdprocessrows 21.0
fftrows 9.94
logorig 3.67

fwdprocesscols 170.85
multkernel 12.39

invproc.esscols 157.65
invprocessrows 35.52

rtxeq 14.46

Table 5.2: Performance measurements after using logarithm tables and combining a and p.

As can be seen from Table 5.2, there is a large discrepancy in the time it takes to process a

row versus a column: the “fwdprocesscols” time is eight times that of the “fwdprocessrows”

time! If the principal cost of computations were the FFT, the time to perform both of these

operations should be roughly the same. We determined that the row and column times

are substantially different because the processing is not driven by FFT computations, but

rather by data transfers. To quantify this, additional STS objects were added to directly

measure the column read and write times. To read a complex 256-point integer column

from external memory and to write it back required 148.3 ms. This represents over 93% of

the “fwdprocesscols” time.

The primary cause of the discrepancy between row and column execution time can be

determined by examining the memory requirements of the algorithm and the DSP architec­

ture. The most, efficient data processing operations occur when the processor has very fast

access to the data, i.e., when the data is located in the cache or in L2 memory. While we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

do not have direct write access to the L IP or LID caches, we do have access to, and some

control over, the next fastest access location: L2 memory. The C6711 has a 64-KByte L2

memory that can be configured as cache, SRAM, or a combination of the two as discussed

in Section 3.1. Optimum performance can be obtained if all of the transformed image data

is located in the L2 memory, but unfortunately, 64-KBytes is nowhere near the required ca­

pacity: the input image itself is 64-KBytes. Additionally, the DSPlib FFT routines require

input and output data in complex format, i.e. each point must have a real and imaginary

(zero for our input purposes) component, which doubles the storage size. Also, the data is in

floating point (four byte) format, so the actual memory required to store a transformed 256

x 256 image is 512-KBytes. Thus the image data must be kept and fetched from external

memory.

Operating directly on data located in external memory incurs a large performance

penalty, so for performing the FFT efficiently on a row of an image requires reading all

the contiguous pixels of the row from external memory into a buffer located in L2 memory.

The first pixel read of a row is accompanied by reading in 3 additional pixel points into

the 32-Byte line size of the LID cache. Accessing the first pixel causes LID cache and L2

memory misses, but accessing the next three pixels in the row returns a cache hit and the

data is retrieved in one clock cycle. To process a column requires accessing lion-contiguous

pixels with a stride difference equal to the number of columns. So, transferring a column

of image data from external memory generates a LID and L2 memory miss for each pixel

thus severely degrading performance. Additionally, we cannot take advantage of any tem­

poral locality for the data since we are only using the data once at this point within the

algorithm. In order to improve the L2 memory transfer time for column-wise image data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

we must change the mechanism for access.

5 .1 .5 U se D M A to T ransfer C o lu m n s

Our next idea was to use the EDMA controller in the C6711 to handle data transfers

between L2 memory and external memory. This saves processor cycles used to transfer the

data, and, since the transfer can be performed in the background, this enables overlapping

processor execution with data transfers if coordinated correctly. The chip support library

for the C6711 provides the capability to perform 2-dimensional transfers by specifying the

number of bytes per line, the number of lines, and the number of bytes between the start

of one line and the next. If we set these parameters to transfer a column of image data, we

can exploit the efficiency of this transfer to speed up column processing of the image.

Time (ms)
r e t in e x 134.44 (7.44 fps)

fwdprocessrows 19.05
fftrows 9.90
logorig 3.27

fw d p r o c e s s c o ls 39.24
multkernel 9.84

in v p r o c e s s c o ls 28.73
invprocessrows 47.86

rtxeq 16.21

T ab le 5.3: Perform ance results after using 2D DMA d a ta transfers.

The improvements gained by using this method are shown in Table 5.3. The total time to

transfer and perform processing on the columns is now only 67.97 ms as compared to 328.5

ms earlier, thus reducing the total SSMR execution time down to 134.44 ms (7.44 fps). Note

tha t the “multkernel” execution time is reduced because the processor does not have to wait

for data to arrive from external memory to begin execution. However, the “invprocessrows”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

time lias increased. This occurs because the next processing stage must now wait until

the last column transfer is complete to begin execution. In the prior implementation this

function was part of the “invprocesscols” but was composed of execution cycles to transfer

data rather than wait cycles. We discuss methods tha t we developed to eliminate this and

other wait cycles in Section 5.1.8.

5 .1 .6 R e d u c e G a u ssia n K ern e l C o m p u ta tio n s

A property of the Gaussian function tha t we can exploit to significantly improve perfomance

is that the tails of the function rapidly decrease to zero for large a. This implies that a large

percentage of values in the 256-point Gaussian kernel array will be zero. If we preset (to

zero) the buffer that will hold the convolution result, the loop to process the convolution can

be terminated early with proper indexing and checks for the first zero value in the surround

array. Table 5.4 shows the result of implementing this optimization. The time to multiply

the kernel is reduced from ~ 9 ms to 150//S with a = 80. We should note that this time is

dependent upon the extent of the surround, and the performance will degrade, ultimately

back to 9 ms, as narrower surrounds3 are chosen.

We also discovered that performance can be improved by changing the way one initiates

the complex array. To generate the complex input array for the FFT we must interleave a

real (image data) value with an imaginary (zero) value. Ordinarily one would simply zero

out the array by using some function call and then fill in every even indexed array value

with the real components. We found tha t it is more efficient to write the real component

and then immediately write zero into the next array value. This occurs because we only

!A narrow surround in the spatial domain is wide in the spatial frequency domain and vice versa.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

Time (ms)
r e t in e x 125.04 (7.41 fps)

fwdprocessrows 18.99
fftrows 9.91
logorig 3.29

fwdprocesscols 29.33
m u ltk e r n e l 0.15

invprocesscols 28.96
invprocessrows 47.76

rtxeq 16.29

T ab le 5.4: Perform ance results after using 2D DMA d a ta transfers.

have to load and access the input array in the LID cache once instead of twice plus function

call overhead for the first method.

5 .1 .7 M erg e A lg o r ith m C o m p o n en ts

The next significant performance increase was obtained by identifying redundant transfor­

mation cycles in the algorithm. In our original implementation we performed the following

sequence of operations:

• For all rows: read in row, FFT, and write the result to external memory,

• For all columns: read a column, FFT, and write the result to external memory,

• For all columns: read a column, convolve with the Gaussian kernel, and write the

result to external memory

• For all columns: read in column, IFFT, and write the result to external memory,

• For all rows: read a row. IFFT, and write the result to external memory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

The remainder of SSMR calculation is then performed. We can take advantage of the

independence of each column of image data by merging some of the preceding steps and

thus eliminating several stages of data transfers. As soon as we have performed the FFT of

a column, we can continue processing this column, multiplying it with the kernel, and then

immediately perform an IFFT of the column. The processing stages then become:

• For all rows: read in a row, FFT, and write the result to external memory.

• For all columns: read in a column, FFT, multiply with the Gaussian kernel, IFFT,

and write the result to external memory.

• For all rows: read in a row, IFFT, and write the result to external memory.

This saves four read and write transfers to external memory. Table 5.5 shows the results

of implementing this optimization. The “fwdprocesscols” and “invprocesscols” items are

now merged into the “processcols” item. Additional optimizations were also performed to

reduce the “rtxeq” time. This includes moving all tables into L2 memory and performing

a 1-dimensional DMA transfer for the final output values. The total execution time of the

algorithm is down to 83.06 ms (12.04 fps). This is now approaching real-time performance.

5 .1 .8 M in im ize D a ta T ransfer O verh ead

We then focused on formulating and applying a method to minimize the overhead of trans­

ferring data between external and internal memory. Instead of using processor cycles to

perform this function, we used the DMA capability within the processor to perform all

external-to-internal memory transfers. We were already using this function to perform 2-

dimensional column transfers as mentioned in Section 5.1.5 and 1-dimensional array trans-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

Time (ms)
re tin e x 83.06 (12.04 fps)

fwdprocessrows 17.42
fftrows 9.8
logorig 3.25

processcols 41.14
multkernel 0.16

invprocessrows 34.11
rtxeq 5.3

T a b le 5.5: Perform ance results after merging algorithm stages. Since the forward and inverse
column execution tim es are effectively merged together, the tim e to process columns is now in item
“processcols”

fers for the final output values of the algorithm as discussed in Section 5.1.7. We now add

additional DMA transfers for the row data transfers of FFT data and for the logarithm

of the input image data. Storing the logarithm of the input data requires 256-KBytes, far

larger than the memory available in the L2 memory, so these values must be kept in external

memory.

Performing DMA transfers and waiting for completion obviously reduces the effective­

ness of using DMA. To avoid this we implemented a double buffering scheme to move from a

data I/O-limited algorithm to a execution cycle-limited algorithm. As noted earlier, DMA

allows data transfers to occur independently or in the background of any processor activity.

We developed an algorithm and implemented a series of buffers so tha t as we process one

buffer, we simultaneously transfer in the next data to be processed. This double buffering

scheme was used for all DMA transfers and removed the requirement to wait for any DMA

transfer. W ithout having to wait, reading in more than one unit of transfer (e.g. two rows

or two columns) did not improve performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

5 .1 .9 U se C a ch e -o p tim ize d F F T s

After all of the previous optimizations, we returned to trying to improve the FFT. We

identified and applied a more efficient form of the FFT algorithm, a cache-optimized (SP x

SP) algorithm that allows the use of mixed radix FFTs that can be calculated in multiple

passes. A 256-point FFT only needs one pass and can be effectively calculated using the

cache-optimized FFT in radix-4 mode. The benchmark equations for the cache-optimized

FFT suggested that we could obtain better performance from this version versus the radix-2

form. Ttie number of cycles C to compute the FFT using this equation is given by:

C = (3|"log4(n - l)]n) + (21|"log4(n - 1)] + (2n) + 44 (5.10)

where C is the number of cycles, log4 is the base 4 logarithm, and n is the length of the

complex input array. For a 256-point FFT C = 2923 cycles, or 19.5 /rs, corresponding to a

30% increase in FFT performance. To forward transform the 256 rows of an image 256 x

256 image takes 5 ms.

Implementing the double buffering scheme and changing the FFT algorithm for the

C6711 allowed us to achieve our final C6711 SSMR execution time of 48.33 ms or 20.7 fps.

Table 5.6 shows the timing for the individual components of the algorithm. A sample output

image frame from a video taken of a bookcase is displayed in Figure 5.1. The input image

is shown on the left while the Retinex enhanced image is shown on the right. The enhanced

image has greatly improved contrast and sharpness. Details that are indistinguishable in

the original are easily noticed in the enhanced image.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

Time (ms)
re tin e x 48.33 (20.7 fps)

fwdprocessrows 12.83
fftrows 6.98
logorig 3.20

processcols 20.55
multkernel 0.16

invprocessrows 14.92
rtxeq 5.59

T ab le 5.6: Final SSMR perform ance results using th e C6711 DSP.

5.2 M ap O p tim ized S S M R to C 6713

To improve and compare performance we mapped the same optimized SSMR code developed

for the C6711 onto the C6713. Considering the similarity in architectures this should provide

a near linear increase in performance corresponding to the increase in clock speeds between

the devices. Thus performance should improve by 50% (225/150) and the expected frame

rate should be close to 31 fps. The larger L2 memory on the C6713 is not used because

all of the memory allocated in the current implementation fit, in 64-KBytes, and the extra

192-KBytes of L2 SRAM on the C6713 are not large enough to move any of the significant

data structures into on-chip memory.

After porting the code to the C6713, the algorithm ran successfully and we obtained a

frame rate of only 28 fps. The 35% increase is sub-linear. This occurs because the C6713

EVM has a slower EMIF clock that controls the transfer rate to external memory. The

C6711 EVM uses a 100 MHz EMIF clock while the C6713 EVM uses a 90 MHz clock. This

reduces the external data transfer rate to the extent tha t the processor must now wait for

DMA transfers to complete.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

F ig u re 5.1: C apture Video Fram e w ith inpu t from cam era on the left, and R etinex o u tp u t on the
right. R etinex param eters are a = 175, j3 = 135, and a = 80 — note th a t we are nearly reaching
the noise lim it of the cam era.

5.3 M ap O p tim ized S S M R to D M 642

Although either of the C671X platforms would perform adequately for many applications,

it is obvious tha t neither has the performance capability to meet real-time multi-spectral,

multi-scale Retinex processing requirements. So next, we ported the SSMR algorithm to the

DM642 platform. Although the DM642 uses different image capture and display drivers,

DMA mechanisms, and FFT algorithms than the C6711/C6713, the core structures and

methods developed and implemented on the C6711 remained the same. Directly comparing

DM642 MIPS with the C6711 shows a potential four-fold increase in performance. However,

other factors such as extra computations to handle fixed point arithmetic, and different

processor specific instructions, libraries, and EMIF bus speeds affect performance. These

modifications do not allow a direct comparison with C67X performance but we should

anticipate approximately 70 to 90 fps performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fixed-point arithmetic limits the dynamic range of the DM642 to 231 — 1. This is

sufficient for some portions of the algorithm. For example, the input to a 256 point radix-4

FFT is processed in 4-stages where each stage gives 2 bits of growth. Our 8-bit image data

input will then only grow to a maximum of 16 bits for one forward transform. Since we

generate a 2-dimensional Fourier transform, a second 256-point FFT is also performed. This

increases the growth to 32 bits which still fits in a standard integer data type. However,

the now spatial frequency domain image data is then multiplied with a kernel. The largest

numbers from the FFT operation are on the order of 108. The smallest numbers from the

normalized spatial frequency Gaussian kernel are truncated4 at 10~6. Thus we must process

values on the order of 1014 which, without scaling, is well beyond the capability of 32-bit,

fixed point representation.

To perform scaling we invoke a few simple arithmetic conventions. For example, to

multiply an integer number I by 0.6913 (which equals log(2)) one could perform

R = ((1*6913) + 5 ,000)/10,000 (5.11)

where 5,000 is added to perform rounding. If I = 46, floating-point, multiplication yields

31.7998 while our fixed-point method yields R = 32. Because a shift left operation is

equivalent to division by 2, we can improve the efficiency of this operation by dividing by a

number that, is a power of 2. Using 8192 (213) in our previous example our new multiplier

becomes 0.6913 * 8192 = 5663.1296. We could chose 5663 or 5664 depending upon which

S ignifican t, d ig its beyond 10-6 are tru n c a te d w ithout affecting im age quality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

value is more accurate. Choosing 5663, our scaling equation above becomes

R = ((7*5663) + 4 ,096)/8192 (5.12)

and if I — 46 again, then R = 32. When scaling one must also be careful with proper

selection of the storage classes used to hold intermediate results. Recall from Section 5.1.2

tha t we exploit the symmetry of the Gaussian to save memory space, so to compute the

kernel values in the spatial frequency domain we multiply two of the properly indexed

array values together. We scale each individual array value by 2 19 in order to retain as

much resolution as possible, so the final spatial frequency domain kernel values are on the

order of 238. Multiplying by the maximum spatial frequency domain image values (~ 224)

results in values on the order of 262. Fortunately the TI compiler supports 64-bit signed

and unsigned integer (long-long) data types. An alternative, but less efficient, method

to minimize the size of internal values is to generate the inverse of the spatial frequency

domain kernel values and use division instead of multiplication. The division operation is

implemented on the DM642 by repeatedly issuing a conditional subtract operation (SUBC)

instruction. After carefully balancing scaling and truncation tradeoffs a fixed-point version

of the algorithm was implemented with the log values scaled by 220 and Gaussian kernel

table values are scaled by 219. These values maximize the retained precision without causing

overflow in intermediate or final output calculations.

5 .3 .1 A p p ly In tr in sics

Another algorithm optimization implemented at this stage was to use intrinsics, originally

mentioned in Section 4.2, at strategic points within our code. For example, to clamp final

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Retinex output data to values between 0 and 255, we used two intrinsics, min2 which returns

the lesser of two inputs and max2 which returns the greater of two inputs, and formed an

instruction similar to min2(max2(output_value,0),255). Measuring the performance5 of this

instruction using STS objects results in 8.8 ns per pixel (2.24/txs per 256 x 256 image).

As a comparison, to clamp the Retinex output using a standard if-then-else expression (if

output .value < 0 output.value = 0, else if output.value > 255 output_value = 255) requires

27.4 ns per pixel (7.01/xs per image). The instruction using intrinsics is over 3 times faster.

After implementing the proper scaling operations and embedding intrinsics, we achieved an

execution time of 17.89 ms (55.89 fps) for the SSMR on the DM642. This is still below our

anticipated 70 to 90 fps.

5 .3 .2 M o d ify th e A r c h ite c tu r e

We determined tha t I/O was again limiting performance. The faster DM642 processor,

even performing the additional scaling calculations, executes the algorithm quicker, thus at

various points in the code the processor now has to wait for DMA transfers to complete. We

eliminated this by making an architectural change on the DM642 EVM. The default EMIF

bus rate is 133 MHz. We were able to increase the EMIF bus rate to a chip maximum 200

MHz, effectively over-clocking the SDRAM, by strapping the appropriate resistors onto the

DM642 EVM module and changing memory access timing parameters. Implementing this

modification increased SSMR performance to 69.15 fps effectively meeting our anticipated

performance.

°T h is m easurem en t was perform ed on th e C6416 processor, b u t th e ra tio rem ains th e sam e for th e o th e r
processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

5 .4 M u lti-S p ectra l M u lti-S ca le R etin ex O p tim iza tion s

The performance achieved for the SSMR on the DM642 platform provided a baseline to

pursue real-time multi-spectral, multi-scale Retinex (MSR) performance. Expanding from

a single scale to multiple (three) scales primarily involves two additional computational

requirements — (1) performing the additional convolutions and (2) weighting and combining

the convolution results. We implemented the same technique previously developed for the

SSMR except we pre-compute a series of Gaussian kernels directly in the spatial frequency

domain and store the values in tables. The range of a was constrained to values between

from 5 to 260 in steps of 5. Each scale would then use a pointer to the appropriate table of

the associated cr value. Since a is static for each scale, the pointers are set prior to calling

the Retinex function. The total size of all the Gaussian tables is now 52-KBytes. We could

not keep this number of tables in memory on the C671X processors.

5 .4 .1 R e u se T ran sform ed In p u t Im age

Since the same input image data is convolved with each kernel, the optimum stage to

perform this function is as each column is read from external memory and transformed.

The sequence of operations at the convolution stage then becomes

• Read a column, FFT, multiply with kernel 1, IFFT, and DMA result to external

memory.

• Multiply the same column with kernel 2, IFFT, and DMA result to external memory.

• Multiply the same column with kernel 3, IFFT, and DMA result to external memory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This not only reuses the same spatial frequency domain image data, but also allows DMA

transfers to be overlapped with processor activity. Double buffering is still implemented on

column reads to ensure that column data is always present in local memory for process­

ing. We improved the buffering scheme by accumulating the first spatial frequency domain

column earlier during the first stage of row processing. The amount of memory needed to

hold the convolved image data is now 1.5-MBytes — three times the previous requirement

of 512-KBytes. After the convolution stage, the image data for each scale must then be

transferred back into local memory, inverse transformed, weighted, and combined with the

other scales. Again, we use DMA to retrieve the data back into local memory, and double

buffering to perform this transfer in the background.

5 .4 .2 R e d u c e C o m p u ta tio n s

One major optimization idea we developed and applied for weighting and combining the

scales is to rearrange the Retinex equation to reduce the number of operations that must

be performed. It has been shown that using equal weighting factors provides good Retinex

enhancement in many conditions [32]. We exploit this fact by distributing the weighting

factors in the Retinex equation

I<
Ri{xu x2) = ^ W ^ lo g t/itx i,. '^)) - log(A (xi,^ 2) * Fk(xu x2))) (5.13)

k = 1

K K

=] T W fcOogt/iOri,^))) - ^ W,.(log(/2(* i,* 2) * Fk(xu x 2))) (5.14)
A - = l A : = l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

and noting tha t if the W^s are equal (Wk = W) and 22k=i = 1 then our equation

becomes

K

R i (x i , x 2) = (\og(Ii (x i , X 2))) - W ^ 2 (l o g { I i { x 1,X 2)*Fk(x l , x 2))) (5.15)
f c = i

This saves two logarithm computations, two subtractions, and two multiplications per pixel.

An additional reduction in calculations is gained by combining the proper weighting

factors into the tables already used for the two pre-computed log tables discussed in Sec­

tion 5.1.4. To pre-compute the second log table (the log table combined with /I only) values,

if two or three scales are used, then simply divide these values by the associated number of

scales, 2 or 3, respectively.

The next requirement is to add to the multi-scale algorithm the capability to process

in real-time multiple (three) spectral bands, i.e. color video. This addition is not quite as

simple as just executing the same multi-scale algorithm on each band, particularly when

embedding optimizations to improve performance. First, to perform color processing the

image data should be in the RGB color space. The video decoders and encoders on the

EVMs only work in the Y'C/;C/i> color space. For monochromatic processing we only have to

extract the luma component from the Y 'C b C r input stream. As discussed in Section 4.1.2,

on the C671X and DM642 EVMs the Y 'C b C r data is stored in planar format so only a

pointer is required to address the Y' component. On the C6416 EVM the Y 'C /jC /; data is

stored in interleaved format so the Y ' component must be extracted from the frame data.

This is easily accomplished by using 2-dimensional DMA calls discussed in Section 5.1.5.

However whether the image data is in planar or interleaved format, the Y' data does not

need to be converted as it does if color processing is to be performed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

For color processing, the Y 'C r Cr input data must be converted [53] into the RGB 888

color space6 and the processed RGB data must be converted back into the Y 'C b C r color

space for output into the video encoders. The following equations from Poynton [53] are

used to convert between Y ' C r Gr and gamma-corrected7 8-bit computer8 RGB (R ’G 'B '):

R' = 1.1644(Y' - 16) + 1.5960(G/? - 128) (5.16)

G' = 1.1644(Y' - 16) - 0.3918(Cb - 128) - 0.8129(6/;? - 128) (5.17)

B' = 1.1644(Y/ — 16) + 2.0172(6/# — 128) (5.18)

then converting into fixed-point format using a scaling factor of 213, the conversion equations

above become

R' = ((9539(Y '- 16) + 13075(6/# - 128) + 4096) » 13) (5.19)

G' = ((9539(Y' - 16) - 3209(6/# - 128) - 6660(6/# - 128) + 4096) » 13) (5.20)

B' = ((9539(Y/ - 16) + 16525(6/# - 128) + 4096) > 13). (5.21)

To encode 8-bit Y'C/jC/i’ from R 'G 'B ' we use the following equations:

Y ' = 0.2568R' + 0.5041G' + 0.0979B' + 16 (5.22)

CB = —0.1482R' - 0.2910G' + 0.4392R' + 128 (5.23)

C R = 0.43927?/ - 0.3678G' - 0.0714R' + 128. (5.24)

6In RGB 888, each pixel is represented by an 8-bit red, green, and blue component
7G anirna-correction refers to th e non-linear tran sfe r function applied to R G B values in m ost im aging

system s. T h is is used to m im ic p ercep tual response [53]
“C om pu ter R G B uses th e full 8-bit, range w ith black a t code 0 and w h ite a t code 255.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

Again, converting into fixed-point, format, using a scaling factor of 213 yields

Y ' = ((2104# + 4130# + 8 0 2 # + 4096) > 13) + 16 (5.25)

CB = ((-1 2 1 4 # - 2384# + 3598# + 4096) » 13) + 128 (5.26)

CR = ((3598# - 3013# - 5 8 5 # + 4096) > 13) + 128. (5.27)

All RGB and Y 'C r C r values should be clamped between 0 and 255, and 16 and 235 respec­

tively. In practice we simplify these equations by eliminating the redundant calculations.

5 .4 .3 B u ffer A cro ss S p ectra l B a n d s

Another technique we developed to maintain our I/O performance is to modify our row

doublerbuffering scheme to buffer data across spectral bands. This modification is done

only on the row output processing stage since we need data simultaneously from all three

bands during this stage. When processing a row of data for the red spectral band, instead

of performing a DMA of the next row of red spectral data, we DMA the next row of green

spectral data. Similarly, when processing the green band, we DMA the next blue band, and

when processing blue band, we DMA next red band. So our buffering sequence becomes

• DMA the red band

• loop start,: DMA the next, green band; process the red band

• DMA the next blue band; process the green band

• DMA the next red band; process the blue band; combine bands; end loop.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

After all three channels for a row are processed, i.e. the blue band is complete, the

bands are combined and converted to Y 'C b Cr . This optimization continues to maximize

the processing load by keeping data transfers in the background.

5 .4 .4 A llo c a te L og V a lu es in L2 M em o r y

The additional transfer buffers and tables used in the optimizations discussed so far are

statically allocated in L2 memory. All of these data structures easily fit in the 256-KBytes

of L2 memory 0 11 the DM642 with a nominal allocation of ~ 175-KBytes used in our

implementation. However the DM642 L2 memory is still not large enough to hold all of the

processed image data at any stage of the algorithm. As mentioned in Section 3.4, the C6416

is not only faster but has a larger L2 memory of size 1-MByte. We exploit this feature by

keeping all of the logarithm of the original image data, 768-KBytes, in L2 memory. This

uses nearly all of the L2 memory with a total allocation 1,011,904 Bytes, but by keeping this

data local we eliminate all of the associated DMA transfers and thus improve performance.

5 .4 .5 M S R P er fo rm a n ce R e su lts

To measure the performance of the MSR we used both the DM642, with EMIF bus speeds

of 133 MHz and 200 MHz, and the C6416 processors 0 11 their respective EVMs in our test­

bed outlined in Chapter 5. The graphs in Figures 5.2, 5.3, and 5.4 show the performance

obtained 011 the processors for the Retinex with 1 to 3 scales and 1 to 3 spectral bands. The

vertical lines are the cutoff points for real-time performance based on 15 fps and 30 fps. The

same data is shown in tabular form in Table 5.7. Execution time is shown in milliseconds,

and in frames per second in parenthesis. The values for the Gaussian surrounds, a, are 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

for 1 scale, 5 and 80 for 2 scales, and 5, 80 and 200 for 3 scales. The gain a and offset (3

values are 250 and -100 respectively.

For 1 spectral band, implementations of the algorithm on both processors meet the 15

fps, and 30 fps real-time requirements for all scales. For 2 spectral bands implementations

on both processors again meet the 15 fps target. W ith 2 or 3 scales, only the C6416 meets

the 30 fps target. The DM642 with a 200 MHz EMIF only meets this target for 1 scale.

For 3 spectral bands, only the implementation on the C6416 with 1 scale meets the 30 fps

target. Performance for 3 bands, 3 scales is 20.25 fps. For the 200 MHz EMIF DM642,

3 band 3 scale performance is at 13 fps, just missing the 15 fps target. Interestingly,

although all implementations on each processor performed linearly, the slopes progressively

decrease from the plots for the C6416 to the 200 MHz DM642, and to the 133 MHz DM642

respectively on all three graphs. This may be due to the fact that more data is kept local to

the processor for the C6416. When there are more Retinex computations, there is more data

to be transferred, and so the algorithm becomes more I/O driven, degrading performance

at a faster rate than if it was more controlled by processing cycles as it is for the C6416.

For comparison purposes we placed STS objects in the code on the C6416 to measure

the execution time of the different stages of algorithm like we did earlier for the C6711.

Table 5.8 shows the best single-scale, monochrome Retinex performance on the C6711 and

on the C6416 DSPs. Note the significant decrease in the time required to process the FFT.

The specific FFT used from the DSPLib for the C6416 is the mixed-radix 16x32-bit FFT 9.

9T he 16 x32 refers to th e b it w id th of th e coefficients, and th e input, and o u tp u t d a ta , respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

Frames per Second

100 50 30 20 15
3 n -- 1-----

I
I
I
I

2 1---i
i

S c a l e s i
i

1 1--i
i
i
i

 1 l
70

F ig u re 5.2: R etinex perform ance in tim e (bottom axis) and frames per second (top axis) to process
1 spectral band of image d a ta on DM642 w ith 133 MHz EM IF (dotted line), DM642 w ith 200 MHz
EM IF (dashed line), and C6416 (full line).

The benchmark number of cycles to compute this FFT is given by [83]:

C = (13n/8 + 24)(log4(n) - l]n) + (n + 8)1.5 + 27. (5.28)

For n = 256, the length of the FFT, C = 1743 cycles. This corresponds to 1.743//S on

the 1 GHz C6416. So based on the benchmark equation, to forward transform the 256

rows of a 256 x image takes ss 446/rs. Our measured FFT time is 516/is nearly meeting

the benchmark. Also note the significant decrease in time for “rtxeq” is due to the use

of intrinsics, loop index and equation simplifications, and the increase in processor speed.

Finally, we also note the increase in time to multiply by the kernel. This occurs because

of the scaling operations performed at this stage of the algorithm and the required use of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

Frames per Second

100 50 30 20 15
3

2

1

7040 50 6010 20 30

Time (ms)

F ig u re 5.3: R etinex perform ance in tim e (bottom axis) and frames per second (top axis) to process
2 spectral bands of image d a ta on DM642 w ith 133 MHz EM IF (dotted line), DM642 w ith 200 MHz
EM IF (dashed line), and C6416 (full line).

inefficient long-long data types to hold intermediate values. As one final execution time

measure we also tested the algorithm without any internal measurement instrumentation

and only for 1 scale and 1 band. W ith these simplifications we obtained an execution time

of 8.9 ms (112.36 fps).

We also measured CPU load for the C6416. Unlike the previous Retinex timing measures

which only encompass the Retinex task, this is a global measure which includes frame

acquisition. Table 5.9 shows the values obtained under different Retinex configurations.

For the lower computational requirement configurations (1 spectral-band,or 2 spectral bands

and 1 or 2 scales, or 3 spectral bands and 1 scale) the processor is underutilized. Only a

small percentage of these unused execution cycles are spent waiting for DMA to complete

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Frames per Second

100 50 30 20 15 10
3

2

1

70 80 90 10020 30 40 50 6010

Time (ms)

F ig u re 5.4: R etinex perform ance in tim e (bo ttom axis) and frames per second (top axis) to process
3 spectral bands of image d a ta on DM642 w ith 133 MHz EM IF (dotted line), DM642 w ith 200 MHz
EM IF (dashed line), and C6416 (full line).

due to the highly optimized code at this point. Only one or two DMA wait statements have

to be inserted into the algorithm to achieve correct operation, and this is only for the single

band, single scale case. The majority of the unused execution cycles are spent is simply

waiting for the next frame from the input camera.

To visible demonstrate the performance of the real-time algorithm we processed a video

of an outside scene at NASA LaRC in Hampton, Virginia. The video was taken on November

the 8th, 2005 between 5:15 PM and 5:30 PM using a standard Sony TRV-20 videocamera.

Sunset on this day was at 5:02 PM. For presentation in this dissertation, we have extracted

3 snapshots from the processed video. The first snapshot, shown in Figure 5.5 is taken 40

seconds into the video. The second snapshot, shown in Figure 5.6, is taken 6 minutes and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Retinex Execution
Time Table

Bands
1 2 3

1 scale
DM642/133 MHz EMIF 17.89 (55.9) 35.54 (28.1) 52.77 (18.9)
DM642/200 MHz EMIF 14.46 (69.1) 28.39 (35.2) 41.84 (23.9)

C6416 9.24 (108.2) 17.5 (57.1) 25.66 (38.9)

2 scales
DM 642/133 MHz EMIF 25.54 (39.1) 50.55 (19.8) 75.04 (13.3)
DM642/200 MHz EMIF 19.98 (50.1) 39.74 (25.2) 58.96 (16.9)

C6416 12.68 (78.9) 25.06 (38.9) 36.83 (27.1)

3 scales
DM642/133 MHz EMIF 33.11 (30.2) 66.32 (15.1) 98.25 (10.2)
DM642/200 MHz EMIF 25.79 (38.8) 51.85 (19.3) 76.86 (13.0)

C6416 17.03 (58.7) 33.11 (30.2) 49.37 (20.3)

T able 5.7: M easured R etinex perform ance on DM642 and C6416 processors. The 133 and 200 refer
to the clock speed of the EM IF bus. M easurem ent units are in bo th milliseconds, and frames per
second in parentheses.

C6711
Time (ms)

C6416
Time (ms)

retinex 48.33 (20.7 fps) 9.24 (108.23 fps)
fwdprocessrows 12.83 1.3

fftrows 6.98 516/xs
logorig 3.20 141/rs

processcols 20.55 6.43
multkernel 0.16 2.18

invprocessrows 14.92 1.49
rtxeq 5.59 571/rs

T able 5.8: Com parison of final SSMR perform ance using the C6711 and th e CG416 DSPs.

28 seconds into the video. The third snapshot, shown in Figure 5.7, is taken 14 minutes

and 28 seconds into the video. The unprocessed video frames are on the left. They show

the scene as captured by the video camera. The progressive darkening of these images is

due to the sunset. The real-time Retinex enhanced frames using the C6416 EVM are on

the right. The processed frame in the first snapshot shows a moderate enhancement over

the unprocessed scene. Note the non-linear dynamic range compression performed by the

enhancement. The very dark areas are enhanced without severe blooming around the bright

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

Spectral Bands Scales C6416 CPU Load
1 1 31.24%
1 2 39.97%
1 3 51.22%
2 1 52.37%
2 2 71.48%
2 3 100.00%
3 1 73.77%
3 2 100.00%
3 3 100.00%

T ab le 5.9: C6416 C PU Loading for different Retinex configurations.

car lights. In the unprocessed frame of the second snapshot, the colors are nearly completely

indeterminable and objects are becoming difficult to distinguish. The processed frame of

the second snapshot retains most of the contrast and brightness of the first processed frame.

Colors are still clearly perceptible and objects are still defined. For example, the vehicle

that is nearly unseen in the unprocessed image is clearly seen in the processed image. The

unprocessed frame of the third snapshot is almost completely dark. The processed frame

of the third snapshot is nearly reaching the noise limit of the camera, but still provides

significant information about the scene. Objects such as the wind tunnel spheres, that are

not discernable in the unprocessed frame are clearly perceived in the processed frame.

The aim of our research was to achieve real-time multi-scale, multi-spectral Retinex

image enhancement. We started by developing, implementing and analyzing several algo­

rithm optimizations, and using the C6711 DSP we achieved 20.7 fps performance of the

single-scale, monochrome Retinex. Building upon this effort, we continued to optimize and

refine the algorithm and configuration of the architecture, and using the C6416 DSP we

were able to achieve 20.3 fps performance of the multi-scale, multi-spectral Retinex.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

F ig u re 5.5: First snapshot taken 40 seconds into the video recorded a t NASA LaRC. The fram e as
captured by th e cam era is on the left and the real-tim e Retinex processed fram e is on the right.

F ig u re 5.6: Second snapshot taken 6 m inutes and 28 seconds into the video. Colors are nearly
completely indeterm inable and objects are difficult to distinguish in the unprocessed image. Colors
and objects are still clear in the processed frame.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

F ig u re 5.7: T hird snapshot taken 14 m inutes 28 seconds into the video. T he only distinguishable
object in the unprocessed frame is the tail-lights on the vehicle. A lthough noisy, the real-tim e
Retinex processed image still clearly shows most of the m ajor objects in the first snapshot including
spheres, tree lines, and parked vehicles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Enhanced V ision System Case

Study

6.1 B ackground

The real-time Retinex can be used to enable a wide variety of applications. We have chosen

a NASA LaRC developed Enhanced Vision System (EVS) to demonstrate the performance

of the real-time Retinex in an actual system. The EVS is a new aviation safety technology

that is used to provide enhanced images of the flight environment to assist pilots flying in

low visibility conditions such as rain, snow, fog, or haze [98]. During August and September

of 2005, the EVS, and many other new technologies, were demonstrated during flight tests

on the NASA 757 as part of the Follow-On Radar. Enhanced and Synthetic Vision Systems

Integration Technology Evaluation (FORESITE) program.

The EVS contains a long-wave infrared (LWIR), a short-wave infrared (SWIR), and a

visible-band camera, all mounted in an enclosure tha t is flown beneath a NASA 757 aircraft.

08

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F ig u re 6.1: The EVS LWIR, SW IR, and visible-band cam eras m ounted to a baseplate, and the
enclosure shell. Inaccurate bore-sighting can cause image registration problems.

Figure G.l shows the cameras mounted to a baseplate and the enclosure shell. Figure 6.2

shows the enclosure installed on the aircraft. Figure 6.3 shows the aircraft during a runway

approach with the simulated shaded area depicting the field of view (FOV) of the cameras.

The LWIR. is a Lockheed Sanders LTC500 thermal imager and senses radiation in the 7.5-

14 fi.m band. It can image background scenery, terrain features and obstacles at night and

in other low visibility conditions. The SWIR is a Merlin Near-Infrared (NIR.) camera that

senses in the 0.9-1.68 fj,m region and is optimal for detecting peak radiance from runway

and taxiway lights even in poor visibility conditions. The visible-band camera is a Bowtech

BP-L3C-II CCD that detects the 0.4-0.78 /im band and covers imaging runway markings,

skyline and city lights in good visibility conditions. A frame from each of the three video

streams generated by the cameras in clear weather conditions is shown in Figure 6.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

F ig u re 6.2: EVS cam era enclosure m ounted forward-looking underneath the NASA 757.

6.2 Im age P ro cessin g F unctions

The image processing architecture for the EVS is outlined in the top of Figure 6.5 [26]. The

analog National Television System Committee (NTSC) RS-170 outputs of the SWIR and

LWIR cameras are routed from the EVS camera enclosure (mounted beneath the NASA

757) to the processing board through a video distribution box. The processing board is

situated in a pallet within the NASA 757 approximately 120 feet away from the EVS

camera enclosure. Similarly, the digital RS422 outputs of the cameras are transferred to

the processing board using optical fibers. We do not use these outputs, but for future

implementations they may have a better signal-to-noise ratio than the analog outputs.

The functions performed by the processing components are shown in the bottom of Fig­

ure 6.5. The multi-spectral data streams from the EVS cameras must be resized, enhanced,

registered, and fused into a single image stream. The images are resized into dimensions that

are a power-of-two to fit the input requirement for the FFT (see Section 5.1.1). Methods

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

F ig u re 6.3: The EVS acquires d a ta during the entire flight but take-oflF and landing phases are
critical. The sim ulated shaded area depicts th e field of view (FOV) of th e cameras.

for resizing are discussed in Sections 6.3 and 6.4. Enhancement is performed to improve the

information content of the images particularly in poor visibility conditions. For enhance­

ment we use the real-time Retinex. The Retinex provides an ideal solution for enhancing

EVS imagery because of its superb peformance in improving low-contrast, dimly-lit images.

Registration is used to remove field of view (FOV) and spatial resolution differences

between the cameras, and to correct bore-sighting inaccuracies [23]. Table 6.1 gives charac­

teristics of the sensors tha t are relevant to registration. Registration is performed by first

manually selecting a set of control points based on corresponding features in a LWIR and

SWIR frame acquired at the same time. The control points are analyzed using multiple

linear regression to approximate the coefficients of an affine transform which is applied to

the LWIR image. The transformed image is then resampled using bilinear interpolation to

align the registered LWIR image data to the same grid as the reference SWIR image. The

same transform can then be used on all other LWIR frames since the optical parameters

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LW IR SW IR VIS

F ig u re 6.4: Exam ples of the im agery generated by each cam era in good w eather conditions. The
images from cam eras m ust be registered, enhanced, fused and displayed to th e pilot in real-tim e.

and the camera alignment are assumed to remain constant during flight. Appendix A gives

a more detailed discussion of the registration procedure.

SWIR LWIR CCD
Image Dimensions (pixels) 320H x 240V 320H x 240V 542H x 497V

Optics FOV U ° H x 25° V 39°H x 29°V U ° H x 25°V
Detector Readout Frame Rate 60 Hz 60 Hz 30 Hz (interlaced)

T ab le 6.1: Sensor Specifications

The two enhanced and registered video streams from the SWIR and LWIR cameras

are then fused into a composite video stream that contains more information than either

input spectral band. This also provides the additional benefit of producing a single output

to observe instead of multiple images from multiple video sources. The Retinex could be

used as a fusion engine for this application since the algorithm performs nearly symmetric

processing on multi-spectral data. Multiple camera inputs could be distributed onto these

multi-spectral processing chains and fused using the weighting and summation properties

of the Retinex [57]. However, for EVS processing the image streams are fused by effectively

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

Analog NTSC SW IR
NTSCRS422

R SI 70
LyteL ink LyteLink

LWIR
Analog NTSC NTSC

EVS Cameras

Input Frame
from SW IR'

Camera

O utput
Frame

Input Frame
from LWIR

Camera

SWIR

Resize

Resize

Display

Enhance
SWIR

Register
LWIR to

SWIR
Enhance

LWIR

Fuse

Video
Dist.
Box

DSP
Board

F ig u re 6.5: Im age processing arch itecture and functions of th e EVS. Analog NTSC cam era ou tpu ts
are currently processed. T he SW IR d a ta is used as the baseline for registration since it lias the
sm allest field of view.

performing a weighted sum of the two processed outputs since a different Retinex is applied

to each channel. Pixels are summed on an inter-frame basis. Other methods such as

interleaving frames or fields causes sever flicker. The fused data stream is output as a

standard composite NTSC signal into a display.

6.3 A d d ition a l R eq u irem en ts

Several other EVS parameters complete our baseline requirements and constraints for real­

time Retinex processing. First, our initial performance goal is to achieve a display rate of 15

fps, instead of the de facto standard of 30 fps for real-time video. We can use this reduced

rate because our final processed output will be sent to a pilot’s display and several human

factor studies have shown that an update rate of 15 fps is more than sufficient to avoid flicker,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

accurately portray motion [100], and not cause pilot induced oscillations (PIOs) [34, 40] of

the aircraft. A PIO can occur when a pilot views and reacts to an instrument or display

that is updated too slowly (< 12 fps) [2, 44].

Second, the cockpit displays are low-resolution (320 x 240). This significantly reduces

the amount of image data that must be processed. Fitting the closest power-of-two input

requirement for the FFT to this frame size dictates that we process a 256 x 256 portion

of each frame. Only 20 percent of the horizontal component of the image is lost and the

vertical component is zero-padded to fill 256 pixels.

Third, only the SWIR and LWIR cameras are targeted for processing by the current

EVS sponsors. The visible band camera is only used to provide context. Use of the visible

band data in conjunction with the infrared cameras to improve the information provided

to a pilot is an open research topic. For now, processing only the monochrome SWIR and

LWIR cameras reduces the number of bands that have to be processed from 5 (1 each for

the LWIR and SWIR, and 3 for the visible-band camera) to 2. Only processing the SWIR

and LWIR cameras also enables the use of the SSMR version of the Retinex since it provides

good enhancement of single-band infrared imagery with the additional benefit of minimizing

computational requirements.

Several environmental parameters are defined for the EVS. The space allocated is ap­

proximately 17 wide by 8 inches deep by 3 inches high. This is enough space to hold a

standard PCI board, thus allowing a board-level (vs. chip-level) solution, but eliminates

multiple board or cluster solutions. The operational temperature range falls within the

standard commercial temperature range of 0 to 70 degrees C. The maximum power allo­

cated for image processing is approximately 5 watts with a standard input voltage of 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

F ig u re 6.6: DM642 EVM, signal sp litter boards, and F ig u re 6.7: Flight box in flight pallet
power supply in flight box. on NASA 757.

volts and current limited to 1 amp. If other input voltages are required DC/DC converters

can be used within the space allocated. Waivers for additional power can also be requested

since the NASA 757 has many power resources. However, general aviation aircraft have

significantly fewer resources and it is beneficial to limit our resource allocation for potential

use in these environments also.

Each EVM discussed in Section 4.1 easily fits within the physical constraints of the

EVS, however only the DM642 EVM has two video inputs to accept the two infrared

camera outputs. The DM642 EVM was flight hardened1 and the board was encased in a

rack-mountable box with interfaces and switches extended to the front and rear panels. A

power supply and signal break-out cards are also enclosed in the box. Figure 6.6 shows the

DM642 EVM and other devices in the flight box and Figure 6.7 shows the box in the flight

pallet on the NASA 757.

A new method to update parameters was developed for the DM642 EVM because a host

PC with a JTAG emulator was not available for continuous use during flight test to perform

RTDX based updates. Instead of using the JTAG port, our new method uses the Ethernet

1 F ligh t-harden ing m eans th a t com ponents are secured to prevent being shaken loose during flight.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

port on the DM642 for communication with an external PC thus eliminating the need for

a JTAG emulator. A new task was written to process messages received via Ethernet using

the mailbox module in DSP/BIOS. The mailbox module provides a set of functions that

are used to pass synchronized messages from one task to another on the same processor. In

this case, the parameter update messages are passed from the Ethernet task to the main

frame processing task discussed in Section 4.6.

6.4 R esu lts

The EVS was tested during FORESITE flight demonstrations in August and September of

2005. All flights were performed in good weather and although this was not ideal for testing

the performance of the EVS, this still enabled a thorough evaluation of the functionality

of the EVS components including the real-time Retinex. As mentioned in Section 6.2 we

have to individually resize and enhance the monochrome output images of the SWIR and

LWIR cameras, register the LWIR to the SWIR, and then fuse the two channels together.

Since both cameras are flown upside-down underneath the NASA 757, the images must

be rotated 180° for normal viewing. This is usually performed using embedded routines

in the cameras but unfortunately, the camera integrators were unable to rotate and place

the corresponding gamma look-up tables in ROM for the LWIR camera. We decided to

perform the rotation of the LWIR image within our image processing routines on the DSP.

We modified our Retinex routine to read in the LWIR image data starting at the end of

the image data and proceeding to the first, pixel. This causes a 180° rotation of the image.

Our sequence of tasks is as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

• resize the LWIR input image to 256 x 256 pixels,

• Rotate and Retinex the LWIR image,

• resize the SWIR input image to 256 x 256 pixels,

• Retinex the SWIR image,

• register the enhanced LWIR image to the enhanced SWIR image,

• interpolate the LWIR image to the SWIR grid,

• fuse and output the final processed image.

Higher quality imagery is achieved by enhancing the LWIR image before performing reg­

istration, instead of registering first, since registration may eliminate part of the original

image when it is transformed.

Our algorithm performed the above sequence of tasks on the DM642 at 33.89 fps. Sample

input frames2 from the SWIR and LWIR cameras are shown in Figure 6.8 and Figure 6.9,

respectively. The LWIR input is actually received from the LWIR camera rotated (upside

down) 180°, but is shown right-side up for viewing purposes. The same SWIR frame after

SSMR enhancement is shown in Figure 6.10. It is easy to see the improved contrast and

brightness in the image. Similarly, a frame of the enhanced and registered LWIR channel is

shown in Figure 6.11. Registration can be seen by noting the large vortical shift downward

at the top of the image. Both of the SWIR and LWIR enhanced frames shown are captured

as intermediate results for demonstration purposes and not the final output product of our

2We w rote a sm all u tility to send im age d a ta from th e D SP to th e host to c ap tu re fram es a t various
stages of processing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F ig u re 6.8: A fram e from the EVS SW IR cam era before processing. The faint vertical lines were
p a rt of the input image and probably caused by subsam pling in the video d istribu tion system.

processing. The filial fused output is shown in Figure 6.12. This image has significantly

better contrast, brightness, and sharpness than any of the original inputs, and provides a

single enhanced output for the pilot to view. Enhancement and registration parameters

were determined empirically.

Our fused output image is actually a 512 x 512 image, but we are only processing 256

x 256 pixels per image. The CCD arrays for both the imagers are approximately 320 x 240

pixels, but the NTSC composite inputs received are upsampled to 640 x 480 through pixel

replication (horizontally) and line duplication (vertically). We used this information and

modified our core Retinex routine to generate a 512 x 512 image by 2:1 subsampling the

horizontal and vertical components of our input images. This process retains the majority

of the original resolution of the cameras.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

Figure 6.9: A frame from the EVS LWIR camera before processing. The LWIR camera output is
actually rotated 180° from what is shown.

An additional interesting addendum to this process was the requirement to store the

algorithm in non-volatile flash memory so that the algorithm would automatically execute

at system power-up. As discussed earlier, an Ethernet client was added to the code to

facilitate communication with a host to update Retinex parameters. This expanded the

size of the executable beyond the flash page boundary so we developed a new multi-page

bootloader algorithm to implement this feature. Development of this algorithm is discussed

in Appendix C. This information will be used in a new TI application report on bootloaders

for their C6X processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

1

F ig u re 6.10: SW IR fram e after enhancem ent.

F ig u re 6.11: LW IR fram e after enhancem ent and registration to the SW IR image.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F ig u re 6.12: Enhanced, registered and fused o u tp u t image.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Future Research

As with most research topics, there is always the question of “how can we make it better?” .

For our real-time Retinex, improvements can basically be categorized as (1) increasing the

performance of the algorithm on DSPs to provide 30 fps MSR performance, (2) processing

larger format images, and (3) migrating to a multi-processor environment. It would also

be beneficial to integrate additions tha t augment the Retinex, such as color restoration or

white balance techniques, into our real-time version of the algorithm, but the three primary

areas listed above should be solved first.

7.1 L um a-on ly R etin ex

Before addressing these issues we briefly digress to discuss a method that can immediately

provide a near Retinex quality enhancement at full 30 fps performance for certain appli­

cations. This alternative version of the Retinex is called the luma-only Retinex (LOR). In

the LOR algorithm, only the luma, Y' , component of an image is processed. The chroma

components are left unchanged and passed directly from input to output. The enhancement

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

quality of this algorithm is very good because the majority of spatial detail is contained in

the luma component of an image.

Processing only the luma component eliminates all of the Y 'C b Cr to RGB input and

output conversions. As discussed in Section 4, the DM642 EVM stores image data in planar

form and the C6416 EVM stores image interleaved. Thus for the DM642 only a pointer

to the Y ' component is required to access the input and to generate the output. The Y'

must still be extracted from the input image data and embedded in the output data on

the C6416, but this is performed very efficiently. Since only the Y ' component is processed

using three scales, the performance is analogous to that shown for the DM642 and C6416

for 1 band and 3 scales — 38 fps for the DM642 at 200 MHz and 58 fps on the C6416.

7.2 Im proving C urrent P erform ance

To improve our full, real-time Retinex to meet 30 fps performance on DSPs would require

moderate speed-ups in processor performance (by ~ 33 percent) and either a similar speed­

up in EMIF bus rates and external memory access times or a L2 memory large enough to

remove at least some of the DMA requirements. Our final algorithm execution time is driven

by processor cycles, not I/O bandwidth. However, as we showed in migrating our code

from the C6711 to the C6713, when processor clock speed is increased, the I/O bandwidth

needs to improve1 also or it will become the bottleneck on performance. Having a larger

L2 memory and placing larger segments of data there implicitly improves I/O bandwidth

because it removes the requirement to transfer that particular data. We demonstrated this

by keeping the logarithm of the input image in the L2 memory on the C6416.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

Extending this concept, to store the FFT of a color input image requires 1.5-MBytes

of memory with 512-KBytes per band. Retaining our current technique of storing the

image logarithm data locally implies tha t we would need a L2 memory size of between

2 and 3-MBytes, well within the reach of next generation DSPs. Storing the FFT in L2

memory would eliminate the transfer of the FFT of each row to external memory, and the

2-dimension read of external memory to form the column data. Just looking at the rows

and ignoring function call overhead, theoretically to DMA a row requires 1.92 microseconds

through a 64-bit wide EMIF bus clocked at 133 MHz. To DMA 256 rows requires 4.93

ms. Measured 2-D transfer times were on the order of twice the row transfer time or ~ 10

ms. Placing the FFT data in L2 memory would not directly achieve a 15 ms increase in

performance because these transfer are currently performed in the background. However it

does mean tha t any additional processor improvements wonld then be immediately effective,

thus with a commensurate increase in processor performance, 30 fps MSR would be easily

achievable. An alternative idea is to attem pt to store all of the convolved data, but this

would require 512-KBytes per scale per band equating to 4.5-MBytes for the MSR. Local

DSP memories on this order are probably years away.

7.3 P ro cessin g Larger Form at Im ages

Processing larger format images exacerbates the issues address above. First, significantly

more processing cycles are required. Using the calculation of the FFT as an example,

Table 7.1 shows the number of cycles and the associated processing time for different FFT

sizes executing on the C6711, DM642, and the C6416 processors. The benchmark equation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

for the out-of-place cache-optimized mixed radix FFT executing on the C6711 originally

given in Section 5.1.9 is repeated here as

C = (3[log4(n - 1)"|n) + (21|"log4(n - 1)] + (2n) + 44. (7.1)

and the benchmark equation for an extended-precision, mixed radix 16 x 32 FFT with

rounding, and digit reversal executing on the DM642 and C6416 is repeated here as

C = (13n/8 + 24)([log4(n) - 1]) + (n + 8)1.5 + 27. (7.2)

The processing time for FFTs ranging in size from 256 to 2048 are shown in Table 7.1.

Referencing the information in Table 7.1, Table 7.2 gives benchmark FFT performance

FFT Benchmarks C6711 @ 150 MHz DM642 @ 720 MHz C6416 @ 1 GHz
FFT Size cycles /iS cycles flS cycles //s

256 2923 19.49 1743 2.42 1743 1.74
512 7296 48.64 4231 5.88 4231 4.23
1024 14464 96.43 8327 11.56 8327 8.33
2048 34965 233.10 19871 27.60 19871 19.88

T a b le 7.1: F F T Benchm arks for CG711, DM642 and C6416.

values for various input image sizes. As can be seen from this data, to perform a 512 x

256 FFT on the C6711 takes nearly the full 33.33 ms time alloted to process a frame at 30

fps. Initially looking at the data the DM642 and C6416 perform significantly better and

seem to be potential solutions for 512 x 512 sized images. However, this is only the forward

FFT of the input image. Subsequently three inverse FFTs (one for each scale) must be

performed for each band, each taking the same time as the forward FFT. This drives the

FFT processing time for a 512 x 512 image to 60.02 for the DM642 and 43.33 ms for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8G

FFT linage Benchmarks C6711 @ 150 MHz DM642 @ 720 MHz C6416 @ 1 GHz
x-dim y-dim ms ms ms

256 256 9.98 1.23 0.89
512 256 29.89 3.63 2.61
512 512 49.81 6.02 4.33
1024 512 123.64 14.85 10.7
1024 1024 197.48 23.67 17.06
2048 1024 576.13 68.36 49.24
2048 2048 954.78 113.04 81.43

T able 7.2: F F T Processing T im e Benchm arks using C6711 and DM642 for various sized images.

C6416 exceeding the 33.33 ms boundary. Again, this is just the time to process FFTs, other

computations must be included to perform Retinex enhancement.

The second issue that the size of the images are considerably larger, thus requiring more

memory for storage and more bandwidth for transfers. Table 7.3 shows typical FFT storage

requirements and 64-bit, 133 MHz EMIF transfer times for various sized images. As shown,

the FFT of a 512 x 512 image requires 2-MBytes for storage eliminating any possibility of

keeping this data in current DSP L2 memory.

FFT Image Size Memory Requirement EMIF Transfer Time
x-dim y-dim MBytes ms

256 256 0.5 4.93
512 256 1 9.86
512 512 2 19.72
1024 512 4 39.44
1024 1024 8 78.88
2048 1024 16 157.76
2048 2048 32 315.52

T able 7.3: F F T storage requirem ents and transfer tim es (based on row oriented data) for various
sized images. Storage is based on complex image d a ta stored as integers. Transfer tim es are based
on a 64-bit EM IF bus clocked a t 133 MHz.

Incremental increases in performance could also be achieved by modifying the FFT. Since

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

our image signal is real-valued we could use the imaginary part of the FFT input and exploit

the symmetry of the frequency spectrum to compute either a 2N-point, sequence using an

N-point FFT or compute two, N-point FFTs simultaneously [7, 75, 63], This technique can

perform the FFTs « 30—40% faster [63] than the conventional method, but the overhead

associated with interlacing the input and unscrambling the output reduces the effectiveness

of this method. The FFT routine currently used could be rewritten to take advantage of

alternative fast bit-reversal techniques such as those introduced by Zhang [104], Pitas and

Strintzis [52] discuss an interesting method to build up the column transform in steps while

selectively processing rows to reduce the I/O operations between hard disk and internal

memory. Although hard disk access is several orders of magnitude slower than external-to-

internal memory transfers, an adaptation of this method could be used for external-t,o-L2

memory transfers.

There is no fundamental reason why we have to use the row-column method to decom­

pose the 2-D DFT. We could possibly reduce the number of arithmetic operations performed

by using other algorithms such as a vector-radix Fast Fourier algorithm [22], a polynomial

transform FFT [48], or a fast 2-D Hartley transform [5]. Other techniques, such as using fast

matrix transposition methods to reduce the number of I/O operations [16, 15], could also be

explored. While all of these methods are worthwhile, revolutionary increases in performance

will probably only be addressed through using alternative processing platforms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

7.4 M igratin g to a M u ltip rocessor E nvironm ent

Another strategy is to map the MSR algorithm into a multiprocessor system [35, 6] and

take advantage of the parallelism of the algorithm. Most multiprocessor systems in general,

exceed our initial constraint of performing the MSR on a small, embeddable, low-power

system. However as newer technologies emerge this may become a viable alternative. Even

today, several relatively small multiprocessor boards are available from vendors such as

MangoDSP, Sundance or Vitecmm.

A system tha t completely distributes the primary tasks of the MSR could resemble a

design similar to that in Figure 7.1. The first level task splits the input image into its RGB

spectral components. The next two levels perform forward row and column transforms,

respectively. The output of this level is fed into three other tasks, each performing convolu­

tion of the now spatial frequency domain image data with the associated kernel. The next

two levels perform inverse FFTs of the columns and rows respectively, for each convolved

output. The next level combines the data for each scale, computes the log and subtracts

this from the log of the original image. The final task combines the processed data from

each band. Each task could be mapped to an individual processor or assigned to a pool

of processors. Similar to our EMIF bus bandwidth issues, iuterprocessor communication

and data sharing will need to be carefully balanced. The processors used to perform these

tasks could be DSPs, FPGAs (see Appendix B), or a mixture of both. In a heterogeneous

system, FPGAs could perform pre- and post-processing tasks, while DSPs perform the core

FFTs and convolutions. In this dissertation we have established a core set of techniques

that could easily be used to implement the Retinex in this multiprocessing environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Decompose
Input to RGB

Log FFT
rows rows

1
FFT
cols

Conv Conv Conv
SI S2 S3
1 1 1

IFFT IFFT IFFT
cols cols cols
t z z j

IFFT IFFT IFFT
rows rows rows

Combine
Red-Band

Log FFT
rows rows

1
FFT
cols

^ 1 '" -
Conv Conv Conv

SI S2 S3
1 1 1

IFFT IFFT IFFT
cols cols cols

IFFT IFFT IFFT
rows rows rows

Com
Blu-1

bine
land

Combine
Bands

Log FFT
rows rows

1
FFT
cols

Conv Conv Conv
SI S2 S3
1 1

IFFT IFFT IFFT
cols cols cols

IFFT IFFT IFFT
rows rows rows

Combine
Grn-Band

F ig u re 7.1: D ata flow diagram of MSR tasks

Ultimately, it would be beneficial to develop an embeddable single chip-level imple­

mentation of the processing components of the algorithm. We would start by using the

techniques we developed to place the MSR tasks described above into one or more FPGAs.

Commercial tools are available from companies such as Celoxica, Accelchip, and Catalytic,

that automatically convert C code developed for DSPs into VHDL, the current language of

choice for FPGAs, and multi-FPGA boards are available from companies such as Sundance

and Nallatech. Implementation in an FPGA would enable the full customization of our

design and a direct migration path to an ASIC.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusions

In the last few years the multi-spectral, multi-scale Retinex has provided outstanding image

enhancement of still imagery for numerous users. Literally thousands of images have been

processed. The first, versions of the multi-scale, color Retinex, coded on a Windows NT

200 MHz Pentium Pro PC and processing a 512 x 512 image, executed in ~ 45 seconds

— more than three orders of magnitude slower than required for real-time performance.

Current PC implementations of the Retinex for a 512 x 512 image execute in ~ 3 seconds,

still two orders of magnitude too slow to be considered for real-time applications. It was

my thesis that a real-time, 15 fps multi-scale, multi-spectral Retinex could be achieved on a

single-processor embedded system through proper algorithm and architecture optimization.

The summation of this dissertation is that we have successfully achieved this goal.

Throughout this research a series of optimizations were developed, investigated, and

implemented on progressively faster DSPs, each with more capability. These techniques

were discussed in Chapter Five. We began by focusing on the single-scale monochromatic:

Retinex targeting the floating-point, C6711 and CG713 DSPs and achieved 20.7 fps and 28

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

fps performance, respectively. Although the C671Xs platforms did not allow us to obtain

real-time MSR performance, the core algorithm structures and techniques developed for

them, such as merging algorithm components to reduce I/O and performing effective DMA

routines, were used repeatedly in future implementations. We then changed our hardware

target to the fixed-point DM642 DSP. After modifying our single scale Retinex design into

a fixed-point implementation and adding addition optimization techniques, we obtained 69

fps performance on this platform.

Using the knowledge gained from our previous experiences, we focused our research

on the more computationally intensive multi-scale Retinex, while continuing to target the

DM642 DSP and adding the more powerful C6416. We again developed and implemented

additional optimizations into our core algorithm focusing on constructs specific to multi­

scale, multi-band processing and taking advantage of the additional resources within the

processors. This includes restructuring the mathematics of the algorithm to enable exploit­

ing the pre-computation of additional parameters and modifying our buffering scheme to

keep DMA processes from driving the algorithm computation time. Our best performance

on the most computational intensive version of the Retinex (the MSR) was 20.25 fps using

the C6416 platform. This exceeded our baseline target of 15 fps but still requires further

exploration to meet, 30 fps.

We applied our real-time algorithm in actual flight hardware during demonstrations at

NASA LaRC enhancing, registering, and fusing two infrared video camera outputs. This

was a significant achievement however, the accomplishment of this research extends beyond

this one application. It provides a new tool for image enhancement to a broad range of

users and will provide the basis for further academic research. Future implementations can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

use the core techniques we have developed and demonstrated and will hopefully achieve

even better performance through the use of multi-processor systems, FPGAs, or ASICs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

M ulti-Im age R egistration

Coupling infrared sensors with visible band sensors — for frame of reference or for additional

spectral information — and properly processing the multiple information streams has the

potential to provide valuable information in night and/or poor visibility conditions. In

Chapter 6, we discussed an EVS that is being developed to test this concept. A set of

images consisting of an image from each of the cameras of the EVS taken during one time-

aligned frame is fused into a single image that contains more information than any individual

spectral band. This process is then repeated for all the image frames making up a video

sequence. To properly perform fusion it is critical to ensure that the information from each

sensor refers to the same features in the environment [8, 43]. The different sensors of the

EVS have different acquisition lattices and optics, therefore they capture information in

data structures that are substantially different from each other. Thus, the images must

first be registered before any fusion is performed. Several authors have addressed image

registration problems with innovative, but often complex, general solutions [42, 60, 41]. In

this appendix, we describe two straightforward solutions for registering EVS images.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A .l B ackground

Image registration is the task of aligning images taken at different times, from different

sensors, or from different viewpoints so tha t all corresponding points in the images match. A

transform must be defined tha t relates the points in one image to their corresponding points

in another. This transform depends upon the characteristics of the differences between the

images being registered, and is computed with respect to a reference or baseline image. The

images that are to be matched to the reference are called the sensed, or, distorted image.

More particularly, image registration is defined as a mapping between two or more im­

ages both spatially (geometrically) and with respect to intensity. Expressed mathematically

we have:

h = g (h x 2))), (A .l)

where I\ and I 2 are two-dimensional images (indexed by xi ,x,2), / : (^ 1 ,^ 2) —* (# 1 1 # 2)

maps the indices of the distorted frame to match those of the reference frame, and g is a

one-dimensional intensity or radiometric transform [9]. We assume that we do not need

to make any radiometric adjustments, so g — I , the identity transform. Hence we are

concerned only with the spatial transformation, / . In generating a spatial transform for the

EVS, our primary difficulty is the lack of fiducial markers within the images generated by the

EVS sensors. The cameras are, however, assumed to be bore-sighted so they are expected

to have a common center of alignment. The spatial transform should, then, properly align

the images, but should not affect any characteristic differences that should be exposed by

registration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Spatial transforms may take on different forms depending upon the application. Simple,

common transforms specified by analytic expressions include rigid-body, affine, projective

or perspective, and polynomial [59, 47]. The distortions between the images of the EVS

in general seem constrained to those correctable by affine transforms. They also appear

to be characterizable by a global (versus local [21]) transform where a single transform

correctly maps all the points on the distorted image to match the corresponding points on

the reference image. An affine transform fulfills the requirements for the needed transform.

An affine transform can perform rotation, translation, scaling and shearing operations.

It offers six degrees of freedom when selecting six unknown coefficients and solving a system

of six linear equations. In general, it can perform triangle-to-triangle mappings. A general

representation of an affine transform is [3/1 , 2/2 1 1] = [^ii^2i 1]T where

:r,\ and x,2 reference the input coordinate system, y\ and 2/2 reference the output coordinate

system, and a\j are transform coefficients [102],

The forward mapping functions are

Geometric, image-to-image registration can be summarized in three general steps:

1. Feature identification and matching is performed to establish a correspondence be­

tween features in the distorted image to those in the reference image;

a n a\2 0
T = 0 2 1 « 2 2 0

«31 a 32 1

(A.2)

2/1 = c q i - 'E i + (I2 1 X 2 + « 3 i a n d (A.3)

2/2 = a i 2 X j + (l22'X2 + ° 3 2 - (A-4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

2. A spatial transformation is selected and the transformation coefficients are computed

based upon the feat tire matching criteria;

3. The distorted image is inverse-mapped using the computed transformation and re­

sampled to register it with the reference image.

Feature identification and matching are often performed by selecting pixel locations called

control points. Identification of control points can be accomplished in several different

ways [18, 21]. Manual identification of control points is commonly performed. The images

are displayed, normally side-by-side, and corresponding points usually based on features

such as lines, edges, or contours are selected from both images.

The spatial transform coefficients tha t represent the unknown image distortions are de­

termined from the control points. A minimum of three non-collinear control points are

required to determine the six unknown coefficients of an affine transformation. Wolberg

and Jensen [102, 31] describe several techniques to solve for unknown coefficients includ­

ing pseudo-inverse solutions, least squares with ordinary and orthogonal polynomials, and

weighted least squares with orthogonal polynomials.

Image resampling is the process of transforming a sampled image from one (input pixel

grid) coordinate system to another (output pixel grid), where a sampled image is the dig­

itization of the spatial coordinates of an image function / (j / i , jr/a) — a two-dimensional

intensity function [102, 13, 20]. The two coordinate systems are related to each other by

the mapping function of a spatial transformation.

To perform image resampling, initially, the output pixels are inverse mapped using the

transformation function to a new grid which (usually) doesn’t correspond to the input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

grid. Thus an interpolation (image reconstruction) procedure is used to generate a con­

tinuous surface through the samples of the new grid. Then the input image is sampled

(digitized) at these points to provide the discrete output pixel values of the process. Three

common methods of interpolation are nearest neighbor, bilinear, and parametric cubic con­

volution [102, 50].

Table A.l shows the relevant manufacturer characteristics of the sensors [98]. The

images from the three sensors obviously need to be be registered because of the differences

in these characteristics. The solutions developed to resolve these differences are discussed

in Section A.2.

SWIR LWIR CCD
Image Dimensions (pixels) 320H x 240V 320H x 240V 542H x 497V

Optics FOV 34°H x 25°V 39°H x 29°V 34°H x 25°V
Detector Readout Frame Rate 60Hz (typical) 60Hz 30Hz (interlaced)

T a b le A .l : Sensor Specifications

The characteristics of the actual images obtained for registration differ from the initial

manufacturer specifications because of data acquisition and storage to tape. First, all images

have a nominal image size of 640 x 480 pixels corresponding to the NTSC format of the

recorded images. However, the actual size of the images is quite different after the images

are cropped so tha t the FOVs match the “visible1' part of the images (see Section A.2).

Second, ground test measurements of the cameras1 FOVs differed from the manufacturer

provided values. These updated characteristics are shown in Table A.2, and need to be

included in the computations for proper registration of the data streams.

The algorithms operate on a set of three, time-aligned images where each image is

acquired by an individual camera of the EVS. Each of the video streams is recorded, or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

SWIR LWIR CCD
Image Dimensions (pixels) 640# x 480V 640# x 480V 640# x 480V

Optics FOV 31.5°# x 23.5°V 4 1 °# x 30.75°V 33.5°# x 25°V
Detector Readout Frame Rate 60Hz (typical) 60Hz 30Hz (interlaced)

T able A .2: U pdated Sensor Specifications

post-processed, with video tirnecode information in each frame. The frames are time-aligned

simply by finding the frames with matching time codes. This set of time-aligned frames

is then used to obtain the registration parameters with respect to the baseline frame. All

other frames of the video sequence can be processed with the same parameters. Each frame,

including the ones from the color CCD sensor, is converted to grayscale before registration

and further processing.

A .2 R eg istra tio n a lgorith m s

Our first solution for image registration is based solely on camera sensor specifications. The

cameras were assumed to be properly bore-sighted at installation thus the only distortion

parameters to account for in registration are the differences in FOVs and resolutions. This

algorithm, called the SS (sensor specifications) algorithm, performs registration by first

equalizing the FOVs and then resampling the distorted image to match reference resolu­

tions. Based upon the lessons learned from the SS algorithm, a geometric image-to-image

registration algorithm was implemented. Both of these algorithms are discussed below. For

each of the algorithms, we use the SWIR image as the baseline since it has the “worst”

image parameters (the smallest FOV and poorest spatial resolution). The size of an image

can be modified through interpolation but we cannot increase the FOV.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

A .2.1 SS a lg o r ith m

The first step of the SS algorithm is to equalize the instantaneous FOVs (IFOV)s of the

sensors. The FOV is the angular extent of the full image on the sensor and the IFOV is

the angular extent on an individual detector element, i.e., the solid angle through which a

detector element is sensitive to radiation.

From Figures A .l, A.2, and A.3, we observe that the visible portion of the images

is actually smaller than the full image capture window. The FOVs listed in Table A.2

are assumed to correspond to the visible portion and not the capture window. Thus, the

first stage of processing is to crop the images to the visible portions. The second stage of

processing is to ensure that the two images are representing the same portion of the scene.

Since the FOVs of the SWIR and the LWIR sensors differ — LWIR has the greater FOV and

hence captures a wider swath of the scene — the LWIR image needs to be cropped so that

it encompasses the same FOV as tha t encompassed in the SWIR image. The dimensions

of the cropped LWIR images — the number of columns and rows — are determined by

a simple scaling operation. The horizontal and vertical IFOVs of the LWIR image are

obtained using

FOV-LWIR-HORIZONTAL
IFOV-LWIR-HORIZONTAL = ------------------------------- (A.5)

LWIR-COLS v '

and

FOV-LWIR-VERTICAL , ,
IFOV-LWIR-VERTICAL = ---------------------------- , (A.6)

LWIR-ROWS

respectively. The number of cropped columns and rows for the LWIR image is then deter-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

mined by

colum ns =
F0V-SWIR-H0RIZ0NTAL
IF0V-LWIR-H0RIZ0NTAL (A.7)

FOV-SWIR-VERTICAL
(A.8)rows = IFOV-LWIR-VERTICAL

After cropping, the SWIR and LWIR FOVs are equal, but since the dimensions of the

cropped LWIR are different from the dimensions of the SWIR, the IFOVs of the LWIR

and the SWIR images are still different. To make the IFOVs the same we must resample

the cropped LWIR image so tha t it is the same size as the SWIR image. This entails: (1)

computing an expansion factor tha t will make the dimensions of the cropped LWIR image

greater than the dimensions of the SWIR (2) pixel replicating the cropped LWIR based

on the expansion factor and (3) downsampling the expanded LWIR image to the SWIR

dimensions. We use the bi-linear interpolation method [10]. Nearest neighbor interpolation

can also be selected if desired but bilinear interpolation is more spatially accurate and

results in images that are slightly smoother.

A similar sequence of operations is performed between the SWIR image and the visible

image. If the FOVs are the same, as in Table A .l then the visible image is simply down-

sampled to match the SWIR resolution. The initial results from the SS algorithm clearly

indicated that the distortions present in the images were not excessive, but they also were

not limited to FOV and resolution differences.

A .2.2 M L R a lg o r ith m

Based on the results obtained from the SS algorithm a more general, geometric image to

image registration algorithm is implemented. The distortions between the images seem to

be due to sensor translation, (slight) rotation, scale change, and, possibly, shear. An affine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

transform is, thus, used to model the spatial transformation. Control points are manually

selected for identifying and matching corresponding features between the reference and

distorted images. Since we assume that the sensors do not change alignment over time, we

only need to register one baseline set of images tha t can subsequently be used for the rest

of the image frames.

We use point mapping without feedback [9] to approximate the global affine transfor­

mation. The first stage of the MLR algorithm is to select a minimum of three non-collinear

control points from two input images. More points can be chosen to make the coeffi­

cients more representative of the distortions throughout the overall image if the points are

well distributed. Global distortion representation is also improved by choosing pixels on

the perimeter if possible. The control points are then analyzed using multiple linear regres­

sion [65, 101] to approximate the coefficients of the affine transform. Residuals to determine

the accuracy of the regression model obtained are calculated. The defined affine transform

provides a mapping between the baseline and distorted images. The distorted image is

then resampled using the transform parameters to create the registered image. Bilinear

interpolation is used for resampling.

A .3 R esu lts

To demonstrate the performance of the algorithms we processed a set of videos taken by

the EVS cameras during a flight test at Patrick Henry airport in Newport News, Virginia.

The video sequence was taken as the NASA 757 aircraft approached a runway, and was

digitized using a Canopus Video Board. Three images (one from each camera) time-aligned

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

at 00:26:14:18 were used for registration. As stated earlier, the SWIR image is used as the

baseline for registration since it has the poorest spatial resolution and FOV. The SWIR,

LWIR and visible images are shown in Figures A .l, A.2 and A.3 respectively. To provide

a similarity metric to validate the performance of the registration algorithms we display the

absolute difference of the reference and corrected images. This provides a visible validation

of the registration process since features such as runway edges should align if registration

is performed correctly.

vTCR 00 :26 . 14:18

I
VTCR 0 0 :2 5 .1 4 :1 8

H I 1
—

F ig u re A .l: O riginal SW IR F ig u re A .2: O riginal LW IR F ig u re A .3: Original Visible

A .3.1 SS a lg o r ith m

Applying the SS algorithm with the SWIR image as the baseline, and the LWIR and visible

images as distorted images yields the “registered” SWIR, LWIR and visible images shown

in Figures A.4, A.5 and A.6 respectively. The FOV of the LWIR image has been made

smaller to match the FOV of the SWIR image. This change in FOV can clearly be seen in

the horizontal direction of Figure A.5, by observing that the blurred artifact (which is an

antenna in the FOV of the camera) in the upper left corner of the original LWIR is now

almost completely removed in the registered image. In the vertical direction, the decrease

in FOV is noted by the missing timecode at the top and the missing ground features at the

bottom of Figure A.5 that are in the original imago. The IFOVs have also been matched

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

though resampling. The general effects of resampling can be seen by observing the expansion

of image features from Figure A.2 to Figure A.5. The FOV of the original visible image

in Figure A.3 has been made slightly smaller, again to match the FOV of the SWIR, in

Figure A.6. Since the FOVs nearly match and the image dimensions are the same, there

is only a small expansion to match IFOVs, hence the registered image features are only

slightly increased from the original.

Figure A.7 is the differenced SWIR and SS registered LWIR, and Figure A.8 is the

differenced SS registered LWIR and SS registered visible image. The misalignment between

the images after registration can clearly be seen in Figure A.7 by observing the difference

in the outline of the runway from the LWIR component of the image, and the runway lights

from the SWIR image. There is at least a large translation and a small rotation difference

between the SWIR and registered LWIR. Similarly, the misalignment between the registered

LWIR and visible images differenced in Figure A.8 can also be seen by noting the difference

in the outline of the runway from the LWIR image, and the runway lights from the visible

image. Again, there is an obvious translation between the images. Figures A.7 and A.8

clearly display the misalignment between the images thus indicating that differences in

sensor design characteristics are not the only cause of distortion between the images.

F ig u re A .4: Cropped SW IR F ig u re A .5: SS Reg. LW IR F ig u re A .6: SS Reg. visible

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

F ig u re A .7: SW IR and SS Registered LW IR F ig u re A .8: SS Registered LW IR and visible

A .3.2 M L R a lg o r ith m

First we applied the MLR algorithm to the original (uncropped) SWIR and visible images,

again using the SWIR as the baseline. Due to the lack of features around the perimeter of

the SWIR image we used the runway lights as control points. Note tha t we are only using

three control points for demonstration purposes. Figure A.9 repeats the original SWIR

image for reference. Figure A.10 shows the registered visible image and Figure A .11 is

the differenced SWIR and registered visible image. The coefficients obtained are given in

Table A.3.

bo hi b‘2
x' -0.546156 1.021212 -0.004578
v' -20.440557 -0.007477 0.972837

T a b le A .3: Visible to SW IR MLR Coefficients

A close look at the runway and the runway lights in the two images shows tha t they are

now registered. In particular, in the lower right corner of the SWIR image there are four

runway lights lined up horizontally. In the visible image there are three runway lights in

the same position, except the second light from the left is not visible. Figure A. 11 shows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

the four lights differenced in a horizontal line with the missing visible light filled in from

the SWIR image. It is clear to see the warp performed during registration by observing

the timecode size and location differences in the differenced images. The timecodes are the

same size and at the same location in the original images. Figure A.9 and Figure A. 10 could

now be equally cropped to remove disjoint pixels around the perimeter to obtain the final

images to be fused.

VTCR 00:25 . 14:18

F ig u re A .9: R epeated F ig u re A .10: M LR Reg. F ig u re A .11: SW IR and
SW IR visible M LR Reg. visible

Next we applied the MLR algorithm to the registered visible and LWIR images using the

visible image as the baseline. Since: the runway lights are not visible in the LWIR image, we

use the intersecting lines at the bottom and top of the runway, and a stripe at the beginning

of the runway towards the right in the LWIR image as control points. Figure A. 12 repeats

the MLR registered visible image for reference. Figure A.13 is the registered LWIR image

and Figure A. 14 is the differenced registered visible and the just registered LWIR images.

The coefficients obtained are given in Table A.4.

K h h
s ' 8.347350 0.850628 0.037684
!/ 9.G37629 -0.012015 0.779082

T ab le A .4: LW IR to visible SW IR M LR Coefficients

As is evident in Figure A. 14 the runway portion of the LWIR image is aligned with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

runway portion of the registered visible image. Also, the runway lights from the visible

image border the perimeter of the LWIR runway. The one runway stripe selected as a

control point is aligned. The taxiways on the right side of the image and the horizon

across the image are also aligned. Again, any disjoint pixels around the perimeter could be

removed by cropping. At this point all three original images are registered.

v rc a nn-^e

F ig u re A . 12: R epeated F ig u re A . 13: M LR Reg. F ig u re A . 14: M LR Reg.
M LR Registered visible LW IR visible and LWIR

As a final test of the MLR algorithm we applied the same control point coefficients

to a later frame in the video sequence. Figures A .15, A.16 and A .17 are the SWIR,

LWIR and visible images at time 00:26:14:28, 10 seconds later in the sequence. Figure A.18

shows the MLR registered visible image. Figure A .19 is the differenced SWIR and MLR

registered visible images. Figure A.20 is the MLR registered LWIR image. Figure A.21 is

the differenced MLR registered visible and MLR registered LWIR image. As in the previous

set of images, the registration can be observed by noting the alignment of the runway and

runway lights in Figures A. 19 and A.21.

A .3.3 D iscu ss io n

The images shown visually demonstrate the performance of the two algorithms on typical

image data from the EVS. The registration inaccuracies of the SS algorithm are obvious.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F igu re A .15: Orig. SW IR F ig u re A .16: Orig. LW IR F ig u re A .17: Orig. visible
a t Tim e 26:14:28 a t T im e 26:14:28 a t Tim e 26:14:28

r*n . o c * a ’ Ccs

F igu re A . 18: M LR Registered visible a t F ig u re A . 19: SW IR and M LR Registered
Tim e 26:14:18 visible

The differing FOV and resolution specifications given do not take into account the other

distortions within the images. W ith this much discrepancy there seems to be either a

fundamental problem in the bore-sighting or alignment of the cameras, or the alignment

is changing during flight. If the sensors were actually bore-sighted and aligned, the SS

algorithm should be able to match the performance of the MLR algorithm and in addition,

not require any manual intervention like selection of control points. True FOV values could

be obtained from a thorough ground calibration, and lion-interpolated pixels of the actual

image dimensions could be obtained from raw digital data streams from the cameras.

The MLR algorithm provides better registration of the images than the SS algorithm

configured with the current set of specifications and with the current EVS alignment. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

F ig u re A .20: M LR Registered LWIR a t F ig u re A .21: M LR Registered visible and
Tim e 26:14:18 LWIR

our examples the runway and runway lights are clearly aligned. The coefficients obtained

with only three points indicates that there are rotation, translation, scale and possibly shear

distortion components found between the images. These distortions can be seen by viewing

the timecode warps at the top of the differenced images. The application of the same MLR

control points to a set of time-aligned images later in the same video sequence produced

the same level of registration. This indicates that we could successfully use the registration

coefficients obtained from one set of time-aligned images to apply to, at least, a group of

frames from the video sequence. If the alignment is not changing substantially during flight

then all frames could be processed with the same transform.

A .4 Sum m ary

Image registration is an essential prerequisite to subsequent image fusion. We have produced

two algorithms to perform multi-image registration for the EVS. The SS algorithm uses

EVS camera specifications and performs registration based solely on these parameters. The

performance of this algorithm indicates that there is a sever inaccuracy in the boresighting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

or alignment of the cameras. Correction of these issues should improve the performance

of the algorithm and allow it to be used to automatically register all images across the

cameras, or as validation of the MLR algorithm.

The MLR algorithm uses control point selection and linear regression to compute the

coefficients of an affine spatial transformation. This transformation is then used to register

the LWIR and visible images to the SWIR image. In addition, the MLR registration

algorithm provides a means to generate a base set of coefficients for post processing of the

full video stream across all cameras. We have subsequently used a set of baseline coefficients

to process an entire 20 second video clip from each of the three cameras.

In addition, the coefficients obtained could also be used to back out the actual distor­

tion values (translation amount, rotation angle, etc.) for feedback to the EVS designers.

Improvements could also be made in the computation of the coefficients by using point

selection with feedback or other more robust feature selection mechanisms. Manual con­

trol point selection can be improved by MSR enhancement of the images to emphasize

and sharpen features prior to registration. This was done for another EVS data set and

greatly improved the ability to select corresponding points. Most importantly, the actual

boresighting and alignment can be checked against the values obtained from MLR and SS

registration, and adjusted appropriately. This procedure could be performed both before,

and after, EVS flight opportunities and used to verify and validate system alignment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

Field Program m able Gate Arrays

In the future we can capitalize on the lessons learned from mapping the real-time Retinex

algorithm into a DSP architecture, and possibly use an alternative technology that will allow

full customization of our design. One of these technologies is field programmable gate arrays

(FPGAs). Architecture optimization usually implies performing the process of improving

a system by properly allocating resources, such as memory or DMA channels, to improve

execution speed or bandwidth. FPGAs redefine this term to apply at a much lower level

of abstraction. Specifically, FPGAs are composed of a large matrix of logic cells, routing

resources, and I/O blocks that must, be selected, configured and interconnected. Figure B .l

is a block diagram of a typical FPGA architecture. A logic cell can be as simple as a

transistor pair or 2-input, nand gate, or as complex as a full microprocessor core. Logic cells

are typically based ou multiplexers and basic logic gates, or SRAM-based look-up tables

(LUTs), and are generally used to implement, combinatorial or sequential logic functions.

The routing resources implement the “field-programmable” portion of the FPGA defini­

tion. They are the interconnect fabric (wires) and electrical switches tha t are programmed

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

Logic Cells

"
±

/
— I t Hh HI—

-* ■ m
I/O Blocks

\
Interconnect

F ig u re B .l : High-level block diagram of a typical FPG A A rchitecture

and can (usually) be reprogrammed in-situ, i.e. after its manufactured or even during

active operation. This concept leads to the idea of chip-level reconfigurable computing.

Three primary programming technologies are used to implement the switches [58]: pass

transistors controlled by the status of an SRAM bit. electrical programmable read only

memory (EPROM) floating-gate transistors, or small antifuse switches electrically formed

once by creating a low resistance path to ground. FPGAs tha t use write-once antifuses

are tedious to use because the design must be complete and verified before programming,

but they provide the benefits of low resistance and parasitic capacitance, high reliability

and density, and can be relatively easily fabricated in a radiation-hardened foundry. Xilinx

is large manufacturer of SRAM-based FPGAs. the Altera Max products are CPLDs, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

Ac.tel is a major vendor of antifuse based FPGAs. The I/O blocks are special-purpose logic

cells generally spread around the peripheral of the device that are used to buffer input and

output signals. They can usually be configured to transfer input, output, or bi-directional

signals.

The logical functionality of an FPGA is programmed into the device through a number

of design stages [51]. First, a high-level design is entered as a structural design, normally

through a schematic, or as a behavioral design using hardware description languages, such as

VHDL or Verilog. Computer-aided electronic design automation tools exist for both, and

often offer alternative entry methods, such as state-machine or waveform editors. Logic

synthesis is performed next, where the high-level design is compiled into a netlist and

translated into the available cells and technologies provided 011 the FPGA. Several issues

are addressed during this stage, such as design size checks and redundancy elimination.

After this, place and route is performed where cell placement is determined and the routing

interconnect is defined. Finally, a configuration bit file is generated and downloaded into the

device for programming. Because of the complexity of most FPGA architectures, functional

and timing simulations are often performed concurrently and iteratively with the design

stages. This allows the designer to correct errors before programming the device and is

critical to ensure the successful implementation of antifuse-based devices. Test vectors that

provide stimulus to both the simulator and actual device are also often generated to aid in

debugging and to verify and validate behavior.

FPGA capacities in the late 1980’s were on the order of thousands of usable gates [51].

They were often used as “glue logic” , absorbing the functionality of a variety of miscel­

laneous logic, and performed functions like providing interfaces to external memories or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

peripherals. Over the last few years the density and capabilities of FPGAs have increased

tremendously. As an example, the XC2VP100 is the largest FPGA in the Xilinx Virtex-

II Pro family of devices first introduced in January 2002. It contains 99,216 logic cells,

7,992-kbits of BRAM, 444 dedicated 18 x 18 multipliers, 12 digital clock managers (DCMs),

1164 user I/O pins, 2 PowerPC RISC processors, and 20 3.125 Gbps Rocket I/O serial

transceivers. Each logic cell contains a 4-input LUT, a flip-flop and carry logic. BRAM is

block RAM comprised of distributed and global dual-port SRAM. As FPGA densities have

increased, so have the number of potential uses. They are now often used as co-processors,

hardware accelerators, or custom, reconfigurable computing architectures. Several authors

have suggested and implemented individual image processing functions [45, 46, 11, 12] as

well as full platform and system solutions [1, 17, 38, 14, 68]. Xilinx and other vendors

offer several DSP cores, such as 2-D 1024-point, FFTs and YCrCb-to-RGB converters, that

perform complex processing functions and can be easily inserted into a design.

We could design and map a new version of the algorithm into this technology taking

advantage of its’ capabilities. We may be able to properly utilize a single high-density FPGA

to parallel process three spectral bands of image data. Otherwise, we could use a multi-

FPGA platform that would allow pipelining the major components of MSCR processing.

Bandwidth issues could be reduced since we could create and optimize internal bus widths

to our data transfer requirements. High-level code could be written using VHDL and

synthesized using Synplicity FPGA development tools. We also have access to other high-

level tools, such as Matlab, tha t could be used for design, simulation, and test. An FPGA

Retinex processing core could eventually be developed for widespread use in other Xilinx

platforms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix C

DM 642 EVM Flash Program m ing

Guidelines

Many embedded applications require the need to execute automatically at system power-up

after reset without outside intervention. This is often accomplished by storing application

code in a non-violatile memory such as a read only memory (ROM) or flash memory. At

power-up (or boot) the stored code is automatically copied into a runtime memory location

in random access memory (RAM) and then the beginning program address is branched to

to begin execution. We require this automatic start-up capability for our DM642 EVM

based implementation used in the EVS system. The EVS system is required to work as an

embedded, autonomous system. Power-up and power-down cycles are performed frequently

during pre-flight check-outs and when the plane has stopped at other airport facilities. No

operator is continually available to monitor the system and repeatedly reload code from a

host, therefore loading and executing code autonomously is required.

The DM642, like all the other TI DSPs, has a set of facilities to support bootloading.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

Three boot configuration modes are supported — no boot, ROM boot,, and host boot. In no

boot mode no action is performed at boot, and in host boot, an external host controls the

boot process. In ROM boot mode after reset is released, the CPU is stalled until 1-KByte

of memory is copied from the beginning of an external ROM to RAM address 0 using the

EDMA controller. After this transfer is complete the CPU is released and starts to execute

code at address 0.

Many applications will not fit in 1-KByte of memory. In this case, the code that is

copied is usually a second-level bootloader that in turn, copies the rest of the application

into RAM. The DM642 EVM has 4-MBytes of 8-bit wide flash. The flash is mapped into

the 0x90000000 to 0x9007FFFF (lower CE1 space) address range of the DM642 using 19

address bits (A0-A18). This is smaller than the memory space available in the flash so

an FPGA on the EVM is used to create 3 additional address lines extending the address

range to 4-MBytes. These 3 lines effectively act as page bits dividing the address space

into 0.5-MBvte pages. Unfortunately, they default to 000 at power-on reset because the

SRAM-based FPGA becomes unconfigured at reset and tri-states the output of all I/O . We

discuss the ramifications of this next.

The size of most of the first executable files generated for our implementations were

about 500-KBytes, and would fit on the first page of flash. After adding ethernet service

components (and the large libraries required by them) to allow a user to perform parameter

updates from any available laptop, our executable code size grew to ss 677-KBytes. To

place these executables in flash memory requires using a Flashburn utility provided by TI.

This utility requires the file to be burned to be in one of several specific formats. We choose

the hex format and used the TI supplied liexbx utility to perform the conversion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

TI supplies a sample second-level boot loader (boot.asm) assembly file tha t is used to

load a users application. When the boot.asm file is included with the application, the liexbx

conversion routine properly allocates the boot code (at address 0x00) and the application

code (defaulting to address 0x400, immediately after the 1-KByte boot code). When burned

into flash, the flashburn utility physically places the code in memory according to the values

in the hex file and any offsets selected at burn time by the user.

The EVM board manufacturer,Spectrum Digital, supplies a default flash program that

contains the configuration bits (of size 0x393D0 or ~ 234-KByt,es) for the FPGA, and a

program (fpgaJoader) that loads the FPGA with these configuration bits. So the default

setup would have boot.asm at address 0, the fpgaJoader code at address 0x400 and the

configuration bits at address 0x40000. The boot code would be loaded into RAM at reset.

After reset, it would copy the fpgaJoader code into RAM and branch to the entry point of

the fpgaJoader, which subsequently loads the configuration bits into the FPGA.

The main issue is tha t the FPGA controls the addressing used for the flash (the page

bits) and if it is not properly configured, the upper pages of flash cannot be accessed. So

attempting to use flash above page 0 (above 512-KBytes) becomes a lion-trivial issue. Our

first attem pts failed because our standard routine had been to erase flash, burn the FPGA

configuration bits and our application (with boot.asm embedded in it), and then restart

the system. This worked because our application fit on one page of flash. Now that our

code was greater than one page, the burn failed because the address lines are all at zero and

addresses above 512-KBytes are mapped into lower memory. In addition after getting data

burned on more than one page, we needed a method to copy the upper pages of information

into RAM and restart execution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

Our solution was to first, burn the fpgaJoader with the default boot code and the FPGA

configuration bits into the first page of flash and reboot thus configuring the FPGA. This

gives us full access to all of flash memory. We then modified the default fpgaJoader program

so that at the end of the program execution it now (1) changes the FPGA page bits from 0 to

1 and (2) branches to a third-level bootloader at address 0x90000000 to load our application.

To change the register that controls the page bits to 1 we use a function supplied in the

dm642 board support library: evmdm642_rset(evmdm642Jlashpage,l). To branch, we use

three simple assembly language instructions in C code: asm (“ MVKL 0x90000000,A15”);

asm (“ MVKL 0x90000000,A15”); and asm (“ BNOP,0x5”);.

Next we burned into memory the FPGA configuration bits at 0x90040000, the modified

fpgaJoader with the default second-level boot code, and our application code embedded with

the third-level boot code at address 0x90080000. The address change is performed using

an offset of (0x80000) in the Flashburn utility. When the modified fpgaJoader branches to

the address 0x90000000 with the page bits set to page 1, we are actually addressing address

0x80000 of the flash. The third-level bootloader simply loads into R AM our application from

flash address OxCOOOO, branches to the start of the application code and begins execution.

Finally, here are a few miscellaneous notes on the discussion above. When burning the

configuration bits, the default hex file already has the 0x40000 offset built in so nothing

has to be done to place the data there in the Flashburn utility. Similarly the default and

modified fpgaJoader hex files instruct Flashburn to place the boot code at 0x00 and the

application code at 0x400. The application hex hie is also built under the assumption that

the boot code is placed at 0x00 and the application code is placed at 0x400. We force the

Flashburn tool to provide the offsets of 0x80000 and 0x80400 respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

Our current method executes the third-level bootloader out of slow flash memory. Al­

though this only requires a few seconds, we could speed up the loading process by copying

third-level bootloader (the first 1-KByte of memory at 0x80000) into RAM in the same way

that the first bootloader does at power-up. Executing the third-bootloader out of RAM

would then provide faster loading time. The information we developed for this guide will

be used in a new TI application report on bootloaders for their COX processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A. Ly n n A b b o t t , P e t e r M. A t h a n a s , and A d it T a ii m a s t e r . Accelerating
image filters using a custom-computing machine. In Field Programmable Gate Arrays
(FPGAs) for Fast Board Development and Reconfigurable Computing, John Schewel,
editor, volume 2607, pages 62-70. Proceedings of SPIE, October 1995.

[2] I rving A s h k e n a s , H en ry R. J e x , an d D u a n e T. M c R u e r . Pilot-induced oscil­
lations: their cause and analysis. Technical Report Northrop Corp. 64-143, NASA
Langley Research Center, June 1964.

[3] A TEM E SA. IEKC64x users manual. Technical report, ATEME, Bievres, France,
2003.

[4] A n d r e w B a t e m a n a n d I ain P a t e r s o n -S t e p h e n s . The DSP Handbook: Algo­
rithms, Applications, and Design Techniques. Prentice Hall, 2002.

[5] R. B r a c e w e l l , O. B u n e m a n , H. H a o , an d J. V il l a s e n o r . Fast, two-dimensional
Hartley transform. In Proceedings of the IEEE, volume 74, No. 9, pages 1282-1283,
September 1986.

[6] THOMAS B r a u n l . Parallel Image Processing. Springer, 2000.

[7] E. O ra n B r i g h a m . The Fast, Fourier Transform. Prentice-Hall, 1975.

[8] R ic h a r d R. B r o o k s and S. S. Iy e n g a r . Multi-Sensor Fusion: Fundamentals and
Applications. Prentice Hall, 1998.

[9] L isa G o t t e s f e l d B r o w n . A survey of image registration techniques. In ACM
Computing Surveys, volume 24, No.4, December 1992.

[10] H o w a r d B u r d i c k . Digital Imaging. McGraw Hill, 1997.

[11] C hris D i c k . Computing multi-dimensional DFTs using Xilinx FPGAs. In The 8th,
International Conference on Signal Processing Applications and Technology, Septem­
ber 13 -16 1998.

[12] C hris D i c k . Minimum multiplicative complexity implementation of the 2-D DCT
using Xilinx FPGAs. In Co7ifigurable Computing: Technology and Applications. Pro­
ceedings of SPIE’s Photonics East, November 1-6 1998.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

[13] N eil A n t h o n y D o d g s o n . Image resampling. Technical Report 261, University of
Cambridge, United Kingdom, August 1992.

[14] B r u c e A. D r a p e r , J. R oss B e v e r i d g e , A. P. W illem B o e h m , C h a r l e s R o s s ,
AND M o n ic a C h a w a t h e . Accelerated image processing on FPGAs. IEEE Transac­
tions on Image Processing, 12(12), December 2003.

[15] PlERRE D u h a m e l . A connection between bit reversal and matrix transposition:
Hardware and software consequences. IEEE Transactions on Acoustics, Speech, mid
Signal Processing, 38(11):1893 1896, November 1990.

[16] J. E k l u n d g . A fast computer method for matrix transposing. IEEE Transactions
on Computers, C-21:801-803, 1972.

[17] L e e F e r g u s o n . Image processing using reconfigurable FPGAs. In High-Speed Com­
puting, Digital Signal Processing, and Filtering Using Reconfigurable Logic, John
Schewel, Peter M. Athanas, V. Michael Bove, Jr., and John Watson, editors, vol­
ume 2914, pages 110-121. Proceedings of SPIE, November 1996.

[18] L elia M. G. F o n s e c a a n d B. S. M a n j u n a t h . Registration techniques for multisen­
sor remotely sensed imagery. In Photogrammetric Engineering and Remote Sensing,
volume 62, No. 9, pages 1046-1056, September 1996.

[19] J a ck G. G a n s s l e . The Art of Programming Embedded Systems. Academic Press,
1992.

[20] R a fa e l C. G o n z a l e z a n d R i c h a r d E. W o o d s . Digital Image Processing.
Addison-Wesley, 1993.

[21] A R D E S H IR G O SH TA SB Y . Image registration by local approximation methods. In Image
Vision Computing, volume 6, pages 255-261, November 1988.

[22] D avid B. H a r r is , J a m e s H. M c C l e l l a n , D avid S. K. C h a n , a nd H ans W.
S c h u e s s l e r . Vector radix fast fourier transform. In IEEE International Conference
on Acoustics. Speech, and Signal Processing, pages 548-551, 1977.

[23] G l e n n D. H in e s , Z ia - u r R a h m a n , D a n ie l J . J o b s o n , a n d G l enn A. W o o d e l l .
Multi-sensor image registration for an enhanced vision system. In Visual Information
Processing XII. Proceedings of SPIE 5108, Zia-ur Rahman, Robert A. Schowengerdt,
and Stephen E. Reichenbach, editors, April 2003.

[24] G lenn D. H i n e s , Z ia - u r R a h m a n , D a n ie l J . J o b s o n , a n d G l enn A. W o o d ­
e l l . DSP implementation of the retinex image enhancement algorithm. In Visual
Information Processing XIII. Proceedings of SPIE 5488, Zia-ur Rahman, Robert A.
Schowengerdt, and Stephen E. Reichenbach, editors, April 2004.

[25] G l enn D. H in e s , Z ia - u r R a h m a n , D a n ie l J . J o b s o n , a n d G l enn A. W o o d ­
e l l . Single-scale retinex using digital signal processors. In Global Signal Processing
Conference, September 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

[26] G l e n n D. H i n e s , Z ia -u r R a iim a n , D a n ie l J. J o b s o n , G l e n n A. W o o d e l l ,
a n d S t e v e n D. H a r r a h . Real-time enhanced vision system. In Enhanced mid
Synthetic Vision. Proceedings of SPIE 5802, Jacques G. Verly, editor, March 2005.

[27] F r ie d r ic h O. H u c k , C a r l L. Fa l e s , a n d Z ia - u r R a h m a n . Visual Communica­
tion: An Information Theory Approach. Kluwer Academic, 1997.

[28] IE E E . IEEE Std 1149.1 standard test access port and boundary-scan architecture.
Technical Report SSYA002C, IEEE, New York, New York, 1993.

[29] K e it h J a c k . Video Demystified. Brooktree, 1993.

[30] A nil K. J a in . Fundamentals o f Digital Image Processing. Prentice-Hall, 1989.

[31] J o h n R. J e n s e n . Introductory Digital Image Processing. Prentice Hall, 1996.

[32] D a n ie l J. J o b s o n , Z ia - u r R a h m a n , a n d G lenn A. W o o d e l l . A multi-scale
Retinex for bridging the gap between color images and the human observation of
scenes. IEEE Transactions on Image Processing: Special Issue on Color Processing,
6(7):965-976, July 1997.

[33] D a n ie l J . J o b s o n , Z ia - ijr R a h m a n , a n d G l enn A. W o o d e l l . Properties
and performance of a center/surround retinex. IEEE Trans, on Image Processing,
6(3):451-462, March 1997.

[34] G ary V. K e l l o g and C h a r l e s A W a g n e r . Effects of update and refresh rates on
flight simulation visual displays. Technical Report 100415, NASA Langley Research
Center, February 1988.

[35] J o s e f K i t t l e r a n d M ic h a e l J. B. D u f f . Image Processing System Architectures.
Research Studies Press, 1985.

[36] S un Y uan K u n g . VLSI Array Processors. Prentice-Hall, 1988.

[37] E d w a rd L a n d . An alternative technique for the computation of the designator in
the retinex theory of color vision. In Proceedings of the National Academy of Science,
volume 83, pages 3078-3080, 1986.

[38] P h il l ip L a p l a n t e a n d W illiam G il r e a t h . Single instruction set architectures for
image processing. In Reconfigurable Technology: FPGAs and Reconfigurable Proces­
sors for Computing and Communication IV, John Schewel, Philip B. James-Roxby,
Herman Sclmiit, and John T. McHenry, editors, volume 4867, pages 20-29. Proceed­
ings of SPIE, July 2002.

[39] P h il l ip A. L a p l a n t e a n d A l e x a n d e r D. St o y e n k o . Real-Time Imaging: The­
ory, Techniques, and Applications. IEEE Press, 1996.

[40] J on C. L e a c h t e n a u e r . Electronic Image Display. SPIE Press, 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

[41] Hui Li, B. S. M a n j u n a t h , a n d S a n j it K. M i t r a . A contour-based approach to
multisensor image registration. IEEE Transactions on Image Processing, 4, No. 3,
March 1995.

[42] Hui H en r y L i an d Y i- T o n g Z h o u . Automatic visual/ir image registration. In
Optical Engineering, volume 35(2), pages 391-400, February 1996.

[43] R en C. L uo a n d M ic h a e l G. K a y . Multisensor Integration and Fusion for Intel­
ligent Machines and Systems. Ablex, Norwood, NJ, 1995.

[44] D u a n e T. M c R u e r . Pilot-induced oscillations and human dynamic behavior. Tech­
nical Report NASA-CR-4683, NASA Langley Research Center, July 1995.

[45] L es M i n t z e r . The FPGA as FFT processor. In 6th International Conference on
Signal Processing Applications and Technology, pages 1378-1382, October 1995.

[46] L es M i n t z e r . Large F F T ’s in a single FPGA. In 7th International Conference on
Signal Processing Applications and Technology, volume 1, pages 895-899, October
7-10 1996.

[47] K u r t N o v a k . Rectification of digital imagery. In Photogrammetric Engineering and
Remote Sensing, volume 58, No. 9, pages 399 344, March 1992.

[48] H e n r i J. N u s s b a u m e r . Fast Fourier Transform and Convolution Algorithms.
Springer Verlag, 1981.

[49] A lan V. O p p e n h e im a n d R o n a l d F. S h a f e r . Digital Signal Processing. Prentice-
Hall, 1975.

[50] S t e p h e n K. P a r k a n d R o b e r t A. S c h o w e n g e r d t . Image reconstruction by
parametric cubic convolution. In Computer Vision. Graphics, and Image Processing,
volume 23, pages 258-272, 1983.

[51] D avid P e l l e r in AND M ic h a e l H o l l e y . Practical Design Using Programmable
Logic. Prentice Hall, 1991.

[52] I o a n n is P itas a n d M ic h a e l G. S t r i n t z i s . Algorithms for the reduction of the
1-0 operations in the calculation of the 2-D DFT. In Signal Processing, volume 12,
pages 277-289, 1987.

[53] C H A R L E S A. P o y n t o n . Digital Video and H D TV Algorithms and Interfaces. John
Wiley & Sons. 2003.

[54] WILLIAM K. P r a t t . Digital Image Processing. John Wiley and Sons, 1991.

[55] RAHMAN, see h t tp :/ /d rag o n .la rc .n a sa .g o v for examples.

[56] Z ia- u r R a iim a n , D a n ie l J. J o b s o n , a n d G l enn A. W o o d e l l . Retinex processing
for automatic image enhancement. Journal of Electronic Imaging, 13, No. 1:100-110,
January 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://dragon.larc.nasa.gov

123

[57] Z ia- u r R a h m a n , D a n ie l J. J o b s o n , G l e n n A. W o o d e l l , a n d G l e n n D. H in e s .
Multi-sensor fusion and enhancement using the retinex image enhancement algorithm.
In Visual Information Processing XI, Proceedings of SPIE 4736, Zia-ur Rahman,
Robert A. Schowengerdt, and Stephen E. Reichenbach, editors, April 2002.

[58] Z o r a n S a l c ic AND A sim S m a il a g ic . Digital Systems Design and Prototyping Using
Field Programmable Logic and Hardware Description Languages. Kluwer Academic,
2000 .

[59] R o b e r t S c h o w e n g e r d t . Remote Sensing: Models and Methods for Image Process­
ing. Academic Press, 1997.

[60] RAVI K. S h a r m a a n d M i s h a P a v e l . Multisensor image registration. In SID Digest.
Society for Information Display, volume XXVIII, pages 951-954, May 1997.

[61] J u l i u s O. S m i t h . Mathematics of the Discrete Fourier Transform (DFT). W3K,
2003.

[62] M ic h a e l J o h n S e b a s t ia n S m i t h . Application-Specific Integrated Circuits. Addison-
Wesley, 1997.

[63] S t e v e n W . S m i t h . The Scientist, and Engineer's Guide to Digital Signal Processing.
California Technical, 1997.

[64] W i n t i ir o p W . S m it h an d J o a n n e M. S m i t h . Handbook of Real-Time Fast Fourier
Transforms. IEEE Press, 1995.

[65] G e o r g e W . S n e d e c o r . Statistical Methods. Iowa State University, 8 edition, 1989.

[66] S p e c t r u m D ig it a l . TMS320C6713 DSK technical reference. Technical Report
506735-0001, Spectrum Digital, Stafford, Texas, May 2003.

[67] S p e c t r u m D i g i t a l . TMS320DM642 evaluation module technical reference. Techni­
cal Report 506845-0001, Spectrum Digital, Stafford, Texas, August 2003.

[68] O l a f S t o r a a s l i . Computing faster without CPUs: Scientific applications on a
reconfigurable FPGA-based hypercomputer. In 6th Military and Aerospace Pro­
grammable Logic Devices Conference, September 2003.

[69] S a b in e S u s s t r u n k , R o b e r t B u c k l e y , a n d St e v e S w e n . Standard RG B color
spaces. In The Seventh Color Imaging Conference: Color Science, Systems and A p­
plications. IS AT - The Society for Imaging Science and Technology, 1999.

[70] T e x a s I n s t r u m e n t s . TVP3026 data manual video interface palette. Technical
Report SLAS098B, Texas Instruments, Dallas, Texas, July 1996.

[71] T e x a s I n s t r u m e n t s . TMS320C6000 technical brief. Technical Report SPRU197D,
Texas Instruments, Dallas, Texas, February 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

[72] T e x a s I n s t r u m e n t s . TMS320C6000 imaging developer’s kit (IDK) video device
driver user’s guide. Technical Report SPRU499, Texas Instruments, Dallas, Texas,
December 2000.

[73] T e x a s I n s t r u m e n t s . TMS320C6711 floating-point digital signal processor data
manual. Technical Report SPRS073D, Texas Instruments, Dallas, Texas, September
2000 .

[74] T e x a s I n s t r u m e n t s . TVP5022 data manual NTSC/PAL video decoder. Technical
Report SLAS274, Texas Instruments, Dallas, Texas, July 2000.

[75] T e x a s I n s t r u m e n t s . Implementing fast fourier transform algorithms of real-valued
sequences with the TMS320 DSP platform. Technical Report SPRA291, Texas In­
struments, Dallas, Texas, August 2001.

[76] T e x a s I n s t r u m e n t s . TMS320C6000 imaging developer’s kit (IDK) programmer’s
guide. Technical Report SPRU495A, Texas Instruments, Dallas, Texas, September
2001.

[77] T e x a s I n s t r u m e n t s . TMS320C6000 imaging developer’s kit (IDK) user’s guide.
Technical Report SPRU494a, Texas Instruments, Dallas, Texas, September 2001.

[78] T e x a s I n s t r u m e n t s . TMS320C6000 peripherals reference guide. Technical Report
SPRU190D, Texas Instruments, Dallas, Texas, February 2001.

[79] T e x a s I n s t r u m e n t s . T M S 3 2 0 C 6 4 x technical overview. Technical Report
SPRU395B, Texas Instruments, Dallas, Texas, January 2001.

[80] T e x a s I n s t r u m e n t s . TMS320 DSP/BIOS user’s guide. Technical Report
SPRU423B, Texas Instruments, Dallas, Texas, November 2002.

[81] T e x a s I n s t r u m e n t s . TMS320C6000 chip support, library API user’s guide. Tech­
nical Report SPRU401E, Texas Instruments, Dallas, Texas, December 2002.

[82] T e x a s I n s t r u m e n t s . TMS320C6000 programmer’s guide. Technical Report
SPRU198G, Texas Instruments, Dallas, Texas, August 2002.

[83] T E X A S IN S T R U M E N T S . TMS320C64x DSP library programmer’s reference. Technical
Report SPRU565A. Texas Instruments, Dallas, Texas. April 2002.

[84] T e x a s I N S T R U M E N T S . TMS320C6713 floating-point digital signal processor data
manual. Technical Report SPRS186B, Texas Instruments, Dallas, Texas, November
2002 .

[85] T e x a s I n s t r u m e n t s . The TMS320C67x FastRTS library programmer’s reference.
Technical Report SPRU100A, Texas Instruments, Dallas, Texas, October 2002.

[86] T e x a s I n s t r u m e n t s . TMS320DM642 Video/Imaging fixed-point digital signal pro­
cessor data manual. Technical Report SPRS200B, Texas Instruments, Dallas, Texas,
July 2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

[87] T exas I n s t r u m e n t s . TMS320C6000 DSP cache user’s guide. Technical Report
SPRU656A, Texas Instruments, Dallas, Texas, May 2003.

[88] T ex as I n s t r u m e n t s . TMS320C621x/C671x DSP two-level internal memory refer­
ence guide. Technical Report SPRU609A, Texas Instruments, Dallas, Texas, Novem­
ber 2003.

[89] T e x as I n s t r u m e n t s . TMS320C64x DSP video Port/VCXO interpolated control
(VIC) port, reference guide. Technical Report SPRU629, Texas Instruments, Dallas,
Texas, April 2003.

[90] T e x as I n s t r u m e n t s . TMS320C67x DSP library programmer’s reference guide.
Technical Report SPRU657, Texas Instruments, Dallas, Texas, February 2003.

[91] T e x as I n s t r u m e n t s . TVP5150A data manual. Technical Report SLES087, Texas
Instruments, Dallas, Texas, September 2003.

[92] T e x as I n s t r u m e n t s . Migrating from TMS320C6211B/C6711/C6711B and C6713
to TMS320C6713B. Technical Report SPRA851G, Texas Instruments, Dallas, Texas,
March 2004.

[93] T exas I n s t r u m e n t s . TMS320C6000 optimizing compiler user’s guide. Technical
Report SPRU187L, Texas Instruments, Dallas, Texas, May 2004.

[94] T E X A S IN ST R U M E N T S. The TMS320C6000 PLL controller reference guide. Technical
Report SPRU233, Texas Instruments, Dallas, Texas, March 2004.

[95] T exas I n s t r u m e n t s . TMS320C64x DSP two-level internal memory reference guide.
Technical Report SPRU610A, Texas Instruments, Dallas, Texas, June 2004.

[96] T ex as I n s t r u m e n t s . TVP5146 data manual. Technical Report SLES084A, Texas
Instruments, Dallas, Texas, November 2004.

[97] T e x a s I n s t r u m e n t s . TMS320C6416T fixed-point digital signal processor data man­
ual. Technical Report SPRS226H, Texas Instruments, Dallas, Texas, August 2005.

[98] C a r l o L. M. T i a n a , J. R ic h a r d K e r r , a n d St e v e n D. H a r r a i i . Multispectral
uncooled infrared enhanced vision system for flight test. In Proceedings of SPIE ,
volume 4363, April 2000.

[99] T ruV i e w . see h t tp : / /w w w .t ru v iew .co m .

[100] J ohn W a t k in s o n . The Art, of Digital Video. Focal Press. 1990.

[101] DlCK R. W i t t i n k . The Application of Regression Analysis. Allyn and Bacon, 1988.

[102] G e o r g e W o l b e r g . Digital Image Warping. IEEE Computer Society Press, 1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.truview.com

126

[103] G l e n n A. W o o d e l l , D a n ie l J. J o b s o n , Z ia - u r R a h m a n , a n d G l e n n D. H i n e s .
Enhanced images for checked and carry-on baggage and cargo screening. In Sensors,
and Command, Control, Communications and Intelligence (C3I) Technologies
for Homeland Security and Homeland Defense III, Proceedings of SPIE 5403, April
2004.

[104] Z ha o Z ha n g and X ia o d o n g Z h a n g . Fast, bit-reversals on uniprocessors and shared-
memory multiprocessors. SIAM Journal on Scientific Computing, 22(6):2113 2134,
2001 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

VITA

Glenn Derrick Hines

Glenn Derrick Hines was born in Portsmouth, Virginia on August 25, 1964. He grad­

uated from I. C. Norc.om High School, Portsmouth, Virginia, in 1982. He received his

Bachelor of Science degree in Electrical Engineering from Old Dominion University in 1987,

his Master of Science degree in Electrical Engineering from Old Dominion University in

1991, and his Master of Science degree in Computer Science from The College of William

and Mary in 2002. Glenn defended his dissertation in January 2006 and will graduate with

a Doctor of Philosophy degree in Computer Science from The College of William and Mary

in May 2006. Glenn is employed as a senior electronics engineer and computer scientist at

NASA Langley Research Center in Hampton, Virginia. He performs research in the area

of image processing and is responsible for the development of aviation, spaceflight, and a t­

mospheric research instruments. He is married to the former Sunita Etwaroo and has three

children.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Real -time Retinex image enhancement: Algorithm and architecture optimizations
	Recommended Citation

	tmp.1539734415.pdf.eR5lB

