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ABSTRACT

Our research considers job scheduling, a special type of resource assignment problem. 
For example, at a cross-docking facility trucks m ust be assigned to doors where they will 
be unloaded. The cargo on each truck has various destinations within the facility, and the 
unloading time for a truck is dependent on the distance from the assigned door to these 
destinations. The goal is to assign the trucks to doors while minimizing the amount of 
time to unload all trucks.

We study scheduling algorithms for problems like the cross-docking example that are 
different from traditional algorithms in two ways. First, we utilize real-time, where the 
algorithm executes at the same time as when the jobs are handled. Because the time used 
by the algorithm to make decisions cannot be used to complete a job, these decisions must 
be made quickly. Second, our algorithms utilize lookahead, or partial knowledge of jobs 
that will arrive in the future.

The three goals of this research were to demonstrate that lookahead algorithms can be 
implemented effectively in a real-time context, to measure the amount of improvement 
gained by utilizing lookahead, and to explore the conditions in which lookahead is bene­
ficial.

We present a model suitable for representing problems that include lookahead in a real­
time context. Using this model, we develop lookahead algorithms for two important job 
scheduling systems and argue that these algorithms make decisions efficiently. We then 
study the performance of lookahead algorithms using mathematical analysis and simula­
tion.

Our results provide a detailed picture of the behavior of lookahead algorithms in a 
real-time context. Our analytical study shows that lookahead algorithms produce sched­
ules that are significantly better than those without lookahead. We also found that uti­
lizing Lookahead-1, or knowledge of the next arriving job, produces substantial improve­
ment while requiring the least effort to design. When more lookahead information is used, 
the solutions are better, bu t the amount of improvement is not significantly larger than a 
Lookahead-1 algorithm. Further, algorithms utilizing more lookahead are more complex 
to design, implement, and analyze. We conclude that Lookahead-1 algorithms are the best 
balance between improvement and design effort.

xvi
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Chapter 1

Introduction

1.1 Resource Assignment Problems

We study the design and analysis of lookahead algorithms for resource assignment prob­

lems. The goal of these problems is to satisfy a sequence of requests for a limited resource. 

For a typical problem, the number of valid assignments is large, and only a portion of the 

potential solutions can realistically be considered. The challenge is to develop an efficient 

heuristic that produces quality solutions with high regularity. Traditionally, online algo­

rithms have been used, however there has been interest recently in semi-online algorithms, 

specifically lookahead algorithms.

As an example of a resource assignment problem that could benefit from lookahead, 

consider a national shipping company with a cross-docking terminal. At this facility, 

trucks arrive carrying cargo destined for multiple locations. When a truck is unloaded, 

the cargo is sorted according to its destination and loaded onto another truck that will 

take the cargo toward to its destination. To maximize the num ber of unloading/loading 

doors, cross-docking terminals are typically long, thin rectangular buildings. As a result, 

the distance cargo travels within the building can be quite large, depending on the door

2
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CHAPTER 1. INTRODUCTION  3

assignment of the in-coming and out-going trucks. We define the unloading time for a 

truck to be the amount of time necessary to move the cargo from the arriving door to the 

out-going doors. Because this time is determined by the distance between doors, we use 

the distance and time interchangeably.

In addition to this distance consideration, assigning trucks to unloading doors is a 

challenging task because there are typically more trucks to unload than unused doors. 

Thus, we have a resource assignment problem where the unloading doors are a limited 

resource and the trucks are the requests. This example is further complicated because 

the trucks arrive throughout the day, changing the available information when making 

scheduling decisions. Together, the dynamic unloading times and transient arrivals make 

it very difficult to create an assignment of trucks to doors that minimizes the time to unload 

the trucks for a given day.

In a real-world cross-docking environment, the assignments are usually performed us­

ing a simple algorithm such as First Come, First Serve (FCFS). Whenever a door becomes 

free, the first available truck is assigned to the door. This method is particularly problem­

atic because the variable unloading times of the trucks are not considered. For example, 

if an unloading door at the extreme end of the facility becomes available, a waiting truck 

with cargo destined for that end should be selected rather than the first truck in line. Unlike 

FCFS, an algorithm such as the Shortest Job First (SJF) heuristic takes this type of optimiza­

tion into account by considering all waiting trucks. When a door becomes available, the 

waiting truck with the shortest unloading time is assigned. However, the SJF algorithm 

can still make sub-optimal decisions because it does not consider trucks arriving in the 

future. If only a single truck is waiting, the SJF algorithm will assign it, even if a more
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CHAPTER 1. INTRODUCTION  4

appropriate truck is about to arrive.

Although the use of future arrivals will improve the quality of the assignment, we must 

be careful to include this information in a realistic way. It is not possible to predict individ­

ual truck arrival times far into the future because the travel times are constrained by many 

external forces such as traffic. However, it is certainly realistic for a driver to contact the 

cross-docking facility when he is within a few minutes of arrival. Thus, a lookahead algo­

rithm, using this partial knowledge of the future, can make better assignments than either 

the FCFS or SJF methods by considering both the dynamic and transient characteristics of 

the trucks.

The cross-docking example demonstrates a number of the key features of resource as­

signment problems. Specifically, we have a finite resource (the doors), demand on the re­

source (trucks to unload), and a goal to minimize some cost (the time to unload the trucks). 

These features also occur in a number of common problems in Computer Science:

• Paging: There is a system with fast memory of capacity k and slow memory of un­

limited capacity. A set of n > k pages is stored in this system with k pages in fast 

memory and the remaining n — k pages in slow memory. A page request is satisfied if 

the page is in fast memory, otherwise a page fault occurs and we must remove one of 

the k pages from fast memory and replace it with the requested page. For a sequence 

of page requests, the goal is to minimize the number of page faults.

• List Update: Given a list of items in an unsorted list, the input is a sequence of re­

quests. The cost to access any item is its position in the list. When the 1th item is 

accessed, it can be moved to any position j  < i at no additional cost. The goal is to
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CHAPTER 1. INTRODUCTION  5

minimize the total cost to access the items requested.

• The fc-Server Problem: We have a set of k servers which move around a finite set of 

points in metric space in order to satisfy requests. Each request may only be satisfied 

if a server is at the location. Given the distances between each pair of points and a 

sequence of request locations, the goal is to minimize the total distance traveled by 

all servers.

• Job Scheduling: We are particularly interested in this broad area of problems and use 

examples within this field to explain our lookahead model and algorithms, such as 

the cross-docking problem. In a typical job scheduling problem, the goal is to assign 

n jobs to execute on m  machines while minimizing a metric related to the completion 

times of one or more jobs. The model can be made arbitrarily complex with the 

addition of other job and machine characteristics. For example, it is common to give 

each job an arrival time or to specify performance qualities for the machines.

1.2 Algorithms

A solution to any of these resource assignment problems can be seen as a sequence of de­

cisions. Any algorithm that assigns trucks to unloading doors in the cross-docking model 

must choose a door for each truck. Because there are more trucks than doors, at least one 

door will be assigned to more than a single truck. Therefore, the algorithm must also spec­

ify both a door and the order trucks will be unloaded at that door. It should be apparent 

that the number of possible assignments grows exponentially in the number of trucks.
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CHAPTER 1. INTRODUCTION  6

This explosive growth in number of possible solutions relates to each of the resource 

assignment problems described above, and means it is unrealistic to consider all possible 

solutions. At the same time, a fundamental result in NP-completeness theory states that an 

algorithm that does not consider all possibilities cannot guarantee that it always produces 

the optimal solution. Since we cannot calculate the best assignment, the typical approach is 

to utilize a clever local condition to make decisions that appear to be favorable. However, 

for any such heuristic there is at least one instance of the problem where these seemingly 

good decisions turn out to be bad ones.

Recall the goal in the cross-docking model is to assign trucks to doors in a manner 

that minimizes the time to unload all trucks. As discussed above, the SJF algorithm is 

one reasonable heuristic that considers the available trucks and assigns each to the door 

on which it can be unloaded the fastest. This approach, called a greedy method, can be 

shown to have very poor performance for certain sequences of trucks.

1.2.1 Online and O ffline Algorithms

The SJF algorithm used in the cross-docking example is called an online algorithm be­

cause each request was handled without considering any of the future requests. One of 

the main benefits of online algorithms is that they can be used in situations where the re­

quests become available over time. Although the algorithm makes decisions very quickly, 

considering each request in isolation does not produce an optimal solution because future 

trucks are not considered.

At the other extreme, an offline algorithm considers all of the requests when making a 

decision. One simple example is a method that considers the arrival time and unloading
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CHAPTER 1. INTRODUCTION 7

time of each truck at each door and picks the truck and door pair that will unload the soon­

est. By repeating this process, all trucks are assigned to doors. It should be obvious that 

this algorithm will produce solutions that are, in general, better than an online technique. 

However, because this procedure does not consider all possible assignments, we know it 

cannot be optimal. Note, however, that the optimal algorithm is, by definition, an offline 

algorithm.

1.2.2 Semi-Online Algorithms

Although we would like to utilize offline algorithms, we believe that realism is a stronger 

requirement. In most resource assignment problems, it is inconceivable that the algorithm 

knows about all the requests. However, it is reasonable to assume that partial information 

is available. Using this information, a semi-online algorithm makes decisions that create 

better solutions that pure online algorithms.

Semi-online information takes on a wide variety of forms, not constrained to knowl­

edge about individual requests. For example, in the paging problem, if we knew the last 

time each page would be referenced, a semi-online approach would be to evict each page 

immediately after its last reference. This algorithm still considers the requests in order, but 

it uses the additional information to make better decisions.

Lookahead is another type of semi-online approach that augments an online algorithm 

by considering a finite number of future requests in addition to the current request. In the 

paging example, when a page fault occurs, lookahead can be used to eliminate pages from 

consideration for eviction. That is, a page that will be referenced in the near future should 

not be evicted.
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We believe that lookahead is an important type of semi-online approach, however, it 

m ust be considered in a realistic way. Specifically, lookahead is most relevant when time 

is included in the model.

1.2.3 Real-Time Algorithms

In a real-world problem, requests do not occur all at once, but rather arrive over time. Fur­

ther, decisions regarding these requests are made while other requests continue to arrive. 

For example, in the fc-server problem, when a request occurs, if one or more servers are 

available, the algorithm will either pick a server to satisfy the request or hold the request 

to be satisfied later. This decision is made by considering the status of each server, the 

queue of other requests waiting to be satisfied, and, if lookahead is available, the requests 

that will arrive in the future.

Although the decision process is substantially more complex, we believe the inclusion 

of real-time is fundamentally im portant in the creation of useful algorithms for resource 

assignment problems. To study these real-time algorithms, we consider their performance 

using two metrics. First, as with all approximation algorithms, we want to know how 

well the algorithm creates solutions. This study is done through theoretical analysis and 

simulation. Second, it is important to consider the running time of these algorithms. By 

waiting until a server is available, the algorithm has more information and can make better 

decisions. However, time used to make decisions cannot be used to satisfy requests, and 

therefore, the running time of a real-time lookahead algorithm m ust be minimized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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1.3 Contributions

Although lookahead has been used to improve solutions to a number of resource assign­

ment problems, very few authors include time in the model, and no one has considered the 

running time of algorithms. Therefore, we are motivated to study lookahead algorithms 

that make decisions in a real-time context.

In the cross-docking model, if trucks call in shortly before arriving at the facility, a 

lookahead algorithm can use this information to create a better assignment. Specifically, as 

trucks arrive, they are either assigned to a door immediately, or they enter a queue to wait 

for an available door. Whenever a door becomes available, the algorithm considers the 

trucks waiting in the queue as well as the trucks that will arrive in the near future. To be 

consistent with our real-time constraint, these decisions have to be made quickly, without 

calculating all possible assignments.

1.3.1 R esu lts

We consider the design and analysis of lookahead algorithms for real-time resource assign­

ment problems like the cross-docking example. Our first major contribution to the field is 

a general model describing how to include lookahead to support the real-time concept 

and to facilitate fast decision making. This model, discussed in Chapter 3, works for any 

resource assignment problem where requests arrive over time.

In the remaining chapters, we use our general model and discuss lookahead algorithms 

for the specific resource assignment problem of job scheduling, of which the cross-docking 

problem is a special case. In Chapter 4, we develop two lookahead algorithms for im­
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portant scheduling models. The goal of this chapter is to consider whether lookahead 

algorithms that operate in a real-time context can be designed to make decisions quickly. 

We show that algorithms that always know about the next single job satisfy this time- 

constraint. However, for two lookahead jobs and beyond, the running time can be pro­

hibitive to real-time execution.

Another important question regarding lookahead algorithms is the quality of solu­

tions. Because we will not always produce the optimal schedule, the primary question 

is how far we will be from optimal. In Chapter 5, we consider this question with theoret­

ical study. Borrowing the standard technique called competitive analysis from the study 

of online algorithms, we measure the worst-case performance of algorithms for a simple 

parallel machine scheduling model. Chapter 6  continues this study by using simulation 

to measure the average-case performance of lookahead algorithms. In both chapters, we 

demonstrate that algorithms with lookahead produce significantly better schedules than 

algorithms without lookahead.

This work is a collection of many medium-sized results rather than a small number of 

large results. Although the main chapter headings talk about algorithm design and anal­

ysis, we also spend time giving a qualitative measure of our algorithms. When discussing 

algorithm development in Chapter 4, we give a proof of correctness for our algorithm and 

then discuss the trade-off between am ount of improvement and difficulty of developing 

the algorithm. In Chapter 6  on our simulation study, we give numerical measurements 

and then discuss the circumstances in which improvement will occur. By combining these 

quantitative and qualitative measures, our results give a detailed picture of the behavior 

of lookahead algorithms in a real-time context.
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Chapter 2

Related Research

2.1 Motivation

As discussed in Chapter 1, our research builds upon previous work in the areas of online, 

offline, and semi-online algorithms. Of these three approaches, semi-online algorithms is 

the most relevant, because we consider lookahead algorithms. Although most of the work 

in this area has occurred in the last decade, Graham [42] studied one semi-online algorithm 

as early as 1969. His paper was quite innovative, as it also contained a rudimentary form 

of competitive analysis, one of the primary techniques used to study online algorithms.

Our research differs from previous work in two ways. First, time plays a central role in 

our model. That is, the algorithm makes decisions in the context of flowing time, and there­

fore the moments used to make decisions are lost. We maintain that for these algorithms to 

be truly useful, decisions must be made in the real-time context. To our knowledge, only 

Mao and Kincaid [79] consider the running time of the algorithm.

The other way our work is unique is our combination of theoretical and simulation 

study applied to lookahead algorithms. Most authors consider either theoretical analysis 

or simulation results, very few consider both. We feel that a combination of worst-case

11
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theoretical analysis and average-case evaluation gives a better picture of the performance 

and behavior of an algorithm.

Our combination of lookahead and real-time is applicable to any resource assignment 

problem where time is a component. However, we focus our study on job scheduling prob­

lems because the field continues to receive significant research attention, and it is a perfect 

example of a resource assignment problem where lookahead in the real-time context is ap­

plicable. In addition, semi-online scheduling, and in particular lookahead scheduling has 

received only limited attention. Our research seeks to fill this gap while also considering 

algorithms in a real-time context.

In the remainder of this chapter, we survey the relevant previous work. The next sec­

tion contains a review of the literature related to traditional online and semi-online algo­

rithms. This is followed by a discussion of competitive analysis, the standard measure of 

an online algorithm. The chapter concludes with a survey of job scheduling algorithms, 

with particular attention to lookahead scheduling algorithms and the job scheduling mod­

els we consider in our research.

2.2 Online and Semi-Online Algorithms

The study of online algorithms [56, 61] can be traced back to the sixties [42], and since 

then research in the area has exploded. A representative example is online bin packing 

[25, 38, 39], for which a number of online algorithms were proposed and analyzed from 

the early seventies to the early nineties [31,58,78,87,52].

Since then, there has been a limited but gradually increasing interest in semi-online
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algorithms. The most common type of semi-online algorithm is a lookahead algorithm [64, 

65]. An algorithm utilizes lookahead if it examines one or more of the next requests when 

deciding how to make the current assignment. In the literature [2, 4], weak lookahead 

of size k means that the algorithm can foresee the next k requests following the current 

request being processed. On the other hand, strong lookahead with bound k means that 

the algorithm can foresee the next I requests, where this value is determined by a pre­

selected function /  that gives a close approximation to k. Most of the past research results 

use one of these two definitions of lookahead. For example, Grove [44] and Breslauer [16] 

studied a weak lookahead algorithm for bin packing which considered the current value 

as well as all the future items up to a certain cost. Other areas where lookahead has been 

utilized are graph coloring [54,59,66,13,14,53], list update [5,95,8 8 ], the fc-server problem 

[22], and paging [2,4,12, 70,102,67,37,55,97,104]. Note that in each of these cases, time 

is not a part of the model. The only exception is a study by Aksoy et al. [1] who considered 

lookahead in a data broadcast model.

Recently, some other variations of the semi-online algorithms have been studied. In 

situations where each request has a size larger than the next in the sequence, an algorithm 

is semi-online if it is aware of the fact that the input is sorted [93]. In conventional online 

and semi-online algorithms, requests m ust be processed in the order given in the input 

sequence, regardless of how much is known about the input ahead of time. When this 

restriction is removed, however, the decision to satisfy each request may be delayed by 

introducing a fixed-size buffer into the algorithm. When the algorithm is processing a 

request, it need not make an immediate decision, but instead may store the request in 

the buffer and proceed to the next [62]. Finally, Azar and Regev [8 ] studied a variant of
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the bin packing problem called bin-stretching. In this problem, items were placed into a 

fixed number of bins that could stretch to accommodate more items. The authors studied 

algorithms that already knew the optimal size of the bins.

2.3 Algorithm Analysis

For both online and semi-online algorithms, the primary question is how well the algo­

rithm performs. Mathematical analysis of these algorithms faces a unique problem when 

attempting to measure this performance. Traditional worst-case analysis leads to the con­

clusion that no matter how clever the algorithm, the result is always bad. Consider the 

problem of paging. Regardless of which paging algorithm is applied, there exists a se­

quence of page references such that a page fault occurs for every reference in the sequence. 

With such a measure, it is impossible to compare various algorithms. Motivated by this 

limitation, Sleator and Tarjan [96] developed a method to compare online algorithms. 

Competitive analysis [15] (named by Karlin et al. [60] and formalized by Manasse et al. 

[77]), compares the worst case performance of an algorithm with the performance of an 

optimal offline algorithm for the same sequence.

Formally, let A be an algorithm for a given problem. Further, let /  be an instance for 

the problem and let A(I) and OPT(/) be the values of the objective function given by the 

algorithm and the optimal algorithm, respectively. Then the algorithm A  is said to be c- 

competitive if for all I,

A(I) < c - OPT (I) +  a
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When a =  0, the algorithm is said to be strictly c-competitive.

Another way to think about competitive analysis is as a game between two players. 

Player one is the algorithm. Player two is an adversary who produces the requests given 

to the algorithm. The adversary's goal is to create the highest cost (value of the objective 

function) possible and it has the benefit of knowing the method used by the algorithm to 

make decisions. Therefore, for each request, the adversary can determine the answer that 

will produce the highest cost.

When giving a proof of a competitive ratio, the typical approach is to give a proof of 

a lower bound and a proof of an upper bound. When these two values are equal, we 

have a tight ratio. As Karp discussed [61], lower bound proofs are frequently given with 

an adversary argument while proving upper bounds requires more advanced analysis. 

In general, it is easier to find a lower bound since all that is needed is an example that 

produces this bound.

As an alternative to competitive analysis, a number of sources discuss using random­

ized algorithms [84, 70,103], where decisions are made based on a coin flip or some other 

chance event. In our research, we focus only on deterministic algorithms.

2.4 Job Scheduling

In the two previous sections, we surveyed general results related to online and semi-online 

algorithms. We now turn to our specific area of interest, job scheduling, one of the largest 

sources of resource assignment problems [43, 71,34,18,85]. To define these problems, we 

use a three field classification a\j3\y where a  specifies the machine environment, j3 denotes
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the job characteristics, and 7  specifies the optimality criteria. This classification scheme 

was originally proposed by Graham et al. [43] and later extended to include provisions for 

multimachine jobs [99,34].

Generally speaking, we have a set of n  jobs, J \ . . .  Jn , to schedule on m  machines, 

M i. . .  Mm, and the goal is to minimize a time related criteria. Each job Jj  has an asso­

ciated processing time p j  and once a job is scheduled, we know its completion time Cj.  

The most general problem of interest is P \r j  \ ^  Cj,  where P  means that we have m  ma­

chines of the same speed, rj designates that jobs have arrival times, or the earliest times 

the jobs may be scheduled, and ]T Cj means we are trying to minimize the sum of all of the 

completion times. This example of the classification notation introduces some important 

types of a,  (3, and 7  parameters. Other notation will be explained as necessary.

Although scheduling results exist for a variety of models [43, 71, 28, 72,17, 24, 34,46, 

36,18], our interests are in online and semi-online algorithms. The literature of scheduling 

algorithms parallels that of general online algorithms. Online job scheduling stems from 

the seminal paper by Graham [42], who studied the problem P \ ICmax and developed what 

he called list scheduling. For this problem, the goal is to minimize the maximum comple­

tion time, and since the jobs do not have an arrival time, Graham determined to create a 

list of the jobs and schedule them in order. Note that this is the first example of an online 

algorithm for job scheduling [94, 80]. The work of Graham is also the first study of semi­

online algorithms. Given that the jobs are in a list, a natural step is to sort the list. Graham 

proposed to sort the list by processing times with pi > pi+\ for all i > 1. He showed an 

algorithm with a ( f  — 3^ )  competitive ratio.

Other semi-online scheduling algorithms include those of Seiden et al. [93] who looked
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at a number of job scheduling problems for two and three identical machines. By assuming 

the jobs were sorted in decreasing size, the authors produced a number of tight compet­

itive ratios for minimizing Cmax. Similarly, Zhang and He [49] studied P2\\Cmax for two 

different assumptions about the jobs. First, they gave a tight competitive ratio for the case 

when processing times were between p and rp (p > 0 ,r < 1). Second, they assumed the 

largest processing time was known. In this case, they showed that this additional knowl­

edge does not change the ratio originally given by Graham [42],

Liu et al. [76] studied P2\\Cmax and PSllCmax under the assumption that processing 

times are not known until after the job is assigned to a machine. However, it is known 

that processing times decrease throughout the sequence of jobs. They showed that the 

competitive ratio is |  for 2 machines, and |  for 3 machines.

Another form of semi-online algorithm was given by Zhang [106] for the problem 

P2||C'max- The algorithm processed the jobs in order, but instead of being forced to sched­

ule each job on one of the machines, it could place the jobs in a fixed size buffer. In this way 

decisions could be delayed. Kellerer et al. [62] also considered this model and additionally 

studied an algorithm that produced two schedules and chose the better.

Note that for each of these studies, jobs do not have arrival times. Therefore, the prob­

lems represent the traditional framework where all requests are available at once rather 

than the real-time framework we advocate.
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2.5 Lookahead Scheduling

Within the larger field of job scheduling, we focus on lookahead algorithms in a real-time 

context. In the literature, a number of results use the term lookahead, however, these defi­

nitions differ from ours. For example, Sarkar et al. [89] studied lookahead as applied to a 

number of resource assignment problems. For these problems, the authors conceptualized 

a tree representing the possible decisions for an algorithm. In this context, lookahead was 

defined as traversing the tree a certain number of levels.

Motwani et al. [81] studied a scheduling problem that closely represented a copy sys­

tem. Each job required multiple passes through the machines, where each pass needed 

the same processing time. The goal was to minimize the makespan, but all jobs in the 

schedule had to start and complete in the order they arrived. An offline algorithm for this 

problem could produce the optimal schedule and the authors showed that by using finite 

lookahead, a solution close to optimal could be created.

A number of authors have applied lookahead to alternative scheduling models. Gue 

[45] studied the cross-docking model discussed in Chapter 1 where jobs represented freight 

trucks. These trucks had to be assigned to unloading bays and the cargo on the trucks 

moved to out-going trucks. The bay assignment of the incoming truck determined the 

distance the cargo had to move to the out-going trucks. The goal was to minimize the 

distance the cargo moved. Gue defined lookahead to be examining the contents of each 

truck before assigning it to a bay.

Beaty [10, 11] studied a variant of job scheduling where it is possible to create non- 

feasible schedules. In this case, lookahead was used to increase the chance a feasible
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schedule was produced. Yu et al. [105] studied a lookahead algorithm for pause-resume 

video-on-demand.

Many alternative models have been studied through simulation rather than analysis. 

For example, Winckler [101] studied a distributed algorithm for scheduling using looka­

head, Koulamas and Smith [69] examined lookahead applied to a variant of a shop model, 

and Schaerf [90] and Cristofari et al. [30] studied various scheduling models using Al 

techniques with lookahead to create schedules.

In contrast to all these definitions of lookahead, in our research, jobs arrive over time. 

Therefore, lookahead is defined as having knowledge of a job before it arrives. Very few 

previous results have used this definition of lookahead. Li et al. [75] and Li et al. [74] stud­

ied lookahead algorithms for two different parallel machine models with communication 

costs through simulation. The work of Mao and Kincaid [79] is the only scheduling re­

sult using lookahead in a real-time context that gives an analytical study. For the problem 

l |r i IX  Cj/ the authors analyzed an algorithm with knowledge of the next arriving job and 

presented a |( n  +  1) competitive ratio. Our research expands on this work by including 

simulation and considering additional scheduling models.

2.6 Scheduling Models

In this last section, we survey the results for the specific models used in our research.
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2.6.1 Single Machine Scheduling

The problem l |r j |  Cj is one of the fundamental scheduling problems. Jobs arrive over 

time to be scheduled on a single machine. The goal is to minimize the total completion 

time. This is equivalent to minimizing the average wait time since Cj =  rj 4 - dj +pj where 

dj is the delay for the job, or the time between its arrival and when it begins execution. 

Note that for any job, rj and pj are constant.

The offline version of this problem is known to be NP-hard [72] and many approxi­

mation algorithms have been proposed. Dessoukey and Deogun [33] gave a branch-and- 

bound algorithm, Deogun [32] showed a partitioning scheme, Chand et al. [20] offered 

an improved branch-and-bound method, Gazmuri [40] did a probabilistic analysis, and 

Ponser [8 6 ] showed that a greedy method gives optimal solutions under certain condi­

tions. Chu [23] demonstrated algorithms making local optimal conditions. Finally, Mao et 

al. [80] analyzed the SJF and FCFS algorithms and showed that both have a competitive 

ratio of n.

The offline preemptive version of the problem can be solved in polynomial time [9], Us­

ing this schedule, Kellerer et al. [63] showed how to construct a non-preemptive schedule, 

sometimes called a relaxation. The authors demonstrated this method has a competitive 

ration of Q(y/n) ratio. Other relaxation methods were proposed by Chekuri et al. [21] and 

Hall et al. [48,47],

In all preceding cases, the competitive ratio was a function of n. Hoogeveen and Vest- 

jens [51] presented the first algorithm with a constant competitive ratio. With this algo­

rithm, jobs are held until they could have finished and then they are scheduled. By de­
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laying jobs in this way, short jobs can be scheduled before long jobs to create a better 

schedule. The authors demonstrated this algorithm has a competitive ratio of 2. Ander­

son and Potts [6 ] extended this idea to weighted completion times while still retaining the 

ratio of 2. Goemans [41] used a similar waiting technique, however his algorithm only pro­

duced a 2.415 competitive ratio, van Stee and La Poutre [98] used the waiting technique 

while allowing restarts. Finally, Epstein and van Stee [35] discussed lower-bounds for the 

problem.

Although these recent results give a constant competitive ratio, the average case of the 

algorithm is significantly worse than the simple Shortest Job First rule. For any sequence 

of jobs, these algorithms produce approximately twice the amount of wait as the optimal 

because every job is delayed. As we discuss in Chapter 6 , waiting is only beneficial when 

long jobs are delayed to wait for short jobs. These algorithms delay all jobs, causing un­

necessary wait.

2.6.2 Identical Parallel Machine Scheduling

The second model we study is a generalization of l \ r j  \ Cj where we have m  identical 

machines on which to schedule the jobs. This problem is denoted P \r  j  | J2  Cj and has been 

studied extensively both online and offline [71,46] beginning with Bruno et al. [19]. More 

recently, Leonardi and Raz [73] showed that no approximation algorithm can achieve a 

competitive ratio better than OJn,1/3” 6). For this reason, much interest has been given 

to preemptive scheduling [83, 7, 3], although, as noted above, a number of semi-online 

algorithms have been considered recently [106,49,76,93,42,62].

In general, research on this problem has considered variations such as communication
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costs [94,36]. In part, this is because the problem has so many real-world uses. We do note, 

however, that the Shortest Job First algorithm has not been studied either analytically or 

through simulation in the literature.

2.6.3 Unrelated Machine Scheduling

For the final model we study, we have the most general parallel scheduling problem. In 

this case, R\rj \  Cj,  each of the to machines Pi has a potentially different processing time 

Pij for each job Jj.  This means that each machine can execute any of the jobs, but the time 

required can vary. The cross-docking example discussed in Chapter 1 and described by 

Gue [45] is an excellent real-world example of this model. Appendix A discusses cross­

docking in more detail.

For the general model, Phillips et al. [82] gave the first approximation algorithm with 

a competitive ratio of 0(log2 n). Flail et al. [48] gave the first constant ratio of 16/3, and 

this was improved upon by Schulz and Skutella using randomization [92,91]. Vredeveld 

and Hurkens [100] offered empirical studies of a number of these algorithms. In each case, 

the algorithms run offline and have super-linear running time. Jansen and Porkolab [57] 

developed a linear-time algorithm when to is fixed. Hoogeveen et al. [50] showed that no 

algorithm can have a competitive ratio arbitrarily close to 1.

2.7 Discussion

Although many of the concepts involved have been used previously, our research repre­

sents a new, more realistic approach to lookahead job scheduling. Our model is centered
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around the real-time concept, and as a result, our definition of lookahead is more natural. 

In addition, our use of both theoretical, worst-case analysis and simulation-based average- 

case evaluation gives a more complete understanding of the behavior of our algorithms.
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Chapter 3

A Model for Lookahead Algorithms

3.1 Introduction

Model building is an important part of algorithm development. The model places an al­

gorithm in the appropriate context by describing the under-lying assumptions. In this 

chapter, we present our first major result, a model suitable for any resource assignment 

problem to be solved by a lookahead algorithm in a real-time context.

The utilization of real-time in a lookahead algorithm causes our model to be more com­

plex than those used w ith a traditional algorithm. For an offline algorithm that has access 

to all of the requests, the model is simply a data structure holding the requests that allows 

random access. Likewise, with an algorithm that considers each request in order, we sim­

ply have a queue of requests. However, with a lookahead algorithm in a real-time context, 

the requests arrive over time and the algorithm considers a combination of unsatisfied 

requests and future requests.

In this context, we are interested in job scheduling, a representative resource assign­

ment problem. We will define our model in terms of a general job scheduling problem 

where we have n  jobs to schedule on m  machines. Associated with each job Jj ,  is a pro-

24
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Figure 3.1: Our model for lookahead scheduling in a real-time context consists of a lookahead 
queue and a wait queue plus two processes. One handles queue maintenance and the other make 
scheduling decisions.

t

cessing time pj and an arrival time ry, the earliest time the job may execute. The goal is 

to create a schedule that executes all n  jobs that minimizes a time-related criteria such as 

the maximum completion time or total completion time. Although we have selected job 

scheduling to describe the lookahead model, it is applicable for any resource assignment 

problem in the real-time context.

In Figure 3.1, we have a snapshot for an instance of a job scheduling problem. In the 

schedule at the bottom of the figure, t represents the current moment in time, with the 

light gray area representing the past. Scheduling decisions have been made such that 

some machines are currently busy, designated by dark gray jobs. However, since we know 

the processing time of each job, we know when that machine will be available again.

Above the schedule are the two queues. An important consequence of making deci­

sions in real-time is that requests arrive over time and might not be satisfied immediately. 

In this case, the request is placed in the wait queue, Qw, and processed later. In the figure,
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we have a set of jobs J\ through Jj that have arrived, but have not been scheduled. The 

order of the wait queue is an im portant property and is discussed in Section 3.2.

The second queue maintains information about lookahead. Because the requests have 

not formally occurred, they cannot be assigned. However, knowledge of these requests 

allows the algorithm to make a more informed decision. In the figure, Qla contains the 

set of jobs that have not arrived but have been predicted. Along with each of these jobs is 

its arrival time, rj. The question of how  jobs are predicted is discussed in section 3.2.2.

The existence of these two queues creates additional administrative concerns. For ex­

ample, requests must be moved from the lookahead queue to the waiting queue at the 

appropriate time. Although these are important activities, they are, for the most part, dis­

joint from the task of creating a good assignment. For that reason, we have separated 

these tasks into a queue maintenance process. The details of this separation are discussed 

in Section 3.3.1.

The final portion of the model, and arguably the most important, is the algorithm that 

makes decisions about when to satisfy each request. Because we consider job scheduling, 

the algorithm uses the information available in both queues to create an assignment of jobs 

to machines. In the figure, this is represented by the movement of the first job in the wait 

queue to the schedule. In section 3.3.2, we discuss why the algorithm always selects the 

first job and other relevant design considerations.

Together, the two queues and the two processes describe a complete model for repre­

senting resource assignment problems to be solved by lookahead algorithms in a real-time 

context. In the remainder of this chapter, we discuss each component of the model in more 

detail, using the specific resource assignment problem of job scheduling as a motivating
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example.

3.2 Queue Design

The wait queue, Qw, and the lookahead queue, Qla, hold jobs before they are scheduled. 

The most important design issue concerning the wait queue is the order of the jobs. To 

build the lookahead queue, we m ust decide how future jobs are discovered.

3.2.1 Wait Queue

In Figure 3.1, Qw is the wait queue that holds jobs that have arrived but have not been 

scheduled. By sorting the queue in certain ways, we can guarantee that the scheduling 

algorithm always selects the first job in the queue when it decides to schedule a job. This 

results in a scheduling algorithm with faster running time.

If the goal is to minimize the average wait time over all jobs, Conway [28] proved that 

for a given set of jobs that have already arrived, the smallest average wait time is produced 

by scheduling the jobs using the Shortest Job First rule. Therefore, the waiting queue will 

be sorted by processing time with the shortest at the head if the goal is to minimize the 

average wait time.

Conversely, if the goal is to minimize the total time necessary to complete all jobs, we 

will sort the wait queue so that the largest job is at the head. Graham [42] showed that this 

will be optimal for a given set of jobs.
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3.2.2 Lookahead Queue

As Figure 3.1 depicts, jobs enter the wait queue by first passing through the lookahead 

queue, Qla - This auxiliary queue contains jobs Jj+i through Jj+a that will arrive in the 

future. These jobs cannot be scheduled because they have not arrived. Therefore, it makes 

sense to sort this queue by arrival time. When a job is predicted, it is added to the end of 

the queue, and by the time its arrival time occurs, it will have moved to the head.

The prediction of jobs m ust be done in a realistic way. For example, in the cross­

docking system introduced in Chapter 1, it is reasonable that trucks can use radio com­

munication to announce their arrival time when they are within a short distance of the 

cross-docking warehouse. Likewise, a facility that uses a combination of an appointment 

book and "walk-in," or spontaneous sessions, can also be viewed as utilizing lookahead. 

In this case, the appointments are predicted before they occur and the others are never 

predicted.

We consider two mathematical methods for predicting jobs. In the first approach, the 

lookahead queue always contains the next k incoming jobs for some constant k > 1. Let t 

be the current time and let Jj+i , . . . ,  Jn be the jobs which have not arrived. Further, assume 

that ri+ 1 < r ; + 2  < ■ •. < r„. In this case, the jobs i j + i . . .  ij+fe form the lookahead queue. 

For any sequence of n  jobs, Qla  always holds k jobs until job Jn-k  arrives. At this point, 

there are no additional jobs to add to Qla  and the queue size will decrease until the last 

job arrives.

Another method for creating the lookahead queue is to lookahead A time units, where 

A is a pre-selected constant similar to k. Let the current time be t. Then the lookahead
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queue will contain all the jobs arriving between time t and time f + A. For a sequence of 

n jobs, the number of jobs in the lookahead queue can be as large as n when all jobs have 

arrival times less than f+A ,  or it can be as small as zero in the case that the earliest arriving 

future job has an arrival time greater than t + A.

No matter which of the two methods is used to define the lookahead queue, the choice 

for the constants k or A determines the amount of future information available to the 

scheduler.

3.3 Control Processes

Our discussion of the design for the wait and lookahead queues talked about the mainte­

nance that m ust occur for each queue. The other important aspect of our model is the two 

processes that perform this work. We have a process P q  that handles the tasks related to 

queue maintenance, and a second process, Ps, that makes scheduling decisions. This is a 

natural separation because the tasks are essentially disjoint. As discussed in section 3.2, 

by sorting the wait queue in a way appropriate to the goal, the scheduler always chooses 

the first job in the queue. Thus, the scheduler only needs read access to the queues, and 

it directs the queue maintenance process to remove the job when it makes a scheduling 

decision.

3.3.1 Queue Maintenance

The task of moving jobs in and out of the two queues and keeping the queues in the correct 

order is the task of process P q ,  represented in Figure 3.1 as arrows into Qla and between
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Qla and Qw- Specifically, P q  moves jobs out of Qw for execution, moves jobs out of Qla 

and adds them to Qw when the arrival times of the jobs occur, and adds jobs to Qla when 

this information becomes available. Process P q  is also responsible for keeping the sorted 

orders in the queues. Typically, the lookahead queue is ordered by increasing arrival times 

and the wait queue may be ordered by processing times, arrival times, or priorities of the 

jobs in the queue, depending on the algorithm adopted by the scheduler.

3.3.2 Scheduler

The scheduler is called each time a scheduling decision must be made. This occurs in two 

situations, when a job arrives and at least one machine is idle, and when a job completes 

execution and the wait queue is not empty. As a result, the decision-making is partitioned 

into multiple executions of the same algorithm. The purpose of this algorithm is to choose 

whether to schedule a particular job or to wait for the next job to arrive, based on the 

information available in Qw and Ql a -

Making these decisions effectively is a very difficult task. From a mathematical per­

spective, the problem is NP-hard regardless of the optimality criteria because the looka­

head jobs have arrival times [72]. We are further challenged by the fact that the algorithm 

only knows about a portion of the jobs that will arrive in the future. Together, these fac­

tors mean that any real-time algorithm will only produce an approximation of the optimal 

schedule.

A good approximation is a greedy approach because the goal is to minimize the ob­

jective function over the entire schedule. This type of algorithm makes locally optimal 

decisions with the idea that the cumulative schedule will be close to the true optimal. In
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the case of our job scheduling model, we define the local optimal in terms of the known 

jobs in Qw and Qla- We assume that no further jobs will arrive. Under this assump­

tion, our algorithm has the same information as an offline algorithm that knows the entire 

sequence of jobs.

Using this information, the algorithm m ust decide whether the local-optimal schedule 

is produced by executing a job in the wait queue or waiting for a job in the lookahead 

queue to arrive. Discovering a technique to make this decision was a major goal of our 

research.

A naive but straight-forward method is to generate all possible schedules of the jobs 

in Qw and Qla, evaluate the objective function for each schedule, and then identify the 

one with the minimum value. The scheduler then makes its decision consistent with this 

local-optimal schedule. The scheduler chooses to execute a job from Qw  at time t if the 

best schedule executes and it decides to wait if the best schedule waits.

Unfortunately, this brute-force method is not realistic. The machine remains idle, wait­

ing for the algorithm to decide whether to wait or schedule, resulting in exponential run­

ning time. We are therefore motivated to develop an algorithm smarter than the naive 

method which makes optimal local decisions in linear, logarithmic or constant time. Our 

ultimate goal is to achieve constant time by developing a local condition containing pred­

icates derived from the characteristics of the jobs in Qw and Ql a - The satisfaction of the 

local condition implies that waiting at t is always better than executing a job in Qw or vice 

versa. If such a local condition exists, the algorithm can make the optimal local decision 

without calculating all possible schedules.

For some job scheduling problems, the sub-problem of deciding whether to wait or
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schedule may be NP-hard. Because it will be impossible to find the optimal local solution 

quickly, we will be forced to develop an approximation algorithm for the local optimal 

decisions. In either case, the technique used to decide whether to wait or schedule is our 

primary interest.

3.4 Discussion

The lookahead model we have described is a new, more realistic approach to job schedul­

ing because scheduling decisions are made in the context of time. By holding unscheduled 

jobs in a wait queue, we can alter the order of assignment and consequently create a bet­

ter schedule. In addition, lookahead is a middle ground between the all-knowing offline 

algorithm and the short-sighted online algorithm.

Using this model, we consider two fundamental research questions. First, how can we 

use the information in Qw and Qla to create better schedules? We use a greedy method 

to make the decision that appears to be the best at each given time instant. Second, can we 

implement this decision process in constant time? The execution time of the algorithm is 

an important consideration because the amount of time used to make scheduling decisions 

affects the execution of the jobs. We consider both of these questions in the following 

chapters.
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Chapter 4

Lookahead Algorithm Design

4.1 Overview

In the previous chapter, we presented a general model for utilizing lookahead algorithms 

to solve resource assignment problems in a real-time context. In this chapter, we focus on 

the scheduling process in the lookahead model. Specifically, we demonstrate how to im­

plement a lookahead algorithm efficiently for two fundamental job scheduling problems.

For both of the scheduling problems, there are n  jobs, and associated with each job, 

Jj, is a processing time, pj, and arrival time, rj. We assume that, through the lookahead 

queue, we always know the arrival time and processing time of one or more of the next 

arriving jobs, called the lookahead jobs. For both problems, the goal is to minimize the 

sum of completion times.

As discussed in the previous chapter, it is not possible to create the optimal schedule 

because a lookahead algorithm used to make each decision does not have knowledge of 

all of the jobs. Instead, we use a greedy heuristic to incrementally create a schedule that is 

an approximation of the optimal. When a job arrives and a machine is idle, the algorithm 

executes and decides whether to schedule that job or to hold it until another job arrives.

33
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Likewise, when a job completes and there are jobs waiting, the algorithm must decide 

whether to execute the first job in the wait queue or wait.

To construct a complete schedule for n  jobs, the decision whether to wait or schedule 

is made multiple times. It is important to point out that the algorithms we present execute 

once for each of these decision. This is a significant departure from a traditional algo­

rithm that executes outside of time and creates the entire schedule in one execution. Our 

algorithm executes in real-time and m ust complete execution before any job may begin. 

Therefore, each decision must be made quickly.

For a conservative algorithm that never holds a machine idle when there is a job wait­

ing, the execution time of the algorithm is typically not long. For example, the Shortest Job 

First (SJF) algorithm always executes the job w ith the smallest processing time and never 

decides to wait. Therefore, scheduling decisions are made in constant time, assuming the 

wait queue is sorted appropriately. In the offline version of the problem where the jobs do 

not have arrival times, this method produces the optimal schedule [28].

Although the SJF algorithm works well when all jobs are available at once, it can easily 

be fooled into making bad decisions when the jobs arrive over time. In a one machine 

environment, if the machine becomes idle and a very long job is the only one in the wait 

queue, the SJF algorithm executes this long job. However, if a short job is about to arrive, 

a better schedule is to wait for the short job to arrive, schedule it, and then schedule the 

long job. In this example, the SJF algorithm's lack of foresight causes it to make a poor 

scheduling decision.

A lookahead algorithm, by comparison, creates a better schedule because it has knowl­

edge of jobs that arrive in the near future. This complicates the decision process because
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the scheduler must determine whether it is more beneficial to wait for a job or to schedule a 

job in the wait queue. For our model, this decision process is broken down into three steps. 

First, the algorithm assumes that no jobs will arrive other than those already in the looka­

head queue. With this assumption, the problem is reduced to an offline problem because 

the scheduler has knowledge of all jobs. Second, the algorithm calculates the objective 

function for "waiting" and "non-waiting" schedules. The former is the optimal schedule 

of all unscheduled jobs produced after a job is scheduled immediately and the latter is the 

optimal schedule produced after waiting for the first lookahead job to arrive. In the final 

step of the process, our algorithm determines which schedule produces the smaller objec­

tive value. If the waiting schedule is better, the algorithm decides to wait, otherwise the 

algorithm schedules the smallest job in the queue1.

For this process, the second step requires the most explanation. Given a set of jobs, 

there are an exponential number of feasible schedules, even after the first decision to wait 

or schedule is specified. Because the algorithm executes in real-time, it is not reasonable 

to calculate all these schedules for both the waiting and non-waiting cases. Instead, we 

present conditions that can be evaluated quickly by inferring the optimal waiting and not- 

waiting schedules, usually without considering each of the jobs in the two queues.

In the next section, we discuss a Lookahead-1 algorithm for a two machine system and 

the running time of this algorithm. In the following section, we develop a Lookahead-2 

algorithm for the single machine environment. Finally, we discuss the exponential running 

time of a Lookahead-fc algorithm.

1Conway's result can easily be extended to show that the shortest job will be executed even though some 
of the jobs have arrival times.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. LOOKAHEAD ALGORITHM DESIGN 36

Figure 4.1: When a decision must be made in the two machine system, the Lookahead-1 algorithm 
has access to jobs Jx through Jj in the wait queue plus job Ji+i with its arrival time rj+i in the 
lookahead queue.
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Figure 4.2: In the waiting schedule, machine Mx remains idle from time t to ri+i and then executes 
Jj+1. After this job completes, the algorithm schedules the jobs in the wait queue in order.
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Figure 4.3: In the non-waiting schedule, the algorithm chooses to schedule J\ on Mi  immediately. 
During its execution, Jj+i arrives and is added to the wait queue. When J\ completes execution, 
the algorithm schedules all of the jobs in the wait queue in order.
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4.2 A Lookahead-1 Algorithm for Two Machines

In the job scheduling problem P2\rj\  £3 Cj,  we have two machines, M \  and M 2 on which 

we want to schedule n  jobs, each of which has an associated arrival time ry, and a process­

ing time pj.  The goal is to minimize ^  Cj, the sum of the completion times for all n  jobs, 

also called the total completion time.

In addition to the queue of waiting jobs, our algorithm always has access to the arrival 

time and processing requirements of the next job to arrive. In Section 4.2.1, we describe a 

method to decide between waiting and scheduling that typically does not consider every 

job in the wait queue.
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Figure 4.1 shows a representative instance of the problem. At time t, machine M* is 

idle and M2  will become idle at time t'. We have a set of jobs J\ through J; in the wait 

queue, and a job Jj+ 1 in the lookahead queue that will arrive at time ri+ 1 > t. The task of 

the algorithm is to decide whether to execute job J\ immediately or to wait for job «7j+i to 

arrive.

To understand how the algorithm works, consider Figures 4.2 and 4.3 that show the 

schedules produced as a result of each of the possible decisions. Comparing these two 

schedules, we notice that the even indexed jobs are scheduled in order on one machine 

and the odd indexed jobs (with the exception of J\) are scheduled in order on the other 

machine. This observation is the key to our algorithm, and allows it to make decisions 

without calculating either schedule entirely.

This helpful pattern occurs because the jobs are scheduled in order from shortest to 

longest. In the non-waiting schedule in Figure 4.3, job J 2  starts the alternating sequence 

because it is the job that begins execution before time t' and completes after. Because p$ > 

P2 , when J 3  is scheduled on M2 , its completion time is necessarily after the completion 

time of J 2 . likewise, J 4  is scheduled on Mi and completes after J 3  and, because each job 

is longer than the previous, the alternating pattern continues through job J\.

This pattern occurs in both the waiting and non-waiting schedules, although it may be 

that the groups are on opposite machines in each schedule. It is also possible for a single 

job at the beginning of the sequence to remain on the same machine in both schedules. 

Regardless, the details of the alternation can be determined w ithout calculating the entire 

schedule, and using this information, we can decide which schedule creates a smaller total 

completion time. Consequently, our algorithm can quickly determine whether to wait or
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schedule, an important consideration in a real-time context.

Throughout the algorithm presented below, we use t to refer to the current time and, 

w ithout loss of generality, refer to the idle machine as M x. The time when machine M2  

becomes available is t '. In the pseudo-code, "schedule" means that Jx is executed on Mx 

starting at time t. Accordingly, "wait" means that Mi is idle from t to ri+x. Further defini­

tion will be given in the next section.

Procedure Lookahead 

if Qw is empty 

then return 

if Qla is empty 

then schedule 

else if one of the following conditions is true

(1) t > t'

(2) t < t ' and pi < A

(3) t  < t‘, pi > A, and n +x > t'

(4) t < t!r Pi > A, n +i < t', and pi+x > px

(5) t < t', pi >  A, n +1 < t', Pi+1 < Pi, and A + pl+x > px

then schedule

else i f t+ p i  > t'

then if t + A +  pi+x < t' /  / case [T|

then if ( 1  +  |B|)A +  (|U| -  \C\ -  1) min{t' -  t,p x -  pi+x} 

+(\B \- \C \)( t+ p l+x- t ' ) > 0
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then schedule 

else wait 

else if t +  A +  pi+\ > t7/ /case [2 ]

then if |B |A  +  (|C7| — |I?|)min{f7 — t,p i — } > 0

then schedule 

else wait 

else if t +  pi < t'

then if t +  A +  pi+i +pi > t‘/ / case [3 ]

then if (1 +  \B\)A + pi+i - p i  + (\C\ -  \B\ + lJmaxfO,^ -  t - p i +1 -  pt,} > 0

then schedule 

else wait

else if t + A +  pi+1 +p\ < t' / / case [4 ]

then if ( |^ | +  |B|)A +  ̂ +1 - p i  + (\C\ -  \B\ + l)m ax{0 ,f - t -  ~ Pb\ > 0

then schedule 

else wait

4.2.1 Theoretical Justification of the LAI Algorithm

The goal of this section is to demonstrate that the various conditions presented in the 

Lookahead-1 algorithm are both necessary and sufficient when making scheduling deci­

sions. That is, we want to show that the algorithm can successfully determine to wait 

or schedule w ithout considering every possible schedule. To do so, we break the overall
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structure of the algorithm into three parts. The first two conditions address the algorithm's 

decision when one of the queues is empty. The next condition, broken into five cases, spec­

ifies decisions we call "obvious." In the last four conditions, the algorithm m ust analyze 

the alternating pattern to make its decision. In this section, we consider these three possi­

bilities in turn.

Our algorithm is executed when a machine becomes idle or when a job arrives and 

there is already an idle machine. Obviously, if Q w  is empty, then we m ust wait and if Q l a  

is empty, then we should schedule. The first two conditions of our algorithm represent 

these actions.

Because there is no work to do when either queue is empty, from now on, we make the 

following assumptions, without loss of generality, about the state of the queues:

• The wait queue Qw contains 1 jobs, all of which have arrived but have 

not been scheduled. These jobs are ordered by non-decreasing processing times: 

Pi < - -  - <Pi-

• The lookahead queue Qla contains the next in-coming job J;+1 with processing time 

pi+ 1 and arrival time ri+ 1 > f.

Using this notation, we next consider some cases in which the choice to schedule J\ is 

obvious. Without loss of generality, assume M\ is idle at time t and we need to make a 

scheduling decision. Recall that this can occur either because a job completes execution or 

because a job arrives. Also, let t' be the time when M2  becomes idle and let A =  r;+i — t > 0 

be the amount of time before the lookahead job arrives, called the waiting period.
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« t > if: When both machines are idle, it does not make sense to make both wait. The 

lookahead algorithm executes J \ .

• t < t' and pi < A: When the processing time of J\ can fit into the waiting period 

without increasing the completion times of other jobs, scheduling J\ on M\ is an 

obvious choice.

• t < t', pi > A, and r/+i > t': In this case, Jj+i arrives after t'. If Mi is kept idle, then 

at time t' both machines are idle and we have the first case. Therefore, Ji is executed 

at t to yield a smaller completion time.

• t < t', pi > A, ri+ 1 < if, and pi+i > py. Because pi+i > pi, if the algorithm waits, 

then when Jj+i arrives, it is placed in the queue somewhere behind J i. Therefore, 

the jobs are scheduled in the same order regardless of whether or not the algorithm 

waits. It follows that starting the sequence of jobs at time t rather than r;+i produces 

a schedule with a smaller total completion time. Therefore, the algorithm executes

Ji-

• t < if, pi >  A, ri+i < if, pt+i < pi, and A +  pi+i > pi: The sum of the completion 

times for Ji and Ji+i in the waiting and non-waiting schedules is 2 ■ (t+ A +pi+i) +pi 

and 2 • (t +  p{) + pi+i respectively. If A +  pi+i > pi, it follows that the non-waiting 

schedule has a smaller total completion time. When A +  pi+i — pi, the machines 

next becomes idle at time min{f + pi,1f} in both schedules. However, in the waiting 

schedule, Ji is at the head of the queue while in the non-waiting schedule Ji+i is 

the shortest available job. It follows that we produce a smaller total completion time 

with the smaller set of waiting jobs. Therefore, when A + p*+i > pi, we execute Ji-
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W henf < t',p i > A, r;+i < f ',p ; + 1 < p i ,a n d  A + p *+ 1  < p i, the decision whether or not 

to wait requires further consideration. Using information about the relationship between 

Ji, Ji+i, and if, we further break the remaining possibilities into four cases:

• t +  pi > if and t + A +  pi+\ < if: In the non-waiting schedule, J\ completes after t' 

and in the waiting schedule, Jj+i completes before if.

• t + pi > t' and t +  A +  p;+i > if: In the non-waiting schedule, J\ completes after t' 

and in the waiting schedule, J;+i completes after t'.

• t + pi < if and t +  A +  pi+i +  pi > t': Note that the conditions in this case imply 

that t + A + pj+i < t'. In the non-waiting schedule, J\ completes before t' and in the 

waiting schedule, Jj+i completes before t' and J\ also completes on Mi but after if.

• t + pi < t' and t + A +  pi+i + pi < t': In the non-waiting schedule, J\ completes 

before if and in the waiting schedule, both J\ and 1 complete before if.

Note that these four cases cover all the remaining possibilities. We consider each pos­

sibility in a lemma using the following definitions. First, we define three job sets based 

on the waiting schedule. Set A contains all jobs on Mi which start after n + 1  and complete 

before t'. Note that A  may be empty. Set B  contains jobs on Mi following A. Let be 

the first, and therefore the shortest job in B. Finally, set C contains jobs on which start 

after t'. Note that because the jobs are scheduled in the order of non-decreasing processing 

times, jobs B = {J&, J&+2 , J&+4  ...}  are scheduled on M\ and jobs C =  {Jb+i, J&+3 , Jb+ 5  

are scheduled on M2 . It follows that we have \B\ = \C\ or |B| =  \C\ +  1.
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Figure 4.4: In Lemma 4.1, Ji+\ completes before time t' in the waiting schedule. Depending on the 
lengths of J\ and J(+1, there are two possible non-waiting schedules, one where Ji+i completes 
before J\, and one where it completes after J\.
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Define a function diff, which gives the difference between the total wait times of a 

set of jobs in the waiting schedule and the non-waiting schedule (under consideration). 

Thus, if ... ,Ji, Ji+i}) > 0, the lookahead algorithm chooses to schedule, and if

diff{{Ju ... ,Ji, J;+x}) < 0, the algorithm chooses to wait.

Lemma 4.1 Suppose t < t', pi > A, ri+ 1 < t', pi+ 1 < pi, and A + pi+i < pi- In addition, 

t + Pi > t' and t +  A +  pi+ 1 < t'. The lookahead algorithm chooses to schedule J\ on Mi at t if 

and only if (1 +  |J3|)A +  (|J3| -  \C\ -  l)m in{t' - t , p i - p i +i} + {\B\ -  \C\)(t + pi+i - 1') > 0.

Proof: To prove the lemma, all we need to show is that

diff({Ju . . . , J h Jl+1}) =  ( l+ |B |)A + ( |i? |- |(7 |- l)  mha.{t>—t,p i—pi-i-i}+(\B\—\C\)(t+pi+i—tl).

Figure 4.4 shows the waiting schedule and two possible non-waiting schedules. In the 

waiting schedule, after waiting from t to rj+i, M\ executes the shortest job available, Ji+i- 

Because t + A +  pi+i < t', Ji+\ finishes before t'. Note that because t + pi > t', J\ finishes 

after t'. Also, |A| =  1 containing Ji+\.
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If t' + pi+i < t+ p i,  then the first possible non-waiting schedule occurs and we have 

the following equations for the disfunction.

diff(A) = t + A -  t',

diff(B) =  |-B|(A + P1+1 ), and 

diff{C) = \C\(-pi+1).

Summing up, we get

diffdJi, Ji+i}) = (1 +  \B\)A  -  { t ' - t )  + {\B\ -  \C\)pl+l.

Because t' + pi+1 < t +  pi, min{f' -  t,pi -  pi+i} — t ' - t .  Also, {\B\ -  \C\)pi+i = (|B| -  

\C\)(t + pl+1 -  t') +  (|B| -  \C\){t' -  t). Therefore,

d i f f ( { J i , - J i + il)  =  (1 + |B |)A + (|B |- |C |-1 )  mm{t’- t , Pl- p l+1}+(\B\-\C\)(t+pl+1-t') .

ltt'+ p i+1 > t+ pi, then the second possible non-waiting schedule occurs, and we have 

the following equations for the diff function.

diff(A) = t + A - t ' ,

i}) =  A + pl+u 

diff(B -  {Jx}) =  (|jB| -  l)(t + A +  px -  t'), and 

diff(C) = \ C \ ( t ' - t - Pl).
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Figure 4.5: In Lemma 4.2, J/+1 completes execution after time t' in the waiting schedule. Depend­
ing on the lengths of J% and Ji+i, there are two possible non-waiting schedules, one where Ji+i 
completes before J%, and the other where it completes after J\.
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Summing up, we get

Ji+1}) =  (1 +  \B\)A  -  (Pl -  Pt+1) + (\B\ -  \C\)(t + p i~  tf).

B ecausef'+pi+i > t +  pi,m in{f' - i , p i  ~p/+i} =  pi ~Pi+i- Also, {\B\ -  \C\)(t +p1 - 11) = 

(|B| -  \C\)(t + pi+i - t 1) +  (\B\ -  \C\)(px -  p h i)- Therefore,

diff{{Jl, • • ■, Jl, Jl+i}) = ( l+ I^ D A + d S l-IC I- l)  m m {tf-t,Pl- p l+1}+(\B\-\C\)(t+pl+1-tf).

Lemma 4.2 Suppose t < tf, p\ > A, rj+i < tf, pj+i < Pi/ and A +  pi+i < Pi- dn addition, 

t +  pi > t' and t +  A +  p;+i > tf. The lookahead algorithm chooses to schedule J\ on M\ at t  if 

and only if \B\A + (|C| -  |B|) min{t' -  f,Pi -  pi+i} > 0.

Proof: To prove the lemma, all we need to show is that

dijf{{Ju . . . , J h Ji+i}) =  |5 |A  +  dC| -  \B\)min{tf - t , p i  -pi+ i}.
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Figure 4.5 shows the waiting schedule and two possible non-waiting schedules. In the 

waiting schedule, after waiting from t to r;+1, Mi executes the shortest job available, Ji+i- 

Because t +  A +  pj+i > t', Jj+i finishes after t'. Also, A  is empty and J;+x is the first (also 

the shortest) in B.

If t' + pi+i < t  + p\, where the first possible non-waiting schedule occurs, we have the 

following equations for the disfunction.

diff{B) =  \B\(t +  A — t'), and

diff{C) = \C \{ t'- t) .

Summing up, we get

Ji+i}) -  \B\A +  (|C| -  \B[)(t! - 1).

Because t' + pi+1 < t + pi, min{f' — t,pi — p/+i} = t' — t. Therefore,

diff{{Ju . . . , J h JW }) = \B\A + (|C-| -  | B\)min{t' -  t ,Pi -  pl+l}.

If t' +  pi+1 > t+ p i ,  where the second possible non-waiting schedule occurs, we have 

the following equations for the diff function.

diff{{Jx}) = t ' - t ,

i+i}) = t + A  —tf, 

diff{B -  {Ji+i}) = (|B| -  1)(A +  pl + 1 -  pi), and
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Figure 4.6: In Lemma 4.3, «J;+i completes execution before time t' in the waiting schedule. Depend­
ing on the lengths of J\ and Ji+%, there are two possible non-waiting schedules, one where both 
jobs are scheduled on the same machine, and one where they are on different machines.

, - A - ,---------- B------------

t  C -
The Waiting Schedule

Mi
M,

t ,-A-. .-----B -{Ji I
1 Jl h+ i h

■ L
t> —  c

. A . , C-------

Mi
M,

1 Jl J/+l h

1_______- ■
B -U il

Two Possible Non-Waiting Schedules 

d iff(C -{J i}) = ( \C \- l) (P l - Pl+1).

Summing up, we get

Ji+i}) =  \B\A +  {\C\ -  \B\){pi -  pl+1). 

Becauset' +  p i + 1 > t+ p i ,  minff' -  t,pi - p*+1} — pi - pi+1 - Therefore,

=  IBIA +  dCI -  \B\)min{t' - t , p i  -pi+ i}.

Lemma 4.3 Suppose t  < t', p i >  A, n +1 < t', pi+\ < pi, and A +pi+x < p\. In addition, 

t+ p i < tf and t' < i  +  A +  pi+ 1 +  p\. The lookahead algorithm chooses to schedule J\ on M\ at 

t if and only if (I + |i?|)A + pi+i —p\ +  (ICI -  \B\ + 1) max{0, t' -  t -  pi+\ -  pb} > 0.

Proof: To prove the lemma, all we need to show is that

diff{{Ji,-. ■, Ji,Ji+1 }) =  (1 +  \B \)A+ pi+i — pi + (|Cf| — |J3| +  1) max{0, t' -  t — pi+i -pb}-
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Figure 4.6 shows the waiting schedule and two possible non-waiting schedules. In the 

waiting schedule, Ji+\ is the only job in A  because t + A +  pi+i < t '< t  + A + pi+i +  pi- 

Also, J\ is scheduled on M\ and completes after £'.

If t + pi +  pi+1 > if, where the first possible non-waiting schedule occurs, we have the 

following equations for the disfunction.

d i f f iW )  = A  + Pi+i,

1» =  A - p i ,

diff(B -  {Ji}) = (\B\ -  1)A, and 

d fflC )=  0.

Summing up, we get

Ji+1»  =  (1 +  |S |)A  +  Pl+1 -  p\.

From the non-waiting schedule, we have t' — t — pi+i - p i  < 0. So (jC| -  |B| +1) max{0, t' — 

t -  pi+ 1 - p i }  =  0. Therefore,

Ji+1 }) =  (1 + |5 |)A  +p/+i — pi + (|C| — |-B| +  1) max{0, t' -  t — pt+i — pb}-

If t  + pi + pi-|_i < t', where the second possible non-waiting schedule occurs, we have 

the following equations for the diff function.

i}) =  A +  pi+i,
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= A - p i ,

diff{B -  {Ji}) =  (\B\ -  1 )(t + A + pi+1 +pi -  t'), and 

diff(C) = \ C \ ( t ' - t - Pl+1- Pl).

Summing up, we get

1}) =  (1 +  |-B|)A +pi+1 — pi +  (|C| -  \B\ + l)( t ' — t — pi+1 - p i ) .  

Because t' — t — pi+i — pi > 0 from the non-waiting schedide, therefore, 

diff({Ju . . . , J h Ji+1}) =  (1 + |5 |)A  +pi+i -  pi +  (\C\ -  |B| +  l)m ax{0,f' - f - p ;+i -p&}.

■

Lemma 4.4 Suppose t < t', pi >  A, rj+i <  i!, p;+i < pi, and A + p*+i < pi. In addition, 

t+ P i  < I' and t + A + pi+1 +  pi < t'. T/ie lookahead algorithm chooses to schedule J\ on M\ at 

t if and only if{\A\ + |f?|)A +  pz+i — pi +  (|C'| -  \B\ + 1) max{0, t' - t  — Y^a Pj ~ Pb} >  0-

Proof: To prove the lemma, all we need to show is that

diff{{Ju . , . , J h Jl+l}) = (|A| +  |B |)A + p m  - p i  +  (|C| -  \B\ +1) max{0, t ' - t -  Y^P j ~Pb}-
A

Figure 4.7 shows the waiting schedule and two possible non-waiting schedules. In the 

waiting schedule, the set A  contains both Jj+1 and J i because t +  A + pj+ i + p i < t'. It may 

also be the case that more jobs are in A.
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Figure 4.7: In Lemma 4.4, multiple jobs complete before time t' in the waiting schedule. Depending 
on the lengths of J\ and Jj+i, there are two possible non-waiting schedules, one where the jobs are 
on the same machine as the waiting schedule, and one where a single job is on the other machine.

t   A
M,

M ,

■ I' i h T

jb+i
r ' • o  • • 

The Waiting Schedule

M!
M,

A  .  B-

h h+i M,

I • •• M2

---A— - - - C -

h H/+i

t’~ C --
Two Possible Non-Waiting Schedules

“ B —{ Je,}

If t +  Y a P* Epb > t', where the first possible non-waiting schedule occurs, we have 

the following equations for the dzjff function.

— A +  pj+i,

1» =  A - p i ,

diff(A — {Ji, Jj+i}) =  (|^4| — 2)A, 

diff(B) = |B |A, and 

dfflC ) = 0.

Summing up, we get

From the non-waiting schedule, w eh av e t'—t —Y a Pj~~ h  < 0. So (|C'j —1^?!+1) max{0, —
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t -  YuAPj =  o. Therefore,

Ji+i}) =  (|A| +  \B\)A+pi+1 - Pl +  (ICI -  |B| +1) max{0, t ' - t - ^ T p j  ~Pb}-
A

If t +  J2a Pi Pb < t1, where the second possible non-waiting schedule occurs, we have 

the following equations for the disfunction.

diff{{Ji}) =  A  + pi+u

diff{{JiA\}) = A - p i ,  

d ij f(A -{ J u J l+1}) = (\A \-2 )A ,

diff({Jb}) =  A,

diff(B -  {J6}) =  (\B\ -  l)(t +  A +  Y^P j +Pb~ t'), and
A

diff(c) = \ c \ ( t ' - t - Y 2 p j - P b ) -
A

Summing up, we get

d i f f d J u  ■■■, *,  J i + i } )  =  (\A\ +  |B |)A  +  p w  - P l  +  (|C| -  \B\ +  l)(f' - 1 -  ] > >  ~  Pb)-
A

Because t' — t — YIa Pj ~ Pb>® from the non-waiting schedule, therefore,

diff{{Ju - - - J u  Ji+1 }) =  {\A\ +  \B\)A+pt+1 -px  +  (|(7| -  |B| +  1) max{0, t ' - t - ^ P j  ~Pb} -
A
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Figure 4.8: The set A is defined to be all the jobs that begin execution after time rj+i and complete 
before time

t , A  .

4.2.2 LAI Algorithm lim e  Complexity

Although the proofs for each of the last four cases require significant effort, the resulting 

condition can be easily evaluated. Together, the conditions demonstrate that scheduling 

decisions can be made without completely calculating the waiting and non-waiting sched­

ules. In constant time, we can evaluate nearly all the conditions. In the cases [l~j, \l  \ and

[3 ], |A| is either 0 or 1. Knowing \A\, we can then easily calculate \B\ and \C\. Therefore, in 

these cases, we can decide whether to schedule or wait in 0(1) time.

In case [4 ], t' — t  is large compared to the size of the jobs in the wait queue. This allows 

multiple jobs to complete on Mi between t and t'. As a result, |A| > 1. Therefore, to 

compute |A| and Y^APj the algorithm considers the jobs in Qw in order until it finds the 

first job that completes after t'. In the w orst case, we may have to check the entire wait 

queue.

Notice, however, that this check only occurs in one of four cases. Further, the time 

needed to calculate the schedule is proportional to the number of jobs in A  that fit in the 

interval [t, f). Therefore, if we show that the average size of A  is small, then we can con­

clude that the running time of the algorithm is near-constant.

Formally, assume that the jobs arrive with an average inter-arrival time of p a and these 

jobs have an average processing time of /j,p. Without loss of generality, assume machine Mi
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is idle at time t. Let Jo be the last job scheduled on M 2  with starting time t° and completion 

time t' — t° + po. Let Qw be the wait queue containing jobs with processing times

Pi <■■■< Pi- Finally, let Jj+i with arrival time r / + 1 > t and processing time pt+i be the 

next job to arrive. We are interested in the schedule where we wait for job Ji+i to arrive 

and then immediately schedule it on M\. The jobs in the wait queue are then scheduled 

on Mi using the SJF rule. In this context, we define A  to be the set of jobs scheduled on Mi 

that complete execution between t and t'. See Figure 4.8. Note that 0 < |A| < I + 1.

Lemma 4.5 In case 0 J 5 M < 3

Proof First, note that t' > t. We know that if A  contains any jobs, Jj+i is in the set. So 

let A' — A — Ji+ 1 be the remaining jobs. At time t°, Jq is the smallest job in the wait queue. 

Because t > t ' , none of the jobs in the queue at t° are in A. Therefore, all the jobs in A' must 

arrive between times t° and t '. Further, each of these jobs m ust have a processing time less 

than or equal to t' — t°. Therefore,

i57[jJA/j] < Pr{pj  < £ -  f0} • F[num  jobs arrive during £ —1°]

Because Jq can be any job, on average pv —pQ = t' — t°. Thus,

E[\A'\] <  P r { Pj < p p} - ^
Pa

Now consider Jj+1 and the original set of interest, A. Note that if r;+i +pi+ 1 —

then |A| =  0. Otherwise, we have at most 1 +  \A'\ jobs that fit in the time span t1 -  t. 

Therefore,
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E[\A\] < Pr{rw  +pw  ~ t < p p} 1 + Pr{Pj <p p} - ^
p a .

This equation says that the average size of A  is less than the probability that Ji+i fits in 

the time span t' — t° plus a fraction of the traffic intensity, p =  pP/p a- For a two-machine 

system, the traffic intensity m ust remain less than 2, otherwise the wait queue tends to 

grow toward infinity. Therefore, we assume p < 2 and E[\A\[ < 3. □

Table 4.1: We ran the simulation for one million scheduling decisions and tabulated all occurring 
sizes of the set A along with the frequencies.

\A\ count percent
0 352220 0.3529
1 235921 0.2364
2 154590 0.1549
3 95025 0.0952
4 58075 0.0582
5 35864 0.0359
6 22843 0.0229
7 14937 0.0150
8 9963 0.0100
9 6534 0.0065

10 4345 0.0044

25 1 0.0000

As further evidence, we observed |A| under a variety of conditions using simulation. 

Table 4.1 shows the range of sizes which occurred with the associated frequency. For sizes 

0 and 1, we evaluate one of the first 3 cases. This represents nearly 59% of the samples. 

Another 40% of the samples fall in the range 2-10. The pattern of decreasing frequency con­

tinues until reaching the maximum size of 25, which occurred once in nearly one million 

trials. Considering all the samples, the mean of |Aj was 1.766 with a standard deviation of
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Figure 4.9: When a decision must be made in the single machine system, the Lookahead-2 algo­
rithm has access to jobs J\ through J; in the wait queue plus jobs Ji+i and Jj+2 with arrival times 
ri+ 1 and rj+2 in the lookahead queue.

M i  |

1 1 (+1 r  1+2

h h h h h b + i r w J  1+2 r  l+ l

L̂A

Figure 4.10: If the Lookahead-2 algorithm decides to wait at both decisions, there are two idle 
periods in the schedule. We call this the wait-wait schedule.

■
i - L + i J  i+i h h L

r;+i r i+2

2.201. Based on these measurements, we condude the algorithm runs in nearly constant 

time in case Q .

Waiting for the lookahead job to arrive affects the completion time of every job in the 

queue and therefore can dramatically improve the total completion time. We have shown 

that we do not need to consider the completion time of each individual job. In most cases, 

we can dedde whether or not lookahead is beneficial by using t, t', p\, A, pi+1, and I, which 

are all constants for any given dedsion. In the case where we do have to consider the jobs 

in A, we have shown that this set is small. Therefore, the computation necessary to dedde 

whether to wait or schedule requires only a few constant time comparisons. A standard 

Shortest Job First algorithm without lookahead would use only the information about the 

first job in the queue to make scheduling dedsions. We can apply a more powerful looka­

head heuristic in near constant time and gain improvements. Thus, these improvements 

come at almost no additional cost.
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Figure 4.11: If the Lookahead-2 algorithm decides to wait at time t and then schedule at the second 
decision, there is a single idle period at the beginning of the schedule. We call this the wait-nowait 
schedule. . .   ,______ ______________ _

j i / + , h Is
)

J  1+2 * 3 h

t r  l+ l r  1+2

Figure 4.12: If the Lookahead-2 algorithm decides to schedule at time t and then wait for the second 
lookahead job, there is a single idle period in the middle of the schedule. We call this the nowait- 
wait schedule.  ,

1 M  r  1+2

4.3 A Lookahead-2 Algorithm for a Single Machine

In this section we discuss a lookahead-2 algorithm for a single machine system. Formally, 

1 \rj IX  Cj is the problem where we have jobs arriving over time to be processed on a single 

machine. The goal, as before, is to minimize the sum of completion times.

The scheduling system is nearly identical to the two machine model discussed in the 

previous section, with the exception that the schedule always has access to the next two 

arriving jobs. Figure 4.9 shows a representative case where jobs J\ through J; are in the 

wait queue and jobs Ji+\ with arrival time ri+i and Jj+% with arrival time rj+ 2  are in the 

lookahead queue.

Our algorithm is broken down into two major parts. The first considers cases when 

both Jj+i and Jj+ 2  would arrive during the execution of J i. In this case, a decision to wait 

either means that the algorithm intends to wait until r;+i and schedule Jj+i or wait until 

n +2 and schedule Jj+2 .

In the second, more general situation, rj+ 2  occurs far enough in the future that one or 

more jobs can complete execution before J ; + 2  arrives. Here, the decision of the algorithm 

is dependent on where rj+ 2  falls on the time-line compared to the completion times of
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Figure 4.13: If the Lookahead-2 algorithm decides to schedule at both decisions, then there are no 
idle periods in the schedule. We call this the nowait-nowait schedule.

11 J 2 j h+x h h J1+2 h
r 1+1 r 1+2

scheduled jobs. Therefore, the decision to wait or schedule at time t  has an effect on the 

later decision because it determines when the completion times occur. This means that in 

the general case, we have four schedules:

• W / W  -w ait-w ait (Figure 4.10) -  The algorithm decides to wait for the first lookahead 

job at time t and then wait again for the second lookahead job at the appropriate time.

• W/ W  -  wait-nowait (Figure 4.11) -  The algorithm waits for the first lookahead job 

but then does not wait for the second job. Instead, the second job arrives during the 

execution of another job and is added to the wait queue to be scheduled later.

• W / W  -  nowait-wait (Figure 4.12) -  The algorithm does not wait for the first job, 

but rather schedules J\. When Jj+i arrives, it is added to the wait queue. Jobs are 

scheduled in sorted order until immediately before J 1 + 2  would arrive and then the 

scheduler waits for this job to arrive.

• W (W  -  nowait-nowait (Figure 4.13) -  For both jobs, the algorithm does not wait and 

simply adds the jobs to the wait queue when they arrive.

In many cases, we can eliminate one or more of these possibilities by arguing that they 

always produce a worse schedule than other decisions.

In our algorithm that follows, we break the decision process down into multiple cases 

based on the following parameters:
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• t (the current time)

• p i , . . .  ,p; (processing times of the jobs in Qw)

• pi+i and n+i (attributes of the first lookahead job)

• pi+ 2  and ri+ 2  (attributes of the second lookahead job)

For notational simplicity, define A =  ri+ 1 — t  and A' =  n +2 - 1. Definitions of the other 

terms will be given in the next section.

Procedure Lookahead-2 

if Qw is empty 

then return 

if Qla is empty 

then schedule

else if (I +  2)A' < max{0,pi — pi+i} +  max{0,p% — pi+2 } and any of the following:

• pi < A,

• p i > A and rj+ 1 =  n +2

• pi > A' and r;+2 > n +x and pi < p(+1

« pi > A' and r !+2 > rw  and px > pl+1 and (I + 2) (n+2 -  r i+x) < pi+i -  pi+2

• A < pi < A ' and n +2 > n +x and px < p;+i 

then wait

else if pi < A 

then schedule 

else if pi > A and rj+i =  ri+2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. LOOKAHEAD ALGORITHM DESIGN

if P i < P i + 1

then schedule

else if (I +  2)A' < max{0,pi -p i+ i}  +  max{0,pi -pi+ 2 } 

then wait 

else schedule 

else if pi > A' and rj+2 > n +\ and pi <  pi+i 

if Pi < P i + 2

then schedule

else if (I + 2) A' < max{0,pi -  p;+1 } +  max{0,pi -  pi+2 } 

then wait 

else schedule

else if pi > A' and r i+2 > n+ i and pi > p*+i and (/ +  2) (r/+2 -  r i+ i) < p;+i -  p ; + 2  

if (/ +  2)A' < max{0,pi -  p*+i} +  max{0,pi -  pJ+2} 

then wait 

else schedule 

else if A < pi < A' and rj+2 > rj+ 1 and pi < pi+\ 

then execute

else if pi > A' and r/+2 > and pi > pi+\ and (I + 2)(rj+2 -  rj+i) > pj+i -  P2 + 2  

if (I + 2) A +  min{max{0,pi -  p;+2}, (2 +  1) max{0, n +2 ~ n+ i -  Pi-t-i}} < 

max{0,pi - p i+ 1 } +  max{0,pi - p j +2} -  max{0,pj+i - p ; +2}. 

then wait 

else schedule
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else if A < p\ < A ' and rj+2 > r / + 1 and pi > p;+i and (I + 1)(A' -  pi) < pi+i -  Pi+2 

if (1 +  2)A -  (1 +  1)(A' — pi) < max{0,pi -p i+ \} -  max{0,p;+i -  pi+2 } 

then wait 

else schedule

else if A < pi < A' and n +2 > n + 1 and pi > pj+i and (I + 1)(A' -  pi) > pi+i -  pi+2 

and pi+i > A' -  pi 

if (I + 2) A +  min{max{0,pi -  pi+2}, (Z + 1) max{0, rt+2 -  n + 1 -  pi+i}} < 

max{0,pi -  Pi+i} +  max{0,pi -  pi+2 } 

then wait 

else schedule

else if A < pi < A' and n +2 >  r i + 1 and pi > pi+i and (Z + 1)(A; -  pi) > pj+i -  pi+ 2  

and pj+i < A' — pi and g — h 4-1 

if (h + 2)A + (l -  h){A + pi+1 + ^ 2 ^ lp j  -  A') +  max{(Z -  h)(A' -  pi+1 -  Ej= i Pv 

Ph+ 2  ~ Pi+2 } < max{0,pi -  pj+i} +  max{0,pft+2 -  Pi+2 } 

then wait 

else schedule

else if A < pi < A' and ri+2 > n + 1 and pi > p;+i and (Z + 1)(A' -  pi) > pj+i -  P1 + 2  

and pi+ 1 < A' — pi and g — h 

if (Z + 2)A +  min{(Z -  h +  1)(A; -  A -  pi+\ -  Y!j=iPj)iPh+i ~ Pi+2 }

— min{(Z - h  + 1)(A' - p j+ i  -  Ej=iPj)>PM-i ~ Pl+2 } < max{0,pi -p f+ i}  

then wait 

else schedule
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4.3.1 Theoretical Justification of the LA2 Algorithm

Just as we proved the correctness for the LAI algorithm on the two machine system in Sec­

tion 4.2.1, the goal of this section is to demonstrate that the conditions in the Lookahead-2 

algorithm allow it to make local optimal decisions. That is, w e w ant to show that the eval­

uation of these conditions is sufficient for the algorithm to conclude whether to wait or 

schedule.

Although the algorithm appears more complex than the LAI algorithm, many of the 

conditions relate to "trivial" cases where the decision of the algorithm is obvious. For 

instance, Lemmas 4.6 and 4.7 consider the case when J\ is shorter than both J;+i and Jj+ 2  

and all the cases when J\ is longer than A'.

In the remainder of the cases, the four general schedule types discussed in the previous 

section are now feasible. We break these cases down by two factors. First, in Lemmas 4.8 

and 4.9, we consider schedules where the lookahead jobs arrive close together and, after 

the first lookahead job arrives, we can immediately use the single machine LAI algorithm 

of Mao and Kincaid [79] to decide whether to wait or schedule.

The final two lemmas, numbers 4.10 and 4.11, consider the cases when the two looka­

head jobs have arrival times significantly separated. As a result, more than a single job can 

be scheduled before Ji+ 2  arrives, regardless of whether the algorithm decides to wait or 

schedule.

Lemma 4.6 For any of the following cases.
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1. pi < A,

2. pi > A and rm  =  rx+2,

3. p i > A ' and r i+2 > n +1 and px < px+x,

4. pi > A ' and ri+2 >  r J+x and px > pM  and (I + 2)(rJ+2 -  r i+x) < pm  -  pl+2, or

5. A  < pi < A' and r x+2 > n +x and px < pj+x,

fte algorithm chooses to wait until rj+x j/and only if

{I +  2)A' < max{0,px - p j +x} +  max{0,px -p ;+ 2}- (4.1)

Note f/zat t/ie "if and only if" condition also implies that if the above inequality is evaluated false 

the algorithm chooses to execute J x at time t.

Proof We prove the lemma for each case listed.

1. px < A: Clearly, it is more beneficial to execute J x than waiting because the job's 

length px fits into the waiting period A. The choice for the algorithm is to execute. The 

evaluation of inequality (4.1) also suggests the same action for the algorithm because (I +  

2)A' > (/ +  2)A >(l + 2)pi > 2pi > max{0,px - pz+i} +  max{0,px - pz-f2}-

2. pi > A and r*+x =  rj+2: Recall our assumption p/+x < pt+2 because n +x — ri+2. Also 

note that A ' =  A because ri+i =  r/+ 2 . The fact tha tpx > A ' implies that in the W  schedule 

in which J x is scheduled from t to f +  p X/ when J x is completed the two lookahead jobs, 

Ji+i and Ji+2, will have already arrived. Consider two possibilities of p x when compared 

with pJ+x: (2.a) pi < pi+x and (2.b) px > pi+x.
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(2.a) When pi < pi+i, J\ remains to be the shortest in Qw at time rj+ 1  (= rj+2) once 

both J ; + 1 and Jj+2 have arrived and been added to Q w ■ This means that in the W  schedule 

Jj is executed at time ri+2 , while in the W  schedule J\ is executed at an earlier time of t. 

Obviously, the W  schedule has a smaller total completion time than the W  schedule. The 

choice for the algorithm is to execute. The evaluation of inequality (4.1) also suggests the 

same action for the algorithm because (l+2)A' > 0 =  max{0, p\ — p£+i}+max{0,pi —pi+2}- 

(2.b) When pi > pi+i, we compute the total completion times, denoted as J2 Cj(W) and 

Cj(W), of J i , .. .  ,Ji, Ji-|_i, Ji+ 2  in the W  and W  schedules, respectively and compare the 

two quantities. We have

Cj ( W)  -  (I + 2)rl+2 + (/ +  2)pi+i +  (/ +  1) min{pi,pi+2} + 1 min{max{p1,pi+2},p2} +  ••■ 

and

53 = (̂  + +  (I +  2)pi + (I + l)pi+i + 1 min{p2,p;+2} -\---- .

Notice that the ■ ■" parts in the above equations represent the same quantity. Consid­

ering the difference, we get

Y ,  C^ W ) -  E  Ci( f ) = (l + 2)A' - ( P i -  Pin)  -  max{0,pi -  pl+2}.

Therefore, the algorithm chooses to wait if and only if < 0 if and

only if (I + 2)A' < (pi -  p;+i) +  max{0,pi -  p;+2} if and only if (I + 2)A' < max{0,pi — 

Pl+i} + max{0,pi - p j +2}.
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3. p\ > A' and n + 2  > n+ i and pi < pj+i: First notice that because pi > A', in the W  

schedule the two lookahead jobs, Jj+i and Jj+2 , have arrived when J\ is completed at time 

t + pi- For the W  schedule, we further classify it into the W 2  schedule (wait until n+ 2 ) and 

the Wi schedule (wait until n+ i and then execute). Because p i < pj+i, the Wi schedule has 

the machine idle from t to n + 1 and then executes the shortest job available at n+ i, which is 

J i . This schedule certainly is no better than the W  schedule which executes J\ at an earlier 

time of t. Thus, the W\ schedule is out of consideration. We only need to compare the W 2  

schedule and the W  schedule. Consider two possibilities o fp i when compared with pj+2: 

(3.a) pi < ^ + 2  and (3.b) pi > pj+2.

(3.a) When pi < pi+2 , the W2  schedule waits from t to n + 2  and then executes J i, which 

is no better than the W  schedule. The choice for the algorithm is to execute. The evaluation 

of inequality (4.1) also suggests the same action for the algorithm because (I + 2)A' > 0 =  

max{0,pi -  pi+i} +  max{Q,pi -  p/+2}.

(3.b) When pi > pi+2 , we compute and compare C j ( W 2) and Cj (W) .  We have

Y .  Cj(W2 ) = {l + 2 )n + 2  + {l + 2 )pi+ 2  + (I + l)pi 3-----

and

Y  Ci (W ) = (l + 2)* + V + 2)Fi + (l + 1)W+2  +  ••• -

Considering the difference, we get

E  -  E  = 2)A' -  (pi -  p i +2).
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Therefore, the algorithm chooses to wait if and only if C j ( W2) — Y1 C j ( W ) < 0 if and

only if (I +  2) A' < pi - p i +2 if and only if (I+ 2) A' < max{0,pi — P1+1 } +  max{0,pi -pi+ 2 }.

4. pi > A' and n+2 > n+x andp i > p t + 1 and (l+2)(rl+2- n +1) < pi+i-pi+2: Similar to 

the previous case, we further classify the W  schedule into the W 2 schedule (wait until r;+2) 

and the W\  schedule (wait until r\+1 and then execute). Because both schedules wait from 

t to rj+i the problem becomes lookahead-1 at time r*+i with Qw = {Ji+i,Ji, and

Qla  =  {Ji+2 }- Using the result developed for lookahead-1, we get Cj(W2) < Uj(Wi) 

if and only if (Z +  2)(rJ+2 -  rj+i) < p{+1 -  pi+2. Because the latter inequality is given, 

(Wi),  implying that the W\  schedule is out of consideration. We only 

need to compare the W 2 schedule and the W  schedule. Recall th a tp i > pi+x. The given 

(Z +  2)(n+2 -  n +1 ) < pi+i -  pi+2 also suggests pi+i > pi+2. We compute and compare 

£  Cj(W2) and £  We have

X  Cj(W2 ) =  (Z +  2)n+2 +  (Z +  2)pi+ 2  + (Z + l)pi+i +  Zpi H----

a n d

y  Cj-(W) =  (Z +  2)t -I- (Z +  2)pi +  (Z +  l)p;+2 +  lpi+i H •

Considering the difference, we get

^ 2 C j ( W 2) -  =  (/ +  2)A' -  (p! - Pl+1) +  (p! - w+2).

Therefore, the algorithm chooses to wait if and only if CJ (W2) — C j ( W)  < 0 if and 

only if (Z +  2) A' < (pi -  pj+i) + (pi -  K+2 ) if and only if (Z +  2) A' < max{0,pi -  P1+1 } +
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max{0,pi -  pi+2 }-

5. A < px < A' and ri+2 > r/+i and pi < pj+i: Unlike the previous cases, if the 

algorithm decides to schedule at time t, then when J\ completes execution at t +  j \ ,  the 

second lookahead job has not arrived. Therefore, in the W2  schedule there is a period from 

t to rz+2 idle where J\ could complete execution. Clearly, it is not beneficial to wait until 

ri+2 ; the W2  schedule is out of consideration.

If the algorithm decides to wait until ri+% and then schedule, then J;+x is added to the 

queue somewhere behind J\ and therefore J\ is scheduled. However, the algorithm could 

have simply scheduled J\ at time t and reduced the waiting times for all jobs. Therefore, 

the algorithm should always decide to schedule. The evaluation of inequality (4.1) also 

suggests the same action for the algorithm because (?+2) A ' > (i+2)pi > 2pi > max{0,pi — 

Pl+i} +m ax{0,pi -  pi+2 }- □

Lemma 4.6 covers many cases except the following two cases:

• pi > A' and rt+2 > n+i andpx > pi+x and (I +  2)(rJ+2 -  n +1) > pi+i - p i +2

• A < pi < A' and rl+2 >  r J+i and pi > p/+i

We have Lemma 4.7 to handle the first uncovered case while the second case requires 

more detailed study later.

Lemma 4.7 Whenpi > A' and r i+2 > n +1 andpi > pJ+i and (l+2)(ri+2 ~ n +i) > pi+i - pi+2, 

the algorithm chooses to wait until rj+ 1 if and only if

(I + 2) A + min{max{0,pi - p i +2},(l +  l)m ax{0 ,n+2 -  rm  -  pi+i}}

< max{0,pi -  pi+1 } +  max{0,pi -  pi+2} -  max{0,pi+i - p i +2}. (4.2)
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Proof In the W  schedule, the given p\ > A' implies that when J\ is completed at time 

t  + px, the two lookahead jobs, Ji+x and Jj+2, have arrived. In the waiting schedule, we 

apply the lookahead-1 result to time r*+i with Qw — {Ji+1 , d i , . . . ,  Jj} and Qla = W + 2 }- 

Because (I +  2)(rJ+2 -  n+i) > Pi+i -  Pi+2 / E  Cj{W2) > E  CjW O- So we only need to 

compare the W\ schedule and the W  schedule. We consider three possibilities of pi+i- (a) 

Pl+1 >  n + 2  -  n + 1 / (b) Pi+ 1  < n + 2  -  n + 1  and (Z +  1) (ri+2 -  n+ i -  P/+i) < P i -  Pi+2 / and (c) 

Pi+i < n + 2  -  n+ i and (l + i) (n + 2  -  n+ i -  Pi+i) > pi -  Pi+2 -

(a) When pi+ 1 > rj+2  -  n+i/ the second lookahead job J;+2 has arrived after 1 is 

completed at time rj+i +  pi+x in the Wi schedule. We compute and compare E  Cj{W\) 

and E  Cj(W). We have

Y^Cj(Wx) = {1 + 2)r/+i +  (Z +  2)pi+x + {l + 1) min{pi, pi+2} + 1 min {p2, max{px, pJ+2}} +  ••• 

and

Cj(W) =  (Z + 2 )Z +  (Z + 2)px + (Z +1) min{pi+i, PJ4 .2 } + Z min{p2, max{pw ,pi+2}} +  •■■ ■ 

Considering the difference, we get

^  Cj(Wx) -  C'j(W) =  (Z + 2)A — (p\ -p j+ i)  -m ax{0,pi -p ;+ 2}+  max{0,pi+i -p i+ 2 }-

Therefore, the algorithm chooses to wait if and only if E  1 ) ~ E  Cj(W) < 0 if 

and only if (Z +  2)A < (pi -  pj+i) +  max{0,pi -  pi+2}  -  max{0,pj+i — Pi+2 } if and only if
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(/ +  2)A +  mm{max{0,pi - p t+2}, {I +1) max{0, r J+2 -  n+ i ~Pl+i}} < max{0,pi -  pi+i} + 

max{0,pi - p i +2} -  max{0,pj+i - p i+2}.

(b) Whenp*+1 < r i+2 -  n+i and (/ +  l) ( r i+2 - n + i ~ p 2+i) < p i~ P ;+ 2, the second looka­

head job Ji+ 2  has not arrived when Ji+1 is completed at time t+pi+i in the W\ schedule. To 

analyze the W\ schedule we further classify it into the W \jW  and W \/W  schedules, with 

the former being the schedule in which the machine waits from t to r*+i, executes Jj+i, and 

then waits again until rj+2/ and the latter being the schedule in which the machine waits 

from t to ri+i, executes Ji+i, and then executes J\. Because (I + l)(r;+2 — r;+i — pi+i) < 

Pi -  Pl+2 , by tire lookahead-1 result applied to the W\ schedule at time r;+1 +  pi+\ with 

Qw = {J i,-- . ,J i}  and Qla  =  {J1+2 }, we have £ Cj(Wi/W) < Z C j(W i/W ) .  So the 

W i/W  schedule is out of consideration. We only need to compare the W i/W  schedule and 

the W  schedule. Recall tha tp i > pi+\. The given (I +  l)(n+ 2 -  n +i -pi+\) < p\ —pi+ 2  also 

implies tha tp i > pj+2. We have

Y  C j{W \ /W )  — (l + 2)n+i +  (l + 2)pi+i +  {l + l){ri+2 — n +i —pi+1 ) +  (I +  I)pi+2 +  ipi i—  

and

Y  c j ( w ) = (I + 2)t +{l + 2)pi + (l + l) min{pi+i,pi+2} +  I max{pw ,pi+2} H .

Considering the difference, we get
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= (l + 2)A + (l + l)(rl+2- r l+1- p l+1)

-{pi -  Pi+i) -  (pi -  Pi+2 ) +  mas;{0,pj+i - p i+2 }.

Therefore, the algorithm chooses to wait if and only if Y2 C j(W j/W ) — Cj{W) < 0 if 

andonlyif ( l+ 2 )A + (/+ l)(ri+2- r ;+i - p i+1) < (pi~Pi+i)+(pi-P 1+2 )-m ax{0,pi+i-p i+2} if 

and only if (Z+2)A+min{max{0,pi -p i+2}, (Z +  l) max{0, n +2 —n+i —p/+i}} < max{0, p i ­

r n  1 } + max{0,pi - p i +2} -  max{0,p;+i -  p;+2}.

(c) When pm  < rt+2 -  rj+i and (Z +  l) (n +2 -  n +1 -  pj+i) > pi -  pi+2, this is a case 

symmetric to the previous case (b). So we only need to compare the W \/W  schedule and 

the W  schedule because the given (I +  l) (n +2 -  rj+ 1 -  pi+i) > pi — pi+2  suggests that 

J2^j(W i/W ) > J^Cj(W i/W ).  We compute and compare 52Cj(Wi/W) and X^Cj(W) 

We have

C j(W i/W ) = (Z + 2)rl+i +  (Z +  2)pi+i +  (Z +  l)pi + Z min{p2,p;+2} H-----

and

Y^C jiW ) -  (Z + 2)t +  (Z +  2)pi +  (Z + 1) mm{p;+1,pi+2} + 1 min{p2, max{pi+1)pi+2}} H -

Considering the difference, we get
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£  C j i W i / W )  -  £  Cj{W) =  (l +  2)A -  CPi ~  P i+ i)  +  max{0,Pi+1 -  p,+2}.

Therefore, the algorithm chooses to wait if and only if Y  C j ( W \ / W ) — Y  <

0 if and only if (I +  2)A < (pi — P i+ i )  — max{0,p;+i — p i + 2 }  if and only if (I + 2)A + 

min{max{0,pi - p i + 2 } ,  (I +1) max{0, ri+2 - r l+1 -p ;+ i}} < max{0,pi -p i+ i}  +  max{0,pi -  

Pl+2  -  max{0,p;+1 - p t+2}. □

Now with Lemmas 4.6 and 4.7, the only case left is when A < pi < A' and r;+2 > 1

and pi > p;+i- We further divide this case into the following sub-cases:

• A < pi < A' and ri+2 > n+ i andp i > pM  and (1 +  1)(A' -  pi) < pw  -  pl+2

• A < pi < A' and r;+2 > rj+i and pi >  pj+i and (I + 1)(A; -  pi) > p*+i -  pi+2 and 

Pi+i > A' -  pi

• A < pi < A' and r i+2 > r l+1 and px > p i + 1 and (/ +  1)(A' -  pi) > pj+i -  Pi+ 2  and 

Pi+i < A' -  pi

The first two sub-cases are studied in the next two lemmas while the last one requires 

special attention and is studied later.

Notice that because p i < A' for all of the remaining conditions, it is not beneficial 

to have the machine wait from t  to r/+2 while J\  can fit into the idle period. So the W 2 

schedule where the algorithm waits until time r;+2 is out of consideration. Given this fact, 

for simplicity, we drop the subscript on the first wait decision assuming it is understood 

that the algorithm waits until n+ 1 - This also implies that J / + 1 is scheduled at time rj+i-
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With this new notation, we have four schedules to consider. In the W /W  schedule, 

the algorithm waits until time r*+i and then schedules Jj+i when it arrives. Next, the 

algorithm schedules zero or more jobs from the wait queue. Specifically, from Lemma 4.6, 

we know that if pi < A then the algorithm schedules the job. This means that if a job 

can complete execution before rj+2, then the algorithm should schedule that job. When no 

more jobs in the queue meet this criteria, the algorithm holds the machine idle until time 

ri+2 - A t that time, «7j+2 is scheduled, followed by the remaining jobs in the wait queue.

Similarly, in the W /W ,  the algorithm waits until rj+1 , schedules Ji+ 1 and then sched­

ules all jobs that fit before r;+2. In this case however, the algorithm schedules the next job 

in the queue without waiting. Ji+2 is simply added to the queue when it arrives.

The last two schedules, W  jW  and W  jW  are defined in analogous fashion. In general, 

the algorithm schedules all jobs that will complete before the next arrives and then makes 

its decision.

Lemma 4.8 When A < pi < A' and 2 > ri+ 1 and p\ > pi+ 1 and (I + 1)(A' — p\) < 

Pi+x — P1+2 , the algorithm chooses to wait until rj+i if and only if

(I + 2)A -  (I + 1)(A' -  pi) < max{0,pi -  pi+\} -  max{0,pJ+i -  pi+2}■ (4.3)

Proof First, consider the the pair of non-waiting schedules, W jW  and W fW . We apply 

the lookahead-1 result to the non-waiting schedule at time t+pi w ith Qw =  {Ji+i, J 2 , . • •, Ji} 

and Qla -  {Ji+2}. The given (I + 1)(A' -  p{) < pi+1 -  pl+2 ensures that Cj{W/W) < 

Y/, Cj{W/W). So the W /W  schedule is out of consideration. Therefore, we must only 

consider the W /W , W /W ,  and W /W  schedules. Note that the given (I + 1)(A' — pf) <
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Pi+i -  Pl+ 2  implies that pi+i > p*+2. We consider two possibilities of pJ+1 when compared 

with n +2  -  n+i: (a) p;+1 > n + 2  -  n+i and (b) pi+x < r i+2 -  r i+1-

(a) When pJ+1 > r;+2 -  n+ i/ Jj+x completes after the second lookahead job J;+2 has 

arrived in the W/W schedule. Thus the W /W  schedule is not possible. We compute and 

compare £  Cj(W/W) and £  Cj(W/W).  We have

£  C j (W /W )  =  (/ + 2)rm  +  (/ + 2)pw  + (* +  l)pi+2 +  /pi +  • ■ •

and

CjiW /W ) = {I + 2 )t + (I + 2)pi +  (i + 1)(A' -  pi) +  (J +  l)pJ+2 +  ip/+i + •■• ■

Considering the difference, we get

J 2  Cj{W/W) -  5 3  Cj(W /W ) = (l + 2) A - (*  +  1)(A' -  px) +  2pi+1 -  2P l.

We notice that the above difference is always greater than zero because (I + 2)A -  

(1 +  1)(A' — px) +  2pi+i — 2px =  (/ +  2)rj+x — (I +  l ) n +2 — t + (I — l)px +  2p;+x > (i + 

2)r;+x — (? +  l)n + 2 — f +  (I +  l)pz+x =  (I + 1)(pj+i +  H+x — r;+2) +  r;+x — i > 0. The choice 

for the algorithm is to execute. The evaluation of inequality (4.3) also suggests the same 

action for the algorithm because (I +  2)A — (I +  1)(A' — px) > (I + 2)A — (p;+x — P1+2 ) > 

A -  (pi+1 - P 2+2 ) > (pi -  Pi+i) -  (Pl+i -Pi+ 2 ) > max{0,px -p;+x} -  max{0,pi+1 -P i+ 2 >-

(b) W henpi+x < n + 2  — n + \> the second lookahead job Jj+2 has not arrived when Jj+x 

is completed at time rj+1 +  pj+x if the algorithm waits at time t. However, X) C j ( W / W )  =
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(n + 1  +  Pi+1 ) +  (Z +  l)?l+ 2  +  (Z +  l)w + 2  +  Zpi +  • ■ • and Cj(W/W) = (t + p\) +  (Z +

l )n + 2  + (Z +  l)j> ( + 2  +  ipi+ 1  H , thus the difference is YjC jiW /W )  -  J2 ^ j(W /W )  =

(n+i — Z) +  (Z -  l)(pi — pz+i) > 0. So the W /W  schedule is out of consideration. We only 

need to compare the W /W  schedule and the W /W  schedule. We have

Y ,  Cj(W/W) = (I + 2)ri+i + (I + 2)pi+i + (Z + l)pi 4- lpi+2 H----

and

Y  Cj (W /W )  =  (Z + 2 )t + (I + 2)pi +  (Z +  1) (A' -  pi) +  (Z +  l)pi+2 +  Ipi+i +  ••• - 

Considering the difference, we get

Y  Cj ( w / W ) -  Y  Ci(W / W ) =  (* +  2)A "  (* +  !)(A' -  Pi) -  (PI -  W+i) +  (PJ+i -  tt+2).

Therefore, the algorithm chooses to wait if and only if ]T Cj{W/ W) — / W) < 0

if and only if (I +  2)A -  (Z + 1)(A' -  p x) < (pi -  pi+1) -  (pz+i -  pz+2 ) if and only if 

(Z +  2)A -  (Z +  1)(A' -  pi) < max{0,pi - p 2+i} -  max{0,p2+1 -p z +2}. □

Lemma 4.9 Wizen A < pi < A/ and r 2+2 > r 2+i and pi > p2+i and (Z + 1)(A/ — pi) > 

p2+1 — pi+2 and p2+1 > A' — pi, f/ze algorithm chooses to wait until r 2+i z/and onZy z/

(Z +  2)A +  min{max{0,pi - p i+2}, (Z +  1) max{0, rt+2 -  n +i -pz+i}}

< max{0,pi -  pt+i} + max{0,pi -  pz+2}. (4.4)
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Proof As with lemma 4.8, we first rule out one possible schedule. The given (I + 1)(A' -  

p i) > pi+ 1 -  pi+2  ensures that Y  Cj (W/W) > Y  Cj (W /W)  due to the lookahead result 

applied to the W  schedule at time t+ p \  with Qw =  {Ji+i, J2 , and Qla  =  W + 2 }-

So the W jW  schedule is out of consideration. We only need to compare the W /W , W/W, 

and W jW  schedules. We consider three possibilities: (a) pi+i > n + 2  -  n + n  (b) pi+\ < 

n + 2  -  n + 1 and (I + l ) ( n + 2  -  n + i  -  Pi+1 ) < Pi -  W + 2 ,  and (c) < n + 2  -  n + i  and

( l  +  i ) ( n + 2  -  n + i  -  p i + 1 )  > p i -  p i +2-

(a) W henpi+i >  n + 2  — n+1/ ^i+i is com pleted after the second lookahead job Jj+2 has 

arrived in the W / W  schedule. Therefore the W / W  schedule is not possible. We compute 

and compare £  Cj {W/W)  and Y  Cj ( W / W ) . We have

Y , C j ( W / W )  =  ( l+ 2 )n + i +  (/+2)pj+i +  (l+ l)m in {p i,p i+ 2 }+ /m in {p 2 ,n ia x {p i,p j+ 2 }}+ ---  

and

y ;  C j(W /W ) =  (I +  2)i + (l + 2)pi + (l + l)pi+i + 1 min{p2,Pi+2} H -

Considering the difference, w e  get

J 2  C j ( W / W )  -  C j ( W / W )  =  (/ +  2)A -  (pi -  pt+1) -  max{OlPl -  p,+2}.

Therefore, the algorithm chooses to wait if and only if Y  Cj(W/W)  — Y  Cj{W / W )  <  

0 if and only if (I +  2)A  <  (pi — P1+1 ) +  max{0 ,p i — pi+2 } if and only if (I +  2)A  +
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min{max{0,pi -pi+ 2 }, (I +  1) max{0,ri+2 ~n+i -pi+i}} < max{0,pi -p i+ i}  + max{0,pi -

Pi+2}-

(b) When pw  < r i+2 -  n +1 and (I + 1 ){rl+2 -  r J+i -  pi+i) < pi -  pi+2, the sec­

ond lookahead job Jj+ 2  has not arrived when J i + 1  is completed at time r*+i +  p ; + 1 when 

the algorithm decides to wait for Jj+1. Because (I + 1 )(n + 2  -  7 7 + 1  -  p;+i) < pi -  pi+2>

Y  C j ( W / W )  <  Y  C j ( W / W )  due to the lookahead-1 result applied to the W / W  schedule 

at time n + i +P1+1 w ith  Q w  =  {J\, ■ ■ ■, Ji) and Q l a  =  {Ji+2}- So the W / W  schedule is out 

of consideration. We only need to compare the W /W  schedule and the W jW  schedule. 

N ote that the given (I +  l)(r ;+2 -  n + i -  pj+i) <  p i — P1+2 also im plies that p;+2 <  p i. We 

have

Y  CjiW/W) =  (I + 2)n+1 + (l +  2)pi+i + (I +  l)(r(+2 ~ n + 1 -  pj+i) + (l + l)pi+ 2  + lpi H----

and

Y  C j ( W / W )  = (l + 2 )t +  (/ +  2)px +  (/ +  l)pz+i +- lpi+2 +  ••• - 

Considering the difference, we get

^ C , ( W / W ) - ^ Q ( W / W )  =  ( /+ 2 ) A + ( l+ l ) ( n +2- r m - P i + i ) - ( P i - P i + i ) - ( p i - m 2 ) -

Therefore, the algorithm chooses to wait if and only if Y c ^ w m - Y C A w i w )  < q h  

and only if (I +  2)A + {I + l ) (n +2 -  rj+i -  P1+1) < (pi -  P1+1) +  (pi -  Pi+2 ) if and only if
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(/ +  2) A +  mm{max{0,pi - p i +2}, (I + 1) max{0, rt+2 -  n+i -  p;+i}} < max{0,pi -pi+i} + 

max{0,pi -  Pi+2 }-

(c) When pl+1 < ri+2 -  n+i and (I +  l) ( r f+2 -  n+i ~ Pi+1 ) > Pi -  Pi+2 , this is a case 

symmetric to the previous case (b). We only need to compare the W /W  schedule and the 

W / W  schedule because the given (,I +  l ) (n + 2  ~  n + 1 -  pi+1 ) > p i -  pi+ 2  suggests that 

^ C j iW /W )  > Y/Cj{W/W). We have

CjiW/W) -  (I + 2 )rl+1 +  (/ +  2)p/+i +  (/ +  l)p i +  •■•

and

J 2  Cj(W/W) = (l +  2 )t + (I + 2 )pi + (l + 1 )Pl+1 +  .

Considering the difference, we get

Y ,  c 3 (W ! w ) -  E  ̂  (^ /^ )  =  (l + 2 ) A - ( p x -  pl+l).

Therefore, the algorithm chooses to wait if and only if C j ( W / W )  -  /W ) < 0

if and only if (/ +  2)A < pi — pi+2 if and only if (I + 2)A +  min{max{0,pi -  Pi+2 }, {I + 

l)m ax{0 ,n+2 — ri+i -  pi+i}} < max{0,pi -  pi+i} + max{0,pi -  pi+2 }. □

For all the cases studied in Lemmas 4.6 -  4.9, the algorithm's decision whether to wait 

or to execute is based on the evaluation of an inequality, (4.1), (4.2), (4.3), or (4.4), which 

can be done in constant time. However, for the final case the time needed is no longer 

constant. Recall that the final unsolved case is A < p\ < A ' and r ;+2 > r;+i and pi > pi+i 

and (I + 1)(A' -  pi) > pi+i -  pi+ 2  and pw  < A' - p \ .  Examining the conditions in this
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case, there are no upper bounds imposed on A ', or equivalently, n+ 2, suggesting that the 

second lookahead job Ji+2 may arrive at an arbitrarily late time, thus allowing multiple 

jobs to be scheduled in the gap A'. Because of this, the algorithm requires linear time in 

the worst case to make each decision.

As with Lemmas 4.8 and 4.9, we do not need to consider the W2  schedule where we 

wait until time n+ 2. Here especially, such a decision simply does not make sense. Referring 

again to Lemma 4.6, waiting only makes sense if the smallest (first) job in the queue cannot 

complete execution before the arrival of the next job. In this case, our former definition of 

the schedules W / W ,  W /W , W /W  and W / W  are well defined. The algorithm waits or 

schedules (the first W  or W) and then the next important scheduling decision (the second 

W  or W) occurs after any intermediate jobs are scheduled.

First, w e define notation for the number of jobs that are scheduled betw een the two  

"important" decisions. In the w aiting schedule, the machine is id le from t  to n+ i, and then  

executes Jl+i at n + i- N ote that n+ 1 +P1+1 <  n+i +  (A' - p i )  <  n + i +  A' -  A =  n+2- From 

n + i + p i +i to n+2, there m ay be jobs J \ , J2, . . .  that fit into the period. Let S w  be the largest 

set of all jobs, J \ , . . . ,  Jh, that can be executed and com pleted in the period from n + i +  pi+ 1 

to n+2- Similarly in the non-w aiting schedule, the machine executes J\  at t  and then Jj+i 

at t  + p i -  N ote that t + p \  +  pi+1 <  t  +  pi  +  (A' -  p\)  =  t  +  A' =  n+2 - From t  + p \  + p i +1 

to n + 2, there m ay be jobs, J2, J3 , . . .  that fit into the period. Let be the largest set of all 

jobs, J2, . . . ,  Jg, that can be executed and com pleted in the period from t + p \  +P1+1 to n+2- 

We notice that sets S w  and Syy are closely related in that either g =  h +  l o r g  — h, and 

furthermore w e have the follow ing possibilities.
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•  When g = h + 1, Sw = {Ji, and Sw  =  {J2, Jh+x} w ith h > 0. (When

h = 0 ,Sw = Sw  = 0.)

•  When g = h, Sw = {Jr, • ■ •, J / J  and Sjy = {J2, ■ • ., J*} with h > 1. (When h — 1,

Sw  = 0.)

Therefore, our final unsettled case, A < pi < A' and ri+2 > ri+\ and pi > pi+\ and 

(I +  1) (A' -  pi) > pj+i -  pi+ 2  and pi+ 1 <  A' -  p\ is further divided into the following two 

sub-cases, each of which is studied separately.

• A <  pi < A' and r J+2 > n +x and px > pt+1 and (I + 1)(A' -  pi) > pi + 1 -  pJ+2 and

Pi+ 1 < A' — pi and g — h + 1

• A <  pi <  A' and r i+2 > r{+i and pi > pi+i and (/ +  1)(A' -  p i) > pz+i -  pz+ 2  and

P2+i < A' -  pi and g = h

Lemma 4.10 Wizen A < pi < A' and rj+2 > rj+i and p i > p;+i and (I +  1)(A' — pi) > 

Pz+i — pz+ 2  andpi+i < A ! — pi and g = h + 1, the algorithm chooses to wait until r;+i if and only

if

h-hi h-1-1
(1h + 2)A +  (/ -  h){A +p/+ i +  Pj -  A') +  max{(l -  h){A ' - p i+i -  5 3 ^ 1

j= i j - 1

Pft+ 2  -  Pz+2 } < max{0,pi -  pj+i} +  max{0,ph+2 -  pi+2}, (4.5)

where h and g are as defined earlier based on the contents in sets Sw and Sjy.

Proof We first argue that the W jW  schedule yields a total completion time larger than

that in the W /W  schedule and, therefore, is out of consideration because

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. LOOKAHEAD ALGORITHM DESIGN 79

Y  C j ( W / W )  > (h 4- l)n+i + (h + l)pj+i + hpi  + • • • 4- ph + (n+ 2  +  Pft+i) “I

and

Y  C j ( W / W )  = (h + 2)t + (h + 2)pi + (h + l )pi+i + hp2 -\ h Pk+i H ,

where the last "■ • ■ " in each formula represents the total completion time of the jobs 

J;+2 , <4+2, ••■,</« using the shortest-job-first order starting at time n + 2 - Considering the 

difference, we get

Y C j i W / W J - Y C j i W / W )  

> ( h  + 1) A - t - 2 p i - p 2  p h +  n+2 

=  (ft +  1) A -  2pi -  p2  Ph +  A'

>  ( h  +  1)A  — 2p i  — p 2 — ■ • ■ — Ph +  P i+ i + p i  +  ■ ■ ■ +  Ph+i 

=  (h +  1)A + p w  +  p h+1 -  pi

> (h +  1)A +Pi+i 

> 0 .

So we only need to compare the W / W  schedule with one of the W / W  and the W / W  

schedules, depending on which yields a smaller total completion time. We consider two
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possibilities: (a) (I — ft)(A' -  Pi+ 1 -  E j= i Pj) < Ph+ 2  ~  Pi+ 2  and (b) (/ -  ft) (A' -  pi+i -

E j i 1 Pj) > Ph+2 -  Pl+2-

(a) When (Z -  ft) (A' -  />i+1 -  E p t i  Pi) < P/t+ 2  -  Pi+2 / the W /W  schedule has a smaller 

total completion time than the W fW  schedule according to the lookahead-1 result applied 

to time t +  pj+i +  E  Pi hi the non-waiting schedule with Qw = {Jh+2 , ■ ■ -,Ji} and 

Qla  =  {Ji+2 }- So the W /W  schedule is out of consideration. Note that the given(l — 

ft)(A' -  pi+i -  E j=x Pi) < Ph+ 2  -  Pi+ 2  also implies that ph+2 > pi+2- We compute and 

compare E  Cj(W/W) and E  Cj(W/W). We have

y .  Cj(W/W)  =  (h +  2)r;+i + (h + 2)pt+i +  (ft +  l)p i + hp2 -I FPfc+i
A + i .

+(Z — h)(ri+\ + P ( + 1  +
i=i

and

^ • ( I F / W O

= (ft +  2)t +  (ft +  2)pi + (ft +  l)pi+i +  ftp2 +  ■ • - +  pft+i + (I — h)ri+ 2  +  • • ■ 5

where the last "• - • " in each formula represents the total completion time of the jobs 

Ji+2, Jh+2 , . . . ,  Ji using the shortest-job-first order starting at time 0. Considering the dif­

ference, we get
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X ; c,(w/w ) ~ X ; q (w /w )
h+1

= (h + 2) A -  (p i- p i+1) +  (/ -  h)(ri+1 +pi+i + Y pi -  n +2)
i=i

A+l
=  (h +  2)A -  (pi -  pj+i) +  (I -  h)(A + p i + i  +  Y^P i ~  A ')-

3 =  1

Therefore, the algorithm chooses to wait if and only if E  C j ( W / W )  — E  C j ( W  j W )  

< 0 if and only if (h +  2)A + (I — h)(A +  p/+1 +  E ^=i Pj ~ A>) < P i~  Pi+i if and only if 

(ft+ 2 )A + (l-/i)(A + p j+1+ ^ = i 1P i - A0 + ma x { (i- il)(A'- P i4 - i - E j i i1Pj),Ph+2-Pi+2} < 

max{0,pi - p i +1 } +  max{0,ph+2 -  pi+2 }-

(b) When (I -  h)(A' -  pm  -  Pj) > Pfc+2 -  Pi+2 / the W /W  schedule has a larger 

total completion time than the W  jW  schedule according to the lookahead-1 result applied 

to time t +  pi+ 1 +  Ey=i Pj in the non-waiting schedule with Qw  =  {■4+2, and

QiA =  {Ji+z}- So the W /W  schedule is out of consideration. We compute and compare 

E  C j ( W / W )  and E  C'yfW/W)- We have

Y c i ( w / W )

=  (1 +  2)n+i +  (1 +  2)pm  +  (1 +  l)p i +  ■ ■ • +  {l -  h  +  l)pft+i +  ( l - h )  mm{p/l+2,pi+2}

+ ( l - h -  1) min{p/l+3 , max{pft+2,p /+2}} +  ••• 

and
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E  C j ( W / W )

— (I +  2) t  +  (I +  2)pt + (I + l)pi+i + lp2 H + (I — h)ph+ 2

+ ( l - h -  1) min{ph+3,pi+2} +  • ■ ■ ,

Considering the difference, we get

'£cj(w/w)-Y,cj{w/w)

=  {l +  2)A -  (pi -  P i+ i )  -  m a x { 0 ,p ^ + 2  -  pj+2}.

Therefore, the algorithm chooses to wait if and only if Y C j(W /W )  — Y ^ j ^ W /W ) 

< 0 if and only if (/ +  2)A < (pi -  p;+i) +  max{0,ph+2 -  Pi+2 } if and only if (h + 2)A +  

(I -  h){A +  p2+i +  E j i i P i  -  A') +  max{(Z -  h){A' -  pJ+1 -  YjiiPj)iPh+2 ~ Pi+2 } < 

max{0,pi -  Pi+i} +  max{0,pft+2 -Pi+2>- □

Lemma 4.11 When A < pi < A 1 and n + 2  > r ; + 1 and pi > pj+i and (I + 1)(A' — pi) > 

p(+x -  pi+2 and pi+ 1 < A' -  pi and g = h, the algorithm chooses to wait until rj+ 1 i/and only if

h

(I +  2)A +  min{(i - h  + 1)(A' -  A - p / + i  -  E Pi)iPh+i ~ Pl+2 }
j=i

h

-  min{(i -  /i +  1) (A' -  pi+i -  EPi)>Pfc+i ~P(+2>
j=i

< max{0,pi -  pi+i}, (4-6)
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where h and g are as defined earlier based on the contents in sets Sw and S^-

Proof Applying the lookahead-1 result to time r;+i +  pi+ 1 +  Yhj=i Pj hi the waiting sched­

ule with Qw = {Jh+1,. and Qla = {J1+2 }, we have that £  C f i W / W )  < C j ( W / W )  

if and only if (I -  h + 1)(A' -  A -  pi+i -  Y!j=iPj) < Ph+i ~ Pi+2 - Similarly, apply­

ing the lookahead-1 result to time t +  pi+i +  Ylj=i Pj 311 the non-waiting schedule with 

Qw = {-4+1, • ■ •, Ji} and Qla  = {<7i+2}, we have that £  C j ( W / W )  < Jf, C j { W / W )  if and 

only if (I — h +  1)(A' -  pl+1 -  Y$=iPj) < Pk+i ~  Pi+2 - Note that (I -  h + 1)(A' -  A -  

Pi+i ~  Ylj-iPj) < (l — h + 1)(A' — pi+i — Y lf-i Pj)- We have the following three possibil­

ities: (a) (I — h + 1)(A' -  p i + 1 -  Y?j=iPj) < Pft+i -  Pi+2 , (b) (/ -  h + 1)(A' -  A -  pl+1 -  

Ej=iPj) > Pft+i -  Pi+2 , and (c) (I -  h + 1)(A' -  A -  pl+1 -  Ej=iPj) < Ph+i ~ Pi+ 2  and 

(I -  h + 1)(A' - p t+1 -  Y!j=iPj) > P*+i -  Pi+2-

(a) When (Z -  /» +  1)(A' -  pi+1 -  Y%=iPj) < P/1 + 1  ~  Pi+2 , which also implies that 

(Z -  h +  1)(A' -  A -  pi+i -  Y!j=\Pj) < Pft+i -  Pi+2 , the W /W  and the W /W  are out of 

consideration. We only need to compute and compare Cj(W/W) and J2 C j(W /W ). We 

have

y :  Cj- (W/W) =  (/i +  l) r i+i +  (h + l)pz+i +  hpi H h p* +  ■ • •

and

^  Cj(W /W ) = (/&4- l) t +  (h +  l)pi + /ipj+i + - ■ • + Ph + ■ - ■ ,

where the last "■ • •" in each formula represents the total completion time of the jobs 

Ji+2 , Jh+i, ■■■i'll using the shortest-job-first order starting at time rj+2 - Considering the
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difference, we get

£  CjiW/W) -  J 2  C j(W /W ) = (h + 1)A -  (P! -  Pl+1).

Therefore, the algorithm chooses to wait if and only if Y  Cj(W/W) — Y  Cj (W / W ) < 0 

if and only if (h + 1)A < p\ — pj+i if and only if (Z +  2)A +  min{(£ — h + 1)(A' — A -  pi+\ -  

Y^=iPj),Ph+i-Pi+2}~mm{(l-h+l)(A'-pw - Y l lj=iP3)^Ph+i~Pi+2} < max{0,pi —pi+i}-

(b) When (I -  h + 1)(A' -  A -  pl+i -  Y j - iP j )  > Ph+i -  Pi+2 , which also implies that 

( l - h  + 1)(A' -  pi+i -  Y j - i  Pi) > P/i+i -  Pi+2 / the W /W  and the W fW  schedules are out 

of consideration. We only need to compute and compare Y  Cj iW/W)  and Y  Cj(W/W).  

We have,

J 2  Cj(W/W) = (l + 2 )rJ+1 +  (/ +  2 )p i+1 + (l + 1)P1 +  •■■

and

Cj(W/W)  = (l + 2 )t + (l + 2)Pl + (l + 1 )pl+1 + ••■ .

Considering the difference, we get

Y jC i iW /W )  -  Y jC j iW /W )  = (l + 2)A -  (P1 - Pl+1).

Therefore, the algorithm chooses to wait if and only if Y  Cj(W/W) — Y  Cj (W/W)  < 0 

if and only if (/ +  2) A < pi — pi+\ if and only if (I +  2)A +  min{(/ — h +  1)(A' — A — pi+j — 

Y hi=iPi)iPh+i-Pi+2 }-™ m{{l-h+T){A'-pi+i - Y hj=iPi)>Ph+i-Pn2 } < m ax{0 ,p i-p i+i}.
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(c) When (I -  h + 1 ) (A' -  A -  pi+x -  £ * =1 pj) < ph+i -  pi+ 2  and ( l - h  + 1) (A' -  pl+i -  

£ y =l Pj) > Ph+i ~ Pi+2/ the W /W  and the W /W  schedules are out of consideration. Note 

that the above inequalities imply that pn+i > Pi+2 - We only need to compute and compare 

£  Cj (W/ W ) and £  Cj(W/W).  We have

Y^ Ci i W/ W)
h

— (I + 2)n+x + (I + 2)pi+i + (I + l)pi + •■■ + (I — h + 1)(A/ — A —pi+i — Y & )

+(l -  h + l)pi+2 + (I — h)pu+1 + H----

and

Y C j ( w / w )

— (I + 2)t + (I + 2)p\ + (I + l)pj+i H + (I — h + l)ph+i +  (I ~  h)pi+2 +  • • ■ ■

Considering the difference, we get

Y C j ( w / w ) - Y c i(w / w )
h

= (I + 2)A -  (pi ~ p l+i) + { l - h  + 1)(A' -  A -  pl+i -  Y P j )  ~ (Pfc+i -Pi+ 2 )-
i=i

Therefore, the algorithm chooses to wait if and only if £  Cj (W/W)  — £  Cj(W/ W)  < 0 

if and only if (I + 2)A +  (J -  h +  1)(A' -  A -  pl+i -  Y/%\Pj) < (pi ~Pi+i) + (Ph+ 1 -  K+2 ) 

if and only if (I +  2)A +  min{(l -  h + 1)(A' -  A -  pl+i ~Y!j=iPj)iPh+\ - P 1+2 } -m in {(l -  

h + 1)(A' —pi+i -  'Ej=iPj),Ph+i ~Pi+2 } < max{0,pi -p (+ i} . □
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4.3.2 LA2 A lg o rith m  Tim e Complexity

As shown in Lemmas 4.10 and 4.11, the running time for a LA2 algorithm is linear. This 

occurs because the algorithm must know when rj+ 2  occurs relative to the previous com­

pletion time. If the arrival occurs close to a completion time, waiting may be beneficial. 

However, given the sets of waiting jobs and lookahead jobs, this fact can only be deter­

mined by direct calculation, considering the jobs in order. Therefore, although there are 

many cases where the LA2 algorithm makes decisions in constant time, there exists in­

stances requiring linear time.

4.4 Running Time of LAk Algorithm

In this chapter, we considered the implementation of two lookahead algorithms. In both 

cases, the worst-case running time was linear, although we argued that the actual running 

time would be near-constant for the Lookahead-1 algorithm for two machines. In this 

section, we consider the running time of a Lookahead-fc algorithm for a single machine.

Our approach to pick the shortest job in the wait queue is based on the problem 1 j j ]TJ Cj 

where the n  jobs are available at time 0. Conway [28] showed that the optimal schedule is 

produced by sorting the jobs and scheduling them from shortest to longest (SJF). Note that 

this solution has no idle periods because all the jobs are available at once.

Unfortunately, the SJF algorithm does not produce the optimal schedule when jobs ar­

rive over time. There can be time periods in the optimal schedule where the machine is 

idle even though one or more jobs are available, and the SJF algorithm, called a conser­

vative approach, does not allow this type of idleness. A lookahead algorithm creates a
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better schedule by finding some instances when conservative decisions are not optimal. 

The amount of improvement increases as the size of the lookahead queue grows.

The limit of this growth is when the algorithm knows about every job to schedule, and 

as k -* n, we have the offline version of l|ry | X] Cj- Unfortunately, this problem has been 

shown to be strongly NP-hard [72], and consequently, any method that guarantees finding 

the local optimal requires exponential time (unless V  =  AfV).

Thus, there is a tension between quality of schedule and running time. If we use an 

algorithm with a large lookahead, it creates very good schedules, but the execution time of 

the algorithm is large. On the other hand, if we use a small amount of lookahead, the algo­

rithm runs quickly, but the quality of the schedule is reduced. As we will discuss further 

in our simulation study of lookahead algorithms, Chapter 6, the amount of improvement 

actually tapers off as the size of the lookahead grows. Lookahead-1 (LAI) results in a sig­

nificant improvement over SJF, whereas Lookahead-2 is only slightly better than LAI. We 

therefore conclude that a lookahead of one is the appropriate balance between the conflict­

ing metrics of execution time and schedule quality.
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Chapter 5

Algorithm Analysis

5.1 Introduction

Beginning in this chapter, we turn  from the design of efficient algorithms to a discussion 

of the effectiveness of our algorithms. We study algorithms in two ways. In this chapter, 

we use mathematical analysis to measure the worst-case performance, and in the next 

chapter, we use simulation to consider the average case. For both approaches, we show 

that our algorithm produces schedules that are significantly better than schedules from an 

equivalent algorithm without lookahead.

Our approach in this chapter is a technique called competitive analysis, which pro­

duces a ratio describing how far from optimal a solution is in the worst case. Formally, let 

A  be an algorithm of interest. Further, let /  be an instance for the problem and let A(I) 

and OPT(J) be the values of the objective function given by the algorithm and the optimal 

algorithm, respectively. Then the algorithm A  is said to be c-competitive if for all I,

A(I) < c • OPT(I)

Notice that this approach is a shift in the way we think about an algorithm. When we

88
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considered the running time in Chapter 4, we were interested in how long it would take to 

make each local-optimal decision. Here, we are interested in cumulative performance of 

the algorithm, not the quality of individual decisions.

We apply this technique to algorithms for the general problem P|r,-| Cj,  where we 

have n jobs to schedule on m  machines. Each job has an arrival time ry and a processing 

time pj, and the goal is to schedule all of the jobs while minimizing the sum of completion 

times. This is the same problem studied in Chapter 4 except we have generalized the 

number of machines to m.

For this problem, we study three algorithms, the Shortest Job First (SJF) algorithm, the 

Lookahead-1 (LAI) algorithm, and the Lookahead-fc (LAfc) algorithm, each based on the 

model described in Chapter 3. In our model, we described a three step method to make 

scheduling decisions. The first two steps are to assume that no other jobs will arrive and 

then to calculate the optimal schedule of the jobs in the wait queue and lookahead queue. 

In the third step, if the algorithm decides to schedule it always chooses the shortest job in 

the wait queue. Because this is the same rule that the SJF algorithm uses, we consider the 

SJF algorithm to be the Lookahead-0 (LAO) algorithm.

Using this alternative view of the SJF algorithm, the difference between any two algo­

rithms is the size of the lookahead queue, Ql a - For the SJF algorithm, the size is zero; for 

the LAI algorithm, the size is one; and for LAfc, the size is fc. Thus, for each algorithm, 

the wait queue, Qw, holds jobs that have arrived but have not been scheduled and the 

lookahead queue, Qla , contains zero or more jobs that arrive in the future. The algorithm 

makes scheduling decisions using the information in these two queues.

Within this framework, we consider the performance of each algorithm. In section
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Figure 5.1: In Theorem 5.1, the optimal schedule has all of the machines idle until time e and then
executes the short jobs followed by the long jobs. In the SJF schedule, the long jobs are executed
immediately, and then the short jobs.
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Optimal Schedule
+

O rJ J

M , L 1 1 1

m 2 L 1 1 1

m 3 L 1 1 1

L 1 1 1

SJF Schedule

5.2, we give a proof of the lower bound on the competitive ratio for the SJF algorithm. 

Likewise, in Section 5.3 we give a lower bound proof for the LAI algorithm and in Section 

5.4, a proof for the LAfc algorithm. Finally, in Section 5.5, we discuss the significance of 

these ratios.

5.2 Lower Bound for SJF

Theorem 5.1 The competitive ratio for SJF is at least

Proof: Consider the instance where m long jobs with processing time L  arrive at time 0 and 

I • m  short jobs with processing time 1 arrive at time e. Note that n =  m + l - m  — (l + l ) - m .  

In the optimal schedule OPT, all m  machines wait from time 0 to time e. Then, all I ■ m
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short jobs are executed followed by the m  long jobs. See Figure 5.1. Let C opt be the total 

completion time in the optimal schedule. We have

C o p t —• m( (e  +  1) +  (e +  2) +  . . .  +  (e + 1) +  (e + 1 +  L))

— m  +  —I2 +  I +  .

In the SJF schedule, all nn long jobs are executed before any short jobs. See Figure 5.1. 

Let C sjf be the total completion time in the SJF schedule. We have

Csjf — Tn{L +  (L +  1) +  {L +  2) +  . . .  +  {L + 1)) 

= m [{ l  + T ) L + l- l 2 + 1- ^ .

Therefore, the ratio is

Csjf m {{I +  1 )L + ^l2  +  ^0
Copt m {L +  +  ( |  +  e) I +  e)

l L  +  \ l 2 +  \ l
n_ 
m"

L  +  +  ( |  +  e) / +  e
7 1  T— as L -* oo. 
m
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Figure 5.2: In Theorem 5.2, the optimal schedule has all of the machines idle until time 2e and then
schedules the short jobs followed by both sets of long jobs. In the LAI schedule, the first set of long
jobs execute immediately, then the short jobs, and finally, the second set of long jobs.
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M, L 1 1 1 L

m2 L 1 1 1 L

m3 L 1 1 1 L
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LAI Schedule

5.3 Lower Bound for LAI

Theorem 5.2 The competitive ratio for LAI is at least |  +  l).

Proof: Consider the instance where m  long jobs with processing time L arrive at time 0 

followed by another m  long jobs with processing time L  arriving at time e, and finally, I ■ m  

short jobs with processing time 1 arriving at time 2e. Note that n — m+m + l-m  = (l + 2)m.

In the optimal schedule, all m  machines wait from time 0 until time 2e, and then execute 

all the short jobs before executing any long jobs. See Figure 5.2. Let Copt be the total 

completion time in the optimal schedule. We have
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C qpt — m((2e +  1) +  (2e +  2) + . . .  + (2e +  /) +  (2e +  I +  L) +  (2e -(-1 4- L +  X))

— 971 f 3X "I- —I -F j "  A 2c j I 4c j .

In the LAI schedule, all m long jobs with arrival time 0 are executed before any short 

jobs. The second batch of long jobs are executed last. See Figure 5.2. Let C lai be the total 

completion time of the LAI schedule. We have

Clai — to(X +  {L +  1) +  {L +  2) +  . . .  +  (L -t- Ij +  {L + 1 +  L)) 

— + 3)L +  - I 2 +  -I'j .

Considering the ratio, we have

C l a i  _  t o  ( ( I  +  3) L  +  \ l 2 +  f 1) 

C q p t  t o  ( 3L  +  i /2 +  ( |  +  2e)l +  4e)

{ ^  + ^ ) l  + ¥ 2 + ¥
3 L +  +  ( |  +  2 e)l + 4e
1  f n  A
o  ( -------•"3 \ m  /

as L —)■ oo.
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Figure 5.3: In Theorem 5.3, the optimal schedule has all of the machines idle until time 2e, then
schedules the short jobs followed by all the long jobs. In the LAfc schedule, the first set of long jobs
is executed immediately, then the short jobs, and finally, the remaining long jobs.
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5.4 Lower bound for LAk

Theorem 5.3 The competitive ratio for LAk is at least k̂+l^k+2) +  \h{k + 1)).

Proof: Consider the instance where m  long jobs with processing time L  arrive at time 0, 

another k ■ m  long jobs with processing time L arrive at time e and I ■ m  short jobs with 

processing time 1 arrive at the 2e. Note n = m + k- m + l- m = (k + l + l ) -m .

In the optimal schedule, all m  machines wait from time 0 to 2e and then execute all 

short jobs before executing any long jobs. See Figure 5.3. Let Copt be the total completion 

time in the optimal schedule. We have
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C o p t =  t o ((2c  T  1) -f- (2e +  2) +  . . .  +  (2e +  /) +  (2e +  / +  Li) +

(2e +1 + 2i )  (2e +  I +  {k +  1)L)

In the LAA; schedule, all m  long jobs with arrival time 0 are executed before any short 

jobs. The second batch of long jobs are scheduled last. See Figure 5.3. Let Cla* be the total 

completion time in the LAA; schedule. We have

Cla£ =  m(L +  (L +  1) + {L +  2) +  . . .  +  {L + 1) +  (L + 1 +  L) +

(L + 1 + 2L) + . ..  + (L + 1 + kL))

= m ( ( l  + k + l  + ^k{k +  1 ))L +  i / 2  +  Q  +  * ) l ) .

Considering the ratio, we have

Cla* m ((/ +  A; +  1 + \k{k + 1 ))L + \ l 2 +  ( |  +  A;) l)
Copt tn {^{k +  1 )(A; +  2 )L +  Jji2  +  ( |  +  k +  2 e) I +  (A; + l) 2 e)

(% + ±k(k + l ) ) L  + i l 2 + ( l  + k ) . l  
\{k  +  1 ) (A: +  2 )L +  \ l 2 +  ( |  +  k + 2e) I +  (A: +  l ) 2 e

—>• ----------- —— - (■— +  -k (k  + 1 ) j a s L —»oo.
(fc +  l)(fc +  2 ) \ m  2 K ’)
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Figure 5.4: For a fixed m and n, when the LAO algorithm is used, the competitive ratio is large, 
implying the worst-case instance is far from optimal. By adding a single lookahead, the ratio is 
reduced significantly. As the size of the lookahead grows beyond one, the amount of improvement 
diminishes.

ot

C l.gOU

4 6

Lookahead Size
10

5.5 Discussion

We suspect that the lower bounds from the previous sections are all tight bounds. That 

is, they are also upper bounds for the competitive ratios of the corresponding algorithms. 

It has been shown that when m  =  1, the tight competitive ratio is n = % for the SJF 

algorithm [80]. In addition, when m = 1, we know that the tight competitive ratio for LAI 

is | ( n  +  1) =  5  ( ^  +  l ) [79]. Because our lower bounds cover the previous tight bounds 

for the special case of m = 1 , we are encouraged that our ratios may also be tight.

The ratio for the LAfc algorithm unifies our three results. When fc =  0, we have LAO, 

which is SJF. The bound for LAO is {k+1f(k+2 ) + 1)) = M  ( s  +  5 ‘ °) =  Ex'

which matches the bound we developed for SJF. When fc =  1, we have LAI. The bound
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for LAfc when k = 1 is ( £  +  \k{k  +  1)) =  ^  (£  +  \  ■ I ■ 2) =  § (£  + l) , which

matches our bound for LAI. Although these consistencies do not prove any of the bounds 

are upper bounds/ it does show that there is a relationship between the various lower 

bounds. The existence of this relationship and our ratios that are consistent with previous 

tight ratios imply the lower bounds may be tight.

Assuming the bound for LAfc is tight, an interesting fact comes out of the mathematics. 

First, note that in general, the bigger the size of fc, the better the competitive ratio. Intu­

itively, as fc approaches infinity, we have the optimal offline algorithm. When for some 

fixed constant c, we get

(fc +  lKfc +  2) ' ( S  +  l * (fc +  1})  5  W+l){h + 2j{l{c~1)k2+lHk

(fc+ i)(fc+ 2) [c~ ) + r+2  

< ( c - l )  +  l

=  c.

This indicates that the competitive ratio for LAfc becomes bounded by the constant c 

for large fc.

As a final point, we return to the discussion in Chapter 4 regarding the balance between 

execution time and amount of improvement. Figure 5.4 shows a plot of the competitive 

ratio of the LAfc algorithm. In this graph, we vary fc and hold both n and m  fixed with n 

m. A  higher value of the competitive ratio means that the worst-case schedule is further 

from optimal. As expected, the quality of the schedule improves as the size of lookahead

+  1))
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increases. More interestingly, we note that there is a dramatic improvement from zero 

lookahead, the SJF algorithm, to a single lookahead job, LAI. Although a larger lookahead 

produce better schedules, the improvement is only marginal beyond Lookahead-1.

In Chapter 4, we showed that a LAI algorithm can be implemented effectively in a 

real-time context, bu t that the running time of algorithms using more lookahead was pro­

hibitive. Figure 5.4 supports these findings by demonstrating that the most improvement 

occurs between LAO and LAI. Therefore, we conclude that a lookahead of 1 is the appro­

priate balance between efficiency and improvement.
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Chapter 6

Simulation

6.1 Overview / Introduction

In addition to theoretical analysis, a second approach we take in evaluating lookahead al­

gorithms is simulation experiments. There are a number of reasons why simulation is a 

very important tool for studying the behavior of algorithms. First, intuition tells us that 

lookahead algorithms may out-perform their online counterparts in situations when there 

are large variations in job lengths and small intervals between job arrivals. In addition, it 

seems logical that transient behavior, such as the queue size, may affect the relative perfor­

mance of lookahead algorithms. Simulation can be used to verify these intuitions, whereas 

theoretical analysis cannot. Second, when theoretical analysis is difficult or impossible, 

simulation experiments provide insight. Third, although the competitive ratio provides 

an overall performance guarantee, it is sometimes too pessimistic to be informative in 

practice because it is a worst-case measure. In comparison, when a suitable probabilistic 

distribution is chosen, simulation gives average-case information on the performance of 

lookahead algorithms.

Overall, the goal of our simulation study is to quantify the performance of lookahead

99
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algorithms on three job scheduling systems. We simulate a single machine system and a 

two identical machine system, the systems for which we developed lookahead algorithms 

in Chapter 4. The third is a two unrelated machine system. The difference between the 

dual machine systems concerns the service time of each job k For identical machines, each 

job has the same service time on both machines. For the unrelated machines, each job 

has a potentially different service time on each machine. This configuration represents a 

system where each machine has different abilities. An example is the cross-docking model 

discussed in detail in Appendix A.

For all three systems, we assumed the system started empty and idle, there were no 

jobs in the single wait queue at time zero, and no jobs were executing. For each simula­

tion, a fixed number of jobs arrived over time, and the simulations finished when all jobs 

had completed. These assumptions are consistent with the theoretical lookahead model 

described in Chapter 3.

We implemented the Shortest Job First (SJF) and Lookahead-1 (LAI) algorithms for all 

three systems. For the single machine system, we also implemented a Lookahead-2 (LA2) 

algorithm. We use the SJF algorithm as a point of comparison, justified because the LAI 

and LA2 algorithms use the SJF rule when they decide to schedule. Therefore, SJF is also 

referred to as the Lookahead-0 (LAO) algorithm.

Regardless of the name, the SJF algorithm maintains the wait queue sorted by service 

time with the shortest job at the head of the queue. When a job arrives, it is inserted into 

the wait queue, and when a machine becomes idle, the first job in the queue is scheduled 

on that machine.

'Consistent w ith simulation terminology, in this chapter we use service time rather than processing time.
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The LAI algorithm for job scheduling maintains a lookahead queue in addition to the 

sorted wait queue. The lookahead queue contains a single job, the lookahead job, which is 

the next job that will arrive. Assuming the wait queue is not empty when a machine be­

comes idle, the algorithm must decide whether to wait for the lookahead job or to schedule 

the shortest job in the wait queue. From the work of Mao and Kincaid [79], we know that 

using the local optimal, the algorithm can make this decision in constant time for the sin­

gle machine system [79], and from Chapter 4, we know the running time is near-constant 

for the two identical machine system. In both cases, if waiting produces a smaller total 

completion time of the jobs in the wait queue and lookahead queue, the algorithm waits 

for the lookahead job. Otherwise, the first and shortest job in the queue is executed.

Similar to the LAI algorithm, the LA2 algorithm for job scheduling maintains both a 

wait queue and a lookahead queue. In this case, the lookahead queue always contains the 

next two jobs to arrive. The LA2 algorithm uses the information in both queues to calculate 

the local optimal schedule and then decides, consistent with this schedule, whether to wait 

or schedule. From Chapter 4, we know this decision can be made in linear time for the 

single machine system.

For all simulations, inter-arrival times were assumed to be Exponentially distributed. 

We studied both a stationary arrival process, where jobs arrive at a constant average rate 

throughout the simulation, and a Markovian Modulated Poisson Process (MMPP), where 

the arrival rate toggles between two rates. Results were gathered when the service times 

were taken from Uniform, Triangle, Erlang, Exponential, and Hyperexponential distribu­

tions. Table 6.1 lists the important information for each of these distributions.

The most important difference between these simulation results and the previous the-
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Table 6.1: The mean and standard deviation for each distribution used in the simulations.

Distribution mean standard deviation
Uniform(a, b)
Triangle(a, b, c) ^±b±£ ^(a-br+(a-cy+(p-cp
Erlang(a, b) ab ^fab
Exponential(ju) p p
H yper(/ii,^ 2 5 a) ap\  +  ( 1  -  a)p2 otp\ +  ( 1  -  a)

oretical results is the algorithm with which we compare. In our theoretical study, we com­

pared against the optimal algorithm to produce a worst-case measure. With our simulation 

experiments, we use the SJF as our point of comparison to generate average-case measures.

Because of this distinction, we use different criteria for each approach. In our theoret­

ical results, we minimize the total completion time. In the simulations, we measure the 

average wait time. For job Jj,  the completion time, Cj,  is the arrival time, ry, plus the time 

spent in the queue, or wait time, Wj, plus the service time, pj. We see that the two criteria 

are equivalent since

j^E  ̂= ̂ E + Vj + Pj) = f̂ Efa + ̂ 1 + l j l wrn ■ n

Notice that J2(rj +  Pj) is constant for a given instance of n jobs. Only a change in the 

wait time affects the sum of completion times and average wait time.

Using the average wait time is necessary w ith simulation because of the metric we use 

to compare two algorithms. The percent improvement of algorithm A \  over algorithm A2 
for an instance is defined in terms of the cost of the two schedules, C\  and C2:

C 2 - C 1
C2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. SIMULATION  103

Let C represent the sum of arrival times plus the sum of service times for a set of jobs. 

Further, let W\  be the sum of wait times incurred from A\  and W2 be the sum of wait times 

from A2- Then the percent improvement using the sum of completion times is

{C + W2) - { C  + Wi) W2 - W 1

c + w2 c + w2

Using the average wait time, we have

I ^ 2 _  l Wl _ W 2 - W i  
1W2 W2

In both ratios, the numerator represents the difference in wait times between the two 

schedules. However, when the sum of completion times is used as the criteria, the denom­

inator of the percent improvement contains C and is the sum of completion times of the 

second algorithm. Because each completion time is larger than the previous, this quantity 

dominates the ratio. Mathematically, if the number of jobs is large, then C =  Y l ri  +  lu P j  

is also large. In the limit as n  goes to infinity, the percent improvement using the sum of 

completion times goes to zero. In terms of our finite simulations, the measured percent 

improvement of the total completion time will always be less than the equivalent instance 

when calculating the average wait time.

6.2 Results

Our experiments were broken down into two main categories. First, we measured the 

improvement of lookahead algorithms with short bursts of 25 jobs, called the transient 

behavior. This type of study provides a very detailed look at how much improvement
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is expected in the short term. The second approach is to execute the simulations with a 

very large number of jobs and measure the overall performance, called the steady-state 

behavior. Although more commonly used, this approach dilutes the improvement of the 

lookahead algorithm because the large majority of decisions do not result in a waiting 

decision, and improvement only occurs when the algorithm waits.

In Section 6.2.1, we consider the transient behavior of lookahead algorithms, and in 

Section 6.2.2, we consider the steady-state behavior.

6.2.1 Transient Behavior

The goal of these simulations was to measure the improvement of lookahead algorithms 

over the Shortest Job First (SJF) algorithm. For the two identical machine system, we mea­

sured the average wait time for 100,000 executions of 25 jobs. Using these values, we 

computed the percent improvement of the LAI algorithm over the SJF algorithm. Figure

6.1 contains graphs showing these results when the service times were drawn from Uni­

form, Triangle, Erlang, Exponential, and Hyperexponential distributions. For each graph, 

the range of average service times was between 3 and 5 time units. This means the only 

difference between the graphs is the service time distribution.

An obvious difference between the graphs is the significant improvement when service 

times are draw n from Exponential or Hyperexponential distributions and the marginal 

improvement of the Erlang, Triangle and Uniform distributions. In some cases, the SJF 

algorithm actually performs better than the LAI algorithm, resulting in a negative percent 

improvement. In these cases, the sequences of jobs that arrived contained an instance 

where the LAI algorithm incorrectly decided to wait for a job. These instances highlight
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Figure 6.1: For two identical machines, we measured the average wait time for 25 jobs with service 
times drawn from various distributions. A single parameter was varied to produce average service 
times between 3 and 5 time units. Using 100,000 repetitions, each graph shows 95% confidence 
intervals on the percent improvement of the LAI algorithm over the SJF algorithm. When the 
service times were drawn from distributions with small variance, little or no improvement is seen. 
However, when the variance is large, significant improvement occurs.
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Figure 6.2: Using the traffic intensity and coefficient of variation as unifying metrics, this graph 
is a composite of the five graphs in Figure 6.1. For a given traffic intensity, as the coefficient of 
variation increases the variance also increases. This graph shows the correlation between amount 
of improvement and variance.

Percent Improvement

1.4

1.4 16Traffic 2.2 
Intensity 2.4

2.6 Coefficient of 
Variation

the fact that the LAI algorithm is an approximation algorithm and sometimes makes bad 

scheduling decisions.

One important quality of the graphs in Figure 6.1 is that the performance is fairly con­

sistent for each distribution. Drawing service times from the Hyperexponential distribu­

tion always produced significant improvement and using the Erlang distribution always 

produced schedules that were nearly identical to those of the SJF algorithm. Although 

each distribution uses the same range of means, the standard deviation varies. A unifying 

value across the distributions is the coefficient of variation, the standard deviation over the 

mean. Roughly speaking, this unit-less value represents the spread of a distribution. In the 

context of job lengths, larger values imply an increased likelihood that a long job was fol­

lowed by a short job. Using the coefficient of variation, we can meaningfully compare the 

distributions at each traffic intensity. Figure 6.2 shows the percent improvement compared 

with both the traffic intensity and the coefficient of variation. The error intervals assod-
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Figure 6.3: In the two identical machine system, we measured the size of the lookahead job and the
first job in the wait queue each time the algorithm decided to wait. These graphs show that long
jobs were delayed to wait for jobs that were 12 to 16 times shorter.
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ated with each point are omitted for clarity because this graph is a composition of Figure 

6.1. The graph shows that more improvement occurs when the coefficient of variation is 

higher. The constant mean for each set of data indicates that the standard deviation of the 

distribution, and in turn the variance, is an indicator of the amount of improvement.

Consequently, we see that improvement occurs when long jobs are delayed for shorts 

jobs. Recall that the lookahead algorithm either decides to schedule the first job in the 

queue or wait for the lookahead job. Using the two identical machine system, we collected 

job size information each time lookahead was utilized. In Figure 6.3, the size of the first 

job in the wait queue and the size of the lookahead job are both shown when the algorithm 

decides to wait. The waiting job is between 12 and 16 times larger than the lookahead job. 

Thus, lookahead is utilized to delay very long jobs to wait for short jobs.

These conclusions can be seen in the other systems as well. Figure 6.4 shows up to a 

35 percent improvement of the LAI algorithm over the SJF algorithm for two unrelated 

machines. In this case, only the Hyperexponential distribution was used for service times.
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Figure 6.4: In the two unrelated machine system, we measured the percent improvement for 25 
jobs with service times drawn from a Hyperexponential(l, p, a) distribution. As p increases the 
variance increases, and the LAI algorithm produces more improvement over the SJF algorithm. 
As a varies, the ratio of long jobs and short jobs changes. Although the variance increases as a 
decreases, the percent improvement has the opposite trend.
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The variance of a Hyperexponential(^i, /1 2 , a) variable is defined to be

a  ■ n \  +  (1 —  a )  ■ H2 -

Therefore, as fi2  increases, so does the variance. Figure 6.4 shows that as ^ 2  increases, 

so does the improvement. Note from the above equation that as a increases, the variance 

decreases. However, Figure 6.4 shows a decrease of improvement as a increases. This 

demonstrates that the level of variance is not a perfect indicator of the amount of improve­

ment.

For larger values of a, the proportion of short jobs to long jobs is large. Therefore, 

when a long job is in the queue, it is very likely that a short job is the lookahead job, and 

consequently, that the long job is delayed. On the other hand, when a  is near .5, long jobs 

in the queue are equally likely to have long and short jobs as the lookahead job. Therefore, 

utilizing lookahead is less likely, and the overall improvement is decreased.

Finally, we consider the improvement in the single machine system. In this case, we
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Figure 6.5: In the single machine system, we measured the percent improvement of the LAI al­
gorithm over the SJF algorithm and the LA2 algorithm over the SJF algorithm with service times 
drawn from Uniform, Exponential, and Hyperexponential distributions. Using 95% confidence 
intervals, the graphs demonstrate that higher variance corresponds to larger improvement.
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are comparing both the LAI and LA2 algorithm against the SJF algorithm. Similar to 

the graphs for the two identical machine system, Figure 6.5 shows the improvement of 

Uniform, Exponential, and Hyperexponential distributions for service times. As with the 

two identical machine system, higher variance results in more improvement.
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Figure 6.6: For two identical machines, we drew service times from a fixed Hyperexponential dis­
tribution and varied the number of jobs. As the number of jobs increases, the improvement of the
LAI algorithm over the SJF algorithm steadily decreases and eventually becomes negative.
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6.2.2 Steady-S tate Behavior

For the simulations studied so far, the number of jobs was only 25. Figures 6 . 6  and 6.7 

demonstrate the effect of increasing the number of jobs. The distribution used for service 

times was Hyperexponential with parameters chosen so that, on average, jobs arrived at 

exactly the same rate they could be processed. For both scheduling systems, the percent 

improvement decreases dramatically as the number of jobs increases. For the single ma­

chine system, the LAI algorithm produces worse schedules when the number of jobs is 

larger than approximately 250. To understand this, consider the complete schedule for 

a large number of jobs in the single machine system. Because we have a constant traf­

fic intensity, jobs arrive such that the final schedule contains long blocks where jobs are 

scheduled without the machine becoming idle. Consider one such block containing n jobs. 

Assume that at time t somewhere toward the beginning of the block, the scheduling al­

gorithm considers the jobs in the queue and the lookahead job. Based on the available 

information, waiting appears to be beneficial. In general, this means that the amount of
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Figure 6.7: In the single machine system, we drew service times from a Hyperexponential distri­
bution and varied the number of jobs. Because the jobs arrive at a constant rate, the schedule has 
few idle period. Consequently, both the LAI and LA2 algorithms perform poorly because waiting 
is rarely beneficial.
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delay incurred by waiting is smaller than the gain of scheduling a lookahead job next. 

However, the incurred delay affects not only the current jobs in the wait queue, but also 

the remaining jobs in the block that have not arrived. Assuming the remaining jobs are 

scheduled without another wait, we have a long sequence of jobs scheduled one after an­

other. With this long block of jobs, the decision to wait early in the block is actually a 

bad decision. The wait incurred affects not only the jobs currently in the queue, but also 

those that arrived later and were scheduled in the same block. Therefore, lookahead can 

ultimately create schedules w ith increased average wait time.

Because a constant arrival rate creates long blocks of jobs that cause problems for looka­

head algorithms, we next considered a bursty arrival process. In a Markovian Modulated 

Poisson Process (MMPP), inter-arrival times are computed using three Exponentially dis­

tributed variables with averages /ii, /̂ 2 , and Inter-arrival times are drawn from an 

Exponential^ i) distribution for some period and then switch to inter-arrivals with an
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Figure 6.8: For two identical machines, we drew service times from a Markov-Modulated Pois-
son Process that caused jobs to arrive in bursts of approximately 25 jobs. Unlike Figure 6.6, the
improvement stabilizes as the number of jobs increase.
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distribution. When we fix m  =  4 and ^ 3  =  100, on average 25 jobs arrive during half the 

bursts. When \i2 is large, few jobs arrive during the other bursts. This creates blocks in 

the final schedule of approximately 25 jobs separated by idle periods. Figure 6 . 8  shows 

the effect of an MMPP arrival process on the two identical machine system using Hyper- 

exponential(l, 16,0.8) service times. Similar experiments were performed for the two un­

related machine system and the single machine system. These results are shown in Figures 

6.9 and 6.10.

In all three graphs, we see that the percent improvement plateaus. For the two identi­

cal machine system, the improvement is around 35 percent, for the two unrelated machine
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Figure 6.9: For two unrelated machines, service times were drawn from a Markov-Modulated Pois-
son Process that caused jobs to arrive in bursts of approximately 25 jobs. For this system, the im­
provement is consistent regardless of the parameter values.
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system 25 percent, and for the single machine system around 30 percent for both the LAI 

and LA2 algorithms. This plateau is achieved both as the number of jobs increases and 

H2  increases. Intuitively, as /t2  approaches nz, fewer jobs arrive during the "off" alterna­

tions. Thus, all four graphs demonstrate that lookahead algorithms produce significant 

improvement if small or medium-sized bursts of jobs occur.

A final consideration is the relative performance of the LAI and LA2 algorithms. As 

expected, for the single machine system in Figures 6.5 and 6.10 we see that the LA2 algo­

rithm produces better schedules than the LAI algorithm, and both lookahead algorithms 

perform better than the SJF algorithm. However, the amount of improvement of the LA2 

algorithm over the LAI algorithm is not as significant. That is, most of the improvement
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Figure 6.10: For the single machine system, when service times were drawn from a Markov-
Modulated Poisson Process, the improvement stabilizes for both that LAI and LA2 algorithms.
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comes from LAI over SJF and the inclusion of a second lookahead job only adds a small 

amount of additional improvement. From the algorithm design perspective in Chapter 4, 

the complexity of the LA2 algorithm for the single machine system is significantly more 

involved than its Lookahead-1 counterpart [79]. In addition, the LAI algorithm runs in 

constant time while the LA2 algorithm requires linear time, in the worst case. For these 

reasons, we conclude that LAI algorithms are im portant to develop, but the added effort 

to design algorithms utilizing more lookahead may not be worth the resources.

6.3 Discussion

From these experiments, we gained significant insight into the behavior of lookahead al­

gorithms. As expected, lookahead algorithms produce superior schedules in almost all 

situations. The most important requirement for improvement is a mixture of short and 

long jobs. In general, a high variance of the service times, and similarly a high coefficient 

of variance, indicate that this mixture is present. These values are not perfect indicators, 

however, as seen with the Hyperexponential distribution where we increased the variance 

but decreased the improvement.

A second requirement for improvement is small to medium-sized blocks of jobs. When 

a large number of jobs arrive such that they can be scheduled without any idle periods, 

using lookahead is detrimental. This is especially true when decisions to wait are made 

at the beginning of these long blocks. Because the lookahead algorithm makes a local 

decision by considering only the known jobs, it makes a poor decision that delays not only 

the known jobs, bu t also many jobs that arrive in the future. Therefore, what appears to be
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a good decision immediately turns out to be a very poor decision in the future.

Even when these requirements for improvement are met, we were surprised to dis­

cover that while algorithms with more lookahead produce better results, the amount of 

improvement is not significantly larger than a Lookahead-1 algorithm. This is important 

when we consider the effort required to develop these algorithms. In addition, algorithms 

with more than a single lookahead job have linear running times, or worse, making them 

poor candidates for real-time systems. We conclude that there is incentive to develop a 

Lookahead-1 algorithm, but utilizing more lookahead is not cost-effective.
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Conclusion

7.1 Summary of Results and Conclusions

We have considered how lookahead can be applied to resource assignment problems, us­

ing job scheduling as a case study. Our first contribution is a formal model defining how 

to incorporate lookahead in a real-time context. This model realistically describes resource 

assignment problems because time is incorporated in a meaningful way.

In the area of algorithm design, we showed that lookahead algorithms can be imple­

mented using rules that make decisions quickly because they typically do not have to 

consider every job in the wait queue. First, we developed a Lookahead-1 algorithm for 

a two machine system and showed that in most cases scheduling decisions can be made 

by considering only the first job in the wait queue, the length of the wait queue, and the 

lookahead job. On a single machine system, we demonstrated that a Lookahead-2 algo­

rithm can be implemented using similar rules, however the development was significantly 

more complex. To make scheduling decisions, the algorithm frequently has to consider a 

larger number of jobs.

To study the performance of lookahead algorithms, we utilized both theoretical anal-
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ysis and simulation studies. We showed lower bounds for the competitive ratio of the 

Shortest Job First (SJF) scheduling algorithm, also called the Lookahead-0 (LAO) algorithm, 

a Lookahead-1 algorithm, and a Lookahead-fc algorithm for the identical parallel machine 

scheduling problem. Although these results suggest that knowledge of more future jobs 

will result in better schedules, they do not suggest how much improvement will occur in 

practice.

To answer this question, we compared lookahead algorithms with the SJF algorithm 

through simulation. On all three job scheduling systems considered, the lookahead algo­

rithms produced schedules that were 25 to 40 percent better than the schedule created by 

the SJF algorithm. This improvement occurred when long jobs were delayed to wait for 

short jobs and when the jobs arrived in short bursts. The significant improvement implies 

that when any information about future jobs is available, it should be utilized to create 

better schedules.

Taking our design results together with our performance results, we conclude that 

lookahead is an important factor when trying to minimize the average wait time or, equiv­

alently, the total completion time. Lookahead-1 algorithms produce a significant improve­

ment over their non-lookahead counterparts. However, using information about jobs be­

yond Lookahead-1 provides only limited additional improvement. Because the amount 

of improvement is not proportional to the amount of additional effort necessary to design 

these algorithms and the running time of algorithms with more than a single lookahead 

is prohibitive in a real-time context, we conclude that Lookahead-1 algorithms should be 

utilized when possible, but Lookahead-A; algorithms for k > 1 should not.
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7.2 Future Work

We have three areas of related future work. Two fit within our current model, and the 

third represents a minor deviation. First, we want to look for a way to mathematically 

predict when lookahead will be beneficial. In our simulation study in Chapter 6 , we found 

that when service times were drawn from high-variance distributions, we typically had 

better improvement. However, there was one instance where we increased the variance 

of the Hyperexponential distribution (by decreasing a) and the improvement decreased. 

We are curious whether there is a distribution statistic that accurately predicts the amount 

of improvement. To study this idea, we will consider the skewness of each distribution, 

defined as

J f 3 _
3 / 2 '

M

In this expression /X2  and m  are the second and third moments of the distribution. If X  is 

a random variable, then the Ith moment is defined to be E[Xn], Using this definition, the 

skewness measures the degree of asymmetry of a distribution. Through simulation, we 

will study whether there is a direct correlation between skewness and the improvement of 

lookahead algorithms.

A second direction for future study is related to the metric used to construct a schedule. 

All of our results are based on the criteria of minimizing the average wait time or total 

completion time, bu t we are interested in considering other criteria. For some of these, 

we know that lookahead will not be effective. For example, when trying to minimize the 

makespan, or largest completion time, lookahead is less useful at the beginning of the
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scheduling process because, on average, the most important decisions are made at the end 

of the schedule. However, other criteria are more promising. Specifically, with the criteria 

of lateness, each job has a deadline and the goal is to minimize the number of jobs that miss 

their deadline. Using both theoretical analysis and simulation, we plan to study lookahead 

scheduling for models with lateness as a criteria.

In the final area for future research, we will change how the algorithm makes decisions. 

In our current model, the algorithm always makes the choice that appears to create the 

best solution, called the local-optimal. Hoogeveen and Vestjens [51] developed an online 

method for the single job scheduling problem that deviates from this approach. Their 

algorithm always waits until a job could have completed and then it schedules the job. 

At time t, if the algorithm believes it should schedule a job with processing time pj, then 

it waits until time t +  pj before actually executing the job. If another job with smaller 

processing time arrives during this idle period, it becomes the delayed job and the waiting 

period resets. Although this approach seems counter productive, it has the best-known 

competitive ratio.

We believe that adding lookahead to this technique will produce an even better com­

petitive ratio, and we have started development of a Lookahead-1 algorithm based on 

this idea. Because this algorithm does not make local-optimal decisions, this is a departure 

from our original approach. Instead, the algorithm attempts to minimize the overall worst- 

case rather than minimizing individual instances. In effect, this is a defensive algorithm 

that does not allow any instance to stray too far from the optimal.

Both this defensive model and our more traditional model continue to be active ar­

eas of research within the resource assignment problem community. Our contributions in
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this area will build on our successful development of lookahead algorithms in a real-time 

context.
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Appendix A

Cross-docking Model

A.l Introduction

A special case of unrelated machine scheduling is cross-docking. In this model, trucks 

must be assigned to doors at a shipping and receiving warehouse so the contents of the 

truck can be unloaded, sorted, and moved across the warehouse to be loaded on different 

trucks. Specifically, we have a set R — { i? i. ..R r}  of receiving doors where trucks are 

unloaded and a set S = { S i. . .  S3} of shipping doors where cargo is loaded. Although 

these doors could be placed anywhere on an arbitrarily shaped building, we assume the 

doors are evenly spaced across two sides of a rectangular building with receiving doors 

on one side and shipping doors on the other. The round-trip distance between any two 

adjacent doors is one and the round-trip distance across the building is d .  See Figure A.I.

We have a set T  = {T\ . . . Tn} of trucks to be unloaded at the receiving doors, each with 

arrival time r-j. Each truck T, contains a sequence of pallets B ^ i . . .  Bitfli and a capacity of c, 

implying that 1  < m < c for all i (a truck may not be empty). There is a linear precedence 

relation placed upon the pallets, B ^i -> Bit2  -» . . .  -> B^ni requiring that the pallets are 

unloaded in order. Associated with each pallet is a destination, dij. To unload a truck, each

122
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Figure A.l: In the cross-docking model, the building is a long thin rectangle with receiving doors 
on one side and shipping doors on the other. The distance between two doors is one half and 
the distance across the facility is |d . Therefore the round-trip distances between doors is one and 
across the facility is d.
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pallet must be moved to its assigned destination. If d ij — d ij+i, two trips are required.

The time to move one pallet from receiving door k to shipping door I is \k — l\+ d, the 

round-trip rectilinear distance between the receiving door and the shipping door. Thus, 

the time to unload an entire truck T* assigned to receiving door k is

£  \ d i j - k \+ d
\< j< n ,i

We are interested in the completion time of each truck. Specifically, if truck T, is as­

signed to receiving door k at time s*, then the completion time is

Ci = si+  £  \dij - k \  + d 
1 < j< r i i

The goal is to assign the trucks to the receiving doors so as to minimize the sum 

of completion times for all trucks.

A.2 Relationship to Job Scheduling

This cross-docking model is a special case of the job scheduling problem R\rj  \ £2 Cj- In  

this problem, we have n jobs to schedule on m  machines. The machines are called unre­
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lated because each job has a potentially different processing time on each machine, and 

there is no relationship between the processing times of two jobs. This model accurately 

represents the situation where each machine has different abilities, although each machine 

can complete each job.

For each truck in the cross-docking model, the unloading time is determined by which 

door the truck is assigned to. The destinations of the pallets on the truck determine how 

long it will take the unloader to move the cargo from a particular receiving door. This 

value will be different for each truck and door combination.

An important fact about this model is that each truck has both an upper bound and a 

lower bound for the unloading time of any single truck. For a truck that contains c pallets, 

the smallest possible unloading time occurs when all c pallets have the same destination 

and the truck is assigned to the door directly across from this destination door. In this case, 

the unloading time is c-d, that is, the unloader will have to move back and forth the w idth 

of the warehouse once for each pallet. Similarly, the largest possible unloading time occurs 

when the truck is full of pallets destined for door 1 and is assigned to door R T (or destined 

for door Ss and assigned to door 1 ). In either case, the unloader will have to traverse the 

length and w idth of the warehouse for each pallet, with a total unloading time of c ■ (d -F s).

These upper and lower bounds mean that we have a special-case of the unrelated ma­

chine scheduling problem. In the general problem, processing times can be arbitrarily 

large or small.
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A.3 Generating Solutions

In our model, discussed in Chapter 3, the scheduler makes decisions using a three-step 

process. First, it assumes that no jobs will arrive other than those in the lookahead queue. 

Second, it calculates the optimal schedules of the known jobs for the waiting and non­

waiting schedules. Finally, the scheduler decides to wait or schedule based on which of 

the two schedules produces the smaller value of the metric.

We are interested in a technique to calculate the optimal waiting and non-waiting 

schedules for the unrelated machine scheduling problem with a single lookahead job. Be­

cause the cross-docking system is a special case of this problem, this approach can be used 

to solve our specific problem. In the next section, we discuss the calculation of the waiting 

schedule when the machines are all idle. The following section generalizes this approach 

for non-idle machines. Finally, Section A.3.3 discusses the technique to calculate the non­

waiting schedule.

A.3.1 Calculating the Waiting Schedule

Because we assume that no other jobs will arrive, we have an instance of unrelated machine 

scheduling without arrival times when calculating the waiting schedule. In scheduling 

notation, this problem is I?|| cj- ha the waiting schedule, we wait until the lookahead job 

arrives and is placed in the wait queue. After this arrival, we know all the jobs that must 

be scheduled.

This problem can be reduced to the assignment problem, also called the weighted 

matching problem. Here we have a complete bipartite graph G = (Vi U V2 , V\ x F2) with
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Figure A.2: The assignment problem can be viewed as an m by n matrix or as a bipartite graph 
with m nodes on one side and n on the other.

’ 1 0  3 
. 0  5 4

Vi =  {t)i. . .  t)n} and V2 =  {w \. . .  wm}. Without loss of generality, we assume n < m. 

Each edge (Vi,Wj) has an associated weight or cost Cjj. The goal is to find 5 C V\ x Vi 

with (Vi:Wj), (Vk,wi) € S, Vi 7  ̂ Vk and Wj wt such that the sum of the weights in S  is 

minimized. A representative instance of the assignment problem is the task of assigning 

m  people to n rooms. Each person ranks the rooms from 1 to n. The goal is to assign each 

person a room with as high a rank as possible.

The assignment problem can easily be represented as an n  x m  matrix. Intuitively, the 

goal is to choose n entries in the matrix such that no two entries are in the same row or col­

umn and the sum of the entries is minimized. Figure A.2 is an example of the assignment 

problem in both matrix and graph representation.

In the reduction from the scheduling problem to the assignment problem, each node 

in Vi is a machine/position pair. Vi =  vi>2, - ■ ■ V2 ,i,t>2 ,2 , ■ - • v2,m • • ■ • ■ • vn,m}-

Node viti represents a job being scheduled last on machine 1. Node v\$  represents a job 

being scheduled last on machine 2. In general, Vij represents a job being scheduled i 

from last on machine j. Because it is possible for all n jobs to be scheduled on any of the 

machines, there are nm  nodes in V\. V2 — {u>i,w2, ...  wnj, and represent each job. Thus, 

|F2| =  n.

The edges in G are based on the contribution a job would make to the total completion
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time if it were scheduled in a given position on a given machine. If jobs J\, J2 , and J 3  were 

scheduled in order on machine 1  at time 0 , then the total completion time for these jobs 

would be +  (pi,i + P 2 , i )  + (pi,i + P 2 , i  + P 3 , i )  = 3pi,i +  2p2,i +  lp 3 ,i- Therefore if job k  

is scheduled on machine j  as the i from last job, it contributes i ■ pk,j- In our graph edge 

(vi,j, Wk) represents this occurrence with weight i ■ pkj .

The overall graph can be represented as an mn by n matrix. Let [r^y] be the m  by n 

matrix representing processing times. Entry ryy of the matrix contains the value pij. Then 

the mn  by n matrix representing the corresponding bipartite graph will have the form

[n,j]
 ̂[Ti,j]

. n  .

Figure A.3 represents an example of the scheduling problem reduced to the assignment 

problem and shows the solution in graph, matrix, and schedule form.

Given this complete weighted bipartite graph, the goal is to find an assignment of 

minimum weight. Bruno, Coffman, and Sethi [19] show that this assignment represents 

the optimal schedule.

To solve the assignment problem, we reduce it to a weighted flow problem. In a flow 

problem, we have a directed graph with two special nodes. The source, s, has only out­

going edges and the sink, t, has only in-coming edges. Each edge has a maximum capacity 

of flow as well as a cost per unit flow. The goal is to find a maximum flow from s to t that 

produces the minimum cost. The reduction is accomplished by adding a source, s, and a 

sink, t, to the existing bipartite graph. We also add an edge (s,Wj) for all Vi e  V\ and an 

edge (Wi, t) for all Wi £ V2 . Each of these new edges have cost (weight) 0. All edges in the
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Figure A.3: When an instance of n jobs to be scheduled on m machines is reduced to an instance of 
the assignment problem, the result can be viewed as an mn by n matrix or a bipartite graph with 
mn nodes on one side and n nodes on the other.
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graph are given capacity 1 .

Solving flow problems is based on the concept of a residual graph. A residual graph 

G = (V, E') represents the edges in the original graph that can admit more flow. If c(u, v) 

is the capacity of an edge and f(u , v) is the flow on an edge, then cT(u, v) =  c(u, v) 

is the capacity of the edge in the residual graph. Note that E ' will contain edges not in 

E  and vice versa. For example, if f{u,v) =  c(u,v) then cr(u,v) =  0 and the edge is not 

included in E'. In this case, (v, u) would be an edge in E' with c(v,u) = f(u , v).

The method to solve a weighted flow problem is based on the ideas used to solve a 

simple flow problem. The Ford-Fulkerson method [29] states that we repeatedly search 

for a path from s to t in the residual network. This augmenting path can be used to move 

addition flow in the original graph. The max-flow, min-cut theorem states that when no 

augmenting paths exist, the current flow is maximized.
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When weighted flow graphs are used, it becomes possible to create negative cycles in 

the residual graph because CutV =  — cv<a. Klein showed that a flow has minimum cost if 

and only if its residual graph contains no negative cost cycles [6 8 ]. This theorem leads 

naturally to the cost reduction method. We begin with a maximum flow and then push 

as much flow as possible along a negative cost cycle. By repeating this process until no 

negative cycles exist, we will produce the maximum flow at minimum cost.

This algorithm was designed for general flow graphs and can be efficiently imple­

mented to solve our scheduling problem by taking advantage of properties belonging to 

the underlying bipartite graph. First, since every edge in the graph has unit capacity, any 

path from s to t will have unit flow. As a result, pushing flow along a negative cost cycle 

reduces to inverting the direction of each edge in that cycle in the residual graph. Second, 

we need not consider any edge leading to or from the source or sink. Because they have 

zero cost, these edges do not contribute to negative cost cycles.

The graph can be stored efficiently as a mn  by n  matrix. A simple initial maximum flow 

is (vij, Wi) fo r i - 1  to n. The residual graph will contain all unused edges and (wj, Vij) for i 

= 1 to n. Each negative cost cycle can be found using a modified Floyd-Warshall algorithm. 

When no negative cost cycles remain, the optimal schedule can be easily produced from 

the residual graph.

A.3.2 Non-Idle Machines

We have assumed that all jobs were available before scheduling began. Implicit in this 

assumption is that all machines were idle. By modifying the weights of the edges in the 

graph, we can use the same method to solve this scheduling problem when machines are
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non-idle initially.

Consider jobs J\, J2 , and J 3  that were scheduled in order on machine 1 that was busy 

from time 0 to time t\. In this case, the total completion time for these jobs would be

t i  + P i , i  +  ( h  + p i , i  + P 2, i )  +  ( < i  + P i , i  + P 2, i  + P 3, i )  =  { t i  +  3p i , i )  +  ( t i  +  2p 2, i )  +  ( h  +  l p 3, i ) -  

Job j  scheduled k from last on machine i contributes f * +  k ■ p ij to the total completion 

time. Solving a non-idle instance of P || J2 Cj can be accomplished by adding ti, the time 

machine Pj will be available, to each node representing that machine.

Let [tK] be the matrix representing the contribution of job j  if scheduled k from last on 

machine i .  Then ~ ti + k ■ Ti^- The matrix representing the corresponding bipartite 

graph has the form

” 1 "
j l f

T ? ■

1--
--- T-"

Figure A.4 shows the same three jobs in Figure A.3 scheduled on a system where the first 

machine does not become idle until time 5. Both the matrix and graph form of the assign­

ment problem are shown as well as the final schedule.

A.3.3 Calculating the Non-Waiting Schedule

To calculate the non-waiting schedule, we must incorporate the lookahead job into the 

decision process after one or more of the waiting jobs are scheduled. However, the algo­

rithm discussed in the previous two subsections calculates wait times from the end of the 

schedule.
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Figure A.4: When a machine is not initially idle, the instance of the assignment problem is aug­
mented by adding the availability time of the machine to each job.

D,
d 2 t 2 t 3

2 5 6

Calculating the non-waiting schedule is done in two parts. First, we compute the non­

waiting schedule of just the jobs in the wait queue, ignoring the lookahead job. Using 

this schedule, we can divide the waiting jobs into two sets: those that begin execution

before 7 7 + 1  and Sa, those that begin execution after. We partially construct the non-waiting 

schedule by scheduling all jobs in consistent with the non-lookahead schedule.

The second step is to calculate the schedule of the jobs in Sa plus the lookahead job 

using the partially constructed schedule as a base. Again, we use the algorithm for non- 

idle machines. In this case, each machine becomes available at the completion time of the 

latest job on that machine in the partial schedule.
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A.4 Discussion

The process of calculating the waiting and non-waiting schedules for the cross-docking 

model is significantly more complex than the algorithms discussed in Chapter 4. Although 

the algorithm described does not have to compute all possible schedules, its running time 

may be prohibitive in some applications. Fortunately, in the cross-docking model, these 

decisions can be made quickly relative to the time needed for trucks to move from the 

waiting area to the assigned door.
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