
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2004

Files as first-class objects in fault -tolerant concurrent systems Files as first-class objects in fault -tolerant concurrent systems

Robert Edwin Matthews
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Matthews, Robert Edwin, "Files as first-class objects in fault -tolerant concurrent systems" (2004).
Dissertations, Theses, and Masters Projects. Paper 1539623456.
https://dx.doi.org/doi:10.21220/s2-qa9t-5z25

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623456&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623456&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-qa9t-5z25
mailto:scholarworks@wm.edu

FILES AS FIRST-CLASS OBJECTS IN FAULT-TOLERANT

CONCURRENT SYSTEMS

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William & Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Robert Edwin Matthews

2004

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Robert E. Matthews

Approved, August 2004

Phil Kearns
Dissertation Advisor

Weizhen Mao

L fcr / t -

Robert Noonan

Xiaodong Zhang

Jean Mayo
Michigan Technological University

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission

To My Parents
William Lee Matthews

and
Patricia Ann Matthews

and
to the Many Gifted Teachers and Mentors Who Have Influenced My Life

”... to know true ends from false, and lofty things from low . . .”

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table o f Contents

A cknow ledgm ents x

List o f Tables xi

List o f F igures xiv

A bstract xv

1 Introduction 2

1.1 Concurrent S y s te m s .. 2

1.2 B ack g ro u n d .. 4

1.3 Organization of P a p e r ... 5

2 Fault Tolerance 7

2.1 The Beginnings of Fault-Tolerant Computing - Self S ta b iliz a tio n 7

2.2 Checkpointing and Rollback-Recovery S c h e m e s ... 9

2.2.1 Terminology of Fault-Tolerance with Checkpointing and Rollback-

Recovery .. 10

2.2.2 Consistent Global S ta te s .. 11

iv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.2.3 Checkpointing and Rollback-Recovery... 13

2.2.4 Pure C h eck p o in tin g .. 14

2.2.5 Uncoordinated Checkpointing... 16

2.2.5.1 Pessimistic Recovery.. 17

2.2.5.2 Optimistic R ecovery ... 18

2.2.5.3 Causal R ecovery .. 23

2.3 Checkpointing and Rollback-Recovery Schemes and F ile s 25

2.3.1 Plank and L itzk o w ... 26

2.3.2 The SCR A lg o rith m .. 26

2.3.3 A I P C .. 28

2.3.3.1 The Operation of A I P C ... 28

2.3.3.2 Problems with AIPC .. 29

2.4 Using Files in Concurrent C om putations... 30

2.4.1 Biotechnology... 31

2.4.2 Astrophysics ... 32

2.4.3 Applied Mathematics ... 33

2.5 Concluding R e m a rk s ... 35

3 Log-Structured F ile System s 36

3.1 The Unix File S y s te m ... 37

3.1.1 Terminology ... 37

3.1.2 A Unix File System .. 39

3.1.2.1 The Superblock .. 40

v

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.1.2.2 Inodes... 41

3.2 Log-Structured File Systems 43

3.2.1 The Organization of a Log-Structured File S y s te m 46

3.2.2 Crash R ecovery.. 48

3.2.3 C leaning... 49

3.2.4 Previous Implementations of Log-Structured File S y s te m s 50

3.2.5 Log-Structured File Systems are History P re s e rv in g 50

4 C heckpointing and R ollback-R ecovery w ith F iles 52

4.1 Our S chem e................................. 52

4.2 Vector T im e ... 54

4.3 File System Checkpointing and Process C heckpointing..................................... 57

4.4 Restoring System Consistency after Process F a ilu re ... 58

4.4.1 Vector Time and Checkpointing .. 59

4.4.2 Recovery ... 61

5 Im plem entation 65

5.1 Design Goals and System O p e ra t io n ... 66

5.2 API .. 68

5.2.1 M kvlfs .. 69

5.2.2 M o u n t.. 70

5.2.3 U n m o u n t ... 70

5.2.4 Open .. 70

5.2.5 Close .. 71

vi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.2.6 R e a d .. 71

5.2.7 Write .. 72

5.2.8 U n lin k .. 73

5.2.9 S y n c .. 73

5.2.10 R ollback ... 74

5.2.11 Print_stats .. 74

5.3 The File System L a y e r ... 76

5.3.1 The Virtual D is k ... 76

5.3.2 The Disk C ache.. 77

5.3.3 Vector Time ... 78

5.3.4 The In o d e .. 79

5.3.5 The I m a p .. 81

5.3.6 The Checkpoint R e g io n .. 81

5.3.7 The Super b lo c k .. 81

5.4 The Syscall Sequence... 82

5.5 File System R ollback .. 83

5.6 The Process Control L ayer... 85

5.6.1 Thread C heckpointing... 85

5.7 System Recovery After a F a i l u r e .. 87

5.7.1 Thread R e s ta r t .. 91

5.7.2 Thread Rollback and Rollforward... 94

5.8 Application Rules for Using the S y s te m .. 101

5.8.1 Restart Check .. 101

vii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.8.2 Thread R e g is tra tio n .. 102

5.8.3 Checkpointing .. 102

5.8.4 Thread D ereg is tra tio n .. 102

5.8.5 An Application Program Skeleton .. 102

5.9 POSIX Thread Synchronization.. 104

5.9.1 M u tex es ... 104

5.9.2 Condition Variables .. 106

5.9.3 Thread Rollback with POSIX Synchronization V ariab les.................... I l l

6 Form alism s 118

6.1 Concepts and Definitions .. 118

6.2 Recovery After F a ilu re .. 120

6.3 Reclaiming Checkpoints and Logs - The Domino E ffect.................................... 123

6.4 Messages ... 126

6.4.1 Recovery P r o to c o l ... 126

6.4.2 R o llfo rw ard .. 126

6.5 Unusual Failure M odes.. 130

6.5.1 Concurrent Failures .. 131

6.5.2 Failures During R e c o v e ry .. 134

6.5.2.1 Failures W ithout the Assumption of Independence............. 135

6.5.2.2 Failures During Rollforward .. 138

7 Perform ance E valuation and E xperim ental R esults 140

7.1 File System Theoretical Perform ance.. 141

viii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7.1.1 SyncO E v a lu a tio n .. 141

7.1.1.1 Fixed Cost Component of S y n c O ... 141

7.1.1.2 Variable Costs Component of S y n c O 143

7.1.2 R ollbackO E v a lu a tio n .. 145

7.2 File System Empirical E valuation ... 146

7.2.1 The Columnsort A lg o rith m .. 147

7.2.2 Effects of Buffer Cache Size on Perform ance.. 150

7.2.3 Failure-Free Overhead in C olum nsort... 150

7.2.4 A Comparison of the Prototype with A I P C .. 154

7.3 Log Clearing ... 156

7.3.1 Discardable Checkpoints.. 157

7.3.2 Pessimistic and Optimistic Log-C learing... 158

7.3.3 Optimal L o g -C learing ... 161

7.4 Dedicated File Systems for F au lt-T o le ran ce ... 162

8 C onclusion 166

8.1 Future D irections .. 167

A SyncO Syscall Im plem entation 169

B The CHECKPOINT() M acro 175

Bibliography 178

ix

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ACKNOWLEDGMENTS

I would like to acknowledge my adviser, Dr. Phil Kearns, for his tremendous contri
butions to this work, and for his saintly patience, and my dissertation committee for their
time and valuable suggestions.

x

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List o f Tables

4.1 Vector Time Propagation Rules ... 60

5.1 Block and Byte Ranges Accessible Via Inode and Indirect Blocks W ith A

Default Block Size of IK ... 80

5.2 The U context_t Structure for the X86 Architecture... 86

7.1 Fixed Costs of a SyncO Operation .. 143

7.2 Total Worst-Case SyncO Overhead .. 145

7.3 Cost of R ollbackO System C a l l ... 147

7.4 Average Disk Writes Caused by a Single SyncO in Columnsort 152

7.5 Performance of the Seagate Cheetah™ 10K.6 37GB Disk D r iv e 152

7.6 Per-thread Block Reads, Block Writes, File Copies and Total Disk Block

Accesses Performed by AIPC During Columnsort ... 156

xi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

2.1 Consistent and Inconsistent Cuts in a Distributed S y s te m 12

2.2 Pure Checkpointing .. 14

2.3 The Domino Effect ... 17

2.4 State Intervals of a Recovery Unit .. 19

2.5 Optimistic R e c o v e ry ... 21

2.6 Causal R e c o v e ry ... 24

3.1 A Unix File System ... 40

3.2 An Inode ... 42

3.3 An Indirect Block Scheme for Increasing the Number of Addressable File

B lo c k s ... 44

3.4 A Log-Structured File System .. 47

3.5 A Log Structured File System After the Log has been W ritten to Disk . . . 48

3.6 The On-Disk Layout of a Log-Structured File System 49

3.7 The On-Disk Layout of a Log Structured File System After the Log has been

W ritten to Disk ... 49

xii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.1 Vector Time in a Three Process S y s te m ... 55

4.2 The Partial Order Induced on Events by Vector T i m e 56

4.3 Sharing a File in a Concurrent System .. 58

4.4 Vector Time Propagation Between Processes and the File System 61

4.5 The Propagation of Vector Time in a Three Process System with a Shared a

File S y s te m .. 62

4.6 Rollback of a Failed Process ... 63

4.7 Rollback of Non-Failed P ro cesse s ... 63

4.8 Roll Forward of Non-Failed Processes ... 64

5.1 The Layers of the Prototype ... 66

5.2 A Logical Disk Built on Top of Physical F i l e s .. 77

5.3 The In-Memory Representation of an Example Vector Time Object 78

5.4 The On-Disk Representation of an Inode .. 79

5.5 The On-Disk Representation of the Imap ... 81

5.6 The On-Disk Representation of the Checkpoint Region and its Associated

Structures .. 82

5.7 The On-Disk Representation of the Super block... 83

6.1 Finding Discardable C heckpo in ts ... 124

6.2 Message Replay During Recovery ... 128

6.3 Rollback After Concurrent Failures .. 134

6.4 A Possible Failure Mode if We Drop the Assumption of Independence. . . 135

6.5 A Second Possible Failure Mode if We Drop the Assumption of Independence 137

xiii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6.6 A Failure During R o llfo rw ard ... 139

7.1 Experimental Results of SyncOing a Virgin File System on Disks of Various

Sizes .. 144

7.2 Preparing D ata for Columnsort ... 148

7.3 Columnsort Phase 1 ... 148

7.4 Columnsort phase 5 ... 149

7.5 Effect of Buffer Cache Size on the Number of Disk Writes Performed by

Columnsort, W ith and W ithout C heckpo in ting ... 151

7.6 Discardability of Checkpoint Ck,q ... 158

7.7 Pessimistic Log-Clearing Average Log Size ... 160

7.8 Optimistic Log-Clearing Average Log Size ... 161

7.9 Optimal Log C le a r in g .. 162

7.10 A Comparison of Pessimistic, Optimistic and Optimal Log-Clearing Strate

gies .. 163

7.11 A File System with No F re e l i s t .. 164

xiv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ABSTRACT

Concurrent systems are used in applications where multiple processors are needed to
complete tasks within a reasonable amount of time, or where the data sets involved will
not fit within the main memory of a single computer. Because of their reliance on multiple
machines, such systems are proportionally more vulnerable to both hardware and software
induced failures. Fault-tolerance schemes are used to recover some earlier consistent state
of the system after such a failure.

One im portant technique used to achieve fault-tolerance is checkpointing and rollback-
recovery. In this thesis, we present a method for efficiently and transparently incorporating
the part of the process state contained in the file system into process checkpoints, and we
show how recovery of consistent versions of the file system and processes may be done after
a failure. We present the details of a prototype system which implements our method.

We show tha t by using the special properties of the log-structured file system, the class
of programs which are amenable to checkpointing and rollback-recovery schemes can be
expanded to include those tha t use files. We impose no a priori restriction on the types
of file system operations tha t can be done, and we demonstrate tha t our scheme does not
impose significant failure-free overhead on the computation.

xv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

FILES AS FIRST-CLASS OBJECTS IN FAULT-TOLERANT

CONCURRENT SYSTEMS

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction

Thus in the beginning the world was so made

that certain signs come before certain events.

Cicero, De Divinatione. i. 118

1.1 Concurrent System s

Concurrent systems are those in which separate processes cooperate to achieve some goal.

It is useful to categorize concurrent systems by the amount of hardware resources that

the processes share. In tightly coupled systems, the processes share all or most hardware

resources. In loosely coupled systems, they share few or no local resources.

A multiprocessor system is an example of a tightly coupled system. Processes share all

resources except the CPU ’s and their associated caches.

At the other end of the spectrum, we find the loosely coupled models, such as distributed

systems. In a distributed system, processes share few if any local resources. Each system has

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

its own memory, I/O channels, and system clock. Coordination between the components of

the system is done via message passing.

Concurrent systems provide several advantages over the traditional model of computa

tion. Mayo [37] gives three primary advantages:

• They provide greater computational power than tha t provided by traditional systems.

An example of this type of system is the Berkeley Network of Workstations (NOW)

architecture [5]. A NOW implementation consists of individual computer systems

connected by a fast network. The systems communicate via message passing. A

unique characteristic of the NOW architecture is that the file system is server less.

Workstations cooperate as peers to provide file system services.

• Loosely coupled implementations of these systems may be geographically dispersed.

Examples of this type of system are point-of-sale terminals connected to a central

credit card database. In these types of systems, we may even find that the database

itself is dispersed geographically.

• They allow for redundancy. By replicating data or computational processes on dif

ferent systems, we can introduce a primitive form of fault-tolerance. The loss of one

node of the system does not result in the loss of data or computational state.

While concurrent systems have advantages over traditional monolithic systems, their

use introduces a number of new problems. The inherent parallelism of the model makes

them difficult to program using traditional languages, since the underlying machine model

is so different. The lack of shared resources makes the implementation of such basic con

structs as “atomic operations” and “sequential execution” difficult. Finally, as we introduce

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4

more subsystems into a more complex computational model, these systems become more

vulnerable to both transient software failures (such as those caused by network congestion

and programming errors) and hardware failures (such as the failure of mechanical parts and

power outages.)

The general term which describes dealing with hardware and software failures in concur

rent systems is “fault-tolerance” . A fault-tolerant system is one which detects and recovers

from these failures. This recovery process may or may not be successful in a given circum

stance, and the recovery itself may not be invisible when the system is viewed from the

outside.

1.2 Background

The goal of a fault-tolerant system is to detect so-called “illegitimate states” [13] of the

system and transform such a state to a “legitimate state” using some mechanism. An

illegitimate state is considered to be one where an unexpected condition has occurred.

Since the late 1980’s, most research in this area has focused on a single method, called

“rollback/recovery” . In a nutshell, this method attem pts to reconstruct a legitimate state

from an illegitimate state by periodically taking snapshots of some subset of the state of the

computation. Once an illegitimate state has been detected, the system discards the current

state, and builds a new, legitimate state from one or more previously taken snapshots.

The computation can then proceed from this newly constructed legitimate state. The term

“rollback” comes from the fact tha t the computation is said to roll backward from the

illegitimate state to a legitimate state.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5

There are many questions in rollback/recovery tha t are rich research areas. For example:

• W hat is the most efficient way to take snapshots?

• How can we guarantee tha t a set of snapshots tha t form a legitimate state exist?

• How and where should such snapshots be stored?

• W hat subset of the global system state should a single snapshot capture?

• W hat optimizations can be done to make the snapshot process more efficient?

• W hat is the most efficient way to re-instantiate a legitimate state from a set of snap

shots?

Our research has focused on the fourth and fifth questions listed above. In particular,

we have discovered a method for including in the snapshot the part of the system state

resident in the file system. Our system is more efficient and robust when compared to

previous attem pts. We use the special properties of the log-structured file system [48] to

achieve this efficiency.

1.3 Organization of Paper

In chapter 2 we discuss the history of fault-tolerant computing and the current state of

research in the area. We conclude the chapter with a discussion of previous attem pts to

incorporate files into fault-tolerance schemes.

In chapter 3 we discuss log-structured file systems. We begin by looking at the history

of file systems from the introduction of the Unix Fast File System [38] to the development

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6

of the first log-structured file system. Our work depends on the special characteristics of

the log-structured file systems.

Chapter 4 introduces our work on fully incorporating files into fault-tolerant concurrent

systems.

In chapter 5 we discuss the prototype system tha t we have developed. The system allows

arbitrary file system operations to be performed by fault-tolerant concurrent computations.

The chapter includes sections on the implementation of our prototype, and a discussion of

both the file system layer and the process control layer. We conclude by discussing how a

concurrent systems programmer would develop code for our system.

In chapter 6 we prove a series of results tha t show our prototype correctly implements

a variant of optimistic logging, and tha t the scheme does not suffer from the domino effect.

We also discuss a minor result we have obtained on log-clearing algorithms. The chapter

concludes with a discussion of some unusual failure modes th a t can occur, and how the

system we have developed might deal with them.

Chapter 7 discusses the performance of our prototype both in theoretical and experi

mental terms. It also includes an empirical evaluation of our log-clearing scheme.

We conclude in chapter 8 by summarizing our results and discussing some areas of future

directions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

Fault Tolerance

The greatest o f faults, I should say,

is to be conscious of none.

Thomas Carlyle, The Hero as Prophet

We begin this chapter by discussing Edsger Dijkstra’s extraordinary paper on what he

called “self-stabilizing” systems. We then describe the terms and definitions used to discuss

modern fault-tolerance schemes, and look at the three major types of fault-tolerance schemes

which have been developed. We conclude the chapter by looking at attem pts to incorporate

files into these methods.

2.1 The Beginnings of Fault-Tolerant Com puting - Self Sta

bilization

The earliest mention of what we call fault-tolerant computing was made in 1974 by Di-

jkstra [13]. Dijkstra proposed a simple model of distributed computing consisting of a

7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

connected graph, where each node contains a finite-state machine and each edge represents

a two-way communication channel over which the finite-state machines may transm it their

current state to neighbors.1

Each node in the graph has a list of “privileged” and “unprivileged states” . These states

are combinations of each node’s own internal state and the internal states of its neighbors.

At each step in the operation of this model, a single node is chosen and, if a privileged

state exists, the node changes state. (Dijkstra assumes the existence of a central daemon

which chooses the node to act. This central daemon might be as simple as a signaling clock.

Machines without a central daemon, which are the focus of research today, are discussed

below.)

We can think of privileges as “work to do” . For example, if the nodes of the graph are

the components of a bus architecture, some components may have pending work. This work

is indicated by a signal from another component.

A global criterion exists in such a system which indicates whether the overall state of

the system is legitimate or illegitimate. Dijkstra defined such a system as “self-stabilizing”

if, and only if, after a finite number of moves, and regardless of the privilege chosen at each

move, the system eventually found itself in a legitimate state.

Dijkstra provided a proof tha t such self-stabilizing machines exist in the restricted case

where the nodes are connected in a ring. The case for tree-structured systems was solved

in 1979 by Kruijer [27]. For the proof tha t such machines exist in the general case of an

arbitrary connected graph, Dijkstra noted “the appreciation is left as an exercise to the

reader.” Ironically, it was not until fourteen years later, in 1986, tha t the general case was

1 Presciently, Dijkstra speculated that such a system might be useful for modeling “a worldwide network”.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9

solved - by Dijkstra [14].

In his 1983 keynote address to the 3rd ACM Symposium on Principles of Distributed

Computing, Lamport, speaking of D ijkstra’s original paper, says:

I regard this as D ijkstra’s most brilliant work - at least, his most brilliant pub

lished paper. I t ’s almost completely unknown. I regard it to be a milestone

in work on fault tolerance. The terms ’’fault tolerance” and ’’reliability” never

appear in this paper [29].

2.2 Checkpointing and Rollback-Recovery Schemes

The requirement of a central daemon tha t Dijkstra assumes strikes one immediately as an

overly restrictive assumption. A central daemon implies some sort of centralized control,

and thus excludes from the discussion truly distributed systems. Most of the work in fault-

tolerance since the late 1980’s has concentrated on systems without a central daemon [53].

Early work in fault-tolerant systems concentrated on certain ad-hoc methods of recov

ering a system after a transient failure. In the early 1990’s a more well-defined approach

became the accepted method of studying such schemes. The most comprehensive survey

of rollback-recovery protocols in systems which use message passing and have no special

hardware support for fault-tolerance is found in Elnozahy et al [16] [17].

Below, we discuss the modern methods which rely on checkpointing and rollback-

recovery. These modern schemes can be divided in to four areas, known as “pure check

pointing”, “pessimistic recovery”, “optimistic recovery” and “causal recovery”.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10

2 .2 .1 T erm in o lo g y o f F a u lt-T o leran ce w ith C h e ck p o in tin g an d R ollb ack -

R eco v ery

Fault-tolerance schemes which employ checkpointing and rollback-recovery use the following

vocabulary and assumptions about the logical machines. These definitions and assumptions

are adapted from Strom and Yemini [56].

The Logical M achine A cluster of processes running under a fault-tolerant scheme is

referred to as the logical machine. These processes may each run on a single machine,

or they may be distributed over a series of physical machines.

R ecovery U n it The logical machine is partitioned in to a fixed number of recovery units

(RUs). RUs communicate with one another through message passing. An RU may

consist of a single process, a collection of Posix threads, or multiple processes. When

ever a thread or process is created, it is assigned to a particular RU. The literature on

fault-tolerance uses the terms recovery unit and process interchangeably when there

is no possibility of confusion. We adopt tha t practice here.

Failure-Free O verhead Any resources consumed by an RU solely to support the under

lying fault-tolerance scheme are referred to as the failure-free or fault-free overhead.

This is the amount of computational effort tha t must be expended even if no failures

occur. We use failure-free overhead to evaluate the performance of fault-tolerance

schemes.

C om m it When a permanent, undo-able state change occurs, we refer to tha t as a commit.

An example of a commit is a physical change to data on a disk.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11

We make the following assumptions about the logical machine.

R eliable, FIFO C om m unication Channels: RUs communicate over reliable channels.

Messages are always sent in order. We assume nothing about the arrival order of

messages sent from two different sources.

Fail-stop: Failures are detected immediately and result in the halting of failed RUs and

the initiation of the recovery protocol under discussion. T hat is, we exclude Byzan

tine failures from our discussion. The fail-stop model was first described in 1983 by

Schlichting and Schneider [52].

Independence: Failures will not reoccur if a failed RU is re-executed on another machine.

Stable Storage: The current state of each recovery unit is stored in volatile storage. The

information needed to recover an RU after failure is kept in stable storage [30].

Spare P rocessing C apacity: It is always possible to relocate a failed RU to some working

processor which has access to the logical machine’s stable storage.

N o Shared M em ory or G lobal Clock: Individual RUs communicate only via channels,

and do not share any local resources.

2 .2 .2 C o n s is te n t G lo b a l S ta te s

The idea of “consistent global state” is central to reasoning about distributed systems. The

idea was formalized by Chandy and Lamport [11].

In a distributed system, an event is a state change by a process, or the sending or

receiving of a message. We say tha t event a directly happens before event b if and only if

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

12

1. a and b are events in the same recovery unit, and a occurs before b, or

2. a is the sending of a message m by RU Ri and b is the receipt of m by RU Rj.

The transitive closure of the directly happens before relation is the happens before rela

tion. We use the notation a —> b to denote “a happens before b.” For two events a and b,

if a /> b A b a, then we say tha t events a and b are concurrent.

C C’
Po

Pi

P2

Figure 2.1: Consistent and Inconsistent Cuts in a Distributed System

We depict events in a distributed system using a time diagram. In a time diagram,

each RU is represented by a horizontal line, with time moving from left to right. Events

are represented as points on an RU’s time line. Messages between RUs are represented by

diagonal lines from one RU to another. See figure 2.1.

A consistent global state of a distributed system is a snapshot of the system in which

every event before the system snapshot happened before every event after the snapshot. We

typically refer to these global snapshots as cuts. Figure 2.1 shows two cuts in a distributed

system. Cut C represents a consistent global state, while cut C' is inconsistent since it

represents a state where the receipt of messages occurred before their corresponding sends.

Intuitively, a distributed system is in a consistent state if every pair of processes in the

system agree on which communications between them have taken place, and which have

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13

not.

2 .2 .3 C h e ck p o in tin g an d R o llb a ck -R eco v ery

The goal of checkpointing and rollback-recovery schemes is to bring the system to a consis

tent global state after the failure of an RU. This goal is achieved through a two- or three-step

process, depending on the particular scheme used.

The first step in the process is checkpointing. During a checkpoint, an RU makes a

copy of its internal state, and saves this state to stable storage. This internal state consists

of copies of the processes memory image (including code, data, stack and dynamically

allocated memory), the CPU registers (general purpose registers plus special purpose ones,

such as the stack register and instruction pointer), along with variables external to the RU

but never-the-less part of the RU’s state (such as the list of signals the process has arranged

to catch or ignore, open communication channels, etc.)

The second step of the scheme occurs only when an RU fails. Should an RU fail, it

is reinstantiated from the saved state. This reinstantiation is called rollback because the

RU appears to be rolling back to an earlier point on the time diagram. Depending on the

scheme used and the state of the other RUs in the system, it may also be necessary to

rollback the non-failed RUs.

A third step may be required depending on the scheme being employed. This third step

is called rollforward and is required because some schemes do not attem pt to guarantee

that RU checkpoints are mutually consistent. We discuss the three most common schemes

below.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

2 .2 .4 P u r e C h e ck p o in tin g

The simplest checkpointing and rollback-recovery scheme is called pure checkpointing.2 Un

der pure checkpointing, the RUs cooperate to make sure that whenever a set of checkpoints

is taken, the checkpoint set forms a consistent global snapshot. This guarantee means that

whenever a rollback occurs, the resulting system state is automatically globally consistent.

In the pure checkpointing scheme shown in figure 2.2, Pq fails, and each RU is rolled back

to its most recent checkpoint.

Po

Pi

P2

Legend

[] Checkpoint

X Failure

— ► Message

—► Time

y I Process
rollback

F ig u re 2.2: Pure Checkpointing

Pure checkpointing has several advantages over other types of schemes.

2The literature sometimes refers to what we call pure checkpointing as “consistent checkpointing” or
“synchronous checkpointing.”

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

15

1. Since the system guarantees that snapshot sets form a globally consistent state, the

rolled back system is also guaranteed to be globally consistent.

2. At most one set of snapshots needs to be kept on stable storage. When a new set is

taken, the previous set can be discarded.

3. The scheme is has a relatively simple implementation.

4. The scheme does not suffer from the domino effect (see the section on pessimistic

recovery, below.)

Despite its advantages, pure checkpointing suffers from some severe disadvantages. The

most frequent criticism of the scheme is the requirement tha t sets of checkpoints form a

consistent global state. To ensure this requirement, the RUs must coordinate their check

pointing activity. Once the decision to checkpoint is made, all RUs must cease computation

and wait for the system to pause.

Typically this pause is implemented by using a barrier. A barrier is a coordination

technique tha t restrains an RU at some point in the computation. In order to pause at

a barrier, an RU must cease all normal computation, and wait for sent messages to be

delivered. It is this lack of “in-flight” messages during the global checkpoint which guarantee

tha t the resulting global checkpoint is consistent.

Once each RU has paused at the barrier, the system waits for some predicate to be

satisfied before restarting the computation. In pure checkpointing, this predicate is “all

RUs have checkpointed” .

This coordination increases the failure-free overhead in two ways. First, a distributed

barrier typically requires a large number of messages to implement. Second, a substantial

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

16

delay is introduced in the computation as RUs busy-wait at the barrier.

2 .2 .5 U n c o o r d in a te d C h eck p o in tin g

In uncoordinated checkpointing, we do not require RUs to coordinate their checkpoints.

Each RU checkpoints independently of the others. As in pure checkpointing, a failed process

is rolled back to a previous checkpoint. Since the uncoordinated checkpoints generated with

this scheme may not be mutually consistent, we need some way to bring the system to a

global consistent state after re-instantiating the failed process.

One solution to this problem tried in early systems which used uncoordinated check

pointing was to notify the non-failed processes in the system tha t a process had failed

and was being restarted. The recovery mechanism then detected those non-failed processes

which were not consistent with the recovered process. Those processes were then restarted

from their checkpoints.

If the resulting system state is not globally consistent, another set of checkpoints is

selected, and the RUs which generated those checkpoints were rolled back. This process

was repeated until the system state is globally consistent.

While it eliminates the barrier needed in consistent checkpointing (and thus the as

sociated busy-waiting), this scheme is vulnerable to a phenomenon known as the “domino

effect” [44] [49], In the domino effect, an attem pt to recover results in an unbounded cascade

of rollbacks resulting from the recovery mechanism’s attem pt to locate a set of consistent

checkpoints. This phenomenon is depicted in figure 2.3. In this figure, process po fails at

time t and is restarted from checkpoint Co,3 . The system is in an inconsistent state be

cause pi has received message m j, but po's new state does not reflect sending this message.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

17

Rolling back p\ to checkpoint C \ - 2 results in a system where po received message m% which

was never sent, causing po to roll back to Co,2 , and so on.

0 ,2.

Po m m-m

nrm-
Pi

F ig u re 2.3: The Domino Effect

2.2.5.1 P essim istic R ecovery

To address the disadvantages of pure checkpointing, and the problem of the domino effect,

a system formally called “checkpointing and rollback with pessimistic recovery” was devel

oped. This scheme was first described by Borg, et. al [7]. We refer to this scheme simply

as pessimistic recovery.

In pessimistic recovery [7] processes synchronously log message activity to stable storage.

We use these logged messages to roll the failed process forward after a crash. In order to

prevent the loss of messages, we synchronously log messages to stable storage. Thus, such

a system never creates orphan messages, and guarantees tha t we can recover all messages

after a system crash.

If a process failure occurs, we reinstantiate the process from the checkpoint. After

reinstantiation, the log of received messages is “replayed” . T hat is, the recovery mechanism

feeds the process the logged messages, and the recovering process consumes them in the

normal manner. Any messages sent by the process are discarded. Once the log is exhausted,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

18

the process state is consistent with those processes with which it had been communicating.

An im portant advantage of this method is that processes which do not fail do not have

to be rolled back. Because of the synchronous logging requirements, we can guarantee that

every message a process received before its failure is available for replay after restarting from

a crash. In addition, no latency is incurred in sending messages to the “outside world” ,

since every past state of the computation is recoverable from information recorded on stable

storage.

The major disadvantage of pessimistic recovery is the synchronous logging requirement

which results in high failure-free overhead. Each message received by the process causes it

to block while the message is logged to stable storage.

2.2.5.2 O ptim istic R ecovery

Optimistic recovery [56] is a fault-tolerance technique which allows computation, communi

cation, checkpointing and committing to proceed asynchronously. As in pessimistic recovery

protocols, optimistic recovery protocols save enough information to reconstruct a consistent

state after a failure.

Optimistic recovery protocols ensure that the externally visible behavior of a system is

equivalent to some failure-free execution. That is, they do not guarantee that the internal

behavior of all processes is identical during every execution. Rather, they only guarantee

that the same ordered set of messages is sent outside the system in both failure-free and

recovery modes.

Optimistic recovery is based on the idea of dependency tracking. Dependency tracking

allows a process to detect tha t it has performed some computations tha t causally depend

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

19

on the states tha t some other failed process has lost. Such computations are referred to as

orphans.

Fundamental to the idea of dependency tracking is the concept of state intervals. Sup

pose tha t a recovery unit RU has already processed n — 1 messages and is ready to process

its n th message M (n). Its volatile storage is in some state S(n). Given M (n) and S(n), the

recovery unit will perform some series of operations, which may include sending messages

to other RUs. Eventually, an RU will be ready to dequeue message M (n + 1). We call the

time between the receipt the message M (n) and the time when the RU is ready to dequeue

M (n + 1) state interval I(n).

Optimistic recovery schemes need to distinguish between identical states occurring be

fore and after a failure. To do so, they consider the state interval to be a pair, t is

the incarnation number of the state, that is, the number of times this state has occurred

previously due to rollback, and p. is the scalar state interval defined above.

The live history of an RU is the sequence of state intervals of the RU which have not

been rolled back. A sequence of state intervals is shown in figure 2.4. Here we see the state

intervals of an RU which has been restarted twice. The ordered pairs [t, /i] represent the

incarnation number and scalar state interval.

[2 ,5] ^ 1[2!6] - » > [2,7] - * - [2,8] . . .

[l , 3] ^ t l , 4] - * - [l , 5] - * - [l ^

[0 ,1] —^ [0,2] - ^ [0 , 3] / ___

Figure 2.4: State Intervals of a Recovery Unit

The live history of this RU is the sequence [0,1], [0,2], [1,3], [1,4], [2,5], [2,6] , . . . The

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

20

live history of a recovery unit imposes a total order on the state intervals of the recovery

unit. We use the notation [t, /j,\ -< [k , u] if [t, f i \ precedes [k . v] in the live history.

In addition, we say tha t state interval of RUj immediately causes state interval

[tj, fij] of RUj if a message sent by RUj during state interval [q, /q] is dequeued by RUj at

the beginning of state interval [l3 , p,3\.

The union of the relations -< and immediately causes induces a partial order on the set

of all state intervals in the system which are part of any RU’s live history. The transitive

closure of the union of these two relations over the set of all live state intervals is called the

causal precedence or dependency. It is the key point to understanding optimistic recovery.

In a distributed system with m recovery units, any state of a particular RU will have at

most m causal predecessors. We represent these causal predecessors as a vector (d\, e?2 , . . . , dm) .

Each RU maintains this dependency vector as part of its internal state. The dependency

vector is updated each time an RU moves to a new state interval or receives a message from

another RU. It is in this way tha t an RU tracks those other RUs upon which it depends.

Should an RU fail, it is restarted from its earliest saved checkpoint. It then replays its log

until either an orphan message is sent or the end of the log is reached. (It should be noted

tha t orphans will occur only if some other RU has failed during this RU’s restart. In the

case where a single RU fails, optimistic recovery guarantees tha t no orphans are generated.)

Once the RU has rolled forward, it begins a new incarnation by incrementing its incarnation

number and broadcasting a recovery message to the other units in the system. This recovery

message includes the new state interval of the RU.

RUs which receive the recovery message inspect their dependency vectors to determine

if their current state interval causally depends on any state intervals lost by the recovering

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

21

process. If so, they restart and roll forward using the same procedure.

Consider the example shown in figure 2.5. Here we have two recovery units operating

under the optimistic recovery scheme. Each RU is shown using two lines. The top line shows

the message activity and state interval. The bottom line shows checkpointing activity and

state-interval logging progress. RUo receives message M (6) and enters state interval [0 , 6].

Eventually during the processing which takes place in this state, RUo sends a message to

RUi.

Receive Mq(7)Receive Mq(6)

r u 0 --------------

RUq logging and_0_______
checkpointing ^,3]

c k Po,0

[0,6]

[0,4] [0,5] [0,6] [0,7]

Receive
Mj(7)

RU
[0,3]

RU j logging and
checkpointing [0,2] [0,3]

F ig u re 2.5: Optimistic Recovery

Suppose tha t RUo fails a t time to- RUo will restart from checkpoint Co,o and begin to

replay its message log. At the time of its failure, RUo had only logged enough information

to enable it to roll forward to state interval [0,4]. Once RUo has replayed the log to that

point, it will broadcast a recovery message to RUi indicating tha t it has rolled forward and

is restarting at state interval [1,5].

RUi notes from its dependency vector tha t it is causally dependent on state interval

[0,6] of RUo, since it received message M i(7) sent from tha t state interval. This message

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

22

has been lost. At this point, it rolls back to checkpoint Ckp1 0 and then rolls forward.

Suppose on the other hand tha t RUo does not fail until time t\ . After rolling forward,

its broadcast recovery message will inform RUi tha t it is restarting at state interval [1, 7].

R U i’s dependency vector indicates that its current state is not causally dependent on state

[1 ,7] of RUo- Thus, RUi does not need to roll back.

Recovery units log input messages to stable storage in the background. In order to

determine which of its computations are committable, and when a checkpoint and a portion

of the log can be discarded, an RU must know which of its own messages have been logged

as well as the status of logged-messages in other RUs. To this end, each RU maintains a

“log vector” which lists a particular state interval for each recovery unit in the system. For

RUfc, the log vector LVfc is a list of state intervals [ifc,pfc] of RU*, such tha t all of [*.*., /ifc]’s

live predecessors have been logged.

Recovery units update their log vectors in the background. New log vectors are com

puted by inspecting the state of an RU’s log and the logs of the other RUs in the sys

tem. How often a log vector is transm itted to the other RUs in the system is a tun

able parameter. On receiving a new log vector, ([i*, pi], [1 2 , ^ 2], ■ ■ ■, [tm) Vm]), RUfc com

putes the new log vector by taking the pointwise maximum of the old and new log vec

tors. Let LVfc = {[jTx, Mi], [I2 , M 2] , . . . , [Im , M m]). Then the new log vector LVfc(f) <—

max([/i, Mi], [ii, m])-, 1 < i < m where max is defined on pairs using the normal lexico

graphical ordering.

Once a recovery unit determines tha t a particular checkpoint or particular set of log

entries are no longer needed (that is, no other RU is causally dependent on the state

intervals spanned), these checkpoints and log entries may be discarded.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

23

2.2.5.3 C ausal R ecovery

Causal recovery schemes combine the failure-free performance advantages of optimistic re

covery with most of the advantages of pessimistic recovery schemes. It was first proposed

by Alvisi and Marzullo [4]. Causal recovery

• does not require coordinated checkpoints,

• avoids the synchronous logging requirements of pessimistic recovery schemes, and

• never creates orphans, as optimistic recovery schemes do.

Causal logging protocols ensure what is called the “always-no-orphan” property by as

suring tha t the determinant of each event tha t causally precedes the state of an RU is either

located on stable storage, or is locally available to tha t RU. In such a system, non-failed

RUs are able to guide the recovery of failed RUs using these determinants.

Consider figure 2.6. Messages ms and mg may be lost on the failure of either RUi or

RU2. However, RUo will have either logged or have access to the determinants tha t causally

precede its state. These events consist of the delivery of messages mo, m i, m 2, m 3 and m.4 .

Figure (a) represents the maximum recoverable state. Messages mo, m i, m 2, m 3 and m.4

have been logged to stable storage. Message ms and me have been lost. Figure (b) shows

the antecedence graph of RUo at state S. (Figures adapted from Elnozahy et al [17]).

As in other schemes, the message sender has logged the message content. Since RUo

knows the order in which the messages were originally sent, it is able to “guide” the recovery

of RUi and RU2. It is able to do this because it knows the order in which RUi should replay

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

24

Maximum recoverable state
/

RU,
m

m,
RU

m.

RU.

RU,

RU

(b)

Figure 2.6: Causal Recovery

mo and m 2 to reach the state from which 1714 is sent. Similarly, RUo knows the order in

which RU2 should replay m 2 and m 4 .

Notice tha t information about ms and is not available anywhere. These messages

may be regenerated and resent during recovery (perhaps in a different order), or they may

not be sent at all, depending on how the computation unfolds during this incarnation.

However, since they have no effect on the surviving recovery units, the resulting system

state is still consistent.

Causal recovery protocols implement the always-no-orphan requirement by having RUs

piggyback the determinants tha t have not been logged to stable storage on top of the

messages they send to other RUs. One method of representing these determinants is by

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

25

using an antecedence graph. This is the method used in the Manetho system [18].

Figure 2 .6 b shows the antecedence graph built by RUo at the point where message rri4

was received. In an antecedence graph, the nodes represent nondeterministic events (in this

case, simply checkpoints and message receipts) while the edges correspond to the “directly

happened-before” relation on the events.

The major drawback of the causal recovery protocol as compared to other uncoordinated

checkpointing schemes is the amount of failure-free overhead incurred by transm itting the

entire antecedence graph with each message. In practice, there are several optimizations

tha t can be performed which allow the recovery units to transm it just a subgraph of the

antecedence graph [3].

2.3 Checkpointing and Rollback-Recovery Schemes and Files

Little work has been done on incorporating files into checkpointing and rollback-recovery

schemes. Typically, files are treated as entities external to the computation. The canonical

example of an entity external to a computation is an output device. It is difficult to

“unprint” a page, once the computation has committed the output to the printer. Similarly,

care must be taken before committing output to the file system since it is difficult to

“unwrite” information once it has been written to a file system.

In most systems, a read operation is viewed as a message pair; a request message is

sent to the file followed by a corresponding message receipt containing the result of the

read operation. A write operation is treated similarly. Current checkpointing and rollback-

recovery schemes which wish to fully incorporate files are required to perform a commit

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

26

before each destructive file operation.

Most of the previous work in this area concentrated on ad-hoc methods for recovering

files after a crash. Some authors have proposed schemes which provide full support for all

the usual file operations, but only under restricted types of recovery mechanisms. Below

we review the main approaches to incorporating files into fault-tolerance schemes.

2 .3 .1 P la n k an d L itzk ow

Early work on including files in concurrent systems treated the files as discrete external

entities, separate from the state of a process. In the Libckpt package for Unix [42], Plank

records just the process’s file table in the checkpoint structure. A restarted process knows

only the names, disk locations and offsets of file pointers. Thus, Libckpt requires files to

remain open and unchanged over the course of the computation. This essentially limits the

computation to using a static set of read-only files.

Litzkow [34] imposes similar restrictions in a package which performs checkpointing out

side of the kernel. The viability of this scheme was demonstrated in the Condor system [33].

2 .3 .2 T h e S C R A lg o r ith m

Wei and Ju [59] propose a scheme known as “SCR Algorithm” which provides for the full

integration of file system operations in concurrent systems. Under the SCR algorithm, the

file system is implemented on top of stable storage, and all processes sharing a file must

coordinate their checkpointing operations to produce a set of consistent checkpoints. If the

processes in a concurrent system have full access to a file system, this in essence means the

scheme is restricted to operating only under pure checkpointing.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

27

In the SCR algorithm, file operations are classed as idempotent (read O , s t a t () , etc.)

and non-idempotent (w r i t e (), c r e a t O , l i n k () , etc.) We prefer to call these two classes

of operations “non-destructive” and “destructive.”

Each machine in the system maintains an “undo stack” which is initially empty. In

addition, the file system of each machine is protected by a “manager process” through which

all file system operations are performed. A process wishing to perform a non-destructive

operation contacts the manager process with its request, which immediately performs the

operation and returns the result to the calling process.

If a process wishes to perform a destructive file operation, it contacts the manager

process. The manager creates an “undo entry” , which contains enough information to undo

the requested operation. It then, atomically, performs the operation and places the undo

entry on the undo stack. The result can then be returned to the calling process.

The creation of the undo entry can be an expensive operation. For example, the entry for

a w r i te () operation tha t overwrites 10KB of a file needs to contain the file name, the offset

of the write and the part of the original file overwritten. The undo entry for an uni ink ()

must contain the entire contents of the original file, plus a copy of the file’s parent directory.

Wei and Ju discuss several optimizations which reduce the size of the undo structure under

specific circumstances.

From time to time, processes accessing files perform a coordinated checkpoint. After

these checkpoints are written, the manager resets its undo stack.

If a process failure occurs, all of the processes in the group accessing the same file system

as the failed process are halted. The manager process begins popping undo entries off the

undo stack and applying the changes to the file system. Once the stack is empty, the file

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

28

system state is identical to the state at the time of the last global checkpoint. The halted

processes are rolled back to the last gang-checkpoint and restarted. At this point, the

computation continues.

2 .3 .3 A IP C

The most comprehensive proposal contained in the literature is tha t of Alagar, Rajagopalan,

and Venkatesan [2]. They propose a scheme to completely integrate files into checkpointing

and rollback-recovery schemes. Under their scheme, which they call “Accessing files through

IPC”, or AIPC, a server process is created for each file accessed in a system .3

2.3.3.1 T he O peration o f A IP C

Since it is not always possible to predict which files will be used in a concurrent system,

these server processes are created (and destroyed) dynamically. AIPC builds one server

process for each file used in the system. This server handles all access requests for the file.

Since the server does not know a priori which types of requests it will be required to serve,

the file is opened with all permissions. A part of the server’s task is to discover whether

processes attem pting access to the file have the appropriate permissions.

When the server is created, it performs initializations, sets up the inter-process com

munication facilities necessary to communicate with the other processes in the system,

checkpoints its own state, and then checkpoints the file. At this point the server is ready to

accept requests to access the file. If a process wishes to perform a file operation, it contacts

3The authors are not clear on the need for a server process for each file in the system. For example, it is
not clear whether the executable images of the programs themselves are rendered by server processes.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

29

the server for tha t file. The server is responsible for all file operations normally performed

in the kernel.

During a checkpointing operation, each process must save a list of the files in use. This

information is used to reestablish communication with the server process for each file.

The server process checkpoints itself just as a regular system process does. To do so,

it must make a copy of the files it is responsible for, and store the backup copies with the

checkpoint information. The server’s checkpoint structure also contains information about

the system processes accessing the file. When the file server process restarts, it opens the

checkpointed version of the file and establishes communication with the set of processes

using the file.

Of particular advantage in AIPC is its flexible design. It can be used either for coordi

nated or uncoordinated checkpointing, and in schemes which require message logging.

2.3.3.2 Problem s w ith A IPC

The primary difficulty with AIPC occurs during the checkpointing phase. During a check

pointing operation, the server process is required to make a copy of the file it serves. This

is, in general, a time-consuming operation. In addition, the server must ensure that the

backup copy of the file is consistent. Thus it can not serve any destructive requests for the

duration of the checkpoint operation.

The authors suggest several possible solutions to this problem. An obvious optimization

is to have the server checkpoint the file only if it has been modified. The also speculate that

using an incremental checkpoint scheme, or checkpointing the file asynchronously, might

improve the speed of the checkpoint operation and reduce the time the server is unavailable

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

30

to serve destructive requests. We analyze the performance of AIPC in section 7.2.4.

2.4 Using Files in Concurrent Com putations

It is reasonable to ask if the methods mentioned above, as well as the scheme we propose

in chapter 4 have any interest beyond that of an academic exercise. It turns out that there

are a number of situations drawn from the field of scientific computing tha t might make use

of the ideas we propose. In this section, we look at some of these practical applications.

Many of these applications fall into the class of problems referred to as “out-of-core”

computation. Such a computation is loosely defined as one involving a data set that will not

fit into the main memory of a single machine. Typically these applications do not perform

any exotic operations (at least from an algorithmic standpoint.) Rather, the difficulty in

programming them comes from the fact tha t many traditional versions of algorithms assume

that all data resides in main memory for the entire course of the computation.

If some portion of the data set resides on disk, sorting, for example, becomes problematic

since traditional sorting algorithms assume tha t any element in the data set can be accessed

or modified in the same amount of time as all other elements4. The problem thus becomes

one of decomposing the data set into blocks tha t will fit into main memory, and then

modifying algorithms to operate with increased locality of reference on these decomposed

sets. The cost of moving data between secondary storage and main memory can make a

particular algorithm impractical if done indiscriminately.

4This is the traditionally assumed “RAM” model of computation [1],

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

31

2 .4 .1 B io te c h n o lo g y

A recent example from the field of biotechnology appears in Samatova, et al [50]. An

important problem in biotechnology is the modeling of the metabolic networks of different

organisms. This modeling attem pts to show how metabolic reactions and their products

interact with one another within an organism.

While modeling small organism’s metabolic networks can be done using traditional

approaches, modeling genome-scale networks is currently infeasible because of the amount

of data generated during the intermediate steps of the computation.

Two closely related techniques are currently used to model large metabolic networks:

“elementary flux modes” [54] and “extreme pathways” [51]. Both of these methods rely on

a mathematical technique called “convex analysis” borrowed from the field of linear algebra.

Convex analysis concerns itself with finding the steady-states of a system of matrices.

Let S be an m by n m atrix and let v be an n-element vector. A steady state solution to

this system is any vector v such tha t S • v = 0. In convex analysis, we are typically given

the matrix 5 and asked to find all non-trivial values of v. We can use this method to model

metabolic networks by letting S' be a row of m metabolites and n reactions. V is a vector

of reaction rates of the metabolites, called the flux vector.

Unfortunately, as the number of reactions involved in the metabolic network increases

linearly, the size of the state space to be searched increases exponentially. The problem of

finding all values of v is known to be polynomial-time reducible to the problem of finding all

vertices of a convex polyhedron embedded in n-space. The vertices problem itself is known

to be complete for NP.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

32

Samatova, et al present a new algorithm for finding steady-states which can be effectively

scaled to any number of processes. Their algorithm relies on a result in algebraic theory

called the “reduced conical independence theorem” . This theorem reduces the number of

references which must be made to intermediate results during the state-space search. By

using this result in their algorithm, they are able to effectively keep large portions of the

intermediate result data sets on disk for extended periods of time, thus reducing the amount

of I/O traffic needed by their algorithm.

2 .4 .2 A str o p h y s ic s

“Hydrodynamic simulation” is an active field of research in the area of cosmology. Hy

drodynamic simulation is used to process observations obtained from radio-telescopes to

see if these observations agree with existing and new models of the large-scale structure of

the universe. Trac and Pen [57] have recently implemented a new, more efficient version

of a method used to process data obtained from these observations. This version takes

advantage of out-of-core computational techniques.

The observed data used in this modeling falls into two categories. Short-range, high-

resolution observations, typically obtained with non-terrestrial telescopes, and long-range,

low-resolution observations obtained with series of earth-based telescopes. The size of the

data sets involved in this work are in the multi-terabyte range.

The majority of the computation done in hydrodynamic simulation requires performing

the fast-fourier transform (FFT) on observed data. Because the FFT references its data in

a non-local fashion, locality of reference during such computations is low, and the sizes of

the working sets of such computations approximate the size of the data.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

33

Trac and Pen adopt a technique called the “two-level mesh scheme” first proposed by

Couchman [12]. The two-level mesh scheme effectively partitions the data into small blocks.

These small blocks represent short-range forces captured by the observations. After these

short-range forces are analyzed, they undergo a coarse-grained sample, and from this sample,

long-range forces are analyzed. The resulting analysis gives a high precision radio-picture of

the large scale structure of the universe. The precision can be controlled by the granularity

of the long-range force sample.

Trac and Pen have developed an implementation of this scheme wherein the data sets

reside on secondary storage, but the short-range force observations fit into the memory

of a single Compaq Alpha server. The algorithm works by repeatedly reading in short-

range samples, computing the FFT of the sample, and then storing the result back to

disk. After all the short range samples have been processed, the long range sample is

read into memory. Depending on the granularity selected, the long-range sample may not

fit into memory, resulting in heavy disk I/O load during this phase of the computation.

Nevertheless, the authors point out, dividing the computation into short- and long-range

phases and storing the intermediate results on disk significantly reduces the overall amount

of I/O traffic required during the computation.

2 .4 .3 A p p lie d M a th e m a tic s

QR factorization is a mathematical technique for decomposing a single matrix into two

matrices with specific properties. Give an M by N matrix A, a qr factorization of A is a

pair of matrices Q and R with the following properties:

1. A = QR.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

34

2. Q is an M by M orthogonal matrix.

3. R is an M by N upper-triangular matrix.

QR factorization is a useful technique for computing the least-squares approximation

from a collection of observed data. The technique is particularly useful in problems with

large numbers of parameters and observed data values, because it converges faster than

traditional methods of least-squares approximation.

One particular application of qr factorization is in the earth sciences, where problems

can involved tens of thousands of parameters and millions of observations. Gunter, et al [24]

cite an example where the technique was used to analyze data and develop a more accurate

estimate of the earth ’s magnetic field.

When large data sets are involved, the matrices and intermediate sub-matrices often

times will not fit into primary memory simultaneously. Since the intermediate sub-matrices

are referenced multiple times in later steps of the computation, this makes the problem an

ideal candidate of out-of-core computation.

Gunter, et al [23] have developed and implemented an algorithm which is able to min

imize the number of times a particular sub-matrix must be referenced. They do this by

first simplifying the m atrix using what is known as the “Householder transformation” . This

enables them to store intermediate results on disk, while minimizing the disk I/O involved

when the sub-matrices are referenced at later steps in the factorization.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

35

2.5 Concluding Remarks

All of the schemes so far proposed to fully integrate files into fault tolerance schemes suffer

from deficiencies.

• They severely restrict the types of operations tha t can be performed on files, as in

LibCkpt.

• They are restricted to the simplest form of rollback-recovery, as in SCR.

• They are inefficient (AIPC.)

The scheme we discuss in chapter 4 suffers from none of the problems described above.

• It does not restrict the types of operations which can be performed on files.

• It is flexible in tha t in can be used in any type of checkpointing and rollback-recovery

scheme because it incorporates the part of the RU state stored in the file system in

to the checkpoint.

• Its efficiency is comparable to schemes which do not incorporate files.

Our scheme relies on the special properties of the log-structured file system. In the next

chapter, we briefly review the history of file systems and then discuss the log-structured file

system and the special properties it possesses that we use in our scheme.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

Log-Structured File System s

I t ’s a poor sort of memory that only works backwards.

Lewis Carroll, Alice’s Adventures in Wonderland

We begin this chapter with a review of the Unix file system, and discuss its influence

on modern file system design. We then look at Rosenblum’s Log-Structured File System

(LSFS) and discuss:

• the ideas which motivated the development of the first LSFS,

• the advantages which LSFSs promised and those that have been born out,

• a brief survey of the modern file systems influenced by LSFS design concepts, and

• the special properties of the LSFS which we use in the scheme discussed in chapter 4.

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

37

3.1 The U nix File System

W hat is traditionally referred to as “the Unix file system” was part of the original release

of Unix (called Version III, or V3) by AT&T [46]. A later version, called the Unix Fast File

System (Unix FFS) [38], shared all of the basic design elements with the original AT&T

version, and became popular in the 1980’s with the release of 4.2BSD. The 4.2BSD file

system is still influential today.

Both of original and 4.2BSD Unix file systems were themselves based on the Multics [19]

file system. Today, the term “Unix file system” refers to those elements common to both

the original release and the Unix FFS.

The Unix file system introduced several concepts to file system design, and many modern

file systems are indebted to it. Among the file systems which owe their basic design to the

Unix file system are Sun Microsystems’s Solaris file system, SGI’s Irix file system, the Linux

Ext2 [10] and Ext3 [58] file systems, and the Be file system [22].

3 .1 .1 T erm in o lo g y

We begin our discussion by introducing some terminology.

Block A disk block is the smallest amount of information tha t can be read or written to

a disk at one time. Everything tha t a file system does is composed of operations on

blocks. If there is a possibility for confusion, we distinguish between a copy of a block

in memory and one on disk by using the terms “in-memory block” and “disk block”,

respectively. The generic term “block” refers both to the physical space on disk, and

the data it contains.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

38

Superblock The superblock is special disk block that describes, in general terms, the file

system which resides on the disk. The superblock also serves as the starting point for

locating information on the disk.

Disk cache The disk cache is an area of memory dedicated to holding copies of disk blocks

after they are read from, or before they are written to disk. Mechanical disk drives are

slower than solid state devices such as RAM. If the file system can successfully keep

needed information in the buffer cache, the overall speed of the file system will improve,

since the physical device will be accessed less ofter. The disk cache is sometimes

referred to as the “buffer cache” .

M etadata M etadata is information about the attributes and locations of data stored on

the disk. Examples include a directory’s size in bytes, or a file’s access permissions.

Inode The block where the file system stores all the necessary m etadata about a file is

called the inode. In particular, it stores the physical locations of the file’s data. The

term inode is a contraction of “information node” [6]. An inode is sometimes referred

to as a “file control block” or “FCB”.

Indirect block The file system may need a long list of block addresses to record the

locations of a file’s blocks. If this information can not fit into a single disk block, we

store the additional information in a tree structure. The blocks tha t make up this

tree structure are called indirect blocks.

D irectory Modern file systems are designed with a hierarchical structure. In Unix type

file systems, each level of the hierarchy is called a directory. A directory is a list of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

39

the files at a particular level, and the directories of the next level of the hierarchy.

E x te n t If the blocks which comprise a disk can be allocated contiguously on the physical

device, inode space can be conserved by storing the starting address and the total

length of the contiguous blocks, rather than a pointer to each individual block. These

contiguous runs of blocks are called extents.

J o u rn a l A journal is a list of modifications tha t have been performed on a file system,

but tha t are not yet reflected in the on-disk copy of the file system. The journal

guarantees the consistency of the on-disk copy of the file system after a system crash.

Just exactly how such a system guarantees consistency is discussed in section 3.2.

3 .1 .2 A U n ix F ile S y s te m

In this section, we discuss a simple file system layout tha t includes all the basic structures

of a typical Unix like file system. Figure 3.1 shows the basic components. The diagram

illustrates the structures what comprise the top level, or root, of a simple Unix file system.

The top level, or root, contains File A, Directory B, ..., File Z. File A consists of a single

block. Directory B needs multiple blocks of storage. File Z is large enough to need an

indirect block to store pointers to all the blocks in the file.

Figure 3.1 is somewhat simplistic in its representation of directories. Rather than storing

a pointer to the block containing the inode, directories store an inode’s unique number. We

discuss this m atter further in section 3.2.1.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

40

File A
Data Blocks

Root
Directory
Block 0

i Root
1 Directory
i Block 1 Directory B

Data Blocks

FileZ
Data Blocks

File A
Inode

Superblock Root
Inode

FileZ
Indirect
Block

Dir B
Inode

FileZ
Inode

F ig u re 3.1: A Unix File System

3.1.2.1 T he Superblock

The superblock structure contains information about the file system as a whole. As the

name indicates, the superblock fits into one disk block. The superblock must contain enough

information to allow the operating system to successfully access the data on the disk. The

superblock typically contains

• a “magic number” indicating the type and version of the file system on the disk,

• information about the number of physical blocks on the disk,

• the file system creation date,

• the date the file system was last attached to or detached from the operating system

(the “mount” or “unmount” time),

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

41

• the file system attributes (such as “read-only” , , “don’t update file time-of-last-

access” 1, or “encrypted” ,)

• a pointer to the block containing the root inode, and

• a list of used and free blocks on the disk, either in the form of a pointer to a bitmap

(used in the Ext2, Ext3, NTFS and Be file systems), or a pointer to the head of a list

of free blocks (used in the Unix FFS.)

Since an operating system must be able to find the superblock of a disk when mounting

it, the superblock is typically stored in a fixed location on the disk. Because the file sys

tem essentially becomes inaccessible should the superblock be damaged, many file systems

duplicate the information contained in the superblock at multiple fixed locations on the

disk.

3.1.2.2 Inodes

Inodes are the basic m etadata structure associated with each file and directory on the disk.

(Unix does not distinguish between directories and other types of files except that users are

not allowed to make arbitrary changes to the contents of a directory.) A typical inode is

shown in figure 3.2.

The inode typically contains

• the creation, modification and last access times of the file (referred to as the ctime,

mtime and atime,)

1This option is useful on devices like Usenet news spools where the system administrator does not care
about file access times.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

42

Creation Time (ctime)

Modification Time (mtime)

Access Time (atime)

File Size

Permissions

Attributes

Pointer to Block 0

Pointer to Block 1

Pointer to Block N ►

Pointer to Indirect B l o c k -----

Pointer to Double Indirect _ _
Block__________________
Pointer to Triple In d irect ►
Block__________________

F ig u re 3.2: An Inode

• the number of bytes in the file,

• the permissions of the file,

• any special attributes tha t the file may have (such as being a symbolic link and/or a

directory,)

• a group of block pointers tha t give the physical locations of the first few blocks which

comprise the disk.

• pointers to the indirect blocks of the file.

For efficiency, we want to be able to transfer an inode between disk and memory with

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

43

a single read or write, so an inode must fit into one block. This requirement constrains

the number of block pointers tha t can be stored in an inode. To overcome this limitation,

Unix file systems use a series of direct, indirect and multiply indirect pointers to hold the

locations of disk blocks.

As an example, suppose tha t a block is 512 bytes in length. If the m etadata of an inode

uses 24 of those bytes, and we assume disk block addresses are 32 bits, then the inode has

room for at most 122 block pointers. This limits the maximum number of blocks in the file

to 122, giving a maximum file size of 61KB.

The solution is to reserve several of the block pointers at the end of the inode and

redefine them to point, not to blocks containing file data, but to blocks containing pointers

to file data, or blocks containing pointers to blocks containing pointers to file data. This

multiple indirect scheme allows a much larger addressable file space, at the cost of some

extra overhead when accessing those distant blocks. Figure 3.3 shows an example of a

scheme which uses single and double indirect blocks.

The ext2 and ext3 file systems available with the 2.4 kernel versions of Linux operating

system use a triple indirect scheme. This allows an addressable file size of approximately

4 terabytes. However, due to limitations in the block device layer of the 2.4 kernel, the

maximum file system size is 1 terabyte.

3.2 Log-Structured File System s

Traditional Unix file systems have proven to be remarkably successful. The file system

has been used on machines with disk sizes ranging from just a few megabytes to systems

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

44

Data Block

Indirect
Block

Inode

i Double |
'Indirect 1
i i
i Block i

Indirect
Block

Indirect
Block

F ig u re 3.3: An Indirect Block Scheme for Increasing the Number of Addressable File Blocks

with hundreds of gigabytes of storage. By the late 1980’s, however, changes in primary

memory and disk storage capacities and relative speeds begat a reconsideration of file system

implementations.

One such reconsideration, first proposed by Rosenblum, made its appearance in the

Sprite Network Operating System developed at U.C. Berkeley [40]. W hat Rosenblum called

a “log-structured file system” (LSFS) was fist described in detail in 1991 [48]. His disserta

tion [47] on the subject won the 1992 ACM/doctoral dissertation award.

Rosenblum made three key observations about hardware tha t motivated his work.

1. Traditional file systems were not taking full advantage of the large main memories

tha t had become available.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

45

2. The gap between the speeds of solid-state memory and mechanical disks was increas

ing, and, barring some unforeseen breakthrough in storage technology, would continue

to do so.

3. The decreasing cost per byte of mechanical storage meant tha t systems would be

equipped with large and larger disks. The time required to recover the file systems

on such disks after a crash was becoming unacceptable.

These observations led Rosenblum to several conclusions. First, as the size of main

memories increased, the amount of memory tha t could be dedicated to the disk cache

would increase. This increased size would mean tha t a larger portion of the spacial locality

of actively used files would be captured by the cache. As the cache is filled, fewer physical

disk reads would be needed to satisfy logical application reads, since the files would already

be in the cache. Thus, traffic to the disk would become dominated by writes.

Second, the factor most responsible for limiting the speed of modern disks under a

typical workload is the seek time. Reducing the number of seeks and the average seek

distance would increase the observed transfer rate of the disk.

Third, traditional methods of restoring consistency to a file system after a crash require

scanning all the m etadata structures on the disk. This time grows linearly as the size of

the disk increases.

The LSFS attem pts to solve all three of these problems. It does so by adding a special

data structure called the log to the file system. The log is an append-only structure that

holds copies of all modified disk blocks. As disk blocks are modified, they are written to

the end of the log, rather than being updated in place as in a traditional file system. Thus

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

46

an LSFS never overwrites any block on the disk. (There is a single exception to this rule,

which we discuss below.)

Typical scientific and engineering workloads contain many writes tha t are smaller than

the block size [41]. The LSFS converts these small writes into one long sequential transfer.

Since only seeks to adjacent tracks occur, this write occurs at nearly 100% of the disk’s

theoretical transfer rate.

3 .2 .1 T h e O r g a n iza tio n o f a L o g -S tru ctu red F ile S y s te m

The LSFS retains the concepts of the superblock, inode and the indirect block scheme from

traditional Unix file systems. Two additional structures are needed, however, to support

the log.

Since we never overwrite disk blocks, each write will place a block at a new location on

the disk. This scheme presents no problems when recording the locations of regular data

blocks, since we simply update their locations in the inode or indirect block.

However, rewriting inodes introduces a complication. Traditionally, space for some fixed

number of inodes is reserved near the beginning of the disk when the file system is created.

This allows the system to store the inodes contiguously, and makes locating a particular

inode easy since it can be done by a simple arithmetic calculation using the inode’s number.

In an LSFS, however, we never overwrite an existing inode, so the location of an inode

may change. Thus, we need an additional structure to remember the locations of inodes.

This structure is called the inode map, or simply just the imap.

Since the data stored in the imap changes as inodes are written to new places on disk,

the imap itself may change. Thus, we need some way of tracking the changing location of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

47

the imap. We store the location of the imap in the checkpoint region. The location of the

checkpoint region is stored in the superblock. The superblock is the only structure on disk

whose location does not change. Whenever the log is written to disk, we write the data

blocks, inodes, imap and checkpoint region to disk, in tha t order.

Figure 3.4 shows the logical relationship between these structures. Figure 3.5 shows these

structures after the log has been written to disk. In the LSFS represented in figure 3.5, file

A has been deleted, and block 1 of file B has been modified.

File A

FileB
Block 0

FileB
Block 1

Inode B

Inode A

Super block

Checkpoint
Region

Inode
Map

F ig u re 3.4: A Log-Structured File System

An example of the physical layout tha t these structures might have on disk, both before

and after the log has been flushed, is shown in figures 3.6 and 3.7.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

48

Previous version of FS

Current version of FS

File A

File B
Block 0

File B
Block

FileB
Block 1

Inode B

Inode B

Inode A

Super block

Checkpoint
Region

Checkpoint
Region

Inode
Map

Inode
Map

F ig u re 3.5: A Log Structured File System After the Log has been W ritten to Disk

3 .2 .2 C rash R eco v ery

The log-structured file system uses the redundant data on the disk to accelerate crash-

recovery. After a system crash, the file system may have been left in an inconsistent state.

For example, the contents of a new file may have been written to disk, but the system

crashed before the associated inode could be updated.

In traditional file systems, the system cannot easily determine which file system struc

tures are consistent with the data one the disk, so it must scan all the m eta-data structures

on the disk to restore consistency. In a log-structured file system, all of the most recent

changes are easy to find; they are at the end of the log.

To effect a file system recovery after a crash, the system notes (using a flag in the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

49

n U - - w -

SB CPR IMAP h A 0 Bq Bi

SB = Superblock
CPR = Checkpoint Region
IA= Inode A

A0= File A, Block 0

F ig u re 3.6: The On-Disk Layout of a Log-Structured File System

SB CPR IMAP Br B, B i ’ IMAP’ CPR’

F ig u re 3.7: The On-Disk Layout of a Log Structured File System After the Log has been Written
to Disk

superblock) whether the file system was properly unmounted before the system was powered

off. If it was not, the system locates the most recent checkpoint region, reinstantiates

the file system from tha t checkpoint, and then updates the file system from the log. If

the checkpoint region is corrupted (due to a crash while it was being written), the LSFS

consults the previous checkpoint region. It is for this reason tha t the LSFS always keeps

two checkpoint regions on the disk. It needs a valid location for the imap even if a crash

occurs which leaves a checkpoint region in an inconsistent state.

3 .2 .3 C lea n in g

The performance of a log-structured file system depends on having large contiguous seg

ments of disk space in which to write the log. Since the disk will eventually become full as

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

50

the size of the log grows, it is necessary to have some mechanism to remove old data from

the log. As this old data is removed, the disk will tend to become fragmented, and so a

method is needed to coalesce the free and used blocks.

Both of these tasks are typically performed during a procedure called cleaning. Rosen

blum studied several methods for implementing the cleaning daemon. The cleaner can either

run continuously as a background process, or it can be called from time to time when the

machine is idle, or when the number of contiguous free blocks falls below some threshold.

Rosenblum [48] speculates tha t the long-term performance of an LSFS is closely tied to the

cleaning policy used, but his research did not discover an optimal cleaning policy.

3 .2 .4 P r e v io u s Im p le m e n ta tio n s o f L o g -S tru ctu red F ile S y ste m s

Rosenblum [48] described the original implementation of the log-structured file system, and

gives performance and experimental results when it is used with the Sprite network oper

ating system [40]. Seltzer et al. [55] describe an implementation for the 4.4 BSD operating

system. The Network Appliance Corporation currently provides a log-structured file system

implementation which they couple with non-volatile memory and a RAID-4 disk in their

FAServer family of NFS servers [25]. It is a standalone network attached storage device

which provides high performance NFS service.

3 .2 .5 L o g -S tru c tu red F ile S y s te m s are H is to r y P r e se r v in g

Since the checkpoint region completely encapsulates the information necessary to access a

snapshot of the filesystem, we speculated that an LSFS could be modified to preserve a

series of checkpoint regions, and thus a series of snapshots of the file system. Since, with

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

51

the exception of the superblock, no disk block in an LSFS is ever overwritten, each series of

disk snapshots is exactly preserved in the version of the file system rooted in the associated

checkpoint region.

In the next several chapters, we discuss how we have leveraged this history preserving

mechanism to create a prototype system tha t allows for the efficient incorporation of files

into fault-tolerant concurrent systems.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

Checkpointing and

Rollback-Recovery w ith Files

We are what we repeatedly do.

Aristotle

In this chapter we describe a method for efficiently and transparently incorporating

files into systems which use checkpointing and rollback-recovery for fault-tolerance. We

begin by discussing the concept of vector time, which we use to track dependencies between

processes and the file system. We then describe the checkpointing, rollback, and rollforward

processes.

4.1 Our Scheme

The previous attem pts to integrate files into checkpointing and rollback-recovery schemes

have all had certain inherent limitations. If they treat files as external entities, then the

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

53

frequency of commit operations severely limits the amount of parallelism among the nodes

in the system. Attempting to reduce the number of commits required restricting the op

erations tha t can be performed on files, effectively making files second-class objects in the

computation. Unfortunately, fully integrating files into fault-tolerance schemes has limited

these schemes to pure checkpointing only, and in addition has imposed a severe performance

penalty on such systems.

Attempting to take a snapshot of a traditional file system results in excessive failure-free

overhead because these schemes need to make disk-to-disk copies of large amounts of data

in order to make file operations undoable. This is the key observation which has motivated

our work.

The goal of our work was three-fold. We wanted to develop a scheme tha t addressed all

of the above problems. Thus, the scheme must have all the following characteristics:

A pplication Transparency The scheme should allow a program to access files using the

standard set of Unix file operations.

Fault-Tolerance-Schem e Independence The scheme should be general enough to allow

it to be used with any checkpointing and rollback-recovery scheme. That is, the scheme

must fully support checkpointing, rollback and rollforward of the file system.

Efficiency The scheme must be efficient enough so tha t including file systems in the check

point does not make the failure-free overhead prohibitively large.

We chose to use the log-structured file system as the basis for our scheme. The history

mechanism of the LSFS gives us an efficient method of arbitrarily taking snapshots of the

file system. Since nearly the same amount of computational resources are used to snapshot

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

54

an LSFS as to syncO a traditional file system, the LSFS essentially gives us the ability to

checkpoint an entire file system while expending very little extra computational resources.

Since LSFSs guarantee tha t the on-disk state of the file system is always self-consistent

after a snapshot, the scheme can easily be integrated into existing checkpointing methods.

Combining this with the timestamping mechanism described below allows us to easily and

efficiently roll the file system forward and backward through time. Thus, the scheme is

independent of the method used to provide fault-tolerance.

Since multiple processes can concurrently access a single file under our scheme, we need

some way to ensure tha t we can roll the file system forward and backward and still maintain

consistency with all the processes accessing it. To do so, we require the file system state to

maintain a strong sense of temporal causality with the processes accessing it. Vector time

allows us to capture exactly this characteristic.

4.2 Vector Tim e

Vector time was proposed independently by M attern [35] and Fidge [20, 21] to provide a

characterization of causality among processes. It is a generalization of Lam port’s logical

clocks [28].

A concurrent system consists of a set of N communicating processes. In vector time,

each process p-i has a vector V/, 1 < i . j < N . We refer to this value as the vector time or

vector timestamp of the process. All processes in a concurrent system implicitly agree on

an initial timestamp. Typically this timestamp is [0i, O2 , ...,0/v].

Let e*l be the &th event occurring in process p*. We increment V* before each event in

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

55

a process, so when the A;th event occurs, V? = k. We use the notation Vj(e*) to denote the

clock value of an event e\ in process p-t.

When process pi sends a message to process pj, we piggyback pt ’s timestamp on top of

the message. Pj updates its vector time clock to reflect both p^s and its own idea of the

current vector time.

More formally, the following rules are used to maintain vector time clocks:

1. When the /cth event in pi, ej, occurs, pi increments the ith component of its vector

time clock. Thus, V? <— V? + 1. For 1 < I ^ i < N , Vj is not changed.

2. If s is a send event in pi and r is the corresponding receive event in pj, then the clock

of pj is updated to reflect pi s knowledge of the clocks in all other processes. That is,

V f <- m ax(yifc, V f) , 1 < k < N .

An example of a three process system is shown in figure 4.1. Processes increment their

vector time before each send and receive event by incrementing the part of the timestamp

tha t represents their own process. After the receipt of a message, a process updates the

entire timestamp by forming the pairwise maximum of their own clock and the sender’s

clock.

[0,0,0] [1,0,0] [2,0,0]

[1,3,2][0,0,0] [1,2,0]
[1,1,0]

[0,0,0]
[1,2,1] [1,2,2] [2,2,3]

F ig u re 4.1: Vector Time in a Three Process System

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

M attern defines the following properties of vector time clocks: For any two clocks V

and V f

. Vi = Vj 4=> Vk : V f = Vf-

• Vi < Vj V/c : V f < Vf-

. Vi < Vj (Vi < Vj) A (Vi £ Vj)-,

• v; II Vj * = * (Vi j t Vj) A (Vj j t Vi).

The ordering of vector time clocks exactly captures the causal order between two events

ei and e.j occurring in processes pi and pj. In particular, recalling tha t —» is Lam port’s

“happens before” relation: e* —> ej Vi(et) < Vj(ej). Figure 4.2 shows the partial order

induced on the send and receive events shown in figure 4.1 by the vector time clock relation.

[1,3,2] [2,2,3]

[1,2,2]

[1,2, 1]

[1,2 ,0]

[1,1,0] [2,0,0]

t /
[1,0 ,0]

F ig u re 4.2: The Partial Order Induced on Events by Vector Time

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

57

4.3 File System Checkpointing and Process Checkpointing

As noted in chapter 3, the LSFS maintains a continuous history of the operations performed

on the file system. Each time data blocks are written to disk, we write the blocks to new

physical locations. We also write the updated inodes and any associated indirect blocks to

new locations, thus preserving the old state of the file system by leaving the previous copies

on disk undisturbed. Writes of the imap and checkpoint region also lay down new copies

on the disk.

Thus, to checkpoint a LSFS, we need only flush all dirty blocks from the disk cache,

and then update the disk’s m etadata structures. Of these operations, only the writing of

the imap and checkpoint region are not performed during similar operations by traditional

Unix file systems.

Process checkpointing has been well studied [49] [7] [34] [16] [8] [32] [43]. We describe

our implementation of processes checkpointing, along with an implementation of an LSFS

in chapter 5.

In our system, we extend process checkpointing to include a file system checkpoint. We

do this by initiating a file system checkpoint concurrently with the process checkpoint. We

then store the two together in a list associated with each process. Included in the checkpoint

is information about the processes’ interaction with the filesystem, such as the list of files

the process has open at the time of the checkpoint. 1

1In our prototype system, we open each file with both read and write permissions. In addition, we require
application processes to manage their own file pointers in user space. In a real system, both of these pieces
of information are managed by the operating system and would need to be stored in the checkpoint.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

58

4.4 Restoring System Consistency after Process Failure

We face a particular difficulty in rolling a file system forward from a checkpoint after a

crash. To wit, each of the processes accessing the file system will have a part of its state

contained not only within local memory but also in the file system as well. This is much

different from the typical concurrent or distributed system model where process state is

subsumed by the process itself.

Consider the example shown in figure 4.3. This example illustrates a simple producer-

consumer situation, where the processes synchronize using message passing, and a file serves

the role of the buffer. One process reads the file while the other writes to it. The processes

synchronize by exchanging messages. Assume for this argument a buffer large enough to

hold two items of data.

FS write write
bo

write read
bo bo

write
bi

read
bi

F ig u re 4.3: Sharing a File in a Concurrent System

At time to, process po crashes. We can not simply rollback po to Co,o without rolling

back the file system. To see why, assume tha t po is rolled back to checkpoint Co,o but the

file system is left untouched. At this point, po begins to replay its log of received messages.

These messages will instruct the process to read from the buffer. Unfortunately, the data

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

59

which the process should be reading has already been overwritten by p i .

The obvious solution then is to rollback the file-system along with process po. Unfortu

nately, this introduces additional difficulties. After the process and file system have been

rolled back, data written by p\ after checkpoint Co,o was created will have been lost. The

solution here then is to rollback process p\ to checkpoint C^o, and then roll it forward by

replaying its message logs. Note tha t we do not rollback the file system to its state preserved

in checkpoint C i:o.

There is a subtle difficulty illustrated in this example: Since both processes in the

system are asynchronously replaying messages from their logs, they proceed independently.

We need some way to coordinate access to the file while the two processes are rolling forward.

Our solution is similar to other logging recovery protocols in tha t we require each process

to log not only received messages, but also data which has been read from the file. We then

control the extent of roll forward using vector time.

4 .4 .1 V ec to r T im e an d C h eck p o in tin g

In our protocol, vector time controls the extent of process rollforward. For our purposes,

any file system access will be considered an event and cause the process vector time to

increment. Particular applications may define additional events.

We assign a vector time timestamp to the shared file system and each process in the

system. Processes piggyback these timestamps on messages sent to other processes. When

a process issues a destructive file system request (a w r ite O , c lo se O or u n lin k O), it

passes its timestamp along with the request to the file system. The file system updates its

vector time before returning the result. When a non-destructive request is made of the file

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

60

system (an open() or read O) the file system returns its vector timestamp along with the

result, and the process updates its vector time clock using this information.

Thus, we update the process vector time on an internal event, a non-destructive file

operation or a message receipt. We update the file system vector time on a destructive

operation, including a file system snapshot. Our motivation in attaching timestamps to file

operations is to have the file system coordinate the vector time among processes communi

cating through the file system. Table 4.1 summarizes the rules for updating the vector times

of the file system and processes which initiate internal events and file system operations.

Vector T im e P ropagation R ules
operation initiating process file system
non-destructive update process timestamp no change
destructive no change update file system timestamp
internal event increment V? no change

T ab le 4.1: Vector Time Propagation Rules

For example, during a write, the file system was modified by some event in the process,

so the file system’s idea of the time should be at least as late as the process’s. Alternately,

a read from the file system is the last step in a possible communication between processes,

so the read event should causally succeed the latest file system event. Events per se do

not occur in the file system; the file system only reflects the vector time of processes which

change it. See figure 4.4.

Because we want our system to be adaptable to schemes other than pure checkpointing,

we require the processes to log received messages. In addition, we also require processes to

log any information read from the shared file system.

Finally, we require each process in the system to take an initial checkpoint before the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

61

[1,2] [2,2][3,2][0,0] [4,5][5,5][6,5] [7,8] [8,10]

[0 ,010 ,1] [3,4] [6,7] [6,9]
[0,2] [3,3]] [3,5] [6 ,6]] [6 ,8]] [6 , 10]

FS read
[3,4]

write
[6,7]

write
[6,9]

write
[0,1]

read
[0,1]

write
[3,4]

F ig u r e 4 .4 : Vector Time Propagation Between Processes and the File System

computation begins. A formal checkpoint is not actually needed since we can always restart

processes from the beginning, but a later argument is simplified by assuming at least one

checkpoint always exists.

4 .4 .2 R eco v ery

During the recovery stage, the process which crashed is restarted from its latest checkpoint.

This process notifies others with which it shares the file system th a t a restart is in progress

and tha t they should stop normal computation and wait for restart instructions.

During the resurrection of the failed process from the checkpoint, we rollback both the

process state and the file system. The process then notifies the other processes with which

it shared the file system tha t it has restarted, and informs them of the vector time contained

in the rolled back file system.

We now restart the non-failed processes. For each of these other processes, we choose the

most recent checkpoint which was taken before the last checkpoint of the crashed process,

and restart them. Note tha t as we rollback these non-failed processes, we do not rollback

the file system.

The non-failed processes then roll forward. As they do, they replay received messages

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

62

and the results of non-destructive file requests from their logs. Requests by the process to

perform destructive file operations are ignored, and sent messages are discarded. We roll

the processes forward until their vector clocks indicate tha t they are about to perform some

event which is not causally earlier than the vector clock of the file system, or until the log

is exhausted. At this point, these processes resume normal operation.

Consider figure 4.5. It shows a three-process system accessing a shared file system. Each

process reads from and writes to the file, and intermittently checkpoints itself and the file

system.

[1,2 ,0] [2 ,2,0] [3,2,0]
Po'

I
Pi

['

P2

FS[<

[0,1,0] [0,2,0]
[0,0,0] write n

[0,3,0]
read

Caa a
0,0 [3,4,4]

read

[0,0,0]

L) p
1 c l,0i
i
i

[0,0,1]
n

[0,0,2]
write

[3,2,3] [3j2 4]
read n

,

[0,0,0] ’

i
i

t
1 c 1>0

i

i
i

t
' 1

i t
[0,1,0] [0,2,0] [0,2,1] [2,2,1] [2,2,2] [3,2,2] [3,2,4]

o o
F ig u re 4.5: The Propagation of Vector Time in a Three Process System with a Shared a File
System

At time to, process po crashes and is restarted from checkpoint Co,o- The process is

rolled back to its state at vector time [3,2,0], while the file system is rolled back to vector

time [3,2,2], See figure 4.6.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

63

[3,2,0]

0,0
0 ,2 ,0]

FS [3,2,4][0 ,2,1][0 ,2 ,0] [3,2,2]

F ig u re 4.6: Rollback of a Failed Process

Since both process p\ and p 2 share the file system with the failed process, we must restart

these processes from checkpoints which causally precede checkpoint Co,o- P\ is restarted

from C^o and p 2 is restarted from C2 ,o- See figure 4.7.

[3,2,0] 'o
Po

[0,2,0]

Pi
[0,0,1]

P2
•2,0

A.

1

F ig u re 4.7: Rollback of Non-Failed Processes

Both processes now roll forward, driven by their logs. The rollforward stops when the

vector time of each process reaches a point which indicates tha t it is not before (in the

Lamport sense) the vector time of the file system. For pi, this occurs when its vector time

reaches [3,4,4]. For p 2 , this occurs with the read at [3, 2, 3]. At this point, all the processes

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

64

are mutually consistent with each other and the file system. See figure 4.8.

13.10]

............................. .. ta*-

,4]
ad

*

[0,2,0] [0,3,0]
ri read re

' C1.0 '----from tog
> [3,2,3]

read
i [0,0,1] [°’0’2]
i n write
1 LJ n 1 1 1 '-1,0 -

♦ ♦

♦
1

......3*-
[0,2,0] [0,24] [3.2.2]

F ig u re 4.8: Roll Forward of Non-Failed Processes

In the next chapter we discuss a prototype implementation tha t demonstrates the fea

sibility of the scheme. In chapter 6 , we provide a proof tha t our protocol does indeed allow

the system to recover from a process failure, and tha t it does not suffer from the domino

effect.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

Im plem entation

When we mean to build,

We first survey the plot, then draw the model...

Shakespeare, King Henry IV, Part II, Act I, Scene 3

In this chapter we discuss our prototype implementation of the system which demon

strates the practicality of our scheme. The implementation is divided into two parts: the

file system layer and the process control layer. See figure 5.1.

We begin the chapter with a discussion of our design goals and an overview of the

prototype. We discuss the API tha t our prototype presents to application programs, and

then discuss the implementation of the two layers of the system. In section 5.8.5 we give

an example of how an application would use our system. We conclude the chapter with

a discussion of POSIX thread synchronization primitives, and the special difficulties they

present to applications using checkpointing and rollback-recovery for fault tolerance.

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

66

write(...Exported API’s: read(.. .)

Logging and Process Roliback/Rollforward Control

Buffer Cache

Virtual Disk

Log-Structured File System

F ig u re 5.1: The Layers of the Prototype

5.1 Design Goals and System Operation

Since our intention was to build a prototype, our design goals were different than those of an

implementor building a production system. Our primary focus was on correct operation and

a full set of features rather than efficiency. Nevertheless, some design decisions were affected

by questions of algorithmic efficiency. When designing a file system, many data items

will have two separate representations: in-memory and on-disk. Being able to efficiently

convert between these two representations makes development easier and contributes to the

efficiency of the implementation.

Our implementation is built using the POSfX thread library supplied with the 2.4 version

of the Linux kernel, version 2.2 of the GNU C standard library (libc) and version 0.9 of

the GNU pthread library. This thread implementation was originally designed in 1996.

Because of it was designed in conjunction with the early 2.x versions of the Linux kernel,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

67

the implementation suffered from some non-POSIX compliant issues. Prom our perspective,

the most glaring of these was the implementation of signal handling by the kernel and library.

Drepper describes the implementation as “non-compliant and fragile” [15].

In the original implementation of the threads library, each thread is assigned to a sepa

rate process. An extra manager process coordinates activities among the threads.

The POSIX standard requires threads to be able to share almost all resources. This was

accomplished in Linux by the use of the non-standard c lo n e () syscall. C lone() is similar

to the standard Unix fo rk () syscall which is used to create new processes. While fo rk O

makes a copy of the calling process, clone O ’d processes share almost all of their address

space with the parent process. The exception’s are the kernel and user stack. While this

makes sharing resources easy and efficient, it leads to problems when using signals.

In particular, the result of sending a signal to a single thread is not well-defined. In

the traditional Unix programming model, the k i l l () syscall is used by a process to send a

signal to another process. The sending process specifies a process ID and a signal number.

Upon signal receipt, the receiving process can either choose to ignore the signal, catch the

signal and perform some action, or terminate.

The original implementation of signals in the thread library perverted their traditional

semantics in several ways. Some types of signals behaved in the expected ways. For example,

a SIGALRM, the alarm clock signal, behaves according to its traditional meaning. Other

signals, however, may either be lost completely (SIGINT, the keyboard interrupt signal),

or may be delivered to every thread in the group (for example, SIGCONT.) For example, a

SIGTERM kills every thread in the group rather than just the thread to which it was sent.

In 2002, the open source development community introduced a new threading model

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

68

in Linux. This threading model is available on systems running the 2.4.20 or later kernel

versions along with version 2.3 of GNU libc and version 0.10 of the GNU pthreads library.

Our prototype system was implemented using the original thread library and consists

of approximately 8,100 lines of C + + code. Another 7,900 lines of code was written for the

purposes of debugging, testing and evaluating the system.

5.2 A PI

The API of a system is the set of library and system calls (syscalls) available to programmers

who develop applications for tha t system. Prom a syntactic standpoint, there is no difference

between syscalls and library calls, so we refer to the elements of our API as syscalls. The

syscalls exported by our prototype include eight traditional Unix syscalls, one syscalls which

has modified syntax and semantics, and three new syscalls.

in t m kvlfsO Create a log-structured file system on a virtual disk,

in t mount () Mount a file system,

in t unmount () Unmount a file system.

in t open (in t fd) Open a file and return a file handle for use in subsequent operations,

in t c lo se (in t fd) Deallocate a file handle.

in t r e a d (in t fd , char * b u ffe r , long count, unsigned long o f f s e t) Read from a

file.

in t w r i te (in t fd , char * b u ffe r , long coun t, unsigned long o f f s e t) Write to a file.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

69

i n t u n lin k (in t fd) Remove a file from the file system namespace.

in t sync (vector_ tim e *×tamp) Snapshot the file system and commit file system

changes to disk. Return a pointer to the timestamp associated with the snapshot to

the calling program.

in t ro llb ack (v ec to r_ tim e *timestamp) Discard the current state of the file system and

roll it back to the state which existed at time timestamp.

void p r in t_ s ta ts (c h a r *sw itch) Print statistics on file system activity.

void noopO Enter the file system without performing any file system activity. This pur

pose of this system call is explained in section 5.5.

Our implementation is written in C + + , and the exported system calls and associated

data types are available to application programs which link against the compiled code of

our prototype. Below we explain the semantics of each syscall.

5 .2 .1 M k vlfs

i n t m kv lfs()

The mkvlf s () syscall formats the virtual disk (see section 5.3.1). It creates a superblock

on the disk at block 0, and initializes on-disk copies of the checkpoint region and imap. It

then allocates and initializes the on-disk copy of the block bitmap, which indicates free and

used disk blocks.

In the applications we used to test and evaluate our prototype, the applications call

mkvlfs () once at the beginning of a computation. It is possible to format the file system in

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

70

one thread group, unmount the file system, and then mount it in another application some

time in the future, since the file system is implemented on a virtual disk tha t lives as long

as the associated physical files remain on the disk.

5 .2 .2 M o u n t

i n t mount()

The mount () syscall makes the file system accessible to user programs by opening the

physical files associated with the virtual disk, and reading the superblock, checkpoint region

and imap into memory.

5 .2 .3 U n m o u n t

i n t unmount()

The unmount () syscall updates all the on-disk data structures from the copies in mem

ory, and then deallocates the memory used by those data structures.

5 .2 .4 O p en

i n t open (in t file_num ber)

The openO syscall takes an integer argument specifying a file number and makes the file

accessible to application programs. It does this by reading the associated inode and indirect

blocks (if any) from disk. No file data is read from the disk by the o p en (). Existing data

blocks are only read from disk when they are accessed by a subsequent readC) or w rite ()

syscall. If the specified file does not exist, the openO creates an empty file.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

71

The prototype supports a total of 64 files. We made this design decision because an

imap entry is 16 bytes long and we wanted the imap to fit into a single disk block. See

figure 5.5.

In the design of our prototype system, we decided not to implement directories. In Unix

file systems, directories are for all practical purposes simply files which contain lists of (file

or directory name, inode) pairs. We decided that supporting directories was not necessary

to demonstrate the viability of our scheme.

5 .2 .5 C lo se

in t c lo s e (in t file_num ber)

The c lo se () syscall deallocates a file handle previously allocated to an application by an

o pen (). As in traditional Unix file systems, the c lo se () essentially does nothing. However,

if some previous application deleted the file using the u n lin k () syscall, and this application

is the last to close the file, the inode and associated indirect and data blocks are marked as

free and available for reuse in the imap and free list.

This unusual behavior is true to the semantics of traditional Unix file systems in that

u n lin k ()in g a file removes the file from the file system namespace, but the associated data

and m etadata are not deleted until the last application releases the file with a c lo s e ().

5 .2 .6 R ea d

i n t read (in t file_num ber, char ♦ b u ffe r , unsigned long n b y te s , unsigned long

o f f s e t)

The read O syscall copies the number of bytes specified by the count argument into

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

72

the buffer pointed to by argument b u ffe r . The behavior of the re a d () is undefined if the

buffer is not large enough to hold the number of requested bytes.

In traditional Unix file systems, a read O always begins at the position specified by the

file’s file pointer. The file pointer is an internal value specifying the offset from the beginning

of the file where the next read or write will begin. We decided to omit the concept of the

file pointer and require applications to explicitly specify it in each read or write syscall via

the o f f s e t argument.

Each file has a file size parameter associated with it. When a file is first created, the

file size is set to zero. An attem pt to read beyond the end of the file does not fail, but

returns only the number of bytes available. If such an attem pt is made, the syscall returns

the value -EOF to the calling application.

It is possible to create files with “holes” in them. This occurs, for example, if the first

write to a file occurs at somewhere other than offset 0. Any subsequent attem pt to read

data tha t is before the end of the file but which has never been written returns null bytes

for the unwritten data. This behavior is consistent with both the Linux and Solaris read ()

syscalls.

5 .2 .7 W rite

in t w rite (in t file_num ber, char * b u ffe r , unsigned long n b y te s , unsigned long

o f f s e t)

The w r i te () syscall transfers count bytes of data from * b u ffe r to the file system

beginning at o f f s e t .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

73

5 .2 .8 U n lin k

i n t u n lin k (in t file_num ber)

The u n lin k () syscall removes the file from the file system namespace. If no applications

have the file open, the inode is marked as unallocated, and the disk blocks containing the

associated m etadata and data are returned to the free list.

5 .2 .9 S y n c

i n t sync (vector_ tim e *×tamp)

The syncO syscall is used to commit to the disk any file system changes which occurred

since the file system was mounted or last syncO ed to disk. It returns the vector time of

the file system to the calling processes.

The syncO syscall is similar to the traditional Unix syncO call, but performs some

additional steps to ensure tha t the file system can be rolled back to its current state at some

point in the future if necessary.

These additional steps commit the imap to disk at a new location. The imap location is

stored in the checkpoint region along with the vector time of the file system. The checkpoint

region itself is then written to disk. A new checkpoint region is set up with pointers to the

list of old checkpoint regions. Finally, the old checkpoint region’s disk location is stored in

the superblock, and the superblock is written to disk. See figures 3.4 and 3.5.

The syncO operation is fundamental to the correct operation of an LSFS. Pseudocode

for the syncO syscall is shown in appendix A.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

74

5 .2 .1 0 R o llb a ck

i n t ro llb a c k (vector_ tim e *timestamp)

The ro llb a c k () syscall is used to roll back the file system to an earlier state. It takes

a single argument, which is a pointer to a vector_tim e variable containing the timestamp

of some earlier sync () of the file system.

On the initiation of a rollback, the file system waits for any pending I/O operations

to complete, and then locks itself to prevent any thread from accessing its internal data

structures. It then scans the list of checkpoint regions looking for one with a matching

timestamp. If no such timestamp is found, the system unlocks itself and returns an error.

Once a checkpoint region with a matching timestamp is found, the current state of the

file system is discarded. The matching checkpoint region is read into memory along with

the associated inode map. At this point the syscall returns.

One unusual characteristic of the rollback operation is tha t it does not re-open any

files which were open at the time of the syncO which created the file system checkpoint.

Threads in the system store a list of the files they have open when they checkpoint. Once

individual threads have rolled back, the thread reinstantiation process re-opens the file.

5 .2 .11 P r in t_ sta ts

void p r in t_ s ta ts (char *sw itch)

The p r in t_ s ta t s () syscall is used to gather statistics on the behavior of the underlying

file system. It takes a string of characters chosen from the set [bcCdisv]. These characters

act like switches, and control which sets of statistics are printed. A null string passed as an

argument defaults to printing all available statistics.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

75

The individual switches control the following sets of statistics:

b, the block bitm ap: number of allocated and free blocks on the virtual disk.

c, the checkpoint region: total number of checkpoint regions on the disk and the times

tam p of each region.

C, the disk cache: total number of used and free buffers in the disk cache, the number

of sweeps of the buffer replacement clock hand, the number of disk blocks read and

written to the cache, and the number of cache blocks filled and flushed

d, the virtual disk: number of blocks and bytes read from and written to the disk.

i, the imap: number of times the imap has been read from or written to disk, and the

total number of inode to physical disk block translations tha t have occurred.

s, inform ation about th e superblock: number of times the superblock has been read

and written to disk.

v, general inform ation about th e file system : number of times this file system has

been mounted and unmounted, the number of file openO ’s, c lo se () ’s and u n lin k O ’s

performed since the last mount, and the total number of times this file system has

been syncO ed and rolled back.

In the next section, we describe the data structures and algorithms tha t comprise the

file system layer.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

76

5.3 The File System Layer

In this section, we discuss the various subsystems which make up the file system layer of

our prototype system.

5 .3 .1 T h e V ir tu a l D isk

The file system layer of our prototype is implemented on top of the actual Linux file system.

At the bottom of the file system layer is a “virtual disk” . This virtual disk can be configured

to contain a maximum of 224 blocks. The block size of the disk can be modified at compile

time and supports block sizes which are a power of two and range from 512 to 8192 bytes.

W ith a block size of IK (the default size we used in all of our experimental work) this gives

a maximum file system size of 16GB.

While the Ext3 file system (which is the default file system for many Linux distributions)

supports files of up to 1TB in size, support for these large files is not enabled by default; it

must be explicitly requested when the kernel is compiled. Most Linux distributions provide

precompiled kernels which default to a maximum file size of 2 31 — 1 bytes of addressable file

space.

To support 234 bytes of addressable file system space on top of these files, we imple

mented a system of segmented physical files to contain the data in our logical file system.

The logical disk layer translates block addresses to (file, offset) pairs. See figure 5.2.

Since the main job of the logical disk is to satisfy block read and write requests from

higher levels of the file system, we chose to use 16 1 GB files to implement our default virtual

disk. These files are created when an object of type vd isk is created by an application

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

77

logical disk
ct;cr cr

o o oo o 77
>? 7? N)o N)

r

logical block to (physical file, offset) translation

fO f l f2 f 15

physical files

F igure 5.2: A Logical Disk Built on Top of Physical Files

program. We chose to use files of 1GB in size because this makes translation from virtual

disk block read and write requests to physical file system read and write requests simple

and fast.

W ith a 16GB virtual disk, the total number of blocks of size 2s bytes is ^ = 234“ s ,

and each file contains = 23 0 - 5 blocks. The upper 30 — 5 bits of each 32 bit block

address gives the physical file number, while the lower 5 bits give the offset within the file.

For example, suppose a request to read block N is made to a virtual disk with block

size 2s . The virtual disk satisfies this request by reading from file N » (30 — 5) at offset

N 1 2 30~s . Since the block size 2s is specified at compile time, the compiler can translate

these operations into a bit shift and a bitwise and operation, respectively.

5 .3 .2 T h e D isk C ach e

Our caching scheme for the prototype is simple. We employ a fixed size cache which uses

an LRU replacement strategy. The size of the cache can be modified at compile time.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

78

5 .3 .3 V ec to r T im e

Because vector timestamps are one of the most frequently manipulated objects in our pro

totype, we evaluated several different implementations. We finally settled on a dynamically

allocated list of (thread id, time) pairs to represent a single vector timestamp. The pairs in

the list are kept sorted using the thread id as the key. An additional in t associated with

each timestamp contains the number of pairs in the list. Figure 5.3 shows an example vector

time object. The object contains a timestamp describing three threads. Thread 10000’s

time is 10, thread 10020’s time is 0, and thread 10300’s time is 23.

3

1 0 0 0 0 1 0 0 0 2 10300

1 0 0 23

F ig u re 5.3: The In-Memory Representation of an Example Vector Time Object

When we write a vector time object to disk, we want to be able to store it in a single

disk block. The vector time of a single process needs 12 bytes (8 for the process id and 4

for the time). This limits the number of (process id, time) pairs which can be written to a

single block to 85. Thus, 85 is the upper limit on the number of processes the system will

support.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

79

5 .3 .4 T h e In o d e

The inode class is the primary ADT of the file system. Figure 5.4 shows the on-disk structure

of an inode.

32 bits

atime

mtime

ctime

permissions

file size

data block 0 address

data block 1 address

data block 1 2 1 address

4 bytes block 0 snapshot flag

block 1 snapshot flag

block 1 2 1 snapshot flag

indirect block flag

indirect block pointer

double indirect block flag

double indirect block pointer

triple indirect block flag

triple indirect block pointer
i unused

F igure 5.4: The On-Disk Representation of an Inode

The inode uses 20 bytes of m etadata to store the access, modification and creation times,

the file permissions and the file size. The next 968 bytes contain pointers to the first 122

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

80

blocks of file data. Associated with each block of file data is a “snapshot flag” . This flag

indicates whether the corresponding data block on disk is part of a filesystem snapshot.

This information is used when a block is evicted from the disk cache and when a file system

snapshot is taken, since both of these operations force a block to disk.

We use a triple indirect block scheme (see figure 3.3) to expand the maximum ad

dressable file size. There are 122 blocks accessible immediately from addresses stored in

the inode. The first indirect block contains the addresses of an additional 128 blocks.

The double indirect block contains the addresses of 128 indirect blocks, giving access to

1282 = 16384 disk blocks. Finally, the triple indirect blocks contains the addresses of 128

double indirect blocks, which in turn contain the addresses of 16384 indirect blocks. Thus,

the triple indirect block gives access to an additional 128 • 16384 = 2,097,152 data blocks.

Thus, the total number of addressable blocks is 2,113,786. Assuming the default block size

of IK, this gives us a maximum file size of 2,164,516,864 bytes, or approximately 2.02 GB.

Table 5.1 shows the block and byte ranges encompassed by each level of indirection.

accessib le v ia # o f blocks block ran g e b y te ran g e
inode 1 2 2 0 - 1 2 1 0 - 124927

indirect block 128 122 - 249 124,928 - 255,999
double

indirect block
16384 250

- 16633
256,000

- 17,033,215
triple

indirect block
2,097,152 16634

- 2,113,785
17,033,216

- 2,164,516,863

Table 5.1: Block and Byte Ranges Accessible Via Inode and Indirect Blocks With A Default Block
Size of IK.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

81

5 .3 .5 T h e Im ap

The imap is a table of 64 (f la g , b lock number) pairs. Entry im ap[i] . f l a g indicates

whether inode i exists. If so, entry im ap[i] .b lock gives the physical disk block containing

the associated inode. The schematic of a disk block containing an imap is shown in figure 5.5.

1024 bytes

F igure 5.5:

5 .3 .6 T h e C h eck p o in t R eg io n

The checkpoint region contains four pieces of information: a pointer to the disk block

containing the imap, a pointer to the disk block containing the vector time of the checkpoint,

a pointer to the previous checkpoint region’s location on disk, and a list of pointers to the

tree structure indicating the location of the freelist. See figure 5.6.

5 .3 .7 T h e S u p erb lo ck

The superblock contains two pieces of information: the time of the file system was mount (),

and the location of the first checkpoint in the checkpoint region list. See figure 5.7.

64 bits

inode 0 valid flag inode 0

inode 1 valid flag inode 1

inode 63 valid flag inode 63

The On-Disk Representation of the Imap

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

82

32 bits

1024 bytes

1 1 101 . ..

checkpoint
region
disk block

bitmap block 1023

bitmap block 896

imap
disk block

bitmap block 127

bitmap block 0

vector time
disk block

previous checkpoint region
imap

vector time

bitmap node 7

bitmap node 0

bitmap node 1

unused

Figure 5.6: The On-Disk Representation of the Checkpoint Region and its Associated Structures

5.4 The Syscall Sequence

When a thread makes a syscall, the first step is always to lock the file system. All the

structures of the file system are protected by this single lock. The main deficiency of using

such course grained locking is tha t it limits the amount of parallelism among the threads.

Nevertheless, it provides several advantages for a prototype system: It reduces the number

of locks which must be managed, and eliminates the possibility of deadlock within the file

system code which could occur if multiple locks are taken out of order.

Once a thread obtains the file system lock, it performs several housekeeping chores. It

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

83

1024 bytes

32 bits •

mount time
head of checkpoint list
unused

first
checkpoint
region

Figure 5.7: The On-Disk Representation of the Superblock.

first looks up the calling thread in the system area to obtain access to the thread’s global

data. It then checks a series of thread-specific flags. The most im portant of these flags is the

system_pausing flag, which indicates tha t some thread in the system has failed, and that

this thread needs to take the appropriate measures to restart from an earlier checkpoint.

We discuss these measures in detail in section 5.7.1.

The thread next checks the type of syscall requested and updates either its own vector

time or the vector time of the file system according to the rules given in table 4.1. After the

appropriate vector time update has been performed, the actual syscall is performed. The

thread then releases the file system lock and returns.

5.5 File System Rollback

Once the system detects tha t a process has failed, it must halt all the other threads in

the system in some known state. Because of the difficulty in using signals to achieve this

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

84

goal, we opted to use an asynchronous notification system. This asynchronous notification

is accomplished by setting a flag in each thread’s local memory. This flag is inspected

whenever a thread makes a syscall.

One of the tasks a thread performs when it enters the file system is to inspect its

system_pausing flag. If this flag is set, the thread sends a message to the system indicating

tha t it has paused. It then releases the file system lock and waits for the next phase of the

system restart. We discuss this process in detail in section 5.7.2.

Threads can only pause during a syscall, and the system must wait for all threads to

pause before continuing with the system restart. Thus, a compute-bound thread could

conceivably stall the system restart for a long time if it performs no file system operations.

To prevent this from happening, application programmers can insert the noopO syscall in

compute bound areas of their code.

Once all processes in the system have paused, the system restart can occur. The first

step in the restart is to rollback the file system to the vector time contained in the last

checkpoint taken by the failed process.

To perform the file system rollback, the system locates the last complete checkpoint

taken by the failed thread. It extracts the timestamp of this checkpoint and then searches

the list of file system checkpoint regions on disk until it finds one with a matching timestamp.

(Recall tha t each process checkpoint is accompanied by a file system sync, and that the

timestamp of this sync is recorded in the process checkpoint.)

Once the appropriate checkpoint region is found, we discard the current state of the file

system. The correct checkpoint region is read from disk, and then the associated imap and

the block bitmap are read. At this point, the file system state is exactly as it was when the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

85

file system snapshot was taken.

5.6 The Process Control Layer

In this section we discuss the process control layer. This layer of the prototype handles

communication between threads, and the thread checkpointing process, and it coordinates

thread restart, rollback and rollforward.

5 .6 .1 T h rea d C h e ck p o in tin g

Thread checkpointing is a relatively straightforward operation, but some complications arise

due to the particular thread library we are using, and the fact tha t we are checkpointing

from the context of the thread itself rather than from the operating system kernel.

A thread checkpoint must save three types of information: The contents of the thread-

local variables, the instruction pointer, stack pointer and other CPU registers, and the

location of the associated file system snapshot.

Because a userspace thread does not have a simple means of accessing its call stack,

we restrict threads to checkpointing only in the main thread routine. This places some

restrictions on the application programmer, who must divide the task into logical chunks,

making certain tha t she will not want her application to take a checkpoint within some

subroutine. But it simplifies the checkpointing process because we know a priori which

static and dynamically allocated variables need to be copied at each checkpoint and can

ignore the variables which reside on the call stack. We believe this restriction simplified the

implementation of our prototype enough to make it justifiable.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The typical way of saving and restoring the instruction pointer in a userspace C program

is through the use of the s e t jmp and longjmp C standard library calls. These functions will

not work on threaded programs however, since the jmp_buf structure manipulated by these

calls does not contain enough context to completely restore a Linux thread. In particular,

pointers to the thread-global variables and thread manager processes are not stored.

The pthreads library, however, contains equivalent library calls designed especially for

threads. These are the g e tc o n te x t and s e tc o n te x t calls. A call to g e tc o n te x t copies vital

thread information into a ucon tex t_ t structure allocated by the program. The contents of

the ucon tex t_ t structure are shown in table 5.2.

S tru c tu re C o m p o n e n t C o n te n ts
unsigned long uc_flags The x8 6 EFLAGS register
u co n tex t_ t *uc_link A pointer to another ucon tex t_ t

object; not used.
s ta c k j t uc-S tack Stack pointers SP and BP.
m context_t uc_mcontext General purpose and floating point

registers.
__sigset_ t uc_sigmask An array of longs containing current

signal masks. Not used.
__fpregs_mem Floating point state registers. Not used.

Table 5.2: The Ucontext_t Structure for the X8 6 Architecture.

We want application processes to be able to take a checkpoint with a single function

call. However, an actual checkpoin t () function call implies tha t the checkpoint operation

would be called in a subroutine context, which we wish to avoid for previously stated reasons.

To get a function-like syntax without actually performing a function call, the checkpoint

operation is done inline via a macro implemented with a C #def ine . The checkpoint macro

is shown in appendix B.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

87

The checkpoint operation itself works as follows:

1. The thread checks tha t it is not in failure recovery mode. If it is, the checkpoint is

skipped and the macro terminates.

2. The thread takes the file system lock. This prevents other threads from modifying

the file system while the checkpoint is in progress.

3. A file system snapshot is taken via the sync() call.

4. The thread checkpoint is set up. The thread copies its variables and a list of open files

to the checkpoint area. The checkpoint itself is hooked up to the thread’s checkpoint

list in the thread global area.

5. The thread calls g e tc o n te x t () to save CPU registers in the thread checkpoint.

6 . The file system is unlocked, the newly created checkpoint is marked as valid, and the

checkpoint macro terminates.

5.7 System Recovery After a Failure

When a thread failure occurs, the system goes into recovery mode. In recovery mode, the

system executes the recovery protocol to bring the system into a state which is consistent

with the system state which existed when the failed thread took its last checkpoint. The

recovery protocol consists of 7 steps.

1. Bring the non-failed threads in the system to some known, quiescent state.

2. Select an appropriate checkpoint from which to restart the failed thread.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. Rollback the file system to the state which existed when the checkpoint selected in

step 2 was created.

4. Set the appropriate system flags to indicate to threads tha t recovery is under way.

5. Recreate the failed thread and give it access to the information it needs to recreate

the state which existed when the checkpoint from step 2 was created.

6 . Rollback the non-failed threads and give them access to the information they need to

recreate some state which causally precedes the recovered state of the failed thread.

7. Rollforward the non-failed threads, processing file system operations from the log

rather than the disk. The rollforward phase of a particular thread stops when either

the log is exhausted, or the log-operation’s timestamp indicates tha t an orphan file

system operation is about to be replayed.

Pseudocode for performing the above steps is shown below

/ / A f a i l e d t h r e a d h a s b e e n d e t e c t e d . We p a s s t o t h e s y s t e m

/ / r e c o v e r y c o d e t h e t h r e a d a n d p r o c e s s i d s o f t h e f a i l e d t h r e a d s

/ / v i a t h e p i d _ t h r e a d a r g u m e n t , a l o n g w i t h a p o i n t e r t o t h e

/ / f u n c t i o n t h a t t h e f a i l e d t h r e a d was e x e c u t i n g v i a t h e k f

/ / a r g u m e n t .

/ /

/ / The f u n c t i o n r e t u r n s t h e t h r e a d i d o f t h e new i n s t a n t i a t i o n

/ / o f t h e f a i l e d t h r e a d .

p t h r e a d _ t v l f s : : s y s t e m _ r e s t a r t (p i d _ t h r e a d _ t p i d _ t h r e a d ,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

vo id * (* k f) (v o id *))

{

i n t p p o s ;

t h r e a d _ c h e c k p o i n t * l a s t _ c h e c k p o i n t ;

p t h r e a d _ t r e s t a r t e d _ t h r e a d _ t ;

/ / G e t a c c e s s t o t h e t h r e a d g r o u p g l o b a l d a t a f o r t h e f a i l e d

/ / t h r e a d .

p p o s = l o o k u p _ p r o c e s s (p i d _ t h r e a d . p i d))

/ / A c c e s s t h e l a s t v a l i d c h e c k p o i n t c r e a t e d by t h e f a i l e d

/ / t h r e a d .

s t r u c t p r o c e s s _ c h e c k p o i n t * l a s t _ c h e c k p o i n t =

p s u p p o r t [p p o s] - > e x t r a c t _ c k p _ l i s t _ h e a d ()

/ / S e t a f l a g t e l l i n g o t h e r t h r e a d s t o p a u s e a t t h e n e x t s y s c a l l .

s y s t e m _ p a u s i n g = 1;

/ / W a i t f o r t h e n o n - f a i l e d t h r e a d s t o p a u s e . E a c h t h r e a d s e n d s

/ / t h e s p e c i a l v a l u e RECOVERY_PAUSE a f t e r i t h a s n o t i c e d t h a t

/ / a r e s t a r t i s i n p r o g r e s s ,

f o r (i = 0 ; i < n _ t h r e a d s ; i+ +) {

/ / S k i p t h e f a i l e d t h r e a d .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

90

i f (i == p p o s)

c o n t i n u e ;

r e c v (g e t _ r e c o v e r y _ s o c k (i) , f t a n s w e r) ;

>

/ / A t t h i s p o i n t , t h e s y s t e m i s q u e s c i e n t .

/ / R o l l b a c k t h e f i l e s y s t e m

r o l l b a c k (l a s t _ c h e c k p o i n t - > v t i m e) ;

/ / C r e a t e t h e i n f o r m a t i o n n e c e s s a r y f o r t h e f a i l e d t h r e a d t o

/ / r e s t a r t . The r e s u r r e c t e d t h r e a d n e e d s t o know t h a t i t

/ / i s i n d e e d r e s u r r e c t e d , w h a t i t s i d e a o f t h e v e c t o r t i m e

/ / s h o u l d b e , a n d t h e c o n t e x t f ro m w h ic h i t s h o u l d e x e c u t e .

s t a r t u p _ i n f o * s i = new s t a r t u p _ i n f o ;

b u i l d _ s t a r t u p . i n f o (s i , RESTART, p p o s , l a s t _ c h e c k p o i n t - > v t i m e ,

l a s t _ c h e c k p o i n t - > o p e n _ f i l e . l i s t ,

l a s t _ c h e c k p o i n t - > v a r s ,

l a s t _ c h e c k p o i n t - > c o n t e x t) ;

/ / C r e a t e new t h r e a d t o r e p l a c e f a i l e d o n e .

p t h r e a d . c r e a t e (& r e s t a r t e d _ t h r e a d _ t , NULL, k f ,

(v o i d *) s i)) ;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

91

/ / I n i t i a t e ro llb a c k of o th e r th re a d s ,

fo r (i = 0 ; i < n _ th re a d s , i++) {

/ / Skip f a i l e d th re a d ,

i f (i == ppos)

c o n tin u e ;

send (g e t_ re c o v e ry _ so c k (i) , RECOVERY.CONTINUE);

>

/ / F a ile d th re a d i s r e s ta r t e d and n o n -fa ile d th re a d s a re

/ / r o l l in g back. R eturn id of r e s ta r t e d th re a d ,

re tu rn re s ta r te d _ p ro c e s s _ th re a d _ t;

>

5 .7 .1 T h rea d R e s ta r t

When a thread fails, we need to create another thread and restore the thread context

from the appropriate checkpoint. Before beginning execution, each thread tests its local

“restart_flag” variable which indicates whether the thread is restarting. This flag is only

set for a failed thread which has been recreated via p th re a d _ c re a te () .

If this variable is set, the function p ro c e s s _ re s ta r t() is called. This function sets up

a new checkpoint list for the thread, restores the thread’s vector time from the checkpoint,

reopens the set of open files saved in the checkpoint, and restores the thread’s variables

to the values saved in the checkpoint. The thread then calls s e tc o n te x tO to restore the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

92

context saved in the checkpoint. The s e t c o n t e x t O call restores the threads stack and

CPU registers to the state saved when the corresponding checkpoint was taken. When

the thread returns from the s e t c o n t e x t O call, it begins executing in the place where the

matching g e t c o n t e x t () call was made at the end of the CHECKPOINTO macro. The thread

then continues execution exactly where it had after the CHECKPOINT macro was called.

Pseudocode for the thread restart operation is shown below.

/ / A f t e r a p r o c e s s f a i l s , we c r e a t e a n o t h e r t h r e a d

/ / e x e c u t i n g t h e same f u n c t i o n u s i n g t h e p t h r e a d _ c r e a t e ()

/ / l i b r a r y c a l l . I f t h e t h r e a d r e c e i v e d a RESTART f l a g a s a

/ / p a r a m e t e r when i t was c r e a t e d , t h i s s e g m e n t o f c o d e i s

/ / e x e c u t e d .

/ /

/ / At t h i s p o i n t , t h e c h e c k p o i n t f o r r e s t a r t i n g t h i s t h r e a d

/ / h a s a l r e a d y b e e n l o c a t e d , a n d t h e i n f o r m a t i o n n e c e s s a r y f o r

/ / r e s t a r t i n g t h i s t h r e a d f ro m t h e c h e c k p o i n t h a s b e e n e x t r a c t e d

/ / a n d p l a c e d i n t h e ‘ ‘ t h r ’ ’ s t r u c t u r e .

/ /

/ / N o te t h a t we a r e e x e c u t i n g i n t h e c o n t e x t o f t h e r e s t a r t e d

/ / t h r e a d a t t h i s p o i n t .

i n t p r o c e s s _ s u p p o r t : : p r o c e s s _ r e s t a r t ()

{

u n c o n t e x t _ t * r e s t o r e d _ c o n t e x t = new u n c o n t e x t _ t ;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

93

/ / A r e s t a r t e d t h r e a d r e s u m e s n o r m a l f i l e s y s t e m o p e r a t i o n s

/ / i m m e d i a t l y . T h i s f l a g t e l l s t h e t h r e a d t o l o g i t s

/ / f i l e s y s t e m o p e r a t i o n s r a t h e r t h a n r e p l a y th e m f ro m t h e l o g .

mode = LOGGING;

/ / R e s t o r e t h e t h r e a d ’ s l o c a l v a r i a b l e s . ‘ f g e t _ l a d d r () ’ ’

/ / r e t u r n s t h e s t a r t i n g a d d r e s s o f t h i s t h r e a d s l o c a l s .

r e s t o r e _ l o c a l s (g e t _ l a d d r () , t h r - > c k p - > v a r s , v s i z e) ;

/ / R eo p en f i l e s t h e t h r e a d h a d o p e n a t t h e t i m e t h i s

/ / c h e c k p o i n t was t a k e n . The o p e n f i l e l i s t i s j u s t

/ / a b i t m a p .

r e o p e n _ f i l e s (t h r - > c k p - > o p e n _ f i l e _ l i s t) ;

/ / E x t r a c t t h e t h r e a d ’ s c o n t e x t . We m u s t do t h i s b e f o r e

/ / r e s t o r i n g t h e CPU r e g i s t e r s .

* r e s t o r e d _ c o n t e x t = t h r - > c k p - > c h e c k p o i n t _ a d d r e s s ;

/ / E x t r a c t t h e CPU r e g i s t e r s . T h i s c a l l r e s t o r e s a l l o f t h e

/ / r e g i s t e r s , EXCEPT t h e IP a n d SP , w h ic h a r e r e s t o r e d d u r i n g

/ / t h e s e t c o n t e x t c a l l b e lo w .

r e s t o r e _ r e g s (t h r - > c k p - > g r e g s) ;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

94

/ / R e s t o r e t h i s t h r e a d ’ s c o n t e x t . I t w i l l em e rg e f ro m t h i s

/ / l i b r a r y c a l l i n t h e m i d d l e o f t h e CHECKPOINT m a c ro i n v o c a t i o n

/ / w h ic h c r e a t e d t h e c h e c k p o i n t ,

s e t c o n t e x t (r e s t o r e d _ c o n t e x t) ;

/ / I f we r e a c h t h i s p o i n t , s e t c o n t e x t h a s g o n e h a y w i r e .

c o u t « ‘ ‘ S e t c o n t e x t r e t u r n e d d u r i n g p r o c e s s _ r e s t a r t ! ’ ’ « e n d l ;

r e t u r n - 1 ;

>

5 .7 .2 T h rea d R o llb a ck an d R ollforw ard

Non-failed threads are restarted in a similar manner. Instead of creating a new thread

however, the system sets a flag in the each non-failed thread’s local memory. This flag is

checked whenever a flag makes a syscall. If the flag is set, the p r o c e s s _ r o l l b a c k () function

is called by the thread. This function causes the thread to suspend normal computation. It

then finds an appropriate checkpoint from which to restart, and restores its local variables,

vector time, open files and CPU registers from the context saved in the checkpoint. The

thread reemerges from the end of the CHECKPOINT() call which created the checkpoint, and

precedes with the rollforward phase of the recovery.

Pseudocode for this operation is shown below.

/ / R o l l b a c k t h e p r o c e s s t o t h e l a s t c h e c k p o i n t b e f o r e

/ / r o l l b a c k _ s t a r t .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

95

/ /

/ / W e w a n t t o s e l e c t t h e l a t e s t c h e c k p o i n t w h ic h i s b e f o r e

/ / t h e r o l l b a c k _ s t a r t t i m e . To do t h i s , we s c a n t h e c h e c k p o i n t

/ / l i s t .

/ /

/ / I f t h e c u r r e n t c h e c k p o i n t d o e s n ’ t h a v e a s u c c e s s o r , we u s e

/ / t h e c u r r e n t c h e c k p o i n t .

/ /

/ / I f t h e c u r r e n t c h e c k p o i n t i s c o n c u r r e n t w i t h t h e

/ / r o l l b a c k _ s t a r t t i m e , u s e t h e c u r r e n t c h e c k p o i n t .

/ /

/ / I f t h e c u r r e n t c h e c k p o i n t ’ s s u c c e s s o r i s b e f o r e o r

/ / c o n c u r r e n t w i t h t h e r o l l b a c k _ s t a r t , make t h e s u c c e s s o r t h e

/ / c u r r e n t c h e c k p o i n t u n d e r i n s p e c t i o n a n d s t a r t t h e l o o p a g a i n .

/ /

/ / R f _ s t a r t i s a g l o b a l v e c t o r _ t i m e o b j e c t i n d i c a t i n g t h e

/ / t i m e o f t h e r o l l e d b a c k f i l e s y s t e m ,

i n t p r o c e s s _ s u p p o r t : : p r o c e s s _ r o l l b a c k ()

{

s t r u c t p r o c e s s _ c h e c k p o i n t * c a n d i d a t e _ c k p =

(s t r u c t p r o c e s s _ c h e c k p o i n t *) NULL;

s t r u c t p r o c e s s _ c h e c k p o i n t * c p p t r ;

i n t f o u n d = 0 ;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

96

/ / F i n d t h e l a t e s t c h e c k p o i n t w h ic h was t a k e n p r i o r t o t h e

/ / r o l l b a c k t i m e .

c a n d i d a t e _ c k p = g e t _ n e x t _ c h e c k p o i n t () ;

w h i l e (! f o u n d)) {

/ / No c h e c k p o i n t ! E r r o r .

i f (! c a n d i d a t e _ c k p) {

c o u t << " E r r o r : No c h e c k p o i n t t o r o l l b a c k ‘ ‘

« ‘ ‘to i n p r o c e s s _ r o l l b a c k ! " « e n d l ;

r e t u r n - 1 ;

}

/ / I s c a n d i d a t e _ c k p t h e l a s t c h e c k p o i n t t a k e n ?

/ / I f s o , r e s t a r t f ro m c a n d i d a t e _ c k p .

c p p t r = g e t _ n e x t _ c h e c k p o i n t () ;

i f (! c p p t r) {

f o u n d = 1;

c o n t i n u e ;

>

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

97

/ / I s c a n d i d a t e _ c k p c o n c u r r e n t w i t h t h e r f _ s t a r t ?

i f (c a n d i d a t e _ c k p - > v t i m e - > c o n c u r r e n t (r f _ s t a r t)) {

f o u n d = 1;

c o n t i n u e ;

>

/ / We’v e c h e c k e d a l l t h e c o r n e r c a s e s . Now, c h e c k t o s e e i f

/ / c a n d i d a t e _ c k p i s t h e l a t e s t c h e c k p o i n t b e f o r e r f _ s t a r t .

i f (c a n d i d a t e _ c k p - > v t i m e - > b e f o r e (r f _ s t a r t)) {

f o u n d = 1;

c o n t i n u e ;

>

/ / C a n d i d a t e _ c k p i s n o t t h e c o r r e c t o ne f o r r e s t a r t i n g

/ / t h i s t h r e a d . C heck t h e n e x t o n e .

d e l e t e _ c h e c k p o i n t (c a n d i d a t e . c k p) ;

c a n d i d a t e . c k p = c p p t r ;

}

/ / S e t u p a ‘ ‘ t h r ’ ’ s t r u c t u r e f o r t h i s t h r e a d t o r o l l b a c k t o .

e x t r a c t _ t h r e a d _ c o n t e x t (& t h r - > c k p , c a n d i d a t e . c k p ;

/ / A l l o c a t e a c o n t e x t t o r o l l b a c k t o .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

98

u c o n t e x t _ t * r e s t o r e d _ c o n t e x t = new u c o n t e x t _ t ;

/ / C l e a r o u t t h e l o g up t o b u t n o t i n c l u d i n g t h e f i r s t

/ / o p e r a t i o n p e r f o r m e d a f t e r t h e c h e c k p o i n t .

l o g - > c l e a r _ u n t i l (c a n d i d a t e _ c k p - > g e t _ v t i m e ()) ;

/ / T h i s t h r e a d m u s t r e p l a y FS o p e r a t i o n s f ro m i t s l o g .

mode = REPLAY;

/ / R e s t o r e l o c a l v a r i a b l e s .

r e s t o r e _ l o c a l s (g e t _ l a d d e r () , t h r - > c k p - > v a r s , v s i z e) ;

/ / R eopen f i l e s

r e o p e n _ f i l e s (t h r - > c k p - > o p e n _ f i l e _ l i s t) ;

/ / E x t r a c t t h e t h r e a d ' s c o n t e x t .

* r e s t o r e d _ c o n t e x t = t h r - > c k p - >

/ / R e s t o r e g e n e r a l p u r p o s e r e g i s t e r s

r e s t o r e _ r e g s (t h r - > c k p - > g r e g s) ;

/ / R o l l b a c k . The t h r e a d w i l l em erge i n f ro m t h i s l i b r a r y c a l l

/ / i n t h e m i d d l e o f t h e CHECKPOINT m acro i n v o c a t i o n w h ic h

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

99

/ / c re a te d th e ch ec k p o in t.

s e tc o n te x t (head -> ch eck p o in t_ ad d ress);

/ / Not reached u n le ss s e tc o n te x t b a rfed .

cout « ‘ ‘S e tc o n tex t re tu rn e d du ring p ro c e s s _ ro llb a c k !’ ’

« end l;

re tu rn -1 ;

>

Once a rolled back thread emerges from the CHECKPOINT macro, it rolls forward by

replaying file system operations from its log. Each time a thread tha t is rolling forward

makes a syscall, its vector time is compared against the vector time to which the file system

was rolled back. If the thread’s current time is before the time of the rolled back file

system, the actual file system operation is skipped. Instead, the data generated by the

call is extracted from the thread’s log. The vector time of the thread continues to update

according to the rules given in table 4.1.

Once a thread makes a syscall which indicates tha t its notion of time is either concurrent

with or after the file system, or its log is depleted, the thread resumes normal operation.

Below we show pseudocode for the open() system call where a particular thread deter

mines if it should actually perform the system call, or read the call from its log. Similar

code to extract the next operation from the log is found at the beginning of every syscall.

/ / C urrent_ps i s a p o in te r to th re a d g lo b a l d a ta fo r th e execu ting

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

100

/ / t h r e a d .

i n t v l f s : : o p e n (l o n g ino d e_ n u m)

{

/ / A re we r e p l a y i n g t h e l o g ?

i f (c u r r e n t _ p s - > m o d e == REPLAY) {

/ / C heck t h e t i m e s t a m p on t h e n e x t l o g o p e r a t i o n . I f t h i s

/ / i s a n o r p h a n FS o p e r a t i o n , r e p l a y i s o v e r . S w i t c h t o

/ / n o r m a l o p e r a t i o n .

lo g _ o p = c u r r e n t _ p s - > r e t r i e v e _ n e x t _ o p (& s y s c a l l _ r e t u r n ,

& in o d e _ n u m) ;

/ / Have we e x h a u s t e d t h e l o g o r r o l l e d f o r w a r d f a r e n o u g h ?

/ /

I I C heck _ m o d e_ ch an g e c o m p a re s t h e v e c t o r t i m e o f t h i s l o g g e d

I I o p e r a t i o n t o t h e v e c t o r t i m e t o w a r d s w h ic h we a r o l l i n g

/ / f o r w a r d .

i f (! l o g _ o p II c u r r e n t _ p s - > c h e c k _ m o d e _ c h a n g e (l o g _ o p)) {

c u r r e n t _ p s - > m o d e = LOGGING;

b r e a k ;

>

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

101

/ / T h i s m e s s a g e i s n o t a n o r p h a n . R e t u r n t h e l o g g e d r e s u l t ,

e l s e {

/ / D e l e t e t h e e n t r y f ro m t h e l o g

d e l e t e _ l o g _ t a i l () ;

r e t u r n s y s c a l l _ r e t u r n ;

>

>

/ / N ot r e p l a y i n g f ro m l o g . C o n t i n u e n o r m a l l y .

>

5.8 Application Rules for Using the System

Applications which use our prototype are not prohibited from any type of operation found

in a normal C + + program. However, they must add some additional machinery to take

checkpoints and ensure tha t they are able to restart or rollback correctly. In this section,

we describe those additional requirements.

5 .8 .1 R e s ta r t C heck

Before beginning execution, each thread checks its r e s t a r t flag. This flag indicates whether

the thread is simply beginning its execution, or is restarting. See section 5.7.1. The flag is

tested by a call to REST0RE_REGS, a macro. This macro in turn calls p r o c e s s _ r e s t a r t () if

appropriate. If the flag is not set, threads continue with the normal startup.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

102

5 .8 .2 T h rea d R e g is tr a tio n

The second step in thread startup is for threads to inform the system tha t they have joined

the computation. They do this by calling the p ro c e s s _ re g is te r function. This function

registers the thread with the system, sets up a global checkpoint list for the thread, and

informs other threads tha t a new process has joined the group so they can allocate space

for the thread in their vector timestamps.

5 .8 .3 C h e ck p o in tin g

Threads checkpoint by calling the CHECKPOINT() macro. The checkpoint macro is listed in

appendix B.

5 .8 .4 T h rea d D e r e g is tr a t io n

When a thread finishes its execution, we do not allow it to terminate. The reason for this

is that some other thread in the group may still fail, and the finished thread will have to

be rolled back.

When threads finish execution they call the p ro c e s s .d e re g is te r () function. This

function counts the number of threads which have called it, and pauses a thread if there are

still others executing. Once each thread in the system has deregistered itself, the threads

are released and terminate.

5 .8 .5 A n A p p lic a t io n P ro g ra m S k ele to n

To show how a typical program uses our system, we present the following skeletal outline,

with calls to the support code inserted into the correct places in the application.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

103

void *some_thread (void *args)

{

/ / C heck t h e g l o b a l r e s t a r t f l a g . R e s t o r e r e g i s t e r s a n d

/ / c o n t e x t , i f t h i s t h r e a d i s r e s t a r t i n g .

REST0RE_REGS;

/ / R e g i s t e r t h e t h r e a d w i t h t h e s y s t e m .

s y s t e m - > p r o c e s s _ r e g i s t e r (v o i d * g l o b a l _ v a r i a b l e s , . . .) ;

/ / N orm al c o m p u t a t i o n b e g i n s h e r e

/ / T ake a c h e c k p o i n t

CHECKPOINT(system);

CHECKPOINT(system);

I I T h r e a d h a s c o m p l e t e d

s y s t e m - > p r o c e s s _ d e r e g i s t e r ()

}

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

104

5.9 PO SIX Thread Synchronization

When threads are cooperating to achieve some computational goal, they need some way

of communicating and coordinating their actions. Communication is most commonly done

by message passing. Coordination can also be done via message passing, but because

threads share memory, POSIX thread libraries provide simpler and more efficient ways of

coordinating.

The two simplest thread coordination primitives are mutexes and condition variables [9].

In this section, we discuss the use of these two primitives, and how they are dealt with during

thread rollback.

5 .9 .1 M u te x e s

The most basic synchronization problem between computational processes which share

memory is ensuring tha t all access to shared memory is mutually exclusive. That is, we

must be able to guarantee tha t no thread attem pts to write to a memory location while

another thread is reading or writing tha t memory location.

POSIX provides objects of type mutex that can be used to guarantee exclusive access to

one or more memory locations. Protected memory locations may be a small as a single bit, or

may consist of more complex data structures such as trees or graphs. In our implementation,

we treat the in-memory data structures which describe the file system as a single object.

The amount of data protected by a single mutex is referred to as the “granularity” of the

mutex.

To enable a program to use mutexes, programmers include the p th re a d .h header in

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

105

their programs and then link against the pthread library. Linking against this library

gives programmers access to the data type pthread_mutex_t and the library calls which

implement the basic operations used to manipulate mutexes. These 5 basic operations are

creation, initialization, deletion, locking, and unlocking. These operations are performed

by the following declarations and library calls:

C re a tio n A mutex is created by declaring an object of type pthread_mutex_t.

Initialization Once a mutex has been created, it is initialized with a call to the library

function pthread_m utex_init.

in t p thread_m utex_in it (pthread_inutex_t *mutex,

p th read_m utexattr_ t * a t t r) ;

The p th read_m utexattr_ t argument defines the characteristics of the mutex. In the

version of the Linux kernel and pthread libraries we use in our prototype, the only

attributes available are the NULL attributes.

D e le tio n Mutexes are deleted by calling the destroy function pthread_m utex_destroy.

in t pthread_m utex_destroy (pthread_mutex_t *m utex);

Locking In order to gain exclusive access to the memory protected by a mutex, the pro

grammer must first lock the mutex associated with the shared memory. Locking is

done with the pthread_mutex_lock call,

in t pthread_m utex_lock (pthread_mutex_lock *m utex);

If a thread attem pts to lock a mutex tha t is already locked by another thread, the

thread sleeps on the mutex, waiting for it to be unlocked.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

106

U nlock ing Once a programmer has finished accessing the shared data protected by the

mutex, the mutex should be unlocked to allow other threads to access the data.

Unlocking is accomplished with the pthread_mutex_unlock call,

in t pthread_mutex_unlock (pthread_mutex_t *mutex) ;

If any threads are waiting to lock the mutex, exactly one is awoken and succeeds in

locking the mutex.

5 .9 .2 C o n d itio n V ariab les

In some circumstances, coordinating threads may be interested in more than just exclusive

access to shared data. They may also be interested in exchanging information about the

d a ta’s state. For example, threads sharing a stack may be interested in knowing whether

or not the stack is empty. If the stack is empty, a particular thread may have no work to

do and will want to sleep until the stack is pushed.

A thread could access the stack by locking the mutex associated with a stack and

checking the stack size. If the stack has data on it, it would pop the stack, release the

mutex, and process the data. If, however, the stack is empty, the thread would release the

mutex and return without modifying the stack.

Unfortunately, this type of behavior leads to a condition called busy-waiting. The thread

must repeatedly check the stack, even if it is empty, to determine whether there is work

to be done. This behavior wastes processor cycles, since the thread must enter the stack

critical section and check the stack size, even if there is no work to do.

The solution to this busy-waiting problem is to use condition variables. Condition

variables allow a thread to block until some predicate is satisfied. In our stack example, the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

107

predicate of interest is the stack is not empty.

Associated with each condition variable are three subordinate objects: a mutex, a special

variable of type pthread_cond_t and a predicate. In POSIX parlance, the predicate is called

a condition, thus giving rise to the name “condition variable” . When a thread executes a

condition variable test, it locks the mutex to gain exclusive access to the condition variable

and associated data. It then tests the condition. If the condition is true, the thread modifies

the protected structure as needed, unlocks the mutex, and then leaves the condition. When

these operations occur, a condition variable has semantics very much like a mutex.

The difference occurs when the tested predicate is false. If a thread finds that the

condition is not satisfied, it releases the mutex and goes to sleep on the predicate condition.

To avoid race conditions, POSIX condition variables release the mutex and sleep in a single

atomic operation.

Eventually, (in correctly written code), the condition protected by the condition variable

becomes true. When this happens, the thread which caused the condition to become true

uses a special library call to wake all the threads waiting on the condition.

There are six basic operations tha t can be performed on a condition variable: creation,

initialization, entering the condition, exiting the condition, sleeping, and signaling a wakeup.

These operations are performed by the following declarations and library calls.

C re a tio n A condition variable is created by declaring an object of type pthread_cond_t.

Since a condition variable always has an associated mutex, the mutex is typically

created at the same time as the condition variable1.

1 Since condition variables always have a mutex associated with them, it is curious that the POSIX thread
committee did not provide a way to declare both of these structures in a single statement. We suspect the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

108

In itia liz a tio n A condition variable is initialized by a call to p thread_cond_in it.

in t p th read_cond_in it (pthread_cond_t *cond,

p th read _ co n d a ttr_ t * co n d a ttr)

The p th read _ co n d a ttr_ t argument defines the attributes of the condition variable.

Again, as in mutexes, the only attributes available in our development environment

was the NULL attribute. Typically, the associated mutex is initialized at this point as

well.

E n te r in g th e C o n d itio n A condition is entered by locking the mutex associated with the

condition.

E x itin g th e C o n d itio n Similarly, exiting the condition requires the program to unlock

the mutex.

S leeping If a thread needs to sleep because the predicate associated with the condition is

not true, it calls pthread_cond_wait.

in t pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex) ;

A call to this function puts the calling thread to sleep and, atomically, unlocks the

mutex tha t was locked when the condition was entered.

S ignaling a C o n d itio n When a condition variable’s predicate becomes true, those threads

sleeping on the condition are awoken by a call to either p thread_cond_signal or

pthread_cond_broadcast.

in t p thread_cond_signal (pthread_cond_t *cond);

reason for this omission was their desire to keep the standard as simple as possible by providing only one
method to declare a mutex.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

109

i n t p t h r e a d _ c o n d _ b r o a d c a s t (p th r e a d _ c o n d _ t * c o n d) ;

P t h r e a d _ c o n d _ s i g n a l wakes a single thread tha t is sleeping on the condition, while

p t h r e a d _ c o n d _ b r o a d c a s t wakes all threads sleeping on the condition. The thread

which caused the condition variable’s predicate to become true is responsible for call

ing the appropriate signaling function.

As an example of the use of a condition variable, let us extend our stack example from

above. We will protect our stack with a mutex variable called s t a c k _ l o c k . The predicate

we are interested in is: “The stack is not empty.” We associate the condition variable

s t a c k _ i t e m _ a v a i l with this predicate.

The first step in using our condition variable is to declare and initialize the appropriate

condition variable and mutex.

/ / D e c l a r e , a l l o c a t e a n d i n i t i a l i z e c o n d i t i o n v a r i a b l e , m u te x ,

/ / a n d s t a c k

p t h r e a d _ c o n d _ t * s t a c k _ i t e m _ a v a i l = new p t h r e a d _ c o n d _ t ;

p t h r e a d _ m u t e x _ t * s t a c k _ l o c k = new p t h r e a d _ m u t e x _ t ;

p t h r e a d _ c o n d _ i n i t (s t a c k _ i t e m _ a v a i l , NULL);

p t h r e a d _ m u t e x _ i n i t (s t a c k _ l o c k , NULL);

s t a c k _ t s = new s t a c k _ t ;

Some threads will wish to periodically check to see if the stack has any items on it. If so,

they remove the item and process it. If not, they sleep until an item is available. Such a

thread would execute the following segment of code.

/ / L ock t h e c r i t i c a l s e c t i o n

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

110

pthread_m utex_lock (s ta c k _ lo c k) ;

/ / T est th e p re d ic a te . I f f a l s e , re le a s e th e lock and s le e p

/ / on th e c o n d itio n ,

w hile (s . isem p ty O)

pthread_cond_w ait (s ta c k _ ite m _ a v a il, s ta c k _ lo c k) ;

/ / OK, we’re awake and we ho ld th e lock ag a in . Do some work,

item = s .p o p () ;

/ / R elease th e lock and e x i t th e c r i t i c a l s e c tio n .

pthread_m utex_unlock (s ta c k _ lo c k) ;

The purpose of having the pthread_cond_wait in a loop is two-fold. First, some buggy

POSIX thread implementations (including the original Linux implementation) generate

spurious wakeups on condition variables. Second, it is more flexible, since those threads

which generate wakeups do not need to track the number of threads waiting on the condition

and so can use either p thread_cond_signal or pthread_cond_broadcast.

Threads which generate items to be placed on the stack would execute the following

code.

pthread_m utex_lock (s ta c k _ lo c k) ;

s .p u s h (i te m) ;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

I l l

p t h r e a d _ c o n d _ b r o a d c a s t (s t a c k _ i t e m _ a v a i l) ;

p t h r e a d _ m u t e x _ u n l o c k (s t a c k _ l o c k) ;

5 .9 .3 T h rea d R o llb a ck w ith P O S IX S y n ch ro n iza tio n V ariab les

When a thread fails, our recovery algorithm requires us to bring the system to a known

quiescent state before the restart and rollback process can commence. We require threads

to check if recovery is underway before they begin any syscall. If so, the thread pauses

before the syscall commences.

However, the introduction of thread synchronization introduces additional difficulties.

Suppose tha t a thread is waiting on a mutex lock tha t is held by a second thread tha t fails.

The failed thread will never release the lock, and the waiting thread will never progress.

Since the system must quiesce before recovery can begin, the non-failed, waiting thread will

block the recovery process, resulting in a deadlock.

Similarly, several threads may be waiting on a condition variable. The death of the

thread which was to signal the satisfaction of the predicate will prevent any of these threads

from becoming quiescent, again resulting in a deadlock.

To deal with these issues, we developed a user-level synchronization classes which ef

fectively serve as wrappers around the mutex and condition variable types. Rather than

manipulating mutexes and condition variables directly, threads manipulate them through

these classes. This allows the system to keep track of which threads use synchronization

primitives, and to deal with the various deadlock issues during recovery. We call the two

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

112

data types provided by this class ulevel_m utex_t and ulevel_cond_t.

The class ulevel_m utex_t has the following definition:

c la s s u level_m utex_t

p r iv a t e :

p thread_m utex_t * lock_lock;

p thread_m utex_t * the_ lock ;

/ / The p ro cess id of th e th re a d c u r re n t ly ho ld ing t h i s lo ck .

p id _ t h o ld e r;

p u b l ic :

u lev e l_ m u tex _ t() ;

~ u level_m utex_t0 ;

in t ta k e _ lo c k () ;

in t r e le a s e _ lo c k () ;

>

The variable the_ lock is the actual application level mutex used by the thread. The

variable lock_lock is a mutex which protects the ulevel_m utex_t object itself. Instead

of declaring objects of type pthread_mutex_t, threads declare a ulevel_m utex_t. This

declaration allocates space for the lock and initializes it.

When a thread wishes to lock a mutex, it calls the take_ lock () method. Similarly, the

re le a se _ lo c k () method is used to unlock a mutex. Under normal circumstances, the se

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

113

mantics of both tak e_ lo ck () and re le a se _ lo c k () are the same as pthread_m utex_lock()

and pthread_m utex_unlock(), respectively.

However, during recovery mode, both methods perform additional work. Once a failure

is detected, the failure recovery code checks to see if the failed thread was holding any

mutexes. If so, the mutex is released. If any of the non-failed threads attem pts to take a

lock after a failure has been detected, the mutex lock fails. Instead, the thread is shunted

into code to await a rollback message. Below we show pseudocode for the take_ lock () and

re le a se _ lo c k () operations.

u le v e l_ sy n c ro n iz e : :tak e_ lo c k ()

■C

pthread_m utex_lock (* lo ck _ lo ck);

\ \ S y s tem _ re sta rt i s a th re a d g lo b a l v a r ia b le which in d ic a te s th a t

\ \ a f a i l u r e has been d e te c te d ,

i f (s y s te m _ re s ta r t) {

pthread_m utex_unlock (* lo ck _ lo ck);

\ \ The noopO fu n c tio n i s a s y s c a l l which allow s a th re a d to check

\ \ th e s t a t u s , in c lu d in g whether a r e s t a r t i s in p ro g re ss .

noopO ;

>

e lse {

h o ld e r = g e t_ p id () ;

pthread_m utex_lock (* th e _ lo c k);

pthread_m utex_unlock (* lo ck _ lo ck);

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

114

>

r e t u r n 1;

>

u l e v e l _ s y n c r o n i z e : : r e l e a s e _ l o c k ()

{

p t h r e a d _ m u t e x _ l o c k (* l o c k _ l o c k) ;

p t h r e a d _ m u t e x _ u n l o c k (* t h e _ l o c k) ;

h o l d e r = - 1 ;

p t h r e a d _ m u t e x _ u n l o c k (* l o c k _ l o c k) ;

r e t u r n 1;

>

T h e c lass u l e v e l _ c o n d _ t h a s t h e following defin ition:

c l a s s u l e v e l _ c o n d _ t

{

p r i v a t e :

p t h r e a d _ c o n d _ t * th e _ c o n d ;

p t h r e a d _ m u t e x _ t * t h e _ m u t e x ;

p t h r e a d _ m u t e x _ t * c o n d _ l o c k ;

i n t ^ c o n d i t i o n ;

i n t i n i t _ v a l u e ;

i n t r e l e a s e _ v a l u e ;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

115

p i d _ t w a i t i n g [MAX_THREADS] ;

/ / C o n d i t i o n i s a n i n t e g e r v a l u e . When t h e c o n d i t i o n v a r i a b l e i s

/ / i n i t i a l i z e d , i t s v a l u e i s i n i t _ v a l u e . When c o n d i t i o n ==

/ / r e l e a s e _ v a l u e , t h e p r e d i c a t e i s c o n s i d e r e d t o b e t r u e .

u l e v e l _ c o n d _ t (i n t ^ c o n d i t i o n , i n t i n i t _ v a l u e , i n t r e l e a s e _ v a l u e ,

p i d _ t h o l d i n g) ;

~ u l e v e l _ c o n d _ t ()

v o i d e n t e r _ c o n d () ;

v o i d e x i t _ c o n d () ;

v o i d r e l e a s e _ a l l () ;

>

v o i d u l e v e l _ c o n t _ t : : e n t e r _ c o n d ()

{

/ / T ake l o c k a n d c h e c k t o s e e i f we a r e r e s t a r t i n g .

p t h r e a d _ m u t e x _ l o c k (t h e _ m u t e x) ;

i f (s y s t e m _ r e s t a r t) {

p t h r e a d _ m u t e x t _ u n l o c k (t h e _ m u t e x) ;

n o o p O ;

>

/ / N ot r e s t a r t i n g . T e s t t h e c o n d i t i o n .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

116

w hile (* co n d itio n != re le a se _ v a lu e) {

/ / P re d ic a te i s no t t r u e . Record o u rse lv es as w a itin g and

/ / go to s le e p ,

w a itin g [g e tp id O] = 1;

p thread_cond_w ait (the_cond, the_m utex);

>

void u le v e l_ c o n d _ t: : ex it_ co n d ()

{

/ / We’ve done th e work n ecessa ry . Remove o u rs e lf from th e

/ / l i s t of w a ite rs fo r t h i s co n d itio n , drop th e lock and

/ / g e t on w ith l i f e ,

w a itin g [g e tp id O] = 0;

pthread_m utex_unlock (the_m utex);

>

Our code actually implements only those condition variables with predicates that have

tru th values determined by the comparison of two integer values. We have found, however,

that most of the predicates we wish to write can, in fact, be expressed simply as the

relationship between two integers. The purpose of the in it_ v a lu e variable in the private

section of the class is to allow the system to reset condition variables to their default values

after a system restart.

To use the ulevel_cond_t class, a thread group declares a variable of type ulevel_cond_t,

and initializes it by passing the address of the integer variable tha t the condition is protect-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

117

ing, the initial value of tha t variable, and the integer value that indicates tha t the condition

is satisfied.

A condition can then be expressed using the following generic code.

u level_cond_ t *some_cond;

som e_cond->enter_cond();

/ / At t h i s p o in t , th e p re d ic a te i s s a t i s f i e d .

/ / The th re a d acc esse s th e c r i t i c a l s e c tio n of th e o b je c t p ro te c te d

/ / b y th e c o n d itio n v a r ia b le .

som e_cond->exit_cond();

When a thread fails, we set the global variable sy s tem _ res ta rt and then wake up all the

threads waiting on the condition by executing pthread_cond_broadcast (the_cond) on all

user level conditions.

The process control layer keeps a list of all the ulevel_m utex_t and ulevel_cond_t cre

ated by threads executing in the system. This list is updated during calls to the constructors

and destructors of the respective classes.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Formalisms

The pro o f...

consists of little bubbles or beads

which appear on the surface ... after agitation.

E. Cobham Brewer, Dictionary of Phrase and Fable

The implementation presented in chapters 4 and 5 is an adaptation of the optimistic

logging protocol [56]. In this chapter, we present theorems showing our scheme operates

correctly and tha t it does not suffer from the domino effect.

We also discuss the concept of checkpoint log clearing and present an interesting result

on a space-optimal method of clearing the log. We conclude the chapter by looking at how

our system might be extended to deal with rare or unusual failure modes.

6.1 Concepts and Definitions

We supplement and extend the definitions of section 2.2.1 with the following vocabulary

from the literature.

118

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

119

State Intervals A state interval is series of computations occurring between the execution

of two file system operations. Given two file system operations F(n) and F(n + 1),

state interval I (n) is the series of operations occurring between the commencement

of F{n) and the commencement of F(n + 1). S(n) is the process state which occurs

immediately before F(n).

R epeatab ility We assume the behavior of each recovery unit is repeatable. That is, the

state of a recovery unit can be restored by rolling a recovery unit back to a checkpoint

and replaying file system operations from the log. Repeatability implies that given a

process state S(n — d) and file system operations F(n — d) through F(n — 1), we can

restore state S(n) by rolling back the process to state S(n — d) and replaying the file

system operations in order.

Orphaned F ile System O perations In optimistic recovery schemes, messages that are

either lost because of an RU failure or are casually dependent on a lost state are re

ferred to as orphan messages. In our scheme, we have the parallel concept of orphaned

file system operations. A file system operation is an orphan if it occurred after the

last checkpoint of the failed RU, or if some other RU is causally dependent on the

file system operation. An simple example of an orphaned file system operation occurs

when RUj performs a file system write, RUj subsequently reads some of the modified

bytes from a file, and RU* then fails.

C om m ittable S tates If a state interval is lost due to a failure, or if it is casually dependent

on a lost state interval, it is called an orphan state interval. State intervals that will

never become orphans are called committable states.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

120

S e q u e n t ia l S e m a n tic s A file system exhibits sequential semantics (sometimes referred

to in the literature as Unix semantics) if the result of any file system operation is

immediately visible to all other processes in the system. Our implementation uses

sequential semantics.

6.2 Recovery After Failure

After a failure, the failed RU is restored from its latest checkpoint and the file system is

restored from the snapshot taken during that checkpoint. The system then sends a recovery

message to the other recovery units in the system informing them of the vector time of the

restored file system. The failed RU then resumes computation.

When a non-failed RU receives a recovery message, it searches its list of checkpoints.

As the RU scans the checkpoint list, it searches for the latest checkpoint tha t represents

a committable state. That is, it is looking for the most recent checkpoint which is not

casually dependent on the restored state of the failed RU.

This search is accomplished by comparing the vector times associated with each RU’s

checkpoints against the vector time of the recovered file system. Once an RU finds a

checkpoint which is not causally dependent on the recovered file system, the RU’s state is

recovered from this checkpoint and roll forward commences.

The correctness of this protocol depends on two assumptions.

1. For each RU, we can always find a checkpoint which is not causally dependent on the

state of the recovered file system.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

121

2. Once recovery units have rolled forward, the entire system state, consisting of the

rolled back file system, the restarted RU, and the rolled forward RUs, is consistent.

T h eo re m 6.1 For each RU, we can always find a checkpoint which is not casually depen

dent on the latest checkpoint o f any other RU.

Proof: We require each RU to take a checkpoint before it performs any file system

operations. Since the RU has not performed any file system operations, this checkpoint is

not casually dependent on any checkpoint created by another RU. □

T h eo re m 6.2 After a failure, the restarted instantiation of the failed RU is consistent with

the file system.

Proof: During the checkpointing process, a recovery unit locks the file system, takes a

checkpoint of the process state and then takes a snapshot of the file system. The check

pointing RU’s vector time is updated from the timestamp taken from the file system. Since

the file system was locked during the entire syncO operation, it can not have processed any

file system operations generated by another recovery unit. Thus, there are no potentially

orphan file system operations underway during the checkpoint.

When an RU fails, both the state of the RU and the state of the file system are rolled

back to the state taken during the associated checkpoint. Thus the state of the restarted

recovery unit and the file system are mutually consistent.

T h eo re m 6.3 A fter restart of the failed process, rollback of the file system, and roll forward

of the non-failed R Us, the system wide state is consistent.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

122

Proof: We need to show tha t each RU is pairwise consistent with all other RUs and the

file system after recovery. We do this by showing

A The restarted RU is consistent with the recovered file system.

B Each non-failed RU is consistent with the restarted RU and consistent with the file

system after roll forward.

C Each non-failed RU is pairwise consistent with every other non-failed RU.

A) By theorem 6.2, the state of the recovered RU is consistent with the state of the file

system.

B) Now consider some non-failed recovery unit, RUj. By theorem 6.1, there exists a

checkpoint of RU* which is not causally dependent on the state of the restarted recovery

unit. The protocol rolls the state of RUj back to the state contained in this checkpoint.

When RUj rolls forward, it replays file system operations from its log until either the log

is exhausted, or it finds an orphan file system operation. Potential orphans can be detected

since the system attaches a time stamp to each file system operation, and this timestamp is

saved with the operation in the log. In either case, the rollforward stops before an orphan

file system operation is processed by RUj. Thus, RUj is consistent with the file system after

rollforward, and is thus also consistent with the recovered RU.

C) Now consider any two non-failed recovery units, RUj and RU*,. We must show that

these two recovery units are mutually consistent with each other after rollforward. (Note

tha t it is not sufficient to show tha t each non-failed recovery unit is consistent with the

restarted RU after roll forward. There exist systems where some RU is pairwise consistent

with all other RUs, but the resulting system is not globally consistent [39].)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

123

As the RUs roll forward, they each replay file system operations from their logs. We

claim tha t no rolled back RU will process an orphaned file system operation. First, note

tha t the replay algorithm guarantees that no RU will replay a file system operation that

occurred after the file system snapshot.

Since the file system is locked during the time of the snapshot, there are no file system

operations “in-flight” while the snapshot was taken. By assumption, the file system exhibits

sequential semantics, so no RU’s state can be affected by any file system operation performed

by another RU after the the snapshot was taken. Thus, there are no orphaned file system

operations and so RUj and RU& are mutually consistent.

Since every pair of recovery units is mutually consistent, and each recovery unit is

consistent with the file system, a consistent global state exists. □

6.3 Reclaim ing Checkpoints and Logs - The Dom ino Effect

During normal operation, an RU will accumulate a growing list of checkpoints and log

records. The question arises: when can an RU discard a checkpoint and the log records

which precede it?

A checkpoint and the preceding log records can be discarded when the recovery unit

which created them will never be required to restart from or roll back to tha t checkpoint.

A checkpoint may potentially be used for restarting or rolling back under the following

conditions: (1) an RU is re-instantiated from that checkpoint, or (2) an RU must be rolled

back after the failure of another RU for the purposes of redoing one or more file system

operations.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

124

A failed RU always restarts from the latest valid checkpoint. Thus, the set of possibly

discardable checkpoints consists of all the checkpoints in the system, except for the last

checkpoint taken by each RU.

For each recovery unit, we need to identify which set of checkpoints will be referenced

should any process in the system fail. In figure 6.1, checkpoint C^o is discardable. In this

figure, we assume tha t if one checkpoint appears at an earlier time than another, it was

taken at an earlier time (in the Lamport sense.)

RUn

RU,

RU.

■§

C 1
' “ 0,0 -

' 1,0

- 2,0 - 2,1

■§

£
' 1,1

- 0,1

checkpoints required after RU0 fails
checkpoints required after RU 1 fails

] checkpoints required after RU2 fails

Figure 6.1: Finding Discardable Checkpoints

T h eo re m 6.4 I f some state interval I o f RUf. is committable, and if all file system opera

tions of RUk performed after interval I are recoverable, then a system-wide consistent state

can always be found without having to back out of interval I.

Proof: Since state interval I is committable, by definition I does not depend on any

orphan file system operations. Therefore, it is possible to recover all other recovery units

to some point where state interval I is not causally dependent on them. That is, RU& will

never have to be backed out of interval I to undo orphan file system operations.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

125

Our scheme guarantees tha t all file system operations performed by RU& after state

interval I are stored in RU^’s log and are thus recoverable. □

T h eo re m 6.5 Provided that no RU indefinitely delays

1 logging its file system operations,

2 updating its vector time from the file system after a checkpoint, and

3 taking another checkpoint,

then each RU will eventually be able to safely discard its oldest checkpoint.

Proof: Each recovery unit will eventually take another checkpoint (assumption 3). That

checkpoint will be causally dependent on some set of states from other RUs. But each

of these other RUs will eventually take another checkpoint (assumption 3) and update its

vector time from the file system (assumption 2). Thus, each checkpoint will eventually

become committable. Since each RU logs its file system operations before returning from

the associated system call (assumption 1), both conditions of theorem 6.4 will eventually

be met for discarding the oldest checkpoint. □

T h eo re m 6.6 There is no domino effect.

Proof: By definition, the rollback of each non-failed RU is bounded by its earliest non-

discardable checkpoint. From theorem 6.5, every checkpoint will eventually be discarded.

Thus, there is a finite bound on the amount of rollback that the system must perform after

a failure. □

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

126

6.4 M essages

While our prototype implementation does not support interprocess communication via mes

sages, real concurrent systems do send messages. In this section, we show tha t our algorithm

can be adapted to systems which support message passing.

In the following discussion, we assume tha t the machine on which recovery units execute

supports reliable, FIFO channels between recovery units. In addition, we assume a logging

scheme for messages similar to the one tha t stores file system operations. Messages are

logged at both the sender and the receiver. While schemes which require both sender and

receiver based logging are unusual, they are not unheard of. Rao, et al. [45] discuss a hybrid

protocol which logs both sent and received messages and is a variant of the traditional

optimistic recovery protocol. We continue to assume tha t the log of a recovery unit is kept

in volatile memory.

6 .4 .1 R e c o v e r y P r o to c o l

As with file system operations, we require the system to piggyback the vector time of the

sending RU on top of each message tha t is sent. When logging a sent message, the sending

RU records its own vector time along with the message in the log. Upon receipt of a message,

the receiving RU first updates its own vector time clock from the timestamp contained in

the message, and then logs the message to its logging unit.

6 .4 .2 R o llforw ard

When a non-failed process enters the rollforward phase of the recovery protocol, it replays

file system operations and messages from its log. When a message receipt is encountered,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

127

the timestamp of the message is inspected. If the message was sent either prior to or

concurrently with the recovery time of the rolled back file system, the receipt is processed.

If the received message was sent after the recovery time, it is discarded.

When a log entry corresponding to a send is encountered during rollforward, the RU

inspects the message’s destination RU. If the message is destined for a non-failed RU, the

send is discarded. Similarly, if the timestamp of the send is not concurrent with the recovery

time, the send is discarded. However, if the destination of the message is the failed RU, and

the timestamp indicates tha t the message was sent concurrently with the recovery time, the

rolling forward RU must resend the message.

We require the RU tha t is rolling forward to resend the message to the failed RU,

because such a message is necessarily an orphan in the recovering system. We know that

the message is an orphan because the vector timestamp indicates tha t the message was not

received by the failed RU. That is, if the message had been received by the failed RU before

the recovery checkpoint was taken, the failed RU would have updated its clock from using

the message timestamp, and when the failed RU took its last checkpoint, the filesystem

time would have been later than the message send time.

An example is shown in figure 6.2. During replay, message mo’s send is discarded by

p i . Message m i’s send is discarded by p \ , and its receipt is replayed by P2 . The sends of

m 2 and m 3 are replayed by p\ and P2 since these messages are orphans.

We extend the definitions from section 6.1 as follows.

R ecovery U n it A recovery unit now incorporates the log of sent and received messages,

in addition to the operation log, the process checkpoint and the file system snapshot.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

128

Po

m . m
Pi

m

P2

f

Figure 6.2: Message Replay During Recovery

S ta te In te rv a ls A state interval is the series of computations occurring between the exe

cution of any two file systems operations, any two messages, between a message and

a file system operation, or between a file system operation and a message.

O rp h a n e d M essages An orphaned message is a message which is lost either because of

the failure of the sender or receiver of the message, or because the state of the sender

or receiver is causally dependent on a lost state.

As in theorem 6.3, we need to show tha t our algorithm with the addition of messages

under these assumptions results in a system wide consistent state after recovery.

T h eo re m 6 .7 Assume we have a system which operates according to our algorithm, logs

both sent and received message in volatile memory, and follows the protocol described above

during rollforward. A fter the recovery phase, the system wide state is consistent.

Proof: Again as in theorem 6.3, we need to show tha t each RU is pairwise consistent

with all other RUs after recovery.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

129

By theorem 6.2, the state of the restarted RU is consistent with the state of the file

system.

Now consider some non-failed recovery unit, RUj. We need to show tha t RUj is consistent

with the failed RU after recovery. By theorem 6.1, there exists a checkpoint of RUj which

is not causally dependent on the state of the restarted recovery unit.

All messages sent from the failed RU to RUj are recoverable since they are stored in the

log. RUi will not receive any orphaned messages from the failed RU, since the corresponding

message receipts are timestamped later than the recovery time and will be discarded. The

RU which is rolling forward can detect any orphan sends in its log, since such messages will

have a timestamp which is concurrent with the recovery time of the file system. Since all

of these messages are retransm itted to the failed RU, no orphan messages exist. Thus the

failed RU is consistent with each rolling forward RU.

Now consider any two non-failed recovery units, RUj and RU*,. As in theorem 6.3, we

must show tha t these two RUs are mutually consistent after rollforward.

We claim tha t RUj will not perform a file system operation or send or receive a message

tha t results in an orphaned state for RU*.. Again, since the file system snapshot acts as

a barrier, no orphaned file system operations will be performed. Each RU inspects the

timestamp of received messages and discards any which were sent after the recovery time.

Since sends between non-failed RUs are discarded, no orphan messages are generated. Thus,

RUj and RU& are mutually consistent.

We thus have the following: the restarted RU is consistent with the file system after

restart, and each non-failed RU is consistent with the restarted RU and all other non-

failed RUs after rollforward. Thus, each RU is pairwise consistent with all other RUs after

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

130

recovery, so a consistent global state exists. □

6.5 Unusual Failure M odes

In order for a checkpointing and rollback-recovery technique to be considered robust, it

must operate correctly for all expected modes of failure. In order to minimize the set of

expected modes of failure, most techniques referenced in the literature make two important

assumptions about the behavior of executing processes. They assume independence: that

is, they assume tha t a failed process will not re-fail if it is re-executed using spare processing

capacity. And second, they assume tha t failure is a relatively rare occurrence. Both of these

are prima facie reasonable arguments.

If the probability of a single recovery unit failing during some computation is / , and

there are n recovery units, then the probability of at least one recovery unit failing during

the computation is

(") (/) ' (!

Since this is just the binomial distribution with parameter f, the probability tha t no

recovery unit fails is

l - (l - /) n

As an example, let us assume a hypothetical system where the probability of a single

recovery unit failing is 0 . 0 0 1 over the life of some long running concurrent computation.

Then the probability tha t a computation consisting of 100 RUs will not suffer any failures

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

131

over the life of the computation is 0.90480. The probability tha t exactly one RU will fail

is, of course, 0 .0 0 1 .

In this section, we are interested in the failure of two or more processes during the

failure-recovery stage of the protocol. As an illustrative example, let us assume that a

computation takes one month to run, and tha t recovery from a failure takes 1 0 minutes.

The probability tha t a single recovery unit will fail during any 10 minute interval is then

0.001 • ^ m ontlfS ‘ Pr°b& bility tha t two or more RUs will fail during any single ten

minute period is then

P(failures > 2) = £ (^) • (0.001 • ^ ° 2) < ■ (1
i= 2 ' '

= 2.6523e — 10

Despite the minuscule probability of these types of failures, it is nevertheless interesting

to consider what types of multiple failures our scheme can deal with. Below, we consider

two types of such failures. In the discussion tha t follows, we use the term “incarnation” to

describe the execution of recovery units after some failure.

6 .5 .1 C o n cu rren t F a ilu res

Concurrent failures are failures of multiple RUs tha t happen simultaneously, in the vector

time sense. Concurrent failures occur when an RU failure is detected and the system

initiates the rollback-recovery protocol. Before the protocol can notify the non-failed RUs

tha t recovery is underway, one or more additional RUs fail. 1 In section 6.5.2 we look at the

1Our implementation does not handle concurrent failures. When the recovery protocol is initiated, the
system sets a flag in each non-failed RU’s address space indicating that recovery is underway. This flag is

- (0 .001 .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

132

behavior of the system if we allow failures to occur during the recovery process.

Even under this failure mode, recovery using our scheme can still commence. Once the

non-failed RUs pause, the file system is rolled back to an appropriate checkpoint, and the

vector time of the rolled back file system is transm itted to each non-failed RU. These RUs

then identify an appropriate checkpoint in their checkpoint list from which to restart. They

perform the restart and begin the rollforward.

It is interesting to ask what modifications we would need to make to the system to

support concurrent failures. In addition, if such support is added, the question of how

many concurrent failures can be tolerated must be addressed.

In order to handle concurrent failures, we must extend our protocol as follows:

1. The fault catching code of the system must continue monitoring non-failed RUs after

catching the first failure. This monitoring must continue until all non-failed RUs are

quiescent. In the prototype, the fault catching code simply waits for system quiescence

at this point, rather than continuing to monitor for failure.

2. The recovery module must be extended to determine which of the failed RU’s most

recent checkpoints is the oldest. See figure 6.3. This is the checkpoint from which the

file system is reconstructed, and toward which all other RUs must rollforward. In the

current implementation, this checkpoint is always the latest checkpoint of the single

failed process.

not inspected until the next file system call is executed by the non-failed RU.
Because we can not rollback the file system while the non-failed RUs are accessing it, we must wait for

these RUs to pause. There is currently no provision in the prototype recovery module to monitor additional
RUs for failure while waiting for quiescence.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

133

In figure 6.3, RUo fails. Before the system becomes quiescent and the rollback can begin,

both RUi and RU2 fail. The set of most recent checkpoints from each process consists of

Co,i>Ci,i and 6 2 ,2 - The most recent of these (in the Lamport sense) is C \t\ and the file

system is rolled back to this point. RUo rolls back to Co,o and RU2 rolls back to (72 ,1 . The

non-failed recovery unit, RU3 would rollback to its most recent checkpoint which causally

precedes C \t 1 ; in this case C ^i.

Assuming the modifications listed above are made to the implementation, we now ask:

How many concurrent failures can the protocol handle? Surprisingly, the state recovery

protocol can be used to recover from any number of process failures in the system, including

a total failure of all processes.

T heorem 6.8 A system consisting of N recovery units which uses the recovery protocol

described above can recover from any i < N concurrent failures.

Proof: Let RUo, R U i , . . . , RUj_i be the set of recovery units which have failed con

currently, and let Co, C \ , . . . , C%~\ be the set of checkpoints most recently taken by the

corresponding processes. Let Ck be the element of the set of recent checkpoints which has

the property Vi, time(C'fc) < time(Cj). That is, Ck is the earliest checkpoint (in the Lamport

sense) among the set of latest checkpoints taken by all concurrently failed RUs. Note that

there may be more than one checkpoint with tha t property. If so, chose one arbitrarily.

Theorem 6.1 tells us tha t each RUjsuch that/ / k has an associated checkpoint which is

not casually dependent on the latest checkpoint of any other RU. Ck is such a checkpoint,

since it was chosen from the set of most-recent checkpoints for each process. If we rollback

the file system to its state when Ck was taken, then we can rollback all other RUs to some

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

134

concurrent
failures

RU

Figure 6.3: Rollback After Concurrent Failures

state tha t is not causally dependent on the state stored in Ck-

Since for each RU we can find a checkpoint which is not causally dependent on the state

stored in Ck, it follows immediately from theorem 6.3 that a system wide consistent state

can be achieved by rolling any non-failed RUs forward. □

In this section, we dealt with the failure of more than one process before the recovery

algorithm began to execute. In the next section, we look at the problem of failures during

the recovery process.

6 .5 .2 F a ilu res D u r in g R eco v ery

There are two types of failures that can occur during the recovery phase of the protocol.

We can have a second failure a failed process before the recovery completes, or one of the

non-failed processes which has been rolled back may fail during the rollforward phase of the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

135

recovery. In this section, we address these two types of failures.

6 .5 .2 .1 F a ilu r es W ith o u t th e A s s u m p tio n o f In d e p e n d e n c e

The first type of failure we wish to consider is this: Suppose tha t RU*, fails. The failure is

detected and the recovery protocol begins to execute. Sometime after the reinstantiation

of RUfc, RUfc fails again. This type of failure is only possible if we remove our assumption

of independence. (See section 2.2.1.) We need to consider two possibilities.

notification of
first failure

RUf, Incarnation 1

RUn Incarnation 2

/ notification o f
second failure

RU

rollforward
R U , Incarnation 1

rollforward
R U , Incarnation 2

F ig u re 6.4: A Possible Failure Mode if We Drop the Assumption of Independence.

The first possible mode of failure occurs when the failed RU fails for a second time

before the non-failed RUs have finished their rollforward, as illustrated in figure 6.4. In

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

136

this diagram, RUo fails at time A. At time B . RUo fails again before RUi completes its

rollfoward.

Under this mode of failure, we must notify RUi tha t a refailure has occurred. Note that

under this failure mode, the system state is consistent during the entire process between

the restart of RUo and the second failure at time B . This is because RUi is replaying file

system operations from its log.

The second possible mode of failure occurs when the failed RU again fails for a second

time, but the non-failed RUs have finished there rollforward. This failure mode is shown in

figure 6.5. At time A , RUo fails. At time B , RUo fails again, but RUi has already finished

its rollforward and has resumed normal computation.

Note tha t the second failure mode is the simpler of the two. Under the second fail

ure mode, where the non-failed RUs have finished their rollforward, the system state is

indistinguishable from a normal single-process, independent failure. All RUs are executing

normally and accessing the file system in the usual way. Each RU has a valid checkpoint

on disk. The fact tha t this checkpoint has already been used for a restart is immaterial.

We now formalize the arguments presented above.

Theorem 6.9 L et RUk be an R U which fails repeatedly. I f the num ber o f failures is bounded

by some fin ite value F , then the protocol w ill always bring the system to a consistent state

some tim e after the last failure of RUk-

Proof: The proof is by induction on F , the number of failures.

Inductive Basis: Choose F = 1 as the inductive basis. Note tha t this is exactly the

failure mode discussed in section 6.2. We showed in theorem 6.3 tha t under this failure

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

137

RU,
notification of
first failure

RUn Incarnation 1

RUn Incarnation 2

notification o f
second failure

RU

rollforward
R U , Incarnation 1

rollforward
R U | Incarnation 2

F ig u re 6.5: A Second Possible Failure Mode if We Drop the Assumption of Independence

mode the resulting system state is consistent.

Inductive Step: Now assume tha t some RUfc has failed F — 1 times for F > 2, and

consider what happens on failure F. There are two cases to consider, depending upon

whether the non-failed RUs have finished their rollforward, or are still replaying file system

messages from their logs.

Case 1: Failure F occurred before the non-failed RUs finished replaying their logs. (This

is the scenario shown in figure 6.4.) In this case, the non-failed RUs reinstantiate themselves

from the checkpoints from which they just restarted. Such a state is causally consistent,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

138

since the protocol chooses checkpoints for each non-failed RU to restart from tha t causally

precede the checkpoint from which the failed RU restarted. Since this is the last failure,

the non-failed RUs will roll themselves forward according to the protocol until their logs

are exhausted or until they are about the replay an orphaned file system operation. By

theorem 6.3, such a non-failed RU is consistent with all other non-failed RUs, the restarted

RU and the file system.

Case 2: Failure F occurred after the non-failed RUs finished replaying their logs. This

is the simpler case, as shown in figure 6.5. Since we know tha t the system state was

consistent after failure F — 1, the state was also consistent before failure F, since failure

F — 1 preceded failure F. We thus have a failure in a system which is causally consistent.

Again by theorem 6.3, the resulting system state is consistent.□

6.5.2.2 Failures D uring Rollforward

The last type of failure mode which we wish to consider is this. Suppose tha t RUfc fails. The

non-failed RUs are notified, the file system is rolled back and RU& is restarted. However,

at some time during the rollforward of some non-failed RUj, another failure occurs. This

scenario is shown in figure 6 .6 . In this diagram, RUo fails and begins the recovery protocol.

During the rollforward, RUi fails. It is restarted from the checkpoint which causally precedes

the one from which RUo restarted. No other recovery units need to be notified of the failure.

(Note tha t we do not need to consider the case where the RU fails after rollforward is

complete, since such a system is identical to one where no failure has taken place, in terms

of causal consistency.)

During such a failure, we simply require the RU which failed during rollforward to restart

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

139

RU,

RUn Incarnation 1

RU

rollforward
R U , Incarnation 1

R U , Incarnation 2 rollforward

F ig u re 6.6: A Failure During Rollforward

from the checkpoint tha t it had previously restarted from. Since the RU which failed was

still rolling forward, it was replaying file system operations from its log. Thus, it had not

modified the file system, so it can not have effected the state of any other RU.

Once this RU completes its rollforward, its state will be consistent with that of the rolled

back file system, and thus (by theorem 6.3) the resulting system state will be consistent.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 7

Performance Evaluation and

Experim ental R esults

Which of you, intending to build a tower,

sitte th not down first, and counteth the cost

whether he have sufficient to finish it.

Luke, 14:28, K J V

In this chapter, we discuss the theoretical and empirical performance of the file system

by analyzing the algorithms used in file system checkpointing and rollback. We present

experimental results of a practical application which uses our system in a fault-tolerant

environment. We conclude the chapter by locking at an interesting result obtained by

experimenting with different log clearing schemes.

140

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

141

7.1 File System Theoretical Performance

For application programmers to want to use a file system, it must give acceptable perfor

mance under a wide variety of applications. Because our implementation is based on the

Unix FFS [38], we know tha t the basic structures and algorithms of our implementation are

sound and have found favor with programmers over many decades. The two parts of our

implementation tha t have not received widespread use, however, are the syncO operation,

and the performance of the ro llb a c k O system call.

In this section, we evaluate both of these system calls. We begin with an analysis of

the algorithms used. We then present experimental results which confirm our analysis.

We continue to use the notion of failure-free overhead (see section 2.2.1 to evaluate the

performance of our system. As is standard in the literature which discusses file systems, we

will use the concept of “disk block accesses” as the metric.

7 .1 .1 SyncO E v a lu a tio n

The cost of a syncO has two main components. A fixed cost, which is incurred each time

a syncO is performed, and a variable cost, which is the cost of writing to disk those blocks

which have been modified since the file system was last sync()ed or mount ()ed.

7.1.1.1 F ixed C ost C om ponent o f SyncO

Certain structures associated with the file system must be written to the disk each time a

snapshot is taken. These structures are the superblock, the checkpoint region, the imap,

the file system vector time and the free-list. The first four of these structures each use one

block on disk. As shown in figure 5.6, we use a series of up to eight trees of depth 2 to store

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

142

the free-list. The number of trees used depends on the size of the underlying virtual disk.

Thus, the fixed costs are truly fixed for a virtual disk of a particular size, but increase as

the size of the underlying disk increases.

A single IK disk block contains 214 = 8192 bits, and can indicate the allocation status

of 8,192 disk blocks. A single tree in our structure can contain pointers to the addresses

of 27 = 128 disk blocks. Therefore, each tree encompasses enough disk blocks to store a

bitmap of size 2 14 • 2 7 = 2 21 bits, and so a single tree is large enough to hold the status of

two million disk blocks. Again, assuming a block size of IK, a single tree can describe the

allocation status of a 2GB file system.

Whenever the number of blocks in the underlying disks surpasses a multiple of 2GB in

size, we allocate another tree in the checkpoint region to hold the freelist bitmap. Writing

this additional tree requires writing a single additional block for the index, and an additional

128 blocks for the bitmap itself. See figure 5.6. Thus, for a disk with N IK blocks, the total

cost of writing the freelist to disk is [^ t] + [jra]- Combining this with the cost of writing

the superblock, etc., the total fixed costs of sync()ing a disk consisting of N IK blocks is

4 + r^r] + r $ i .

Table 7.1 lists the fixed costs incurred when sync()ing a file system on disks of various

sizes.

We verified this formula by repeatedly creating virtual disks ranging from 1GB to 16GB

in size. After a disk was formatted, we performed a syncO operation on the file system and

instructed the file system to report the number of blocks written by the sy n c(). Figure 7.1

shows the results of this experiment.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

143

D isk S iz e B lo c k W rite s
1 GB 133
2 GB 261
3 GB 390
4 GB 518
5 GB 647
6 GB 775
7 GB 904
8 GB 1032
9 GB 1161

10 GB 1289
11 GB 1418
12 GB 1546
13 GB 1675
14 GB 1803
15 GB 1932
16 GB 2060

T ab le 7.1: Fixed Costs of a SyncO Operation

7 .1 .1 .2 V a r ia b le C o s ts C o m p o n e n t o f SyncO

The variable cost of the syncO counts the cost of writing modified data and m etadata to

the file system. It is bounded above by the number of files and disk blocks modified since

the file system was mounted or the last syncO was performed.

If only a small amount of data is written to the file system, the fixed costs of the syncO

will dominate. However, as more and more data blocks on the disk are modified, the total

contribution of the fixed costs to the failure-free overhead diminishes.

Table 7.2 lists the worst case cost of sync Oing a 16GB file system when varying amounts

of data is written to the file system. Note that when few data blocks are modified between

syncO operations, the fixed costs dominate. But as larger amounts of data are written,

the fixed costs are amortized over more disk writes and contribute a smaller and smaller

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

144

2000 blocks

1500 blocks

1000 blocks

500 blocks

0 blocks

F ig u re 7.1: Experimental Results of Sync()ing a Virgin File System on Disks of Various Sizes

percentage to the total cost of the syncO operation.

The data in table 7.2 was generated by a program accessing a file system built on a

16GB disk. The program opens 15 different files, writes an equal amount of data to each

file, and then closes the files. The number of disk writes was then extracted from the file

system, a syncO was performed, and the file system was again instructed to report the

number of disk writes.

The table shows the total worst-case overhead of a sync () operation as the amount of

data written between sy n c O ’s increases. Column two details the number of blocks written

during the syncO call. Column three shows the percentage of the total disk traffic caused

solely by the sync ().

Note tha t some of the cost attributed to the syncO in column two is larger then the

total syncO overhead. This figure also includes the cost of flushing any modified data

2 GB 4 GB 6 GB 8 GB 10 GB 12 GB 14 GB 16 GB

File System Size

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

blocks from the disk cache, along with the cost of writing the inode and indirect blocks,

operations which a syncO is required to do. As the data sets grow larger, most of the data

is forced from the cache and written to disk before the actual sync (). The experiment was

performed with a cache size of 1MB. In an actual system, the disk cache size would probably

be much larger than our experimental value of 1MB, so the values would be proportionally

increased.

D a ta SyncO O v erh ea d SyncO C o s t (a s a %
M o d if ie d (in b lo c k s w r it te n) o f b lo c k s w r it te n)

15 KB 2090 99.3 %
30 KB 2105 98.6 %
60 KB 2135 97.3 %

120 KB 2195 94.8 %
240 KB 2315 90.6 %
480 KB 2555 84.2 %

1 MB 3114 61.9 %
3 MB 3144 45.0 %
7 MB 3174 29.2 %

15 MB 3234 17.4 %
30 MB 3354 9.8 %
60 MB 3594 5.5 %

120 MB 4074 3.2 %
240 MB 5034 2.0 %
480 MB 5960 1.2 %

1 GB 6050 0.3 %
3 GB 6170 0.2 %
7 GB 6410 0.1 %

15 GB 6890 0.0 %

Table 7.2: Total Worst-Case SyncO Overhead

7 .1 .2 R ollb ack () E v a lu a tio n

When a ro l lb a c k () operation occurs, the system discards the current state of the file

system, including any modified data blocks in the disk cache, locates the correct checkpoint

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

146

region, and reinstantiates the file system using this checkpoint region.

Locating the correct checkpoint region requires the system to follow the chain of check

point regions, looking for the last checkpoint taken by the failed RU. Once the checkpoint

is read from disk, the system locates and reads the block bitmap, the imap, and the file

system vector time. The most expensive of these operations in terms of disk reads is the

reinstantiation of the correct bitmap.

Assuming tha t the system must read C checkpoint regions, and the disk consists of N

IK blocks, the total cost of the r o l lb a c k () operation is C + 2 + | " + f . If we assume

tha t RUs checkpoint with approximately the same frequency, we would expect a system of

R RUs to need to search, on average, ^ checkpoint regions to locate the appropriate one

for the failed RU. Table 7.3 shows the number of disk block reads required to rollback file

systems of various sizes for a system with eight RUs. We assume in this table a disk block

size of 1KB, with four checkpoint regions inspected during the rollback.

7.2 File System Empirical Evaluation

In order to evaluate the performance of the system under a “real-world” workload, we pro

grammed a distributed sorting application tha t used our fault-tolerant file system scheme.

The particular algorithm we used is known as “columnsort” . Columnsort was invented in

1984 by Leighton[31] while he was investigating bounds on parallel sorting. It is a gen

eralization of the Knuth calls the “odd-even merge” [26]. We chose columnsort because it

admits itself to unbounded parallelism, subject to certain constraints on the data set size,

and it is easily adaptable to large, out-of-core data sets, making it a good candidate to run

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

147

F ile S y s te m S iz e D isk B lo c k R e a d s
1 GB 134
2 GB 262
3 GB 390
4 GB 518
5 GB 646
6 GB 774
7 GB 902
8 GB 1031
9 GB 1159

10 GB 1287
11 GB 1415
12 GB 1543
13 GB 1671
14 GB 1799
15 GB 1927
16 GB 2056

T ab le 7.3: Cost of R ollback () System Call

on top of a fault-tolerant file system.

7 .2 .1 T h e C o lu m n so r t A lg o r ith m

The columnsort algorithm divides the sort into eight phases, numbered 0-7. Phases 0, 2,

4 and 6 are sorting phases. Phases 1, 3, 5 and 7 transform the data in particular ways.

To sort N data items, the data is organized into an R by C matrix, padding the data as

necessary so tha t the following set of constraints is met.

• N = R C

• ^ is an integer

• R > 2{C — l) 2

See figure 7.2.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

148

a 9 m
b h n
c i o
d j P
e k 9

. / I r

Figure 7.2: Preparing Data for Columnsort

The columnsort then precedes as follows:

P h a s e 0: S o r t The data in each column is sorted.

P h a s e 1: T r a n sp o se a n d R e s h a p e The transpose of the m atrix is computed, and the

matrix is then reshaped back into and R by C matrix. See figure 7.3.

a 9 m
b h n
c i o
d j P
e k q

. f I r

t r a n s p o s e
a b c d e /
9 h i j k I
m n 0 P q r

r e s h a p e

a b c
d e f
9 h i
j k I
m n 0
P q r

Figure 7.3: Columnsort Phase 1

P h a s e 2: S o r t The data in each column is resorted.

P h a s e 3: R e s h a p e a n d T r a n sp o se This step is the inverse of phase 1. The data in

the columns is reshaped into a C by R matrix, and the transpose is then computed,

yielding an R by C matrix.

P h a s e 4: S o r t The data in each column is resorted.

P h a s e 5: S h ift D o w n Form an R by C + 1 matrix, by shifting the data in each column

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

149

down by elements. Pad as necessary at the top of column 1 and the bottom of

column C + l with —oo and oo, respectively. See figure 7.4.

a 9 m —oo d j P
b h n —oo e k 9
c i o shift down —o o f I r
d j P — >■ a 9 m oo

e k 9 b h n oo

J I r c i 0 oo

Figure 7.4: Columnsort phase 5

P h a se 6 : S o rt The data in each column is resorted.

P h a se 7: S h ift U p Shift the elements of each column up by elements, discarding the

—oo’s and oo’s.

At the end of phase 7, the m atrix is sorted in column major order.

To evaluate the performance of our system, we conducted two sets of experiments. In

both sets of experiments, the columnsort algorithm was used to sort 2MB of data using four

threads. The experiment worked as follows:

• Two MB of pseudo-random data was generated and written to four separate files.

Each file contained 512 KB of data. The threaded columnsort application treats the

four files as a single 524,288 by 4 matrix. Files 0, 1, 2 and 3 (i.e., columns 0, 1, 2 and

3) are maintained by threads 0, 1, 2 and 3, respectively.

• Each thread is responsible for manipulating one column of data. During the sorting

phases, each thread reads the data from its associated file, sorts the data, and then

writes the data back to the file.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

150

• During the transformation phase, each thread reads the data from its associated file,

calculates the correct position in the proper file for each data item after the trans

formation, and then writes the data item to tha t location. The reading and writing

of the files is coordinated with a condition variable to ensure tha t no data items are

overwritten.

• After all eight phases of the algorithm complete, thread 0 makes a final pass over all

the data to verify tha t it is sorted in ascending order.

7 .2 .2 E ffects o f B u ffer C ach e S ize on P er fo rm a n ce

Because a log-structured file system must flush all dirty blocks from the buffer cache on each

sync() operation, the cost of a syncO is sensitive to the buffer cache size. To evaluate this

effect, we measured the number of disk writes performed during the experiment described

in section 7.2.1.

Figure 7.5 displays the average number of physical block writes performed over 5 exe

cutions of the columnsort algorithm, both with and without checkpointing. The horizontal

axis shows the disk cache size in kilobytes, and the vertical axis shows the average number

of disk block writes performed for the given cache size.

7 .2 .3 F a ilu re-F ree O verh ead in C o lu m n so rt

To evaluate the failure-free overhead of our scheme in a practical problem, we again mea

sured the performance of columnsort. In this experiment, we calculated the number of disk

block writes caused solely by syncO operations.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

151

2500000
checkpointing after each phase

no checkpoints\ Disk Block
\ Accesses2000000

1500000

1000000

500000

41 16 64 256 1024 4096
Cache Size (in KB)

F ig u re 7.5: Effect of Buffer Cache Size on the Number of Disk Writes Performed by Columnsort,
W ith and W ithout Checkpointing

P rio r to each CHECKPOINT by a th rea d in th e fau lt-to le ran t im p lem en tation of colum n

so rt, we locked th e file system and h ad it rep o rt th e to ta l num ber of disk block w rites done

by th e system so far. W e th en executed a checkpoint operation , an d again in stru c ted the

system to rep o rt th e num ber of disk w rites before unlocking th e file system . T h e difference

betw een these tw o num bers is th e to ta l num ber of disk w rites caused solely by a checkpoint

operation .

Fifty executions of the column sort were run as described in section 7.2.1. Since each

of the four threads takes eight checkpoints over the course of the sort, we measured a total

of 800 checkpointing operations. Table 7.4 shows the observed mean, observed standard

deviation, and the 95% confidence estimate of the mean number of disk writes.

In order to estimate what type of performance an end-user might be able to expect from

our system, we obtained a data spec sheet from a hard drive manufacturer’s website. We

choose as an example hard drive the Cheetah™ 10K .6 server drive available from Seagate.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

152

D is k W r ite s
Observed Mean 3879 blocks

Observed Standard Deviation 2015 blocks
95% Confidence Estimate of Mean 3879 ± 118 blocks

T ab le 7.4: Average Disk Writes Caused by a Single SyncO in Columnsort

The 10K.6 is advertised as a high-end server disk. We believe its performance is typical

of currently available disks in tha t category. The disk is available in 37, 73 and 147GB con

figurations. All of these configurations contain the same basic read/w rite head and platter

mechanical controls. The increasing capacities are obtained by adding additional platters

to the basic configuration. Each configuration is available with UltraSCSI and FibreChan-

nel interfaces. The relevant performance statistics of the 37GB version are summarized in

table 7.5.

Track-to-Track Seek Time 0.55 msec
Average Seek Time 5.30 msec
Sector Write Time 0.05 msec

Average Latency 2.99 msec
Sectors per Cylinder 1438

T ab le 7.5: Performance of the Seagate Cheetah™ 10K.6 37GB Disk Drive

In a traditional Unix file system, disk blocks become scattered all over the surface of

the disk as the file system m atures . 1 Thus, each block access requires a seek followed by

one-half of a platter rotation before the desired block can be read or written by the disk

1 Modern Unix file systems attempt to palliate this scattering effect with the use of “block groups”. A
file system which uses block groups places groups of inodes at regularly spaced intervals over the logical
disk, rather than placing them in a single, logically contiguous location on the disk. When new blocks are
written, the file system attempts to write the data and metadata related to each file as near as possible to
the block group which contains the file’s inode in order to reduce the average seek time between the inode
and the data or metadata.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

153

head. The cost of writing N disk blocks under such a system is

N • (average seek time • average latency)

Contrast this value with the cost of writing N disk blocks in a log-structured file system.

Since all disk blocks are written to free areas of the disk, and since an LSFS ensures that

large contiguous areas of free space always exist, the disk needs only to seek to the beginning

of the free space on the disk before writing. At this point, the writing can proceed at the

disk’s theoretical maximum. The cost of writing N disk blocks on an LSFS where the target

blocks are physically adjacent is then

Average Seek Time + Average Latency

+ N • Sector Write Time

N
+ --------------- ———-— ■ Adjacent Track Seek Time

Sectors p e r C ylinder

The fourth term in the sum above refers to the time required to seek to an adjacent

track once the blocks of a cylinder become completely allocated. In practice, this term is

so small tha t it can be discounted.

Applying the above formulas to the performance values of the Cheetah 10K.6 gives us

the following measures:

Time to write N blocks in a traditional Unix file system

« N • (5.30 msecs + 2.99 msecs)

= N • 8.29 msecs

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

154

Time to write N blocks in a log-structured file system

N
5.30 msecs + 2.99 msecs + N • 0.05 msecs + —— • 0.55 msecs

1438

s=s (8.29 + N ■ 0.05) msecs

In our implementation of columnsort, a total of 34, 816 disk access are needed to read

data at the beginning of each phase and write it at the end of each phase. Applying the

numbers from table 7.5 to a system which uses a traditional Unix file system with no

fault-tolerance gives us a total block access time of

34,816 • 8.29 msecs « 288.62 seconds

Adding in the additional block writes induced by the syncO operations gives a total

block access time for the columnsort on an LSFS-based fault-tolerant file system of

34,816 • 8.29 msecs

+ 32 ■ (8.29 msecs + 3879 • 0.05 msecs ± (118 • 0.05 msecs)

295.10 ± 0.19 secs

Thus, failure-free overhead of our prototype increases the total disk access time by

approximately 2.3%.

7 .2 .4 A C o m p a r iso n o f th e P r o to ty p e w ith A IP C

As we discussed in section 2.3.3, the most comprehensive attem pt to integrate files into

checkpointing and rollback-recovery schemes which appears in the literature is the AIPC

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

155

scheme of Alagar et al [2]. In this section, we compare the failure-free overhead of our

prototype with AIPC.

One disadvantage of AIPC is that each file which is opened requires the creation of a

separate server process to manage access to the file. Our scheme requires no such additional

processes. However, since operating systems vary greatly in the amount of work which must

be done to create a new process, we simply note tha t particular difference here and do not

discuss its effects on failure-free overhead.

Of more interest here is the number of disk block accesses generated by AIPC. During

a checkpointing operation, an AIPC system performs the following steps:

1. Take a snapshot of the process state. Included in the snapshot is a list of files currently

opened by the process.

2. Inform the manager process for each file currently opened by the process to perform

a snapshot.

3. Each manager process takes a self-checkpoint.

4. Each manager process makes a copy of the file it is responsible for.

Table 7.6 shows the number of block read, write and copy operations performed by

AIPC when executing a fault-tolerant version of columnsort. Because the block copying

operations occurs within the per-file servers and not in the threads, we assume that the

server carries out the copy by reading and writing each block.

AIPC performs 188,388 block accesses, compared to the observed number of disk block

accesses of 158,944 ± 3776 performed by our prototype. Thus AIPC performs, on average,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

156

P er T h r e a d B lo c k R e a d s , B lo c k W r ite s a n d F ile C o p ie s P e r fo r m e d b y A I P C

P h a s e (s) T h r e a d (s) R e a d s W rite s F ile C o p ie s D is k B lo c k A c c e sse s
0, 2 ,4 all 512 512 1 12 • 4320

1 ,3 all 512 512 4 8 • 8064
5 0, 3 512 1024 2 2 ■ 6152
5 1 ,2 512 512 2 2 • 5640
6 0 1024 1024 4 9232
6 1, 2, 3 512 512 1 3 ■ 4356
7 0 1024 1024 4 9232
7 1, 2, 3 512 512 2 3 ■ 5640

T ota l: 188,388

T able 7.6: Per-thread Block Reads, Block Writes, File Copies and Total Disk Block Accesses
Performed by AIPC During Columnsort

118.5% ± 2.0% ± more disk accesses than our prototype. The fact tha t these numbers are

relatively close is not surprising, given that both schemes essentially require all modified

data to be flushed to disk during the CHECKPOINT operation. The extra reads performed by

the file manager threads account for most of this extra cost in AIPC.

If we apply the numbers from table 7.5, we find tha t the total amount of time AIPC

spends accessing disk blocks is 1561.74 seconds executing on a traditional Unix file sys

tem as compared to 295.10 seconds for our prototype executing on a fault-tolerant, LSFS

based system. Thus, AIPC spends approximately 429% more time performing physical disk

accesses than does our prototype.

7.3 Log Clearing

As a fault-tolerant application executes, the RUs will accumulate more and more checkpoints

and logged file system operations. A natural question to ask is: When can a checkpoint

and the associated log entries be deleted?

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

157

The obvious answer to tha t questions is: A checkpoint can be discarded when no recovery

unit will ever be required to restart from it. Since our algorithm does not suffer from

the domino effect (see section 6.3,) we know tha t every checkpoint will eventually become

discardable (see theorem 6.5). We address two questions in this section: “How do we identify

discardable checkpoints?” and “How often should we look for discardable checkpoints?”

7 .3 .1 D isca rd a b le C h eck p o in ts

Identifying discardable checkpoints turns out to be straightforward. A checkpoint is not

discardable if it may potentially be used for restarting a failed process, or if it may be

used for rolling back a non-failed process during failure-recovery. Below, we identify exactly

which checkpoints meet these two criteria.

1. A checkpoint may possibly be used to restart an RU if it is the last checkpoint gen

erated by an RU.

2 . A checkpoint may possibly be used to rollback an RU if the checkpoint timestamp

indicates tha t it happened before the last checkpoint of every other RU, and it is the

latest checkpoint of this RU with tha t property.

Suppose we have a system on N RUs. Associated with each recovery unit RU, is a set of

checkpoints {C^o, Q ,l, • • ■, CliP}. Let T (C ktq) be the vector time associated with checkpoint

Ck,q■ By definition, T(C',io) < T (Q ii) < . . . < T(C',iP). We can state the two conditions

above more formally.

T h e o r e m 7 .1 Checkpoint CkA is discardable i f and only if

V l ^ k , 3 Ck,r , 3 Q iS such that T (C ktq) < T(C k>r) < T(C/)S)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

158

Proof: To prove the “if” part of the theorem, let us assume tha t checkpoints T(Cktq),

rP{Cktr)i T(CitS) exist and tha t T{Ck,q) < T(Ckyr) < T(CitS), I / k. See figure 7.6.

RU,

C k , q ^ k , r

R u k B B-

4

Figure 7.6: Discardability of Checkpoint CktQ

If RUfc fails, it will restart from checkpoint Cklr, since it is the latest checkpoint taken

by the recovery unit. If some other RU/ fails, then RU*, will rollback to Ck,r- Thus, Ck,q

will never be used to restart or rollback an RU, and is thus discardable.

To prove the “only if” part, assume tha t checkpoint Ck,q is discardable. Since this

checkpoint is discardable, RU/- must have some checkpoint with a later timestamp from

which it can restart if it fails. Thus, 3r such tha t T(Ck<q) < T(Ckr). Again, since this

checkpoint is discardable, then for every other RU/, there must exist a checkpoint T(C; s)

such tha t T{Ck,r) < T(C/iS), since RU& will be required to restart from Ck>r- Thus,

T{Ck}q) < T(Ck,r) < T(Cl<s). □

7 .3 .2 P e s s im is t ic an d O p tim istic L o g-C learin g

Theorem 7.1 gives us a predicate tha t indicates whether a particular checkpoint is discard

able. It does not, however, give us an easy way to determine when a particular checkpoint

moves from potentially being needed to discardable. The question arises: “How often should

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

159

we search the list of checkpoints looking for discardable checkpoints?”

Since each new checkpoint generated by a system of RUs can potentially make one or

more checkpoints discardable, one possibility is to search for discardable checkpoints each

time any RU generates a new one. We call this type of search for discardable checkpoints

pessimistic log-clearing.

Another possibility is to search the checkpoint list only after every RU in the system has

generated an additional checkpoint. We call this type of search for discardable checkpoints

optimistic log-clearing.

To evaluate these two methods, we implemented both types of log-clearing in a simple

application. Which of the two methods is used is controlled by a compile time parameter.

The application is a simple producer consumer problem. One set of consumer processes

generates random 2 0 by 2 0 matrices, and writes these matrices to a queue in the file system.

Another set of consumer processes removes these matrices from the queue as they become

available and computes the square of the matrix.

In our particular experiment, we created two m atrix producers and four matrix con

sumers. Each producer checkpointed when it had produced an additional 75 matrices.

Consumers checkpointed each time they had consumed an additional 50 matrices. A total

of 5000 matrices were produced and consumed before the application terminated. After

each pass of the log-clearing algorithm, we calculated the total size of all checkpoints and

log entries in the system.

We ran the application 100 times for both types of log-clearing strategies. Each time

the log-clearing algorithm was invoked, we scanned for and deleted discardable checkpoints,

calculated the total size of the checkpoints and log, and recorded this value in an external

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

160

file. After the 100 executions of the application, we calculated the average size of the log on

each pass of the algorithm. Figure 7.7 shows the average size of the checkpoint and log in

KB, after each pass of the pessimistic log-clearing algorithm, averaged over 100 executions.

pessimistic log cleaning
1000

800

600

Log Size (KB)
400

200

0
20 400 60 80 100

Checkpoint scan number

Figure 7.7: Pessimistic Log-Clearing Average Log Size

The “wave” pattern shown in the figure suggests tha t pessimistic log clearing scans the

list too often, since few of the checkpoint scans succeeded in decreasing the memory used

by the checkpoint/log list.

Figure 7.8 shows the size of the checkpoint/log list when we scan using optimistic log-

clearing, again averaging the total size of the checkpoint and log after each pass over 1 0 0

executions.

While optimistic log clearing decreases the number of scans of the checkpoint list, it

does so at the expense of the average size of the log.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

161

1000

800

600

Log Size (KB)
400

200

0
0 20 40 60 80 100

Checkpoint scan number

F igure 7.8: Optimistic Log-Clearing Average Log Size

7 .3 .3 O p tim a l L og-C lea r in g

Theorem 7.1 suggests an alternative method. Instead of scanning the list after every new

checkpoint is created, or after all RUs have created an additional checkpoint, we run the

checkpoint/log clearing algorithm only when we know a checkpoint has become discardable.

Let {Co,ro, C \.r i , . . . , C^n } be the set of most recently taken checkpoints for all the RUs

{RUo, RUi, . . . , RUi} in the system. Be definition, none of these checkpoints is discardable.

However, we can tell exactly when each of these checkpoints will become discardable. This

occurs when a particular checkpoint is the oldest in the above set, and the process which

owns the oldest checkpoint takes another. By tracking the set of oldest checkpoints, and

watching when the RU which generated the oldest checkpoint takes a new checkpoint, we

know exactly when a particular checkpoint becomes discardable.

This method has two advantages. First, it tells us exactly which checkpoint is discard-

optimistic log cleaning

optimistic

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

162

able, so no other checkpoints need to be inspected. Second, since no other checkpoints need

to be inspected, it eliminates the need to scan the entire list of checkpoints.

Figure 7.9 shows the size of the log when this algorithm is executed. To compare these

three methods, figure 7.10 shows the results of all three experiments superimposed on the

same axes.

optimal log cleaning
1000

optimal

800

600

Log Size (KB)
400

200

400 20 60 80 100
Checkpoint scan number

Figure 7.9: Optimal Log Clearing

7.4 D edicated File System s for Fault-Tolerance

In the design of our prototype, we have assumed tha t the underlying file system is a general

purpose one tha t will be used both for fault-tolerant computing, and normal computation

not requiring the ability to checkpoint the file system. It is interesting to ask if any advantage

could be gained by dedicating a file system to a particular computation tha t requires fault-

tolerance.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

163

log cleaning comparison
1000

5e§simisiH®,
optimistic

optimal800

600

Log Size (KB)
400

200

0
20 40 60 80 1000

Checkpoint scan number

Figure 7.10: A Comparison of Pessimistic, Optimistic and Optimal Log-Clearing Strategies

Imagine a long-running computation with a dedicated fault-tolerant file system, such

as the one in our prototype. This file system could be built on a logical partition of a

physical disk, or it could have a disk dedicated solely to the computation. In such a setup,

the computation would first mount and format the file system. Computation would then

proceed as normal. At the end of the computation, the contents of the file system would be

discarded. The next long-running computation to use the partition or disk would recreate

a virgin file system on the disk for its own use.

Suppose tha t the programmer who designs such a long-running application is able to

calculate the maximum amount of disk space tha t might be used by the application. This

would include not only the space used for files, but also the overhead used by the file system

m etadata and the multiple copies of disk blocks created by the sync() syscall. If a partition

or disk of this size was allocated to the computation, such a computation would never have

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

164

to reuse disk blocks.

The primary advantage is tha t a file system running on such a dedicated disk would not

need to store a list of allocated and unallocated disk blocks. Since, by assumption, the disk

will always have enough free blocks to satisfy allocation requests from the file system for

the duration of the computation, a simple pointer could be used to indicate the location of

the next free block. The pointer itself indicates the location on the disk separating the set

of unallocated blocks from the set of possibly allocated blocks.

Figure 7.11 shows a file system with no freelist. The “free pointer” demarcates the part

of the disk containing possibly used disk blocks (before the pointer) from allocatable disk

blocks (after the pointer.) The unallocated areas of the disk before the pointer represent

data and m etadata for files tha t are not part of any checkpoint. Such files were created and

then destroyed between two successive syncO operations.

free pointer

free pointer

v/mwmw///A
|/ j allocated disk space

unallocated disk space

Figure 7.11: A File System with No Freelist

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The primary advantage of such a setup is tha t it greatly reduces the number of blocks

which need to be written and read during the sync() and ro llb a c k O operations. As

stated in section 7.1, the majority of the costs of these two operations is the number of disk

accesses needed to store or retrieve the freelist bitmap from the disk.

If we eliminate the need for a block bitmap by replacing it with a simple pointer, then

the pointer can be stored in the checkpoint region during a sy n c(). See figure 5.6. This

optimization reduces the cost of both the syncO and ro llb a c k O syscalls to four blocks,

greatly reducing the failure-free overhead of the scheme. In addition, this makes both

operations work in constant time, regardless of the size of the underlying disk.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 8

Conclusion

W hat’s done we partly may compute,

But know not what’s resisted.

Robert Burns, Address to the Unco Guid.

Our work demonstrates tha t it is possible to efficiently and transparently include files

in schemes which use checkpointing and rollback/recovery to provide fault-tolerance, and it

demonstrates tha t the implementation of such a scheme is possible. It includes a working

prototype tha t implements a log-structured file system and the system support necessary

to do application-level thread checkpointing, restart, rollback and rollforward.

In particular, our work extends the class of programs which can be run in a fault-tolerant

manner to those tha t include arbitrary file system operations. Unlike earlier techniques,

it places no a priori restrictions on the type of file operations tha t may be performed by

the programmer. Users are not restricted to any subset of traditional Unix file operations,

nor are file access patterns restricted. In addition, the system does the system expend

166

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

167

computational resources on unnecessary file copying.

In addition, it does not limit the type of checkpointing and rollback/recovery schemes

tha t may be used. The scheme can be used with pure checkpointing, optimistic, pessimistic

and causal recovery techniques and, indeed, any scheme that uses restart and rollforward

through logging to recover system state after a failure.

In addition, we presented a rigorous criterion for bifurcating checkpoints into discardable

and non-discardable sets, and adapted tha t criterion to an algorithm which guarantees

space-optimal checkpoint and log clearing.

8.1 Future Directions

There are several questions raised by our research tha t we believe may be fruitful areas of

study in the future.

• Our scheme is a prototype, and we would like to extend it to a production system.

Can commercially available log-structured or journaling file systems be modified to

use our scheme? If so, what types of modifications are required?

• One im portant module missing in our file system implementation that keeps it from

being applicable to production use is the cleaning daemon. We suspect that a cleaning

daemon could be closely coupled with the log-clearing algorithm (see section 7.3.1.)

Can we apply the same algorithms to file system cleaning as we do to checkpoint and

log cleaning to build an optimal file system cleaner?

• We have already investigated one additional area of application for log-structured file

systems [36]. Can LSFSs be adapted to fault-tolerance schemes tha t do not depend

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

168

on logging to restore state?

Applications which use a distributed model of computation are becoming more critical

to our society’s economic well being and security. As concurrent and distributed workloads

become commonplace (in both pure distributed implementations, and client-server systems)

we believe tha t fault-tolerance will take on even greater importance. We humbly offer our

work to the world.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A ppendix A

SyncO Syscall Im plem entation

i n t v l f s : : s y n c (v e c t o r _ t i m e * & sy n c _ t im e)

{

c h e c k p o i n t * n e w _ c p r = new c h e c k p o i n t ;

ino d e_ m ap * n e w _ im a p ;

v e c t o r _ t i m e * n e w _ v t im e ;

/ / L ock t h e f i l e s y s t e m .

e n te r _ f s (S Y S _ S Y N C) ;

/ / Sync i n o d e s a n d a s s o c i a t e d f i l e s . S k ip u n m o d i f i e d i n o d e s / f i l e s ,

f o r (i = 0 ; i < N.INODES; i+ +) {

i f (i _ l i s t [i] && i _ l i s t [i] - > i s _ t o u c h e d ()) {

i f ((i n o d e _ b l o c k = i n o d e _ l i s t [i] - > s y n c ()) < 0) {

c e r r « " E r r o r s y n c i n g in o d e " « i « e n d l ;

169

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

170

r e t u r n i n o d e _ b l o c k ; / / The e r r o r

>

i m a p - > s e t _ v a l i d _ d (i) ;

i m a p - > s e t _ e n t r y _ d (i , i n o d e _ b l o c k) ;

i _ l i s t [i] - > c l e a r _ t o u c h e d () ;

>

>

/ / Sync im ap a n d make a c o p y . O ld im ap on d i s k m u s t n o t b e m o d i f i e d

/ / f ro m h e r e on i n .

i f ((i m a p _ b l o c k = i m a p - > s y n c (d i s k)) < 0) {

c e r r « " E r r o r " « im a p _ b lo c k « " s y n c i n g im ap " « e n d l ;

r e t u r n e r r ;

>

*new_im ap = new i n o d e _ m a p (* i m a p) ;

/ / Sync v e c t o r t i m e a n d make a copy

i f ((v t i m e _ b l o c k = f s _ v t i m e - > s y n c ()) < 0) {

c e r r << " C a n ’ t s y n c v e c t o r t i m e " « e n d l ;

r e t u r n v t i m e _ b l o c k ;

}

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

171

n e w _ v t im e = new v e c t o r _ t i m e (* f s _ v t i m e) ;

/ / Sync c h e c k p o i n t r e g i o n

/ / F i r s t , a l l o c a t e b i t m a p i n d i r e c t b l o c k s

f o r (i n t i = 0; i < MAX_BITMAP_INDIRECT_BLOCKS; i+ +) {

i n t n e w b lo c k ;

i f ((n e w b lo c k = d - > a l l o c _ b l o c k ()) < 0) {

c e r r « " C a n ’ t a l l o c new b l o c k s f o r b i t m a p i n d i r e c t b l o c k s "

« " d u r i n g s y n c " « e n d l ;

r e t u r n - 1 ;

}

c p r - > s e t _ b i t m a p _ b l o c k (i , n e w b lo c k) ;

}

/ / S e t up p o i n t e r s t o im ap a n d v e c t o r t i m e b l o c k s i n

/ / c h e c k p o i n t r e g i o n .

c p r - > s e t _ i m a p _ d (i m a p _ b lo c k) ;

c p r - > s e t _ v t i m e _ d (v t i m e _ b l o c k) ;

/ / Sync c h e c k p o i n t r e g i o n .

i f ((c p r _ b l o c k = c p r - > s y n c (d i s k)) < 0) {

c e r r « " E r r o r " « e r r « " s y n c i n g c h e c k p o i n t r e g i o n " << e n d l ;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

172

r e t u r n e r r ;

>

/ / Make s u p e r b l o c k p o i n t t o new c h e c k p o i n t r e g i o n on d i s k .

s u p e r . s e t _ c h e c k p o i n t _ d (c p r _ b l o c k) ;

/ / OK, we h a v e a l l o c a t e d a l l t h e b l o c k s we n e e d t o c o m p l e t e t h e s y n c .

/ / Sync t h e b i t m a p . The b i t m a p i n d e x i s s t o r e d i n t h e c h e c k p o i n t r e g i o n .

i f ((e r r = d - > b i t m a p _ w r i t e (c p r - > g e t _ b i t m a p _ b l o c k s _ a d d r ())) < 0) {

c e r r << " E r r o r s y n c i n g d i s k b i tm a p " « e n d l ;

r e t u r n e r r ;

>

/ / Sync s u p e r

i f ((e r r = s u p e r . s y n c (d i s k)) < 0) {

c e r r << " E r r o r " « e r r « " s y n c i n g s u p e r b l o c k " << e n d l ;

r e t u r n e r r ;

>

/ / A t t h i s p o i n t , t h e o l d FS i s s y n c e d t o d i s k . S e t u p new in -m em o ry

/ / c h e c k p o i n t a n d h o o k u p t o s u p e r b l o c k .

/ / Make new c h e c k p o i n t t h e h e a d o f t h e c h e c k p o i n t l i s t b y p o i n t i n g

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

173

/ / i t t o t h e c h e c k p o i n t we j u s t w r o t e t o d i s k .

n e w _ c p r - > s e t _ n e x t _ c h e c k p o i n t _ d (c p r _ b l o c k) ;

n e w _ c p r - > s e t _ n e x t _ c h e c k p o i n t _ m (c p r) ;

/ / New im ap i s a co p y o f o l d , b u t n o t y e t w r i t t e n t o d i s k . Imap

/ / d o e s n o t h i t d i s k u n t i l n e x t s y n c .

n e w _ c p r - > s e t _ i m a p _ d (- 1) ;

n e w _ c p r - > s e t_ im a p _ m (n e w _ im a p) ;

/ / New v t i m e i s a c o p y o f o l d , b u t n o t y e t w r i t t e n t o d i s k . T h i s

/ / v t i m e d o e s n o t h i t d i s k u n t i l n e x t s y n c .

n e w _ c p r - > s e t_ v t im e _ m (n e w _ v t i m e) ;

n e w _ c p r - > s e t _ v t i m e _ d (- 1) ;

/ / Make s u p e r b l o c k p o i n t t o new c h e c k p o i n t r e g i o n i n m emory. A g a in ,

/ / t h i x c h e c k p o i n t r e g i o n i s n o t y e t on d i s k , a n d w o n ’ t b e u n t i l

/ / n e x t s y n c () .

s u p e r . s e t _ c h e c k p o i n t _ d (- 1) ; s u p e r . s e t _ c h e c k p o i n t _ m (n e w _ c p r) ;

/ / Make im ap p o i n t t o new im ap ,

imap = n ew _im ap ;

/ / a n d c h e c k p o i n t t o new c h e c k p o i n t ,

c p r = n e w _ c p r ;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

174

/ / R e t u r n s y n c t i m e

s y n c _ t i m e = new v e c t o r _ t i m e (* n e w _ v t i m e) ;

/ / U p d a te t o t a l s y n c c o u n t .

n s y n c s + + ;

/ / U p d a te nu m b er o f c h e c k p o i n t s t h i s p r o c e s s h a s t a k e n .

p s - > n _ c h e c k p o i n t s _ t a k e n + + ;

r e t u r n 1;

}

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A ppendix B

The CHECKPOINT() Macro

Because checkpointing is done via a C macro, and C-style macros are limited to one line,

each of the following lines (including comment lines) is followed by the C line-continuation

character “\ ” in the actual code. We have omitted tha t character here for clarity.

We use the do { . . . } w h i l e (0) ; construct here to allow the macro to declare macro

local variables outside the scope of the calling application.

d e f i n e CHECKPOINT(fs)

do {

/ * R e g i s t e r s t o r a g e * /

u c o n t e x t _ t ^ c o n t e x t ;

/ * T h r e a d - l o c a l v a r i a b l e a c c e s s * /

p r o c e s s _ s u p p o r t * c u r r e n t _ p s ;

175

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

176

i n t p p o s ;

v e c t o r _ t i m e * s y n c _ t i m e ; / * U sed f o r s y n c * /

i f ((p p o s = f s . l o o k u p _ p r o c e s s (g e t p i d ())) == - 1)

c e r r « " C a n ’ t f i n d p s u p p o r t s t r u c t f o r p r o c e s s "

<< g e t p i d O « e n d l ;

e l s e {

c u r r e n t _ p s = f s . p s u p p o r t [p p o s] ;

/ * D o n ’ t c h e c k p o i n t d u r i n g r o l l f o r w a r d o r r e s t a r t * /

i f (c u r r e n t _ p s - > m o d e == REPLAY)

c o n t i n u e ;

i f (c u r r e n t _ p s - > g e t _ r o l l b a c k _ f l a g ())

c o n t i n u e ;

/ * M ust l o c k f s h e r e s o v t i m e s a r e a t o m i c w i t h i n * /

/ * t h e (s e t u p , s y n c , v t i m e) t r i p l e . I n a d d i t i o n , * /

/ * we h o l d t h e l o c k when we r e t u r n f ro m a * /

/ * f ro m a r o l l b a c k o r r e s t a r t . * /

f s . l o c k _ f s () ;

f s . s y n c (s y n c _ t i m e) ;

c u r r e n t _ p s - > s e t u p _ c h e c k p o i n t (c o n t e x t , s y n c _ t i m e) ;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

177

d e l e t e s y n c _ t i m e ;

f s . c l e a n u p _ c h e c k p o i n t _ l i s t (LOG_CLEARING_MODE) ;

/ * The t h r e a d m a g i c a l l y r e a p p e a r s h e r e a f t e r a * /

/ * r o l l b a c k o r r e s t a r t . * /

g e t c o n t e x t (c o n t e x t) ;

f s . u n l o c k _ f s () ;

>

} w h i l e (0) ;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography

[1] A l f r e d V. A h o , J o h n E. H o p c r o f t , a n d J e f f r e y D. U llm a n . The Design and
Analysis o f Computer Algorithms. Addison-Wesley, 1974.

[2] S r id h a r A l a g a r , R a m k i R a j a g o p a la n , a n d S. V e n k a t e s a n . Integrating files
and processes: A comprehensive approach to checkpointing. In Proceedings of the Fifth
International Conference on Advanced Computing, pages 453-458, Dec. 1997.

[3] LORENZO A lv is i . Understanding the message logging paradigm for masking process
crashes. Ph.D. Thesis, Cornell University, Dept, of Computer Science, 1996.

[4] L o r e n z o A lv i s i a n d K e i t h M a r z u l l o . Message logging: Pessimistic, optimistic and
causal. In Proceedings of the 15th International Conference on Distributed Computing
Systems, pages 229-236. IEEE Computer Society Press, Jun. 1995.

[5] T h o m a s E. A n d e r s o n , M ic h a e l D. D a h l in , J e a n n a M . N e e f e , D a v id A. P a t
t e r s o n , D r e w S. R o s e l l i , a n d R a n d o lp h Y. W a n g . Serverless network file
systems. Operating Systems Review, 29(4): 109-126, Dec. 1995.

[6] MARICE J . B a c h . Design of the Unix Operating System. Prentice Hall PTR, 1987.

[7] A. B o r g , W . B l a u , W. G r a e t s c h , F. H e r r m a n n , a n d W. O b e r le . Fault-
tolerance under unix. AC M Transactions on Computer Systems, 7(1): 1—24, Feb. 1989.

[8] G r e g B r o n e v e t s k y , D a n i e l M a r q u e s , K e s h a v P i n g a l i , a n d P a u l S t o d g h i l l .
Automated application-level checkpointing of mpi programs. In Proceedings of the ninth
AC M SIG PLAN symposium on Principles and practice o f parallel programming, pages
84-94. ACM Press, 2003.

[9] D a v id R. B u t e n h o f . Programming with PO SIX Threads, chapter 3. Addison-Wesley,
1997.

[10] R e m y C a r d , T h e o d o r e Y. T s ’o , a n d S t e p h e n T w e e d ie . Design and implemen
tation of the second extended filesystem. In Proceedings of the 1994 Amsterdam Linux
Conference, 1994.

[11] K . M . C h a n d y a n d L. L a m p o r t . Distributed snapshots: Determining global states
of distributed systems. ACM Transactions on Computer Systems, 3(1):63—75, Feb.
1985.

178

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

179

[12] H. M. P . COUCHMAN. Mesh-refined p m : a fast adaptive n-body algorithm. Astro
physics Journal, 368(23), 1991.

[13] E d s g e r W . DlJKSTRA. Self-stab ilizing system s in sp ite o f d istrib u ted control. Com
munications o f the ACM, pages 643-644, N ovem ber 1974.

[14] E d s g e r W . DlJKSTRA. A belated proof of self-stabilization. Distrib. Comput., 1(1):5—
6 , 1986.

[15] U l r i c h D r e p p e r a n d I n g o M o ln a r . The native posix thread library for linux.
Technical report, Red Hat, Inc., 1804 Varsity Dr., Raleigh, NC 27611, Jan. 2003.

[16] E l m o o t a z b e l l a h . N. E ln o z a h y , L o r e n z o A lv i s i , Y i-M in W a n g , a n d D a v id B.
JOHNSON. A survey of rollback-recovery protocols in message passing systems. Tech
nical Report CMU-CS-96-181, Carnegie Mellon University, Oct. 1996.

[17] E l m o o t a z b e l l a h . N. E ln o z a h y , L o r e n z o A lv i s i , Y i-M in W a n g , a n d D a v id B.
J o h n s o n . A survey o f rollback-recovery protocols in m essage-passing system s. ACM
Computing Surveys, 34(3):375-408, 2002.

[18] E l m o o t a z b e l l a h N. E l n o z a h y a n d W i l l y Z w a e n e p o e l . Replicated distributed
processes in manetho. In Proceedings of the 22nd Annual International Conference on
Fault-Tolerant Computing, pages 18-27, 1992.

[19] R. J. F e i e r t a g a n d E. I. O r g a n ic k . The multics input-output system. In Pro
ceedings of the Third Symposium on Operating System Principles, pages 35-41. The
Association for Computing Machinery, Oct. 1971.

[20] C. J. F id g e . Timestamps in message-passing systems tha t preserve the partial order
ing. In Proceedings o f the 11th Australian Computer Science Conference, pages 56-66,
1988.

[21] C. J. FlD G E. Logical time in distributed computing systems. IEEE Computer,
24(8):28-33, 1991.

[22] D o m in ic G ia m p a o lo . Practical File System Design with the Be File System. Morgan
Kaufmann Publishers, Inc., 1999.

[23] B r ia n G u n t e r , W . C. R e i l e y , a n d R o b e r t v a n d e G e ijn . Parallel out-of-core
cholesky and qr factorizations with pooclapack. In Proceedings of the 15th International
Parallel and Distributed Process Symposium (IPDPS), San Francisco, CA, 2001. IEEE
Computer Society.

[24] B r ia n G u n t e r , B. D. T a p le y , a n d R o b e r t v a n d e G e ijn . Advanced parallel least
squares algorithms for grace data processing. In Proceedings of the 15th International
Association of Geodesy (IAG) Conference, Budapest, Hungary, 2001. International
Association of Geodesy.

[25] D . HlTZ, J . L a u , AND M . M a lc o lm . File system design for an nfs file server appli
ance. In Proceedings of the Winter 1994 USENIX Technical Conference, pages 235-245,
San Francisco, CA, Jan. 1994. The USENIX Association.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

180

[26] D o n a l d K n u t h . The A rt of Computer Programming, Volume 3: Sorting and Search
ing, chapter 5. Addison-Wesley Publishing, Company, San Francisco, CA, 2nd edition,
1998.

[27] H. S. M. KRUIJER. Self-stabilization in tree structured systems. Information Process
ing Letters, 8(2):2-79, 1976.

[28] L e s l i e L a m p o r t . Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):223-228, Jul. 1978.

[29] L e s l i e L a m p o r t . 1983 invited address: Solved problems, unsolved problems and
non-problems in concurrency. In Proceedings o f the third annual A CM symposium on
Principles o f distributed computing, pages 1-11. ACM Press, 1984.

[30] B. L a m p so n . Atomic transactions. In Distributed Systems: Architecture and Imple
mentation, B. Lampson, M. Paul, and H. Seigert, editors, volume 105 of Lecture Notes
in Computer Science, chapter 11, pages 246-265. Springer-Verlag, 1983.

[31] T o m L e ig h t o n . Tight bounds on the complexity of parallel sorting. In Proceedings
of the sixteenth annual AC M symposium on Theory of computing, pages 71-80. ACM
Press, 1984.

[32] C h i-Y i L in , S z u -C h i W a n g , a n d S y -Y e n K u o . An efficient time-based check
pointing protocol for mobile computing systems over mobile ip. Mob. Netw. Appl.,
8(6):687-697, 2003.

[33] M i c h a e l J. L it z k o w , M ir o n L iv n y , a n d M a t t h e w s M u t k a . Condor - a hunter
of idle workstations. In The Eighth International Conference on Distributed Computing
Systems, pages 104-111, San Jose, CA, Jun. 1988. IEEE Computer Society Press.

[34] M i c h a e l J. L it z k o w a n d M a r v in S o lo m o n . Supporting checkpointing and pro
cess migration outside the unix kernel. In Proceedings o f the Winter 1992 USENIX
Conference, pages 283-290, San Francisco, CA, 1992. The USENIX Association.

[35] F. MATTERN. Virtual time and global states of distributed systems. In Parallel and
Distributed Algorithms: Proceedings of the International Workshop on Parallel and
Distributed Algorithms, Michel Cosnard et al., editors, pages 215-226, Gers, France,
Oct. 1988. Elsevier Science Publishers B.V.

[36] R o b e r t M a t t h e w s a n d P h i l K e a r n s . On-line rollback in log-structured file sys
tems. In Proceedings of the ISC A 16th International Conference on Computer Ap
plications in Industry and Engineering, pages 11-16. The International Society for
Computers and Their Applications - ISCA, 2003.

[37] JEAN M a y o . Global state predicates in rough real time. Ph.D. Thesis, The College of
William and Mary, Dept, of Computer Science, 1997.

[38] M a r s h a l l K ir k M c K u s ic k , W i l l ia m N. J o y , S a m u e l J. L e f f l e r , a n d
R o b e r t S . F a b r y . A fast file sy stem for unix. ACM Transactions on Computer
Systems, 2(3) :181—197, Aug. 1984.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

181

[39] ROBERT H. B . N e t z e r a n d JlAN X u . N ecessary and sufficient cond itions for con
sisten t global snap sh ots. IEEE Trans. Parallel and Distributed Systems, 6(2): 165-169 ,
Feb. 1995.

[40] J o h n K. O u s t e r h o u t , A n d r e w R. C h e r e n s o n , F r e d e r i c k D o u g l i s ,
M i c h a e l N . N e l s o n , a n d B r e n t B . W e l c h . T h e sprite netw ork operating system .
IEEE Computer, 21(2):23-36, 1988.

[41] J o h n K. O u s t e r h o u t , H e r v e D a C o s t a , D a v id H a r r i s o n , J o h n A K u n z e ,
M ik e K u p f e r , a n d J a m e s G. T h o m p so n . A trace-driven analysis of the unix 4.2
bsd file system. In Proceedings of the 10th Symposium on Operating System Principles,
pages 15-24. ACM, 1985.

[42] J a m e s S. P l a n k , M ic a h B e c k , G e r r y K in g s l e y , a n d K a i L i. Libckpt: Transpar
ent checkpointing under unix. In Proceedings of the Winter 1995 USENIX Technical
Conference, San Francisco, CA, Jan. 1995. The USENIX Association.

[43] F r a n c e s c o Q u a g l i a a n d A n d r e a S a n t o r o . Cel v3.0: Multiprogrammed semi-
asynchronous checkpoints. In Proceedings of the seventeenth workshop on Parallel and
distributed simulation, page 21. IEEE Computer Society, 2003.

[44] B. R a n d e l l . System structure for software fault tolerance. In Proceedings of the
International Conference on Reliable Software, pages 437-449, 1975.

[45] S r ir a m R a o , L o r e n z o A lv is i , a n d H a r r ic k M. V in . The cost of recovery in
message logging protocols. IEEE Transactions on Knowledge and Data Engineering,
12(2): 160-173, M ar./A pr. 2000.

[46] D. M. RITCHIE AND K. T h o m p so n . The unix time-sharing system. Communications
of the ACM, 17(7):365-375, July 1974.

[47] M e n d e l R o s e n b lu m . The Design and Implementation of a Log-Structured File Sys
tem, chapter 6 . Kluwer Academic Publishers, Norwell, MA, 1995.

[48] M e n d e l R o s e n b lu m a n d J o h n K. O u s t e r h o u t . The design and implementation
of a log-structured file system. In Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, volume 25 of ACM SIGOPS Operating Systems Review,
pages 1-15. ACM, Oct. 1991.

[49] D. L. R u s s e l l . State restoration in systems of communicating processes. IEEE
Transactions on Software Engineering, SE-6:193-194, Mar. 1980.

[50] N a g iz a F. S a m a t o v a , A l G e i s t , G e o r g e O s t r o u c h o v , a n d A n a t o l i V.
M e le c h k o . Parallel out-of-core algorithm for genome-scale enumeration of metabolic
systemic pathways. In Proceedings of the 16th International Parallel and Distributed
Processing Symposium, page 249. IEEE Computer Society, 2002.

[51] C . H . SCHILLING, D . L e t s c h e r , a n d B . O . P a l s s o n . T heory for the system ic
defin ition o f m etab olic pathw ays and their use in interpreting m etab olic function from
a pathw ay-oriented p erspective. The Journal of Theoretical Biology, 203:286-306, 2000.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

182

[52] R ic h a r d D. S c h l i c h t i n g a n d F r e d B. S c h n e id e r . Fail-stop processors: an ap
proach to designing fault-tolerant computing systems. AC M Trans. Comput. Syst.,
l(3):222-238, 1983.

[53] M a r c o S c h n e id e r . Self-stabilization. ACM Computing Surveys, 25(1):46—67, Mar.
1993.

[54] S . S c h u s t e r , T . D a n d e k a r , a n d D . A . F e l l . D etection o f elem entary flux m odes
in b iochem ical networks: A prom ising to o l for pathw ay analysis and m etabolic engi
neering. Trends in Biotechnology, (2):53-60 , 1999.

[55] M. S e l t z e r , K. B o s t i c , M. K. M c K u s ic k , a n d C. S t a e l i n . An implementation
of a log-structured file system for unix. In Proceedings of the Winter 1993 USENIX
Technical Conference, pages 307-326, San Francisco, CA, Jan. 1993. The USENIX
Association.

[56] R . E. S t r o m a n d S. A. Y em in i. Optimistic recovery in distributed systems. ACM
Transactions on Computer Systems, 3(3):204-226, Aug. 1989.

[57] H y TRAC AND U e -L i P e n . O ut-of-core hydrodynam ic sim u lation s for cosm ological
applications, accepted by New Astronomy, 2004.

[58] S t e v e n T w e e d y . Journaling the linux ext2fs filesystem.
http :////w w w . kemel.org/pub/linux/kernel/people/sct/ext3/.

[59] X ia o -H u i W e i a n d J iu -B in Ju . Scr algorithm: Saving/restoring states of file systems.
AC M SIGOPS Bulletin, 33(l):26-33, Jan. 1999.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

183

VITA

Robert Edwin Matthews

Robert (Bob) Matthews was born and raised in Wapello, Iowa, where he graduated from

Wapello High School in 1980. He received a B.A. degree with a major in Mathematics from

Simpson College in Indianola, Iowa in 1984.

After serving for two years as a U.S. Peace Corps volunteer in the Republic of Botswana,

he enrolled in the M aster’s degree program at Iowa State University in Ames, Iowa, where

he received an M.S. degree in Computer Science in 1989.

He served as an Instructor and Assistant Professor of Computer Science at Armstrong

State College (now Armstrong Atlantic State University) in Savannah, Georgia from 1989 to

1995. In 1995, he entered the College of William and Mary as a graduate teaching assistant

in the Department of Computer Science.

Prom 2000 to 2002, he was an engineer at Red Hat, Inc. in Raleigh, North Carolina.

Bob defended his dissertation in August of 2004. Currently, he resides in Raleigh where he

is an Assistant Professor of Computer Science at St. Augustine’s College.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	Files as first-class objects in fault -tolerant concurrent systems
	Recommended Citation

	tmp.1539734415.pdf.R4lzo

