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ABSTRACT

Dual energy X-radiography is a method first developed in the mid-1970's by 
which one uses the information contained in the energy spectrum of the transmitted X-ray 
flux through an object. With this information one can distinguish the types of materials 
present in a radiograph and thus allow a computer to subtract them from the image 
enhancing the contrast of the remaining materials. Using this method, one can see 
details, which would have been hidden by overlying structures of other materials such as 
seen in radiographs of parts, made up of mixtures of metals and composites. There is 
also great interest in this technique for medical imaging of the chest where images of the 
organs are significantly improved by subtracting the bones. However, even with the 
enhanced capabilities realized with this technique, the majority of X-radiography systems 
only measures the bulk transmitted X-ray intensity and ignores the information contained 
in the energy spectrum. This is due to the added expense, time requirements, and 
registration problems incurred using standard radiographic methods to obtain dual energy 
radiographs. This dissertation describes a novel method which overcomes these 
problems and allows one to perform inexpensive, near real time, single shot dual energy 
X-radiography. The work of this thesis resulted in US patent #5,742,660.

xv
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INTRODUCTION

Non destructive evaluation (NDE) is a descriptive term used for the examination of 

materials and objects in a way that allows materials to be imaged without changing or 

destroying their usefulness. NDE plays a crucial role in everyday life and is necessary to 

assure the safety and reliability of equipment. Typical examples are found in aircraft, motor 

vehicles, pipelines, bridges, trains, power stations, refineries and oil platforms which are all 

inspected using NDE. In security applications, NDE can detect explosives, nuclear 

materials, and weapons faster and more reliably than visual inspections. There is a large 

variety of imaging modalities used for NDE including optical, acoustic, eddy current, 

ultrasonic, and x-radiography. X-radiography is one of the key techniques to peer inside 

objects without having to disassemble them. This can be used to check the seals inside an 

airbag deployment cylinder, find cracks or corrosion inside aircraft wings, as well as find a 

gun in a handbag. X-radiography is simple and reliable with the majority of the 

advancements these days coming in the form of increased resolutions and easier and faster 

imaging.

This thesis describes the development and testing of a novel dual energy x- 

radiography imaging system based on a relatively new way to image objects with x-rays -  

Reverse Geometry x-radiography (RGX)™. RGX, invented about 25 years ago and 

described below, took many years for the inventor to bring to market due to difficulties in 

the development of the x-ray tube. In this system, the complexity is in the x-ray tube while 

the imaging detector is quite simple. This offers a new flexibility in imaging objects. The 

simplicity of the imaging detectors allows one to produce images from inside objects rather 

then all the way through them, perform motionless computed tomography, and dual energy 

imaging. Dual energy imaging offers the ability to identify the composition of materials in 

an image rather than just seeing their shapes. It also allows one to subtract all objects

2
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3

composed of a selected material from the image so one can focus on studying the remaining 

materials with better contrast. Dual energy imaging is not new, however, this novel system 

greatly reduces the complexity and expense of obtaining such images.

In the organization of this dissertation, the first part of Chapter I gives some history 

and background information needed to understand some of the techniques used and 

difficulties encountered in x-radiography. It also introduces the basics of the production of 

x-rays and how they interact with matter which is important in understanding how dual 

energy x-radiography works. Chapter II describes how conventional x-radiography is 

performed. Chapter III introduces and describes the advantages and problems associated 

with scanning beam x-radiography. Chapter IV lays out the theoretical foundations of dual 

energy x-radiography. Chapter V describes the dual energy detector development, 

calibration procedures and results, and results of test imaging of various phantoms. Chapter 

VI summarizes the results and gives suggestions for future work with this device.
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CHAPTER I 

RADIATION AND MATTER 

History

To understand the intricacies of x-radiography (and thus dual energy x- 

radiography) one must first understand how x-rays are produced in an x-ray tube and how 

they interact with matter, x-rays were first discovered by Wilhelm Conrad Roentgen while 

investigating cathode-ray fluorescence caused by discharging electricity through a tube 

filled with rarified gas as shown in figure 1. Working late one Friday night in November 

1895 he noticed a strange glow emanating from a small screen lying on a nearby table. 

Invisible rays were causing it to fluoresce. Fascinated with this new phenomenon, he 

investigated it day and night, eating and sleeping in the lab. He soon discovered that this 

radiation could penetrate solid substances and that it had the same effect on a photographic 

plate as light. The first "Roentgen exposures" that were made were of metal objects locked 

in a wooden case and of the outline of the bones in his wife’s hand (fig. 2). Because "X" is 

used in mathematics to indicate an unknown quantity, he called these rays "x-rays." 

Roentgen published his findings on December 28th, 1895 and the news spread rapidly 

through out the world. As early as February 8, 1896, x-rays were being used clinically in 

Dartmouth, Massachusetts when Edwin Brant Frost produced an image of a Colies fracture, 

a fracture of the lower arm bone just above the wrist, in a man named Eddie McCarthy for 

his brother, Dr. Gilman Dubois Frost.1 These early cold cathode gas-discharge x-ray tubes 

operated in an erratic fashion and had to be checked often. Since no measuring instruments 

were available, this was usually done by holding one's hand close to the tube and examining 

the resulting image. This, unfortunately, led to the first radiation induced injuries from 

overexposure.
4
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Anode

 . Cathode

I  Support

Figure 1: Cathode ray tube similar to that Roentgen Figure 2: X-ray of Mrs.
used for his first experiments2. Roentgen's Hand3.

The x-rays in these cathode ray tubes are produced when electrons, discharging 

from the cathode, strike the anode. To sustain the current flow some residual gas is needed. 

As the tube is used, some of the gas is absorbed by the walls of the tube which causes 

changes to the electron current of the discharge as well as requiring higher voltages to start 

the discharge. Since the x-ray intensity is directly proportional to the current while the 

penetrating power is dependent on the voltage between the plates, one can see how these 

changes would have a negative impact on reliable image quality.

In 1913 W. D. Coolidge invented the hot cathode x-ray tube (figs. 3, 4). In this 

design electrons are supplied by a hot cathode or filament in a high vacuum, usually set in 

an electrode shaped to provide some focusing action for the electron beam as it is directed 

onto the anode or target. The voltage between the anode and cathode is high enough so that 

all the electrons given off by the cathode are accelerated towards the anode. The electron 

current is controlled by varying the filament temperature while the penetrating power of the 

x-rays is controlled by varying the voltage between the cathode and anode. Thus, these two 

important parameters may be accurately and independently controlled. This design is the 

basis for all modem x-ray tubes.
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Figure 3: The modem day x-ray tube invented by W.D. Coolidge4.

Filament Anode

+

Figure 4: Schematic Diagram of an x-ray Generator. The heated filament boils 
off electrons, which then accelerate toward the positively charged anode.

Production of X-rays

X-ray tubes produce x-ray photons by two mechanisms: bremsstrahlung and 

ionization. The bremsstrahlung radiation comes from the deflection of the electrons by the 

electric fields of the atoms making up the anode material. For monoenergetic electrons of 

energy E0 incident on a target thick compared to the electron range, the intensity (energy per

photon X number of photons) of the energy distribution of the bremsstrahlung, per unit

energy (E) and per incident electron, can be approximated by the linear relation5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

1(E) = 2kZ(E0 - E), 0 < E < E0. (1-1)

Where E0 is the energy of the incoming electrons in keV, Z is the atomic number of the 

target and k ~ 7 x 10'7 keV1. A plot of this equation is shown in figure 6. Integrating this 

over all energies gives the intensity of energy emitted as bremsstrahlung per incident 

electron as

Ibr = kZE02. (1-2)

This can be used to find the fraction of incident electron energy converted into 

bremsstrahlung

Y(E0) = Ib/ E 0 = kZE0 (1-3)

which is always a small fraction of the incoming energy. For 120 keV electrons hitting a

tungsten anode, only 0.6% of the energy is converted into bremsstrahlung energy. The rest

of the energy is converted into heat which makes heat removal an important aspect in the 

design of x-ray tubes. This is why x-ray tubes with a rotating anode have become quite 

popular (fig. 5). In this tube the anode rotates at high speed during the x-ray exposure and 

the beam of electrons hit the target near the outer circle of the anode. This construction 

permits the produced heat to be distributed over a much larger area, allowing a 

corresponding increase in X-ray production and reduction in exposure times.

Target

X-Rays
Figure 5: Example of a modem rotating anode x-ray tube.1
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X-rays are also generated by ionization, which begins when an incoming electron of 

enough energy "chips off' an inner shell electron from an atom of the anode. Following 

such an event, an outer electron drops down to fill the vacancy, emitting a photon of energy 

equal to the difference between the binding energies of the old and new states of this 

(orbital) electron. For this to happen the accelerating voltage on the electrons must be above 

the ionization energy of the atomic shells of the target material. Table 1 shows these values 

for Tungsten. For voltages, V, up to six times the critical voltage for K-shell ionization, Vk, 

the emission of the K x-rays increases approximately as (V - Vk)2.7 These characteristic 

photons have energies that are, of course, well defined and dependent on the anode material. 

The lower energy (L-series) x-rays are usually filtered out by the housing of the x-ray tube 

resulting in the energy spectrum seen in figure 6. At 100 keV, the K-series x-rays make up 

about 5% of the of the total number of x-rays produced.

X-ray line Emission energy 
(keV)

Excitation voltage 
(kV)

Ka 59.3182 69.525

KP 67.2443 69.525

La 8.3976 10.207

Lp 9.6724 11.544

Table 1: Characteristic spectral lines from a Tungsten x-ray target.8

The angular distribution of bremsstralung is generally quite anisotropic and varies 

with the incident electron energy. Bremsstrahlung induced by low energy electrons (<100 

keV) is emitted predominately at 90° to the direction of the incident electron. The angular 

distribution of radiation leaving a target, however, is very difficult to compute since it 

depends on the target size and orientation9. From studying the work of others10, one finds 

that about 75% of the x-rays are emitted in the forward direction while the rest are back
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scattered. Also there is about a 10% dip in the number of x-rays emitted directly forward of 

the incoming electron beam with higher intensities emitted +/-10 to 30 degrees.

0.16 Bremsstrahlung(O
c13
0)
>  0-12

CD Characteristic Lines

IT  0.08
cnc0)
c

0.04 Tube Peak kV
Filtered

Bremsstrahlungi
x

0 20 40 60 80 100 120
X-ray energy (keV)

Figure 6: The energy spectrum from an x-ray tube. The solid line is the spectrum from a 
tube with a Tungsten anode filtered by an aluminum housing. The dashed line is the 
unfiltered theoretical bremsstrahlung spectrum from equation (1-1).

Kinds of interactions Effects of interaction
1. Interaction with atomic electrons (a) Complete absorption
2. Interaction with nucleons (b) Elastic scattering (coherent)
3. Interaction with the electric field surrounding 

nuclei or electrons
(c) Inelastic scattering (incoherent)

4. Interaction with the meson field surrounding 
nucleons

Table 2: Interactions of gamma rays with matter.
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Interaction of X-rays With Matter

There are a number of processes which can cause an x-ray to be scattered or 

absorbed in matter. A catalogue of the possible processes by which the electromagnetic 

field of the x-ray may interact with matter has been put in the systematic form shown in 

table 2 by Fano.11

There are 12 ways of combining columns 1 and 2; thus in theory there are 12 

different process by which x-rays can be absorbed or scattered. Many of these processes 

are quite infrequent and some have not yet been observed. It turns out that in the energy 

domain of interest for the majority of x-radiography (10 to 200 keV), all the interactions are 

explainable in terms of just three of the above 12 processes. These are photoelectric 

absorption (la), Compton scattering, and (lc) Rayleigh scattering (lb).

Electron recoil

X-ray Photon

X-ray Photon

Figure 7. Photoelectric interaction of an x-ray photon with an atom.
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Photoelectric Absorption

At lower x-ray energies (< 50 keV) photoelectric absorption is the dominant 

interaction. An x-ray is absorbed by an atom of the material which then ejects a 

photoelectron from one of its bound shells with energy

Ee. = /iv -Iv  (1-4)

where Eb is the binding energy of the photoelectron in its original shell (fig. 7). This 

electron is quickly absorbed by the surrounding material.

The vacancy left by the photoelectron can be filled in a number of ways. In the 

simplest case, an electron from a higher energy level fills the "hole" left by the photoelectron 

emitting a characteristic x-ray with no directional relationship to the incoming x-ray photon. 

Alternatively, the energy difference may be transferred (via a virtual photon) to an outer 

orbital electron (Auger electron) which then escapes, leaving a doubly positive charged 

nucleus. The two vacancies are filled by other outer electrons, which results in more 

characteristic x-rays or Auger electrons. In general the lower energy x-rays are absorbed in 

the M and L shells, and higher energy x-rays in the K shell.

No single analytic expression is valid for the atomic cross section op of 

photoelectric absorption per atom over all ranges of x-ray energies (Ey) and atomic number 

of the absorber (Z), but a rough approximation is12

<7„ = CD x Z4

Er (1-5)

where Cp is a constant. This approximation actually works quite well for energies less than 

100 keV if we ignore K-edge absorption. This shows the strong energy and atomic number 

dependence of the absorption probability. Thus, at lower x-ray energies, two different 

materials can have vastly different photoelectric attenuation while, at two different energies, 

the same material will also have vastly different photoelectric attenuation. Typical Linear
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attenuation coefficients for the three interactions are shown in figure 8 for acrylic and figure 

9 for aluminum.13

Photoelectric
1000

-K  100

Rayleigh

t o t a l

Compton

0.01

0.001

0.0001
1001 10

Energy (keV)

Figure 8: Linear attenuation coefficients 
for acrylic for Photoelectric absorption, 
Rayleigh scattering, and Compton 
scattering.

Aluminum.^

Photoelectric

1000

100

Total

0.1

Compton

0.01

0.001

0.0001
1 10 100

Energy (keV)

Figure 9: Linear attenuation coefficients 
for aluminum for Photoelectric absorption, 
Rayleigh scattering, and Compton 
scattering.

Compton Scattering

Compton or incoherent scattering dominates at the higher x-ray energies. This 

occurs when a photon of energy Ey interacts with an individual electron assumed not to be 

bound to an atom and initially at rest. After the interaction, the photon has energy Ey’ and 

moves at angle i3p while the electron moves with kinetic energy T at angle Oe (fig. 10). Due 

to conservation of momentum, the energy of the scattered photon Ey’ is
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1 =  -------------
1 + (E/mec2 )(1 -  cos#0) Q_6)

The cross section oc of Compton scattering per electron is given by the Klein- 

Nishina approximation14 

1 + a
c Ce=2™2

2(1 + a )  1 ln(l + 2 a) 1 , _ . ( l  +  3 a )
+  — ln ( l  +  2 a ) -  — V

2 a (1 + 2 af (1-7)
l + 2a  a

where re is the classical electron radius (= 2.818xl0'13cm) and a  is Ey(keV)/51 IkeV. Since 

each atom has Z electrons we see that the total cross section increases linearly with Z and 

can be approximated by

crc =crCeZ. (1-8)

One of the differential forms of equation (1-8) gives the cross-section for the energy 

scattered from the beam as a function of scattering angle.15 As one would expect, due to 

momentum conservation, forward scattering increases at higher photon energies (fig. 11). 

This forward scatter is one of the major causes of image blurring in standard x-ray imaging 

systems. It will be shown later that the wide angle scatter seen for lower x-ray energies 

causes some anomalies in the image when one uses scanning beam x-radiography.

Electron recoil

X-ray Photon

X-ray Photon

Figure 10: Compton scattering of an x-ray photon by an electron.
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8
h v  ►

Figure 11: Angular distribution of Compton scattered photons from ref. 13. 

Rayleigh Scattering

Rayleigh or coherent scattering plays a minor role in the overall attenuation of x-ray 

photons due to its relatively low probability of occurrence. In this case, the scattering is 

totally elastic and there is no atomic excitation or ionization. The recoil momentum is taken 

up by the atom as a whole and the cross section is approximately16

z2-7
°R = CR*-^2

^y . (1-9)

In this case, the constant, CR, is such that, at 10 keV, the probability of Rayleigh scattering is 

about 100 times less than photoelectric absorption. For low Z objects, however, such as 

acrylic, Rayleigh scattering at 30 keV can account for about 10% of the interactions (fig. 8). 

Since, by definition, the recoil imparted to the atom must not produce atomic excitation or 

ionization, the energy loss of the photon is slight and the scattering angle small which 

appears as blurring or minor abnormalities in the image. More than three-quarters of the 

radiation scattered is within the cone defined by the half angle17
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6 = arcsin

I \

13.24keV x —  
E„

( 1-10)

Some results of this equation are shown in table 3. Since the scattering angles are similar to 

Compton scattering, it is likely that Rayleigh scattering also contributes to some of the 

image anomalies seen when one uses scanning beam x-radiography, but in a much lower 

amount.

Material Scattering angle 
0° @40keV

Scattering angle 
0° @ 70 keV

Scattering angle 
0°@  lOOkeV

H 19 11 7.6
C 37 20 14
A1 51 26 18
Fe 79 34 23

Table 3: Results of Rayleigh scattering equation (2-10) for selected materials and energies.

Linear Attenuation Coefficient

The attenuation of x-rays though a homogeneous object is given by the well known 

equation

I = Ioe™, (1-11)

where I0 is the incident intensity, a  is the interaction cross section per atom, x is the

thickness of the object, and n is the number of atoms per unit volume

Density * Avogadro's number .. . ..n = --------------------------------------  (1-12)
Effective atomic mass

The quantity on is known as the linear attenuation coefficient and is usually written as |i. 

Since the above interaction processes are independent of each other and are mutually 

exclusive,18 equation (1-11) can be written as
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I = Io fe -^ e -^ eVexa -Hc*a -Hi>.x\
K (1-13)

where the on’s are replaced by their analogous p ’s for photoelectric absorption, Compton 

scattering, and Rayleigh scattering. This shows the total linear attenuation for a 

homogeneous material can be written as

pT = pP + pc + pR. (1-14)

Since the a ’s are defined per atom of a material and the cross sections are unaffected by 

chemical or mechanical combination of the atoms, the linear attenuation coefficient for a 

compound, mixture, or alloy may be obtained from a sum of the contributions from each of 

the M elements.19

M M M M

At = Api + Âci + Ari = Api + JrfAci SAm = Apt + Act + Art
i=i i=i i=i i=i (1-15)

Here Ppj. is the total photoelectric absorption linear attenuation coefficient for the material 

and similar for pCT and pRT.
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CHAPTER II 

CONVENTIONAL X-RADIOGRAPHY 

With standard x-radiography, one measures the bulk x-ray transmission through an 

object to produce a two dimensional x-ray shadow graph. The set-up used to achieve this 

consists of a point source x-ray tube, the object to be imaged, and a detector such as film or 

CCD (fig. 12).

X-ray system

Scattered X-rays
Figure 12: Conventional x-ray set-up using anti-scatter grid.

The x-ray tube produces x-rays by using a microfocused beam of electrons striking a target 

such as tungsten or molybdenum to produce the bremsstrahlung x-radiation spectrum 

which is given off over a wide angle. The sharpness of the image is mainly dependent on 

how well one focuses the electron beam as seen in figure 13. Since the focal spot is of 

some finite size, images are always surrounded by a penumbra where the film receives 

radiation from a part but not the whole of the focal spot. Basic geometry gives the apparent 

object length L\  as

Li L0M + p _ h  ̂ (21)

17
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where f is the source to detector distance, h is the object to detector distance, L0 is the length 

of the object and Ls is the length of the source and M = f/(f-h) is the magnification obtained 

from a point source.

Point source Extended source

ii

Object f

v

FilmL; Penumbra
Figure 13: Diagrams illustrating the effect of the x-ray focal spot size on the sharpness of 
the image.

Most systems today focus the electron beam to about 25 pm and, for high 

resolution work, spot sizes of 1 pm are available. Of course, the smaller the spot size, the 

larger the localized heat load on the target. The x-rays are then collimated towards the 

object where they are either absorbed, scattered, or transmitted. In some cases an antiscatter 

grid is also used to improve the sharpness of the image by removing some of the Compton 

and Rayleigh scatter. The grid is usually made from very thin parallel lead strips with 

aluminum (or other low Z material) interspaced at 60 to 100 strips per inch. The grid is 

defined by the ratio of the height of the lead strips to the distance between them. Thus with 

interspacers 10 times as high as they are wide, a grid is said to be 10:1 ratio, etc. Generally 

speaking, the higher the ratio of a grid, the more scattered radiation is absorbed. The anti

scatter grid, however, also removes about 50% of the non-interacting "useful" radiation and 

thus requires higher radiation intensities. The imaging media may be either film or some
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electronic system such as a CCD. Film is inexpensive and able to yield very high 

resolutions (over 15 line pairs of high-contrast metal wires per mm), however, its limited 

dynamic range (40:1) and required developing are large disadvantages. There have been 

major breakthroughs in the past 5 years towards replacing film with digital detectors, 

however, the cost of these new digital film systems is still significant (about $100,000 not 

including the x-ray source) and the resolution is not as good as film (about 10 line pairs per 

mm), however, it is sufficient for many uses. The advantage of digital radiography lies in 

the wide dynamic range available (greater than 4096:1) and the digital system’s ability to 

manipulate data, shift contrast ranges, digitally enhance, and quickly transmit images around 

the world. The x-ray sensitivity of these digital systems are also much higher than film and 

thus lower doses can be used. However, even with an antiscatter grid, these two- 

dimensional detectors are still prone to detecting scattered x-rays. One can reduce detected 

scatter by using a line detector or a point detector and mechanically scanning the detector 

and collimated x-ray source over the object. This is one approach being tried for 

mammography.20 The main drawback is that mechanical scanning is relatively slow 

compared to a one shot x-ray exposure or, alternatively, electronically scanning the x-ray 

beam over the object. Another drawback is the possibility of the object moving during the 

scan, which can cause artifacts.
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CHAPTER ffl 

SCANNING BEAM X-RADIOGRAPHY 

Scanning beam x-radiography, also known as Reverse Geometry X-radiography 

(RGX)™21, offers many advantages compared to conventional x-radiography. With this 

method, the object is placed next to a raster scanning x-ray source while a small x-ray 

detector is placed about a meter away (fig. 14). The rastering point x-ray source is 

produced by scanning a focused electron beam across the back of a thin Tungsten anode 

plate. The target has to be thick enough to be electron opaque and produce bremsstralung 

x-rays, yet thin enough to allow the x-rays to escape from the target, towards the object. 

The remote "point" x-ray detector is usually made up of a scintillator with about a one cm2 

active area coupled to a photomultiplier tube (PMT). The detector measures the intensity of 

the transmitted x-ray flux while avoiding most of the scattered x-rays. Correlating the 

digitized signal current from the detector to the location of the x-ray spot as it rasters across 

the object builds up a two dimensional image.

X-ray system
Point

Detector

Scattered and other X-rays
7igure 14: Geometrical setup for Scanning Figure 15: Correlation of the raster scan 

beam x-radiography. of the x-ray beam to the image on the
CRT showing electronic pan and zoom.

With Digiray’s RGX™ system, a 25 cm diameter area can be imaged into an image

with 1024 x 1024 pixels in one second. Continually scanning the area allows near real time

20
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moving images to be acquired. By electronically shrinking the raster pattern to a smaller 

area, yet keeping the same 1024 x 1024 pixel readout, one obtains linear magnification of 

the image with no mechanical movement (fig. 15). Of course, one can also obtain linear 

magnification by moving the object closer to the detector. This would, however, increase the 

amount of detected scatter and reduce the sharpness of the image by increasing the 

penumbra and apparent object length by the formula (see fig. 16)

L’ i = LaM + ~ ~  + 2Lf - h (3-1)

where LD is the width of the detector and the other variables are the same as in equation (3- 

1). The electron beam is focused down to 25 pm which gives a maximum resolution of 50 

pm (10 line pairs per mm) when the raster pattern is zoomed to a 25 mm2 1024 x 1024 

pixel area.

Point detector Extended detector

Object

Scanning 
point source

ii

f

Scanning
extendedPenumbra
source

Figure 16: Diagrams illustrating the effect of the x-ray spot size and detector size on the 
sharpness of the image.
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Due to the simplicity of the detector system required, there is a major reduction in 

complexity as compared to current digital imaging systems. The scanning x-ray source 

tends to be more complex, however, the same general electron beam control techniques used 

in television sets are employed here. The one major drawback of this technique is that, due 

to the thin anode target, heat removal is much more difficult. Thus the maximum x-ray 

intensity one can obtain is less than one tenth that of conventional x-ray systems. The x-ray 

detector makes up for some of this loss due to its high sensitivity and limited scatter 

acceptance. One can also scan the object repeatedly and then sum and average the images to 

obtain better signal to noise.

Figure 17: Image of cadaver's hand in a plastic surgeon's glove. The wide dynamic range 
of scanning beam x-radiography allow both the bone and the glove to be seen clearly22.
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An antiscatter grid can be placed between the x-ray system and the object to reduce 

the dose to the object from x-rays which are not directed to the detector. This is 

significantly different from the use of an anti-scatter grid in a conventional system. With a 

scanning x-ray system, errant as well as some useful x-rays are eliminated before they 

interact with the object while the scattered x-rays from the object usually miss the detector. 

In the conventional case, useful x-rays are eliminated after passing through the object and 

thus higher radiation doses to the object are needed for the same image quality. For this 

system one would use a focusing x-ray grid where the strips are slightly inclined so that 

they point towards the detector. This greatly lowers the dose rate while only slightly 

affecting image quality. A fluoroscopy unit manufactured by Cardiac Mariners23 uses this 

technique to produce a system that allows for a 10 times reduction in patient dose compared 

to standard fluoroscopy systems. Since the images are digital, scanning beam x- 

radiography has all the advantages of a convention digital system including a very large 

dynamic range (fig. 17).

Laminography

With standard simple x-ray irradiation there is no possibility to get information 

about the depth of the imaged structures. In 1932 de Plantes24 performed the first 

experiments to image an object layer by layer with a technique called laminography. In 

order to obtain laminographic images using a standard x-ray system must either move the x- 

ray source or the object and get views from many different angles. Since the x-rays of a 

scanning beam system are given off over a wide angle, one can look at an object from many 

different angles at the same time using multiple detectors surrounding the object without 

any motion. The reconstruction of these images gives one a limited 3-D image (fig. 18). 

Figure 19 shows the standard x-ray image and the reconstructed top and bottom slices of a 

quarter.25
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PMTs
X-RAY PLATE

■ m u
I I

OBJECT

igure 18: Top and side view of a multi-detector laminography setup.

PMTs

ACRYLIC LIGHT 
GUIDEGSO SCINTILLATOR

Object

'-ray piai

Figure 19: Laminography performed on a quarter by the NASA-Langley NDE group. The 
left image is a standard x-radiograph while the right two images show the reconstructed 
isolated top and bottom views.

Optimizing the Standard Detector

The x-ray detector supplied with the Digiray RGX system consists of a 1 inch 

diameter CsI(Na) or Nal(Tl) scintillator coupled to a 1.25” diameter Hamamatsu R268 

photomultiplier tube (PMT)26 powered by a standard resistive voltage divider (fig. 20) 

housed in an aluminum holder. The signal is then preamplified by a common amplifier 

circuit before being sent to a sampling ADC. Unfortunately this simple detector produces 

many image artifacts.
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Figure 20: Digiray x-ray detector block diagram.

Optimizing the scintillator

Due to the relatively slow light decay from NaI(Tl) and especially CsI(Na) (see table 

4) the leading edge of objects, as the x-ray beam scans across the object, appears to be 

rounded. The scintillator is still giving off light created before the beam reached the object. 

In order to optimize the scintillator, a test phantom composed of a 3 mm thick piece of lead 

2 inches square with 1 cm hole in the center was used. Scanning was performed at the 

fastest allowed rate of 1 second per image which translates to 1 ps per position of the x-ray 

beam at 100 keV and .1 mA. Figure 21 shows the image using CsI(Na) along with a profile 

cut horizontally through the center. Here we see the rounded front edge as the light from 

the scintillator slowly decays as well as a rounded back edge as the scintillator light 

“charges up” again. Looking closely at the figure, one sees evidence of a very long decay 

which comes from the PMT and voltage divider discussed later.

Direction of scan  
Jk-ultiLuull

Rounded

a

‘Charging
UP"

i ■ ■ ■ ■ i
200 300

Pixels
400 500

Figure 21: Image of a lead phantom (left) and horizontal profile cut through the center 
(right) shows artifacts due to a non-optimized detector.
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MATERIAL LIGHT 
YIELD 

% of Nal(Tl)

DECAY
TIME
(ns)

EMISSIO
N

@ X (nm)

DENSITY
(g/cm3)

HYGRO
SCOPIC

Nal(Tl) 100 230 415 3.67 Yes
CsI(Na) 150-190 650 420 4.57 Yes
GSO:
Gd2(Si04)0:Ce

20 30-60 440 6.71 No

YAP
YA10,:Ce

40 25 370 5.37 No

LSO:
Lu,(SiOJO:Ce

75 40 420 7.4 No

BC452 (5% lead 
loaded plastic)

15 2.1 424 1.08 No

Table 4: Partial list of scintillators usee in these studies.

To fix this problem, the first modification performed was to replace the scintillator 

with a much faster one -  one that has a much faster decay time of the light. From table 4, 

we see there are a few such scintillators, however, and that each has advantages and 

disadvantages. The best scintillator is Lutetium oxyorthosilicate (LSO) as it has the highest 

light output, good speed, and high stopping power. Unfortunately, LSO is expensive and 

somewhat difficult to obtain owing to patent protection and competition from the need for it 

in medical imaging. Yttrium-aluminum perovskite (YAP) is fast, reasonably bright, and easy 

to obtain, however, it suffers from poor stopping power and the quality in terms of decay 

time can vary greatly from different suppliers. Figure 22 shows images of our lead 

phantom using two different YAP samples connected via a liquid core light guide to a 

completely shielded PMT (the reason for this configuration will be discussed below). The 

YAP sample on the left from figure 22 shows a significant rounded front edge as well as a 

long “charging up” of the scintillator to the right of the phantom. The YAP sample on the 

right from Scionix27 does not show these abnormalities. Horizontal profile cuts of these 

images are shown in figure 24. It is believed these differences come from different amounts 

of Ce dopant used.28
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Figure 22: Images of a lead phantom using a “slow” YAP (left) showing a rounded left 
edge and “charging up” right edge of the phantom and a “fast” YAP (right) which does
not show these problems.

200
Pixels

Figure 23: Same object as in fig. 22 imaged using a fast scintillator, GSO and optimized
voltage divider (left) and horizontal profile cut through the center (right).

200

1 5 0 -

w  100

100 150
PIXELS (1 PIXEL -  uSEC)

50 200 250 300

65-

55------

I
Z  4 5-;

<
>-
6Ul

70 75 80
PIXELS (1 PIXEL -  jiSEC)

85 90 95 100
PIXEL

Figure 24: Horizontal profile cuts through the lead phantom for various crystals.

Gadolinium oxyorthosilicate (GSO) has good stopping power, is fast, and 

reasonably easy to obtain, however, the price is higher than YAP, the light output is relatively
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low, and it also suffers from quality problems due to the Ce content. BC452 is extremely 

fast, inexpensive, and easy to machine or cast to one’s requirement, however, it has very low 

light output and stopping power. The main use for BC452 is in cases where ease of 

fabrication is important or if one built a scanning x-ray system which runs much faster than 

Digiray’s. Figure 23 shows the result of using GSO along with an optimized PMT voltage 

divider used in the same situation as the CsI(Na) detector described above. Figure 24 

shows horizontal profile cuts through the lead phantom for various crystals under these 

same conditions. The new and old YAP are from Scionix, the GSO is from Hitachi29, and 

the LSO is from Chuck Melcher of Schlumbeger-Doll Research.30

In performing these studies, it was found that the shape of these high density high 

stopping power scintillators can affect the image if they are not properly shielded. When a 

cylindrical shaped scintillator was used, it appeared that there was a higher intensity of x- 

rays around the edge of the scanning plate than the center, producing a sort of donut shape 

in the x-ray intensity. When a cubed shaped scintillator was used, higher x-ray intensities 

were measured when the x-ray source was seen by one of the 4 comers of the crystal image 

causing an X shape in the image (fig. 25). The lighter areas in figure 25 correspond to 

lower measured intensity and are perpendicular to the side faces of the crystal. It was found 

that, since most of the x-rays are stopped in the first mm of the crystal, the surface area of 

the crystal intercepting the x-rays is extremely important. As shown in figure 26, this 

apparent surface area changes according to which location on the scanning plate the x-ray is 

striking. There are two solutions to this. One is to place a lead (or other shielding material) 

aperture in front of the scintillator. The second solution is to wrap the edges of the 

scintillator in lead foil. In either case, we limit the acceptance so that x-rays only enter the 

front face of the scintillator thus keeping the apparent surface area constant.
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Figure 25: Image acquired using 
a square scintillator showing a 
cross pattern in the measured x- 
ray intensity.

Scintillator

7 .7 °

7 .2 °

X-ray scan n in g  p la te

Figure 26: Diagram showing how the apparent active
surface area of an unshielded scintillator changes 
according to where the x-rays are coming from.

Optimizing the PMT assembly

Another problem found was a streaking effect to the right of the object. This was 

found to result from three causes -  gain instabilities caused by running the PMT at very 

high currents, the PMT voltage divider design, and fluorescence in the glass of the PMT 

from the x-rays. Originally the PMT was being operated at an anode current of over 300 

|iA whereas the maximum rating of the PMT was only 100 |_lA. One effect of this high 

current load is to shorten the life of the PMT, however, it was also found that the PMT 

would shift between a high gain and a low gain mode when the last dynode became flooded 

with electrons. When the x-ray flux reaching the detector was low, the PMT appeared to 

have a higher gain than when the x-ray flux was high. This effect would sometimes 

manifest itself in the image as an apparently higher x-ray flux recorded when the beam went 

from a lead object to air and the PMT thus exhibited its higher gain mode. The PMT would 

then switch to a lower gain after about 3 or 4 ps. Simply lowering the PMT high voltage 

from 1200V to 700V relieved this problem, however, the preamplifier then had to be 

modified as explained below.
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It was also found that few available PMTs could handle such heavily varying 

currents. Since there are many different designs of PMT internal structures, a preliminary 

study was made by Carl Zorn31 to try to determine factors affecting stability and linearity. 

It was found that box and foil dynodes (fig. 27)32 are more stable than the other structures 

and that CsSb metal used for the dynodes also helps. At this time only three PMTs (the 

Hamamatsu R268, the Electron Tubes 9125B33 both of which use box dynodes, and the 

multianode Photonis XP4702 which uses foil dynodes34) have been found to give a linear 

response throughout the extremes of the incoming signals seen here.

The standard resistive PMT voltage divider used by Digiray was unable to 

compensate for widely changing current loads when the x-ray was attenuated by a thick 

object compared to no object at all. The problem lies in the constant resistance of the 

resistors in the voltage divider. As more current is drawn from the resistors by a larger 

signal, the voltage to the PMT changes following Ohms Law. This causes the voltage 

distribution supplied to the dynodes of the PMT to vary according to the load which affects 

the linearity of the measured x-ray intensity vs. PMT signal curve. To solve this problem an 

active FET-transistor-powered voltage divider developed for nuclear physics experiments at 

Jefferson Lab was used (fig. 28). The FETs change their resistance according to current 

demands to keep the voltage to the PMT constant in a manner similar to Zener diodes. The 

advantage of FETs over Zener diodes is that FETs keep the voltage ratio constant for any 

supplied high voltage while Zener diodes only keep the voltage drops constant and thus 

must be designed for a particular applied high voltage. A Zener diode was used between the 

cathode (K) and first dynode (DY1) to keep the collection voltage constant. This allows for 

the best collection of the photoelectrons from the cathode for any applied high voltage. 

Another feature added with this design was an increasing taper of voltage differences on the 

last few stages (see table 5). Under high current loads, this helps to reduce the space charge 

effect and improve linearity.35
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Figure 27: Dynode configurations:(a) Venetian blind, (b) box, 
(c) linear focusing, (d) circular cage, (e) mesh, and (f) foil.
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Figure 28: Active voltage divider used for the Digiray PMT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

Pin K D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D ll A

Voltage 696 554 522 490 457 426 394 362 329 285 222 130 0

Ratio 1 1 1 1 1 1 1 1.4 2.0 2.9 4.1

Table 5: Voltage readings for the voltage divider shown in figure 28.

Figure 29: Image of line pair gauge from a PMT without a scintillator.

After all these modifications, there still remained a streaking effect with a decay time 

of up to a millisecond. This was attributed to the x-rays causing fluorescence in the glass of 

the PMT. Figure 29 shows the image of a calibration phantom taken with without any 

scintillator on a completely unshielded Hamamatsu R268 PMT. This image was quite weak 

and the high voltage applied (1400V) to the PMT was near the maximum rating (1500 V). 

When a 4.5 mm diameter lead aperture was placed on the face of the 28 mm diameter PMT, 

the image disappeared owing to the greatly reduced signal level. The maximum measured
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current coming from the PMT without shielding was 28 |iA while, with the aperture, it was 

0.6 |iA which matches the ratio of the unshielded areas of the face of the PMT.
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7igure 30: Experimental set ups to analyze streaking effect. Left picture shows scintillator 
directly coupled to PMT while the right picture shows the scintillator connected via a liquid 
core light guide.

In order to isolate the various causes for the streaking effect in the image, a 

comparison was performed between coupling the scintillator directly to the PMT with a lead 

aperture and coupling through a Jefferson Lab liquid core light guide to a heavily shielded 

PMT (fig. 30). The x-ray machine was set for 100 keV at 1 mA current for all the tests. 

Four scintillators were compared -  LSO, GSO, YAP from Scionix, and an experimental 

YAP sample produced locally at Norfolk University. All scintillators were 1 cm3 cubes 

except the GSO which was 8 x 8 x 10 mm, placed so that the 8 x 8 mm side faced the 

incoming x-rays. The scintillators were in various stages of polish with the LSO rough cut 

and not polished at all. All were wrapped on 5 sides with Teflon tape. The high voltage to 

the PMT was set to equalize the signal levels from each of the scintillators so that the 

maximum output current from the PMT was 50 p.A. The scintillator was shielded with a 3 

mm thick lead aperture with an 8 mm hole. The phantom was a 3 mm thick lead square with 

a hole in it. Images of the phantom were obtained by averaging 20 one second scans of the
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object. The amount of streaking was quantified by measuring the average value in two 10 x 

10 pixel areas about one cm to the right of the object just above and just below the lower 

edge of the phantom and calculating the percent difference. Figure 31 shows the results for 

LSO, GSO, and Scionix YAP directly coupled to the PMT and the experimental YAP with 

and without the light guide. The differences seen between LSO, GSO and Scionix YAP 

when they were coupled directly to the PMT have two causes. One is the ratio of light 

outputs and the second is the stopping power of the scintillators. The x-ray transmission of 

the scintillators and 3 mm lead is seen in table 6. It is easy to see that the best case is to 

have a bright and high stopping power scintillator if one wishes to couple the scintillator 

directly to the PMT. A lower brightness scintillator has to compete with the light from the 

PMT glass as is the case for GSO, while a scintillator with lower stopping power will let 

more x-rays reach the PMT glass for a given thickness as is the case for YAP. The 

difference in the amount of streaking between the Scionix YAP and the experimental YAP 

was exactly the amount measured when the experimental YAP was coupled to the PMT 

through a light guide. It is also important to note that the type of light guide one uses 

makes a difference. The Jefferson Lab light guide was made using acrylic end plugs and 

silicon oil filling. By comparison, when coupling with a Lumatec36 liquid core light guide 

with quartz end plugs and a calcium chloride liquid filling the image showed streaking. A 

measurement with the light guides alone coupled to the shielded PMT biased at -1200 V 

showed the Lumatec light guide produced 0.54 pA while the Jefferson Lab light guide 

produced only 0.031 pA maximum current. Light produced in the quartz end plugs from 

the x-rays is the likely source of this extra signal.

Optimizing the preamplifier

Another optimization made was to adjust the gain and shaping time of the 

preamplifier (fig. 32). The operational amplifiers (op amps) were changed from Digiray’s
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proprietary op amp to the readily available LM6361 from National Semiconductor. This 50 

MHz bandwidth op amp is quite stable and easy to use. Since the signal from the PMT is 3 

times lower than before owing to the reduced high voltage, the gain in the amplifier was 

increased by a factor of 3 by increasing the feedback resistor on the first op amp. Also, 

since the scintillator is now much faster, it has much less self-integration. This causes the 

signal to vary faster making the image look more granulated when used with a sampling 

ADC as used in the Digiray system. By adjusting the integration of the amplifier via the 

feedback capacitor on the second amplifier, one can control and optimize the signal to noise 

versus the resolution. Figure 33 shows the results of imaging a line pair gauge with the new 

preamplifier with various feedback capacitors. In this measurement the x-ray intensity was 

100 keV at .15 mA and the x-ray beam was zoomed in by a factor of 5 with a scanning 

speed of 2 seconds per image. Each image was made up of 50 scans averaged together.

EXP. YAP +SCIONIX
LIGHT GUIDE

SCINTILLATOR

Fig. 31: Measurement of streaking for
different scintillators in different configurations

Material % Transmission

1 cm LSO 4.5 x 10E-6

1 cm GSO 3.3 x 10E-4

1 cm YAP 7.76

3mm Lead 2.2 x 10E-4

Table 6: Transmission of 100 keV x- 
rays for various materials.
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Figure 32: Amplifiers used in the studies. Left is the circuit diagram of the original 
amplifier and right is the optimized version for use with faster scintillators.
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Figure 33: The plot on the left shows a profile cut across the 8 line pairs per mm section of 
a calibration phantom shown on the right summed 10 pixels vertically where we see 4 lines 
separated by .125 mm.

The plot shows a profile cut across the 8 line pairs per mm section summed 10 pixels 

vertically where we see 4 lines separated by .125 mm. The lines are most clearly seen when 

a 68 pF feedback capacitor is used. With lower values of capacitance the noise makes it 

harder to see the lines, while with higher values of capacitance, the lines get washed out. 

Figure 34 shows a comparison with the standard Digiray amplifier which has a slightly 

lower shaping time and thus more noise for the same 8 line pairs per mm section of the
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calibration phantom. Table 7 shows the standard deviation of the signal for various 

feedback capacitors in a 100 x 100 pixel area of the background. Measurements were also 

made at a scanning speed of 4 seconds per image, however, no improvement was seen in 

either the spatial resolution or image noise. This was the slowest scanning speed permitted 

by the software for this magnification factor.
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D igiray  A m plifier260

COc
<D

240c
COc
0 5CO
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Figure 34: Profile cut across the 8 line pairs per mm section of a calibration phantom for 
the new amplifier with a 68 pF feedback capacitor and Digiray’s amplifier.

Feedback 
Capacitor (pF)

Mean Value Standard
Deviation

Minimum Value Maximum
Value

0 93.86 12.87 51 151
27 90.40 11.66 52 137
68 85.18 10.25 46 129
100 84.77 9.64 50 124
180 82.02 8.48 47 114
330 79.88 7.22 54 107
560 76.18 6.15 53 101

Digiray 83.57 13.90 33 134
Table 7: Standard deviation of the signal for various feedback capacitors in a 100 x 100 
pixel area of the background.
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The optimal data acquisition system for this type of integrating readout would be an 

integrating amplifier with a reset shown in figure 35 with the timing diagram shown in 

figure 36. In this proposed circuit, the signal from the PMT is amplified by a fast 

preamplifier (Ul) with no integration. It is fed to an integrating op amp with a hold and 

reset (U2). As seen in the timing diagram, the amplifier would integrate the signal from all 

the x-rays for a period of time and then hold the signal while the ADC samples it. After 

sampling the capacitor on the integrating op amp would be cleared with the reset pulse, the 

x-ray beam would step to the next position, and the process would start again. This should 

allow one to obtain the best possible image quality, however, in order to test such a circuit, 

we would have to make modifications to the control logic of the system which was not 

feasible at this time. This circuit would allow the highest amount of signal capture while 

providing the lowest amount of cross-talk between positions of the x-ray beam.

-12

Integrate
10KOffset 

compensation
OP AMP

+12 -12
HoldOP AMP

+12 -12R4
1K

SampleHold U 2 ADC

Input Integrate Reset

10K

R2100K Cne Cycle

figure 35: Proposed circuit diagram of optimized data Figure 36: Timing diagram
acquisition system for the Digiray system. for data acquisition.

X-ray flux calculation

In order to image at a reasonable rate with scanning beam x-radiography, one needs 

significant x-ray flux to reduce the statistical fluctuations. To get an estimate of the x-ray 

flux at our detector one can start by assuming the x-ray source is isotropic and that there is 

no absorption or losses. In equation (1-1), bremsstrahlung intensity per electron hitting the 

target is defined as the energy per photon multiplied by the number of photons produced.
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Thus, dividing equation (1-1) by the energy and multiplying by the number of electrons 

hitting the target we get the number of x-ray photons produced per unit energy (E) as

2kZ(E0 -  E)  ̂ i
Nxrays(E) = (3-2)

E e~

where i is the current in amperes, e' is the electronic charge (1.602 xlO 19C), E0 is the energy 

of the electrons, k ~ 7 x 10'7 keV1 and Z is the atomic number of the target (74 for 

tungsten). For the Digiray system operating at 120 keV and 0.5 mA about 1.7 xlO14 x-rays 

greater than 1 keV are produced per second. The vast majority of these x-rays are below 20 

keV and are filtered out by the 1/8” thick aluminum housing (fig. 37). This leaves about 2 

xlO13 photons per second transmitted by the housing, however, most of those are not 

directed towards the x-ray detector.

8o

£

8 1 0 ”

Number of X-rays produced

6 1 0 ”

Number of X-rays Transmitted 
by housing

o
20 10040 60 80

Energy (keV)
Figure 37: The calculated photon spectrum from
Digiray’s x-ray tube running at 120 keV .5 mA.

120
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Making the assumptions stated above, the average number of x-rays reaching a 1 cm 

x 1 cm x 1 cm detector placed 1 m away, including characteristic x-rays, is approximately 

223 x 106 photons per second. Assuming standard Gaussian counting statistics, a 2 second 

image acquisition where each pixel acquires for 2 (is, gives a standard deviation of 21 

photons per pixel or 4.74% as a best case estimate. For a 2 second acquisition using a 

GSO scintillator, it was found that the signal, an indirect measure of the number of photons, 

had a standard deviation of 10.5%, in reasonable agreement with our calculation. The 

deviation is certain to be higher than theory for two reasons. The first is that we did not take 

electronic noise into account and it is known that the particular system these measurements 

were made with has significant electronic noise caused by the x-ray power supply. The 

second reason we would expect lower signal to noise is the way the signal is acquired using 

a shaping amplifier. The signal is only sampled once every 2 (is and thus signals which 

arrived early in the time period have suffered some decay and are not registered the same as 

later arriving signals.

9V
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50Q

Input
OUT

AD8032 
OP AMP

PMT Pre-AMP Phillips
778

AMP

Mech-Tronics
722

counter

Phillips
708

Discriminator

! 7igure 38: Design of battery Figure 39: High speed counting system used to
powered pre-amplifier. measure x-ray flux.

A more direct measurement of the number of photons was made by counting the 

pulses coming from a PMT with fast electronics. A 1 cm x 1 cm x 1 cm YAP crystal was
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coupled to a Hamamatsu R268 PMT with the PMT base design in figure 28. A 2.4 mm 

lead aperture was placed in front of the crystal and lead was wrapped around the sides of the 

PMT. This assembly was positioned 1.64 m above the x-ray scanning plate. Due to 

excessive electronic noise coming from the x-ray high voltage power supply, a high speed, 

low current, battery powered pre-amplifier was designed to amplify the signal coming from 

the PMT (fig. 38). The gain on this 80 MHz amplifier had to be kept low (~ x5) so that the 

signal width did not increase owing to the lower bandwidth/gain. This amplified signal was 

then sent to post amplifier, fast discriminator, and a NIM counter as shown in figure 39. 

The full width at half maximum of the signal was 100 ns or less and the lowest x-ray energy 

seen gave a signal of about 1 2 -1 4  mV. The threshold of the discriminator was set to 10 

mV and the output width was set tolO ns. This is an updating discriminator which, if a 

second pulse crosses the threshold while the output is triggered, the output is extended 

giving a wider output width. This would be called a paralyzable system, however, because 

the signal is much wider than the discriminator output, it acts like a nonparalyzable system 

until the signals overlap to the point where signal level does not go below the discriminator 

threshold. The x-ray energy was set to 100 keV. The current had to be kept low enough 

not to cause counting losses resulting from the -100 ns dead time discussed later. The 

counting time was set for 60 seconds and three measurements were made at each current 

setting. It was found that there was an offset between the x-ray current given by the x-ray 

control computer and the amount actually produced. An offset value of 0.039 mA was 

found by linear extrapolation of the number of x-ray counts to zero. The minimum 

computer setting which produced x-rays was .05 mA. The theoretical number of x-rays are 

compared with the measured values in figure 40. The reduction in the number of measured 

counts at the higher currents result from counting losses from pulse pile-up which was 

verified with a digital oscilloscope.
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Figure 40: Theory vs. measured x-ray production from Digiray’s RGX system.
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CHAPTER IV 

DUAL ENERGY X-RADIOGRAPHY 

Monoenergetic sources

Since standard x-radiography only produces a two dimensional x-ray shadow graph 

of an object, one cannot differentiate a thick low-stopping-power object from a thin high 

stopping power object. Complicated structures of one material may overlay and obscure 

structures of other materials. Dual energy imaging is a well known technique in medical 

imaging37 which mitigates these problems by using information contained in the energy 

spectrum of the transmitted x-rays. As seen in Chapter I, x-rays up to about 200 keV 

interact with matter mainly though photoelectric absorption and Compton scattering. 

Rayleigh scattering is a small percentage of the total scattering and has approximately the 

same mathematical form as photoelectric absorption and so, in measurements, it is assumed 

to be mixed in with photoelectric absorption. The photoelectric absorption dominates at 

lower energies and is mainly dependent on the Z of the material (Z4 from equation (1-5)) 

whereas Compton scattering dominates at higher energies and is mainly dependent on the 

electron density of the material (nZ from equations (1-8) and (1-11)). Thus, if we measure 

low and high energy x-ray attenuation images, we will be able to relate the results to the Z 

verses density of the material. This will allow a computer to identify and remove a selected 

material from the image thereby reducing the complexity and increasing the contrast of the 

remaining image.

For the simple case of monoenergetic x-ray spectra, the mathematics can be worked 

out as follows. If we combine equations (1-5), (1-8), (1-11), and (1-14) and ignore 

Rayleigh scattering we find the total linear attenuation is

Z4HT=CPn—y + a CenZ (4-1)
r

44
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which can be separated into energy dependent and material dependent parts

A*t = apfp(E) + acfc(E) (4-2)

where the material dependent parts are ap = nZ4 and ac = nZ and the energy dependent parts 

are fp(E) = CJE* and fc(E) = a Ce. Taking the log of equation (1-11) for two different 

known monoenergetic x-ray energies (h and 1) for a material of known thickness T, gives

Mh = [ a ^ + a cfcJ T  (4-3)

M, = [apfp( + acfc/]T

where Mh = ln(I0h/Ih) for the original h x-ray energy intensity IQh and the transmitted x-ray 

intensity Ih and similarly for M,. This can be solved uniquely to identify the ap and ac of the

material. Except for K-edge imaging, ap and ac completely characterize the material in x-ray

imaging in our energy range. Thus measurements at more than two energies can add no 

new information since the equation for the third energy would be a linear combination of the 

first two.

Now we consider the case where we have two known materials (1 and 2) of 

unknown thickness (T, and T2). We assume the ap and ac of each material are known. 

Then we have

Mh = [aplfpA + aelfJT , + [a,2f* + ac2f J T 2 (4-4)

^1 = [aplfp; + aclfC/]Tl + ac2̂ cl 2̂

which can be solved uniquely to obtain the thickness of each material. Due to the linear

dependence of images taken at different x-ray energies, one is only able to obtain two

linearly independent equations per position in the image and thus can only determine the

thickness of two overlying materials in a standard two-dimensional x-radiograph. When 

there are more than two overlying materials, their relative thicknesses can not be determined. 

This limitation, however, is actually a strength when it comes to obtaining the images. It
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means that the complete energy dependent information can be extracted from two simple 

image measurements.

Since every material is characterized purely by its ap and % value we can 

mathematically interpret ap and ac as the basis of a two-dimensional space which contains all 

possible materials, written as

R2 =
vO, v l,

(4-5)

where R2 stands for the two-dimensional space. Vector multiplication of any arbitrary rx <- 

R2, (acx, apx), by the first vector in R2 projects out the acx term while the second vector 

projects out the ap term. The linear attenuation coefficient (eq. 4-2) can then be written in 

matrix notation as

= f • rx where f =
fc(E)

vfp(E), (4-6)

The rules of linear algebra state that a basis set is not unique. Any set of linearly 

independent combinations of one basis set is also a basis set. Thus we can change our 

basis from R2 space to U2 space where

U  =  ■
IVa Pĉl

vapiy

f  o  \
c2

Vap27
(4-7)

These new basis vectors represent two materials, 1 and 2. The standard transformation 

functions to change from one basis to another are

r = S u and u = S 1 r (4-8)

where r and u are vectors in R2 and U2 space respectively and S is the transformation matrix 

given in this case by

S = \ l  a c2 " and c l  1 " a p2
S = -----------------

<a p l a p 2 y a c i a p2 " a p ia c2 v_ a p l a c l ,

(4-9)

Thus, for an arbitrary material, x, we get
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u. = 1 ^ap2acx ‘ ac2apx ̂

aciap2 '  apiac2 a ,a -a ,ay cl px pi cx J
1 n2nx^2^x(^2 - Z . )

n1nsZ1Z,(Z13-Z I3)
• (4-10)

n[n2ZiZ2(Z2 - Zj )

where we substituted in for the ap’s and ac’s. Thus the linear attenuation for any material 

can be written as

where

Ik = f S u x = {Hi'Mi) ux = aa//j + apfi2

= nxZx(Z23 -Z x3) a = nxZx(Zx3 -Z ,3) 
njZjCZ^-Z,3) * n2Z2(Z23 -Z ,3)

(4-11)

(4-12)

This shows that the linear attenuation coefficient can be represented as a linear combination 

of the linear attenuation of two basis materials with aa and ap being the characteristic 

constants of the material, x. It is convenient to define

Bi = aaTx and B2 = apTx (4-13)

where Tx is the thickness of material, x. We can then write the log attenuation (M) as

M = ^ xTx = BliU1 + B ^ 2. (4-14)

Using (B,, B2) as the characteristic constants defining a material-thickness space we obtain 

the graph shown in figure 41. The angle 0 of the vector from the origin to the material 

location in this space depends only on the effective Z of the material, x, and basis materials.

- z .3) (4. 15)
n2Z2(Z23 - Zx3)

The length of this vector is proportional to the sample thickness. We call 0 the 

characteristic angle of the material. This identity is not unique when there are overlapping 

materials in the image since the material vectors will add commutatively to form a final 

material vector. This means the final vector can be arrived at by the combination of a variety 

of materials and material thicknesses (fig. 42). Also, it is important to remember that it is 

the effective Z and A of the material which determines radiation absorption and scattering. 

These are obtained by the formulas

0 = tan1
B >
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where f; is the fraction by weight of the i* element in the material.

Material X

Vector sum

Figure 41: Representation of material x in Figure 42: Material vectors add, thus the
the basis material-thickness (BPB2) plane. combination of materials m and n can not
0 defines the Zeff of the material while the be distinguished from materials o and p.
length of the vector gives its thickness.

If we compare equations (4-4) and (4-14) we see that B, and B2 are also equivalent 

to the thicknesses of the basis materials which would be needed to match the attenuation of 

material, x (Bj = T, and B2 = T2). It is this key point which allows us to subtract materials 

from the image. In order to do this, we first calibrate our two-energy system using equation 

(4-3) to get the and ac of our two basis materials. We then use equation (4-4) to find T, 

and T2 for every pixel in our object of interest and produce two images, separately 

displaying Tj and T2 for every pixel. This gives us two basis images of the object, one 

displaying the B, component at every pixel and the other displaying the B2 component at 

every pixel, we can then combine them into a resulting image by the equation

C = B,cosO + B2sin<I> (4-17)

for any O we chose. If we chose <I> equal to 0 then any object made of second basis 

material would be removed from the final image, C. Notice that by combining the images
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with an angle perpendicular to the characteristic angle of an object, the length of the object 

becomes zero and thus it disappears. By varying d> until an object disappears from the 

image, one can obtain the characteristic angle of the material since 0  is then perpendicular to 

the characteristic angle of the object.

When a material is subtracted from the image, a vacancy is left. Edges of this 

vacancy may possibly interfere with the analysis of other materials. There is a way to cause 

one material to look like another material, thereby removing the contrast between the two 

materials. The contrast of these two materials to a third material can then be enhanced. To 

see how this is done, we consider an object of total thickness L made up of two materials 

(fig. 43). The basis coordinates along the object are

equation in X, B, and B2, it will fall on a straight line. Using the standard formula for a 

straight line, we arrive at the characteristic angle of the X parameter:

Note that this is not a characteristic angle of either of the materials individually. Also note 

that this angle does not depend on the thickness, X, Only the length of this vector is 

dependent on X. Using the lesson learned in the last paragraph, if we combine the basis 

images with an angle perpendicular to this mixed characteristic angle, the image will no 

longer be dependent on X and the contrast between the two materials will vanish. We can 

see that, if the n material was air, this is just the subtraction technique we used before. Now 

we see that, if we assume we live in any n material atmosphere, we can apply the same 

techniques to cause the contrast between the two materials to disappear and the object to 

vanish from view.

(B„B2) = (a ^ L -X ) + a^X , a ^ L -X )  + a^X} (4-18)

for materials n and m where X is the thickness of the m material. Since this is a linear

(4-19)
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Figure 43: Object made of two different materials, m and n with a total thickness of L.

There is yet one more trick which can be employed using the added information 

gained from dual energy imaging. One can reconstruct the image at any selected 

monoenergetic x-ray energy chosen. This is true even if one is using a polyenergetic x-ray 

source. This can come in quite handy in computed tomographic (CT) imaging where 

“Beam Hardening” can cause artifacts in the image. Beam Hardening is a term that means 

that the lower energy x-rays are absorbed more than higher energy x-rays. Such CT 

reconstruction artifacts are shown in figures 44 and 45 where a CT scan of a skull filled 

with water is simulated for both polychromatic and monochromatic x-rays.38

Polychrom atic c a s e

M onochrom atic c a s e

■1.000 -0.750 -0.500 0.250 0.000 0.250 0.500 0.750
D istance from th e  c en te r of th e  phan tom

Figure 44: Reconstruction from Figure 45: Cross section of a reconstructed
polychromatic projection data of a water water phantom inside a skull using
phantom inside a skull. polychromatic and monochromatic x-rays.
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To see how this is done we look at equation (4-2). If we knew all the ap’s and ac’s 

for each pixel in an image we could chose to evaluate fp(E) and fc(E) at any desired display 

energy Ed since fp(E) and fc(E) are known functions of the energy. This gives us the linear 

attenuation for each point as

p . = apfp(Ed) + acfc(Ed). (4-20)

By equation (4-14), we also found we can replace equation (4-20) with

M = BjjU,(Ed) + Bj)U2(Ed) (4-21)

using our two basis materials. Thus to obtain an image at any display energy, we just 

multiply the Bj image by the linear attenuation coefficient of that material at energy Ed and 

add it to the B2 image multiplied by its appropriate linear attenuation coefficient evaluated at 

Ed. Thus we arrive at apparent mono-energetic x-radiography.

Before going on to polyenergetic x-ray sources, we put equation (4-4) with (4-14) 

into a directly usable form for monoenergetic dual energy imaging. Inverting this equation 

to find B, and B2 we get

B ^ k ^  + ^ M ,  (4-22)

B2 = k3 Mh + k4 M,

where k,,k2, k3, and k4 are constants made up of apl, ap2, acl, ac2, fph, fch, fpl, and fcl. This 

equation is applied to each pixel in the high energy and low energy images to obtain B, and 

B2 images. Implicit in this equation is the requirement that the high and low energy images 

be taken from exactly the same angle with no movement of the object.

Polyenergetic sources

As seen earlier, the typical x-ray source is polyenergetic which makes dual energy 

imaging more complex. However, it is still reasonably straight forward. The key problem 

to solve is estimating B1 and B2, the thicknesses of the basis components, from x-ray
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transmission measurements of a set of objects at two energies. The most straight forward 

way to do this is to just add higher order fitting terms to equation (4-22)39

B, = k,Mh + k2M, + k3Mh2 + k4M,2 + k5MhM, (4-23)

B2 = k6Mh + k7M, + k8Mh2 + l^M,2 + k10MhM,.

The coefficients k,—k10 are found during a calibration procedure where various thicknesses 

of the basis components are imaged to obtain about 100 (B,,B2) combinations. These 

equations can then be solved by the method of least squares based on singular value 

decomposition40 to obtain the k ,-k10 coefficients. This method was found to be quite 

robust, fast to compute, and easy to implement. Another method is using a lookup table 

which is used to convert high and low energy transmissions to the (B„B2) thicknesses. 

This, however, requires a very large amount of data to construct a table of sufficient 

resolution. It also does not allow for extrapolation outside the Z of the basis materials. 

What is purported to be the most accurate method to obtain (B,,B2) uses conic surface 

equations in three dimensions.41

To see how a conic surface comes about, we start from the first order or planar 

surface in three dimensions (B,,B2,M) which describes the monoenergetic case. Here, the 

planar surface equation form of equation (4-14) is

c,Bj + c2B2 - c3M + c4= 0. (4-24)

To obtain equation (4-14), the constant c, would be fit, c2 would be /ij, c3 would be 1, and

c4 would be 0. Another way to look at this equation is that it contains the 4 combinations of 

B1pB2qMr with the total degree (p+q+r) less than or equal to 1. We now assume that, owing 

to the polyenergetic nature of the x-ray source, this plane is warped slightly and smoothly 

into a second order surface. The most generic second order surface equation would contain 

10 terms in B1pB2qMr of total degree (p+q+r) less than or equal to 2. This can be written as

C - DM - EM2 = 0 (4-25)

where
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C = c0 + CjB j + c2B2 + c3B,2 + c4BtB2 + 5B22 

D = dj + d (B j + d2B2

' 4 1 2 (4-26a)

(4-26b)

(4-26c)

We are allowed one normalization by dividing through by any number we choose, thus we

can set (^ = 1. This leaves 9 independent variables to be determined.

We can use the standard quadratic formula to solve M in equation (4-25)

-D ± J  D2 + 4EC
(4-27)

where we see that, in the mono-energetic limit of D -> 1 and E -> 0, we must chose the 

positive root for (4-26) to remain finite. This equation describes a smooth, ripple-free, 

monotonic surface. It also exhibits the correct asymptotic behavior at large and small values 

of B, and B2. For large B, and B2 we can keep only the B(2, BjB2, and B22 terms under the 

radical which allows us to simplify (4-26) to

where n, and n2 are constants. Setting (n, = p,(Emax) and n2 = p2(Emax)) with Pi(Emax) being 

the linear attenuation coefficient of material 1 at the maximum x-ray energy and similar for 

m(Emax),we arrive at the standard linear attenuation formula one would expect due to beam 

hardening leaving only the highest energy x-rays. At small values of B, and B2 a Taylor 

series expansion of (4-26) can be made around (B,,B2) = (0,0) which brings us back to 

equation (4-22). These properties allow M to be extrapolated beyond the calibration region 

with relatively little error. Since E is generally small, we can, with a sight additional error, 

make the approximation E = 0 in which case equation (4-24) becomes

which greatly simplifies the calculation. To obtain a higher degree of accuracy, one can add 

a perturbation to the coefficients:

M = njB2 + n2B2 (4-27)

(4-28)
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C ’ =  C  +  c ^ 3 +  c7B , 2B 2 +  c 8B , B 22 +  c9B 23 (4-29a)

D’ = D + d3B, + d4B2 (4-29b)

E’ = E + ejB, + e2B2. (4-29c)

This turns equation (4-24) into a third order surface, but without any cubic term in M.

Thus, equations (4-26) and (4-27) still hold. Thus, the complete set of dual energy 

reconstruction equations are:

Mh = Vp h2 + 4EhCh (4 3()a)
2Eh

Ml = (4.30b)
2H|

Gh = C0h + Clh®l + C2h®2 + C3h®l + C4h®l®2 + C5h®2 (4-30c)

Dh = 1 + dlhB, + d^Bj (4-30d)

Eh = e0h. (4-30e)

C, = c01 + CnBj + c 2iB 2 + c31B ,2 + c ^ B j B j  + c51B22 (4-30f)

D, = 1 + duB, + d2|B2 (4-30g)

E, = e01 (4-30h) 

for high (h) and low (1) x-ray energies. And the inverted equations are:

B, = VG« + 4H«F«_ i g a  (4.31a)
2H„

JG„2 + 4HflF„ - G,B2 = i_P--------- Pj. 1 (4.31b)
2Hp

F„ = f0« + f.ocM, + f2aMh + f3aM,2 + f4aM,Mh + f5aMh 2 (4-3 lc)

Ga = 1 + glaM, + g2aMh (4-3 Id)

Ha = hoc (4-3 le)

Fp = fop + f10Ml + f2pMh + f3pMl 2 + f4pMlMh + fspMh2 (4-3 If)

Gp = 1 + gipM, + g2pMh (4-3 lg)
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HP = V  (4-3 lh)

for basis materials a  and (3.

Prior Work on Dual Energy X-radiography

Dual energy x-radiography was originally developed by Alvarez and Macovski at 

Stanford University in 1976.42 Since then many papers have been written on the subject. 

Except for bone densitometry and luggage inspection, however, it has remained more of a 

curiosity than a useful technique. The main obstacle to widespread use is the added 

complication and expense of the imaging system. Dual energy imaging is usually achieved 

either by acquiring two separate images using different x-ray tube voltages43 or by using a 

dual detector sandwich with the front detector stopping the low energy x-rays while the back 

detector absorbs the remaining x-rays. The main determining factor of how well one can 

differentiate between materials using a dual energy imaging system is how well separated 

the two energy measurements are. With this in mind, the first method tends to produce 

slightly better images especially when a filter is placed in the x-ray path to attenuate the low 

energy x-rays when the high energy image is acquired. Figure 46 shows the resulting 

spectra when two x-ray energy settings are used with the high energy spectrum filtered by 

.3 mm of uranium. The disadvantage of this technique is that one must take two images 

thus doubling the imaging time, equipment load, and dose. This method is also quite 

sensitive to any movement between image acquisitions, x-ray tube stability, and, since the 

majority of x-ray systems in use today are still film based, misregistration of the images 

which need to be scanned into a computer in order to process the energy information. With 

the introduction of digital x-ray systems, this last difficulty is slowly disappearing 44

The second dual energy imaging method uses a two-detector approach. A front 

detector measures the lower energy x-rays and the back detector measures the x-rays which 

penetrate the first detector. An example of the absorption spectra from such a dual detector
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is shown in figure 47.45 The front detector is CaF2 coupled to a PMT and behind that is 

placed an Nal crystal coupled to a second PMT. It should be noted that better separation of 

the peak absorption energies could have been obtained by placing a filter between the 

detectors to further attenuate the low energy x-rays before reaching the Nal detector. This 

detector was used in the CT system which uses a relatively small number of low resolution 

detectors. If one wishes to use such a detector design for standard 2-D planer imaging, the 

difficulties increase significantly. The simplest method to produce a planer dual detector 

imager is to use a sandwich of film cassettes or imaging plates with an absorber between the 

cassettes to enhance the energy separation.46 This also then requires the images to be 

scanned into a computer and properly registered before use can be made of the energy 

information. This additional step and expense greatly reduces the attractiveness of this 

technique. Trying to use digital detectors in place of the imaging plates is not possible due 

to the readout electronics mounted on the back of the detectors which would appear in the 

high energy image.

£ 0.8

70KVP
0 .6 -

^  0 .4 -

140 KVPCC 0 .2 -

0.0 120
X-RAY ENERGY IN keV

Nal

CaF,
_l 10

O  0.5

100
X -R A Y  E N E R G Y  (K V )

Figure 46: X-ray spectra obtained using 70 Figure 47: X-ray absorption spectra for
kV and 140 kV settings on the x-ray machine. a two detector dual energy system.
The high energy x-ray setting is filtered by 0.3 
mm of uranium.
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Another way to obtain “single shot” dual energy x-ray images is to use a dual 

linear array of energy sensitive detectors with a fan beam x-ray source which is then 

scanned over the object to produce direct digital images such as that shown in figure 48 47,48 

Unfortunately, due to resolution requirements, one needs about 2000 channels (1000 high 

energy + 1000 low energy) of 200 pm wide pixels to cover a 20 cm wide area. Such highly 

integrated detectors tend to have poor stopping power for the higher energy x-rays. There 

is, however, one version of this type of detector which could make this a more attractive 

technique.49 It uses a silicon strip detector in an edge-on orientation. The readout is 

segmented along the length of the strip to give one depth of interaction and thus energy 

information. It is currently under development for dual energy digital mammography by 

Mamea, a company in Stockholm, Sweden and will be discussed below. Another 

disadvantage to this method is the scanning time. Since the image is produced by 

mechanically scanning the detector/x-ray beam over the object, it usually takes a couple of 

minutes to obtain an image. Scanning beam x-radiography overcomes this by electronically 

scanning the beam and leaving the detector fixed to produce images in a few seconds or 

less.

The results achieved with dual energy imaging, even with these problematic 

detectors, show this technique can be quite useful. In medical physics, the quality of chest 

x-radiography can be enhanced to provide better detection of lesions by reducing the clutter 

in the image resulting from the bones (fig. 49).50 Dual energy x-radiography has also 

become the gold standard in bone densitometry tests used to evaluate osteoporosis (fig. 

50).51 Its ability to accurately eliminate the soft-tissue absorption allows one to measure 

bone mineral density anywhere in the body. Dual energy x-radiography is even starting to 

play a role in luggage inspection by helping one to actually identify substances instead of 

merely seeing shadows (fig. 51).52
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Detector 
array and 
electronics

Aft Slit

X-ray beam

Tantalum slit

Low Atomic No. Phosphor

Photodiodes Optional Filter

High Atomic No. Phosphor
Figure 48: Dual energy fan beam scanning x-ray system. The detector array is made up of 
a sandwich of two linear arrays to obtain the low energy (front detector) and high energy 
(back detector) images.
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Figure 49: Standard chest x-ray (top), bone subtracted soft tissue image (left), and soft 
tissue subtracted bone image (right) from ref. 50.

Figure 50: Dual energy bone densitometry scanner using a linear x-ray detector array (left). 
Results of scan (right) can show just the bones and their densities as well as fat / lean 
assessment from ref. 51.
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Figure 51: Images from a dual energy x-ray CT luggage scanning system being marketed 
by Analogic. Using dual energy, one can identify the substances in the luggage (from ref. 
52).
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CHAPTER V 

DUAL ENERGY SCANNING BEAM X-RADIOGRAPHY 

Detector Development

Since only a single low resolution detector is needed to produce high resolution 

imaging from scanning beam x-radiography, detector development is relatively inexpensive 

compared to the prior art systems described in the previous chapter. The least expensive 

and most straight forward detector to use for this system is a dual detector using a 

scintillator with low x-ray stopping power in front of a high stopping power scintillator. To 

develop this detector the following steps were taken

1. Selection and optimization of the scintillator/absorber elements.

2. Selection of the PMTs.

3. Optimization of PMT voltage supply circuit.

4. Mechanical design / assembly.

As discussed in Chapter HI, the selection of the scintillator is very important, 

however, one has limited choices. As seen in table 4, the scintillators which have the highest 

light yields yet are faster than Nal(Tl) are YAP and LSO. YAP has both a lower density 

and lower effective Z (39 vs. 66 for LSO) which makes it ideal for stopping the lower 

energy x-rays. The other low density scintillator shown on table 4, BC452 -  a 

polyvinyltoluene (PVT, C^H^) based 5% lead loaded plastic scintillator turns out to be less 

appropriate than YAP due to the high Z of Pb. Figure 52 shows the absorption spectra for 

200 Jim YAP and 7 mm BC452 assuming a 100 keV peak x-ray source. The k-edge of the 

lead is seen at 88 keV thus it has significantly higher absorption of the higher energy x- 

rays.

61
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Figure 52: Absorption spectra of a 5% Pb 
loaded plastic scintillator and YAP.

Figure 53: Absorption and transmission 
spectra for 200 pm thick YAP.

Having selected YAP as our lower energy scintillator, one next needs to decide how 

thick to make it. The thickness of the YAP controls the fraction of lower energy x-rays 

absorbed. Since it is a crystal of a relatively high density, it must be quite thin to allow the 

majority of high energy x-rays to be transmitted. Various thicknesses were simulated and it 

was found that 200 pm was optimal from a stopping power vs. mechanical stability point of 

view. Figure 53 shows the simulated absorption and transmission spectra of 200 pm YAP.

Due to its very high stopping power, high speed, and high light output, LSO is an 

obvious choice for the high x-ray energy detector. LSO is difficult to obtain as it was only 

invented in the last ten years, it is patented, and there is a high demand for it for use in 

medical imaging detectors. Fortunately a few 1 cm3 samples were able to be obtained from 

one of the inventors, Dr. Melcher of Schlumberger-Doll Research.53 One cm of LSO stops 

99.96% of 150 keV x-rays. A second choice for the high energy scintillator is GSO. It is 

readily available from Hitachi Chemicals, however, some batches can exhibit an afterglow or 

a slow decay of the of the light output of 600 ns which causes abnormalities in the images
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as seen when Nal(Tl) was used. The exact cause of this problem is not known but appears 

to have some relationship to the Ce concentration.

Encased in AI+ 
Pb housing

PMT2
High x-ray energy 
scintillator PMT1

Light

Energy Separation 
filter (brass) Light

prism
Waveshifter/ 
Light guide Low x-ray energy 

sensitive crystal

Incoming
x-rays

Figure 54: Mechanical configuration of the scintillators, light guide 
and PMTs for the dual detector dual energy system.

After the scintillators have been selected, one needs to determine how to get the light 

from the very thin YAP scintillator to its PMT. From previous work 54 a waveshifting or 

scintillator light guide appeared to be the most efficient solution. The mechanical 

configuration is shown in figure 54. The waveshifter absorbs the light from the YAP and 

emits it isotropically so that some of it can be captured by the light guide and transported to
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the PMT. The peak wavelength emission from YAP ranges between 347 nm to 380 nm, 

according to several references.55,56,57,58 This falls in the absorption range of PVT based 

plastic scintillators and waveshifters from Bicron.59 The scintillator, BC408, has an 

absorption peak of 345 nm and an emission peak of 420 nm while the waveshifter, BC484,

has an absorption peak of 375 and an emission peak of 430. Either of these would work

well as a waveshifter, however, the scintillator will also convert some of the x-rays to light. 

Unfortunately, according to simulations, a 1 cm thick piece of BC408 added to YAP pushes 

the peak x-ray absorption higher and absorbs quite a few high energy x-rays (fig. 55). The 

question is whether or not the waveshifter reacts to x-rays as well. An experiment was 

performed using the Hamamatsu R268 PMT powered by the voltage divider shown in 

figure 28 with three different scintillators. The x-rays were provided by a ScanRay Torrex 

II Fluoroscopic inspection system running at 50 keV and 1.0 mA. The scintillators tested 

were:

1. 46.35 X 63.37 X 10 mm thick BC408

2. 26.18 X 50.61 X 13.25 mm thick BC48460

3. 24.5 round X 20 mm thick CsI(Na)

The CsI(Na) scintillator was used for comparison. The scintillators were placed so that the 

large flat portion was against the face of the PMT (fig. 56). The output current was 

obtained by connecting the signal directly from the PMT anode to a Wavetek 27XT 

multimeter.61 The results are shown in table 8 along with light output information provided 

by Bicron and the calculated relative light output to see if, very roughly, the measurements 

make sense, which they appear to do. From this, we see that the BC484 has practically no 

conversion of x-rays to light and thus is an ideal candidate for the light guide. The small 

signal measured by the PMT without any scintillator is likely caused by x-ray fluorescence 

in the glass of the PMT. The signal for BC408 is expected to be small due to lower 

stopping power for the x-rays than the CsI(Na).
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Sample Measured PMT 
current 
(|iA)

Measured relative 
light output 
(% CsI(Na))

Relative light output 
(% CsI(Na))

CsI(Na) 69.4 100 100
BC408 20.1 29.0 37.6
BC484 1.8 2.6 N/A
PMT alone .9 1.3 N/A
Table 8: Results of x-ray induced light output measurements.
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Figure 55: Absorption of 200 pm YAP verses 
200 pm YAP plus 1 cm BC408.

Q
S am p le

Xrays
Figure 56: Experimental setup to
measure response of samples to x-rays.

The YAP-waveshifter assembly is produced by coupling the YAP to the BC484 with 

optical grease toward one end of the waveshifter and optically gluing a prism to the other 

end of the waveshifter. The prism has its angled surface mirrored so even light entering at 

an angle which is not able to be redirected by total internal reflection is still reflected into the 

PMT. The entire assembly, except for the output of the prism is wrapped in white Teflon 

tape which has extremely good reflective properties. The prism is then coupled to the PMT 

with optical grease.62 To complete the detector, the 1 ccm LSO is wrapped on 5 sides with 

Teflon tape. Its sides are also wrapped in lead foil, as described in chapter 4, and it is 

optically coupled to the second PMT with optical grease. The rest of this PMT’s face is
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covered with 3 mm of lead shielding to prevent stray x-rays from directly interacting with 

the glass. To produce better energy separation a brass filter is placed between the BC484 

and the LSO. Simulations performed using Photcoef showed that 0.82 mm of brass 

seemed to offer the best compromise between attenuating the x-ray beam too much and 

separating the high vs. low x-ray energy absorption peaks. The x-ray absorption for the 

low (YAP) and high (LSO) energy detectors are shown in figures 57 and 58 for a 100 keV 

x-ray voltage and in figures 59 and 60 for 120 keV x-ray voltage. The energy difference 

between the peaks for 100 keV is 39 keV and for 120 keV is 47 keV which, from a search 

of the literature, is one of the best energy separations achieved from a dual detector system 

and is similar to that achieved from a system switching the x-ray voltage with filtration seen 

above. The majority of previous systems only achieved about a 30 keV separation.

1.2

Ya p
1

w'c3 0.8©.>

.-S' 0-6</>

SO■o
|  0.4 

8 
§

0.2

00 20 40 60 80 100

Energy (keV)

Figure 57: Absorption spectra of the low 
and high x-ray energy detectors for 100 keV 
x-ray voltage.
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Figure 58: Same as figure 57 but with 
the low and high energy absorption peaks 
normalized.
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Figure 59: Absorption spectra of the low 
and high x-ray energy detectors for 120 keV 
x-ray voltage.

Figure 60: Same as figure 59 but with 
the low and high energy absorption peaks 
normalized.

From studies performed earlier we had identified some of the few PMTs which 

would work under the extreme conditions found in scanning beam x-radiography. It was 

found that the Electron Tubes 9125B PMT had higher gain than the Hamamatsu R268 

PMT and thus it was coupled to YAP which is likely to have lower light output due to its 

intrinsic lower light production as well as only detecting the lower energy x-rays meaning 

fewer photons produced per x-ray. This particular matching of PMTs is not absolutely 

needed due to the overall high signal rates produced by the large number of x-rays detected. 

Thus we usually run the PMTs at rather low supply voltages which keeps the gain low and 

the anode current within acceptable limits. The FET stabilized voltage divider shown in 

figure 28 was used to power the PMTs

A picture of the mechanical assembly is shown in figure 61. The outer box is made 

of aluminum and is lined on the inside with 3 mm of lead wrapped in yellow protective tape. 

A square hole at the upper left end allows x-rays to enter and be absorbed by the detector 

assembly described above. The scintillators and light guides are held in place with red RTV 

sealant. The PMTs with their voltage dividers are protected inside the black plastic tubes
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seen in the picture and are spring loaded against their respective scintillator or light guide. 

The top PMT is pressed against the LSO scintillator and the bottom tube is pressed against 

the output from the prism. High voltage and signal cables for each detector feed through 

the back of the detector housing to externally mounted connectors. To insure light tightness 

of the housing, all holes and edges are covered with black electricians tape. For mounting 

purposes, a rod is screwed into one side of the housing.

Figure 61: Picture of the two-detector dual energy sensor used in these measurements.

Detective quantum efficiency

One of the defining parameters of an imaging system is the detective quantum 

efficiency (DQE). The general definition of DQE is

D Q E _______signal recorded  _()
signal incident on detector
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How one applies this definition depends on the type of detector one uses. There are 

basically two types of detectors - integrating and single photon counting. For an integrating 

detector, the equation becomes

for signal S and noise N. For an ideal Poisson process such as the production of x-rays, 

the input signal to noise is just related to the number of input photons ( n j  as

Thus, the main factors affecting the image abilities of an integrating detector are its 

efficiency of detecting the x-rays and the electronic noise in the system.

For a single photon counting detector there is theoretically no electronic noise to 

degrade the image, however, the dead time of the detector can cause counting losses (fig. 

62). The type of dead time, paralyzable vs. nonparalyzable, tells one the amount of loss to 

expect. In both cases we assume a fixed dead time x. For a paralyzable detector, if an event 

occurs during the dead time of a previous event, the dead time is extended by x. For a 

nonparalyzable detector, the dead time is not extended and the detector becomes live sooner.

(5-2)

(5-3)

Similarly, the signal recorded with a detector having an efficiency of e is

(5-4)

Additional noise in the system (aadd) decreases the signal to noise ratio by

(5-5)

Now, substituting equations (5-3) and (5-5) into equation (5-2) we get

DQE = (5-6)
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Events in the detector

Paralyzable 

Nonparalyzable

 „  ,  _ ____  Time

Dead time Detector output

Figure 62: The dead time of a detector (x) can 
cause counting losses in a single photon counting 
detector. The type of dead time, paralyzable vs. 
nonparalyzable, factors into the amount of the loss.

The reason one might want a paralyzable detector is to make sure a previous event does not 

interfere with a current event as in the case of one wanting to measure pulse height of each 

event. To calculate the dead time losses we assume a steady state source of radiation and a 

long counting time so that the rates can be considered averages. For the two types of 

detectors we get63

m = — ——  Nonparalyzable detector (5-7)
enr + 1

m = fine'317. Paralyzable detector (5-8)

Where n is the true count rate, m is the measured count rate, and T is the dead time, 

substituting these equations into equation (5-1) we get

DQE= — -—  Nonparalyzable detector (5-9)£nr + 1

DQE = ee'317. Paralyzable detector (5-10)

These equations do not take into account false counts where spurious noise might trigger a 

count or missed counts due to the signal being below the threshold of the system. To see
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how these equations affect the DEQ the efficiency was assumed to be 0.8, the dead time is 1 

|is, and the noise was selected to be 10 photons and 100 photons per second (fig. 63). One 

sees that an integrating detector works best at higher x-ray exposure rates while a counting 

detector works best at lower rates.

In the counting measurement of x-ray flux in chapter III there was a counting loss 

seen at higher measurement rates. If we assume a detection efficiency of 1 and a dead time 

of 100 ns, the DQE according to equation (5-9) is 0.962 for an input flux of 3.9535 x 105 

x-rays/s. The measured counting efficiency or DQE at this rate was 0.960. Although this 

DEQ is very high, it is only part of what goes into the quality of the image. The number of 

counts per image pixel also factors into the standard deviation one sees in the image. At this 

rate, one would see less than 1 count per pixel for each 2 second scan and thus it would take 

quite a few scans to build up an image with a low standard deviation. At the standard x-ray 

flux rate used during imaging, the DQE of this detector is only 0.043 (fig. 64).

In the other measurement used to estimate the x-ray flux in Chapter III, the standard 

deviation in an image was compared to the amount one would expect based purely on the 

number of x-rays theory would show hitting the detector. If we assume theory is correct 

and takes into account all the losses of the x-rays, then the extra amount of standard 

deviation would only be due to noise. The total standard deviation, oT, is given by

° T  =  4 ° 2n + a 2 a d d  ( 5 - H )

where a n is the standard deviation due to the number of incoming x-rays and a add is the 

additional noise. The total standard deviation was found to be 10.5%, which, assuming 446 

x-rays measured during the 2 (is dwell time for the pixel, is 47 photons. The standard 

deviation due to the number of x-rays is 21 which means the additional noise is equivalent 

to 42 photons. If we assume an efficiency of 1, the means we have a DQE of 0.20 (fig. 64). 

The locations of the DQEs for the different detectors on the graphs is at different rate
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Figure 64: Comparison of DQEs for the integrating and counting detectors used in 
these studies.

locations because they operate very differently. The integrating detector is located at the rate 

of 446 because that is the number of x-rays per scan which hit the detector for that image 

pixel. The counting detector rate is the continuous rate since that, along with the dead time, 

determine how many x-rays are able to be detected. One sees that, to make improvement to 

the integrating detector one needs to either lower the noise or increase the number of 

photons delivered to the detector. To make improvements in the counting detector, one 

needs to increase its rate capability.
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Calibration

Calibration is probably one of the most difficult and most crucial parts of this 

technique. One must design calibration phantoms, acquire and normalize the images, and 

select a fitting routine which provides the best fits to the thickness of the materials. In these 

tests, an x-ray scattering problem was found which affects the quality of the calibration. 

Calibration phantoms for dual energy x-radiography usually consist of either wedges or 

step wedges of two different materials. For medical applications the two main materials 

used are acrylic (which mimics soft tissue) and aluminum (which mimics bones). For 

comparison to other’s results, these materials were chosen to start with as well as an acrylic 

- copper phantom. Owing to the relatively low x-ray flux from the Digiray system, however, 

it is difficult to use higher Z phantoms because too few x-rays are then transmitted to the 

detectors.

Two different acrylic-aluminum phantoms were used, a thin version and a thick 

version. The thin version calibration would be most appropriate with aircraft materials 

which are relatively thin. The thick version calibration would be used with other industrial 

imaging. The thin version used 2.71 mm thick plates of acrylic and a step wedge made of 

10 steps of 1.56 mm thick aluminum glued together. The thick version used 5.38 mm thick 

plates of acrylic and a commercial aluminum step wedge sold for testing x-ray machines 

which had 11 steps of approximately 3 mm each. Only the first 10 steps were used here 

due to the low x-ray intensity. It should be noted, however, that calibration phantoms used 

by others tend to be about twice as thick as these phantoms. The x-ray flux limitations from 

the Digiray machine tend to limit us in this respect. The acrylic -  copper phantoms used 

2.71 mm thick plates of acrylic with a step wedge made of 10 steps of .63 mm thick copper 

super glued together. Table 9 shows the thicknesses of the phantoms used.
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Name of 
phantom

Thin Al, Thin PI Step Al, Thick PI Copper, Thin PI

\Material
Step

Acrylic Aluminum Acrylic Aluminum Acrylic Copper

1 2.71 1.56 5.3800 4.9276 2.71 .63
2 5.42 3.12 10.760 7.9276 5.42 1.26
3 8.13 4.68 16.140 10.928 8.13 1.89
4 10.84 6.24 21.520 13.928 10.84 2.52
5 13.55 7.80 26.900 16.928 13.55 3.15
6 16.26 9.36 32.280 19.928 16.26 3.78
7 18.97 10.92 37.660 22.928 18.97 4.41
8 21.68 12.48 43.040 25.928 21.68 5.04
9 24.39 14.04 48.420 28.928 24.39 5.67
10 27.10 15.60 53.800 31.928 27.10 6.30

Table 9: Thickness (in mm) of the calibration phantoms grouped in the combinations used 
to perform the calibrations.

The way in which the calibration images are acquired and normalized is quite 

important as it will affect the quality of mathematical fit to the data and thus the ability to 

correctly reconstruct the images. In order to get high quality images with scanning beam x- 

radiography, two problems need to be solved. The first is image normalization. Since the 

scanning plate is flat and a small area “point” detector is used, the x-ray source to detector 

distance changes according to where on the scanning plate the x-rays are coming from at the 

moment. This is a rather large effect because of the inverse square law reduction in x-ray 

intensity in the cone of acceptance of the detector due to distance and not the slight extra 

absorption in the increased air distance. To see this effect a low energy detector was used 

centered 10 cm from one edge of the 25.4 cm diameter scanning plate. The distance of the 

detector from the scanning plate was 50 cm which, by geometry, gives one a distance of 

52.3 cm from the far side of the scanning plate to the detector. Figure 65 shows the image 

obtained using a thick piece of lead on the plate to obtain a value for no x-rays reaching the 

detector. The plot in Figure 65 is a cut through the image with the “no x-ray” value 

subtracted from the signal. The peak value where the x-ray detector is centered is 246.52 

while the value at the far edge is 225.41, which indicates an 8.5% effect. Equation (5-12) 

shows the inverse square law calculation in very good agreement with experiment.
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502246.52 * = 225.2
52.5

(5-12)
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Figure 65: Example of the importance of normalizing the image to correct for detector to x- 
ray source distance. The image (left) is a background scan with a thick piece of lead. The 
plot on the right is a profile cut across the scanning plate. There is an 8.5% difference from 
the center of the detector to the far edge.

Another problem which must be handled by the normalization routine is that, over 

time, the system is not perfectly stable. Thus one needs to correct for changing offsets from 

the detectors and different intensities from the x-ray system. This was solved by taking a 

sample image and a background image in which both have an area in the image where all the 

x-rays are stopped by an absorber (offset) and an area where none of the x-rays are stopped 

(air).64 The sample image contains the sample being imaged while the background image is 

the same image without the sample. The normalized image is then calculated using the 

formula

(Sample(x,y) - offset 1) * (air2 - offset2)Normalized Image(x,y) = (5-13)
(Background^, y) - offset2) * (airl - offsetl)

Thus the offset measurements correct for detector variations, the air measurements correct 

for x-ray intensity variations, and the background image corrects for the intensity variation
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caused by detector to source distance changes. Using this method, thickness variations of 

aluminum have been measured to within 2%. The results of this correction are shown in 

figure 66 for a low x-ray energy image of an aluminum step wedge where we see “A ir” 

section flattens out considerably.

CO 150

Q _ 50

Air-

Al Step 
-Wedge

„— ; i ^
Mir ; " T " |

i i
... j

1 i
Al Step

...i.J. _.r "Wedge

300 400 500 '

Location (Pixels)
Figure 66: Example of die normalization of an image. The image (left) contains an 
aluminum step wedge and a thick piece of lead. The plots are a profile cut across the 7th 
step of the wedge before normalization (upper) and after normalization (lower).
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Figure 67: Image (left) of 16.14 mm of acrylic with aluminum step wedge and a profile cut 
(right) across the plastic showing x-ray scatter near the edges.
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A second problem appears to be related to scattering. Figure 67 shows the 

normalized low x-ray energy image of a 16.1 mm thick piece of acrylic with an aluminum 

step wedge sitting on it and a plot of a profile cut horizontally across the acrylic part 

towards the top of the image. Note the increase in the detected x-rays just before the x-ray 

beam reaches the acrylic in the “Air” area. Scattering from the edge of the acrylic also 

seems to affect the beam when it goes through the acrylic causing a loss of x-rays near the 

edge. Geometrical effects, i.e. x-rays travel through differing thicknesses of acrylic on their 

way to the detector due to detector to x-ray source differences as seen above, were ruled out 

as the cause as this would only amount to a 0.2% effect at 30 keV, the peak absorption of 

the low energy detector. We see an effect 10 times larger. Geometrical effects also would 

not explain why we see an increase in signal before the x-ray reaches the object.

60

High X-ray Energy Scan50

40O)

30

Low X-ray Energy Scan20

10200 250 300 350 400 450 500 550

Detector

Object

Distance (Pixels)

Figure 68: Profile cut across the high and low x-ray 
energy images of one step of the aluminum step 
wedge.

Grid
I / /  / / / /  / I \ I \ \ \  \ \  l

X-ray Scanning 
Plate

Figure 69: Diagram of scanning 
beam x-radiography setup 
using an anti-scatter grid.

A clue was found when one compares the low versus high energy x-ray images with 

the aluminum step wedge. If one looks at figure 66 one barely sees this effect in the lower 

graph. Figure 68 shows a comparison of the same scan between the high and low energy x- 

ray detectors. The effect is clearly visible on the high energy image but not on the low 

energy image. If one looks back at figures 8 and 9 one sees that, at 30 keV for acrylic,
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Compton scattering makes up about 60% of the attenuation while it only makes up 13% for 

aluminum. At 70 keV, the peak absorption energy of the high energy detector, Compton 

scattering makes up 67% of the attenuation for aluminum. One saw earlier that the x-rays 

from the Digiray system come out over wide angles (up to +/- 45°). Now, if one looks at 

figure 11 one sees that, at 100 keV, Compton scatter is quite significant even out to 45°. 

The x-rays are scattering off the objects and into the detector based on their Compton 

scattering component. Also, at 45°, the fraction of energy retained by the scattered photon at 

these energies is nearly the same as the incoming photon and thus impossible to distinguish 

with our detector system.

Compton scattering makes dual energy calibration more difficult. Due to these 

enhanced edges, one must measure the attenuation of the materials as far from the edges as 

possible in order to get the correct values. Also, the normalization routine can be tainted if 

the object is low Z and tall, which increases scatter from areas in which one measures the 

“Air” value. There are two solutions to this problem. The first is to make large but thin 

calibration phantoms to obtain a large number of thickness sample points for the fitting 

routine. That requires one to take many calibration images due to the limited size of the 

imaging area.

The second solution is to use an anti-scatter grid between the x-ray tube and the 

object (fig. 69). This grid only transmits those x-rays traveling towards the detectors so that 

wide angle x-rays that scatter off of the objects and into the detector are eliminated. Anti

scatter grids are used for medical purposes to keep scatter from the patient from reaching 

the film. Usually these are made of very thin lead strips with aluminum interspacers on the 

order of 100 strips per inch. For mammography, which uses relatively low energy x-rays 

(~30keV), some grids were developed with low Z fiber interspacers, however, these do not 

appear to be manufactured any longer. Fiber interspaced grids would be preferable in this 

work so that we do not attenuate our lower energy x-rays significantly. Most
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mammography grids today use aluminum interspacers with the lead strips angled in a 

focusing manner pointing towards the x-ray source. These usually have a grid ratio (the 

ratio of height to width of the openings between the lead strips) of 5. To see if and how 

well this enhances the image, a focusing grid was acquired from Soyee products.65 This 

grid is aluminum interspaced 14”x l7” with 85 strips per inch, a grid ratio of 6:1, and a 

focal distance of 34 to 44 inches. Comparisons were made between a 5.38mm thick sheet 

of acrylic alone, the plastic sheet sitting on top of the focusing grid, and the plastic sheet 

sitting on top of a sheet of aluminum of the same thickness as the focusing grid. (fig. 70). 

The aluminum sheet was use to see if there was any effect caused by filtering out the lower 

energy x-rays by the aluminum interspacers. As one can see, the focusing grid greatly 

improves the image.
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Figure 70: Comparison of profile cuts across a 5.38mm thick acrylic sheet alone, 
and sitting on top of an aluminum sheet, and a focusing grid with 100 keV x-rays.
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Once the calibration images have been acquired and normalized, the next step is to 

extract and fit the data. The extraction is performed by measuring the transmission values 

for each acrylic-aluminum or acrylic-copper combination. This is performed by measuring 

the pixel values in the image using a graphics program. The logarithms of these values are 

then used in a fitting routine to match the high and low x-ray energy transmission values to 

the thicknesses of the materials. The selection of the fitting routine has a great impact on 

how well one is able to determine the thickness of the calibration materials and thus how 

well one can perform substance identification. Two of the fitting routines described in 

Chapter IV were tried with the variety of fitting equations shown below.

Linear fit equations:

B12 = a0*M, + aj*Mh + a^M ,2 + a^M ^M ,, + a4*Mh2 + a5*M,3 + 

a6*M,2*Mh + a7*M,*Mh2 + ag*Mh3 

B12 = &Q + a^M , + a2*Mh + a3*M,2 + a4*M,*Mh + a5*Mh2 + a6*M,3 + 

a7*M,2*Mh + ag*M,*Mh2 + a9*Mh3 

B[ 2 = a0*M1 + a,*Mh + a^M j2 + a3*M,*Mh + a4*Mh2 + as*M,3 + 

a6*M,2*Mh + a7*M,*Mh2 + ag*Mh3 + a9*Mh4 +

(5-14)

(5-15)

a7*M,2*Mh + ag*M,*Mh2 + a9*Mh3 + a10*Mh4 +

an*M,3*Mh + a12*M,2Mh2 + a13*M ,*Mh3 + a14*Mh4 (5-17)

Conic fit equations:

(5-18)

VG2 + 4 * h *F - G (5-19)

where
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F = f0 + f,*M, + f2*Mh + f3*M,2 + f4*M,*Mh + f5*Mh2 (5-20a)

G = 1 + g,*M, + g2*Mh (5-20b)

H = ho (5-20c)

Cubic fit equations:

BIi2 = |  (5-21)

B Vtf^4»H»F-G
w 2 * H

where

F = f0 + f,*M, + f2*Mh + f3*M,2 + f4*M *Mh + f5*Mh2

f6*M,3 + f7*M,2*Mh + f8*M,*Mh2 + f9*Mh3 (5-23a)

G = 1 + gj*M, + g2*Mh + g3*M,2 + g4*M*Mh + g5*Mh2 (5-23b)

H = h,, + h,*M, + h2*Mh (5-23c)

As in the last chapter, B, and B2 are the thicknesses of the two calibration materials and M, 

and Mh are the logarithmic transmission measurements.

The linear equations were fit using a least square fitting routine based on singular 

value decomposition.66 The conic and cubic equations were fit with the Levenberg- 

Marquardt algorithm. This iterative algorithm tends to be among the best for non-linear 

fitting due to its robustness and rate of convergence, however, there are many different 

implementations of it and some result in better fits than others. One of the better 

implementations is in the book by Reich.67 The disadvantage of using this fitting routine is 

the requirement of supplying starting values for the fitting parameters. The generally 

suggested way to obtain these starting values is to minimize the linear least squares sum:

^T(F - G* B, 2 - H * B, 2) = min (5-24)

which can be done analytically in closed form.41 The difficulty, however, comes when one 

tries then iteratively to fit using equations (5-19) and (5-22). It is quite easy for the radical
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to converge to an imaginary number during fitting. Even proper starting values will 

sometimes cause the quantity under the radical sign to become negative. It would appear 

that this problem tends to be dependent on the noise in the image. As a test of the 

algorithms, the data used by Cardinal and Fenster41 was duplicated and nearly identical 

results were achieved. The data they used, however, were simulated and had very little noise. 

As mentioned before, our x-ray intensity is rather low and thus the images are much noisier. 

This hypothesis is supported by the fact that the high Z material was able to be fit with 

equation (5-19) when the phantoms were thin and lower Z thus allowing higher x-ray flux. 

The low Z material was not able to be fit with (5-19) at all. It is well known that the low Z 

fits are more difficult due to less contrast between the steps. Table 10 and 11 shows the 

RMS results for the different fitting routines using the phantoms from table 9. Two 

separate measurements were made with the Thin Al / Thin PI phantom to check consistency. 

Also fits were made to the average measured values of the two Thin Al / Thin PI 

measurements and to the combined data from the average Thin Al / Thin PI values and Step 

Al / Thick PI values. The best fitting result came from using the Copper/Thin PI phantom 

with fitting equation (5-21) (figs 71 and 72), although, due to the higher attenuation of the 

lower energy x-rays, only the first 6 steps could be used for calibration. Figure 87 shows a 

profile cut along the copper step wedge from the low energy detector image. The upper 

steps are quite non-linear. Fitting equation (5-18) produced a very poor result with the 

acrylic and the results are shown in figure 73. There was only one case where equation (5- 

19) produced the best fit as shown in figure 74. In general, however, the linear fitting 

equation (5-17) produced consistently good results and, since it is a linear fit, it is fast, 

stable, and does not require initial fit parameters. Figures 75 through 86 show the results 

for all the phantoms using fitting equation (5-17). There were only minor differences 

between the first and second calibration measurements with the Thin Al/ Thin PI phantom 

thus showing the calibrations to be reasonably consistent. The averaged Thin Al/ Thin PI
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data gave average results. The combined Thin Al / Thin PI and Step Al / Thick PI gave the 

worst results which is likely due to the Compton scattering problem as described above that 

problem is much worse in the Thin Al/ Thin PI case. Figure 88 shows a profile cut along 

the Thin Al phantom from the high energy detector image after normalization. One can see 

that some of the steps almost make up a saw tooth pattern which seriously affects the 

calibration. Figure 89 is the same profile cut from the low energy detector image showing 

the expected regular step pattern and figure 90 is the image from the high energy detector of 

the Step Al phantom. The thicker steps of the Step Al phantom greatly reduce the amount 

of Compton scattering. In all cases during these calibrations, the x-ray system was operated 

at 125 keV and 0.5 mA. The images of the phantoms were made up of the sum of 50 scans 

at 4 seconds per scan.

phantom
Fitting equation Thin Al 

Thin PI
Thin A12 
Thin P12

Com Thin Al 
Com Thin PI

Step Al 
Thick PI

Copper 
Thin PI

Thin+Step Al 
Thin+thick PI

9 param linear (5-14) 0.37874 0.39673 0.38504 0.28530 0.03022 0.82932
10 param linear (5-15) 0.37019 0.38391 0.37453 0.27390 0.03009 0.81182
14 param linear (5-16) 0.27117 0.26948 0.26660 0.19086 0.02702 0.73730
15 param linear (5-17) 0.26919 0.26749 0.26455 0.18935 0.02700 0.73630
8 param A/B (5-18) 0.26496 0.28872 0.27120 0.47364 0.04366 1.34495
9 param sq rt. (5-19) 0.26222 0.28628 0.27107 Bad Bad Bad
15 param A/B (5-21) 0.41526 0.30073 0.29989 0.29890 0.02021 0.69455
18 param sq rt (5-22) Bad Bad Bad Bad Bad Bad
Table 10: RMS error in mm in the fitting results of the thickness of either the Copper or 
Aluminum in the different phantoms with different fitting equations. The bold faced 
numbers are the best results.

phantom
Fitting equation Thin Al 

Thin PI
Thin A12 
Thin P12

Com Thin Al 
Com Thin PI

Step Al 
Thick PI

Copper 
Thin PI

Thin+Step Al 
Thin+thick PI

9 param linear (5-14) 2.06700 2.20032 2.11796 1.24061 0.93511 2.34691
10 param linear (5-15) 1.99701 2.07287 2.02148 1.19165 0.91332 2.34439
14 param linear (5-16) 1.41495 1.40371 1.38935 0.84462 0.67420 2.28083
15 param linear (5-17) 1.41140 1.40321 1.38748 0.84421 0.66832 2.27874
8 param A/B (5-18) 2.99812 3.05975 3.01873 1.30549 3.15107 4.68466
9 param sq rt. (5-19) Bad Bad Bad Bad Bad Bad
15 param A/B (5-21) 1.70334 1.42926 1.51507 1.20439 0.61253 2.32767
18 param sq rt (5-22) Bad Bad Bad Bad Bad Bad
Table 11: RMS error in mm in the fitting results of the thickness of Acrylic in the different 
phantoms with different fitting equations. The bold faced numbers are the best results.
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Figure 71: Calculated vs. Actual thickness 
of Copper based on the Copper / Thin PI 
phantom using fitting equation (5-21).
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Figure 72: Calculated vs. Actual thickness 
of Acrylic based on the Copper / Thin PI 
phantom using fitting equation (5-21).
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Figure 73: Calculated vs. Actual thickness 
of Acrylic based on the Copper / Thin PI 
phantom using fitting equation (5-18) 
showing a very poor fit.
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Figure 74: Calculated vs. Actual thickness 
of Aluminum based on the Thin Al / Thin 
PI phantom using fitting equation (5-19).
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Figure 75: Calculated vs. Actual thickness 
of Aluminum based on the Thin A1 / Thin 
PI phantom using fitting equation (5-17).
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Figure 77: Calculated vs. Actual thickness 
of Aluminum based on the Thin A1 / Thin 
PI phantom using fitting equation (5-17) 
on a second calibration.
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Figure 76: Calculated vs. Actual thickness 
of Acrylic based on the Thin A1 / Thin PI 
phantom using fitting equation (5-17).
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Figure 78: Calculated vs. Actual thickness 
of Acrylic based on the Thin A1 / Thin PI 
phantom using fitting equation (5-17) on a 
second calibration.
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Figure 79: Calculated vs. Actual thickness 
of Aluminum based on the Step A1 / Thick 
PI phantom using fitting equation (5-17).
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Figure 80: Calculated vs. Actual thickness 
of Acrylic based on the Step A1 / Thick PI 
phantom using fitting equation (5-17).
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Figure 81: Calculated vs. Actual thickness 
of Copper based on the Copper / Thin PI 
phantom using fitting equation (5-17).
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Figure 82: Calculated vs. Actual thickness 
of Acrylic based on the Copper / Thin PI 
phantom using fitting equation (5-17).
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Figure 83: Calculated vs. Actual thickness 
of Aluminum based on the combined Thin 
A1 / Thin PI phantom data runs using 
fitting equation (5-17).
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Figure 85: Calculated vs. Actual thickness 
of Aluminum based on the combined Thin 
A1 / Thin PI and the Step A1 / Thick PI 
phantom data using fitting equation (5- 
17).
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Figure 84: Calculated vs. Actual thickness 
of Acrylic based on the combined Thin A1 / 
Thin PI phantom data runs using fitting 
equation (5-17).
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Figure 86: Calculated vs. Actual thickness 
of Acrylic based on the combined Thin A1 
/ Thin PI and the Step A1 / Thick PI 
phantom data using fitting equation (5- 
17).
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Figure 87: Profile cut along the copper 
step wedge from the low energy detector 
image showing attenuation effects on the 
upper steps.
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Figure 88: Profile cut along the Thin A1 
step wedge from the high energy detector 
image showing the Compton scattering 
problem.
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Figure 89: Profile cut along the Thin A1 
step wedge from the low energy detector 
image showing no Compton scattering.
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Figure 90: Profile cut along the Step A1 
phantom from the high energy detector 
image showing only minor Compton 
scattering effects.

Calibration procedure

We summarize here the previous sections and give a step by step calibration 

procedure of the Digiray x-radiography system for dual energy imaging.

1. Mount the dual energy detector 50 to 100 cm vertically from the center of 

the scanning plate. No objects should be on the scanning plate at this time.
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2. Decide if an anti-scatter grid will be used or not. If one is used, place it on 

the x-ray scanning plate now and mount it so that it will not move for all 

future scans.

3. Select the maximum x-ray energy to be used (preferably over 100 keV) on 

the Digiray system and run at the highest x-ray intensity it can reliably 

operate on. Also select the scan speed and resolution. In general the 

highest resolution (1024 x 1024) with its associated fastest scan time (1 to 

2 seconds) was usually used. All images should be taken with these same 

parameters.

4. Start with a nominal high voltage of 800 V on both the PMTs and connect 

the signal outputs to p-amp meters.

5. Start scanning the x-ray at the preferred scanning speed and adjust each 

PMT high voltage so that the peak current of the signals is about 50 pA. 

These voltages should be kept for all future imaging with this x-ray energy 

and intensity.

6. Turn off the x-ray and place a thick lead or tungsten absorber on the 

scanning plate to provide an imaging area where no x-rays are transmitted. 

A 2 inch square by 1 cm thick piece of lead was used in these studies. This 

should be placed near one edge to allow the maximum open area for later 

imaging. In order to automate the normalization procedure, this absorber 

should not be moved for all subsequent imaging.

7. Connect the PMT signal cables to the signal inputs of the Digiray system 

and start scanning the x-ray beam.

8. Adjust the computer controlled gain and offset so that the “Air” and 

“Absorber” regions use the entire dynamic range of the system with a 

small amount of head room. It is best to coarsely adjust these values in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9 0

dynamic scanning mode and then use the averaging scanning mode (with 

about 10 to 20 scans) to do fme tuning. Every image from that point will 

be acquired using the same parameters selected.

9. Determine how many scans will be needed in the averaging scanning mode 

to produce the desired quality of images. Usually a minimum of 20 scans 

should be acquired, however, 50 or more is preferred. It is also preferred 

that all future scanning based on this calibration be done with the same 

number of scans.

10. Acquire the high and low x-ray energy background images which is 

comprised of just the absorber sitting on the scanning plate.

11. Acquire high and low x-ray energy images of the copper or aluminum step 

wedge sitting on ten layers of acrylic. It is preferred to place the step 

wedge closer to one edge as seen in figure 65 so that values of the acrylic 

only transmission can be obtained. It also may be preferable to place the 

thick part of the step wedge towards the center of the scanning plate.

12. Remove 1 layer of acrylic while keeping the location of all the remaining 

objects as close to the same positions as possible. Acquire the high and 

low x-ray energy images of these objects.

13. Repeat step 12 until all the acrylic pieces have been removed and acquire an 

image the step wedge without any acrylic. One should then have 22 images 

(11 high and 11 low x-ray energy images) plus 2 background images.

14. Normalize the images using equation (5-13) and take the natural logarithms 

of the average air transmission value divided by the image pixel values. The 

program written here to do this is based on one provided by F.R. Parker of 

NASA-Langley and is found in appendix A. The resulting values were 

multiplied by 10000 to produce 16 bit integer pixel values.
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15. Use an image analysis program such as ImageJ68 to obtain the 

transmission values from the images. Using this program a 30 x 80 pixel 

area of each combination of acrylic-metal thickness was selected. Selecting 

“Measure” from the “Analyze” menu gave the mean value of the pixels.

The selected areas should be away from the edges and, for the step wedge, 

centered on the step to obtain the most accurate readings.

16. Create a data table of the high and low x-ray energy transmission values for 

all thickness combinations dividing back out the 10000 multiplier used in 

step 14. The multiplier is divided out again to reduce round off error in the 

calibration routine.

17. Produce a thickness -  energy transmission file from this data table. A 

short example is shown in appendix B.

18. Run the data through the calibration routine to obtain the fitting constants.

To graphically see the goodness of this fit, one can use these fitting 

constants to obtain the calculated values of the thicknesses of the acrylic, 

aluminum, or copper and plot that against the actual thicknesses.

At this point, the system is calibrated and one can used the fitting constants to 

project out parts of the image discussed in the next section.

Image projection

Using the fitting constants one can reconstruct the images to project out selected 

materials in the image. The main equation used for this is equation (4-17) where images B1 

and B2 are obtained by applying the fitting equations to every pixel in the normalized high 

and low energy images. B1 is the Acrylic basis image and B2 is the aluminum or copper 

basis image. To see how well the calibrations work with the images, the B1 (Acrylic 

projection) and B2 (aluminum projection) images for the calibration phantom with seven
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Figure 91: Comparison of a profile cuts along the copper step wedge for the Copper / Thin 
PI phantom for the normalized low and high energy images and the copper and Acrylic 
projection images obtained with fitting equation (5-21).

layers of Acrylic were analyzed by comparing the profile cuts along the step wedges. 

Figure 91 shows the profile cut for the low energy, high energy, copper projected, and 

Acrylic projected images for the Copper / Thin PI phantom using fitting equation (5-21).
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As can be seen, the problems in the low energy image greatly affect the projections on the 

upper steps. Edge effects, also coming from the low energy image, show up significantly in 

the Acrylic projected image. If the fit were perfect, the image would be a flat line. Figure 92 

shows the results for this phantom using equation (5-17). The main difference between 

these two fitting routines is what happens at the upper steps. Fitting equation (5-21) goes 

negative while fitting equation (5-17) produces a high value. Figure 93 shows the result of 

using the worse fit, fitting equation (5-18), on this phantom for the acrylic projection. 

Figure 94 shows the copper and Acrylic projection images using equation (5-17).
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Figure 92: Comparison of a profile cut along the copper step wedge for the Copper / Thin 
PI phantom using fitting equation (5-17) to obtain the copper and Acrylic projection images.

Comparison profiles of the first measurement of the Thin A1 / Thin PI phantom with 

seven pieces of Acrylic projected with equation (5-17) are shown in figure 96. Due to the 

better quality of the low energy data, the projection images are much better except at the 

highest step of the aluminum step wedge. The middle steps in the Acrylic projection still 

show some edge effects due to the Compton scattering seen in figure 88 for the high energy 

image of the step wedge alone. Figure 95 shows the cut across the step wedge seen in
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figure 97 for the aluminum projection using equation (5-19), the only time a calibration with 

a square root in it worked. The top image in figure 95 shows a cut along the step wedge 

near the center of the steps showing nonlinear behavior on the top steps. This is due to 

instability of the fitting equation in this area seen as black specs in the image in figure 97. 

The bottom image is with the profile cut near the lower edge of the step wedge which had 

better stability for some reason. The profile of the steps looks much better although it is 

quite noisy and nonlinear.
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Figure 93: Profile cut across the step wedge showing the results of using the worst fit, 
fitting equation (5-18), on the Copper / Thin PI phantom for the acrylic projection

Figure 94: Copper (left) and Acrylic (right) projection images of the Copper/ Thin PI 
phantom using equation (5-17).
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Figure 95: Comparison of profile cuts along the aluminum step wedge for the first 
measurement of the Thin A1 / Thin PI phantom of the aluminum projection image obtained 
with fitting equation (5-19). Top plot is near the center of the steps while the bottom plot is 
near the edge of the steps.

Comparison profiles of the Step A1 / Thick PI phantom with seven pieces of Acrylic 

projected with equation (5-17) are shown in figure 99. Again, the quality of the low energy 

image on the upper steps limits how well the aluminum and Acrylic projections works. 

Overall, however, the results are quite good with the Acrylic projection looking quite flat on 

the lower steps. The projected images are shown in figure 98 where the lead step numbers 

are clearly visible. For comparison, the aluminum and Acrylic projection profiles using 

equation (5-21) are shown in figure 100 which shows some instability on the upper steps of 

the aluminum projection. For most cases the stability of fitting equation (5-17) will likely 

be preferred by the user.
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Figure 96: Comparison of a profile cut along the thin aluminum step wedge for the first 
measurement of die Thin A1 / Thin PI phantom for the normalized low and high energy 
images and the aluminum and Acrylic projection images obtained with fitting equation (5- 
17).
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Figure 97: Aluminum projection image (left) and close up of the top steps (right) of the 
Thin A1 / Thin PI phantom obtained with fitting equation (5-19). The black specs on the 
steps have a value around zero due to instability in the fitting equation.

Figure 98: Aluminum (left) and Acrylic (right) projection images of the Step A1/ Thick PI 
phantom using equation (5-17).

We will now consider the application of the combined Thin+Step A1 / Thin+Thick 

PI calibration to the two aluminum based phantoms using fitting equation (5-17). For the 

Thin A1 / Thin PI phantom, the profiles (fig. 101) showed a little smoother behavior 

compared to that seen in figure 95. The improvement in the Acrylic projection image is 

seen in figure 102 where the step wedge is less apparent. For the Step A1 / Thick PI 

phantom, the profiles (fig. 103) looked quite similar to those seen in figure 98 with a slight 

improvement seen in the Acrylic projection. Again an improvement in the Acrylic projection 

image is seen (fig. 104).
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Figure 99: Comparison of a profile cut along the aluminum step wedge for the Step A1 / 
Thick PI phantom for the normalized low and high energy images and the aluminum and 
Acrylic projection images obtained with fitting equation (5-17).
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Figure 100: Comparison of a profile cut along the aluminum step wedge for the Step A1 / 
Thick PI phantom for the aluminum and Acrylic projection images obtained with fitting 
equation (5-21).
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Figure 101: Comparison of a profile cut along the aluminum step wedge for the Thin A1 / 
Thin PI phantom for the aluminum and Acrylic projection images obtained with fitting 
equation (5-17) on the combined Thin+Step A1 / Thin+Thick PI calibration.
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Figure 102: Acrylic projection images of the Thin Al/ Thin PI phantom using the Thin Al/ 
Thin PI data (left) and the combined Thin+Step Al / Thin+Thick PI data (right) with 
equation (5-17).
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Figure 103: Comparison of a profile cut along the aluminum step wedge for the Step Al / 
Thick PI phantom for the aluminum and Acrylic projection images obtained with fitting 
equation (5-17) on the combined Thin+Step Al / Thin+Thick PI calibration.

To get an idea of how well one can identify, project out, and remove an unknown 

material, the Copper / Thin PI calibration data obtained with fitting equation (5-17) was 

applied to the Thin Al / Thin PI and Step Al / Thick PI phantom images where the aluminum 

is treated as the unknown. Using 90 degrees for the angle in the combination equation (4-
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17), one obtains the copper projection image, also known as the Acrylic subtraction image, 

for the phantoms (fig. 105). In both cases there was a significant improvement in the image 

of the aluminum step wedge compared to the results seen in figures 95 and 98.

Figure 104: Acrylic projection images of the Step Al/ Thick PI phantom using the Step Al/ 
Thick PI data (left) and the combined Thin+Step Al / Thin+Thick PI data (right) with 
equation (5-17).
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Figure 105: Acrylic subtraction images of the Thin Al / Thin PI (top) and Step A1/ Thick PI 
(bottom) phantoms using the Copper / Thin PI data with fitting equation (5-17).
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Figure 106: Aluminum subtraction images of the Thin Al / Thin PI and Step Al/ Thick PI 
(see text) phantoms using the Copper / Thin PI data with fitting equation (5-17).

To obtain the aluminum subtraction image the angle in equation (4-17) was varied 

until the lower step of the step wedge ceased to contrast with the Acrylic. For the Thin Al 

phantom this was found to be 91.3° while for the Step Al phantom it was found to be 94.8°.
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The angles should be the same in both cases so there is a few degrees error between the two 

results. The Thin Al phantom was also reconstructed using the 2nd and 4th steps where 

92.2° and 93.4° respectively were found, closer to the Step Al result. Figure 106 shows the 

profiles while figure 107 shows the images. Certainly the Thin Al phantom looks best 

using the first step with the smaller angle, however, the forth step with the larger angle is 

more likely correct given the quality of the original data.

Figure 107: Aluminum subtraction images of the Thin Al / Thin PI phantom using the first 
step (upper left), second step (lower left), and forth step (lower right) and the Step Al/ Thick 
PI phantoms (upper right) using the Copper / Thin PI data with fitting equation (5-17).
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Figure 108: Aluminum subtraction images of the Thin Al / Thin PI and Step Al/ Thick PI 
(see text) phantoms using the Copper / Thin PI data with fitting equation (5-21).

The same routine was carried out using the Copper / Thin PI calibration data 

obtained with fitting equation (5-21). For the Step Al phantom, the disappearance angle for 

the first step was found to be 92.9°, however, the result was much less stable. For the Thin 

Al phantom the results were 91.0°, 91.9°, and 93.5° for the first, second, and forth steps 

respectively (fig. 108). The results with fitting equation (5-17) for the Step Al phantom
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suggests a characteristic angle of 4.8° for aluminum. An analysis to find the largest 

difference between the height of the first step of the Step Al phantom verses the background 

Acrylic for different angles found 5.0° to project out the aluminum the most which should 

equal the characteristic angle. For the Thin Al phantom the results were 1.3°, 2.4°, and 3.3° 

for the first, second, and forth steps respectively. The step wedge profiles of projections 

made using 5.0° for the Step Al phantom and 3.3° for the Thin Al phantom are shown in 

figure 109, however, they do not look as good as those using 0°.
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Figure 109: Aluminum projection images of the Thin Al / Thin PI at 3.25° (top) and the 
Step Al/ Thick PI at 5.00° (bottom) phantoms using the Copper / Thin PI data with fitting 
equation (5-17).

Phantoms

To show the usefulness of the dual energy x-radiography technique in practice, a 

series of phantom images were acquired and analyzed. These images were taken with all the
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same parameters as the calibration images. Figure 110 shows the original low x-ray energy 

image of phantom one containing both Acrylic and aluminum plates as well as Teflon, 

Nylon, and ABS plastic cylinders. The plates have many holes with lots of cracks but one 

can not tell if the holes and cracks are in the aluminum or Acrylic plate. One also can not 

tell which plate is aluminum and which plate is acrylic. Using the Step Al / Thick PI 

calibration with equation (5-17) an Acrylic projection is made at 0° which shows that the 

acrylic plate is the square one. It also shows that the majority of the holes and all the cracks 

must be in the aluminum plate since they have disappeared from the image (fig. 111). The 

plastic plate is seen to have a small array of holes of differing depths near the center. Figure 

112 shows the aluminum projection image which highlights the cracks. An aluminum plug 

in the middle right hole in the plastic plate is identified by comparing the Acrylic projection 

where it disappears and the aluminum projection where it is quite clearly seen.

Figure 110: Low x-ray energy image of 
phantom one containing Acrylic and 
aluminum sheets as well as Teflon, Nylon, 
and ABS plastic cylinders.

Figure 111: Acrylic projection (0 degrees) 
of figure 110 identifies which plate is 
Acrylic and which plate has which holes.
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Figure 112: Aluminum projection (90 Figure 113: ABS plastic subtraction image
degrees) of figure 110 which highlights (97.0 degrees) makes the lower right
the cracks in the aluminum. cylinder nearly disappear.

To gain more information about the other materials in the image, the high and low x- 

ray images were combined with different angles until each of the plastic cylinders 

disappeared (figs 113-115). This combination angle is then called the subtraction angle of 

that material. The projection angle is then 90° from that. To verify the projection angle, 

combinations of the high and low x-ray energy images were made at different angles until 

the contrast of each plastic cylinder was the greatest. Table 12 shows the projection and 

subtraction angles found for the materials which shows good agreement between the 

calculated and measured values.

Material Subtraction angle 
(measured)

Projection angle 
(calculated from subtraction angle)

Projection angle 
(measured)

Acrylic 90.00 0.00 0.00
ABS 97.00 7.00 7.00

Nylon 97.72 7.72 7.72
Teflon (TFE) 102.95 12.95 12.94

Aluminum 0.00 90.00 90.00
Table 12: Measured subtraction and measured and calculated projection angles for the 
different materials in phantom 1.
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Figure 114: Nylon subtraction image Figure 115: Teflon subtraction image
(97.7°) makes the lower left cylinder (103.0°) makes the upper right cylinder
nearly disappear. nearly disappear.

As mentioned earlier one can also make one material appear to be another. Thus, if 

one material was filling a void in another material and one just wanted the contrast between 

the two materials to vanish, there is an angle for this. This was tested with the aluminum 

filling the small hole in the acrylic. Figure 116 shows a close-up view of the holes in the 

center of the acrylic plate from the original low x-ray energy image and the images 

reconstructed at 0°, 90° and 79.9° from left to right respectively. The small bits in the image 

are tungsten. One can see that by eliminating the aluminum - acrylic contrast in the right

most image, the shape of the tungsten bit is easier to discern.

A*.

mm
* Iff

_________________________________
Figure 116: Images showing the aluminum plugged hole (right side, middle). From left to
right are the original low energy x-ray image, and 0°, 90° and 79.94° reconstructed images.
The right most image is the aluminum -  acrylic look-alike angle allowing better contrast of
the tungsten bit.
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Figure 117: Low x-ray energy image of a riveted 
aircraft phantom.

Steel Pin

Figure 118: Construction of the 
riveted aircraft phantom.

Figure 119: Steel subtracted (left) and aluminum subtracted (right) images of the riveted 
aircraft phantom. The left image shows the aluminum band is intact while the right image 
shows the head of the rivet it cut.

In a second phantom, images were taken of a riveted aircraft part where one of the 

rivets was partially cut. Figure 117 shows the low x-ray energy image of the good rivet on 

the left and the cut rivet on the right. The construction of this aluminum-steel rivet is shown 

in figure 118. From the image, one can not tell if there is a cut in the aluminum band or in 

the steel pin. As there was steel in the image, reconstructions were made using the copper- 

thin plastic calibration data with the 15 parameter A/B fitting equation as this calibration 

should be better suited to higher Z imaging. Figure 119 shows the steel subtracted image on 

the left and the aluminum subtracted image on the right where we see that the aluminum 

band is intact but the head of the steel pin is cut. Figure 120 shows photographs of the 

front and back of the phantom.
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Figure 120: Photographs of the front and back of the riveted aircraft phantom.

In the final phantom, images were taken of 25 pm thick tungsten foils embedded in 

1/2” thick Plexiglas sitting on the aluminum plate with holes and simulated cracks used in 

phantom 1. Again, the copper-thin plastic calibration data with the 15 parameter A/B fitting 

equation was used as this provided the lowest noise reconstructions. Figure 121 shows the 

original low energy x-ray image (left), tungsten subtracted image (middle), and aluminum 

subtracted image (right). One can see the tungsten foils totally disappear in the middle 

image and the aluminum totally disappears in the right image.

Figure 121: Original low energy x-ray image (left), tungsten subtracted image (middle), and 
aluminum subtracted image (right) of tungsten foils.
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CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

These studies show that scanning beam x-radiography has great promise in dual 

energy imaging, however, there is an issue with noise, low DQE, and scatter. Using special 

techniques in the construction of the x-ray tube, one can increase the x-ray output up to 35 

mA as compared to the 0.5 to 1 mA of the system used in these studies as shown in 

reference 13. This would significantly raise the DQE for an integrating detector. Another 

way to improve the DQE of the integrating detector system is to reduce the electronic noise. 

It is hard to estimate how much of an improvement can be made without replacing the high 

voltage supply and possibly the entire acquisition system supplied with the x-ray system.

As we saw with the counting measurements, it we stay at a lower rate than the dead 

time, a counting detector has a very high DQE. The problem is how to handle the high rate 

of incoming x-rays needed to acquire an image in a reasonable amount of time. There are a 

few possible options. The first would be an array of mini-PMTs. Attempts were made at 

achieving this using the Photonis XP1702 64 channel multianode PMT which has about 5% 

crosstalk between the channels (fig. 122). An 8 x 8 array of 1.5 mm x 1.5 mm x 10 mm 

YAP pixels were placed into a tungsten frame and attach to the PMT so that the pixels were 

centered over the 8 x 8 inputs on the face of the PMT (fig. 123). The plan would be to 

connect each channel from the 8 x 8 output from the PMT to two discriminators with 

different thresholds -  a 128 discriminator system. The discriminator with the lower 

threshold would count all the x-rays hitting crystal pixel while the discriminator with the 

higher threshold would count only the higher energy x-rays. The number of low energy x- 

rays would then be found by subtracting the higher energy x-ray count from the total count. 

The problem found when the detector was tested with the x-ray system was that the 5%

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 1 2

cross talk was too high. If one looks at the center crystal, the 5% crosstalk from each of the 

crystals to the left, right, top and bottom plus the lower crosstalk from comer crystals would 

make up about 30% of the signal. Since the rate we are trying to achieve is 2 or more 

counts per (is, the cross talk starts to cause the signals to overlap and destroy the energy 

information. Tests were made with another version of this PMT which has a fiber optic 

input face plate which greatly reduces the cross talk. The low light transmission through the 

fiber optic, however, did not allow one to see x-rays lower than 60 keV. A possible way to 

overcome this cross talk would be to use small individual PMTs, however, the smallest 

PMTs have an active area of 1 cm x 1 cm. In order to keep the “point” detector idea, one 

would have to couple a small array of crystals to fiber optics which would take the light 

from each crystal to a separate PMT. Unfortunately the light loss in coupling to the fiber 

has a significant affect on the energy resolution. Figure 124 shows the 57Co energy 

spectrum from a single 1.5 mm x 1.5 mm x 10 mm YAP crystal coupled to a Photonis 

XP2262 PMT operated at -1730 V. We see both the full energy peak of 140 keV as well as 

the escape peak at the lower energy. When the same crystal was coupled through a 

Mitsubishi Eska69 3 mm plastic optical fiber and the PMT was operated at -1950 V, the 

peaks were totally washed out (fig 125). Figure 124 shows another problem with this 

method. There will always be the possibility that the full energy of the incoming x-ray will 

not be captured thus causing an escape peak. This would make a higher energy x-ray 

appear as a lower energy x-ray thus causing problems in the reconstruction. In theory, the 

spectrum could be deconvolved to correct for the escaped energy, however, it would have to 

be done on each image pixel which would greatly complicate the reconstruction. The 

current version of the dual energy detector does not suffer from this problem as it works on 

a depth of penetration which is an exponential function of the x-ray energy.
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Figure 122: Photographs of the XP1700 series Figure 123: Layout of 8 x 8 YAP 
of multianode PMTs. crystal array coupled to the XP1702.
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Figure 124: 3'Co energy spectrum from a Figure 125: 3'Co energy spectrum from 
single YAP crystal coupled directly a PMT. a single YAP crystal couple through a 3

mm plastic optical fiber.

The second way to produce a counting detector would be to use a solid state detector 

such as that developed by David Nygren49. This detector is a silicon strip detector where 

the x-rays enter through the edge of the silicon thus making for a long path length to 

achieve a high absorption efficiency. The low / high energy detection is given by reading 

out signals from the front / back of the strip. The down side to solid state detectors is that 

they are slow however, by making strips on the order of 100 pm, we can fit many individual
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detectors into a small area. The small size of each detector reduces the rate per detector 

while the large number of detectors produces a reasonable overall rate. With such a detector 

we do not need real energy resolution, we just count the numbers of x-rays stopped in the 

front versus the back of the strip. This greatly simplifies the electronics which would be 

important as we would need to have a couple thousand channels to acquire an image 

efficiently. This takes us back to a depth of penetration detector but with the advantage of a 

very high DQE.

Another option would be to use a high pressure xenon gas detector similar to the 

solid state detector above. There would be front and back collection regions which would 

give the energy separation. Such a detector built by the University of Siegen has been used 

quite successfully for noninvasive subtraction coronary angiograph with a synchrotron 

radiation source at HASYLAB, DESY.70 They built a detector based on XeC02 with a 

(DQE) of at least 58% (for 20,000 photons/pixel) for 33 keV photons. Only at a flux above 

2.4xl010 photons/s pixel did saturation effects become apparent. The down side is that the 

electronics and mechanics involved with such gas detectors can be much more difficult to 

deal with.
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APPENDIX A 

NORMALIZATION PROGRAM 

This program written in C for the Macintosh using Apple’s free MPW compiler71 

normalizes the images obtained from the Digiray Reverse Geometry X-ray system using 

the equation from ref. 64. The output is the Log of the original image.

This program takes a background file and normalizes the image file according to

"Quantification of Corrosion Damage in Aircraft Skin Using a Novel x-ray 
Radiography System", Presented at the 20th Annual Review of Progress in QNDE, 
August, 1993

Normalized Image = (imagel - offsetl) * (air2 - offset2) / (image2 - offset2) * (airl - 
offset 1)
imagel = object image 
image2 = background image

for the Digiray NDE system. The output file is also the LOG of the normalized file. This 
program handles the new 4 byte/pixel format. The Digiray system runs on a PC while 
this
program was written for the Macintosh so the byte order had to be reversed.

Author
Randy Wojcik (Jefferson Lab)
based on original file obtained from Ray Parker(NASA-Langley)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <math.h>
#include <signal.h>

void main (void); 
void exitpgm (char [ ]); 
void handler (int);
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unsigned 
unsigned short 
long 
FILE 
char 
char 
long

*a, *bg;
*result;
*c;
*instream, *instream2, *outstream; 
filenamelist [2] [32] [99];

fname[32],y,z;
X_R A Y_IMAGES;

void main(){ 
long 
long 
long 
long
unsigned
unsigned short
long
long
long
float
float

filelength, num; 
i,j, k,w; 
bytes; 
jstep;
loop_count=0,num_of_calibrations,parta; 
temp4 ,temp2,temp3,tempi,temp; 
rows, cols;
Xl_offset, Yl_offset, X2_offset, Y2_offset; 
Xl_air, Yl_air, X2_air, Y2_air; 
airl, air2, offsetl, offset2; 
dd, nn,air_area, offset_area,calc;

X_RAY_IMAGES = 11; 
num_of_calibrations = 2;

// set number of files and filenames

strcpy (filenamelist[0] [0]," ABLPLHF.RGX"); 
strcpy(filenamelist[0] [1 ]," A 10PLHF.RGX"); 
strcpy (filenamelist[0] [2]," A9PLHF.RGX"); 
strcpy (filenamelist [0] [3 ]," A8PLHF.RGX"); 
strcpy(filenamelist[0][4],"A7PLHF.RGX"); 
strcpy(filenamelist[0] [5]," A6PLHF.RGX"); 
strcpy(filenamelist[0][6],"A5PLHF.RGX"); 
strcpy(filenamelist[0][7],"A4PLHF.RGX"); 
strcpy(filenamelist[0][8],"A3PLHF.RGX"); 
strcpy(filenamelist[0][9],"A2PLHF.RGX"); 
strcpy(filenamelist[0] [10]," A 1PLHF.RGX"); 
strcpy(filenamelist[0] [11]," AOPLHF.RGX");

strcpy (filenamelist[ 1 ] [0]," ABLPLLF.RGX"); 
strcpy (filenamelist[ 1 ] [ 1 ]," A1 OPLLF.RGX"); 
strcpy(filenamelist[ 1 ] [2]," A9PLLF.RGX"); 
strcpy(filenamelist[ 1 ] [3]," A8PLLF.RGX"); 
strcpy (filenamelist [ 1 ] [4]," A7PLLF.RGX"); 
strcpy(filenamelist[ 1 ] [5]," A6PLLF.RGX"); 
strcpy (filenamelistf 1 ] [6]," A5PLLF.RGX"); 
strcpy(filenamelist[ 1 ] [7]," A4PLLF.RGX"); 
strcpy(filenamelist[ 1 ] [8]," A3PLLF.RGX");

// [0] file is the background file 
// High energy images

// [0] file is the background file 
// Low energy images
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strcpy(filenamelist[ 1 ] [9]," A2PLLF.RGX"); 
strcpy (filenamelist[ 1 ] [ 10]," A1 PLLF.RGX"); 
strcpy(filenamelist[l][ll],"AOPLLF.RGX");

fprintf (stdout," Read file header info...\n"); // get startup information to set up
//memory allocation

fflush(stdout);
instream = fopen (filenamelist[0][0], "r"); 
if (instream == NULL) 

exitpgm ("instream = NULL");

fseek (instream, 54, SEEK_SET);
num = ffead ( &temp, sizeof (unsigned short), 1, instream);
temp2 = temp & 255;
temp3 = (unsigned int)(temp / 256);
rows = (temp2 * 256) + temp3;

num = fread ( &temp, sizeof (unsigned short), 1, instream);
temp2 = temp & 255;
temp3 = (unsigned int)(temp / 256);
cols = (temp2 * 256) + temp3;

num = fread ( &temp, sizeof (unsigned short), 1, instream);
temp2 = temp & 255;
temp3 = (unsigned int)(temp / 256);
bytes = (temp2 * 256) + temp3;
if (bytes! =4){

fprintf (stdout," bytes = %i temp = %i\n",bytes,temp); 
fflush(stdout);
exitpgm (" Error in the number of Bytes");} 

fclose (instream); 

filelength = rows * cols;
fprintf (stdout," rows = %i cols = %i\n",rows,cols); 
fflush(stdout);

fprintf (stdout," Allocate memory..An"); // allocate memory
fflush(stdout);

bg = (unsigned *) malloc (filelength * sizeof (unsigned)); 
if (bg =  0){ 

fprintf(stdout,"\n\rfilelength = %i\n\r", filelength); 
fflush(stdout);
exitpgm (" Error: malloc (bg)!!!");}
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a = (unsigned *) malloc (filelength * sizeof (unsigned)); 
if (a == 0) 

exitpgm (" Error: malloc (a )!!!");

result = (unsigned short*) malloc (filelength * sizeof (unsigned short)); 
if (result == NULL) 

exitpgm (" Error: malloc (result)!!!");

Xl_air = 600; //define area to get air from
Yl_air = 230;
X2_air = Xl_air + 50;
Y2_air = Yl_air + 50;

air_area = (float)((X2_air - Xl_air) * (Y2_air - Yl_air));

Xl_offset = 430; // define area to get offset from
Yl_offset = 240;
X2_offset = Xl_offset + 50;
Y2_offset = Yl_offset + 50;

offset_area = (float)((X2_offset - Xl_offset) * (Y2_offset - Yl_offset));

for (w = 0; w < num_of_calibrations; w++){ 
fprintf (stdout," Starting normalization #%i\n",w); 
fflush(stdout);

instream = fopen (filenamelist[w][0], "rb"); // open background file
if (instream == NULL) exit (0); 
fseek (instream, 512L, SEEK_SET);

for (j=0; j< filelength; j++){ // load back ground file
num = fread (&parta, 4, 1, instream); 
tempi = parta / 256; 
temp3 = parta / 65536; 
temp4 = parta / 16777216; 
tempi = tempi & 255; 
temp2 = temp2 & 255;
temp3 = temp3 & 255; // convert byte order for mac
temp4 = temp4 & 255;
bg[j] = ((temp3 * 256) + temp4 + (tempi * 65536) + (temp2 * 16777216));} 

fclose (instream);

for (i=l; i<=X_RAY_IMAGES; i++){ 
sprintf (fname, "%s normlog2", filenamelist[w][i]); //create output file 
fprintf (stdout," Create output file %s\n",fname);
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fflush(stdout);
outstream = fopen (fname, "wb");
if (outstream == NULL) exitpgm (" File open error!!!");

instream = fopen (filenamelist[w][i], "rb"); //Open image file
if (instream == NULL) exitpgm (" Input file error!!!"); 
fprintf (stdout," Open file: %s\n", filenamelist[w][i]); 
fflush(stdout);
fseek (instream, 512L, SEEK_SET);

fprintf (stdout," Reading image file\n"); 
fflush(stdout);

for (j=0; j< filelength; j++){ // load image file
num = fread (&parta, 4, 1, instream); 
tempi = parta / 256; 
temp3 = parta / 65536; 
temp4 = parta / 16777216; 
tempi = tempi & 255; 
temp2 = temp2 & 255;
temp3 = temp3 & 255; //convert byte order for mac
temp4 = temp4 & 255;
a[j] = ((temp3 * 256) + temp4 + (tempi * 65536) + (temp2 * 16777216));} 

fclose (instream);

airl = air2 = 0; // get average air value
for (k=Yl_air; k<Y2_air; k++){ 

for (j=Xl_air; j<X2_air; j++){ 
jstep = (cols * k) + j; 
airl += (float) *(a+jstep); 
air2 += (float) *(bg+jstep);}} 

airl /= air_area; 
air2 /= air_area;
fprintf (stdout," average air airl = %f air2 = %f\n",airl,air2); 
fflush(stdout);

offset 1 = offset2 = 0; // get average offset value
for (k=Yl_offset; k<Y2_offset; k++){ 

for (j=Xl_offset; j<X2_offset; j++){ 
jstep = (cols * k) + j; 
offset 1 += (float) *(a+jstep); 
offset2 += (float) *(bg+jstep);}} 

offset 1 /= offset_area; 
offset2 /= offset_area;
fprintf (stdout," average offset offsetl = %f offset2 = %f\n",offsetl,offset2); 
fflush(stdout);
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nn = air2 - offset2; 
dd = airl - offsetl;

fprintf (stdout," doing normalization\n"); 
fflush(stdout);

for (j=0; j<filelength; j++) { // Perform normalization
calc = 50000 * ((((float) *(a+j) - offsetl) * nn) / ( ( (float) *(bg+j) - offset2) * dd)); 
if (calc < 0) calc = 0; 
if (calc > 65535) calc = 65535;
*(result+j) = (unsigned short) (calc + .5);}

airl = 0; // get new average air value
for (k=Yl_air; k<Y2_air; k++){ 

for (j=Xl_air; j<X2_air; j++){ 
jstep = (cols * k) + j; 
airl += (float) *(result+jstep);}} 

airl /= air_area;
fprintf (stdout," average air new airl = %f\n",airl); 
fflush(stdout);

for (j=0; j<filelength; j++){ // Take log of image
calc = (float) (*(result+j)); 
calc = -log(calc/airl); 
if (calc < 0) calc = 0; 
calc *= 10000;
if (calc > 65535) calc = 65535;
*(result+j) = (unsigned short) (calc + .5);}

fprintf (stdout," Writing image file\n"); // Write out the results
fflush(stdout);

fwrite (result, sizeof (unsigned short), filelength, outstream); 
fclose(outstream);

fprintf (stdout," NEXT image! !!!\n"); 
fflush(stdout);}

fprintf (stdout,"\n\n NEXT calibration !!!!\n"); 
fflush(stdout);}

fprintf (stdout," DONE!!! !\n");
fflush(stdout);
exitpgm ("");}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 2 1

void exitpgm (message) 
char message[80];{ 
fprintf (stderr," %s\n", message); 
fclose (instream); 
fclose (outstream);
free (a);ffee (result) ;free (c);free (bg); 
exit (0);}

void handler (int sig){ 
exitpgm (" Program aborted by user!!!");}
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APPENDIX B

EXAMPLE OF THICKNESS - ENERGY TRANSMISSION DATA 

This is an example of the values measured for the thick plastic / aluminum step 

wedge phantom. The first two columns are the plastic and aluminum thickness. The last 

two columns are the average values measured from 30 x 80 pixel areas in the normalized 

high and low energy images.

Plastic Aluminum High Energy Low Energy
Thickness Thickness Image Image
(mm) (mm) log(Iofl) log(Iofl)

0.0000 0.0000 0.0000 0.0000
0.0000 4.9276 0.24707 0.62001
0.0000 7.9276 0.38557 0.89991
0.0000 10.928 0.52823 1.1610
0.0000 13.928 0.67684 1.4118
0.0000 16.928 0.81992 1.6546
0.0000 19.928 0.94342 1.8750
0.0000 22.928 1.0502 2.0854
0.0000 25.928 1.1683 2.2885
0.0000 28.928 1.3067 2.4825
0.0000 31.928 1.4616 2.6361
5.4356 0.0000 0.059200 0.066289
5.4356 4.9276 0.31836 0.68384
5.4356 7.9276 0.46121 0.96943
5.4356 10.928 0.60912 1.2330
5.4356 13.928 0.76016 1.4917
5.4356 16.928 0.90152 1.7310
5.4356 19.928 1.0269 1.9549
5.4356 22.928 1.1361 2.1646
5.4356 25.928 1.2572 2.3731
5.4356 28.928 1.3990 2.5642
5.4356 31.928 1.5489 2.6746
10.871 0.0000 0.13081 0.14076
10.871 4.9276 0.39537 0.74052
10.871 7.9276 0.54540 1.0363
10.871 10.928 0.69636 1.3048
10.871 13.928 0.84632 1.5574
10.871 16.928 0.98899 1.7934
10.871 19.928 1.1144 2.0098
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10.871 22.928
10.871 25.928
10.871 28.928
10.871 31.928
16.307 0.0000
16.307 4.9276
16.307 7.9276
16.307 10.928
16.307 13.928
16.307 16.928
16.307 19.928
16.307 22.928
16.307 25.928
16.307 28.928
16.307 31.928
21.742 0.0000
21.742 4.9276
21.742 7.9276
21.742 10.928
21.742 13.928
21.742 16.928
21.742 19.928
21.742 22.928
21.742 25.928
27.178 0.0000
27.178 4.9276
27.178 7.9276
27.178 10.928
27.178 13.928
27.178 16.928
27.178 19.928
27.178 22.928
27.178 25.928
32.614 0.0000
32.614 4.9276
32.614 7.9276
32.614 10.928
32.614 13.928
32.614 16.928
32.614 19.928
32.614 22.928
32.614 25.928
38.049 0.0000
38.049 4.9276
38.049 7.9276
38.049 10.928

1.2257 2.2205
1.3472 2.4150
1.4887 2.5808
1.6284 2.6304
0.20819 0.21805
0.47356 0.79503
0.62998 1.0922
0.78033 1.3539
0.93265 1.6004
1.0742 1.8331
1.2002 2.0395
1.3102 2.2344
1.4364 2.4109
1.5690 2.5361
1.7019 2.5473
0.29351 0.30162
0.55794 0.84719
0.71541 1.1386
0.86547 1.3974
1.0176 1.6319
1.1614 1.8465
1.2866 2.0437
1.3982 2.2214
1.5168 2.3748
0.37937 0.38509
0.63923 0.89740
0.79725 1.1808
0.94956 1.4279
1.1023 1.6544
1.2422 1.8533
1.3681 2.0373
1.4772 2.1955
1.5943 2.3204
0.47023 0.46771
0.72298 0.94307
0.87744 1.2201
1.0294 1.4582
1.1786 1.6723
1.3209 1.8619
1.4426 2.0225
1.5503 2.1626
1.6642 2.2616
0.56176 0.55429
0.80594 0.99789
0.96028 1.2601
1.1093 1.4848
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38.049 13.928
38.049 16.928
38.049 19.928
38.049 22.928
38.049 25.928
43.485 0.0000
43.485 4.9276
43.485 7.9276
43.485 10.928
43.485 13.928
43.485 16.928
43.485 19.928
43.485 22.928
48.920 0.0000
48.920 4.9276
48.920 7.9276
48.920 10.928
48.920 13.928
48.920 16.928
48.920 19.928
48.920 22.928
54.356 0.0000
54.356 4.9276
54.356 7.9276
54.356 10.928
54.356 13.928
54.356 16.928
54.356 19.928
54.356 22.928

1.2586 1.6883
1.3960 1.8616
1.5206 1.8616
1.6262 2.0083
1.7290 2.1311
0.64981 0.63218
0.89210 1.0483
1.0410 1.2940
1.1921 1.5046
1.3395 1.6955
1.4738 1.8564
1.5954 1.9911
1.6976 2.0926
0.74506 0.72028
0.97795 1.1084
1.1269 1.3364
1.2755 1.5399
1.4204 1.7165
1.5562 1.8678
1.6720 1.9916
1.7725 2.0835
0.85746 0.80463
1.0827 1.1625
1.2315 1.3750
1.3771 1.5651
1.5184 1.7314
1.6516 1.8692
1.7672 1.9818
1.8623 2.0544
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APPENDIX C 

LEAST SQUARES FIT PROGRAM 

This program is written in C for the Macintosh using Apple’s free MPW compiler 

and performs a least squares fit to the transmission values such as those measured in 

appendix B. The output is the Log of the original image. This program also gives the 

starting values needed by the Levenberg-Marquardt algorithm in Appendix D.

Regular linear least squares fit from Numerical Recipies pg 676 (Ref 66).

This uses equation 21 and 22 from the Alvarez paper, (ref 42)

Written by Randy Wojcik

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <math.h>
#include "ranlmfit.h"

#define NR_END 1 
#define FREE_ARG char*
#define TOL 1.0e-18 
#define PLASTIC 1 
#define ALUMINUM 2 
#define HIGH 3 
#define LOW 4

double **v,**u,*w,*a,chisq;
DATVEC x,sal,spl,sh,si,aluminum,plastic,high,low;
int ma,ndata,handle,fitting,model;
FILE *in_file,*out_file;

void nrerror(char error_text[ ]){ 
fprintf(stderr,"Numerical Recipes run-time error..An"); 
fprintf(stderr," % s\n" ,error_text); 
exit(l);}
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int *ivector(long nl, long nh){ 
int *v;

v=(int *)malloc((size_t)((nh-nl+l+NR_END)*sizeof(int))); 
if (!v) nrerror("allocation failure in ivector()"); 
return v-nl+NR_END;}

float *vector(long nl, long nh){ 
float *v;

v=(float *)malloc((size_t)((nh-nl+l+NR_END)*sizeof(float))); 
if (!v) nrerror("allocation failure in vector()"); 
return v-nl+NR_END;}

double *dvector(long nl, long nh){ 
double *v;

v=(double *)malloc((size_t)((nh-nl+l+NR_END)*sizeof(double))); 
if (!v) nrerror("allocation failure in dvector()"); 
return v-nl+NR_END;}

float **matrix(long nrl, long nrh, long ncl, long nch){ 
long i,nrow=nrh-nrl+l ,ncol=nch-ncl+l; 
float **m;

m=(float **) malloc((size_t)((nrow+NR_END)*sizeof(float))); 
if (!m) nrerror("allocation failure 1 in matrix()"); 
m += NR_END; 
m -= nrl;
m[nrl]=(float *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(float))); 
if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
m[nrl] += NR_END; 
m[nrl] -= ncl;
for(i=nrl+l;i<=nrh;i++) m[i] = m[i-l] + ncol; 
return m;}

int **imatrix(long nrl, long nrh, long ncl, long nch){ 
long i,nrow=nrh-nrl+l ,ncol=nch-ncl+l; 
int **m;

m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int))); 
if (!m) nrerror("allocation failure 1 in imatrix()"); 
m += NR_END;
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m -= nrl;
m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
m[nrl] += NR_END; 
m[nrl] -= ncl;
for(i=nrl+l;i<=nrh;i++) m[i] = m[i-l] + ncol; 
return m;}

double **dmatrix(long nrl, long nrh, long ncl, long nch){ 
long i,nrow=nrh-nrl+l ,ncol=nch-ncl+l; 
double **m;

m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double))); 
if (!m) nrerror("allocation failure 1 in dmatrix()"); 
m += NR_END; 
m -= nrl;
m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); 
if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
m[nrl] += NR_END; 
m[nrl] -= ncl;
for(i=nrl+l;i<=nrh;i++) m[i] = m[i-l] + ncol; 
return m;}

void free_ivector(int *v, long nl, long nh){ 
free((FREE_ARG)(v+nl-NR_END)); 
nl = nh;}

void ffee_vector(float *v, long nl, long nh){ 
free((FREE_ARG)(v+nl-NR_END)); 
nl = nh;}

void free_dvector(double *v, long nl, long nh){ 
free((FREE_ARG)(v+nl-NR_END)); 
nl = nh;}

void free_matrix(float **m, long nrl, long nrh, long ncl, long nch){ 
free((FREE_ARG)(m[nrl]+ncl-NR_END)); 
free((FREE_ARG)(m+nrl-NR_END)); 
nrl = nrh + nch;}

void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch){ 
free((FREE_ARG)(m[nrl]+ncl-NR_END)); 
free((FREE_ARG)(m+nrl-NR_END)); 
nrl = nrh + nch;}
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void fill_matrix(double x, double p[], double y){ 
int i;

i = (int)x; 
switch(model){

case 10: if (fitting == PLASTIC || fitting == ALUMINUM) { // 8 par am A/B
p[0] = 1; 
p[l] =high[i]; 
p[2] = low[i]; 
p[3] = high[i] * high[i]; 
p[4] = high[i] * low[i]; 
p[5] = low[i] * low[i];

p[6] = -y * high[i]; 
p[7] = -y * low[i];} 

else{ 
p[0] = 1;
p[l] = aluminum[i]; 
p[2] = plastic [i];
p[3] = aluminum[i] * aluminum[i]; 
p[4] = aluminum[i] * plastic[i]; 
p[5] = plastic[i] * plastic[i];

p[6] = -y * aluminum[i]; 
p[7] = -y * plastic [i];} 

break;
case 12: if (fitting == PLASTIC || fitting == ALUMINUM) { // 18 param sqr root

p[0] = 1;
p[l] = high[i];
p[2] = low[i];
p[3] = high[i] * high[i];
p[4] = high[i] * low[i];
p[5] = low[i] * low[i];
p[6] = high[i] * high[i] * high[i];
p[7] = high[i] * high[i] * low[i];
p[8] = high[i] * low[i] * low[i];
p[9] = low[i] * low[i] * low[i];

p[10] = -y * high[i]; 
p [ll] = -y * low[i]; 
p[12] = -y * high[i] * high[i]; 
p[13] = -y * high[i] * low[i]; 
p[14] = -y * low[i] * low[i];
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p[15] = -y * y; 
p[16] = -y * y * high[i]; 
p[17] = -y * y * low[i];} 

else{ 
p[0] = 1;
p[l] = aluminum[i]; 
p[2] = plastic[i];
p[3] = aluminum[i] * aluminum[i];
p[4] = aluminum[i] * plastic[i];
p[5] = plastic[i] * plastic[i];
p[6] = aluminum[i] * aluminum[i] * aluminum[i];
p[7] = aluminum[i] * aluminum[i] * plastic[i];
p[8] = aluminum[i] * plastic[i] * plastic[i];
p[9] = plastic[i] * plastic[i] * plastic[i];

p[10] = -y * aluminum[i];
p[ll] = -y * plastic[i];
p[12] = -y * aluminum[i] * aluminum[i];
p[13] = -y * aluminumfi] * plastic[i];
p[14] = -y * plastic[i] * plastic[i];

p[15] = -y * y;
p[16] = -y * y * aluminum[i]; 
p[17] = -y * y * plastic [i];} 

break;
case 13: if (fitting == PLASTIC || fitting == ALUMINUM){ // 15 param A/B

p[0] = 1; 
p[l] = high[i]; 
p[2] = low[i]; 
p[3] = high[i] * high[i]; 
p[4] = high[i] * low[i]; 
p[5] = low[i] * low[i]; 
p[6] = high[i] * highfi] * high[i]; 
p[7] = high[i] * high[i] * low[i]; 
p[8] = high[i] * low[i] * low[i]; 
p[9] = low[i] * low[i] * low[i];

p[10] = -y * highfi]; 
p [ll] = -y * low[i]; 
p[12] = -y * highfi] * highfi]; 
p[13] = -y * highfi] * lowfi]; 
pf 14] = -y * lowfi] * lowfi];} 

elsef 
p[0] = 1;
pfl] = aluminumfi]; 
pf2] = plasticfi];
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p[3] = aluminum[i] * aluminum[i];
p[4] = aluminum[i] * plastic[i];
p[5] = plastic[i] * plastic[i];
p[6] = aluminum[i] * aluminumfi] * aluminumfi];
p[7] = aluminumfi] * aluminumfi] * plasticfi];
p[8] = aluminumfi] * plasticfi] * plasticfi];
p[9] = plasticfi] * plasticfi] * plasticfi];

p[10] = -y * aluminumfi]; 
pfll] = -y * plasticfi]; 
p[12] = -y * aluminumfi] * aluminumfi]; 
p[13] = -y * aluminumfi] * plasticfi]; 
p[14] = -y * plasticfi] * plasticfi];} 

break;
case 14: if (fitting == PLASTIC || fitting == ALUMINUM) { // 9 param sqr root

p[0] = 1; 
pfl] = highfi]; 
p[2] = lowfi]; 
p[3] = highfi] * highfi]; 
p[4] = highfi] * lowfi]; 
p[5] = lowfi] * lowfi];

p[6] = -y * highfi]; 
p[7] = -y * lowfi];

Pf8] = -y * y;} 
elsef 

Pf0] = 1;
pfl] = aluminumfi]; 
p[2] = plasticfi];
p[3] = aluminumfi] * aluminumfi]; 
p[4] = aluminumfi] * plasticfi]; 
p[5] = plasticfi] * plasticfi];

Pf6] = -y * aluminumfi]; 
p[7] = -y * plasticfi];

p[8] = -y * y;} 
break;

case 16: if (fitting == PLASTIC || fitting == ALUMINUM){ // 9 param linear
p[0] = highfi]; 
pfl] = lowfi];

p[2] = highfi] * highfi]; 
p[3] = highfi] * lowfi]; 
p[4] = lowfi] * lowfi];
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p[5] = high[i] * high[i] * high[i]; 
p[6] = high[i] * high[i] * low[i]; 
p[7] = highfi] * low[i] * low[i]; 
p[8] = low[i] * low[i] * low[i];} 

else{
p[0] = aluminum[i]; 
pfl] = plasticfi];

p[2] = aluminum[i] * aluminum[i]; 
p[3] = aluminum[i] * plasticfi]; 
p[4] = plasticfi] * plasticfi];

p[5] = aluminumfi] * aluminumfi] * aluminumfi]; 
p[6] = aluminumfi] * aluminumfi] * plasticfi]; 
p[7] = aluminumfi] * plasticfi] * plasticfi]; 
pf8] = plasticfi] * plasticfi] * plasticfi];} 

break;
case 17: if (fitting == PLASTIC || fitting =  ALUMINUM){ // 14 param linear

p[0] = highfi]; 
pfl] = lowfi];

p[2] = highfi] * highfi]; 
p[3] = highfi] * lowfi]; 
p[4] = lowfi] * lowfi];

p[5] = highfi] * highfi] * highfi]; 
p[6] = highfi] * highfi] * lowfi]; 
p[7] = highfi] * lowfi] * lowfi]; 
p[8] = lowfi] * lowfi] * lowfi];

p[9] = highfi] * highfi] * highfi] * highfi]; 
p[10] = highfi] * highfi] * highfi] * lowfi]; 
pfl 1] = highfi] * highfi] * lowfi] * lowfi]; 
pf 12] = highfi] * lowfi] * lowfi] * lowfi]; 
p fl3] = lowfi] * lowfi] * lowfi] * lowfi];} 

elsef
p[0] = aluminumfi]; 
pfl] = plasticfi];

p[2] = aluminumfi] * aluminumfi]; 
p[3] = aluminumfi] * plasticfi]; 
p[4] = plasticfi] * plasticfi];

pf5] = aluminumfi] * aluminumfi] * aluminumfi]; 
p[6] = aluminumfi] * aluminumfi] * plasticfi];
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p[7] = aluminumfi] * plasticfi] * plasticfi]; 
p[8] = plasticfi] * plasticfi] * plasticfi];

pf9] = aluminumfi] * aluminumfi] * aluminumfi] * aluminumfi]; 
p[10] = aluminumfi] * aluminumfi] * aluminumfi] * plasticfi]; 
pfl 1] = aluminumfi] * aluminumfi] * plasticfi] * plasticfi]; 
p[12] = aluminumfi] * plasticfi] * plasticfi] * plasticfi]; 
p[13] = plasticfi] * plasticfi] * plasticfi] * plasticfi];} 

break;
case 18: if (fitting == PLASTIC || fitting == ALUMINUM){ // 15 param linear

p[0] = 1; 
pfl] = highfi]; 
p[2] = lowfi];

p[3] = highfi] * highfi]; 
p[4] = highfi] * lowfi]; 
p[5] = lowfi] * lowfi];

p[6] = highfi] * highfi] * highfi]; 
p[7] = highfi] * highfi] * lowfi]; 
p[8] = highfi] * lowfi] * lowfi]; 
p[9] = lowfi] * lowfi] * lowfi];

p[10] = highfi] * highfi] * highfi] * highfi]; 
pfl 1] = highfi] * highfi] * highfi] * lowfi]; 
pfl2] = highfi] * highfi] * lowfi] * lowfi]; 
p[13] = highfi] * lowfi] * lowfi] * lowfi]; 
p[14] = lowfi] * lowfi] * lowfi] * lowfi];} 

elsef 
p[0] = 1;
pfl] = aluminumfi]; 
p[2] = plasticfi];

p[3] = aluminumfi] * aluminumfi]; 
p[4] = aluminumfi] * plasticfi]; 
p[5] = plasticfi] * plasticfi];

p[6] = aluminumfi] * aluminumfi] * aluminumfi]; 
p[7] = aluminumfi] * aluminumfi] * plasticfi]; 
p[8] = aluminumfi] * plasticfi] * plasticfi];
Pf9] = plasticfi] * plasticfi] * plasticfi];

p[10] = aluminumfi] * aluminumfi] * aluminumfi] * aluminumfi]; 
pfl 1] = aluminumfi] * aluminumfi] * aluminumfi] * plasticfi]; 
pfl2] = aluminumfi] * aluminumfi] * plasticfi] * plasticfi]; 
p fl3] = aluminumfi] * plasticfi] * plasticfi] * plasticfi];
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p[14] = plastic[i] * plasticfi] * plasticfi] * plasticfi];} 
break;

case 19: if (fitting == PLASTIC || fitting == ALUMINUM)} //10 param linear
p[0] = 1; 
pfl] = highfi]; 
p[2] = lowfi];

p[3] = highfi] * highfi]; 
p[4] = highfi] * lowfi]; 
p[5] = lowfi] * lowfi];

p[6] = highfi] * highfi] * highfi]; 
p[7] = highfi] * highfi] * lowfi]; 
p[8] = highfi] * lowfi] * lowfi]; 
p[9] = lowfi] * lowfi] * lowfi];} 

elsef 
p[0] = 1;
pfl] = aluminumfi]; 
p[2] = plasticfi];
p[3] = aluminumfi] * aluminumfi]; 
p[4] = aluminumfi] * plasticfi]; 
p[5] = plasticfi] * plasticfi]; 
p[6] = aluminumfi] * aluminumfi] * aluminumfi]; 
p[7] = aluminumfi] * aluminumfi] * plasticfi]; 
p[8] = aluminumfi] * plasticfi] * plasticfi]; 
p[9] = plasticfi] * plasticfi] * plasticfi];} 

break;}}

void read_file(int *m){ 
float num; 
int e;
char junk[120];

for (*m = e = -1; e < 3; e++) fscanf(in_file,"%s",junk); 
while (!feof(in_file)){

(*m)++;
if (fscanf(in_file,"%f',&num) == EOF){

(*m)~; 
return;} 

plastic [*m] = (double)num; 
if (fscanf(in_file,"%f',&num) == EOF){ 

nrerror("end of file error");
(*m)~; 
return;}

aluminum[*m] = (double)num;
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if (fscanf(in_file,"%f',&num) == EOF){ 
nrerror("end of file error");
(*m)~; 
return;} 

high[*m] = (double)num; 
if (fscanf(in_file,"%f',&num) == EOF){ 

nrerror("end of file error");
(*m)~; 
return;} 

low[*m] = (double)num;
sal[*m] = spl[*m] = l;//sqrt((l/exp(-high[*m])) + (l/exp(-low[*m]))); 
sh[*m] = sl[*m] = l;//sqrt((l/exp(plastic[*m])) + (l/exp(aluminum[*m]))); 
printf("\nplastic = %f aluminum = %f high = %f low = %f sh = %f si = %f 

",plastic[*m],ahiminum[*m],high[*m],low[*m],sh[*m],sl[*m]);}}

double pythag(double a, double b){ 
double absa,absb;

absa=fabs(a);
absb=fabs(b);
if (absa > absb) return absa*sqrt(1.0+SQR(absb/absa));
else return (absb == 0.0 ? 0.0: absb*sqrt(1.0+SQR(absa/absb)));}

void svdfit(double x[], double y[], double sig[], int ndata, double a[], int ma, 
double **u, double **v, double w[], double *chisq, 
void(*funcs)(double,double [],double)){ 

void svbksb(double **u, double w[], double **v, int m, int n, double b[], 
double x[]);

void svdcmp(double **a, int m, int n, double w[], double **v); 
int j,i,k;
double wmax,tmp,thresh,sum,*afunc,*b;

b = dvector(0,ndata); 
afunc=dvector(0,ma); 
for (i=0;i<=ndata;i++){

(*funcs)(x[i],afunc,y[i]); 
tmp = 1.0/sig[i];
for (j=0;j<=ma;j++) u[i][j]=afunc[j]*tmp; 
b[i] = y[i]*tmp;} 

svdcmp(u,ndata,ma, w, v); 
wmax=0.0;
for (j=0;j<=ma;j++) if (w[j] > wmax) wmax = w[j]; 
thresh = TOL*wmax;
for (j=0;j<=ma;j++) if (w[j] < thresh) w[j] = 0.0; 
svbksb(u,w,v,ndata,ma,b,a);
*chisq=0.0;
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k = 0;
for (i=0;i<=ndata;i++){

(*funcs)(x[i],afunc,y[i]); // x is the calibration point, afunc[2] is the high and low 
transmission through that point

for (sum=0.0,j=0;j<=ma;j++) sum += a[j]*afunc[j]; // Sum = al * L + a2 * H + a3 * 
L*L + a4 * H*H + a5 * L*H

*chisq = (tmp=(y[i]-sum)/sig[i],tmp*tmp); 
if ((model =  13) && (fitting == ALUMINUM))} 

printf("%f ",tmp); 
k++;
if (k > 6){ 

printf("\n"); 
k = 0;}}} 

free_dvector(afunc,0,ma); 
ffee_dvector(b,0,ndata);}

void svdcmp(double **a, int m, int n, double w[], double **v){ 
double pythag(double a, double b); 
int flag,i,its,j,jj,k,l,nm; 
double anorm,c,f,g,h,s,scale,x,y,z,*rv 1;

rvl=dvector(0,n); 
g=scale=anorm=0.0; 
for (i = 0; i <= n; i++){ 

l=i+l;
rvl [i] = scale * g; 
g=s=scale=0.0; 
if (i <= m){ 

for (k=i;k<=m;k++) scale += fabs(a[k][i]); 
if (scale)} 

for (k=i;k<=m;k++){ 
a[k][i] /= scale; 
s+= a[k][i] * a[k][i];} 

f = a[i][i];
g = -SIGN(sqrt(s),f); 
h = f*g-s; 
a[i][i]=f-g; 
for (j=l;j<=n;j++){ 

for (s=0.0,k=i;k<=m;k++) s += a[k][i] * a[k][j]; 
f = s/h;
for (k=i;k<=m;k++) a[k][j] += f*a[k][i];} 

for (k=i;k<=m;k++) a[k][i] *= scale;}} 
w[i] = scale * g; 
g = s = scale = 0.0; 
if (i <= m && i != n)}
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for (k=l;k<=n;k++) scale += fabs(a[i][k]); 
if (scale) { 

for (k=l;k<=n;k++){ 
a[i][k] /= scale; 
s+= a[i][k] * a[i][k];} 

f = a[i][l];
g = -SIGN(sqrt(s),f); 
h = f*g-s; 
a[i][l] = f-g;
for (k=l;k<=n;k++) rvl[k]=a[i][k]/h; 
for (j=l;j<=m;j++){ 

for (s=0.0,k=l;k<=n;k++) s += a[j][k] * a[i][k]; 
for (k=l;k<=n;k++) a[j][k] += s*rvl[k];} 

for (k=l;k<=n;k++) a[i][k] *= scale;}} 
anorm = FMAX(anorm,(fabs(w[i])+fabs(rvl[i])));} 

for (i=n;i>=0;i—){ 
if (i<n) {

if (g){
for (j=l;j<=n;j++) v[J][i]= (a[i][j]/a[i][l])/g; 
for (j=l;j<=n;j++){ 

for (s=0.0,k=l;k<=n;k++) s += a[i][k]*v[k][j]; 
for (k=l;k<=n;k++) v[k][j] += s*v[k][i];}} 

for (j=l;j<=n;j++) v[i][J] = v[j][i] = 0.0;} 
v[i][i]=1.0; 
g=rvl[i];
l=i;}

for (i=IMIN(m,n);i>=0;i—) { 
l=i+l; 
g=w[i];
for (j=l;j<=n;j++) a[i][j] = 0.0; 
if (g){

g=  1.0/g;
for (j=l;j <=n;j++){ 

for (s=0.0,k=l;k<=m;k++) s += a[k][i]*a[k][j]; 
f = (s/a[i][i])*g;
for (k=i;k<=m;k++) a[k][j] += f*a[k][i];} 

for (j=i;j<=m;j++) a[j][i] *= g;} 
else for (j = i; j<=m;j++) a[j][i] = 0.0;
++a[i][i];} 

for(k=n;k>=0;k-) { 
for (its=l;its<=30;its++){ 

flag=l;
for (l=k;l>=0; 1—) { 

nm=l-l;
if ((double)(fabs(rvl[l])+anorm) =  anorm) { 

flag = 0;
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break;}
if ((double)(fabs(w[nm])+anorm) == anorm) break;} 

if (flag) { 
c = 0.0; 
s = 1.0;
for (i=l;i<=k;i++){ 

f=s*rvl[i]; 
rvl [i] = c*rvl[i];
if ((double)(fabs(f)+anorm) == anorm) break;
g = w[i];
h = pythag(f,g);
w[i]=h;
h=  1.0/h;
c = g*h;
s = -f*h;
for (j=0;j<=m;j++){ 

y=a[j][nm]; 
z=a[j][i];
a[j][nm]=y*c+z*s; 
a[j][i]=z*c-y*s;}}} 

z = w[k]; 
if (1 ==k){ 

if (z < 0.0) { 
w[k] = -z;
for (j = 0; j<=n;j++) v[j][k] = -v[j][k];} 

break;}
if (its == 30) nrerror("no convergence in 30 svdcmp iterations");
x=w[l];
nm=k-1;
y=w[nm];
g=rvl[nm];
h=rvl[k];
f=((y-z)* (y+z)+(g-h)* (g+h))/(2.0*h*y); 
g=pythag(f,1.0);
f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x;
c=s=1.0;
for (j=l;j<=nm;j++){ 

i=j+l; 
g=rv 1 [i]; 
y=w[i]; 
h=s*g; 
g=c*g;
z=pythag(f,h);
rvl[j]=z;
c=f/z;
s=h/z;
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f=x*c+g*s; 
g=g*c-x*s; 
h=y*s; 
y *=c;
for (jj=0;jj<=n;jj++) { 

x=v[jj][j];
z=vDj][i];
v[jj]lj]=x*c+z*s; 
v[jj][i]=z*c-x*s;} 

z=pythag(f,h); 
w[j]=z; 
if (z) { 

z=1.0/z; 
c=f*z; 
s=h*z;} 

f=c*g+s*y; 
x=c*y-s*g; 
for (jj=0;jj<=m;jj++){ 

y=a|jj]|j]; 
z=a[jj][i]; 
a[jj][j3 = y*c+z*s; 
a[jj][i] = z*c-y*s;}} 

rvl[l]=0.0; 
rvl[k]=f; 
w[k]=x;}} 

free_dvector(rv 1,0,n);}

void svbksb(double **u, double w[], double **v, int m, int n, double b[], double x[]){ 
int jjj,i; 
double s,*tmp;

tmp = dvector(0,n); 
for (j=0;j<=n;j++){ 

s = 0.0; 
if (w[j]){

for (i=0;i<=m;i++) s += u[i][j]*b[i]; 
s/= w[j];} 

tmp[j] = s;} 
for (j=0;j<=n;j++){ 

s=0.0;
for (jj=0;jj<=n;jj++) s += v [j ] | j J ]  * tmpljj];
x[j] = s;}

free_dvector(tmp,0,n);} 

void main(){
// x = linear count 1,2,3,4,...
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// aluminum = the thickness of the A1 
// plastic = the thickness of the PI
// sal = the standard deviations sqrt((l/exp(low energy reading)) + (l/exp(high energy 
reading)
// spl = the standard deviations sqrt((l/exp(low energy reading)) + (l/exp(high energy 
reading)
// m = number of calibration points Al-Pl combinations 
// n = number of fitting coeficients - number of a's
// the_a is a global variable used in fill_matrix, the fitting function y = Sum(n) (a(n) * 
fill_matrix(n)(x))
// the_a contains the low (L) and high energy (H) log transmission readings
// filLmatrix = al H + a2 L + a3 H*H + a4 L*L + a5 L*H
// p[l] = the_a[i] [ 1 ];
// p[2] = the_a[i][2];
// p[3] = the_a[i][l] * the_a[i][l];
// p[4] = the_a[i] [2] * the_a[i] [2];
// p[5] = the_a[i] [ 1 ] * the_a[i] [2];
// This is the calibration equation from Macovski Med Phys Vol 8, #5, spet oct 1981
equation 21 or 22
// hence the names read_file21 and read_file22

int e,m,n;
m=500;
n=20;
w = dvector(0,n); 
u = dmatrix(0,m,0,n);
v = dmatrix(0,n,0,n);
a = dvector(0,n);
if ((in_file = fopenCthichplnasastepresults.txt","rt")) == NULL){ 

printf("Error Opening FileVn"); 
exit(l);} 

read_file(&m); 
fclose(in_file);
for (e = 0;e <= m; e++) x[e] = e; // fill in linear count 

n = 7;
model = 10;
fitting = ALUMINUM;
printf("\n\n8 param A/B case jo*************************************")- 
svdfit(x,aluminum,sal,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\nThe aluminum fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7]);
printf("\nChisq = %f',chisq);
fitting = PLASTIC;
svdfit(x, plastic, spl, m, a, n,u,v,w,&chisq,fill_matrix);
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printf("\n\nThe plastic fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%An%f\n%f\n%f',a[4],a[5],a[6],a[7]);
printf("\nChisq = %f',chisq);
fitting = HIGH;
svdfit(x,high,sh,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe high fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f’,a[4],a[5],a[6],a[7]);
printf("\nChisq = %f',chisq);
fitting = LOW;
svdfit(x,low,sl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe low fitting params are:"); // these are the fitting parameters 
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters 
printf("\n%f\n%f\n%f\n%f" ,a[4] ,a[5] ,a[6] ,a[7]); 
printf("\nChisq = %f",chisq);

n=  17;
model = 12;
fitting = ALUMINUM;
printf("\n\nl8 param sqr root case 12**************************"); 
svdfit(x,aluminum,sal,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\nThe aluminum fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7]);
printf("\n%f\n%f\n%f\n%f' ,a[8],a[9] ,a[ 10] ,a[ 11 ]);
printf("\n%f\n%f\n%f\n%f",a[ 12],a[ 13],a[ 14],a[ 15]);
printf("\n%f\n%f',a[16],a[17]);
printf("\nChisq = %f',chisq);
fitting = PLASTIC;
svdfit(x,plastic,spl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe plastic fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f",a[4],a[5],a[6],a[7]);
printf("\n%f\n%f\n%f\n%f',a[8],a[9],a[10],a[ll]);
printf("\n%f\n%f\n%f\n%f',a[ 12],a[ 13],a[ 14],a[ 15]);
printf("\n%f\n%f',a[16],a[17]);
printf("\nChisq = %f',chisq);
fitting = HIGH;
svdfit(x,high,sh,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe high fitting params are:"); // these are the fitting parameters 
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters 
printf("\n%f\n%f\n%f\n%f',a[4] ,a[5] ,a[6] ,a[7]); 
printf("\n%f\n%f\n%f\n%f',a[8],a[9],a[10],a[ll]); 
printf("\n%An%f\n%An%f',a[12],a[13],a[14],a[15]); 
printf("\n%f\n%f',a[16],a[17]);
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printf("\nChisq = %f',chisq); 
fitting = LOW;
svdfit(x,low,sl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe low fitting params are:"); I I these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7]);
printf("\n%f\n%f\n%f\n%f',a[8],a[9],a[10],a[ll]);
printf("\n%f\n%f\n%f\n%f',a[12],a[13],a[14],a[15]);
printf("\n% f\n%f" ,a[ 16] ,a[ 17]);
printf("\nChisq = %f",chisq);

n = 14;
model =13;
fitting = ALUMINUM;
printf("\n\nl5 param A/B case 13***************************************")-
svdfit(x,aluminum,sal,m,a,n,u,v,w,&chisq,fill_niatrix);
printf("\nThe aluminum fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f",a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f’,a[4] ,a[5] ,a[6] ,a[7]);
printf("\n%f\n%f\n%f\n%f',a[8],a[9],a[10],a[ll]);
printf("\n%f\n%f\n%f',a[l 2],a[ 13],a[ 14]);
printf("\nChisq = %f',chisq);
fitting = PLASTIC;
svdfit(x,plastic,spl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe plastic fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f",a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7]);
printf("\n%f\n%f\n%f\n%f' ,a[8] ,a[9] ,a[ 10] ,a[ 11 ]);
printf("\n%f\n%f\n%f',a[ 12],a[ 13],a[ 14]);
printf("\nChisq = %f",chisq);
fitting = HIGH;
svdfit(x,high,sh,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe high fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f",a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7]);
printf("\n%An%f\n%f\n%f',a[8],a[9],a[10],a[ll]);
printf("\n%f\n%f\n%f',a[ 12],a[ 13],a[ 14]);
printf("\nChisq = %f',chisq);
fitting = LOW;
svdfit(x,low,sl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe low fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f",a[4],a[5],a[6],a[7]);
printf("\n%f\n%An%f\n%f',a[8],a[9],a[10],a[ll]);
printf("\n%f\n%f\n%f',a[l 2],a[ 13],a[ 14]);
printf("\nChisq = %f',chisq);
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n = 8;
model =14;
fitting = ALUMINUM;

pararn gqj* j*£ C9SC 14"̂  ̂  "̂* *̂* ^ ̂  ^ "̂* *
svdfit(x,aluminum,sal,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\nThe aluminum fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f\n%f' ,a[4] ,a[5] ,a[6] ,a[7] ,a[8]);
printf("\nChisq = %f',chisq);
fitting = PLASTIC;
svdfit(x,plastic,spl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe plastic fitting params are;"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7],a[8]);
printf("\nChisq = % f’,chisq);
fitting = HIGH;
svdfit(x,high,sh,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe high fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f\n%f’,a[4],a[5],a[6],a[7],a[8]);
printf("\nChisq = %f',chisq);
fitting = LOW;
svdfit(x,low,sl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe low fitting params are:"); // these are the fitting parameters 
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters 
printf("\n%f\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7],a[8]); 
printf("\nChisq = % f’,chisq);

n = 8;
model =16;
fitting = ALUMINUM;
printf("\n\n9 param linear case
svdfit(x,aluminum,sal,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\nThe aluminum fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f\n%f’,a[4],a[5],a[6],a[7],a[8]);
printf("\nChisq = % f’,chisq);
fitting = PLASTIC;
svdfit(x,plastic,spl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe plastic fitting params are:"); // these are the fitting parameters 
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters 
printf("\n%f\n%f\n%f\n%f\n%f' ,a[4] ,a[5] ,a[6] ,a[7] ,a[8]); 
printf("\nChisq = %f',chisq); 
fitting = HIGH;
svdfit(x,high,sh,m,a,n,u,v,w,&chisq,fill_matrix);
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printf("\n\nThe high fitting params are:"); I I these are the fitting parameters 
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters 
printf("\n%f\n%f\n%f\n%f\n%f' ,a[4] ,a[5] ,a[6] ,a[7] ,a[8]); 
printf("\nChisq = %f',chisq); 
fitting = LOW;
svdfit(x,low,sl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe low fitting params are:"); // these are the fitting parameters 
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters 
printf("\n%f\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7],a[8]); 
printf("\nChisq = % f’,chisq);

n = 13;
model =17;
fitting = ALUMINUM;
printf("\n\nl4 param linear case
svdfit(x,aluminum,sal,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\nThe aluminum fitting params are:"); // these are the fitting parameters 
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters 
printf("\n%f\n%f\n%f\n%f\n%f' ,a[4] ,a[5],a[6] ,a[7],a[8]); 
printf("\n%f\n%f\n%f\n%f\n%f',a[9] ,a[ 10] ,a[ 11 ] ,a[ 12] ,a[ 13]); 
printf("\nChisq = %f',chisq); 
fitting = PLASTIC;
svdfit(x,plastic,spl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe plastic fitting params are:"); // these are the fitting parameters 
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters 
printf("\n%f\n%f\n%f\n%f\n%f' ,a[4] ,a[5] ,a[6],a[7] ,a[8]); 
printf("\n%f\n%f\n%f\n%f\n%f',a[9],a[10],a[ll],a[12],a[13]); 
printf("\nChisq = %f',chisq); 
fitting = HIGH;
svdfit(x,high,sh,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe high fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f\n%f’,a[4],a[5],a[6],a[7],a[8]);
printf("\n%f\n%f\n%f\n%f\n%f',a[9],a[10],a[ll],a[12],a[13]);
printf("\nChisq = % f’,chisq);
fitting = LOW;
svdfit(x,low,sl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe low fitting params are:"); // these are the fitting parameters 
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters 
printf("\n%f\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7],a[8]); 
printf("\n%f\n%f\n%f\n%f\n%f *,a[9],a[ 10],a[ 11 ],a[ 12],a[ 13]); 
printf("\nChisq = %f',chisq);

n=  14; 
model = 18;
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fitting = ALUMINUM;
printf("\n\nl5 param linear case 
£ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * » ) .

svdfit(x,aluminum,sal,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\nThe aluminum fitting params are:"); I I these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7]);
printf("\n%f\n%f\n%f\n%f',a[8],a[9],a[10],a[113);
printf("\n%f\n%f\n%f',a[l 2],a[ 13],a[ 14]);
printf("\nChisq = %f \chisq);
fitting = PLASTIC;
svdfit(x,plastic,spl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe plastic fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7]);
printf("\n%f\n%f\n%f\n%f',a[8],a[9],a[10],a[ll]);
printf("\n%f\n%An%f’,a[12],a[13],a[14]);
printf("\nChisq = %f \chisq);
fitting = HIGH;
svdfit(x,high,sh,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe high fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f’,a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7]);
printf("\n%f\n%f\n%f\n%f',a[8] ,a[9] ,a[ 10] ,a[ 11 ]);
printf("\n%f\n%f\n%f' ,a[ 12] ,a[ 13],a[ 14]);
printf("\nChisq = % f’,chisq);
fitting = LOW;
svdfit(x,low,sl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe low fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7]);
printf( "\n%f\n%f\n%f\n%f' ,a[8] ,a[9] ,a[ 10] ,a[ 11 ]);
printf("\n%f\n%f\n%f',a[ 12],a[ 13],a[ 14]);
printf("\nChisq = %f',chisq);

n = 9;
model = 19;
fitting = ALUMINUM;
printf("\n\nlO param linear case 

1 9 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * » ) .

svdfit(x,aluminum,sal,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\nThe aluminum fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f’,a[4],a[5],a[6],a[7]);
printf("\n%f\n%f',a[8],a[9]);
printf("\nChisq = %f',chisq);
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fitting = PLASTIC;
svdfit(x,plastic,spl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe plastic fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%l\n%f\n%f \a[4] ,a[5] ,a[6] ,a[7]);
printf("\n%f\n%f',a[8],a[9]);
printf("\nChisq = % f’,chisq);
fitting = HIGH;
svdfit(x,high,sh,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe high fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7]);
printf("\n%f\n%f',a[8],a[9]);
printf("\nChisq = %f',chisq);
fitting = LOW;
svdfit(x,low,sl,m,a,n,u,v,w,&chisq,fill_matrix);
printf("\n\nThe low fitting params are:"); // these are the fitting parameters
printf("\n\n%f\n%f\n%f\n%f',a[0],a[l],a[2],a[3]); // these are the fitting parameters
printf("\n%f\n%f\n%f\n%f',a[4],a[5],a[6],a[7]);
printf("\n%f\n%f’,a[8],a[9]);
printf("\nChisq = %f',chisq);

m=300;
n=20;
free_dmatrix(u,0,m,0,n); 
free_dmatrix(v,0,n,0,n); 
free_dvector( w,0,n); 
free_dvector(a,0,n);}

/* Module "ranlmfit.h" (Header with Conventions and Prototypes) */

#defme PARDIM 20 /* maximal number of parameters: up to 20 */ 
#defme DATDIM 500 /* maximal data of data points (up to 500) */

#define NUL 0.0 /* for convenience */
#define ITMAX 10000 /* maximum number of iterations, changeable */ 
#define TRUE 1 /* to simulate boolean values */
#define FALSE 0
#define INC 1.0E-5 /* increment in "derivative" */
#define CRITERION 1.0E-19 /* of a small eigenvalue in "search" */ 
#define EPSCONVER 1.0E-19 /* exit criterion in "significant" */ 
#defme MYMAX 1.0E19 /* maximal damping value in "search" */

typedef double PARVEC [PARDIM]; /* vector type for parameter */
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typedef double MAT [PARDIM][PARDIM];/* parameter matrices */ 
typedef double DATVEC [DATDIM]; /* vector type for data */

typedef int BOOL ; /* simulates boolean type */

/* now protoypes of all functions used by "main"-"frame" */

void frame (void); /* program frame */
double predict (int k, PARVEC p); /* the Model! */
void datinput(void); /* data input */
void dumpdata(void); /* dump all data as read */
void checkinput(void); /* check input data */
void inspect (void); /* graphics of input data*/
void itoutput (void); /* intermediate output */
void finoutput (void); /* final output */
void search (void); /* fitting strategy */
double squaresum (PARVEC p); /* calc, of fit criterion*/
void derivative (int k); /* calc, of derivatives */
void fill (void); /* fill inform, matrix */
void scale (void); /* calcul. correl. matrix*/
void decompose(void); /* eigenvalue/eigenvector*/
void explore (void); /* explore param. point */
void find (void); /* find new param. point */
BOOL inside (PARVEC p); /* check admissibility */
void accept (void); /* accept new parameters */
BOOL significant (PARVEC ql, PARVEC q2, double fql,double fq2);

/* test for convergence */ 
void nrerror(char error_text[]); 
double *dvector(long nl, long nh); 
double **dmatrix(long nrl, long nrh, long ncl, long nch); 
void free_dvector(double *v, long nl, long nh); 
void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch); 
void fill_matrix(double x,double p[], double y); 
double pythag(double a, double b);
void svdfit(double x[ ], double y[ ], double sig[ ], int ndata, double a[ ], int ma, 

double **u, double **v, double w[ ], double *chisq, 
void(*funcs)(double,double [ ],double)); 

void svdcmp(double **a, int m, int n, double w[], double **v);
void svbksb(double **u, double w[], double **v, int m, int n, double b[ ], double x[ ]);

static double sqrarg;
#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0:sqrarg*sqrarg)

static double maxargl,maxarg2;
#define FMAX(a,b) (maxargl=(a), maxarg2=(b), (maxargl) > (maxarg2) ?\ 
(maxarg 1): (maxarg2))
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static int iminargl,iminarg2;
#define IMIN(a,b) (iminargl=(a),iminarg2=(b),(iniinargl) < (iminarg2) ?\ 
(iminarg 1): (iminarg2))

#define SIGN(a,b) ((b) > 0.0 ? fabs(a): -fabs(a)) 

void nrerror(char error_text[ ]);

/* end of header file ("ranlmfit.h") */
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APPENDIX D 

LEVENBERG-MARQUARDT PROGRAM 

This program is written in C for the Macintosh using Apple’s free MPW compiler 

and performs a Levenberg-Marquardt fit to the transmission values such as those 

measured in appendix B using the starting values needed given by the least squares fitting 

routine in Appendix C.

#include <stdio.h>
#include "cboxl.h" /* <math.h> here not necessary */
#include <math.h>

/* set of global definitions used by "frame" and by dependents: */

int model; /* model selector, useful in "predict" */ 
int m,n; /* number of data and of parameters, resp. */

/* in C-language called from 0 to m-1, n-1 ! */

char filename[255];

DATVEC xl ,x2,response,aluminum,plastic,high,low;

PARVEC pstart,upper,lower;
/* start vector of parameters, of upper and */
/* lower permissible limits, n-vectors */

PARVEC popt,sdev,d,eig;
/* optimal vector of parameters (if found) */
/* vector of standard deviations */
/* vector -d- of scale factors */
/* vector -eig- of eigenvalues */

double sqsum,my; /* final value of sum of squares */

DATVEC fit; /* predictions of measurements after fitting */

BOOL fullresp,redundant,conver; /* diagnostic indices of course of search
*/

int it,i,fitting; /* number of iterations as performed */
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PARVEC dif, p,pl, grad;

MAT info,correl,bas,inv;

/* matrices required for detailed study of algorithm */
/* info: information matrix G (eq. 2.5) */
/* correl: its scaled form, correlation matrix */
/* bas: contains the eigenvectors of correl */
/* inv: the inverted matrix of J (eq.2.29) */

#define PLASTIC 1 
#define ALUMINUM 2 
#define HIGH 3 
#define LOW 4

void main(void){ 
strcpy(filename,"thickplnasastepcalib2.dat"); 
printf( "\n\n%s\n",filename); 
datinput();
fitting = ALUMINUM; 
fitting = PLASTIC; 
switch(fitting){

case PLASTIC: for (i = 0; i < m; i++){
x2[i] = high[i]; 
xl[i] = low[i]; 
response [i] = plastic [i];} 

printf("Plastic f i t"); 
break;

case ALUMINUM: for (i = 0; i < m; i++){
x2[i] = high[i]; 
xl[i] = low[i]; 
response[i] = aluminumfi];} 

printf("Aluminum f i t"); 
break;

case HIGH: for (i = 0; i < m; i++){
xl[i] = plastic[i]; 
x2[i] = aluminum[i]; 
response[i] = high[i];} 

printf("High f i t"); 
break;

case LOW: for (i = 0; i < m; i++){
xl[i] = plastic[i]; 
x2[i] = aluminum[i]; 
response[i] = low[i];} 

printf("Low f i t");
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break;}
dumpdata();
checkinput();
search();
if (fullresp==TRUE || it > 1) finoutput(); 
else { /* if not: no sense in calling output! */

printf("lack of response, check scale vector!"); 
for (i=0; i<n; i++){ 

printf("%18.6f',d[i]);
if (i % 3 == 0) printf("\n");}}} /* "d" tells you which parameter is void */

double predict (int k, PARVEC p){
/* this defines the fitting equation for the k-th data */
/* point and parameter vector p. */

/* Attention! Errors are frequent! See section 3.4 */
/* requires global variable DATVEC x */
/* may require further user-defined globals which have */
/* then to be included */
/* in this example int model is included as selector */

extern int model; 
extern DATVEC xl; 
double acc,xal ,xa2,xa3,A,B,C,rad; 
int sw;

sw = model; 
switch(sw){

case 10: A = p[0] + p[l] * x2[k] + p[2] * xl[k] + p[3] * x2[k] * x2[k] + p[4] * xl[k]
* x2[k] + p[5] * xl[k] * x 1 [k];

B = 1 + p[6] * x2[k] + p[7] * xl[k];
C = 0; // 8 param A/B
acc = A / B;
break;

case 12: A = p[0] + p[l] * x2[k] + p[2] * xl[k] + p[3] * x2[k] * x2[k] + p[4] * xl[k]
* x2[k] + p[5] * xl[k] * xl[k] + p[6] * x2[k] * x2[k] * x2[k] + p[7] * x2[k] * x2[k] * 
xl[k] + p[8] * x2[k] * xl[k] * xl[k] + p[9] * xl[k] * xl[k] * x 1 [k];

B = 1 + p[10] * x2[k] + p[ll] * xl[k] + p[12] * x2[k] * x2[k] + p[13] * xl[k] * 
x2[k] + p[14] * xl[k] * xl[k];

C = p[15] + p[16] * x2[k] + p[17] * x 1 [k]; // 18 param sqrt equation
rad = B * B + 4 * A * C;
//if (rad < 0) rad = 100000000; // penalized neg square root
rad = sqrt(rad);
acc = (rad - B) / (2*C);
break;
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case 13: A = p[0] + p[l] * x2[k] + p[2] * xl[k] + p[3] * x2[k] * x2[k] + p[4] * xl[k]
* x2[k] + p[5] * xl[k] * xl[k] + p[6] * x2[k] * x2[k] * x2[k] + p[7] * x2[k] * x2[k] * 
xl[k] + p[8] * x2[k] * xl[k] * xl[k] +p[9] * xl[k] * xl[k] * xl[k];

B = 1 + p[10] * x2[k] + p[ll] * xl[k] + p[12] * x2[k] * x2[k] + p[13] * xl[k] * 
x2[k] + p[14] * xl[k] * x 1 [k];

C = 0; // 15 param A/B
acc = A/ B;
break;

case 14: A = p[0] + p[l] * x2[k] + p[2] * xl[k] + p[3] * x2[k] * x2[k] + p[4] * xl[k]
* x2[k] + p[5] * xl[k] * xl[k];

B = 1 + p[6] * x2[k] + p[7] * xl[k];
C = p[8]; // 9 param sqrt equation
rad = B *B  + 4 * A * C ;
//if (rad < 0) rad = 100000000; // penalized neg square root
rad = sqrt(rad);
acc = (rad - B) / (2*C);
break;

case 16: acc = p[0] * x2[k] + p[l] * xl[k] + p[2] * x2[k] * x2[k] + p[3] * xl[k] *
x2[k] + p[4] * xl[k] * xl[k] + p[5] * x2[k] * x2[k] * x2[k] + p[6] * x2[k] * x2[k] * xl[k]
+ p[7] * x2[k] * xl[k] * xl[k] + p[8] * xl[k] * xl[k] * x 1 [k];

// 9 param linear equation 
break;

case 17: acc = p[0] * x2[k] + p[l] * xl[k] + p[2] * x2[k] * x2[k] + p[3] * xl[k] *
x2[k] + p[4] * xl[k] * xl[k] + p[5] * x2[k] * x2[k] * x2[k] + p[6] * x2[k] * x2[k] * xl[k]
+ p[7] * x2[k] * xl[k] * xl[k] + p[8] * xl[k] * xl[k] * xl[k] + p[9] * x2[k] * x2[k] * 
x2[k] * x2[k] + p[10] * x2[k] * x2[k] * x2[k] * xl[k] + p[ll] * x2[k] * x2[k] * xl[k] *
xl[k] + p[12] * x2[k] * xl[k] * xl[k] * xl[k] +p[13] * xl[k] * xl[k] * xl[k] * xl[k];

//14 param linear equation 
break;

case 18: acc = p[0] + p[l] * x2[k] + p[2] * xl[k] + p[3] * x2[k] * x2[k] + p[4] * 
xl[k] * x2[k] + p[5] * xl[k] * xl[k] + p[6] * x2[k] * x2[k] * x2[k] + p[7] * x2[k] * x2[k]
* xl[k] + p[8] * x2[k] * xl[k] * xl[k] + p[9] * xl[k] * xl[k] * xl[k] + p[10] * x2[k] * 
x2[k] * x2[k] * x2[k] + p[ll] * x2[k] * x2[k] * x2[k] * xl[k] + p[12] * x2[k] * x2[k] *
xl[k] * xl[k] + p[13] * x2[k] * xl[k] * xl[k] * xl[k] + p[14] * xl[k] * xl[k] * xl[k] *
xl[k];

// 15 param linear equation 
break;

case 19: acc = p[0] + p[l] * x2[k] + p[2] * xl[k] + p[3] * x2[k] * x2[k] + p[4] * 
xl[k] * x2[k] + p[5] * xl[k] * xl[k] + p[6] * x2[k] * x2[k] * x2[k] + p[7] * x2[k] * x2[k]
* xl[k] + p[8] * x2[k] * xl[k] * xl[k] +p[9] * xl[k] * xl[k] * xl[k];

// 10 param linear equation 
break;

} /* end of the whole switch */ 

return (acc);} /* all switch cases jump to this exit */
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void datinput (void){
/* A simple way to transmit input data. Others are possible. */
/* A predefined file "indata." is assumed, of the form of the */
/* sets in section 3.15 (see there), namely: */
/* int model, m, n, DATVEC x-response-pairs, */
/* PARVEC pstart-upper-lower triples */

extern int model, m, n; 
extern DATVEC xl,x2, response,response2; 
extern PARVEC pstart, upper, lower; 
int i, k;
FILE * infile; /* a file pointer */

infile = fopen (filename,"r"); /* points now to "indata." */
fscanf(infile,"%i%i%i",&model,&m,&n); /* reads data */ 
for (k=0; k<m; k++) 

fscanf(infile,"%lf%lf%lf%lf',&plastic[k],&aluminum[k],&high[k],&low[k]); 
for (i=0; i<n; i++){ 

fscanf(infile," %lf' ,&pstart[i]); 
upper[i] = 10000; 
lower[i] = -10000;} 

fclose(infile);}

void dumpdata (void){
/* function echoes input data, for detection of format errors */
extern int model, m, n;
extern DATVEC xl,response,fit;
extern PARVEC pstart, upper, lower;
int i, k;
DATVEC dev; 

printf("\nModel selector: %2i", model); 
printf("\nNumber of observations: %3i",m); 
printf("\nNumber of parameters: %3i",n); 
printf("\nlndependent variable:\n"); 
for (k=0; k<m; k++){ 

printf("%16.6f%16.6f',xl[k],x2[k]); 
if (k % 4 ==3) printf("\n");} 

printf("\nResponse Vector\n"); 
for (k=0; k<m; k++){ 

printf("%16.6f',response[k]); 
if (k % 4 ==3) printf("\n");} 

printf("\nStart vector, upper and lower limits:\n"); 
for (i=0; i<n; i++){ 

printf(" % 16. 8f ' ,pstart[i]); 
if (i % 4 ==3) printf("\n");} 

printf("\n"); 
for (i=0; i<n; i++){
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printf(" % 16.1 f ' ,upper[i]); 
if (i % 4 ==3) printf("\n");} 

printf("\n"); 
for (i=0; i<n; i++){ 

printf("%16.1f',lower[i]); 
if (i % 4 ==3) printf("\n");} 

printf("\nlnitial fit, predict: \n");

for (k=0; k<m; k++) fit[k]=predict(k,pstart); 
for (k=0; k<m; k++){ 

printf("%16.6f ”,fit[k]); 
if (k % 7 ==6) printf("\n");} 

for (k=0; k<m; k++) dev[k]=fit[k]-response[k]; /* residual vector */ 
printf("\nResiduals: \n"); 
for (k=0; k<m; k++){ 

printf("%16.7f ”,dev[k]); 
if (k % 7 ==6) printf("\n");} 

printf("\n");}

void checkinput (void){
/* Calculation of initial fit criterion */
/* Only if this is successful there can start a fitting cycle */
/* User may add plausibility tests, e.g. limits of start-vector */
/* or others according to knowledge of data structure */ 
extern int m;
extern DATVEC response; 
extern PARVEC pstart; 
int k;
double fst, depot, acc;

printf("attempt to calculate initial fit criterion\n"); 
printf("an interrupt points to bug in model or data structure\n"); 
depot = 0.0; 
for (k=0; k<m; k++){ 

acc = predict(k,pstart); 
acc -= responsepk]; 
depot += acc * acc;} 

fst = depot;
printf("\n\nsuccessful calculation, root of mean square%18.8f',sqrt(fst/m)); 
depot = 0.0;
for (k=0; k<m; k++) depot += response[k]; 
if (depot > 0.0) depot = sqrt(fst/m)/depot*m* 100.0; 
printf("\nin percent of average response:%8.1f\n\n",depot); 
if (depot > 50.0) printf("\nHigh value! Better start available?\n\n");}
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void inspect (void){
/* so far only a dummy. User may declare extems and use them */
/* for graphid output, possibly with a device to improve the */
/* start vector */
} /* end of inspect and of box 7 */

void itoutput(void){
/* during each iteration (counter it) the decadic exponent of */
/* my and f is displayed in one line. It is a short statement */
/* of what is going on during the iteration cycle */

extern double my,f; 
extern int it; 
int expmy;

expmy = (int) (loglO(my) + 0.5); /* rounding the exponent of "my" */ 
if (my < 1) expmy—; /* correcting in the case of a negative value */

}

void finoutput(void){
/* the final output and mathematical analysis of the final fit! */ 
/* the formalism is described in section 2.10 */

/* particular statistical quantities as calculated: */
/* - optimal parameter set with standard error, eq.2.33 */
/* - final value of fit criterion, eq. 1.3 */
/* - eigenvalues of correlation matrix (eq.2.20, matrix L) */
/* - optimal prediction versus measured response (eq. 2.36) */
/* - run test on residuals (eq. 2.40,41) */
/* - neighborhood correlation of residuals (eq. 2.43) */
/* - test on m/2 positive signs: eq. 2.37 */
/* - diagnostic booleans */

/* the following globals are required for the final fit: */
extern int it, m, n; 
extern double sqsum; 
extern PARVEC popt, sdev, eig, d; 
extern DATVEC response, fit; 
extern BOOL fullresp, conver, redundant; 
int i, k, pluses, runs;
double rho, depot, store, axl, ax2, ayl, ay2, ak, acc;
DATVEC dev;

printf("\nFinal parameter values:\n"); 
for (i=0; i<n; i++){
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printf("%14.8f ",popt[i]); 
if (i % 7 ==6) printf("\n");} 

printf( "\nStandard deviations :\n"); 
for (i=0; i<n; i++){ 

printf("%12f ",sdev[i]); 
if (i % 7 ==6) printf("\n");} 

if (eig[n-l]<CRITERION) printf("\nAt least one redundant direction deleted!\n"); 
printf("\nScale vector at final point:\n"); 
for (i=0; i<n; i++){ 

printf("%12f ",d[i]); 
if (i % 7 ==6) printf("\n");} 

printf("\nEigenvalues of correlation matrix:\n"); 
for (i=0; i<n; i++){ 

printf("%12f ",eig[i]); 
if (i % 7 ==6) printf("\n");} 

printf("\nFit criterion at final point: %12f\n", sqsum); 
depot=0.0;
for (k=0; k<m; k++) depot += response[k]; 
printf("Root of mean square, percent of average response:"); 
if (depot > 0.0) depot = sqrt(sqsum/m) / depot*m*100; 
printf("%6.1f, depot); 
for (k=0; k<m; k++) fit[k]=predict(k,popt); 
printf("\nFinal fit, predict: \n"); 
for (k=0; k<m; k++){ 

printf("%16.6f ",fit[k]); 
if (k % 7 ==6) printf("\n");} 

printf("\nVersus response: \n"); 
for (k=0; k<m; k++){ 

printf("%16.6f ",response[k]); 
if (k % 7 ==6) printf("\n");} 

for (k=0; k<m; k++)
dev[k]=fit[k]-response[k]; /* residual vector */
axl = ayl = ak = 0.0;
runs=l;
printf("\nResiduals: \n"); 
for (k=0; k<m; k++){ 

printf("%16.7f ”,dev[k]); 
if (k % 7 ==6) printf("\n");} 

if (dev[m-l]>0) pluses=l; 
else pluses=0; 
for (k=0; k<m-l; k++){ 

if (dev[k]>0) pluses++; 
if (dev[k]*dev[k+l] <= 0) runs++; 
axl += dev[k]; /* sum of residual vectors */ 
ayl += dev[k+l];} 

axl /= (m-1);
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ayl /= (m-1); /* mean of residual vectors */
ax2 = ay2 = 0.0; 
for (k=0; k<m-l; k++){ 

ax2 += (dev[k]-axl)*(dev[k]-axl); 
ay2 += (dev[k+l]-ayl)*(dev[k+l]-ayl); 
ak += (dev[k]-axl)*(dev[k+l]-ayl);} 

if (ax2*ay2 != 0.0) rho = ak/sqrt(ax2*ay2); 
else rho=0.0; /* neighborhood correlation coefficient */
printf("\nCorrelation coefficient of neighbors, deg. of freedom:\n"); 
printf(" %7.4f %4i: ", rho, m-3); 
if (fabs(rho) < 1.7/sqrt(m-l)) printf("not significant!\n"); 
else printf("significant! Indicates systematic deviations!\n"); 
printf("Number of plus deviations: %3i out of %3i: ", pluses, m); 
if (m >= 6){

if (fabs(2*pluses-m) < 1.645 * sqrt(m)) printf("not significant!\n"); 
else printf("significant! Outliers present?\n");} 

else printf("not enough data for statistics!\n"); 
printf("Number of runs: %3i: ", runs); 
depot=2.0 * pluses *(m-pluses) / m + 1.0; 
if (pluses >= 4 && m-pluses >= 4){ 

s tore=1.645* s qrt( (depot-1)* (depot-2)/(m-1)); 
if (runs<=depot+0.5+store && runs>=depot-0.5-store) 
printf("not significant!\n");
else printf("significant! Indicates systematic trends!\n");} 

else printf("Not enough data for statistics!\n"); 
printf("Diagnostic indices:"); 
if (conver==FALSE) printf("no"); 
printf( "convergence obtained.\n");
if (fullresp==FALSE) printf("Lack of response at final point!\n"); 
if (redundant==TRUE) printf("Parameter redundancy!\n"); 
else printf("No parameter redundancy !\n"); 
printf("Iterations until exit: %i\n",it); 
depot = 0.0; 
for (k=0; k<m; k++){ 

acc = predict(k,popt); 
acc -= response[k]; 
depot += acc * acc;} 

printf("successfiil calculation, root of mean square%18.8f\n",sqrt(depot/m)); 
printf("End of program, follows graphics (if programmed)"); 
inspect();} /* end of "finoutput" and of module box 9 */

/* "Search" is the main routine that steers the curve fitting */
/* explained in detail in chapter 2, in particular section 2.7 */

/* Presupposes the header files in "cboxl .h" */
/* "Search" is called by "frame", requires globals from there */
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/* "search" has a few own globals and constants. Definitions: */

double my,f,fl,fold; /* my: damping factor; the fs are */
/* fit criteria during iteration */

PARVEC dif,p,pl,pold,grad; /* dif: derivatives; p,pl contain */
/* parameter values during iteration */

void search (void){
/* the following extern variables are defined and explained at */
/* the head of "frame" in "cboxl .h" */

extern int m,n;
extern DATVEC xl, response; 
extern PARVEC pstart, upper, lower; 
extern PARVEC popt, sdev, d, eig; 
extern double sqsum; 
extern DATVEC fit;
extern BOOL fullresp, redundant, conver; 
extern int it;
extern MAT info, correl, bas, inv;
BOOL success; 
int i;

/* steps are defined in table 3.1 */ 
my=0.01; /* this starts step 1 */
it=0;
for (i=0; i<n; i++) p[i]=pstart[i]; 
f = squaresum (p); /* initial sum of squares */
for (i=0; i<n; i++) pold[i]=p[i]; 
fold=f;
do{ /* main iteration loop, step 2 */

success = FALSE; /* step 3 */
explore(); /* step 4 */
it++; /* step 5 */
if (fullresp==TRUE) /* step 6 */

while (my<=MYMAX && success==FALSE){ /* step 7 */
/* this starts the my-loop (damping loop) */ 

find(); /* step 8 */
if (inside(pl)==TRUE){ /* step 9 */

fl=squaresum(pl); /* test of new parameter vector */ 
if (fl<f){ /* step 10 *//* better parameter vector */

accept(); /* steps 11 and 12 */
success=TRUE;}} /* step 13 */

my *= 10.0; /* step 14 */
itoutput();}} /* iteration output:cbox9.c */

/* the "still progress" condition to continue the do-loop:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



while (itcITMAX && success==TRUE && significant(pold,p,fold,f)==TRUE) 
step 16 */

if (success==TRUE) explore(); /* step 17 */
if (fullresp==FALSE) conver=FALSE;
else{

redundant = FALSE;
for ( i=0; i<n; i++) if (eig[i]<CRITERION) redundant = TRUE;
find();
if (m>n) for ( i=0; i<n; i++) sdev[i]= sqrt(inv[i][i]*f/(m-n));
conver= significant(p,pl,f,f)==TRUE ? FALSE : TRUE ;} 

for ( i=0; i<n; i++) popt[i]=p[i]; 
sqsum=f; // end of search
return;} /* end of "search" and of module box 10 */

double squaresum (PARVEC p){
/* calculates the sum of squared deviations (fit criterion) */
/* for the proposed parameter vector p , eq. 1.3, without */
/* weighting (see chapter 6 for that matter) */

/* requires global variables from "cboxl.h" */
/* int m, DATVEC response */
/* calls function "predict" */
extern int m;
extern DATVEC response; 
double depot = 0.0; 
double acc; 
int k;
for (k=0; k<m; k++){ 

acc = predict(k,p) - response[k]; 
depot += acc*acc;} 

return (depot);} /* end of "squaresum" and of module box 11*/

void derivative (int k){
/* this function calculates, by a difference formula, the */
/* contribution of the k-th data point to the derivative with */
/* respect to each one of the parameters, i.e. it fills the */
/* global vector PARVEC dif. See section 2.3, eq. 2.14 */

/* "derivative" calls function "predict" */

/* requires global variables from "cboxl.h" */
/* int n, PARVEC p, and the constant INC (defined Box 10) */
extern int n; 
extern PARVEC p, dif;
PARVEC incp,decp; int j; 
double del,ps, fine, fdec;
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for (j=0; j<n; j++){ 
incp[j] = p[j]; 
decp[j] = p[j];} 

for (j=0; j<n; j++){ 
ps =p[j];
del = INC * ps; /* "INC" is a global relative increment */ 
if (ps==0.0) /* defined in "cboxl.h" */

del=INC;
incp[j] = ps + del; /* increased parameter value */
decp[j] = ps - del; /* decreased parameter value */
fine = predict(k,incp); /* function value of incp */ 
fdec = predict(k,decp); /* function value of deep */ 
dif[)3 = (finc-fdec)/2.0/del; /* central difference formula */ 
incp[j] = ps; /* returning to original value */
decp[j] = ps;}} /* end of "derivative" and of module box 12 */

void fill (void){
/* this function fills the information matrix (eq.2.5) and the */ 
/* gradient (eq. 2.1) by a difference procedure explained in */ 
/* section 2.3 */

/♦"fill" calls function "derivative" returning PARVEC dif */ 
/* calls function "predict" */

/* requires global variables from "cboxl.h" */
/* int m, int n, DATVEC response */
/* fills global variables BOOL fullresp, MAT info, */
/* PARVEC grad, d */

extern int m,n; 
extern DATVEC response; 
extern PARVEC p, grad, d, dif; 
extern MAT info; 
extern BOOL fullresp;

int i,j,k;

fullresp=TRUE; 
for (i=0; i<n; i++)
{
for(j=i;j<n;j++)
info[i][j]=0.0;

grad[i]=0.0;
}
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for (k=0; k<m; k++)
{
derivative(k); 
for (i=0; i<n; i++)
{
for (j=i; j<n; j++) 
info[i][j] += dif[i] * dif[j]; 

grad[i] += dif[i]*(predict(k,p)-response[k]);
}

}
for (i=0; i<n; i++)
{
d[i] =sqrt(info[i] [i]); 
if (d[i]==0.0) 
fullresp=FALSE; 
for (j=0; j<i; j++)
info[i][j]=info[j][i];}} /* end of "fill" and of module box 13 */

void scale (void){
/* this function reduces the global "info"-matrix to its */
/* scaled form "correl", using the scale vector "d" */
/* see section 2.4, eqs. 2.15, 2.16 */

/* requires global variables from "cboxl.h"
/* int n, PARVEC d, MAT info 
/* returns global variable MAT correl 

extern int n; 
extern PARVEC d ; 
extern MAT info, correl; 
int i,j;

for (i=0; i<n; i++) 
for (j=i; j<n; j++){ 

correl[i][j] = info[i][j]/d[i]/d[j]; 
correl[j][i] = correl[i][j];}} /* end of "scale" and of module box 14 */

void decompose(void){
/* symmetric n*n "bas", a correlation matrix, is transformed */ 
/* to its eigensystem by an iterative procedure due to */
/* H.F. Kaiser (Comp. J. 15 (1972) 271-273) */
/* "bas" is overwritten; result is eigenvector matrix */
/* n-vector "eig" receives eigenvalues decreasingly ordered */ 
/* see explanation in section 2.5 */

*/
*/
*/
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/* requires global int n */
/* requires and changes global MAT bas */
/* fills PARVEC eig */
extern int n; 
extern MAT bas; 
extern PARVEC eig;
#define EPS ANGLE 1.0E-8
#define ITBOUND 10
double scalprod,ww,wij,wih,jlong,hlong;
int i,j,h,ki,ni,itcount;
double teta,cteta,steta,flip,ac,le;

itcount=0; 
ni = n * (n-l)/2; 
ki=ni; 
do{

++itcount;
for (j=0; j<n-l; j++){ 

for (h=j+l; h<n; h++){ 
scalprod = jlong = hlong = 0.0; 

for (i=0; i<n; i++){ 
wij = bas [i][j]; 
wih = bas [i][h]; 
scalprod += wij* wih; 
jlong += wij*wij; 
hlong += wih*wih;} 

le=sqrt(j long*hlong); 
if (le > 0.0) ac = fabs(scalprod/le); 
else ac = 0.0; 
scalprod += scalprod;

ww = jlong-hlong; 
if ((ac>EPS ANGLE)||(ww<0.0)) { 

if((fabs(ww)>=fabs(scalprod))) { 
teta =fabs(scalprod/ww); 
cteta= 1.0/sqrt( 1.0+teta*teta); 
steta=teta*cteta;} 

else{
teta =fabs(ww/scalprod); 
steta= 1.0/sqrt( 1.0+teta*teta); 
cteta=steta*teta;} 

cteta =sqrt((1.0+cteta)/2.0); 
steta /= 2.0*cteta; 
if (ww<0.0){ 

flip = cteta; 
cteta = steta; 
steta = flip;}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



162

if (scalprodcO.O) steta = -steta; 
for (i=0; i<n; i++){ 

flip = bas[i][j];
bas[i][j] = bas [i][h]*steta + flip * cteta; 
bas[i][h] = bas [i][h]*cteta - flip * steta;} 

ki = ni;} /* of if ac>EPSANGLE etc. */
else

ki—;}}} /* of h-loop */
while ((ki>0)&&(itcount<ITBOUND)); /* now calculation of eigenvalues */ 
for (j=0; j<n; j++){ 

eig[j]=0.0;
for (i=0; i<n; i++) eig[j] += bas[i][j]*bas[i][j]; 
eig[j]=sqrt(eig[j]);}/* now calculation of eigenvectors */ 

for (j=0; j<n; j++){ 
if (eig[j]! =0.0) for (i=0; i<n; i++) bas[i][j] /= eig[j];} 

return;} /* end of "decompose" and of module box 15 */

void explore(void){
/* this function fills gradient (eq.2.1) and information matrix */ 
/* (eq.2.5), scales it (eqs. 2.15 and 2.16), and finds the */
/* the eigensystem decomposition (eq. 2.20) */

/* module requires global variables from "cboxl.h" */
/* int n, BOOL fullresp, MAT correl */
/* returns global variable MAT bas */
/* calls functions "fill" and "decompose" */

extern n;
extern BOOL fullresp; 
extern MAT correl, bas ;
int i,j;

fill (); /* fills vector grad and matrix info */
/* eqs. 2.1 and 2.5 ! */

if (fullresp==TRUE){ 
scale(); /* eq. 2.16!*/

/* scales "info" to "correl", scale vector "d" */
for (j=0; j<n; j++) 

for (i=0; i<n; i++) bas[i][j] = correl[i][j]; 
decomposeQ;}} /* decomposition of "correl"-matrix (eq.2.20) */

void find (void){
/* this module calculates, for a given my-value and for given */ 
/* principal axes and eigenvalues, a new trial parameter */
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/* (eqs. 2.29 and 2.30) */

/* requires global variables as defined in "cboxl.h" */
/* int n, double my, PARVEC eig, d, p, grad, MAT bas */
/* fills MAT inv, PARVEC pi */
extern int n; 
extern double my; 
extern PARVEC eig, d, p, grad, pi; 
extern MAT bas, inv; 
int h,i,j; 
double depot; 
for (i=0; i<n; i++) 

for (j=0; j<n; j++){ 
depot=0.0; /* for accumulation of inverse */
for (h=0; hen; h++)
if (my>0.0 || my==0.0 && eig[h]>1.0e-6) 
depot += bas[i][h] * bas[j][h] / d[i] / d[j] / (eig[h]+my); 
inv[i][j]= inv[j][i] = depot;} /* see eq. 2.39 ! */ 

for (i=0; i<n; i++){ 
depot=0.0; /* for accumulation of step */
for (j=0; j<n; j++)
depot -= inv[i][j] * gradfj]; /* see eq. 2.30 ! */
pi [i] = p[i] + depot;}} /* end of "find" and of module box 17 */

BOOL inside (PARVEC p){
/* this module has the only task to prevent too large a step */
/* further attempts with higher damping factor will follow */
/* inside == TRUE means that the step remains within limits */

/* requires global variables from "cboxl.h" */
/* int n, PARVEC p, upper, lower */
extern int n;
extern PARVEC upper, lower; 
int i;
BOOL outside; 

outside = FALSE;
for (i=0; i<n; i++) if (p[i]>=upper[i] || p[i]<=lower[i]) outside = TRUE; 
return (outside==TRUE ? FALSE : TRUE);} /* end of "inside" and of module

box 18 */
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void accept (void){
/* this function performs restoring of old and current para- */
/* ter vectors and of pertinent fit criteria after accepting */

/* requires global variables from "cboxl.h" */
/* int n, double fl, PARVEC pi */
/* requires and changes PARVEC p, double f */
/* fills new PARVEC pold, double fold, my */
extern int n;
extern double f, fl, fold, my; 
extern PARVEC p, pi, pold; 
int i;
for (i=0; i<n; i++){ 

pold[i] = p[i]; 
p[i] =pl[i];} 

fold = f ; 
f = fl;
my /= 100.0;} /* end of "accept" and of module box 19 */

BOOL significant (PARVEC ql, PARVEC q2, double fql, double fq2){ 
/* "significant" becomes true when the step between parameter */
/* vectors ql and q2 is either long enough or improves the fit */
/* criterion fq2 over fql significantly. */

/* requires global variable from "cboxl.h" */
/* int n, constant EPSCONVER (defined Box 10) */

extern int n;
BOOL ac; 
int i;

ac = FALSE; 
for (i=0; i<n; i++) 

if (fabs(1.0 - q2[i]/ql[i]) > EPSCONVER ) ac = TRUE; 
if (fabs(1.0-fq2/fql) > EPSCONVER) ac = TRUE; 
retum(ac);} /* end of "signficant" and of module box 20 */
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/* Module "cboxl .h" (Header with Conventions and Prototypes) */

/* to be placed before box 2 ("main" and "frame") */

/* the following constants are for later activation of debugging */
/* output. DEBUG 1 means that in cboxl2.C and cboxl5.C the test */
/* output will be compiled. DBUG 1 means the same for cboxlO.C . */
/* After debugging the whole program should be recompiled with */
/* both constants being defined O.This suppresses that output */

#define DEBUG 0 /* selector for debugging cboxes 12 and 15 */
#define DBUG 0 /* the same for cbox 10 */

/* now follow constants for the program, and data types. */

#defme PARDIM 20 /* maximal number of parameters: up to 20 */ 
#define DATDIM 500 /* maximal data of data points (up to 500) */

#define NUL 0.0 /* for convenience */
#define ITMAX 10000 /* maximum number of iterations, changeable */ 
#define TRUE 1 /* to simulate boolean values */
#define FALSE 0
#define INC 1.0E-5 /* increment in "derivative" */
#define CRITERION 1.0E-9 /* of a small eigenvalue in "search" */ 
#define EPSCONVER 1.0E-9 /* exit criterion in "significant" */ 
#define MYMAX 1.0E9 /* maximal damping value in "search" */

typedef double PARVEC [PARDIM]; /* vector type for parameter */ 
typedef double MAT [PARDIM][PARDIM];/* parameter matrices */
typedef double DATVEC [DATDIM]; /* vector type for data */

typedef int BOOL ; /* simulates boolean type */

/* now protoypes of all functions used by "main"-"frame" */

void frame (void); /* program frame */
double predict (int k, PARVEC p); /* the Model! */
void datinput(void); /* data input */
void dumpdata(void); /* dump all data as read */
void checkinput(void); /* check input data */
void inspect (void); /* graphics of input data*/
void itoutput (void); /* intermediate output */
void finoutput (void); /* final output */
void search (void); /* fitting strategy */
double squaresum (PARVEC p); /* calc, of fit criterion*/
void derivative (int k); /* calc, of derivatives */
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void fill (void); /* fill inform, matrix */
void scale (void); I* calcul. correl. matrix*/
void decompose(void); /* eigenvalue/eigenvector*/
void explore (void); /* explore param. point */
void find (void); /* find new param. point */
BOOL inside (PARVEC p); /* check admissibility */
void accept (void); /* accept new parameters */
BOOL significant (PARVEC ql, PARVEC q2, double fql,double fq2);

/* test for convergence */

/* end of header file ("cboxl .h") */
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[57] ABSTRACT

A multiple x-ray energy level imaging system Includes a 
scanning x-ray beam and two detector design having a first 
low x-ray energy sensitive detector and a second high x-ray 
energy sensitive detector. The low x-ray energy detector is 
placed next to or in front of the high x-ray energy detector. 
The low energy sensitive detector has small stopping power 
fa t x-rays. The lower energy x-rays are absorbed and con
verted into electrical signals while the majority <4 the higher 
energy x-rays pass through undetected. The high energy 
sensitive detector has a large stopping power far x-rays as 
well as it having a filter placed between it and the object to 
absorb die lower energy x-rays. In a second embodiment; a 
single energy sensitive detector is provided which provides 
an output signal proportional to the amount of energy in each 
individual x-ray it absorbed. It can then have an electronic 
threshold or thresholds set to select two or more energy 
ranges for the images. By having multiple detectors located 
at different positions, a dual energy lnminography system is 
possible.
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DUAL ENERGY SCANNING BEAM however, the amount of readout electronics increases rapidly
LAMINOGRAPHIC X-RADIOGRAPHY as does the cost of the system. Also, very high resolutions

require the size of the detectors to be on the order of a few 
GOVERNMENT RIGHTS hundred microns which require expensive microelectronics

5 technology.The United States may have certain rights to this inven- 4 ™ . . . .  . . ,____ ____  . .  4

don under management mid operating Contract DE-AC05- aScmPud^  to “ e e“ P
U  ER 401S0fr^> the United States Department of Energy. sensmve d e te c t^  w ^ ^ y m e a s m e  tte  enragy *  the

** incoming x-ray. The problem with such detectors is that they
BACKGROUND OF THE INVENTION can not handle very high rates and thus, it takes longer to

10 acquire an image. To increase the speed of acquisition, an
1. Held of the Invention anay of detectors as large as the object is needed with many
The present invention pwt*in« to x-radiology systems and thousands of electronic channels. The advantage of such a 

more particularly to dual energy x-radiography in which system is that die detectors can be electronically tuned to 
images having multipie densities present can be distin- select the cutoff between the high versus low energy x-ray 
gijshwi 25 detection.

2 Related Prior Ait Scanning x-ray beam radiography has also been
Most x-rsdiography systems in use today measure the developed most notably th e R e v e rs e  Geometry 

bulk x-ray transmission of an object in order to produce an X-mdiography system In this system, the x-ray beam is 
image. In this approach, an object is situated in front of a _  r a s t ^  across an o^ect and one or more detectors are used 
photographic m«lium. X-radiation is generated and directed “  |o  obten an unage. Theae d e te c ts , however, only m nsm c 
toward the object A portion of the incident x-rays are the « “a^ soon *  « «  object Coosequenttythu.
absorbed by the object The remainder of the x-rays pass system .offers from the same problcms noted in the methods 
through the objertand expose the photographic medium. °°md above. Usmg several ofjhese detectors a Lammog- 
The problem with (Ms approach is that a low density thick „  raphy system can be o to m ed jh is  Laminogryhy systems 
obje« looks the same a sa  high density thin object in die *  b“ caU>' * low resolutio" CT “  coapaM  tomography 
image. Thus, in an image with both types of objects, die system.
images can not be distinguished to identify die specific Dual energy has also been used in computed tomography
features present. Also, if the features of a low-Z material in systems, however, to obtain a  high resolution Systran, detec- 
the presence of an ovraiying high-Z material are to be „  tors of a few microns and a  great deal of readout electronics 

the high-Z can partially hide these t 0  handle the detector output are required. These systems
features. A mertinH used to overcome these problems is also require a significant amount of time totaling several 
computed tomogn*>hy (CD which takes images from many minutes to acquire an image. This occurs since the detector 
hundreds of different angles. This technique, however, suf- must be rotated around die object as well as moved up and 
fers from “beam hardening” which means that the lower 3 5  ‘*own oh*** *■ * three dimensional image, 
energy x-rays are absorbed than the Higher energy Examples of related art methods and apparatus that are 
x-rays, which causes artifacts in die image. Again, this used in obtaining sophisticated x-ray images are illustrated 
pfnhi« ^  fa due to the fact that only the bntfr r-ray tramemig,  in the following United States patents, 
sion is measured. X-rays with an energy less than two U.S. PaL No. 4,864,594, titled Hone Mineral Density 
hundred keV interact with matter primarily only through 4 0  Measurement”, issued to Dan Inbar et a l ,  relates to an 
photoelectric and Compton interactions. A photoelectric in-vivo bone system using a modified emission
type of interactions are dominated by the Z of the material cnmpiiterf tomographic gamma camera arrangement This 
while Compton type of interactions are dominated by the arrangement is used for detecting radiation from two sepa- 
electron density of the material. By separately measuring rate sources located outside of the body of the patient The 
high energy x-rays vs. low energy xrays, the photoelectric 43  two separate sources are oppositely disposed to the gamma 
vs. Compton interactions can be reconstruct!vely measured, camera during rotation erf the g»wwn« camera and the radia- 
which are dependent on the type of material and not its tion sources about the patient for obtaining tomographic 
thickness. The image can be reconstructed as if it had been data The two separate sources emit at least two different 
taken with mono-energetic xrays. energy levels. The system indudes a processing system for

In the past, dual energy x-radiography has been attempted 5 0  processing the detected radiation to provide a bone mineral 
in many ways. In one method, two images of an object are density map.
taken, one at a low keV setting on the xray  tube and one at U.S. Pat No. 5,020,085, titled “X-ray Image Processing
a high keV setting on the xray tube. In this method a bulk Device”, issued to Toshiyuki Kawara et aL, relates to an 
x-ray imaging system is use! Movement erf die object xray image processing device that uses a  dual energy 
between images can cause problems in the reconstruction. 5 5  projection radiography method. In this method the low 
Also, the high keV setting produces a significant number of energy image and the high energy image are subjected to a 
low energy x-rays thus reducing the ability <rf effectively subtraction process to provide a first image such as a 
separating die types of interactions. conventional bone x-ray image. The first image, rimflar to a

A second method uses two detectors, one detector sensi- conventional bone xray, and the low energy image are 
tive to low energy xrays in front of another detector that is 6 0  subjected to a second subtraction process to produce a 
sensitive to high energy x-rays. The high-low x-ray energy second image. The second image is similar to a soft tissue 
■Mimirivfry ic m^rhaninaiiy hunt intn thf» S ector  and ran not x-ray image. This two step process is alleged to be capable 
he changed without mwhffnini This ftetefter, of its image production without deterioration of the xray
or array of such detectors, is mechanically over die image.
n iy f t X/terhamVai cr^nwiwg la a rriartvHy «if«> anrf 65 U.S. PaL No. 5.402,460, titled "Three-Dimensional
can take many seconds to minutes even for a low resolution Microtomographk Analysis System”, issued to Roger H. 
image. The larger the array, the faster the image acquisition. Johnson et al., relates to a mfcxotomographic system that is
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used to generate a three dimensional image of a specimen. 
The microtomographic system includes an x-ray generator 
that produces an x-ray beam, a specimen holder that holds 
the specimen in the beam and an x-ray detector that mea
sures die attenuation of the beam through die specimen. Two 
projections of each view of the specimen are made. Each 
projection is made with a different intensity x-ray beam. 
After a set of projections of one view of the specimen is 
made, the specimen is rotated on die specimen holder and 
another set of projections is made. The projections of each 
view of the specimen are analyzed together to provide a 
quantitative indication of the phase fraction of the material 
comprising the specimen. The projections of the different 
views are combined to provide a three dimensional image of 
the specimen.

SUMMARY OF THE INVENTION

The present invention provides a method of operation in 
which an x*ay image is obtained by raster scanning an x-ray 
beam over an object An energy discriminating detector is 
situated so that it absorbs the x-rays that have passed through 
the object The energy discriminating detector of the present 
invention can be of two types. The first embodiment of the 
energy discriminating detector of present invention is a two 
detector design made up of a low x-ray energy sensitive 
detector placed next to or in front of a high x-ray energy 
sensitive detector. The low x-ray energy sensitive detectin’ is 
made so by virtue of its small stepping power for x-rays. The 
lower energy x-rays are absorbed and converted into elec
trical signals while the majority of the higher energy x-rays 
pass through undetected. The high energy sensitive detector 
is made so by virtue of it having a large stopping power for 
x-rays as well as it having a filter placed between it and file 
object to absorb the lower energy x-rays.

In tiie second embodiment of the energy d isc rim in a tin g  
detector of the present invention, a single energy sensitive 
detector is used which provides an output signal propor
tional to the amount of energy in each individual x-ray it 
absorbed. It can then have an electronic threshold or thresh
olds set to select two or more energy ranges for the images.

By having a few tens of these detectors located at different 
positions, a dud energy laminography system can be 
achieved. With multiple detectors located at different 
positions, an accurate three dimensional image of an object 
having multiple densities can be obtained.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a partial block diagram of a co x-radiography 
imaging system.

FIG. 2 is a partial block diagram of an x-radiography 
imaging system in which the present invention may be 
utilized.

FIG. 3 is a  partial block diagram of a first embodiment cf 
a dud energy x-radiography imaging system.

FIG. 4 of a graph illustrating the x-ray absorptions of the 
dud energy detector of FIG. 3.

FIG. 5 is a partid block diagram cf a second embodiment 
of a dud energy x-radiography imaging system.

FIG. 4 is a partid block diagram of a laminographic 
multiple energy sensitive detector system.

DESCRIPTION OF THE PREFERRED 
EMBODIMENT

In standard x-radiography, only a two dimensional 
shadow outline of an object is obtained Differentiation

4
between a thick low stopping power object and a thin high 
stopping power object can not be obtained A partid Mock 
diagram of a conventiond x-radiography imaging system is 
illustrated in FIG. 1. In a conventiond x-radiography 

s system, an x-ray point source 12 is used to generate x-rays 
to be incident upon an object 14. A photographic film 14  is 
placed behind object 14. F3m 14 acts as a detector, being 
exposed by x-rays that are not absorbed by object 14. As 
indicated previously, the Z  of the object cannot be differ- 

10 entiated and the photographic image is the same whether the 
object is thick object having a low stopping power or low 
absorption ability for x-rays, or a thin object having a high 
stopping power or high absorption ability for x-rays.

FIG. 2 illustrates a x-radiography system of tile type for 
use with the present invention. A raster scanning x-ray tube 

15 24 is used instead of a point source. An object 22 is placed 
next to or in juxtaposition with scanning x-ray 2> so that the 
x-rays generated by tube 24 are incident upon object 22. 
Some x-rays are absorbed by object 22 and others travel to 
and are focused on point detector 24. In this system; an 

hi advantage is obtained by using a point detector. Scattered 
x-rays and other non-focused x-rays that may blur or cloud 
the image of object 22 are not detected. Only focused x-tzys 
are detected and contribute to the image produced by 
detector. Detector 24 may be as simple as being composed 

25  of a scintillator and a photomultiplier tube (PMT), which 
measures the intensity of the transmitted x-ray flux. The 
signal produced by the detector is digitized by a sampling 
twelve bit analog to digital convertor and correlated to the 
location of the x-ray spot to build up a two dimensional 

3 0  image. By using this system, it is possible to shrink the raster 
pattern and achieve linear magnification of up to twenty-five 
times. The raster pattern can also be electronically panned 
over the face of the tube to look at different areas. Due to its 
high scanning rate and its ability to read two point detectors 

33 at tire same time, stereoscopic x-ray images can be obtained.
Referring now to FIG. 3, a block diagram of a first 

embodiment of the present invention is illustrated. Incoming 
x-rays 34 are incident upon low x-ray energy sensitive 
detector 32. The signal produced through x-ray energy 

so absorption by low x-ray energy detector 32 is transmitted to 
a display (not shown) via low energy image connection 34. 
High energy x-rays pass through detector 32 and are incident 
upon energy separation filter 34 if required. H its  34 is 
required only if detector 32 is incapable of absorbing most 

43  of the low energy x-rays. Behind filter 34 is located a high 
x-ray energy sensitive detector 38 which receives all 
x-radiation that has not been absorbed by either low x-ray 
energy sensitive detector 32 or filter 34. Low x-ray energy 
sensitive detector 38 provides signals relating to a high 

30 energy image via high energy image connection 44. The 
signals provided by low x-ray energy sensitive detector 32 
and high x-ray energy sensitive detector 38 may be provided 
to any current display in use in the arts such as a cathode ray 
tube, etc.

33 In the preferred  embodiments low x-ray energy sensitive 
detector 32 is preferably made of a three hundred microme
ter thick piece cf Yttrium aluminum perovskite (YAP). 
However, any suitable material known in the art for absorb
ing low energy x-rays may be used. Filter 34 is preferably a 

6 0  0.38 mm copper filter to enhance the low vs. high energy 
separation. Any type of filter may be used as long as it is 
capable of effecting the low vs. high energy separation. High 
x-ray energy sensitive detector 38 is preferably a one cen
timeter thick piece of lutecium oxyorthosilicate (LSO). 

63 although, as with the low energy x-ray detector, any suitable 
type of detector for absorbing high energy x-rays Currently 
available in the art may be used.
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FIG. 4 of a graph illustrating the x-ray absorption char
acteristics of the crystalline materials used in the dual energy 
detector of FIG. 3. In order to determine the required 
thicknesses of the absorption crystals used as low x-ray 
energy sensitive detector 32, Yttrium aluminum perovsldte, 
and high x-ray energy sensitive detector 38, lutetium 
oxyorthosilicate. a simulation was made using Pbotocoef. 
This simulation was performed to analyze the various x-ray 
absorption of the substances used in the preferred embodi
ment A simple bremsstrahhing spectrum filtered by two 
m illim e te r  a lnm inum  was assumed as an input spectrum and 
is shown as curve A. This assumption was made without 
taking tungsten's characteristic lines into account hi file 
preferred embodiment file scanning x-ray plate emits x-rays 
produced by a microfocused beam of up to one hundred keV 
electrons striking a tungsten target or window anode. In this 
type of system the input spectrum will have characteristic 
wavelength bands from tungsten in the input spectrum, but 
for this application, the bands will not significantly affect the 
outcome. The yttrium a lu m in u m  perovskite (YAP) absorp
tion peaks around thirty-five keV as shown by curve B. The 
lutetium axyarihosilicate (LSO), with copper filter 36, peaks 
around seventy keV as shown by curve C  In a dual energy 
im a g in g  system, the m ain  factors affecting image quality are 
the energy separation and the detected photon fluences. A ^  
separation of thirty-five keV is quite good.

hi FIG. 5 a partial blodt diagram of a second embodiment 
cf a dual energy x-radiography imaging system is illustrated 
as having incoming x-rays 54 incident upon an x-ray energy 
sensitive detector 52. X-ray energy sensitive detector 52 is »  
connected to a threshold circuit 54. Threshold circuit 54 
provides two outputs, one relating to a low energy image at 
output 54 and one relating to a high energy image at output 
58.

In this embodiment, a single dual sensitive detector is 35  

used that is capable of detecting two or more x-ray energy 
levels at the same time. It produces one signal in response 
to the absorption of low energy x-rays and a second signal 
in response to absorption of high energy x-rays. These two 
images are formed separately and combined to produce a 40 
single image. Combining the two images is possible since 
the images are obtained simultaneously.

Referring now to FKj. 6  a partial block diagram of a 
laminographic multiple energy sensitive detector system is 
illustrated. Multiple detectors 66-67 are spaced apart along 45 
an area <8, each detector having a different view cf file 
object of which an image is to be taken. Scanning x-ray {date 
74 emits x-rays produced by a microfocused beam of up to 
one hundred keV electrons striking a tungsten target or 
window anode. Magnetic deflection coils are used to sweep s o  

die electron beam in a raster pattern across the broad anode 
plate producing a moving point x-ray source. The x-rays are 
emitted in a range under two hundred keV. The x-rays pass 
through object 72 and are incident upon detectors <4-47. By 
determining the amount of x-rays absorbed, an image of the 53 
object and its density or densities can be determined as 
previously explained. Because of the positioning of detec
tors 66-67 a three dimensional image may be obtained. 
Detector <4 views object 72 from a totally different view 
than detector <7. The image received by detector <1 pro- 60  
videa a alighfiy different view than that obtained by detector 
44. In a similar manner, the image received by detector <2 
is slightly different than that received by detector <1. Each 
of the detectors <4-47 receives a slightly different image, at 
a slightly different angle and containing more of one side or 6S 
the other side, than each of the other detectors. In this 
manner, a three dimensional image can be created from the

6
individual images provided by each of detectors 44-47. 
With the dual energy capability of the detectors, a three 
dimensional, density identified image can be made which 
accurately approximates the appearance of file object under 

s analysis.
Combining a scanning x-ray beam with either of the two 

embodiments of the present invention produces an 
inexpensive, simple and fast dual energy x-ray imaging 
system. Since the speed of acquisition is defined by how fast 

10 the x-rays can be tastered over the object, which is much 
faster than any mechanical scanning, speed is greatly 
improved. Also, since the resolution is defined by how the 
x-ray source is rastered, the size of the detectors has little 
impact on the resolution and no impact on the speed. Using 

15 an array of a few hundred small energy sensitive detectors 
(as compared to a few thousand above) an image can be 
acquired at about the same speed as before but with a factor 
of ten decrease in complexity and coat When used with 
multiple detectors at various positions, a three dimensional 

2 0  image can be obtained without image artifacts again with 
reduced complexity and cost over a standard CT system.

The apparatus and method of the present invention 
indudes the ability to use relatively large size inexpensive 
energy sensitive detectors to produce high resolution dual 
energy laminographic images. The scanning x-ray beam 
technique allows one to obtain dual energy images much 
fester than with mechanical scanning used in conventional 
dual energy radiogrqthy. The simplicity of the dual energy 
detector system of the apparatus of the present invention 
allows reduced complexity and cost as compared to con
ventional dual energy x-radiography or CT.

While there has been illustrated and described particular 
embodiments of the present invention, it will be appreciated 
that numerous dianges and modifications will occur to those 
skilled in file art, and it is intended in file appended claims 
to cover all those changes and modifications which fall 
within the true spirit and scope of the present invention. 

We claim;
1. A multiple x-ray energy level imaging system compris

ing:
apparatus for providing a raster pattern scanning x-ray 

tube beam; and a single point detector apparatus far 
delecting at least two different energy level x-rays as 
said raster pattern is scanned.

2. The multiple x-ray energy level Imaging system 
according to claim 1 wherein said single point detector 
apparatus for detecting includes:

a first low x-ray energy sensitive single point detector; and 
a second high x-ray energy sensitive single point detector 

placed near said low x-ray energy single point detector.
3. The multiple x-ray energy level imaging system 

according to daim  2 wherein said first low energy sensitive 
single point detector has small stopping power for x-rays.

4. The multiple x-ray energy level imaging system 
according to daim 3 wherein said first low energy sensitive 
single point detector absorbs and converts the lower energy 
x-rays into electrical signals while the majority of the higher 
energy x-rays pass through undetected.

5. The multiple x-ray energy level Imaging system 
according to daim 2 wherein said second high energy 
sensitive single point detector has a large stopping power for 
x-rays.

6. The multiple x-ray energy level Imaging system 
according to daim 5 wherein said second high energy 
sensitive single point absorbs and converts the high energy 
x-rays into electrical signals.
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7. The multiple x-ray energy level imaging system 
according to claim 2  also including a filter placed between 
said first low x-ray energy sensitive single point detector 
said second high x-ray energy sensitive single point detector 
to absorb the Iowa energy x-rays.

8 . The multiple x-ray energy level imaging system 
according to claim 1  wherein said single point detector 
apparatus for detecting includes:

an energy sensitive single point detector which provides 
an output signal proportional to the amount of energy to 
in each individual x-ray detected.

9. A method f a  imaging multqfie x-ray energy levels 
comprising:

raster pattern scanning an object with an x-ray beam 
emanating from a raster scanned source c t x-rays and 13 

detecting using a single point detector apparatus at least 
two different energy level x-rays as said raster pattern 
is scanned.

19. The method for imaging multiple x-ray energy levels 
according to daim 9 wherein said detecting includes: 

distinguishing a first low x-ray energy level with a low 
x-ray energy single point detector; and 

distinguishing a second high x-ray energy level with a 
high x-ray energy single point detector placed near said 
low x-ray energy single paint detector.

11. The method for imaging multiple x-ray energy levels 
according to daim 18 wherein distinguishing a first low 
energy levd indudes stopping low energy x-rays.

12. The method for imaging multiple x-ray energy levels 30  

according to claim 1 1  wherein said stopping low energy 
x-rays includes:

absorbing lower energy x-rays; 
converting Iowa energy x-rays into electrical signals; and 
passing higher energy x-rays.
13. The method f a  im a g in g  multiple x-ray energy levels 

according to daim 10 wherein said d is tin g u ish in g  a second 
high x-ray energy levd indudes stopping high energy 
x-rays.

14. The method f a  imaging multiple x-ray energy levels 4 0  

accading to claim 10 also includes:
providing a filter between said low x-ray energy single 

point detector and said high x-ray energy single point 
detecta; and 

absorbing Iowa energy x-rays in said filter.

.8
15. The method for imaging multiple x-ray energy levels 

according to daim 14 wherein said stopping high energy 
x-rays indudes:

absorbing high energy x-rays; and 
converting high energy x-rays into electrical signals.
16. The method f a  im a g in g  multiple x-ray energy levels 

according to claim 9 wherein said detecting includes:
providing an output signal proportional to the amount of 

energy in each individual x-ray detected.
17. A multiple x-ray energy levd imaging system f a  

providing an image of an objed having a plurality of 
densities comprising:

apparatus f a  providing a raster pattern scanning x-ray 
beam having multiple energy levels; and 

a single point detecta apparatus fix detecting at least two 
different energy levd x-rays and absorbing said diffra- 
ent energy levd x-rays and converting each of said 

to absorbed different energy levd x-rays into dectrical 
signals representative of the intensity of said different 
energy levd x-rays.

18. The multiple x-ray energy levd imaging system 
according to claim 17 wherein said single paint detecta

23  apparatus f a  detecting indudes a plurality of spaced apart 
single point detecta apparatus, each having: 

a first low x-ray energy sensitive single point detecta; and 
a second high x-ray energy sensitive single point detecta 

placed near said low x-ray energy detector.
19. The multiple x-ray energy levd imaging system 

according to daim 18 also inducting a filter placed between 
each said first low x-ray energy sensitive single point 
detecta and said second high x-ray energy sensitive single

^  point detector to absorb Iowa energy x-rays.
20. The multiple x-ray energy levd imaging system 

according to daim 17 wherein said single point detecta 
apparatus f a  detecting indudes:

a plurality of energy sensitive single point detectors 
spaced apart in an area near an object which provide 
output signals proportional to file amount of energy of 
eadi individual x-ray detected passing through said 
object

* * * * *
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