
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

2004 

Application of effective field theory to the study of hypernuclei Application of effective field theory to the study of hypernuclei 

Jeffrey William McIntire 
College of William & Mary - Arts & Sciences 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

Recommended Citation Recommended Citation 
McIntire, Jeffrey William, "Application of effective field theory to the study of hypernuclei" (2004). 
Dissertations, Theses, and Masters Projects. Paper 1539623439. 
https://dx.doi.org/doi:10.21220/s2-5gjr-j337 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M 
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-5gjr-j337
mailto:scholarworks@wm.edu


Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

AI=»PI ](;AT·I·o·N·. Oq J:i"F.,.[~'E·~'C.~1"'I\rl·~, ·r~,[t:71I D rri·rY,(·)·Iy'.r T() ~'J.,l·I·J:i' • . . .J . • . . . . ... L .J . . • . .J .. .. rJ . ..~. .. . .. ·:u:e~ .\, r. . . ... . .:..~ 

STUDY OF HYPERNUCLBI 

A Disflert:ation 

Prestmtcd to 

'I'he t'aculty of the Department of Physics 

The College of vViHiam and !vlary in Virginia 

In Partial F'ulfillment 

Of the Requirements for the Degree of 

Doctor of Philosophy 

by 

Jdfroy William JVIcintire 

2004 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

This dissmtation is submitted in partial fulfillment of 

the reqnircnwnts for the degree of 

Doctor of Philosophy 

Approved, Febrmuy 2004 

Carl E. Ca,rlson 

Mare Sher 

ii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

DEDICATION 

This work is dedicated to my family. 

iii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CONTENTS 

ACKNOWLIDDG.MENTS 

!JIST OF TABLES . . 

LIST OF FIGURES . . . . 

ABSTRACT. 

CHAPTER 

1 Introduction 

l.l Baekground ..... 

1.2 Effective Field Theory Approach . 

1.:3 Strange Superheavy Nuclei 

1.4 Single A-hypernuclei 

1.5 s1/ 2-splittings . 

1.6 Previous \tVork . 

1.7 New Contributions in this Thesis 

2 Effective Field Theory . . . 

~~ Density J:tunctional Theory 

4 Strange Superheavy Nudei 

l.ntroduetion ....... . 4.1 

·1.2 Theory of Strange Snperheavy N uelei 

l\.fethodolo~~Y . . . . . . 

Itcsnlts and Discussion 

iv 

vii 

X 

xiv 

XV 

2 

:) 

13 

21 

27 

~so 

:35 

:38 

41 

52 

56 

56 

58 

()8 

72 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

5 Single A-hypernudei 84 

5.1 Introduction . . . . 

5.2 Theoretical D0seription of Single /\-hypernuclei . 

5.:3 Parameter Fits 

6 s1;2-splittings . . . 97 

().1 Introduction .... 

(}.2 'I'heory of s1; 2-doublcLs 

0.3 Results and Discuss.i.on of the s1; 2-splittings . 

7 Conclusion .. 110 

APPENDIX A 
Definitions and Conventions . . . . . . . . . . . . . . . . . . . . . . 114 

APPENDIX B 
Ordering the Terms in the Lagrangian .. 119 

B.l Naive Dimensional Analysis .. . lU) 

B.2 Relativistic Mean Field T'heory . 121 

APPENDIX C 
Hartree Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 

APPENDIX D 
Analysis of All Possible Terms in the A-lagrangian . . . . . . . . 128 

APPENDIX E 
Check on the Consistency of the Experimental Data . . . . . . . 131 

APPENDIX F 
Particle-Hole Matrix Elements .. 134 

F.l Particle-Hole Operators .. . 1:34 

F.2 Tarmn-Dancoff i\pproximation . 1::3() 

F~~8 }~.e<luetioit ()f tlu~ 13asis . 1::39 

APPENDIX G 
Relativ(;1 Position of Uw Splitting . . . . . . . . . . . . . . . . . . . 14·4 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIXH 
Cancellation. of Tern1s in tlu~ Splitting . . . . . . . . . . . . . . . . 147 

APPENDIX I 
For1nulae for the Splittings . . . . . . . . . . . . . . . . . . . . . . 149 

APPENDIX J 
Code ..... 

BIBLIOGRAPHY 

vrrA ......... . 

Vl 

162 

199 

205 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ACKNO\VLEDGMENTS 

I would like to express rny gratitude to Dr. J. D. VValedm, nndnr vdwse super
vision this proj(~et was conducted, for his guidance, patience, nnd support during 
the tenure of this work. 

l \vould like to thank ])r. M. A. Huertas for th.e early use of a. progr<:t.m he wrote 
to solve the relativistic Hartree equations. 

1 wouJd <tlso like to thank Dr. B. D. Serot for his careful reading and helpful 
comments on much of this manuscript. 

vii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

LIST OF TABLES 

l.l The qu<.trks are listed here with their respcctiv(' baryon numl)CT (B), 
charge (q) iu unit.s of e, strangeness (S), total isosp.in (T), and mass 
(M) in GeV [4_]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

1.2 'The nudeons and hyperons a,n~ listed here with their respective bary

on number (B), charge (Q) in 11.nits of C1 strangeness (S), total isc>spin 
(1'), mass (M) in MeV, and eonst.ittwnt valence quark content (qqq) 
[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

1.3 Pararnetcr sets relevant to this work [1, 2]. Notke that th.e sets cor
respond to different levels of truncation in the FST lagrangian and 

that the naturalness assumption essentially holds. 

1.4 Calculated values of the bulk and surface energy (in MeV) for nu-

. 17 

cleon matter (N = Z) using the parameter sets in Table 1 .3. The 
experimental va.lucs are also included [5]. . . . . . . . . . . . . . . . . 25 

1.5 Values of the surface energy (in MeV) for matter composed of :\r's 

and 3's using the NLC parameter set from 'I~iblc 1.:3 for two values 
of gss/gs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

1.6 s1; 2-splittings, and some excited states, are shown with their respec

tive configurations, level orderings, and doublet magnitudes. Here 

LL denotes lower level and l6cl is in keN. . . . . . . . . . . . . . . . . :34 

2.1 Parameter sets developed by FST' [1, 2]. Notice that the sets corn~
spond to di!Tercnt levels of truneation in their lagrangian. . . . . . . . 51 

4.1 The nucleons and hyperons arn listed hero vvi tb their rcspectiv(~ charge 
(Q) in units of e, strangeness (S), total iso!:>pin (T'), mass (.J\!1) in ~,·IeV, 

and constituent valence quark content ( qqq) [·l]. . . . . . . . . . . . . 57 

VHI 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

4.2 Parameter sets tal-::cn from ll, 2]. ms and mv IH'(! in lVIeV. gsA i~ 

fit to r<!prodtHX' the binding cnnrgy of a single A in nudear mat.U~r. . (H) 

4.~~ Vah.ws of tltr~ binding ew~rgy (in fv1eV) of a single 2 illlHJdear matter 
for various 3 coupling ratios and the paran1eter set Nl;(:. . . . . . . . 70 

4.4 Calculated equilibrium. values of the B'ermi momenturn (ln fm 1
), ef.. 

fective mass, and the BEn (in MeV) for inlinite nucleon rnatter <.1re 
shown using the coupling sets in Table 4.2. These numbers reproch1<:e 
the results in [2, 201. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:5 

4.5 Ca.leulated ('quilibrium values of the Fermi morr1cntum (in fm 1), ef
fective mass, n.nd the llE0 (in lVIeV) for infinite rnatter are shmvn 
using the coupl.ing sets NLC and Ql in 'H1,blc 4 .. 2 and a range of values 
f.() · I · . ·-( .·3· :. r gs:~ gs. · · · · · · · · · · · · · · . · · · · · · · .. · · · · · · · · 

4.6 Calculated equilibrium values of the Fermi momenta (in fnf· 1), effec
tive mass, and the BE0 (in MeV) for infinite AEN matter are slwwn 
using the coupling sets NLC and QJ in T~1.ble 4.2 and a range of values 
for gp;a/ gs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

4.7 Results of finite nucleon matter for the L2, NLC, and Ql paranwtcr 
sets and various radii. Calculations with L2 used 9 iterations on the 
vector field while 5 were used with NLC and q L T'he radii are in 
ms·1, the chemical potential is in frn··l, and E/B- M is in lVIeV. . . . 77 

4.8 Caleulated values of the surface energy (in MeV) for nucleon matter 
using the parameter sets in Table ,1.2. The experimental value is also 
included [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 

4.9 Results for finite 3N matter for the NLC parameter set and a number 
of radii. These eakulations used 9 iterations on the vector field. 
The radii are in ms 1

, the chemical potential is in units of M, and 
E/B- MA is in MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . 80 

4.10 Values of the surface energy (in l\·1eV) for SN matter using the NLC 
parameter set from Table 4.2. . . . . . . . . . . . . . . . . . . . . . . 80 

lX 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

0.1 The exp<~rinwnt~tl data used .in the paranwter fits. 'fhis includes 
six GS binding energies (JD/B), one spin-orbit splitting of the p

states (Eso E1 Plf:l -·· }:;lPli/~), and. three ;\ :+-p slwll exei tation en
ergies (Esp ::::: E,P:l; 2 -- EJ!:l

11
J. 'fhe calculated values of these ol):-::eJv .. 

abies, using the l\'12 set, are also shown. The values are given in 
l\~1e·v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 

5.2 The five pan:uneter sets constructed here. Note that all the con3tlmts 

are natural and that these sets represent different levels of sophisti-· 
catiou in the A·-lagrangian. . . . . . . . . . . . . . . . . . . . . . . . . 91 

5.a The x~! values for both the unweighted and weighted fits, UvV ami W 

respectively, relative to the x2 of the Ml set. Here x2 is deterrnined 

from J~)q. (5.Hl) using 10 pieces of data. . . . . . . . . . . . . . . . . . Hl 

().] s1; 2-splittings, and sorne excited states, are shown with th.eir rcspec

tiw eonfigurationH, level orderings, and doublet rna.gnitudcs. Here 
.LL denotes lmver level and jb"cj is in lwV ................. lOG 

C.l Sonw exa.m.plcs of different states and their respective qu.antun1 num-
bers. . ................................... 125 

X 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

LIST OF FIGlJRES 

1.1 Qualitative behavior of the strong coupling pa.ram.eter, o 3 , vs. Q2
. 

Here q2 (in GcV2 ) is a uwasure of the energy scl'lk [G]. . . . . . . . () 

1.2 Cornparison between experimental and caJc:ulated total binding cner-
gies for Sn-isotopes using the G2 pa.rameter set. Courtesy of Hu.ert.as 

[21]. . 20 

1.3 Level speetrum of isotones of J~~Sn82 differing by one proton. Conr-
tesy of Huertas [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

1.4 Plot ofthc baryon density ng(r) == Pn(r)/lVr3 (solid line) and the dfec·· 

tivc mass Ivi*(r)jl\t (dashed line) vs. r (in units of mi-) 1
) for a nucleus 

composed of nndeons and easeades with ro == 15/ms, B = W4.918, 
and gss)gs = 1 subject to the eonstraints Q ::::"~: 0 and ISI/B = 1. 
These results were obtained using the NLC pararnetcr set. . . . . . 28 

1.5 Binding energy vs. B--if:s for matter composed of equal numbm·s of 

cascades and nudeons for the NLC coupling set. The upper and lo>'FCr 
curves correspond to g82/g8 = 0.$J5 and 1 respectively. The surface 

energy is just the slope of these lines. . . . . . . . . . . . . . .. . . . . 28 

1.6 Results of the unwcighted 3-para.metcr fit, a.Iong with Fig. 1.7, to a 

series of experimental data. The G2 parameter set of FST is used for 
both the nudcon and meson seetors [1]. Note that the expcrimenLal 
splitting between the excited states in ;\60 is effectively :;;;ero. . . :n 

1. 7 Results of the unweighted :3-parameter fit, along with Fig. l.6l to a 

serir~s of experimental dHLa. The G2 parnrrwt.er set of FST' is used 

for both the nueleon and nwson seetors [ll rrhn ealcnlated hinding 

erwrgy of a single A in infinite nuclear maLLer is also shoVI:n. 

1.8 Graph of particle-hole splittings for .~2 B and :~6N and their rcspecti ve 
level orderings. In addition to the GSs, the fin;t, ca.lrula.ted ex<:ited 
state in .~GN is a1Ho included. The siuglc-part:icle calculations vrere 

;j] 

eonducted using the a-parameter lit. ............ ' .. ' . . :.1:.$ 

xi 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

1.9 Partide-hole splitting for the GS of ;fiP 17 . Tlw level ordering~; and 
splitt.iug;s aw Hho\vn for both t.heory a.nd experiment. Here tJH' FST 
paranwt.er s<'i, G2 was used [1]. . . . . . . . . . . . . . . . . . . . . . . ::H 

4.1 Convergence of tho baryon nurnbcr and bin.ding energy per baryon 

(boxes ami circles respectively) after 9 iterations for an ordina.r,y nu-

cleus of r0 = 15/ms, N ~':" Z: and using the I,2 parameter set. . . . . . G9 

4.2 Binding energy per baryon for infinite nuclear matter with N == Z as 

a function of Fermi wave rmmber. These results are for the coupling 

sets NLC (solid line) and Ql (dashed line). . . . . . . . . . . . . . . 72 

4.:3 Binding energies per baryon for infinite easeade-nudeon matter com

puted relative to isolated lambdas (the lowest cnnrgy free baryon st.ate 

for ISI/B = 1) as a. function of the Fermi wave number using .l\'LC. 

J\iotr. the left hand intercept is (!VI=:+ lVlN)/2 -- .I\1A. The solid, long 

dashed, and short dashed lines correspond to gs::./gs =" 1.0, 0.9[1, and 
0.9 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 'i4 

~1.4 The baryon density nn(r) = fJn(r)j:l\'la (solid line) and effcdive mnss 

M*(r)/M (dashed line) vs. r (in units of m5 1
) for a.n ordinary finite 

nudeus with N = Z, B = 188.87, ro = 20/rns, and using the NLC 
parameter set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7G 

4.G Fit to the calculated SElVfF for ordinary nudea.r matter \Vith N = Z 

and the NLC couplings. The surface energy is given by the slope of 

the curve, here a2 = 18.0 MeV. . . . . . . . . . . . . . . . . . . . . . 77 

4.G The baryon density nn(r) = PB(r)/M3 (solid line) and effective mass 

M*(r)/M (dashed line) vs. r (in units of mf;- 1
) for a nudcus com

posed of nudoons and cascades with r0 = 15/ms, B = 164.92 1 and 

gs=:/gs = 1.0 subject to the constraints q = 0 and ISI/B = L 'fhese 
results were obtained using the NLC parameter set. . . . . . . . . . . 7U 

4.7 Binding energy vs. B ~ 1 /:l for matter corn posed of equal nurnhers of 

cascades and nucleons for tho NLJC: coupling; snt:. The upper and lower 
turves correspond to g82h~s 0.95 and 1.0 respectively. 'fhe surface 

energy is just the slope of these lines. . . . . . . . . . . . . . . . . . . 79 

xii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

t1.8 J_,inear fit to the surfi:l.1:f~ energy, a2, vs. scalar cascade eoupliug rnt.io 

(gss/gs) for eascad(Hmdeon matter as~cnnning Q ::::::: 0, ISI/B c:." I, and 
neglectmg A's. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 

4.H Baryon densities for a fiuit.t~ system of nucleons, cascades, and lamb

das with B = 146.25 for the NLC coupling ::;et and g82 jg8 := 1.0 .. The 
total baryon density, the total density of cascades awl nucleons, and 

the larn.bda. dm1sity are shown by the solid, long dashed, and. short 
dashed eurves re:'lpectivdy. Notice tha.t the lambda density is finite 
only interior to the surface. . . . . . . . . . . . . . . . . . . . . . . . 81 

5.1 Results of the unwdgh.ted ::~··parameter fit, along with Fig. a 
series of oxperimcntaJ data. The G2 parameter set of FS'I' .is usPd for 
both the nudeou and. meson sector::; [J]. . . . . . . . . . . . . . . . . . !)2 

5.2 Results of the unweighted ;~-parameter fit, along ·with Fig. 5.1: to a 
series of experimental data .. The G2 parameter set of l''ST is used 
for both the nucleon and meson sectors [1]. The eakula.ted binding 
energy of a single A in infinite nuclear matter is also shown. 92 

5.3 Plot of th.e proton, neutron, a.Hd A densities for the GS of ;t\f. Here 
the M2 parameter set \vas used. . . . . . . . . . . . . . . . . . 94 

5.4 .Plot of the proton, neutron, and A densities for the GS of ~°Ca. Here 
the M2 parameter set; \Vas used. . . . . . . . . . . . . . . . . . . 94 

5.5 Radial ·wave functions of the A in the (1s1; 2) state for the GS of:~°Ca. 
Here the M2 parameter set was used. . . . . . . . . . . . . . . . . . . U5 

6.1 Gra.ph of GS particle-hole splittings and their respective level onlm·

ings for ~60 and ~8 Si. The single-particle cakula.tions \vere eondudcd 
using the M2 para.meter set; and are plotted alongside the experimen

tal values [8, 10]. Notice that tl1e splittings lie within tb.e experinwnt.a.l 
error bars in both cases. . . . . . . . . . . . . . . . . . . . . . . . . . 106 

t.i.2 Gra.ph of GS partide-lwl(: splittings and tl1eir respcttiVf~ level order .. 

ings for ~Z2 S and ~lCa. '['he Hingle--part.icle ca.lcnlaUons -vvere conducted 
using the M2 parameter soL and. are plot,tl~d a.Iongside the experinH:n-

1<11 values [8, !Jj. Noticr i.ha,t. tbe splittings lie within tlw nxJJerinlCliLal 

error bars in both eases. . . . . . . . . . . . . . . . . . . 101· 

xiii 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

(5.:3 Graph of p:uticlo··holc splitting~:> for ,\2 B aud .~6 N and their respective 
lovel ordr~rings. In addition to the GSs, the first calculated exdtPd 
state in \6N if-J a.lso inclu(kd. 'f'he singh·-partide ealculaUons were 
eondueted using the J\'12 pararneter set. 'Trw experimental v::tlue {(n· 
the GS of ;\2 B is taken fro.rn [107'] ..................... 108 

().4 Pa.rtid<~··hole splitting for the GS of ~~P 17 • Thf~ l(>.Vd orderings nnd 
splitt;ings are shown for both thnory and experiment. Here the G2 
pa,ramcter fi<'t of FST was ased [1]. . .................. 10!) 

F~J Fit, using Eq. (E.5), to the experimental GSs of single A-hypernuclei 
given in Table G.l. Here 10 terms have been retained. In the limit 
that H -> oo, we acquire the result U0 = -·:30.5G IVIe V. . . . . . . .. 1:32 

XlV 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ABSTRACT 

Fnrnstahl, Serot, and 'Dmg have developed a methodology for eonst.rueting an 
effective lagrangian for the nndcar rnany-body systi~tn which coutains the underlying 
symmetries of QCD. Density }i'unctiona.l Theory is used as a thcoretieal justifica
tion for tho relativistic Hartree (Kohn-Sham.) equations derived from this effective 
lagrangian. In the present work, this approach is extended to the rcgioH of non)>Jero 
strangeness in two applications. First, this proecdnrc is applied to strang<~: neutral, 
superheavy systems and the surface properties of these nuclei are extracted. Sec
ond, single-partidn statns in A-h.ypernudci are investigated, the effective lagrangian 
is determined to various levels of truncation, and where appropriate, ground-state 
pa.rticlo-hole splittings are ealcula.ted. 
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CHAPTER 1 

Introduction 

quantum Ch.rornodymarnies (QCD) is th.e underlying tlwory of the strong in-

teradion. Unfortunately, QCD is not directly solvable at low-energy. One solution 

to this quamla.ry is to use an efFective field theory to represent QCD. In this energy 

regime, confinement traps the qua.r.ks in hadrons. Thus h.adrons, and not qnarks, are 

the desired degrees of freedom. As a result, effcetive theories using hadrons as de-

grees of freedom, so-called ha.dronie field theories, have been developed to solve the 

nuelear many-body problem. In tlw present work, we consider one of thesf~ theories, 

proposed by Furnstahl, Serot., and 'I'ang (FST) [1, 2]. The framework t.lwy d.evised 

directly incorporates all of the follovving: special relativity, quantum mechanics, the 

nonlinear realization of spontaneously broken ehiral symmetry, and the underlying 

symmetry structure of QCD. Furthermore: density functional theory (DFT) pro-

vi des a theoretieal justification [or this approach [2, :.3]. Therefore, it is of im;en'::;t to 

extend this methodology, with all its intrinsic strengths, to the stra.ngew~ss sector. 

'Ihe focus of this 'vork is the nxpa.usion of tho effective lield theory approaeh 

of FS'I' to hypernuclei. 'Two spneifi.c applieations are eonside['()d here. First., \Ve ns(~ 

tltis framework to model the SHrfacn Ht:rlleture and tak:ula.i.e Uw surfac(~ energy of 
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large, nlmt,raJ, self-bound, m11lti-stn:utgc systmns. Second, \~rc~ eo.u.struct <) gerwral 

lagrangian, emtsistent with the rnethodology of .FS'I', for ti1J~ addition a single 

A to the theory. This lagrangian is tJwn u.sed to takulatc tJt.e ground-state (GS) 

energies (i.e. ehmuical potentials), densities, and single·p::lrti(·le spectra of single A-

hypcrnuclei. Another property of this elass of uuelei that is considered here, and of 

particular interest, is the GS A-partide-·nudeon-hole doubl<~t splitting. 

This introduction is a self-contained ov(~rview that includes some relnvant back-

ground and a brief discuRsion of the specific topics eonsid.ered in this thesis. As part 

of this overvie,v, the main results of this work are also presented. Subsequent chap-

Lcrs will diseuss in more deUtil the problems of interest here, the metJt.odology used 

to taekle these problems, and the results of this rf!Scarch. 

1.1 Background 

In modern physics phenomenology: the fundamental forces of nature are mod-

cled by particle exchange. The four known forces are the strong nudcar force, the 

weak nudear force, the electromagnetic force, and gravity. The particles whose ex-

change simulate these forees, referred to here as gauge bosons, are the gluon, the W 1' 

and Z0 , the photon, and the graviton respectively.' The gluons are exchanged by 

strongly interacting partidcs referred to as quarks, which are elassified as fermions. 2 

There are six known varieties, or flavors, of quarks: u (up), d (down), s (str<tnge), 

e (eharm), b (bottom), and t (top). They are listed in Table 1.1 with so1ne of tJwir 

propcrti~s, which we now discuss. Notice that all of the quarks have ba.ryon mtmbcr 

B = 1/3; as WP will see later objects calh~d baryons arc r~omposed of tlu\~~~ quarks 

1 A boson is a pmtidc that ob<\YS Bose-Einstein stat;istics, or Lherc is no re~Jtriction on the 
unmber of particles that. ca.11 occupy a givt'll Bt.a.te. It has an intrinsic angular nwmentmn, or spin, 
in integer units of h. 

2 A fermion is a particle that ohnys .Fl~nni-Dirac statistks, or them is tlw rei:ltrietiuH rhat only 
on<: particle ean oecupy a givcm st,ate. It has spin in half integer units of h. 
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TABLE 1.1: The quarks are list.cd here with their resp<:etive baryon number (B), chargn 
(Q) in units of e, strangeness (S), total isospin (T), and m.ass (:M.) in Gt'V [4]. 

and therefore ltave B :::c" 1. quarks are also ehanu.·teri:~;ed by their dli.trge (Ql: a 

property upon which the electromagnetic force acts. StrangnrwHs (S) is a property 

intrinsic to only the s quark; it; iF> deHned sueh that S = ·-1 for an s quark and 

S = +1 for an s antiquark. The total isospin (T) denotes a quantity which aecounts 

for the relative similarity in t.hc rna.sses of the u and d quarks. 'I'hese properties (B, 

Q, S, T) are all conserved qu<tntities in the stron.g interaction; that is to say they 

do not ch.ange during a rnaction. In <lddition, the quarks carry an intrinsie strong 

interaction "charge," known as color, of which there are three types. 

Lets us now return to the discussion of the four forces. Gravity is too \veak and 

long range to have any signifieant effect in nuclear physics. The weak nuclear force 

and the electromagnetic force do have some impact on nuclear physics; however~ by 

fa.r the most important force governing the structure and dynamics of nudei is the 

strong foreo.:1 As a result, a brief discussion of the strong interaction is 1.;varranted. 

This force has the following properties [5]: 

o it is attractive, as ean be seen from the faet thaL the uudci are hound: 

• it is short range, effeetive out t.o only a f(·w fm (Hrn 10 1
:
3crn); 

-----
:J~l'he t:ke1;romagnetie force will be irH:orporau:d later into thn theory. T'hc woa.k fore'' is .larg;c.ly 

neglected in thiH work as it will ha.m llttlc cffi.:ct on I he phenomena of iuterust. 
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• jt, is repulsive a.t shmt distances ( O.f) frn); 

e it is spii.t·-dnpendent; 

The undcrl~ying theory that describes this force is qeD. (lCD models the interaction 

of partieles \Vith eol.or thnrge, quarks and gluows, and js constructed to be synnnetric 

under color exchange. This theory is charaeterhwd hy a single coupling parameteL 

as. 'I'he bnha;vior of this paranwter is shown in Fig. LL Noticn that. as is small at 

high-energy, or equivalently~ ohort di:::;ta.nces; this allows the QCD lagrnngian to be 

solved by a perturba.tive expansion in n 8 . However, at low-energy, or long distauecs, 

the strong coupling parameter beeornes large. Thus, a perturbative expnnHion in as 

will not converge at nuclear physics energy scales. Recall that the gl11ons carry eolor, 

and as a result, can eoupl(• to each other. 1t is this fi),ct that leads to asymptotic 

freedom at high-energy. Conversely, at sufficiently low-energy, a prfH.:nss referred to 

as confinement occurs in which tolor is completely screened by the strong interaction. 

Here the quarks and gluons beeome "confined" in objcets known as hadrons. There 

are two main configurations in which hadrons oecur: three quark states ( qqq), known 

as baryons, and quark-anUquark pairs ( q(i), called mesons:~ ,.'i 'I'hese hadrons ahvays 

occur in color singlets, i.e. the eolor charges of the constituent quarks caned resulting 

in a net neutral color eharge. As a result of confinement, the realm of low-energy 

nuclear physics is domin<~oted not by quarks and gluons, but by hadrons and the 

interaetions between therr1. 

1There arc other possible configurations, such as the roeently discovered penta,quark (qqqqci), 
but they are beyond thn scope of this work. 

''Hero we arc con;;idering only the valencn quark Btrueture of the hadrons. T'he vHh'nce quarks 
are the objects wh:kh eontributt~ all of thn quantum m.1rnhers to the ha.drons in the quark model. 
H(JWcver, these valence quarks are com:imi(msly nxchanging gluons, vdlich can cunp.l<' to othnr 
gluons or becmlw quarlHtntiquark pairs. Quarks formed in this tnanner are n'ferrnd Lo as Hna 
quarks. Although the sea quarks and p;lnons make up a large portion of the rnass of a hwlron, dw 
contributions of these partidcs are not considnred here. 
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FIG. 1.1: Qualitative behavior of the strong coupling r.mra.meter, as, vs. Q2 . Here Q2 

(in GeV2) is a measure of the erwrg,J! seale [61. 

Baryons can be classified based on Uwir eonsLituent valence quark cont.ent. Two 

groups of im portanec to the current work arc nucleons <Hid hyperons. N udeons occur 

in two varieties: protons (uud) and neutrons (ndd). It is these objects which make 

up the composition of ordinary nudci. Notice that they are c:mnposcd solely of u 

and d quarks. Other systems composed only of u and d quarks exist, such as the 

.6_++ (uuu); however, these systems deca;y rapidly via the strong interaction (strong 

interaction timescales arc t'V 10" 2:1s). The other group of baryons that is interest 

here is the hyperons. If a baryon contains one or more s qua,rks, it is referred 

to as a hyperon. Ex<:"'mples of this type of baryon are the following: . .'\ ( nds), :.:: . .0 

( uss), and n ( sss). As previously mentioned, the s quark has an intrim;ic property 

ealled strangeness, as can bn seen in Table l.L As this is a conserved quantity in 

the stJrong interaction, only a \'\•eak interaction will convert tlw s qnark Lo another 
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'TABLB 1.2: The nndeons and hyperons arc listed here wit,h their respective bar.von 
number (B), eha.rge (Q) ill units of e, Btrangoness (S), total iBospin (T'), mas::; (M.) in 
MeV, and eonst;itwcnt valence quark content. (qqq) [~ij. 

7 

flavor.t; 'fhereli:m:, the A will decay on weak interaction timescalcs ("'-' Hl 8s). 7 In 

Table l.2, the nucleons and hyperons arc listed with some of their properties. As 

a result, if one operates on the l':ltrong interaction timescale, then nudei containing 

nudcons and hyperons, or hypernudei, exist and are stable. 

Hypcrnuc:lei present an interesting test case in nuclear physics. The effective-

ness of models that were developed to reproduce the properties of ordinary nuclei 

can be probed by their extension to hypernudci. As it turns out, hypernudear 

physics is in many ways both novel and pu:;,zlin.g. For instance, hypernudoi intro

duce an additional degree of freedom (strangeness) to nuclear physics. In the case 

of S = -l physics, the entire range of possible states for the hyperon may be oceu-

pied as restrictions from the Pauli exclusion principle no longer apply. In addition, 

some other interesting fNttures of S :-:::: -1 physics that differ form ordinary S 0 

physics indude: ''anornalous binding energies, a vanishing spin-orbit force, signHi-

cant three-body f(m:e effects, grmu1d-state spin inversion, and pu:~,'loling Honrnesortic 

"~"'""""',.__, __ .... ,.,., .. _ .. ~,~· .... ...,..,~,.,,""""..-"'""''~"'··''"~·~· -
6This iH due to the fact that straJtgeness is also a. cow,;ervcd quantity in both thn cl{~ctrornagnet.i.c 

:force and gravity. 
7 A;; w.ill bn discussed later, other hypm·ons may a.lso decay on weak 'interaction thnn~;eaJcs. 
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weak decays [7].'' The study of hy pentuclei also allow:-; one to inwstip;H.tc nl.l aspects 

of the interaction between a hyperon ~ewd a nudeou, an. important extem>ion of our 

knowledge of th.e interaction l.>etween two nucleons. Furthernwn!, large, tmtUistrange 

systems may potentially exist, due to the far:t that n.egativdy c:harged hyperons cn,u 

bn induded to offset the Coulomb repulsion of the protons vvhile tlw systnm remains 

stable a.gainF::t strong deeay. Experim.entally, the aeeessibility of hypcrrnH~Iea.r states 

is becoming easier and t.he resolution possible on these states is improving. The old 

meth.od of (r:-"1·, K+) and (K-, ·r.· ) reactions [8, n, 10] is now being suprlkrnented 

by eleetroproduction (r, e'K 1 ) [11, 12] and gamma-ray speet.roseopy [1:3!. As a re-

sult, hypernndf~i are an excellent proving ground for testing models design.ed for the 

S = 0 seetor. The present thesis examines the successful extension of onn particular 

theory, developed by FST ['!., 2], to the strangeness sector. 

In order to rnodel nudear systems, \\'C use a mathernatieal framework knuwn as 

quantum field theory (QFT). QFT is a reformulation of quanturn mechanicR in terrns 

offields that retains all ofthe general principles ofqnanturn mechanics: microscopic 

causality, Lorentz inva,riance, and electromagnetic gauge invaria.nee !CL 14]. 'rhc 

mathematical object referred to as a field defines the value of a physical quantity 

at all points in a given space. For the purposes of this work, the hadrons will be 

described in terms of fields and our approach will incorporate the gcnent.l structure 

of QFT into an effective field theory. 

Now we digress shortly to discuss t'\vo important Rymmetrics of the strong in

teraction: isospin and dtiral syrnm.ctry. vVe begin by stating Noether's theorem: 

"F'or every continuous transformation of the field funr~tions and coordi11ates 

which leaves t.he action und1m1g<~d, there is a definite combination of Ute 

.Held functions and thoir derivatives which is conserved (i.e. a constant 

Lirne) [G].'' 
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In other words, for any continuout> symnwtry of a syr-::tmn, there nxist,s a t:onespoml--

ing (~onserved current in that systern, or vice verRa. A current iR com:>r·rved if it 

satisfleH the relation. 
() . . 

:::)-JJ.I = () 
ox,. 

( l.l) 

Here we use the eonventions of [5].8 If we consider the nucleons in Tal>lc 1.2, we 

notiec that their masses <tre very similar.\'~ This is taken as evidence that tlw proton 

and neutron are two manifestations of the same particle, the nucleon [l ·1]. Now we 

define the nucleon field as a, two component column vector 

N= (:) 
(1.2) 

where p and n represent the proton and neutron fields respectively. If one .:'\Ssunws 

that the masses of the proton and neutron are ex<tctly equal, or mv = mll, then a 

transformation of N a.ecording to the elements of a special unitary group in two 

dimensions, or SU(2), leaves the action (i.e. the four dimensional integra.[ over the 

lagrangian density) unchanged [6]. This transformation is given by 

I ( ], N ·---+ N = e:tp -
2 

(1.3) 

where fare the Pauli matrices and i/ is an arbitrary constant vector. This symmetry 

is known as isospin. Noether's theorem tells us that as isospin is a good symmetry 

of the strong interaction, there is a corresponding tonserved isospin current 

. k - .. ,, 1 . " 
.J, ::::-.::.: 'f,N"Y,.-rkN I···· 

fJ- '""'2 . (Vl) 

!l]n t.his work, we define the conventions x1, (x, it), "(1, ('iit,tl, and 11. ;;=. c ::co L 'l'ho gamma 
matrlcos are hennitiaJl, 1}; "'fw and satisfy the relation /'1,At11 + Ai••~t14 2<51~~.,. Ahio, wt· define the 
qLHtntity 15 ~~~ At2)':!"Y·l· Note that rnpcated Greek indices are r:mnnn<:d frotn l to 4. 

9 Also not.ke in Table 1.2 that the )..:;'~or 3';:; each hav<: ncar.ly ident.ieal masses, i.e. rn:,zv 2:' m2 .. 
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\vhkh in this ease is a Lorcn.t~~, veetor .. At the Q(;J) lagran~c.~ian level~ St)(:Z) ism;pin 

symmetry diet.ates that m1J md. The suct~eHs of this sym.rnetry is due largely t;o 

the fact that mu 9:! md. rrrlis flavor HyrnrnPtry ean be extenckd to SU(:5) and beyond. 

as good au assumption as SU(2) [14). This ea.n be seen from the rnass difference 

between the u and s quarks, shown in Table 1.1. 

As it turns out, Lhere is also a partially conserved axial vector cun·ent: 

(1.5) 

If we assume for now fh.at. .JZ5 is exactly conserved and invokn Noether':'S theorem 

again, the corresponding continuous synuuetry of the strong interaction is known as 

chiraJ symmetry. The transformation that ehara.eteri~es this 1:1yuunctry is 

(1.6) 

Assuming that chiral symmetry is exaet, the full symmetry group is 11ow written as 

SU(2)L SU(2)R. The corresponding transformation is 

(1.7) 

where i/1 and /h are independent and 

(1.8) 

The P.1: are projection operators; they project out right or left:. handed heliclty staLes 

respectivuly. H.elieity defines the aJignment of spill and momentum of a particle. 
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However, chiral s_ynnnetry is exact only in the lim.it of vt.\nishing picm rnass, or 

(l .9) 

lt turns out that a1though r:hiral synunetry is only an approximate syrnnwt.ry, it is a 

very good one [G], as the pion nwss, m1f ~ 1,10 .l'v1eV, is sm.aJl on the pa,rticlf~ physics 

mass scale. On the QCD lagrangian level, d1iral symmetry forces all t!Je quarks to 

be massless, i.e. m 11 = md "·-= ••. = 0. Again, this is not sueh a bad a&'lnmption if we 

consider the u and d quarks only. However, it betomes increasingly unre<:1Jistie as 

the heavier qua.rks are included. 

The imposition of both isospin and ehiral symmetry on the theory dictates that 

the baryon and pion masses must be :~;ero. In order to produce both a non;'lero baryon 

and pion nu~oss: a process .known as symmetry breaking is employed. Thrrc· arc two 

types of symmetry breaking: spontaneous and explieit. Spontaneous ::-::ymrnetry 

breaking occurs when the underlying lagrangian is invariant under thr~ symmetry 

transformation, yet develops a non:~;ero vac:uum expectation value, or 

(£)vac i= 0 (1.10) 

It should also be mentioned that when a symmetry is spontaneously broken, mass-

less bosons are left bchind. 10 Explicit symmetry breaking is when the lagrangian 

contains a small term which is not invariant under the symmetry transforma,tion. 

In the case of ehiral syrnrnetry, both forms of breaking are required; the baryon and 

pion masses are generated through spontaneous and explicit symmetry bn.•aking re-

spedively [fJ, 6}. 1t is wort.h noting tha,t, as a n•snlt of explicit symrnetr,y breaking) 

10Thes<' arc known as Go.ldstonc bosuns. T'hi; number of (.J:oldRtone bosom; crcJ.t.cd it> alv:ays 
n2 - l for a Hymmetry SU(n). 
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the axial vector current is no longer t(mserv<xl, or [51 

(L 11) 

In QCD, the finite quark ma.sses nxplidUy break the chiral symmetry. 

Now let us return to the diseussion of the strong nuclear force. It was established 

that for low-energy nuelea.r physics, hadrons arn the pa.rtklcs observed in na,t;ure and 

as a result, the appropriate degrees of freedom. 'I'hercforc~ in this cuerg.v regime we 

model the strong force as meson exehange between baryons; this is a di.rect analogy 

to the situation in QCD where f;J,:lu.ons are exchanged between quarks. 'I'lw generic 

form of the potential (known as a Yukawa potential) for an exchanged meson of 

mass m is 
tY2 f~~·<·cYflf' 

\ '( ) ,., .. r = -·-.---.. 
4n r 

(1.12) 

where g is the strength of the interaction [6]. 'l'hc exponential dominates as r 

increases; this gives the potential a short range. The main characteristics of the 

strong force, the medium-range at.traetion and the short-range repuls.ion, can be 

qualitatively reproduced by the sum of Yukawa scalar and vector meson exchange, 

or 

(1 J.a) 

where rnt~ and mv arc the respective masses of the mesons whose coupling strengths 

are g8 and gv respectively [5]. One pion exchange gives rise t.o a.n additional potential 

similar in form to a Yukawa [13]. Pion and multi-pion exchange are ultimately 

responsible for the long-·rangc, attractive part of the strong interaction. 

Thus, in this picture the continuous exchange of rnesons is what hinds the 

baryons in nuclei. Given that; tlw du.l.racteristic energy scale in nuclear physics is 

about, 1 GeV, or the nmsH of the nudeon: the rdevant degrx·e::; of freedorn are the 
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low-lying hallrons. Tn the case of ordinary nudd this r:on·<~~ponds to th1~ nueleon, 

the pion, and other light IllCSOllS. rrlW addition of hyperons allOWn OIW t.n ext,end 

this model t;o hypentudeL 

1.2 Effective Field Theory Approach 

Now we turn to the topie of effective Held theories. As we have seen, (~CD is not 

direetly solvable at low-energy. One solution to this problem is to usc an effective 

field theory to simulate the effects of qeD in this energy regime. An ef!(>ctive fldd 

theory is a framework in which an underlying theory is represented by an nxpam:i.ion 

in a small paramcter(s) relevant to the energy seale under consideration. Effective 

fidel theories take advantage of t\VO important facts [2]: 

1. QFT is an. efficient wa,y to para.meterizc the obscrvn.bles of a systern consistent 

with analyticity, unitarity, causality, duster decomposition, and symmetries; 

2. most. problems in modern physies have a chanteteristie length, or energy, seale. 

Only those degrees of freedom that can be excited at this energy seale, or can 

resolve this characteristic length, are relevant [16]. 

In the regime of low-energy nudcar physics, the appropriate degrees freedom 

are the low-lying hadrons. The hadrons are then introduced into the theory as 

quantum fields, from which the efFective lagrangian is constructed. Heavim· degrees 

of freedom are included In the form of coupling constants attadwd to the interaction 

terms of lighter fields. 'I'hesc constants can be fit to experimental data, from whieh 

relations.hips between different ohservables in the dynarnieal regime of intr·rest ean 

].)e derived [2]. Vl/e now eonsid.er a specific effective field Lhcnry dnvc~lotwd by FST. 

FST' approach the nuclear many-body problmn by de1.·eloping a self.consistent 

framework for constructing an efff'dive lagrangian. Their rnetlwd.ology irWf..JI'porates 
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Ute principles of both quantum uwchanic:s and spcda.l relativity a::> wei! as the un-

derlying synm1etries of C~CD [1]. /\..s t.his is a luw-energy theory, the appropriate low 

lying hadrons are tu:>ed as d(•grees of freedom. Spontaneously broken ehirnl syrrnnctry 

is realiz:cd nonlinearly through a system of the following three fields [1]: 

• Goldstone pion fields, ?r(x1t) = ~T · ·ff, whidt ent(~r through the eombillntions 

v,t = 

and 

where /r; is the pion decay constant; 

• an isodonblet nucleon field, N; 

=vi 
, fL 

• and an isovcctor-vector rho meson field, p1t(xl/) = &7 ·if. 

(LlA) 

(1.16) 

Next, the following pair of isoscalar ehiral singlets simulate the nudeon-nudeon 

interaction: 

e a, scalar field, qJ, which reproduces the mcdiunH·a.rJge attraction of the strong 

interaction; 

• and a veetor field, V11 , whieh E>imula.tes the short·-range nuclear repulsion. 

Finally, a photon field, A1,, d<~seribes th.c elcctromag;n.etk strueture of 1mdni. 

As all possible combinations of thnse fields (:onsistent with this framcvvork arr~ 

inel uded, in printiple, this lagrangian contains an iufinite nlmil)er of term.s. ln order 

to make any 1nnaning;ful calculation, the lagrangian must be truncated i!l smne ·way. 
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To accornp]h;h this, FST group the tenns according to a. systen1 itrvolYing both naive 

dimensional analysis (NDA) ami relativistic m.cau field theory (R.MFT), 1 NDA is 

a framc\ov'ork that allows one to identify all the dinwnsiona.l f:tctors assodat:ed vvith 

specific com.ponents in any given ternL Furtherrnore, NDA tells liS that ()nee all tJw 

dimensional factors are absorbed in a given term, only a dimensionl.ess constant of 

0(1) remains [17, 18]. This assumption is known as "naturaJness." R!\J states 

tJ1at. in the limit; of appropriately large baryon density, expectaJiion values can replace 

the soun~es and classical fields ea,n rephtce t.he meson fields [2, 5]. These rnean nwson 

fields, while large, are small with. respect t.o the ehiral symmetry breaking seale M, 

or 
<P \V 1 
M ' l\il "' 3; 

l;;p 1 
-- t"'\..1-

M 4 
(1.17) 

where the scaled mean fields are <P = g8¢Jo and W = gv V0• Here kF is the F'enni 

\Vtwc number and represenLs the lase filled momentum state of a collection of non

intc~ra.ctiug identical fcnnions in nuclear mattcr. 12 As a result, NDA. and HJ\:IFT 

provide a formalism in which higher order terms are, in general, successively sm.allcr; 

this allows for a systematic expansion in the effective lagrangian. One added benellt 

is that the lagrangian can now be truncated in a rneaningfnl fashion. FST investigate 

various levels of sophistication in their lagrangian. The fermion sector of their fi.tll 

uSe<) appendix B for a more detailed discussion of ND.A and RMFT. 
12The spatial variations of the meson 6dds and baryon denHities are observed to ou:ur on the 

seale of the nudcar surface [3]. kF provideR a eharaeteristie inverse length seale for the nuclear 
surface. As a result, we ean now employ tho relation v oc kp. 
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lagrangia.n de.n.sity is show11 here [1] 

(1.18) 

where vve have defined 

(1.19) 

v1w, p1_u,, a.nd F1u., are sirnilarly defined f(>r v11., p10 aud Ap rospeetively. 'f meson 

sector of the fu.ll FST lagrangian is [1] 

(1.20) 

M, mv, and mp are taken to be the physieal masses of the nudcon, c,v-mc~sou, and 

p-mcson respectively. The remaining parameters are free and are listed in 'Dlble 1.:3. 

FST now utilize relativistic Hartree theory to reduce t.he rnany-bod.Y Held equa-

tions derived from theBe lagra.ngian.s to singl.e-partide equatim1s for Dirar: uudeous 

moving in the condensed dassical meson tields.n H<lTtr(~C theory assurnnH that. ead1 

p<utide nwves in a single--particle potential. 'I' his potential Is represent.ati vc of t.ho 

average inten1.ction of the particle with all of the other partid<~R [19]. Tlwn, the 

l:lThe Dirac fidd and sources arc then obtained from a ~11pcrpo~ition of thnse solotionfi. 
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NLC 
m~7Kr--· 2 o" ~~·r8 . .iJd, I 0.5~.3:3;):3 OS37:35 F(tstJ~tl(J 

- gs/41T 
_,~~,....,.,...,_~-··~ 

2 0.8:-3821 0.77607 0.81024 0.8:352:! 
,_..;.-,---- --:r 1-"--.- " ~~.....---~~--

gv ;.:1-Jr 1.09814 0.9111·1 1.02125 1.01[>()() 
gp/hr 

- r----·,.-·-"-"""-""'"' 
2 0.64271 0.68!)12 0.702()1 0.75467 

r'--- --1---·--- ·-· ... ·-..-....-.. ~--"""~·-· """'"'~--~~~~~~--
r)l ;3 0.64092 
'f/2 4 0.1091'5 

r-------·-· 
l.Ul95 

r--· 
/'i,;) 3 l.G582 ;).24fJ7 
l'i~4 4 -7.:3928 -·6.G045 ().(!:3152 

·-- !-- ~-~·--_,.,..._.._.,,.... 

(o ·1 2.()41(} 
-~- ·--·--

'l]p 3 0.39Cll 
~-~ -~ 

Cl:] 5 1.723:1 
(Y.2 5 -1.5798 

fv/4 3 0.1734 
-- ... 

/p/4 :3 1.03;32 0.9G19 
f3s 4 -0.10689 -0.09328 
;3v 4 -0.26545 -0.45964 

TABLB 1.3: Parameter sets rekvant to this work [1, 2]. Notice that the sets eorre:Hpond to 
different levels of truncation in the FST lagrangian and that the naturalness aRsnmption 
essentially holds. 
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Enler-·Lagrange equation is mmd to determine t.he Pquation of motion for the baryon 

field (the Dirac equation). Due to the fact that this equation is linear in clu; baryon 

field (and beeause the meson fields arc dasskal), one may seek nonnnl mode solu-

tions of the form 1/!(xtt) ::;; 1/{x)e:q{iEt} (20). 14 

'To illustrate the Hartrec formalism, consider a. simple single··particle hami.lto-

ni<tn 

(L2l) 

which satisfies the l)irae equation 

(1.22) 

where E11 is the energy eigenvalue. The solution to Eq. (1.22) is 

Here ( 1 is a two component spinor and t is 1/2 (-1/2) for protons (neutrons). The 

<I)t;;m are the spin spherical harmonics. Substituting this wave function into the Dirac 

equation, we aequire the follmving Hartreo equations 

[En- gvVo(r) + l'vi- gs~&o(r)] Fn(r) = 0 (1.24) 

[ () -· !5:] Fn(r) +·IE~.,.---· gvVo(r) - 1\ll + gsdlo(r)] Gn(r) = 0 Dr r · · · '· ' · · · (1.25) 

This system. of equ.ations enn readily be extended to ineorpora,tc the higher order 

cff<~ets included in the full FST lagrangian. 

-1'1T'he framework of H:.1.rtree thoury is dii>cussed ln app('Wlix C. 
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In order to s<Jlve those Hartree ('(tUHt.ions, the fi·ee parn.rneters in tlw lagrangiau 

must he fixed. Th<'se constants are determined by leat:>t.-squa.res fits to expndmnutal 

data from ordinary tmdr~i along the valley of stability. 'These fits aJ·e eonducted at 

various levels of trunea.tion in tbe underlying la.grangia.n [ll 'l'he result.:-i of these 

parameter fits are s.hown in Table l.::L Note that the addition of still higher order 

tenns to the full FST lagrangian has little or no positive effect on the cakulations 

[1]. Once the values of tlH.~se parmneters are k.nown, this lagrnn.gian ean used to 

predict other propert.ies of ordinary nuclei. One example which demonstrates the 

predictive power of this method is its appliea.tion V> the study of nuel.cd far from 

stability [16, 21]. Thh; is illustr<i.t.ed in part by Figs. 1.2 and 1.3. 

To justifY this approach, we direetly employ density frmctio1ml theory (DF'l'). 

DFT is a theoretical frarnework vdtidl allows cnw to calculate the GS properties 

of many-body systems without earrying around all the baggage cmttainecl in the 

many-particle wave functions [22]. 'fwo points are of interest here: 

• first, the GS expectation value of any observable is a unique functiom>tl of the 

exact GS density; moreover, if the expectation value of the hamiltonian i.s 

considered as a functional of the density, the exact GS density can be 

determined by n1inimiv,ing the energy functional; 

e second, the exaet GS sealar and vec:tor densities, energy, ::1.nd chemical potential 

for the fully interacting many-fermion system can be reproduced by a collection 

of (qnasi) fermions rn.oving in appropriately defined loeal, elassical fiehls [:J). 

'l,his result follows from the Kohn-.Sham analysis [22]. Therefore, instead of having 

to solve the rnany-body eqnations with qm1ntun1 iields, one only nec~ds to solve 

a serie8 of self-consistent, sh1gle- partide equations with chi$Sieal fields. ln other 

words, [(olm-Shnm theory is for.mally equ.ivalent to rdat.ivistie Hartrce thx~ory. Once 

the exaet energy functional is detennined, in principle all many-body c!feets are 
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included. Consequently, the problern is now rt~ducud to ddennining rhc correct, 

form of the energy fundiotHtl 1 whkh follows from the <tppropriato lagrangian. 'I'hc 

full interacting lagrangian of FS'r gives a snit*lble energy fu.uetional from whkh the 

relativistic Hai'trrt\C (Kohn-Sham) eqnations f~)liow nssentially as field equations. AR 

a result, DFT provides an underlying th('Orotical justifieation for this approa.ch. 15 

We now turn our attention to applying the :::tbovc framework to the spceific 

problems considen~d in tJtis thesis. 

1.3 Strange Superheavy Nuclei 

'I'he smni-ernpirieaJ mass form.nla (S.El\1F) is a useful expression for the average 

energy of a nucleus in the GS. It uses the liquid drop nJ.odel to sim.ulate thJ~ nw:lcus 

[5]. The SEJVIF is given by 

.E 1 
-=a 1 -1 ··an B ' '-,t.B1 

(1.26) 

where E is the total cneq.,ry, Z is the nu.rnber of protons, and ..\ = + 1 for odd-odd, 

0 for odd-even, and -1 for even-even nuel(~i. 16 The first term in Eq. (1.2(i) is the 

bulk term, which is essentially the binding energy of infinite nudea.r n1atter. The 

second term is the surface term; the nucleons at the sud~1c:e only feel an attraction 

from nucleons in the interior, which gives rise to a surfaee energy. 'I'he erH~rgy of the 

Coulomb interaction of th<~ Z protons is represented by the third tenn in (1.26). 

The f<mrth term, tlw syrnrnetry energy, re::mlt:s from the fact that nuclei prefer to 

have N = Z. The final term is the pairing energy; nuclei like to have even numlH~rs 

1:'The scalar and veetor rtl()SOn fields here pla.y the role of rdativistk Kohn--Sham potential::; 
\3, 22). 

JGOdd-odd refers to a mtdnu:-; with an odd number of both prnton:o and neutrons. (kkl"cven ami 
even-<'vcn are similarly ddinod. 
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of tlw same particles. The constants a 1, ••• fl{; are d<~t;ermined by titLing !.be SE.tliTF 

to experimental data; they a.ro given in [5]. 

An inspection of this SEMF reveals tJ1at the single largest lirnit.ing factor in the 

crnation of very large nudei is th.e Con lorn b rcpulsioH. One way to overcome this 

barrier is to include hyperons in nuclei [2:3, 24, 2G]. Consider the hyperons N\ >..;(l,O), 

and . 'rhe lightest hyperon, the A, has a. negative binding energy in nuclear 

rnatter (2G] and decays \veakly into non~strange matter. The ).~'s appear to have 

a repulsive nuclear potential [27, 28, 2tfl. Next in rnass are th(• experimental 

evidene<.~ suggests that the binding energy of a singleS in nuclear matter i.s negative 

[30, :n, :32]. In addition, the reaction 

(1.27) 

beeomcs energetically favorable for some eritical nurnber of .A's in the nuelcar medi

um [23]. As a result, we expect that for large systems the addition of i\.'1:1 nnd is 

desirable, but the inclusion of I:'s would have little or no positive effect. Therefore 

we consider matter composed solely of N's, A's, and S's. The inclusion the 's 

offsets the Coulomb repulsion of the protons; this potentially allows for the treation 

of arbitrarily large nuclei by diminishing the importance of the Coulomb term in 

the SEMF. fib minimi;t,e the effect of the Coulomb term we investigate thi::; class of 

nuclei sueh that q = 0. These nudei are stable against strong decay. Consequently, 

they deeay on weak intcrar:tion timescales, which enhances the potential for their 

detection. The purpose of this section. of the thesis is to mod(•l tll(' surfac(~ struetm·e, 

and acquire the surfaee energy from the calculated SEivlF, for th.is class of nudei. 

Tc1 aceomplish this, we nmst solve U1e nu.dear many-body problem. l.'sing the 

framework ofFS'I', we eonstntd a rudimentary effective lagrangian d<msit.y invariant 

under SU(2)L SC1(2)R symmetry using hadrons as degrees of frecdorn ['I, G]. For 
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the rmrposes of this calculation: we rm1s.idm· Hirnplc scalar a.ud neutral vceLor meson 

exchange exd usivdy. Kneping only the lowest. order tnrms and a pair of nonlirwar 

scalar Jield self-couplings, Uw reRnlting lagrangian density is 

(L28) 

This lagrangian densitv is then converted into a, hamiltonian density. vdtich in this 
(. "'"" •; o,. I 

problem is equivalent to the energy density. The effec:tivn nudeon mass, 

(1.29) 

is determined by solving the scalar field equation self-consistently at each point 

[5, 20]. The coupling constants an: fit to reproduce experimental values of various 

ordinary nudei; spedfically the parameter sets NLC and Ql, which include the 

nonlinear scalar self-couplings, are used [1, 2]. 17 

In order t,o calibrate our approach, we calculate the GS densities of ordinary 

finite nuclei with N = Z. To model finite nuclei we must retain the sphcrieally 

symmetric spatial variations of the meson fields in the lagrangian density: shown by 

·r 1 (~ 1 )2 1 (""'ll )2 o'- = - 2 v <;>o + 2 v •o (1.30) 

'I'hc source terms are <'valuated using a .local density approximation; at every point 

within the rnJdeus the bH.ryons are assumed to be a local F'ermi gas with staLes filled 

up to A:F(r). \Ve acquire the scalar moan field equation by minimi:-dng the (m<'rgy 

funetiona.l wit.h respeet to the sealar field; a sim.ilar approach yidds the vector rncan 

·----·----~-------
17 'J'heso parameter sets is listed in Table L3. 
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field equation [20]. 'l'l1e resulting meson equations are given by the f(Jllovviug: 

where the baryon and sca.lar densities are 

Pn(r) ·--

Ps(r) 

respectively (with the degeneracy 1 = '1 for nuclear n1atter). 

24 

( 1.:3!) 

(1.;~2) 

The non.linea.r sealar field equation is solved as a 1luitc difference equation uti-

lizing a shooting method. T'ho boundary conditions are determined by noting that 

the~ baryon density vanishes at the surface in this <:lpproach, and then solving the 

linear scalar field equation outside [20]. However; these boundary eond.itions are ex-

act only in the linear ease; a correction term must be added to cmnpensak f(Jr the 

effects of nonlinear tern.ts in the scalar field equation. Also, it was initially assumed 

(as in [20]) that beeause the derivative term in the vector field equation is small 

compared to the veetor meson rnass, it can he ncgleetcd. However, due to the fact 

that the vector field energy is so large, iteration on the vector fidd h.C\s a signifieant 

etfeet on the eakulations. The tota.l energy is minirni:~ocd with respect to the local 

Fermi wave number, while keeping fixed the bar,yon number, .B. 'I'he eouRtraint of 

fixed B is incorporated with a Lagrange multiplier, which is the ehernica! potential. 

'The resulting constraint eqnat;ion is 
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TABLE 1A: Calc11latod values of the bulk and surface energy (in MeV) for nudcon 
matter (N Z) using the parmnetor sets in Table L~. Tho cxperirnmrtal values an' also 
ind.uded [5]. 

and states thn.t the chemical potential rnust be constant throughout the rmdeus (20]. 

This equation is solved for kF(r) with given [(Po(r), V0(r)] at each point in space at 

each step in the calculation. 

This approach is more sophisticated than a simple Thomas-Fermi method be-

cause we self-consistently solve for the sou.ree terms at each point. \tVlth the cal-

eulatcd binding energy and baryon number for finite nudei as \Vell as the binding 

energy of infinite mH:lear matter, we fit the second term in the SE.M F, tlH' surface 

energy, for nuclear matter. As can be seen in Table 1.4, the cakulaiA~d a2 is in 

good agreement with the known experimental va.lue [5], particularly for the more 

sophisticated FST parameter sets NLC and q1: thereby validating our approach. 

Now we add in hyperons; however, existing experimental dat<t requires Lhat t;he 

following assumptions be made: 

1. we couple universally to the conserved baryon and isovector eurrents; 

2. a different scalar coupling is used for each baryon. The scalar coupling for the 

A's is fit sueh that the binding Pnergy of a single A in nuelear rnatter is -28 

MeV [26]. However flu~ binding energy of a single 2 is relatively uncertain, 

values a,ppearing in the literature range\ from ·"'10 t,o -J.'l MeV. Hoemtt 

experim.ents with light nudei sugp;f~St that the value lies on the less bound side 

of this rang0. [31, :321; however, it may be more deeply bound for heav:y nndei 
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O.Hfi 5fi.G4 

TABLg 1.5: Values of the surfaee erwrgy (in .1V1<N) lbr matter composed of N's and 3's 
using the .NLC parameter set fron1 Ta.ble 1.:3 for two values of 

[:3:3] .. As a result, a number of values for the :3 seala.r coupling are inw'Rt.igated; 

a. we continue to utitii'Je the parameter set.s for ordinary m1c.lear .matter, \LC and 

Ql, to generate the m1deon and non-linear scalar eouplings. 

The addition of new baryons in thn theory only rnquires the inclusion of new 

source terms in the effective lagrangian density. \Ve investigate a specific sector of 

the theory by imposing the restrictions 

(1.:36) 

and 

ISI/B = 1 

where S is the total stra.ngencss.'l 8 Note that the minimum. binding energy ahvays 

occurs such that there are equal numbers of n and p (and consequently equal num-

hers of 3° and ); therdore the symmetry term in the SEM.F is rendered irrelevant. 

Since there is only one ehernieal potential, the reactions 

(1.:38) 

and 

Hi\Ve al;;o astlUm(' an av<~ra,gCJ cascade mass. 
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a.re both in. Pqnilibrium. Agnin) using DFT' to JH()dei finite n11clei, \VC now lnv<~stignt(\ 

the role of the first t.wo tenus in the C<':l.leulated SF0TvlF, shown h,v 

(lAO) 

.Also, by determiuing the baryon density, we al:qnire the stru(:ture of t.lu~ surface. 

An example of the snrface structure J()r a fi.nite nucleus eomposed of equalnn.rnbcrs 

of (n, p, 2:0,3 ) is shown in Fig. 1.4. Once a number of finite nuclei this type 

have been calculated, t.hcir binding energy is plotted vs. B Jf:3: Ute re8ulting graph 

is given in .Fig. 1.5. The surfa.ee energy, a2 , is then extracted using a fit of the form 

in Eq. (1.40) and is given in T;lblc 1.[). H was found that the addition A's had 

little effeet on the results. 

In addition, <tn investigation of the possible hyperon-hyperon interaction is 

conducted by coupling a <1> meson to the conserved strangeness current.; we allow 

the <£:> coupling to increase unLil the many-body systen1 is no longer bot1nd in order 

to find the maximum allowable value of this coupling. 

The work described in this section has been published [:34]. 

1.4 Single A-hypernuclei 

In chapter 5 of this thesis, the approach developed by FST is expa.nded to the 

particular region of the strangeness sector tha.t eorresponds to A-hypcrnudei with 

S = 1 and T = 0. To this end, \ve include a singlf\ isosealar i\ field in tlw theory.HJ 

Now, a A-lagrangian is constructed as an additional tontribution to the full interaet-

WThe ~: is not explicitly inducled in th(' prcs<mt cakulation. An idea or the pot-.~;;ibk i.rnpact of 
A 1: mixing can be taken frorn [35]; here tlw small deviation of hyp('rnudcar m<~gnf;tic morwmt:::; 
from the Schmidt values is dis<:ussed as possible evid1•nce for this type of mix.ing. h should be 
mentioned that if ouc view:> Llw seala.r tneson as a two-pion resonance, then the }-~ enters hnplidtly 
as an iuterrncd:iate state in our formalism. 
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ing effective lagrangian of FS'l', consistent with Lhdr nwUtodology. Since tlte i\ is an 

i.sosc.aJar, it does not couple to either a single Yukawa pion or tlw rh.o Hl(~Hmt .. Fnr· 

therrnore, we confine our theory to Lhc mesons aln·ady induded:;10 ; thus1 Uw mPson 

lagrangian is unaltered. Note that in tlJis approach, the rnajorit;y of the complexity 

is contained within Uw meson sector of tlte lagrangian. Jn the literature, it has be('n 

proposed that a tensor coupling to the vector tlcld be indnded to repn>dncc the 

correct experiuwntal spin-orbit splitting of thn p-statcs in A .. hyperrt.uch•i ~:3(), :37]. 

As it turns out, such a tenn is irt fact a nat,ural extension of our lagrangian in this 

framework. Additional higher order tnrrns are also included to better approximatn 

the exact energy functional. The full interacting A-htgrangian used in this work is 

(1.41) 

This system is treated in the same manner as the Hartrec theory discussed previ-

ously. 

Following the methodology of FST', our A-lagrangian eontains a munbcr of free 

parameters. The constants in both the nucleon and meson sectors are taken from the 

FST parameter set G2, shown in Table 1.:3 and eorresponding to their full lagrangian. 

As before~ the rcrnaining uneonstrained parameters must be determinnd; they are 

fixed here via least-squares fits to a series of experimental data: A singk~·~p<:u.tide 

1 1 . l . t I ·1 t . 1 1 11 . t t . f. t l \ [8 (\ ··r 0 ') ··' ·:~ o 1(.l] eve s, spm-or Jl · sp 1; ,mgs, anc H-p s w excr,a ;wns o ~ 1e 1 "~ ,,, . , ,)~\, '"''' !t ..• 

'T'he 1its are conducted at four difl(~reni. lnvels of truncation in the A-In"granginn. 

First, a rudimentary 2-para.rnetor fit (essentially based on the assumptions of the 

20The kaon is not indudcd as a degree of fre<~donl in this work. Th" reason ifi that, as with the 
pion, the kaon has no mean fidd <1:nd dous not dfN:t t}w ll:\1 FT calculations. 
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preceding section) reproduces the GS binding erwrgies \velL but failH to Ni.mulate ni,. 

ther the srnall spin-orbit splitting or s-p shell (~xeitatinn mwrgins. The :Hmrametcr 

.fit., with its tensor eoupling to Uw veetor fidd, (·orreds for the inadequ.a.cy h.t tJw 

spin-orbit splitting while rnaint;aining exeelhmt. agrnement wiLh the GS binding en-

ergies. Unfortunately, the 3·-parameter fit falls short in describing the full s-p shell 

exeitat;ions for the lig').·ht<•st A-hvJwrnudei. a.lthongh bv 4\°Ca the correct <'xdtatiou 
<J I •"-' ,1 ) 

energy is obtained. 'The excellent overall quality of this fit; is illustrated by Figs. L() 

and 1.7. Lastly, the new parameters ineluded in the 5·-pararnetcr and G--paranH:ter 

fits do not rnake a significant irnprovernent. Once these parameters ai'(' fixerl, this 

lagrangian can be used to predict other properties of single A-hypernnd<>i.. 

1.5 s1; 2-splittings 

One other property that is of interest to caleuJat;e here is what we refer to as 

s1; 2-splittings. These are GS partic:le-hole splittings of select single A-h.:n>ernlu:lei, 

such as ;\60, which have a A in the GS and a hole in the last filled nuch~on (proton 

or neutron) shelL The angular momenta of the A and the nucleon hole couple to 

form a multiplet. H>r the GS, the A is in the ls1; 2 sta.te; thus, these multiplets have 

only two states. The si:le of these splittings is determined by the difference of two 

particle-hole matrix elements [19]. These particle-hole matrix clernents are sums 

of Dirac two-body matrix elements. The effective interac:tion utili:;,ed l1erc follovvs 

directly from the effective theory of the preceding discussion. This interaction, to 

lowest order, is just that of sirnple sealar and neutral vector .meson exeh::tnge [41], 
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(1.42) 

This simple Yukaw;:~, spatial dependence i1:> obtained when retardation ii'! neglected. in 

the meson propagators. 'With this exception, the full Lorent,:;r, structure is rnaintained 

[41]. Note th.at as this effective interaction follovvs directly frorn our A-lagrangian, 

there is no isoveetor contribution in the A-N case. In addition, the A and nudcon 

are here distinguishable particles and tlwrefore, no exchange contril:ntti<nJ is required 

in two-bod.y rnatrix clements. Through angular .rnoment.um relations [4G] and som.e 

algebra, the Dirac matrix: elements are reduced to radial Slater intcgrah,. Using 

the Hartree wave functions from the A single-partie!.<~ eakulat.ions to evaluate the 

integrals, these rnaJrix clements, and consequ.ently the s1; 2-splitting, can nmv be 

fully determined. Once the parameters in the A-lagrangian are known, th.e effective 

partielc-hole interaction is eompletcly spf~r:i1ied in this :1pproach. It turns out that 

in the case of s1; 2-splittings in A-hypcnmdei, the only term that contributes to 

the splitting is the spatial part of the vector exchange. It is of interest to note 

that this component vanishes in the sta.tie limit (JVI ->- oo) and hence has no direct 

interpretation in terms of static two-body potentials. This is an interaction between 

two baryon currents.22 The results of our calculations arc shown in Table 1.6. We 

note that the calculated doublet splittings shown in .Figs. 1.6 and 1.7 all within 

the experimental error bars on the GS binding energies. Predictions are made for 

s1; 2-splittings to be measured in an upcoming high-resolution ( e, r'I<:+) experiment ;c.tt 

21 Tlw retention of higher diagrams in the em'<:ti ve in1era.etion, particularly those including the 
tensor mnpling to th<' A, is left for future work. Also, it is worth not.ing that while thn lmon 
makes no contribution at the mnan fidd level, kaon cxchangn may play a. role :in tho dfective 
interaction. Son1c idea of thn rdativn eontrfbution of ka.on exchange can be obtained from the 
Nijmeg<'n potentials 142, 4a, 44]. An invnstigation of the effect of Im,on exdtang;o tm tJw sl/:r 
Hplit.tings in dfeet.ivt' field tJH·ory itl also left to fut;tn·c work. · 

22 An analog of !'.hi~ cnrrcnt·ntrront intenu.~tion in the elcetromag;net;i(: ntst~ is M1::illcr scat.t:.erinJ!,; 
the spatial components of the currents vanish in the noJH'<~l<nivistic limit [H]. 
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FIG. 1.8: Graph of partieh.hole splittings for ~2B and ~0N and their respective level 
orderings. In addition to tho GSs, tho first ealculated excited state ln ,\6 N is also indnded. 
The singk-pa.rtide caleulatiom; were couduetcd using the 3-parametcr fit. 

Jefferson National Laboratory; these doublets are shmvn in Fig. L8. Non-reJ.ativistie 

calculations of similar particle-hole splittings have been carried out [46]. The present 

approach, when applied to ordinary nudei, is far more cmnplieated as isovcet.or 

interactions and exchange contributions are both required [41 ]. As an cxmnple of 

a comparable system in an ordinary mwlcus, and to at least partially calibrate the 

present approach, the calculation of the s1;2-splitting in :fEP17 is included here. The 

result of this calculation is shown in Fig. 1.9. Compar.:J.blc systems for ordinary 

nuclei have also been examined [47]. 

The work dcscri bed in tlu~ last two sections is currently under rcvievv for pub-

lieat.ion [48]. 
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'rABLE 1.6: s1; 2-splittings, and some excited states, arc shown with their re~~pcetive 
configurations, Je·vel orderings, a.nd doublet magnitudes. Here LL denotes loiW'r lcvd 
and l&l is in keV. 
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1.6 Previous Work 

A significant body of work on the .subject of hypemudci exists in Hw literature; 

the following is a short summary of previous research I'(~lcvant to the prcf>(~Ht stud;y. 

'l'o begin with, we review the previons work on the topic nf large, Irnllti .. strange 

hypemudei. Then, the literature relevant to the two main apprm1.ches that have 

been developed for studying hypernudei, effective field theories and Y-I\ potential 

models, is discnssetL 2:1 

At 'I' :::::: 0 and normalnudear densities, the mass dif!'erenee between strange and 

non-strange quarks is less then the Fermi energy of massless non-strange quarks. 

This opened the possibility that strange quark matter composed of n, d, and s 

quarks might be stable against strong decay and perhaps ev(m absolutely stable 

[4f), 50]. These systems arc charaeteri:~,ed by a small eharge fraction. qjB "' 0 

and a large strangeness frad,ion ISI/B ·"' 1. A number of experimental seardws 

for strange matter have been conducted, examples of which are [51, G2, G:3, G4]; 

all have yielded negative results. The plausibility of bound strange nu~tter has 

also been explored in the hadronie sector. Theoretical investigations of multiple 

A-hypernuclei indieate that they are bound and stable against strong deeay. These 

studies produced systems with binding energies as low as -9 MeV corresponding to 

ISI/B "'0.2 [55, 56, 57, 58, 59). 

Gal et al. suggested that discussions of matter composed of n's, p's, and A's 

must also include 2°'s and :=:- 's due t.o the faet that the reaction 

(1A3) 

is energetically favorable for some critical number of A's in the m.H:lear .tncdium 
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[2:3]. 'fhey investigated posi4ibk eor1HguraUons of bulk nu1ttm· in tlw rdativistie 

Inean Held approach, sugger;ting binding energies per baryon as lovv· .w~ 25 !\!leV 

witb a large strangeness frnetion; finite nuclear calcu.lations \vere alsu pcrfon.Jwd 

(24, 27, GO, Gl]. In addition, Gal et al. fit to a generalb;ed SEIVlF using a Fermi 

gas n1.odel [G2, 6:3]. Extrapolating from the ordinary SElVI.F they esLimntc: LlH.• bulk 

and sy.mrnelry t.orrns, whil<' leaving the Coulomb term unchanged. In this work the 

su1-f~:tee energy i.s simply scaled as inversely proportional to the avnrage baryon mass, 

yielding a value of 15 1\'ieV. Stoks and Lee challenged these findings ns.ing a rnany

body theory with baryon-baryon potential models. These potentiaJs '\vere developed 

using an SlJfl) extension of the Nijrnegen soft-eon~ potentials [42, 4:3, 6:i, 05]. In 

contrast, the latter found that this type of matter is only slightly bound, E/B ,.,, -:3 

Mc·V or less [25, GG]. A quark-meson coupling model produeed a minimum binding 

energy of -24.4 MeV with ISI/B"' 1.:)8 [67). The cffeet of adding hyperons has also 

been explored in application to neutron stars [ti8, 6B, 70, 71]. 

Now we shift our focus to the litera.turc relevant to the subject of single A

hypcrnudei. Hadronie effective lagrangians using MFT have been developed to 

describe hypernudei. 'Early models containing only the lowest order terms required 

much weaker meson couplings to the A than to the nucleons t.o achieve suceess 

[72, 7:3], particularly in the weak spin-orbit interaction. Later, it was suggested 

that large meson couplings to the A consistent with SU(:3) were pos/'\ible if the 

lagrangian was extended to indude tensor couplings [36, :37, 74, 75, 7fi, 77, 78]. 

It turns out; that the spin-orbit splitting is very sensitive to the size the ten· 

sor coupling to the vector Held. Some of these models were formulated to include 

additional hyperons. The quark n.1ean fidd model [n;], and a. predeeest->or tit(' quark

meson eoupling n1och~l [SOL couple tlw mesons self-consistently to Lhe qw.u ks within 

the baryons; these formalisms reproduce both t.bc weak spin-orbit interaction and A 

::;ingk-partide levels. A density dependr.nt rdativ.istk hadronic field theory that w:Ots 
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extended to tho stran~enc~ss sector by including m:Cet hyperom.; W<JS also ''·PPLied to 

the case of single A-ltypi~rnuclei [81]. lVloro n~cently, dft~cti.ve th!'orics cons.iNient witJ1 

S0(:3)L SU(:J)H have been constructed. The linear realiza.tion of ehiral synunetry 

in this case was inad.('qu<..lte to fully describe the system [82]; a.s a rmml 1., this ap

proach was reforrmdated into a nonlinear ehiral frarnework [83~ g,f]. Hmn~'>r<•r, those 

systerns require 8 Goldstone bosons. Another study of int.en~Ht uses strangnness 

changing response functions calculated from a random phase approximat-ion to an 

effeetive mean-field lagrangian (85]. Using this approach, the Rpeetm 

~9Ca are analyy;ed and the resnlting GS particle--hole splittings are s1nalL 

The following studies have attempted to fit potentials to the hyperon-nudeon in-· 

teraetion. Experirnental data from (1r' 1
, K+) and. (K·, ?(.) reaction studies has been 

analy?:ed to obtain a. nonlocal and clcnsity-depcndent A-nucleus potential [26, 86]. 

Global optieal potentials for A seattcring off nuclei were developed from nucleon

nucleus Dirac optiertJ potentials and the constituent quark-model values of the 

meson-baryon eoupling constants [87]. The hypernuelear mass dependence of the 

binding energies is reprodueed by a A moving in a vVoods-Sa:xon potential [88]. The 

Nijmegcn group has developed Y-N potentials based on the assumption of SU(3) 

symmetry [42, 6G, 64]; this fixes the baryon-meson eoupling constants from N-N 

scattering fits. Similarly, potentials were constructed by the Jnlieh group assuming 

SU(G) symmetry [89]. G-matrix caJeulations using both the Nijmegen aud Julidt 

models for the free Y-N potential have lH~en applied to hypernuclei [ml, 91, 92]. 

Comparable G-.matrix cakulations with a SU(G) quark-modd baryon-baryon inter

action [H.3] and Skyrmc-likc hypero.rHmdeon potentials [94] hav1~ also been inves

tigated.. However, the G-rnatrix is both energy-deper1dent and nonhermitian; the 

uuita.ry-1nodel-operator approach is an a.tt:mnpt to rd(mnulatc th<• problen1 to nlim

inate tJ1ese drawbacks and is constructed on the basis of an effective interaction 

IHG]. Self-consistent Bruec:kner-.Hnrtree-Foc:k ealeulationH \Vi th a N ijrnegen soft--tore 
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hy peron-nudeon potential are used to detennine propnrt iPs of single and rnu!t:i-

lambda hypernudei in [!Hi, 97]. Other rcel•nt approadwH include micror>copically 

using the .F'ermi hypernetted chain Inethod to obt<\in the A··N <:utd A···N-N potenLialtJ 

[H8, 9H] and us.ing a quark model with one boson exchange potentials [100]. 

1.7 New Contributions in this Thesis 

The cffed ... ive field theory approach of FST, described in the preceding discus-

sion, w:ts developed to model the nudear many-body system. 'I'his theory ha.s the 

intrinsic strength of ineorpora.ting diiw:tly into its framework all of the following: 

t"nicroscopic causality, Lorentz invariance, electromagnetic gauge inva1·ianee, ::;pe-

cia.l relativity, spontaneously broken chiral symmetry, and the uwlcrlying :-;;yrnnwtry 

structure of QCD. In addition, DFT acts as a theoretical justification for this ap-

proach. This methodology represents part of a ongoing effort to understand U1e 

dynamics and structure of the nudeus. '1'heir formalism was dcsigrte<l sp(~dfkally to 

describe nuclei in the valley of stability. Recently, research has been conducted to 

extend this approach outside of this region [Hi, 21, :34]. The present \vork focuses 

on the expansion of this theory to the strangeness scetor. The main contributions 

of this thesis are divided into three sections below. 

1. In chapter ,1, we consider the applieation of the FST approach to strange 

snpcrhcavy nuclei. The new contributions to this subjeet; are: 

• the coupkd, nonlinear fidd cquation.s following frorn Eqs. ( L28) ;md ( 1.:rl) 

- (1.:3G) are solvt•d Immericall,v vvith appropriate bounda.ry eonditions for 

ordinarv finite uudei: ,/ . 

• the resnltinp; baryon dNtsity and scalar field provide a piet11re of the HiY:e 

and shape r>f the surface of ordinary nnd.ei; 
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• the smface mwrgy of ordinary rmdci is extracLi~d by fitting to the ::lE!Vl.F 

an.d is in agreement with experiment. 'fhis suceensfully calibrat.ns the 

approach; 

e easca.de--nudeon (SN) lJJattcr subject to the eonstraints (~ = 0 and 

ISI/13 =: 1 is then similarly studied for a range of 3 scalar eouplings: 

e the determined dcmliUcs again give a pieture of the Riz:e and shape of the 

f. · · t' ~·N ·1 . sur ace o • .:::. . nuc m; 

e the surface energy of SN nudei is also a.equirr•d by fitting to the SFi>MF; 

e with the A scalar coupling fit to experiment, the inclusion of Ns little 

effect on the results. 

2. In ehapter 5, we consider sh1gle A-hypernuclei using the rncthodology FST. 

The following a.re a list of the main nc\v c:ontributions of the presen1 work: 

e a minimalist extension is made to the strangeness S = 1 sector in which 

an isosealar A is included in the full FS'I' effective lagrangian; 

• Huertas' program to solve the relativistic Hartree equations of FST [16] is 

appropriately modified and extended; 

• parameter fits to experimental data are eondueted at various levels of 

truncation in the new A-lagrangian; 

• it is fonnd that the :3-para.meter fit obtains excellent uverall agre<~m.ent with 

the experi.mentaJ dat;;:t; 

• it is also determined that tile indn::;ion of more paramNcrs does not 

signific:ant.ly improve tJH~ iit; 

• the resul.t.ing effective lH,gra.ngian is used to prcdiet: the GS binding r:I~ergies; 

densities, and single-po:utide speetra of other single A-hypernuelci. 
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:3. Chapter () is dndicated to a spt'l~ific phenomena of single 1\-hypernud('i, 

s1; 2-splittings. Th.e now contributions of t.l:w present work are: 

e the cfieetive partide.hole interaction is derived from the previously 

determined effective lagrangian; 

40 

e it; is discovered that the only tenn that contributes t;o fhe s1;:r·split:liugs is 

the spatiaJ part of the ueutraJ vector exchange; 

• it is also found that Lhe GS doublet splittings of all the A--hyperrmdci used 

in the fitting procedure lie wit.hiu current experimenta.l error on tile GS 

binding energies; 

e predicti.011.s are rnado for the s 1; 2-splittings in X2B and .~6N which vvill be 

measured in an upcoming experiment at the Thonws Jefferson National 

Aceelerat;or Facility [11, 12kn 

• the s 1; 2-splitting in a comparable ordinary nucleus :f~P 17 snecr~ssfully 

ealibrates the approa.eh; however, this ealeulation is more eomplict1.rod as 

isovector intcraetions and exchange contributions are now requirnd. 
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CHAPTER 2 

Effective Field Theory 

In this chapter vve review the methodology of FST. T'hf~Y approach t.he nuch.~a.r 

many-body problem by constructing an effective field theory that retains the un-

derlying syrnrnctries of QCD as well as the pri.neiples of both special. relativity and 

quantum meehanies [ 1]. At low-energy, the quarks are confined in hadrons. There-

fore, hadrons are the desired degrees of freedom here and the ones which FST use to 

construet an effective lagrangian. The nonlinea.r realization of spontaneously broken 

chiral symmetry is illustrated through a system of pions, nucleons, and rho mesons. 

They incorporate Goldstone pions through the field 

(2.1) 

where the pion fleld, r.(x1J = ~f ·if, appears to all orderB, T is a. Pauli rnatrix, and 

Irr is the piou-decay constant. Here the pion field enters as the phase ln a chiral 

rotation of the idnntity Inatrix in isospin space [1]. An iHodoublet nudcm1 field is 

included, repn'sentcd by 

(2.2) 

41 
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The upper (lower) compmwnt corresponds to Lhe proton (neutron). Tb aecuunt for 

t.he syrnnH~tr:{ energy in r1uclear tnHtL<>.r, an is<WPttor·"vector rho meson, p1, (x1J) = 

~f · f{, is also included. 

The nonliHC(\r n~ali~ation of chiral symmetry is (lefined by global t.rausforma·· 

Uons, Land li of the subgroups SU(2)r, and SU(2ht rcspeetivdy, such thai. 

L R: ( c 'N') (r:' I 'N~') s, p1,, l' --+ .., , P,., 1 (2.:3) 

where 

e'(x1t.) ·-- I c ( I 'I' • · . l ( )~ ( ) I t K, x11.) 1. (x,.) == 1. Xp .... x 11. { (2.4) 

P~~.(x,J h(x11 )pJ.J~t (x1J (') -) ~ .~..~.~) 

N'(x ) 
j ' fl· ~·---- h(x1~, )N (x11.) (2.(1) 

Eq. (2.4) defines h(x1,) as an implicit function of 7r(x11), L, and R. The transfornw.

tions shown in Eqs. (2.4) - (2.6) are a realization of the ehiral group [1]. 

The following boson fields arc also incorporated into this framework, the first 

two of which. are isoscala.r chiml singletB. A scalar field, r/>, is included to simulate the 

medium-range nudea.r attraction; physically, the rjJ is an efff~etive field that represents 

all of the two-pion (and multi-pion) resonances in the isoscalar-scalar channel. Next, 

they incorporate a neutral vector meson, V 1t, to reproduce the short-range nuclear 

repulsion; this is another dTeet.ivc field corresponding to ail the multi-pion and w 

meson exchanges in the isostalar-vedor channeL Lastly, a photon fidd, Ap, is added 

to take into r:onsideraUon the elcdrmnagr.1etic structure of ntu:lei. 

FST now have the basie building blod<s nec(•ssary to construet. a lagrangian. 

However, as all possible combinations of tlw fields (and their derivatives), (:onsistent . . 

with this fra.nwwork, are .indnded, this lagrangian contains an infinite munber of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

terms. To conduct any mNmingful tc:1Jculation, tllis lagrangiau rweds Lobe tnmeatod 

at sonte level. 'Tids requires that Ut(' ll~nns be organi'Zed is some logical manner; 

FST utili1.e both NDA and RMFT t.o accomplish this. 1 NJJA is a framewox·k which 

identifies all tho dirnen.sional factorH of a given temL Once these dimensiottal factors, 

and some appropria,te counting faet.ors, <ln.~ extracted from a term, thf' remaining 

dimensionless constant; is of 0(1) [17, 18]. This assumption is known ;ls "natural-

ness." RMFT Htates that, when t.he baryon density be1:omes appropriatdy large~ 

the sources and nwsou fields can be replae(~d by their expectation values; here, the 

expectation values of the meson fields a.re just their elassical fields r5J.. 'J'hcn we 

not.iee that while the meson rnean fields are large, the ratios of t.hcse Hdds to the 

chiral syrnmetry breaking seal(), M, are smalL Furtherm(m;, the size of derivalivcs 

is rela.ted to f.:h which is also small compared to :rvl. These effects are shown by [5] 

<'l> w 1 
M' l\1 r-..~;3; 

kp l 
- rv-

l\11 4 

where the sealed meson me<.Ul fields are defined as 

vV(x):::: gvVo; 

The ordering principle developed by FST is 

n 
l!=·-+b+d 

2 

(2.7) 

A(x) = eAo (2.8) 

(2.H) 

\'i'here for a given term 11 is the order, niH the number of f('rmion fields, b is the nmn-

bcr of non-Goldstone bosons 1 and dis tlw mlnlber of doriviltives. 2 Now a controlled 

1 A mon.• fktailcd discussion of both NDA and R.lVlFT is conta:ined in appendix B. 
2It should be mcntiorwd that thu rnunber of derivari.v<:t> in f<:q. (2.!.J) does not; iiH:lrHII' derivatives 

of l;hc formion fields at; they are gen<:ru.lly asnociatnd with tho nud<'on mass and not a snwll 
momentum [1]. 
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expansion is performed in which higher order terms are, in generaJ, progre:-;sivdy 

smaller. 

Usiug this ordering principle, they construct an effediv(~ la.gra11gi.an in two 

eomponcnt.s [1] 

(2.10) 

The fermion part to order 11 ~= 4 is given by 

(2.11) 

where..\= ~..\p(l +T:3) + &\ll- Ta) and 1\p = 1.793 (An= -1.91:3) is tlw a.nomalous 

magnetic moment of the proton (neutron). Note that for the purposes of this >vork, 

the conventions of [5] arc used. Here we have defined 

(2.12) 

vJI.I'' p1w, and Fp1, are similarly defined for v1., p1t, and Ap. respectively .. 1\ot;ice that 

the pions only couple to the fcrmions through t;he tombinations 

(') 'l')) "-'~. ~J 

(2.14) 

To lowe8t order, both v1t and a11 contain derivatives of t,he pion field; tlms r:~oft. pions 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

decouple. The uwson lagrangian to order u 4 is 

Terms sueh as NN</>2 are redundant iu this formu.lation. This sterns front the fact 

that FST employ meson fi.eld rcdcJlnHionH; since the parameters nrc fn~e, they arc 

also just reddiued. A detailed description of how this lagrangian was constructed 

is present<:~d in [1]. 

This still constitutes a system of many-body equations \V.ith quantum fields. 

FST now employ RMFT and Hartree theory to reduce the many--body system to 

a. series of singk-partiele equations \Vith classical fields.:~ First, the classical, local, 

time independent meson fields are obtained in terms of the baryon densities through 

the meson field equatim.tH. Next, the Euler-Lagrange equation is used to d•~tennine 

the Dirac equation (the baryon field equation) \vhere the meson fields uow provide 

t.he loeal potentials in which the baryons move. Then, it is assumed that each 

particle is moving in a single-partido potential, which is representative of Uw average 

interaction ofthe particle with all other particles [19]. Due to the fact that Uw Dirac 

equation is linear in the baryon field (and hecause the meson fields aw tlassicai), 

one may seek norrnal ruode solutions of the form ~·(xp) = 4{x)cJ:p{'iEt} [:20]. 'fhe 

sourc:etl are now eva.luated by ::mrnrning over Ow contrilmtim.ts of the siHgh~-partide 

solutions. 'Ihe resultlug eonpled, local, n(mlinear, differential c<tuations an: ref(~rred 

to as the relativistic Hartn!e cquntions. 'J'his formalis.m is now equivalent to Kohn·, 

:l A monJ detailed de~eript:ion of the Hartrec formal.ism can be found in appendix C. 
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4G 

Sham theory in DF'f; thenJcm:, DFT pmvidcs the t:heordicol fw:~l(fication for· this 

methodology. 

'I' he single-particle• han1iltonian t<tkes the fonn [ 1] 

(2.Hi) 

Since the pion has no mean field in a spherically symmetric systmn, all of the pion 

couplings drop out. The Hartn~P wave functions are of the form 

(') J "") ·~· .. I 

Here a= {a, m} = {nlsj, m}, ( 1 is a two c:mnponent spinor, and ia is l /2 (-1/2) for 

protons (neutrons). The (I)"m are the spin sphcrieal harmonics. Substituting this 

wave function into tho Dirac equation, 

(2.18) 

one arrives at the following radial Hartroe equations 

[ 
(} 11'·] (' (· .) [F"' l·r T J ] ·]··, ( ) 1.1 (" ( . ~-I·- :Xu r ·~··-a.·-.. ;1·+-~.2 'a r ·- -:l Ta,r) =0 
ur r 

(2.Hj) 

t 1 r' ] (·~ (" ) .l .... I' (. . 0 JJ ... u2 .:.{g r, ·+ )3 ' 11 r) := (2.20) 
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where the siugl.e-partide potentials are 

U, (r) "'··- VV(r) ·+· t(tR(r) ·1- (ta. 1 ~) A(r) + ~·:12· (Ps + 2l.0Jiv) \7 2A.(r) (2.21) 

U2 (r) ..... M · <l'>(r) (2.22) 

The scala.r meson equation is determined by minimi:;dng the varia.t.iona.l derivative 

of the eff(~etivc lagrangian with respec:!:. to the scalar meson fideL The ot.h('l' meson 

equations arc constructed in a sirnilar fashion. These meson equations are [1] 

(2.24) 

(x) (2.25) 

(2.26) 

(2.27) 

The ba.ryon sources beeom.e the denshi<!S in the meson equations <:Utd an.' !~iven here 
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by [1] 

Ps(x) 2)a + 1 (C"'I2( ·.) ---"'"' :t t 
4TIT2 · . n F~(r)) 

(! 

Pn(x) ~-~-

T Pn(x) -" 3ja -~·J(i ( )L' .( -') 
2 '"' :ra r r a r 

·1.7rr · 
a. 

P:lx) ~·--

pj'(x) 

The charge density is made up of two components 

where the first, the direct nucleon charge density, is 

( _,) ( -.) J ~ ( T ( _,) ") 1 [ · r12 r 2 J Pct x = f)p x + 2lVl v · Pa. x r + 2M2 fls v PB + lJv \7 (l3 

and the second, the vector meson contribution, is 

( -+) 1 2 1 ') y Pm X = --\7 R+ --\7-\,\: 
g1 gp 3g.1gv 

The point proton and nucleon tensor densities in Eq. (2.3/1) a.re 

a, 

T . 
P(l, (x) 

·18 

(2.2H) 

(2.:.30) 

(2.:32) 

(2.34) 

(2.35) 

(2.:Hi) 

(2.:H) 
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respnetively. Finally, Uw energy fun<:tiowtl is given by f l] 

I"''· _.... , . ..., .['1' .. , ....... L...t .. J(t 

(). 
/.(l:~x-n 

~.i I(J (2.:18) 

where 

The radial .Hartrce equations and the meson cqna.tions forrn a system which is solved 

self-eonsistently until a. global convergence is ad1iew~d. FS'T '"rrote a prograrn to 

nurnerieally solve Uw coupled, local, nonlinear, differential equations. }Jucrta.s has 

written an independent program which reproduces the results of FST [lG, 21]. The 

fp, {18 , and ,Bv. Here vve take mv = 782 MeV an.d mp = 770 MeV; these numbers 

correspond to the physical masses of thew and p mesons respectively. 'I'he constants 

are fit by FST to a series of experimental data along the valley of stability at 

various levels of truncation in the underlying off(~ctive lagrangian [1). The last three 

parameters are Ht to the electrornagnctie properties of the nudeon. Ttu' n~maining 

constants are det(~rmincd by minirni1;ing a least-squares x2 fit of the form 

[ 

r(i) r(il] 2 

. ,2 = ,-.. ,......, Xmq_'. -~. t( 
x L..- L..- -\~ 7( t.)x r~.l 

i X \X 1 cxp -

(2.40) 

where 29 pieces of cxperirrtcntal data Wt.~re us<~d, listed here with thnir respectivf~ 

wdght::~, vv~): 

• the binding energy per nudeon, .E/B, with W' 0.15% fi>r 160. 4°Ca, 
"8 ., "-Sr, 
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h l t•• ') • t e rms Cttarge rae u, < r~ 112 • l \\' I Wit l i I (.) ')or, t·(.ll' H>c··) :~oc>l. 4sc,·~. -~"..:.:·~· 'llt<l --w/C ., ? .,~.- .• 1 ~d! tJ '(, 

• the difftaction .. minimuni-sharp (d.m.s.) radii, Rdrmn with \tV :::::: O.Hlo/r,~ for 160, 

'10('··· 48 ("·' 88St· ''rtc·l 208 I)ll· }(~1 ?(.\<' k ' u, , ' ' 

• the spiu-orbH splittings~ ~Eso, of the least-bound proton and ne11trou with 

\tV = 5% for160, 15% for 208 Pb. 25% for both '1°Ca and 48 Ca, and 507{, for 88Sr; 

• tho proton energy, Ep(lh9; 2 ), and t:h.c proton level splitting, 

Ep(2lhf2) ·- l'~rllhn;2), in 208Pb with \tV= 5% and 25% respectively: 

• and the surface energy and synnnetry energy eocftieients, a2 and a4 respectively, 

with \V = 0.08%. 

T'h.e results of these p<:\rameter fits are shown in 'H1blc 2.1. Note tlmt these pa-

ramctcrs do indeed satisfy the naturalness assumption made earlier and as a. result, 

higher order terms are sueeessively smaller. Also, note that increasing the level of 

truncation beyond that of the Gl and G2 parameter sets does not significantly im-

prove the fit. Once the free parameters are determined, this lagmng,ian can be 'ttsed 

to pr·edict other· properties of oniinary nuclei [1, 16, 21]. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

,..---·-.= - ~ ........... ,..~---·-- -
o·~~no ms/lVI 2 0.55:378 0.5~3333 0.5:37:35 0.542G8 O.fJ:39G~3 ,,),) 

gs/4'rr 2 0.8:3~321 -0~77607 
----c-:::--- ---··----·-

0.785:32 0.83[>22 0.81024 0.78G61 
~··· -- '"'"'"''"''"~'""'~·--- ,_ .. I(h.:,oi) gv/4rr 2 1.09814 0.9'7114 1.02125 0.97202 0.96512 

g /41f < {! 2 0.64271 0.689.12 0.70261 0.68096 0.69844 0 ,., •. lf'"' .• /:)<){ 
..... - .... 

o.i34992 'Tll 3 0.07060 
-- .. - o't(i<"J-r '/}2 t.1 -0.96161 • '· { i) 

/'i,;l 
C) 

0 UH95 1.6582 1.7424 2.20(37 :3.24G7 
l\~4 4 -7.;)928 -6.6045 -8.48:.~() -10.090 0 ~····F2 )..).) d 

(o 4 -1.7750 
---;:··t:,'";-(-f--.·--:-:-:::---

,) .. )24.) ' 1 f,Uf £,. J .. ) 

3 -0.2722 
--·-:-:----

f/p 0.:3~!01 

0::1 5 1.8549 
~- i"':r ~;·;-:----

l.'"''H 
0::2 5 1.7880 l rc::;98 -. .,) {. (. 

fv/4 3 0.1079 
e~,--:--0.1(,)4 
--

frJ4 3 LO:B2 1.0660 1.0;39:) 0.£1619 
-

fis 4 -0.10689 0.01181 Cl.0284A -O.OSn28 
llv 4 -0.2()545 -0.18470 -0.24992 

----·-.,---
-0.4.5964 --

T'ABLE 2.1: Parameter sets developed by PST [1, 2]. Notice that the sets eorn:spond to 
different kvds of truneation in their lagmngian. 
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CHAPTER 3 

Density Functional Theory 

DFT is a theoretieal framework which allows one to ealeulatc GS properties 

of many-body systems without carrying around all the baggage eontainnd in the 

many-particle wave funetions. Two theorern:s are of interest lwre: 

1. the Kohn-Hohenberg theorem "The GS expectation value of any observable 

is a unique funetional of the exact GS density; moreover, if the expectation 

value of the harniltonia.n is considered as a functional of the density, the exaet 

GS density ean be determined by minimizing the energy functional [3]." 

2. the Kohn-Sham approach · "The exact GS sealar and vector densities, energy, 

and chemical potential for t,he fully interacting many-fermion system can be 

reproduced by a eollcetion of (quasi) fcrmions rnoving iu appropriately defined 

local, classical fields [3]." 

These theorems are proven in [22, 101, 102]. Tbn following is a qualitat.ivP discus

sion of the above theorems designed t.o pn>vide Lhe reader with a l)aHie dworetical 

justification for the present approa.ch. 

52 
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First, let us consider the KoJln-l1ohnnberg; Lheorum. 'I'he CiS energy <Jf a system 

ean be determined by the H.<tyliegh-Ritz t.ninirnal principlP 

(:3.1) 

where (ft is smrw normalized trial wave fnnetion. Hohenbcrg <:utd Kohn were the first 

to reforrnu.late the min.imal principle~ in terms of a. trial density: n(r) [101]. 'l'his n(r) 

is determined by integrating IJI* \[1 over all variables except one and mu.lt.iplying by 

the mnnber of particles. 'To conduct the minirnir-ation of Bq. (:3J ), we fix n(r) and 

denote the trial wave functions with this density as w;: [22]. The eons1.rain(~d energy 

minimum with fix<~d n(r) is defined as 

E.0 [n( r)] -~ min.:~ ( IJI~~ IHI \Ji~:) 

/ VeJ:t(r)n(r)dr + F[n(r)] (:t2) 

where 'Vext(r) is some external potential. 'I'his potential is uniquely d(~tc:rmined by 

n(r); that is to say there is only one potential, up to an additive constant, that 

gives rise to the density n(r), and vice versa. Also, the quantity F[n(r)], \vhich is a 

functional of the density, is defined as 

Here T and U are the kinet.k and interadion energy operators. Next, Eq. (;3.2) is 

minimir,cd over all n(r), or 

E milln(r)E7, [n( r)] 

- Jninn(r) [/ v(<J:t.(r)n(r)dr + Fln(r)]l (:.).4) 
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i)4 

This is the rninimum \Vhen n(r) is the exact GS denf:iiLy [22.].1 Simply JHlt, regardless 

of how complicated Eq. (:3.1) is, by rninimil':ing the energ;v fuuet.iorHd, Vv'(' t:H:qnire 

the exact G 8 dnnsi ty. 

Next, \VC consider Uw Kohn-Sham approach. \Vc write the Hc>henb<:rg.-Kohn 

free energy for a collection of interacting particles as 

P[n(r)] = FNr[·n(r)] + F'rNTln(r)l 

where FNt is the non-.i.nteracting kinetic nncrgy and F 1NT is thn interaction energy. 

FINT is the sum of the Hartree energy, exchange correlation energy, ete., or 

FrN·r[n(r)] = En[n(r)] + Bxc[n(r)] + · · · (3.fJ) 

Here tlH: Hartree energy is defined as 

, 1 I n(r)n(r') , 
B11 [n(r)] = i. If_ r7l drdr (:3.7) 

Substituting Eq. (3.5) into Eq. (3.2), we arrive at the relation 

I, , . l ;· n(r)n,(r') . . . 
Ev[n(r)] . 11e:1:t(r)n(r)dr + f Nr[n(r)] + 2. If_ r"l drdr' + Exc[n(r)] + · · · 

> E (~~.8) 

The eorrcsponding Euler-Lagrange equation, for a given total nurnber particles, 

is [22] 

c] dr ::::.::: 0 (:3.9) 

-- ----~·--···--·· .. -
] ThiM statement boldH for bot;h nondegcnert.ttc and dcgonerate systcrns. fu the G<l:'W <tf d<•gcrwrnte 

systems, n(r) is any one of tlw GS densities. 
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where we have defined 

I
. ( ") .. . . nr , <) .. , •.• 

'V ·JJ(r) ~::::: v ... 1(r) + ·---dr + ~-·~-.bxc·,[n(r.)] +· · · · 
c ' ( ..•. · . if-- 1~1 · bn(r) · ···· · 

and f is a Lagrange multiplier introdneed to assure pa.rtidc conservation . EqU<lr 

t.ion (~3.9) is identical to the Euler-.L,agrange equation for a system of ll(HI-irtteracting 

particles moving iu ·ueJJ(r) instead of 'Ve:c1(r) [22]. 

Tlwrdore, instead of having to solve the many·-body equations with quautum 

fields, one only needs to solve a series of self-consistent, single-particle c•quatiom3 

with classical fi.elds. Thus, I:\ohn-Sham theory is formally equivalent to relativist.ie 

Hartree theory. Once the exact 'Ucu(r) is determined, in prindple al.l many-body 

cfl'ects are indnded. The problem is now reduced to determining the corn~et form of 

the energy funetional. An appropria.t(~ energy functional is provided by the cffcetive 

lagrangian density of FS'T, given in }~qs. (2.11) and (2.15). Here the me::mn JicldB 

play the role of Kohn-Sharn potentials. 
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CHAPTER 4 

Strange Super heavy Nuclei 

4.1 Introduction 

Tlw possibility that very large nndei exist is a,n interesting problcn1 nuclear 

physies. One can im.mcdiately sec that the Coulornb repulsion limits the maximum 

si"'e of nuclei eornposed solely of protons <tnd neutrons. As ordinary nuclei become 

larger, more and more neutrons are required to keep the repulsive force exerted by 

the protons from destabilizing the nucleus. I( however, negatively charged baryons 

arc introduced, this Coulomb barrier could be overcome. The addition of negatively 

charged baryons composed solely of u and d valence quarks, such as the (ddd), 

is one solution. Unfortunately: these particles will decay rapidly via t.h1~ strong 

interaction. The strong interaction timescale is rv 10 23 s, which is too short to be 

of any particular interest. 1 A second possibility, and the one we inv(~stigat,e in this 

chapter, is the iHclnsion of hyperons in nuclei. Hyperons an~ a class of baryons ·with 

non--zm·o strangeness. Strangeness, as \VC' have seen, is a eonserved quantity in the 

strong interaction. As we vl'ill see in t.tw subt;<'quent discussion some of thn hyperons 

l 'J'hc strong intnra.ct:lon time:seak iR nw time it talm:l light to t.ravel tho Comptma wavekngth 
of a plon, rs1 .:::: An jc h/(m,r<'2). 

G6 
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'fABLE 4.1: The nuelnons and hyperons are listed here vrith thdr respective <:h<<q;(~ (Q) 
in units of e, strangenc~ss (S), total isospin (T), mass (M) in lVIcV, a:nd eonstittwrrt; valenec 
quark content (qqq) [4]. 

will be stahl<) against strong decay. The hyperons are listed in Table 4.1; noti(:e that 

a number of these baryons have a negative charge. 

Let us now eonsider the hyperons in ordnr of increasing mass. The lightest of 

the hyperons is the A, \Vhich has a binding energy in nudear matter of 1'.1 • 28 .MeV 

[26]. The A cannot strongly decay into a nucleon because to do so wnuld violate 

strangeness conservation. It turns out that the only mceh.anism capable of this type 

of reaetion is the weak foree (the '<veak interaction timescale is"' 10 8 s).2 AJter the 

A, the least massive hyperons are the l~'s. The ~= has a repulsive nudear pot0ntial 

[27, 28, 2!J]. There does exist the possibility of A·- L: mixing, but this is assurned to 

have little effect?. T'he next hyperons arc the 2's. In contrast to the 2.:, the 2 has 

a attractive nuclear potential [30, :31, :32]. Also, it has been shown that for some 

2 Th<.: weak interaetion timescaJf~ is the typical lifet.inw of a particle decaying da t,Jw weak 
interaction, 

:JAn idea of the possible impact of A-}: mixing ean be taken from [35]; here the small deviation 
of .hypcrnndcar magnetic moments from. the Schmidt values is discussed as possibk cvicknce for 
this type of mixing. [t should be mentioned that, if one viewK the Healar mnson ,ns ;1 two-pion 
resonance, tfwn the i:J ent<:,rs implicitly a.ct an J.ntcrnwdiatc tJtate ill our forrnalism. 
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critical nurn.hcr of:\ 's in the nuclmu· mcdiu1n, the reaetion 

(4.1) 

becon1cs favora.ble [2:3]. Finally, the rnost massive hyperon, the n , will rapidly 

decay via the strong interaction. Tltcrdcrr·e: if one operat(!S on strong interaction 

timcsca.les; th.en it appears that. the indusion of .A's and in ordinary nuclei is 

favorable while tho addition of I:':-> and O's is u.ot:. 'This is significaHL bee::uJSl~ Uw 

provides a negative ehaege to offset the (\mlmnb repulsion between Uw protons. 

To mini.rnize thn overall efl'ect of the Coulomb force, we will impose the condition 

q = 0. The eom;equenee of this eoudition is that the CouJmnb torrn drops out of the 

SEMF. Furthermore, we will impose the condition ISI/B = 1; this will cli.rniuate the 

symmetry term in the SEMF. After taking into eonsideration the above arguments, 

\Ve believe that. matter composed of N's, A's, and exists and is sta.ble vvit!t respeGt 

to the strong interaetion.4 The purpose of this chapter is to construct a. method to 

model these systmns and to deterrnine their surface structure and energy. 

4.2 Theory of Strange Superheavy Nuclei 

Following tho effective fidel theory approach of FST [1, 2], we construct an 

effective lagrangian density using hadronic degrees of fn~edom that rema.ins invariant 

under SU(2)t SU(2)R symmetry. We will use this lagrangian density to r.nodd 

both infinite and finite systems; to start with only syst<m1s of nud(~<ms with N = Z, 

which we refer to as nucleon matter, are considered. In this char>ter; we lirnit the 

theory to simple scalar ancl n<mtral vector meson cxdutnge. The lagrangian density 

1They will decay via t:he usual wca.k hypnron decay::; a~ wdl as weak nmHuesonk two~body 
decays such as A + N ""+ N + N and S + N "'-t A+ N [10:3]. 
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used here is gi veu by 

We have retained only the .lowest order terms and a pair of nonlinear flotlar self~ 

couplings. Notice that the Lorentz scalar meson field, q'>, is eoupled to tbe sca.lar 

density NN and V1j,, the Lorentz vector rneson field, is coupled to Llw conserved 

baryon current iN"'ft1N. The p-rncson and electromagnetic term.s have heen sup-

pressed in Eq. (4.2). The source term contributed by the p-meson depends on the 

quantity N -· Z, which vanishes for the systems under considf~ration. 

vVc now employ H.JVIFT, which is discussed in appendi.x B. 'rhe souree terms are 

replaced by their expectation values and the meson fields are replaced by classical 

fields. Incorporating both Eq. (2.12) and Hl'v1FT, our lagrangian densit.Y becomes 

where the elrective mass is defined aR 

(4.4) 
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Now the ha.rniltonian. density is gi \:en by 

(4.5) 

where Pn = NtN is the baryon density and the canonical momentun1 den.sity is 

(4.6) 

As we are interested in very large systems, a mom statistical a.pproach is used here. 

To this end, it is assumed that a nucleus is a local Fermi gas filled up to sorne kF(r) 

at every point. Now, the souree terms take the form 

(Nt (a· j) + j~M*)N) (4.8) 

where r1 = -fv and ~; is a degeneracy faetor. The h.amiltonian density is explieitly 

tirne-independcnt and, in this problem, it is equivalent to the energy density (v,rith 

1 = 4 for nudeon matter) 

£(r) 

(4.0) 
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()1 

The total energy and baryon number are 

E "' / E(I}I:lr (<1.10) 

B / pn(t}f3r (4.11) 

respeetivoly. 'The e.rwrg,y density above provi<ks a lowest order density fnndional. 

As shown in chapter ~1, D.F'I' tells us that rninimiy;ing the exa.et, energy functional 

yields the exact GS density. 

To conduct infinite nucleon m.attercalculal.ions, vvc neglect tJH! spatial variations 

in the meson fields; the resulting energy (lensity is 

1 2 \''! -m" ~~ 2 v (1 

(4.12) 

By minimizing the energy functional with respect to tlw scalar fi<\ld, the fllC<lll 

field equation is determined. The vector mcau field equation is similarly derived as 

an extremum of the energy functional. These equations are 

( 4.13) 

Vo (4.14) 

where the scalar density is given by 

CL15) 

'I'he sol.ution to these equations if:> <listusHed in r>ection ,1.:3. 

We now turn onr att<~ntion to finite nucleon systcrns. \Ve rntnin thJ' spherically 
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syrmnctrie spatia.! variations in the nwr;on fields and therefore require the fnll eru~rgy 

density in E}q. (4.H). 'fhe nwson field equations, acquir(~d in t.hn same manner as 

above, are 

2) ' rnv Vo 

Note that for sphcric(tlly symmetric systems, the laplacian becomes 

Using a Green's function, the solution to Eq. (.4.17) is 

(4 .. 1G) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

where the angular dependence has now been integrated out. Since the contribution 

of the laplaeian in Eq. ( 4J. 7) is small cornpared with that of the vector rneson mass, 

to a first approximation it can be neglected [5, 20], 

(4.21) 

However, the ornittcd tf~rm produces a Sltlall, but important, contrihnt.ion to the 

vector field; this can have a significant effcet on the total energy and baryon .nmnber. 

H is then eonvenknt to expre:-::s the vector field as 

(4.22) 
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with i5W0 ::::: gv8V0 • Snhstituting this iuto l~q. ('1.20) and rearranging, one obtains 

a,n explicit expression for (5VV0 in tern1s of IJH' baryon density 

Minimh;ation of the total energy with n~speet to the local .F'err:ni wave nurn.ber 

now yields the GS of the system. A. Lagra.nge Inultiplier is used t.o incorporate the 

constraint of fixed B fluch that 

(4.24) 

Since the variations of the energy dcusity with respect to both the scalar <'J.nd vector 

fields vanish, they can be held constant in the variation of kF, the result of which is 

the constraint equatio.n 

(4.25) 

where the Lagrange multiplier, p, is the chemical potential and is constant through-

out the nucleus. 

On the surface (r = r0), the baryon density vanishes. The constraint nquation 

at the surface then yields the first boundary condition 

!\f"(ro) =/I oWo(ro) (4.26) 

where Eq. (4.22) has nnw been employed. 

To dden.nine the second IHIUrldary condition, eom:dder the Holution Lo Ure linear 
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ltorn.ogerwous scaJar field equation 

(4.27) 

The eonstant gs<fJc = M - fl + t5\V0 (r0 ) is determined at the surface. Diffen.·ntiating 

Eq. (4.27) with reHpect tor a.nd then evaluating H.t the surface, we acquin~ the second 

boundary condition 

[
OIVP (r)] [.1\ 1 .n:c ( ) --;:----" = tv. ·+ u vv o r0 rJr . 

!'() 

.1 (1 + msro) (.J ··) JI . + ( 
ro 

(4.2g) 

T'he solution to tl:u• scalar field equation in Eq. ( 4.27) no longer holds v:hen the 

nonlinear terms are induded; therefore, a small eorrection t has been included to 

compensate. In the nonlinear ease, the scalar field equation is integrat(~d out\vard 

from r0 , and c in Eq. (4.28) h:> varied until the solution vanishes for la.rge r. Onee 

this correction is determined, tbe meson fidd equations are integrated invvard from 

the surf~tcc, solving Eq. ( 4.25) at each point for kF and varying f"t until. the fields are 

flat at the origin. The methodology used to solve this system is discussed in detail 

in section ~1.3. 

The calculated binding energy and baryon number of a series of nuclei with 

different radii can be fit with a SE;MF of the form 

E; . .. ] /:3 
- = a1 ·-+· a.,J3 1 B ., (4.29) 

where only the bulk and :.-mrfacc terms have bem1 retained. 'The bulk constant, a 1) is 

dctcrmirwd by the binding energy of infinite nudear matter. Tlwn. after caleulating 

a number of finite nuclei, the surface energy, a2 , can be obt.nined by plotting the 

ca..kulated energies per baryon against Uw caknl.ated values of B lf:l. "I'he results 

of num.erical meU1od::; for these finite systcrns are diseusscd in later sections. 
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()[; 

vVe now extend our thr•ory to consiikr 8JJ8tenu:i of nucleons and h:tJJH:r·onB. FirRt; 

we investigate uniform matter tom posed of n, .P: :=:0, and 2 , subject to the eondi

tions 

Q=O 

ISI/B = l 

(rL30) 

(4.:31) 

where Q and S are the tota.l charge and strangerwHs respedively. 'I'lwse !:lystcrns 

shall be subsequently referred to as cascad(>n'lte:l<>.on (SN) rnatt.er. f'Jquat.ion (4.:30) 

restricts the Rystem to equaJ number:;; of p and ; similarly, Eq. (4.:31) forces the 

numbers of nand 3° to be equal. Therefore the systern is nu1.v tharaet;cri;;c~d by t\VO 

Form i wave m.unbcrs, kFp a.nd kf''n. For simplicity we employ an avemg:e cascade 

mass J\12 = (lV13o + JVI2 - )/2. Since the energy density is now symnwtric under the 

interchange of kFp and kpn, the minimum binding energy always occurs such. that 

kFp = kFn· As a result, we can further rcst.riet this system to a single Fermi wave 

number, kp. It is a consequence of these arguments that equilibrium .is irnposed 

upon L.hc reaction 

(4.;32) 

and the system is described by only one chemical potential. Again we rneut:ion that. 

the p-rnesons do not contribute here for similar reasons to the nucleon case. 

Next, we must make some assum.ptions about the cascade coupling;:~"- Sine<~ the 

baryon eurrent is conscrvnd, Uw veet:or coupling; is taken to be universal, 

Ho1vevcr, a.n independent sealar coupling for tlw eascades) , is assmned. 

Consider the ease of ir~finite 8N matter. The addition of hyperons to 1 he theory 
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f.ifl 

rcquin:s only the addition of n<~w souree tnnns. A source tenn of the f()nn 

(4 .:3:3) 

is added to the energy density in Eq. (LJ.2) where 

(4.34) 

In addition, a new term. is included in the baryon densit.y 

(4 .. :33) 

Here '"'/ = 4 for (3° ) with spin up and down. Except for the additional source 

terms, Uw meson fidd equations remain unehanged. The new term added to th.e 

source in the sealar Held Eq. (4.13) is 

- tis ikF 3 . lVl3 
(5ps- (') ):! d k (k2. JV1"2)II2 ~1f • 0 " + s ' 

(4.:36) 

where 

(4.37) 

Equation (4.35) is incorporated into the source in th.c vector field Eq. 14). The 

solution to these equations is also discussed in seetiou ,1.:3. 

We now examine the ease offinite SN rnaUcr. Th(' source terms in F:;qs. (4.:3:3) 

and (4.35) are ineorporated iuto the energy dcusity in Eq. ('1.\J). Next the terms in 

b~qs. (4.3G) and (4.~.1G) arn added to meson field cqtHitions in l'~qs. (LW) a.nd (4.17) 

respeetively. Then a new eonstraint equation is produted in the sanw ruanner as 
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before 

p, ~~ gvVo + !, [(ki;, + M*2)l/:l + (ki;, ·+ l'v:l~l)l/2] 
'" 

Sirnila.rly1 the boluH.iary conditions arc now 

lVf*(rn) = 
1 

!r· 
8 

[211- 26\Vo(ro)- 1\if:::: ·+ sl\11 

[
DM*(r)l 1 [2 "':1:' ( ) -··-.-. -·- ::::::: ---.. -- o v ~· 0 r0 . (.:),. 1 + s 

h ro . L 

() ~.1. ·~I] ( 1 + msro) (. . 
Lf.l, + JV 2 + .lV , --;~;-- 1 + f) 

Consider again the SEJ\,fF in Eq. (4.2!J). The conditions imposed on 

f>7 

(4.40) 

tnattor in 

Eqs. (4.:30) and (4.i31) now justifY the elirnination of the Coulomb and syn:unetry 

terrns. Then a1 i::; ta.ken to be the binding enerp;y of infinite SN mat.Lcr; next, 

proceeding as befon~: the surface e.uerg;y, a2 , can be extracted. 

Finally, we investigate a dass of mutter in which A's are added to the matter 

described above. These systems are referred to as larnbda-citscade-nucleon {A2N) 

matte/'. The previous restrictions do not rdate the nu.rnber of A.'s to th.e number 

of N's and 3's; therefore a second Fermi wave number, kF/1, is needed. Again the 

veetor coupling is taken to be universal and an independent sealar coup!.ing, gsA, is 

crnployed. Now equilibrium is imposed on the reaetions 

p+ ~ A+A 

(4.41) 

(4A2) 

as well as on Eq. ( tl.;32). .A.s before, the system is then characteriz.ed b,y a single 

chernic:aJ potential. 'fl1e souree terms required for the indusion of Ns in both 
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infinite and fi.nitc 3N matter ;:rre 

dE =c<" (4.43) 

c5pn (4..4·1) 

bps ~-"~ (.1A5) 

and 

(4Jt7) 

ln Uw c:asc of finite A3N matter~ there are now two constraint equat;ions 

(11.48) 

The A density begins interior to the surface r0 ; this allows the 3N boundary eoncli-

tions to be used in the A3N case. 

4.3 Methodology 

In this section we develop a methodology for Holving t.he systems of c·<pwtions 

diseussed in section 4.2. In t.he ease of nucleon matter the parameters 1 gv, m8 , 

the mass of thew rneson and 1\!1 :::::: 9::W 1-:IcV. 1'he remaining const.ant:s arc give11 by 

the three coupling sets in Ta.blc 4.2; to rkterrnine tl1cse sets the theory was fit to 
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FIG. 4.1: Convergence of the baryon number and binding energy per baryon (boxe:; and 
circles wspectively) after 9 iterations for an ordinary mtdcns of r0 15/ms, N '" Z., and 
using the L2 pa;rameter set. 

g~ g2 --·~ -------- gs \I p·· :·-· ,v ms mv r;,a /\;4 ~ I <);") 

L2 109.();3 190.43 520 78:3 0 0 
·-:-::-

0.88GGO 
NLC 95.11 148.93 500.8 783 1.9195 -7.3928 0.88190 
Q1 103.67 164.70 504.57 782 1.6582 -G.t3045 ) 881071" (. "· .) 

TABLE 4.2: Parameter sets taken from [1, 2]. ms and mv arc in MeV. gsA/gs is fit to 
reproduce the binding energy of a single A in nuclear 1nattnr. 

reproduce various properties of (H·dim.try nuclear matter [1, 2]. The simplest set, L2, 

ineludes only linear terms in the scalar field. The sets NLC and Ql both expand 

the theory to include nonlinear terms. As a result, these sets must be lit to more 

properties of nuclear matter than .L2. 

To extend the theory to systerns of nudeons and hyperons, spedficatiou of 

is also required. Sinef~ the vcetor meson is 

eouplcd to the eons<~rve(l baryon current, we a.ssume a universal veetor couplin.g, 

The scalar couplings, on tl.1.e other hand, are adjusted to n~prodnee 
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TABLE 4.:3: ValH<'l:l of the binding energy (in M.eV) of a single 2 in nuclear 1nnttcr for 
various 2 coupling ratiof! and the parameter s<:t NLC. 

70 

the binding energies of single hyperons in nt1clcar rnatter. For instan.ce, thn A scalar 

eoupling iH designed to reproduce the binding energy of a single A in nudear matter, 

experimentally determined to be ,,28 MeV [2G]. The values of gsA/fi.s an' al8o sho\vn 

in Table 4.2. lJnfortunatdy data on the binding energy of a single 2 in nuclear 

matter is uncertain. 'Hwrcfore: a range of 2 scalar couplings is investigated; the 

values used. are g83 jg8 = 1.0, 0.95, and 0.9. 'I'hese values correspond to t.hc binding 

energies listed in Table 4.:3. 

C~onsider the ease of infinite nucleon matter. Tb obtain the solution to this 

system, first one rnust speeify kF. Both I~Jqs. (4.13) and (4.1:1) are IJO\'\' solved for 

their respective meson fields. Then, using the meson fields and kF, one calculates 

the energy density in Eq. (4.12). This is in turn used t,o evaluate the binding energy 

per baryon, BE(kF) = £/ p13 - l\-1. In RMFT the medium saturates and BE(/;:F) 

has a minimum; this equilibrium value, BE0 , serves as the bulk term in the SFZMF, 

at. This procedure is a.lso a,pplicable to infinite 2N and A2N syskrns provided the 

appropriate sourec terms are iududed. 

Now we discuss the methodology used for all finite systems. First thP scalar field 

Eq. (4.1G) is converted into a pair of coupled first--order finite difT(~renef~ (!qnations 

for [tf>o(r), 4>;J(r)'l; these (~qaations are solv('d using a shooting nwthod. T<> accomplish 

this: one fixes p and r0 ; now the boundary conditions are uniquely detennined. Sine(~ 

in. These solutions are substituted back iuto the constraint C<Jllation frmn which 
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kF(r), one step in, is determined. In this manner we itc~rate i.n frorn tlw Rttrfaen, 

evaluating Pn(r) and E(r) at f~very point. 'This proe<•ss is rq>eated until 11n and 1'o 

become constaut as r a:pproa{:hes the origin (or equivaknUy p~{ <jJ;l 0 at r :;;:c: 0); 

we a.ehinvc this by adjusting the dwrnieal pot.<mtial:1 Note tlmt initiall.y, f <Uld J\V0 

arc ignored. 

Now we incorporate the two eorreetion terms. In or(ler to disenss the role 

of t, let us examine the second boundary condition. VVhen nonlinear u~rrns are 

introduc(xl, the srnall paranwtcr, r:, is indnded to cornpensate. Iterating the finite 

difl(~rence eqmltion:s O'l.d from t:he sud~tee, f in. Eq. (4.28) is adjusted SLH:h that the 

seaJar field vanishes for large r. T'he newly corrected boundary condition is then 

used to resolve the finite system by integrating in as described above. 

Next, the correction. term dW'0 is added to the vector field. Initially Eq. (4.21) 

was crnployed; however, this is aceurate only in the limit of a large rnv. A small, but 

important, contribution to the vector field was ornitted; therefore, the term 8W0 , 

defined by Eq. ( 4.2:3) and calculated from the previous fJB (r), is induded. 'I'hen 

the entire process is repeated again. After successive iterations on t.hc vector field, 

B and BE = E/B - M both converge to their full solutions. This convergence is 

illustrated in Fig. 4.1 for ordinary nucleon matter; here, the parameter snt L2 was 

used, a radius of r0 = 1 Gm;) 1 vvas assumed: and 9 iterations on the vee tor field have 

been carried out. Similar convergence was found in all cases studied here. 

Finally, we consider the SEIVIF in Eq. (4.29) where a 1 is defined as the BE0 

of infinite matter. The calculated values of BE and B tj:l of the finite~ systems are 

plotted against cad1 other for nHclei of various radii. 'Then using this SEMF as a 

li.near fit, the surface energy; a2 , is det!'rrnined. Tlw above <lpproach to finitf• systems 

"We mention that better eonYergerw.~ is obtained by deerca.sing tho c.1tep size. Step c;i?.<.'g a.s 
small as dr 0.0001m5 

1 aro considcn~d hnre at whieh the quantitie!-l BE and H appnar to have 
converged to ])('t;ter than 0.5%. 
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FIG. 4.2: Biuding energy per baryon for infinite nudear matter with N = Z as a funetion 
of Fermi wave number. These results m·e for the eoupling sets NLC (solid line) <.lrHl Ql 
( da.sh<.~d li no). 

is first calibrated by the nucleon matter case; then it is extended to investigate the 

3N and ASN systems detailed in section 4.2. 

4.4 Results and Discussion 

In this section, we discuss the application of the above methodologies. First 

we consider the results of our infinite rnatter calculations, starting with nudeou 

systems. Table 4.4 slwws the equilibriu.rn values of kp, M~ /lVI, and BE0 obtained 

for infinitn Ilm:leon matter using the 12, NLC, and Ql paramet<.~r sets. '['he vahws 

ca.lculated here reproduce those in [2, 20]. Then BE(kF) is plotted for boLh the NLC 

and Ql sets in Fig. 4,2. 'T'hc minirntun, l3E0 , in Fig. 4.2 is taken to be a1 in the 

SEJ\fF for eaeh coupling set. This is in good agreement with the (~tnpiricaJ bulk 

term [fl]. 

We now turn ou.r attention to infinite systems of nucleonR and hyp(•ro1.1S; theBe 
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TABLE 4A.: Caleulated equilibrium values of the Fermi Hl<mwnt;um (in frn" 1), effective 
rnaHs, and the BE0 (in MeV) for infinite nucleon watter arc shown uc;ing the coupling 
sets in 'Table 4.2. These rmrnbcrs rnprodutc the results in [2, 20]. 

TABLE 4.5: Calculated equilibrium values of the Fnnnl rnomtmt.urn (in frn ··I), dfeetive 
rna.'is, and the BB0 (in :MeV) for infinite 3N matter ar<~ shown using the coupl1ng sets 
NLC and Ql in Table '1.2 and a range of values for gss/gs. 

invcst,igations are conducted using only the nonlinear cases, NI,(.J and QL We beg.in 

by investigating infinite SN matter for the range of 2 scalar couplings Jnent.ioned 

above. Since the lowest mass state of separated baryons under the conditions Eqs. 

( 4.30) and (4.31) consists entirely of A's, BE(kF') f()r infinite caseade-nudeou matter 

is defined by BE(kF) = E / Pn- Mi\. The eaknlated equilibrium values for this type 

of matter are given in Table 4 .. 5. Notice that IBEol deereas(~S as the 2 coupling grows 

weaker while the equilibrium kp remains fairly constant. Graphs of B.E(kF) for the 

NLC set and each 3 scalar c:ouplint~ ratio shown in Fig. ::t:-3 illustrate this point. 

Althongh the equilibrium kF is roughly Lhe same here as in the nudeon caBe, these 

systems contain twice as many baryons; as a result) the baryon density iR much. 

higher than in infinite mH;l<~on matter. Also: the dfeetive mass is considcrabl:y 

smaller, on t.he order of a, third Uw value of the nucleon case. Again (:~, 1 i11 SEl\lF 

for each eonpling ratio is taken to be the minin.tum (.BE0 ) of th.e corre:-spondiug 
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FIG. ·L~l: Binding energies per baryon f()r infinite cascade-nucleon rna.ttnr computed rela
tive to isola.tnd lambdas (the lowest energy free baryon state for ISI/B 1) as a fundion 
of the Fermi wave numher usinf~ NLC. Not(; the left hand intercept is (M;:; + MN) /2 -· M.\. 
The solid, long dashed, and short dashed lines conet:pond to gss/gs :::::: 1.0, (U)5, and 0.9 
respectively. 

uS'= /gs kp krA -.~!~/_~-· E/PB -· MA bl ....... t- ~ 

r-NL(~r 
-----'"------·-· --·.,·~-·---·· ...... -----····-...... __ 

1.0 1.343 0.8665 0.1202 -42.229 
0.95 1.:319 1.026 O.V321 -24.704 
0.9 1.288 1.159 0.1511 -8.100 

Ql 1.0 L.:302 0.8141 0.121:.1 ... f:3A57 
0.95 1.278 0.98:31 0.1325 -25.792 
0.~) 1.247 1.124 0. I 4f}5 -9.09[) 

--
- --

'l'A.BLB 4.6: Calculated equilibrium values of thn H~rmi momenta (in fru· 1 
), dfc'ctivc 

mass, and the BE0 (in lVteV) for inlinito A3N matl;er are shown using tJte coupling; sets 
NLC and Ql in 'fable 4.2 and a rangn of val.uns for 1'/::.::;./gs. 

74 
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curve in Fig. 4.:3. We also .tnention that the value of g8:;;;/J:!;s =:::: (L886 is UJr~ lowest 

eonpling ra.Uo for which .inlinite matter \vas still bound. 

Next, we consider infinite A2N syHtems using the same rang(~ of 2 scalar cou-

1. l l· . 'N l . L ~·N· . l)'L'( 1 ') . ,_ .. I ~ ·r rl'''l·. p mgs (p.lote< a .>ove. 1 ote t mt a.s In t,JW .:.::1 · easr~, .H.0 ,,:F :c.:: <-·/ Pn ~· n A. · us 

investigation produced the equilibrium Yalues shown in 'I'able 4.(). th:.!n~ the equi-

librium values of kF, M* /M, a.nd BE0 differ little from. tlw SN results for large 2 

coupling; however .. the diff(~rence becornes rnore pronouncnd as the 3 coupling de-

creases. In our formulation: a second Fermi wave nurnber, kFi\, was included for 

the A's; as one might expeet, kp,\ grows, and consequently the proportio·n of A's 

increases, as the gap behveen and gsA narrows. T'he smallest value of th.e 2 

sealar coupling for which infinite A2N m<:ttter was still bound was gg;jg'>" ·::::: 0.875. 

Now \VC examine the results of the finite matter investigation. 'Ih begin with, 

we eonsider the finite ntH:leon m.atter system. 'I'he calculated values of fl, B, 

BB = E/B ~ M as a fu.netion of r0 for this type of maHer w:ling the L2, NLC, and 

Ql sets are shown in 'I'able 4.7. As stated above, 9 iterations o.n the vector field 

were conducted on nuclei cakulated using the L2 set; this demonstrated the conver-

gence of the system. Subsequent finite nucleon matter results \verc obtained using 5 

iterations whieh gave results tor B and BE to better than .19{;,. The radii used here, 

r0 = 15, 20, and 25 in units of ms 1
, indude nudei spanning a range of B "'·'50- 400. 

As an example, pg(r) a.nd (f>0 (r) for a nucleus with r0 =· 20rnf,' 1 calculated with the 

NLC set are displayed in Fig. 4.4. The interior of the nucleus is roughly constant 

in both p13 (r) and ¢0 (r). Then the effective rna.ss increases to near unity and the 

baryon density drops to :r.ero at r0 ; this is a typical example of the surface structure 

for finite nudeon systems. 

Next W:Jing the Nll) set the calculated values of BF~ are plotted vs. B ·l/:l in 

Fig. 4.5 for nudei of various radii. Notice that. the infinite matter va.hw, BE0 , has 

also been included. A SBMF of the form E<J. (1L2D) is used as a linear fit in Fig. 
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FIG. 4.4: The baryon density r!B(r) ~c.:. pn(r)JNC1 (solid line) and effective mass .M'"(r)/M 
(dashed linn) vs. r (in units of m;;·1

) for an ordinar_y finite nudmts with N Z, B .188.87, 
r0 = 20/ms, and using the NLC parameter set. 

4.5; the slope of this fit is the snrfaec energ,y, in this ease a2 = 18.0 ~deV. 'The 

surface energies for the various coupling sets are given in rDlble 4.8 along with the 

experimentally determined value [5]; the values of a2 for both NLC and Ql show 

good agreement with experiment. 

The agreement between the values calculated with the more reali.stic interactions 

and the empir·ical TC8'1tlt for the s'arface enet:gy of ordinar·y nucleon mattc1· using this 

cfleci:ive lagTan,r;ian and dcn.sity fv,nctional approach gives u.s .some cm~fidence in our 

exploratory study of the surface .str·uctv:re of strange superheaVJJ nu,clei. 

Now we investigate finite SN matter for the values of g8::;;/g8 quot,c~d above. 

Since ttw best fit to both infinite and finite nudeon rnatter \vas obtained with NLC, 

we use this set exclusively in the following disem;sion. Th(• values of p., B, and 

BE = E/B - l\rJ A obtainf•d for finite matter are g;iven in T~1.ble tU). For the 

same reasons as in t:Jte infinite case, t.hn binding; energy rwr baryon is reddiJwd 

as BE::::: g/B -· l\IJJ\. Note thnt dne t.o a slower rate of convergence, these syst;Nns 
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FJ.G. 4.5: Fit. to the ca.leulated SEMF for ordinary m1clea;r matter with N Z ami tho 
NLC C011plings. rrhe surface energy is given by the slope of the curve, here (l;? :::-c: 18.0 
MeV. 

ro tt B E/B -M 
L2 15 4.705E>924 54.568 

. . .... ,.._._--;:;-
-8.to2t 

20 11.69755554 160.72 -10.9:~9 

NLC 15 4.6968452 66.4~{8 ·-11.297 
20 4.69165108 '188.87 -12.719 
25 4.()8905238 408.43 -13.464 

--:::·---
4.GH650H9 62.581 Ql 15 -ll.2G2 
4.6908iH·t~T 

'--·;::;(:--:;,-:;- ,,,,.,,,_,,_, ___ 
20 1 i.J./6 -12.808 ____ , _____ 

"-'-"'-'~·· 

,,_,,,,,,., _______ 
2[) 4.68800689 3!)0.77 -n.Gl5 

TABLE 4.7: Results of firtit:e nudeon matter for the L2, NLC, aml Ql pararnot.r:r sets 
and varimm radii. Caleulati.ons w:il.h L2 used 9 herations on the vect-or fidel whik !) were 
used with NLC and Qt. The radii are in m~;·l, tho dwmical poh:ntial is in fm· 1, anrl 
E/B ··- M ifi in .iVIeV. 

77 
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.L2 2G.'sr 
NLC 18.01 
Ql 19.11 

~~-·~~m ·-~·.,--

~~r(J-17:8] 

TABLE '1.8: Cakulatcd values of the surface <)l!<~rg.;~· (in .MeV) for nudeo11 matwr Hsing 
Uw parameter sets in 'I'ahlc ·L2. l'he expnrinwntal value is also included [5]. 
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were t<tlculat(•d using 9 iterations on the vector field .. Also the radii) r0 ~'" l 0 and I[) 

in units of Ins·1, were used here; this indudes nudei \Vith baryon numb{'rs ranging 

frorn B ,...., :30 200 depending on the 2 coupling. It is also i.rnportant to rnention 

tha.L for the coupling ratio g82/ g8 = 0.9, the nuclei were u.nbou.nd for our choiee of 

radii. For one nucleus of this type, Fig. ,1.6 shows the plots of both Pn(r) and </>o(r); 

this .is for a nueleus with g8s/gs = l.O and ro = 15ms 1• Notke that the baryon 

densities in the interior of the nucleus am mudt larger than those in nudC!(Hl matter; 

also, the effective mass drop:.; to less tha,n a third of the nucleon nu\tter value in the 

interior. The result is a much higher total B for a fixed r0 . Another feature of note 

is the surface structure; here the width of the surface has decreased relative to the 

previous case. For eaeh of the 2 scalar coupling ratios, the ealeulated va.l ues of BF~ 

arc plotted vs. B- 1f:l; these plots are overlaid in Fig. 4.7. The inflnite rnatter values 

arc also included. As in nucleon matter, the SEMF is used as a linear tit., one for 

eaeh 3 coupling ratio, from which tile surfaec energy is determined. The values of 

a2 are given in Table 4.10. 

As mentioned in section ~1.2, precise data on the binding energy for n single 2 in 

nuclear matter is unavailable. The values appcari.ng in the literature ran!{(\ from -.111 

t.o -40 .tvieV. 'I'his necessitated that a ntunber of 2 scalar eonplings be invnsl.igated. 

Now that tho sm'faee nnergies have been acquired for the 2 couplings, 1.hey are 

plotted vs. Lhese coupling ratios in Fig. 4 .. 8 .. A. lhwar interpolation is used between 
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FIG. ·L6: 'l'he baryon density nB(r) = pn(r)/M:1 (solid line) and effi~ctiw mass M~(r)/M. 
(dashed line) vs. r (in units of m;,: 1

) for(). nucleus composed of nucleons and cascades 
with ro = 15/ms, B :o::: 16·L92, and gss/gs = LO subject to the constr<tint.s Q == 0 and 
ISI/B c.::: 1. These results were obtained using th() NLC parameter set. 

FIG. 4.7: Hindlng energy vs. B·· lf:l for ma.t.tnr composed of equal nnmb<~rs of ca:·wadcs 
<:1nd nudcon8 for the NLC coupling r.;eL The upp<'r and lower curves correspond to 
gss/ gs :-..::: 0.95 and l.O re:-rpeetiwly. The surfacn nMrgy is just th.c ~lope of tho:·w lines. 
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TABLE ~L9: lteHtllts for finite SN matter for the NLC panunoter set and a ntunbcr of 
radii. These eakulations used !) iterations on the vector field. The radii are in 1

, the 
ehmnieal potential is in units of M, and E/B ·- MA is in i-.foV. 

NLC 72.()9 

J?.5~} 

TABLE •UO: Vtlhws of tlH' surface nnergy (in MnV) for SN matter using tlw NLC 
parameter set fTom Table ·1.2. 
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the points; this is extended by extrapolation into the region which corrcspor.tds 

to values of the binding energy of a single 2 appearing in the literatun~. We fed 

eonfident in the negleet of the A's over this region beeause preliminary investigations 

of finite ABN matter show that the BE and B change little fron1 SN matt.e!r. In Fig. 

4.9 the baryon density of a ABN nucleus of r0 = lOn1::;· 1 is shown; not.iec t.hat the A 

density begins interior to the surfaee and is comparatively much srnallcr. 

A preliminary calculation was also conducted \vith a 4? meson coupled to the 

conserved strangeness current. This simulates a repulsion between like strange par-

tides. In order to test t;he si:t,c of this interaction whith could be tolerPJtcd, the 

<P eoupling was increased until the system was no longer bound. The 1.ral1ws f(n· 

which this oecurred for intiaite matter are gq,jgP '-~= 0.68:39, 0.5090, and 0.2:35:3 

corresponding to g8::)g8 = 1.0, 0.95, aud 0.9 respectivdy.6 

It should he mentioned that; the conditions Q c-:::.: 0 and ISI/B = .t \Vet(' intro .... 
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Scalar Cascade Coupling Ratio 

F'IG. ,L8: Linear fit to the surface energy, a2, vs. sealar cascade coupling ratio (g,;:dgs) 
for (:aseade-nudeon matter assuming Q '·" 0, ISI/B '~' 1, and ne1;leeting A's. 

---------------

------------------
() ~~·~-·,_~ ... -1 .. ~-·"' ~.1m·~-~L-..~...,J~-·_j~·--·-L.-.~.-=.~:.~~:~.'.:-=::t::::...,."",.j~ ·~-~flJ·-·~~~L.~~--~.,.L~·-·~-.~ .. L .. ~·~•· 

() 5 lO J:; 

FIG. 4.D: Baryon densities for a. finite system of nuelnons, cascades, and l::\mbdaH ~vith B 
'"'" 146.25 for the NLC coupling set and :::::: 1.0. T'hc total bar::von density, Hw total 
density of easeades and mtdeons, a.nd the lmnbda (kmsity a.rc shown by the solid, long 
dash<xl, and :;hort (htshod curves respect-ively. Notice th<tt the larnbda density L finit.f' 
only interior to the surfac~~. 

81 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

82 

duced to eliminate tho coulomb a.nd synmwtry terms from thn SEMF. Sinee both 

charge <tnd strangeness are com:wrved quantities in the strong )ntoraction1 chose con·· 

di iions are nn affected by ::;trong (and cled.rornagnet.ic) react ion~> in t;lw t:y:-:>tem. As 

a result, this is an intrinsically interesting case and the caknlation is simplified by 

the need for only a single Ferrni wave nmnbcr. Of eo11rse1 experimental processes 

eould produce an arbitrary Q and lSI/B. Therefore it :is of interest to csLirnate how 

much our results might be modified as these eondit.ious are relaxed. 

'I'he SEl'v1F has been W'nerali11ed lio ineludo both nudeons and hyperons in 

[35, 02, 6:3]. The generali:;;ed SBI\.H'' proposed by Dover and Gal contains additional 

contributions to the bulk and s:ymrnetry energies [35]. Their SE.IVIF, with their 

parameter set I, can he used to esti.matf~ how much t.he quantity E/B changes as 

one mO\'CS away from the conditions Q = 0 and ISI/B = 1. The additional terms 

result in IJE/BI < 5 I\'.1eV for the range 1/2 < ISI/B < 5/4 and arbitrary Q. If 

one makes the rough assumption that the caknlated energy conk! ehangc by this 

amount, the surface energy extraet.ed from plotting I~/B vs. B lf:l could change by 

up to 30% (this is undoubtedly an overestimate). Cakula.tions with arbitrary q and 

ISI/B are more difficult. Work is in progress to examine some of these systems. 

It is also of some interest to eonsider the experimental manifestations of these 

nuclei. A number of experimental searches for strange matter have been conducted, 

examples of whieh are [51, 52, 53, 54]; all have yielded negative results. Character

istically, Uw systems considered here are st<:1ble against strong decay bllt unstable 

against weak decay. 'Therefore, their lifet,imes are on the order of the weak intentc

tion timescale, or r"V 10 8 s. T'hey will experim.tee strangeness changing weak decays, 

sueh as the decay modes A + N ;.. N + N and 2 ·+· N ·-7> A ·+· N. We expect rclati.vis· 

tic heavy ion Ci)llisions or supernovae to be possible production sourr.cs for t.he1w 

systems. Of course, mnltistra.nge baryon t:ystm.ns would have to make transitions to 

the GS for the present calculations to bf~ applicable. The actual rate of production 
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of nudd of the type considered hero i:s a question that goes well beyond thf~ s<~ope 

of the present paper, 

One physleal eonseq1wnee of our results is that the minim:arn of (:hose 

objects is predicted. 'This value is obtained by setting E/B 0 in Uw SEM.F' and 

then r;olvin.g for B. The minimnm baryon numbers derived from our calculations are 

5.4 and 14.G for g82/g8 = l.O and O.D6 respcetively. However) shell struetun' beeornes 

more irnporU1nt iu t.lw region of srrt:1.1l E/B. As a result, Hartrce ealenlaUons a.re 

morn reliable here. Ilesc<ITeh is in progress to more accurately estim.ate t.his ntunber. 

The purpose of the present thesis was to test; the approa.ch of FST be:vond the 

Yalley of st,ability, spedfkally in the region of n<m"'ero st:ra.ngenosH. The r-ontent of 

ehapter 4 provides a successfu.l a.pplica.tion of t;his approach to strange superhea·vy 

nudei. The following two chapters are devoted to <1 seeond application of this 

methodology in the strangeness sector, single A-hypernudei. 
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CHAPTER 5 

Single A-l1ypernuclei 

5.1 Introduction 

In this chapter, as a second application of the effective field theory approa.ch of 

FST to the strangeness sector, we model singlr. A-hypernuelci. This t;yp(~ of nuclei 

has a nmnbee of interesting features. As \VC have seen previously, a singk~ A in the 

nucleus is stable against strong decay. 'This is due to the fact that the A, by virtw~ of 

its nature, carries a non-zero strangeness. Thus, a single A-hypernucleu:s will decay 

on the timescale of the weak interaction. This property enhances the potential for 

their detection experimentally. Also, the A. and the nudcon are distinguishable 

partieles.t These hypernuclei provide a probe into certain aspctts of the strong 

interaction, such as the tensor force. In addition, this class of nuclei present a 

test ease for tilw extension of our theorotical model outside the valley of stability 

as they are aecessible by CtH·rent experiments. Production of single A--hypernndd 

has been achieved. via thn reactions ('rr+ ,IU) and (K , 7f ) [8, fJ, l 0, 40]. However, 

1 Tho A and the rmckon ar<.' distinguishable particles here becam:i<' no interaction i:; indudt•d in 
this theory which could convert a A into a nudoon or vice~ versa. If, for ·instance, kaon exchange 
wa,<; indurlcd, tbn l\ and t:lw ntldeon cou.ld no longer be considered di1~tinguishablc. 
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the resolution obtained hen~ iH fairly h.nv. H.eGPnLly, new process<$ eapnhln of higher 

resolution than the: above roactions have l.weome twailable. One sud.t proce~m utllizes 

forward sea.tteriug from the reaction (e, e' K 1 ) [11, J 2]. Also) ·-y-ray coinddenee 

experiments have been used to <lCCess this sector with high resolution [1::\]. 

To model single A-hypernuelei, we directly use the approach of l•'S'I' outlined. 

in chapter 2 by adding a new degree of freedorn, a single, isoscala.r A. 'vVP then 

ennstruet a new A-lagrangian, consistent. with Lheir metJwdology, as a.n extension 

of the full int;craeting lagrangian of Fsrr. rrhis ./\ .... lagrangian eoutains a serii~S of free 

parameters, which are determined by least-squares fhs to experin1ental data. Various 

levels of sophistication in the A-lagrangia.u are inwstigatecL This lagrangian can be 

used to predict other prop1~rties of single A-hypernudei once the frne pa.rarneters 

have been fixed. 

5 .. 2 Theoretical Description of Single A-hypernu

clei 

The specific phenomena that we seek to investigate here arc GS binding en

ergies (i.e. chemical potentials), densities, single-particle speetra, and particle-hole 

states of single A-hypcrnudei. To this end we add a single, isosealar A to the the

ory. Note that the A is also a. chiral singlet because it is invariant under the full 

SU(2)L ® SU(2)n transformation. Then, we construct our cffeetive A·-l<'l.~~rangian 

as an add.itional contribution to the full 1/ :::::: 4 lagrangian of FST, utili:.dng their 

rrwthodology. This lagrangian is of the form 

(5.1) 

Here we restrict otu·selves to the mf'S(JlJS already incorporated into Uw J.heory by 
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FST'; th.ereforc, no new t;errns a.re uncded fi.n· !J1.e meson seetor. As a n·~ult, tlw 

A··Iagrangian is confined to the fermion sector. First, \Ve r:onsider all possibiK~ contri~ 

butions up to order'' :::::: 2, consistent with this ::.tpproadt. Our eHi:'ctive A·hlgrangiaH 

now takes the forrn 

( r:: ')) ,) . .., 

Notice that the coupling constants, gsA and gv:\, are free para.rneters <tnd n.re different 

from those ut::::t~d in the nudeon ease. Single 'l1ukawa rho and pion couplinp;s to tlw 

A are al,sent as they do not eon~::erve isospin. Also, no cleeLromagnctie c:oupling 

is retained to this order as q = 0 for th.e A. Four-fermion term:-> are discussed in 

appendix D. 

Hmvever, this lagrangian, to order TJ = 2, fails to reproduce the small expcr·-

imcntal spin-orbit splitting of the r)-stat.es, as in -~ac: [:38]. It was proposed in the 

literature that tensor eouplings of order 11 = ::$ be introduced to correct for this 

limitation [36, :37]. vVe add tensor couplings to the w~ctor and photon fields, shown 

by 

(5.:3) 

The constant gTi\ is a free parameter. Bern \\ = -0.61:3 is the anomalous rnagrwtie 

moment of the A. Since we want to make a full expansion in our A-lagrangian to 

order z; = :3, consistent with this approach, we must also include three additional 

terms, shown by the following 

(f.>A) 

\vhere ft1 , ft2, awl f!;> arc three rnore free :paratneters. In tl1e nndeon ca8t~~ the tern1s 

eompar::tble to these la1:1t three were regrouped through redefinition of t.lw m.eson 
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fields. HmvP.ver, in tlw A e;tsc t.h is is no longer possible nnlt~sR additio.nn.l mesonH 

are added to the tlwory. A rnoro complete description of how the terms in Uw J\-

lagrangia.n are ehosen is contained in appendix D. Now our ,\-·lagrangian, eompleh~ 

t.o order 11 = :5, is 

r. _ r(2) .. L r(T) .. L r(K) 
'-'A -· '-'A 1 J..,A r J..,J\ (5.5) 

Note that our lagrangian in Eq. (5.1) includes all possible terms up to 11 """ 4 in thn 

nndeon and meson sectors as wcll.2 

In the Hartree formalism, we add a new wave function for each nevv ba,ryon, 

given here [()r the A by 

(5.f)) 

Plugging this wave fnnetion into the [)irae equation yields the following new pair of 

Hartree equations 

[ 
0 ~'''] G ( ) [I'" ·ur lT ] L' ( ·) r r G ( :) o -;;- -f- -. :rA T' - !Ji\ -- 4 + J5 r A r - v 0 ;\ I = 
ur r 

(5.7) 

[ 
0 1

;, l F ( ) [F'' ·c·J ·c· ] G ( ') ·u v ( ) 0 -;;-- -. A r + Ji\ -- 4- 15 1\ r + 16£ A r = 
or r 

(5.8) 

2 It is of potential interest to consider coupling additional sealar and vector rncsom:, such as the 
fo and the <P, to the strangeness density and eon served strangm10ss current mspeetively. T'his allows 
one to eliminate the terms in £.;;:) using the equationH of motion and redefinitions of the new fidds. 
However, the number of additional terms, and their accompanying fTec parameters, introduced to 
L' = 3, three in the ferrnion lagrangian and at least four .in t.bc meson sector, makes this approach 
mm·c complex thau the present framework Fortunately, the point is relatively tmil:nportant for 
the single A-hypcrnudei considered here as these new mesons are self-fields of thr' i\.. If they 
are indudod, they would appear only in the energy functional and have no effcet on the mwrgy 
dg<mvaluos; as the lak:lt eip;envahw in this approach is eqnivak~nt to tlw total hindinp:; (~ucrg:v per 
baryon for dw GS, thoy hav<> no nfi(wt on the ca:oeR of inwre~lt here. 
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where the i\ single-particle potentials are 
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,,.,.. ( ') (iJ.J 

(~i.lO) 

(G.ll) 

Since all our addit.ional terms are .in the fermion la.gra.ngian, the only eha.r1ge to the 

meson equations are added contributions to the source term::>. 'l'he new contributions 

to the soUl·ee terms arising from the A-lagrangian i:m~ 

(5.12) 

(6.14) 

(5.15) 

The new energy functional is identieal in form to the one used by FST, 'Nith only 

one additional energy eigenvalue, E:\· The numerical solution to the extended set 

of coupled, local, nonlinear diffmential equations was obtained by extension of a 

program developed by Huertas [H.l, 21]. Here we nsc the parameter sets of FST 

for the nucleon and meson pam.metcrs. 'There are six new p<1rameters i11 our A-

k.nown A sin.gle--partide levels. 'I'hese lcast'"sqnares fits arc conducted .at various 

lE~vds of truncation in our A-lagrangian, vvhile maintaining thn fnll lagrangian of 

FST to order I/ = 4. Now this lagrangian ean be used to predict other properties 
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of single A-hyp<'rrmd<\L One application we investigatt~ in the IH'xt ehapl.,c:r is s1 

splittings. 

5.3 Pararneter Fits 

The methodolf1gy with vvhich the parameter fits are eondueted is ch~seribed in 

this section. As discussed in section 5.2, the full lagrangian contains a number of 

free parameters. To use this lagnmgian for predictive purposes, tlwse pi:tramet<~rs 

must be determined. Those constants which lie in the nucleon and meson snetors 

are fixed b;y the G2 parameter set. This set was developed by FS'f [1] and is given 

in Table 2.1. Notice that it; contains all possible terms to order v = 4 iu both the 

nucleon and meson sector::; of the lagrangian. FST determine these panuneters by 

conducting a least-square x2 fit, of the form shown in I:·~q. (2.40), to experimental 

data from aJong the vall<~y of stability. This process is described in deta,il in [1] and 

reviewed in chapter 2. 

Now if we consider the full lagrangian in Eq. (5.1), vvc will not.k(~ th.at the 

parameters in the A sector arc still unconstrained. In fact, a total of paramc-

ters remain undetennined to order I/ = 3. Fits are conducted at various levels of' 

truncation in the underlying A-lagrangian to fix the relevant constant:~. The fits 

performed here arc entirely separate from the on~: which determined the (i2 param-

ctcr set; however, the framework whieh FST used to conduct their fits is identical to 

the one employed here. Consequently, experimental data, from single A-h.ypernudei 

is ut.ili;~,ed to eonstrain the parameters iu the ,'\--lagrangian. This data,, which is 

list;ed in 'HJble 5.1, consists of three types of observahles: GS binding m.tergics, As-p 

shell excitation energies, and spin--orbit splittings of the JH':ltat.es.:1 Now· lV(~ use the 

a Appendix .E provides a:n aJt.ernati vc potential-based examination of the cont-~btnnc.r of the 
experimental GS binding ennrgies. 
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TABLE 5.1: Th<) expcrinwntal data u::~ed iu the parameter fits. This incluck:i; six GS 
binding nncrgiet:~ (.E/B), one spin-orbit. splitting of the lH:lta.t.es (Bso "'c' Etp,1" Eti>::;:J, 

and throe A s-p shell excitation energies (Esp ~" B 1 l'at:~ · E 1 s, 1 ~). The calculated values 
of thmm ohscrvablcs, using the M2 set, are also shov;m. The vaJucs a.rc given in MeV. 

DO 

framework outlined in cha.pter 2 and. section 5.2 to calculate these same observables 

for some initiaJ guess of the parameters. Tl1.e ealeulatod and cxperinwntnl va1ues 

arc both snbstitutod into the equation 

[x
·Ul x(iJ ]2 

. /2_ = "". "" - exp ---· '. th 
XN ~ L..J , T(i) .(i) 

·i X \\X Xcxp 

(5.16) 

where N is the number of data points. The parameters are varied such. Lhat the 

theoretical and experimental values converge. The constants arc fixed at the values 

that produe(~ a global mininnun in X~· 

To conduct fits of this type, the degree of truncation in the lagrangian m.ust first 

be determined. This will define the nuinber of free parameters which are varied in 

the fit. Our underlying A-lagrangian is tn.mcat.ed at four different levels and. ;separate 

parameter fits are conducted nt each .. First, we eonsider the simplest possible cas<'; 

only terms t:o order v = 2 are retained in the i\.-lagra.ngian, which COJTI~S•].>(mds to 

£~). T'his A.-lagrangian has a total of two free parau1etcrs, gsA and gy,\. In this 
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I M2 
--+-----1-

0.87190 o.s7:3t52 o.wn 54 o.871% 
---- ..... ,..,.,.......,..,. __ . .._,"""_ ..... ~-..··~-·""""'"''"~'--«""''" ·~· ...... ·"~ 

1.0 0.977()() O.H8055 

-0.8!10 ··0.879 
·--~~........,.'«......., ~ ..... .,,_,.,.,...,,~~><mn<•..,~~ .. ~. --·---

-0.1214 O.lf>6ZJ ----
-0. Hl7l 0.2542 

-----·-- ~-·--------+~~=~1 
P·a 0.0774 

TABLE 5.2: The five parameter sets eon;;trnewd Iwre. Note that all the const:mt.s are 
natural and that these set;s represent different, levels of scJphisticatlon in the A-lag;rangian. 

IVI:J-2 M4 

v 2 (\V) x 10 A10 

"''-"""""""'"'"''•"""'"-" 

0.245) 0.229 

TABLE 5.:J: The x2 values for both the unweighted and weighted fits, UW and W 
respectively, relative t~o the~ x2 of the :!\D set. Here x2 iB determinc:d from Eq. (5.16) 
using 10 pieces of data. 

Hl 

ease, the veetor eoupling is assumed to be universal, as it, is coupled to the conserved 

baryon current, and the scalar coupling is fit to reproduce the binding energy of a 

single A in nudear matter, which is about -28 MeV [26]. These assumptions are in 

keeping with the previous work in [:34] and chapter 4. The parameters (kt;erminecl 

here arc shown in Table 5.2 as tlw Ml set. This set reproduces the GS binding 

energies fairly wen, but is unable to simulate either the correet; spin-orhit splitting 

in the p-states or the s-p shell excitation energies in light A-hypernudei. 

In order to obtain a better fit to the data, we increase the level of truncation. 

Therefore, tensor couplings to botlt the vector and photon fields are induded, which 

correspond to the tenus in L:\n. As a resnlt, a third free par arne teL P-;TA, is intro-

duced. 'fhis fit i~ performed using seven picees of experimental data: the six G:S 

bindin.g energies and tJw spin-orbit Rplitting given in 'l':1.ble 5J. ln thi;;; p<trtieular 

ea,se, the weights in Eq. (5.1G) are all taken to be equaL 'I'he resulting p11ramcters 
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FIG. 5.1: Results of the unweig;hted :3-paramnter fit, along; with Fig. 5.2, t;o a S(>ricB of 
experimental data. The G2 parameter :,;et. of FST is used for both t;he nuekon and meson 
sectors [1]. 
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FIG. 5.2: Results of the un>veightnd :~··pararnctnr fit, along \Vith Fig. J:i.l, to a t:cries of 
(;xperim.ental data. The G2 paranwter sot of FST iN mwd for both the m1ckon and lUCHon 

sectors [1]. The eakulated binding energy of a. single i\ in infinite nlu·lcar ma.tt1·r is also 
shown. 
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arc given in 'l)tbk fi.2 as the l'Vf2 set. 'I'hese eonstants all sath;(y tlw as~:mmpUon 

of naturalness. 'fahle l also outlin('S the mtrnerieal result:-; of this ~:H>llX<nneter fit. 

The outeorne of this fit is shown graphically in Figs. 5J aud [J.2. One ean sne that 

both the CiS binding energies and tlw small spin-orbit splitting iu the !}:states arn 

reproduced \VeiL 'fhe calculated s-p shell excita.tiou energies fail to duplicate the 

experimrmtal. values of thcsr~ ohscrvables for the lightest A-hypernudd; hn~;vevcr 1 it 

is correctly givmt by the time one gets to :\°Ca. In Fig. !3.2, Hw value of ~:3:2.4 

.M.cV is given as the calculated binding energy of a single A in nudear matter. This 

l\-12 pararneter set will be used in the subsequent, calenlat.ion of the s1;:rsplitUngs iu 

chapter 6. 

Plots of the proton, neutron, and A densities for the Ci-S's of \GN and }.°C~a 

ealeulatcd using this M2 set are shown in Figs. 5.8 and 5.4 respcetively. A graph of 

the Hartrec spinors from the A wave function, GA(r) and F,\(r), for the GS of ~\°Ca 

using the M2 set is given in Fig. 5.5. Notice that the magnitude of the .lower spinor 

is very small; this indicaLes that the A is essentially behaving as a non-relativistic 

partido in the nudear potential. 

Next, the two terms nonlinear in the scalar and vector field, shown in £X"'(), 

are retained. This brings the number of unconstrained parameters up to five. For 

this 5-para.metc~r fit, ten pieees of experimental data are used; in addition to the 

data utiliy,ed in the :3-parameter fit, the three A s-p shell exeita.tion Pnergies listed 

in Table 5.1 arc also included. Tvw versions of the 5-parameter :fit were conducted 

here: one unweighted and one vveighted. In the former case, all of the weights are 

equal For the latter, the weighting scheme is as follows: 

• W~l ::::; 1.0 for GS binding energies; 

10.0 for A ~+v shell excitation nnergics; 

• and \V~) '"::: .. 1().0 for the spin-orbit splitting. 
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FIG. 5.3: Plot of the proton, neutmn, and A dcmritks for the GS of J\6 ::-:J. Here the .M2 
parameter set was used. 
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FIG. 5.4: Plot of the proton, neutron, and A densities for the GS of ;t°Ca. Here th(· M2 
parameter set ''vas used. 
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FIG. 5.5: Radial wave functions of tbo A in the (Js 1; 2) state for the GS of ;t°Ca. Here 
tho M2 parauwtcr Het was used. 

Som.e justiflcation for the selection of these weights c:1n be gleaned from [104]. The 

formula \V~) = fi(LlE(~xp/Eexp) was msed where fi is an arbitrary factor chosen to 

prevent any observable from dominating the fit. However, not enough data was 

available to constrain the two new parameters individually. As a rer:-;ult, we initially 

restrict these para.meters with the relation 

2 

( 
gs</>o ) = 1.624 
gv Vo rl.ln. 

(5.17) 

where n.m. denotes the nudear matter values, \Vhieh are found in [2]. However, the 

new pararneters are not very well determined and fail to signifieantly improve the fit 

in either tho urrweighted or weighted case, as can be seeu front rntblc 5.:5. 'fherefore, 

we leave the constraint. of Eq. (0..17) int.aet.. The results of both 5-pannneter fits are 

shO\illl in Table [l.2; the M:3-l and. IVI:.3-2 sets denote Uw urn<~reighted and weighted 

selwrnes respectively. Again notice fh.at th.e pan:uneters are a.ll essentially nat.ural. 
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Lastly, to indudc ali possible tennt-~ up tu ordt)r ll :::::.: ;{ in tJw J\ .. Jagra.ngi.nn, a.ll 

three tnrrns in L:~ are retained. Again, not onough d:tta was <IWlilable to ind.ividu

ally constrain tlw Il<'W paranH~terH; tl.wrefore, we n)strkt. th(•:,;;e paranH~hm:> \vitl.J the 

relation 

(G.l8) 

and fix the remaining constants using the 1\12 set. These ratios were d:1oscu boc:ause 

they tend to eoncentrate the effects of the new coni. ri butions in the surfn.ce of the 

nudens, i.e. the additional contributions now essentially vanish fen· uniform nuelear 

matter. 'l'his will have a greater effeet on the s-p sh.ell excitations than on the 

GSs. The ·weighting scheme described above vvas used. The resulting pa .. rameters 

are listed in 'Htblc 5.2 as the l\'14 set .. Again, as seen in Table 5.3 the improvt.!meut in 

the overall fit is negligible. The M3-2 and l\14 sets both. improve the fit t.o the GSs 

but do worse with respect. to the s-p shell excitations; the M:) .. l set has l he opposite 

efFect. 
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CHAPTER 6 

s1; 2-splittings 

6.1 Introduction 

Consider nuclei like ~60; the GS's of such systems are, in faet, partido-hole 

states. One process by which nudei of tb.is type are created is the reaction ('r.+, li.'+) 

on target nuclei with dosed proton and neutron shells [8, 9, 10]. During the course 

of this reaction a neutron is converted into a A. As a result, a neul.ron hole is 

also created whkh, for the GS, inhabits the outerrnm;t neutron shell. The angular 

momentum of the A and the neutron hole eouple to form a multiplet. However. du.e 

to the fact that in the GS the A occupies the ls1; 2 shell, there arc only two states 

in these multiplets. It is these configurations that we refer to as s1; 2-doubkts. The 

reaction (c, c' K+) is another proeess usf~d to crea.te nnelci of this type [11. 12]. This 

process differs in that a proton hole is (:reated here and that greater resolution is 

possible. 

An inspeetion of Figs. G.l and ~>.2 reveals that tnany of the GSs are a.etuall.r 

::> 1; 2··douhlets. This ehaptrT is devoted to t.he development of a systematic nwthod to 

calculate these split.tings. To this end, we utilize the aunlysis deseribed .in [Hfl and 

97 
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reviewed in appendix F. 'Ihis system delirH~s <t. part:id<~-hole rnatrix clenwot ar; the 

sum of Dira<: two~body rnatrix elements. 'l'hnse Dirac rnatrix elenwnts ar(~ reduecd 

to two dimensional mdinl integrals via angular mmn(mtnrn relations ['15]. \V(' mq,ress 

these integrals in terms of the Hr.trtre<' spinors del-ermined from the siugh~"·partide 

analysis of the preceding ch.apt.er. 'I'he effective interaction used lwre folhnvs directly 

from our effective lagrangian. For the A N ease, this corresponds to sin1 

scalar and neutral vector meson exchange. lsospin requiremcuts prevent rho meson 

and single Yuka.wa pion exchange from contributing. Furthennon•, the fact. that the 

nuelcon and Uw A are distinguishable pa.rtides indicates tha.t no cxciuu1ge matrix 

elements need be ealculated. As it turns l.mt, only the spatial part of the vector 

exchange contributes to the s1Jrsplittings in single .A--hypernnc.lei. This component 

vanishes in the static li1nit (M ·) oo) and hence has no direct; interpn~t.ation in 

terms of static two-body potentials. This current-current interaction has an analog 

in the electromagnetic case, MvJllcr scattering; the sp<:.ttial components of the eurreuts 

vanish in the non-relativistic limit [H]. This method is used to ealeul:--te the s1; 2-

splittings of every applicable state displayed in the I?igs. 5.1 and 5.2. 

6.2 Theory of s1; 2-doublets 

In order to ealeulate the splitting of these doublets, -..ve first consider Dirac 

two-body matrix elements of the forms [4l] 

(6.1) 

and 

1( · l • )( · l .. ) 'J1\1j\r( · ') •(l) ~··(?)j( · l . )( l . ) J'[\·J'') \ 111 ·JJI H2·2J2. '·· . · l12t.J · (J· lla·:~.l:l I14u!J4 • · (G. 2) 

w·hcre the single-partide wave funetions are specified by {ntj}, e(;rresponding to 
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either the upper or lower eon1ponents in Eq. (2.17), m1d V(r!'2) is sonH: ef.Fnct.ive 

interaction. Next, wn <·xpnnd this efl'ective int.(~raction in tenns of Legendre polyno-

mialH [41] 

OC: 

V(r12) ···· L fk(rl, r2)l\(eos Otz) 

')~) 

~-·· L }i.(r1, r2)CA:(l) · Ck(2) (6.4) 
/i;;o:cf) 

where the Racah fuuetions, CJ~~:q(B, r/>), are defined in appendix A. Inverting Eq. (f>.:3) 

yields the expression 

r ( ) 2k + 1 /·l I(. (;'l )r··· ( B )'\'( ) , k l'J,I'2 ::::-:. 2 ((:OS IJ2 \,cos 12 f l'J2 
. l 

(6.0) 

In the ease of Eq. (6.2), the effective interaction is coupled to Pauli matrices. There-

fore, Eq. (G.3) is modified to 

V( ) ---(1) . -+(2) _ ""(-I )k+ 1 -.>..] ( )· ,(k, 1) (.l) .. (h:,l) (2) r12 rr rr - .L.., . . 1.: r1, r2 X>.. .. '(\ (G.G) 
k>.. 

Here x~~I) arc Ckq coupled to Pituli matrices, shown by 

(6.7) 

Now we introdneo a spceific type of eJTective interaction. The form •w~ HSf~ here 

follows directly from the effective lagrangian in the pn:ceding chapter and to lowest. 

order: corresponds t.o simple Yukawa eouplings of both the scalar and vci't<~)r fields, 

given by 

(6.8) 
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Here r 12 = lt1 1. This sirnplistic: sp<ttla1 dq)fmdcucc is possil,lo because rm.ardation 

.in the meson propagators is n.egh~(;ted 1.4:1], (!r 

(G.H) 

Othervvisc the full Loreut:~: structure is maintained [41]. Couplings to the rho and 

pion fields arc absent a.s T = 0 for th.e A. Also, note that ~lS this effeetive intcrat· 

Lion is isoscalar, it does not distinguish bct\veen proton and neutron holes. In this 

for.malisn1, we can now write 

(ti.lO) 

where 

(6.11) 

(6.12) 

where L::; (r>) is the smaller (larger) of r 1 and r2. Here ik(mr) and k1,,(mr) are 

modified spherical Bessel funetions of order k. 1 

The matrix elements in Eqs. (6.1) and (6.2) are actually six dimensional inte-

grals. Treating the "t-matrices as 2 x 2 block ma.tric:es operating ou th<~ upper and 

lower eornponents of the Hartree spinors, these Dirac matrix elements, for (~ach terrn 

in the interaction, are aetually the sum of four separate integrals. The scalar and 

vector time (It= 4) components of the effective iltt.eraetion take the forrn ofEq. (GJ); 

the vcetor spatial (p = 1, 2, :3) eornponenLs take the form of .Eq. (G.2). '1'hankfully, 

angular momentum relations all()W one to integrate ont t;he angular dqH~ncknee [4G]. 

- . 
1 The modi.H.ed spherical Be::;sel functions arc defined in appendix A. 
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1.01 

'I'he~:~<~ integrals, ljn· the scaln.r and vector time component~:>, become 

(6.1) = t(l2IJ1(rb r2)I:H)( l).i~l.b i.l { ,J -~ 2 -~I } O.JJibrvnvtt 
k'"'o k Ja J4 

X ( (li ~ ):iliiC/;: (1) II (l:l ~).h)( (l2 ~ ).biiC~.: ( 2) II (l4 ~ ).i4) (0.18) 

where i = S, V :.1nd (G.l) indicates the quantity in E~q. (G.l). For the vcetor spatial 

cornponents, these integrals become 

(f3.2) = 

(G.14) 

The ()-j symbols limit. the possible allowed values of A; and A. The reduced matrix 

elements are evaluated using [45] and further limit A: and /\. Note dun as the uppc~r 

aud lower Hartree spinors have different l values, the reduecd matrix c.IPments in 

F]qs. (6.13) and (6.14) must have the corresponding, appropriate t values. 

Now eonsidcr the remaining two-dimensional radial integrals, when' the nurn-

hers are a shorthand for all tho quantum nu.mbcrs needed to uniquely specify the 

radial \V<:wc funetions [ 41], 

(6.15) 

Here R(r) = U(r) /r are the a,ppropriate radial Dirac wave functions, m t.errns of 

Gu(r) nnd F(l.(r), and aga,in ·i = S, V. 

Using t.lw !Jart,ree spinor representation, the particle-hole matrix clenwnt is 
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expressed as a smn of D.irae rnatrix elements of the types shovm abnve [W], or:! 

{ 

. . J' } ,,! __ ···-., ') · I . . JIll J a, ' · I · r ,. . · I 
tab:lrn ~-· L(--J + l) . . . . (lb.J I\ l(mi.J) 

.!' .lh Jl J 
(6. lG) 

No exel1.auge terrn is required, due to the fact that the A ancl the IHideon arc 

distinguishable particles hen~. For example, the particle-hole rnatrix elcnwnt for the 

vector spatial emnporwnt. of the effective interaction is 

I .J ('\"') .J:l2;l4 I::) ( --l)-hdh+.J i: I)--] )k { ~2 ~ 4 /\ } / / dr1dr2 

k A J1 J;J J ' ' 

x { G1 (r1) F:1 ( rt) .fA:v(rJ: rz)G2(r2)F.1(r2) 

<(t 
1). II (K:,l)( )II( l. )((t 1). II (k,t)(, .ll(l 1). ) x IA2 J1 XA ) l:~w2)J:3 .·2A2 J2 X>. 2) •4B2 }I 

·-Gl (rt )Fa(rJ )f,v (rJ, r2)Fz(rz)G4 (r2) 

((l 1)' II (k l)( )ll(l L. )((/ 1)' II (k.l)(2)ll(l L. ) x •l1\2JJ XA' 1 <3B2)Ja -2n2J2 X>.' • ·4A~i)J.I 

-F1 (rt)G:~(rJ)h~v (r1, r2)Gz(rz)F4(r2) 

x ((liB~ ).it llx~:,l) (1) II ( l:lA ~ )ja) ( U2A ~ )j2llx\k,t) (2) II (Lm ~)j4) 

+F1 (ri)G3(r, )lkv (r1, r2)F2(r2)G" (r2) 

x ( (lm ~ )j1llx\k,J) (1) II (la,\ ~).b) ( (l:.m ~ ).i2llx~~, I) (2) II UL\ ~)j4)} 
(6.17) 

Here lu ... and lm are the l values corresponding t;o the upper and lovver HaxLrce 

spinors respectively for the ·ith wave funetiou where i == 1, .. 'L Now tl!C' ;-:;plitting, 

for a s1; 2-doubleL, is just the differcmee between the pa.rtiele-holc matrix dements of 

-------------
2'J'hese partlde-hok' matrix clements are developed in a.ppendix F'. 
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to:~ 

the two ava,ilable states, or 

((U8) 

The substitutions used to acqnire the appropriate indices for this ease arc n = 1, :3 

and A= 2, 4. 'The solution to the Hartree equations yields a singfe.-parU.de energy 

level for the GS, EA. As previously mentioned, for the eases under consideration 

this level is in fact a doublet; huw(Yver: Bq. (6.18) evaluates only the siY,O of the 

splitting. In order to determine the poRition of the doub.lct relative toEA: one needs 

the relationa 

z= (2J + 1) c)(: =, o (6.W) 
;r 

We now have a framework with which to caku.lat;e the si;~,e of the s1; 2--splittings 

of th.e single A-hypernucld of interest here and to deterrnirw their location relative 

to gA· The problem is reduced to Slater integrals and some algebra; the G-j and 9-j 

symbols are determined using (105, 100). The Dirae ·wave functions needed to solve 

the radial integrals are taken as the solutions to t.he Hartree equations from the 

previous section. Once all the parameters in the underlying Jagrangia,n are fixed, 

the splitting is completely determined in this approach as there are no additionaJ 

constants fit to exeited state properties [41]. We also m.ention that this approach is 

applicable to excited states and multiplets for this class of nuclei. 

To calibrate this approach, we apply it to oTdinaTy nudei. T\vo modiiieations 

to our frarn.ework are required here. First, an excha.nge term is iudurkd because 

the proton and neutron arc indistinguishable particles. As a result, the partide-·hole 

:1Tlw proof of this rcla.tion is contained in appendix G. 
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HH 

matrix elernent beeonw~ the following [ HlV' 

{ 

. . J' } · . , Jm Ja ' . . . . · . · . t . v;~b;ltn = L (2J' + 1) . .. . . [ \lb.J'IV lam.J') -- (·--1 }h' IJn, +J (lb.J'jV jmaJ') J 
.JI .)b .]l .J 

(G.20) 

Second, tlw efrnctive interaction is also modified, requiring additional couplings to 

the rho and pion fields [41] 

(6.21) 

These alterations make the ordinary nuclear matter case eonsiderably mon~ eornpli-

cated than the case of single A .. hypernuelei. 

6.3 Results and Discussion of the s.1;2-splittings 

In this section we discuss the caleula.t.ion of the s1; 2-splittings in A-hypernudei 

and the results obtained from these cakulations. Following the rrwt.hodology estab-

lished in scetiou 6.2, one needs to evaluate & from Eq. (6.18) to determirw the sil~e 

of these doublets. It is possible to separate & into contributions fron1 each portion 

of the effective interaction, or 

& = oc(s) + 6e.(vt) + &(vs) 

\vhere s) vt;, and vs represent the sealar, vector time, and vector spatial et.Hnpouent.s 

respectively. AH it turns out, the sealar and vector time compone.nts cancel .in 

the spHtting, shown by 

(G.2:3) 
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lOG 

Tlwrcfore, the s1 ; 2··Splittings are entirely determined front th<· v·eetor spatial u~nn iu 

the efl'eetive interaction, or 

This is true for any syston1 in which either the A or t.he nucleon hole has j 1/2.'~ It 

is interesting to note that; this ealenlation tests a different sector of the urtderlyin.g 

lagrangian than the rnean Hdd analysis and that, as tlwre is no eorresponcling inter-

pretat.ion in th.e statk limit (M -·-7> O<:)), it is here an ent.irdy relativistic <dTc1·t. Now, 

to determine the splitting we only need to evaluate the partido-hole rnatrix element 

in }<~q. (6.17) for the two appropriate .J values. 'T'hese matrix elements have been 

reduc:cd to two-dimensional radial integrals and some a.lgd)r<t [~15]; Uw G·-j and H-j 

symbols arc evaluated using [10;), lOG]. The integrals are solved using the Hartree 

spinors, Ga(r) and Fa.(r), calculated in the single-partido analysis. Notieo that the 

integrals in the vcdor spatial eontribution mix the upper and lower co.mponents of 

the Hartree wave functions. Num(~rically, the integration is performed u::iing Simp-

son's method. 

The results of this analysis are contained in Table 6.1. The splittings vvith a 

neutron hole listed in Table 6.1 all correspond to single-particle levels whid1 were 

used in the fits of the preceding discussion, as shown in Figs. G.l and ;).2. The 

s1; 2-splittings for ~60 and ~8 Si are graphed in Fig. G.l; the GS doublets t(x ~28 and 

4°C l 1 . F". G 2 A ,a are p otto( m 1g. :. 

N oticc that /.he splitting.~ in Figs. 6.1 aru.l 6.:2 are all within the e:rperirnental 

error· ba.rs on the GS binding energies. 

'I'Jw appropriate level orderings are shown. lt should be n1.entiorwd t;hat the 

t;hree excited states with neutron hoh's sbovnl in T'<:1ble G.l will overlap with otJu~r 

states of t:he same .J value. Therefore in tltese eases on.e n1ust diagonalizn Lhe hamil.-

'1Tlw proof of thit> statement is eontairwd in appendix H. 
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Nudnns 

'l:ABLE 6.1: s 1;;rsplittings, and some exeikd states, are shmvn with their r<'spectivc 
eonfigurations, level orderings, a.nd doublet magnitudes. Here LL denotes lo\vc:r k~vel 
and l&-j is in kcV. 
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FIG. 6.1: Graph of GS particle-hole splittings and their respc1:Live hwd ordr•rings for 
~GO and ~i:!Si. 'I'he single-particle ('alculations worn eonduct;<;d UHing the l\:I2 paranwtcr 
set and are plotted alongside the experimental values [8, 10]. Notice that. thP :,;pliLtings 
lie within the experimental error bar:; ilt both l:ases. 

l06 
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-20 ' 

·- ·- Partick-holc Splilting , 
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-- Experimental Value 

40 (' 
I\ .a 

FIG. 6.2: Graph of GS pa.rticle-hole splittings and their respective level orderings for :~2 S 
and 'A°Ca. The singln-pa.rtide cakulations were conducted using the i\112 p:.u·amctcr sot 
aJtd are plotted aJong;side the experimental values (8, !J]. Notice that the spliLt.ing;s lie 
within t;hc experirrwntal cnor bars in both cases. 

HY7 

tonian to determine the correct splitting and level ordering. The rmnaining doublets 

in Table 6.1, those with proton holes, are for predicted A singlc-pa.rtide levr-l:s. These 

three arc shown in Fig. 6.:3; here, in addition to the GS splittings for both .~2B and 

l6N, the doublet for the first eakulated excited state in J\6N is also gi\;r~n. These 

splittings will be mea.sured in an upcoming experiment using the reaction (c, e' K 1 ) 

with much greater resolution than the (rr+, K+) reactions [11, ] 2]. As the dfeetivc 

interaction used here is isoscalar, there is no distinction in this approach between 

proton and neutron holes. This is apparent when comparing the GS's of .~6N and 

.~6 0; the slight difference in their splittings, which is only about 10 kcV: arises from 

Coulomb effeds. Also note that the splittings for configurations ·with the holes .in the 

same shell are larger t"or the smaller j value. For exa .. mple, tlw doublet f()l· Hw GS of 

~{B, in the (lpa;2);)1 (1s1; 2)A configuration, is smaller than that of tlw GS of J\6N, in 

the (lp1; 2)p 1 (ls 1; 2 )."1 state. Similarly, j1S(:I for the GS ofA°Ca, in tlH• (1d:3f:?.)p 1 (1s 1;2):\ 

state, is greater than jc>cj for the GS of 7\':lSi, .in the ( ld,,;;2 )P 
1 (ls1;2h eon figuration. 
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FIG. 6.3: Graph of particle-hole splittings for !(B and ,\6 N ~:wd their respective level 
orderings. In addition to the GSs, the first eakulated exeitcd state in .~"N is also in
eluded. The single-particle calculations were eonduetcd using the IV£2 paramd:cl' set. 
Th(~ experimental value for the GS of 7\2B is tak<;n fmm 1.107]. 

108 

The level ord(~rings for each ealcula.ted doublet are also given in Table G.L Notice 

that for all of the cases considered here, the state with the higher .J value is t:hc GS 

or, in the case of excited states, th.e lower level. 

Recent gamma-ray spectroscopy experiments [18] (and the experimental error 

bars on the GS binding energy of A2B) suggest that the partide-hole splittings are in 

faet much smaller. As the tensor coupling W'as important in the spin-orbit splittings, 

it is reasonable to assume that it may play an. important role in the ease of the s1; 2 -

splittings. Higher order terms in the effective interaction, especially those involving 

the tensor coupling to the A, may be required to obtain a. quantitative description 

of the small s1;:rdonbleL splitthtg.5
•
6 This is left for futnre work. 

0 A systematic a.nalyHiH of the effective interaction to all orders, a.t lmLst. in non-n~lativi:;tie many
body th<lory, ir: pn~!·wnt.cd in [19]. 

fJThe retention of higher diagrmns in the effeetivc intmar~t.ion, particularly those i.nduding the 
tensor coupling t.o the A, is left for futtm~ work. Also, it is worth noting that whiln the kaon 
.makes no contribution at thn moaJ1 field lev<.~.!, lo1on <'X(:hange may play a role in tlH~ e'ff'cct.ive 
interaction. Some idea of the relative contribnt;ion of bon exdumge ca:n be obtH.irwd from the 
N.ijnwgen potentials (42, 4:3, 44]. An investigation of the effect of kaon exehangn on the s1;a-
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FIG. 6.4: Partido-hole splitting for the GS of :W"'1'?· The levd orderings ;utd splittings 
kU'<l shown for both theory and experiment. Here the G2 parameter set of FST was used 
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109 

The present analysis was also extended to the case of or-dinary rru.clei. The 

necessary modifications to the theory \Vere discussed in section G.2. \Vc apply this 

approach to the case of :~gP17 in the (2s1; 2)p(ld:3;2 )n state. As noted before, this 

calculation will require direet and exchange contributions from the scalar, vector, 

rho, and pion terms in the effective interaction. Fortunately, the staten1ent of Eq. 

(6.23) holds hcrn for the direct term and can be extended to indude the direct rho 

time component as well. 'rhc result of our calculation is 41:3 kcV; the observed 

valnc is 77 keV [46]. This is sh.own graphically in Fig. (L4; notice that correct 

magnitude and level ordering is obtained. How(~ver, it should be noted that this 

calculation is considerably rnorc eomplit<'l.ted than the A-N case. 

splitting:-; i.r1 cflcctive fidd theory is also left to future work 
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CHAPTER 7 

Conclusion 

The efieetive field theory approach of FS'I' was developed to solve th.e Intelear 

rnany-body problem. l<"ormnlated in terms of haclrons as gencraliz:ed eoordinatcs, 

it has the great adva.ntage of ineorporatiug aU the irnportant; general principles 

of physics: quantum mechanics, Lorent11 covariance, mieroseopic causality1 sponta

neously broken chiral symmetry, and the underl:ying symrnetr,y st:ructun: of QCD. 

This approach is part of a continuing effort to describe and understand nudoi. Il 

has been applied with great success to nudei in the valley of stability [1, 2]. The 

central work of the present thesis is the extension of this framework to the region of 

normcro strangeness. The main eontributions of the current work are divided into 

three sections he low. 

1. ln chapter 11, we consider the application of the FST approach to strange 

superhca,vy nudd. 'I'he Ite\\' contributions to this subject are: 

• the coupled, nonlinea.r fidd equations follm:ving from Eqs. (1.28) and (1.:::\1) 

- ( 1.:35) are solved rurmerieally v;rit:h appropriate boundary conditions for 

ordinary finite m.u:lci; 

110 
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• the resulting baryon density and scalar field provide a. pid.nn~ or dw ~izn 

and shape of the surf~tce of ordinary nuclei; 

• the surface en.<'rgy of orrlinary nndd is oxtraeted by fitting t<1 the SEtvlF 

and is in agn~errHmt; with experiment. This successfully calibrates t·he 

approach; 

• cPtscadn-nucleon (SN) matter subject to the constraints C~ = 0 and 

ISI/B = 1 is then similarly studied fm a range of S scalar eouplings; 

Ill 

• the determined dcn.sities again give a pieture of the si~e and sha.p<: of the 

surfa(:e of 3N ntldPi; 

• tho surfacn energy is also aequired by fitting to the SEf\lF' of nudei; 

• with the A scalar coupling fit to experiment, the ineluBion of Ns little 

effect on the results. 

2. Iu chapter 5, we consider sing.le A-hypcrnuclei using the methodology c~f FS'I'. 

The following are a list of the rnain new contributions of the present \Vork: 

• a minimalist extension is made to the strangeness S = -1 scetor which 

an isosealar A is included in the full 'FST' effeet.ive lagrangian; 

• Huertas1 prograrn to solve the relativistic Ha.rtree equations of [16] is 

appropriately extended and modified; 

• parameter fits to experimental data are eondueted at various levels of 

truncation in the new A-lagrangian; 

• it is found that the :3--paranu~ter fit obtains excellent overall agr(•ernent with 

the exp(•rimental data; 

• it is also deterrnined. tha.t. the inclusion of more paranwtNs dons uot; 

signifieautly improve tho fit; 
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1.12 

• the re:::;ulting effective lagrangian iH used to predict. the GS binding energies, 

densities, and single-particle speetra. of other siugle A··hypnrrwdcd .. 

a. Cha.pter () is dedicated to a specific phenomena of single A-hyperuudc~i ~ 

s1; 2-splittings. 'fhe new tontributious of the present work are: 

• the effective partide-hole iut;erac:tion is derivnd from the previousl,y 

detenuined effective lagrangian; 

• it is discovered that the only term that eontributes to the s 1;2-splittings is 

the spatial part of the neutral vector exchange; 

• it iR also found that the GS doublet splittin.gs of all the A-hypernndei used 

in the fitting proeedure lie ·within current experimental error on the GS 

binding en.ergh$; 

• predictions are m.ade f(H· the s1; 2-splittings in J{1B and \0N \Vhich will be 

measured in an upcoming experiment at the Thomas .Jefferson National 

Aeeelcrator Facility [11, 12];1 

• the s1; 2-splitting in a comparable ordinary nudeus ~~P 17 successfully 

calibrates the approaeh; however, this calculation is more complicated as 

isovector intera,etions and exchange contributions are now required. 

The methodology which F'ST have eonstrueted \vas d<:signed to reproduee the 

eharaeteristies of nudei in the valley of stability. The present work, by r..;uceessfully 

exp~n1ding their formalisn1 to the strangeness sector~ indieates that thi:s theory is 

more robust. Coupled with other recent applieatio.n.s of this frarnework 01.1tsidc tlw 

1 The retention of higher diagrams in the effective imera.dion, particularly those induding the 
tonsor coupling to tho A, is left fhr future work. Ahm, :it is worth noting that whik the kaon 
nwkes no contribution at the mean fiold level, kaon cxd.mnge tnay pla.,v a role i.n tl1<.: dfnctivc 
interaction. Some idea of the relative contribntion of kaon (~xdmnge r~a11 be obtaiucd from the 
Nijn1egen potentials [42, 4:~, 44]. An invci'ltig;<ltion of the dfcet of l<aon exdtang(: on thn s1,12 
splittings in effective field theory is also left to futun' work. 
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11:3 

region of stabilit.~v [Hil 21L the research preH('Ut:ed here implies Lhat the effud ive field 

theory a.pproad1 of FST provides 11 pn~dietivn method for it[.lproxirnatiug QCD in 

the strong-coupling, nudear pb.ysics regime. 
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APPENDIX A 

Definitions and Conventions 

In this appendix, sorne useful definitions are listed. ']'his work utili'/,CS the 

conventions of [5]. Here we usc Xp. = (x, i!;) and repeated Greek indices are summed 

form 1 to 4. The Pauli matrices are 

a1 = ( O l ) ; a2 = ( O ---£ ) ; a:3 = ( I O ) (A.l) 

1 0 i 0 0 -1 

and they satisfy the relation 

(.A.2) 

1"1.. • • •<# ( ') 1WV a.re t:>ometunes \VnUcn as (r == (TJ. (J·), a·,, -::::::: 
•J ,I ~¥ ' 

T'he notation if and rare used 

for spin and isospin respectively. 

114 
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The Dirac rm.d.rit:Ps am shown by 

(oa) fi (
1 o) 

iJ 0 ) 0 --] 
(A.a) 

'I'hc gamma rm1t.rices a.re eonstructed from these Dirac matrices and arn given by 

"';1, = (iiSfJ, ,B) 

where "'!p. =·~ "!}1• In addition, we define the pseudoscalar 

and the seeond rank tensor 

-z 
crf.w = 2 [!1., /',,] 

The gamrna matrices satisfy the following relations: 

and 

,-,. ry L rv '" - ')(<: fp If/ "T {ll /it- ~ 1!/.11 

(AA) 

(A .. 5) 

(A.6) 

(A.7) 

(A.8) 
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lW 

The Haca.h functions are ddin.ed as ['15] 

(A.9) 

where the Yl;q(fJ, (/>) are the spherical harmonics. VV(• also define x~~; 1 ) as C~,:,1 coupled 

to Pauli matrices, shown by 

x~~;,n = 2.: c,,:11trr 11' (kqlfl'IA:L\p.) (A.lO) 
qq' 

The modified spherical Bessel functions are 

v;y; In+1/'2(z) 

. 11 ( 1 d ) 
11 

sinh 11 
- 'h -- ---

?, dz z 
(A.ll) 

kn(z) /f,Knll;'2(z) 

(-l)n~ [L.(n+1)("')- iu('h)] 

(A.12) 

The following a.ngula,r momentum relations a.re useful in thiR work 

} [(2j, + 1)(2j, + l)]'l' (A.1:n 
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and 

,...., { j, 
~(2j+·1)(2j"+l) ' 

J J3 

,)2 j' } { j;~ h j } 
• • ' •1/ 

J4 J J I J:1 J 

- (),'II J J 

The sealar product of two cornn1uting tensor operators given by is 

{ 

J ., ., l . • f ., 1) .. • .)2 lt 
( ---1 )31 

.lQ . <}y JbM'M .. , . . 

h. ]I J; 

11 't 

( A .. lil) 

XL ('r'j',IIT(K)II"/'},)('/'.l~IIO(.K)Ih·.h) 

(A.Hi) 

Bor the purposes of this work, the Raeah functions will take the place of 'f(K) and 

U(K). The redueed matrix elements relevant here are 

( ( t' ~ )j'll C\: II ( l ~ ).l) ( l)j'+l/2 [(2j' +· 1) (2j + l)]l/2 

X ( .1'~ : :) [~(-~E] ( A.17) 
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and 

1 (t'·:~)· ''II /k,l)ll 't 1 l'\ \ ') J A;~ ( ·) J! 
.;..; '"' 

l(2j' + 1) (2j + 1) (2>. + 1)] 112 

l' l k 

x ·~ ~ 1 (l'IIC~clll)(~lla111~ (A.l8) 

j' J ,\ 

'Ih determine Eq. (AJ8), we n:nmt alRo spedfy the followin~ redueed matrix denl<mts 

[45]: 

' ( l' k 1 ) (l'IICklll) = (--ll [(2l' + 1)(2l + l)f 12 

0 0 0 

(A.lD) 

and 

(A.20) 
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APPENDIX B 

Ordering the Terms in the 

Lagrangian 

In order to conduct a systematic expansion in our lagrangian we require some 

method for ordering the tenns. To a.ecomplish this, FST use a system tl1at involves 

both naive dimensional analysis (NDA) and relativistic .mean field theory (Rl\1FT). 

In this framework, higher order terms n.re successively smaller. This will allow one 

to truncate the lagrangian in a meaningful fashion. 

B.l Naive Dirnensional Analysis 

N DA states that ouee all the appropriat(: dimensional factors hasf• been ab

sorbed in a gi·ven tenn, what remains iH a dirnensionlnss eonstant p 7]. Furtherrnore, 

this constant is of order unity, an assumption which is known a.s "naturalrwss.'' 'J'he 

119 
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following cxprcsHion is used to idenU(y all of the dimensional fiu~tors associated vvith 

the specific compont.mts i.n any givnn Lenn 

. . •') 2 l"' • •P ' 1 
( 

iZ':N.; )k ( Fi )m ('! )u ( [)~ ·)p 
m!n.! .I~~ M lfK~ f1r !r. . Ivf (B. I.) 

.Here g; is the geueric dimensionless constant, .f~r is the pion-decay constant, and 1Vl .is 

the eh.iral syrmnetry breaking seale [1]. Note that tbis expression can be expanded 

to include additional baryons and mesons. A.s examples, examine the tnrms 

(B.2) 

Using Eq. (B.l)l we see tha.t the eonstants are 

M 
gs . g" "'-' - < 4rr 
'' v .l~ ·- (BA) 

The pion couplings, v1t and a.1.1 , a.Jready have a factor of 1/ lrr <l.l'lsoda.Lcd with them; 

consequently, they are treated as derivatives [1]. Next, eonsi<.kr a more compl.ieated 

terrn 

I J'> ~~' \ .).,)) 
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12.1 

Eq. (B.l) tells us thal the followin1.~ faetor IIHlSL accompany this term 

.fv fvgv 
·-::=:::--- (FLG) 

Here the substitution of Eq. (BA) \vas used and the constant \vas labeled g :c::: fv /4 

for future eonvenience. All the terms in the Jagrangians used or developed in this 

v.rork have been treated using this methodology. 

B.2 Relativistic Mean Field Theory 

RMFT allows one to remove so.me of the complexity associated with the quan-

tum fields from the nndear many-body problem. Irnagine a box with a volume V 

and containing a, fixed number of baryons, B. lf the volurne of th.e box shrinks, then 

the baryon density must increase. lf the baryon density becomes large enough, then 

the source terms in the equations of motion ean be replaced by their expectation 

values [5]. Furthermore, the meson fields can also be replaced by their expectation 

values. In this case, these are just their classical fields 

~b( x1.) --t ( ¢) = (/>o ( r) 

Vp(x1t) --+ {V,J =:: 'i61,A Vo(r) 

p,, (xll) ,_,., .. * (p,l.) = ibp4bo{r) 

Ap,(x1,,) + (A1,) :::':: ib1,4Ao(r) (P '"") , , J, I 
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whkh arc time independent. Since there~ i:c:; no spatial. dir<'ction in the prublmu f~:H· 

a uniforrn s:ystnm at rest, the vector fields can only develop their fourth cotnponent 

[5]. F'or the purposes of this work 1 we restrict ourselves to spheri<:nl symmetry. Note 

tha.t the pion has no mean field in a spherically symmetric systc~rn; as H. result, aJI 

the pion couplings drop ()UL Tbe tondHions un.der which BJVIF'T applies exist in 

the rcgilne of Iow ... cncrgy nuclear physies. 

The mean meson fields, when sealed with their respective coupling constants, 

shown by 

(B.8) 

are large. IIowever, they are small when eompa.red to the chiral symmetry breaking 

sealf~, M. The Fermi wave number, which is related to the size of the derivatives, iR 

also small compared to M, or1 

<P VV 1 
- - i'V -· 

M' M :3' 
kF l 
- i'V-

l\11 4 
(B.9) 

If the naturalness assumption of NDA holds, then it follows from .RM.FT that tcnns 

with increasing pmvers of the meson fields (and derivatives) will become succes-

sivcly smaller. Therefore, truncation of the lagrangian can now be conducted in a 

meaningful fa,shion. 

----,-~ .. ·--·-··-.... , .. _.,. _________ ,,._,.,. 

1 The spatial variations of the m<'SOn fields and baryon densities arc obs,!rved to occur on the 
seale of the nudea.r surfa.te [:.~]. kF prov·ifks a cha.raeteristic invnr:>e length scale for the nuckar 
surface. As a result, 'iVO can now employ the relation \7 ;:x /q,·. 
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APPE DI c 

Hartree Formalism 

Consider a simple single-pa.rt:ide hamiltonian 

(C.l) 

which satisfies the Dirac equation 

(C.2) 

where E11 is the energy eigenvalue. Note that the following discussion also holds for 

the full h(x) in ehapter 2 as well. T'hc solutions to Eq. (C.2) are of the form 
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numbnr [5]. 

The total illli!,'Ular rnoment;urn is defined as the sum of the orbitnl and spin 

angular rnorneuta, or 

Using 1: = t x 1'> and 

f' (C'' , ... we re-express ;;q. _,.4) as 

-J· •-; ~ ):~j') . =u:x v +· .. ,.; ~ 

Next, we ddine the operator 

K /l(E·e+l) 

/3(f. J + 1/2) 

\Vhen the following eommutators arc examined, one discovers that; 

'("~ t) l . .:.!.t 

((,; (') .. J 

(C.7) 

(C.8) 

This implies that the eigm1vahws of these four opcratorr>, {j, s, ·r.;: Hlj} n~spl~<tively, 

are all good quantum numbers and that they cha.raeteri'l:(' tlw stat(•s ·t/Jn ~mtl '1/'ii [fi'!. 

A few examples of the n~spceUve quanturn nmnbm·s of different r;tatf'S are ~>ho>vn in 
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J~5 

state n /'{ j l,\ ln 
(ls1'2) f-··:T··· l/2 

" 

I 0 l 
.Tii;a12) t -2 :5/2 1 2 
H·---.1·-··-~-· !-···--·- ""'":-

1 (lPl/2) l J./2 0 
~-'--- -.,--r-;-:· . " 

2 1 (1d:312) 1 2 a;2 
~-.. -·!---· -· -~~.,. 

(2su2) 2 -1 1/2 0 l 
._ ___ ,...J...;,.,. "" 

TABLB C.l: Sorne examples of different stat:cs and their r<'spect.ive qun.ntum nutniHn'R. 

Table C.L Note that. states vvltJt t.he same {Ls,···h:,m.i} are denoted by different 

n and that s = l/2 for aU of tbe eases considered in this work. The squa.re of the 

operator K is 

""2 I J + 1 4 

It follows from E}q. (C.9) that ""= ±(j +· 1/2). 

The eornmntator of the hamiltonian with 0 does not vanish, or 

[ 
_,2] h,L 0 

(C.9) 

(C.lO) 

Consequently the eigenvalue l is not a good quantum nurnber of the syst\'HL How-

ever, while 'IJlu is not an. eigml..state of C2 ' both '1/'<~ and '1/Jii sepa.rately arc. This is 
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l.2G 

rrutnifest by the relations 

(C.Ll) 

(C.12) 

where K is expressed in terrm; of lA and ln by 

{ 

li\ 
r-
" ~ [B ·+ 1 

r;:. > 0 

Note that the eigenvalues lA and ln always differ by one and, as their parity is (~-1.)1, 

the upper and lower components of 1t'u always have opposite parity [41]. 

Next, it is assumed that the radial and angular parts of the HarLrc:e spinors 

are independent. For the angular contribution, we construct the Hpin spherical 

harmonics: given for the upper component of Bq. (C.3) by 

<1>"'rn(O, (M = L (lAmiA, ~Insll/\ ~jrn) YtAm1A (0, 1>)Xm" (C.V3) 
Ill( Aft!" 

where Y1m a.rc tho spherical harrnoni.cs and Xm.; arc t\vo component .Pauli Rpinors. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

1:,?,7 

the lower cornpont.'nt. T'hc solutions to the Dirac equation now tak(: the J(;nn 

, ·.·~· 1 ( 'i(jn (r)<Pr.m ) .. 
'IPn (x) = -· (t 

r 
~·· 8\ ( r) <I> . r.m 

(C.l4) 

Here t labels the isospill projection: t = +1/2 (-·1/2) for protons (.rwntrons) I:5J. 

Substituting Eq. (().14) into Eq. (C.2), we aequirc the radial Hartree eqtw.tiom;, or 

[5] 

[ a '"·] c~ ( ) [ ., r . ) l\ l Dr+; ,l"n r- En -·gv\o(r + / gs1>o(r)] Fn(r) = 0 (C.l5) 

(C.Hi) 

The radial meson equations are 

f.P ( 2[)'() .~) :::~ 2 c/>o r) + - -:---
1 

<Po r - rn8 (Po ( r 
ur r ( r · 

-gs(Js (r) (C.l7) 

n2 2 'J 
U \' ( ) C r ( ) . 2 r · ) -.., 'or ·+ --, Vo r ·- mv\o(r 
Dr~ r Dr 

--gvpn(r) (C.l8) 

The source terms can now be expressed in terms of the Hartree spinors, or 

Ps(r) (C.lH) 

PB(r) (C.20) 

Equations (C.IJ>) .. (C.20) fonn a system of equations that nmst now be :-~cdved sdf-

consisVmtly [5]. Modification of Lhis system to ineorporatn a wore eornplicated h(x'), 

such as the one in Eq. (2.16), is straightJorward. 
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APPE DI D 

Analysis of All Possible Terms in 

the A-lagrangian 

In this appendix, we discuss the selection of the terrns in our A-lagra,ngian to 

order v = 3. It is straightforward to see which terms are retained to order lJ = 2, 

with the exception of the four fermion terms. Th.crcfore, the f~)llowing is a list of 

all remaining possible combinations of the fields to order I/ = 3, consistent. ~:vith this 

approach, and a short discussion of each. 

• F'our fermion terms in the nudear case, such as NNNN, are climinat!'d substi-

tnting the meson equations of motion into the lagrangian. Under nonnal cireurn

sta.nees this is not fe;tsiblc; lH:nvever, th.is is allowed when the systcrn is already 

in equilibrium. Here we •va.nt to extend thn framework of .FST' to single A

hypnrnuelei with no additiontd. n1nsons. In this case, eHher NN,\A or AA;\A ean 

be eliminated using this rnethod, but not both shnultarwously. ForiJJuatdy, the 

.128 
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• 'l'he tenn l'Hr1w V1wA is eousistent with this franle\vork. 

• The terms :\Aq>2 and ,~:\ V/ are also retainecl. In the nucleon S('C:tor, terms of 

this variety were regrouped using meson field redefinitions. Here the turms have 

different eon.stants Chan in the nudeon ease; therefore, these terms eaunot simply 

be regrouped, unless addit;ional mesons arc induded. 

• The term A"tp.A(/JVp. is consistent with this frame\>v-ork. In the nudc:ar iL was 

eliminated via the Dirac equation, but. this is not possible here. 

• Next, the following t.erm is consistent with this methodology, l.mt can be rmvritten 

as 

[ 5:l~ ( A"tp.A)] ¢ 
vXp. 

(D.l) 

The sceond term is a total deriw1.tive, which does not ehangc the lagrangian, and 

the third term is a. four derivative of a conserved current, .. which is zero. 'T'hcrefore 

this term can be neglected. 

1 An equivalent approaeh to the traditional mcHon-baryon effective Held theories it; the point 
coupling modd, which contains only the baryon t1dds in a loeal lagrangian [108]. In the point 
coupling case, the energy funetional is an explicit functional of the <knslties; tlltlS, the energy 
fundional ca.n be minimized to dd()rminc the exact GS deni'iity dimct.ly. In contra~;t, the mwrgy 
fiJnet.ioual in the meson-nucleon ttworics is an implicit full(:t.ional of tlw dvnsity. In order t.o 
minimize the energy functional, one must first. sltmv that the variational <kriva.tives of the crwrgy 
functional with respect: to t.he meson fields an.' zero. Ilownvm·, tlw n1eson···haryon ;;.pproadl dons 
havn t.he advantage of foeusing more ex:plkitly on tJw int.nraction mechanism. 
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e Co.nsider the [t)lluwing tenn8 

(DA) 

The Dirac equation for the A can be substituted into each of thesf• to eonvort 

them into a type of term already considered. 

• Lastly: all of the contributions with A,. arc absorbed into other te.nns in the 

same manner a.s like terrns with Vw Howevr.r, the tcrrns A"ftt;\A1" and Ai\A~ can 

be discarded as q = 0 for the A. Therefore, the only· rernainiug cleetrornagnetic 

Note that the constants in front of each term have yet to be determined. \:Vhen the 

terms are regrouped, tho free parameters can be redefined to suit our purposes. 
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APPENDIX E 

Check on the Consistency of tl1e 

Experimental Data 

In this appendix, we condue!; a, simple (:heel\ on the cons.isteney of the experi-

mental binding erwrgici':i. Here, we use a square-well potential of depth U0 and range 

R = r0B 1 f:l to approximate the nucleus. In this case, the binding energy of a A 

particle in this nudeus, BA, is given by the solution to the equation [l9, 100] 

s = (1 ~ x)- 112 cot- 1 ~ (
1 
~ x) [ 

' 1/'2] 
(EJ) 

vvlwre x = B ,,fUo, 

(1':.2) 

1:31 
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and 

FIG. E.l: Fit, using Eq. (f'}.5), to tlw experhw:ntal GSs of single 1\-hypernuclei givon in 
Table 6.1. Here 10 terms ha:vc been retained. In the limit that B -+ oo, \Ve acqui.re the 
result U0 = ·<m.56 MeV. 

1 1 1 
-=-+-
p,i\ mA AmN 

(E.:3) 

Here mi\ and mN are the masses of the A and nucleon respectively. A denotes the 

number of nudeons, (B -- 1 ). The follo·wing equation is a solution to Eq. (E.l) as 

s ->- 00 

(E.4) 

lf one rewrites Eq. (E.2) a.s 1/s:?- ::::.:: 'YB :>.;:1, when• "/ is ~:>ome free paranlr!t.er, and 

substitutes it into .Eq. (EA)~ we arrive at 
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lu Fig. EJ., a k~.l.St-Rqu~.u·es .tH to Uw t~.xperinwntitl GSs of singln A-hypcnmdei W<l.S 

perfornwd using Eq. (E.ti), where 10 tenus have been retained. The vahH~s of the 

parameters that produced th.is fit wen' 0 0 = ---30.iJ() and ·;· = 0.()525. :H£!H~ Co eor-

responds to the binding mwrgy of a single A in nueh'ar rm1Uer; this is in good agree-

ment with values given in the literature, "'·28 lVIeV [2G], and the number determined 

and Eq. (E.2), we acquire th.e result 

(E.G) 

Furthermore, we notice that for la.rge B, Eq. (E.:3) beeomes flA ~ m1\. Therefore, 

we can rewrite Eq. (E.G) as 

( 

') 1/:2 h- In;\f 1 
ro = ----· -T- = 0.92() fm 

2mj\" rn,\ 1llJ0 I) (.E' '"') .). { 

This result eornpares favorably with the va.lue given in [5], r0 = 1.07 fm. analysis 

of this appendix gives us eonfidenee that the data is consistent, except for shell 

effects, which are caleula,ted in this work. 
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APPE DIX F 

Particle-Hole Matrix Elements 

This appendix outlines tho theoretical techniques used to cakulate tlH~ partiele

hole matrix elements used in dutpt;er G. This discussion is taken from [19]. 

F .1 Particle-Hole Operators 

Assume the GS of the eore is a set of completely filled single-particle levels. In 

a spherically sym.rnetric system, these states ean be charaeteriz:ed by 

j<.x) = lnlsjm) = Ia, m3) (F.l) 

where so.= 1/2, j = ll ::!: 1/21, and the parity of these states is detennixwd l.1y (--·1) 1. 

] ~{'.1 
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Now we deflue the partide and hole creation operators as 

(1: > F' 

where ct and C are the fermion (Teation and destruct.ion operators respectively. F 

is a nninber that lies between tlw last filled state a.nd t;he first unfilled Rtate [J 9]. 

Here 

(F.2) 

is a phase convention. The C's obey t:lw a.nti-eomm.utation relations 

fc·, c't } . l "(~' ·,~, = b,;vn' (F.a) 

{(., c ·} - {c't c·,t } -
j(l':' l(r/ . - _.~o, _~,'tt - () (F.4) 

Therefore, the particle and hole operators satis~y the following relations 

(F.S) 

{ ·~ ·~ t}- {·,t .,i· l - {1") l> t} -· {l·>t l·>t l. ·-· 0 .. n' «•(t --- "'n' "'d f ..... . . u' <J •••• <r' o' J ...... (F.6) 

. Lastly, vve define tJw partide-hole pair creation opera.tor as the tornbiuation 

(.F.7) 
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1:w 
F .2 Tannn-Dancoff A.pproxhnation 

()(Jnsider the tnatrix element 

( .,f, I [H /-t J 1"1' ) ~-·n . ' "nP ~·0 

(I,, 8) ,, .{ .. _ 

where the hamiltonia .. n is H == lin + 111 ·l· H:,l. The components of th.is lmrniltoniaJl 

are given by 

(F'.9) 

(F.lO) 

(F.ll) 

The states )1/'o) and l~bn) are the exact GS and an exact excited state rc:speetivcly, 

given by 

1
,,/, \ 
~ent 

where the mat.rix elen1ent is 

IO) 

' ,,(n)* ,t )Q\ - L...J 7i'o,11 (l/1 I 

<~!3 

, ('n·; 
'{/1 ,. ,. or! 

(F.l2) 

(F.l3) 

(F.lil) 
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N is tho norruaJ ordered product, whkh plae(•s all th<! tn~ation operators1 particle 

and hole, to the left. Noxt, w<.~ caleulatc tho matrix elcrnenL in Eq. (F.8) l1y (; .. ~Cplieitly 

evaluating the cornnmtators of Eqs. (F.9) ·· (F.Jl) with Eq. (F.7) 

(F.13) 

(.F.l6) 

To evaluate the Lhird commutator, ·we must first note that the p11.rtide and hole 

destruction operators operntiug on IO} are 

(F.17) 

Now we consider the eommutator of H2 , shown by 

(F.18) 

where 

(FJ9) 

First we evaluate the nonnaJ ordered produet 

··N· (. ·<'! < 1t c·' c·' · '>(o S' . t 1 t 1· • o. · C :\ j(l" .)Jl ' 1,) = - i) 11·'· (ra>. .>f.t ) ···rr<\z1 (.F.20) 
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1:38 

(F.21) 

Here only terms \Vith the eombinations a)bt were retained as all others vanish in the 

matrix element. Equation (1<'.18) now becomes 

[H2, (~;J] = 2:: s~ jls- t:d (A--- ;71V I p,a) -- (,\ f11VIn -- fi.J) <tl (.F.22) 
,X!t 

Substitttting Eqs. (F.l5), (F . .W), and (F.22) into Eq. (F.8) aud then rearranging, 

one arrives at the result 

[(Bo +fa f---.;3) Eu] '1/J,~~J + 2:: V1~,1J;Ap.'l,bi';} = 0 (F.n) 
A!~ 

where 

(F.24) 

Next, we briefly considt~r a calculation of the transition matrix element of some 

multipole operator, 

bet\veen one of the collective excitations and the CiS. In the 'I'mn.rn--DancofT approx-· 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

1:.~n 

imation. oulv the terms with the wmbinaUm1s ai·ht will contribut(~. or / tl .. ' . ' . ,_ ' . '., 

(I ' ')£') . ~ ...... o 
nil 

(F.27) 

Thereforr, it is just the sum of single-particle m.atrix denlents weight,e)d by the 

c:odfieients ·<!~~~ which are determined from above. 

F.3 Reduction of the Basis 

The dimension of Eq. (F.23) ean be reduced by noting that .J is a good quantum 

number. vve ddine the f()ll(}\~'ing irreducible tensor of rank J 

(F.28) 

Next, we further define the matrix clement 

(.F.2H) 
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Using the V\ligrH~r-EekarL ~'l'heorern, Eq. (F.26) is rewritten as 

(F.~10) 

and from this it follo\vs that 

('t?ji!T.J lll,bo) = L (all'r.JIIb}·!/'-~n) (ah) (F.::n) 
ah 

'I'hc basis in Eq. (F.2:3) ean be reduced by summing with tJw Clebseh-Gordon 

eocflieients in Eq. (F.29). F'or a spherically symrnetrie system, we use tlw relation 

(F' •)')) . ,.t)...J 

Next, consider the following matrix element, 

(A.-- f3IVI -- p.n) 

L L (jAm>j.B -- m1:JU>J/;.J'1VI') 
.JM .I'M' 

Sinee the Clebsch-Gordon coeffieitmts are real, one ean write 

(F.~~4) 
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Also) as V is rotatiotlfl,lly invariant, tlw follovdng relatirn1 holds 

I; • J'.~I' j'\ r j' . ·J·~ ··J) \JA),fi•· t~' · v' JttJn·· lV · 

As this is now independent of M, we rewrite it in the shorthand 

= (lb:J'IVImaJ') 

1··.11 

(P.:35) 

(F.:JG) 

In eonscqunnec of Eqs. (.F'.:34) -· ( F'.:JH), it follows that .Eq. (F .:3:3) now beeomes 

JM :l'iW 

(F.:37) 

Similarly the exdtange matrix element is 

.JM J'M' 

(F.38) 

Substituting Eqs. (F.37) and (F.:38) into Eq. (F.24) yields 

J'!VJI 

(F.39) 
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112 

'fo simplify LhiM further YVt.' next; cow·:dder the relation. 

(F.4.0) 

Using identities from [45]. this can be rewritten as 

.J' ·/···· (2J' ··!· 1) 1/2 2: . ' . . . ' ' - (--]) J,, J>- •. .,.. ........ _____ (J m J8Irl·"ll .Jf.i.JM) '>J+"I .on,. ,,,11,_ 
-·· · · m" tn;:1 M' 

(FAl) 

Using a G-J symbol and. the orthogonality of the Clebseh-Gordon coefficients, Eq. 

(.F.41) is further reduced to 

.lo J' } 
J..\ J 

This relation allows one to rewrite I.<;q. (F.::39) in the following fashion 

L (jnm,~.il'lmB U~JpJM)v (~{J;..\p. = 'V~.b;lm (h m.\Li.mp. IJ:dwJM) 
m,.,mt? 

"\vlwrc the particle-hole 1.natrix elerncnt is 

., • .J 
.Jab;lm ·~ -~ '2.:(2J' + l) l (lbJ'IV!aJnJ') ·· C·, l).icr·tj1,+.J' (lbJ'IVInlH-.1') J 

.J' 

I j,J, .J~~ 
X 

:if;f j_l, 
J' l 
J 

(FA2) 

(F.43) 
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.l ,ta 

Furthermore, Eq. (F.2::l) now lH~<~on1es 

t.b) (F.iJfl) 
hn 

where Eqs. (F.31), (F.32), and (F.1:3) have been used. 
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APPENDIX G 

Relative Position of the Splitting 

This appendix is dedicated to dcterrninlng the position of the doublet splittings 

relative to their energy eigenvalue eakulated from the relativistic Hartrec equations. 

Each term in the partide-hole rna.trix element (scalar, vector; rho, and pion) has a 

similar J dependence. For example, the J dependence of the scalar contribution to 

the direct term is of the form 1 

{ 

J2 J1 
( -1 )j2 lja+.J . 

J 1 ]:3 

'.;; } 
.J 

(G.l) 

and the .J dependence of the scalar contribution to the exchange term iH 

2J +I 
(G.2) 

1 Thn full formulae for t.lte splittings are contained in appendix I. 

144 
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1VIultiplyin.g v:L: 1,1 (s), the scalar emnp<mer.li. of the parLidc•-hole matrix dnment, by 

(2.1 + 1) and then sunm1ing over J, nun n.rrives at the rnHulL 

2~)2J + l)n;j2;14(s) 
J 

,.... • • j' { .b j4 
... L)2.J + l)(··-l)J2I.J:d· . . 

,) Ji J:.l 

+· L (2J + l) 2J ~+- 1 J.u:<¥2(r1, r2l 
.Jk 

(CL:3) 

where <v1 (r 1, r2) and n 2(r 1, r2) are the parts of v~2 ; 1 • 1 (s) which aw irHlqwndent of .J 

for the direct an.d exchange terms respectively. The phase in Eq. (G.3) is converted 

into a. 6-J syrnbol using the identity Eq. (A.1:3). Substituting this in, Eq. (G.:~) 

becomes 

~(2J+ 1) l J .12 .h 
){ J2 

.14 

0 .1:3 J:.l )') .ll .~ 

+ LC)JA:CI'2(r1,r2) (G.4) 
.Jk 

For the direct term, we use the substitutions j 1 = .b and j 4 =.b. \Vc conclude that 

the G.J symbols are orthonormal from Eq. (A.l4) and as a result, Eq. (C1.4) is now 

= [(2.h + 1)(2h + 1 )] 112 6~;:oO:I (r1, r2) + L b.JkCI'2(r,, r2) (G.5) 
Jk: 

The rmrtich~-bole splitting for the scalar eontribntion only is de1irwd. <IH 

(("; ['} 
;r.\) 
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l4G 

Not(~ that o: 1 (r1, r~) alld u~!(r 1 , r~~) arn comrnon factors, for t.he direct and cxdu1ug;e 

terms respm:t:ively, in Ji~q. (CHi). After nmltiplyiug b( (s) by (2.J + 1) and ta.king the 

suru over .J, the following re:mlt is obtained 

I:(2.J + l)6c(s) 
J 

{[(.-.· 1).('>. l')]l/'2s: I'("' 1)('>. t')]l/2,} ·(· ·) . .!.J2 + . ...J:3 "F . . . <IJ;O -·- . .:::;J2 +· · .... J:l + · OkO l1J I 1, l;t, 

+ L (b'Jk -· 8.Ik) c~Ar1, r2) 
.Jk 

--·- 0 (G.7) 

This approach is easily extended to the other terms in 6f, as their J dependence is 

of the same form. Note that for the spatial veetor and rho components, ,\ takes the 

place of k in this derivation. 
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APPENDIX H 

Cancellation of Terms in the 

Splitting 

ln this appendix, we eonsider only the direct term in the part;idc-hole matrix 

clement. \Ve will prove that the k = 0 terms in th.c scalar, the vector and rho time, 

and the pion eontributions vanish in the splitting (and the ,\ = 0 terms for the 

spatial vector and rho contributions). Consider only Lhe direet term in. the scalar 

component of the splitting 

oe(ds) 

(H.l) 

147 
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1.<:18 

Here /:l(r1, r:,>,) is the emnmon part of ar(ds) fork~:::.: 0. 1 Since vve are only intt~n~sted iu 

the direct tenn, we use the ~ubstitutiorw .b j 1 and j.1 =::.· .i:,~ to arrive n.t the following 

[ { j, 
.12 0 

} { ]2 
J2 0 

} ] ii(r1, r2) ·~ ( ---1}11 f.l~~ . -~ c~ l)l.lt .~~1 . 

Jl .h jl +.b Jl j I u, -.hi 
(H.2) 

[ . { j, +j, Jl 1'' } (--l)U' j,l{ IJ1 .i21 Jt .12 }] ( ·-1 ).11 +.!2 
. ~ 

, r2) 
0 h JJ 0 .b .h . -

(H.:5) 

The identity in Eq. (A.l3) [4fi] reduces Eq. (H.3) to 

Since .hand .b arc both half integer, j 1 ··1- j 2 and jj, -.blare both integer. Thi.s allnvi'S 

us to conclude that 

( -l).il +J2 . . 

- [(2.h + 1)(2h + 1)]1/2 [1- 1] ,B(rl' r2) 

0 (H.5) 

This proof is readily expandable to the k: = 0 t;errns of tlw vector and rl1o t.irne, and 

the pion contributions as well as to the A ::::::: 0 terms of tbc vector and rho spatial 

contributions. Note that this applies only to the direct term in the splittings. 

1The full forrnulao for the splittings an~ contained in appendix L 
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APPENDIX I 

Formulae for the Splittings 

In this appendix, all the formulae for the s1; 2-spliltings arc listed. ,.I hesc for--

mulae vvcn• derived in [110]. In order to enleulate particle-hole splittings, we n1ust 

calculate the partide-h.ole matrix derrwuts of !Dq. (F.44). These are sums of Dirac 

two-body matrix elements, of tlw types in Eq. (6.1) and (6.2); these are reduced 

via Eq. (A.l6) to two dimensional integrals and some algebra. The relevant matrix 

element for the scalar tern1 in the cffeetive interaction is 

((12)JI"til),._/.~2) --g~ e-msri2J(:34).J) = (--l)h+j:d·J ~ { J j2 J } 
4r. r 1? · L 

- k k J3 .l4 

x ( (lJA ~ )jtiiCk (1) II (faA~ ).h) ( (l2,\ ~ )}li1CA,(2) ll{l4,\ ~ )j.1) 
~ ~ ~ ~ 

x/ / dr,dr·2 [G1 (r1 )G:l(r 1) -~- Ft (r 1 ).Fa(r1 )] f;;(r 1, r2 ) 

x [G:~.(r2 )G,I(r2) ··· F:t.(r2)F1 (r2 )) 

14D 

(L l) 
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where t:he subHtit.ntions have been used 

((1]!\~)j,IICk(l)IIU:~A:~).b) --- ((lln~).LdiCk(2)ll(l:m~)j..l) (L2) 
1'-J ,;;,.J .:..J ,.,..., 

((l2!\ ~)JIIIC.~~t.U)II(lli\ ~).h) -- ((l:m~).h!IC,;;(2)II(l4n~)j4) (I.:3) 

and where 

/·S (1· r· _) . k 1) :2 

(1.4) 

The modified sphcriea.l Bessel functions are defined in appendix A. ( I.l) is 

the dircet matrix dement; to acquire the exchange matrix element, v,·c usc the 
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substitution ::> .t,N;. 4. T'he scalar tf!rm of the partid<~-hole matrix dm.ncnt i:--:1 

•11 .1 (s) ___ ~(-1 )k1kl,J+k { .h J.·'.' ' .. ·; } a2;14 • _,. ~ .. 

A: .h j;l .} 

x ( (/1"\ ~ )j ,j!CA:(l) IIU:lA ~\h)((l·v\ ~).biiC~c(2) ll(l4A ~ )j4) 

x .// dr1dr2 [G, (ri)G~l(rJ)- F1 (r1 )l'\(r, )] .fh"(r 1, r2) 

x [Ch(r2)G4(r2) ~- F2(r2)F4(r2)] 

.I •'XI 

···( --·1 )h I }l+2J,; -. _ .... -- ,--... OJk 
2.J + J L-

1.~ 

X ( {l, A~ )j,IIC!c(l) II (l4A ~)j,1) ( ( l2,\} ).hiiCk(2) II (l:l;\ ~).h) 

x / ./ dr, dr2 [G1 (r1)G4(r1) F, (r1 )F4(r1 )] .fA'!(r 1, r2) 

x [G:2(r2)G3(r2) ···· F2(r2)F:3(r2)] [2(1- 'T)] 

lSI 

(1.5) 

Note that for the A-N case, the Sl~cond term in .BJq. (L6) can be neglected, as ea.n 

all the subsequent exchange tenns in this appendix. 
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1;)2 

The relevant rnatrix dmnent for the veetor time t.er.m iu the r~(fnctive inu:raction is 

where 

((l2)Jj!:?.~:e luvri:J 1(:34).l/ = ( -·l).i:d.i::.+J ~ { ,J .b j, } 
·1Jr r12 L...t . . . 

k k J;l .].1 

x ( (lJA ~ )j 1IICh ( l) II (faA~ )h) ( (l21\ ~ ).b 11Ck(2) 11(!4/\ ~ )j,J) 

x ./ / drt dr2[G1 ( r1 )Ch(r,) + F1 (ri) F3(r1 )] h:v (r 1, r2) 

x [G2(r2)G4(r2) ·t- F2(r2)F4(r2)] 

The vector time term of the partiele-hole matrix elernent is 

',J (· ·t) - -- ~(-1 ).i2-i-.i8+·J +k { i>. j4 k } 1;32;14 \ ' ~- L...t ,, 
li: jl h J 

x ((lJA ~ )J,IIC~;:(l) ll(laA ~ ).b)((h,.. ~).biiCA:(2)II(l4A ~ )j4) 

x /./ dr1 dr2 [G1 (r1 )G:3(rJ) + F1 (r1 )Fa(rl )] fkv (r1, r2) 

x [G2(r2)G4 (r2) + F2(r2)F.1(r2)] 

. ,. •)" 1 ~ 
... -(--·lV' ·J:~+-J4 2J + 1 L)5n 

},; 

X ( ( /1 i\ ~ )j 1 IICh ( 1) II U~:\ ~ ).i4)( ((,!A~ )j~! IICJ.: (2) II (/:lA ~ )j;i) 

x / / dr1 dr2 [G 1 (rJ)G.t(ri) + F 1 (r1 )F.J(rt)] fhv (rJ, r2) 

>< [G2(r2)G:1(r:.!) +· F2(r2)Fa(r;t)] [2(1 'T)] 

(Ui) 

{L7) 

(1.8) 
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The relevant matrix element for Uw vectr)r spaC(1 term in the df(~etive int!~racLion i::;; 

I "A 

k ), 

X 
{ 

.J .b. jl } /'/' . \' . . . dr1dr2 { Ch (rJ)F:I(rt ).fA:' (rh r2)G2(r2)F (r;l) 

A .ia J<t 

x ( (l1" ~).hI Lx·\A:'1 
l (1) II U:.m ~).h) ( ( h-\ ~ ).b llx~·lJ (2) II ( l4n ~ )j.1) 

1(. 
1). II Jk,l)( .. II(. 1 ).·)((t · 1). II .(k,l) .,).11·1 1 ). \ X\ ltA2 Jl .\),. 1) l3B2 J:l 'dl'r2 J2 X>, ( ... ) (4A2 J4/ 

(1.9) 
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154 

'l'he vector space tenn of the pa.rtich'-hole matrix elenwnt is 

((l 
1). II (k,J)( )ll(l 1). )(( 1 . 11· (k,l) .• )II( 1). ) X l:\2 JJ X.ll 1_ -:m2 J:3 l2n2)J2 X.ll ·(2 l.~c\·2 J4 

t(· 1). II· (k.l)( )II( ')· )'( 1. II· (k 1)(· )II( 1).) x \ lrn 2 J1 X;. · 1 l:lA 2 J:J \ l2A 2).12 X>. ' 2 l.m 2 .l4 

((l 
1

). II· (k.lJ(. )ll(t l.. 't(t 1). II (k,J)(2'II(l 1). )} X ·1B2 Jl X;. l :3A2)J3/, 2112 J2 X;. . . ) ·4;\2 .1·1 (T.lO) 
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15G 

"'"" ( «•l)j~l j~, j 2j,l 2.11+ 1. f 2::::: (······1 )k+ 1···,\ 

};: ), 

x / / dr1 dr2 { Gt (r1 )F4(r1 )J~': (r1, r:z)Ch(r2)F':,(r2) 

(( 
1 ). II· (k.l)(·. )II( 1). )1 l 1 ). 11· (k,J)(,. )ll(l 1 )' ) x ltA2 .11 X;..· ) l4n2 J1 \(•:zA2 J2 X;.. 2 c::m2 Ja 

I( ] )' II· (A:,l)(. )II( 1)' ) 1( 
1)' II (k,l)(' )II( 1

)') x \ l~,, 2Jt X,\ 1 l4n2 ]4 \ l2n2 J2 X..\ 2, l:M 2 Ja 

((l 
1). II (k,l)(. )11( 1 

1). \((l 1). II (k.l)('))ll(t 1). ) x 1JB2.J1 X.A 1 ''4''2 J4; . 2."~2 J2 X.A · ~ :m2 .]:1 

x [2(1- T)] (I.ll) 
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'I'hc relevant matrix elenwnt for the rbo tinu) term i11 the e.fll:.~cL.ive iuteract.ion is 

where 

f(l) . g2 e rnprt~ . . . ex' { J j 2 
((12).JJ~·---···--~-----·1(:14)J) = ( 1).12 IJ:>,l J L 

4 4?T l'j•) 
•. k k J·., 

~ ·~I 

X ( (ll A~ )jliiCJ.;( 1) II ( hA lth) ( (l:zA ~ ).b IIC~;;(2) II (l4A ~ )j4) 

x/ / dr1dr2 [Gt (rJ)G:J(ri) + F1 (r1)F:J(rJ)] J{(r1, r2) 

.:::.:(1) ,":(2) 

[(•
1 

( )('' ( ) C' ( )}'' ( )] ('l''l 1 
. • I. 1'1''\ X 1:?. r2 .. :q r2 + r2 r:t ·1 4 r2 . 4- · 1 

The rho time term of the particle-hole matrix clement is 

'U~2;H (pt) = -I) -1 )h+j3+.J+k { ]2 ]4. k } 

k J I .J:l .J 

x ( (l1A ~ ).h liCk (1) II (l:3A ~)ja) ( (l2A ~ )h IICk(2) II( l4A t )j4) 

x / J dr1 dr2 [G1 {rl)G3(r1) + F 1 (r, )F:l(rl )] ff(rl, r2) 

[(1 ( ). C' . ) ·r·· ( )'F ( )] ( 3 - 4T) x :r2 r2 ·q(r2 + '2 r2 '.1 r2 - .. -
4 

. I' '2' 1 ~ 
-( -l)J2 ·J;Ji ·.14 2J + ] L.. c5.)k 

k 

x ( (l1 :\ ~ )j 1IIC~.; (1) II (l4A ~)j,t) ( (lu, }:)J2IICh: (2) ll(lH ~).h) 

x .// dr·, <h·2 [G1 (rt)G4 (r1) + F, (ri)F4(rJ)] ff(r1, r-~) 

[( I (' ')("'1 ( ) l' ( )I"' ( )] (' 2'[) >< ... :~2 ,r2. •:l r2 +· '2 r2 . :' :1 r2 . ~1 ... 

·· .. :1 } 
J4 

(Ll2) 

(1.11) 
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The n•levant. matrix element for the rb . .o space component in thn eff<~c:tivc ird.eradion 

is 

((l 
1). II (k,l)(. )ll(l 1). )1(l 1). II (k,l)(. )ll(l 1)· ) X li\2]1 X>, l <lB2J3 \ '2B2J2 X>. 2 ··1:\2.14 

1(l 1 ). II (k,l)(. )II 't I. )(('t 1)' II (k,l)(, )ll(l 1 ). ) X \ •1 B 2 .J l XA . l ( :lA 2 )J;J 2A 2 .12 X>. 2 •t1B 2 .J4 

1( l.. II (k,l)(. )II( 1)' )((l 1)' II (k,l)( )ll(l 1)' \} x \ lm 2)JI X>. 1 l3A 2 .Ja :m2 .12 .Y>. 2 ·M 2 J4J 

-(1). -(2) 

X (T'I T 4 T IT') (T.15) 
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The rho space Lerru 1A' thn partkl(~-hole matrix elnn.lellt is 

•:X:: 

J ( ) ( ·.I. )l.d.l ;d or '\:"' '\:-... (' ....... I. ). k 
'V:t2;14 ps = L...t L...t 

((l 
1).11 (h:J)')ii(l 1).\((/ 1).ii·(A:,I)(''II'l 1).) x 1A2J1 X,\ (1 ·3H2 J:lr :m2.J2 .X>. 2) (· .. L\2 li 
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((l 
1). II (k,l)(·l)ll(t 1)' )((t 1). II (h:,l) ·, )il'l 1).) X •IJ\2 JJ X..\ '. '4B2 .)4 ·2B2 J2 :~:).. (2 l•:li\2 .J:l 

--F1 (r, )G4(r1 )fk(r,, r2)G2(r2)F;3(r2) 

x { (lm ~ )j 1llx~~.n (l) II (l.ti\ ~ ).i4) ( (l2A ~ ).hd lx~'' 1 ) (2) II U:m ~).h) 

((t L). II (k,1)(. )il(l 1)· )((l 1). II (k,l)c )II(L 1)· )l X ·IB2 Jl X>. l '<1A2 .14 •2B2 J2 X>,. ,:2 ;},\2 .l:i J 

X (
2T) (Ll7) 
4 
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1()0 

The relevant matrix elemnnt for the pion term in the effective inLer<:lction is 

where 

(LW) 

The pion-rmdeon vertex is giv(>.l1 by (f7r /n1.,1 )t5qp."ft~'Ti for a pseudoveetor pion. The 

Dirac equation satisfied by the Hartree spinors is used to eliminate the qp.~f," term. 

Thns the factors (M*(r1)/M)(M*(r2 )/M) are now required in the matrix element 
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HH 

1"110]. rrhe pion term of the partid.(•-hole matrix element is 

l 00 

-- ( -- J )j:l,+ h+2j4 ·.. . " ........ 8 ' 
' 2J + 1 ~ .JJ,; 
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APPENDIX J 

Code 

Huertas developed a program for solving the coupled, nonlinear, differential 

equations derived thHn the effective field theory a,pproach of FS'I.· llGI. 'f'lw afore 

mentioned program was modified to incorporate a. single A, a:-; described in ehap-

ter 5. In addition, a subroutine \vas added to caleulate the A-partide-mH:lc~on-hole 

splittings a,s discussed in chapter 6. The resulting program (in C), a working copy 

of which is available from the author, is given by the following: 

#include <stdio.h> 
#include <math.h> 

I* --------------------DEFINE FUNCTIONS--------------------------* I 
float k(int state,float *energy,double *kappa,float *scalar,\ 

float *vector,float *pu3,float x,float gn,float fn,\ 
int forg,double M); 

void half (float *Y ,float *yh); 

void integr_messon(float *gin,float *gout,float *field,\ 
double *mass,double *pg,float *density,int f); 

Hi2 
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1*-----------------DEFINE OUTPUT FILES-·-·"·-~---~·-···-----------···-··-*1 

FILE *spel; /*single particle energy levels,*/ 
/*total energy, p and n radl.us*/ 

FILE *densit; /*source densities for the meson*/ 
/*and E&M equations*/ 

FILE *out; /*output of the final fields*/ 

FILE *-wavef; 
FILE *par,*nuc; 
char parfile[10],ignore[10] ,nucfi1e[10] ,nucname[6]; 

1*--------Global variables----------*/ 
int ngrid~12000; 
float step=0.001; 
float hbarc=197. 33; /*conversion factor between "!~leV*/ 

/*and fm-1*/ 
double bmass=939.0; 
double lmass=1115.68; 
double lp=1.793,ln=-1.913; 

double lam=-.613; 

double gphoton=5.01; 

main(int argc, char *argv[]) { 
/*Iteration variables*/ 

/*nucleon mass*/ 
/*lambda mass*/ 
/*anomalous magnetic 
l*p and n*/ 
/*anomalous magnetic 
/*lambda*/ 

moments 

moment 

int i,j,n,m,iterat,flag,turn,turnl,rmatch,temp_int,mi; 
float temp_float; 

float *scalar,*vector,*prho,*photon,*energy; 
float *lscalar,*lvector,*lprho; 

/*pointer to u3*/ 

Of*/ 

*I 

double *kappa; 
float *pu3,*lpu3; 
float *pbvector; /*pointer to bvec, the combination of all*/ 

/*vector fields*/ 
double *pmass,*pg; 
float *pgin,*pgout,*pdensity; 

/*Used in Runge-Kutta procedure*/ 
float g1,g2,g3,g4,f1,f2,f3,f4; 
float gmatch_in,fmatch_in,gmatch_out,alfa,rmax; 
float glmatch_in,flmatch_in,glmatch .... out; 
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double xO,x1,x2,x3,x4,ee,brnax; 
double scale,xnorm,xnorml,deltae; 

/*Mise*/ 
float factor; 
float tempi, temp2, test; 
float meansc; 

lG/1. 

I 
/*Define input data*/ 

int nstates=40; 1*=30 number of states by default*/ 

float lambda[nstates]; 
double dege [nstates] ; 
double kapa[nstates]; 
double e_guess[nstates]; 
double ispin[nstates]; 
char state [12] ; 
double match_r[nstates]; 

/*whether nucleon, 0, or lambda, 1*/ 
/*degeneracy 2j+1*/ 
/*angular momentum kapa*/ 
/*initial energy guess*/ 
/*isospin of nucleon*/ 
/*spectroscopy notation e.g. lSl/2*/ 
/*initial matching radius*/ 

double eta1,eta2,kapa3,kapa4,xiO,etarho,alpha1,alpha2,fv,f"rllo; 
double betas,betav,gslam,gvlam,gtl,mu1,mu2,mu3; 

/*Define output data*/ 
float eigen[nstates]; 
double e_total=O.O; 
double e_rho~O.O,e_vec=O.O,e_sc=O.O,e_coul=O.O,e_int=O.O; 
float radius_p=O.O,radius_n=O.O,radius_l=O.O; 

/*The grid*/ 
float x[ngrid]; 

I*# of each baryon and of total baryons*/ 
double np=O.O,nn=O.O,nl=O.O,B=O.O; 

/*Meson masses*/ 
double smass,vmass,rmass=770.0; 
double mass[3],massl[3]; 

/*Square of coupling constants*/ 
double alpha=0.091701,coupling[4]; 

I*Hartree and Dirac convergence*/ 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

float hconvrg~0.05; 
float dconvrg=O. hhconvrg; 

/*Parameters used in the Woods·-Saxon model. hdr is the*/ 
/*half-density radius in fm, tsurf is the surface thickness*/ 
/*parameter*/ 

float hdr=1. 07; 
float tsurf""'2.4; 
float xr,d; 

/*Dirac wavefunctions G and F*/ 
float diracg[ngrid] ,diracf[ngrid]; 
float diracgl[ngrid] ,diracfl[ngrid]; 

/*Densities*/ 
float den_sc[ngrid] ,den_vec[ngrid] ,den_rho[ngrid] ,den_coul[ngrid]; 
float den_vec_t[ngrid],den_rho_t[ngrid],den_a_t[ngrid]; 
float den_m[ngrid] ,den_coul_ci[ngrid] ,den_coul_c2[ngrid]; 
float den_coul_d[ngrid],den_coul_ch[ngrid]; 
float den_scl[ngrid] ,den_vecl[ngrid] ,den __ coul._l[ngrid]; 
float den_vec_tl[ngrid],den_a_tl[ngrid]; 
float den_vec2[ngrid]; 

/*Divergences of den_vec_t and den_rho_t resp.*/ 
float div_den1[ngrid] ,div_den2[ngrid] ,div_den3[ngrid]; 

/*Guesses for meson and coulomb fields at the origin*/ 
float sco=490.0,veco=415.0,rhoo=O.O,coulo=0.1; 

/*Define the FIELDS:scalar sc, vector vee, rho rho, coulomb coul.*/ 
/*They are defined using arrays. The fields we use are actually*/ 
/*already multiplied by the coupling constants: e.g.*/ 
l*sc = gs*scalar*/ 

float sc[ngrid] ,vec[ngrid] ,rho[ngrid]; 
float coul[ngrid] ,bvec[ngrid],u3[ngrid]; 
sc [OJ =sco; 
vec[O]=veco; 
rho[O]==rhoo; 
coul[O]=coulo; 

/*Fields incorporating the lambda couplings*/ 
float scl [ngrid], vecl [ngrid] ,u1l [ngrid], u2l[ngrid], u31 [ngr:id]; 

/*Gradients of the scalar and vector fields*/ 
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float gradsc[ngrid],gradvec[ngrid]; 
float grad_sc [ngrid] , grad ... vee [ngrid] ; /•Used for the*/ 

/•final fields*/ 

/*Temporary vectors used in calculating the laplacians*/ 
double tem1[ngrid],tem2[ngrid] ,tem3[ngrid] ,tem4[ngrid]; 

I*Laplacians*/ 
float lapse [ngrid] ,lapvec [ngrid]; 

/*Greens functions*/ 
float gin_sc[ngrid],gout_sc[ngrid]; 
float gin_vec[ngrid],gout_vec[ngrid]; 
float gin_rho[ngrid],gout_rho[ngrid]; 
float gin_coul[ngrid] ,gout_coul[ngrid]; 

/*Used in meson equations*/ 
float newdensity[ngrid],delta[ngrid]; 
double gfsc1[ngrid],gfvec1[ngrid],gfrho1[ngrid],gfcoul1[ngrid]; 

/*Constants used in the meson equations*/ 
double corr1,corr2,corr3,corr4,corr5,corr6,corr7,corr8,corr9; 
double corr10,corr11,corr12,corr13,corr14,corr15,corr16,corr17; 
double corr18,corr19; 

/*Constants used to calculate the energy*/ 
double const1,const2,const3,const4,const5,const6,const7,const8; 

/*Center of mass correction for binding energy and charge radius*/ 
double ecm; 

/*Define a switch*/ 
double swtch; 

/*Parameters for calculating the spin - 1/2 splittings*/ 
double A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6; 
double C1,C2 ,C3 ,C4 ,C5 ,C6 ,c·r ,C8, C9, C10; 
double D1[ngrid],D2[ngrid]; 
double Afactor[2] ,Bfactor,gamma; 
double GN[ngrid],FN[ngrid],GL[ngrid],FL[ngrid]; 
double SCALAR,TVECTOR,SVECTOR; 

1*-------CALL FOR INPUT FILES TO ASSIGN VALUES TO VARIABLES··-~~~--*/ 

/*----Calling the constants f'irst----*1 
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printf("Enter name of file with input constats "); 
scanf("%s",parfile); 
print:E("\n 11

); 

printf ( 11 Reading constants from file %s\n" ,parfile); 
par=fopen(parfile,"r"); 

fscanf (par, "%s %1£ 11
, ignore, &smass) ; 

fscanf (par, 11 %s %1£ 11
, ignore ,&:vmass); 

mass [0] =smass; 
mass [1] =vmass; 
mass[2]=rmass; 

for (i=O;i<=2;i++) { 
fscanf (par, "%s %lf", ignore, coupling+i); 

} 

coupling[3]=alpha; 

fscanf (par, "%s %lf", ignore ,&:eta1); 
fscanf (par, "%s %lf", ignore ,&eta2); 
fscanf (par, 11 %s %lf", ignore ,&kapa3); 
fscanf (par, "%s %lf", ignore ,&:kapa4) ; 
fscanf (par, "%s %lf", ignore ,&xiO); 
fscanf (par, 11 %s %lf", ignore ,&etarho); 
fscanf (par, "%s %lf", ignore ,&alpha1); 
fscanf (par, 11 %s %lf 11

, ignore, &alpha2) ; 
f scanf (par, 11 %s %lf 11 

, ignore, &:fv) ; 
f scanf (par, "%s %lf" , ignore, &frho) ; 
fscanf (par, 11 %s %lf", ignore ,&betas); 
fscanf (par, 11 %s %lf", ignore ,&betav); 
fscanf (par, "%s %lf", ignore ,&gslam); 
fscanf (par, 11 %s %lf", ignore ,&gvlam); 
fscanf (par, "%s %lf", ignore ,&:gtl); 
fscanf(par, "%s %1f 11 ,ignore,&mu1); 
fscanf (par, 11 %s %1£ 11

, ignore ,&mu2); 
fscanf (par, "%s %lf", ignore ,&:mu3); 
f scanf (par, "%s %lf" , ignore, &:swtch) ; 

fclose(par); 
printf("The constants to be used are the following\n"); 
printf("Masses :\n"); 
printf ( 11 scalar = %£ \n 11 ,mass [0]); 
print£ (!•vector = %f \n" ,mass [1]); 
printf ("rho = %f \n" ,mass [2]); 
printf("\n"); 

Hi7 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

printf("Couplings :\n"); 
printf ( 11 scalar :::::%f\n" >coupling [OJ); 
printf (!'vector =%f\n" ,coupling[1]); 
printf ("rho =%f\n", coupling [2]); 
printf ("photon :o::%f\n", coupling [3]); 
printf("\n11

); 

printf("Constants :\n11
); 

printf("eta1 =%.5f\n",eta1); 
printf("eta2 ~%.5f\n",eta2); 
printf ("kapa3 ""%. 5f\n 11 ,kapa3); 
printf ( "kapa4 =%. 5f\n" , kapa4) ; 
printf( 11 xi0 =:%.5f\n" ,xiO); 
printf c•etarho =%. 5f\n" 'etarho) ; 
printf("alpha1 =%.5f\n",alpha1); 
printf("alpha2 =%.5f\n",alpha2); 
printf("fv =%.5f\n",fv); 
printf("frho =%.5f\n",frho); 
printf("betas =%.5f\n",betas); 
printf C'betav =%. 5f\n", betav); 
printf("gslam =%.5f\n11 ,gslam); 
printf("gvlam =%.5f\n",gvlam); 
printf("gtl =%.5f\n 11 ,gtl); 
printf ( "mu1 =%. 5f\n" , mul) ; 
printfC'mu2 =%.5f\n" ,mu2); 
printf( 11 mu3 =%.5f\n 11 ,mu3); 
printf("swtch =%.5f\n" ,swtch); 
printf("\n"); 

/*----Calling nucleus parameters----*/ 
printf (!'Enter name of file with single particle levels: "); 
scanf("%s",nucfile); 
printf("\n"); 

1G8 

printf( 11 Reading single particle level information from file %s\n",\ 
nucfile); 

nuc=fopen(nucfile, "r"); 
printf("\n 11

); 

fscanf(nuc,"%d",&nstates); 
printf (!'Total number of states = %d\n" ,nstates); 
printf("\n"); 
printf( 11The single particle information :\n"); 
for (i~O;i<~(nstates-1);i++) { 

fscanf(nuc,"%f %1f %1f %1f %lf %s %lf",lambda+i,dege+i,kapa+i,\ 
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} 

ispin+i,e_guess+i,ignore,match_r+i); 
printf("%.1f %.1f %.if %.1f %f %s %.2f\n 11 ,lambda[i],dege , \ 

kapa [i] , ispin [i] , e ... guess [i] , ignore ,matcll_:r [i]); 

printf (!• \n") ; 
fclose(nuc); 
printf("Enter name of the nucleus (e.g. Sn132) :"); 
scanf("%s",nucname); 
printf( 11 \n 11

); 

printf( 11 Starting calculations for %s using %s parameters\n",\ 
nucname,parfile); 

printf("\n"); 

END CALLING INPUT FILES ---------··-····*/ 

/*Get the total number of protons and neutrons*/ 
for Cn~O;n<=(nstates-1);n++) { 

} 

if (ispin[n]>O.O) np=np+dege[n]; 
if (ispin[n]<O.O) nn~nn+dege[n]; 
if (ispin[n]==O.O) nl=nl+dege[n]; 

B=np+nn+nl; 

/*These are the grid points*/ 
for (i=O;i<=(ngrid-1);i++) { 

x[i]=step*(float)(1+i); 
} 

/*Use a Woods-Saxon model as the initial guess for the fields.*/ 
/*The Woods-Saxon radius is xr and surface thickness is d in fm.*/ 

d=tsurf/(2*log(9.0)); 
xr=hdr*pow((double)(np+nn),(double)(l.0/3.0)); 

for (i=O;i<=(ngrid-1);i++){ 
sc[i]=sco/(1+exp((x[i]-xr)/d)); 
vec[i]=veco/(1+exp((x[i]-xr)/d)); 
rho[i]=rhoo/(1+exp((x[i]-xr)/d)); 
coul[i]=coulo/(1+exp((x[i]-xr)/d)); 
u3[i]=O. 0; 

} 

f*Initailize the eigenvalues*/ 
for (n=O;n<~(nstates-1);n++) { 

eigen[n]=O.O; 

169 
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170 

} 

1*--------·-··-···---· .. ·----·----MESONS GREENS FUNCTIONS·-··~·~-·-·-······-·· ............. ~-·-*/ 
/*Transform masses into lengths*/ 

for (i=O;i<=2;i++){ 
massl[i]~mass[i]/hbarc; 

} 

for (i=O;i<=(ngrid-1);i++){ 
gin_sc[i]=exp(massl[O]*x[i])/(2.0*x[i]*massl[O]); 
gout_sc[i]•1.0/(exp(massl[O]*x[i])*x[i]); 

} 

gin_ vee [i] =exp(massl [1] *x [i]) I (2. O*x [i] *massl [1]); 
gout_vec[i]=1.0/(exp(massl[1]*x[i])*x[i]); 

gin_rho[i]~exp(massl[2]*x[i])/(2.0*x[i]*mass1[2]); 

gout_rho[i]=1.0/(exp(massl[2]*x[i])*x[i]); 

gin_coul[i]=1.0; 
gout_coul[i]=1.0/x[i]; 

1*------------------------- OUTPUT FILES 

out=fopen("fields. dat", "w"); 
densit=fopen("densities .dat", 11w"); 
wavef=fopen("wfunc .dat 11

, 
11 w"); 

1*-------------------- MAIN ITERATION LOOP -----------------··---*/ 
f*Initailize flag and turn*/ 

flag=O; 
turn=O; 

1*--------Start iterat loop-------*/ 
for (iterat=1;flag<=1;iterat++) { 

printf( 11 ITERATION No %d \n",iterat); 
printf("flag ::= %d,\n 11 ,flag); 

/*Let the eigenvalues form the previous loop become e_guess*/ 
if (iterat!=1) { 

} 

for (n=O;n<=(nstates-1);n++) { 
e_guess[nJ~eigen[n]; 

} 
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/*Initialize the densities to zero*/ 
for (i~O;i<~Cngrid-1);i++){ 

} 

den ... sc [i] =den ... vec [i] :=dtm_.rho [i] =den~coul [i] o,;:Q. 0; 
den_vec_t[i]:den_rho_t[i]"'den_a_t[i]:-.::den_m[i]=O.O; 
den_scl[i]~den_vecl[i]=den_coul_l[i]~O.O; 

den_vec_tl[i]•den_a_tl[i]=O.O; 
den_vec2[i]~O.O; 

/*-----Loop over all nstates------*1 
for (i:::::O;i<=(nstates-1);i++) { 

lTl 

I*If a positive eigenvalue is returned then use the i-1 eigenvalue*/ 
if (e_guess[i]>O.O) { 

e_guess[i]=eigen[i-1]; 
} 

eigen[i]==e_guess[i]; 

/*First loop through all the nucleon states*/ 
if(lambda[i]==O) { 

/*Here we start by solving the Dirac-Hartree equations using a 4th*/ 
/*order Runga-Kutta method. The criterion for convergence is given*/ 
/*by dconvrg. After 50 tries it declares that there is no*/ 
/*convergence and tries with the next state.*/ 

1*---------Start turn loop--------*/ 
for (turn=1,deltae=10*dconvrg;fabs(deltae)>dconvrg;turn++) { 

/*Define the potential ul for the nucleon Hartree equations*/ 
for (j=O;j<=(ngrid-1);j++){ 

bvec[j]=vec[j]+ispin[i]*(rho[j]+coul[j])+0.5*(coul[j]); 
} 

if(iterat==1) { 
for (j~O;j<=(ngrid-3);j++){ 

} 

bvec[j]=bvec[j]+\ 
(betas+2.0*ispin[i]*betav)*\ 
(coul[j+2]-2.0*coul[j+1]+coul[j]+\ 
(2.0*step/x[j])*(coul[j+1]-coul[j]))/\ 

(2.0*(bmass/hbarc)*(bmass/hbarc)*step*step); 

bvec [ngr id-2] :c:bvec [ngrid--2] + (betas·+2. O*ispin [i] *betav) * \ 
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(coul [ngrid-1] -2. O>~:coul [ngrid-2] +caul [ngr:id-<3]) /\ 
(2.0*(bmass/hbarc)*(bmass/hbarc)*step*step); 

bvec[ngrid-1]=bvec[ngrid-1]+(beta.s+2.0*ispin[i]*betav)*\ 
(coul[ngrid-1]-2.0*coul[ngrid-2]+coul[ngrid-3])/\ 
(2.0*(bmass/hbarc)*(bmass/hbarc)*step*step); 

}else { 
for (j=O;j<=(ngrid-1);j++){ 

J N') 
. ("' 

bvec[j]=bvec[j]-\ 
coupling[3]*hbarc*(betas+2.0*ispin[i]*betav)*den_coul_ch[j]/\ 
(2. 0* (bmass/hbarc) * (bmass/hbarc) *x [j] *X [j]); 

} 

} 

/*Define the potential u3 for the nucleon Hartree equations*/ 
for (j=O;j<=(ngrid-2);j++){ 

u3[j]=(fv*(vec[j+1]-vec[j])+ispin[i]*frho*(rho[j+1]-rho[j])+\ 
(0.5*(lp+ln)+ispin[i]*(lp-ln))*(coul[j+1]-coul[j]))/\ 

(2.0*(bmass/hbarc)*step); 
} 

u3[ngrid-1]=(fv*vec[ngrid-1]+ispin[i]*frho*rho[ngrid-1]+\ 
(0.5*(lp+ln)+ispin[i]*(lp-ln))*coul[ngrid-1]/\ 
x[ngrid-1])/((bmass/hbarc)*step); 

/*Make aproximations to F and G for small x*/ 
if (kapa[i]<O.) { 

} 

diracg[0]=10./pow(step,kapa[i]); 
diracf[O]=(step*diracg[O]*(bvec[O]-sc[O]-eigen[i]))/\ 

(hbarc*(1.0-(2.0*kapa[i]))); 

else { 

} 

diracg[0]=10.0*pow(step,1.+kapa[i]); 
diracf[O]=(hbarc*diracg[0]*(1.0+2.0*kapa[i]))/\ 

(step*(eigen[i]-bvec[O]-sc[0]+2.0*bmass)); 

/*Determine the matching point*/ 
temp_int=(int)(match_r[i]/step); 
temp_float=match_r[i]/step-(float)temp_int; 

if (temp_float<0.5) { 
r:match,..-=(int) floor(match_r [i] /step); 

} 

else { 
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rmatch""'(int)ceil(match_r[i]/step); 
} 

rmatch=rmatch-1; 

/*Assign pointers to the fields*/ 
scalar=sc; 
vector=vec; 
prho"'rho; 
photon=coul; 

pbvector=bvec; 
pu3=u3; 
energy=eigen; 
kappa=kapa; 

/*In what follows the pointer vector is changed to pbvector*/ 
/*Use a 4th order Runga-Kutta method to solve the Hartree*/ 
/*equations from 0 to rmatch*/ 

for (n=i;n<=rmatch;n++) { 
g1=k(i,energy,kappa,scalar,pbvector,pu3,x[n-1], 

diracg[n-1],diracf[n-1],0,bmass); 
f1=k(i,energy,kappa,scalar,pbvector,pu3,x[n-1], 

diracg[n-1],diracf[n-1],1,bmass); 

g2=k(i,energy,kappa,scalar,pbvector,pu3,x[n-1]+0.5*step,\ 
diracg[n-1]+0.5*step*g1,diracf[n-1]+0.5*step*f1,0,bmass); 

f2=k(i,energy,kappa,scalar,pbvector,pu3,x[n-1]+0.5*step,\ 
diracg[n-1]+0.5*step*g1,diracf[n-1]+0.5*step*f1,1,bmass); 

g3=k(i,energy,kappa,scalar,pbvector,pu3,x[n-1]+0.5*step,\ 
diracg[n-1]+0.5*step*g2,diracf[n-1]+0.5*step*f2,0,bmass); 

f3=k(i,energy,kappa,scalar,pbvector,pu3,x[n-1]+0.5*step,\ 
diracg[n-1]+0.5*step*g2,diracf[n-1]+0.5*step*f2,1,bmass); 

g4=k(i,energy,kappa,scalar,pbvector,pu3,x[n-1]+step,\ 
diracg[n-1]+step*g3,diracf[n-1]+step*f3,0,bmass); 

f4=k(i,energy,kappa,scalar,pbvector,pu3,x[n-1]+step,\ 
diracg[n-1]+step*g3,diracf[n-1]+step*f3,1,bmass); 

diracg[n]==diracg[n-1]+(1.0/6.0)*step*(g1+2.0*(g2+g3)+g4); 
diracf[n]=diracf[n-1]+(1.0/6.0)*step*(f1+2.0*(f2+f3)+f4); 

} 

gmatch_in=diracg[rmatch]; 
fmatch_in=diracf[rmatch]; 

17:3 
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/*End Runge-Kutta outward integration*/ 

/*Get initial values of F and G for inward :integration*/ 
alfa=sqrt ( ( -1.) *eigen[i] * (eigen [i] +2. *bmass)) /hbarc; 

rmax=step*(float)(ngrid); 

diracg[ngrid-1]=1./exp(alfa*rmax); 

x0=(-1.)*sqrt((-1.)*eigen[i]/(eigen[i]+2.*bmass)); 

bmax=12.*bvec[ngrid-1]/hbarc; 

ee=hbarc/(2.*(eigen[i]+2.*bmass)); 

x1=ee*(2.*kapa[i]+bmax*(x0+1./x0)); 
x2=ee*(2.*bmax+(2.*kapa[i]+1.)*x1/x0)-x1*x1/(2.*x0); 
x3=ee*((2.*kapa[i]+2.)*x2/x0+bmax*(2.*x2+x1*x1/x0))-x1*x2/x0; 
x4=ee*((2.*kapa[i]+3.)*x3/x0+bmax*2.*(x3+x1*x2/x0))-\ 

(2.*x1*x3+x2*x2)/(2.*x0); 

l t4 

diracf[ngrid-1]=diracg[ngrid-1]*(xO+x1/rmax+x2/pow(rmax,2.)*\ 
x3/pow(rmax,3.)+x4/pow(rmax,4.)); 

/*Use a 4th order Runga-Kutta method to solve the Hartree*/ 
/*equations from infinity to rmatch. Previously the left side*/ 
/*was n-1 and the right n*/ 

for (n=ngrid-2;n>=rmatch;n--) { 
g1=k(i,energy,kappa,scalar,pbvector,pu3,x[n],\ 

diracg[n+1] ,diracf[n+1],0,bmass); 
f1=k(i,energy,kappa,scalar,pbvector,pu3,x[n],\ 

diracg[n+1],diracf[n+1],1,bmass); 

g2=k(i,energy,kappa,scalar,pbvector,pu3,x[n]-0.5*step,\ 
diracg[n+1]-0.5*step*g1,diracf[n+1]-0.5*step*f1,0,bmass); 

f2=k(i,energy,kappa,scalar,pbvector,pu3,x[n]-0.5*step,\ 
diracg[n+1]-0.5*step*g1,diracf[n+1]-0.5*step*f1,1,bmass); 

g3=k(i,energy,kappa,scalar,pbvector,pu3,x[n]-0.5*step,\ 
diracg[n+1]-0.5*step*g2,diracf[n+1]-0.5*step*f2,0,bruass); 

f3=k(i,energy,kappa,scalar,pbvector,pu3,x[n]-0.5*step,\ 
diracg[n+1]-0.5*step*g2,diracf[n+1]-0.5*step*f2,1,bmass); 
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g4"'k ( i, energy, kappa, scalar, pbvec tor, pu3, x [n] ... ~step,\ 
diracg[n+1]-step*g3,diracf[n+1]-step*f3,0,bmass); 

f4~k(i,energy,kappa,scalar,pbvector,pu3,x[n]-step,\ 

diracg[n+1] -··step*g3 ,diracf [n+1] ~step*f3, 1, bmass); 

diracg[n]=diracg[n+1]-(1.0/6.0)*step*(g1+2.0*(g2+g3)+g4); 
diracf[n]~diracf[n+1]-(1.0/6.0)*step*(f1+2.0*(f2+f3)+f4); 

} 

gmatch_out:=diracg[rmatch] ; 

/*End Runge-Kutta inward integration*/ 
/*Look near rmatch. Scale outward integration such that diracg*/ 
/*is a continuous function. Then find the correction to the*/ 
/*eigenvalue*/ 

scale=g~atch_out/gmatch_in; 

for (m=O;m<;(rmatch-1);m++) { 
diracg[m]=scale*diracg[m]; 
diracf[m]=scale*diracf[m]; 

} 

xnorm=O.O; 
for (m=O;m<=(ngrid-1);m++) 

xnorm=xnorm+diracg[m]*diracg[m]+diracf[m]*diracf[m]; 

xnorm=xnorm*step; 

deltae=(-1.0)*diracg[rmatch]*(diracf[rmatch]-\ 
scale*fmatch_in)*hbarc/xnorm; 

if (turn==1) { 
deltae=deltae/2.0; 

} 

eigen[i]=eigen[i]+deltae; 

/*If a negative eigenvalue is returned, then*/ 
if (eigen[i]>O.O) { 
eigen[i]~-4.0/((double)turn); 

} 

/*Cutoff if not convergent*/ 
if (turu==50) { 

l?fl 

printf("NO CONVERGENCE AFTER %d TRIES FOR STATE %d \n 11 ,turn,i); 
fprintf(wavef, 11 NO CONVERGENCE AFTER %d TRIES FOR STATE %d \n' ',\ 

turn i) · 
' ' 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

l't6 

fprintf(wavef, "ITERAT""'%d RMATCH=%d XMATCH=%f\n 11
, iterat ,rmatch, \ 

match_r [i]); 
for (n=rmatch·· .. 3;n<,.(rmatch+3) ;n++) { 

fprintf (wavef, 11 %d\t%f\t%f\t%f\n" ,n,x[n] ,diracg[n] ,diracf [n]); 
} 

} 

if (turn~=50) break; 

/*Print results to file*/ 
if (flag=;1 && (fabs(deltae)<dconvrg)) { 

printf("SAVING RESULTS IN FILE\n 11
); 

} 

fprintf (wavef, "State = %d \n", i); 
fprintf(wavef, 11 index \t x \t G(x) \t F(x) \n"); 

tempi= sqrt(xnorm); 
for (n=O;n<=(ngrid-1);n=n+ngrid/100) { 

} 

fprintf (wavef ,"%d\t%f\t%f\t%f\n" ,n,x[n] ,diracg[n] /tempi,\ 
diracf[n]/temp1); 

/*Get nucleon Fields for the particle-hole splitting*/ 
if (i==2) { 

} 

} 

for(j=O;j<=(ngrid-1);j++) { 
GN1[j]=diracg[j]; 
FN1[j]=diracf[j]; 
} 

xnorma=xnorm; 

/*End turn loop*/ 

/*-----------CALCULATE DENSITIES FOR MESON EQUATIONS---------·---*/ 

factor=dege[i]/(xnorm*4.*3.1415926); 
for (n=O;n<=(ngrid-1);n++) { 

den_sc[n]==den_sc[n]+\ 
factor* (diracg [n] *diracg [n] -diracf [n] *dirac:f [n]); 

den_vec[n]::::den_vec[n]+\ 
factor* (diracg [n] *diracg [n] +diracf [n] *diracf [n]); 
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den_rho [n] ::;:den_rho [n] + \ 
factor*ispin [i] * (diracg [n] *diracg [n] +d:i.racf [n] *diracf [n]); 

den_.coul [n] =den_coul [n] +\ 
factor*(ispin[i]+0.5)*(diracg[n]*diracg[n]+diracf[n]*diracf[n]); 

den_vec_t[n]~den_vec_t[n]+factor*2.*diracg[n]*diracf[n]; 

den_rho_t[n]::::den_rho_t[n]+factor*2.*ispin[i]*diracg[n]*diracf[n]; 

den_a_t[n]~den_a_t[n]+\ 

factor*((lp+ln)+(2.*ispin[i])*(lp-ln))*2.*diracg[n]*diracf[n]; 
} 

} 

/*Now loop though the lambda states*/ 
if(lambda[i]==1) { 

I*Redifine the fields for coupling to lambdas*/ 
for (j=O;j<=(ngrid-1);j++) { 

scl[j]=gslam*sc[j]; 
vecl[j]=gvlam*vec[j]; 

} 

1*---------Start turnl loop--------*1 
for (turnl=1,deltae=10*dconvrg;fabs(deltae)>dconvrg;turnl++) { 

/*Define potential u1 for the Lambda Hartree equations*/ 
for (j=O;j<=ngrid-1;j++) { 

u1l[j]=vecl[j]-mu3*sc[j]*vec[j]/(bmass); 
} 

/*Define potential u2 for the Lambda Hartree equations*/ 
for (j=O;j<=ngrid-1;j++) { 

u2l[j]=scl[j]+(mu1*sc[j]*sc[j]-mu2*vec[j]*vec[j])/\ 
(2.0*(bmass)); 

} 

/*Define the potential u3 for the lambda Hartree equations*/ 
for (j:O;j<=(ngrid-2);j++){ 

u31 [j] =(gth (vee [j+1] -vee [j]) +lam* (coul [j+1] -coul [j]) )/\ 
(2.0*(bmass/hbarc)*step); 

} 

u3l[ngrid-1]=(gtl*vec[ngrid-1]+lam*coul[ngrid-1]/x[ngrid-1])/\ 
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((bmass/hbarc)*step); 

/*Make aproximations to F and G for small x*/ 
if (kapa[i]<O.) { 

} 

diracgl[0]=10./pow(step,kapa[i]); 
diracfl[O]=(step*diracgl[O]*(vecl[O]-scl[O]-eigen[i]))/\ 

(hbarc*(1.0-(2.0*kapa[i]))); 

else { 

} 

diracgl[0]=10.0*pow(step,1.+kapa[i]); 
diracfl[O]~(hbarc*diracgl[0]*(1.0+2.0*kapa[i]))\ 

/(step*(eigen[i]-vecl[O]-sc1[0]+2.0*bmass)); 

/*Determine the matching point*/ 
temp_int~(int)(match_r[i]/step); 

temp_float=match_r[i]/step-(float)temp_int; 

if (temp_float<0.5) { 
rmatch=(int)floor(match_r[i]/step); 

} 

else { 
rmatch=(int)ceil(match_r[i]/step); 

} 

rmatch=rmatch-1; 

/*Assign pointers to the fields*/ 
lscalar=u21; 
lvector=u1l; 
photon=coul; 
lpu3=u31; 

energy=eigen; 
kappa=kapa; 

/*Use a 4th order Runga-Kutta method to solve the Hartree*/ 
/*equations from 0 to rmatch*/ 

for (n=1;n<=rmatch;n++) { 
g1=k(i,energy,kappa,lscalar,lvector,lpu3,x[n-1], 

diracgl[n-1] ,diracfl[n-1],0,1mass); 
f i:=k (i. energy, kappa, lscalar, 1 vector, lpu3, x [n-1] , 

diracgl[n-1],diracfl[n-1] ,1,1mass); 

g2=k(i,energy,kappa,lscalar,lvector,lpu3,x[n-1]+0.5*step,\ 

1'78 
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diracgl [n-1] +0. 5*step*g1 ,diracfl [n"'·l] +0. 5*step*f1, 0, lmass); 
f2:::::k(i,energy,kappa,lscalar,lvector,lpu3,x[n-1]+0.5*step,\ 

diracgl[n-1]+0.5*step*g1,diracfl[n-1]+0.5*step*f1,t,lmass); 

g3=k(i,energy,kappa,lscalar,lvector,lpu3,x[n-1]+0.5*step,\ 
diracgl [n-·1] +0. 5*step*g2 ,diracfl [n-1] +0. 5*step*f2, 0, lmass); 

f3=k(i,energy,kappa,lscalar,lvector,lpu3,x[n-1]+0.5*step,\ 
diracgl[n-1]+0.5*step*g2,diracfl[n-1]+0.5*step*f2,t,lmass); 

g4=k(i,energy,kappa,lscalar,lvector,lpu3,x[n-1]+step,\ 
diracgl[n-1]+step*g3,diracfl[n-1]+step*f3,0,lmass); 

f4,k(i,energy,kappa,lscalar,lvector,lpu3,x[n-1]+step,\ 
diracgl[n-1]+step*g3,diracfl[n-1]+step*f3,1,lmass); 

diracgl [n}::=diracgl [n-1] +(1. 0/6. O)*step* (g1+2. 0* (g2+g3)+g4); 
diracfl[n]=diracfl[n-1]+(1.0/6.0)*step*(f1+2.0*(f2+f3)+f4); 

} 

glmatch_in=diracgl[rmatch]; 
flmatch_in=diracfl[rmatch]; 

/*End Runge-Kutta outward integration*/ 

/*Get initial values of F and G for inward integration*/ 
alfa;sqrt((-1.)*eigen[i]*(eigen[i]+2.*bmass))/hbarc; 

rmax=step*(float)(ngrid); 

diracgl[ngrid-1]=1./exp(alfa*rmax); 

x0=(-1.)*sqrt((-1.)*eigen[i]/(eigen[i]+2.*bmass)); 

bmax=12.*vecl[ngrid-1]/hbarc; 

ee=hbarc/(2.*(eigen[i]+2.*bmass)); 

x1=ee*(2.*kapa[i]+bmax*(x0+1./x0)); 
x2~ee*(2.*bmax+(2.*kapa[i]+1.)*x1/x0)-x1*x1/(2.*x0); 

x3=ee*((2.*kapa[i]+2.)*x2/x0+bmax*(2.*x2+x1*x1/x0))-x1*x2/x0; 
x4=ee*((2.*kapa[i]+3.)*x3/x0+bmax*2.*(x3+x1*x2/x0))-\ 

(2.*x1*x3+x2*x2)/(2.*x0); 

diracfl [ngrid-1] =diracgl [ngrid-l] * (xO+x1/r"max+x2/pow(rmax, 2.) *\ 
x3/pow(rmax,3.)+\ 
x4/pow(rmax,4.)); 
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/*Use a 4th order Runga-Kutta method to solve the Hartree*/ 
/*equations from infinity to rmatch. Previously the left. side*/ 
/*was n-1 and the right n*/ 

for (n=ngrid-2;n>=rmatch;n--) { 
g1:::::k(i,energy,kappa,lscalar,lvector,lpu3,x[n],\ 

diracgl[n+1],diracfl[n+1],0,lmass); 
f1=k(i,energy,kappa,lscalar,lvector,lpu3,x[n] ,\ 

diracgl[n+1],diracfl[n+1],1,lmass); 

lBO 

g2==k(i,energy,kappa,lscalar,lvector,lpu3,x[n]-0.5*step,\ 
diracgl [n+l] -0. 5*step*g1 ,diracfl [n+1] -0. 5*step*f1, 0, lJuass); 

f2=k(i,energy,kappa,lscalar,lvector,lpu3,x[n]-0.5*step,\ 
diracgl[n+1]-0.5*step*g1,diracfl[n+1]-0.5*step*f1,1,lmass); 

g3=k(i,energy,kappa,lscalar,lvector,lpu3,x[n]-0.5*step,\ 
diracgl[n+1]-0.5*step*g2,diracfl[n+1]-0.5*step*f2,0,lmass); 

f3=k(i,energy,kappa,lscalar,lvector,lpu3,x[n]-0.5*step,\ 
diracgl[n+1]-0.5*step*g2,diracfl[n+1]-0.5*Step*f2,1,lmass); 

g4=k(i,energy,kappa,lscalar,lvector,lpu3,x[n]-step,\ 
diracgl[n+1]-step*g3,diracfl[n+1]-step*f3,0,lmass); 

f4~k(i,energy,kappa,lscalar,lvector,lpu3,x[n]-step,\ 

diracgl[n+1]-step*g3,diracfl[n+1]-step*f3,1,lmass); 

diracgl[n]=diracgl[n+1]-(1.0/6.0)*step*(g1+2.0*(g2+g3)+g4); 
diracfl[n]=diracfl[n+1]-(1.0/6.0)*step*(f1+2.0*(f2+f3)+f4); 

} 

glmatch_out=diracgl[rmatch]; 

/*End Runge-Kutta inward integration*/ 
/*Look near rmatch. Scale outward integration such that diracg*/ 
/*is a continuous function. Then find the correction to the*/ 
/*eigenvalue*/ 

scale=glmatch_out/glmatch_in; 

for (m=O;m<~(rmatch-1);m++) { 
diracgl[m]=scale*diracgl[m]; 
diracfl [m] =scale*diracfl [m] ; 

} 

xnorml""'O.O; 
for (m=O;m<~(ngrid-1);m++) 

xnorml=xnorml+diracgl[m]*diracgl[m]+diracfl[m]*diracfl[m]; 
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xnorml=xnorml*step; 

deltae=( -1. 0) *diracgl [rmatch] * (diracfl [rmatchl-\ 
scale*flmatch_in)*hbarc/xnorml; 

if (turnl==1) { 
deltae:::::deltae/2. 0; 
} 

eigen[i]=eigen[i]+deltae; 

!*If a negative eigenvalue is returned, then*/ 
if (eigen[i]>O.O) { 

eigen[i]=-4.0/(double(turnl)); 
} 

/*Cutoff if not convergent*/ 
if (turnl==50) { 
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printf("NO CONVERGENCE AFTER %d TRIES FOR STATE %d \n",turnl,i); 
fprintf(wavef,"NO CONVERGENCE AFTER %d TRIES FOR STATE %d \n 11

,\ 

turnl,i); 

} 

fprintf(wavef,"ITERAT=%d RMATCH=%d XMATCH=%f\n",iterat,rmatch,\ 
match_r [i]); 

for (n=rmatch-3;n<=(rmatch+3);n++) { 
fprintf(wavef,"%d\t%f\t%f\t%f\n",n,x[n] ,diracgl[n],\ 

diracfl[n]); 
} 

if (turnl==50) break; 

/*Print results to file*/ 

} 

if (flag==1 && (fabs(deltae)<dconvrg)) { 

} 

fprintf (wavef, "State = %d \n", i); 
fprintf(wavef,"index \t x \t G(x) \t F(x) \n"); 

for (n~O;n<=(ngrid-i);n=n+ngrid/100) { 
fprintf(wavef,"%d\t%f\t%f\t%f\n 11 ,n,x[n] ,diracgl[n] ,\ 

diracfl[n]); 
} 

/*End turnl loop*/ 

/*-----------CALCULATE DENSITIES FOR MESON EQUATIONS------·--·-·-·--*/ 
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factor=dege[i]/(xuorml*4.*3.14:15926); 
for (n•O;n<=(ngrid-1);n++) { 

den_vec2[n]""den_vec[n]; 
} 

for (n::::O;n<::::(ngrid-1);n++) { 
den_scl[n]""den_scl[n]+\ 

factor* (diracgl [n] *diracgl [n] -diracfl [n] *diracfl [n]); 

den_vecl[n]~den_vecl[n]+\ 

factor* (diracgl [n] *diracgl [n] +diracfl [n] *diracfl [n]); 

den_sc[n]=den_sc[n]+gslam*den_scl[n]+\ 
(mu1*sc[n]*den_scl[n]-mu3*vec[n]*den_vecl[u])/bmass; 

den_vec[n]=den_vec[n]+gvlam*den_vecl[n]-\ 
(mu2*vec[n]*den_scl[n]+mu3*sc[n]*den_vecl[n])/bmass; 

den_vec_tl[n]=den_vec_tl[n]+2.0*factor*diracgl[n]*diracfl 

den_a_tl[n]=den_a_tl[n]+2.0*factor*lam*diracgl[n]*diracfl[n]; 

den_a_t[n]=den_a_tl[n]+den_a_t[n]; 
} 

} 
} 

1*----------Get the charge density------------*/ 
/*The vector meson contribution to the charge density*/ 

for (n~O;n<=(ngrid-2);n++) { 
tem1[n]=(rho[n+1]-rho[n])*x[n]*x[n]/step; 
tem2[n]=(vec[n+1]-vec[n])*x[n]*x[n]/step; 

} 

tem1[ngrid-1]=(rho[ngrid-1]-rho[ngrid-2])*\ 
x[ngrid-1]*x[ngrid-1]/step; 

tem2[ngrid-1]=(vec[ngrid-1]-vec[ngrid-2])*\ 
x[ngrid-1]*x[ngrid-1]/step; 

for (n=O;n<=(ngrid-2);n++) { 
den_m[n]=(1.1(hbarc*gphoton*step))*\ 

} 

( ( tem1 [n+ 1] -tem1 [n]) I sqrt (coupling [2]) + \ 
(tem2 [n+1] -tem2 [n]) I (3. *sqrt (coupling [1]))) ; 

den_m[ngrid-i]""den_m[ngrid-2]; 
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/*Calculate the divergence of the den_a_t*/ 
for (n:O;n<=(ngrid-2);n++) { 

den_coul_cl[n]=swtch•(den_a_t[n+l]-den_a_t[n])/\ 
(2.0*(bmass/hbarc)*step); 

} 

den_coul_c1[ngrid-1]=den_coul_c1[ngrid-2]; 

/*Calculate the laplacians of den_vec and den_rhO*/ 
for (n::.-:O;n<::::(ngrid-2);n++) { 

tem1[n]=(den_vec2[n+1]-den_vec2[n])/step-2.0*den_vec2[n]/x[n]; 
tem2[n]=(den_rho[n+1]-den_rho[n])/step-2.0*den_rho[n]/x[n]; 

} 

tem1[ngrid-1]=(den_vec2[ngrid-1]+den_vec2[ngrid-2])/step-\ 
2.*den_vec2[ngrid-1]/x[ngrid-1]; 

tem2[ngrid-1]=(den_rho[ngrid-1]+den_rho[ngrid-2])/step-\ 
2.*den_rho[ngrid-1]/x[ngrid-1]; 

for (n=O;n<=(ngrid-2);n++) { 
den_coul_c2[n]:::::(1./(2.*step*(bmass/hbarc)*(bmass/hbarc)))*\ 

( (tem1 [n+1] -tem1 [n]) *betas+2. * (tem2 [n+1] -tem2 [n]) *betav); 
} 

den_coul_c2[ngrid-1]=den_coul_c2[ngrid-2]; 

/*The direct nucleon charge density, den_coul_d, and the total*/ 
/*charge density, den_coul_ch*/ 

for (n=O;n<=(ngrid-1);n++) { 
den_coul_d[n]=den_coul[n]+den_coul_c1[n]+den_coul_c2[n]; 
den_coul_ch[n]=den_coul_d[n]+den_m[n]; 

} 

/*Divergences of den_vec_t, den_rho_t, and den_vec_tl*/ 
for (n=O;n<=(ngrid-2);n++) { 

div_den1[n]~(den_vec_t[n+1]-den_vec_t[n])/(step); 

div_den2[n]=(den_rho_t[n+1]-den_rho_t[n])/(step); 
di v _den3 [n] =(den_ vec_tl [n+l] -den_ vee_ tl [n]) I (step); 

} 

div_den1[ngrid-1]=div_den1[ngrid-2]; 
div_den2[ngrid-1]=div_den2[ngrid-2]; 
div_den3[ngrid-1]=div_den3[ngrid-2]; 

1*----------Save final densities--------------*/ 
if (flag==1 && (fabs(deltae)<dconvrg)) { 

fprintf(densit, 11 Final densities for %s\n 11 ,nucname); 
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fprintf (dens :it, "::x: scalar vector vector rho'',\ 
ccprotou neutron lambda\n11

); 

for (n=O;n<"'(ngrid-1) ;IF"'n+ngrid/100) { 
temp1~ x[n]*x[n]; 
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fprintf(densit,"%.2f %.3e %.3e %.3e %.3e %.3e %.3e %.3e\n 11
,\ 

x[n],den_sc[n]/temp1,den_vec[n]/temp1,\ 

} 
} 

den_ vec_t [n] /tempi, 2. *den __ rho [n] /tempi,\ 
den_coul[n]/temp1,(den_vec2[n]-den_coul[n])/\ 
temp1,den_vecl[n]/temp1); 

if (flag==1 && (fabs(deltae)<dconvrg)) goto final; 

flag=1; 

for (n=O;n<=(nstates-1);n++) { 

} 

if (fabs(eigen[n]-e_guess[n])>hconvrg) flag~O; 

printf("%3d\t%5 .if\t%7 .4f\t%7 .4f\t%7. 4f\t %5. 3f\n", \ 
n,ispin[n] ,eigen[n],e_guess[n],\ 
fabs(eigen[n]-e_guess[n]),hconvrg); 

if (flag==1) { 
spel=fopen( 11 e-levels .dat", "w"); 
fprintf(spel, 11 Single particle energy levels for %s\n",nucname); 
fprintf(spel,"state\tispin\tEnergy\n"); 
for (n=O;n<=(nstates-1);n++) { 

fprintf(spel,"%3d\t%5.1f\t%6.3f\n",n,ispin[n] ,eigen[n]); 
} 

} 

I* -------------------- SOLVE MESON EQUATIONS --------------·-·----*/ 
printf("SOLVING MESON EQUATIONS\n"); 

/*Direct integration using Green's functions. The following*/ 
/*pointers are available for this part: *pmass, *pg, *I 
I* *pgin, *pgout*/ 

pmass=massl; 
pg=coupling; 

/*Integrate the scalar field*/ 
pgin=gin._sc; 
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pgout::::gout_sc; 
pdensity~den_sc; 

integr_messon(pgin,pgout,scalar,pmass,pg,pdensity,O); 

for(i=O;i<=(ngrid-l);i++) { 
gfscl[i]=sc[i]; 

} 

/*Integrate the vector field*/ 
pgin=gin_vec; 
pgout=gout_vec; 
pdensity=den_vec; 

integr_messon(pgin,pgout,vector,pmass,pg,pdensity,1); 

for(i=O;i<=(ngrid-l);i++) { 
gfvec1[i]=vec[i]; 

} 

/*Integrate the rho field*/ 
pgin=gin_rho; 
pgout=gout_rho; 
pdensity=den_rho; 

integr_messon(pgin,pgout,prho,pmass,pg,pdensity,2); 

for(i=O;i<=(ngrid-l);i++) { 
gfrho1[i]=rho[i]; 

} 

/*Integrate the Coulomb field*/ 
pgin=gin_coul; 
pgout=gout_coul; 
pdensity=den_coul_ch; 

integr_messon(pgin,pgout,photon,pmass,pg,pdensity,3); 

for(i=O; (ngrid-·1);i++) { 
gfcoull[iJ~coul[i]; 

} 

186 

1*-------------ITER.ATION PROCESS FOR MESON EQUATIONS---------~·---*/ 
printf("ITERATION FOR MESON EQUATIONS\n 11

); 
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18G 

for(mi=O.test•O;mi>=O;mi++) { 

/*Calculate the new charge density. The vector meson contribl:rtion*/ 
/*has changed and must be calculated again with the*/ 
/*new meson fields*/ 

for (n~O;n<=(ngrid-2);n++) { 
tem1 [n]""(gfrhol [n+1] -gfrho1 [n] )*x [n] *x [n] /step; 
tem2 [n] ""(gfvec1 [n+1] -gfvec1 [n]) *X [n] *X [n] /step; 

} 

tem1[ngrid-1]=(gfrho1[ngrid-1]-gfrho1[ngrid-2])*\ 
x[ngrid-l]*x[ngrid-1]/step; 

tem2[ngrid-1]=(gfvec1[ngrid-1]-gfvec1[ngrid-2])*\ 
x[ngrid-i]*x[ngrid-1]/step; 

for (n=O;n<=(ngrid-2);n++) { 
den_m[n]==(1.0/(hbarc*gphoton*step))*\ 

((tem1[n+1]-tem1[n])/sqrt(coupling[2])\ 
+(tem2[n+1]-tem2[n])/(3.0*sqrt(coupling[1]))); 

} 

den_m[ngrid-1]=den_m[ngrid-2]; 

for (n=O;n<=(ngrid-i);n++) { 
den_coul_ch[n]=den_coul_d[n]+den_m[n]; 

} 

/*Constants used to solve the scalar field equation*/ 
corr1=kapa3*mass[O]*mass[0]/(2.*bmass*hbarc*hbarc); 
corr2=kapa4*mass[O]*mass[0]/(6.*bmass*bmass*hbarc*hbarc); 
corr3=eta1*coupling[O]*mass[1]*mass[1]/\ 

(2.*coupling[1]*bmass*hbarc*hbarc); 
corr4=eta2*coupling[O]*mass[1]*mass[1]/\ 

(2.*coupling[1]*bmass*bmass*hbarc*hbarc); 
corr5=etarho*coupling[O]*mass[2]*mass[2]/\ 

(2.*coupling[2]*bmass*hbarc*hbarc); 
corr6=alpha1/(2.*bmass); 
corr7~alpha2*coupling[0]/(2.*bmass*coupling[1]); 

/*Form the gradients of the scalar and vector fields*/ 
for (i=O;i<=(ngrid-2);i++) { 

gradsc [i] = (gfsc1 [i +1] -gfsc1 [i]) /step; 
gradvec[i]"'(gfvec1[i+1]-gfvec1[i])/step; 

} 

gradsc [ngrid-1] ::=gradsc [ngrid-2] ; 
gradvec[ngrid-l]=gradvec[ngrid-2]; 
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/*Form the laplacians of the scalar and vector fields*/ 
for (n=O;n<•(ngrid-2);n++) { 

tem1[n]=((gfsc1[n+1]-gfsc1[n])/step)*x[n]*x[n]; 
tem2 [n] == ( (gf vee 1 [n+1] -gfvec 1 [n] ) I step) *X [n] *X [n] ; 

} 

tem1 [ngrid-1]:=(gfsc1 [ngrid~1] -gfsc1 [ngrid-2]) *\ 
x[ngrid-i]*x[ngrid-1]/step; 

tem2[ngrid-1]=(gfvec1[ngrid-1]-gfvec1[ngrid-2])*\ 
x[ngrid-i]*x[ngrid-1]/step; 

for (n=O;n<=(ngrid-2);n++) { 
lapsc[n]=(tem1[n+1]-tem1[n])/(step*x[n]*x[n]); 
lapvec[n];(tem2[n+1]-tem2[n])/(step*x[n]*x[n]); 

} 

lapsc[ngrid-1]=(tem1[ngrid-1]-tem1[ngrid-2])/\ 
(x[ngrid-1]*x[ngrid-1]*step); 

lapvec[ngrid-1]==(tem2[ngrid-1]-tem2[ngrid-2])/\ 
(x[ngrid-1]*x[ngrid-1]*step); 

/*Define the new scalar density*/ 
for(i=O;i<=(ngrid-1);i++) { 

newdensity[i]=den_sc[i]-\ 

} 

x[i]*x[i]*(corr1*gfsc1[i]*gfsc1[i]+\ 
corr2*gfsc1[i]*gfsc1[i]*gfsc1[i]-\ 
corr3*gfvec1[i]*gfvec1[i]-\ 
corr4*gfsc1[i]*gfvec1[i]*gfvec1[i]-\ 
corr5*gfrho1[i]*gfrho1[i]-\ 
corr6*(gradsc[i]*gradsc[i]+2.*\ 
gfsc1[i]*lapsc[i])-corr7*gradvec[i]*\ 
gradvec[i])/(hbarc*coupling[O]); 

/*Define the new RHS for the scalar equation*/ 
pgin=gin_sc; 
pgout=gout_sc; 
pdensity=newdensity; 

/*New iteration on the scalar field*/ 
integr_messon(pgin,pgout,scalar,pmass,pg,pdensity,O); 

/*Constants used to solve the vector field equation*/ 
corr9=fv/(2.*(bmass/hbarc)); 
corr10=eta1*mass[1]*mass[1]/(bmass*hbarc*hbarc); 

l87 
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corr11=eta2*mass[1]*mass[1]/(2.*bmass*bmass*hbarc•hbarc); 
corr12=xi0/(6.*hbarc•hbarc); 
corr13=alpha2/bmass; 
corr14""Swtch*(coupling[3]*hbarc*sqrt((double)(coupling[1))))/\ 

(3.*gphoton); 
corr15=gtl/(2.*(bmass/hbarc)); 

for(i~O;i<~(ngrid-1);i++) { 
newdensity[i]=den_vec[i]+\ 

corr9*div_den1[i]+corr15*div_den3[i]-\ 

} 

x [i] *x [i] * (corr10*gfsc1 [i] *gfvec1 [i] +\ 
corr11*gfsc1 [i] *gfsc1 [i] *gfvec1 [i] +\ 
corr12*gfvec1[i]*gfvec1[i]*gfvec1[i]-\ 
corr13*(gradsc[i]*gradvec[i]+\ 

gfsc1[i]*lapvec[i]))/\ 
(hbarc*coupling[1])-\ 
corr14*den_coul_ch[i]/(hbarc*coupling[1]); 

/*Define the new RHS for the vector equation*/ 
pgin=gin_vec; 
pgout=gout_vec; 
pdensity=newdensity; 

/*New iteration on the vector field*/ 
integr_messon(pgin,pgout,vector,pmass,pg,pdensity,1); 

/*Constants used to solve the rho field equation*/ 
corr17=frho*hbarc/(2.*bmass); 
corr18=etarho*mass[2]*mass[2]/(bmass*hbarc*hbarc); 
corr19=swtch*coupling[3]*\ 

hbarc*sqrt((double)coupling[2])/gphoton; 

for(i=O;i<=(ngrid-1);i++) { 

} 

newdensity[i]=den_rho[i]+corr17*div_den2[i]-\ 
x[i]*x[i]*(corr18*gfsc1[i]*gfrho1[i])/\ 
(hbarc*coupling[2])-\ 
corr19*den_coul_ch[i]/(hbarc*coupling[2]); 

/*Define the new RHS for the rho equation*/ 
pg:i.n=gin_rho; 
pgout""gout_rho; 
pdensity"'uewdensity; 
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/*New iteration on the rho field*/ 
integr_messon(pgin,pgout,prho,pmass,pg,pdensity,2); 

/*Define the new RHS for the Coulomb equation*/ 
pgin=gin_coul; 
pgout=gout_coul; 
pdensity~den_coul_ch; 

/*New iteration on the Coulomb field*/ 
integr_messon(pgin,pgout,photon,pmass,pg,pdensity,3); 

/*PREPARE THE NEW ITERATION*/ 
if(mi=~O) meansc=0.5*(gfsc1[10]+sc[10]); 

printf("%d sc=%f delmeansc=%f delsc=%f\n",mi,sc[10],\ 
fabs(meansc-0.5*(gfsc1[10]+sc[10])),\ 
fabs(gfsc1[10]-sc[10])); 

if (mi>O) { 
if(fabs(meansc-0.5*(gfsc1[10]+sc[10]))>0.1) { 

meansc=0.5*(gfsc1[10]+sc[10]); 
}else{ 

test=2; 
printf("mean convergence\n 11

); 

} 

} 

if(fabs(gfsc1[10]-sc[10])<0.0001) test=1; 

if (test==2) { 

} 

for(i=O;i<=(ngrid-1);i++){ 
sc[i]=0.5*(gfsc1[i]+sc[i]); 
vec[i]=0.5*(gfvec1[i]+vec[i]); 
rho[i]~0.5*(gfrho1[i]+rho[i]); 

coul [i] =0. 5* (gfcoul1 [i] +coul [i]); 
} 

for(i=O;i<=(ngrid-l);i++){ 
gfsc1[i]"'-'sc[i]; 
gfvecl[i]=vec[i]; 
gfrho1[i]=rho[i]; 
gfcoul1[i]=coul[i]; 

18U 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

} 

if(test=•l) break; 
} 

/*End of Iteration process for the meson equations*/ 

/*Output the results of the fields*/ 
if (flag==i) { 

} 

} 

fprintf(out,"MF results for %s\n",nucname); 
fprintf(out,"x\tscalar\tvector\trho\tphoton\n"); 

for (i=O;i<=(ngrid-1);i=i+ngrid/100) { 
fprintf(out,"%f\t%4.3e\t%4.3e\t%4.3e\t%4.3e\n 11

,\ 

x [i] , sc [i] , vee [i] , rho [i] , coul [i]); 
} 

printf ("%d\n", iterat); 

/*End of iterat loop*/ 

final: 

1*---------------------SUM OF ALL ENERGY--------------------·--*1 
/*Sum of all the eigenvalues*/ 

for (j=O;j<=(nstates-1);j++) { 
e_total=e_total+dege[j]*eigen[j]; 

} 

temp1=e_total; 

/*Constants needed to calculate the total binding energy.*/ 
/*Scalar-scalar interaction energy*/ 

const1=kapa3*mass[O]*mass[0]/\ 
(6.*coupling[O]*bmass*hbarc*hbarc*hbarc); 

const2~kapa4*mass[O]*mass[O]/\ 

(12.*coupling[O]*bmass*hbarc*hbarc*hbarc*bmass); 
const3=alpha1/(2.*coupling[O]*bmass*hbarc); 

/*Vector-vector interaction energy*/ 
const4=xi0/ (12. *coupling[:!.] *hbarc*hbarc*hbarc); 

/*Scalar-rho interaction energy*/ 
const5=etarho*mass[2]*mass[2]/\ 

I~H) 
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(2.*bmass*coupling[2]*hbarc*hbarc*hbarc); 

/*Scalar-vector interaction energy*/ 
const6=etal*mass [1] *mass [1] /\ 

(2.*bmass•coupling[1]*hbarc*hbarc*hbarc); 
const7=eta2•mass[1]*mass[1]/\ 

(2.*bmass*bmass*coupling[1]*hbarc*hbarc*hbarc); 
const8""alpha2/(2.*coupling[1]*bmass*hbarc); 

/*Gradients of the final scalar and vector field*/ 
for (n=O;n<=(ngrid-2);n++) { 

grad_sc[n]=(sc[n+1]-sc[n])/step; 
grad_vec[n]::(vec[n+1]-vec[n])/step; 

} 

grad_sc[ngrid-1]~grad_sc[ngrid-2]; 

grad_vec[ngrid-l]=grad_vec[ngrid-2]; 

/*Interaction energies and radii*/ 
for (j=O;j<=(ngrid-1) ;j++) { 

e_sc=e_sc+sc[j]*den_sc[j]-\ 

} 

x[j]*x[j]*(const1•sc[j]*sc[j]*sc[j]+\ 
const2•sc[j]*sc[j]*sc[j]*sc[j]+\ 
const3*SC[j]*grad_sc[j]*grad_sc[j]-\ 
const5•sc[j]*rho[j]*rho[j]-\ 
const6*sc[j]*vec[j]•vec[j]-\ 
const7*sc[j]*sc[j]*vec[j]*vec[j]-\ 
const8*sc[j]*grad_vec[j]*grad_vec[j]); 

e_vec=e_vec+vec[j]*(den_vec[j]+\ 
fv/(2.*(bmass/hbarc))*div_den1[j]+\ 
gtl/ (2. * (bmass/hbarc)) *di v _den3 [j]) -··\ 

x[j]*x[j]*const4*vec[j]*vec[j]*vec[j]*vec[j]; 

e_rho=e_rho+rho[j]*(den_rho[j]+\ 
frho/(2.*(bmass/hbarc))*div_den2[j]); 

e_coul=e_coul+coul[j]*(den_coul_d[j]); 

radius_p~radius_p+x[j]*x[j]*(den_coul_ch[j]); 

radius_u=radius_,n+x [j] *X [j] *(den_ vee [j] -\ 
den_coul[j]-den_vecl[j]); 

radius_l""radius_l+x [j] *X [j] *(den_ vecl [j]); 

factor~2.0*3.1415926*step; 

.I OJ 
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e_scefactor*e_sc; 
e_rho~(-1.0)*factor*e_rho; 

e_vec•(-1.0)*factor*e_vec; 
e_coul=(-1.0)*factor*e_coul; 
e_int=factor*e_int; 

/*The center of mass energy*/ 
ecm=17.2/pow((double)(B),0.2); 

/*The sum of the meson energies*/ 
temp2=e_sc+e_vec+e_rho+e_coul; 

/*The total binding energy per baryon and the radii*/ 
e_total=(e_total+e_sc+e_vec+e_rho+e_coul-ecm)/(B); 
radius_p=sqrt((double)(radius_p/np*2.0*factor)-\ 

(3.0*hbarc*hbarc)/(8.0*bmass*(B)*ecm)); 
radius_n=sqrt(radius_n/nn•2.0*factor); 
radius_l=sqrt(radius_l/nl*2.0*factor); 

/*Output results*/ 
printf("The program is done ! ! ! ! ! ! ! ! ! ! !\n"); 
for (n~O;n<~(nstates-l);n++) { 

printf("%3d\t%5.1f\t%6.3f\n",n,ispin[n],eigen[n]); 
} 

printf("Energy/Nucleon(MeV/N)=%f \n 11 ,e_total); 
printf("RP(fm):::::%f RN(fm)=%f RL(fm)=%f \n",radius_p,radius_n,\ 

radius_l); 
printf ("Sum eigenvalues=%f\n 11

, templ); 
printf("Energy from mesons=%f\n",temp2); 
fprintf(spel, 11 E/B(MeV/N)=\t%f\n",e_total); 
fprintf(spel,"RP(fm)=\t%f\n 11 ,radius_p); 
fprintf(spel,"RN(fm)=\t%f\n",radius_n); 
fprintf(spel,"RL(fm)=\t%f\n",radius_l); 

fclose(out); 
fclose(wavef); 

1*---------------------Patricle-hole Splitt 

Afactor[O]=- coupling[0]/(4*3.1415927); 
Afactor[1]= coupling[l]/(4*3.1415927); 
Afactor[2]"" coupling[2]/(4*3.1415927); 

102 
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UJ:3 

/*Factor accounting for the 6-j symbols and reduced matrix elementS*/ 
Bfactor""'128/15; 

/*Get; the nucleon fields for a neutron hole*/ 
for(i=O;i<~(ngrid-i);i++) { 

GN[i]=diracg[i]; 
FN[i]=diracf[i]; 

} 

/*Get the nucleon fields for a proton hole*/ 
/*for(i=O;i<=(ngrid-1);i++) { 

GN [i] ~GN1 [i] ; 
FN [i] =FN1 [i] ; 

} 

xnorm = xnorma;*/ 

/*Get the lambda fields*/ 
for(i=O;i<=(ngrid-1);i++) { 

GL[i]=diracgl[i]; 
FL[i]=diracfl[i]; 

} 

/*The 2-D radial integral*/ 
C1 = 0.0; 
factor= gvlam*Afactor[1]*mass[1]/(xnorm*xnorml); 
for(i=O;i<=(ngrid-1);i++) { 

A1=B1=0.0; 
for(j=O;j<=i-1;j++) { 

D1[j] = (cosh(massl[1]*x[j])-sinh(massl[1]*x[j])/\ 
(massl [1] *x [j])) I (massl [1] *x [j]); 

D2[i] = (1+1/(massl[1]*x[i]))*exp(-massl[1]*x[i])/\ 
(massl [1] *X [i]) ; 

A1 = A1 + D1[j] * D2[i] * GN[i] * FN[j] * GL[i] * FL[j]; 
} 

for(j=i+1;j<(ngrid-1);j++) { 
D1[i] = (cosh(massl[1]*x[i])-sinh(massl[1]*x[i])/\ 

(massl [1] *X [i])) I (massl [1] *x [i]) ; 
D2[j] ~ (1+1/(massl[1]*x[j]))*exp(-massl[1]*x[j])/\ 

(massl [1] *X [j]) ; 

Bi = Bl + Dl[i] * D2[j] * GN[i] * FN[j] * GL[i] * FL[j]; 
} 

C1 = C1 +step* step* (Al + B1); 
} 

SVECTOR "' factor * C1; 
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printf( 11Vector contrtbution to the splitting- %f\n",SVECTOR); 

} 

I* ---------------------- END OF PROGRAM -------------------·-·- *I 

1*-------------------------FUNCTIONS------------·---···----------·-·-· .. ·*/ 

float k(int state ,float *energy ,double *kappa,float *scalar,\ 
float *vector,float *pu3,float x,float gn,float fn, \ 
int forg,double M) { 

} 

float b,e; 
float temporal[2]=={0.0,0.0}; 
float temp=O,temp_sc,temp_v,temp2,temp_u3; 
int index; 

b=* (kappa+state) /:x:; 
e=*(energy+state); 

inde:x:=(int)(:x:/step); 
temp2=:x:/step-inde:x:; 
if (temp2<=0.5) { 

} 

temp_sc=*(scalar+index); 
temp_v=:t<(vector+inde:x:); 
temp_u3=*(pu3+index); 

else { 
temp_sc=0.5*(*(scalar+index)+*(scalar+index+1)); 
temp_v=0.5*(*(vector+index)+*(vector+index+1)); 
temp_u3=0.5*(*(pu3+index)+*(pu3+index+1)); 

} 

temporal[O]=(e+2.*M-temp_sc-temp_v)/hbarc; 
temporal[1]=(temp_v-e-temp_sc)/hbarc; 

switch (forg) { 
case 0: temp=temporal [forg] *fn-b*gn+(temp __ u3/hbarchgn; 

break; 
case 1: temp:::temporal[forg]*gn+b*fn-(temp_u3/hbarc)*fn; 

break; 
} 

return temp; 

19·1. 
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void half (floa·t *Y ,float *yh) { 
int i; 

} 

float fac1=-0.0625,fac2=0.5625; 

for (i~2;i<=(ngrid-2);i++) { 
*(yh+i)::::fac1*(*(y+i-2)+*(y+i+1))+fac2*(*(y+i)+*(y+i-1)); 

} 

*(yh+1)=(3.*(*y)+6*(*(y+1))-(*(y+2)))/8.; 
*(yh+ngrid-1)~(3.*(*(y+ngrid-1))+6.*(*(y+ngrid-1-1))-\ 

(*(y+ngrid-3)))/8.; 
*yh=(*y)/4.; 

void integr_messon(float *gin,float *gout,float *field,\ 

I 

double *mass,double *pg,float *density,int f) { 
int i,j; 
float fin[ngrid],fout[ngrid] ,fh[ngrid]; 
float xi1[ngrid],xi2[ngrid]; 
float xi20,xx; 
float *pyh,*py1,*py2; 

pyh=fh; 
py1=fin; 
py2=fout; 

for (i=O;i<=(ngrid-i);i++) { 
fin[i]=(*(gin+i))*(*(density+i)); 
fout[i]=(*(gout+i))*(*(density+i)); 

} 

half(pyi,pyh); 

xi1[0]=(4.*fh[O]+fin[0])/6.; 

for (i=1;i<=(ngrid-1);i++) { 
xi1[i]=xi1[i-1]+(fin[i-1]+4.*fh[i]+fin[i])/6.; 

} 

half(py2,pyh); 

xi2 [ngrid-1] =( 4. *fh [ngrid-1] +fout [ngrid .. ·1]) /6. ; 
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} 

for (i=ngrid~2;i>"''O;i-·-·) { 
xi2[i]=xi2[i+1]+(fout[i+1]+4.*fh[i+1]+fout[i])/6.; 

} 

xi20~xi2[0]+(4.*fh[O]+fout[0])/6.; 

/*divide by the mass of the meson. Check for the photon first.*/ 

if (f==:3) 

xx=O.; 
else 

xx=(-1.)/(2.*(*(mass+f))); 

xi20=xi20*xx; 

for (j=O;j<=(ngrid-l);j++) { 

} 

*(field+j);(*(gout+j))*(xi1[j]+xi20)+(*(gin+j))*xi2[j]; 
*(field+j)=(*(field+j))*step*hbarc*(*(pg+f)); 
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l97 

'I'hc following i::; <HI example of an input file for the constants: 

mass-scalar 520.3 
mass-vector 782.0 
gs2 110.16 
gv2 162.88 
gr2 89.936 
eta1 0.64992 
eta2 0.10975 
kapa3 3.2467 
kapa4 0.63152 
xiO 2.6416 
etarho 0.3901 
alpha1 1.7234 
alpha2 -1.5798 
fv 0.6936 
frho 3.8476 
betas -0.09328 
betav -0.45964 
gslam 0.87195 
gvlam 0.97873 
fvl -0.885 
mu1 0.0774 
mu2 0.344 
mu3 0.0774 
swtch 1.0 

The following is an exam.ple of a.n input file for a selected nudcus (the GS of ~6 0): 

7 
0. 2. -1. 0.5 -40.0 1s1/2 2. 
0. 4. -2. 0.5 1.0 1p3/2 3. 
0. 2. 1. 0.5 1.0 1p1/2 3. 
0. 2. -1. -0.5 -40.0 1s1/2 2. 
0. 4. -2. -0.5 1.0 1p3/2 3. 
0. 1. 1. -0.5 1.0 1p1/2 3. 
1. 1. -1. 0.0 -·20.0 1s1/2 3. 
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108 

An example of an output file eont.aining the cigeuvalnes and tutal ~~nergy per baryon 

for a seleeted nucleus (the GS of \00) is given by thr! following: 

Single particle energy levels for 016L 
state ispin Energy 

0 0 . 5 -33 .428 
1 0.5 -15.984 
2 0.5 -9.163 
3 -0.5 -40.074 
4 -0.5 -21.800 
5 -0.5 -14.921 
6 0.0 -12.331 

E/B(MeV/N)~ -7.795342 
RP(fm)= 2.714467 
RN(fm)== 2.509983 
RL(fm)= 2.707781 
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