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ABSTRACT

Furnstahl, Serot, and Tang have developed a methodology for constructing an
effective lagrangian for the nuclear many-body system which contains the underlving
symmetries of QCD. Density Functional Theory is used as a theoretical justifica-
tion for the relativistic Hartree (Kohn-Sham) equations derived from this effective
lagrangian. In the present work, this approach is extended to the region of nongero
strangeness in two applications. First, this procedure is applied to strange, neutral,
superheavy systems and the surface properties of these nuclei are extracted. Sec-
ond, single-particle states in A-hypernuclei are investigated, the effective lagrangian
is determined to various levels of truncation, and where appropriate, ground-state
particle-hole splittings are calculated.

XV
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CHAPTER 1

Introduction

Quantum Chromodymamics (QCD) is the underlying theory of the strong in-
teraction. Unfortunately, QCD is not directly solvable at low-energy. Oue solution
to this quandary is to use an effective field theory to represent QCD. In this energy
regime, confinernent traps the quarks in hadrons. Thus hadrons, and not quarks, are
the desired degrees of freedom. As a result, effective theories using hadrons as de-
grees of freedom, so-called hadronic field theories, have been developed to solve the
nuclear many-hody problem. In the present work, we consider one of these theories,
proposed by Furnstahl, Serot, and Tang (FST) [1, 2]. The framework they devised
directly incorporates all of the following: special relativity, quantum mechanics, the
nonlinear realization of spontaneously broken chiral symmetry, and the underlying
symmetry structure of QCD. Furthermore, density functional theory {DFT) pro-
vides a theoretical justification for this approach [2, 3]. Therefore, it is of inserest to
extend this methodology, with all its intrinsic strengths, to the strangeness sector.

The focus of this work is the expansion of the effective field theory approach
of ST to hypernuclei. Two specific applications are considered here. First, we use

this framework to model the surface structure and caleulate the surface energy of
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large, neutral, self-bound, multi-strange systems. Second, we construct a general
lagrangian, consistent with the methodology of FS'T, for the addition of a single
A to the theory. This lagrapgian is then used to calculate the ground-state (GS)
energies (i.e. chemical potentials), densities, and single-particle spectra of single A-
hypernuclei. Another property of this class of nuelei that is considered here, and of
particular interest, is the GS A-particle--nucleon-hole doublet splitting.

This introduction is a self-contained overview that includes some relevant back-
ground and a brief discussion of the specific topics considered in this thesis. As part
of this overview, the main results of this work are also presented. Subsequent chap-
ters will discuss in more detail the problems of interest here, the methodology used

to tackle these problems, and the results of this research.

1.1 Background

In modern physics phenomenology, the fundamental forces of nature are mod-
eled by particle exchange. The four known forces are the strong nuclear force, the
weak nuclear force, the electromagnetic force, and gravity. The particles whose ex-
change simulate these forces, referred to here as gauge bosons, are the gluon, the W+

and Z°, the photon, and the graviton respectively.!

The gluons are exchanged by
strongly interacting particles referred to as quarks, which are classified as fermions.?
There are six known varieties, or flavors, of quarks: u (up), d (down), s (strange},
¢ {charm), b (bottom), and t (top). They are listed in Table 1.1 with some of their

properties, which we now discuss. Notice that all of the quarks have baryvon number

B = 1/3; as we will see later objects called baryons are composed of three quarks

YA hoson is a particle that obeys Bose-Einstein statistics, or there is no restriction on the
number of particles that can occupy a given state. Tt has an intrinsic angular momentum, or spin,
in integer units of k.

2A fermion is a particle that obeys Fermi-Dirac statistics, or there is the restriction that only
one particle can occupy o given state. It has spin in half integer units of A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LI Bl Q s 7] M |
w | /31 42/310 | 1/2]0.0015-0.0045
d [ 1/3 ] <1/3 10 [ 1/2 ] 0.005-0.0085
s [1/31-1/3 -1 0 | 0.080.155
c|1/31+2/3]10] 0 1.0-1.4
bl1/31-1/3 101710 1.0-4.5
13T 4+2/3101 0 1745

TABLE 1.1: The quarks are listed here with their respective baryon number (B), charge
(Q) in units of ¢, strangeness (8), total isospin (T), and mass (M) in GeV [4].

and therefore have B = 1. Quarks are also characterized by their charge (Q), a
property upon which the electromagnetic force acts. Strangeness (S) is a property
intrinsic to only the s quark; it is defined such that S = —1 for an s quark and
8 = 41 for an § antiquark. The total isospin (') denotes a quantity which accounts
for the relative similarity in the masses of the u and d quarks. These properties (B,
Q, S, T) are all conserved quantities in the strong interaction; that is to say they
do not change during a reaction. In addition, the quarks carry an intriusic strong
interaction “charge,” known as color, of which there are three types.

Lets us now return to the discussion of the four forces. Gravity is too weak and
long range to have any significant effect in nuclear physics. The weak nuclear force
and the electromagnetic force do have some impact on nuclear physics; however, by
far the most important force governing the structure and dynamics of nuclei is the
strong force.” As a result, a brief discussion of the strong interaction is warranted.

This force has the following properties [5):
e it is attractive, as can be seen from the fact that the nuclei are bound:

e it is short range, effective out to only a few fm (1fim = 10" ¥em);

$The electromagnetic force will be incorporated later into the theory. The weak foree is largely
neglected in this work as it will have little effect on the phenomena of interest.
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e it is repulsive at short distances (< 0.5 fm);
e it is spin-dependent;
e and it is charge-independent.

The underlying theory that describes this force is QUD. QCD models the interaction
of particles with color charge, quarks and gluons, and is construeted to be symmetric
under color exchange. This theory is characterized by a single coupling parameter,
ag. The behavior of this parameter is shown in Fig. 1.1. Notice that ag is small at
high-energy, or equivalently, short distances; this allows the QCD lagrangian to be
solved by a perturbative expansion in «g. However, at low-energy, or long distances,
the strong coupling parameter hecomes large. Thus, a perturbative expansion in oy
will not converge at nuclear physics energy scales. Recall that the gluons carry color,
and as a result, can couple to each other. It is this fact that leads to asvmptotic
freedom at high-energy. Conversely, at sufficiently low-energy, a process referred to
as confinement occurs in which color is completely screened by the strong interaction.
Here the quarks and gluons become “confined” in objects known as hadrons. There
are two main configurations in which hadrons occur: three quark states (qgq), known
as baryons, and quark-antiquark pairs (qq), called mesons.*® These hadrons always
occur in color singlets, i.e. the color charges of the constituent quarks cancel resulting
in a net neutral color charge. As a result of confinement, the realm of low-energy
nuclear physics is dominated not by quarks and gluons, but by hadrons and the

interactions between them.

*There are other possible configurations, such as the recently discovered pentaquark (qqae),
but they are bevond the scope of this work.

Here we are considering only the valence quark structure of the hadrons. The valence quarks
are the objects which contribute all of the quantum numbers to the hadrons in the guark model.
Howover, these valence quarks are continuously exchanging gluons, which can couple to other
gluons or become quark-antiguark paire. Quarks formed in this manner arve referred to ag sea
quarks. Although the sea quarks and gluons make up a large portion of the mass of a hadron, the
contributions of these particles are not considered here.
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FIG. 1.1: Qualitative behavior of the strong coupling parameter, ag, vs. Q. Here QF
(in GeV?) is a measure of the energy scale [6].

Baryons can be classified based on their constituent valence quark content. Two
groups of importance to the current work are nucleons and hyperons. Nucleons occur
in two varieties: protons (uud) and neutrons (udd). It is these objects which make
up the composition of ordinary nuclei. Notice that they are composed solely of u
and d quarks. Other systems composed only of u and d quarks exist, such as the
A (uuu); however, these systems decay rapidly via the strong interaction (strong
interaction timescales are ~ 107%s). The other group of baryons that is of interest
here is the hyperons. If a baryon contains one or more s quarks, it is referred
to as a hyperon. Examples of this type of baryon are the following: A (uds), Z°
(uss), and €~ (sss). As previously mentioned, the s quark has an intrinsic property
called strangeness, as can be seen in Table 1.1, As this is a conserved quantity in

the strong interaction, only a weak interaction will convert the s quark to another

,
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: S 1 T I M l qaq l
100 ] 1/2 ] 93827 | uud
L0 O] 1/2 ] 939.57 | udd
O |-11 0 111568 uds

411 -11 1 | 1189.37 | uus

0 [-1) 1 |1192.64 | uds
SLPb-1 1 119745 | dds
10 | -211/2 1 1314.83 | uss
1| ~1 | -2 1/2]1321.31 | dss
Ly -1 =31 0 | 167245 | sss

1

1

1

1

1

[T
1

TABLE 1.2: The nucleons and hyvperons are listed here with their respective baryon
number (B), charge (Q) in units of e, strangeness (S), total isospin (1), mass (M) in
MeV, and constituent valence quark content {gae) [4].

flavor.t Therefore, the A will decay on weak interaction timescales (~ 107%).7 In
Table 1.2, the nucleons and hyperons are listed with some of their properties. As
a result, if one operates on the strong interaction timescale, then nuclei containing
nucleons and hyperons, or hypernuclei, exist and are stable.

Hypernuclei present an interesting test case in nuclear physics. The effective-
ness of models that were developed to reproduce the properties of ordinary nuclei
can be probed by their extension to hypernuclei. As it turns out, hypernuclear
physics is in many ways both novel and puzzling. For instance, hypernuclei intro-
duce an additional degree of freedom (strangeness) to nuclear physics. In the case
of S == —1 physics, the entire range of possible states for the hyperon may be occu-
pied as restrictions from the Pauli exclusion principle no longer apply. In addition,
some other interesting features of S == —1 physics that differ form ordinary S = 0
physics include: “anomalous binding energies, a vanishing spin-orbit force, signifi-

cant three-hody force effects, ground-state spin inversion, and puzzling nonmesonic

67T his is due to the fact that strangeness is also a conserved quantity in both the electromagnetic
force and gravity.
7As will be discussed later, other hyperons may also decay on weak interaction timescales.
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weak decays {7].” The study of hypernuclei also allows one to investigate all aspects
of the interaction between a hyperon and a nucleon, an important exteusion of our
knowledge of the interaction between two nucleons. Furthermore, large, multistrange
systems may potentially exist, due to the fact that negatively charged hyperons can
be included to offset the Coulomb repulsion of the protons while the system remains
stable against strong decay. Experimentally, the accessibility of hypernuclear states
is becoming easier and the resolution possible on these states is improving. The old

method of (7wt K*) and (K=, 7"} reactions [8, 9, 10] is now being supplemented
by electroproduction (e, e'K1) [11, 12] and gamma-ray spectroscopy [13]. As a re-
sult, hypernuclei are an excellent proving ground for testing models designed for the
S = 0 sector. The present thesis examines the successful extension of one particular
theory, developed by FST [1, 2], to the strangeness sector.

In order to model nuclear systems, we use a mathematical framework known as
quantum field theory (QFT). QFT is a reformulation of quantnm mechanics in terms
of fields that retains all of the general principles of quantum mechanics: microscopic
causality, Lorentz invariance, and electromagnetic gauge invariance [6, 14]. The
mathematical object referred to as a field defines the value of a physical quantity
at all points in a given space. For the purposes of this work, the hadrons will be
described in terms of fields and our approach will incorporate the general structure
of QFT into an effective field theory.

Now we digress shortly to discuss two important symmetries of the strong in-

teraction: isospin and chiral symmetry. We begin by stating Noether’s theorem:

“For every continuous transformation of the field functions and coordinates
which leaves the action unchanged, there is a definite combination of the
field functions and their derivatives which is conserved (i.e. a constant in

time) [6].”
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In other words, for any continnous symmetry of a system, there exists a correspond-
ing conserved current in that system, or vice versa. A current is conserved if it

satisfies the relation
d

%y,

J=10 (1.1)

T
M

Here we use the conventions of [5].% If we consider the nucleons in Table 1.2, we
notice that their masses are very similar.” This is taken as evidence that the proton
and neutron are two manifestations of the same particle, the nucleon [14]. Now we
define the nucleon field as a two component column vector

)
N (1.2

n

where p and n represent the proton and neutron fields respectively. I one assumes
that the masses of the proton and neutron are exactly equal, or my = m,, then a
transformation of N according to the elements of a special unitary group in two
dimensions, or SU(2), leaves the action (i.e. the four dimensional integral over the

lagrangian density) unchanged [6]. This transformation is given by

—72-7— N (1.3)

N — N = exp(~
where 7 are the Pauli matrices and 6 is an arbitrary constant vector. This symmetry

is known as isospin. Noether’s theorem tells us that as isospin is a good svmmetry

of the strong interaction, there is a corresponding conserved isospin current

o 1 3
= Ny, ?)T’rk N (1.4}

#In this work, we define the conventions x,, = (%, it), v, = (id3, 3), and b = ¢= 1. The gamma
matrices are hermitian, ryj; = 7y, and satisfy the relation v, + Yuy,. = 26,,. Also, we define the

quantity v5 = v veyaya- Note that repeated Greek indices are summed from 1 to 4.
9 Also notice in Table 1.2 that the ¥'s or 2% cach have nearly identical masses, i.e. mgo 2 mg..
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which in this case is a Lorentz vector. At the QCD lagrangian level, SU(2) isospin
symmetry dictates that m, = mgy. The success of this symmetry is due largely to
the fact that m, & my. This flavor symumetry can be extended to SU(3) and beyond.
However, SU(3) flavor symmetry would suggest that m, = my = m,, which is not
as good an assumption as SU(2) [14]. This can be seen from the mass difference

between the u and s guarks, shown in Table 1.1.

As it turns out, there is also a partially conserved axial vector current

v

- 1
Tk SN s N .
Jlm = ZE\"}'M r;,";;”fh:?\ & S (15)

If we assume for now that JE; is exactly conserved and invoke Noether’s theorem
again, the corresponding continuous symmetry of the strong interaction is known as

chiral symmetry. The transformation that characterizes this symmetry is

NN o o
N-— N = c,J,p(wg T - 0)N (1.6)
Assuming that chiral symmetry is exact, the full symmetry group is now written as

SU(2)1, ® SU(2)x. The corresponding transformation is

. = i - :
exp(— P Oy )exp(— 5 P_7-8,) (1.7)

p L

where 9} and é:g are independent and
(14 ) (1.8)

"

The P are projection operators; they project out right or left handed helicity states

respectively, Helicity defines the alignment of spin and momentwm of a particle.
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However, chiral symmetry is exact only in the limit of vanishing pion mass, or
d

lim
0

0 (1.9)

It turns out that although chiral symmetry is only an approximate symmetry, it is a
very good one [6], as the pion mass, m, = 140 MeV, is small on the particle physics
mass scale. On the QCD lagrangian level, chiral symmetry forces all the quarks to
be massless, L.e. my = my = ... = 0. Again, this is not such a bad assumption if we
consider the u and d quarks only. However, it becomes increasingly unrealistic as
the heavier quarks are included.

The imposition of both isospin and chiral symmetry on the theory dictates that
the baryon and pion masses must be zero. In order to produce both a nonzero baryon
and pion mass, a process known as symmetry breaking is employed. There are two
types of symmetry breaking: spontaneous and explicit. Spontaneous symmetry
breaking occurs when the underlying lagrangian is invariant under the svmmetry

transformation, yet develops a nonzero vacuum expectation value, or

(Lhyac # 0 (1.10)

It should also be mentioned that when a symmetry is spontaneously broken, mass-
less bosons are left behind.'’ Explicit symmetry breaking is when the lagrangian
containg a small term which is not invariant under the symmetry transformation.
[n the case of chiral svmmetry, both forms of breaking are required; the baryon and
pion masses are generated through spontaneous and explicit symmetry breaking re-

spectively [5, 6]. 1t is worth noting that, as a result of explicit symmetry breaking,

WPhese are known as Goldstone bosons. The number of Goldstone bosons created is always
n* — 1 for a symmetry SU{n).
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the axial vector current is no longer conserved, or [5]

5:;*‘]“,5 (O 1 e (I”)
X

In QCD, the finite quark masses explicitly break the chiral symmetry.

Now let us return to the discussion of the strong nuclear force. [t was established
that for low-energy nuclear physics, hadrons are the particles observed in nature and
as a result, the appropriate degrees of freedom. Therefore, in this energy reginme we
model the strong force as meson exchange between baryons; this is a direct analogy
to the situation in QCD where gluons are exchanged between quarks. The generic
form of the potential (known as a Yukawa potential) for an exchanged meson of

mass m is

?“3 o P,
V) = i 1.12
(r) pr (1.12)

where g is the strength of the interaction [6]. The exponential dominates as r
increases; this gives the potential a short range. The main characteristics of the
strong force, the medium-range attraction and the short-range repulsion, can be

qualitatively reproduced by the sum of Yukawa scalar and vector meson cxchange,

or
2 L emgr e 1TV
: g™ gte :
'\] T} = e e s '. o (1 .]&3
(r) 7 r 4r r ' )

where mg and my are the respective masses of the mesons whose coupling strengths
are gg and gy respectively [5]. One pion exchange gives rise to an additional potential
similar in form to a Yukawa [15]. Pion and multi-pion exchange are ultimately
responsible for the long-range, attractive part of the strong interaction.

Thus, in thig picture the continuous exchange of mesons is what binds the
baryons in nuclei. Given that the characteristic energy scale in nuclear physics is

about 1 GeV, or the mass of the nucleon, the relevant degrees of freedom are the
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low-lying hadrons. In the case of ordinary nuclei this corresponds to the nucleon,
the pion, and other light mesons. The addition of hyperons allows one to extend

this model to hypernuclei.

1.2 Effective Field Theory Approach

Now we turn to the topic of eflective field theories. As we have seen, (JCD is not
directly solvable at low-energy. One solution to this problem is to use an effective
field theory to simulate the effects of QCD in this energy regime. An effective field
theory is a framework in which an underlying theory is represented by an expansion
in a small parameter(s) relevant to the energy scale under consideration. Effective

field theories take advantage of two important facts [2]:

1. QFT is an efficient way to parameterize the observables of a system consistent

with analyticity, unitarity, causality, cluster decomposition, and symmetries;

2. most problems in modern physics have a characteristic length, or encrgy, scale.
Only those degrees of freedom that can be excited at this energy scale, or can

resolve this characteristic length, are relevant [16].

In the regime of low-energy nuclear physics, the appropriate degrees of freedom
are the low-lying hadrons. The hadrons are then introduced into the theory as
quantum fields, from which the effective lagrangian is constructed. Heavier degrees
of freedom are included in the form of coupling constants attached to the interaction
terms of lighter fields. These constants can be fit to experimental data, from which
relationships between different observables in the dynamical regime of interest can
be derived [2]. We now consider a specific effective field theory developed by FST,
EST approach the nuclear many-body problenmi by developing a self-consistent

fravaework for constructing an effective lagrangian. Their methodology incorporates
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the principles of both quantum mechanics and special relativity as well as the un-
derlying syrametries of QCD [1]. As this is a low-energy theory, the appropriate low
lying hadrons are used as degrees of freedom. Spontaneously broken chiral svmmetry

-

is realized nonlinearly through a system of the following three fields [1]:

¢ Goldstone pion fields, w(x,) = +7 - 7, which enter through the combinations

Ulx,) = E(x,)1E(x,) = MOl fn g einti)ife (1.14)

1 e oet ‘ o
Uy = (“51 ’E"'é“ + f"""“:’"“) = 'U‘i (1.1{))
and
i (406 o |
Yy, T e -} .W(l, U RSN, I T 1.16
aﬂ 2 (& 8}(;1, > E}X;L ) {I,ﬂ ( o ))

where f, is the pion decay constant;

e an isodoublet nucleon field, N;

e and an isovector-vector rho meson field, p,(x,) = §7 - f.

Next, the following pair of isoscalar chiral singlets simulate the nucleon-nucleon

interaction:

e a scalar field, ¢, which reproduces the medium-range attraction of the strong

interaction;
e and a vector field, V,, which simulates the short-range nuclear repulsion.

Finally, a photon field, A, describes the electromagnetic structure of nuclei.
As all possible combinations of these fields consistent with this framework are
included, in principle, this lagrangian contains an infinite number of terms. In order

to make any meaningful calculation, the lagrangian must be truncated in some way.
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To accomplish this, FST group the terms according to a system involving both naive
dimensional analysis (NDA) and relativistic mean field theory (RMFT).! NDA is
a framework that allows one to identify all the dimensional factors associated with
specific components in any given term. Furthermore, NDA tells us that once all the
dimensional factors are absorbed in a given term, only a dimensionless constant of
O(1) remains [17,

3

18]. This assuraption is known as “naturalness.” RMI'T states
that in the limit of appropriately large baryon density, expectation values can replace
.

the sources and classical ficlds can replace the meson fields [2, 5]. These mean meson

fields, while large, are small with respect to the chiral symmetry breaking scale M,

or
(I) V\' 1 k'[;‘ l -
e o g (11/)
M™M 3 M 4 /
where the scaled mean fields are ® = gggy and W = gyVy. Here kp is the Fermi

wave number and represents the last, filled momentum state of a collection of non-
interacting identical fermions in nuclear matter.'” As a result, NDA and RMFT
provide a formalism in which higher order terms are, in general, successively smaller;
this allows for a systematic expansion in the effective lagrangian. One added benefit
is that the lagrangian can now be truncated in a meaningful fashion. FST investigate

various levels of sophistication in their lagrangian. The fermion sector of their full

UGee appendix B for a more detailed discussion of NDA and RMFT.

2The spatial variations of the meson fields and baryon densities are observed to oceur on the
scale of the nuclear surface [3]. kp provides a characteristic inverse length scale for the nuclear
surface. As a result, we can now employ the relation V oc kp.
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lagrangian density is shown here [1]

J . o
L (xll) = N { The [&;w b By AT 1BV 80
7

—Zed, (1 + 'r;g)} + (M~ gg(z))} N+ =

9 -N T e Py N

*{‘ /\’é)\( m&( ’“,K ;1{/:\ + I\J \(’“u«'“plj\ ""{' :&I";\O‘lll"pitﬁ?\;‘

4M ,
‘ d ,
o ‘)I\,WN’}“ (/3;, 4 /)V’f”;) \HFIW (118)

where we have defined

v, av, N
\r‘ fhae 0;(”: o 'é))&: (1}9)

Vpay P> and Fp, are similarly defined for v, p,, and A, respectively. The meson

sector of the full FST lagrangian is [1]

1 gso\ [ 9o\’ /W au gut L
FUX, LS I i U B w )
Las(x,) z( Ty ) (axﬂ 2"\ v, ) T3 (P
/

gsp . 22 m> '
(1 -+ ¥y ]\If> V ;u/\ v g,,m;;;z—m» (pwﬂ}‘w) - - Lo, ( + U:r _ 2)

0

1 “"‘(x"/v o ] - -
s (:1+7~;,§*1-ﬁ~+ 1 £50° )n-xé,\fuvﬂ + 608 (VuV,) = 2FuF

M 2 M?
8P\ o L k3gsd  hagip°
w(1+’r/p~ﬂ;fw) Motr (0upp) — mé e ( + = a1 M + 1:12 ) (1.20)

M, my, and m, are taken to be the physical masses of the nucleon, w-meson, and
p-meson respectively. The remaining parameters are free and are listed in Table 1.3.

FST now utilize relativistic Hartree theory to reduce the many-body field equa-
tions derived from these lagrangians to single-particle equations for Dirac nucleons
moving in the condensed classical meson fields.'® Hartree theory assumes that each
particle moves in a single-particle potential. This potential is representative of the

average interaction of the particle with all of the other particles {19]. Then, the

Uhe Dirac field and sources ave then obtained from a superposition of these solutions.
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( v L2 | NLC | QU | G2 ]
mg/M | 21 0.55378 | 0.53333 | 0.53735 | 0.55410
gs/4m | 2 10.83321 | 0.77607 | 0.81024 | 0.83522
gv/4m | 2] 1.09814 | 0.97114 | 1.02125 | 1.01560
ge/dm | 2] 0.64271 | 0.68912 | 0.70261 | 0.75467

77y 3 0.64992
T 4 (.10975
Ky |3 1.9195 | 1.6682 | 3.2467
ke |4 -7.3928 | -6.6045 | 0.63152
Go |4 2.6416
Ny 3 0.2901
aq 5 1.7234
ay |5 -1.5798
/4 |3 0.1734
/4 |3 1.0332 | 0.9619
By |4 -0.10689 | -0.09328
By |4 -0.26545 | -0.45964

TABLE 1.3: Parameter sets relevant to this work [1, 2]. Notice that the sets correspond to
different levels of truncation in the FST lagrangian and that the naturalness assumption
essentially holds.
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Euler-Lagrange equation is used to determine the equation of motion for the baryon
field (the Dirac equation}. Due to the fact that this equation is linear in the baryon
field (and because the meson fields are classical), one may seek normal mode solu-

tions of the form ¥(x,) = ¥(X)exp{ikt} [20].1

To illustrate the Hartree formalism, consider a siruple single-particle hamilto-
nian
h(X) = —id - V + gvVo(r) + F M — ggo(r)] (1.21)

which satisfies the Dirac equation

W{X)1h, (%) = Eai, (X)

—

1.22)
where E, is the cnergy eigenvalue. The solution to Eq. (1.22) is

(Gl
. _ }f?n (r) ({) fpdis)

(%) = ¢ (1.23)

Here ¢; is a two component spinor and ¢ is 1/2 (-1/2) for protons (neutrons). The
P, are the spin spherical harmonics. Substituting this wave function into the Dirac
equation, we acquire the following Hartree equations

KA

‘a‘; -+ —I_ Gn(l') — [En - gv\7o(r) 4~ M — gg:;gbo(l’” F,,,(r) = {} (121)

2 5L 0) 4 (B = Vo) ~ M+ o] Culr) =0 (125)

This system of equations can readily be extended to incorporate the higher order

effects included in the full FST lagrangian.

" The framework of Hartree theory is discussed in appendix C.
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In order to solve these Hartree equations, the free parameters in the lagrangian
must be fised. These covstants are determined by least-squares fits to experimental
data from ordinary uaclei along the valley of stability. These fits are conducted at,
arious levels of truncation in the underlying lagrangian [1]. The results of these
parameter fits are shown in Table 1.3. Note that the addition of still higher order
terms to the full FST lagrangian has little or no positive effect on the calculations
[1]. Once the values of these parameters are known, this lagrangian can be used to
predict other properties of ordinary nuclei. One example which demounsirates the
predictive power of this method is its application to the study of nuclei far from
stability [16, 21]. This is illustrated in part by Figs. 1.2 and 1.3.
To justify this approach, we directly employ density functional theory (DFET).
DFT is a theoretical framework which allows one to calculate the GS properties
of many-body systems without carrying around all the baggage contained in the

many-particle wave functions [22]. Two points are of interest here:

e first, the GS expectation value of any observable is a unique functional of the
exact GS density; moreover, if the expectation value of the hamiltonian is
considered as a functional of the density, the exact GS density can be

determined by minimizing the energy functional;

e second, the exact GS scalar and vector densities, energy, and chemical potential
for the fully interacting many-fermion system can be reproduced by a collection
of (quasi) fermions moving in appropriately defined local, classical ficlds [3].

y v

This result follows from the Kohn-Sham analysis [22]. Therefore, instead of having
to solve the many-body equations with quanturn ficlds, one only needs to solve
a series of self~consistent, single-particle equations with classical fields. In other
words, Kohn-Sham theory is formally equivalent to relativistic Hartree theory, Once

the exact energy functional is determined, in principle all many-body effects are
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FIG. 1.2: Comparison between experimental and calculated total binding energies for
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included. Consequently, the problem is now reduced to determining the correct
form of the energy functional, which follows {rom the appropriate lagrangian. The
full interacting lagrangian of FS'T gives a suitable cnergy functional from which the
relativistic Hartree (Kohn-Sham) equations follow essentially as ficld equations. As
a result, DFT provides an underlying theoretical justification for this approach.’®

We now turn onr attention to applying the above framework to the specific

problems considered in this thesis.

. N ") . -

1.3 Strange Superheavy Nuclei
The semi-empirical mass formula (SEMF) is a uscful expression for the average
energy of a nucleus in the GS. It uses the liquid drop model to simulate the nucleus

[5]. The SEMF is given by

E 1 Wz -1 (B=22) A o
5 oy + ay ilE + 3 R + ay B + Qg BT (1.26)

where E is the total energy, Z is the number of protons, and A = +1 for odd-odd,
0 for odd-even, and -1 for even-even nuclei.’® The first term in Eq. (1.26) is the
bulk term, which is essentially the binding energy of infinite muclear matter. The
second term is the surface term; the nucleons at the surface only feel an attraction
from nucleons in the interior, which gives rise to a surface energy. The energy of the
Coulomb interaction of the Z protons is represented by the third term in Eq. (1.26).
The fourth term, the symmetry energy, results from the fact that nuclei prefer to

have N = Z. The final term is the pairing energy: nuclei like to have even numbers

B The scalar and vector roeson fields here play the role of relativistic Kohn-Shant potentials
[3, 22].

Y% Odd-odd refers to a mucleus with an odd number of both protons and neutrons. Odd-cven and
even-even are similarly defined.
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of the same particles. The constants aq, ... a5 are determined by fitting the SEMF
to experimental data; they are given in [5].

An inspection of this SEMF reveals that the single largest limiting factor in the
creation of very large nuclei is the Coulomb repulsion. One way to overcome this
barrier is to include hyperons in muclei [23, 24, 25]. Consider the hyperons A?, S0
and =09 The lightest hyperon, the A, has a negative binding energy in nuclear
matter [26] and decays weakly into non-strange matter. The ’s appear to have

a repulsive nuclear potential [27, 28, 29

. Next in mass are the Z's; experimental
evidence suggests that the binding energy of a single = in nuclear matter is negative

(30, 31, 32]. In addition, the reaction
20+ N+ 2 (1.27)

becomes energetically favorable for some critical number of A's in the nuclear medi-
um [23]. As a result, we expect that for large systems the addition of A’s and Z’s is
desirable, but the inclusion of £’s would have little or no positive effect. Therefore
we consider matter composed solely of N’s, A’s, and Z’s. The inclusion of the =77
offsets the Coulomb repulsion of the protons; this potentially allows for the creation
of arbitrarily large nuclei by diminishing the importance of the Coulomb term in
the SEMF. To minimize the effect of the Counlomb term we investigate this class of
nuclei such that Q = 0. These nuclei are stable against strong decay. Consequently,
they decay on weak iateraction timescales, which enhances the potential for their
detection. The purpose of this section of the thesis is to model the surface structure,
and acquire the surface energy {rom the caleulated SEMY, for this class of nuclei.
To accomplish this, we must solve the nuclear many-body problem. Using the
framework of F'ST, we construct a rudimentary effective lagrangian density invariant

under SU(2);, @ SU(2)n symmetry using hadrons as degrees of freedom {1, 5]. For
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the purposes of this caleulation, we consider simple scalar and neutral vector meson
exchange exclusively. Keeping only the lowest order terms and a pair of nonlinear

scalar field self-couplings, the resulting lagrangian density is

, 9 i
, d L ‘ S I Jo g
L{zy) = =Nlv |5~ ~igvVy ] +M—gsg| N~ 51\ 57 + mgg”
Jx,, ‘ 2 |\ Ox,
1 1, Rya? . Kqgomng
TS r P R Sty g 4HGHE 4 g 90"
Mji'\ /w\’ v ;511.1\/ V“ Y w “”“é‘fﬁm(f) - Wzlwﬁ\’ﬁmé (133)

This lagrangian density is then converted into a hamiltonian density, which in this

problem is equivalent to the energy density. The effective nucleon mass,

M” = M - ggdy (1.29)

is determined by solving the scalar field equation self-consistently at cach point
|5, 20]. The coupling constants are fit to reproduce experimental values of various
ordinary nuclei; specifically the parameter sets NLC and Q1, which include the
nonlinear scalar self-couplings, are used [1, 2]."7 ‘

In order to calibrate our approach, we calculate the GS densities of ordinary
finite nuclei with N = Z. To model finite nuclei we must retain the spherically

symmetric spatial variations of the meson fields in the lagrangian density, shown by

. 1 o 1,
0L = =5 (Vo) + 5 (VW) (1.30)

The source terms are evaluated using a local density approximation; at every point
within the nucleus the baryons are assumed to be a local Fermi gas with states filled
up to kp(r). We acquire the scalar mean field equation by minimizing the energy

functional with respect to the scalar field; a similar approach yields the vector mean

Y"'hese paragneter sets is listed in Table 1.3.
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field equation [20]. The resulting meson equations are given by the following:

N .
gy, K3EsME o KagaME _
2ol 365y 1o gty 5 .
(“:7 - rn‘*') (/! (£ B 2[\1 q)() o GI\’I“?' (;!)0 e g:’;/)f‘; (‘l""% 1)
2 o 7 s e
(V II“IV) V g = —gypB (152)
where the baryon and scalar densities are
,1‘ ki .

N .M -
e {1 - e, Y s st srss s ].34
n(l) (sz_) / d (A‘l - M* )1/‘) ( )

respectively (with the degeneracy v = 4 for nuclear matter).

The noulinear scalar field equation is solved as a finite difference equation uti-
lizing a shooting method. The boundary conditions are determined by noting that
the barvon density vanishes at the surface in this approach, and then solving the
linear scalar field equation outside [20]. However, these boundary conditions are ex-
act only in the linear case; a correction term must be added to compensate {or the
effects of nonlinear terms in the scalar field equation. Also, it was initially assumed
(as in [20]) that because the derivative term in the vector field equation is small
compared to the vector meson mass, it can be neglected. However, due to the fact
that the vector field energy is so large, iteration on the vector field has a sigoificant
effect on the calculations. The total energy is minimized with respect to the local
Fermi wave number, while keeping f{ixed the baryon number, B. The constraint of
fixed B is incorporated with a Lagrange multiplier, which is the chemical potential.

The resulting constraint equation is

= e Vole) + (R0 + M) 0.5
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2y Ly
L2 [ -15.76 | 26.51
NLC | -15.77 [ 18.01
QI |-16.10 | 1911
Expt. [ -15.75 | 17.8 |

TABLE L4 Calenlated values of the bulk and surface energy (in MeV) for nucleon
matter (N = Z) uging the parameter sets in Table 1.3, The experimental values are also
included [5]

and states that the chemical potential must be constant throughout the nucleus [20).
This equation is solved for kp(r) with given [¢o(r), Vo(r)] at each point in space at
each step in the calculation.

This approach is more sophisticated than a simple Thomas-Fermi method be-
cause we self-consistently solve for the source terms at each point. With the cal-
culated binding energy and barvon number for finite nuclei as well as the binding
energy of infinite nuclear matter, we fit the second term in the SEMF, the surface
energy, for nuclear matter. As can be scen in Table 1.4, the calculated ay is in
good agreement with the known experimental value [5], particularly for the more
sophisticated FST parameter sets NLC and Q1, thereby validating our approach.

Now we add in hyperons; however, existing experimental data requires that the

following assumptions be made:

1. we couple universally to the conserved baryon and isovector currents;

a different scalar coupling is used for each baryvon. The scalar coupling for the
A’s is fit such that the binding energy of a single A in nuclear matter is -28
MeV [26]. However the binding energy of a single = is relatively uncertain,
values appearing in the literature range from 40 to -14 MeV. Recent

experiments with light nuclei suggest that the value lies on the less bound side

of this rauge {31, 32|; however, it may be more deeply bound for heavy nuclei
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Bez/gs | a2
NLC 1.0 ] 72.69
(.95 | H5.64

TABLE 1.5: Values of the surface energy (in MeV) for matter composed of N's and s

using the NLC parameter set from Table 1.3 for two values of gas/gs.

133]. As a result, a number of values for the Z scalar coupling are investigated;

3. we continue to utilize the parameter sets for ordinary nuclear matter, NLC and

Q1, to generate the nucleon and non-linear scalar couplings.

The addition of new baryons in the theory only requires the inclusion of new
source terms in the effective lagrangian density. We investigate a specific sector of

the theory by imposing the restrictions
Q=10 (1.36)

and

IS|/B = 1 (1.37)

where S is the total strangeness.'® Note that the minimum binding encrgy always
occurs such that there are equal numbers of n and p (and consequently equal num-
bers of Z° and Z7); therefore the symmetry term in the SEMF is rendered irrelevant.

Since there is only one chemical potential, the reactions

and

noA B e p 4+ ET (1.39)

" We also assume an average cascade mass.
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are both in equilibrinm. Again, using DI'T to model finite nuclei, we now investigate

the role of the first two terms in the caleulated SEMFE, shown by

K i |
ﬁ w oy by W (‘&K))

Also, by determining the baryon density, we acquire the structure of the surface.
An example of the surface structure for a finite nucleus composed of equal numbers
of (n,p, =% Z7) is shown in Fig. 1.4. Once a number of finite nuclei of this type
have been calculated, their binding energy is plotted vs. B~1/%; the resulting graph
is given in Fig. 1.5. The surface energy, ay, is then extracted using a fit of the form
in Bq. (1.40) and is given in Table 1.5. 1t was found that the addition of A’s had
little effect on the results.

In addition, an investigation of the possible hyperon-hyperon interaction is
conducted by coupling a & meson to the conserved strangeness current; we allow
the @ coupling to increase until the many-body system is no longer bound in order
to find the maximum allowable value of this coupling.

The work described in this section has been published [34].

1.4 Single A-hypernuclei

In chapter 5 of this thesis, the approach developed by FST is expanded to the
particular region of the strangeness sector that corresponds to A-hypernuclei with
S = —1and T = 0. To this end, we include a single, isoscalar A field in the theory.'®

Now, a A-lagrangian is constructed as an additional contribution to the full interact-

D The ¥ is not explicitly included in the present caleulation. An idea of the possible impact of
A - 3 mixing can be taken from [358]; here the small deviation of hypernuciear magnetic moments
from the Schmidt values is discussed as possible evidence for this type of mixing. It should he
mentioned that if one views the scalar meson as a two-pion resonance, then the ¥ enters implicitly
as an intermediate state in our formalism.
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FIG. 1.4: Plot of the baryon density np(r) == pr(r)/M? (solid line} and the effective mass
M*(r)/M (dashed line) vs. r (in units of mg') for a nucleus composed of nucleons and
cascades with rg = 15/mg, B = 164.918, and gg=/gs = 1 subjoct to the constraints £} = 0

and [S]/B = 1. These results were obtained using the NLC parameter set.
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FIG. 1.5: Binding cnergy vs. B3 for matter composed of equal numbers of cascades
and nucleons for the NLC coupling set.  The upper and lower curves correspond to
gum/ps = 0.95 and 1 respectively. The surface energy is just the slope of these lines.
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ing effective lagrangian of F'ST, consistent with their metbodology. Since the A is an
isoscalar, it does not couple to either a single Yukawa pion or the rho meson. Far-
thermore, we confine our theory to the mesons already included?®; thus, the meson
lagrangian is unaltered. Note that in this approach, the majority of the complexity
is contained within the meson sector of the lagrangian. In the literature, it has been
proposed that a tensor coupling to the vector field be included to reproduce the
correct experimental spin-orbit splitting of the p-states in A-hypernuclei (36, 37).
As it turns out, such a term is in fact a natural extension of our lagrangian in this
framework. Additional higher order terms are also included to better approximate

the exact energy functional. The full interacting A-lagrangian used in this work is

, + 1 d o L BTALY ,
ﬂ,\ (Xy_) = A ["m (5;{; . —zg\r‘\\/ﬂ,) + (1\']\ e gSA(ﬁ)] A. M ,’\( e WV /,,,A
MAAWWI*,,L,A + o zm B XA 4 - vaﬂvﬂ
+2/J; M VAn VAPV, (1.41)

This system 1s treated in the same manner as the Hartree theory discussed previ-
ously.

Following the methodology of FST, our A-lagrangian contains a nunber of free
parameters. The constants in both the nucleon and meson sectors are taken from the
FST parameter set (G2, shown in Table 1.3 and corresponding to their full lagrangian.
As before, the remaining unconstrained parameters must be determined; they are
fixed here via least-squares fits to a series of experimental data: A single-particle
levels, spin-orbit splittings, and s-p shell excitations of the A [8, 9, 10, 38, 39, 40].
The fits are conducted at four different levels of truncation in the A-lagrangian.

First, a rudimentary 2-parameter fit (essentially based on the assumptions of the

T he kaon is not included as a degree of freedom in this work. The reagon is that, as with the
plon, the kaon hag no mean field and does not effect the RMET calealations,
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preceding section) reprodnces the GS binding energies well, but fails to simulate ei-
ther the small spin-orbit splitting or s-p shell excitation energies. The S-parameter
fit, with its tensor coupling to the vector field, corrects for the inadequacy in the
spin-orbit splitting while maintaining excellent agreement with the GS binding en-
ergies. Unfortunately, the 3-parameter fit falls short in describing the full s-p shell
excitations for the lightest A-hypernuclei, although by Ca the correct excitation
energy is obtained. The excellent overall quality of this fit is illustrated by Figs. 1.6
and 1.7. Lastly, the new parameters included in the 5-parameter and 6-parameter
fits do not make a significant improvement. Once these parameters arve fixed, this

lagrangian can be used to predict other properties of single A-hypernuaclei.

1.5 sy/p-splittings

One other property that is of interest to calculate here is what we refer to as
s1,2-splittings. These are GS particle-hole splittings of select single A-hypernuclei,
such as 180, which have a A in the GS and a hole in the last filled nucleon (proton
or neutron) shell. The angular momenta of the A and the nucleon hole couple to
form a multiplet. For the GS, the A is in the 1s; s, state; thus, these multiplets have
only two states. The size of these splittings is determined by the difference of two
particle-hole matrix clements [19]. These particle-hole matrix elements are sums
of Dirac two-body matrix elements. The effective interaction utilized here follows
directly from the effective theory of the preceding discussion. This interaction, to

lowest. order, is just that of simple scalar and neutral vector meson exchange [41],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0
P ) A o D
(APa) s 1y
327 A (.}l)ljz}_l;,(ll')l;'ll} N g o om
—~ b (Ipyp) (IPy) o
S
% -~ 3-parameter Fit
‘d" . - ¥, o
2 ~ Experimental Value!:
s
2 -10p
st T
e 81 g e e e a1
& (pyp) [(18y) | smemmpme:
2
@ask- -
‘ -1
- (1ds,) n(l‘c‘mz)/\m%w
!
20 5 o 16 g H g
A A ">

FIG. 1.6: Results of the unweighted 3-parameter fit, along with Fig. 1.7, to a series
of experimental data. The G2 parameter set of ST is used for both the nucleon and

meson sectors [1]. Note that the experimental splitting between the excited states in °0
is effectively zero.
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FIG. 1.7: Results of the unweighted 3-parameter fit, along with Fig. 1.6, to a series of
experimental dati. The G2 parameter set of FST is used for both the nucleon and meson

sectors [1]. The caleulated binding energy of a single A in infinite nuclear matter is also
shown.
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This simple Yukawa spatial dependence is obtained when retardation is neglected in
the meson propagators. With this exception, the full Lorentz structure is maintained
[41]. Note that as this effective interaction follows directly from our A-lagrangian,
there is no isovector contribution in the A-N case. [n addition, the A and nucleon
are here distinguishable particles and therefore, no exchange contribution is required
in two-body matrix elements. Through angular momentum relations [45] and some
algebra, the Dirac matrix elements are reduced to radial Slater integrals. Using
the Hartree wave functions from the A single-particle calculations to evaluate the
integrals, these matrix elements, and consequently the s;/-splitting, can now be
fully determined. Ounce the parameters in the A-lagrangian are known, the effective
particle-hole interaction is completely specified in this approach. It turns out that
in the case of s;/-splittings in A-hypernuclei, the only term that coniributes to
the splitting is the spatial part of the vector exchange. It is of interest to note
that this component vanishes in the static limit (M -+ oo) and hence has no direct
interpretation in terms of static two-body potentials. This is an interaction between
two baryon currents.?? The results of our calculations are shown in Table 1.6. We
note that the calculated doublet splittings shown in Figs. 1.6 and 1.7 all lie within
the experimental error bars on the GS binding energies. Predictions are made for

$1/2-splittings to be measured in an upcoming high-resolution (¢, ’K™) experiment at

*'The retention of higher diagrams in the offective interaction, particularly those including the
tensor coupling to the A, is left for future work. Also, It is worth noting that while the kaon
makes no contribution at the mean field level, kaon exchange may play a role in the effective
interaction. Some idea of the relative coutribution of kaon cxchange can be obtained from the
Nijmegen potentials [42, 43, 44]. An investigation of the effect of kaon exchange on the sy,
gplittings in offective field theory Is also loft to future work. '

* An analog of this cirrent-current interaction in the clectromagnetic case is Moller scattering;
the spatial components of the currents vanish in the non-velativistic limit {14].
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FIG. 1.8: Graph of particle-hole splittings for }*B and \*N and their respective level

orderings. In addition to the GSs, the first calculated excited state in YN is also included.

The single-particle caleulations were conducted using the 3-parameter fit.

Jefferson National Laboratory; these doublets are shown in Fig. 1.8. Non-relativistic
calculations of similar particle-hole splittings have been carried out [46]. The present

approach, when applied to ordinary nuclei,

i

is far more complicated as isovector
interactions and exchange contributions are both required [41]. As an example of
a comparable system in an ordinary nucleus, and to at least partially calibrate the
present approach, the calculation of the sy y-splitting in 2Py, is included here. The
result of this calculation is shown in Fig. 1.9. Comparable systems for ordinary
nuclei have also been examined [47].

The work described in the last two sections is currently under review for pub-

lication [48].
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1.6 Previous Work

A significant body of work on the subject of hypernuclei exists in the literature;
the following is a short summary of previous rescarch relevant to the present study.
To begin with, we review the previous work on the topic of large, multi-strange
hypernuclei. Then, the literature relevant to the two main approaches that have
been developed for studying hypernuclei, effective field theories and Y-N potential
models, is discussed.®

At 'T = 0 and normal nuclear densities, the mass difference between strange and
non-strange quarks is less then the Fermi energy of massless non-strange quarks.
This opened the possibility that strange quark matter composed of u, d, and s
quarks might be stable against strong decay and perhaps even absolutely stable
[49, 50]. These systems are characterized by a small charge fraction (3/B ~ 0
and a large strangeness fraction |S|/B ~ 1. A number of experimental searches
for strange matter have been conducted, examples of which are [51, 52, 53, 54];
all have yielded negative results. The plausibility of bound strange matter has
also been explored in the hadronic sector. Theoretical investigations of multiple
A-hypernuclei indicate that they are bound and stable against strong decay. These
studies produced systems with binding energies as low as -9 MeV corresponding to
IS|/B ~ 0.2 [55, 56, 57, 58, 59].

Gal et al. suggested that discussions of matter composed of n’s, p’s, and A’s

must also include Z%°s and = s due to the fact that the reaction

A s N o 5 (1.43)

is energetically favorable for some critical number of A’s in the nuclear medium

HHere Y denotes a hyperon,
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123]. They investigated possible configurations of bulk matter in the relativistic
mean field approach, suggesting binding energies per barvon as low as -25 MeV
with a large strangeness fraction; finite nuclear calculations were also performed
[24, 27, 60, 61]. In addition, Gal et al. fit to a generalized SEMF using a Fermi
gas model [62, 63]. Extrapolating from the ordinary SEME they estimate the bulk
and symmetry terms, while leaving the Coulomb term unchanged. In this work the
surface energy is simaply scaled as inversely proportional to the average barvon mass,
vielding a value of 15 MeV. Stoks and Lee challenged these findings using a many-
body theory with baryon-baryon potential models. These potentials were developed
using an SU(3) extension of the Nijmegen soft-core potentials [42, 43, 64, 65]. In
contrast, the latter found that this type of matter is only slightly bound, E/B ~ -3
MeV or less [25, 66]. A quark-meson coupling model produced a minimum binding
energy of -24.4 MeV with |S|/B ~ 1.38 [67]. The effect of adding hyperons has also
been explored in application to neutron stars [68, 69, 70, 71].

Now we shift our focus to the literature relevant to the subject of single A-
hypernuclei. Hadronic effective lagrangians using MET have been developed to
describe hypernuclei. Early models containing only the lowest order terms required
much weaker meson couplings to the A than to the nucleons to achicve success
[72, 73], particularly in the weak spin-orbit interaction. Later, it was suggested
that large meson couplings to the A consistent with SU(3) were possible if the
lagrangian was extended to include tensor couplings [36, 37, 74, 75, 76, 77, T8].
It turns out that the spin-orbit splitting is very sensitive to the size of the ten-
sor coupling to the vector ficld. Some of these models were formulated to include
additional hyperons. The quark mean field model [79], and a predecessor the quark-
meson coupling model [80], couple the mesons self-consistently to the quarks within
the baryons; these formalisms reproduce both the weak spin-orbit interaction and A

single-particle levels. A density dependent relativistic hadronic field theory that was
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extended to the strangeness sector by including octet hyperons was also applied to
the case of single A-hypernuclei [81]. More recently, effective theories consistent with
SU(3)1, ®@ SU(3)k have been constructed. The linear realization of chiral symmetry
in this case was inadequate to fully describe the systemn [82]; as a result, this ap-
proach was reformulated into a nonlinear chirval framework [83, 84]. However, these
systems require 8§ Goldstone bosons. Another study of interest uses strangeness
changing responge functions caleulated from a random phase approximation to an
effective mean-field lagrangian [85]. Using this approach, the spectra of %O and
¥Ca are analyzed and the resulting GS particle-hole splittings are small.

The following studies have attempted to fit potentials to the hyperon-nucleon in-
teraction. Experimental data from (7, K*) and (K, #7) reaction studies has been
analyzed to obtain a nonlocal and density-dependent A-nucleus potential |26, 86].
Global optical potentials for A scattering off nuclei were developed from nucleon-
nucleus Dirac optical potentials and the constituent quark-model values of the
meson-baryon coupling constants [87]. The hypernuclear mass dependence of the
binding energies is reproduced by a A moving in a Woods-Saxon potential [88]. The
Nijmegen group has developed Y-N potentials based on the assumption of SU(3)
symmetry [42, 65, 64]; this fixes the baryon-meson coupling constants from N-N
scattering fits. Similarly, potentials were constructed by the Julich group assuming
SU(6) symmetry [89]. G-matrix calculations using both the Nijmegen and Julich
models for the free Y-N potential have been applied to hypernuclei [90, 91, 92].
Comparable G-matrix caleulations with a SU(6) quark-model baryon-baryon inter-
action [93] and Skyrme-like hyperon-nucleon potentials [94] have also been inves-
tigated. However, the G-matrix is both energy-dependent and nonhermitian; the
unitary-model-operator approach is an attempt to reformulate the problem to elim-
inate these drawbacks and is constructed on the basis of an effective interaction

195]. Self-consistent Brueckner-Hartree-Fock caleulations with a Nijmegen soft-core
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hyperon-nucleon potential are used to determine properties of single and multi-
lambda hypernuclei in [96, 97]. Other recent approaches include microscopically
using the Fermi hypernetted chain method to obtain the A-N and A-N-N potentials

[98, 99] and using a quark model with one boson exchange potentials [100].

1.7 New Contributions in this Thesis

The effective field theory approach of FS'T, described in the preceding discus-
sion, was developed to model the nuclear many-body system. This theory has the
intrinsic strength of incorporating directly into its framework all of the following:
microscopic causality, Lorentz invariance, electromagnetic gauge invariance, spe-
cial relativity, spontancously broken chiral symmetry, and the nnderlying svinmetry
structure of QCD. In addition, DFT acts as a theoretical justification for this ap-
proach. This methodology represents part of a ongoing effort to understand the
dynamics and structure of the nucleus. Their formalism was designed specifically to
describe nuclei in the valley of stability. Recently, research has been conducted to
extend this approach outside of this region [16, 21, 34]. The present work focuses
on the expansion of this theory to the strangencss sector. The main contributions

of this thesis are divided into three sections helow,

1. In chapter 4, we consider the application of the FST approach to strange

superheavy nuclei. The new contributions to this subject are:

e the coupled, nonlinear field equations following from Eqs. (1.28) and (1.31)
- {1.35) are solved numerically with appropriate boundary conditions for
ordinary finite nuclei;

e the resulting barvon density and scalar field provide a picture of the gize

and shape of the surface of ordinary nuclei;
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e the surface energy of ordinary nuclei is extracted by fitting to the BEME
and is in agreement with experiment. This successfully calibrates the
approach;
e cascade-nucleon (EN) matter subject to the constraints Q = 0 and
|S]/B = 1 is then similarly studied for a range of = scalar couplings:
e the determined densities again give a picture of the size and shape of the
surface of ZN nuclei;
e the surface energy of ZN nuclel is also acquired by fitting to the SEME;
e with the A scalar coupling fit to experiment, the inclusion of A's has little

effect on the results.

2. In chapter 5, we consider single A-hypernuclei using the methodology of FST.

The following are a list of the main new contributions of the present work:
e a minimalist extension is made to the strangeness S = —1 sector in which
an isoscalar A is included in the full FST effective lagrangian;

e Huertas’ program to solve the relativistic Hartree equations of FST [16] is

appropriately modified and extended;

e paramecter fits to experimental data are conducted at various levels of

truncation in the new A-lagrangian:
glall;

e it is found that the 3-parameter fit obtains excellent overall agrecment with

the experimental data,;

o it is also determined that the inclusion of more parameters does not

significantly improve the fit;

e the resulting effective lagrangian is used to predict the GS binding energies,

densities, and single-particle spectra of other single A-hypernuclei.
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3. Chapter 6 is dedicated to a specific phenomena of single A-hiypernuciei,

s1/2-splittings. The new contributions of the present work are:

e the effective particle-hole interaction is derived from the previously

determined effective lagrangian;

e it is discovered that the only term that contributes to the sy jp-splittings is

the spatial part of the neutral vector exchange;

e it is also found that the GS doublet splittings of all the A-hypernuclei used
in the fitting procedure lie within current experimental error on the GS
binding energies;

o predictions are made for the s o-splittings in B and °N which will be
measured in an upcoming experiment at the Thomas Jefferson National

Accelerator Facility {11, 12];*
e the sy ,;-splitting in a comparable ordinary nucleus 2P successfully

calibrates the approach; however, this calculation is more complicated as

isovector interactions and exchange contributions are now required.
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CHAPTER 2

Effective Field Theory

In this chapter we review the methodology of FST. They approach the nuclear
many-body problem by constructing an effective field theory that retains the un-
derlying symmetries of QCD as well as the principles of both special relativity and
quantum mechanics [1]. At low-energy, the quarks are confined in hadrons. There-
fore, hadrons are the desired degrees of freedom here and the ones which FST use to
construct an effective lagrangian. The nonlinear realization of spontaneously broken
chiral symmetry is illustrated through a system of pions, nucleons, and rho mesons.

They incorporate Goldstone pions through the field
- i AT gl N/ <
U,) = E(x)1€(x,) = o0/ rgpinton)/ s (2.1)
where the pion field, n(x,) = -gr -7, appears to all orders, 7 is a Pauli matrix, and
fx is the pion-decay constant. Here the pion ficld enters as the phase in a chiral
rotation of the identity matrix in isospin space {1]. Aun isodoublet nucleon field is

included, represented by

. p(x,) 4
N(x,) = " (2.2)
n{x,)
41
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The upper (lower) component corresponds to the proton (neutron). To account for

the symmetry energy in nuclear matier, an isovector-vector rho meson, g, (x,) =
37, s also included.

The nonlinear realization of chiral symmetry is defined by global trausforma-

tions, L and R of the subgroups SU(2);, and SU(2)g respectively, such that

LeR:  (§p.N) = (& p,N) (2.3)
where
E(x) = LEGu A (xy) = h (xu)é (xR (2.4)
p,’u.(x/z) = h(&z)ﬁu’” (X‘/A) (25)
N’(Xp.) = il(X;L)N(X;,L) (26)

Eq. (2.4) defines h(x,) as an implicit function of w(x,), L, and R. The transforma-
tions shown in Eqgs. (2.4) - (2.6) are a realization of the chiral group [1].

The following boson fields are also incorporated into this framework, the first
two of which are isoscalar chiral singlets. A scalar field, ¢, is included to simulate the
medium-range nuclear attraction; physically, the ¢ is an effective field that represents
all of the two-pion (and multi-pion) resonances in the isoscalar-scalar channel. Next,
they incorporate a neutral vector meson, V,, to reproduce the short-range nnclear
repulsion; this is another effective field corresponding to all the multi-pion and w
meson exchanges in the isoscalar-vector channel. Lastly, a photon field, A, is added
to take into consideration the electromagnetic structure of nuclei.

FST now have the basic building blocks necessary to construct a lagrangian.
However, as all possible combinations of the fields (and their derivatives), consistent

with this framework, are included, this lagrangian contains an infinite nnmber of
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terms. To conduct any meaningful caleulation, this lagrangian needs to be truncated
at some level. This requires that the terms be organized is some logical manner;
FST utilize both NDA and RMFT to accomplish this.! NDA is a framework which
identifies all the dimensional factors of a given term. Once these dimensional factors,
and some appropriate counting factors, are extracted from a term, the remaining
dimensionless constant is of O(1) {17, 18]. This assumption is known as “natural-
ness.” RMIET states that when the baryon density becomes appropriately large,
the sources and meson fields can be replaced by their expectation values; here, the
expectation values of the meson fields are just their classical fields [5]. Then we
notice that while the meson mean fields are large, the ratios of these fields to the
chiral symmetry breaking scale, M, are small. Furthermore, the size of derivatives
is related to ky, which is also small compared to M. These effects are shown by [5}]

¢ W 1 ke 1

o~

M’ M 3 M 4

e (2.7)
where the scaled meson mean fields are defined as

B(X) = gsdo; WE)=gvVe; RE) =gbe; AR = eAy (2.8)
The ordering principle developed by FST is

13 . o 0
v=54b+d (2.9)

where for a given term v is the order, n is the number of fermion fields, b is the num-

ber of non-Goldstone bosons, and d is the number of derivatives.? Now a controlled

YA maore detailed discussion of both NDA and RMET is contained in appendix B,

1t should be mentioned that the mumber of derivatives in Eq. (2.9) does not inchede derivatives
of the fermion ficlds as they are generally associated with the nucleon mass and not a small
momentum [1].
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expansion is performed in which higher order terms are, in general, progressively
smaller.

Using this ordering principle, they construct an effective lagrangian in two
components [1]

Lrst = Lo -+ Lar (2.10)

The fermion part to order v = 4 is given by

d |
y . . , PP Y aer 4
Lu(x,) = —N {v’u [M(% + v, — 1EAYs0, — 18N 18P
%y,

““”":,’)"‘CJAA.M (1 -+ T})} + (I\Il - gg(/)}} N S }ﬁ%’p '\f(fﬂl//)‘m/r\l

4M
f\,g Y - € .- o
lw«ﬁm—\ OV N + l\gl\ﬁw/l,'m,;\ + nﬁq{\ AT BN
e o 0 .
355N (B + Bems) N —F o (2.11)

where A = $A,(1+73) + $A (1 — 73) and ), = 1.793 (A, = —1.913) is the anomalous
magnetic moment of the proton (neutron). Note that for the purposes of this work,
the conventions of [5] are used. Here we have defined

o, oV,

vV w o
! ox, 0%,

(2.12)

Uy, Puvs and F, are similarly defined for v, p,, and A, respectively. Notice that

the pions only couple to the fermions through the combinations

1
Yy == ”' (gT % +& ”ld'“é ) = ‘U,TL (‘3‘ [3)

%, ax,

i o¢ Bl ‘ ‘
RO I3 el NS S S P o o1,
=g (& ox,, gﬁx) o (2.14)

To lowest order, both v, and a,, contain derivatives of the pion field; thus soft. pions
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decouple. The meson lagrangian to order v = 4 is

1 3,,«;4) Hob \ * 12 [
ET\T ( x“) s cprn :,.; ( l J( 1\,1 ) (ﬁ); e “‘:"{j‘“ g - :3 f,]" ( /)lj,l/ {) i “()
Ak /l‘ “d lard
Ll oY f‘;g mifEo
< () VooV — e S )+ (0 401 2)
1 g0 e’ . Lo
- }}: 1+ ™ ~1~\~fi—- e ?Wﬁ? ‘V,,f\z ot 4!(,0;,‘“ {VH\ ) ij W} o

/) o 99 ] g};,}t.‘(b Ry gﬁ(bz R
(1 “+ '/},, 1\1 ) m 2ty (pupy) — mie (§ + BN + Vi l%!lﬁ . (2.15)

Terms such as NN¢? are redundant in this formulation. This stems from the fact

" employ meson field redefinitions; since the parameters are free, they are
also just redefined. A detailed description of how this lagrangian was constructed
is presented in [1].

This still constitutes a system of many-body equations with quantum fields.
FST now employ RMFT and Hartree theory to reduce the many-body system to
a series of single-particle equations with classical fields.® First, the classical, local,
time independent meson fields are obtained in terms of the baryon densities through
the meson field equations. Next, the Fuler-Lagrange equation is used to determine
the Dirac equation (the baryon field equation) where the meson fields now provide
the local potentials in which the baryons move. Then, it is assumed that each
particle is moving in a single-particle potential, which is representative of the average
interaction of the particle with all other particles [19]. Due to the fact that the Dirac
equation is linear in the baryon field (and because the meson fields are classical),
one may seek normal mode solutions of the form ¥(x,) = ¥(X)exp{ili} [20]. The
sources are now evaluated by summing over the contributions of the single-particle
solutions. The resulting coupled, local, nonlinear, differential equations are referred

to as the relativistic Hartree equations. This formalism is now equivalent to Kohn-

*A more detailed deseription of the Hartree formalism can be found in appendix .
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Sham theory in DYL; therefore, DFT provides the theoretical justification for this
methodology.

The single-particle hamiltonian takes the form [1]

. B P T b xn
h(}:) = g VoA W :)'7“:;,[?{ +- § (1 - “1“3) A ,’3’ (1\'1 . ;{,57(1?)

P . A b =
et A A /v Ty ¥ i [ waeren ¢ T “\‘)J — sy £ ia :‘.'r“ .“!A 4,
21\1 e (31 (f\, VW 4+ f,,2 t;VI\) 5N \jd- VA
1 g
*';;Rr; (Bs + Fvrs) VA (2* l.(jr)

Since the pion has no mean field in a spherically symmetric system, all of the pion

couplings drop out. The Hartree wave functions are of the form

1 i(z‘m (I‘) CD:-: m
Fa (1' ) b.. Km

Here «: = {a,m} = {nlsj,m}, ¢; is a two component spinor, and ¢, is 1/2 (-1/2) for
protons (neutrons). The ®,,, are the spin spherical harmonics. Substituting this

wave function into the Dirac equation,

h(Z) ¢ (X X) = Eatfa (%) (2.18)

one arrives at the following radial Hartree equations

d k., . o o
‘5’; +- }““ C:tu(];') - [ g Lﬁ -+ UQ] E U,(I') - Lg;‘;bra(]‘) = () (.2]_9)
w(.z,. o ﬁ' F (I) e [ SRR | — J(‘ (1} 4 U B (r" == {) (2 ‘)O)
] ar r La -0, ! P IRETARY 43V q ) - o
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where the single-particle potentials are

Uplr) = W(r) +4R(r) + ( ;.w) Afr) + ,,;,V (Bs + i) V2A(r) (2.21)
Us(r) = M —®(r) (2.92)
o) = S OWE) L f, OR()

IM  Or “OM Or

1 0A(r) [1 o 60"
}:2’1"\“/" """”Z)”I'” [ ()\p + f\n) + /a o /\u)} (32*’)

The scalar meson equation is determined by minimizing the variational derivative
of the effective lagrangian with respect to the scalar meson field. The other meson

equations are constructed in a similar fashion. These meson equations are [1]

Y Y mZ ., (ks kg D
-V + miP = gipg(¥) - 5 g2 (ié,'j + le)
2 N 2
85 PYMGn T
22 b Py | e WP (vq») 2PN P
oM (" }"”M) R TY { +
+ (2.24)

P 9 : . = T 7P\ @
~VW + miW = g7 [m;(x) + J—LV (/J,T;(X')r)} - (‘m -+ Q{{I\’[) i W

2 s
~——-<0w + &2 (w TW +<1>v2\x) CBY () (2.25)

M 38
~V*R +m’R = lg p3(%) - Jog. (ps ®)F)| ~ 7 ¢ —m’R
S LT L DT VMR Vi
e’y ,
- puhg ( X) (2'20)
~VA = (:zpchg(f) (2.27)

The baryon sources become the densities in the meson equations and are given here
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by [1]

14713
(¢
. 2},, -
pu(X) = }_‘ “;i;;;,}”( ) +Fi(r))

g i 2 [ v*" i 4 )

AE = G, )

. 2, 1 .
) = 7 (20, (G2 4 FL)
ﬂ3| (%) = Z J/ﬁr}:““ (264) 2Go (r)F (1)

~

The charge density is made up of two components

ﬂ(:'h‘g( ) = /)d( ) + /)m( )

where the first, the direct nucleon charge density, is

pa(X) = pp(X) + ¥ (b ()1

1
2M 2M?

and the second, the vector meson contribution, is

1 V2R +

VW
88, ?g,av

P (i}) =

The point proton and nucleon tensor densities in Eq. (2.34) are

@

1
= = (py + p3)
29, + 1,
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(2.31)

(2.32)

(2.33)

—~
(S

34)

(2.36)

(2.37)



respectively. Finally, the energy functional is given by [1]

B B, / d*xU,, (2.38)
where
Up = w%@p«, + = W (p,; +- m.f:w‘i“‘ pBi*) + 1R (p;; + Ejll\e"["‘% pg‘sf-) + %Apd
_ «1»;%~»§n~<,0\“\f4 n %L f; (Vo) — ;"5% I\‘% (VW,>2 (2.39)

The radial Hartree equations and the meson equations form a svstem which is solved
self-consistently until a global convergence is achieved. FST wrote a program to
numerically solve the coupled, local, nonlinear, differential equations. Hucrtas has
written an independent program which reproduces the results of FST [16, 21]. The
free parameters in this system are gs, gv, € 11, Ty 1, K3, Kay o, Mg, frv, oy, @,
for Bs, and By, Here we take my = 782 MeV and m, = 770 MeV; these numbers
correspond to the physical masses of the w and p mesons respectively. The constants
are fit by FST to a series of experimental data along the valley of stability at
various levels of truncation in the underlying effective lagrangian [1]. The last three
parameters are fit to the electromagnetic properties of the nucleon. The remaining

constants are determined by minimizing a least-squares x? fit of the form
2
X, - x |
= § } ““‘(’” T (2.40)
oL wExE,

where 29 pieces of experimental data were used, listed here with their respective

weights, W

e the binding energy per nucleon, E/B, with W = 0.15% for 100, *Ca, *Ca, ¥Sr,
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and 2% pPh;

N T . NP S A AR QB
e the rms charge radii, < v? >, with W = 0.2% for %0, 9°Ca, #Ca, ¥5r, and

2()8'[31).
I

e the diffraction-minimum-sharp (d.m.s.) radii, Ry, with W = 0.15% for 90,
) s Ay 3

0Ca, ¥Ca, #8r, and *¥pPh;

e the spiu-orbit splittings, ABEso, of the least-bound proton and nentron with

W = 5% for'®0, 15% for **Ib, 25% for both *Ca and “*Ca, and 50% tor **Sr;

e the proton encrgy, By(lhg), and the proton level splitting,
Ep(2ds/2) — Ep(lhyre), in *®Pb with W = 5% and 25% respectively:

e and the surface energy and symmetry energy coefficients, ay and a4 respectively,

with W = 0.08%.

The results of these parameter fits are shown in Table 2.1. Note that these pa-
rameters do indeed satisfy the naturalness assumption made earlier and as a result,
higher order terms are successively smaller. Also, note that increasing the level of
truncation beyond that of the G1 and G2 parameter sets does not significantly im-
prove the fit. Once the free parameters are determined, this lagrangian can be used

to predict other properties of ordinary nucles 1, 16, 21].
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[ v| L2 | NLC | QU | @2 | Gt | G2 |
mg/M | 2 1 0.55378 | 0.53333 | 0.53735 | 0.54268 | 0.53963 | 0.55410
go/dn | 2] 0.83321 | 0.77607 | 0.81024 | 0.78661 | 0.78532 | 0.83522
gy /4r | 21109814 | 0.97114 | 1.02125 | 0.97202 | 0.96512 | 1.01560
go/dr | 2 10.64271 1 0.68912 | 0.70261 | 0.68096 | 0.69844 | 0.75467
mo|3 0.07060 | 0.64992
m |4 -0.96161 | 0.10975
Ky |3 19195 | 1.6382 | 1.7424 | 2.2067 | 3.2467
£y |4 -7.3928 | -6.6045 | -8.4836 | -10.090 | 0.63152
o |4 SLTTE0 | 3.5249 | 2.6416
M |3 -0.2722 | 0.3901
w |5 1.8549 | 1.7234
g ) 1.7880 | -1.5798
fv/d |3 0.1079 | 0.1734
/4 13 1.0332 | 1.0660 | 1.0393 | 0.9619
Bs |4 -0.10689 | 0.01181 | 0.02844 | -0.09328
Bv |4 -0.26545 | -0.18470 | -0.24992 | -0.45964

TABLE 2.1: Parameter sets developed by FST [1, 2]. Notice that the sets correspond to

different levels of truncation in their lagrangian.
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CHAPTER 3

Density Functional Theory

AN

DFT is a theoretical framework which allows one to calculate S properties
of many-body systems without carrying around all the baggage contained in the

many-particle wave functions. Two theorems are of interest here:

1. the Kohn-Hohenberg theorem — “The GS expectation value of any observable
is a unique functional of the exact GS density; moreover, if the expectation
value of the hamiltonian is considered as a functional of the density, the exact

GS density can be determined by minimizing the energy functional [3].”

2. the Kohn-Sham approach — “The exact GS scalar and vector densities, energy,
and chemical potential for the fully interacting many-fermion system can be
reproduced by a collection of (quasi) fermions moving in appropriately defined

local, classical fields [3].”

These theorems are proveu in [22, 101, 102]. The following is a qualitative discus-
sion of the above theorems designed to provide the reader with a basic theoretical

justification for the present approach.
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First, let us consider the Kohn-Hohenberg theorem. The GS energy of a system

can be determined by the Rayliegh-Ritz minimal principle
B = ming (W]H| W) (3.1)

where ¥ is some normalized trial wave function. Hohenberg and Koho were the first
to reformulate the minimal principle in terms of a trial density, n(r) [101]. This n(r)
is determined by integrating ¥*W over all variables except one and multiplying by
the number of particles. To conduct the minimization of Eq. (3.1), we fix n(r) and
denote the trial wave functions with this density as W& [22]. The constrained energy

minimum with fixed n(r) is defined as

Eun(r)] = min, (I[H[P)

= [ venntadr + Flao) (32)

H

where v, (r) is some external potential. 'This potential is uniquely determined by
n(r); that is to say there is only one potential, up to an additive constant, that
gives rise to the density n(r), and vice versa. Also, the quantity F[n(r)], which is a

functional of the density, is defined as
Fin{r)] = min, (W5 |(T + U) | ¥ (3.3)

Here T and U are the kinetic and interaction energy operators. Next, Eq. (3.2) is

minimized over all n(r), or

E = mingg B [n(r)]

= il [ / Ve ()72 (r)dr + Fln(r)] (3.4)
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This is the misimum when n(r) is the exact GS density [22]." Simply put, regardless

of how complicated Fq. (3.1) is, by minimizing the energy functional, we acquire
the exact GS density.

Next, we consider the Kohn-Sham approach. We write the Hohenberg-Kohn

free energy for a collection of interacting particles as
Fln(r)] = Frxin(r)] + Frerln(r)] (3.5)

where Fyy is the non-interacting kinetic energy and Fyyr is the interaction energy.

Fyyr is the sum of the Hartree energy, exchange correlation energy, ete., or
Finr[n{r)] = Enln(r)] + Exc[n{r)] + - - (3.6)
Here the Hartree energy is defined as
Enln(r)] = %/ zE'i%-:x~)_-—7~?—~']E;,I—‘IQdrdr’ (3.7)

Substituting Eq. (3.5) into Eq. (3.2), we arrive at the relation

, . ’ . 1 n{)n(
E,n(r)] = / Vgt (T)0(r)dr + Fra[n(r)] + 5 / %%drdr’ + Exeln{r)] + -
> E (3.8)

The corresponding Euler-Lagrange equation, for a given total number of particles,

y i ’ "“ oo * ).J / o @y “ o I nmvwémv A;‘ 4 M ] crwre foviired ) % 3
B n(r)] = / dn(r) [b«ff(l) t (5.?;2(1")} i (r)] — e} de =0 (3.9)

"This statement holds for both nondegenerate and degenerate systeras. In the case of degenerate
gystems, n(r) is any one of the G densities.
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where we have defined

o "ol S, o
'I»“‘aff(r,) e ’I}m:[(l’) 4 !1” (w g,’!(h’ 4 (SYI(]‘) B {’)I(I” Ao (3]0)

and ¢ is a Lagrange multiplier introduced to assure particle conservation (22]. Equa-
tion (3.9) is identical to the Euler-Lagrange equation for a system of non-interacting
particles moving in v,z r(r) instead of v, (r) [22].

Therefore, instead of having to solve the many-body equations with quantum
fields, one only needs to solve a series of self-consistent, single-particle equations
with classical fields. Thus, Kohn-Sham theory is formally equivalent to relativistic
Hartree theory. Once the exact vepp(r) is determined, in principle all many-body
effects are included. The problem is now reduced to determining the correct form of
the energy functional. An appropriate energy functional is provided by the effective
lagrangian density of FST, given in Eqs. (2.11) and (2.15). Here the meson fields

play the role of Kohn-Sham potentials.
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CHAPTER 4

Strange Superheavy Nuclei

4.1 Introduction

The possibility that very large nuclei exist is an interesting problem in nuclear
physics. Oue can immediately see that the Coulomb repulsion limits the maximum
size of nuclei composed solely of protons and neutrons. As ordinary nuclei become
larger, more and more neutrons are required to keep the repulsive force exerted by
the protons from destabilizing the nucleus. If, however, negatively charged baryons
are introduced, this Coulomb barrier could be overcome. The addition of negatively
charged baryons composed solely of u and d valence quarks, such as the A~ (ddd),
is one solution. Unfortunately, these particles will decay rapidly via the strong
interaction. The strong interaction timescale is ~ 107% s, which is too short to be
of any particular interest.! A second possibility, and the one we investigate in this
chapter, is the inclusion of hyperons in nuclei. Hyperons are a elass of baryons with
non-zero strangeness. Strangeness, as we have seen, is a conserved quantity in the

strong interaction. As we will see in the subsequeunt discussion some of the hyperons

"I'he strong interaction timescale is the time it takes light to travel the Compton wavelength
of a plon, rsp = Ay /¢ = Af (),
pion,
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[ QS| T ] M |qqy|
p oL+l 0] 1/2] 93827 | uad
no {010 1/2] 93957 | udd
A O |-11] 0 | 1115.68 | uds
Sl -1 ] 1 | 1189.37 | uus
3 ‘ 1192.64 | uds
1 119745 | dds
ST/ [ 1314.83 | uss
S1/2 [ 132181 | dss

“““ = T 0 | 167245 | sss

e
{é
-
jo

H
i
ot

]
H
¥
i
§
[airy

e
o=

H
t
s

rast

TABLE 4.1: The nucleons and hyperons ave listed here with thelr respective charge (Q)
in units of e, strangeness (8), total isospin (1), mass (M) in MeV, and constituent valence
quark content {qqq) [4].

will be stable against strong decay. The hyperons are listed in Table 4.1; notice that
a number of these baryons have a negative charge.

Let us now consider the hyperons in order of increasing mass. The lightest of
the hyperons is the A, which has a binding energy in nuclear matter of ~ —28 MeV
[26]. The A cannot strongly decay into a nucleon because to do so would violate
strangeness conservation. It turns out that the only mechanism capable of this type
of reaction is the weak force (the weak interaction timescale is ~ 1078 §).2 After the
A, the least massive hyperons are the ¥'s. The 2 has a repulsive nuclear potential
[27, 28, 29]. There does exist the possibility of A — ¥ mixing, but this is assumed to
have little effect®. The next hyperons are the Z's. In contrast to the ¥, the Z has

a attractive nuclear potential [30, 31, 32]. Also, it has been shown that for some

2The weak interaction timescale is the typical lifetime of a particle decaying via the weak
interaction.

* An idea of the possible impact of A — ¥ mixing can be taken from [35]; here the small deviation
of hypernuclear magnetic moments from the Schmidt values is discussed as possible evidence for
this type of mixing. Tt should be mevtioned that if one views the scalar meson as a two-pion
resonance, then the ¥ enters implicitly as an intermediate state In our formalism.
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critical number of A's in the nuclear medium, the reaction
A N+ = (4.1)

becomes favorable [23]. Finally, the most massive hyperon, the €7, will rapidly
decay via the strong interaction. Therefore, if one operates on strong interaction
timescales, then it appears that the inclusion of A’s and Z’s in ordinary nuclei is
favorable while the addition of £’s and Q's is vot. This is significant because the
=7 provides a negative charge to offset the Coulomb repulsion between the protons.
To minimize the overall effect of the Coulomb force, we will impose the condition
Q = 0. The consequence of this condition is Chat the Coulomb term drops out of the
SEMF. Farthermore, we will impose the condition |[S|/B = I; this will eliminate the
symmetry term in the SEMF. After taking into consideration the above arguments,
we helieve that matter composed of N's; A’s, and Z’s exists and is stable with respect
to the strong interaction.® The purpose of this chapter is to construct a method to

model these systems and to determine their surface structure and energy.

4.2 Theory of Strange Superheavy Nuclei

Following the effective field theory approach of FST {1, 2], we construct an
effective lagrangian density using hadronic degrees of freedom that remains invariant
under SU(2);, ® SU(2)g symmetry. We will use this lagrangian density fo model
both infinite and finite systems; to start with only systems of nucleons with N = 2,
which we vefer to as nucleon matter, are considered. Tun this chapter, we lhnit the

theory to simple scalar and nentral vector meson exchange. The lagrangian density

YThey will decay via the usual weak hyperon decays as well as weak non-mesonic two-body
decays such as A + N -+ N 4 N and Z+ N A+ N [103].
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used here is given by

o ol d e .1 dp \? oo
L,(};ﬂ) e N Via (} o I,‘L,\ ‘V o N e i;q(,f) N :;_‘; 5::‘; ot )
1\}, v 1 V: 2 Kagsmd 3 Fagimg L9
:i pir Y pw . I“‘V e 3”&1 ({r - ’1”\42 (‘) ( ..:_f)

We have retained only the lowest order terms and a pair of nonlinear scalar self-
couplings. Notice that the Lorentz scalar meson field, ¢, is coupled to the scalar
density NN and V,, the Lorentz vector meson field, is coupled to the conserved
baryon current iN+,N. The p-neson and electromagnetic terms have been sup-
pressed in Eq. (4.2). The source term contributed by the p-meson depends on the
quantity N — 7, which vanishes for the systems under cousideration.

We now employ RMET, which is discussed in appendix . The source terms are
replaced by their expectation values and the meson fields are replaced by classical

fields. Incorporating both Eq. (2.12) and RMFT, our lagrangian density hecomes

0 y v .l N v [ I
L(x,) = —N (fy "o +M ) N — gvVoNIN + 3 [(VVe) +mi Vi)

N,
Rz 2sMg 4‘ [n ) o
123 S 3 L>S S ;)l (4‘5)

1 ; 5 ¢
=5 (Vo) mige] = =5~ e %

where the effective mass is defined as

M = M — gso (4.4)
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Now the hamiltonian density is given by

| ON
O
~tON o o | Lo
o ﬂ\ﬁ«aw[ “+ N (”V 5‘1“;‘ o} ]\1 ) N o} gv,()n\/o . :)_: }(V\ 2 ) ”h \0}

1 L o K3EemE . mggdmd
yr BESING 5 FaBRING 4 g
4 :5 U V Q)Q) - .llflg(f)g:! -+ AN @y “+ ATM2 Pq (45’,)

where pp = NN is the baryon density and the canonical momentum density is

oL ot

[ o B ‘,l\ 4. )
M= sengey = (4.6)

As we are interested in very large systems, a more statistical approach is used here.
To this end, it is assumed that a nucleus is a local Fermi gas filled up to some kp(r)

at every point. Now, the source terms take the form

~ g ()
m(r) = (NIN) = L / 1Pk AT
) =INN) = Hw ) (4.7)
~ 'l";]"“(r) N . e
(\TT( ])"}';31\/1 )N) = W/ d..ik(kz + I\,Ia:z))/?, (18)
A Y ¢

where = —iV and v is a degeneracy factor. The hamiltonian density is explicitly
time-independent. and, in this problem, it is equivalent to the energy density (with
v = 4 for nucleon matter)

1 .
E(r) = 5 [(Vq‘;(,) + ma q)()] - E [(VVU) +mé Ve } -gvorVo

« 2 2y 2 A "I\'t)."

KagsINg 5  K4BRING 4 4 P T e

"'*“ '{‘NI KPU "}” /L’ ]\/’[:2 i (;b(’ "'%" ( ‘)’ﬂ‘)& (1 /X; ( W ““ 1\1 ) : (4.”)
el RERAR A J0
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The total energy and baryon number arve

B o= / E(ryd®r (4.10)

B = / pw(r)dr (4.11)

respectively. The energy density above provides a lowest order density functional.
As shown in chapter 3, DFT tells us that minimizing the exact energy functional
vields the exact Gb density.

To conduct infinile nucleon matter calculations, we neglect the spatial variations
in the meson fields; the resulting energy density is
K3gsm B g g
RN ————“ ) pe

SIVERCIFTIVE

4 R
2y / QPR + M) (4.12)
S0

] ¥ -
el N
¢ = Inady

€y l PRSP
5 (]5 -+ Bvon Vo = Q‘III'{, V p

+

By minimizing the energy functional with respect to the scalar field, the scalar mean
field equation is determined. The vector mean field equation is similarly derived as

an extremum of the energy functional. These equations are

55 /»4&5 13 gx ,
b 5 = , .,I.«
V, = i’-—L AP (4.14)
mi;

where the scalar density is given by

(4.15)

The solution to these equations is discussed in section 4.3.

We now turn our attention to finite nucleon systems. We retain the spherically
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symmetric spatial variations in the meson fields and therefore require the full energy
density in Eq. (4.9). The meson field equations, acquired in the same manner as

above, are

: fRaPallle KaBaii . L
2 LAY 3oHMA o MBS 3 RT:
— 11 S) (;)0 J— e 0 m{;f\qz @)0 foion s} “ [)b (Ll(})

(v oM
(VP-mi) Vy =

R ATy 10} (1 1 7)

!

Note that for spherically symmetric systems, the laplacian becomes
Note that for spherically symmetric systems, the laplacian becomes

2 0 20 ,
Vi or? i or (1.18)

Using a Green’s function, the solution to Eq. (4.17) is

5’32\[ : ; (,»mvli =¥
TAY T e d*v pr v *:"'":;"“”"::;“ 419
Bv Yo in b /TS(.}) IX m yl ( )
S -
= ¥ / ydypr(v) sinh(myx e ™V (4.20)
Xy

where the angular dependence has now been integrated out. Since the contribution
of the laplacian in Eq. (4.17) is small compared with that of the vector meson mass,

to a first approximation it can be neglected [5, 20|,

oV = 2 4.21
By Vo Hl’ir o ( )

However, the omitted term produces a small, but important, contribution to the

vector field; this can have a significant effect on the total energy and baryon number.

It is then convenient to express the vector field as

vy N gy e Mglg:’rﬁ ey b AR ‘A 99
gy Vg = =5 pp + 0Wy (4.22)
m,
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with Wy = gydVy. Substituting this into Eq. (4.20) and rearranging, one obtains

an explicit, expression for dW, in terms of the baryon density

dWor) = =X / &Py pp(¥) g — é\'/'n (r) (4.23)
in K5 w3 |

Minimization of the total energy with respect to the local Fermi wave number
now yields the GS of the system. A Lagrange multiplier is used to incorporate the

constraint of fixed B such that

SE(kp, o, Vo) — pdB(kr) = 0 (4.24)

Since the variations of the energy deusity with respect to both the scalar and vector
fields vanish, they can be held constant in the variation of kg, the result of which is

the constraint equation

= gy Vo(r) + [K2(r) + M2 ()] (4.25)

where the Lagrange multiplier, y, is the chemical potential and is constant through-
out the nucleus.
On the surface (r = rg), the baryon density vanishes. The constraint equation

at the surface then yields the first boundary condition

M*(r0) = 11 — SWo(ro) (4.26)

where Eq. (4.22) hag now been employed.

To determine the second boundary condition, consider the solution to the linecar
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homogeneous scalar field equation

o (e rohmg

The constant gy, = M ~ p + dWy(rg) is determined at the surface. Differentiating
Eq. (4.27) with respect to r and then evaluating at the surface, we acquire the second
boundary condition
OM*(r . . L1+ msrg\
[«—m;;w;(««)« = [M 4 §Wy(ry) — ] wfiw{l (1+¢€) (4.28)
ro

¥y

The solution to the scalar field equation in Eq. (4.27) no longer holds when the
nonlinear terms are included; therefore, a small correction ¢ has been included to
compensate. In the nonlinear case, the scalar field equation is integrated outward
from rg, and ¢ in Eq. (4.28) is varied until the solution vanishes for large r. Once
this correction is determined, the meson field equations are integrated inward from
the surface, solving Eq. (4.25) at each point for kp and varying g until the fields are
flat at the origin. The methodology used to solve this system is discussed in detail
in section 4.3.

The calculated binding energy and baryvon number of a series of nuclei with

different radii can be fit with a SEMF of the form

5= + asB 3 (4.29)

where only the bulk and surface terms have been retained. The bulk constant, a4, is
determined by the binding energy of infinite nuclear matter. Then, after calenlating
a number of finite nuclei, the surface energy, aq, can be obtained by plotting the
calculated energies per baryon against the caleulated values of B3, The results

of numerical methods for these finite systems are discussed in later sections.
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We now extend our theory to consider systems of nucleons and hyperons. First
we investigate uniform matter composed of n, p, Z°, and 2, subject to the condi-

tions

Q=0 (4.30)

SI/B = 1 (1.31)

where Q and S are the total charge and strangeness respectively. These systems
shall be subsequently referred to as cascade-nucleon (ZN) matter. Equation (4.30)
restricts the system to equal numbers of p and Z7; similarly, Eq. (4.31) forces the
numbers of n and ZY to be equal. Therefore the system is now characterized by two
Fermi wave numbers, kg, and Ap,. For simplicity we employ an average cascade
mass Mz = (Mzo + Mz-)/2. Since the energy density is now symmetric under the
interchange of kg, and kyy,, the minimum binding energy always occurs such that
kpp = kpn. As a result, we can further restrict this system to a single Fermi wave
number, kp. It is a consequence of these arguments that equilibrium is imposed
upon the reaction

n+2 =p+= (4.32)

and the system is described by only one chemical potential. Again we mention that
the p-mesons do not contribute here for similar reasons to the nucleon case.

Next, we must make some assumptions about the cascade couplings. Since the
barvon current is conserved, the vector coupling is taken to be universal, gy = gys.
However, an independent scalar coupling for the cascades, gyz, is assumed.

Consider the case of infinite EN matter. The addition of hyperons to the theory
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requires only the addition of new source terms. A source term of the form

- i E e 1
5E == (MT“ ARk + ME)2 (4.33)
¥ ; A . 0 ' -

is added to the energy density in Eq. (4.12) where

In addition, a new term is included in the barvon density

kp
dpp = - / d*k (4.35)
(27)* Jo

Here v = 4 for (2%,=7) with spin up and down. Except for the additional source
terms, the meson field equations remain unchanged. The new term added to the

source in the scalar field Eq. (4.13) is

4s [P ME
§ e = ‘ Pl e 4.36

where

S = gsz/Es (4.37)

Equation (4.35) is incorporated into the source in the vector field Eq. (4.14). The
solution to these equations is also discussed in section 4.3.

We now examine the case of finite ZN matter. The source terms in Eqgs. (4.33)
and (4.35) are incorporated into the energy density in Eq. (4.9). Next the terms in
Eqs. (4.36) and (4.35) are added to meson field equations in Eqgs. (4.16) and (4.17)

respectively. Then a new constraint equation is produced in the same manner as
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before
W= gy Vg o+ ‘; ( I“l)( + I\flw)] 2y (i\z\ + I\lfmj}) l/?’] ( 435‘%)

Similarly, the boundary conditions are now

. | P : -
M*(rg) = : (246 — 20Wo(rg) — Mz + sM] (4.39)

mgn. 8

or Tg

[?Mﬁﬁ} mmiwwﬁwu@wzﬂ+mg+uﬂ( <<<<<<< )(y+d (4.40)

Consider again the SEMF in Eq. (4.29). The conditions imposed on EN matter in
Eqs. (4.30) and (4.31) now justify the elimination of the Coulomb and symmetry
terms. Then ay is taken to be the binding energy of infinite ZN matter; next,
proceeding as before, the surface energy, a,, can be extracted.

Finally, we investigate a class of matter in which A’s are added to the ZN matter
described above. These systems are referred to as lambda-cascade-nucleon (AZEN)
matter. The previons restrictions do not relate the number of A’s to the nwmber
of N’s and Z's; therefore a second Fermi wave number, ks, 18 needed. Again the
vector coupling is taken to be universal and an independent scalar coupling, gga, is

employed. Now equilibrium is imposed on the reactions

n+zZ' = A+A (4.41)

p+HET = A+A (4.42)

as well as on Eq. (4.32). As before, the system is then characterized by a single

N

chemical potential. The source terms required for the inclusion of A’s in both
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infinite and finite =N matter are

: 2 R s W2\1/2 2
(bg = W ~/) (_'1' I{:(i‘\; " }\'] ~_\‘) (e ('1.1:v$)

9 AR A X ‘
(S{)’n TR e / d’k (141‘1
(2m)* Jy )

9 [fEer M _
5 (g ZE e d(;/ﬁ - mmf}m.:; ***** = 4.45
- (2m1)3 /(, (k% -+ M32)1/2 (1.45)

where
M} = Ma — gsado (4.46)
and

In the case of finite AZN matter, there are now two constraint equations
oy ] W] e 15 o 907 /6
=gy Vot 5 [(kp + M*)72 4 (ki + M2V (4.48)

1= gy Vo + (ki + M32)H? (4.49)

The A density begins interior to the surface rg; this allows the ZN boundary condi-

tions to be used in the AZN case.

4.3 Methodology

In this section we develop a methodology for solving the systems of equations
discussed in section 4.2. In the case of nucleon matter the parameters gg, gy, mg,
my, M, rg, and x, must first be specitied. The vector meson mass is defined to be
the mass of the w meson and M = 939 MeV. The remaining constants are given by

the three coupling sets in Table 4.2; to determine these sets the theory was fit to
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circles respectively) after 9 iterations for an ordinary nucleus of rg = 15/mg, N =
using the L2 parameter set.

04 gy mg 1y i3 iy 250 / 25

L2 1 109.63 | 19043 | 520 | 783 0 0 0.88G60
NLC | 9511 | 148.93 | 500.8 | 783 | 1.9195 | -7.3928 | 0.88190
QL | 103.67 | 164.70 | 504.57 | 782 | 1.6582 | -6.6045 | 0.88403

TABLE 4.2: Parameter sets taken from [1, 2]. mg and my are in MeV. gga/gs is fit to
reproduce the binding energy of a single A in nuclear matter.

reproduce various properties of ordinary nuclear matter [1, 2]. The simplest set, L2,
includes only linear terms in the scalar field. The sets NLC and Q1 both expand
the theory to include nonlinear terms. As a result, these sets must be fit to more
properties of nuclear matter than I.2.

To extend the theory to systems of nucleons and hyperons, specification of
the constants gsa, Zs=. gyva, and gyz is also required. Sinece the vector meson is
coupled to the conserved baryon current, we assume a universal vector coupling,

gv = gva = gyvz. The scalar couplings, on the other hand, are adjusted to reproduce
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gsz/8s | 08 /Opp — Mg
1.0 -68.9
.95 -51.6
0.9 -34.3

-,

TABLE 4.3: Values of the binding energy (in MeV) of a single = in nuclear matter for
various Z coupling ratios and the parameter set NLC.

the binding energies of single hyperons in nuclear matter. For instance, the A scalar
coupling is designed to reproduce the binding energy of a single A in muclear matter,
experimentally determined to be 28 MeV [26]. The values of gga /gs are also shown
in Table 4.2. Unfortunately data on the binding energy of a single = in nuclear
matter is uncertain. Therefore, a range of = scalar couplings is investigated; the
values used are ge=/gg = 1.0, 0.95, and 0.9. These values correspond to the binding
energies listed in Table 4.3.

Consider the case of infinite nucleon matter. To obtain the solution to this
system, first one must specify kp. Both Eqs. (4.13) and (4.14) are now solved for
their respective meson fields. Then, using the meson fields and kg, one calculates
the energy density in Eq. (4.12). This is in turn used to evaluate the binding energy
per baryon, BE(kr) = £/pp — M. In RMET the medium saturates and BE(fr)
has a minimum; this equilibrium value, BEy, serves as the bulk term in the SEMF,
ay. This procedure is also applicable to infinite ZN and AZN systems provided the
appropriate source terms are included.

Now we discuss the methodology used for all finite systems. First the scalar field
Eq. (4.16) is converted into a pair of coupled first-order finite difference cquations
for [do(r), ¢f(r)]; these equations are solved using a shooting method. To accomplish
this, one fixes g and ry; now the boundary conditions are uniquely determined. Since
kw(rg) == 0, we can solve the finite difference equations for ¢y(r) and ¢4(r) one step

in. These solutions are substituted back into the constraint equation from which
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kg (r), one step in, is determined. In this manner we iterate in from the surface,
evaluating pp(r) and &(r) at every point. This process is repeated until pp and ¢
become constant as v approaches the origin (or equivalently ply == ¢f = 0 at v = 0),
we achieve this by adjusting the chemical potential.® Note that initially, ¢ and §W,
are ignored.

Now we incorporate the two correction terms. In order to discuss the role
of ¢, let us exatine the second boundary condition. When nonlinear terms are
introduced, the small parameter, ¢, is included to compensate. Iterating the finite
difference equations out from the surface, € in Eq. (4.28) is adjusted such that the
scalar field vanishes for large r. The newly corrected boundary condition is then
used to resolve the finite system by integrating in as described above.

Next, the correction term dWy is added to the vector field. Initially Fq. (4.21)
was employed; however, this is accurate ouly in the limit of a large my. A small, but
important, contribution to the vector field was omitted; therefore, the term Wy,
defined by Eq. (4.23) and calculated from the previous pp(r), is included. Then
the entire process is repeated again. After successive iterations on the vector field,
B and BE = E/B — M both converge to their full solutions. This convergence is
illustrated in Fig. 4.1 for ordinary nucleon matter; here, the parameter set 1.2 was

! was assumed, and 9 iterations on the vector field have

used, a radius of rg = 15my
been carried out. Similar convergence was found in all cases studied here.

Finally, we consider the SEMF in Eq. (4.29) where @, is defined as the BE,
of infinite matter. The calculated valucs of BE and B~Y/3 of the finite systems are
plotied against each other for nuclei of various radii. Then using this SEMFEF as a

linear fit, the surface energy, ay, is determined. The above approach to finite systems

"We mention that better convergence is obtained by decreasing the step size. Step sizes as
small ag dr == ().()(J()lvm;};l are considerad here at which the quantities BE and B appear to have
converged to better than (0.5%.
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FIG. 4.2: Binding energy per baryon for infinite nuclear matter with N = Z as a function

of Fermi wave number. These results are for the coupling sets NLC (solid line) and Q1
(dashed line).

is first calibrated by the nucleon matter case; then it is extended to investigate the

=N and AZEN systems detailed in section 4.2.

4.4 Results and Discussion

In this section, we discuss the application of the above methodologies. First
we consider the results of owr infinite matter calculations, starting with nucleon
systems. Table 4.4 shows the equilibrium values of kg, M*/M, and BE; obtained
for infinite nucleon matter using the L2, NLC, and QI parameter sets. The values
calculated here reproduce those in [2, 20]. Then BE(kg) is plotted for both the NLC
and Q1 sets in Fig. 4.2. The minimum, Blg, in Fig. 4.2 is taken to be o in the
SEMF for each coupling set. This is in good agreement with the empirical bulk
term [5).

We now turn our attention to infinite systems of nucleons and hyperons; these
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MM

o — M

L2 | 1.301

0.5409

~15.758

NLC | 1.301

0.6313

-15.768

Q1 | 1.299

0.5975

~16.099
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TABLE 4.4: Calculated equilibrium values of the Fermi momenturn (in fm™'), effective
masg, and the By (in MeV) for infinite nucleon matter are shown using the coupling

sets in Table 4.2, These mumbers reproduce the results in [2, 20].

=

MY /M [ & /pp — M,
G1301 | -41.343
0.1686 | -22.747
02239 | a7l
01372 | 42728
0.1643 | -24.013
0.2104 | -5.812

gsa/8s
NLC | 10
0.95
0.9
Q1 1.0
0.95
0.9

[
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TABLE 4.5: Calculated equilibrium values of the Fermi momentum (in fm™1), effective
mass, and the BEy (in MeV) for infinite ZN matter are shown using the coupling sets
NLC and Q1 in Table 4.2 and a range of values for ges/gs.

investigations are conducted using only the nonlinear cases, NLC and Q1. We begin
by investigating infinite =N matter for the range of Z scalar couplings mentioned
above. Since the lowest mass state of separated baryons under the conditions Eqs.
(4.30) and (4.31) consists entirely of A’s, BE(kr) for infinite cascade-nucleon matter
is defined by BE(ky) = &/pp —~Ma. The calculated equilibrinm values for this tyvpe

of matter are given in Table 4.5. Notice that |BE,

decreases as the = coupling grows
weaker while the equilibrium kp remains fairly constant. Graphs of BE{ky} for the
NLC set and each = scalar coupling ratio shown in Fig. 4.3 illustrate this point.
Although the equilibrium kg is roughly the same here as in the nucleon case, these
systems contain twice as many baryons; as a result, the baryon density is much
higher than in infinite nucleon matter. Also, the effective mass is considerably
smaller, on the order of a third the value of the nucleon case. Again a; in the SEMF

for cach coupling ratio is taken to be the minimum (BEq) of the corresponding
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FIG. 4.3: Binding energies per barvon for infinite cascade-nucleon matter computed rela-
tive to isolated lambdas (the lowest energy free baryon state for |S]/B = 1) as a function
of the Fermi wave number using NLC. Note the left hand intercept is (M -+ My ) /2 — M.
The solid, long dashed, and short dashed lines correspond to ggg/gg = 1.0, 0.95, and 0.9

regpectively.

ky; (r’m‘l}

AJF

kra

M /M

£ / B M‘_,\

NLC

1.0

1.343

(J.8665

0.1202

-42.229

0.95

1.319

1.026

0.1321

24701

0.9

1.288

1.159

0.1511

-8.100

Q1

1.0

1.302

0.8141

0.1213

A3.457

.95

1.278

0.9831

0.1325

~25.792

0.9

1.247

1.124

0.1495

-9.095

TABLE 4.6: Calculated equilibrium values of the Fermi momenta (in fm™?1), effoctive
mass, and the BEy (in MeV) for infinite AZN matter are shown using the coupling sets
NLC and Q1 in Table 4.2 and a range of values for
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curve in Fig. 4.3. We also mention that the value of ge=/gg = 0.886 is the lowest =
coupling ratio for which infinite ZN matter was still bound.

Next, we consider infinite AZN systems using the same range of & scalar con-
plings quoted above. Note that as in the ZN case, BE(ky) = £/pp — M. This
investigation produced the equilibrium values shown in Table 4.6. Here the equi-
libriam values of ky, M*/M, and BE, differ little from the SN results for large =
coupling; however, the difference becomes more pronounced as the Z coupling de-
creases. In our formulation, a second Fermi wave number, kpa, was included for
the A’s; as one might expect, kpa grows, and consequently the proportion of A’s
increases, as the gap between gez and gga parrows. The smallest value of the =
scalar coupling for which infinite AZEN matter was still bound was ggz/gs = 0.875.

Now we examine the results of the finite matter investigation. To begin with,
we consider the finite nucleon matter system. The calculated values of g, B,
BE = E/B — M as a function of ry for this type of matter using the L2, NLC, and
Q1 sets are shown in Table 4.7. As stated above, 9 iterations on the vector field
were conducted on nuclei calculated using the L2 set; this demonstrated the conver-
gence of the system. Subsequent finite nucleon matter results were obtained using 5
iterations which gave results for B and BE to better than 1%. The radii used here,
rg = 15, 20, and 25 in units of mg', include nuclei spanning a range of B ~ 50 — 400.
As an example, pa(r) and ¢o(r) for a nucleus with 1y = 20mg" calculated with the
NLC set are displayed in Fig. 4.4. The interior of the nucleus is roughly constant
in both pp(r) and ¢y(r). Then the effective mass increases to near unity and the
baryon density drops to zero at ro; this is a typical example of the surface structure
for finite nucleon systems.

Next using the NLC set the calculated values of BE are plotted vs. B3 in
Fig. 4.5 for nuclei of various radii. Notice that the infinite matter value, BEg, has

also been included. A SEMF of the form Eq. (4.29) is used as a linear fit in Fig.
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FIG. 4.4: The baryon density ng(r) = pp(r)/M? (solid line) and effective mass M*(r}/M

(dashed fine) vs. v (in units of m3™ ) for an ordinary finite nucleus with N = 7, B = 188.87,
rp == 20/mg, and using the NLC parameter set.

4.5; the slope of this fit is the surface energy, in this case ay = 18.0 MeV. The
surface energies for the various coupling sets are given in Table 4.8 along with the
experimentally determined value [5]; the values of ay for both NLC and Q1 show
good agreement with experiment.

The agreemendt between the values calculated with the more realistic interactions
and the empirical resull for the surface energy of ordinary nucleon maotter using this
effective lagrangian and density functional approach gives us some confidence in our
exploratory study of the surface structure of strange superheovy nuclei.

Now we investigate finite ZN matter for the values of ge=/gg quoted above.
Since the best fit to both infinite and finite nucleon matter was obtained with NLC,
we use this set exclusively in the following discussion. The values of p, B, and
BE = E/B ~ M, obtlained for finite ZN matter are given in Table 4.9. For the
same reasons as in the infinite ZN case, the binding energy per baryvon is redefined

as BE = E/B — My. Note that due to a slower rate of convergence, these systems
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NLC couplings. The surface energy is given by the slope of the curve, here ¢y = 18.0
MeV

7 B E/B-M
4.7055924 | 54.568 | -8.7527
4.69755554 | 160.72 | -10.939
4.6968452 | 66.438 | -11.297
4.69165108 | 188.87 | -12.719
4.68905238 | 408.43 | -13.464
4.6965099 | 62.581 | -11.262
4.69083149 | 179.76 | -12.808
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20 | 4.68800689 | 390.77 | -13.615

TABLE 4.7: Results of finite nucleon matter for the L2, NLC, and Q1 parameter sets
and various radii. Caleulations with L2 used 9 iterations on the vector field while 5 were
used with NLC and Q1. The radii are in m;;"’, the chemical potential is in fn!, and
B/B - Mis in MeV,
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L2 ] 26.51
NLC | 18.01
QL 119.11
| Expt. | 17.8 |

TABLE 4.8: Caleulated values of the surface encrgy (in MeV) for nucleon matter using
the parameter sets in Table 4.2, The experimental value is also included [5].

were calculated using 9 iterations on the vector field. Also the radii, rg == 10 and 15
in units of mg!, were used here; this includes nuclei with baryon numbers ranging
from B ~ 30 ~ 200 depending on the Z conpling. It is also important to mention
that for the coupling ratio ggz/gs = 0.9, the nuclei were unbound for our choice of
radii. For one nucleus of this type, Fig. 4.6 shows the plots of both pp(r} and ¢o(r);
this is for a nucleus with ggz/gs = 1.0 and ry = LlSrug‘. Notice that the baryon
densities in the interior of the nucleus are much larger than those in nucleon matter;
also, the effective mass drops to less than a third of the nucleon matter value in the
interior. The result is a much higher total B for a fixed rg. Another feature of note
is the surface structure; here the width of the surface has decreased relative to the
previous case. For each of the = scalar coupling ratios, the calculated values of BE
are plotted vs. B~1/3; these plots are overlaid in Fig. 4.7. The infinite matter values
arc also included. As in nucleon matter, the SEMF is used as a linear fit, one for
each Z coupling ratio, from which the surface energy is determined. The values of
ay are given in Table 4.10.

As mentioned in section 4.2, precise data on the binding energy for a single = in
nuclear matter is unavailable. The values appearing in the literature range from ~14
to -40 MeV. This necessitated that a number of Z scalar couplings be investigated.
Now that the surface encrgies have been acquired for the Z couplings, they are

plotted vs. these coupling ratios in Fig. 4.8. A linear interpolation is used between
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FIG. 4.6: The baryon density np(r) = pr(r)/M?® (s0lid line) and effective mass M*{r)/M
(dashed line) vs. r (in units of mg") for a nucleus composed of nucleons and cascades
with 1o = 15/mg, B = 164.92, and gsz/gs = 1.0 subject to the constraints ) = 0 and
[S|/B = 1. These results were obtained using the NLC parameter set.
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FIG. 4.7: Binding encrgy vs. B=Y? for matter composed of cqual numbers of cascades
and nucleons for the NLC coupling set. The upper and lower curves correspond to
gom/ e = 0.95 and 1.0 respectively. The surface energy is just the slope of these lines.
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gez/Es | o i B E/B - M,
NCC [ 10 [10 ] 11604726 | 48459 | -21.416
15 | 1.154255303 | 204.64 | -28.944
0.5 |10 (1078092 | 52.866 | 54176
15| 117206095 | 164.92 | -12.241

TABLE 4.9: Besults for finite ZN matter for the NLC parameter set and a number of
radii. These caleulations used 9 iterations on the vector field. The radii are in mf;i;l; the
chemical potential is in units of M, and E/B —~ M, is in MeV.

gf:;z/ 85 Gy
NLC 1.0 72.69
0.95 59.6:1

TABLE 4.10: Values of the surface energy (in MeV) for ZN matter using the NLC
parameter set from Table 4.2.

the points; this is extended by extrapolation into the region which corresponds
to values of the binding energy of a single = appearing in the literature. We feel
confident in the neglect of the A’s over this region because preliminary investigations
of finite AZN matter show that the BE and B change little from ZN matter. In Fig.
4.9 the baryon density of a AZN nucleus of ry = 10mg" is shown; notice that the A
density begins interior to the surface and is comparatively much smaller.

A preliminary calculation was also conducted with a ® meson coupled to the
conserved strangeness current. This simulates a repulsion betweeun like strange par-
ticles. In order to test the size of this interaction which could be tolerated, the
® coupling was increased until the system was no longer bound. The values for
which this occurred for infinite ZN matter are go/g, = 0.6839, 0.5090, and 0.2353
corresponding to gez/gs = 1.0, 0.95, and 0.9 respectively.®

It should be mentioned that the conditions Q = 0 and [S|/B = | were intro-

5To include the © meson in infinite EN matter, we add two terms to the lagrangian, 50 =
- 2y BBy b ém‘é, &, 0,. Hore mg == 1020 MeV.
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FIG. 4.8: Linear fit to the surface energy, aq, vs. scalar cascade coupling ratio {gsz/gs)
for cascade-nucleon matter assuming Q = 0, |S|/B = 1, and neglecting A’s.
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FIG. 4.9: Barvon densities for a finite systerm of nucleons, cascades, and lambdas with B
density of cascades and nucleons, and the lambda density are shown by the solid, long

dashod, and short dashed curves respectively. Notice that she lambda density is finite
only interior to the surface.
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duced to eliminate the coulomb and symmetry terms from the SEME. Since both
charge and strangeness are conserved quantities in the strong interaction, these con-
ditions are unaffected by strong (and clectromagnetic) reactions in the system. As
a result, this is an intrinsically interesting case and the caleulation is simplified by
the need for only a single Fermi wave number. Of course, experimental processes
could produce aun arbitrary ) and |S|/B. Therefore it is of interest to estimate how
much our results might be modified as these conditions are relaxed.

The SEMF has been generalized to include both nucleons and hvperouns in

135, 62, 63]. The generalized SEMF proposed by Dover and Gal contains additional
contributions to the bulk and symmetry energies [35]. Their SEMF, with their
parameter set I, can be used to estimate how much the quantity E/B changes as
one moves away from the conditions Q = 0 and [S|/B == 1. The additional terms
result in [6E/B| < 5 MeV for the range 1/2 < |S|/B < 5/4 and arbitrary Q. If
one makes the rough assumption that the calculated energy could change by this
amount, the surface energy extracted from plotting E/B vs. B~1/? could change by
up to 30% (this is undoubtedly an overestimate). Calculations with arbitrary ¢ and
[S]/B are more difficult. Work is in progress to examine some of these systemns.

It is also of some interest to consider the experimental manifestations of these
nuclei. A number of experimental searches for strange matter have been conducted,
examples of which are [51, 52, 53, 54]; all have yielded negative results. Character-
istically, the systems considered here are stable against strong decay but unstable
against weak decay. Therefore, their lifetimes are on the order of the weak interac-
tion timescale, or ~ 10°% 5. They will experience strangeness chauging weak decays,
such as the decay modes A+ N ~> N+ N and Z -+ N = A - N. We expect relativis-
tic heavy ion collisions or supernovae to be possible production sources for these
systems. Of course, multistrange baryon systemns would have to make transitions to

the GS for the present calculations to be applicable. The actual rate of production
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of nuclei of the type considered here is a question that goes well bevoud the seope
of the present paper.

One physical consequence of our results is that the mindmum size of these
objects is predicted. This value is obtained by setting E/B = 0 in the SEMF and
then solving for B. The minimum barvon numbers derived from our calculations are
5.4 and 14.6 for ge=/gs == 1.0 and 0.95 respectively. However, shell structure becomes
more important in the region of small E/B. As a result, Hartree calculations are
more reliable here. Research is in progress to more accurately estimate this number.

The purpose of the present thesis was to test the approach of FST beyvond the
valley of stability, specifically in the region of nonzero strangeness. The content of
chapter 4 provides a successful application of this approach to strange superheavy
nuclei. The following two chapters are devoted to a second application of this

methodology in the strangeness sector, single A-hypernuclei.
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CHAPTER 5

Single A-hypernuclei

5.1 Introduction

In this chapter, as a sccond application of the effective field theory approach of
FST to the strangeness sector, we model single A-hypernuclei. This type of nuclei
has a number of interesting features. As we have seen previously, a single A in the
nucleus is stable against strong decay. This is due to the fact that the A, by virtue of
its nature, carries a non-zero strangeness. Thus, a single A-hypernucleus will decay
on the timescale of the weak interaction. This property enhances the potential for
their detection experimentally. Also, the A and the nucleon are distingunishable
particles.! These hypernuclei provide a probe into certain aspects of the strong
interaction, such as the tensor force. In addition, this class of nuclei present a
test case for the extension of our theoretical model outside the valley of stability
as they are accessible by current experiments. Production of single A-hypernuclei

has been achieved via the reactions (77, K*) and (K-, 77) [8, 9, 10, 40]. However,

&

"The A and the nucleon are distinguishable particles here becanse no interaction is included in
this theory which could convert a A into a nucleon or vice versa. If, for instance, kaon exchange
was included, the A and the nucleon could no longer be considered digtinguishable.

84
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the resolution obtained here is fairly low. Recently, new processes capable of higher
resolution than the above reactions have become available. One such process utilizes
forward scattering from the reaction (e,¢’ K*) [11, 12]. Also, ~-ray coincidence
experiments have been used to access this sector with high resolution [13].

To model single A-hyvpernuclei, we direcily use the approach of ¥5T outlined
in chapter 2 by adding a new degree of freedom, a single, isoscalar A. We then
construct a new A-lagrangian, consistent with their methodology, as an extension
of the full interacting lagrangian of FST. This A-lagrangian contains a series of free
parameters, which are determined by least-squares fits to experimental data. Various
levels of sophistication in the A-lagrangian are investigated. This lagrangian can be
used to predict other properties of single A-hypernuclei once the free parameters

have been fixed.

5.2 Theoretical Description of Single A-hypernu-
clei

The specific phenomena that we seek to investigate here are GS binding en-
ergies (i.e. chemical potentials), densities, single-particle spectra, and particle-hole
states of single A-hypernuclei. To this end we add a single, isoscalar A to the the-
ory. Note that the A is also a chiral singlet because it is invariant under the full

SU(2), & SU(2)p transformation. Then, we construct our effective A-lagrangian

methodology. This lagrangian is of the form
L= Lpgy + Lo (5.1)

Here we restrict ourselves to the mesons already incorporated into the theory by
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FST; therefore, no new terms are needed for the meson sector. As a vesult, the
A-lagrangian is confined to the fermion sector. First, we consider all possible contri-
butions up to order v == 2, consistent with this approach. Our effective A-lagrangian

now takes the form

ng\A) = —A {”7’;.:. (‘“’*“ﬁ‘ o "Ir-él’;v/\\/u) + (Mj — gs;\f}")} A (5.2)
X,

Notice that the coupling coustants, gea and gya, are free parameters and are different
from those used in the nucleon case. Single Yukawa rho and pion couplings to the

A are absent as they do not conserve isospin. Also, no electromagnetic coupling

appendix D.

However, this lagrangian, to order v = 2, fails to reproduce the small exper-
imental spin-orbit splitting of the p-states, as in J3C [38]. 1t was proposed in the
literature that tensor couplings of order v = 3 be introduced to corrvect for this
limitation [36, 37]. We add tensor couplings to the vector and photon fields, shown

by

E('r) Eraly

i i\al,u\ P

H\I /\\/\O"w,l ”,,A (53)

The constant gp,a is a free parameter. Here Ay = —0.613 is the anomalous magnetic
moment of the A. Since we want to make a full expansion in our A-lagrangian to
order v = 3, consistent with this approach, we must also include three additional
terms, shown by the following

£ = f‘l{:[\ A 4 1o ‘ﬁ/\\\’,,"\’,, + ,,,,iz%fw\ A (5.4)

where fi1, jt2, and pz are three more free parameters. In the nucleon case, the terms

comparable to these last three were regrouped through rvedefinition of the meson
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fields. However, in the A case this is vo longer pogsible unless additional mesons
are added to the theory. A more complete description of how the terms in the A-
lagrangian are chosen is contained in appendix D. Now our A-lagrangian, complete
to order v = 3, is

£y = £ 4 L0 1 £ ¢

<t
»:;.‘(
R

Note that our lagrangian in Eq. (5.1) includes all possible terms up to » = 4 in the
nucleon and meson sectors as well.”
In the Hartree formalism, we add a new wave function for each new baryon,

given here for the A by

1 56‘1\ ( I) P K
t o FA (1) D HIm

Plugging this wave function into the Dirac equation yields the following new pair of

Hartree equations
=+ 21 GAr) = [Ba = Us + Us] F(r) = UgGa(r) = 0 (5.7)

(9 k], R, .
ar i{ Fa(r) + [Ex = Us = U] Ga(r) + UgFa(r) = 0 (5.8)

2Tt is of potential interest to consider coupling additional scalar and vector mesons, such as the
fo and the @, to the strangeness density and conserved strangeness current respectively, This allows
one to eliminate the terms in L(\N ) using the equations of motion and redefinitions of the new fields.
However, the number of additional terms, and their accompanying free parameters, introduced to
v = 3, three in the fermion lagrangian and at least four in the meson sector, makes this approach
more complex than the present framework. Fortunately, the point is relatively unimportant for
the single A-hypernuclel considered here ag these new mesons are self-fields of the A, If they
are included, they would appear only in the energy functional and have no effect on the energy
eigenvalues; as the last eigenvalue in this approach is equivalent to the total binding energv per
baryon for the GS, they have no effect on the cases of interest here.
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where the A single-particle potentials are

V- H3aw o
M 0 (5.9)

. o ' g'&‘“\ . Il Ll 9 }12 v } "
(«»; P Aa - 2L e Tm(fw mmmmmm WP 51

k 85 oM M (5.10)
¥ €A OW AA dA .
Yo = Siiar T anar 5.11
O O o T M ar (5.11)

Since all our additional terms are in the fermion lagrangian, the only change to the
meson equations are added contributions to the source terms. The new contributions

to the source terms arising (rom the A-lagrangian are

bps = 5 (GA0) - Fm) (B2 + !:%LQ)

gs M

)
dpp = 1 ((}'z\(r) + F% (])) (gy“g\m B ﬁ (I))
)

drrr? gv M
1

M;lﬂ‘rf‘" 1
Sy = 2, (F, ()2 5.1
0Py T Ga(r)Fa(r) To (5.14)
T 1 , .
K OV (1 (VT (e .
op, = P 220Ga (r)Fa(r) (5.15)

The new energy functional is identical in form to the one used by FST, with only
one additional energy eigenvalue, E. The numerical solution to the extended set
of coupled, local, nonlinear differential equations was obtained by extension of a
program developed by Huertas [16, 21]. Here we use the parameter sets of FST
for the nucleon and meson parameters. There are six new parameters in our A-
lagrangian: gsa, gva, &1a, (1, M2, and ps. They arve fit to a series of experimentally
known A single-particle levels. These least-squares fits are conducted at various
levels of truncation in our A-lagrangian, while maintaining the full lagrangian of

EST to order v = 4. Now this lagrangian can be used to predict other properties
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of single A-liypernuclei. One application we investigate in the next chapter is s/,

splittings.

5.3 Parameter Fits

The methodology with which the parameter fits are conducted is described in
this section. As discussed in section 5.2, the full lagrangian contains a number of
free parameters. To use this lagrangian for predictive purposes, these parameters
must be determined. Those constants which lie in the nucleon and meson sectors
are fixed by the G2 parameter set. This set was developed by FST [1] and is given
in Table 2.1. Notice that it coutains all possible terms to order v = 4 i both the
nucleon and meson sectors of the lagrangian. FST determine these parameters by
conducting a least-square ¥? fit, of the form shown in Eq. (2.40), to experimental
data from along the valley of stability. This process is described in detail in [1] and
reviewed in chapter 2.

Now if we consider the full lagrangian in Eq. (5.1), we will notice that the
parameters in the A sector are still unconstrained. In fact, a total of six parame-
ters remain undetermined to order v = 3. Fits are conducted at various levels of
truncation in the underlying A-lagrangian to fix the relevant constants. The fits
performed here are entirely separate from the one which determined the (G2 param-
eter set; however, the framework which FST used to conduct their fits is identical to
the one employed here. Consequently, experimental data from single A-hypernuclei
is utilized to constrain the parameters in the A-lagrangian. This data, which is
listed in Table 5.1, consists of three types of observables: GS binding energies, A s-p

shell excitation energics, and spin-orbit splittings of the p-states.? Now we use the

SAppendix E provides an alternative potential-based examination of the consistency of the
experimental GS binding energies.
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{ Fxperimental Data | M2 Caleulation |
GSE/BT PC T -11.694+0.12 | [40] 11,08
B0 | ~12.50:£035 | (8] -12.22
8BS 177040291 19 -17.63
VS | 1750405 | 9] -18.22
*Oc a | ~1870+£1.1 | [§] -18.89
2“8 Pb| -27.04+1.0 |[10] -28.08

| Eso | Ad(;: | 015009 |[38]] 0.150 ;
Egp YC ] 10.8340.03 | [38] 8.975
YO 106403 | [39 8.414
'?O(Jd 7010 | [8] 7.920

TABLE 5.1: The experimental data used in the parameter fits. This includes six GS
binding encrgies (E/B), one spin-orbit splitting of the p-states (Ego = Eqp, PR T s
and three A s-p shell excitation encrgies (Egp = By, 2 - B, /o ). The caleulated values
of these observables, using the M2 wt, are also shown. The values are given in MeV.

framework outlined in chapter 2 and section 5.2 to calculate these same observables
for some initial guess of the parameters. The calculated and experimental values

are both substituted into the equation

2
Xe“q) s "
Y = E E ’\?(2 \(‘) (5.16)

X exp

where N is the number of data points. The parameters are varied such that the
theoretical and experimental values converge. The constants are fixed at the values
that produce a global minimum in x3.

To conduct fits of this type, the degree of truncation in the lagrangian must first
be determined. This will define the number of {ree parameters which are varied in
the fit. Our underlving A-lagrangian is truncated at four different levels and separate
parameter fits are conducted at each. First, we consider the simplest possible case;
only terms to order v = 2 are retained in the A-lagrangian, which corvesponds to

¥ 2 5 k : - o -
LS\ ' This A-lagrangian has a total of two free parameters, gsa and gya. In this
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M ‘l M2 M3-1 M3-2 M4
fsnf8s | 0.87357 | 0.87105 | 0.87362 | 0.87154 | 0.87195
gva/gy 1 .f) 0.97873 | 0.97766 | 0.98055 | 0.97873
gra/4 -0.885 | -0.890 | -0.879 | -0.885
14 -0.1214 | 0.1565 | 0.0774
e -0.1971 | 0.2542 | 0.3440

TABLE 5.2: The five parameter sets constructed here. Note that all the constants arve
natural and t-hac these sets represent different levels of sophistication in the A-lagrangian.

M2 | M3-1
0.147 | 0.126
0.337

M3-2 1 M4

2o (UW) % 100
(W) % 10

0.249 | 0.229

TABLE 5.3: The x? values for both the unweighted and weighted fits, UW and W

respectively, relative to the x? of the M1 set. Here x? is determined from Eq. (5.16)

using 10 pieces of data.

case, the vector coupling is assumed to be universal, as it is coupled to the conserved
baryon current, and the scalar coupling is fit to reproduce the binding cuergy of a
single A in nuclear matter, which is about -28 MeV [26]. These assumptions are in
keeping with the previous work in [34] and chapter 4. The parameters determined
here are shown in Table 5.2 as the MI set. This set reproduces the GS binding
energies fairly well, but is unable to simulate either the correct spin-orbit splitting
in the p-states or the s-p shell excitation energies in light A-hypernuclei.

In order to obtain a better fit to the data, we increase the level of truncation.
Therefore, tensor couplings to both the vector and photon fields are included, which
correspond to the terms in L,g\ . As a result, a third free parameter, gy, is intro-
duced.

This fit. is performed using seven pieces of experimental data: the six GS

binding energies and the spin-orbit splitting given in Table 5.1. In this particular

cagse, the weights in Eq. (5.16) are all taken to be equal. The resulting parameters
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FIG. 5.1: Results of the unweighted 3-parameter fit, along with Fig. 5.2, to a sories of
experimental data. The G2 parameter sot of FST is used for both the nucleon and meson
sectors [1].
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shown.
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are given in Table 5.2 as the M2 set. These constants all satisfy the assumption
of naturalness. Table 5.1 also outlines the numerical results of this 3-parameter fit.
The outcome of this fit is shown graphically in Figs. 5.1 and 5.2. One can see that
both the GS binding energies and the small spin-orbit splitting in the p-states are
reproduced well. The calculated s-p shell excitation energies fail to duplicate the
experimental values of these observables for the lightest A-hypernuclei; however, it

g

is correctly given by the time one gets to 9°Ca. In Fig. 5.2, the value of —~32.4
MeV is given as the calculated binding energy of a single A in nuclear matter. This
M2 parameter set will be used in the subsequent calculation of the sy y-splittings in
chapter 6.

Plots of the proton, neutron, and A densities for the GS’s of N and 1°Ca
calculated using this M2 set are shown in Figs. 5.3 and 5.4 respectively. A graph of
the Hartree spinors from the A wave function, Ga(r) and Fa(r), for the GS of $°Ca
using the M2 set is given in Fig. 5.5. Notice that the magnitude of the lower spinor
is very small; this indicates that the A is essentially behaving as a non-relativistic
particle in the nuclear potential.

Next, the two terms nonlinear in the scalar and vector field, shown in E
are retained. This brings the number of unconstrained parameters up to five. For
this 5-parameter fit, ten pieces of experimental data are used; in addition to the
data utilized in the 3-parameter fit, the three A s-p shell excitation energies listed
in Table 5.1 are also included. Two versions of the b-parameter fit were conducted
here: one unweighted and one weighted. In the former case, all of the weights are

equal. For the latter, the weighting scheme is as follows:
® M;) = 1.0 for GS binding energies;

(
o Wy 9 = 10.0 for A s- p shell excitation energies;

e and W"g? = 40.0 for the spin-orbit splitting.
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the M2 parameter set was used.

Some justification for the selection of these weights can be gleaned from [104]. The
formula W §j> = [i{(ABwp/Eexp) was used where f; is an arbitrary factor chosen to
prevent any observable from dominating the fit. However, not enough data was
available to constrain the two new parameters individually. As a result, we initially

restrict these parameters with the relation

2
1 o o ) ‘
Lim(gmf) = 1.624 (5.17)
1 g'\\ 0/ nan.

where n.m. denotes the nuclear matter values, which are found in [2]. However, the
new parameters are not very well determined and fail to significantly improve the fit
in either the unweighted or weighted case, as can be secen from Table 5.3. Therefore,
we leave the constraint of Eq. (5.17) intact. The results of both 5-parameter fits are
shown in Table 5.2; the M3-1 and M3-2 sets denote the unweighted and weighted

schemes respectively. Again notice that the parameters are all essentially vatural.
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Lastly, to include all possible terms up to ovder v = 3 in the A-lagrangian, all

three terms in LY are retained. Again, not enough data was available to individu-

ally constrain the new parameters; therefore, we restrict these parameters with the
relation
by = Ay T 022:‘3}13 (5]8)

and fix the remaining constants using the M2 set. These ratios were chosen because
they tend to concentrate the effects of the new coutributions in the surface of the
nucleus, i.e. the additional contributions now essentially vanish for uniform nuclear
matter. This will have a greater effect on the s-p shell excitations than on the
GSs. The weighting scheme described above was used. The resulting parameters
are listed in Table 5.2 as the M4 set. Again, as seen in Table 5.3 the nprovement in
the overall fit is negligible. The M3-2 and M4 sets both improve the fit to the GSs
but do worse with respect to the s-p shell excitations; the M3-1 set has the opposite

effect.
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CHAPTER 6

S1 /2-splittings

6.1 Introduction

Consider nuclei like 1°0; the GS’s of such systems are, in fact, particle-hole
states. One process by which nuclei of this type are created is the reaction (r, K't)
on target nuclei with closed proton and neutron shells [8, 9, 10]. During the course
of this reaction a neutron is converted into a A. As a result, a neutron hole is
also created which, for the GS, inhabits the outermost neutron shell. The angular
momentum of the A and the neutron hole couple to form a multiplet. However, due
to the fact that in the GS the A occupies the 15y, shell, there are only two states
in these multiplets. It is these configurations that we refer to as sy /o-doublets. The
reaction (e, ¢’ K*) is another process used to create nuclei of this type [11. 12]. This
process differs in that a proton hole is created here and that greater resolution is
possible.

An ingpection of Figs. 5.1 and 5.2 reveals that many of the GSs are actually
s1/2-cloublets. This chapter is devoted to the development of a systematic method to

calculate these splittings. To this end, we utilize the analysis described in [19] and
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reviewed in appendix F. This system defines a particle-hole matrix element as the
sum of Dirac two-body matrix elements. These Dirac matrix elements are reduced
to two dimensional radial integrals via angular momentum relations [45]. We express
these integrals in terms of the Hartree spinors determined from the single-particle
analysis of the preceding chapter. The effective interaction used here follows dirvectly
from our effective lagrangian. For the A — N case, this corresponds to simple Yukawa
scalar and neutral vector meson exchange. Isospin requirements prevent rho meson
and single Yokawa pion exchange from contributing. Furthermore, the fact that the
nucleon and the A are distinguishable particles indicates that no exchange matrix
elements need be calculated. As it turns out, only the spatial part of the vector
exchange contributes to the sy p-splittings in single A-hypernuclei. This component
vanishes in the static limit (M - oo) and hence has no direct interpretation in
terms of static two-body potentials. This current-current interaction has an analog
in the electromagnetic case, Mgller scattering; the spatial components of the currents
vanish in the non-relativistic limit [14]. This method is used to calculate the sy/o-

splittings of every applicable state displayed in the Figs. 5.1 and 5.2.

6.2 Theory of s;/-doublets

In order to calculate the splitting of these doublets, we first consider Dirac

two-body matrix elements of the forms [41]

(i) (noluja) IMIV (r12) | (ngls]s) (nalaja) S M (6.1)
and
(il ) (alyd) IMIV (112) 80+ 3@ (gl ) (nalaja) M) (6.2)

where the single-particle wave functions are specified by {nlj}, corresponding to
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cither the upper or lower components in Eq. (2.17), and V(ry) is some effective
interaction. Next, we expand this effective interaction in terms of Legendre polyno-

mials [41]

V(]]‘,) ,,,,,,, ka 11;1) A((O‘a()u) (f)fﬁ)

k0

> Filrs r2)Cr(1) - Ci(2) (6.4)

where the Racah functions, Ciy(6, ¢), are defined in appendix A. Inverting Eq. (6.3)

vields the expression

2+ 1 [
fk(l‘j.(l‘z) o M””;‘;‘** / d(COS 0];2)1’&((3().‘3012)‘;’(1‘}2) (()5)
S

In the case of Eq. (6.2), the effective interaction is coupled to Pauli matrices. There-

fore, BEq. (6.3) is modified to

V(n)d® - 53 = ST 1F A f e, )P - P (2) (6.6)
kA

- k1 i T . . )
Here XE\M ) are Ciq coupled to Pauli matrices, shown by

: /\}:11) _— Z(ykqalq <k(].l(] ‘/’u])\ﬂ) (67)

qy’

Now we introduce a specific type of effective interaction. The form we nse here
follows directly from the effective lagrangian in the preceding chapter and fo lowest
order, corresponds to simple Yukawa couplings of both the scalar and vector fields,

given by

gy | e et 4 @ TETLR a2 mytyg”
V() = () | T8sBsa e T + M;) @ fvgvac TV (6.9)
i) =g Yy T I
dn I'yo A o
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Here vyy = 1 ~1Ty]. This simplistic spatial dependence is possible because retardation
12 = [Ty ‘ I
in the meson propagators is neglected [41], or
1 1

: i ; 6.9
» - m? 3% 4l (6.9)
p? i

Otherwise the full Loventz structure is maintained [41]. Couplings to the rho and
pion fields are absent as T' == 0 for the *\. Also, note that as this effective interac-
tion is isoscalar, it does not distinguish between proton and neutron holes. In this

formalism, we can now write

el ra) = 441 (M[ 2 (rr, 1)+ Dy Y ()] (6.10)
where

o # 2 5 ; \
Ji(ri,re) = é’("‘f’t’\(zk )“'*“g}“él):(tllgl'q)l(;;;(‘ﬂlggi’;_) (6.11)

i w

s : BvBVA

Ji (11, 19) = 2= (2k -+ l)—-mm-x;c(m\/ e Jg (miy ) (6.12)

4 T

where 1. (rs) is the smaller (larger) of r; and ry,. Here ig(mr) and kz{mr) are
modified spherical Bessel functions of order k.!

The matrix clements in Eqgs. (6.1) and (6.2) are actually six dimensional inte-
grals. Treating the y-matrices as 2 x 2 block matrices operating on the upper and
lower components of the Hartree spinors, these Dirac matrix elements, for each term
in the interaction, are actually the sum of four separate integrals. The scalar and
vector time (4 = 4) components of the effective interaction take the form of Eq. (6.1);
the vector spatial (1 = 1,2,3) components take the form of Eq. (6.2). Thankfully

angular momentum relations allow oue to integrate out the angular dependence [45].

'The modified spherical Bessel functions are defined in appendix A.
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These integrals, for the scalar and vector time components, becorme

o JoJe ] L
(6.1) = > (12| fi(ry, 1) 34) (-~ 1) e o Oy Oninar
P E ods I
<(Il‘ )it Gl I)H([%“ i) { (L2 zH(/k M )h) (6.13)

where i = S,V and (6.1) indicates the quantity in Eq. (6.1). For the vector spatial

components, these integrals become

_ Jode L
(6.2) ZZ“ZUA (r1, 1) [34) (= A (1t B Oy Oninw
k=0 A A s Ja
1., e
(b35S0 () H(lw)nﬂ & Szl 2 )1!(149) ja) (6.14)

The 6-j symbols limit the possible allowed values of & and A. The reduced matrix
elements are evaluated using [45] and further limit & and A. Note that as the upper
and lower Hartree spinors have different [ values, the reduced matrix clements in
Egs. (6.13) and (6.14) must have the correspouding, appropriate | values.

Now consider the remaining two-dimensional radial integrals, where the num-
bers are a shorthand for all the quantum numbers needed to uniquely specify the

radial wave functions [41],

KO0
<J.2”;f (1”1 5 1’.'2) 131> = / / (L]I'[(fll'g-U] (l[)Uz (l‘g)f]i ([’1 ] I‘Q)Ug (1‘1 )[]4 (lfg) (()1:))
o Jo
Here R(r) = U(r)/r are the appropriate radial Dirac wave functions, in terms of

Gu(r) and F (r), and again i = 8§, V.

Using the Hartree spinor representation, the particle-hole matrix element is
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expressed as a swm of Dirac matrix elements of the types shown above (1], or®

' -y . j [#4 j & ‘] ! i . .
Uipim = L(EJ’ + 1) ‘ ‘ o {IbJ'|V]|amJ") (6.16)
A b oo

No exchange term is required, due to the fact that the A and the nucleon are
distingnishable particles here. For example, the particle-hole matrix element for the

vector spatial component of the effective interaction is

¢ JZ j4 /\ . A
§ % 1 e T e R NP e
ug{mm (vs) = (~—1)rtist] Z L(\W 1)* / / drydry
k A i ] oo

Ju s
¢ { G (r1)Fy (r,)fp"(,-] 1) Gha (1) Fa (1)
(g in XS ) )35 o ol 2D s )i
=G () Fa(n) fi¥ (e, 12)Fa (r2) Ga (1)
(g i XS ) i) (o i S ) g )
—Fy (1) Ga (1) fi¥ (11, 1‘*’))(«39(1'2)?5“'41(I‘f' )
X((lmé) e )H(/n s} ((laas; )JzHY(“)( )H(ffm’“} 1)
+F‘|.(1‘1)G3(1‘1)fk (ry,12)F2 (rz)(m(b)
X (DG 0 s i) (s il S ”(an(mi‘;;}.m}
(6.17)

Here I;4 and Ly are the [ values corresponding to the upper and lower Hartree
spinors respectively for the #th wave function where ¢ = 1,.. 4. Now the splitting,

for a s jo-doublet, is just the difference between the particle-hole matrix elements of

These particle-hole matrix elements are developed in appendix F.
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the two available states, or

¢ ‘J::.:..‘.j]«}»j:g . J.M;:Lh e fg ] -
oe = PaAinA™ Yaama (()]8)

The substitutions used to acquive the appropriate indices for this case are n = 1,3
and A = 2,4. The solution to the Hartree equations vields a single-particle energy
level for the GS, Ei. As previously mentioned, for the cases under consideration
this level is in fact a doublet; however, Eq. (6.18) evaluates only the sive of the
splitting. In order to determine the position of the doublet relative to By, one needs
the relation®

D (204 1)6e =0 (6.19)
J

We now have a framework with which to calculate the size of the sy s-splittings
of the single A-hypernuclei of interest here and to determine their location relative
to Ea. The problem is reduced to Slater integrals and some algebra; the 6-j and 9-
symbols are determined using [105, 106]. The Dirac wave functions needed to solve
the radial integrals are taken as the solutions to the Hartree equations from the
previous section. Once all the parameters in the underlying lagrangian are fixed,
the splitting is completely determined in this approach as there are no additional
constants fit to excited state properties [41]. We also mention that this approach is
applicable to excited states and multiplets for this class of nuclei.

To calibrate this approach, we apply it to ordinary nuclei. Two modifications
to our framework are required here. First, an exchange term is included because

the proton and neutron are indistinguishable particles. As a result, the particle-hole

*The proof of this relation is contained in appendix G,
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matrix element becomes the following [19]:2

Vot = 9 (20 +1) Jo {(m.ry'\qm;r'} (-w1)~i~'ﬂ”*"~im“*“-‘”(u.»J’W;mayﬂ

(6.20)
Second, the effective interaction is also modified, requiring additional couplings to

the rho and pion fields [41]

VR NP AP (1T S8 B VST

Tlpen) = DA | B8 E (1) BV €
Ving) = 7' |y )y e

4 rig ' 4 1ye

(1) | 2{2) 2 empre . VA T T

(1) ’(2) ’;“‘( ) . g"{ ) ;:_),’) @ Biphy ’(1) (2) ";(1‘) m(?) g” [ a1 <o
”"”‘"}/ﬂ'"'}’”' o B e R I (().al)
4 dr Ty - A 112

These alterations make the ordinary nuclear matter case considerably more compli-

cated than the case of single A-hypernuclei.

6.3 Results and Discussion of the s, ,-splittings

In this section we discuss the calculation of the s j9-splittings in A-hypernuclei
and the results obtained from these calculations. Following the methodology estab-
lished in section 6.2, one needs to evaluate de¢ from Eq. (6.18) to determine the size
of these doublets. It is possible to separate d¢ into contributions from each portion

of the effective interaction, or
S == de(s) + de(vt) + de(vs) (6.22)

where s, vt, and vs represent the scalar, vector time, and vector spatial components
respectively. As it turns out, the scalar and vector time components each cancel in

the splitting, shown by
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Therefore, the s p-splittings are entirely determined from the vector spatial term in

the effective interaction, or

de == devs) (6.24)
This is true for any system in which either the A or the nucleon hole has j = 1/2.% 1t

is interesting to note that this caleulation tests a different sector of the underlying
lagrangian than the mean field analysis and that, as there is no corresponding inter-
pretation in the static limit (M —» o0), it is here an entirely relativistic effect. Now,
to determine the splitting we only need to evaluate the particle-hole matrix element
in Eq. (6.17) for the two appropriate J values. These matrix elements have been
reduced to two-dimensional radial integrals and some algebra [45]; the 6-] and 9-j
symbols are evaluated using [105, 106]. The integrals are solved using the Hartree
spinors, G,(r) and F,(r), calculated in the single-particle analysis. Notice that the
integrals in the vector spatial contribution mix the upper and lower components of
the Hartree wave functions. Numerically, the integration is performed using Simp-
son’s method.

The results of this analysis are contained in Table 6.1. The splittings with a
neutron hole listed in Table 6.1 all correspond to single-particle levels which were
used in the fits of the preceding discussion, as shown in Figs. 5.1 and 3.2. The
s1/2-splittings for °O and 3*Si are graphed in Fig. 6.1; the GS doublets for $2S and
40Ca are plotted in Fig. 6.2.

Notice that the splittings in Figs. 6.1 and 6.2 are all within the experimental
error bars on the GS binding enecrgies.

The appropriate level orderings are shown. It should be mentioned that the
three excited states with neutron holes shown in Table 6.1 will overlap with other

states of the same J value. Therefore in these cases one must diagonalize the hamil-

“The proof of this statement is contained in appendix H.
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Nucleus State Levels | o]
]”’”‘B (I p;‘/z);] (’S]/f})\ Q(w], 171 430
mf\ (Ip‘[/g)p(lﬂ][/g)A 1(~\;’ 0 | 481
‘ (l}‘);g/g\)g ! (lS] f’fg);\ 2{1 , 1~ 318
10 (Ipyo)u(Isim)a | Lig, 07 | 489
(1})1 ’Z)Ix(:ll)fijiz):\ 2;[ ” i 128
(11-3]/‘_‘2)“(”)‘1/2)‘\ l”‘, Ot 1 668
2Si (1dss9), (18)/9)a ‘3?‘5, 2% 1293
9 {2%1/3),,“‘»1/ YA ’1( o, 071220
:‘\” Ja | (Ldys)y "(sipe)a | 26, 17 | 310
(Ids) 0 (Ipyy2)a 2] s 17] 394

P | (Liygge)y  (I81/2)a | Tis, 67 | 24

TABLE 6.1: s, so-splittings, and some excited states, are shown with their respective
configurations, level orderings, and doublet magnitudes. Here LL denotes lower lovel
and |de] is in keV.
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FIG. 6.1: Graph of GS particle-hole splittings and their respective level orderings for
180 and 3861, The single-particle calealations were conducted using the M2 parameter
set and are plotted alongside the experimental values [8, 10]. Notice that the splittings
lie within the experimental error bars in both cases.
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FIG. 6.2: Graph of GS particle-hole splittings and their respective level orderings for 48
and 1°Ca. The single-particle caleulations were conducted using the M2 parameter set
and are plotted alongside the experimental values [8, 9]. Notice that the splittings lie
within the experimental error bars in both cases.

tonian to determine the correct splitting and level ordering. The remaining doublets
in Table 6.1, those with proton holes, are for predicted A single-particle levels. These
three are shown in Fig. 6.3; here, in addition to the GS splittings for both B and
15N, the doublet for the first calculated excited state in °N is also given. These
splittings will be measured in an upcoming experiment using the reaction {e, e’ K*)
with much greater resolution than the (z*, K*) reactions [11, 12]. As the effective
interaction used here is isoscalar, there is no distinction in this approach between
proton and neutron holes. This is apparent when comparing the GS’s of N and
180; the slight difference in their splittings, which is only about 10 keV, arises from
Coulomb effects. Also note that the splittings for configurations with the holes in the
same shell are larger for the smaller j value. For example, the doublet for the GS of
VB, in the (1pgz); '(Isy/2)a configuration, is smaller thau that of the GS of PN, in
the (1p, /g)i;" (18172) 5 state. Similarly, |d¢| for the GS of {0Ca, in the (1dgp ), " (1s)/2)a

state, is greater than |d¢| for the GS of 3381, in the (1ds/z), " (1s1/2)a configuration.
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FIG. 6.3: Graph of particle-hole splittings for 1*B and 1N and their respective level
orderings. In addition to the GSs, the first calculated excited state in PN is also in-
cluded. The single-particle calculations were conducted using the M2 parameter set.
The experimental value for the GS of }*B is taken from [107].

The level orderings for each calculated doublet are also given in Table 6.1. Notice
that for all of the cases considered here, the state with the higher J value is the GS
or, in the case of excited states, the lower level.

Recent gamma-ray spectroscopy experiments [13] (and the experimental error
bars on the GS binding cuergy of *’B) suggest that the particle-hole splittings are in
fact much smaller. As the tensor coupling was important in the spin-orbit splittings,
it is reasonable to assume that it may play an important role in the case of the sy /,-
splittings. Higher order terms in the effective interaction, especially those involving
the tensor coupling to the A, may be required to obtain a quantitative description

of the small s, ,-doublet splitting.>® This is left for futare work.

5 A gystematic analysis of the effective interaction to all orders, at least in non-relativistic many-
body theory, is presented in [19].

5The retention of higher diagrams in the effective interaction, particularly those ineluding the
tensor coupling to the A, is left for future work. Also, it i3 worth noting that while the kaon
makes no contribution at the mean field level, kaon exchange may play a role in the effective
interaction. Some idea of the relative contribution of kaon exchange can be obtained from the
Nijmegen potentials [42, 43, 44]. An investigation of the cffect of kaon exchange on the sy -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

{
" -+ Particle-hole Splitting |
=2 ~= Calculated Value
-~ - Fxperimental Value
o
a3
= A )
7z,
) o J
kg
et
& (25, (1dy ), |
= gl + ot
A R
- e T { i
0k Theory Experiment ]
12 o
5P 17

FIG. 6.4: Particle-hole splitting for the GS of {2P;7. The level orderings and splittings
are shown for both theory and experiment. Here the G2 parameter set of FST was used

(H-

The present analysis was also extended to the case of ordinary nuclei. The
necessary modifications to the theory were discussed in section 6.2. We apply this
approach to the case of $2P; in the (281)9)p(1d32), state. As noted before, this
calculation will require direct and exchange contributions from the scalar, vector,
rho, and pion terms in the effective interaction. Fortunately, the statement of Eq.
(6.23) holds here for the direct term and can be extended to include the direct rho
time component as well. The result of our calculation is 413 keV; the observed
alue is 77 keV [46]. This is shown graphically in Fig. 6.4; notice that the correct
magnitude and level ordering is obtained. However, it should be noted that this

calculation is considerably more complicated than the A-N case.

splittings in effective feld theory ig also left to future work.
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CHAPTER 7

Conclusion

The effective field theory approach of FST was developed to solve the nuclear
many-body problem. Formulated in terms of hadrons as generalized coordinates,
it has the great advantage of incorporating all the important general principles
of physics: quantum mechanics, Lorentz covariance, microscopic causality, sponta-
neously broken chiral symmetry, and the underlying symmetry structurve of QCD.
This approach is part of a continuing effort to describe and understand nuclei. It
has been applied with great success to nuclei in the valley of stability [1, 2]. The
central work of the present thesis is the extension of this framework to the region of
nonzero strangeness. The main contributions of the current work are divided into

three sections below.

1. In chapter 4, we consider the application of the FST approach to strange

superheavy nuclei. The new contributions to this subject are:

e the coupled, nonlinear field equations following from Eqs. (1.28) and (1.31)
- (1.35) are solved numerically with appropriate boundary conditions for

ordinary finite nuclei;

110
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o the resulting baryvon density and scalar field provide a picture of the size
and shape of the surface of ordinary nuclei;

e the surface energy of ordinary nuclei is extracted by fitting to the SEMEF
and is in agreement with experiment. This successfully calibrates the
approach;

e cascade-nucleon (EN) matter subject to the constraints @Q = 0 and
IS|/B == 1 is then similarly studied for a range of Z scalar couplings;

¢ the determined densities again give a picture of the size and shape of the
surface of ZN nuclei;

e the surface energy is also acquired by fitting to the SEMF of ZN nuclei;

e with the A scalar coupling fit to experiment, the inclusion of A’s hag little

effect on the results.

2. In chapter 5, we consider single A-hypernuclel using the methodology of FST.

The following are a list of the main new contributions of the present work:
e a minimalist extension is made to the strangeness S = —1 sector in which
an isoscalar A is included in the full FST effective lagrangian;

e Huertas’ program to solve the relativistic Hartree equations of FST [16] is

appropriately extended and modified;

e parameter fits to experimental data are conducted at various levels of

truncation in the new A-lagrangian;

e it is found that the 3-parameter fit obtains excellent overall agrecment with

the experimental data;

e it is also determined that the inclugion of more parameters does not

significantly improve the fit;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112
e the resulting effective lagrangian is used to predict the GS binding energies,

densities, and single-particle spectra of other single A-hypernuclei.

3. Chapter 6 is dedicated to a specific phenomena of single A-hypernuclei,

s1/2-splittings. The new contributions of the present work are:

e the effective particle-hole interaction is derived from the previously

determined effective lagrangian;

e it is discovered that the only term that contributes to the sy -splittings is
the gpatial part of the neutral vector exchange;

e it ig also found that the GS doublet splittings of all the A-hypernuclei used
in the fitting procedure lie within current experimental error on the GS
binding energies;

o predictions are made for the sy /,-splittings in §'B and N which will be
measured in an upcoming experiment at the Thomas Jefferson National
Accelerator Facility [11, 12];

e the s;/5-splitting in a comparable ordinary nucleus {717 successfully
calibrates the approach; however, this calculation is more complicated as

isovector interactions and exchange contributions are now required.

The methodology which FST have constructed was designed to reproduce the
characteristics of nuclei in the valley of stability. The present work, by successfully
expanding their formalism to the strangeness sector, indicates that this theory is

more robust. Coupled with other recent applications of this framework outside the

Mhe retention of higher diagrams in the effective Interaction, particularly those including the
tensor coupling to the A, is left for future work. Also, it is worth noting that while the kaon
makes no contribution at the mean fiddd level, kaon exchange may play a role in the effective
interaction. Some idea of the relative contribution of kaon exchange can be obtained from the
Nijmegen potentials [42, 43, 44]. An investigation of the effect of kaon exchange on the s; /-
splittings In effective field theory is also left to future work.
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region of stability [16, 21], the research presented here implies that the effective field
theory approach of FST provides a predictive method for approximating QCD in

the stroung-coupling, nuclear physics regime.
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APPENDIX A

Definitions and Conventions

In this appendix, some useful definitions are listed. This work utilizes the
conventions of [5]. Here we use x, == (¥, it) and repeated Greek indices are summed
form 1 to 4. The Pauli matrices are

oy = ; og = ;o oy = (A.1)
and they satisfy the relation

00 — 003 = 26,0 (A.2)

They are sometimes written as @ = (g), a4, 03) = 7. The notation & and ¥ are used

for spin and isospin respectively.

1 14:
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The Dirac matrices are shown by

~r

& = . ; 3 | (A.3)
The gamma matrices are constructed from these Dirac matrices and are given by
Y = (165, B) (A.4)
where y, == f}f;. In addition, we define the pseudoscalar

5 EE V1YY YA (A.5)

and the second rank tensor

—i , i
Oy = by [Yus W] (A.6)

The gamma matrices satisfy the following relations:

':v“l-_f}/,,/ '”{”' r)f';//‘{'”‘ = 2 5'!“; (f\.?)

and

et = (A.8)
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The Racah functions are defined as [45]

. X aw NP .
Cro(0, 9) = (ﬁ?ﬂi‘) Yi(0, 9) (A9)

. . C R \ BAY e
where the Y, (8, ¢) are the spherical harmonics. We also define ;\;& " Das C 1g cOupled

to Pauli matrices, shown by

X =3 Cugong (kaly' k1) (A.10)

qq'

The modified spherical Bessel functions are

. P ‘,

ipfz) = \/2 InH ( )
1d sinh o
e an

k"(z) == \/»\nll/
T o
=1) 9 [l (a1 (% )“111(7’)]
— (=) T | 1d\" coshz efld " by
. 2 7 dz 7 S \rdy Z
n
2

~ (e (},:{) e (A.12)

7 dz 7

The following angular momentum relations are useful in this work [45]:

(“‘ 1 V)J““"HSN’“‘] = . \ [(')_]) - 1)( g+ 1 )] 12 (A]:;)
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- ivoJe ¥ Jz dv ] , ,
SR+ 1DE"+1) = G (A.14)
] Ja da ] hvoda
and
Z(wl)Jzaﬁsrr*%:irz(gm 1) Juode Jie Jz U3 Jas _ s In
g Jod o v ) s J2 1 e

The scalar product of two commuting tensor operators given by is [43]

("/, '3 , I Nl’ T (.[X L (I‘x l f‘]1])”\1> e (”*l)‘h’”}‘j{ﬁ“‘]6_]135'5\4‘!3\4

K ji s

<3 YT 0 (iU (K )

nN

(A.16)

For the purposes of this work, the Racah functions will take the place of T(K) and

U(K). The reduced matrix elements relevant here are

s )J“(‘PH( )J> = (— D) 1) (25 + D)

j' kKb ol r1a (- [RURRER.
y {}Lﬁmg;)m«.m] (A.17)
Lo 4 i
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and

NN = 1+ 1) 25+ 1) (22 + 1]

‘,
1k
A Ve Gensy @aas)
X ‘:2 (j L , e ;/) 2 71 2} Fa W )
)
\ s

To determine Eq. (A.18), we must also specify the following reduced matrix elements

[45]:
, 1/ r k1 ,
NG = (=D [0 + D2+ 1)) 77 (A.19)
0 00
and
1 1 , N
(Gllonllz) = V6 (A.20)
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APPENDIX B

Ordering the Terms in the

Lagrangian

In order to conduct a systematic expansion in our lagrangian we require some
method for ordering the terms. To accomplish this, FST use a system that involves
both naive dimensional analysis (NDA) and relativistic mean field theory (RMFT).
In this framework, higher order terms are successively smaller. This will allow one

to truncate the lagrangian in a meaningful fashion.

B.1 Naive Dimensional Analysis

NDA states that once all the appropriate dimensional factors have been ab-
sorbed in a given term, what remains is a dimensiounless constant [17]. Furthermore,

this constant is of order unity, an assumption which is known as “naturalness.” The

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



120
following expression is used to identify all of the dimensgional factors associated with

the specific compounents in any given term

S m N AN p
‘ ¢ A d “
) (7') (T) (E\’?f) (B.1)

Here g is the generic dimensionless constant, f, is the pion-decay constant, and M is

- Fin? ( '

“min!

the chiral symmetry breaking scale [1]. Note that this expression can be expanded

to include additional baryons and mesons. As examples, examine the terms

BA &/}}f}/ﬁa’uw (BZ)

gsNoN

gvNy, VN
Using Eq. (B.1), we see that the constants are

M
gg, v ~ 7?“ < Am (le)

J T
The pion couplings, v, and a,, already have a factor of 1/ fr associated with them;
consequently, they are treated as derivatives [1]. Next, consider a more complicated
¥ . 3 L

term

No VN (B.5)
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3. (B.1) tells us that the following factor must accompany this term

S vy
4fy AM
Here the substitution of Eq. (B.4) was used and the constant was labeled g == fy /4
for future convenience. All the terms in the lagrangians used or developed in this

work have been treated using this methodology.

B.2 Relativistic Mean Field Theory

RMFT allows one to remove some of the complexity associated with the quan-
tum fields from the nuclear many-body problem. Imagine a box with a volume V
and containing a fixed nuraber of baryons, B. If the volume of the box shrinks, then
the baryon density must increase. If the baryon density becomes large enough, then
the source terms in the equations of motion can be replaced by their expectation

values [5]. Furthermore, the meson fields can also be replaced by their expectation

values. In this case, these are just their classical fields

P(xu) = {p) = dolr)
'VM(XN) % (V‘J ez ‘i(“)‘,’,g\.’r()(f‘)

Pu(Xe) > (pu) = i0,4bo (1)

AM(?{”) e <A‘“> e “II(S,A,44/\(‘)(I') ({

jee
-~
et
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which are time independent. Since there is no spatial direction in the problem for
a uniform system at rest, the vector fields can only develop their fourth component
[5]. For the purposes of this work, we restrict ourselves to spherical svmmetry. Note
that the pion has no mean field in a spherically svmmetric systen; as a result, all
the pion couplings drop out. The conditions under which RMF'T applies exist in
the regime of low-energy nuclear physics.

The mean meson fields, when scaled with their respective coupling constants,
shown by

P = ,Q;S{DQ. W = g\,\’r(;., R o= g,,bg; A= (L‘\() (Bg)

are large. However, they are small when compared to the chiral symmetry breaking
scale, M. The Fermi wave nurber, which is related to the size of the derivatives, is

also small compared to M, or!

& W 1 kp 1 e
e R ¢
M’ M 3’ M 4 (B'J)

If the naturalness assumption of NDA holds, then it follows from RMFT that terms
with increasing powers of the meson fields (and derivatives) will become succes-
sively smaller. Thevefore, truncation of the lagrangian can now be conducted in a

meaningful fashion.

"The spatial variations of the meson fields and baryon densities are observed ta occur on the
scale of the nuclear surface [3]. kp provides a characteristic inverse length scale for the nuclear
surface. As a result, we can now employ the relation ¥V o ky.
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APPENDIX C

Hartree Formalism

Consider a simple single-particle hamiltonian
h(R) = —id@ - V + gy Vo(r) + 8 [M — gego(r)] (C.1)
which satisfies the Dirac equation
W{X)ih (%) = Enitln(X) (C.2)

where E, is the energy eigenvalue. Note that the following discussion also holds for

the full h(%) in chapter 2 as well. The solutions to Eq. (C.2) are of the form

o a(X) e
'(r_.{,)n( ’») i ((N,.‘.-;';;)
()
123
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where ¢, and iz are two component Hartree spinors and n is the radial quantum
number [5].

The total angular momentum is defined as the sum of the orbital and spin
angular momenta, or

J=0+§ (CL4)

Using L = ¥ x  and

a0
Yo (C.5)
0 &
we re-express Eq. (C.4) asg
J=iwx V4 /2 (C.6)
Next, we define the operator

K = - T+1)

= B(E-J+1/2) (C.7)

When the following commutators are examined, one discovers that

[, J) = [b, §%] = [h, K] = [h, J;] = 0 (C.8)

are all good quantum numbers and that they characterize the states o, and vy [B].

A few examples of the respective quantum numbers of different states arve shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



state |n | x| ] [la|le
(18 /2) Ly-1(1/210701
(1 }1)3/2) Li-213/21112
(Ipyy | L L L/21 070
(ds) [T 123221
(28‘/2) 21-1 1/2 011
TABLE C.1: Some examples of different states and their respective quantum numbers.

Table C.1. Note that states with the same {j,s, —x, m;} are denoted by different
n and that s = 1/2 for all of the cases considered in this work. The square of the

operator i is

K2 = [2452.041

= T4 1/4 (C.9)

It follows from Eq. (C.9) that £ = £(j -+ 1/2).

The commutator of the hamiltonian with T.* does not vanish, or

[h, 172} 40 (C.10)

Consequently the eigenvalue [ is not a good quantum number of the system. How-

ever, while 4, is not an eigenstate of L2, both 1, and 4 separately are. This is
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manifest by the relations

2 = [+ 1/2)% + K] v = la(la + Dpy (C.11)
]:‘!lf!u‘ L H) + 1 / 2)2 fi] ’L,:“))g; o l;g(ln, “+ ],)"l,f{?ﬁ {(:IZ)

where x is expressed in terms of [y and (g by

K o= k>0

wlp ~ 1

ko= Ko< 0
el
Note that the eigenvalues {4 and [y always differ by one and, as their parity is (—1)¢,

the upper and lower components of 1, always have opposite parity [41].
Next, it is agsumed that the radial and angular parts of the Hariree spinors
are independent. For the angular contribution, we construct the spin spherical

harmonies, given for the upper component of Eq. (C.3) by

| , T R o
G (0, P) = Z {Iamy,, :5‘1115‘1.»\:5.]?”1)‘1l,,\mm (0, ) Xm, (C.13)

TN

where Yy, are the spherical harmonics and x., are two component Pauli spinors.

By replacing Iy — Iy and s —» —k, one arrives at the spin spherical harmonic for
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the lower component. The solutions to the Dirac equation now take the form

e 1 ’(}n (]) ¢ fIn )
() = G (CL14)

. Fn (]) $.. KD

Here ¢ labels the isospin projection: 7 = +1/2 (—1/2) for protons (nentrons) [5].

Substituting Ea. {C.14) into Eq. (C.2), we acquire the radial Hartree equations, or
8§ L 3 1 ) ;

3 ; . : — ,
[§+%}hmw&mwwwm+mw%%muu@xo (C.15)

B—; ﬂ Fulr) ++ [Ey — gvVo(r) = M + ggdo(r)] Gu(t) = 0 (C.16)

The radial meson equations are

H* 20

“3‘“1‘5750(1“) + ;5;450 (1) ~ mido(r) = —gsps(r) (C.17)
5 20 - | -
Or? Volr) + ;:(};Vo(r) —myVo(r) = —gypm(r) (C.18)

The source terms can now be expressed in terms of the Hartree spinors, or

. %at I\ e o .
ps(r) = iy = Z ( ) (G (r) = B (1)] (C.19)

4my?
. i - 2‘]‘“ +1 2 20 ol
pu(r) = oy =3 {5 ) G () + R ()] (€.20)
0 SIS N

Equations (C.15) ~ {C.20) form a system of equations that must now be solved self-
consistently [5]. Modification of this system to incorporate a more complicated h(¥),

such as the one in Eq. (2.16), is straightforward.
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APPENDIX D

Analysis of All Possible Terms in

the A-lagrangian

In this appendix, we discuss the sclection of the terms in our A-lagrangian to
order v = 3. It is straightforward to see which terms are retained to order v = 2,
with the exception of the four fermion terms. Therefore, the following is a list of
all remaining possible combinations of the fields to order v = 3, consistent with this

approach, and a short discussion of each.

e Four fermion terms in the nuclear case, such as NNNN, are eliminated by substi-
tuting the meson equations of motion into the lagrangian. Under normal circum-
stances this is not feasible; however, this is allowed when the svstem is already
in equilibrium. Here we want to extend the framework ol FST to single A-

NNAA or AAAA can

hypernuclei with no additional mesons. In this case, either NN

be eliminated using this method, but not both simultaneously. Fortunately, the

128
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second term involves self-fields of the A and consequently, can be discarded. This

scheme also applies to terms with more than four ferrion fields.!
® The term Ao,V A is consistent with this framework.

e The terms AA¢? and AAV,” arc also retained. In the nucleon sector, terms of
this variety were regrouped using meson field redefinitions. Here the terms have
different constants than in the nucleon case; therefore, these terms cannot simply

be regrouped, unless additional mesons are included.

e The term Ay,A¢V, is consistent with this framework. In the nuclear case, it was

H

eliminated via the Dirac equation, but this is not possible here.

e Next, the following term is consistent with this methodology, but can be rewritten

as
- d¢ J - d L« -
1"’[—**»’:“—;”“‘#,17] | e LAY AN /
I\IHI\E)X“ 8}{“ (\/fr,\(r)) trdxu. (« Tt A):[ @ (I) ‘l‘)

The second term is a total derivative, which does not change the lagrangian, and
the third term is a four derivative of a conserved current, which is zero. Therefore

this term can be neglected.

LAn cquivalent approach to the traditional meson-baryon effective feld theories is the point
coupling model, which contains only the baryon fields in a local lagrangian [108]. In the point
coupling case, the energy functional is an explicit functional of the densities; thus, the encrgy
functional can be minimized to determine the exact GS density directly. In contrast, the energy
functional i the meson-nucleon theories is an impliclt functional of the density. In order to
minimize the energy functional, one must first show that the variational derivatives of the energy
functional with respect to the meson fields are zero. However, the meson-barvon approach does
have the advantage of focusing more explicitly on the interaction mechanism,
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o Consider the following terms

;Kf‘mqsz;g;f\, (1.2)
AoV d (D.3)

The Dirac equation for the A can be substituted into each of these to convert

them into a type of term already considered.

e Lastly, all of the contributions with A, are absorbed into other terms in the
same manner as like terms with V. However, the terms Ay, AA, and A ;\Af; cain
be discarded as Q = 0 for the A. Thercfore, the only remaining electromagnetic

term is Aoy, FuA.

Note that the constants in front of each term have yet to be determined. When the

terms are regrouped, the free parameters can be redefined to suit our purposes.
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APPENDIX E

Check on the Consistency of the

Experimental Data

In this appendix, we conduct a simple check on the cousistency of the experi-
mental binding energies. Here, we use a square-well potential of depth Uy and range
« 17" . - i . .

R = 1roB!/? to approximate the nucleus. In this case, the binding encrgy of a A

particle in this nucleus, By, is given by the solution to the equation [19. 109

‘ c 1/
s=(1-x)""?cot™ {~ (Tf“{) } (B.1)

where x = Ba /U,

131
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FIG. E.1: Fit, using Eq. (E.5), to the experimental GSs of single A-hypernuclei given in
Table 6.1. Here 10 terms have been retained. In the limit that B -+ oo, we acquire the
result Ug = ~30.56 MeV.

and
1 1 1
— e (E.3)
By My Amy

Here m, and my are the masses of the A and nucleon respectively. A denotes the

number of nucleons, (B~ 1). The following equation is a solution to Eq. (E.1) as

8 —r 0

, . R 2 3
13AxU0"”72‘l%{1”§(1“*+f“+“‘) (E~4)

i

~

If one rewrites Eq. (E.2) as 1/s? = yB~%3 where v is some free parameter, and

substitutes it into Eq. (F.4), we arrive at

B = Ug [1, e (1 e OB 4 3y BA )] (E.5)
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In Fig. E.1, a least-squares fit to the experimental GSs of single A-hypernuclei was
performed using Eq. (E.5), where 10 terms have been retained. The values ol the
parameters that produced this fit were Uy = —30.56 and v = 0.6525. Here Uy cor-
responds to the binding energy of a single A in nuclear matter; this is in good agree-
ment with values given in the literature, ~28 MeV [26], and the number determined
. . - iys M Yr ok 1. ; 17y 4 g ) 1
in section 5.3, —32.4 MeV. Combining the expressions R = rgBY3, 1/8% = yB~%/3,

o

and Eq. (E.2), we acquire the result

R\ ,
tg = | B.6
0 (2;,,,.,@,-11;0;) (£6)

Furthermore, we notice that for large B, Eq. (E.3) becomes pp =~ my. Therefore,

we can rewrite Eq. (E.6) as

R omy 1\ .
e B = (.926 fur E.7
o (21‘11’?; my f\/lUg{) 0.926 fm (E.7)

This result compares favorably with the value given in [5], 1y = 1.07 frn. The analysis

of this appendix gives us confidence that the data is consistent, except for shell

eflects, which are calculated in this work.
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APPENDIX F

Particle-Hole Matrix Elements

This appendix outlines the theoretical techniques used to calculate the particle-

hole matrix elements used in chapter 6. This discussion is taken from [19].

F.1 Particle-Hole Operators

Assume the GS of the core is a set of completely filled single-particle levels. In

a spherically symmetric system, these states can be characterized by

la) = [nlsjm;) = |a, my) (F.1)
where s = 1/2, j = |l 4 1/2|, and the parity of these states is determined by (1)
134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Now we define the particle and hole ereation operators as

[

al = o > b

where CT and C are the fermion creation and destruction operators respectively. F
is a number that lies between the last filled state and the first unfilled state [19].
Here

S == (1) (.2)

is a phase convention. The C’s obey the anti-commutation relations
- v} s g
{(«A'Q‘? C'(!l} e ()m(y’ ( f .95)

{Cor Cary = {1, CL } =0 (F.4)

Therefore, the particle and hole operators satisfy the following relations

{a(,,af;,} = {bm b};,} = dupar (F.5)

{ag, ag } = {aﬁfw az‘,} = { by, Do | = {b’f,, bL,} = () (F.6)

Lastly, we define the particle-hole pair creation operator as the combination

‘A‘T fenlls } ! e 'y
Cag = 2y (F.7)
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F.2 Tamm-Dancoff Approximation

Consider the matrix element

(al [, o] lony = ] (Gl =~ ¢LsH) o)

(B — Eo)(3hn l@ip |4o) (F.8)

where the hamiltonian is H = Hg + Hy -+ Hy. The components of this hamiltonian

are given by

Hy = L(T(x T h V <>’) (h ’9)

ot
Hi = Y enafan ~ Y eabl by (F.10)
o>k 2 O
Hy, = 5z<<w~3rv|q,»a>N(<chjgcﬁ,-(,,,y) (F.11)
o3l

,) are the exact GS and an exact excited state respectively,

The states [¢o) and

given by

o) = |0) (F.12)

a) = Sl clil0) (F.13)
af

where the matrix element is

(ulClglin) = wly (F.14)
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N is the normal ordered product, which places all the creation operators, particle

and hole, to the left. Next, we calculate the matris element in Eq. (F.8) by explicitly

evaluating the commutators of Eqgs. (1.9) - (¥.11) with Eq. (F.7)

[Ho,Cly| = 0 (F.15)

Hls] = (el (F.16)

To evaluate the third commutator, we must first note that the particle and hole

destruction operators operating oun |0} are

aalo> = b(.v‘(» = () (FLT)

Now we consider the commutator of Hs, shown by

[HQ,QJ - —; S (Ao Vi) [N(c:j;cj;nc,,c‘;:ﬂ,).lcgﬁ} (F.18)

Ao jer

where
Coy = 0(c — Fag + (F — )Sabl (F.19)

First we evaluate the normal ordered product

N((j‘\(‘(‘;(ju C;}.) = Q(S#S(r?}lﬁlﬁ)z‘b e Qe Su Hgﬂi l’\’j;bwn‘:’l‘[;t) (FB”)
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where the symmetry (Ao|V|pr) = Y was used. The commutator becomes

[N((J cre, e, 4 w9 (SMS,,&K}”)L(‘S._,,..r;u;c‘?,,,ﬁ AAAAA S, Sealbl 8. {,,5,,(,) (F.21)

Here only terms with the combinations alb’ were retained as all others vanish in the

matrix element. Equation (F.18) now becomes

[Hg, c;‘}‘w} = 578,85 (A= V]~ ) — (A= BV[e — )¢l (F22)

At

Substituting Egs. (F.15), (F.16), and (F.22) into Eq. (F.8) and then rearranging,

one arrives at the result

[(Bo+ € — ep) = Bl 9l + 3 vagautly =0 (F.23)
/\[L
where
Vagopu = S5 (A = BIV] — pex) — (A — B|V]a ~ 1)) (F.24)

Next, we briefly consider a calculation of the transition matrix clement of some

multipole operator,

T= Y Cl{alT]5

of

oh (F.25)

between one of the collective excitations and the GS. In the Tamm-Dancofl approx-
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imation, only the terms with the combinations alb! will contribute, or

T =Y (a|T| - #)S.all, (F.26)

o}

(Gl Tlie) = {a|T] ~ B)Ssuy (F.27)

[e3¢]

Therefore, it is just the sum of single-particle matrix elements weighted by the

cocfficients (,*f,’:} which are determined from above.

F.3 Reduction of the Basis

The dimension of Eq. (F.23) can be reduced by noting that J is a good quanium

number. We define the following irreducible tensor of rank J

Cf(a‘bln\!l) = Z <ja”1a.]~;ifnlﬁ|.jaj[;‘-ﬂ\‘1>€j”g (FZS)

Me1o3

Next, we further define the matrix element

i (ab) = (¢t (abIM)[iy)

= ) (omajsmpsliajsIM)el (F.29)

Mg ity
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Using the Wigner-Eekart Theorem, Eq. (F.26) is rewritten as

1 N D . . S|
T = oy }_,f’g ;"3<.]r1”1(.r.],6 - Mg LInJ;?J-T\’])(‘lH I JH[;))Q}W
“ ed

= m‘*‘“{“‘ﬁﬁfj L(a“ ly Hlﬁ))g*(&l).] RI) ( F .3())

ab

and from this it follows that

(UHIIT o) = 3 _allTullbyyi” (ab) (F.31)

ab

The basis in Eq. (F.23) can be reduced by summing with the Clebsch-Gordon

cocfficients in Eq. (F.29). For a spherically symmetric system, we use the relation
g — €p = €, = €y (F.32)

Next, consider the following matrix element,

(A= BIV]— pe) = (jamnjs — mg|V]jisIM)

= Z ZG)‘IH)J,B - Mg L]f\]ﬂj’hflv

IM MY
X (aigd MV eI M) GdadMi, — myjem,)  (F.33)

Since the Clebsch-Gordon coetlicients are real, one can write

(dadMljy — myjame) = (= MyjemgljdedM) (F.34)
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Also, as V is rotationally invariant, the following relation holds

(g ™M Ve dMY = Gagad MV [ d MYS3 30y (1.35)

As this is now independent of M, we rewrite it in the shorthand

= (IbJ'|V]mal') (F.36)

In consequence of Eqs. (F.34) - (F.36), it follows that Eq. (F.33) now becomes

A= BIV] = pey = Y (amajs - maljjsd M)

IM VMY
X (Jp — myjomaligeld My (IbJ'|Vmal’) (F.37)

Similarly the exchange matrix clement is

A =BVl —p) = 3> (=D (Gamys — mgliagsdM)
JMOINY

’\Ir

X (jpiadMj, = myjem,) (b V]iamJ') (F.38)

Substituting Eqs. (F.37) and (F.38) into Eq. (F.24) yields

‘ - N e s qtRah g T Y I
Voagiap = _>_ Susb <J)\~m/\.]/3 - 1.)1/-3“ }\Jb’J M > <J;x. — My Ja s lJ;lJﬂJ M )
JIWY

X [(H’)J’ IV]mad’y — (=1 P53 ApY |V [ara J! )J (F.39)
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To simplify this further we next consider the relation

S;B <‘]<.\vfr1c».];7$11]f;i‘") l.]u,}[:i'! }»\‘J)(.}p. = My Ja iy l.];z..]m--l M ><.])\Ill,\‘]4[»; - Mg U,\,};{;‘?J M >
Fiig g M/

(F.40)

Using identities from [45], this can be rewritten as

o 1/2
R J‘ ““j\ A-?JJ ”*” 1 ! " . N e e e
= (1) EYENEY }4 (lamajpmpglieisIM)

memaM’

X (J;I, - I“u.j:,xma ‘.j;zj:wltl\fl,) (JIM’jﬁ mp"t] ,,j;fij/\m,\/\ ('E\'fl‘l)

Using a 6-J symbol and the orthogonality of the Clebsch-Gordon coetlicients, Eq.

(F.41) is further reduced to

= S Gamdm iag dM) (1) Hetie (207 4 1) (F.42)

This relation allows one to rewrite Eq. (F.39) in the following fashion

Z (jummj/;mﬁ ljaj[)"]l\/wv(tﬁ:/\ﬁ = Iuibglm <j,\m~,>\j,,,n”1/;, lJ/\.],u]I\D (54‘3)

Mamg

where the particle-hole matrix element is

Uipg = E(QJ’ + 1) [(lb.l'{\«" lamJ’) — (= 1t t T Ly v

J

ma.l’ )J

RPN P ,
x{ " (F.44)

ig ia J
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Furthermore, Eq. (F.23) now becomes

(B + 6o~ ) = B g (ab) + S vl ,08 (n) = 0

im

where FEqs. (F.31), (F.32), and (F.43) have been used.
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APPENDIX G

Relative Position of the Splitting

This appendix is dedicated to determining the position of the doublet splittings
relative to their energy eigenvalue calculated from the relativistic Hartree equations.
Each term in the particle-hole matrix element (scalar, vector, rho, and pion) has a
similar J dependence. For example, the J dependence of the scalar contribution to
the direct term is of the form'

o j4 kK
(Ml).izi“jsvi\J Jz )4 (G.l)

ji Js

and the J dependence of the scalar contribution to the exchange term is
- ! (S] J ((1} 2;)
20417 o

Ve full formulae for the splittings are contained in appendix 1.

144
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Multiplying vy 4(s), the scalar component of the particle-hole matrix element, by

(2J 4+ 1) and then sumuning over J, one arrives at the result

: S B0 - PR |

Z(M + 1)“{3}2;'}"‘(3) - 2(2"1 + 1) (1)t ay(ri;ry)
J J g
Jio s

1 | 3
+y (20 + 1) 577 poma(ry, 1) (G.3)
Ik o

where cu(ry, rz) and ¢a(ry, ry) are the parts of vzzg"{wt,(s) which are independent of J
for the direct and exchange terms respectively. The phase in Bq. (G.3) is converted
into a 6-J symbol using the identity Eq. (A.13). Substituting this in, Eq. (G.3)

becomes

= 3 (2J+1) [(2)s + 1253 + D] 20 (11, 12)
J 0 3 Jo Bros

+ Z d50e2(T1, T2) (GA4)
Ik

For the direct term, we use the substitutions j; = j3 and js = js. We conclude that

the 6J symbols are orthonormal from Eq. (A.14) and as a result, Eq. (G.4) is now

= [(2j + 1)(2j5 -+ 1)]1/25/::0@1(1‘17 r9) + Z dyrora(ry, 12) (G.5)
Ik

The particle-hole splitting for the scalar contribution only is defined as
N AR AT AT YV o
Se(s) = wl=vte (g) LRl gy (G.6)

ab:lm abilm
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Note that aq(ry, o) and ay(r, ry) are common factors, for the direct and exchange

terms respectively, in Fq. (G.6). After multiplying d¢(s) by (2J 4 1) and taking the

sum over J, the following result is obtained

> (2J + 1)de(s)

J
N {K)“ +1)(2a + )]1/25;‘:0 = 1(2j2 + 1)(25 + .I)]l’/g«isw} ay(ry,ra)
“+- Z ((‘;,'Us; o (SJ k) (1{2( ry, 172)
The
- (GG.7)

This approach is easily extended to the other terms in de, as their J dependence is
of the same forin. Note that for the spatial vector and rho components, A takes the

place of & in this derivation.
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APPENDIX H

Cancellation of Terms in the

Splitting

In this appendix, we consider only the direct term in the particle-hole matrix
element. We will prove that the £ = 0 terms in the scalar, the vector and rho time,
and the pion contributions vanish in the splitting (and the A = 0 terms for the
spatial vector and rho contributions). Consider only the direct term in the scalar

component of the splitting

3 C( dS) — ?)12%11}_}.; (CIS) - 7’?;;%{;]”((1”)
jo 0

e ( -1 )J' AP
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Here B(ry, 1a) is the common part of de(ds) for £ == 0." Since we are only interested in

the direct term, we use the substitutions jy = j; and jy == j; to arrive at the following

3 ) W ) \ -
N IR R i 2k 0 y
. (W ‘L).H Jo { - (W, ]) M $ ;f)’{,‘]f"‘[,l."g)
ol e v el
L. \ F, \ 7o o
(H.2)
[~ 4 AN / N
B B TR S PR PR P o e =2l Jv e ,
= | (~1 ).114*.):; i (- l)b‘" -jal 4 Alry, 1)
0  jo h ) 0 J2 0

(H.3)
The identity in Eq. (A.13) [45] reduces Eq. (H.3) to
(1)t

= - {'(Wl)fifjﬁ‘jz) — (,M,]l)z(ljl‘“.iz{)] !{3(]7_” rs) (:[;L.ﬁi)
(201 + 1252 + 1] o

Since j; and jo are both half integer, j; -+ jo and |jy — ja| are both integer. This allows
us to conclude that
(—1)+e

= G D T )

= ( (H.5)

contributions. Note that this applies only to the direct term in the splittings.

The full formulae for the splittings are contained in appendix L
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APPENDIX 1

Formulae for the Splittings

In this appendix, all the formulac for the sy 9-splittings are listed. These for-
mulae were derived in [110]. Tn order to calculate particle-hole splittings, we must
calculate the particle-hole matrix elements of Eq. (F.44). These are sums of Dirac
two-body matrix elements, of the types in Eq. (6.1) and (6.2); these are reduced
via Eq. (A.16) to two dimensional integrals and some algebra. The relevant matrix

element for the scalar term in the effective interaction is

' . S )é (}"wmgr;' J J2 ];
e J’“*“Z
T 11

ks

1 N
X ()il Okl s g)is) (a3 lICH N 3)ic

X / / d['; dl';g [(:}1 (T] )(;3“] ) b E\‘l (1"| )]P; (I’] )] f;: (I‘*g , r;*g)
{(1 )( )C] L( 0) - .[“‘2(.[‘2)‘[“\4 (l/)] (I ])

149
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where the substitutions have been used

(T lCeMUsaz)is) = {(Ln5)i2lICk (D] Tar5)in) (1.2)
I T N L .
((eagillCeDIaaz)is) = ((ang)izl G2 Tan)ie) (1.3)

and where

5 —g2 (2k + 1) [ emeniz , |
//:) (m s U) e ) ( ) / ]‘)k (CKW”}Q)(f].((:(')ﬁ(}w)
o 1

A 2 Iy
—g? 2myg

= q\‘b (2k + 1)~—= ‘bik(Y-I1S'f7«:)kk;(fil&‘;1'f>) (L4)
A T

The modified spherical Bessel functions are defined in appendix A, Fq. (I.1) is

the direct matrix element; to acquire the exchange matrix element, we use the
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substitution 3 ¢ 4. The scalar term of the particle-hole matrix element s

noJa K
Vg4 (8) = E( 1tk "

J1 j‘a J

><<(l1"\?1§)J;flC3 )H(/s\ )Js)((*’m ]>”( (2 )H(lml)" )

X / | / drydry [Go(r)Galr)) — Fr(r)Fa()]. f,“ (r1,12)
x [Ga(ra) G (rg) — Fa(r)Fy ()]

(- UJ)IMZM?’TT“TL‘S’JA

(0 ICH DI )ia) (s )i IO N5 )is
<[ [ dndra Gar)Gatn) = Brrat] e

X (G (ra)G(rz) - Falra)Fa(r2)] [2(1 — T)] (1.5)

Note that for the A — N case, the second term in Fq. (I.5) can be neglected, as can

all the subsequent exchange terms in this appendix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



152

The relevant matrix element for the vector time term in the effective interaction ig

privoz Lo ot J ]d .ji
i;; - [(34)0) = (—1)" it Z
12

k koJs ja

((12)J1=

({1 10 (D N sag i) (o5l O ) Fan )i)

X / / dridry [Gr(r)Ga(ry) + Fy(r)Fa(r)] fo¥ (re, 1)

X [GQ(Ig)G»‘( + K 2(1 ;) 4 (I‘g” ([())
where
g 2my
NGRS T-»(zl\ + 1) f~_«}w r(myrs )k (myrs) (1.7)

The vector time term of the particle-hole matrix element is

'Ugg;w (\t) = - Z(M]l ).]2'{‘“.].’.“{“.] +k
g j1 j:z J

(gl IC ) |G i) (a2l 5
<[ [ dndra (6 Gate) + F () Palen) £ o
xmmmmm+mmwmm

..... (~ayrinint Zéw

mmghwkmmw e (o i 1) 5 i)

X / / drydrg [Gy (v Ga(re) + By () Fa ()] (f}y(r;,r;{)
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The relevant matrix element for the vector space term in the effective interaction is

n 3 : ;g (, SHT
< ”,‘( ()»), 1oy

g"l‘j pbiadd NN 1\?\&] -
S L ST (34)7) = ZZ&

J g - , , )
X / / dr 1 (.1)[‘;;3 { G ] (rl )[*w; (I‘} )f}‘\ (‘!‘} 5 I'Q)GQ (IQ )F;; lilg)
Adds Ja )

X{(has )hH\(A )UHU%H = )is){( M )J e (?)H(im%)ja)

=G (1) F3(r) £ (1, 12) Fa (r2) G (1)
X{(lin3 Sl nus%no«mon»n\“‘ D)o )J4>
=By (ry) G (r0) £ (11, 72) G (r2) Fa(r2)
< I (O3 i3 D (2 s i)
1 (1)) Ga(r) fi) (11, 12) Fa(r2)Ga(r2)

x {( lll%‘“)JlH\/ ! 1~)HU:’3A%)JB>(U?B£) zHX(“} 2) H(izt/\‘,)“)} (1.9)
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The vector space term of the particle-hole matrix element is

[3'¢1
5 . . o b Jog oo Y / \ K
Vg4 (v8) = (—1)deHiat] L Z(Wl)"
EoA

X //(il]dl)‘{(:n(l;) (l’)/k (T] I)) (l))}‘ QE)!
hvods o

< {(lhas Sl () HUnx)h)(&A“

) Wm )ia)
Gy (1) P (00) £ (11, 12) P (r2) Gua(r)

#{{lrs Sl (D1 hﬁ<uﬂa Jial X 2) 1uhx ji)
~F () Gs(rn) fy (11, 12} Ga(r2) Fa(r2)

% (I Ol )i o il @ i
1 (1) Gaen) ) (71, 12) Fa(r2) Ga(ra)

(g i O i) (v NG | (10)
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”( U "Jl - Z }:
Y
//m&%@nbudwmw 2 (r2)Fy(12)
x((l;‘l\é‘)j-; ‘X i )H(fm Dia) {(laa )h”\’k” (2)]1(Exn i )iz}

~~~~~ Gy ()Y (0, F(r2) i 1)

(a3t 05 (sl @) )i
=Fu(r)Galra) £ (v, 12)Ga(r2) Fa (1)

(g I W i) (o il g i)
)G} (11 1) (1) )

< (I Ol il ) |

x[2(1 = T)] | (L11)
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The relevant matrix element for the rho time term in the effective interaction is

w{1) | 2(2) g2 ey J jtz i
ar ot T 7 g, e y
12)J L B4TY = ()it 7‘§

<( ) ! 4 47‘_ 1,“2 !( ) > .«

kojs g

(g i D s 5 s lICH 20 r )i

//dhdf) (J[(l;)(x;(l])‘f F (ll)[* ( ] !1 I‘:)

_,,(1)
X [Galry)Gy(ry) + Folre) Fy(ry ](l’[mm{’l") (I.12)
where
) = i’” (2k + 1)w%l-!-lk(mp'r{)kk(‘n‘lpl'}) (1.13)

The rho time term of the particle-hole matrix element is

, it e sk
Vo () = — Z('l)mm%}"%
k Jv gz

X (1 1D s g)is) (o il ORIl i)
< / dridry (G ()G () + Fy (1) Fa(r)] G, 12)
% [Ga(r2)Ga(ra) + Fo(re)Falry)] (3 1“)

((’1\1 illC
<[ [ s (GGt + o) F )] )
< (G2 Gl (1) + Fa(1)Fy ()] (m) (1.14)

()H(m )h)( )J!HW )H(’m;, i)
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The relevant matrix element for the rho space component in the effective interaction

is

#1) L2 gﬁ o et

((12) 375 |(34)J)
4 4 1y
feel | 1e 1
,m HLZ Ml A Ide b
Az s

x[/mMmﬂMﬁmwwmmwwhmwum
(g I Ol (5 Dl i)
=Gy (re) (1) £ (r1, 1o) Fy(r2) G rg)

x((1 Aothxx ‘1 |uuu »<uua) IO 5 )ie)
(1) Gale1) S 11, 22) G2 P (1)

XD @)

((im il ()H(ln )J5><UM2)J) )ja)

+F1(r1) Ga(ro) fi (r1, v2) Fao(r2) Ga(re)
< (OBl i) e el ) G i)
F0) . 70)
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The rho space term of the particle-hole matrix element is
X
e el R A
Vag1alps) = (1) Z E 1)
BooOA

J2 Ja A o , . N
% / / drydry {G{r)Fa(e) L, 12) Ga(rg) Fa (o)
s J 7

:, l
x((hiag w\” D (0)]1(Fsr5)is) ((Eaa .Jn\“’ )H(fm i
-Gy (1'4 JRER (1‘1 )f;f(:l‘l ; f-‘;-:)f‘%’zz (l‘z)Gd (‘z)

1) (g JRUTUE S
((ZM‘) IR )H(lfm ) ></’R I“H/\A (/3”“,!:1;’&,5)34>
WF{ (I‘( )G;(H)f,{)(lh IQ)G; (.1’2‘)1:;‘4 (Ig)

X((lu‘a}“)j 1%

Sl 1)1z (g i @)1 i)

+F 1 (I’] )G; (I‘} )/f{lh 12)[;‘2(13)(‘:’4 (1,})

At s i (el s i |

3~ 47[ o
x( 1 ) (1.16)
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M(,,._wl),su,umz.mzu — LL(”MI A
Y

X/ /(’11‘1 d,l"g {G} (I'])I'f’mﬂg;(lﬁ)__f;f(l’hl‘;g)(?:}g(t'g)y\g(].‘fg)
1.

)N g Nis)

({1 >tnk‘%wnum9>>«a\>p
MGdhﬂﬁﬁﬁwﬁnmﬂ%UﬂGMM)
ORI B AN QU
WFHQOGMMLMOmrﬂGAmH%@ﬁ

x{(hw »wui”<nuuA) (g )il (2) s 5)i)
(1) Gia () L (11, 12) P (1) G (1)

< (g S O i) (il or i) |

o7
X (“5 ) (L.17)
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The relevant matrix element for the pion term in the effective interaction is

PRSLLES

U) (} U),H (ﬂ?i’r ;L ‘‘‘‘‘‘‘‘‘‘‘‘ Y 2 (o [ jietiatd
((12)3 PP o250 7 B2 T gy (1)

il I PO € (R 1. [NV O

X Z <(l1:\§)J] "(Jk(l)l!(ZL%T%§).]3><(12A ;j)J?.,llﬂfk(?)”(iqug Jis)
k ks da

M M' '3
M(u) a(ra) + Fy(ra) Gy (r)] (T |7V ~<2>11*'> (1.18)
where
i) = %(Zﬁ + 1}gi%lfiik(Inﬂrq)kk(mﬂr«}) (1.19)

The pion-nucleon vertex is given by (f,/my,)vsquv.7: for a pseadovector pion. The
Dirac equation satisfied by the Hartree spinors is used to climinate the ¢,, term.

Thus the factors (M*(r1)/M)(M*(r2)/M) are now required in the matrix element
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[110]. The pion term of the particle-hole matrix element is

§ - o jo K
iy () = 2’"‘ aba Ik )
U32ﬂ4(7r) oY (,wl)J

g itz

< ((la sl ICH (i) (a5l C2) | s i)

x / / drydry [Gy (1) Fa(r) + G (1) Fa(n)] = (""‘) i (11, 1) 55;\%5#

X [Gra(ra) Fa () + h(h Ga(ra)] (3~ 4T)

“((lias )hHC (Wil )J&)((l.zfx‘))JzHCm(Z)H( sn 5 )h)
ﬁ//mﬂmmmﬂm@0+&UMMMH%%¥ﬁ( )2 {02)

X [Gra(ra) Fa(ra) + Fa(ry)Gs(re)] (27T) (1.20)
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APPENDIX J

Code

Huertas developed a program for solving the coupled, nonlinear, differential
equations derived from the effective field theory approach of FST [16]. The afore
mentioned program was modified to incorporate a single A, as described in chap-
ter 5. In addition, a subroutine was added to calculate the A-particle-nucleon-hole
splittings as discussed in chapter 6. The resulting program (in C), a working copy

of which is available from the author, is given by the following:

#include <stdio.h>
#include <math.h>

J DEFINE FUNCTIONS == %/

float k(int state,float *energy,double xkappa,float *gcalar,\
float *vector,float *pu3,float x,float gn,float fn,\

int forg,double M);

void half(float *y,float *yh);

void integr_messon(float #gin,float *gout,float +*field,\
double #mass,double #*pg,float xdensity,int f);

162
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[ DEFINE OUTPUT FILEG=-m s mmm o s |

FILE *spel; /*single particle energy levels,+/
/*total energy, p and n radius*/

FILE #densit; /*source densities for the mesonk/
/+and E&M equations#/

FILE *out; /*output of the final fields*/

FILE *wavef;
FILE =*par,*nuc;
char parfile[10],ignore[10],nucfile[10],nucname[6];

int ngrid=12000;
float step=0.001;

float hbarc=197.33; /*conversion factor between MeVs/
/*and fm-1%/

double bmass=939.0; /*nucleon massg*/

double lmass=1115.68; /*1lambda mass*/

double 1p=1.793,1n=-1.913; /*anomalous magnetic moments of#*/
/*p and n*/

double lam=-.613; /*anomalous magnetic moment of*/
/*1ambda*/

double gphoton=5.01;

main(int argc, char *argv[]) {

/*Iteration variables*/
int 1i,j,n,m,iterat,flag,turn,turnl ,rmatch,temp_int,mi;
float temp_float;

/*Pointers*/

float #*scalar,*vector,*prho,*photon,*energy;

float *lscalar,*lvector,*lprho;

double *kappa;

float *pu3,*lpu3; /+pointer to u3d*/

float *pbvector; /+#pointer to bvec, the combination of allx/
/*vector fields*/

double *pmass,*pg;

float *pgin,*pgout,*pdensity;

/*Used in Runge-Kutta procedurex/
float gl,g2,g3,84,f1,£2,£3,14;
float gmatch_in,fmatch_in,gmatch_out,alfa,rmax;
float glmatch_in,flmatch_in,glmatch_out;
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double x0,x1,z2,x3,%4,¢e,bnax;
double gcale,xnorm,xnorml,deltae;

/*Misc*/
float factor;
float templ,temp2,test;
float meansc;

] e e e e e o e e £ T e b 0 o e %/
/*Define input data*/
int nstates=40; /*=30 number of states by default#*/
float lambdalnstates]; /*whether nucleon, 0, or lambda, 1%/
double dege[nstates]; /*degeneracy 2j+1ix/
double kapalnstates]; /*angular momentum kapa*/
double e_guess[nstates]; /*initial energy guessx/
double ispinlnstates]; /*isospin of nucleonx/
char state[12]; /*spectroscopy notation e.g. 151/2%/
double match_r[nstates]; /*initial matching radius*/

double etal,eta2,kapa3,kapad,xiO,etarho,alphal,alpha2,fv,frho;
double betas,betav,gslam,gvlam,gtl mul,mu2, mu3;

/*Define output datax/
float eigen[nstates];
double e_total=0.0;
double e_rho=0.0,e_vec=0.0,e_sc=0.0,e_coul=0.0,e_int=0.0;
float radius_p=0.0,radius_n=0.0,radius_1=0.0;

/*The gridx/
float x[ngrid];

/*# of each baryon and of total baryons*/
double np=0.0,nn=0.0,n1=0.0,B=0.0;

/*Meson massesk/
double smass,vmass,rmags=770.0;

double mass[3],massl[3];

/*Square of coupling constants+/
double alpha=0.091701,couplingl4];

/*Hartree and Dirac convergence*/
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float hconvrg=0.05;
float dconvrg=0.lshconvrg;

/*Parameters used in the Woods-Saxon model. hdr is thex/
/#half-density radius in fm, tsurf is the surface thickness*/
/*parametert/

float hdr=1.07;

float tsurf=2.4;

float xr,d;

/¥Dirac wavefunctions G and Fx/
float diracglngrid],diracfngrid];
float diracglingridl,diracfl[ngrid];

/*Densitiesx/
float den_sc[ngrid] ,den_vec[ngrid],den_rho[ngrid],den_coul[ngrid];
float den_vec_tlngrid],den_rho_tlngrid],den_a_t[ngrid];
float den_m[ngrid],den_coul_cl[ngrid],den_coul _c2[ngrid];
float den_coul_dlngridl,den_coul_chlngridl;
float den_sclngrid],den_vecl[ngrid],den_coul_l[ngrid];
float den_vec_tl[ngrid]l,den_a_tl[ngridl;
float den_vec2[ngrid];

/*Divergences of den_vec_t and den_rho_t resp.*/
float div_denl[ngrid],div_den2[ngrid],div_den3[ngrid];

/*Guesses for meson and coulomb fields at the originx/
float sc0=490.0,veco=415.0,rhoo=0.0,coulo=0.1;

/*¥Define the FIELDS:scalar sc, vector vec, rho rho, coulomb coul.*/
/*They are defined using arrays. The fields we use are actunally*/
/*already multiplied by the coupling constants: e.g.*/
/*¥sc = gs*scalarx/

float sclngridl],veclngridl,rho[ngridl;

float coullngridl,bvec[ngrid],u3[ngrid];

sc[0]=sco;

vec[0l=veco;

rho [0]=rhoo;

coul[0]=coulo;

/*Fields incorporating the lambda couplings#*/
float scllingrid],vecl[ngrid],ulllngrid],u2lingrid]l,udl[ngrid];

/#CGradients of the sgcalar and vector fieldsx/
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float gradsclngrid],gradvec[ngrid];
float grad_sclngridl,grad vec[ngrid]l; /*Used for thex/
/final fields#/

/*Temporary vectors used in calculating the laplacians*/
double teml[ngrid],tem2[ngridl,tem3[ngrid],tentngridl;

/*Laplacians*/
float lapscingrid],lapvec[ngridl;

/*Greens functions*/
float gin_scngrid],gout_sclngrid];
float gin_vec[ngrid],gout_veclngridl;
float gin_rho[ngrid],gout_rholngridl;
float gin_coul[ngridl,gout_coul[ngridl;

/*Used in meson equationsk/
float newdensity[ngrid],deltalngridl;
double gfsci[ngridl,gfveclngridl,gfrhollngrid],gfcoulllngridl;

/*Constants used in the meson equations*/
double corri,corr2,corr3,corrd,corrS,corré,cory?,corrd,corry;
double corri0,corrll,corrl2,corri3,corrid,corris,corri,corri?,;
double corri8,corrl9;

/+Constants used to calculate the energy*/
double constl,const2,const3,constd,constb,consté,const?,const8;

/*Center of mass correction for binding energy and charge radiusx/
double ecm;

/*Define a switchx/
double swtch;

/*Parameters for calculating the spin - 1/2 splittings+/
double A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6;
double C1,C2,C3,C4,C5,06,C7,C8,C9,C10;
double D1[ngrid],D2[ngrid];
double Afactor[2],Bfactor,gamma;
double GN[ngridl,FN[ngrid],GL[ngridl,FL(ngrid];
double SCALAR,TVECTOR,SVECTOR;

o CALL FOR INPUT FILES TO ASSIGN VALUES TO VARIABLES-----~%x/
/*----Calling the constants first-—--%/
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printf ("Enter name of file with input constats : ");
scanf (“%s",parfile);

printf("\n");

printf ("Reading constants from file %s\n",parfile);
par=fopen(parfile,"r");

fscanf (par,"%s %1f",ignore,&smass);
fscanf (par,"%s %1f",ignore,&vmass);
mass [0)=smass;
mass[1]=vmass;
nass [2]=rmass;

for (i=0;i<=2;i++) {

fscanf (par,"%s %1f",ignore,coupling+i);
¥
coupling[3]=alpha;

fscanf (par,“%s %1f",ignore,&etal);
fscanf (par,"%s %1f",ignore,&eta2);
fscanf (par,"%s %1f",ignore,&kapa3);
fscanf (par,"%s %1f",ignore,kkapad);
fscanf (par,"%s %1f",ignore,&xi0);
fscanf (par,"hs %1f",ignore,&etarho);
fscanf (par,"%s %1f",ignore,&alphal);
fscanf (par,"%s %1f",ignore,&alpha2);
fscanf (par,"%s %1f",ignore,&fv) ;
fscanf (par, "%s %1f",ignore,&frho);
fscanf (par,"%s %1f",ignore,&betas);
fscanf (par,"%s %1f",ignore,&betav);
fscanf (par,"%s %1f",ignore,&gslam);
fscanf (par,"%s %1f",ignore,&gvlam);
fscanf (par,"%s %41f",ignore,&gtl);
fscanf (par,"%s %1f",ignore,&mul);
fscanf (par,"%s %1f",ignore,&mu2);
fscanf (par,"%s %1f",ignore,&mu3) ;
fscanf (par,"%s %1f",ignore,&swtch);

fclose(par);

printf("The constants to be used are the following\n");
printf ("Masses :\n");

priontf("scalar = %f \n",mass[0]);

printf ("vector = %f \n",mass[1]);

printf("rho = %f \n",mass[2]);

printf ("\n");
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printf ("Couplings :\n");

printf ("scalar =%f\n",couplingl0]);
printf ("vector =%f\n",couplingl1]);
printf (“rho =%f\n",coupling[2]);
printf ("photon =jf\n",couplingl3]);
printf ("\n"};

printf ("Constants :\n");

printf ("etal =%.5f\n",etal);
printf("eta2 =%.5f\n",eta2);
printf ("kapa3 =%.5f\n",kapa3);
printf ("kapa4 =%.5f\n",kapa4);
printf ("xi0 =%.5f\n",x10);
printf {"etarho =%.5f\n",etarho);
printf ("alphal =%.5f\n",alphal);
printf("alpha2 =%.5f\n",alpha2);
printf ("fv =).5f\n",fv);

printf ("frho =}.5f\n",frho);
printf ("betas =%.5f\n",betas);
printf ("betav =%.5f\n",betav);
priontf ("gslam =%.5f\n",gslam);
printf ("gvlam =%.5f\n",gvlam);
printf("gtl =4.5f\n",gtl);
printf ("mul =%.5f\n",mul);
printf ("mu2 =%.5f\n",mu2);
printf ("mu3 =%.5f\n",mu3);
printf ("swtch =§.5f\n",swtch);
printf ("\n");

it

[

i

#

it

/¥--~~Calling nucleus parameters—---—*/
printf ("Enter name of file with single particle levels: ");
scanf ("%s",nucfile);
printf ("\n");
printf ("Reading single particle level information from file %s\n",\
nucfile);
nuc=fopen(nucfile,"r");
printf("*\n");
fscanf (nuc,"%d" ,&nstates) ;
printf("Total number of states = }d\n",nstates);
printf{("\n");
printf("The single particle information :\n");
for (i=0;i<=(nstates~-1);i++) {
fscanf (nuc,"%4f %1f %1f %1f %1f %s 41fY,lambda+i,dege+i,kapati,\
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iapin+i,emguess+i,ignore,matchwr*i);
printf ("4, 1f Y. 1E %L1 4.1f Uf Ys %.2f\n",lambdalil,degeli],\

kapalil,ispin[i],e_guess[il,ignore,match _r[il);

}

printf ("\n");

fclose(nuc);

printf ("Enter name of the nucleus (e.g. Snl32) :");

scanf ("%s" ,nucname) ;

printf ("\n");

printf ("Starting calculations for %s using %s parametersi\n",\

nucname ,parfile);
printf ("\n");

i END CALLING INPUT FILES ———-—-=-—==wox/

/*Get the total number of protons and neutrons*/
for (n=0;n<=(nstates-1);n++) {
if (ispin[n]>0.0) np=np+dege[n];
if (ispin{n]<0.0) nn=nn+dege(n];
if (ispin[nl==0.0) nl=nl+dege[n];
}

B=np+nn+nl;

/*These are the grid points*/
for (i=0;i<=(ngrid-1);i++) {
x[i]l=step*(float) (1+i);
t

/*Use a Woods-Saxon model as the initial guess for the fields.*/

/*The Woods-Saxon radius is xr and surface thickness is d in fm.*/
d=tsurf/(2x1log(9.0));
xr=hdr*pow((double) (np+nn), (double)(1.0/3.0));

for (i=0;i<=(ngrid-1);i++){
sclil=sco/(1+exp((x[i]-xr)/d));
vec[il=veco/ (1+exp((x[i]~xr)/d)) ;
rhol[il=rhoo/ (1+exp((x[il~xxr)/d));
coullil=coulo/(1+exp((x[il~xr)/d));
u3[i]=0.0;

}

/*Initailize the eigenvalues*/
for (n=0;n<=(nstates—1);n++) {
eigen[nl]=0.0;
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+

[ e e -MESONS GREENS FUNCTIONS e wommsoe e |
/*Transform masses into lengths*/
for (i=0;i<=2;i++){
massl(il=mass[i] /hbarc;

1

for (i=0;i<=(ngrid-1);i++){
gin_sclil=exp(mass1[0]*x[il)/(2.0*x[il*mass1[0]);
gout_sclil=1.0/(exp(massl[0]*x[i])*x[i]);

gin_vec[il=exp(massl[1]*x[i])/(2.0*x[i]*massl[1]);
gout_vecl[i]=1.0/(exp(massk[1]1*x[i])*x[i]);

gin_rholil=exp(massl[2]*x[i]1)/(2.0*x[il*massl[2]);
gout_rho[il=1.0/(exp(mwassl[2]*x[1])*x[i]);

gin_coull[il=1.0;
gout_coull[il=1.0/x[i];
e QUTPUT FILES ~mmmmmm e e %/
out=fopen("fields.dat", "w");

densit=fopen("densities.dat","w");
wavef=fopen ("wfunc.dat","w");

N MAIN ITERATION LOOP ~--———m—————m—m e */
/*Initailize flag and turn*/

flag=0;

turn=0;
[ Ao Start iterat loop------- */

for (iterat=1;flag<=1;iterat++) {
printf ("ITERATION No %d \n",iterat);
printf(“flag = %d,\n",{lag);

/*Let the eigenvalues form the previous loop become e _guess*/
if (iteratt=1) {
for (n=0;n<=(nstates—1);n++) o
e_guess[n]=eigen[n];
}
b
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/xInitialize the densities to zero#/
for (i=0;i<=(ngrid-1);i++){
den_sclil=den_vec[il=den_rhol[il=den_coul[il}=0.0;
den_vec_tlil=den_rho_t[il=den_a_t[il=den_m[i]=0.0;
den_scllil=den_vecl[il=den_coul_1[il=0.0;
den_vec_tllil=den_a_t1[{il=0.0;
den_vec2[i]=0.0;

[ K Loop over all nstateg-----—- */
for (i=0;i<=(nstates-1);i++) {

/*1f a positive eigenvalue is returned then use the i-1 eigenvaluex/
if (e_guess[i]>0.0) {
e_guess[i]=eigen[i-1];
}

eigenlil=e_guess[i];

/*#First loop through all the nucleon states*/
if (lambda[il==0) {

/*Here we start by solving the Dirac-Hartree equations using a 4thx/
/*order Runga-Kutta method. The criterionm for convergence is given%/
/*¥by dconvrg. After 50 tries it declares that there is nox/
/*convergence and tries with the next state.*/

for (turn=1,deltae=10*dconvrg;fabs(deltae)>dconvrg;turnt+) {

/*Define the potential ul for the nucleon Hartree equations+/
for (j=0;j<=(ngrid-1);j++){
bvecljl=vec[jl+ispin[il* (rhol[jl+coul [j1)+0.5%(coul[j1);
}

if (iterat==1) {
for (j=0;j<=(ngrid-3);;j++}{
bvec[jl=bvec[jl+\

(betas+2.0xigpinlil*betav)*\
(coul[j+2]-2.0*coul [j+1]+coul [j1+\
(2.0%step/x[j])*(coul [j+11~coul [j1))/\
(2.0%(bmass/hbarc)* (bmass/hbarc) *steprstep) ;

h

bvec[ngrid-2]=bvecngrid-2]+(betas+2. O*ispin[il+*betav)+\
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(coulngrid-1]-2.0*coul [ngrid-2]+coul [ngrid-31)/\
(2.0%(bmass/hbarc)* (bmass/hbarc) *steptstep);

bvec[ngrid-1]l=bvec[ngrid-1]+(betas+2.0xispinli]*betav)*\
(coulngrid-1]1-2.0%coul [ngrid-2]+coul [ngrid-31)/\
(2.0x(bmass/hbarc) * (bmass/hbarc)*stepkstep) ;
Yelse {
for (j=0;j<=(ngrid-1);j++){
bvecljl=bvec[j]-\
coupling[3]*hbarc*(betas+2.0xispin[il*betav)+den_coul _chl[j]/\
(2.0*(bmass/hbarc)* (bmass/hbarc) *x[j1*x[j1);
b
}

/*Define the potential u3 for the nucleon Hartree equationss*/
for (j=0;j<=(ngrid-2);j++){
udl[jl=(fvx(veclj+1]l-vec[jl)+ispin[i]l*frhox(rho[j+1]-rho[jI3+\
(0.5%(1p+ln)+ispin[il* (1p~1n) ) *(coul [j+1]-coul [§13)/\
(2.0+(bmass/hbarc)+step) ;
}
u3[ngrid-1l=(fv*vec[ngrid-1]+ispin[il*frho*rho[ngrid-1]+\
(0.5 (1p+ln)+ispin[i]*(1p~1n) ) *coul [ngrid-1]/%
x[ngrid-11)/((bmass/hbarc)*step) ;

/*Make aproximations to F and G for small x*/
if (kapalil<0.) {
diracgl[0]=10./pow(step,kapalil);
diracf[0]=(step*diracg[0]*(bvec[0]-sc[0]-eigen[i]))/\
(hbarc*(1.0-(2.0*kapalil)));
}
else {
diracgl[0]=10.0%pow(step,1.+kapali]);
diracf [0]=(hbarc*diracg[0]*(1.0+2.0%kapal[il))/\
(step*(eigenl[i]-bvec[0]-sc[0]+2.0%bmass));
}

/*Determine the matching point*/
temp_int=(int) (match_r[i]/step);
temp_float=match_r[i]/step~(float)temp_int;

if (temp_float<0.5) {
rmatch=(int) floor (match_r[il/step);
¥

else {
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rmatch=(int)ceil (match_r{il/step);
}

rmatch=rmatch-1;

/*Assign pointers to the fieldsx/
gcalar=sc;
vector=vec;
prho=rho;
photon=coul;

pbvector=bvec;
pu3=u3;
energy=eigen;
kappa=kapa,;

/*In what follows the pointer vector is changed to pbvector#/
/*Use a 4th order Runga-Kutta method to solve the Hartreex/
/*equations from O to rmatch#/
for (n=1;n<=rmatch;n++) {
gl=k(i,energy,kappa,scalar,pbvector,pul,x[n-1],
diracgln-1},diracf[n-1],0,bmass);
f1=k(i,energy,kappa,scalar,pbvector,pu3,z[n-1],
diracg[n-1] ,diracfn-1],1,bmass);

g2=k(i,energy,kappa,scalar,pbvector,pul,x[n-1]1+0.5*step,\
diracg[n-1]1+0.5*step*gl,diracf [n-1]+0.5*step*f1,0,bnass) ;

2=k (i,energy,kappa,scalar,pbvector,pu3,x[n~1]+0.5%step,\
diracg[n-11+0.5*step*gl,diracf [n-1]+0.5*%step*f1,1,brnass) ;

g3=k(i,energy,kappa,scalar,pbvector,pu3,x[n-1]+0.5*step,\
diracgln-1]+0.5+step*g2,diracf [n-1]+0.5%step*£2,0,bnass);

£3=k(i,energy,kappa,scalar,pbvector,pu3,x[n-1]1+0.5*step,\
diracg[n-1]+0.5*stepxg2,diracf [n-1]+0.5*step*£f2,1,bmass) ;

g4=k (i,energy,kappa,scalar,pbvector,pud,x[n-1]+step,\
diracg[n-1]+step+g3,diracf [n-1]+step*£3,0,bmass) ;
f4=k(i,energy,kappa,scalar,pbvector,pul,x[n-1]+step,\
diracgln-1l+step*xg3,diracf[n~1]+step*f3,1,bmass) ;

diracgln]=diracg[n~11+(1.0/6.0) *stepx (g1+2. 0% (g2+g3) +g4};
diracf [nl=diracf [n-11+(1.0/6.0)*step*x (£1+2, 0% (£24£3)+f4);
L
gmatch_in=diracg[rmatchl];
fmatch_in=diracf [rmatch];
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/*End Runge-Kutta outward integration%/

/*Get initial values of F and G for inward integration*/
alfa=sqre((~1.)*eigen[i]* (eigen[i]+2.*bmass)) /hbarc;

rmax=gtep* (float) (ngrid) ;
diracgingrid-1l=1./exp(alfa*rmax) ;

x0=(~1.)*sqrt ((~1.)*eigenlil/(eigenli]+2.#bmass)) ;
bmax=12.*bvec[ngrid-1]/hbarc;
ee=hbarc/(2.*(eigen[i]+2.*¥bmass));

x1=ee*(2.*kapali]+bmax* (x0+1./x0));
x2=ee* (2. *bmax+(2 . xkapalil+1.)*x1/30)~x1%x1/(2.+x0);
x3=ee* ((2.+#kapalil+2.)*x2/x0+bmax#* (2. *x2+x1*x1/x0) ) ~x1%x2/20;
xd=eex ((2.#kapal[i]+3.)*x3/x0+bmax*2.* (x3+x1%x2/x0)) -\
(2. *xx1*%x3+x2%x2) /(2. %x0) ;

diracf [ngrid-1]}=diracg[ngrid-1]#(x0+x1/rmax+x2/pow(rmax,2.)*\
x3/pow (rmax,3.)+x4/pow(rmax,4.));

/*Use a 4th order Runga-Kutta method to solve the Hartreex/
/*equations from infinity to rmatch. Previously the left sidex/
/*was n-1 and the right n*/
for (m=ngrid-2;n>=rmatch;n--) {
gl=k(i,energy,kappa,scalar,pbvector,pu3,x[n],\
diracgln+1] ,diracf[n+1],0,bmass) ;
f1=k(i,energy,kappa,scalar,pbvector,pu3,x[n],\
diracg[n+1],diracf[n+1],1,bmass);

g2=k(i,energy,kappa,scalar,pbvector,pu3,x[n]-0.5*step,\
diracg[n+1]-0.5%gtep*gl,diracf [n+1]~0 . 5*step*f1,0,bmass) ;

f2=k(i,energy,kappa,scalar,pbvector,pul,x[n]~0.5+step,\
diracg[n+1]~0.54step*gl,diract [n+1]~0.5*stepxf1l,1,bnass) ;

g3=k(i,energy,kappa,scalar,pbvector,pul,x[n]~0.5*step,\
diracg[n+1]-0.5+step*g2,diract [n+1]-0.5%step*£2,0,boass) ;

£3=k(i,energy, kappa,scalar,pbvector,pul,x[n]~0.5*step,\
diracg[n+1]-0.5*kstep*g?2,diract [n+1]-0.5*step*f2,1, bnass) ;
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g4=k (i ,energy,kappa,scalar,pbvector,pud,x[n]-step,\
diracg[n+1]-step*g3,diract [n+1]-step*f3,0,bnass) ;

f4=k (i,energy,kappa,scalar,pbvector,pu3,x[n]-step,\
diracgl[n+l]-step*g3,diract [n+1]-step*f3,1,bmass);

diracglnl=diracgn+1]-(1.0/6.0)*stepx(gl+2. 0% (g2+g3)+g4);
diracfnl=diracf [n+1]-(1.0/6.0)*stepx (f1+2. 0% (£2+£3) +f4);
h

gmatch_out=diracg[rmatch];

/*End Runge-Kutta inward integration*/
/#Look near rmatch. Scale outward integration such that diracg*/
/*is a continuous function. Then find the correction to thew*/
/*eigenvaluex/

scale=gmatch_out/gmatch_in;

for (m=0;m<=(rmatch~1);m++) {
diracg[ml=scale*xdiracgm];
diracf[m)}=scalexdiracf [m];

I

xnorm=0.0;
for (m=0;m<=(ngrid-1);m++)
xnorm=xnorm+diracgm]*diracglm]+diracf [m]*diracf [m];

xnorm=xnporm+step;

deltae=(-1.0)*diracg[rmatchl]*(diracf[rmatch]-\
scale*fmatch_in)*hbarc/xnorm;
if (turn==1) {
deltae=deltae/2.0;
+

eigen[i]=eigen[i]+deltae;

/*If a negative eigenvalue is returned, then*/
if (eigen[i]>0.0) {
eigen[il=~4.0/((double) turn);
+

/*Cutoff if not convergent+/
if (turp==50) {
printf ("NO CONVERGENCE AFTER %d TRIES FOR STATE %d \n",turn,i);
fprintf (wavef ,"NO CONVERGENCE AFTER %d TRIES FOR STATE %d \n’’,\
turn,i);
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fprintf (wavefl ,"ITERAT=%d RMATCH=Yd XMATCH=%f\n",iterat,rmatch,\
match_r[il);
for (n=rmatch-3;n<={rmatch+3) ;n++) {
fprintf (wavef , "Ad\tLE\tALNLAE\n" ,n,x[n] ,divacgn] ,diractn]);
}
¥

if (turn==50) break:

/*¥Print results to filex/
if (flag==1 &% (fabs(deltae)<dconvrg)) {
prin‘t:f(“SAVING RESULTS IN FILE\n");
fprintf (wavef,"State = %d \n",1i);
fprintf (wavef,"index \t x \t G(&x) \t F(x) \n");

templ = sqrt(znorm);
for (n=0;n<=(ngrid-1);n=n+ngrid/100) {
fprintf (wavef, "RA\tAENLAENLYE\n" ,n,x[n] ,diracgnl /templ \
diracf [n]/templ);
+
}

/*Get nucleon Fields for the particle-hole splitting*/
if (i==2) {
for(j=0;j<=(ngrid-1);j++) {
GN1[jl=diracgl[j];
FN1[jl=diracf(j];
+
XNOrma=xnorm;
1
+
/*End turn loop*/

factor=dege[il]/(xnorm*4.*3.1415926);
for (n=0;n<=(ngrid-1);n++} {
den_sc[n]=den_sc[u]+\
factor*(diracglnl*diracg(n]-diracf[nl*diracfn]);

den_vec[nl=den_vec[n]+\
factor*(diracgnl*diracglnl+diract [n]*diracfn]);
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den_rho [n]=den_rho [n]+\
factor*ispin[il+ (diracg[n]l*diracgln]+diract [nl*diracf(nl);

den_coul [n]=den_coul[n]+\
factor*(ispin[il+0.5)*(diracg|n]*diracgln]+diracf [n}*diract(n]);

den_vec_tlnl=den_vec_t[n]+factor*2. *diracgnl*diract[n];
den_rho_t[nl=den_rho_tin]+factor*2 *ispinlil*diracgnl*diractn];

den_a_t[n]l=den_a_t[n]+\
factor*((1p+ln)+ (2. *xispin(i]) * (Ip-1n))*2 . *diracgn] *diract [n];
}
+

/*Now loop though the lambda states*/
if (lambdalil==1) {

/*Redifine the fields for coupling to lambdasx/
for (j=0;j<=(ngrid-1);j++) {
sclljl=gslam*sc[j];
vecljl=gvlamsvec[j];

for (turnl=1,deltae=10*dconvrg;fabs(deltae)>dconvrg;turnl++) {

/*Define potential ul for the Lambda Hartree equations*/
for (j=0;j<=ngrid-1;j++) {
ulll[jl=vecl[j]-mu3*sc[jl*vec[j]/(bmass);
}

/*Define potential u2 for the Lambda Hartree equations*/
for (j=0;j<=ngrid-1;j++) {
u2l[jl=scljl+(mui*sc[jl*sc[jl-mu2*vec[jl*vec[j1)/\
(2.0+(bmass)) ;
b

/*Define the potential u3 for the lambda Hartree equationsk/
for (j=0;j<=(ngrid-2);j++){
u3l[jl=(gtl*(vec[j+1]~vec[j]) +lam* (coul [j+1]-coul [j1))/\
(2.0%(bmass/hbarc)*step) ;
¥
u3lngrid-1]=(gtl*vecngrid-1]+lam*coul [ngrid-1]/xIngrid-113/\
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((bmasgs/hbarc)*step);

/*Make aproximations to F and G for small x*/
if (kapalil<0.) {
diracgl[0]=10./pou(step,kapalil);
diracf1[0]=(step*diracgl[0]*(vecl[0]-scl[0]~eigenl[il))/\
(hbarc*(1.0~(2.0xkapalil)));
ks
else {
diracgl[0]=10.0*pow(step,1.+kapalil);
dirvacfl[0]=(hbarc*diracgl [0]*(1.0+2 Oxkapalil]))\
/(step*(eigenli]l-vecl[0]~sc1[0]+2.0*bmags));
}

/*Determine the matching point#/
temp_int=(int) (match_r[il/step);
temp_float=match_r[i]/step-(float)temp_int;

if (temp_float<0.5) {
rmatch=(int)floor (match_r[il/step);
+
else {
rmatch=(int)ceil (match_r[il/step);
}

rmatch=rmatch-1;

/*Assign pointers to the fieldsx*/
lscalar=u2l;
lvector=ull;
photon=coul;
lpu3=u3l;

energy=eigen;
kappa=kapa;

/*Use a 4th order Runga~Kutta method to solve the Hartrees/
/*equations from O to rmatch*/
for (n=1;n<=rmatch;n++) {
g1=k(i,energy,kappa,lscalar,lvector,lpu3,x[n-1],
diracgl[n~1],diracfln-1],0,1Imass);
f1=k(i,energy,kappa,lscalar,lvector,lpud,x[n-1],
diracglin-1],diracfl[n-1],1,1mass);

g2=k(i,energy, kappa,lscalar,lvector,lpu3,x[n-1]+0. 5+step,\
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diracgl[n-1]+0.5*step*gl ,diracf1n-11+0.5+step*f1,0, Inass) ;
£2=k (i,energy,kappa,lscalar,lvector,lpuld,x[n-1]+0.5*step,\
diracgln-1}+0.5+stepsgl, diracfln-1]+0.5*stepsfl, 1, lnass) ;

g3=k (i,energy,kappa,lscalar,lvector,lpu3,x[n-1]+0.5%step,\
diracgln-1}+0.5%step*g2,diracfl[n-1]+0.5«step*f2,0,lmass);

£3=k (i,energy,kappa,lscalar,lvector,lpu3,x[n-1]+0.5*step,\
diracgln-1]1+0.5%step*g2,diracfl[n-11+0.5*step*£2, 1, lmass) ;

g4=k(i,energy,kappa,lscalar,lvector,lpu3,x[n-1]+step,\
diracgl[n-1]+step*g3,diracfl[n-1]+step+£3,0,lmass) ;

4=k (i,energy,kappa,lscalar,lvector,lpud,x[n-1]+step,\
diracgl[n-1]+step*g3,diracfl[n-1]+step*£3,1,lmass) ;

diracgl[n]=diracglin-1]+(1.0/6.0)*step*(gl+2.0%(g2+g3)+g4d) ;
diracfl[nl=diracfl[n~-1]+(1.0/6.0)*stepx (f1+2.0% (£2+£3)+f4) ;
ks
glmatch_in=diracgl [rmatch];
flmatch_in=diracflrmatch];

/*End Runge-Kutta outward integration*/

/*Get initial values of F and G for inward integrationx/
alfa=sqrt ((~1.)*eigen[i]*(eigen([i]+2.*bmass))/hbarc;

rmax=step*(float) (ngrid);
diracgllngrid-1]=1./exp(alfa*rmax);
x0=(-1.)*sqrt ((-1.)*eigen[il/(eigen[il+2 *bmass));
bmax=12.*vecl[ngrid-1]/hbarc;
ee=hbarc/(2.*(eigen[i]+2.*bmass));
xl=ee* (2. *kapali]+bmax* (x0+1./x0));
x2=ge+* (2. *bmax+ (2. *kapali]+1.)*x1/x0)~x1*%x1/(2.%x0);
x3=ee* ((2.*kapal[i]+2.)*x2/x0+bmax* (2 *x2+x1*x1/x0) ) ~x1#x2/x0;
x4=eex ((2.+kapal1]+3.)*x3/x0+bmax+2. % (x3+x1*x2/x0) )} -\

(2. %x1#x3+x2%%x2) /(2. %x0) ;
diracflingrid-1}=diracgl[ngrid-1]* (xO+x1/rmax+x2/pow(rmax,2.)*\

z3/pow(rmax,3.)+\
x4/pou(rmax,4.));
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/#Use a 4th order Runga-Kutta method to solve the Hartrees/
/*equations from infinity to rmatch. Previously the left sidex/
/*was n-1 and the right nx/
for (n=ngrid-2;n>=rmatch;n--) {
gl=k(i,energy,kappa,lscalar,lvector,lpu3,x[n],\
diracgl[n+1] ,diracfl[n+1],0,1lmass);
f1=k(i,energy,kappa,lscalar,lvector,lpu3,x[n],\
diracgl[n+1] ,diracfl[n+1],1,lmass);

g2=k (i,energy,kappa,lscalar,lvector,lpu3,x[n]-0.5+step,\
diracgl [n+1]-0.5%step*gl,diracfl[n+1]-0.5*stepxf1,0,lnass);

£2=k(i,energy,kappa,lscalar,lvector,lpud,x[n]—-0. 5*step,\
diracgl[n+1]-0.5*step+gl,dirvacfl[n+1]-0. 5*stepsfl,1,lmass);

g3=k(i,energy,kappa,lscalar,lvector,lpul,x[nl-0.5*step,\
diracgl[n+1]-0.5*stepxg2,diracfln+1]-0.5%step*f2,0,lnass);

3=k (i,energy,kappa,lscalar,lvector,lpu3,x[n]~0.5xstep,\
diracgl[nt+1]-0.5*stepxg?,diracfln+1]-0.5+stepxf2,1,lmass) ;

g4=k(i,energy,kappa,lscalar,lvector,lpu3,x[nl-step,\
diracgl[nt+1]-step*g3,diracfln+1]-step*£f3,0,lmass) ;

4=k (i,energy,kappa,lscalar,lvector,lpu3,x[nl-step,\
diracgl[nt+1]-step*g3,diracfl[n+1]-step+£3,1,1lmass) ;

diracgln]l=diracgln+1]-(1.0/6.0)*step*(gl+2.0x(g2+g3)+gd) ;
diracfl[n]l=diracfl[n+1]-(1.0/6.0)*step* (£1+2. 0% (£2+£3)+F4) ;
ks
glmatch_out=diracgl[rmatch];

/*End Runge-Kutta inward integration*/
/*Look near rmatch. Scale outward integration such that diracg+/
/*is a continuous function. Then find the correction to thex/
/*eigenvalue*/

scale=glmatch_out/glmatch_in;

for (m=0;m<=(rmatch-1);m++)
diracgl[m]l=scale*diracgl [m] ;
diracfl[m]=scale*diracflm];

}

xnorml=0.0;
for (m=0;m<=(ngrid-1);m++)
xnorml=xnorml+diracgl [m]*diracgl [m]+diracflm]*diracflm]};
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xnorml=xnorml*gtep;

deltae=(-1.0)*diracgl[rmatch]*(diracflrmatch]-\
scale*flmatch_in)*hbarc/xnorml;

if (turnl==1) {

deltae=deltae/2.0;

}

eigenlil=eigen[il+deltae;

/*#1f a negative eigenvalue is returned, thent/
if (eigen[il]>0.0) {
eigen[i]=~4.0/(double (turnl));
b

/*Cutoff if not convergent/
if (turnl==50) {
printf("NO CONVERGENCE AFTER %d TRIES FOR STATE %d \n",turnl,i);
fprintf (wavef,"NO CONVERGENCE AFTER %d TRIES FOR STATE %d \n",\
turnl,i);
fprintf (wavef ,"ITERAT=%d RMATCH=%d XMATCH=%f\n",iterat,rmatch,\
match_r[i]);
for (n=rmatch-3;n<=(rmatch+3) ;n++) {
fprintf (wavef, "%d\tAENt4E\t%E\n" ,n,x[n] ,diracgln],\
diracflinl);
}
T

if (turnl==50) break;

/*Print results to file#/
if (flag==1 && (fabs(deltae)<dconvrg)) {
fprintf (wavef,"State = %d \n",i);
fprintf (wavef,"index \t x \t G(x) \t F(x) \n");

for (n=0;n<=(ngrid-1);n=nt+ngrid/100) {
fprintf (wavef, "Ad\tUENtAENLY4E\n" ,n,x[n] ,diracgl[n],\
diracfllnl);
L
b
}
/*End turnl loop*/

J e CALCULATE DENSITIES FOR MESON EQUATIONS=--=-swr=ww=t/
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factor=degelil/(xnorml*4 *3.1415926) ;
for (n=0;n<=(ngrid-1);n++) {
den_vec2[nl=den_vec[n];
}
for (n=0;n<=(ngrid-1);n++) o
den_scl[n]=den_scl[n]+\
factor*(diracgl [n]+*diracgln]-diracfln]*diracflnl);

den_veclin]l=den_vecl[n]+\
factor+(diracgl [n]l*diracgl [n]+diracfln]*diracflnl);

den_sc(n)}=den_sc[nl+gslam*den_scl[n]+\
(mul*sc[n)*den_scln]-mud*vec[n]*den_vecl(n])/bmass;

den_vec[nl=den_vec[nl+gvlam+den_vecl[n]-\
(mu2*vec [n]*den_scln]+mu3*sc[n]*den_veclin])/bmass;

den_vec_tl[n]l=den_vec_t1l[n]+2.0*factor*diracgln]l*diracflin];
den_a_tllnl=den_a_tl[nl+2.0*factor*lamxdiracgln]l*diracfln];

den_a_t[nl=den_a_tl[n]+den_a_t[n];

/*The vector meson contribution to the charge demsity*/

for (n=0;n<=(ngrid-2);n++) {
teml [n]=(rho[n+1]~rho[n])*x[n]*x[n]/step;
tem2[n]=(vec[n+1]-vec[nl)*x[n]l+*x[nl/step;

+

teml [ngrid-1]=(rho[ngrid-1]-rho[ngrid-2])*\
x[ngrid-1]*xz[ngrid-1]/step;

tem2[ngrid-1l=(vec[ngrid-1]-vec[ngrid-2] )\
x[ngrid-1]*x[ngrid-1]/step;

for (n=0;n<=(ngrid-2);n++) {
den_mn]=(1./(hbarcrgphoton*step) )\
((teml[n+1]-teml[n])/sqrt (coupling[2])+\
(tem2[n+1]-tem2[n]) /(3. *aqrt(coupling(11));
L
den_mlngrid-1]=den_m[ngrid-2];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/*Calculate the divergence of the den_a_t*/
for (n=0;n<=(ngrid-2);n++) {
den_coul_clinl=gwtch*(den_a_t[n+1l-den_a_tln])/\
(2.0 (bmags/hbarc)*step) ;
}
den_coul _cl[ngrid-1]=den_coul_c1[ngrid-2];

/*Calculate the laplacians of den_vec and den_rho%/
for (n=0;n<=(ngrid-2);n++) {

teml[nl=(den_vec2[n+1]~den_vec2[n])/step-2.0xden_vec2inl/x[n];

tem2[n]=(den_rho[n+1]-den_rho[n])/step-2.0%den_rho[n]/x[nl;

+

teml [ngrid-1]=(den_vec2[ngrid-1]+den_vec2[ngrid-2])/step-\
2.*den_vec2ingrid-1]/x[ngrid-1];

tem?2 [ngrid-1]=(den_rho[ngrid-1]+den_rho[ngrid-21)/step-\
2.*den_rho[ngrid-1]/x[ngrid-1];

for (n=0;n<=(ngrid-2);n++) {
den_coul_c2[n]=(1./(2.*step*(bmass/hbarc)*(bmass/hbarc) ) )*\
((temi[n+1]-teml[n])*betas+2.*(tem2[n+1]-tem2[n])+betav) ;
}
den_coul_c2[ngrid-1]=den_coul_c2[ngrid-2];

/*The direct nucleon charge demsity, den_coul_d, and the totalx/
/*charge density, den_coul_ch%*/
for (n=0;n<=(ngrid-1);n++) {
den_coul_d[nl=den_coul[n]+den_coul_ci[n]+den_coul _c2[n};
den_coul_chlnl=den_coul_din]+den_m[n];

1

/*Divergences of den_vec_t, den_rho_t, and den_vec_tl#/

for (0n=0;n<=(ngrid-2);n++) {
div_denl[nl=(den_vec_t[n+1]-den_vec_t[n])/(step);
div_den2[nl=(den_rho_t[n+1]-den_rho_t[n])/(step);
div_den3[n]=(den_vec_tl[n+1]~den_vec_t1l[n])/(step);

+

div_denl[ngrid-1]l=div_denl[ngrid-2];

div_den2[ngrid-1]=div_den2[ngrid-2];

div_den3[ngrid-1]=div_den3[ngrid-2];

/e e mm—-Baye final densitieg——-o—mmmem e~ */
if (flag==1 && (fabs(deltae)<dconvrg)) {
fprintf (densit,"Final densities for %s\n",nucname);
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fprintf(densit,"x scalar vector vector_t rho’’,\
““proton neutron lambdaln");
for (n=0;n<=(ngrid~-1) ;u=n+ngrid/100) {
templ= x[nl*x[n];
fprintf (densit,"%.2f %.3e %.3e %.3e %.3e %.3e %.3e %.3e\n",\
x[nl),den_scln]/templ,den_vec[n]/templ,\
den_vec_t[n]/templ,2.*den_rholnl/templ,\
den_coulnl]/templ, (den_vec2[n]l-den_coul [nl])/\
templ,den_vecl[n]/templ);
}
¥

if (flag==1 && (fabs(deltae)<dconvrg)) goto final;
flag=1;

for (n=0;n<=(nstates-1);n++) {
if (fabs(eigen[n]-e_guess[n])>hconvrg) flag=0;

printf ("%3a\t%5. LENGAT 4L\ YT AE\LAT . 4E\t %5.38\n",\
n,ispin[n],eigen[n],e_guessin], \
fabs(eigenlnl-e_guessnl)  hconvrg) ;

b

if (flag==1) {
spel=fopen(“e-levels.dat","w");
fprintf (spel,"Single particle energy levels for %s\n",nucname);
fprintf (spel,"state\tispin\tEnergy\n");
for (n=0;n<=(nstates-1);n++) {
fprintf (spel,"%3d\t%5.1£\t%6.3f\n" ,n,ispin[n] ,eigen(n]);

J# mmmmmmmm e SOLVE MESON EQUATIONS —---=-======mm=m-m */
printf ("SOLVING MESON EQUATIONS\n");

/#Direct integration using Green’s functions. The following#/
/*pointers are available for this part: *pmass, *pg,*/
/* *pgin, *pgoutx/

pmass=massl;

pg=coupling;

/*Integrate the scalar fields/
pgin=gin_sc;
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pgout=gout_sc;
pdensity=den_sc;

integr_messon(pgin,pgout,scalar,pmass,pg,pdensity,0);

for(i=0;i<=(ngrid-1);i++) {
gfscilil=sclil;
b

/*Integrate the vector field*/
pgin=gin_vec;
pgout=gout_vec;
pdensity=den_vec;

integr _messon(pgin,pgout,vector,pmass,pg,pdensity,1);

for(i=0;i<=(ngrid-1);i++) {
gfvecl[il=vec[il;
}

/*Integrate the rho fields/
pgin=gin_rho;
pgout=gout_rho;
pdensity=den_rho;

integr_messon(pgin,pgout,prho,pmass,pg,pdensity,2);
for(i=0;i<=(ngrid~1);i++) {

gfrhollil=rho[il;
}

/*Integrate the Coulomb fieldx/
pgin=gin_coul;

pgout=gout_coul;
pdensity=den_coul_ch;

integr_messon(pgin,pgout,photon,pmass,pg,pdensity,3) ;

for(i=0;i<=(ngrid-1);i++) {
gfcoull[il=coull[i];

printf ("ITERATION FOR MESON EQUATIONS\n");
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for{mi=0,test=0;mi>=0;mi++) {

/#Calculate the new charge density. The vector meson contribution*/
/*has changed and must be calculated again with thex/
/*new meson fields*/
for (n=0;n<=(ngrid-2);n++) {
teml[n]=(gfrhol[n+1]-gfrhol[n])*x[n]l*x[nl/step;
tem2[n]=(gfvecl[n+1]-gfvecin])*x[n)*x[nl/step;
¥
teml [ngrid-1]=(gfrholngrid-1]-~gfrhol [ngrid-2])*\
x[ngrid-1l*x[ngrid-1]/step;
tem2[ngrid-1]=(gfveclngrid-1]-gfveclngrid-2])*\
x[ngrid-1]*x[ngrid-1]/step;

for (n=0;n<=(ngrid-2);n++) {
den_m[n]=(1.0/(hbarcxgphoton*step))*\
((teml[n+1]~temi[n])/sqrt(coupling [21)\
+(tem2[n+1]-tem2[nl)/(3.0%sqrt (couplingl11)));
}
den_m[ngrid-1]=den_m[ngrid-2];

for (n=0;n<=(ngrid-1);n++) {
den_coul_ch[nl=den_coul_d[n]+den_m[n];

t

/*Constants used to solve the scalar field equation*/
corri=kapa3+*mass[0]*mass[0]/(2.*bmasgs*hbarc*hbarc);
corr2=kapad*mass [0]*mass [0]/ (6. *bmass*bmass*hbarcxhbarc) ;
corr3=etal*coupling[0]*mass[1]*mass[1]/\

(2.*coupling[1]*bmass*hbarc*hbarc);
corrd=eta2+couplingl[0]+*mass [1]*mass[1]/\

(2.xcoupling[1]*bmass*bmass*hbarcxhbarc);
corrb=etarho*coupling[0]*mass [2]*mass[2]/\

(2.*coupling[2] #*bmass*hbarc*hbarc) ;
corr6=alphal/(2.*bmass) ;
corr7=alpha2*coupling[0]/(2.*bmass*coupling[1]);

/+*Form the gradients of the scalar and vector fields#*/
for (i=0;i<=(ngrid-2);i++) {
gradsclil=(gfsci[i+1]~gfsci[il)/step;
gradvec[i]l=(gfvecl[i+1]~gfvecl[il)/step;
+
gradsc[ngrid-1l=gradscngrid-2];
gradvec [ngrid-1l=gradvec[ngrid~2];
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/*Form the laplacians of the scalar and vector fields+/

for (n=0;n<=(ogrid-2);n++) {
teml[n]=((gfscln+ti]-gfscilnl)/step) *x[nl*x[nl;
tem2[n]=({gfvecln+1]-gfvecln]) /step)*x[nl*x[n];

+

teml [ngrid-1}=(gfsclngrid-1]-gfscl[ngrid-2])*\
x[ngrid-1]*+x[ngrid-1]/step;

tem2[ngrid-1]=(gfveclngrid-1]-gfveclngrid-2])*\
x[ngrid-1]*x[ngrid-1]}/step;

for (n=0;n<=(ngrid-2);n++) {
lapscn]=(teml[n+1]-teml[nl)/(step*x[nl*x[n]);
lapvec[n]=(tem2[n+1]~tem2[n])/(step*x[n)*x[nl);

}

lapsc[ngrid-1]=(teml [ngrid-1]-teml [ngrid-21)/\
(x[ngrid-1]#x[ngrid-1]l*step);

lapvec[ngrid-1]=(tem2[ngrid-1]-ten2[ngrid-2])/\
(x[ngrid-1]+*x[ngrid-1]*step);

/*Define the new scalar density#*/
for{(i=0;i<=(ngrid-1);i++) {
newdensity[il=den_sc[i]-\
x[il*x[il*(corrixgfsclil*gfsci[i]+\
corr2*gfsciil*gfscl[i]l*xgfsci[i]-\
corr3xgfvecl[il*gfveci[i]-\
corrdsgfsclilil*gfvect[il*gfvec1[i]-\
corrSxgfrhol[il*gfrhol[i]~-\
corr6x(gradsclil*gradsc[i]+2.*\
gfscllil*lapsc[il)-corrT*gradvec[i]*\
gradvec[i])/(hbarc*coupling[0]);
b

/*Define the new RHS for the scalar equation#/
pgin=gin_sc;
pgout=gout _sc;
pdensity=newdensity;

/*New iteration on the scalar fields/
integr_messon(pgin,pgout,scalar,pmass,pg,pdensity,0);

/*Constants used to solve the vector field equation#/

corr9=fv/(2.+«(bmass/hbarc)) ;
corrlO=etal*mass[1]+*mass[1]/(bmass*hbarcxhbarc);
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corril=etaZ+mass[1)*mass[1]/(2. *bmass*bmass*hbarcshbarc) ;
corrl2=xi0/ (6 .+*hbarcxhbarc) ;
corrid=alpha2/bmass;
corrid=swichs (coupling [3]*hbarc*sqrt ((double) (coupling[11)))/\

(3.*gphoton) ;
corrib=gtl/(2.#(bmass/hbarc));

for(i=0;i<=(ngrid-1);i++) {
newdensityl[il=den_vec[i]+\
corr9xdiv_denl[il+corr1b+div_den3[i]-\
x[il*x[il*(corr10*gfaci[il*gfvect [i]+\
corrllxgfscilil*gfscilil*gfvect [i]+\
corri2+gfveci[ilxgfvect[il*gfvecl[i]-\
corri3* (gradscil*gradvec[i]+\
gfscilil*lapvec[i]))/\
(hbarc*coupling[1]) -\
corrild*den_coul_ch[i]/(hbarc*couplingl1]);
¥

/*Define the new RHS for the vector equation%/
pgin=gin_vec;
pgout=gout_vec;
pdensity=newdensity;

/*#New iteration on the vector fields/
integr_messon(pgin,pgout,vector,pmass,pg,pdensity,1);

/#Constants used to solve the rho field equation%/
corri7=frhox*hbarc/(2.*bmass) ;
corrl8=etarho*mass [2]*mass[2]/ (bmass*hbarcxhbarc) ;
corri9=swtch*coupling[3]*\

hbarc*sqrt ((double) coupling[2])/gphoton;

for(i=0;i<=(ngrid-1);i++) {
newdensity[il=den_rhol[il+corr17*div_den2[i]-\
x[1]*x[1]*(corri8*gfscl[il*gfrhol[i])/\
(hbarckcoupling[2])~\
corri19*den_coul_ch[i]/(hbarc*coupling[2]};
¥

/#Define the new RHS for the rho equation*/
pgin=gin_rho; '
pgout=gout_rho;
pdensity=newdensity;
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/*New iteration on the rho field*/
integr_messon(pgin,pgout,prho,pnass,pg,pdensity,2) ;

/*Define the new RHS for the Coulomb equations/
pgin=gin_coul;
pgout=gout_coul;
pdensity=den_coul_ch;

/+New iteration on the Coulomb fields/
integr_messon(pgin,pgout,photon,pmass,pg,pdensity,3);

/*PREPARE THE NEW ITERATION*/
if (mi==0) meansc=0.5*(gfsc1[10]1+sc[10]);

printf ("%d sc=%f delmeansc=)f delsc=}f\n",mi,sc[10],\
fabs (meansc~0.5+(gfsc1[10]+sc[101)),\
fabs(gfsc1[10]~sc[10]));

if (mi>0) o
if (fabs (meansc-0.5+(gfsc1[10]+sc[101))>0.1) {
meansc=0.5% (gfsc1[10]+sc[10]);
Yelsed
test=2;
printf ("mean convergence\n");
+
b

if (fabs(gfsc1[10]-sc[10])<0.0001) test=1;

if (test==2){
for (i=0;i<=(ngrid-1);i++){
sc[i1]=0.5%(gfsc1[il+sc[i]);
vec[1]=0.5x(gfvecl[il+vec[il);
rho[1]=0.5% (gfrhol[il+rho[il);
coul[i]=0.5*(gfcoull[i]l+coul[i]);
}
}

for (i=0;i<=(ngrid-1);i++){
gfscilil=sclil;
gfveci[il=vec[i];
gfrhol[il=rholi];
gfcoull[i]=coull[i];
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b

if (test==1) break;
}

/¥End of Iteration process for the meson equations*/

/*0utput the results of the fields*/
if (flag==1) {
fprintf (out,"MF results for %s\n",nucname);
fprintf (out, "x\tscalar\tvector\trho\tphoton\n");

for (i=0;i<=(ngrid-1);i=i+ngrid/100) {
fprintf (out, "hE\t%4. 3e\th4. 3e\th4. 3e\t)4. 3e\n",\
x[i],sc[i],vec[i],rboli],coul[il);
¥
ke
printf ("%d\n",iterat);
b

/*End of iterat loop+/

final:

/*Sum of all the eigenvalues*/
for (j=0;j<=(nstates-1);j++) {
e_total=e_total+degel[jl*eigen[jl;
}
templ=e_total,

/*Constants needed to calculate the total binding energy.*/
/*Scalar-scalar interaction energy+/
constl=kapal3*mass[0]*mass [0]/\
(6.*coupling[0]*bmass*hbarc*hbarc*hbarc) ;
const2=kapad*mass [0] *mass [0] /\
(12.*coupling[0] *bmass*hbarcxhbarc*hbarc+bmass) ;
const3=alphal/(2.*coupling[0]+*bmass*hbarc) ;

/*Vector-vector interaction energy*/
const4=x10/(12.*coupling[1]*hbarc*hbarcxhbarc);

/*Scalar-rho interaction energy#/
constS=etarho*mass [2] *mass [2]/\
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(2. *bmass*coupling [2]*hbarcxhbarc+hbarc) ;

/*Scalar-vector interaction energy#*/
constb=etalsmass[1]*mass[1]/\
(2. +bmasgs*coupling[1]+hbarc*hbarchbarc) ;
const7=eta2+mass [1]*mass[1]/\
(2. ¥bmassxbmass*kcoupling [1]*hbarc*hbarc¥hbarc) ;
const8=alpha2/(2.*coupling1]*bmassxhbarc) ;

/+Gradients of the final scalar and vector field*/
for (n=0;n<=(ngrid-2);n++) {
grad_sc[nl=(sc[n+1]-scnl)/step;
grad_vec[n]=(vec[n+1]~vec[n])/step;
+
grad_sc|ngrid-1l=grad_sc[ngrid-2];
grad_vec|ngrid-1l=grad_vec[ngrid-2];

/*Interaction energies and radiix/
for (j=0;j<=(ngrid-1);j++) {
e_sc=e_sc+sc[jl*den_scljl-\
x[j1*x[jl*(constixscjl*sc[jl*scjI+\

const2*scljl*scljl*scljl*scjl+\
const3*sc[jl*grad_scljl*grad_sc[jI-\
const5*sc[jl*rho[jl*rho[jI-\
constb*sc[jlrvec[jl*vec[jI-\
const7+scljl*scljl*vec[jI*vec[j]-\
const8+*sc[jl*grad_vec[jl*grad_vec[j1);

e_vec=e_vect+vec[j]*(den_vec[jI+\
fv/(2.#(bmass/hbarc))*div_denl[j]+\
gtl/(2.*(bmass/hbarc))*div_den3[j1) -\
x[jl*x[jl*constd*vec[jl*vecjl*vec[jl*vec[jl;

e_rho=e_rho+rho[jl*(den_rhol[jl+\
frho/(2.+(bmass/hbarc))*div_den2[j]1);

e_coul=e_coul+coull[jl*(den_coul_dljl);

radius_p=radius_pt+x[jl*xz[jl*(den_conl_ch[jl);
radius_n=radius_n+x[jl*x[jl*(den_vec[j]~-\
den_coul[jl~den_vecl[j]);
radius_l=radius_l+x[jl#z[jlx(den_vecl(jl);
)
factor=2,043.1415926xstep;
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e_sc=factorse_sc;
e_rho=(~1.0)*factor¥e_rho;
e_vec={~1.0)*factor*e_vec;
e_coul=(~1.0)*factor*e_coul;
e_int=factorxe_int;

/*The center of mass energy%/
ecnn=17.2/pow({(double) (B),0.2);

/*The sum of the meson energies*/
temp2=e_sc+e_vect+e_rhote_coul;

/#The total binding energy per baryon and the radiix/
e_total=(e_total+e_sc+e_vect+e_rho+e_coul-ecm)/(B);
radius_p=sqrt((double) (radius_p/np*2.0xfactor)-\

(3.0+hbarc*hbarc) /(8.0*bmass* (B) *ecm)) ;
radius_n=sqrt(radius_n/nn*2.0%factor);
radius_l=sqrt(radius_1/nl+2. 0*factor);

/*Qutput results*/

for (n=0;n<=(nstates—1);n++) {
printf ("%3d\t%5.1£\t%6.3f\n" ,n,ispinln],eigeninl);
}

printf ("Energy/Nucleon(MeV/N)=%f \n",e_total);

printf ("RP(fm)=Yf RN(fm)=%f RL(fm)=%f \n",radius_p,radius_mn,\
radius_1);

printf ("Sum eigenvalues=%f\n",templ);

printf ("Energy from mesons=%f\n",temp2);

fprintf (spel,"E/B(MeV/N)=\t%f\n",e_total);

fprintf (spel,"RP(fm)=\t%f\n" ,radius_p);

fprintf (spel,"RN(fm)=\t%f\n",radius_n);

fprintf (spel,"RL(fm)=\t%f\n" ,radius_1);

fclose(out) ;
fclose(wavef) ;

[ Patricle~hole Splitting--—--———m-==—- 74
Afactor[0]= - coupling[0]/(4%3.14156927);

Afactor[1]= coupling[1]/(4%3.1415927);
Afactor[2)= coupling[2]/(4%3.1415927);
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/*Factor accounting for the 6~j symbols and reduced matrix elements+*/
Bfactor=128/15;

/*Get the nucleon fields for a neutron holex/
for(i=0;i<=(ngrid-1);i++) {
GN[il=diracgl[il;
FN[il=diracf[il;
}

/*Get the nucleon fields for a proton holex/
/*for (i=0;i<=(ngrid-1);i++) {
GN[i]=GN1[i];
FN[i]=FN1[i];
b

XNOYm = Xnorma;+/

/*Get the lambda fields*/
for (i=0;i<=(ngrid-1);i++) {
GL[i]=diracgl[il;
FL[il=diracf1{i]:
b

/*The 2-D radial integralx/
Cl = 0.0;
factor = gvlam*Afactor[1]*mass[1]/(znorm+znorml);
for(i=0;i<=(ngrid-1);i++) {
A1=B1=0.0;
for(j=0;j<=i~1;j++) {
D1[j] = (cosh(massl[1]#x[j1)-sinh(massl[1]*x[j1)/\
(massi[11*x[j1))/(mass11]*x[j1);
D2[i] = (1+1/(massl[11*x[i1))*exp(-mass1[1]*x[i1)/\
(magsl[1)*x[il);
A1l = A1 + D1[j] * D2[i] * GN[il *» FN[j] * GL[i] #* FL[j];
+
for(j=i+1;j<(ngrid-1);j++) {
D1[i] = (cosh(massl[1]#*x[i])-sinh(massl[11*x[i])/\
(massl[1]*x[i]1))/(massl[1]*x[il);
D2[jl = (1+1/(massl(1l*x[j1))*exp(-massl[1]*x[j1)/\
(mass1(11*x[j]1);
Bl = Bl + D1[i] * D2[j1 * GN[i] = FN[jl * GL[i] * FL[jl;
}
C1 = C1 + gtep * step * (Al + Bl);
+
SVECTOR = factor * C1;
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printf ("Vector contribution to the splitting = %f\n",SVECTOR);

+
[H o END OF PROGRAM —=wmmomrom oo meme oy
J e FUNCT LONS oo e o

float k(int state,float *energy,double *kappa,float #scalar,\
float *vector,float *pu3,float x,float gn,float fn,\
int forg,double M) {
float b,e;
float temporal(2]1={0.0,0.0};
float temp=0,temp_s8c,temp_v,temp?,tenp_u3;
int index;

b=+ (kappatstate) /x;
e=+ (energy+state);

index=(int) (x/step) ;

temp2=x/step-index;

if (temp2<=0.5) {
temp_sc=* (scalar+index) ;
temp_v=*(vectort+index) ;
temp_u3=* (pud+index) ;

+

else {
temp._s8c=0.5%(*(scalar+index)+x(scalar+index+1));
temp_v=0.5% (¥ (vector+index)+* (vector+index+1));
temp_u3=0.5% (* (pu3+index)++* (pu3+index+1));

}

temporal[0]=(e+2.*M~temp_sc-temp_v)/hbarc;
temporal [1]=(temp_v-e-temp_sc)/hbarc;

switch (forg) {

cage 0: temp=temporal[forgl+fn-bxgn+(temp_u3/hbarc)*gn;
break;

case 1: temp=temporal [forg]*gn+bkfn-(temp_u3/hbarc)s*fn;
break;

}

return temp;
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/ S e o 50 v e e 1 4 S At L 150 T 7 s 0 S 0 5 9 7 e P 5 A S i S e 0 5 e 1 e 0 3 ‘)"
void half (float #*y,float =*yh) {
int i;
float facl=-0.0625,fac2=0, 5625,

for (i=2;i<=(ngrid-2);i++) {
¥ (yhti)=facls (x(y+i-2)+# (y+it+1)) +fack (¢ (y+i) +x (y+i-1));
}

*(yht1)=(3. *x (ky) 6% (% (y+1) )~ (x(y+2))) /8.

*(yhtngrid-1)=(3. % (x(y+ngrid-1) ) +6 . * (x (y+ngrid-1-1) ) -\
(*(y+ngrid-3)))/8.;

*yh=(xy) /4. ;

void integr_messon(float *gin,float *gout,float *field,\
double *mass,double *pg,float *density,int £) {
int 1,7;
float fin[ngrid],fout[ngrid],fhingrid];
float xil[ngrid],xzi2[ngridl;
float xi20,xx;
float #*pyh,*pyl,*py2;

pyh=fh;

pyl=fin;

py2=£fout;

for (i=0;i<=(ngrid-1);i++) {
finlil=(x(gin+i))*(*(density+i));
fout [i]=(*(gout+i))* (*(density+i));

+

half (pyl,pyh);

xil[0]=(4. xfu[0]+£in[0])/6.;

for (i=1;i<=(ngrid-1);i++) {
zilli]=xit[i~-1]+(finli~1]+4 . «fh[il+finli])/6.;

b

half (py2,pyh);

xi2[ngrid-1]=(4.+#fh[ngrid-1]+fout[ngrid-11)/6.;
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for (i=ngrid-2;i>=0;i=--) {
xi2{il=xi2[i+1]1+(fout[i+1]+4.#th[i+1]+fout{il)/6.;
¥
xi20=x12[0]+ (4. *fh [0]+Ffout[0]) /6. ;

/*divide by the mass of the meson. Check for the photon first. ./
if (£==3)
xx=0. ;
else
xx=(-1.)/(2.+(x(mass+£)));
x120=xi20%x%;
for (j=0;j<=(ngrid-1);j++) {
* (field+j)=(*x(gout+j))* (xi1[jl+xi20)+(x(gin+j))*xi2[j];
*(field+j)=(x(field+j))#stepshbarck (* (pg+f));

}
}
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The following is an example of an input file for the constants:

mass-scalar 520.3
mass-vector 782.0

gs2 110.16
gv2 162.88
gr2 89.936
etal 0.64992
eta? 0.10975
kapa3 3.2467
kapa4 0.63152
xi0 2.6416
etarho 0.3901
alphal 1.7234
alpha2 ~-1.5798
fv 0.6936
frho 3.8476
betas -0.09328
betav ~0.45964
gslam 0.87195
gvlam 0.97873
fvl ~0.885
mul 0.0774
mu2 0.344
mu3 0.0774
swtch 1.0

7

0. 2. -1. 0.5 -40.0 1si/2 2.
0. 4. -2. 0.5 1.0  1p3/2 3.
0. 2. 1. 0.5 1.0 1pi/2 3.
0. 2. -1. -0.5 -40.0 1s1/2 2.
0. 4. -2. -0.5 1.0  1p3/2 3.
0. 1. 1. =-0.5 1.0  1pi/2 3.
1. 1. =-1. 0.0 ~20.0 1si/2 3.
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An example of an output file containing the eigenvalues and total energy per baryon

for a selected nucleus (the G of YO) is given by the following:

Single particle energy levels for 016L

gstate ispin Energy

0 0.5
1 0.8
2 0.5
3 -0.5
4 ~0.5
5 -0.5b
6 0.0
E/B(MeV/N)
RP (fm)= 2.
RN (fm)= 2.
RL(fm)= 2.
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~33.428
-15.984
-9.163
~40.074
-21.800
~14.921
-12.331
= ~7.795342
714467
509983
707781

{
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