
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2003

Domain and type enforcement in Linux Domain and type enforcement in Linux

Serge Edward Hallyn
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hallyn, Serge Edward, "Domain and type enforcement in Linux" (2003). Dissertations, Theses, and Masters
Projects. Paper 1539623428.
https://dx.doi.org/doi:10.21220/s2-0x9t-ag80

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623428&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623428&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-0x9t-ag80
mailto:scholarworks@wm.edu

Domain and Type Enforcement in Linux

A D issertation

Presented to

The Faculty of the D epartm ent of Com puter Science

The College of W illiam & M ary in Virginia

In P artia l Fulfillment

Of the Requirem ents for the Degree of

Doctor of Philosophy

by

Serge Edw ard Hallyn

2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is subm itted in partial fulfillment of

the requirem ents for the degree of

Doctor of Philosophy

Serge E. Hally:

Approved, September 2003

Phil Kearns
Thesis Advisor

Weizhen Mao

Xiaodong Zhang

Haining Wang

I / *I A__/ / / / t
- / -A | / z t

Jean
Michigan Technological University

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my mother.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Acknowledgments xi

List of Figures xiv

Abstract xv

1 Introduction 2

1.1 C o n tr ib u tio n s ... 2

1.2 O r g a n iz a t io n ... 3

2 Background 5

2.1 Security N o m e n c la tu re .. 5

2.2 Access Control P o lic ies .. 6

2.2.1 Bell-La Padula (B L P) .. 6

2.2.2 R i n g s .. 8

2.2.3 C la rk -W ilso n ... 10

2.2.4 S trict I n te g r i t y ... 11

2.2.5 Type E n fo rc e m e n t.. 11

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Policy R e p r e s e n ta t io n ... 13

2.3.1 Access Control M a t r ix ... 13

2.3.2 Access Control L is t .. 13

2.3.3 C a p a b ilitie s .. 14

2.4 Role Based Access C o n tro l.. 16

2.5 U N I X ... 17

2.5.1 File S y s te m .. 17

2.5.2 File A c c e s s .. 19

2.5.3 Signal A c c e s s ... 20

2.5.4 S u p e ru s e r .. 21

2.5.5 POSIX Capabilities ... 21

2.5.6 Domain and Type E n fo rcem en t... 23

2.6 Linux File System A rc h ite c tu re .. 24

2.7 Stackable File S y s t e m ... 26

2.8 N e tw o rk in g .. 28

2.9 O ther Projects .. 29

2.9.1 L in u x -A C L ... 29

2.9.2 L ID S .. 30

2.9.3 T E and D T E ... 31

2.9.4 S E L in u x .. 31

2.9.5 HP-LX .. 32

2.10 O ther Work in Security P o lic ie s ... 33

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 DTE 34

3.1 L S M ... 35

3.1.1 LSM D esign .. 36

3.2 D TE Design D e c is io n s ... 38

3.2.1 E ntry Types ... 38

3.2.2 File Type R eso lu tio n ... 40

3.2.3 Extended A t t r ib u te s ... 42

3.2.4 Policy U p d a te s .. 44

3.2.5 N e tw o rk in g .. 45

3.3 D ata S tru c tu re s ... 46

3.4 Algorithms .. 49

3.4.1 M o u n t ... 49

3.4.2 File Type R e so lu tio n .. 53

3.4.3 Inode P e rm is s io n .. 56

3.4.4 E xecve ... 57

3.4.5 D TE Module I n i t • • 60

3.5 Configuration File .. 61

3.6 D TE A P I ... 63

3.7 Effectiveness ... 65

4 Performance 68

4.1 LMBench R e s u lts .. 69

4.1.1 File System and VM Performance ... 69

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.1.1 M m a p ... 69

4.1.1.2 File C re a t io n ... 70

4.1.1.3 File D e le t io n ... 70

4.1.2 Process-Related P e r fo rm a n c e .. 71

4.1.2.1 Null C a l l .. 71

4.1.2.2 StatQ and O pen()/C lose() .. 72

4.1.2.3 S i g n a l s .. 72

4.1.2.4 F o r k ... 73

4.1.2.5 Fork and E x e c .. 73

4.2 Micro B e n c h m a rk s .. 74

4.2.1 Permission() ... 74

4.2.2 E x ecveQ ... 77

4.2.3 S i g n a l .. 78

4.3 Macro B e n c h m a r k ... 79

5 Access Rights of Domains 80

6 Policy Adm inistration Tools 87

6.1 D T E e d it .. 93

6.2 D T E v ie w ... 96

7 Analysis of DTE Policies 107

7.1 Using the BLP ^ -P ro p e r ty ... 108

7.2 L im itations of B L P .. 110

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 Modified B L P .. 112

7.3.1 M BLP Enforces Clark-W ilson CDIs .. 115

7.3.2 MBLP Enforces Assured P ip e lin e s ... 116

7.4 Examples of Analysis Using M B L P .. 118

8 Construction of DTE Policies from M odules 123

8.1 Policy Compiler File F o r m a t s ... 125

8.1.1 Control File S p e c if ic a tio n ... 125

8.1.2 M odule File S p e c if ic a tio n ... 128

8.1.2.1 Priority of Access R u le s .. 132

8.1.2.2 Group Expansion .. 133

8.1.2.3 In h e r i ta n c e .. 134

8.1.3 Patch File S p e c if ic a tio n .. 135

8.2 A utom atic M aintenance of Policy C o n s tra in ts .. 137

8.2.1 Correctness of the BLP P C P .. 138

8.2.2 Modified BLP P C P ... 142

8.3 Sample Modules .. 146

8.3.1 Base M o d u le ... 146

8.3.2 Password M o d u le .. 147

8.3.3 F tp M o d u le .. 147

8.3.4 S y s lo g .. 148

8.3.5 Control F i l e .. 148

8.4 Conclusion ... 149

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 Im plementation Extensions 150

9.1 N a m esp aces ... 150

9.1.1 P rob lem .. 151

9.1.2 S o lu tio n .. 152

9.2 Accom modating p roc ... 153

9.3 Providing Network S e c u r i ty ... 157

9.3.1 S e c u r i ty .. 157

9.3.2 Convenience... 161

9.3.2.1 Static Type A ssignm en t.. 161

9.3.2.2 Server-Directed Type A s s ig n m e n t.. 162

9.4 Conclusion ... 164

10 Conclusion 169

A DTE Policy, M odules, and PC P Listings 173

A .l Sample D TE P o lic ie s .. 173

A .1.1 Base P o l i c y ... 173

A. 1.2 Password Policy .. 175

A.2 Sample D TE M o d u le s 178

A.2.1 Base M o d u le .. 178

A.2.2 Password M o d u le ... 185

A.2.3 F tp M o d u le ... 186

A.2.4 Syslog M o d u l e .. 188

A.3 Excerpts of BLP P C P ... 189

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.3.1 Finding P a th s .. 189

A.3.2 Relation C a lc u la tio n .. 190

A.3.3 P re-A pply.. 190

A.3.4 P o s t -A p p ly ... 191

A.4 Excerpts of M BLP P C P .. 191

A.4.1 Relation C a lc u la tio n .. 191

A.4.2 P re -A p p ly .. 192

A.4.3 P o s t -A p p ly ... 193

B LMBench Results 194

B .l Stock K e r n e l .. 194

B.2 LSM Kernel Using Dummy M o d u le ... 195

B.3 LSM Kernel Using Capabilities M odule ... 196

B.4 LSM Kernel Using D TE M o d u l e ... 198

B.5 LSM Kernel Using D TE and Capabilities M o d u le .. 199

Bibliography 201

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Phil Kearns, for his guidance, and my comm ittee

for valuable input.

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 D ata Leakage w ith BLP ss-property alone... 8

2.2 Security r i n g s .. 9

2.3 Sample ACM for 7 users and 30 files... 13

2.4 Sample ACL corresponding to above ACM ... 14

2.5 Capabilities representing same access rights above... 15

2.6 Sample Unix file system ... 19

2.7 Linux V FS-related kernel s truc tu res.. 26

2.8 An example of a stackable file system ... 27

3.1 Inodes and corresponding mapnodes... 47

3.2 A D TE policy to protect from wu-ftpd, w ith line numbers added 67

3.3 E rror messages resulting from a ttem pted wu-ftpd exploit..................................... 67

4.1 LMBench results for file d e l e t i o n ... 71

4.2 File execution tim es for varying num bers of gateways... 78

6.1 Adding new dom ain specification rule in D T E edit... 94

6.2 Viewing a dom ain specification in D T E edit.. 95

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 An error pa tte rn popup warning in D TEview.. 96

6.4 The file-manager tool in DTEview ... 97

6.5 Domain transition analysis in D T E v ie w ... 98

6.6 A reachability query in D TEview ... 100

7.1 Algorithm to calculate BLP < r e la t io n ... 108

7.2 BLP for policy excerpt w ith disjoint type group... I l l

7.3 Sample Assured P ip e lin e .. 114

7.4 Policy excerpt defining Clark-W ilson policy.. 115

7.5 Policy excerpt implem enting an assured pipeline.. 118

7.6 Algorithm to calculate the modified BLP r e la t io n .. 119

7.7 BLP less th an relation graph for base policy. ... 120

7.8 BLP less th an relation for password policy.. 120

7.9 Modified BLP less th an relation for the password policy...................................... 121

8.1 Sample dpc control file... 128

8.2 Priorities of access r u l e s .. 133

8.3 A group declaration combining some untrusted d o m a in s 136

8.4 A possible definition of type root_t.. 136

8.5 A sample dpc patch file... 137

9.1 M odification to D TE setup to store root namespace and prevent its unloading. 153

9.2 New D TE function to descend pathnam e using root nam espace........................ 154

9.3 M odification to D TE hierarchical m ount information setup 155

9.4 Protocol to provide server authentication .. 160

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.5 The code to export D TE types from NFS server... 165

9.6 Code to im port D TE types into NFS client from the network................ 166

9.7 NFS client code to copy DTE types into inodes at first read............................. 167

9.8 NFS client code to insert D TE types into inodes on refresh.................... 168

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Domain and Type Enforcement (DTE) is a simple and well-known access control system,
which has been used at the microkernel level in SPIN, the kernel level in Unix, and the user-
space library level in CORBA. This work implem ents D TE as a Linux Security Module, and
provides tools for the composition and analysis of policies. The goal is to bring M andatory
Access Control in Linux to the level of ease of use of cryptography tools and libraries.

Tools have been created to edit DTE policies and query transitions through different
privilege levels. A subtle m odification of the Bell LaPadula (BLP) access control m odel’s
s ta r property, applied to a D TE policy, results in a relation on types which perm its us to
concisely express, and therefore verify, goals for th a t policy. Policy creation is simplified
using composition of policy modules, and enhanced by autom atic verification of persistence
of any desirable properties, including the modified BLP relation on types, across m odule
application.

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Domain and Type Enforcement in Linux

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Access control in Unix systems, though certainly b e tte r th an th a t in many other popular

operating systems, leaves much to be desired. In particular, the combination of a tru sted

user, lack of m andatory access control, and far too many services running under the tru sted

user’s id, are partly responsible for the large num ber of security-related advisories for Linux

and other Unix systems.

Domain and Type Enforcement introduces m andatory access control to Linux, assigning

labels to subjects and objects, and enforcing an access policy for all subjects, including the

tru sted user. It thereby greatly increases the potential for security in Linux systems.

1.1 Contributions

Research into improved OS access control is certainly far from stagnant. However, most of

th is is ju st th a t - research. This work addresses a deficiency in real, usable, yet complete

m andatory access control systems.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 1. INTRO D U CTIO N 3

First, an existing and well understood m andatory access control system, dom ain and

type enforcement (DTE) [2], is im plem ented as a run-tim e loadable m odule for Linux.

Rather than requiring even a cursory understanding of kernel compilation and installation,

th is allows anyone to install and begin using D TE w ith very little preparation. Furtherm ore,

since we paid careful a tten tion not ju s t to correctness, bu t also to efficiency concerns, the

im plem entation is not only useful, b u t also does not negatively im pact performance.

Next, a set of adm inistration tools has been implemented. This allows a system adm in

istra to r to control a ra ther complicated access control system w ithout having to study the

syntax of the policy files. A brief tu to ria l will be sufficient to explain D TE policies and

their adm inistration. This tu to ria l also has been created.

Finally, the adm inistration tools have been engineered so as to aid in the validation or

refutation of invariants.

This work therefore presents a complete m andatory access control system, providing the

necessary tools for system or security adm inistrators to create, analyze, validate and finally

implem ent security policies.

1.2 Organization

C hapter 2 provides background on the history and sta te of the a rt of systems security.

C hapter 3 discusses our im plem entation of D TE for Linux. C hapter 4 discusses the per

formance of our im plem entation. C hapter 5 presents a formal analysis of the access rights

of dom ains as restricted by a D TE feature, entry points. C hapter 6 discusses issues w ith

policy adm inistration, and presents a pair of tools designed to address specific problems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 1. INTRO DU CTION 4

w ith editing a tex tual policy file. C hapter 7 presents a m ethod for formal analysis of DTE

policies. C hapter 8 presents a tool for constructing policies from a set of small modules, and

uses the method presented in Chapter 7 to provide automatic enforcement and maintenance

of any security properties across m odule application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

2.1 Security Nom enclature

Throughout th is work, we will use the following nom enclature. Subjects are entities which

can perform actions. For instance, a user is a subject. Processes started by the user are

also subjects. O bjects are generally file system objects, however they can be anything to

which a subject can receive some sort of access. Subjects can therefore also be objects, as

subjects can have access to each other. Security policies assign labels, representing some

kind of security inform ation, to subjects and objects, and determine access rights based

upon these labels.

Most popular operating systems implem ent discretionary access control (DAC). They

allow access rights to objects to be fully specified by the owners of these objects. Typically,

an object is owned by the subject who created it. This has some m ajor shortcomings. For

instance, it facilitates Trojan horse attacks, where code, pretending to be friendly to the

user, quietly gives away the user’s access rights. Since the code is run as the user, who has

the power to give away access rights to objects he owns, this is perfectly legitimate.

Mandatory access control (MAC) enforces a system-specified security policy which users

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 6

cannot modify [41]. For instance, a MAC policy m ight prevent users from giving away write

access to their own objects. Ideally, MAC and DAC should be combined such th a t users

can dictate access policies to their own objects, but within reasonable and safe limits.

2.2 Access Control Policies

An access control policy defines labels, subjects, objects and permissions, and dictates how

and when labels are assigned to subjects and objects, as well as how and when permissions

are decided and enforced.

This section reviews some trad itional m andatory access control policies. The earlier

are designed for security — preventing unauthorized d a ta access — while the later address

integrity — preventing unauthorized users from corrupting data. This reflects the historical

shift, caused by a shift from m ilitary to business interests m otivating research.

2.2.1 B ell-L a P ad u la (B L P)

Bell and La Padula[4], while using a formal model to study the M ultics system, introduced

an access control policy intended to enforce the m ilitary security policy. This policy requires

th a t no subject may read d a ta classified a t a higher security level th an its own.

M ilitary systems define a security level as a pair (l , C), where I is a security level, and

C is a set of categories. A category can be any kind of label which is meaningful w ithin the

context of the policy. A partial order is imposed upon security levels as follows: A security

level L\ = (/ i ,C i) , is said to dom inate another level L2 = {I21C2) provided th a t I2 < h,

and C2 C C\. This is w ritten as L\ oc L2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 7

In order to properly enforce the m ilitary security policy, BLP m aintains properties. The

first property, known as the “simple security property” , or ss-property, states the obvious

goal:

ss-property: If subject S is granted observe access to object O, then L(S) oc

L (0) .

In other words, if S may observe object O, then its security clearance m ust dom inate,

th a t is, be greater th an or equal to, th a t of the object. By itself, th is property perm its two

subjects Si and S 2 to violate the m ilitary security policy through collaboration. Assume

there is an object Oi, such th a t

L (S i) oc L(Oi) oc L (S 2).

In this case, S 2 is not allowed to observe Oi, bu t Sj is. By itself, the ss-property perm its S\

to leak the inform ation contained w ithin 0 \ to subject S 2. To accomplish this, Si copies

the da ta from Oi into an object 0 2 such th a t

L(S i) oc L{Oi) oc L (S 2) oc L (0 2).

This scenario is displayed graphically in Figure 2.1. To prevent this security policy

violation, BLP also contains the *-property L

*-property: If subject Si is granted observe access to object 0 \ , and modify

access to 0 2, then L (0 2) oc L(Oi) .

1 Pronounced “star-property” .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. BACKGROUND 8

This property prevents the situation displayed in Figure 2.1 from occurring. Once Si has

read the d a ta contained in 0 \ , any object which it subsequently creates or modifies will

have a security level a t least as great as th a t of Oi- S? is this not perm itted to read the

d a ta copied to O2 .

Subjects Objects Security
Level

rw

Figure 2.1: Data Leakage with BLP ss-property alone.

2.2 .2 R ings

A ring-based policy specifies N concentric rings of protection. Privilege increases toward the

center of the rings, w ith the center ring, known as ring 0, being the most privileged. Every

object and subject is located w ithin a particu lar ring. Subjects may not access objects

w ithin a deeper ring, th a t is, objects w ith a lower security level. A process changes its

ring level by m aking a call to a procedure w ithin a different level. However the process is

associated w ith a lower bound, below which it may not pass. Furtherm ore, moving to a

lower ring level is only allowed for certain entry points. The MULTICS operating system

used ring-based access control[48].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 9

The Intel 386 architecture is also a ring-based system, using four rings, referred to as

privilege levels [28, C hapter 9.5]. Popular operating systems such as Linux, however, use

only two [7, Page 37]. Ring 0 im plem ents the kernel or supervisor mode, while ring 3 usually

im plem ents user mode. User mode instructions are not allowed to rew rite supervisor mode

code. A system call is a call to code located in ring 0, so tha t, only for the duration of the

system call, the privilege level drops to level 0. In this way, the kernel (or the operating

system) is protected from user software. At the same time, it gives the kernel the power it

needs allow m ultiple program s or processes in user-mode, while protecting them from each

other.

Access

Execute

Process

Entry'
-Point Object

Permitted R ing N -
\ (user)Execute/

R ing 1''

R ing 0
(superuser)

Permit}

Figure 2.2: Security rings

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. BACKGROUND 10

2.2 .3 C lark-W ilson

Most early work in access control was sponsored by the military. As such, the work centered

around secrecy, which is the prim ary concern of the military. Clark and W ilson pointed

out [9] th a t for the sake of commerce, integrity is a t least as im portan t as, perhaps more

im portan t than , secrecy. They created an access control policy to provide integrity, and

compared its requirem ents to those of secrecy systems.

The policy which they presented was based upon three definitions.

• D ata w ith whose integrity we are concerned will be called Constrained D ata Item s

(CDI).

• Integrity Verification Procedures (IVP) are procedures which verify the initial state

of a CDI.

• T ransform ation Procedures (TP). Given a valid initial state of a CDI, A T P transform s

it into another valid state.

The system itself ensures th a t only certain users, under certain conditions, may execute

a given TP, and th a t only some T P s may be used to modify a CDI. However, a large part

of the policy exists outside the system, in the form of verification th a t the T P s and IVPs

are correct, as well as the lists of users which may invoke T Ps and lists of T P s which may

alter CDIs. This means th a t with each software upgrade, any updated T P s or configuration

files m ust be revalidated, a potentially costly proposal. In contrast, in a system which has

been verified to satisfy the BLP policy, only an upgrade of the operating system requires

revalidation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 11

To understand why, one m ust consider th a t, in BLP, the OS defines the entire access

control policy. In a Clark-W ilson integrity control system, the T Ps, CDIs, and lists of users

perm itted to use T P s and lists of T Ps perm itted to modify CDIs, are each a part in defining

the policy. T h a t is, these files are a part of the tru sted com puting base (TCB), and proving

the correctness of any system requires verification of the TCB. We s ta rt to recognize a

trade-off, then, between the power offered by a more malleable TCB, and the work involved

in its verification.

2.2 .4 S trict In tegrity

Prior to Clark and W ilson, B iba a ttem pted to address integrity using the inverse of BLP [5].

Once a subject S reads an object Ox, it is no longer allowed to write any object Ox :

L{Ox) > L (0]) . In th is way, users, or program s running on their behalf, are prevented from

contam inating d a ta w ith less tru sted data.

This policy does not provide a m ethod for taking in user data. Clearly, user d a ta must

be considered low integrity. Raising its integrity would have to be done by a tru sted process.

W hile this may sound reasonable, Clark and W ilson point out th a t a trusted process is one

which is outside the integrity policy. Going outside the integrity policy to handle any type

of user input is unacceptable. In the Clark-W ilson policy, the Trusted Procedures which

handle this work are m ade an integral, and verified, part of the integrity policy.

2.2.5 T yp e E nforcem ent

From the work of Clark and W ilson, it may be observed th a t while security levels are best

associated w ith subjects, integrity levels are b e tte r associated w ith program s (TPs).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 12

Type Enforcement was introduced by Boebert and Kain of Honeywell [6] in 1985 as a

m ethod of im plem enting integrity systems w ithout relying on a tru sted user. It labeled

objects as well as subjects, and specified access from subjects to objects, and from subjects

to other subjects, in two matrices. Subject labels were called domains, and object labels

were called types. Subject to subject access consisted of subjects transitioning to other

domains. Domains were associated w ith procedures. For any procedure, a subject, which

consisted of a procedure running in some domain, would be allowed to execute the procedure

and rem ain in the current domain, execute the procedure and enter another domain, or not

be allowed to execute it a t all.

Subject to object access could be read, write, and execute. Type Enforcement was

implem ented first in the Secure Ada project (LOCK), and later by TIS in Trusted XENIX

[1]. Secure Com puting still uses T E in its Sidewinder firewall product [10].

Assured pipelines were introduced as an aside during the introduction of Type Enforce

ment. An assured pipeline is a non-bypassable subsystem through which da ta m ust flow

between a particular source and destination. Boebert and K ain listed three requirem ents

for dem onstrating the security of an assured pipeline.

1. The subsystem which the pipeline a ttem pts to enforce is indeed non-bypassable.

2. The transform ation applied by the subsystem cannot be reversed or modified after

the pipeline.

3. The subsystem is correct.

Assured pipelines are useful for proving th a t the transfer of d a ta between security or

integrity levels (or labels) is controlled.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 13

2.3 Policy Representation

In Section 2.2, we presented several access control policies. Here we present the common

m ethods of representing access control policies in the literature and in operating systems.

2.3.1 A ccess C ontrol M atrix

In an access control m atrix (ACM, see Figure 2.3), each row represents a user, and each

column represents an object. A n entry located at row u and column o specifies the access

which u is granted to o. W hile conceptually simple, ACM ’s are not used in im plem entation

because the m atrices become very large and sparse, wasting valuable memory. However,

they are frequently used to explain, and to make formal argum ents about, access control

policies.

Objects (files)

Subjects
(users)

f l f2 f30

u l r r rw

u2 rw rwx X

u7 r X X

Figure 2.3: Sample ACM for 7 users and 30 files.

2.3.2 A ccess C ontrol List

An access control list (ACL, see Figure 2.4) is an abbreviated version of an ACM. At each

object is stored a list of all users who may access the object and the types of access perm itted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 14

for each. Therefore, if only one user may access an object 0 , then the list need only contain

one subject, not all subjects defined for the system.

Objects(files)

u l,ru l,r

u2,x

ul,rw

u2,rw

u7,r

u2,rwx

f30

Figure 2.4: Sample ACL corresponding to above ACM.

2.3 .3 C apabilities

The use of an ACL can be viewed as splitting an ACM into its columns, and then com

pressing these. Capabilities are sometimes described as doing the same th ing by rows.

A capability [14] is a pair {o, r} where r specifies a set of access rights to object o. A

process has a list of these capabilities, and the union of the pairs in the list specifies the

full access rights of a process. See Figure 2.5 for the running example expressed in term s of

capabilities. A process may create, destroy, modify, and grant capabilities to other processes.

W hile the use of capabilities makes for a very flexible and powerful system, it has some

problems. One is the difficulty of discovering which processes posses a certain capability,

and, by extension, of tracking the propagation of capabilities. Most real operating systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 15

therefore do not use capabilities.

Capabilities are, however, used in m odern extensible systems such as SPIN [39]. In

SPIN, capabilities are used to provide bo th extensibility, and security between extensions.

Capabilities in this case are im plem ented through namespaces. Extensions call each o ther’s

functions by raising events, and provide functionality by registering event handlers. For

instance, a memory management extension might save information to disk by raising an

event which causes a file system extension to save the information. By binding a new event

handler to this same event name, another extension can extend, or lim it, functionality. For

instance, a compression or encryption extension could extend the file system extension’s

w r i te event handler by processing the d a ta before passing it along to the file system exten

sion’s event handler. An extension cannot receive functionality which cannot be requested

by raising some event. In other words, it cannot cause actions w ithout the appropriate

capability.

Subjects
(users)

r->f2 rw->f30r->fl

x->f30rwx->f2

r->fl

rw->fl

Figure 2.5: Capabilities representing same access rights above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. BACKGROUND 16

2.4 Role Based Access Control

In discretionary access control (DAC) systems, policies are specified in term s of rights to

objects granted to users and groups. The user who creates an object usually owns it, and

hence possesses all rights to th a t object. The owner may grant access rights to o ther users.

This is not how things are usually done in real life. R ather, subjects assume certain

roles. For instance, the originator of a docum ent may not be the author, or the owner,

or the one who should be able to grant access rights to th a t document. All of these are

normally assum ed to be true in com puting systems. Role based access control (RBAC)

a ttem pts to make com puting systems resemble real life access systems more closely [47].

Roles are used in two ways. In SELinux [33] and many other RBAC im plem entations,

they are simply used as a “h a t” which a user wears in order to be granted ex tra privi

leges. W hen m ost people speak of role based access control, they th ink of this very simple

interpretation.

Clark and W ilson [9] presented an access control system where roles are used to im

plement separation of duties as required in common accounting practices. As described in

Section 2.2.3, CDIs may only be modified by a set of TPs. The T P s m ust be executed by

some com bination of roles. For instance, a cashier and a manager might bo th be required

to be present in order to modify the am ount in the register. This means th a t any two

(different) people who may assume these roles may come together to run the TP, in order

to modify the CDI, bu t neither may do so alone. This is a powerful concept. However, it is

sufficiently complicated th a t it is implem ented only in proprietary software, aimed mainly

a t banking institu tions. Beyond the complexity of creating the operating system itself, one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 17

must also deal w ith m aintaining such a system. In order for this system to be secure, the

m em bership of all roles m ust be verified, as m ust the list of roles required to authorize a

TP. Furtherm ore, each T P m ust be verified each tim e the code might change.

2.5 U N IX

In Unix systems, access rights to objects are specified for users and groups, and stored w ith

the object. Usually, every person who will use the system is assigned a unique user id. Each

user is associated w ith at least one group. The default group is listed in the user definition,

which is found in the password file (/e tc /p a ssw d). A user can be placed in additional

groups by placing the usernam e in the group definition in the groups file (/e tc /g ro u p) . A

running process carries along its real and effective user and group IDs.

2.5.1 F ile S ystem

The UNIX file system is based upon file descriptors, called inodes. Inodes can be uniquely

reference by an integer, known as the inode num ber, and the file system upon which they

are located. All file objects, including directories, devices and norm al files, are represented

as inodes. A directory is a file associating file names w ith inodes. For instance, a directory

might associate the following:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 18

File Name Inode Num ber

f i l e l 32079

f i l e 2 32167

f i l e 3 32254

d i r l 33152

f i l e 4 32056

f i l e 5 32254

Notice th a t f i l e 3 and f i l e 5 are associated w ith the same inode. This file can be ref

erenced using either name. It may also be associated w ith other names in other directories,

and will not be deleted until all names are removed. However, since an inode num ber is

unique only to the file system on which it is located, all names which are associated with

this inode m ust be located on the same file system. Every directory contains at least two

entries, and These always refer to the directory itself, and the parent directory,

respectively.

A Unix system sta rts w ith a particular disk partition m ounted as the root file system

(/) . O ther disk partitions can then be m ounted on top of any existing directory. M ounting a

partition on a directory places the root of the file system located on the new partition a t the

specified m ount point. For instance, if a partition /d e v /h d a 3 is m ounted on / u s r / l o c a l ,

then any request to access a file under / u s r / l o c a l will look up the part of the pa th

name after / u s r / l o c a l on the m ounted partition . If any files or directories existed under

/ u s r / l o c a l on the root partition , they are now hidden until /d ev /h d a 3 is unm ounted.

This allows all file systems to be viewed as one large tree.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 19

m nt tm phom eetc

fstab) cdromu ser_ l floppy tem p_file

[.cshrc] (.plan) (in s ta ll.sh)

Figure 2.6: Sample Unix file system.

A sample Unix file system tree is shown in Figure 2.6. In th is figure, for example, the file

/m n t /c d r o m / in s t a l l . sh is on the cdrom file system, yet this fact is entirely unim portant

to users on the system, as the file appears ju st like any other.

2.5 .2 F ile A ccess

Unix permissions do a rem arkable job of allowing for great expressiveness using a minimal

am ount of space. As m entioned above, a Unix system recognizes individual user ids and

specified groups of users. People who wish to use the system are assigned a user id and

default group. Each user may belong to several o ther groups as well. Each file is assigned

one owning user and group. Access permissions are then specified using 12 bits. Basic

permissions consist of read, write, and execute permissions, specified individually for the

user owning the file, the group owning the file, and the rest of the world. Since a file can

be a file or a directory, these perm issions are m ultiplexed as follows. Read permission on

a file perm its viewing of the file contents. Read permission on a directory does likewise,

bu t the contents of a directory, are the names of files under th a t directory. Similarly,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 20

w rite perm ission on a file allows m odifying the file’s contents, whereas write permission

to a directory is required to renam e, create or delete a file under th a t directory. Execute

perm ission on a file is self-explanatory, bu t execute permission on a directory is interpreted

as the right to descend th a t directory — th a t is, to view the contents of files the directory

contains, subject to the individual file permissions. Therefore it is possible to allow reading

a file’s contents, bu t not its name, and vice versa.

Three more bits are used for file permissions. One is the sticky bit, which has two

in terpretations. F irst, a program whose sticky bit is set remains in swap after term ination.

Second, a file under a directory whose sticky b it is set may only be deleted or renam ed by

the owner of the file or the owner of the parent directory, regardless of access permissions.

The other two bits are setuid and setgid. Executing a setuid program file changes the

process’ effective user id to th a t of the file owner. The setgid b it does the same for the

process’ group.

2.5 .3 Signal A ccess

Unix processes can communicate by sending each other signals. Some signals force a process

to be suspended or killed, while others can be ignored or handled by the process’ own signal

handlers. A process is allowed to send signals to other processes owned by the same real

or effective user id. Under Linux, a signal may also be sent to any process under the same

process session, th a t is, between processes sharing the same controlling term inal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. BACKGROUND 21

2.5 .4 Superuser

There is, in m ost systems, the notion of a superuser, nam ed root in Unix systems. The

superuser may access any file, send any signals, and change any permissions. In order to

lim it dam age due to the compromise of a system, superuser file access can be lim ited for

rem ote file systems, but, for ease of rem ote adm inistration, it often is not. Obviously, the

compromising of superuser on a system renders the system entirely untrustworthy, as the

attacker can do anything he likes, including replacing system m onitoring tools w ith versions

hiding his own activity. Patching the vulnerability exploited by the attacker is insufficient

since anything else may have been damaged, so the only solution is to rebuild the system

from original m edia and backups predating the attack. Unfortunately, more and more

services are offered by most machines, and these usually require access to privileged files or

services. If any of these services are compromised, the attacker becomes the superuser and

hence owns the system.

2.5 .5 P O S IX C apabilities

The natu re of the superuser, th a t one either has all its powers or none, is a m ajor problem.

PO SIX capabilities [25] a ttem p t to solve th is by splitting the superuser’s powers into a set

of distinct capabilities, such as the ability to open a restricted port (< 1024), modify the

network configuration, or trace any process. A process is created w ith a set of perm itted

capabilities, and may further restrict these a t will before starting a new process. For

example, the talkd service may only need access to restricted network ports, so th a t it may

be started w ith only the CAP_NET_BIND-SERVICE capability. If talkd is later compromised,

the attacker’s privileges on the system are still very limited, despite being root on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 22

system.

PO SIX capabilities are sim ilar to Dennis and Van Horn’s classical capabilities [14] in

the way they relate to a process and can be granted or given up individually. They differ

in th a t PO SIX capabilities do not designate rights to objects, b u t ra ther specify generic

subsets of the superuser’s powers.

Linux partially supports POSIX capabilities [30]. Processes carry three bitm aps, rep

resenting the Inheritable, Perm itted , and Effective capabilities. Executable files will also

carry capabilities, bu t the Linux VFS does not yet support them . In the meantime, a file’s

capability sets are assumed to be empty, barring two exceptions. If the user executing the

file is root, then the file’s Inheritable set is full, and the file’s Perm itted set is full except

for CAP_PSET, which perm its granting capabilities to other processes. The same is done

if the file is setuid root, and, in addition, the file’s effective set is full.

Equations 2.1 through 2.3 show how capabilities are com puted upon file execution. Here

p X denotes a process a ttrib u te X, and f X denotes a file a ttribu te X. W hile p X denotes the

a ttrib u te before the file execution, p X ' denotes the same a ttrib u te as it was recom puted

during file execution, and as it will be applied for the rem ainder of this execution. The

a ttribu tes are P for the perm itted set, E for the effective set, and I for the inheritable set

of capabilities.

p i ' = p i (2.1)

p P ' = f P V (f l A p i) (2.2)

p E ' = p P ' A f E (2.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 23

Clearly capabilities cannot be computed correctly until file capabilities are implemented.

In the meantime, however, the code supporting capabilities is implemented in the rest of

the kernel, and th is code is now used for im plem enting other features. For instance, calling

se tu id (O)

currently sets all capabilities for the calling process, and a process which a ttem pts to use

n ic e to adjust the scheduling priority for another process is checked for the CAP23YS JJICE

capability, ra ther th an for the effective uid of 0 [7, Pages 556-558].

2.5.6 D om ain and T yp e E nforcem ent

Domain and Type Enforcement was first presented by O ’Brien and Rogers [37], and was

an extension of Type Enforcement, presented in Section 2.2.5. It differed from T E in part

by specifying policies in an intuitive policy language ra ther th an using two matrices. TIS

based the first Unix im plem entation of D TE [2] on O SF/1 MK4.0. Their dom ain transition

semantics were somewhat different from those in TE. A domain transition in T E occurs

every tim e a dom ain executes a file for which the security policy m andates a transition.

In DTE, a second, voluntary type of transition is added. The m andatory transition is

called an au to transition , while the voluntary transition is called exec. If a dom ain D\

has auto access to D 2, and a process under D \ executes a file which is an entry point to

D 2 , then the process is autom atically switched into dom ain D 2. If dom ain D \ has exec

access to D 2, and a process under D \ executes an en try point to D 2, the process by default

remains under dom ain D \. However, if it so requests, it may, on the same execution, be

switched to D 2. Voluntary transitions are useful for programs, such as lo g in or sshd , which

may need to switch to one of several domains, depending upon the credentials presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 24

M andatory transitions are useful bo th for restricting untrusted programs, and for fitting

legacy program s into a D T E policy w ithout requiring any rew riting or recompilation.

D TE is designed to fit, elegantly w ith the concepts of UNIX. Object labels are assigned

hierarchically, in a struc tu re m irroring the file system tree. Types are assigned to pathnam es

using either explicit or recursive rules. An explicit type assignment rule assigns the type

only to the pathnam e, whereas a recursive type assignment rule assigns the type to all the

pathnam e’s descendants.

At the same tim e, a clean separation is m aintained between the UNIX DAC and D T E ’s

MAC. The policy type assignm ent rules interpose a layer between D TE types and UNIX

files. Domains transitions are performed only a t file execution, and have nothing to do w ith

UNIX users. C reating relationships between users and domains is thus left to user-space

programs, such as lo g in and su, or PAM modules acting on their behalf. W hile some see

th is as a deficiency [38], we believe th a t leaving the am ount and m ethod of cooperation

between MAC and DAC to the system configuration is one of D T E ’s strengths.

D TE was developed w ith the purpose of m ediating access between users, files, and

network traffic. The underlying concepts of D TE have also been applied a t other levels.

SPIN used D TE to protect kernel extensions from each other [39], while OO -DTE [35]

applies D TE to a d istribu ted object framework, CORBA.

2.6 Linux File System Architecture

Linux abstracts away file system specific details behind the V irtual File-System Switch

(VFS). Applications call VFS functions, which in tu rn know how to deal w ith the real file

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 25

system.

Every file and directory in use is represented by a VFS inode, which holds the relevant

m etadata , such as file size and access permission, as well as pointers to file system specific

functions to operate on the file or directory. In th is way, the VFS need know nothing about

how to actually open a file on the file system in use. In fact, a file system can be provided as

a module, simply telling the Linux kernel w hat functions to call for applicable operations.

An inode is the operating system ’s representation of file m etadata. A process, however,

needs to have its own representation of files, able to store some d a ta which may be different

from another process’ for the same file. The file structure includes a pointer to the inode,

as well as da ta regarding access permissions w ith which the file was opened, and a pointer

into the file representing the current position.

The inode has a pointer into the directory cache. The directory cache is a hash table

of structures called dentries, each of which contains a pa th com ponent’s name, as well as

pointers needed to construct pathnam es, such as the parent directory and, if this is the root

of a m ounted file system, the covered directory.

A vfsmount structure contains d a ta regarding a m ounted file system or VFS sub-tree,

including pointers to the m ount point and root of the m ounted file system, and other mounts

of the same file system. It is the glue which holds together one tree constructed from many

file systems, as well as folds w ithin itself (as will be seen later). A superblock contains

inform ation about a block device containing a m ounted file system, and pointers to the

vfsm ounts which m ount this device.

Figure 2.7 shows the use of some of these structures when the cdrom on /d ev /h d c is

m ounted under /mnt/cdrom, and contains files README and FILES in its root directory. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 26

s_m ounts

/dev/hda2
m nt_sb

mnt.

mnt

cdrom
m nt_m ounl

/dev/hdcm ounts

m nt_sb

m nt_root

README FILES

Legend:

vfsmount <^>

superblock

dentry

Figure 2.7: Linux VFS-related kernel structures.

links represent pointers between the various structs. For instance, the dentry representing

/m nt/cdrom has a d_vfsmnt pointer set, indicating th a t a file system is m ounted on top of

the dentry. The value of the pointer is the address of the vfsmount struc t representing the

m ount instance of device /d ev /h d c . The vfsmount struct in tu rn points back to the dentry

on which it is mounted.

2.7 Stackable File System

As noted above, every VFS inode in Linux contains pointers to the file system specific

operations to be used on the associated file. Stackable file systems increase the levels of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. BACKGROUND 27

indirection, allowing program m ers to introduce a feature to any file system in the form

of filters ra ther th an by having to modify the file system itself. Zadok has introduced

stackable file systems to Linux as well as FreeBSD and Solaris [17]. The most obviously

useful application of stackable file systems is the transparent im plem entation of encrypted

file systems. Figure 2.8 dem onstrates the use of stackable file systems. On receiving a write

request, the kernel calls the stackable layer first, which, in this case, encodes the file d a ta in

some way. I t could also encode the filename or file attribu tes. After this, the write function

for the file system upon which the file is located is called. A read is performed in the reverse

order, calling the file system specific read function first, then calling the filter specified by

the stackable file system to decode the d a ta read from disk.

Traditional VFS
Stackable fs

[emacs

wiite()
encode:data

inode encrypt_data

ext2_write

F igure 2.8: An example of a stackable file system.

A stackable file system can be m ounted in one of two ways. It can be m ounted as

an overlay, such th a t the m ountpoint of the decoded file system is on top of the encoded

file system. In th is case, after the m ount command, the encoded file system is no longer

visible. The stackable file system can also be m ounted at a different m ountpoint. In this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 28

case files can be accessed either decoded, through the new m ountpoint, or encoded, through

the original m ountpoint.

Increasing the power of stackable file system s even further, FiST, a new language for

defining stackable file systems, allows things such as fan-in and fan-out, where one block

seen by the VFS could correspond to m any blocks on the underlying file system, or vice

versa [57]. This could be used, for instance, to implem ent a RAID file system layer, or a

file system compression layer.

2.8 Networking

It is taken for granted today th a t com puters should be networked to allow comm unication

(between people), d a ta sharing, and often sharing of processor and memory power. For far

too long, however, network security has been m ostly dependent upon the goodwill of users.

For instance, it has been only recently th a t ssh, or secure shell, has begun to replace telnet

for connecting to rem ote machines, even though telnet sends passwords in plain tex t, so th a t

any user able to listen to network packets m eant for other processes and other machines

can read these passwords.

Type Enforcement and D TE have been applied to network packets as well as files [10, 53].

Every network packet is labeled w ith a type. This type can be determ ined by the dom ain

from which it was generated, or, for firewalls, by the network (card) from which it comes.

TIS used this to implem ent D TE-enabled NFS. The NFS server, then, can determ ine the

type of files it exports, ra ther th an rely on the client’s policy to be synchronized w ith its

own.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 29

2.9 Other Projects

Much recent work in system s security implements very simple security policies. An example

of this is LOMAC [22], which is basically a two ring system (see Section 2.2.2) intended

to separate services under Linux from user processes. Another example is the HP Trusted

Linux system [13], which com partm entalizes services such th a t they cannot interact. In this

way, compromised services have no ability to compromise one another.

O ther systems security projects offer versions of existing OS distributions which have

been modified to address particular known weaknesses. Examples of these are the Imm unix

System [18], a version of RedH at Linux offering protection against stack smashing attacks

and form at bug exploits, as well as an enhanced ability to restrict system access by services,

and Open Wall, which does not offer its own distribution, bu t a set of patches to protect

against very specific vulnerabilities [15].

In the following sections, we discuss a few recent and current projects in more detail.

2.9.1 L inux-ACL

Unix file permissions can only specify read, write and execute permissions for the owning

user, the owning group, and the rest of the world (see section 2.5.2). The Linux-ACL project

[26] does not elaborate on the types of access, bu t allows access specification for additional

users and groups. This allows a user, for instance, to provide w rite access to another user

w ithout having to request a new group containing the two users, or having to give write

access to a larger group or the rest of the world. Linux-ACL is now being implem ented on

top of extended a ttribu tes, which perm it specification of arb itrary types of access by name.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. BACKGROUND 30

ACLs (and extended a ttribu tes) present several problems, because they are not a part

of the original file system. Neither backup utilities nor tools such as t a r are able to pre

serve ACLs. However, the ACL inform ation can be extracted into separate files and then

reapplied.

Linux-ACL rem ains useful on a D TE system. Domain and Type Enforcement is designed

to be a m andatory access control system and, as such, does not allow users to control the

dom ain to type access allowed. ACLs allow a very convenient m ethod for quickly and

precisely specifying the needed access control to a user’s files.

2.9 .2 LIDS

The Linux Intrusion D etection System [56] aims to implement m andatory access control and

improve intrusion detection through increased and improved kernel logging. Im plem entation

of MAC may appear a separate problem from IDS, however w ithout MAC any log created

by the IDS is vulnerable to attack, rendering the IDS itself useless. Since intrusion detection

is usually accomplished through logging, and minimal access reduces file vulnerability, LIDS

adds append as a possible type of file access.

The contributions of LIDS sit between those of capabilities (see section 2.3.3) and DTE.

Access rights may be specified by subject and object. The object can be a file or directory.

The subject may be om itted, in which case the access rights apply for the whole system, or

the subject may be an executable. These access rights may descend down the file system

tree. Processes, however, do not inherit access rights from their parents, and access rights

may not be passed to other processes as capabilities can, which lim its the power of LIDS.

For instance, since access rights are associated w ith an executable, different users starting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 2. BACKGROUND 31

/ b in /b a s h will receive the same access rights, whereas DTE or classical capabilities allow

different situations to associate different access rights w ith instances of the same executable.

However, as a quick tool to protect sensitive files or implement more robust logging, LIDS

is very useful.

2.9 .3 T E and D T E

O ther team s are working on im plem entations of Type Enforcement and DTE. Secure com

puting still sells its Sidewinder firewall project which uses Type Enforcement [10]. TIS, now

a part of Network Associates (NAI), still m aintains its BSD-based D TE system [2], and is

rum ored to be starting a FreeBSD im plem entation. Finally, a project a t Science Appli

cations International Corporation (SAIC) has been working to implem ent D TE in Linux,

although it appears either progress is slow, or updates are not being announced.

2 .9 .4 SELinux

SELinux is a joint project of NAI, the Secure Com puting Corporation (SCC), and the

National Security Agency (NSA), to implement the Flask [46] security architecture in Linux.

The goal of Flask is to support a wide variety of security policies. It separates access

control into two separate services. The Security Server stores access control policies and

makes access decisions. The O bject M anager enforces the policies. On an object create

request, for instance, a client asks the Object M anager to create an object, who in tu rn

forwards the request to the Security Server. Policies implemented under SELinux include

Type Enforcement, Role Based Access control (RBAC), and M ulti Level Security (MLS).

This project is im portant for many reasons. F irst, it shows th a t the government is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 32

serious abou t system security. Second (resulting from the first), it should cause kernel

developers to take improved access control more seriously. Third, since th is appears to be a

high level access control system — th a t is, it facilitates the im plem entation of access control

policies, ra ther th an dictating one — it will be a useful stepping stone for the NSA as well

as others to continue research into security and access control.

However, its practicality rem ains to be seen. W hereas LIDS errs in being too simple

and too lim ited in its ability to express security policies, SELinux may go too far the other

way. System adm inistrators should not need to spend weeks learning how to use a system

to protect against a new talkd exploit. Hopefully, D TE will fit nicely between these two

extremes.

2 .9 .5 H P -L X

H P has developed a d istribu tion of Linux designed to minimize damage due to compromise

of system services. They argue explicitly th a t, regardless of due diligence, systems will

be compromised. HP-LX [16] provides features in order to contain bo th file access and

comm unications by processes. This appears to be based upon the com partm entalization

offered by their previous T rusted Linux [13] implem entation. It also includes TripW ire [21]

to ensure the integrity of im portan t system files; a script which performs several functions

to ensure a safe system, such as remove suid /sg id b its from executables; and a secure audit

daemon, which is protected w ithin a com partm ent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 33

2.10 Other Work in Security Policies

Very little work has been published regarding security policies. Most systems security work

has been aim ed toward im plem entation of security enhanced systems, w ith little or no

thought given to policy creation, analysis, and maintenance. A recent SELinux paper [44]

explains the syntax of various tex tual policy configuration files in great detail, bu t does not

offer any assistance beyond the tex tual policy specification. Another SELinux paper [34]

presents a specific policy, and discuses its m eeting several specific criteria, such as confine

ment of the sendmail service. It does not offer any formal specification of these criteria or

the policy.

Eraser and Badger performed autom ated analysis of D TE policies [23] in order to allow

safe updates to a running D TE system ’s policy. This is the best example of formal policy

analysis to date, and we base some of our work upon this paper.

It is clear from the above review of recent and current work in systems security th a t

there is a shortage of research into the subject of security policy configuration. This work

aims to address th a t shortage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

DTE

This chapter discusses our D TE kernel m odule im plem entation in detail. Since a goal of

our project was to provide a m andatory access control system which is bo th easy to install

and to adm inister, it naturally m ust be im plem ented for current kernels. Since Linux is a

very quickly evolving operating system, this requires constant vigilance. Operations upon

which an im plem entation is based at one moment can become wholly meaningless w ithin a

few kernel versions.

A prototype of our D TE im plem entation was presented at the A tlanta Linux Showcase

(ALS)[27]. Many of the details in the im plem entation still hold true. However much has

changed. This chapter presents the current im plem entation of DTE. Section 3.1 discusses

the new framework upon which the D TE im plem entation is based. Section 3.2 discusses

the fundam ental decisions concerning the im plem entation. Section 3.3 introduces some

im portant da ta structures, while Section 3.4 presents algorithm s for fundam ental DTE

operations. Next we show the configuration file syntax and the D TE API in Sections 3.5

and 3.6, respectively. The chapter closes w ith a dem onstration of the effectiveness of D TE

in stopping real-world attacks against otherwise vulnerable systems.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE

3.1 LSM

35

The Linux Security M odule (LSM) project is a response to Linus Torvalds’ call [51] for a

general framework to support security extensions. Responding to a paper [33] presenting

the SELinux access control system, Torvalds announced th a t he would not accept any such

patches into the kernel. R ather, he asked the security community to provide a set of tru ly

generic security patches. These patches should allow all, or a t least many, of the existing

security projects to work as Linux modules, w ithout requiring any further kernel patching.

This would absolve Torvalds of having to make any decisions on a single appropriate access

control policy.

Crispin Cowan took the initiative [11] in creating the LSM project [50, 54], which was

joined by other notew orthy people such as Stephen Smalley and David Wagner. Many

groups working on projects to extend access control in Linux were represented, including

SELinux [33], Im m unix [19], and projects by HP and IBM. Clearly, each of these groups had

developed its own m ethods of dealing w ith certain problems. Every issue to be addressed

by LSM, therefore, raised much discussion and required a great deal of compromise.

The LSM architecture, as recommended by Torvalds, became a structure containing

pointers to functions which perform various security checks, as well as da ta initialization

to support these checks. By default, the functions pointed to by this structure are dummy

functions which default to permissive behavior. W herever the kernel performs a sensitive

operation, for instance opening a file w ith write permissions, a call to an LSM function is

first made. If the LSM function retu rns an error, then the modification is not performed.

A security module, when loaded, may redirect any or all of the LSM function pointers to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 36

its own functions, in order to accomplish its goals.

Clearly these functions, and the places whence they are called, will affect w hat sorts

of policies can be used. A significant part of the design of D TE for Linux 2.5 consisted of

taking part in the LSM project in order to ensure th a t it was able to support DTE as a

module.

3.1.1 LSM D esign

As described above, the overall design of LSM is modeled after the design of other Linux

subsystems such as the VFS [29]. The active security policy is represented by a set of

function pointers. These function pointers are dereferenced and called throughout the

kernel to make policy decisions. Inserting a new security policy therefore consists merely of

redirecting these function pointers. A few other design decisions bear discussion, however.

First, since security policies are now loaded as modules, the question may be raised of

w hat sort of policy is needed, or wanted, in the base kernel. On the one hand, we want the

LSM project to minimize intrusion into the existing kernel code. This will maximize the

chances of LSM being accepted into the m ainstream kernel, which is, of course, the m ain

purpose of this project. On the o ther hand, by simplifying the base Linux kernel’s security

policy, performance will improve. This will be a particular advantage for embedded Linux

systems. In th is case, the allure of this performance increase outweighed the increased code

intrusion. PO SIX capabilities [30], which have been a part of the Linux kernel since version

2.2, were removed from the kernel and are now provided as an LSM module. The Linux

base security policy under LSM is therefore the simple “root is everything” which most

sysadmins prefer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. D TE 37

An issue which has undergone much discussion was th a t of m odule stacking. The naive

first impulse is to ask for the ability to load combinations of a rb itrary modules. For instance,

it would be advantageous to load the capabilities m odule along w ith the D TE module.

However, a rb itrary composition of security policies is not possible [24], LSM’s solution is

to allow policies to define the r e g i s t e r and u n r e g i s t e r functions. Some LSM module

will be the first to be loaded. Subsequent m odule insertion requests will be handled by

th is module. Therefore, if the au thor of the first m odule is aware of another module, and

finds the other m odule to compose nicely w ith his own, then his m odule may perm it the

second m odule to load. If the second m odule implem ents an in o d e_ p e rm iss io n function,

for instance, then the first m odule’s in o d e_ p e rm iss io n function may first call the second

m odule’s function. Provided th is function perm its the requested action, the first module

may perform its own check.

A nother issue which the LSM project faced was comm unication of modules w ith user-

space programs. Most existing enhanced access control policies, since they required patching

the kernel anyway, simply introduced system calls. However, LSM could not simply reserve

a large block of new system calls so th a t all LSM modules could have their own. In addition,

the currently preferred m ethod of providing communication between the kernel and user

levels is to implement a small pseudo file system [31].

The solution implem ented by LSM was to reserve a single system call, called simply

s e c u r i ty . This system call takes three argum ents. The first is an integer named id ,

which identifies the LSM m odule w ith which the user-level program wishes to interact. The

second is another integer variable c a l l , which identifies the particu lar system call of the

LSM m odule which the user-level program wishes to invoke. The th ird argum ent is a v o id

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 38

pointer, which may contain any d a ta the m odule wishes to accept, plus buffers for re tu rn

data. In general this will be a structure , which will itself point to several argum ents. For

an example of how this is used, see the details on the D TE A PI in Section 3.6.

3.2 DTE Design Decisions

3.2.1 E ntry T ypes

D TE facilitates restricting file system and signaling access to precisely th a t needed for

processes to accomplish their tasks. Further protection is afforded through entry points.

E ntry points are binaries whose execution may trigger or allow transitioning to another

domain. A dom ain may be entered only while beginning execution of one of its entry

points.

O ur prototype D TE im plem entation, as well as the DTE im plem entation by TIS, spec

ified en try points as lists of binaries. O ur LSM D TE module, however, uses lists of entry

types instead. There are several reasons m otivating this switch. F irst, we no longer need

to reconstruct the executable’s filename to confirm its being an entry point. This in itself

provides two benefits. The consideration of how m ounting activity such as m ultiple mounts

and per-process namespaces affects the actual filename is left entirely up to the file-type

resolution subsystem, ra ther th an needing to be duplicated locally a t the D TE a u to and

exec decision algorithms. This bo th reduces the am ount of code, and therefore the risk

of dangerous bugs, and increases performance. It also prevents tim e of check to tim e of

use races [45], where an attacker, or valid activity, is able to change an object between the

permissions check, and the use of the object.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 39

Additionally, the use of entry types is beneficial to policy adm inistration for two reasons.

W hen creating a new dom ain under the prototype D TE system, for instance lo g in _ d , it is

tem pting, and perm itted , simply to define / b i n / l o g i n as the entry point w ithout giving it

any further thought. Most likely, its type will be the same as th a t of all o ther files under

/b in . This is the location of many binaries which are frequently updated. W rite access

under / b i n will therefore likely be quite liberal.

By requiring the definition of an entry type, we require the separate specification of

access to the lo g in binary, which encourages providing m inimal access to entry points, if

only on account of laziness — providing more liberal access than needed provides no benefits

and takes more work th an providing the m inim al access. Doing so also rem inds the policy

adm inistrator of the im portance of the entry points which, in the case of lo g in _ d , will

likely encourage him to move / b in / lo g i n to / sb in , since no one should have create access

to / s b in , b u t such access under / b in is, again, likely to be granted more freely.

Finally, in chapter 8, we will introduce a relation on types which provides a quick glimpse

of the secrecy and integrity properties of types. W hen specifying entry types instead of

entry points, the presence or absence of integrity for entry types, which is crucial to domain

security, becomes im m ediately obvious. This inform ation is of course also available when

entry points are used, bu t obtaining it requires more work. A policy adm inistrator would

have to look up the type of each entry point to a dom ain and determ ine i t ’s place in the

type relation. This ex tra work interferes w ith the concept of interface zen [8], by placing

needless obstacles in the way of obtaining information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 40

3.2.2 F ile T yp e R eso lu tion

DTE assigns types to files hierarchically. A D TE policy contains a set of type assignment

statements. Each statem ent is of the form

a ss ig n -e ty p e l p a th l

a ss ig n -u type2 path2

a ss ig n - r type3 path3 path4

and binds a typenam e to one or more pathnam es. The option indicates the type of binding.

If it is “-e” , for “explicit” , then the type is assigned only to the specified pathnam e itself. If

“-u” , for “under” , then the pathnam e is assumed to be a directory, and the type is assigned

to descendants of th is directory, b u t not the directory itself. The option “-r” , as shorthand

for “-eu” , is also perm itted .

T IS’ im plem entation of D TE used the policy’s type assignment statem ents to initialize

the type assignments. However, a running system did not consult the type assignment

statem ents when assigning types to newly created files or files which were moved. W hen a

file was moved, it retained its original type, in effect creating a new type assignment rule.

W hen a file was created, it was assigned a default type based upon the creating dom ain [3].

Our im plem entation of D TE works somewhat differently. We consider the above system

to be too complex. In many cases there may be no way to predict the type assigned to

a particular file. To discover the type, we m ust either know the entire history of file sys

tem activity, or query the D TE system. In our prototype D TE im plem entation, the type

assignment rules were always followed. Therefore, the type assigned to a file was always

predictable, given only the pathnam e. This presented two im plem entation challenges. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 41

first was a performance issue on a directory move. Since each descendant of the directory

may be assigned a new type as a result of the directory move, the types cached for any

descendants had to be forgotten. For a large directory tree, th is could be tim e consum

ing. However, since the values can simply be NULL’ed, and reloaded when needed, the

performance im pact was seldom noticeable.

The second im plem entation challenge was the result of hard links. As discussed in

Section 2.5.1, Unix presents all files, devices, and directories as files. Files themselves are

usually a set of d a ta blocks, bu t always organized by a descriptor called the inode. Inodes

are simply referenced by a num ber unique on the file system. A filename, then, points to

an inode number. Many filenames can point to the same inode number. Each filename is

called a “link,” and a file is not tru ly deleted until the last rem aining filename referencing

the inode is deleted.

W hen a D TE system opens a file whose D TE type is not cached, it uses the provided

pathnam e to determ ine the D TE type. Clearly, since more th an one name can refer to

a file, the actual type assigned to a file depends on the name first used to open the file.

Subsequent open system calls for the same inode will not recalculate the typenam e so long

as the type inform ation rem ains cached, even though a different process, under a different

domain, may use a different pathnam e to open the file. The solution which our prototype

implem ented was to use one file for each file system to specify inode numbers pointed to

by more th an one name, along w ith the pathnam e which should be used to determ ine the

inode’s type. On an open call, if the inode being read was listed in this file, the pathnam e

listed in the file was appended to the file system ’s m ountpoint, and this pathnam e was used

to determ ine the file’s type, ra ther th an the pathnam e provided by the user.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. D TE 42

In the LSM D TE im plem entation, directory moves still incur the overhead of uncaching

the type inform ation for all descendants. The file system specific hard link file, however,

is no longer supported, as the problem w ith hard links is solved by support for extended

attribu tes.

As of Linux kernel version 2.4, the run-tim e hierarchical assignment of types to files

m et w ith another challenge. A file system can now be m ounted more th an once on the

same system. Assume a file system containing a file nam ed f i l e l is m ounted under bo th

/m n t / f s l and / s c r a t c h l . D T E handles this in several ways. By default, D TE stores the

first location under which a file system is mounted. If the file system is m ounted under a

second location, D TE will continue to use the first m ount location as the base of pathnam es

under th a t file system, even if the first m ount instance is removed. Only when all m ounts

of the file system are removed, will this information be released. Alternatively, the D TE

policy may specify a pretend m ount location for a device. W hen the file system stored on

th is device is m ounted, D T E will always pretend it was m ounted under the pretend path ,

regardless of the actual m ount location. Finally, the D TE policy may forbid m ounting of

a device under any location other th an one which is specified. This location is called the

restrict location.

3.2 .3 E xten d ed A ttr ib u tes

The LSM D TE im plem entation supports file-type bindings through extended attributes.

Each file system w ith persistent inodes may contain a file at its root named d t e e a f . This

file is initialized using D T Eedit, the policy creation tool presented in Section 6.1. It specifies

the type for every inode num ber up to the maximum allowed inode num ber on the file

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. D TE 43

system. Since th is num ber is often very large, we conserve space by creating a table for

each file system relating the type nam e to an index, which can be as small as 1 byte 1. By

reserving space for nonexistent inodes, we eliminate the need to search for an inode entry

in the file. R ather, we can calculate the position of an entry in constant tim e as

p = t + s x i,

where t is the offset of the beginning of the inode table, s is the size of an index entry, either

1 or 2 bytes, and i is the inode num ber. Furtherm ore, when a new file is created, there is

no need to shuffle existing entries to keep the table sorted.

Since extended a ttribu tes establish a correspondence between types and inode numbers,

ra ther th an between types and pathnam es, the hard link problem is autom atically solved.

Extended a ttribu tes are purely optional. If the file d te e a f exists a t the file system root,

then the extended a ttribu tes table is autom atically read and m aintained. If not, then we

rely on the trad itional hierarchical m ethod of type assignment.

W hile extended a ttribu tes are a useful enhancem ent to the D TE implem entation, we

wish to m aintain the strictly pathnam e based type assignment. Therefore, when a new file

is created on a file system supporting extended a ttribu tes, its type is determ ined in the

same way as for a file system which does not support extended attribu tes. The calculated

type is then stored in the d te e a f file.

'T h is is dependent only upon whether there are fewer than 128 defined types.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. D TE 44

3 .2 .4 P o licy U p d ates

A user friendly system would allow unloading of the D TE module, rereading of the policy

configuration file, or loading of policy updates. However, each of these options may be

unsafe. If an attacker is able to update the security policy, the system cannot be tru ly

secure. There may be situations where updates are acceptable. For instance, if it can be

proven th a t updates can only be loaded by someone sitting at console in a locked room

under heavy guard, th is may be acceptable.

TIS studied the safety of updates to a live D TE policy [23]. However, their work was

aimed a t updates intended only to extend a policy. U pdates which violated current secrecy

or integrity properties were refused. This was useful in their situation, where a project team

would provide a policy update which increased control over objects (and subjects) which

they already controlled. For instance, they m ight increase control over their own CVS root.

The updates which most people would like to apply would most likely violate existing

security properties. For instance, while configuring a new login service, such as SRP [55],

one might find one had forgotten to provide w rite access to the utmp file. A policy update

to grant th is access would most likely be refused by T IS ’ update system.

We believe refusing policy updates or removals is the responsible choice. For the case

of testing a new service, as in the above example, or testing an entirely new policy, our

D TE im plem entation provides a verbose mode which reports, bu t does not reject, access

violations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 45

3.2 .5 N etw ork ing

The TIS im plem entation of D TE assigned types to network packets [2]. D TE systems

explicitly sent the type, as well as the dom ain of the originating process, along w ith network

packets sent to other D TE systems. Network d a ta from non-DTE systems are assigned types

based upon the address of the originating host.

This D TE im plem entation does not m ediate network access. On a secured network,

between D TE systems whose policies are closely synchronized, the ability to have the D TE

subsystem assign dom ain and type inform ation, and m ediate access accordingly, may be

useful. In m ost cases, however, there are several reasons why this is not trustworthy. F irst,

any discrepancy between the D TE policies on two machines can make it unsafe for one

machine to tru s t the D TE inform ation assigned to network da ta by the other machine.

Second, provided the network is not secure, an insidious machine could im personate a valid

machine, in order to either observe or corrupt sensitive data. Clearly additional security

measures can be added in order to make the D TE inform ation on network packets. However,

the resulting security does not justify the additional complexity a t the operating system

level.

D TE is b e tte r applied to network security by using DTE to protect encryption and

signature keys on the local system, and using these keys to authenticate and encrypt network

data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. D TE 46

3.3 D ata Structures

Most d a ta structures used by D TE are static, set up at the parsing of the configuration file.

Two arrays are filled w ith null-delimited lists of names, one w ith names of types, and the

other w ith pathnam es. All structures which reference types or pathnam es will point into

these structures, reducing a great num ber of string comparisons to pointer comparisons.

The specification of each dom ain is represented in memory by a dte_dom ain_t structure.

Every process’ t a s k - s t r u c t points to the dte_dom ain_t structure representing the dom ain

under which it is running. The dte_dom ain_t s tructu re contains lists representing all of

the dom ain’s access to types and domains. Access to a type is represented by a s tructu re

containing a bitm ask indicating the type of access, and a pointer into the list of typenam es.

Storing dom ain access is more complicated. F irst we store the list of entry types, th a t

is, the names of types which may be executed to enter this domain. Next we create a

list of structures containing bo th a pointer to other domains, and an indication whether

a u to or exec access is allowed to the other domain. Third, we store a list of structures

indicating which signals may be sent to processes running under other domains. Finally, in

order to speed up the search for m andatory dom ain transitions, which m ust be performed

on every file execution, we store an altered version of the dom ain transition list which

we call the list of gateways. A gateway lists a dom ain name along with the name of one

of its entry types. The list of gateways out of each domain contains an entry for each

entry type to every dom ain to which the source dom ain has a u to access. The gateways

are stored on a hash list. In our prototype im plem entation, th is setup allowed m andatory

dom ain transition checks to be performed in constant tim e w ith respect to the policy size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 47

and structure. W hile the struc tu re has rem ained the same, the switching from entry point

to entry type specifications will doubtless affect the running time. Since the prototype

needed to recalculate the executable’s pathnam e, whereas the current version can pick the

typenam e from the inode, running tim e should be reduced even further.

Every inode structu re contains a pointer to the name of the type assigned to the file.

Consistent w ith the term inology presented in Section 3.2.2, the pointer to the inode’s own

type is called the e ty p e , while the pointer to the default type for all i t ’s children is called

the u type . As discussed in Section 3.2.2, the file’s type can be decided in two ways.

M AP N O DES INODES

•NULL -root_t

•NULL

-root_t
>NULL etcvar

-NULL

(adm)
, “—*-log_t-NULL

var

adm

extract from the sample policy:
default_rt root_t
assign -e u log_t /var/adm

Figure 3.1: Inodes and corresponding mapnodes.

If the file is being created, or if there is no extended a ttribu tes file, then the policy’s

type assignment rules are used to assign a type to the inode. Type assignment rules are

stored in memory by a tree of mapnodes. The m apnode tree structure mimics the file system

tree. Figure 3.1 depicts a set of m apnodes alongside the associated inodes. W hen reading a

m apnode for the first tim e, type assignment proceeds as follows. F irst we initialize bo th the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. D TE 48

e ty p e and u ty p e to the parent inode’s u type . Next we search for a m apnode corresponding

to the current pathnam e. To find the m apnode corresponding to / e t c , for instance, we look

for a m apnode corresponding to the parent inode, and, if th is exists, search i t ’s children

for one nam ed e tc . If no m apnode corresponds to / e t c , we reta in the initialized values

for the u ty p e and e ty p e . If a m apnode does exist, we link the inode to the m apnode for

future reference, and overwrite the e ty p e an d /o r u ty p e , provided the values stored in the

m apnode are non-NULL. Since we m ust represent the file system tree in m apnodes down to

the deepest level specified in any type assignment rule, there will likely be m apnodes acting

only as placeholders, not representing any type assignment rules themselves. In these cases,

bo th e ty p e and u ty p e would be NULL.

Alternatively, an inode’s D T E type can be read from an extended attributes file. The

file pointer for this file is stored in the file system ’s sup erJb lo ck , along w ith the table re

lating typenam es to indices for th is file system. The file’s e ty p e is read from the extended

a ttribu tes file. Unfortunately, we m ust compute and store the hierarchical type assignment

inform ation, th a t is, the u ty p e and m apnodes, for inodes even if we used extended a t

tribu tes to compute the e ty p e . This is because we may create a file, or m ount a file system,

underneath this inode. In either case, we will need the inode’s m apnode and u ty p e infor

m ation. This completely negates the performance advantage which extended a ttribu tes are

supposed to provide. However, extended a ttribu tes rem ain useful for their resistance to the

hard link, mounting, and namespace problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 49

3.4 Algorithms

Following are some of the algorithm s used by the current DTE im plem entation. The un

derlying design decisions are described above. The LSM functions are grouped according

to the kernel functions to which they relate.

All D TE functions begin w ith a check for a variable called d t e _ i n i t i a l i z e d , which is

set to true only when the security fields for all DTE-controlled kernel objects have been

initialized. This is necessary because LSM binds the D TE functions before it gives D TE a

chance to initialize the security fields on DTE-controlled kernel objects.

3.4.1 M ount

There are several m ount-related LSM hooks. The first is initially called to ensure th a t the

requested m ount action is in fact allowed. D TE forbids m ounting only if the policy file has

specified a m ount restriction for the device being mounted, as discussed in Section 3.2.2.

This condition is checked by the dte_check_sb function:

i n t d te_ ch eck _ sb (s t r u c t vfsm ount *mnt, s t r u c t n am eid a ta *nd)
{
s t r u c t su p e r_ b lo c k *sb = m nt->m nt_sb;
s t r u c t d te_ m n tr * r ;

i f (d te i s i n i t i a l i z e d) {

r = g e t_ m o u n t_ re s tr ic t io n (s b -> s _ d e v) ;
i f (r) {

p a th = pathnam e of m oun tpo in t;
i f (r -> p a th != p a th && r i s a s t r i c t mount) {

r e t u r n -EPERM;
>
i f (r -> p a th == p a th && r i s a p r e te n d mount) {

/ / s e t " r e a l" p a re n t p o in te r s ;
sb _ se c -> m n t.p a re n t = m n tg e t(n d -> m n t);
sb_sec-> m oun tpo in t = d g e t(n d - > d e n try) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 50

}
}

}

r e t u r n 0;
>

The dte_check_sb function also m ust perform a part of the hierarchical D TE informa

tion setup. Most of this is performed later, since we need information gathered during the

rem aining m ount operation to complete it. However, in the case where the m ounted device

is associated w ith a pretend m ount rule, b u t is being mounted in the specified pretend loca

tion, waiting until after the m ount completes means th a t, when using the pretend location

to specify the real parent vfsmount and m ountpoint, the new device is already m ounted

on the pretend location. In this case, therefore, we m ust set up these pointers prior to the

m ount operation.

The post_addm ount LSM function is called after the m ounting of most file systems. The

sole exception is the root file system, whose m ount is followed by post_m ountroo t. As these

two functions do much the same thing under D TE, we present only post_addm ount.

v o id d te_post_addm ount (s t r u c t vfsm ount *mnt, s t r u c t nam eid ata *nd)
{

/* s e t up e x te r n a l a t t r i b u t e s f i l e in fo * /
d te _ se tu p _ e a f ile (m n t-> m n t_ s b , m n t) ;

/* s e t up h i e r a r c h i c a l in fo rm a tio n * /
h ie r a r c h ic a l_ s e tu p (m n t) ;

>

As discussed in Section 3.2.3, D TE handles file type resolution in two distinct ways.

One is based upon the file system hierarchy. The other is based upon an external a ttribu tes

file. Some initialization for each m ethod is required a t mount time. These are handled by

the h ie r a r c h ic a l_ s e tu p and d te_ se tu p _ eaf i l e functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 51

v o id d t e _ s e t u p _ e a f i l e (s t r u c t su p e r_ b lo c k * sb , s t r u c t vfsm ount *mnt)
{
s t r u c t d te _ sb _ se c *sb_sec = s b - > s _ s e c u r i ty ;

i f (s b _ s e c - > in i t ia l iz e d)
r e t u r n ; /* T h is d e v ic e h a s p r e v io u s ly been m ounted * /

fp = open f i l e " d te e a f" on t h i s f i l e system ;
sb _ se c -> n ty p e s = re a d number o f ty p e s from fp ;
f o r (i= 0 ; i< s b _ s e c -> n ty p e s ; i++) {

sb _ se c -> ty p e _ c o n v [i] = r e a d n e x t ty p e name from fp ;
s b _ s e c - > in i t i a l i z e d = 1;
s b _ s e c -> o f f s e t = lo c a t io n o f s t a r t o f typename l i s t i n fp ;

If the file has not been previously m ounted, d te_se tup_eaf i l e checks for the existence

of an extended a ttribu tes file. If th is exists, then it builds an array binding integer indices

to typenam es, as specified by the file. I t also records the offset of the s ta rt of the actual

listing of extended attribu tes, b u t does not begin to read in types for any inodes. Finding

the type for a particu lar inode num ber can now be done in constant tim e by adding the

inode num ber, m ultiplied by the size of a type index in the extended a ttribu tes file, to the

offset.

The hierarchical setup function also retu rns early if the file system has previously been

mounted.

v o id h i e r a r c h i c a l _ s e t u p (s t r u c t vfsm ount *mnt)

s t r u c t su p e r_ b lo c k *sb = m nt->m nt_sb;
s t r u c t d te _ sb _ se c *sb_sec = s b -> s _ s e c u r i ty ;

i f (s b - > in i t i a l i z e d)
r e t u r n ;

This function m ust set up the pretend m ount location. This is done by setting two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 52

pointers in the superblock’s security field. 2 This function m ust also insert the inode for the

root of the m ounted file system into the m apnode tree (see Section 3.3). This is the infor

m ation which is will be used to determ ine how the file system fits into the type assignment

tree.

As m entioned above, if the device is m ounted on its pretend location, then dte_check_sb

will have set the pretend m ount location on the superblock before m ounting completes. In

th is case, we need only insert the inode into the m apnode tree.

i f (sb -> m n t_ p aren t h as a lr e a d y been s e t up) {
c o p y _ d te _ d a ta (m n t-> ro o t_ in o d e ,

sb _ se c -> m o u n tp o in t-> in o d e) ;
}

If no pretend m ount location is specified for th is device, then we set the pretend location

to the m ount point. If th is device is m ounted a second tim e, then h ie r a r c h ic a l_ s e tu p will

shortcut, and the pretend m ount location will continue to point to th is first m ount point.

i f (no p r e te n d mount r e s t r i c t i o n s f o r t h i s d e v ic e) {
sb _ sec -> m n t_ p aren t = m n t-> m n t_ p aren t;
sb_sec-> m oun tpo in t = m nt-> m nt_m ountpoin t;
c o p y _ d te _ d a ta (m n t-> ro o t_ in o d e ,

sb _ sec -> m o u n tp o in t-> in o d e) ;
}

Finally, if the device is associated w ith a pretend location, bu t is being m ounted else

where, then we set up the pretend location here. The reason we cannot also handle th is case

in dte_check_sb is th a t we m ust perform a pa th lookup to obtain the (d en try , vfsm ount)

pair corresponding to the pathnam e. We cannot do th is in dte_check_sb because th a t

2T wo pointers axe needed because a pathnam e in the Linux kernel is uniquely identified by a
(dentry,vfsm ount) pair. In fact we are only after one thing, the pathnam e, but no such thing exists in
the kernel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. D TE 53

is called holding a lock which m ay not be held for the pa th lookup function. The path

lookup is not needed in d te_check_sb because we already have the m ount po in t’s (d en try ,

vfsm ount) pair.

e l s e {
p a th _ lo o k u p (p re te n d p a th name, &nd2);
sb _ sec -> m n t_ p aren t = nd2 .m nt;
sb _ sec -> m oun tpo in t = n d 2 .d e n try ;
c o p y _ d te _ d a ta (m n t-> ro o t_ in o d e ,

sb _ se c -> m o u n tp o in t-> in o d e) ;
>

>

3.4 .2 F ile T yp e R eso lu tio n

File type resolution is accomplished using the m apnodes, as described in Section 3.3. By

properly setting m apnode inform ation on root inodes a t m ount tim e, we do not need to

worry a t all about the issues of m ultiple m ounts or directory binding at inode lookup time.

The following algorithm is im plem ented as d te_ re a l_ p o s tlo o k u p , which is called by LSM

after any inode is first read from disk, th a t is, the first tim e a file is read.

The hierarchical type assignment inform ation m ust be m aintained even if we use ex

tended attribu tes, in case a file system not using extended a ttribu tes is m ounted at a lower

level. Barring any contradictory type assignment rules, bo th the e ty p e and u ty p e are

inherited from the parent directory’s inode.

s t a t i c i n l i n e v o id d te _ re a l_ p o s tlo o k u p (s t r u c t inode * in o ,
s t r u c t d e n try *d, i n t c r e a te)

{
s t r u c t d te _ in o d e _ se c *p, *c;

/* a s s ig n ty p e s u s in g th e h i e r a r c h i c a l scheme * /
c = in o d e - > s e c u r i ty ;
p = in o d e - > p a re n t- > s e c u r i ty ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. D TE 54

c-> u ty p e = c -> e ty p e = p -> u ty p e ;
c - > i n i t i a l i z e d = 1;

c->map = m apnode_getkid(p->m ap, d->nam e);
i f (c->map != NULL) {

c->map = m apnode_getkid(p->m ap, d ->nam e);
c -> e ty p e = c-> m ap-> etype;
c -> u ty p e = c-> m ap-> utype;

>

The function returns if the device does not have an external a ttribu tes file. It also returns

if the inode is of a newly created file. This is because DTE uses type assignment rules to

determ ine the type of files which are created on a file system using an external a ttribu tes

file. This contrasts to SELinux’ T E and T IS ’ DTE, which use the creating process’ dom ain

and the type of the parent directory to assign a type.

If the file is not new, and the file system uses external a ttribu tes, then the file’s types

are taken from the external a ttribu tes file:

i f (c r e a te I I
t h i s d e v ic e h a s no e x te r n a l a t t r i b u t e s f i l e) {
r e t u r n ;

}

buf = re a d ty p e index from ea f i l e a t o f fs e t+ in o d e #;
c -> u ty p e = c -> e ty p e = c o n v e rt bu f to ty p e name;

}

We now show informally how this algorithm , combined with the above m ount algorithms,

correctly handles m ultiple m ounts and directory binding.

To show th a t we correctly handle m ultiple mounts, we will access a file d i r l / d i r 2 / f i l e ,

which is located on a file system m ounted at least twice. If the file system stores typenam es

as external a ttribu tes, then, as there is no ambiguity in inode num bers, the same type will

be returned for d i r l / d i r 2 / f i l e regardless of file system m ount activity. We therefore

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 55

assume there is no external a ttribu tes file. The d te_ re a l_ p o s tlo o k u p function bases the

types of files (and directories) based upon the m apnode tree inform ation stored at the parent

directory, using the following excerpted pseudo code:

c->map = m apnode_getkid(p->m ap, d->nam e);
i f (c->map != NULL) {

c->map = m apnode_getkid(p->m ap, d->nam e);
c -> e ty p e = c-> m ap-> etype;
c -> u ty p e = c -> m ap-> utype;

}

Therefore the types returned for d i r l / d i r 2 and d i r l / d i r 2 / f i l e depend purely on the

correct insertion of d i r l into the m apnode tree. This is done a t m ount time.

The dte_post_addm ount function calls h ie r a rc h ic a l_ s e tu p , which first performs the

following check:

i f (s b - > in i t i a l i z e d)
r e t u r n ;

In other words, if the superblock is already initialized, which means th a t th is device has

been previously m ounted, then we do not continue. Therefore, the first pa th under which

the device was m ounted will continue to be th a t used for file type resolution, as it should

be. The simple case of m ultiple m ounts is therefore (trivially) correctly handled.

Later, h ie r a r c h ic a l_ s e tu p contains the following code:

i f (no p re te n d mount r e s t r i c t i o n s f o r t h i s d e v ic e) {

c lo n e s e c u r i ty f i e l d on m n t’ s ro o t inode from
th e m oun tpo in t d e n try -> d _ in o d e .

} e l s e {
p a th _ lo o k u p (p re te n d p a th name, &nd2);

c lo n e s e c u r i ty f i e l d on m n t’ s ro o t inode from
n d 2 . d e n try -> d _ in o d e ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 56

Cloning an inode’s security field also copies its pointer into the m ap node tree. If the

D TE policy configuration file specifies a pretend m ount location for th is device, the m apnode

for th a t location is used for the root inode of the newly m ounted file system. Otherwise,

the m apnode for the specified m ountpoint is used.

Finally, looking again a t the d te_ re a l_ p o s tlo o k u p function, when d i r l is looked up,

we will look a t the parent inode’s m apnode for a child m apnode by d i r l ’s name. If this

does not exist, we copy the parent inode’s u ty p e to d i r l ’s e ty p e and u ty p e . Since the

parent inode is the inode for the file system ’s root dentry, and since we have shown th a t

this inode’s security field is correctly assigned a t m ount time, m ultiple m ounts are correctly

handled by the file type assignment algorithm .

Directory binding is a rem ount of a specific directory w ithin an already m ounted file

system, on top of a new m ountpoint. The very act of reading the directory as p a rt of binding

it, ensures th a t the security field for the inode for this directory is already initialized. This

is not a p a rt of the D TE code, bu t occurs w ithin the doJoopback function at the line

err = path_lookup(old_nam e, L00KUP_F0LL0W, & old_nd);

It will therefore have been correctly set before it was ever bound. We refrain from explicitly

constructing the obvious inductive proof.

3.4 .3 Inode P erm ission

Since type names are set a t the tim e when inodes are first read from disk, the D TE inode

perm ission function is quite simple. It consists only of a few safety checks, followed by

a check through the current dom ain’s list of type accesses for the requested access to the

inode’s type. Checks for file execute perm ission are delayed until after a dom ain transition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 57

s t a t i c in l in e in t d te_ re a l_ in o d e _ p e rm iss io n (str u c t inode * inode, in t mask)
{

s tr u c t d te _ ta * ta ; /* a d te type a c c ess s tr u c tu r e p tr * /

t a = search fo r type a c c ess from current domain to in o d e -> e ty p e ;

i f (! t a)
r e tu r n ;

i f (S_ISDIR (inode->i_m ode)) {
i f ((mask&MAY_EXEC) kk ! (d te _ d e sc e n d _ a c c e ss (ta -> a c c e ss)))

DENY_ACCESS("d ir x");
i f ((mask&MAY_WRITE) kk ! (d te _ c r e a te _ a c c e s s (ta -> a c c e s s)))

DENY,ACCESS("dir w");
i f ((mask&MAY_READ) kk ! (d te _ r e a d d ir _ a c c e ss (ta -> a c c e ss)))

DENY,ACCESS("d ir r ") ;
} e l s e {

i f ((mask&MAY_WRITE) kk ! (d te _ fw _ a c c e ss (ta -> a c c e ss)))
DENY_ACCESS(" f i l e w");

i f ((mask&MAY_READ) kk ! (d te _ fr _ a c c e s s (ta -> a c c e s s)))
DENY_ACCESS("file r");

}
retu rn 0;

>

3.4 .4 E xecve

Section 2.5.6 details the two types of dom ain transitions allowed under DTE. These are

called au to and exec transitions. A process m ust request an exec transition. This is done

using a new system call:

s t a t i c lo n g d te_ d o _ e x e c (v o id * d a ta)

The pointer sent to this function m ust reference the following struct:

s t r u c t d te _ e x e c _ s tru c t{
c h a r *fnam;
c h a r **argv ;
c h a r **envp;
c h a r *domain;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 58

The system call begins by reading this struc tu re from user space. It searches the D TE

exec rules for one perm itting the current dom ain to transition to data->dom ain.

t s = c u r r e n t - > s e c u r i t y ;
i f (!d te_ m ay _ ex ec_ to (ts -> d te_ d o m ain , d e s t)) {

lo g C 'd te : domain 7.s may n o t exec to domain 7 ,s .\n " ,
ts-> d te_dom ain -> nam e, d e s t-> n am e);

e r r = -EACCES;
g o to o u t_ p u tf ;

We next back up the current domain, set the new domain, and begin execution of the

requested file using the standard execve system call. We m ust tem porarily store the old

dom ain for three reasons. F irst, since the executable file da ta -> fnam m ay not yet have been

loaded from disk, we wait until we are certain the file’s type has been calculated in order

to determine w hether th is file is an entry point to the destination domain. If it is not, then

the process m ust be retu rned to its original domain. Similarly, if execution fails early on,

we m ust also reset the domain. An example of such a failure would be the file da ta -> fnam

not existing on the file system. Third, since an auto transition overrides an exec transition,

we will need the old dom ain in order to ensure th a t no auto transition existed for the old

dom ain and the new executable file.

Finally, if the execve system call fails, we reset the original domain.

t s -> d te _ b a c k = ts-> d te _ d o m ain ;
ts -> d te _ d o m ain = d e s t ;
e r r = e x e c v e (e s .fn a m , e s .a r g v , e s .e n v p) ;
i f (ts -> d te _ b a c k) {

ts -> d te _ d o m ain = ts -> d te _ b a c k ;
ts -> d te _ b a c k = NULL;

}

The execve system call calls the function prepare_binprm , which calls the LSM function

b p rm _ se t_ se c u rity in order to set security m odule information. In D TE, this function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 59

handles b o th auto dom ain transitions, and the final entry point check for exec transitions.

It begins by checking for an au to transition, using the d te_ au to _ sw itch function. If such

a transition is required, it takes place, potentially overriding a requested exec transition.

Otherwise, if an exec transition has been requested, we ensure th a t the file being executed

is an entry point to the new domain.

i f (!d te _ a u to _ sw itc h (s -> e ty p e)) {
/* Log th e m andatory domain sw itc h * /

> e l s e i f (ts-> d te_b ack &&
!dte_dom ain_has_ep(ts->dte_dom ain, s -> e ty p e)) {

/* t h is domain t r a n s i t io n i s not a llow ed * /
lo g C 'd te : type */,s i s not ep to domain 7 ,s .\n " ,

s -> e ty p e , ts-> d te_ d o m ain -> n am e);
ts -> d te _ d o m ain = ts -> d te _ b a c k ;
ts -> d te_ b a .ck = NULL;
r e t u r n -EACCES;

>

Next execution is a ttem pted . If it fails, the process’ original dom ain is reset. Otherwise,

the process begins execution of the new file under its new domain.

r e t = d te_ch eck _x(ts-> d te_d om ain , s -> e ty p e) ;
i f (r e t) {

/* n o t a llo w ed * /
logC 'd te : domain 7,s may not execu te type °/,s.\n",

ts->dte_dom ain->nam e, s -> e ty p e) ;
i f (ts-> d te_b ack) {

ts -> d te _ d o m ain = ts -> d te _ b a c k ;
ts -> d te _ b a c k = NULL;

}
retu rn r e t ;

>
ts -> d te _ b a c k = NULL;
r e t u r n 0;

}

Section 3.3 explains th a t a list of gateways is created for each domain. The function

dte_auto_sw itch, called from the D TE version of bprm.set .s e c u r ity , searches the list

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. D TE 60

of the source dom ain’s entry types for the type assigned to the file being executed. If it

is found, then d te_ au to _ sw itch returns 0, indicating th a t an au to dom ain transition is

required. Otherwise, it returns 1. Since the check for an auto transition is reduced to one

hash calculation, performance im pact is minimized despite d te_ au to _ sw itch being called

for every file execution.

s t a t i c i n t d te _ a u to _ s w itc h (c h a r * ty p e)
{

t s = c u r r e n t - > s e c u r i t y ;
c u rd = ts-> d te _ d o m ain
i f (ts -> d te _ b a c k) {

/* in a d te _ e x e c , we want to u se th e o r ig i n a l domain * /
cu rd = ts -> d te _ b a c k ;

>
i f (cu rd h as no gatew ays)

r e t u r n 1;
gw = e n tr y in gatew ay h ash t a b l e f o r ty p e ;
i f (gw) {

i f (ts -> d te _ b a c k) {
lo g o v e rr id d e n exec t r a n s i t i o n ;
ts -> d te _ d o m ain = gw->domain;

} e l s e {
ts -> d te _ b a c k = ts-> d te _ d o m ain ;
ts -> d te _ d o m ain = gw->domain;

}
r e t u r n 0;

>
r e tu r n 1;

3.4.5 D T E M odule In it

The switch to LSM involved allowing D TE to be installed as a m odule after system boot had

completed. Im portan t kernel structures have already been created, w ithout D TE security

inform ation attached, and im portan t inform ation has already been lost. For instance, while

we have access to the process tree, processes may have already reparented themselves. More

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 61

im portantly, for processes which have performed sequences of execve, only the filename of

the latest execve invocation is available. This means th a t we cannot know how to assign

dom ains to processes correctly. To cope w ith this situation as best we can, we use the

following algorithm:

in t setup_dte_m odule(void)
{

/* read d te c o n fig f i l e . . . * /

/* a ss ig n a s p e c if ie d d e fa u lt domain to a l l p r o c e sse s : * /
lo c k _ k e r n e l() ;
fo r_ ea ch _ ta sk (ta sk p) {

ta sk p -> se c u r ity = k m a llo c (s iz e o f (s tr u c t d te _ ta s k _ s e c) ,
GFP.KERNEL);
ta sk _ sec = (s t r u c t d te_ ta sk _ sec *) ta s k p -> s e c u r ity ;
task_sec->dte_dom ain = default_dom ain;
task _sec-> d te_b ack = NULL;

}

/* Set up th e ro o t o f th e f i l e s y s te m .. . * /

/ * And walk th e e n t ir e f i l e system tr e e loaded so f a r , a ss ig n in g
DTE ty p es: * /

d te_w a lk _d cach e_ tree_ fu ll(roo t_m n t, r o o t_ sb -> s_ r o o t) ;

3.5 Configuration File

W hen a D TE system boots, it reads a policy from the configuration file, which is located

a t / . d t e / d t e . c o n f . This file is s tructu red as follows. It begins w ith a declaration of the

types and domains used in this policy. Next it defines the default dom ain, which is assigned

to the first process. It also defines the e ty p e and u ty p e for the root of the file system. This

is followed by dom ain specifications and type assignment rules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 62

< dte_con fig> ::=
typ es <type_name> { <type_name> }
domains <domain_name> { <domain_name> }
d e fa u lt_ d <domain_name>
d e fa u lt_ e t <type_name>
d e fa u lt_ u t <type_name>
<domain_spec>
{ <domain_spec> >
<type_assignm ent>
{ <type_assignm ent> }

Each dom ain specification lists, in order, the entry types, the dom ain’s access to types,

its perm itted and required transitions to o ther domains, and the signals which it may send

to other domains. Each dom ain access may be auto or exec. Type access may be any

com bination of “r ” for file read, “w” for file write, “x” for file execute, “1” for directory read

(lookup), “c” for directory write (create), “d” for directory descend, or “a” for file append.

Enforcement of file append is, however, not yet implemented. The signal in a signal access

rule may be a comm a-delim ited list of signal num bers, or “0” for “any signal.”

The list of type assignments follows. A type assignment statem ent may associate several

paths w ith one type. Each statem ent binds the pathnam es as “-e” for explicit, “-u” for

under, or “-eu” or “-r” for both. Their meanings are discussed in Section 3.2.2.

<domain_spec> ::= spec_domain <domain_name>
(<number> -[<entry_type> })
(<number> { < type_access> })
(<number> { <domain_access> })
(<number> { < sig n a l_ a ccess> >)

<type _a s s ignment> ::= a s s ig n <assign_op tion> <type_name> <path_name>
{ <path_name> }

Each of the above statem ents m ust adhere to a very specific syntax. Their specifications

follow.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 63

< a ss ig n _ o p tio n > : := " - e " |" - u " |" - r " I " - e u "

< en try _ ty p e> :
<ty p e _ a c e e s s >
<dom ain_access>
< s ig n a l_ a c c e ss>
< s ig n a l_ a c c e ss>
<name>
<type_name>
<domain_name>
<path_char>
<path_elem ent>
<path_name>
<number>
< type_acc_ token>
<ty p e _a c c _ p ie c e >
<dom ain_acc_token>

<type_name>
= <type_acc_token> <type_name>
= <domain_acc_token> <domain_name>
= <number> "0"
= <number> <domain_name>
= < le t te r > { < le t te r > I < d ig it> }
= <name>
= <name>
= < le t te r > I < d ig it>
= <path_char> { <path_char> }
= "/" <path_elem ent> { <path_name> }
= < d ig it> ■[< d ig it> >
;= <type_acc_piece> { <type_acc_piece> >
:= »r » | »w» | » xm| « i n | n C"|»d"|"a"

::= "auto" I "exec"

A few notes follow which are not expressed in the BNF specification. F irst, to continue

any statem ent onto the following line, the line m ust be ended w ith a \ . Second, in dom ain

specifications, the num bers preceding each of the type, dom ain and signal accesses m ust be

the exact num ber of access specifications following.

3.6 DTE A PI

DTE multiplexes the LSM s e c u r i ty system call to provide three ways of interacting with

the DTE subsystem. Since these three are provided through one system call, they are

not themselves true system calls. However, as they allow user-space programs to interact

w ith the kernel through a kernel trap , and since they m ost closely resemble system calls in

purpose and function, we will nevertheless refer to them as syscalls.

The three D TE syscalls are called g e t_ ty p e , get_dom ain, and dte_exec. They are

invoked by calling the s e c u r i ty system call and sending the integer code 10 as the first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. D TE 64

argum ent, in order to specify th a t these are directed toward the D TE subsystem; an integer

between one and three as the second argum ent to identify the specify D TE syscall; and a

pointer to a structu re as the th ird argum ent. The structu re in the th ird argum ent contains

the actual argum ents being used by the D TE syscall.

The code snippets below explain the usage of these syscalls.

• get-typ e

This call is used to learn the type assigned to a file. I t receives a string containing

the pathnam e to be queried, as well as a buffer and an integer specifying the buffer

size. The type nam e is stored in the buffer.

s tr u c t d te _ g t_ s tr u c t {
char *fnam;
char * b u f;
in t b u flen ;

>;
in t s e c u r i t y (in t id=10, in t c a l l = l , s tr u c t d te _ g t_ s tr u c t *gt) ;

• get-domain

This call is used to learn the dom ain under which a process is running. It receives

an unsigned integer representing the process id, as well as a buffer and an integer

specifying the buffer size. The dom ain name is stored in the buffer.

s tr u c t d te_ g d _ stru ct {
unsigned in t p id ;
char *b u f;
in t b u flen ;

>;
in t s e c u r i t y (in t id=10, in t c a ll= 2 , s tr u c t d te_gd _stru ct *gd) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 3. D TE 65

• d te_exec

This call requests a voluntary transition to a new dom ain while beginning execution of

a n e w f i le . It is sent the pathnam e to be executed, the dom ain to which to transition,

as well as the lists of argum ents and environm ent variables. If execution of fnam

triggers a m andatory dom ain transition, then execution proceeds under the required

domain, and the requested dom ain transition does not occur.

s t r u c t d te _ e x e c _ s tru c t{
c h a r *fnam;
c h a r **argv ;
c h a r **envp;
c h a r *dom ain;

>;
i n t s e c u r i t y (i n t id= 10 , i n t c a l l= 3 , s t r u c t d te _ e x e c _ s tru c t *de) ;

3.7 Effectiveness

To show the effectiveness of our D TE im plem entation, we picked a high-profile vulnera

bility, namely the buffer overflow in wu-ftpd[49\, and showed how our im plem entation of

D TE can prevent an attacker from obtaining a root shell. O ur goal was to show th a t we

could protect the system from the wu-ftpd vulnerability (the posted exploits as well as fu

ture or hand-crafted ones) w ithout modifying the binary. In order for ftp to retain its full

functionality, it would need to be m ade DTE-aware so th a t it could, like login, allow ftp

to transition into the dom ain associated w ith a user being authenticated. We did not do

this, b u t set protections such th a t users can retrieve files from, if not deposit files onto, the

server. Anonymous ftp was fully functional.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. D TE 66

The policy shown in Figure 3.2 prevents dom ain f tp d A from executing any system bi

naries other than / u s r / s b i n / i n . f t p d and binaries located under " f t p / b i n / (lines 19-21).

These files are defined to be of the type f tp d _ x t (lines 29 and 30), which the dom ain ftpdA.

may execute bu t not write (line 20). Only ftp d A may execute th is type (lines 9-21), and

root-d autom atically switches to ftp d A on execution of / u s r / s b i n / i n . f t p d (line 12), since

th a t is an entry point to ftp d A (line 19). The exploits to be found on the internet to

take advantage of this vulnerability will therefore fail, as they expect to be allowed to run

/b in / s h . Nor can a script be w ritten to upload and run a T rojan horse, since the only

types which ftp d A is allowed to w rite may not be executed by anyone.

The script which we tested was w uftpd2600, which can be found at the Security Focus

website [20]. It connected to our test machine, and exploited the buffer overflow. However,

the DTE-enabled kernel refused to allow the f tp d A dom ain to execute / b in / s h . The script

therefore hung, and the system was not compromised. The error messages in Figure 3.3

were sent to syslog. In contrast, the plain 2 .3 .2 8 kernel happily provided a root shell.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3. DTE 67

01 # ftpd protection policy
02 types root_t login_t user_t spool_t binary_t lib_t passwd_t shadow_t dev_t \
03 config_t ftpd_t ftpd_xt w_t
04 domains root_d login_d user_d ftpd_d
05 default_d root_d
06 default_et root_t
07 default_ut root_t
08 default_rt root_t
09 spec_domain root_d (/bin/bash /sbin/init /bin/su) (rwxcd->root_t \
10 rwxcd->spool_t rwcdx->user_t rwdc->ftpd_t rxd->lib_t rxd->binary_t \
11 rwxcd->passwd_t rxwcd->shadow_t rwxcd->dev_t rwxcd->config_t \
12 rwxcd->w_t) (auto->login_d auto->ftpd_d) (0->0)
13 spec_domain login_d (/bin/login /bin/login.dte) (rxd->root_t rwxcd->spool_t \
14 rxd->lib_t rxd->binary_t rwxcd->passwd_t rxwcd->shadow_t rwxcd->dev_t \
15 rxwd->config_t rwxcd->w_t) (exec->root_d exec->user_d) (14->0 17->0)
16 spec_domain user_d (/bin/bash /bin/tcsh) (rwxcd->user_t rxwcd->shadow_t \
17 rwxcd->spool_t rxd->lib_t rxd->binary_t rwxcd->passwd_t rwxd->root_t \
18 rwxcd->dev_t rxd->config_t rwxcd->w_t) (exec->root_d) (14->0 17->0)
19 spec_domain ftpd_d (/usr/sbin/in.ftpd) (rwcd->ftpd_t rd->user_t rd->root_t \
20 rxd->lib_t r->passwd_t r->shadow_t rwcd->dev_t rdx->ftpd_xt \
21 rd->config_t rwcd->w_t d->spool_t) () (14->root_d 17->root_d)
22 assign -u /home user_t
23 assign -u /tmp spool_t
24 assign -u /var spool_t
25 assign -u /dev dev_t
26 assign -u /scratch user_t
27 assign -r /usr/src/linux user_t
28 assign -u /usr/sbin binary_t
29 assign -e /usr/sbin/in.ftpd ftpd_xt
30 assign -r /home/ftp/bin ftpd_xt
31 assign -e /var/run/ftp.pids-all ftpd_t
32 assign -r /home/ftp ftpd_t
33 assign -e /var/log/xferlog ftpd_t
34 assign -r /lib lib_t
35 assign -e /etc/passwd passwd_t
36 assign -e /etc/shadow shadow_t
37 assign -e /var/log/wtmp w_t
38 assign -e /var/run/utmp w_t
39 assign -u /etc config_t

Figure 3.2: A DTE policy to protect from wu-ftpd, with line numbers added.

Aug 4 13:12:03 wicked kernel: do_exec: d_t_check_x returned l(exec denied).
Aug 4 13:12:03 wicked kernel: do_exec: domain ftpd_d type root_t.

Figure 3.3: Error messages resulting from attempted wu-ftpd exploit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://ftp.pids-all

Chapter 4

Performance

We began the performance analysis of LSM and D TE by using the LMBench [36] benchm ark

suite. Some of the LMBench benchm ark a ttem pts to measure hardware performance, and

therefore was not relevant. We present and discuss the relevant LMBench results in Sec

tion 4.1. For those areas which the benchm ark showed were significantly affected by DTE,

we analyze the cause of the performance im pact in more detail in Section 4.2 by directly

tim ing the kernel operations involved. T h a t section also investigates some performance hits

which we expect, bu t which LMBench does not measure. Finally, in Section 4.3 we perform

a m acro-benchm ark to analyze the overhead perceived by users of the system.

All benchm arks were performed on a 400 MHz Pentium II class system w ith a 2.51

nanosecond clock and 128M ram. LMBench calculated the actual clock speed as 398MHz

(1/2.51). Therefore, for all tests which m easured clock cycles, we report results in microsec

onds calculated by dividing by 398. Background processes were kept to a minimum by not

starting services such as X windows, lpd and cron.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. PERFO RM ANCE 69

4.1 LM Bench Results

The LMBench suite was executed ten tim es on each of an unaltered 2.5.6 kernel, an LSM-

enabled 2.5.6 kernel w ith no modules loaded, an LSM kernel using only the capabilities

m odule, an LSM kernel w ith the D TE m odule loaded, and an LSM kernel w ith the capa

bilities m odule stacked on top of the D TE module. The means and standard deviations

are presented in A ppendix B. In our discussion, we will m ainly compare the stock 2.5.6

kernel, the LSM kernel w ith the capabilities m odule loaded, and the LSM kernel w ith the

DTE m odule loaded. The capabilities m odule rarely m ade a significant im pact on the re

sults. However, we use it ra ther th an LSM w ith no modules, because the stock kernel uses

capabilities. W hereas capabilities significantly enhance the security of the stock kernel, the

D TE kernel can be made secure w ithout the aid of the capabilities module. We therefore

consider the m ost appropriate comparisons to be of the stock kernel, the LSM kernel us

ing the capabilities module, and the LSM kernel using only the D TE module. Section 4.1.1

presents file system and v irtual memory performance. Section 4.1.2 presents process-related

performance. Since the context switch and memory latency results are strictly hardw are

m easurements, we do not discuss them here.

4.1.1 F ile S ystem and V M Perform ance

4.1.1.1 Mmap

Counter-intuitively, m m ap latency improved in LSM, and improved even more for the D TE

module. The difference am ounted to less th an 0.5%. Nevertheless, mmap is an im portant

m ethod of file access, and the lack of performance im pact due to either LSM or D TE is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. P E R F O R M A N C E

pleasing, if expected, result.

70

4.1.1.2 File Creation

File creation involves the following LSM hooks from inode_ops: c r e a te () , p o s t_ c re a te () ,

and a call to p e rm is s io n O for each parent directory contained w ithin the pathnam e. In

DTE, the c r e a t e () call is empty, while the p o s t_ c r e a te () call performs the same tasks

which would be needed if the file were read from disk for the first time. This includes

determ ining the appropriate D TE types and, if necessary, hooking into the m apnode tree.

If extended a ttribu tes are in use, then p o s t_ c re a te () m ust also write the newly determ ined

type for this inode into the extended a ttribu tes file.

The LSM code introduced a 2-3 microsecond overhead for creation of any size file. The

DTE code introduced an additional six to eight microseconds.

4.1.1.3 File Deletion

File deletion involves the following LSM hooks: inode_ops—̂ p e rm iss io n !) for EXEC per

mission a t the parent inode, followed by inode_ops—M m linkO . The u n l in k () function is

em pty for DTE. Any ex tra cost incurred by D TE over LSM is, therefore, the same as if we

were simply accessing the file. Figure 4.1 shows the relevant measurem ents for the file dele

tion benchmarks. The first column shows the size of files being deleted, the second column

shows the deletions per second, and the th ird column shows the tim e (in microseconds) to

delete a file. Note th a t the similar times for lk and 4k file deletions are accounted for by

the file system ’s 4k blocksize. The D TE overhead appears to be about 2.9 microseconds

above the LSM time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. PERFO RM ANCE 71

At this point a note about precision is in order. W hile the 95% confidence interval

for 10 runs of our LMBench file deletion results was 0.15 microsecond, a subsequent trial,

on the same hardw are bu t a rebuilt system, returned num bers which differed by as much

as 4 microseconds from the first run, bu t again exhibited a 95% confidence interval of

0.15 microsecond. This suggests the possibility th a t the overhead depends greatly upon

particular conditions in the file system ’s free inode and free block bitm aps.

65000

60000

55000

50000
■Oc
© 45000

CO'wc
| 40000
©o

35000

30000

25000

20000

4 .1 .2 P ro cess-R ela ted Perform ance

4.1.2.1 Null Call

A system call allows user code to interact w ith the operating system. To obtain a mea

surem ent of the tim e to perform a null system call, th a t is, the tim e required for only the

Deletions Per Second For Various 2.5.6 Kernels

n ' LSM Kernel h
LSM+DTE Module i—x-

LSM-Free Kernel !—■*-■

_ L

4 6 8 10
File Size in Kilobytes

Figure 4.1: LMBench results for file deletion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. PERFO RM ANCE 72

operating system overhead involved in performing a system call, LMBench uses a call to

sy s_ g e tp p id . This is a short system call, into which LSM fortunately inserts no hooks.

Therefore it rem ains a good null system call test for us. It is m entioned here only be

cause of the unexpected result of the LSM kernel outperform ing the plain kernel, w ith all

com binations of inserted modules. This would appear to be an artifact of the ex tra LSM

inform ation in memory, purely by accident, resulting in be tte r d istribu tion of d a ta in cache.

4.1.2.2 Stat() and O pen()/C lose()

For our purposes, these benchm arks are closely related. This is because bo th open() and

s t a t O call open_nam ei(), which calls p e rm is s io n () and postJL ookupO for each pa th

element leading up to the filename. Provided the file’s dentry inform ation is cached, as it

is when the same file is repeatedly opened and closed, no other LSM hooks are called.

The D TE overhead is significant, adding 33% to the stock kernel’s tim e for s t a t O

and 29% for o p e n () / c lo s e () , as opposed to the 4% increase for s t a t O and 2% increase

for o p e n () / c lo s e () imposed by the capabilities module. The D TE p e rm iss io n O and

post_ lookup functions are quite short, and do not seem to account for this overhead. We

therefore analyze th is further in section 4.2.1.

4.1.2.3 Signals

T he tim e to install a signal handler was not affected by either LSM or DTE. However,

the tim e to send a signal, as expected, was affected. The capabilities module introduced

0.1 microsecond overhead over the stock kernel, and the DTE m odule added an additional

microsecond. This represents the cost of a single LSM function call, which involves two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. PERFO RM ANCE 73

pointer dereferences, the saving of the re tu rn value, and the following test of the re tu rn

value. The hook being called, for bo th the dum m y and capabilities module, does only a

r e t u r n 0;

The benchm ark sends a signal only to itself. Since DTE shortcuts for any signal sent

to a process w ithin the same dom ain, th is is not a good test of the D TE signal code.

Therefore, m icro-benchmarks to further investigate D TE signal performance are developed

in Section 4.2.3.

4.1.2.4 Fork

The tim e to fork a new process did not differ significantly between kernels. Indeed, forking

and exiting a process introduce only three LSM hooks, each of which consists of simply

r e t u r n 0;

for the dum my and capability modules. In D TE, the overhead is constant, always consisting

of one memory allocation, two conditionals, and four simple assignment statem ents.

4.1.2.5 Fork and Exec

The addition of an e x e c () call introduces a much larger am ount of work for the DTE

module. The kernel m ust now check the D TE policy for m andatory dom ain transitions,

which will depend upon the current dom ain and the type of the file being executed. The

D TE m odule did not perform significantly worse th an the DTE-free LSM kernel. This

result confirms the validity of using a hash table of gateways (see Section 3.3) to speed up

the search for required autom atic dom ain transitions. Under the D TE policy used during

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 4. PERFORM ANCE 74

these tests, the user_d domain, under which the benchmarks were run, had auto transition

rights to 4 domains, through 4 gateways. However, a poor hash table im plem entation could

cause the cost of checking for dom ain transitions to increase as a function of the num ber of

gateways. Therefore, Section 4.2.2 will analyze th is cost in more detail.

4.2 Micro Benchmarks

LMBench is designed as a general benchm ark to test OS and hardw are performance. We

now present more detailed tests of some parts of the D TE code. We chose to profile any

code involved in suspicious or disappointing results from LMBench, as well as any code

which we felt was not adequately profiled by LMBench.

4.2 .1 P erm ission ()

As m entioned in the LMBench results, the d te_ in o d e_ p erm iss io n () function appears to

take an inordinate am ount of time. This function only calculates the hash value of a type

name, steps through the list of hash collisions to find the requested type name, and performs

a few comparisons to determ ine w hether to grant access. An obvious potential bottleneck

is therefore the hash function, which we investigate first.

The hash function we use is th a t used by the Linux directory cache, or dcache. The

dcache takes pathnam es, descends the directory tree, and returns a file’s inode number.

Its hash table has therefore been thoroughly examined [32] and optimized. However, in

order to minimize memory usage while accom m odating for the fact th a t the num ber of

hash entries will vary, we simply used a hash table of the exact size needed to store the

num ber of entries. To m easure the im pact of this memory optim ization on performance, we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. PERFO RM ANCE 75

calculated the m axim um depth of any dom ain to type access specification in the chain of

hash collisions, for each dom ain specification. In our stock kernel, the mean m axim um over

all domains was 6.2 ± 2.6. By switching to hash tables containing twice the needed num ber

of entries, we reduced the average of m axim a to 5.1 ± 2.6. It appeared worthwhile to make

this same change to the hash tables storing entry points, signal accesses, dom ain accesses,

and gateways, and investigate the resulting perform ance impact. However, doing so gave

mixed results, as some LMBench results grew worse.

Our next step was to tim e the open_namei () call, the d te_ in o d e_ p erm iss io n () function

as a whole, and two pieces of the d te_ in o d e _ p erm iss io n () function. In particular, we

tim ed the actual calculation of the hash value of the type name, and the subsequent search

through the list of collisions. Outliers 1 were removed from the d a ta sets, as these generally

reflected disk reads, which are far slower th an the action being tim ed, and render da ta

meaningless by m aking the (already large) s tandard deviation far larger th an the mean.

O ur results come from three separate runs. The first tim ed open_namei () , the second tim ed

d te_ in o d e _ p e rm iss io n () , and the th ird tim ed the hash operations. We ran the LMBench

file system latency test each time. The separate runs were necessary since openjnam ei ()

calls p e rm is s io n () , and p e rm is s io n !) contains the hash operations, so th a t the action of

logging deeper tim ing results would affect the calling functions.

The D TE kernel’s d te_ in o d e_ p erm iss io n () function took an average of .64 ± .005

microseconds. The perm ission function m ainly calculates the hash value of the typenam e,

and searches through hash collisions for the correct hash table entry. Calculating the hash

1 We defined outliers as those numbers which were at least an order of magnitude larger than the numbers
which were not outliers. A significant gap existed between those numbers which we removed, and those which
we retained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. PERFO RM ANCE 76

value took .367 ± .002 microseconds, while stepping through collisions took .21 ± .0005

microseconds.

The file which was being accessed by LMBench during the open () / c lo s e () test was

/u sr /tm p /lm b e n c h . This causes p e rm iss io n O to be called 4 times, accounting for 2.4 of

the 3.3 microseconds of overhead in itself. In addition to this, we m ust add the function

call overhead, as well as the overhead for post_ lookup . A lthough each of these is small in

itself, we have a t least accounted for the m ajority of the overhead, which appears to stem

from the actual hash calculation.

We also did a simple tim ing of all calls to open_name(). However, as this function is

called for all pathnam e accesses, ranging from quick reads from cache, to reads from disk,

to file creations, the num bers varied far too much to be of any use in comparing the small

differences arising from the LSM and D TE performance hits. Severe outliers, which were

an order of m agnitude greater th an the majority, were again removed, bu t variance was still

too great for the num bers to be very informative. T he open_nam ei() function averaged

125.85 ± .96 microseconds under a plain LSM-free kernel, and 134.31 ± .98 microseconds

under D TE. Many calls, however, completed in less th an 7.5 microseconds. Clearly, in order

to garner meaningful inform ation about the D TE overhead, we would have to use a more

intrusive m ethod of tim ing open_nam ei() to allow us to choose the instances tim ed. This

intrusion, of course, would itself affect the results. Since we have m easured the parts of

open_namei () which will individually constitute D TE overhead, we did not perform further

profiling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. PERFO RM ANCE 77

4 .2 .2 E x e c v e ()

On file execution, the D TE kernel m ust search for a rule sta ting th a t the current dom ain

m ust enter a new dom ain upon executing the new file. As th is search was feared to become

a trem endous bottleneck to D T E performance, the a u to dom ain transition inform ation is

stored on a hash table for each domain. Therefore an issue which m erits investigation is

whether the am ount of D TE overhead for file execution is constant, as should be the case

w ith a hash table, or w hether it grows as a function of the num ber of gateways out of

the current domain. We created 10 domains, containing an increasing num ber of gateways

from 0 to 100 in steps of 10. We then created a directory containing 100 differently named

versions of hello world, none of which were actually gateways. In order to prevent console

ou tpu t from skewing our results, we closed standard outpu t before executing hello world.

Under a modified kernel which reports the run-tim e for fs /ex ec .c :ex ecv e () , we entered

each of these domains, and executed a script which ran each of the 100 programs 10 times.

Note th a t th is is a very artificial test m eant to find bugs or suboptim al code. In reality, the

use of entry types, as opposed to entry points, means th a t few domains will ever need more

then two entry types.

Table 4.2 lists the m ean execution tim e and standard deviation for the execution times.

Clearly, the num ber of gateways does not affect execution tim e. Combined with the LM

Bench results showing little overall performance im pact of D TE on file execution times, this

proves the efficacy of our design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. PERFO RM ANCE 78

File Execution Times For Varying Numbers Of Gateways
23.6

23.4

23.2
<0■ocoo<D(0

23

go 22.8

.£| 22.6
I-0)
>oa>x

22.4

Lll
ccd0) 22.2

22

21.8

21.6
0 20 40 60 80 100

Number of Gateways

Figure 4.2: File execution times for varying numbers of gateways.

4 .2 .3 Signal

D TE only controls signals which are sent to processes running under a different dom ain than

the process sending the signal. Therefore, the D TE function controlling signals shortcuts

for signals which do not cross dom ain boundaries. The LMBench results m easured only this

shortened code path . We inserted profiling into the D TE signaling code in order to obtain

more satisfying measurements. For signals which are not sent to a different domain, our

tests m easured an overhead of .86± .07 microseconds. This is a little less th an the LMBench

results. However, as it does not include the tim e for a context switch while calling the DTE

signal hook, the numbers do appear to agree. For signals crossing dom ain boundaries, D TE

takes 2.40 ± .21 microseconds.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. PERFORM ANCE 79

4.3 Macro Benchmark

All of the above benchm arking and m icro-benchmarking is very useful in finding coding

errors or code paths which may benefit from optim ization. However it is far less reliable

as an indicator of the to ta l im pact of D TE (and LSM) on real com putational tasks. We

therefore finish our performance evaluation w ith the commonly accepted standard for macro

benchm arking, namely a kernel compile. Under each of a plain 2.5.6 kernel, an LSM kernel

w ith the capability m odule loaded, and an LSM kernel w ith the D TE m odule loaded, we

perform

make c le a n

make bzImage

We tim ed only the actual compilation, not the ’’make clean” . The first compilation

under every kernel took 1007 seconds. However, the test machine had sufficient memory to

keep all source code in memory after the first compile, so th a t new file creation and deletion

became much more im portant. Under the plain kernel, subsequent compilations took 995

seconds. Under the LSM kernel w ith capabilities loaded, these took 996 seconds. Using

the D TE module, they took 997 seconds. A performance impact of 0.1% certainly seems

negligible in re tu rn for a robust and flexible MAC system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Access Rights of Domains

A feature of D T E systems which is too often ignored in analysis is the ability of entry points

to restrict a dom ain’s access rights. Here we a ttem p t to gain a greater understanding of

the effects which an entry point can have on a dom ain’s real access rights. We begin with

a few simple definitions.

D e f in it io n 5 .0 .1 R W (d) represents domain d ’s immediate type accesses under some D T E

policy.

Note th a t R W (d) is im m ediately available from a D TE policy file.

D e f in it io n 5 .0 .2 T{d) represents the set of domains to which d is allowed to transition.

W hether the transition is a u to or exec is irrelevant to T(d). The purpose of the au to

transition right is to accom modate legacy applications which are not DTE-aware. It is a

useful architectural feature, bu t can be ignored here. Note tha t, if a file / i leads to an au to

transition from one dom ain d\ to another dom ain d2 , the same functionality could be coded

into another file of a different type, and executed under dom ain d\. Therefore au to

transitions do not lim it the access rights of d\, except in the rare case wherein d\ cannot

write or replace any files which it can execute. In any case T(d) is not affected.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. ACCESS RIG H TS OF DOM AINS 81

D e fin it io n 5 .0 .3 A(d) represents the full set of type accesses which a process under domain

d can exploit.

We say th a t a process can exploit a type access if it is able to execute arb itrary instruc

tions taking advantage of this type access. For instance, to exploit the type access r -> x _ t ,

a process m ust be able to read any files of type x _ t a t any time. Obviously, a process under

dom ain d\ can exploit R W {d \) . If a process under d\ is subverted, then the attacker can

execute arb itra ry code taking full advantage of any type accesses in R W (d \) . If d\ can

transition to d2, the same process may or may not be able to exploit R W (c/2). W hether or

not it can will depend upon the entry points to d2. The same is true for R W (da), where

c?3 G T (d 2). If all dom ains under some system have a shell as an entry point, then the full

set of access rights of any dom ain is:

A x io m 5.1

A{dx) = R W { d x) U {Mdi G T(di) : A(di))

As an example, consider a policy wherein d% G T (d 2), d2 G T (d i) , ta\ £ R W (d i) ,

ta\ fz R W (d 2)1 bu t ta\ G RW(d-^). In this case, a process under d\ could execute the

following call:

t r a n s i t i o n (d 2 , " /b i n / s h - c V 't r a n s i t i o n d3 / b in / s h -c W V'rm f l \ \ \ " \ " ")

This call would cause a dom ain transition to dom ain d2 on execution of a shell. The

argum ents provided to this shell would in tu rn request a transition to dom ain d,2 on execution

of another shell. T h a t shell, in tu rn , could request removal of a file whose removal requires

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. ACCESS RIG H TS OF DOM AINS 82

type access ta \. In th is way, a process running under dom ain d\ can, a t any tim e, exploit

R W (d 3).

We can prevent th is by using stricter entry points. If d% can be entered only though

a program which can only re tu rn the current tim e, and which cannot itself be subverted,

then a process running under c?i cannot force d-i to execute a shell under ds w ith arb itrary

argum ents.

In order for a process under d to fully exploit R W (d n) where dn is a dom ain to which

d can transition, one of the following m ust be true:

• d can overwrite the entry point to dn

• d can exploit a security vulnerability of an entry point to dn

• The entry point to dn allows a rb itrary instructions to be executed. For instance, it is

a shell.

We now begin to address the problem a t hand:

D e f in it io n 5 .0 .4 Ai,{d) represents A(d) as limited by the entry point of d.

In order to safely take into account the effect of entry points on a dom ain’s access rights,

we m ust ensure two things:

1. All entry points m ust not be w ritable or movable by anyone. If anyone is able to

overwrite or replace an entry point, then we can no longer count on this entry po in t’s

restrictions to lim it a dom ain’s access.

This can be verified autom atically by a generic policy analysis tool, as it is simply a

feature of the D TE policy itself.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 5. ACCESS RIG H TS OF DOMAINS 83

2. The code for all entry points m ust be verified to perform correctly. It takes only a

single buffer overflow against an entry point to render all its protection useless.

This must be performed on a case by case basis. Henceforth, when we state an entry

po in t’s functionality, we assume th a t this verification has been correctly performed.

Clearly it pays to have a small num ber (preferably one) of entry points, and to make

th is (these) as simple as possible, so as to ease its verification.

We need a way of expressing the effect of an entry point on a dom ain’s rights. However,

an entry point will take into account some inform ation which we can only glean from the

actual process, such as a password offered by a user.

In the following, P represents a user process. We trea t it as an object, dereferenced using

. For instance, P.d returns the dom ain label for process P , while P.pwd is interpreted

as a password provided by the process and, presumably, by a user to the process. In the

interest of brevity, we allow A (P) to be used as shorthand for A(P.d), T (P) for T(P .d), and

R W { P) for R W (P .d). W hereas T (d) returns a list of domains to which d may transition,

T (P) returns a list Cj = (G’i , . . . , Cn) of processes, one for each dom ain to which P.d may

transition.

D e f in it io n 5 .0 .5 d.C is a function representing the entry point to d. I t behaves as follows:

• d .C (R W (P)) returns a subset of R W (P) , containing all elements of R W {d) which the

entry point to d, given the information stored under P , does not expressly forbid.

• d .C (T (P)) returns a subset o f T (P) , containing all elements o f T (P) which the entry

point to d, given the information stored under P , does not expressly forbid.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 5. ACCESS RIG H TS OF DOMAINS 84

Finally, before we give a form ula representing the access rights of a dom ain as lim ited

by its en try points, we wish to rephrase a caution mentioned above more formally.

A x io m 5.2 I f a domain d has more than one entry point, or the entry point may be over

written or replaced by any other domain, then

A L (d) = A (d) .

That is, the entry points may not be assumed to limit the access of d. This also means

that

d .C (R W {d)) = R W (d) (5.1)

d.C(T(d)) = T{d) (5.2)

L e m m a 5.1

A l {P) = P .d .C (R W (P)) U (J A d C j) .
VCj<=P.d.C{T(P))

P ro o f : We use D* to represent the set of domains consisting of D and all its descendants.

This equation simply expands Axiom 5.1 to account for lim its imposed by entry points.

We therefore show its correctness by showing th a t the only two cases in which A A d) differs

from A(d), are correct.

F irst, according to Axiom 5.2, if there exists more than one entry point to P.d , or the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. A C C E SS R IG H T S OF D O M A IN S

entry point is unverified, then we substitu te

85

P .d X (R W (P .d)) = RW (P .d) (5.3)

P .d X (T (P .d)) = T(P.d) (5.4)

into the above equation, which then collapses back to th a t of Axiom 5.1.

Now let us assume th a t for some dom ain Q G D*, there is only one, verified, entry point,

and it restricts P .d ’s access such th a t rw x -> ro o t_ t ^ R W (Q). There are two possibilities.

If no o ther dom ain in D* may receive rw x -> ro o t_ t access, then clearly P cannot ever

receive th is access right.

Alternatively, some dom ain R .d G D* does have rw x -> ro o t_ t access. Then this access

will be contained in R . d X (R W (R .d)), so th a t A l {P), into which R .d X (R W (R .d)) is union-

ed, will also contain rw x -> ro o t_ t.

The argum ent for the validity of £ (T (P .d)) takes the exact same form as th a t for

It seems likely th a t, in most cases, the entry point will simply act as a barrier. Cer

tainly th is would be the safest behavior, least likely to be subject to program m ing errors.

Equations 5.5 and 5.6 are an example of C acting as a barrier.

C (R W (P .d)) . I

0 if P.pwd / “god:
R W (P) otherwise£ (R W (P)) (5.5)

C (T (P)) = |
0 if P.pwd ± “god'
T (P) otherwise

(5.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 5. ACCESS RIG H TS OF DOM AINS 86

We see th a t careful analysis of entry points can provide more precise values of R W (d)

and T(d). We will take advantage of th is feature in Section 6.2 in order to decrease the

num ber of false positives when searching for dangerous transitions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Policy A dm inistration Tools

The configuration language read by the LSM D TE m odule is defined in Section 3.5. It is

modeled after T IS ’ DTEL D TE policy language [2], which is very intuitive, well organized,

and concise, such th a t one can reasonably understand a policy by reading its definition.

However, the policy m ust specify a large num ber of relations between various domains, and

between domains and types. Therefore, no m atter how well the policy definition language is

thought out, there will be certain problems w ith dealing w ith the policy files directly which

cannot be surpassed.

• R epetitive typing

For any policy which segments the file system into a reasonably large num ber of types,

access will likely need to be specified from most domains to most types. This involves

retyping each typenam e up to |D | times, along w ith as many somewhat cryptic yet

repetitive access types, such as rx ld . Furtherm ore, each typenam e is listed once in

the type enum eration line, and m ust be bound to real objects a t least once among the

type assignm ent lines. Clearly, the probability of making a typographical error is not

insignificant. In the best case, such an error will result in an unbootable system. In

the worst case, it will result in a system which runs fine, b u t under an erroneous and

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y AD M IN ISTRATIO N TOOLS 88

dangerous security policy.

• Dense text

The policy language is very concise. This allows a quick scan of a portion of the

policy file to give a good feel, for example, for the structure of a domain. However,

providing a large am ount of inform ation in a small am ount of space can serve to mask

a syntactic or semantic error. For instance, a missing \ to continue to the next line

might be easily missed, or a missing or extraneous d among the r x l type access can

be hard to spot. An alternative would be to make the policy language very verbose.

For instance, a dom ain definition could be

domain lo g in _ d b e g in

e n tr y ty p e s b e g in

lo g in _ e t

e n try ty p e s end

ty p e a c c e s s b e g in

r e a d ,w r i t e , exec to lo g in _ e t

ty p e a c c e s s end

domain lo g in _ d end

However this could serve ju st as well to mask errors. Most domains definitions would

likely be split among several pages, preventing related keywords from being seen to

gether. This makes it harder to m atch b e g in and end statem ents. Perhaps more

im portantly, the expansion of dom ain definitions would make it much harder to un

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y AD M IN ISTRATIO N TOOLS 89

derstand a domain. This is bo th because the num ber of keywords begin to overwhelm

the num ber of m eaningful identifiers, (access types, typenam es, and dom ain names),

and because the process of looking through several pages to find inform ation to define

a single dom ain interferes w ith w hat is known as interface zen [8]. In other words,

by forcing a policy adm inistra tor to look through several pages, the tra in of thought

which was working toward understanding the policy is being interrupted.

• Visual presentation

Clearly a tex t file can provide exactly one visual presentation. By setting up macros in

a text editor, it is possible, for example, to autom atically follow a dom ain transition

definition to the definition of the destination domain. However, several more ideal

presentations come quickly to mind.

The D TE policy defines new classes of subjects and objects, namely types and do

mains, and defines relations between these, as well as between these and existing

subjects and objects. For instance, between domains are connections indicating al

lowed a u to and exec dom ain transitions, as well as connections indicating perm itted

intra-dom ain signals. There exist also connections from dom ains to types indicating

which types may be executed to enter a domain, and more dom ain to type connections

indicating which types a dom ain may read, modify or execute. One m ust consider a

com bination of these connections in order to analyze how domains may affect each

other.

U nderstanding a policy requires understanding all of these connections. Different

views of a policy, therefore, may show different sets of connections, from different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 6. P O LIC Y A D M IN ISTRATIO N TOOLS 90

viewpoints.

An intuitive way to th ink about a policy is as a directed, labeled graph. The nodes

represent domains, types, and files. Edges may represent four types of entities. Edges

from domains to other dom ains are labeled “auto ,” “exec,” or w ith a set of signal

num bers, and represent either a perm itted dom ain transition or signal rights. The

dom ain transition edge labels m ight optionally refer to the entry types which may be

used to effect the transition. Edges from domains to types may be labeled “e” for

en try type, as well as any subset of “rwxlcda” to describe dom ain to type access as

described in Section 3.5. Edges from types to files represent “-e,” “-u,” or “-r” type

assignm ent rules. Finally, Edges may exist between files, representing the file system

layout. An edge from file f i l e l to f i l e 2 tells us th a t f i l e 2 is a child of f i l e l . The

last type of edge is only partially a result of the policy — as a result of the “pretend”

m ount rules described in Section 3.2.2 — bu t is certainly a p a rt of a complete policy

representation.

We define F as the set of files, T as the set of types, and V as the set of domains. The

graph Q = (V, E), where V = (D U T U F) , and E contains the edges we described.

Formally:

E = (Vdi,G?2 G L),l G (auto,exec, (0 . . . 31)*)) : (di,d,2 ,l)

U(Vd € T>, t £ T, z € {r, w, x, 1, c, d, a, e}) : (d , f, z*)

u (V / 1, / 2 e f ’) : (/ 1, / 2) _

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y AD M IN ISTRATIO N TOOLS 91

Displaying a D TE policy in this form at would be far more useful to policy analysis

th an the policy file itself. However, the full graph would be overwhelming. The

policy adm inistrator m ust be allowed to look at subsets of this graph which emphasize

particu lar connections or sets of connections. One of the tools which we will present

does ju st this, presenting subsets of th is graph which we have ourselves found useful

in policy analysis.

• E rror patterns

As discussed above, a D TE policy defines many connections between subjects and

objects. In some cases, connections of two or more types should not exist sim ultane

ously. However, these connections may be defined in different sections of the policy,

m aking them hard to spot. Or, the sheer num ber of these connections may make it

im practical to spot an inappropriate pair by eye. Consider th a t, if we have ten connec

tions of some type, bu t one pair of connections is not appropriate, we m ust consider

E®=1* = 45 pairs. In Section 7.4, we will present a very m inimalistic policy, providing

only enough detail to support an intelligent login daemon. Even in this policy, shown

in A ppendix A .1.1, the num ber of dom ain to type access rules is 86, each of which

specifies between one and seven type accesses taken from the set {r, w, x, 1, c, d, a} as

described in Section 3.5.

In building D TE policies, we have found several error patterns resulting from such

interactions of connections. W hile they are hard to spot by eye, they are simple to

find autom atically.

1. Conquering

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y AD M IN ISTRATIO N TOOLS 92

We say th a t a dom ain D \ can conquer another domain D 2 provided th a t

(a) D \ m ay transition to D 2

(b) e is an entry point to D 2

(c) D \ m ay write or replace e

Clearly, in th is case, we can say of the privileges of D \

T (D i) = T (D 1) U T (D 2)

R W { D i) = R W { D i) 0 R W { D 2)

since any actions which £>2 is allowed to perform, D \ could also perform, by

w riting the instructions into e, and requesting a dom ain transition to D 2 upon

execution of e.

2. Trojan

E ntry points are a dom ain’s only means of protection from untrusted code. For

some domains, protection from un trusted code is moot, since they are m eant

to run shells and user-compiled or user-w ritten code. The u se r_ d dom ain pre

sented in Section 7.4 is an example. However, many domains will be designed

to tem porarily expand a user or daem on’s access rights while performing a spe

cific, restricted task. In such cases, the dom ain’s entry points m ust be designed

such th a t the dom ain’s privileges cannot be used for any unintended purposes.

An attack wherein a system is tricked into executing untrusted code is called a

T rojan horse attack.

For domains whose entry points are untrusted, we may wish to check for any

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y AD M IN ISTRATIO N TOO LS 93

pathnam es to which the dom ain has execute access, and which the dom ain my

itself replace. Since replacing the pathnam e can mean overwriting the file itself,

or w riting to any of its parent directories, th is is clearly a check best perform ed

autom atically.

3. Insufficient entry type access

A dom ain which cannot be entered is a useless domain. A dom ain cannot be

entered if it cannot execute its own entry points, or if it cannot descend the file

system tree down to the entry points. This will cause denial of service to either

user dom ains or system services. Furtherm ore, we have pointed out the danger

of vulnerability to Trojan attacks. The usefulness of Lemma 5.1 depends entirely

upon carefully considered entry types, which m ust not be vulnerable to attack.

Any dom ain w ith insufficient entry type access likely has not been sufficiently

analyzed. For these reasons, autom ated checks for sufficient entry type access

for all dom ains is desirable.

Our policy analysis tool will detect the presence of these conditions. In the following

sections we present D T Eedit and DTEview, which, together address each of the above

concerns. A th ird tool, D TEbuild, will be presented in the next chapter.

6.1 DTEedit

DTEedit is a G tk-enhanced graphical user interface for creating and editing D TE policies. It

is mainly intended to address the excessive typing and dense tex t problems associated w ith

editing policies in tex t form at. Typing is dram atically reduced by asking the user to enter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y AD M IN ISTRATIO N TOOLS 94

type and dom ain names exactly once, to inform DTEedit of their existence. Thereafter,

specification of access to or from any dom ain or type is by list selection, as is selection

of type of access (rw x lcda for type access, and a u to or exec for dom ain access). W hen

entering type assignment rules, pathnam es can be selected by browsing the file system using

a file selection dialog, or by typing the pathnam e. Figure 6.1 dem onstrates specification of

exec dom ain transition access from lo g in _ d to ro o t_ d .

From domain: login_d

To domain:

daemon d
boot_d
root_d
u s e r d
l og i nd

0 auto

O exec

Commit
Cancel

F igure 6.1: Adding new domain specification rule in DTEedit.

The problem of dense tex t is solved simply by presenting only a small piece of a policy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y A D M IN ISTRATIO N TOOLS 95

a t once. In Figure 6.2, for instance, we see only the domain transitions perm itted out of

dom ain log in_d . Furtherm ore, syntactical symbols are not necessary, so the -> separating

access specification from dom ain name, and parentheses, are not necessary, as they are

replaced by the structu re of the dom ain specification table.

Intro | File savWloid | type* | domains [domain s p e c | typa assigns | type tree [Assign Ext Attr |

Entry Points | Typo A ccess | Domain A ccess [Signal A ccess
daemon d Transition) Domainboot d

exec root_d
exec user d

root d
user d

□EL

Figure 6.2: Viewing a domain specification in DTEedit.

For the most part, DTEedit is not helpful in presenting the policy in new formats. A

dom ain specification is still entered and viewed as a set of entry types, a set of dom ain

transitions, a set of type accesses, and a set of signal accesses. One exception is for viewing

type assignments. A long list of type assignm ent rules is simply not useful in understanding

the resulting type assignment tree. Therefore, DTEedit provides a file m anager which walks

the host m achine’s file system, and displays the results of applying the currently entered

type assignm ent rules to the file system.

DTEedit is m eant to provide a safer alternative to m anually typing policies. Many

people far prefer typing to excessive use of the mouse. Nevertheless, the use of DTEedit is

strongly encouraged for the sake of reduced typographical, syntactic, and semantic errors,

as well as a b e tte r understanding of the policy during construction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y A D M IN ISTRATIO N TOOLS 96

6.2 DTEview

D T Eedit addresses our first two concerns w ith usage of text-file policies for editing and

analyzing policies. The la tter two concerns are addressed by DTEview. DTEview is a

P e rl/T K tool which begins by detecting any error patterns discussed on page 91, and

w arning the adm inistrator if they are present. Two of the error patterns, namely insufficient

entry point access and conquering, are always warned against. The th ird , the ability by a

dom ain to overwrite and execute a type, is acceptable in very many cases, so th a t warning

of all instances would provide enough false positives th a t a policy adm inistrator would likely

ignore all such warnings. Therefore, the adm inistrator may tell DTEview of any domains

about which he is concerned. This is done by adding them to an array called @paranoid_wx

in the file r e s t r i c t i o n s . p l . Any dom ains listed in this array will be checked to ensure

th a t there is no type which they can b o th overwrite and execute. Figure 6.3 shows such a

DTEview warning.

Pci/anoid v/tite/e^ec

Jftpd_dcan w rite /rep lace &ND execute type ftpd_xt.
Dismiss J

Figure 6.3: An error pattern popup warning in DTEview.

DTEview goes on to provide three ways of viewing the policy. The first presents a tool

acting like a file-manager, bu t showing the D TE type information for files and directories. In

addition, th is tool displays the pathnam e which D TE would actually use for typenam e res

olution. Recall th a t due to m ounting activity and m ount restrictions, th is may be different

from the given pathnam e. Figure 6.4 shows the file-manager view in DTEview.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y A D M IN ISTRATIO N TOOLS 97

P a th : /h o m e /f tp

R e a l P a th : /h o m e /f tp

e t: f lp d _

n c o m in g

n c o m in g et: f tp d _

ut: flpd .

atr

|/h o ro e /ftp " "

Enter Path:
Path:

Figure 6.4: The file-manager tool in DTEview.

The second view presented by DTEview is a dom ain transition analysis. I t begins w ith

the first process (/ s b i n / i n i t) running under the default domain. It also displays all domain

transitions perm itted from this dom ain, and all entry types through which the transitions

may occur. The resulting type/dom ain pairs are shown as children of the first process

in a tree. Prom here, a t any level, one dom ain may be chosen to be expanded, showing

either the perm itted dom ain transitions, or the perm itted type accesses. Clearly, we are

presenting a restricted view of the full policy graph Q. Another way this could be presented

would be to keep the graph structure. In fact, another tool which was created presented

a 3-D fly-through universe view of a policy. However, while perhaps more amusing than

the dom ain transition tree view of DTEview, it was no more informative, and quite a bit

more confusing. Again, we wish to present simplified, clearer views of the policy. The 3-D

universe policy view would be much more useful as an initial policy view. After gaining an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y AD M IN ISTRATIO N TOOLS 98

initial understanding of the policy in th is way, the user could select a focused view, like the

dom ain transition tree, to concentrate on a particu lar feature or problem.

Since the num ber of type accesses is typically very large, when type accesses are dis

played, DTEview offers a b it of help. F irst, type accesses are sorted by typenam e. Second,

any write or create accesses are flagged in red. This highlights the more dangerous accesses

which an adm inistra tor is likely interested in. T hird , middle-clicking on a type will bring

up a list of all paths to which this type is assigned. Finally, DTEview is able to present a

filtered view of the type accesses. For instance, the adm inistrator may request only those

type access containing rwa, th a t is, read, write, and append, access. Figure 6.5 shows the

domain analysis view, w ith type accesses out of daemon_d filtered to show only types to

which daemon_d has full (rw xlcd) access.

d a e m o n _ d

rxld

: Back to init

c i e y jbin„t c o n f_ tb a s e _ t

/s b in / in i t

b o o t_ d

Figure 6.5: Domain transition analysis in DTEview

The th ird view is based upon reachability queries. There are two types of queries. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. P O LIC Y AD M IN ISTRATIO N TOOLS 99

first searches through Gi-

Qi = (V ,E {)

E \ = (Vc?i,d2 G V , I E (auto, exec)) : (d i ,d 2,l)

For the query Q (di E V , d 2 E T>,n E I) , DTEview returns all paths from d\ to d,2

containing fewer th an n edges. This corresponds to all the ways in which a process under

dom ain d\ can make a t m ost n dom ain transitions to end up in dom ain d2. The second

type of query searches the larger graph G‘i-

G2 = (V U T) , E 2)

E 2 — (yd E V , t E T, at E {r, w, x, 1, c, d, a}) : (d, f , a\)

A query Q(d E T>,t E T , n E I , at E {r, w, x, 1, c, d, a}) returns paths originating at d and

term inating at any dom ain d2 representing a dom ain which has type access at to type t.

DTEview finds all paths satisfying a query and displays the sequence of dom ain transi

tions for the first pa th . An example is shown in Figure 6.6. The user can step through all

the paths, and may, a t any point, click on the displayed pa th to bring it up in the dom ain

transition analysis view for further analysis. W hile working back in the dom ain transition

analysis view, the user may right-click on a dom ain to select it as the source domain, or on

a type to select it as the target type, in the reachability query. In this way we a ttem pt to

offer simplified views of the policies, while still allowing quick switching from one view to a

place of interest in the other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 6. P O LIC Y AD M IN ISTRATIO N TOOLS 100

Trace: to access
/b in / lo g in sh e l l_ t

From Process: ro o t_ d

To Access

[rc w x d

Type:
[r o o t j

n

Pick NextPrev

Figure 6.6: A reachability query in DTEview.

Normal queries take into account only the D TE policy file. Queries therefore calculate

access rights of domains according to Axiom 5.1. Lemma 5.1 lim its the access rights of

domains based upon the properties of entry points to other domains. DTEview assertions

provide the same power to queries.

An entry point is a file whose execution may be used to trigger a dom ain transition.

W hile the D TE policy specifies w hether a dom ain transition from d\ to d,2 is perm itted , the

entry point(s) to d2 may consider additional system param eters. Based upon these, it may

choose to refuse entry, allow restricted entry, or allow full access. 1 A DTEview assertion

is intended to describe an entry po in t’s behavior. The assertion takes the form:

{ d : in d :o u td " , <ACTI0N>}

xNote that it may only restrict access using U N IX features. The set of D T E access rights for d-2 is not
malleable, but the entry point to d2 can sim ply refuse to execute system calls leading to violation of some
set of rights.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y AD M IN ISTRATIO N TOO LS 101

where in d is the source domain, o u td is the destination domain, and d indicates th a t this

assertion perta ins to dom ain transitions. “<ACTI0N>” may be one of the following:

<ACTI0N> : := IGNORE

<ACTI0N> ::= IGN0RE_SAY <STRING>

<ACTI0N> ::= SAY <STRING>

<ACTI0N> ::= REJECT

Some transitions likely should be entirely forbidden. For example, since we do not tru st

the binary / u s r / s b i n / i n . f t p d , we do not wish it to enter the roo t_d dom ain under any

circumstances. The R E JE C T action is intended for such a situation. R E JE C T strings are

checked and warned against when DTEview s ta rts up. These will become far more useful

in the next few chapters, when we begin to build policies from components which are joined

using generic access rules.

On the other hand, if we search for dangerous transitions, we may not wish to be

d istracted by transitions which we know to be safe. For instance, the binary / s b i n / l o g i n

may be a modified version of / b in / lo g in , whose code has been verified not to allow root

logins unless the login occurs on console, in a locked room under heavy guard. In this case,

we may wish for transitions from / s b i n / l o g i n into the roo t_d dom ain to be ignored.

Clearly, an ignore action { d : in d :o u td : IGNORE} should be used only when it is known

th a t o u td ^ in d X (T (in d)) . An action which we believe more useful is IGNORE_SAY.

W hen this action is tied to a transition from dom ain in d to dom ain ou td , any paths

containing this transition are still shown. However, STRING will be printed above the

arrow representing the transition. STRING is m eant to be a brief description of in d .E .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y AD M IN ISTRATIO N TOOLS 102

For instance, if C has been verified to allow logins only from a physically secure local console,

then STRING m ight be

V e r if ie d denied u n le s s on lo c a l con so le

The policy adm inistra tor may choose whether the rem aining th rea t is relevant to his

current query. If not, he may ignore it. Else, he may study it. W hile an SAY action labels

the associated transition w ith the specified string, an IGNORE_SAY action also changes

the color of the edge to indicate th a t th is transition m ay most likely be ignored, subject to

the condition specified in the string.

Before adm inistrators use th is mechanism to analyze security policies, it m ust be shown

th a t proper use of these assertion labels will not cause a query to re tu rn incomplete results.

We begin w ith a ra ther obvious axiom:

Axiom 6.1 Let Q be a dom ain transition graph representing som e policy. Let d\ and efo be

any two d istinct dom ains in the policy, such that d\ m ay not transition to d.2 ■ That is, no

edge from d \ to d,2 exists in Q. Let X be the set of assertions relating to Q, and let £ G X

be an assertion relating to a transition from d \ to c?2 - Then any query made under X will

produce the sam e results as the sam e query made under X — £.

In other words, an assertion on a dom ain transition which the policy does not allow,

will not affect the outcome of any queries.

In the following theorem , we continue to define the graph of all dom ain transitions as Q.

The graph containing the dom ain transitions as allowed by Uvdex> ^ a t ^ ie graph

containing all dom ain transitions which are allowed by the entry points, is Q'. X is the set

of assertion labels read by DTEview, and £ is an individual assertion label in X .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. PO LIC Y A D M IN ISTRATIO N TOOLS 103

Theorem 6.1 A query fo r transition paths from domain d \ to dom ain e?2 containing few er

than n domain transitions, with assertion labels in X correctly reflecting C fo r all entry

points, w ill return all possible paths from d \ to cfe in Q'.

Proof:

We will prove this by induction over the num ber m of assertion labels. O ur base case:

We take it for granted th a t, in the absence of any assertions, DTEview will correctly

re tu rn all paths from d\ to containing fewer th an n transitions. This is a m atter of

correctly coding a simple graph algorithm .

Inductive Step: Assume th a t for a query under m — 1 assertions, DTEview returns all

paths in Q' . Then for a query under m assertions, DTEview returns all paths from d\ to da

in Q'.

As defined above, an assertion can be of the following types:

1. R E JE C T:

A rejection is only checked at the s ta rt of DTEview. It does not affect the search for

paths to satisfy a query.

2. SAY:

This type of assertion only returns ex tra information, displayed above certain dom ain

transitions. It cannot prevent a p a th from being returned in response to a query.

3. IGNORE:

If an ignore for a transition from dom ain da to <4 is correctly applied, th is means the

following:

(a) da has only one entry point

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y AD M IN ISTRATIO N TOOLS 104

(b) The entry point to da cannot be overw ritten by any domain.

(c) The code of the entry point to da m ust be verified such th a t, while the transition

from da to <4 may in fact be perm itted by the policy,

<4 g da.C (T(da)). (6.1)

Another way of saying this, is th a t the edge from da to <4 is not in Q', although

it may exist in Q.

Since Q' does not contain an edge from da to <4, then, by Axiom 6.1, any query made

under X — £ will re tu rn the same results as the same query made under X . Since

\X — £ | = m — 1, we know, by induction, th a t DTEview will re tu rn this set of paths

correctly.

4. IGNORE_SAY:

This case could be treated two ways. F irst, since paths including a transition tied

to an IGNORE_SAY assertion are not excluded from query results, as paths which

include a transition tied to an IGNO RE assertion are, we could trea t IGNORE_SAY

as a SAY assertion, which is trivially shown to be safe. However, we would like to

show th a t the adm inistrator can take the IGNORE_SAY action at its word, in effect

becoming a part of D TEview’s behavior, and tru st the results.

The proof of safety for IGNORE-SAY is much like th a t for IGNORE. The difference

is tha t, a t Equation 6.1, we m ust take the process and system sta te into account.

Equation 6.1 becomes:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 6. P O LIC Y AD M IN ISTRATIO N TOOLS 105

db i P.d.C{T(P.d)). (6.2)

T here are now two cases. If the sta te of P is such th a t P.d.C allows the transition,

then correct application of the assertion label means th a t the adm inistrator does not

ignore the transition. The assertion is therefore trivially safe. If the sta te of P is such

th a t P.d.C does not allow the transition , then Equation 6.2 collapses to Equation 6.1.

In th is case, we can revert to the proof of safety for IGNORE labels.

To make th is more concrete, a quick example. In the case of an assertion

{d:da:db:IGN0RE_SAY " V er ified den ied u n le ss on lo c a l con so le" }

the adm inistrator m ust decide w hether logins on local console fall into the th rea t

which he is currently assessing. If so, then he will study paths including transitions

from da to db. If not, then he ignores these paths.

I

In Lemma 5.1, we see th a t the o ther function of C is to lim it R W (d) . Therefore, we

would of course like to use the following type of label as well:

{ t : in d :a c c e s s ,o u t t" , <ACTI0N>}

However, this is dangerous. Recall Axiom 5.1, which states:

A l (P) = P .d .C (R W (P)) U |J A L{Cj).
vCjeP.d .c {T(P))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 6. P O LIC Y AD M IN ISTRATIO N TOOLS 106

For instance, assume th a t we created the label { t : i n d : r w - > t l : IGNORE}. Now, even though

the label is presum ably correct, such th a t in d is in fact denied rw -> tl , th is only lim its

P .d .C {R W (P)). In order to obtain the full A l (P), we must union this w ith access rights

for all dom ains which may be reached through P.d. The IGNORE, IGNORE_SAY, and

SAY labels are therefore not safe for type access assertions. However, we do support the

R E JE C T action. This is, again, a simple and useful way of ensuring some basic properties

about a complex policy which could be the result of autom ated composition of several pieces.

This chapter presented tools designed to solve some of the obvious problems encountered

while editing and viewing policies. These tools have not gone beyond the trad itional con

cepts of D TE. The next two chapters present m ethods for analyzing and creating policies,

culm inating in a novel m ethod for policy composition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Analysis o f DTE Policies

In chapter 6, we presented DTEview as a tool designed to aid the analysis of D TE policies.

We now present some further m ethods for analyzing policies.

In a paper [23] about the safe run-tim e extension of D TE policies, TIS presented the idea

of analyzing D TE policies using simpler, well-understood access control policies. Since the

policies expressible by D T E policies are a superset of those expressible by many trad itional

access control policies, it is possible to search for properties of those trad itional policies

which are exhibited in a particu lar D TE policy. TIS used this concept by asserting th a t

any such properties exhibited in the D TE policy m ust not be violated by modifications to

the policy. We feel th is concept is also useful for the analysis of a static D TE policy.

We will begin in the next section by showing how searching for properties of the Bell-La

Padula access control policy in a D TE policy can yield useful information. Section 7.2 will

discuss the lim itations of th is first a ttem pt, and section 7.3 proposes a far more powerful,

yet still very simple, extension of the Bell-La Padu la policy. Here we prove th a t this

modified BLP policy is capable of expressing the Clark-W ilson and pipeline policies. Finally,

section 7.4 applies th is idea to several D TE policies.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. A N A LYSIS OF D TE POLICIES 108

7.1 Using the BLP ^-Property

T he Bell La Padula access control system, discussed in section 2.2.1, m aintains two access

rules. The simple security rule relates the security level of objects to those of subjects.

We only use BLP to relate objects, and therefore ignore this rule. The second rule is to

m aintain the ^-property, which dictates th a t if a subject may observe object O i, and also

may modify object O2 , then the security level of 0 \ is less th an or equal to th a t of O2 . If

th is is not the case, then the subject is able to leak inform ation from a higher security level

to a lower security level. A second subject, perm itted to observe O2 bu t not 0 1 , can then

access inform ation in Ox w ith the aid of the first subject.

We will use the ^-property to introduce a partial relation on types in a D TE policy.

Figure 7.1 shows the algorithm used to calculate the BLP less th an relation from a policy

file.

l e q l i s t = {>;
fo r each domain D do

fo r each type T1 which D can read do
fo r each type T2 which D can w r ite do

add "T1:T2" to l e q l i s t
done

done
done
fo r each s tr in g in l e q l i s t do

p r in t s tr in g
done

F igure 7.1: Algorithm to calculate BLP < relation

We define observe access as r, or a simple file read. T ha t is, we do not consider directory

read or directory descend to be observe accesses for this analysis. However, we define modify

access as file write (w), file append (a), and directory create (c). In addition, modify access

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 7. A N A LYSIS OF D TE POLICIES 109

to any parent directory of a file f constitutes modify access to f itself, since f can be

replaced w ith an entirely new copy.

We would like to consider w hat information may be gleaned from the BLP relation

applied to the types of a D TE policy. The three strongest results which we may find for a

type in the context of a given policy are th a t it is unrelated to all other types, th a t it is

strictly less th an all other types to which it is related, or th a t it is strictly greater th an all

o ther types to which it is related. Each of these cases can be shown to convey im portant

inform ation regarding the security or integrity properties of the type.

1. Type T\ is unrelated to all other types.

In th is case there exists no dom ain perm itted to access bo th T\ and any other type.

Therefore no one is able to corrupt the d a ta in T\ using d a ta from any other type, 1

and no one may leak the d a ta from T\ to any other type.

T he integrity claim may not prevent subjects from erasing d a ta from Ti, or replacing

the d a ta w ith all l ’s. However, T rojan horse attacks, as a particu lar example, are

nearly impossible, as the T rojan horse cannot be read from any other types. The

attack is possible only if the T rojan horse is hard-coded into the sub ject’s source code.

Verification of entry points, and assurance th a t entry points cannot be replaced, will

prevent th is final Trojan horse attack.

2. Type T\ is strictly less than all other types to which it is related.

There exist domains which may read type T i, as well as modify other types T t. There-

’Note that, in Unix, all devices are files, and hence even random data (from /dev/random) must come
from files of som e type.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 7. AN A LYSIS OF D TE POLICIES 110

fore d a ta from T\ can be leaked to T,t. However, there exists no dom ain which may

w rite T\ and also read another type. Therefore, da ta may not be moved from any

o ther types to T\. We consider T\ to be of high integrity.

3. Type T\ is strictly greater than all other types to which it is related.

There exist no domains which may read T\ and write other types. Inform ation from

Ti cannot be leaked to any o ther types. This is a strong secrecy claim. However,

there exist domains which m ay modify T\ while reading o ther types. The integrity of

T\ is therefore shown to be suspect.

By imposing a BLP relation onto a D TE policy, and searching the relation for the above

three conditions, we hope to provide some autom ated analysis of D TE policies.

7.2 Limitations of BLP

The BLP policy is a simple one. This is useful in th a t it allows us to introduce a simple

relation on types. However, a consequence of its simplicity is a lack of expressiveness. BLP

works well if we can keep security domains completely segregated. By this we m ean th a t

no domains are provided access to the same types. Consider a top secret type T$, to which

only one dom ain D$ has read access, and no domains have w rite access. This dom ain may

need to warn other domains of certain conditions, for instance corrupted d a ta under T s ■

This requires write access to some type T w , to which other domains have read access. By

BLP,

Ts < Tw-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 7. AN ALYSIS OF D TE POLICIES 111

If there exist any dom ain which has read access to T\y, then, by transitivity, T s < Ti

for all types Tt to which these other dom ains have write access. Consequently, inform ation

can be leaked from T s to each such T,. In order to prevent this, we m ust prevent all other

domains from having write access to any Tj : T s < Tj. In other words, we are segmenting

D s such th a t all types to which it can w rite are unreadable by all other domains. A graph

of the BLP relation for the types of a D TE policy which segments a dom ain D s in such

a way, is shown in figure 7.2. In th is particu lar case, the types TS, TX and TY may not be

accessed by any domains other th an D s , which itself may not access any types other than

these three. 2 The dotted arrow from u s e r _ t to TS indicates th a t D s may have modify

access to TS and observe access to u s e r_ t . In th a t case, the integrity of the s e c re t_ g ro u p

group is affected, bu t not its secrecy.

secret group

TX TY

user tproc_t

base t

Figure 7.2: BLP for policy excerpt with disjoint type group.

Let us assume there is a type, Ts, whose secrecy properties we would like to analyze. It

is possible to create a dom ain which may read Ts, bu t may not w rite any of the common

2This is not strictly necessary. In fact, other domains are restricted only in that if they have observe
access to TS, T X or TY, they may not have m odify access to other types, and vice versa.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. A N A LYSIS OF D TE POLICIES 112

types, such as files under /p ro c and /dev . However, such access may be required. As

Lemma 5.1 shows, the dom ain’s access rights may also be lim ited by a single effective,

verified entry point. In this case, we can label th is dom ain a tru sted domain. This means

th a t the dom ain exists outside the BLP policy. Due to B L P’s lack of expressiveness, th is is

the only way to express th is concept. However, by completely exempting the dom ain from

the BLP policy, the dom ain becomes far too powerful.

Consider the assured pipeline (see Section 2.2.5) shown in Figure 7.3. If sy s lo g _ d is

allowed to w rite d e v _ t, then, since it may read in _ lo g _ t , in _ lo g _ t < d e v _ t, instantly

lowering it to the same security level as m ost types on the system.

If we define sy s lo g _ d as a tru sted dom ain, in _ lo g _ t becomes strictly greater th an all

other types, since all other domains may write to it, while reading common types. However,

we now lose much useful inform ation regarding sy slog_d . For instance, we may have

another assured pipeline, whose inform ation is transform ed by another domain. By defining

bo th domains as trusted , we can no longer identify cross-talk between these pipelines.

Furtherm ore, we cannot express the concept th a t sy s lo g _ d should not be able to write its

entry points. The complete resistance of entry points of sy s lo g _ d to subversion will surely

be a condition of any tru s t we place in sy slog_d .

7.3 M odified BLP

We have shown the need to increase the expressiveness of the BLP relation, as well as the

insufficiency of tru sted users as a means of addressing this deficiency. We now present a

more powerful way of expressing concepts such as assured pipelines in BLP. O ur modified

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. A N A LYSIS OF D TE POLICIES 113

BLP, or MBLP, will be m ade more expressive th an BLP through the addition of two simple

concepts: secrecy w ith exception, and integrity w ith exception. These concepts will be

implemented in analysis by a set of two types of statem ents, which are to be read alongside

a D TE policy. The two statem ent types are:

s e c r e t < ty p e l> e x c ep t from <dom ain_l_l> [,<dom ain_l_n>]

and

p r o te c t <type2> e x c e p t from <domain_2_l> [, <domain_2_n>]

These provide four hints for analysis. The first is our explicitly intended purpose.

Namely, when building our list of types which dom ain dom ain_ l_ l may read, we do not

add ty p e l to the list. This means th a t, if dom ain_ l_ l has write access to some type

type_lw , then we will ignore the BLP ^-property, and we will not use this fact to define

ty p e l < type_ lw . O f course, it does not prevent us coming to th is same conclusion through

some other dom ain’s type accesses.

Second, they indicate th a t a separate check should be made to ensure their correctness.

The D TE policy should deny all dom ains (except dom ain_ l_ l through dom ain_l_n) read

access to ty p e l . Likewise, all domains (except dom ain_2_l through domain_2_n should be

denied modify access to type2 . If this is not the case, a warning flag should be raised.

T hird, as a consequence of the previous two hints, while building the read list for any

dom ain, we can ignore ty p e l altogether. If we find th a t a dom ain has observe access to

ty p e l , then there are only two possibilities. E ither the domain is listed as an exception

to t y p e l ’s secrecy, in which case we are instructed to ignore it. Otherwise, the dom ain is

not listed as an exception. In th is case, the dom ain is in fact not allowed to read ty p e l ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. A N A LYSIS OF D TE POLICIES 114

a condition we have already enforced under the second hint. Therefore, we know th a t any

case wherein a dom ain is allowed to read ty p e l is irrelevant to the M BLP < relation.

Finally, since the dom ains listed as exceptions to security and integrity declarations are

being provided an ex tra m easure of tru st, we wish to ensure th a t they are worthy of such

trust. We therefore check th a t the entry points to all such domains, in addition to all

tru sted domains, are themselves protected, and inform the policy adm inistrator th a t the

code of the entry points m ust be verified.

[all domains]

auditor_d

redd
append

■ , syslog_d .
m _log_t -------------- -— - ------------- out_log_t

Figure 7.3: Sample Assured Pipeline

A precise definition of the M BLP < relation follows.

Va; G V and a, b € T : m r (x , a) A m w (x , b) =>• L(a) < L(b) (7.1)

where

m r (x ,a) = r(x , a) A re(x, a) A id(x) A it(a) (7 -2)

m w (x ,a) = w(x, a) A we(x, a) A id(x) A it(a) (7 .3)

Here re(x, a) means th a t dom ain x is on the read exception list for type a. Likewise,

r w (x ,a) means dom ain x is on the w rite exception list for type a, while id(x) and i t (a)

mean th a t dom ain x and type a, respectively, are tru sted (i.e., to be ignored).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 7. A N A LYSIS OF D TE POLICIES 115

7.3.1 M B L P Enforces C lark-W ilson C D Is

The s e c r e t and p r o te c t keywords are in the spirit of trusted users in BLP and ring policies.

However, they can also be used to implement Clark-W ilson and assured pipeline policies.

We show the former here, and the la tte r in Section 7.3.2.

To show th a t Clark-W ilson policies can be implemented using these two rules, we begin

by describing a policy excerpt whose purpose is to enforce a Clark-W ilson policy. We

then show a set of rules which allows us to express the required properties. As described

in Section 2.4, a Clark-W ilson policy specifies constrained d a ta item s (CDIs), which are

d a ta which may be modified only by certain sets of transform ation procedures (TPs). We

will implem ent this as follows. For each of the n CDIs, we will define a type c d i_ t i £

(c d i _ t l . .c d i_ tn) , and a dom ain c d i_ d i £ (c d i_ d l . .cd i_ d n) . The entry points to each

dom ain will be the T P s which are allowed to modify the CDI. The policy excerpt is shown

in Figure 7.4

ty p es . . . c d i_ t l . . . cd i_ tn c d i_ d l_ e t . . . cd i_dn_et . . .
domains . . . cd i_ d l . . . cdi_dn . . .

spec_dom ain c d i_ d l (1 c d i_ d l_ e t) (. . . w -> c d i_ tl) (0) (0)

spec_dom ain cd i_dn (1 c d i_ d n _ e t) (. . . w -> cd i_ tn) (0) (0)

Figure 7.4: Policy excerpt defining Clark-Wilson policy.

We specify the following n M BLP rules to check for the security of Clark-W ilson CDIs:

p r o te c t c d i_ t l ex c ep t from c d i_ d l

p r o te c t c d i_ tn e x c ep t from cd i_dn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 7. AN A LYSIS OF D TE POLICIES 116

We m ust show th a t two properties hold. Namely, th a t each CDI may be modified only

by the associated TPs, and th a t the T P s may only be executed by authorized subsets of

users.

T h e o r e m 7.1 Each CDI may be modified only by the associated TPs.

P ro o f: Only dom ain c d i_ d j can modify c d i_ t j , and it can be entered only through its

entry points, which are the T P s allowed to modify c d i_ t j . Note th a t M BLP is only

enforcing the dom ain to type access, not entry points. Since the code for all entry points

m ust be meticulously verified anyway, we consider this sufficient. I

T h e o re m 7.2 TPs may only be executed by certain subsets of users.

P ro o f : This second restriction requires policy adm inistrators to review the T P code on

a case by case basis, in order to ensure th a t (a) only the authorized users are allowed

to complete execution, and (b) authorized users cannot cause the T P to run any other

(unauthorized) code. However, Clark and W ilson found no more autom ated way of enforcing

th is restriction, and acknowledged th is as a weakness of their policy, as well as of, perhaps

the integrity problem as a whole. In other words, this is a feature of CD I’s, ra ther th an a

weakness of DTE. 1

7.3 .2 M B L P E nforces A ssured P ip e lin es

An assured pipeline, introduced in Section 2.2.5, perm its the control of d a ta flow through

a system. To show th a t s e c r e t and p r o te c t statem ents can express assured pipelines, we

begin w ith the D TE policy excerpt in Figure 7.5. The pipeline is im plem ented as domain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 7. A N A LYSIS OF D TE POLICIES 117

p ip e_ d w ith a single restrictive (and verified) entry point. It flows d a ta from type s r c _ t

into type d e s t_ t . We define the following two rules:

p r o te c t d e s t_ t ex c ep t from p ip e_ d

s e c r e t s r c _ t e x c ep t from p ip e_ d

Showing th a t this policy implem ents an assured pipeline requires proving the following

three statem ents, m entioned in Section 2.2.5.

T h e o re m 7.3 Data may not flow from s r c _ t to d e s t_ t except by passing exclusively

through p ipe_d .

P ro o f: We know th a t cwa —»• dest_t R W (d i) for all domains other th an p ipe_d , whose

entry point im plem ents the pipeline’s functionality. If this were not so, an M BLP analysis

would detect and warn of another dom ain’s w rite access to d e s t_ t . I

T h e o re m 7 .4 The pipeline’s results cannot be reversed or modified.

P ro o f: The policy ensures th a t cwa -»■ dest_t ^ R W (d i) for all domains except p ipe_d .

T he policy adm inistra tor m ust verify the entry point to d e s t_ t to ensure th a t it cannot

be used in order to rewrite results of already completed transform ations. Since p ip e_ d is

listed as an integrity exception, an M BLP analysis program would warn of any domains

which could overwrite or replace the entry point, so th a t once the entry po in t’s code has

been verified, the entry point rem ains trustworthy. I

T h e o re m 7.5 Subsystem is correct.

P ro o f: This is proven by the im plem enter of the entry point to p ipe_d , or the policy

adm inistrator, on a case by case basis. I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. AN A LYSIS OF D TE POLICIES 118

Of course, while s e c r e t and t r u s t e d statem ents are very expressive, we still wish to

allow labeling dom ains as fully trusted , The type accesses allowed such a dom ain will not

affect the calculation of the BLP < relation. For instance, the following line would be added

to the h a l t domain:

t r u s t e d domain h a l t_ d

Now the fact th a t h a lt_ d is able to read and w rite all domains will not necessarily cause

all types to be of equal security level, as it would w ithout either this statem ent, or large

num ber of s e c r e t and t r u s t e d statem ents. One side-effect of declaring a dom ain as tru sted

should be for the policy analysis program to declare the trusted dom ain’s entry types as

protected w ithout exceptions, and warn the policy adm inistrator to verify the code of all

executables which are assigned these entry types.

ty p e s . . . s r c _ t d e s t_ t p ip e d _ e t . . .
domains . . . daemon_d p ip e_ d . . .

spec_dom ain daemon_d (. . .) (. . .) (au to -> p ip e _ d) (. . .)
spec_dom ain p ip e_ d (p ip e d _ e t) (. . . w -> d e st_ t r - > s r c _ t) (. . .)

a s s ig n - e p ip e d _ e t /s b in /p ip e d _ e x e c u ta b le

Figure 7.5: Policy excerpt implementing an assured pipeline.

The algorithm to calculate our modified BLP relation is shown in Figure 7.6.

7.4 Examples of Analysis Using M BLP

We are now ready to analyze several policies using the modified BLP relation. W hen

discussing the partia l relation induced on types by the modified BLP, we will relate it in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. A N A LYSIS OF D TE POLICIES 119

fo r each se c r e t type t do
i f u n tru sted domain d may read t

ensure d i s an ex cep tio n to t ’ s secrecy
fo r each p r o te c te d typ e t do

i f u n t r u s te d dom ain d may w r i te t
ensure d i s an ex cep tio n to t ’ s p r o te c t io n

fo r each u n tru sted domain d do
r e a d l i s t = NULL
w r i t e l i s t = NULL
fo r each type a c c ess from d do

i f access==read and not s e c r e t (ty p e)
r e a d l i s t .= type;

i f a c c e ss= = w r ite |r e p la c e and not p r o tec te d (ty p e)
w r i t e l i s t .= type;

fo r each r e a d e l in r e a d l i s t do
fo r each w r ite e l w r i t e l i s t do

d e fin e "readel <= w r ite e l"

Figure 7.6: Algorithm to calculate the modified BLP relation

the form of a directed graph. Nodes in th is graph will be types, or sets of types. An edge

from node V\ to node Vj indicates th a t V\ < V^. In general, we will combine types which

are equal into one node, so th a t, for the most part, an edge from V\ to V2 will actually

indicate V\ < V2 . W here this is not the case, the cycle will be m ade obvious.

We begin w ith w hat we will call our base policy, shown in Appendix A .1.1. Figure 7.7

shows the associated BLP relation graph.

In the base policy, the level of most types is equal. The only types which are not

equal to all others are base_t, d isk_t, ge tty_x t, lo g in _ e t, sb in_t, sh e ll_ t . We have no

inform ation to relate any of these types to each other, however all are less th an the group

of all o ther types.

Now let us analyze a more complicated policy, which implements a passw_d dom ain to

which users can switch to safely change passwords. This policy is shown in A ppendix A .1.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 7. A N A LYSIS OF D TE POLICIES 120

base t

disk t

getty_xt

login_et

sbin t
Conglomerate

shell t
F igure 7.7: BLP less than relation graph for base policy.

If we do not specify any secrecy or protection rules, the result is the ordinary BLP relation,

shown in Figure 7.8. The entry type passw _et cannot be overw ritten by anyone, and is

therefore strictly less th an or unrelated to all other types. However, passw _t and shadow_t

are bo th equal to most o ther types, since passw _d may read and write bo th these types in

addition to lo g _ t, which is equal to the m ajority of types in the policy.

base t

disk t

getty_xt

login_et
Conglomerate

passw_et-

shell t

sbin t
F igure 7.8: BLP less than relation for password policy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 7. A N A LYSIS OF D TE POLICIES 121

Now let us define some protection rules to be taken into account while calculating the

modified BLP. We will use the following set of rules:

s e c r e t shadow_t e x c ep t from passw _d, lo g in _ d

p r o te c t passw _t ex c ep t from passw _d

By m aking lo g in _ d and passw _d exception domains, we autom atically cause our algo

rithm to add the following rules:

p r o te c t passw _et

p r o te c t lo g in _ e t

This will provide some bit of assurance th a t these domains, which have been granted

unusual power, will not easily be subverted.

T he resulting BLP relation is shown in Figure 7.9.

base t-

disk_t-

1ogin_et-

passw_et-

passw_t

shell_t

sbin t-

Conglomerate) " shadow_t

F igure 7.9: Modified BLP less than relation for the password policy.

Now type shadow_t is strictly greater th an all other types. This is because shadow_t

may only be read by passw_d, which is listed as a secrecy exception. Consequently, during

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 7. AN A LYSIS OF D TE POLICIES 122

calculation of the M BLP < relation we say th a t no domains may read shadow_t. However,

since we did not list any integrity rules regarding shadow_t, it was listed in the write

set for passw_d. Since passw _d could read l i b _ t , while it could w rite shadow_t, the BLP

calculation algorithm found th a t l i b _ t < shadow_t. Note th a t if we had used the following

rule:

p r o te c t shadow_t ex c ep t from passw _d

then shadow_t would have been unrelated to all other types.

The modified BLP also relates passw _t as strictly less th an all types to which it is

related. This is because, the only dom ain which may write to passw _t is listed as a write

exception, causing passw _t not to be placed in its w rite set. The type is therefore not

placed in any w rite sets, and therefore is never calculated to dom inate any other types.

T he com bination of the passw _t protection rule, and the resulting BLP relation, provide

us more inform ation about who may w rite to passw _t than we would have either using

straight BLP, or by listing passw _d as a tru sted domain.

C hapter 6 provided straightforw ard tools for editing and viewing D TE policies. This

chapter presented more intricate techniques for policy analysis. The next chapter will

similarly expand upon the creation of policies. The work of this chapter will also become

more practical as it is integrated into the process of policy composition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Construction of D TE Policies from

M odules

C hapter 6 presents tools to create, edit, and analyze D TE policies. However, when working

w ith large policies, pa tterns begin to emerge. Policies typically consist of several sets of

domains and types. The entities w ithin a set work together to achieve some goal. However,

the sets often interact very little. For instance, in the ftp policy presented in Figure 3.2, the

dom ain f tp d _ d , and the types f tp d _ t and f tp d _ x t , work together to protect the system

from an unsafe binary. By removing these entities, and all references to them , the rem aining

policy becomes simpler. We will call th is collection of domains, types, and all access rules

pertain ing to them , a module. The F tp m odule is shown in Appendix A .2.3. The rem aining

base m odule is shown in Appendix A.2.1.

Allowing policies to be composed from simple, meaningful, and coherent pieces, will serve

several purposes. F irst, creation of policies will become far more efficient. For instance,

when adding a new dom ain to an existing policy, one might have to enter hundreds of type

accesses in order to get it properly interacting w ith the current policy. In contrast, modules

allow dom ains and types to be grouped at several levels, and access to be specified using

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CONSTRU CTION OF D TE POLICIES FROM MODULES 124

any of these groups.

Second, adding a feature to a policy, such as a new m ethod of controlling access to the

shadow file, or protection from a critical binary in which an as-yet unsolved vulnerability

has been found, will become a simpler task. The m odule can be w ritten entirely from its

own point of view. Furtherm ore, in researching the state of the current policy, in order

to understand how to properly insert a new feature, one need only look at those modules

which can affect the new functionality.

Third, modules may be helpful in simplifying the analysis, and proof of invariants, of

policies. For instance, several modules may be trivially shown to be irrelevant to the ability

of the in e td daemon, if remotely exploited, to erase the utmp log file.

Finally, because a m odule generally encodes domains, types, and access rules which work

together toward some end, it is a na tu ra l way to express the security policy changes necessary

for a new piece of software. Software companies and free software groups, therefore, could

d istribute policy m odules along w ith software packages.

We begin by describing the behavior of the D T E Policy Compiler (dpc), which we have

w ritten to construct a policy from modules. Next, we describe in detail, and prove the

correctness of, m ethods to autom atically ensure certain properties will m aintained after

module application. Finally, in order to show the usefulness of th is idea, we will present

several modules which, while simple and clean in themselves, will compose into a very

powerful policy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CO NSTRU CTIO N OF D TE POLICIES FROM MODULES 125

8.1 Policy Compiler File Formats

This section provides syntax specifications of the dpc control file, modules files, and patch

files.

8.1.1 C ontrol F ile Sp ecification

T he D TE policy compiler takes its instructions from a single control file. By default, this

file is called c o n tr o l , although another file can be nam ed on the command line. The sample

control file shown in Figure 8.1 applies the F tp m odule and a set of service modules to the

base modules. In th is section, we provide the BNF specification of the dpc control file,

interspersed w ith fu rther explanations.

< c o n tr o l_ f i le > : := <command_line> *

<command_line> : := <read_cmd> I

<load_policy_cm d> I

<apply_cmd> I

<patch_cmd> I

<write_cmd>

<load_policy_cm d> : := lo a d _ p o lic y <policy_m odule> <policy_nam e>

The lo a d _ p o lic y statem ent causes dpc to load a Policy Consistency Package, or pep.

Section 8.2 will describe this feature in detail. A pep is implem ented as a Perl module,

meaning th a t the pep nam ed BLP m ust be located in the file BLP. pm. The <policy_m odule>

is the name of the Perl m odule which implem ents the pep. The <policy_nam e is the name

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CO NSTRU CTIO N OF D TE POLICIES FROM MODULES 126

which dpc will assign to th is pep. The assertion statem ents discussed in Section 8.1.2 will

associate themselves w ith pep using th is name.

<read_cmd> : := r e a d < file _ g lo b >

This causes dpc to read a m odule file or set of m odule files from disk. Simple filename

globbing is supported. For instance, line 3 in Figure 8.1 causes all files under directory

S e rv ic e to be read. A m odule file may contain any num ber of modules, none of which

need reflect the filename. Each m odule is stored separately in memory. They are not yet

combined.

<apply_cmd> : := ap p ly <module_glob>

Instructs dpc to apply a specified m odule or list of modules to the current policy. Ap

plying a m odule means th a t its types and domains are added to the policy, and access

rules between the types and dom ains of all applied modules are resolved. The algorithm

for doing so is discussed in detail in Section 8.1.2. The m odules m ust have previously

been read using the r e a d command. Modules may be specified by m odule name, or by

namespace hierarchy. The namespace hierarchy is delimited by Appending to a

m odule name indicates all modules a t th is level level should be applied, while a “+ ” in

dicates all descendants m ust be applied. For instance, line 4 of Figure 8.1 would cause

modules nam ed “System .base.types” and “System .base.dom ains” to be applied, bu t not

“System.base.security.passw” . Line 6, however, would cause “Service.daemons.sshd” as

well as “Service.daemons.security.login.sshd” to be applied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 8. CONSTRU CTIO N OF D TE POLICIES FROM MODULES 127

All modules specified in a single apply directive are applied simultaneously. See the

discussion of dom ain and type grouping in Section 8.1.2 for details of how this affects the

tim ing and, therefore, the results of group expansion.

<patch_cmd> ::= patch <file_nam e>

This feature allows patching the final policy w ith simple changes for the sake of policy

testing. A patch file can specify addition or removal of type assignment statem ents, dom ain

transition rules, dom ain signal rules, entry points, and domain to type access rules.

<write_cmd> ::= w r ite <file_nam e>

This instructs dpc to w rite the policy as calculated thus far to the specified filename.

Specifying the name std ou t directs dpc to w rite to standard ou tput. Line 8 in Figure 8.1

causes dpc to write the policy to the file d te .c o n f. Any num ber of w rite commands may

occur throughout the control file, allowing the saving of policies a t various stages of module

application.

The rem aining lines complete the above definitions.

< file _ g lo b > ::= < file_ ex p > +

< file_ ex p > ::= <pathname> I <pathname>.

<module_glob> ::= <module_exp> +

<module_exp> ::= <module_name> I <module_name>." .*" I

module_name.".+"

In o th er words, th e se are b a s ic s tr in g s :

<module_name> ::= [a -z A -Z][a -z A -Z \-_ 0 -9 .]+

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CONSTRUCTION OF D TE POLICIES FROM MODULES

<path-name> ::= <file_nam e> [/ <file_nam e>]*

<file_nam e> ::= [a -z A -Z][a -z A -Z \-_ 0 -9 .]+

<policy_name> ::= [a -z A -Z][a -z A -Z \-_ 0 -9 .]+

<policy_m odule> ::= [a -z A -Z][a -z A -Z \-_ 0 -9 .]+

01. lo a d _ p o lic y blp_mod blp
02. read System /Base
03. read S e r v ic e /*
04. apply System .b ase .*
05. apply S e r v ic e .f tp
06. apply S erv ice.daem on s.+
07. patch f t p .a s s e r t
08. w r ite d te .c o n f

8.1 .2 M odule F ile Specification

Here we discuss the structu re of a m odule file. We will use the F tp m odule shown

A ppendix A .2.3 as an example. The m odule syntax specification follows.

<m odule_file> ::= <module>+

Figure 8.1: Sample dpc control file.

<module> ::= Module <mod_name>

[<domain_def> |< typ e_d ef> I<group_def>]+

end

<domain_def> ::= domain <dom_name>

<dom_line>+

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://ftp.assert

CH APTER 8. CONSTRUCTIO N OF D TE POLICIES FROM MODULES 129

end

A m odule file may contain more th an one module. Each m odule may contain several

domain, type, and group definitions, as well as the access rules pertaining to them .

<dom_line> ::= e n tr ie s <type_name>+ I

[a b so lu te] s ig n a l [in I out] <gen_dom> <sig_num> I

[a b so lu te] domain [in I out] <gen_dom> [auto I exec I none] I

[a b so lu te] type <gen_type> <type_acc> I

a s s e r t <policy_name> <data>

DEFAULT_DOMAIN

The dom ain definitions declare a (unique) name for the domain, a set of entry types,

and a set of access rules pertaining to the new domain. Domain transition or signal access

rules may be “in” , in which case they specify access from other domains to the new domain,

or they may be “ou t” , defining access from the new dom ain to other domains. Since types

are passive objects, which cannot themselves access other types or domains, the type access

rules in a dom ain definition do not include the “in” or “out” keyword.

Exactly one dom ain definition applied to a policy must contain the keyword “DE

FAULT .DO M AIN” . T h a t dom ain will be assigned to the first process on the system.

<type_def> ::= type <type_name>

<type_line>+

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CONSTRUCTIO N OF D TE POLICIES FROM MODULES 130

<typ e_ lin e> ::= <path_type> <path_name>+ I

[a b so lu te] a c c ess <gen_dom> <type_acc> I

< defau lt_ type> I

a s s e r t <policy_name> <data>

< defau lt_ type> ::= DEFAULT_ETYPE I DEFAULT_UTYPE I DEFAULT_RTYPE

Type definitions declare a (unique) name for the type, a set of paths assignment rules,

and a set of access rules. Clearly, the access rules are only incoming from domains. E ither

one type m ust also be associated w ith the “DEFAULT_RTYPE” keyword, or bo th the

“DEFAULT_ETYPE” and “D E FA U LTJJTY PE” keywords m ust be associated w ith one

type each, in order to define default types for the file system.

Both type and dom ain definitions may contain “assert” statem ents. These are used for

m aintenance of policy constraints. They are stored w ith the type definition until m odule

application, bu t their in terpretation and enforcement is defined by the peps as described in

Section 8.2. The last line of the f tpd_xt type definition in the F tp module is an example of

an assert statem ent, instructing a m odule loaded as “b lp” to label this type as protected.

<group_def> ::= group domain <dom_name>

import <dom_name>+

end

<group_def> ::= group type <type_name>

import <type_name>+

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CO NSTRU CTIO N OF D TE POLICIES FROM MODULES 131

end

<gen_dom> : := a l l I none I <dom_name>

<gen_type> : := a l l I none I <type_name>

Grouping is accomplished on several levels. F irst, one may simply specify “all” to refer

to all domains or types which are currently known. Second, a group definition in a m odule

may define a nam ed group of domains or types. For instance, the m odule segment listed

in Figure‘8.3 defines a dom ain group consisting of several dom ains which are not trusted .

The m odule segment listed in Figure 8.4 defines a type which is actually called ro o t_ t .

Since th is is the typenam e which will be used in the final D TE policy, no names w ithin the

namespace may actually clash. 1 Modules may refer to this type using any of the following

names:

1. r o o t_ t

2. b a s e .e x t r a n e o u s .r o o t_ t

3. a l l

4. b a s e .e x t r a n e o u s .*

5. b a s e .e x t r a n e o u s .+

6. b a s e .+

xThis could be worked around by autom atically randomizing the name in the event of a clash, but this
sim ply was not a great concern for th is prototype.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CO NSTRU CTIO N OF D TE POLICIES FROM MODULES 132

In addition, any type groups which have im ported this type can also be used to refer to

th is type.

The name b a s e . extraneous may be a real type, or it may simply be a namespace

placeholder, depending on w hether any module defines a type by th a t name.

<type_name> ::= [a-zA-Z] [a -zA -Z 0-9_ .]*

<dom_name> ::= [a-zA-Z] [a-zA -Z 0-9_ .] *

<path_name> ::= [/< file_nam e>] +

<policy_name> ::= [a-zA-Z] [a -zA -Z 0-9_]*

<data> ::= *

8.1.2.1 Priority of Access Rules

Since dom ains and types can declare conflicting access rules, we m ust clearly define the

priority of access rules. Much thought has been given to the current priorities, which have

been somewhat modified following experience w ith an earlier m odule compiler prototype.

The priority takes the form of an integer between 1 and 8. The priority assigned to access

rules is shown in Table 8.2.

If two rules exist pertain ing to the access perm itted from a dom ain to another dom ain

or type, then the rules w ith the highest priority will be applied. For instance, the base

m odule’s definition of type base_t specifies th a t all domains have “absolute” access “rxld”

to base_t. However, the F tp m odule’s definition of dom ain ftpd_d contains the statem ent:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CONSTRUCTIO N OF D TE POLICIES FROM MODULES 133

Type of access Priority level
Absolute in 8
A bsolute out 7
Single destination in 6
Single destination out 5
Group in 4
G roup out 3
Default ("all”) in 2
Default ("all”) out 1

F igure 8.2: Priorities of access rules

a b s o lu te ty p e a l l none

Since an “absolute in” access rule has a higher priority than “absolute out” , f tpd_d will

receive “rxld” access to b ase_ t. W ithout this, it would not be able to access any other

types, as it could not descend to the files of those types. Similarly, the types defined in

the F tp m odule m ust specify access from dom ain ftp d _ d as “absolute” , as th a t is the only

access which will override th a t listed in the specification for ftpd_d. On the other hand, the

specification for type b in _ t includes a norm al “group in” definition. As this is of a lower

priority th an “absolute ou t” , the access rule specified by the F tp m odule is chosen, denying

ftp d _ d all access to type b in _ t. This is a crucial element of the F tp d module, preventing

the ftp server from providing attackers w ith root shells, for instance.

Note th a t incoming access always overrides outgoing access. More specific rules override

more general rules, unless the “absolute” keyword is present in one of the rules.

8.1.2.2 Group Expansion

As explained in Section 8.1, the m odule compiler applies sets of modules when directed to

do so by the control file. Since more modules can be read later, we m ust clearly define the

behavior of group expansion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 8. CONSTRUCTION OF D TE POLICIES FROM MODULES 134

For nam ed dom ain and type groups, the group is simply expanded at the tim e of m odule

application. If the group has not yet been defined, an error is raised and com pilation fails.

For namespace globbing, th a t is, * and +, the currently defined descendants and children

(respectively) of the parent being expanded are used. For instance, assume we applying a

m odule which contains the rule

domain some_domain

ty p e b a s e .e x e c .+ rwx

end

If the only children of b a s e . exec defined thus far are b a s e . e x e c . s b in and

b a s e .e x e c .b in , then only these types are included in th is rule. A later m odule may define

type b a se .e x e c . ja v a b in , bu t this type will not be added to the access rule.

The a l l group behaves differently, however. An access rule directed at a l l will be

expanded at the tim e of m odule application. However, a generic form of the rule is also

stored. All such generic rules are expanded each tim e a set of m odules is applied. If the

rule had not previously been applied, any policy consistency modules will be consulted at

the new rule creation, ju st as w ith any other new access rule. For example, the base m odule

defines default access “rid” to type b a s e s t for a l l domains. This rule is expanded after

each m odule application, so th a t all dom ains will be granted this access.

8.1.2.3 Inheritance

An issue which may deserve further consideration is th a t of inheritance. It would seem to

make sense to construct the type namespace such th a t certain properties, perhaps “absolute”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CO NSTRU CTIO N OF D TE POLICIES FROM MODULES 135

access rules, are autom atically inherited by the children of a type. On the other hand, this

may simply needlessly complicate the process of policy creation, the simplification of which

is the precise goal of the policy compiler.

8.1.3 P a tch F ile Specification

The patch file may specify any access rules, entry point, or type assignments which m ust,

or must not, be a part of the final policy, regardless of the result of m odule application.

The patch file is read and applied a t the point where the control file instructs dpc to do

so. Presum ably, th is would usually be the last action prior to w riting the final policy. A

sample patch file is shown in Figure 8.5. The syntax of the patch file follows.

< p a tc h _ f ile > : := < p a tch _ lin e> *

< p a tc h _ lin e > : := [n o t] <patch_cmd>

<patch_cmd> : := domain_ep <domain> <type> I

dom ain_type <domain> < type_acc> " to " <type> I

d om ain_ trans <domain> <x_acc> " to " <domain> I

dom ain_sig <domain> < s ig n a l> " to " <domain> I

ty p e _ a s s ig n <type> < ta_ o p tio n > <path_name>

All aspects of the policy can be controlled by the patch file. No group expansion of any

type is performed, so only plain dom ain and type names may be used. The m eaning of

a statem ent may be inverted by prepending w ith the word “not” . For instance, line 4 of

Figure 8.5 indicates th a t the dom ain ftpd_d may not have read access to type shadow_t. If

this access was granted by some module, then the access will be revoked.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CO NSTRU CTIO N OF D TE POLICIES FROM MODULES 136

In the case of a violation of a type assignment assertion, only a warning is given. This

is because there is no single correct way to handle the violation. For instance, in the case

of line 5 of Figure 8.5, if /e tc /p a s s w d is assigned the etype u se r_ t as a result of a rule

assigning u s e r_ t recursively to / e t c , it is not clear w hether dpc should revoke the original

rule, or simply issue a conflicting rule for only the file /e tc /p a s sw d .

The rem ainder of the patch file specification follows.

<x_acc> "auto" | "exec" I "none"

<typ e_acc> : : = "none" I [rw xlcda]+

< sign al> : : = [0-32] | "none"

<ta_option> : : = "_r " | M_u » | M —g •! | » -eu N

<domain> : : = [a -zA -z][a -zA -Z _ 0 -9]*

<type> : : = [a -zA -z][a -zA -Z _ 0 -9]*

<path_name> : : = <file_nam e> [/ <file_nam e>]*

<file_nam e> : : = [a -zA -Z][a -z A -Z \-_ 0 -9 .]+

group domain un tru sted _ d o m ain _ g ro u p
im port f tp d _ d ta lk d _ d f in g e rd _ d

end

Figure 8.3: A group declaration combining some untrusted domains

ty p e b a s e . e x tr a n e o u s .r o o t_ t
DEFAULT_RTYPE
[. . .]

end

F igure 8.4: A possible definition of type root.t.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CO NSTRU CTIO N OF D TE POLICIES FROM MODULES 137

01. domain_type ftpd _d none to sb in _ t
02. domain_type ftpd _d none to b in _ t
03. domain_type ftpd _d r id to b ase_t
04. not domain_type ftpd _d r to shadow_t
05. not ty p e _ a ss ig n u se r _ t - e /e tc /p a ssw d

Figure 8.5: A sample dpc patch file.

8.2 Autom atic M aintenance of Policy Constraints

In chapter 7, we analyze D T E policies by using concepts from simpler access control systems

to introduce relations on objects and subjects. TIS used this concept to enforce the m ain

tenance of specific relations across applications of run-tim e policy changes. We generalize

th is idea by building into dpc a pluggable architecture to support m aintenance of policy

constraints for any policy.

Using the load _p o licy directive in the control file, the policy compiler is instructed to

load a Policy Consistency Package, or pep. The pep is a generic Perl module. For instance,

in the line

lo a d _ p o lic y BLP b lp

‘B L P’ is the name of the file (minus .pm extension) wherein the package is located, and

‘b lp ’ is the keyword which D TE modules will use to identify the module.

Recall th a t the dpc applies modules when requested by a line in the control file such as

apply S e r v ic e .f tp d U sers .*

All modules specified in the ‘apply’ line will be applied simultaneously. For any type or

dom ain introduced in some module, the pep will make consistency guarantees for all subse

quent m odule applications. The pep m ust define two functions, pre_apply and p o st .apply.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CO NSTRU CTIO N OF D TE POLICIES FROM MODULES 138

• p re _ a p p ly is called before the domains and types defined in the modules about to

be applied are added to the global lists of domains and types. The pep can there

fore calculate the security properties, levels, or relations which exist and m ust be

m aintained.

• p o s t_ a p p ly is called after the modules have been fully applied. The pep may now

decide whether any security properties which existed at p re _ a p p ly have been violated,

and act accordingly. Since the pep is a full Perl module, it can choose to simply warn

of the violation, or stop the policy compiler altogether.

A pep can thus be w ritten to calculate and m aintain any type of relation or property

found to exist prior to m odule application. Obvious examples include the BLP < relation,

the Ring policy < relation, assured pipelines, and the MBLP < relation. To provide further

inform ation to a pep, modules may use the “assert” keyword as described in Section 8.1.2.

The m odule syntax specifies th a t assert statem ents should include the pep name followed by

any data. The entire assert statem ent is stored w ith the rest of a m odule’s inform ation for

the dom ain or type to which the assertion relates, so th a t the pep may find all assertions

relevant to it during p re _ a p p ly and p o s t_ a p p ly . The BLP pep does not make use of

“assert” . The pep to enforce the modified BLP presented in Section 7.3 uses “assert” to

append s e c r e t and p r o te c t statem ents with types and domains.

8.2.1 C orrectness o f th e B L P P C P

We have implem ented a sample pep to enforce the m aintenance of the BLP ^-property. The

main code of the pep is shown in A ppendix A .3.2, A .3.3, and A.3.4. We now show th a t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 8. CONSTRU CTIO N OF D TE POLICIES FROM MODULES 139

BLP.pm will in fact detect any violations of the BLP ^-property. Recall th a t the ^-property

states:

Vx e V and a,b G T : r (x , a) A w(x, b) => L(a) < L(b)

We define T> and T as the sets of dom ains and types known before m odule application,

and V and T ' as the same sets after m odule application. We m ust show th a t p re_ a p p ly

correctly calculates the < partia l relation as defined by the ^-property. T hen we will show

th a t, for all types in T , any changes to the < relations which are introduced by the module

applications will be detected.

Theorem 8.1 BLP:-.calculateJ)lp correctly computes the B L P < partial relation.

Proof:

We will show this by contradiction. Let us assume th a t some dom ain y has read access

to a type c, and write access to a type d , bu t c a lc u la te _ b lp does not report c < d.

C a lc u la te _ b lp iterates over all dom ains in V . Therefore, the loop spanning lines 04 to

17 would be entered once w ith $dom set to y. Since we have said th a t y has read access

to c, the hash table $ d o m a in -> { " re a lta "} exists, and contains the entry { " y " ," c " } . We

therefore will enter the loop begun on line 08 w ith $ ty p e l set to c. $ v a lu e will contain the

string representing access from y to c, which we have said contains ‘r ’. We therefore begin

the loop on line 11. Since we know y to have write (‘w ’) access to “d” , we will reach line

14, w ith $ ty p e l= c and $type2=d. This contradicts our assertion. 7,BLP: : l e q does contain

{ " y " , "d"}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CONSTRUCTION OF D TE POLICIES FROM MODULES 140

We m ust also show th a t ‘/,BLP: : l e q does not contain any pairs {"u" , "v"}, where in fact

it is not the case th a t L(u) < L(v). Let us assume th a t this did in fact occur. This could only

happen if there exists a dom ain “y” such th a t ’/.main: :d o m a in s{ "y "} -> { " re a lta "} -> { "u "}

contains “r ” , and ’/.main: :d o m a in s{ "y "} -> { " re a lta "> -> { "v "> contains “w” . We will

claim w ithout proof th a t th is could occur only if in fact domain “y” had read access to

type “u” , and write access to type “v” . B ut if th is is the case, then, by the BLP ^-property,

L(u) < L(v).

I

T h e o re m 8 .2 A t BLP: :p re_app ly , B L P calculates the correct < relation

P ro o f:

BLP: :p re _ a p p ly is shown in A ppendix A.3.3. Let us assume th a t there exists y E V

and c ,d E T such th a t r(y, c) A w(y, d), b u t ’/.BLP: : l e q does not contain { " c " , "d"}.

BLP: :p re _ a p p ly calls BLP: : c a lc u la te _ b lp . Therefore, if ’/.BLP: : l e q does not con

ta in {"c" , "d"}, then BLP: : c a lc u la te _ b lp did not correctly calculate the BLP < partial

relation. However, we have shown th a t it does in fact correctly calculate <.

We can use the same argument to show that if ’/.BLP: : le q contains {"c" , "d"}, then it

must be that L(c) < L{d).

I

T h e o re m 8 .3 I f the B L P < partial relation between the types in T changes after module

application, then the changes will be reported in line 13 of BLP: :post_app ly .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CONSTRUCTIO N OF D TE POLICIES FROM MODULES 141

Proof:

We will prove th is by contradiction. BLP: :post_apply is shown in A ppendix A .3.4.

Let us assume th a t the application of a m odule introduces a new relation e < f on two

preexisting types e and / . We will a ttem pt to show th a t BLP: :post_apply will not come to

line 13 w ith ($a="e" ,$ b = " f"), th a t is, it will not warn of this change in the BLP < partial

relation.

Line 04 com putes */„post_leq using BLP:: ca lcu la te_ b lp . As a consequence of our

previous proof, we know */,post_leq to correctly represent the BLP < partial relation.

Therefore, {" e" , " f "} E 7,post_leq, and the loop beginning at line 05 will be entered w ith

$a="e". Since e G T , we will pass line 06. Line 07 will set $ b = "f". Again, since / 6 T , we

will pass line 08. Finally, since e ^ / , we will pass line 09.

By our previous argum ent, the fact th a t L(e) ^ L (f) a t BLP: :pre_apply means th a t

("e" , " f ") ^ %BLP: :leq . We state w ithout proof th a t the the function p a th _ ex ists_ o r ig

shown in A ppendix A.3.1 is correct. It therefore will detect th a t ("e" , " f ") ^ ’/,BLP: :leq ,

and th a t there exists no (t i , . . . , t„) E T such th a t

(e) l̂)> (̂ 1) 2̂); ■ ■ • j {tn—1) In)i {tm /) G %BLP :: le q

T h at is, there exists no set of types related by < such tha t, by transitivity, e < / . The

function p a th _ ex ists_ o r ig therefore re tu rn false. Therefore, line 13 of BLP: :post_apply

will be reached w ith $a="e" and $ b = "f", generating a warning about the change in the

BLP < partia l relation.

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CONSTRU CTIO N OF D TE POLICIES FROM MODULES 142

8 .2 .2 M o d if ie d B L P P C P

The M BLP policy is introduced in section 7.3. We have coded a pep to implement MBLP.

Relevant excerpts of the code are shown in A ppendix A.4.

We wish to show th a t this pep correctly detects changes in the M BLP < relation. As in

the BLP pep correctness proof, we begin by showing th a t ca lcu la te_ m b lp in fact computes

the correct M BLP < relation on all types. A precise specification of the relation is given in

Equation 7.1.

T h e o re m 8 .4 The c a lc u la te _ ra b lp function shown in Appendix A .4-1 correctly calculates

the M B LP < relation.

P ro o f: Before calling ca lc u la te _ m b lp on line 5, p re_ ap p ly calls s e tu p _ a s s e r ts on line

4. This function walks through all MBLP assert statem ents which have been read. These

assert statem ents specify secret types, protected types, tru sted (ignored) domains and types,

and secrecy and protection exceptions. As these lists are stored as simple arrays, we sta te

w ithout proof th a t each of the above functions returns the appropriate boolean:

1. i s _ ig n o re _ ty p e (ty p e)

2. is_ igno re_dom ain (dom ain)

3. i s _ s e c r e t_ ty p e (ty p e)

4. i s _ p r o te c te d _ ty p e (ty p e)

5. i s _ p r o te c t_ e x c e p t io n (ty p e , domain)

6. i s _ s e c r e t_ e x c e p t io n (ty p e , domain)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CO NSTRU CTIO N OF D TE POLICIES FROM MODULES 143

The M BLP is defined in Equations 7.1 through 7.3. We begin by showing th a t, if the

relation

t i < t2

is defined by the ca lc u la te _ m b lp function, then it is in fact the case th a t t\ < t 2. The

definition of this relation occurs a t line 27.

27: append_leq('/0l e q , $ ty p e l , $ type2) ;

At th is point, the variable $dom represents the dom ain d, the variable $ ty p e l represents

the type t \ to which d has read access, and the variable $ type2 represents the type d to

which d has write access. To reach line 27 w ith each of these variables so set, each of the

following m ust be true:

1. d is not a tru sted dom ain. Else this dom ain would be skipped a t line 07.

2. d has read access to t \ . Else th is type would be skipped at line 11.

3. t \ m ust not be an ignored type. Else this type would be skipped at line 12.

4. d is not listed as a secrecy exception for t \ . Else this type would be skipped a t line

13.

5. d has write access to t 2. Else th is type would be skipped at line 20.

6. t 2 is not an ignored type. Else th is type would be skipped at line 21.

7. d is not a w rite exception for t 2. Else this type would be skipped at line 22.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 8. CONSTRU CTIO N OF D TE POLICIES FROM MODULES 144

Conditions 1-4 satisfy each condition in Equation 7.2, while conditions one and 5-7 sat

isfy Equation 7.3. This com bination satisfies the left hand side of Equation 7.1. Therefore,

if c a lc u la te _ m b lp defines t \ < 12 for some policy, then this relation holds under MBLP.

We next show th a t if it is the case th a t t \ < t%, then the c a lc u la te u n b lp will define

t \ < t2. If t \ < t 2 , then by Equations 7.1 through 7.3, there m ust be some dom ain d such

th a t m r (d , t i) and m w (d , t2)- By the definitions of m r (d , t i) and m w (d , t 2), the domain

m ust not be a tru sted domain, t i and £2 m ust not be ignored types, and d m ust not be

a read exception for t \ or a w rite exception for t 2 - Looking back to the ca lcu la te_ m b lp

function in A ppendix A.4.1, we see the m ain loop spanning lines 4 to 30 iterates over all

domains. Lines 6 and 7 skip a dom ain only if d is a trusted dom ain or has no perm itted

type accesses a t all. Otherwise we reach the nested loop which begins w ith line 9, iterating

over all types to which d has some access. Types to which d does not have read access, or

which are ignored types, are skipped on lines 11 and 12. Line 13 skips to the next type if d

is a secrecy exception for the current type. Lines 18 through 28 iterate again over all types

to which d has access. Line 20 lim its the loop to types to which d has write access, and

line 21 skips types for which d is a w rite exception. Note th a t each case where a type has

been skipped has corresponded to an exception in Equations 7.2 or 7.3. In all other cases,

we reach line 27, which defines the relation t\ < t 2 -

The function ca lc u la te _ m b lp therefore correctly calculates the M BLP < relation for

any D TE policy.

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 8. CONSTRUCTION OF D TE POLICIES FROM MODULES 145

T h e o re m 8.5 I f a module A4 adds a new M B L P < relation between two preexisting types,

then p o s t_ ap p ly will warn of this new relation.

P ro o f: We have shown in Theorem 8.4 th a t c a lc u la te jnb lp correctly calculates the MBLP

< relation. Line 05 of p re_app ly places the < relation into the variable 70le q . As th is is

called before m odule application, '/.leq contains exactly the M BLP < relation prior to

application of m odule A4. Line 04 of p o s t_ ap p ly places the result of ca lcu la te_ m b lp

into the variable */,post_leq. As this is called after application of m odule A4, */,post_leq

contains exactly the M BLP < relation after application of module M ..

Assume m odule M added a relation a < b , where prior to application of M , a ^ b. This

means th a t a t line 09 in post_ ap p ly , */0p o s t_ le q (a) does contain b, while 7 ,leq (a) does

not. Through the nested loops spanning lines 07-18 and 09-17, each pair of base types (a, b)

for which 7 ,p o st_ leq defines a < b will be checked. Since 70le q does not also define a < b.

line 17 will warn of the new relation. Since, again, we have shown 7 ,post_ leq and 7.1eq to

be correct, th is will be the case if and only if the m odule M introduced th is relation, while

the policy prior to application of A4 did not contain th is relation. I

In Sections 7.3.1 and 7.3.2 we showed th a t the modified BLP can enforce assured

pipelines and Clark-W ilson CDIs. Since we have ju st shown th a t the MBLP pep correctly

enforces the m aintenance of modified BLP properties across m odule application, it follows

th a t the M BLP pep can be used to enforce assured pipelines and CDIs. Of course, other

policy consistency packages can be w ritten to enforce any access control policies desired by

the security adm inistrator. This is the most significant contribution of policy compiler’s

pep architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CONSTRUCTION OF D TE POLICIES FROM MODULES 146

8.3 Sample M odules

Previous sections have argued for the usefulness of modules, and presented their syntax.

This section will present present several modules which we have used, to the same ends. We

begin w ith a base module, which defines types and domains which will be used by all other

modules. Next we present a m odule to introduce a password domain, which can be used

by ordinary users to change their passwords, a task requiring permissions which ordinary

users lack. Following is an F tp module, im plem enting protections similar to those of the

policy presented in [27]. Finally, we present a m odule to implement an assured pipeline for

the system log daemon.

8.3.1 B ase M odule

The feasibility of specifying simple b u t powerful m odules in order to enhance a D TE pol

icy will depend on the ability to specify an appropriate base module. We desire little or

no namespace clashing between modules, b u t also wish to keep modules concise, w ith a

minimum num ber of access rules. Therefore we want very few, well thought out domains.

We want to avoid having too many types, bu t a t the same tim e we want to split up files

which have a system-wide meaning. For instance, it is not our place to assign types to the

/e tc /s s h d _ c o n f ig and related files. However, it is be tte r th a t we take care of / l i b and

/ u s r / l i b now, since there is not one single m odule which can lay claim to those. A base

m odule which we believe satisfies these subjective criteria is shown in A ppendix A .2.1.

The dom ain groups under Admin are undefined in the base module, b u t are intended to

be defined in later modules, either as domains or groups of domains. For instance, each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CONSTRUCTIO N OF D TE POLICIES FROM MODULES 147

could be defined as a group containing the ro o t_ d dom ain, although this would result in a

far less secure system th an this base m odule is attem pting to produce.

8.3.2 Passw ord M odule

The base m odule defines types passw _t and shadow _t, and assigns type passw _t to file

/e tc /p a s s w d and shadow_t to /e tc /sh a d o w . However, it does little w ith these types.

Users may not change their passwords, for instance, as they are simply denied all access to

shadow_t.

The passw ord m odule shown in A ppendix A .2.2 defines a new domain, passw_d, which

may be entered through / u s r / b in / p a s swd by any domains defined in the base module.

Type passw _t is redefined to include a lock file and the tem porary file /e tc /p a s sw d .tm p .

I t may now be read by all domains, since anyone is welcome to basic user information.

However, it may be w ritten only by passw_d. Type shadow_t is also redefined. All domains

are denied any access to it. The only exceptions are lo g in _ d , which may read the shadow

file, in order to verify users logging in, and passw_d, which may w rite shadow_t in order to

change passwords. Note th a t, under this policy, a successful a ttack against most daemons

running on the system will still not allow the attacker to read even encrypted passwords.

So long as we w rite a simple, and secure, passw d program , th is m odule affords the same

flexibility as any current Unix system, combined w ith far greater security.

8.3 .3 F tp M odule

The f t p m odule is a purely restrictive one. It is designed to allow anonymous ftp to be

offered despite known and unpatched vulnerabilities in the ftp daemon. It first denies all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 8. CO NSTRU CTIO N OF D TE POLICIES FROM MODULES 148

domains, except the newly defined f tp d _ d domain, execute access to / u s r / s b i n / i n . f t p d .

It next prevents f tp d _ d transitioning into any other domains, and denies it execute access

to any b u t its own executables, located under /h o m e /f tp /b in , its entry point, and system

libraries. It is therefore impossible, for instance, to offer a root shell, since f tp d _ d may not

execute a shell. W rite access is very strictly guarded as well. Since f tp d _ d may not execute

any types which it may modify, there is no possibility of any Trojan horse attacks, The f t p

m odule is shown in A ppendix A.2.3.

8.3 .4 Syslog

The s y s lo g module, shown in A ppendix A.2.4, implem ents an assured pipeline (See C hap

ter 2.2.5) as an ideal setting for Bruce Schneier’s secure logging scheme [43]. No logging

algorithm can in itself prevent an attacker from forging new log entries. This algorithm ,

however, facilitates the detection of m odification or deletion of log entries which were com

m itted before the system compromise. The hope is th a t one of the com m itted log entries

will warn of the a ttack in progress. In combining th is algorithm , an assured pipeline, and

the enhanced protection of D TE over all system services, we aim for these approaches to

complement each other, providing a more secure system than either could provide sepa

rately.

8.3 .5 C ontrol F ile

The m odule compiler m ust be directed by a control file. For the sake of completeness, a

control file directing dpc to create a D TE policy from all the modules listed above follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 8. CO NSTRU CTIO N OF D TE POLICIES FROM MODULES 149

read base.m odule

apply System .Base

read passw.mod

read ftp.m od

read syslog.m od

apply S e r v ic e .*

w rite std ou t

w rite d te .c o n f

8.4 Conclusion

This chapter presented a m ethod and tools for creating security policies from modules. The

tool provides support for enforcement of arb itrary policy assertions or relations between

domains and types. We believe the result is a system which is a t the same tim e simple,

powerful, and flexible enough to perm it collaboration in construction of security policies. By

perm itting a community to standardize upon a generic base m odule and type and dom ain

namespace hierarchies, it becomes possible for a new application to be d istributed w ith a

policy m odule which can be integrated into end user policies. The work presented in this

chapter is therefore essential to the end goal, sta ted in C hapter 1, of providing bo th easy

to use and simple to adm inister m andatory access control for Linux.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://ftp.mod

Chapter 9

Im plem entation Extensions

T he current D TE im plem entation is sufficient to set up a flexible and secure MAC system.

However, several extensions would far increase its usability. We discuss these here, and

provide im plem entation details. However, these extensions have not been implemented.

The first extension copes w ith a new Linux file system feature, namespaces. The second

provides a new m ethod for assigning types to files, which is useful in particular for the

/p ro c file system.

Finally, we describe not a kernel extension, bu t a m ethod for extending D TE protections

to network services. We use the trad itional example of an NFS server.

9.1 Namespaces

A new, thus far little used feature in Linux, is th a t of per-process namespaces [52], a concept

first introduced in the P lan 9 operating system [40]. Traditionally, all processes in a Unix

system see the same file system tree. Initially, the same is true under Linux. A new option

to the fork system call requests the cloning of a new file system tree. The forked process

then receives a copy of the tree, cloned recursively starting from the file system root. Any

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 9. IM PLEM ENTATIO N EXTEN SIO N S 151

changes effected by m ount activity in th e new tree are seen only by the forked process and

its descendants. Likewise, changes to the old tree are not seen by processes using the new

tree.

9.1 .1 P rob lem

T he file system clone is implem ented by a recursive copy of v f smount structures. These

kernel structures are the glue which holds file system trees together, and are shown in

Figure 2.7. For instance, a m ount of /d e v /h d a 3 under /m n t/m isc would create a v f smount

s truc tu re w ith pointers to the root dentry for the file system stored on /d ev /h d a 3 , as

well as its superblock, and insert th is struc tu re a t the d_vfsmnt pointer of the d e n try

for /m n t/m isc . If /d ev /h d a 3 is already m ounted under /m n t/d is k , for instance, a m ount

of / m n t /d i s k l / s c r a t c h / d l would result in a sim ilar v f smount, bu t w ith its root d e n try

pointer set to the s c r a t c h /d l directory on th a t disk.

In C hapter 3, we show th a t the m alleability introduced by binding is resolved by using

inform ation stored at the superblock. A “real” m ount location for a file system points to a

v f sm o u n t/d en try pair, which together specify a single location in the file system tree. We

refer the real m ount location of a file system as the “real parent” of the root of the m ounted

file system ’s root directory. W hen using m ultiple namespaces, the real m ount location for

a file system may point to a vfsmount not in the current process’ namespace. At first

glance th is feature seems safe to ignore. However, it becomes dangerous when processes

exit and namespaces are destroyed. The following scenario is not handled by the current

D TE im plem entation:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 9. IM PLEM ENTATIO N EXTEN SIO N S 152

0: P ro c e s s 1 P ro c e ss 2

1: f o r k (c lo n e , . . .)

2 : (b e g in u n d er new nam espace)

3: mount /d ev /h d a 3 /m n t/b

4: e x i t

5: I s /m n t/b

At line 5, the lookup of /m n t/b will cause the kernel to dereference the real parent

v f smount for /m n t/b , which existed under the namespace for process 2. Since this names

pace no longer exists, the reference is invalid.

9.1.2 So lu tion

The problem introduced by per-process namespaces could be dealt w ith in several ways.

We will m ention two. The first is to ensure th a t all real parent v f smount structures are

located in the original namespace, and th a t this namespace is never deleted. The second,

simpler solution would be to increase the namespace usage counter each tim e one of its

v f smounts is referenced by a superblock’s real parent pointer. This prevents the namespace

being deleted until all such superblocks are freed.

Both of these solutions perm it the crossing of namespaces during a d te_d_path call,

which is the only function using the real parent pointers. However, since throughout all

m ount activity, D TE m aintains inform ation perm itting it to recall the original tree struc

ture, as described in Section 3.3, this will cause no ill effects. The additional code required

to cope w ith namespaces is shown in Figures 9.1 through 9.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 9. IM PLEM ENTATION EXTENSIONS 153

F ile : s e c u r ity /d te /r e a d _ p o l ic y .c
B eginning a t l i n e : 1543

in t r ea d _ d te_ co n fig (v o id)
{

s tr u c t d te _ fd a ta s ta t ;
char *c;
in t l in e = 0;
in t err = 0;

/* i n i t i a l i z a t i o n o f v a r ia b le s and memcaches * /
num_dte_domains = 0;

+ d te_root_n s = current->nam espace;
+ atom ic_inc(& nam espace->count);
+ d te_root_d en try = d g e t (c u r r e n t-> fs -> r o o t) ;
+ dte_root_m nt = m n tg et(cu rren t-> fs-> ro o tm n t);

dte_dom ains = kmalloc(8192,GFP_KERNEL);
dte_type_cache = km em _cache_create("dte_type_nam es",4096,

0 , 0 , NULL,NULL);
dte_path_cache = kmem_cache_create("dte_path_nam es",4096,

0 , 0 , NULL,NULL);

Figure 9.1: Modification to DTE setup to store root namespace and prevent its unloading.

9.2 Accom m odating proc

The policy analysis sections (Sections 6 and 8) dem onstrated th a t in order to allow powerful

constructs such as CDIs and assured pipelines, it m ust be possible to segment domains. This

means th a t they are not forced to read and w rite types which other domains may access.

There is nothing inherent in Unix systems to prevent this. Executables to be run by a

segmented dom ain may be compiled statically, elim inating the need to access shared library

types, and may access their own private /tm p directories. Likewise access to devices need

only be carefully planned in advance. However, Linux does make it impossible to segment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. IM PLEM ENTATION EXTENSIONS 154

F i l e : s e c u r i ty /d te /m o u n t . c
B eg inn ing a t l i n e r 188

/* This fu n c tio n lo o k s a pathname up much as th e p la in path_lookup,
but always s t a r t s from th e root d ir e c to r y o f th e roo t namespace * /

in t d te_path _looku p(con st char *name, unsigned in t f l a g s ,
s tr u c t nam eidata *nd)

{
n d -> la st_ ty p e = L A ST _R 00T ; /* i f th ere are on ly s l a s h e s . . . * /
n d -> fla g s = f la g s ;
sp in _ lock (& d cach e_ lock);

/* Because o f how we are c a l le d , th e pathname must
* always be a b s o lu te ! * /

nd->mnt = d te_root_m nt;
nd->dentry = d te_ ro o t_ d en try ;
nd->old_mnt = NULL;
nd->old_dentry = NULL;
c u r r en t-> to ta l_ lin k _ c o u n t = 0;
retu rn link_path_w alk(nam e, n d);

Figure 9.2: New DTE function to descend pathname using root namespace.

a dom ain using purely sta tic policies. The problem is th a t domains m ust have access to

files under /p ro c , the pathnam es to which cannot be predicted. If a process running under

dom ain u se r_ d has process id (p id) , then its p ro c files will be located under the directory

/ p r o c / (p i d) / .

The only way to handle th is using purely static policies is to assign a common type

to /p ro c , which all dom ains may read and write. However, the introduction of the BLP

relation (see Section 7.2) on types will expose the problems this introduces. In brief, it

provides a venue for dom ains to leak secret inform ation to each other, as well as a source

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. IM PLEM ENTATION EXTENSIONS 155

F i l e : se c u r ity /d te /m o u n t . c
(. . . c o n t in u e d .. .)

vo id h ie r a r c h ic a l_ s e tu p (s tr u c t vfsmount *mnt)
{

C . . .]
/* Now g e t an nd s tr u c t fo r th e g iven pathname.

* Note we do so u s in g th e roo t o f th e root namespace
r e tv a l = d te_path _looku p(r-> path ,

L00KUP_F0LL0W|L00KUP_DIRECT0RY,
&nd2);

[. . .]
i f (r e tv a l) {

[Log error m essage]
} e l s e i f (nd2.mnt != mnt) {

[Log th e pretend mount]
/* Now we hook th e pretend pathname - w hich, aga in ,

* came from th e ro o t namespace * /
sb_sec->m nt_parent = m ntget(nd2.m nt);
sb_sec->m ountpoint = d g et(n d 2 . d e n tr y);
d te_cop y_ in o_sec(n d 2 .d en try -> d _ in od e, m nt->m nt_root->d_inode);
p ath _re lease(& n d 2);
r e tu r n ;

>

[. . .]
>

Figure 9.3: Modification to DTE hierarchical mount information setup.

of inform ation w ith which to corrupt high integrity data. 1

Most DTE-like im plem entations take a much more dynamic approach to type-nam e

binding th an our im plem entation. Once a file system has been initialized using the type

assignm ent rules of some policy, any files subsequently created are assigned typenam es

based upon the dom ain creating the file. Conceptually, this greatly complicates the state

of a system after it has run for some time. One cannot actually predict the type which is

!For instance, the data for a Trojan horse replacement for a critical binary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 9. IMPLEMENTATION EXTENSIONS 156

assigned to a file except im m ediately after system initialization. 2 However, for the p ro c

file system, th is approach provides a na tu ra l solution.

We are not willing to give up the clarity of static type-nam e binding which our imple

m entation of D TE uses for perm anent file systems. However, for one-time file systems, the

more dynam ic approach may often be the right one. Of course, since we currently see a case

where an alternative is useful for a one-time file system, we cannot predict th a t we will not

find such a case for a persistent file system. We therefore propose the following non-trivial

enhancem ent to our im plem entation of DTE.

All dom ains will be associated w ith a default type, as is the case in o ther DTE-like

systems. In most cases this will be ignored, and type assignment will continue to be based

upon pathnam es. However, a new form of m ounting restriction will be allowed. In ad

dition to specifying “pretend” m ounting pathnam es by device, as well as m ount location

restrictions, policies will be able to specify statem ents of the form

r e s t r i c t [maj] [min] u se_ d efa u lt_ d o m a in _ ty p e

or

r e s t r i c t f s ty p e u se_ d efa u lt_ d o m a in _ ty p e

For instance, specifying

r e s t r i c t p ro c u se _ d e fau lt_ d o m ain _ ty p e

will give us our desired result.

2Note that this is not system boot. System initialization is a one-time event.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 9. IMPLEMENTATION EXTENSIO NS 157

It m ust be noted th a t the p roc deficiency is mainly one of analysis. Actually using

/p ro c to directly leak inform ation is infeasible, as no process is allowed w rite access under

/ p r o c / (p i d) . Therefore /p ro c could a t best be used as a sublim inal channel [42].

9.3 Providing Network Security

Most existing T E and D TE im plem entations have extended their protections by sending

dom ain and type inform ation along w ith each network packet. We now consider in greater

detail the justifications for doing so.

9.3.1 Security

In Section 3.2.5, we claim th a t extending D TE protection to network packets is not very

helpful. Consider a dom ain name server. We m ight wish to assign some type, such as

auth_dns_t, to all DNS query responses. This type name would indicate th a t the source

of the packet was in fact a valid DNS server. In th is way, any packets not of this type

could be considered unsafe. However, subsequently claiming th a t packets which are of this

type are safe, would be fallacious. Simply typing network packets does not provide any

additional security. Forging th is inform ation is no more complicated th an forging a packet

to come from a different host, which would still be required were we not using D TE over

the network.

In order to make the D TE type inform ation worthwhile, it m ust be authenticated using

a public key cryptosystem . 3 An example protocol is shown in Figure 9.4. This protocol

aims to au thenticate the server, bu t takes no steps to authenticate the client to the server.

3No existing implementation of TE or DTE has gone to this effort.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. IMPLEMENTATION EXTENSIO NS 158

We assume th a t dispensing DNS inform ation does not violate any security policy. The DNS

server possesses private key P R , and all clients have access to its corresponding public key

PU. We use E p r to indicate public key encryption, D p u to indicate public key decryption,

and Ck to indicate sym m etric key encryption and decryption. Q is the DNS query.

Im plem enting th is protocol a t the kernel level would greatly complicate the D TE code,

bu t would be worthwhile if it in fact provided additional security. In fact, there is no doubt

th a t this protocol in itself provides a great deal of security. However, integrating D TE into

th is protocol gains us nothing. The addition of the auth_dns_t field into the responses by

the DNS server provides no security beyond th a t afforded by the protocol itself. Therefore,

the protocol m ight as well be im plem ented a t the application level, or outside the D TE

subsystem a t the kernel level. The private key P R should, of course, be protected using

D TE such th a t no service running on the DNS server, except the DNS service itself, is

allowed to read, or modify the key. Now the key verifies th a t the DNS server is not being

spoofed, and nothing bu t a compromised named itself could compromise the key. O f course,

if named is compromised, nothing can be done, so th is service also m ust be protected using

DTE.

We have ju st shown th a t D TE cannot protect a client from a malicious server. Likewise,

D TE cannot protect a server from a malicious client. An obvious example is an NFS server

which exports file types along w ith the file system. W hile a friendly and DTE-aware system

may respect the type assignments, a malicious client will simply ignore th is inform ation and

freely publicize top secret data.

Finally, extending D TE over the network makes the synchronization of policies through

out the network far more im portant. For instance, an NFS server might export a file of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 9. IM PLEM ENTATION EXTENSIONS 159

type sb in _ t. It would seem prudent for the server to deny root write access to th is type,

which generally contains more im portant, and less frequently updated, types th an b in _ t.

However, if any client is configured to perm it root w rite access to sb in _ t, perhaps for the

sake of convenience, then the server’s policy is im m ediately compromised. Provided th a t

D TE control of networking does become a reality, policy synchronization may become an

interesting new area of research, as the question of authenticating the source of updates,

and minimizing the requisite tru s t placed in the subsystem performing the updates, appears

quite complicated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 9. IMPLEM ENTATION EXTENSIONS

Step DNS Server DNS client

1 Create nonce R

2 P\ = E Kp r (R, 1, ”auth_dns_t”)

3 Send P i Receive P i

4 { R , X , T) = D Kpu(P)

5 Break unless T = ”auth_dns_t” and X = 1

6 P2 = Cr (Q, 2)

7 Receive P 2 Send P 2

8 (Q , X , 2) = C r (P2)

9 Break unless X = 2

1 0 Calculate response as V

11 P 3 = C r (V, 3, ”auth_dns_t”)

1 2 Send P 3 Receive P 3

13 (V , X , T) = C R(P3)

14 Break unless T = ” auth_dns_t” and X = 3

15 Use V

Figure 9.4: Protocol to provide server authentication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. IM PLEM ENTATION EXTENSIONS 161

9 .3 .2 C onvenience

We have shown above th a t using D TE to protect network d a ta is not justified. O f course,

there rem ains the possibility th a t DTE-controlled networking provides convenience. D TE

would append two pieces of inform ation to each network packet. The first is the type of the

data , however th a t is determ ined. The second is the dom ain of the process which generated

the data.

For many system services, these provide no additional information. Some services pro

vide only one type of data , which is uniquely identified by the po rt over which the service

is accessed. Examples include n tp d , which provides clock synchronization information, and

f in g e rd , which provides user information.

The example which TIS provided of a useful feature supported by the D TE control of

networking is for exporting D TE types along w ith files from a NFS server. In this section

we discuss m ethods of integrating D TE and NFS.

9.3.2.1 Static Type Assignment

NFS can, of course, be used w ith our D TE prototype w ithout any further extension. The

sim plest, and perhaps safest, m ethod of doing so would be to assign an untrusted type,

e x te r n a l_ t , to a pa th / n f s , under which all file systems im ported over NFS are mounted.

T he NFS server can be set up so as to prevent modification of files, while the client forbids

execution of NFS-m ounted files.

This protocol is not very useful. Files served by NFS need to appear to be a more natu ral

p a rt of the client file system. W ith a little planning, however, static type assignment

to local pathnam es can be used provide adequate support for NFS. For instance, if we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 9. IMPLEMENTATION EXTENSIONS 162

were to im port s e r v e r : / e x p o r t / u s r / l o c a l under / n f s / u s r / l o c a l , we could assign an

appropriate type, be th a t b in _ t or n fs_ b in _ t, while another file system from the same

server, s e rv e r : /e x p o r t /h o m e could be m ounted under /n fs /h o m e 2 , and again assigned an

appropriate type. This simple and obvious solution should in fact be sufficient, since NFS

setups are in most cases very static. A file server may export some binaries in order to

save space on clients, and some /home and d a ta directory trees in order bo th to facilitate

centralized backups, and to allow users access to their da ta from any client. Once the

exports are in place, they rarely change, unless the file server itself undergoes a significant

change as well, such as the installation of a new disk.

9.3.2.2 Server-Directed Type Assignment

TIS was not satisfied w ith th is setup. They wanted to grant the NFS server the ability to

export typenam es along w ith files. In th is way, an adm inistrator could decide th a t a new

directory, s e rv e r : / e x p o r t / u s r / l o c a l / s b i n , should be assigned n fs_ sb in _ t, and make

the change only once, a t the server. Perhaps more convincing, types created by users under

s e rv e r : /e x p o r t /h o m e would be exported under the appropriate type. TIS therefore typed

all network packets, and created a DTE-aware NFS client which used this inform ation to

assign types to NFS files. In addition, it used the source dom ain a ttrib u te to file write

requests from NFS clients in order to authenticate NFS writes. If we wish to provide this

functionality, we have two options. F irst, we can, as TIS did, extend D TE functionality

into the kernel networking code. Second, we can modify the NFS server and client code to

provide this functionality w ith less additional kernel support.

The im plem entation which we propose will alter the NFS protocol to explicitly export

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 9. IMPLEMENTATION EXTENSIO NS 163

the type of a file along w ith a file itself. The NFS server now requires no expansion of D TE

controls. The n f s d daemon is modified to add an i n t d te_ type field to the n f s _ f a t t r

structure, which we append at the end of the f s /n f s d /n f sx d r . c :e n c o d e j f a t t r function,

and decode at the end of the f s /n f s /n f s 2 x d r . c :x d r .decode J a t t r function. The NFS

client sim ply copies the d te_ type field from the svc_f h structure into the LSM inode security

field. These extensions are shown in Figures 9.5 through 9.8. In addition, a t the s ta rt of the

NFS m ount, the server and client m ust agree on an index to typenam e conversion, which

of course predisposes agreement on a set of typenames.

As a further extension of the n f s d daemon, it could be perm itted to set types exported

to clients differently th an those on the server. For instance, the directory served from

s e r v e r : /ex p o rt/h o m e may be labeled e x p o rt_ t a t the server, bu t home_t a t the client.

Since clients and servers frequently view the same file system differently, th is should be a

very useful feature.

The adm inistrative convenience afforded by this architecture can be combined with

increased security by using a two-way version of the public key cryptography protocol

described in Figure 9.4. In th a t case the NFS server can refuse to serve any files, or only

files of certain types, based upon the client’s key, or lack thereof, and clients can be assured

of the authenticity of the da ta they are served. Additionally, since adding the d te .ty p e

field to the svc_fh field am ounts to a fundam ental NFS incompatibility, the server m ust

fall back to the standard protocol if it is to be allowed to serve non-DTE clients. This was

not a problem for TIS, as they utilized the IP options field to share type information, which

non-D TE machines would simply ignore. 4

4This is not quite true, as some operating systems crashed when presented with nonstandard IP options.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. IMPLEMENTATION EXTENSIO NS 164

We have proposed an alternative architecture for NFS servers to share type inform ation

with DTE-aware clients. We argue in its favor on account of the simpler im plem entation -

only a few lines of kernel code need be changed. However, T IS ’ solution is more general.

Should there in fact tu rn out to be many services which benefit from the sharing of D TE

types, then T IS ’ solution will be more appropriate. We, however, do not believe this to be

the case, and feel th a t D TE is b e tte r used to protect binaries, libraries, and cryptographic

keys, th an to directly protect network protocols itself.

9.4 Conclusion

This chapter presented extensions to, and uses of, the D TE m odule whose im plem entation

we feel would significantly enhance the m odule’s usefulness. These extensions have not yet

been implem ented, b u t are considered a fruitful area of future work.

DTE network servers therefore did not send DTE information to such hosts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 9. IM PLEM ENTATION EXTENSIONS

F ile : f s /n f s d /n f s x d r . c
B eginning a t l in e : 134

s t a t i c in l in e u32 *
e n c o d e _ fa ttr (s tr u c t sv c_ rq st *rq stp , u32 *p, s tr u c t svc_fh *fhp)

[. . .]

i f (rq stp -> rq _ reffh -> fh _ v ers io n == 1
&& r q stp -> r q _ r e ffh -> fh _ fs id _ ty p e == 1
&& (fh p -> fh _ ex p o rt-> ex _ fla g s & NFSEXP_FSID))
*p++ = h to n l((u 3 2) fh p -> fh _ e x p o r t-> e x _ fs id);

e ls e
*p++ = h to n l((u 3 2) s ta t .d e v) ;
*p++ = h to n l((u 3 2) s t a t . i n o) ;
sb_sec = (s tr u c t d te_ in od e_sec) s ta t .d e n tr y -> in o d e -> i_ se c u r ity ;
*p++ = h to n l((u 3 2) s b _ se c -> e ty p e);
*p++ = h to n l((u 3 2) sb _ se c -> u ty p e);
*p++ = h to n l((u 3 2) s ta t .a t im e) ;
*p++ = 0;
*p++ = h to n l((u 3 2) lea se_get_m tim e(d en try -> d _ in od e));
*p++ = 0;
*p++ = h to n l((u 3 2) s ta t .c t im e) ;
*p++ = 0;

retu rn p;

Figure 9.5: The code to export DTE types from NFS server.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. IM PLEM ENTATION EXTENSIONS

F ile : f s /n f s /n f s 2 x d r . c
B eginning a t l i n e : 98

s t a t i c u32 *
xdr_d ecod e_fattr(u 32 *p, s tr u c t n f s _ f a t t r * f a t t r)
{

[. . .]
fa t t r -> d u .n fs 2 .b lo c k s iz e = n toh l(*p + +);
fa ttr -> r d e v = n toh l(*p + +);
fa t tr -> d u .n fs 2 .b lo c k s = n toh l(*p + +);
f a t t r - > f s id = n toh l(*p + +);
f a t t r - > f i l e i d = n to h l(* p + +);

+ fa t tr -> e ty p e = n toh l(*p + +);
+ fa ttr -> u ty p e = n toh l(*p + +);

p = xdr_decode_tim e(p , & fa ttr -> a tim e);
p = xdr_decode_tim e(p , & fattr->m tim e);
p = xdr_decode_tim e(p , & fa ttr -> c tim e);
f a t t r -> v a l id |= NFS_ATTR_FATTR;
i f (fa t tr -> ty p e == NFCHR && fa ttr -> r d e v == NFS2_FIF0_DEV) {

fa t tr -> ty p e = NFFIFO;
fattr->m ode = (fattr->m ode & ~S_IFMT) I S_IFIF0;
fa ttr -> r d e v = 0;

}
retu rn p;

>

Figure 9.6: Code to import DTE types into NFS client from the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. IM PLEM ENTATION EXTENSIONS

F ile : f s / n f s / i n o d e . c
B eginning at l in e : 645

/ *
* Look up th e inode by super b lock and f a t t r - > f i l e i d .
* /

s t a t i c s tr u c t inode *
 n f s _ fh g e t (s tr u c t super_block *sb , s tr u c t n fs_ fh * fh ,

s tr u c t n f s _ f a t t r * f a t t r)
{

C . . .]

i f (in o d e -> i_ s ta te & I_NEW) {

[. . .]

in o d e -> i_ s iz e = n ew _ is ize ;
inode->i_m ode = fattr->m ode;
in o d e -> i_ n lin k = fa t tr -> n lin k ;
in o d e-> i_ u id = fa t tr -> u id ;
in o d e -> i_ g id = fa t tr -> g id ;

+ i_ s e c = (s tr u c t d te_ in od e_sec *) in o d e -> i_ se c u r ity ;
+ i_ se c -> e ty p e = n fs_ co n v _ d te ty p e(sb , f a t t r - > e t y p e) ;
+ i_ sec -> u ty p e = n fs_ co n v _ d te ty p e(sb , f a t t r -> u t y p e) ;

} e ls e
[. . .]

n fs_ r e fr e sh _ in o d e (in o d e , f a t t r) ;

[. . .]
o u t :
retu rn inode;

out_no_inode:
p r in tk (" n fs_ fh g e t: ig e t f a i le d \n ") ;
goto out;

>

Figure 9.7: NFS client code to copy DTE types into inodes at first read.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 9. IMPLEMENTATION EXTENSIONS

F ile : f s / n f s / i n o d e . c
Beginning a t l i n e : 997

in t
 n fs_ r e fr e sh _ in o d e (s tr u c t inode * in od e, s tr u c t n f s _ f a t t r * fa t t r)
{

[. . .]

inode->i_m ode = fattr->m ode;
in o d e -> i_ n lin k = fa t tr -> n lin k ;
in o d e-> i_ u id = fa t tr -> u id ;
in o d e -> i_ g id = fa t t r -> g id ;

+ i_ s e c = (s tr u c t d te_ in od e_sec *) in o d e -> i_ s e c u r ity ;
+ i_ se c -> e ty p e = n fs_ co n v _ d te ty p e (sb , f a t t r - > e t y p e) ;
+ i_ sec -> u ty p e = n fs_ co n v _ d te ty p e (sb , f a t t r -> u ty p e) ;

i f (fa t t r - > v a l id & NFS_ATTE_FATTR_V3) {
/ *

* rep ort th e b lock s in 512byte u n its
* /

in o d e-> i_ b lo ck s = n fs _ c a lc _ b lo c k _ s iz e (fa t tr -> d u .n fs 3 .u s e d) ;
in o d e -> i_ b lk s iz e = in o d e -> i_ sb -> s_ b lo c k s iz e ;

C . . .]

Figure 9.8: NFS client code to insert DTE types into inodes on refresh.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 10

Conclusion

This work has presented an efficient, non intrusive im plem entation of Domain and Type

Enforcement for the Linux kernel. I t also presented user-level tools for the creation, analysis,

and m aintenance of D TE policies.

Parallel to th is effort, a few other projects have also implemented various security ex

tensions and m andatory access control system s for Linux. The most popular of these is the

National Security A dm inistration (NSA)’s SELinux. At the moment, SELinux supports

Type Enforcement, on which D TE was based, as well as RBAC. Its RBAC im plem entation,

however, is designed as a bridge between the Unix user concept, and T E domains. Most

SELinux work is taking two forms. F irst, the security m odule itself is continually being

improved. As it benefits from NSA employees being paid for working on SELinux full time,

it has consistently been fastest out of all LSM m odules to keep up w ith changes to the Linux

kernel. Second, much work is being done to develop useful SELinux policies. Note th a t this

is distinct from the work presented here. We provide tools and processes for analyzing and

building policies. The SELinux project, w ithout the benefit of such tools, is a ttem pting

to develop policies which bo th secure a Linux system, and minimize user im pact. In other

words, the work presented here should benefit the SELinux policy developers.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 10. CONCLUSION 170

Clearly, a useful next step for this project would be to join efforts w ith the SELinux

community. Extending the D TE Policy Composer (dpc) to ou tpu t bo th D TE and SELinux

T E policies should be straightforward. Further modifications to support SELinux RBAC

could easily be implem ented as a post-processing filter, such as dpc’s “patch” . We would

also like to consider merging the two, such th a t a m odule can specify bo th T E and RBAC

rules.

Another direction in which we plan to take th is work, is to study and implement more

peps for dpc. A pep can implement any type of algorithm which involves attaching infor

m ation to a type or dom ain in a m odule definition, and using this information to observe

and record properties before and after all subsequent m odule applications. The pep could

therefore enforce m aintenance of powerful access control policies such as assured pipelines,

or the modified BLP which our pep enforces. It can also enforce arb itrary assertions, such

as “No dom ain which may read type a_t, should ever be allowed to reach dom ain b_d.”

Further possibilities should emerge as we continue to study properties of bo th safe and

unsafe policies.

Despite adapting our tools to work w ith SELinux policies, the D TE kernel m odule will

continue to be m aintained. There are several reasons for this. F irst, we feel the D TE module,

by using hierarchical assignment rules and not typing network packets, is a lightweight LSM

m odule ideal for use in many situations. Second, as the LSM project is not yet complete,

it will benefit from the availability of several modules. This availability will continue to

dem onstrate the value of LSM to critics, as well as help to keep LSM true to its goal of

providing generic support for m ultiple policies.

We would also like to complete im plem entation of the extensions listed in C hapter 9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 10. CONCLUSION 171

Addressing the problem of namespaces will soon not be optional. Providing additional

m ethods for specifying file-type resolution will greatly extend the usefulness of DTE. Finally,

we would like to im plem ent the protocol shown in Figure 9.4. Following the example of

the key server provided by P lan 9 [12], the service would be provided to local servers

over a pseudo file system. It would also be loaded as a separate kernel module, for two

im portant reasons. F irst, it allows us to keep im plem entations of complicated secret and

public key cryptographic functions outside the D TE module. Second, as flaws are found

in the im plem entation, or even the protocol itself, addressing these flaws will not require

distribution of a whole new D TE module. This extension would not be required to protect

a stand-alone system using D TE, and such a system should therefore not be slowed down

or complicated by the extensions, nor be forced to upgrade due to flaws in the extension.

A more dangerous, b u t promising, endeavor would be to enhance the D TE kernel module

such th a t it can process peps. A D TE policy could load a set of peps a t boot tim e, and

perm it application of m odules which do not violate the pep at run-tim e. This would be

similar to T IS ’ run-tim e dynam ic policy modification, bu t w ith several advantages. The

use of arb itra ry peps would enhance b o th its power and usefulness. The use of modules,

ra ther th an policy excerpts, would encourage the application of complete, well thought out

modules, ra ther th an the piecemeal application of policy rules. Finally, as a m odule is

considered one entity, its application or refusal would be one atom ic action. The question

of whether a subset of the subm itted rules should be retained if another rule is rejected is

moot.

As the num ber of people using the internet for financial transactions, email, and enter

tainm ent purposes continues to increase, com puter security is becoming a common topic of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 10. CONCLUSION 172

m ainstream media. As a result, most people are aware of the inadequate security offered

by current operating systems. In th is work we presented bo th a m odule which significantly

enhances the security of the Linux operating system, and tools aimed at simplifying its

configuration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

D TE Policy, M odules, and PC P

Listings

A .l Sample DTE Policies

A .1.1 B ase P o licy

ty p es b ase_ t b in _ t b oo t_ t co n f_ t dev_t d isk _ t g e tty _ x t i n i t _ t \
l ib _ t lo g _ t lo g in _ e t mnt_t o s h e l l_ t package_t proc_t r o o t_ t sb in _ t \
s h e l l_ t tmp_t t t y _ t u se r _ t varrun_t wdev_t

domains boot_d daemon_d lo g in _ d root_d user_d
d e fa u lt_ d boot_d

d e fa u lt_ e t b ase_t
d e fa u lt_ u t b ase_t

spec_domain boot_d (0) (17 rx ld -> b a se_ t rx ld -> b in _ t rw xlcd->boot_t \
rw xlcd ->conf_t rw xlcd->dev_t r x ld -> in it _ t r w x lcd -> lib _ t rw xlcd -> log_t \
rwxlcd->m nt_t r x ld -> o s h e ll_ t rw xlcd->proc_t r x ld -> sb in _ t r x ld -> s h e l l_ t \
rwxlcd->tm p_t r w lc d -> tty _ t rw xlcd->varrun_t rwlcd->wdev_t) \

(2 auto->daemon_d au to -> log in _d) (1 0->0)
spec_domain daemon_d (1 g e tty _ x t) (18 r ld -> b a se_ t \

rx ld -> b in _ t r x ld -> co n f_ t rx lcd -> d ev _ t r x ld -> g e tty _ x t r x ld -> l ib _ t \
ra x ld -> lo g _ t rwxlcd->m nt_t r x ld -> o s h e ll_ t rx ld ->package_t \
rw xlcd->proc_t r x ld -> sb in _ t r x ld -> s h e l l_ t rwxlcd->tm p_t r w lc d -> tty _ t \
r ld -> u se r _ t rw xlcd->varrun_t rwlcd->wdev_t) (1 au to -> log in _d) (1 0->0)

spec_domain lo g in _ d (1 lo g in _ e t) \
(16 r ld -> b a se_ t rx ld -> b in _ t r ld -> c o n f_ t r x ld -> lib _ t rw xlcd -> log_t \
r x -> lo g in _ e t r x -> o s h e ll_ t rw xlcd->proc_t r ld -> r o o t_ t r x ld -> sb in _ t \

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX A. D TE POLICY, MODULES, AND PCP LISTINGS 174

r x -> s h e l l_ t rwxlcd->tm p_t r w lc d -> tty _ t r ld -> u se r _ t rw xlcd->varrun_t \
rw lcd->w dev_t) (2 exec-> root_d exec-> user_d) (1 0->0)

spec_domain root_d (1 s h e l l_ t) \
(19 r ld -> b a se _ t rw xlcd->b in_t rw xlcd -> conf_t rw xlcd->dev_t r x ld -> d isk _ t \
rw x lc d -> lib _ t rw xlcd -> log_t rwxlcd->m nt_t rw x lc d -> o sh e ll_ t \
rw xlcd->package_t rw xlcd->proc_t rw xlcd -> root_t r x ld -> sb in _ t \
r x -> s h e l l_ t rwxlcd->tm p_t r w lc d -> tty _ t rw xlcd->user_t rw xlcd->varrun_t \
rwlcd->w dev_t) (1 au to -> log in _d) (1 0->0)

spec_domain user_d (2 s h e l l_ t o s h e l l_ t) (16 r ld -> b a se_ t rx ld -> b in _ t \
r x ld -> c o n f_ t r ld -> d ev_ t r x ld -> l ib _ t rwxlcd->m nt_t r x -> o s h e ll_ t \
rxld ->package_t rw xlcd->proc_t r x ld -> sb in _ t r x -> s h e ll_ t rwxlcd->tm p_t \
r w lc d -> tty _ t rw xlcd ->u ser_t rw xlcd->varrun_t rwlcd->wdev_t) \

(1 auto-> login_d) (2 14->0 17->0)

a ss ig n -e b in _ t /b in
a s s ig n -e o s h e l l_ t /b in /a s h
a s s ig n -e o s h e l l_ t /b in /b a sh
a ss ig n -e o s h e l l_ t /b in /c s h
a ss ig n - e o s h e l l_ t /b in /s h
a s s ig n -e o s h e l l_ t /b in / t c s h
a s s ig n -e s h e l l_ t / s b in /s h
a s s ig n -e lo g in _ e t / s b in / lo g in
a s s ig n -e b oo t_ t /b o o t
a s s ig n -e dev_t /d ev
a s s ig n -e t t y _ t /d e v /t ty d ir
a s s ig n -e wdev_t /dev/w devs
a s s ig n -e con f_ t / e t c
a s s ig n -e l ib _ t / l i b
a s s ig n -e lo g _ t / lo g
a s s ig n -e d isk _ t /lo s t+ fo u n d
a ss ig n -e mnt_t /rant
a s s ig n -e package_t /o p t
a ss ig n -e p roc_t /p roc
a ss ig n -e r o o t_ t /r o o t
a s s ig n -e sb in _ t /s b in
a s s ig n -e i n i t _ t / s b i n / i n i t
a s s ig n -e g e tty _ x t /sb in /m in g e tty
a s s ig n -e tmp_t /tmp
a s s ig n -e b in _ t /u s r /b in
a s s ig n -e l ib _ t /u s r / i4 8 6 - l in u x - l ib c 5
a s s ig n -e l ib _ t / u s r / l i b
a s s ig n -e l ib _ t /u s r / l ib e x e c
a s s ig n -e sb in _ t /u s r /s b in
a s s ig n -e tmp_t /u sr/tm p
a s s ig n -e l ib _ t / v a r / l i b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX A. D TE POLICY, MODULES, AND PCP LISTINGS

a s s ig n - e lo g _ t /v a r / lo g
a s s ig n - e package_t /v a r /o p t
a s s ig n - e varrun_t /v a r /r u n
a ss ig n - e tmp_t /var/tm p
a ss ig n -u b in _ t /b in
a s s ig n -u b o o t_ t /b oo t
a s s ig n -u dev_t /d ev
a s s ig n -u t t y _ t /d e v /t ty d ir
a s s ig n -u wdev_t /dev/w devs
a ss ig n -u con f_ t / e t c
a ss ig n -u i n i t _ t / e t c / r c .d
a ss ig n -u u se r _ t /home
a ss ig n -u l ib _ t / l i b
a ss ig n -u lo g _ t / lo g
a ss ig n -u d isk _ t /lo s t+ fo u n d
a ss ig n -u mnt_t /mnt
a ss ig n -u package_t /o p t
a ss ig n -u proc_t /p roc
a ss ig n -u r o o t_ t /r o o t
a ss ig n -u sb in _ t / s b in
a ss ig n -u tmp_t /tmp
a ss ig n -u b in _ t /u s r /b in
a ss ig n -u l ib _ t /u s r / i4 8 6 - l in u x - l ib c 5
a s s ig n -u l ib _ t / u s r / l i b
a ss ig n -u l ib _ t /u s r / l ib e x e c
a ss ig n -u sb in _ t /u s r /s b in
a ss ig n -u tmp_t /u sr/tm p
a ss ig n -u l ib _ t / v a r / l i b
a ss ig n -u lo g _ t /v a r / lo g
a ss ig n -u package_t /v a r /o p t
a ss ig n -u varrun_t /v a r /r u n
a ss ig n -u tmp_t /var/tm p

A . 1.2 Passw ord P o licy

typ es b ase_ t b in _ t b oo t_ t con f_ t dev_t d isk _ t g e tty _ x t i n i t _ t \
l ib _ t lo g _ t lo g in _ e t mnt_t o s h e ll_ t package_t proc_t r o o t_ t sb in _ t \
s h e l l_ t tmp_t t t y _ t u ser_ t varrun_t wdev_t passw_et passw_t shadow_t

domains boot_d daemon_d lo g in _ d root_d user_d passw_d
d e fa u lt_ d boot_d

d e fa u lt_ e t b ase_t
d e fa u lt_ u t b ase_ t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. D TE POLICY, MODULES, AND PCP LISTINGS 176

spec_domain boot_d (0) (17 rx ld -> b a se_ t rx ld -> b in _ t rw xlcd->boot_t \
rw xlcd -> conf_t rw xlcd->dev_t r x ld -> in it _ t r w x lcd -> lib _ t rw xlcd -> log_t \
rwxlcd->m nt_t r x ld -> o s h e ll_ t rw xlcd->proc_t r x ld -> sb in _ t r x ld -> s h e l l_ t \
rwxlcd->tm p_t r w lc d -> tty _ t rw xlcd->varrun_t rwlcd->wdev_t) \

(2 auto->daemon_d au to -> log in _d) (1 0->0)
spec_domain daemon_d (1 g e tty _ x t) (18 r ld -> b a se _ t \

r x ld -> b in _ t rx ld -> c o n f_ t rx lcd -> d ev_ t r x ld -> g e tty _ x t r x ld -> lib _ t \
r a x ld -> lo g _ t rwxlcd->m nt_t r x ld -> o s h e ll_ t rx ld ->package_t \
rw xlcd->proc_t r x ld -> sb in _ t r x ld -> s h e l l_ t rwxlcd->tm p_t r w lc d -> tty _ t \
r ld -> u se r _ t rw xlcd->varrun_t rwlcd->w dev_t) (1 au to -> log in _d) (1 0->0)

spec_domain lo g in _ d (1 lo g in _ e t) \
(18 r ld -> b a se _ t rx ld -> b in _ t r ld -> c o n f_ t r x ld -> l ib _ t rw xlcd -> log_t \
r x -> lo g in _ e t r x -> o s h e ll_ t rw xlcd->proc_t r ld -> r o o t_ t r x ld -> sb in _ t \
r x -> s h e l l_ t rwxlcd->tm p_t rw lc d -> tty _ t r ld -> u se r _ t rw xlcd->varrun_t \
rwlcd->wdev_t r->shadow_t r->passw _t) (2 exec-> root_d exec->user_d) \

(1 0- > 0)
spec_domain root_d (1 s h e l l_ t) \

(21 r ld -> b a se _ t rw xlcd->b in_t rw xlcd ->conf_t rw xlcd->dev_t r x ld -> d isk _ t \
r w x lc d -> lib _ t rw xlcd -> log_t rwxlcd->m nt_t rw x lc d -> o sh e ll_ t \
rw xlcd->package_t rw xlcd->proc_t rw xlcd -> root_t r x ld -> sb in _ t \
r x -> s h e l l_ t rwxlcd->tm p_t r w lc d -> tty _ t rw xlcd ->u ser_t rw xlcd->varrun_t \
rwlcd->wdev_t r->passw _et r->passw _t) \

(2 a u to -> log in _d auto->passw_d) (1 0->0)
spec_domain user_d (2 s h e l l_ t o s h e l l_ t) (18 r ld -> b a se_ t rx ld -> b in _ t \

r x ld -> co n f_ t r ld -> d ev _ t r x ld -> l ib _ t rwxlcd->m nt_t r x -> o s h e ll_ t \
rxld ->package_t rw xlcd->proc_t r x ld -> sb in _ t r x -> s h e l l_ t rwxlcd->tm p_t \
rw lc d -> tty _ t rw xlcd ->u ser_t rw xlcd->varrun_t rwlcd->wdev_t r->passw _et \
r->passw _t) \

(2 a u to -> lo g in _ d auto->passw_d) (2 14->0 17->0)
spec_domain passw_d (1 passw _et) (7 r ld -> b a se_ t r ld -> u se r _ t rx->passw _et \

rw lcd->passw _t rwlcd->shadow_t r ld -> l ib _ t rw lcd -> lo g _ t) \
(0) (14->0 17->0)

a ss ig n - e b in _ t /b in
a ss ig n - e o s h e l l_ t /b in /a s h
a ss ig n - e o s h e l l_ t /b in /b a sh
a ss ig n - e o s h e l l_ t /b in /c s h
a ss ig n - e o s h e l l_ t /b in /s h
a ss ig n - e o s h e l l_ t /b in / t c s h
a ss ig n - e s h e l l_ t / s b in /s h
a s s ig n -e lo g in _ e t / s b in / lo g in
a ss ig n - e b oo t_ t /b o o t
a ss ig n -e dev_t /d ev
a s s ig n - e t t y _ t /d e v /t t y d ir

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX A. D TE PO LICY , MODULES , AiVD PCP LISTINGS

a ss ig n - e wdev_t /dev/w devs
a ss ig n -e con f_ t / e t c
a ss ig n - e l ib _ t / l i b
a ss ig n - e lo g _ t / l o g
a ss ig n - e d isk _ t /lo s t+ fo u n d
a ss ig n - e mnt_t /mnt
a ss ig n - e package_t /o p t
a ss ig n - e proc_t /p roc
a ss ig n - e r o o t_ t /r o o t
a ss ig n - e sb in _ t / s b in
a ss ig n - e i n i t _ t / s b i n / i n i t
a ss ig n - e g e tty _ x t /sb in /m in g e tty
a ss ig n - e tmp_t /tmp
a ss ig n -e b in _ t /u s r /b in
a ss ig n - e l ib _ t /u s r / i4 8 6 - l in u x - l ib c 5
a ss ig n - e l ib _ t / u s r / l i b
a ss ig n -e l ib _ t /u s r / l ib e x e c
a ss ig n -e sb in _ t /u s r /s b in
a ss ig n - e tmp_t /u sr/tm p
a ss ig n -e l ib _ t / v a r / l i b
a ss ig n -e lo g _ t /v a r / lo g
a ss ig n - e package_t /v a r /o p t
a ss ig n -e varrun_t /v a r /r u n
a ss ig n - e tmp_t /var/tm p
a ss ig n -u b in _ t /b in
a ss ig n -u b oo t_ t /b o o t
a ss ig n -u dev_t /d ev
a ss ig n -u t t y _ t /d e v / t t y d ir
a ss ig n -u wdev_t /dev/w devs
a ss ig n -u con f_ t / e t c
a ss ig n -u i n i t _ t / e t c / r c .d
a ss ig n -u u se r _ t /home
a ss ig n -u l ib _ t / l i b
a ss ig n -u lo g _ t / l o g
a ss ig n -u d isk _ t /lo s t+ fo u n d
a ss ig n -u mnt_t /mnt
a ss ig n -u package_t /o p t
a ss ig n -u proc_t /p roc
a ss ig n -u r o o t_ t /r o o t
a ss ig n -u sb in _ t / s b in
a ss ig n -u tmp_t /tmp
a ss ig n -u b in _ t /u s r /b in
a ss ig n -u l ib _ t /u s r / i4 8 6 - l in u x - l ib c 5
a ss ig n -u l ib _ t / u s r / l i b
a ss ig n -u l ib _ t /u s r / l ib e x e c

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX A. D TE POLICY, MODULES, AND PCP LISTINGS

a s s ig n -u sb in _ t /u s r / s b in
a s s ig n -u tmp_t /u sr/tm p
a ss ig n -u l ib _ t / v a r / l i b
a s s ig n -u lo g _ t /v a r / lo g
a ss ig n -u package_t /v a r /o p t
a s s ig n -u varrun_t /v a r /r u n
a ss ig n -u tmp_t /var/tm p
a ss ig n -e shadow_t /pwd/shadow
a ss ig n - e passw_t /pwd/passwd /pwd/passwd.tmp /pw d /.p w d .lock
a ss ig n - e passw _et /sb in /p a ssw d

A .2 Sample DTE M odules

A .2.1 B ase M odule

Module System .Base

type b ase_t

DEFAULT.RTYPE

a b so lu te a c c ess a l l r id

a b so lu te a c c ess boot_d rx ld

end

type b in _ t

upath /b in

upath /u s r /b in

upath /u s r / lo c a l /b in

a b so lu te a c c ess a l l r x ld

a c c ess A d m in .serv ices .+ rwxlcd

end

type b oot_t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A P P E N D I X A. D T E POLICY, MODULES, A N D P C P L ISTING S

rpath /b oo t

a b so lu te a c c ess a l l none

a c c ess boot_d rwxlcd

a c c ess Adm in.kernel rw lcd

end

type con f_ t

a c c ess boot_d r x lc d

a c c ess A dm in.config rwxlcd

a b so lu te a c c ess a l l r x ld

rpath / e t c

end

type dev_t

rpath /d ev

a b so lu te a c c ess g e tty _ d r x ld

a c c ess boot_d rwxlcd

a c c ess lo g in _ d rwlcd

a c c ess Adm in.config rwxlcd

a b so lu te a c c ess a l l r id

end

type d isk _ t

a b so lu te a c c ess a l l none

a c c ess A d m in .serv ices .+ rwxlcd

rpath /lo s t+ fo u n d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX A. D TE POLICY, MODULES, AND PCP LISTINGS

end

typ e g e tty _ x t

epath /sb in /m in g e tty

a c c ess g e tty _ d rx

end

type in i t _ t

a b so lu te a c c ess boot_d r x ld

epath / s b i n / i n i t

upath / e t c / r c .d

end

type l ib _ t

a b so lu te a c c ess a l l r x ld

a c c ess boot_d rwxlcd

a c c ess A d m in .serv ices .+ rwxlcd

rpath / l i b / u s r / l i b / u s r / l o c a l / l i b /u s r / l ib e x e c / v a r / l i b

rpath /u s r / i4 8 6 - l in u x - l ib c 5

end

type lo g _ t

a c c ess boot_d rwxlcd

a c c ess g e tty _ d rax ld

a c c ess log in _d rwxlcd

a c c ess root_d rwxlcd

a c c ess Admin.+ r id

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEN D IX A. D TE POLICY, MODULES, AND PCP LISTINGS

ab so lu te a ccess a l l none

rpath / l o g

rpath / v a r / lo g

end

type lo g in _ e t

epath / b i n / l o g i n

epath / b in / s u

ab so lu te a c c ess log in _d rx

ab so lu te a c c ess a l l none

a c c ess A d m in .serv ices .+ rwxlcd

end

type o s h e l l_ t

epath /b in /a s h

epath / b in /c s h

epath / b i n / t c s h

a c c ess a l l rx

a c c e ss Admin.* rwxlcd

end

type proc_t

rpath /proc

a c c ess a l l rwxlcda

end

type r o o t_ t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A P P E N D IX A . D T E P O LIC Y , M ODULES, A N D P C P L ISTIN G S

rpath / r o o t

ab so lu te a c c es s a l l none

a c c ess root_d rwxlcd

end

type sb in _ t

rpath / s b i n / u s r / s b i n / u s r / l o c a l / s b i n

a b so lu te a c c es s a l l r x ld

a c c ess Admin.sbin rwxlcd

end

type s h e l l _ t

epath /b in /b a s h

epath /b in / s h

a c c e ss a l l rx

end

type tmp_t

a c c ess a l l rwxlcd

rpath /tmp /usr/tm p /var/tm p

end

type t t y _ t

a c c es s a l l rwlcd

rpath / d e v / t t y d ir

end

type u ser_ t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX A. D TE POLICY, MODULES, AND PCP LISTINGS

a ccess g e tty _ d r id

a ccess lo g in _ d r id

a c c ess Admin.* r id

a c c ess user_d rwxlcd

upath /home

end

type varrun_t

a ccess a l l rwxlcd

rpath /v a r /r u n

end

type wdev_t

rpath /dev/w devs

a b so lu te a c c e s s a l l rwlcd

end

domain System.boot_d

DEFAULT_DOMAIN

domain out g e tty _ d auto

s ig n a l out a l l 0

end

domain S e r v ic e .g e t ty _ d

e n t r i e s g e t ty _ x t

domain out lo g in _d auto

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX A. D TE POLICY, MODULES, AND PCP LISTING S

domain in boot_d auto

domain in A d m in .serv ices .+ exec

s ig n a l out a l l 0

end

domain S e r v ic e . lo g in _ d

e n t r i e s lo g in _ e t

domain in A d m in .serv ices .+ exec

domain in log in _d auto

domain out U s e r s .* exec

s ig n a l out a l l 0

end

domain U s e r s . root_d

e n t r i e s s h e l l _ t

domain in log in _d auto

domain out a l l none

s ig n a l out a l l 0

end

domain U sers .user_d

e n t r i e s s h e l l _ t o s h e l l _ t

domain in log in _d auto

a b so lu te domain out U s e r s .* none

s ig n a l out a l l 14,17

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AP PEN D IX A. D TE POLICY, MODULES, AND PCP LISTINGS

end

A .2.2 Passw ord M odule

Module Serv i c e .pas sword

domain passw_d

e n t r i e s passw_et

domain in U s e r s .* auto

a b so lu te domain out a l l none

type a l l none

type u ser_ t r id

s ig n a l out a l l 14,17

s ig n a l in a l l none

end

type passw_et

a b so lu te a ccess a l l r

a ccess passw_d rx

epath /b in /passw d /u sr /b in /p a ssw d

end

type passw_t override

ab so lu te a c c es s a l l r id

a ccess passw_d rwlcd

epath /e tc /p a ssw d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A P P E N D IX A . D T E P O LIC Y, M ODU LES, A N D P C P L ISTIN G S

epath /etc /p assw d .tm p /e t c / .p w d . lo c k

end

type shadow_t

a b so lu te a c c ess a l l none

a c c ess passw_d rwlcd

a c c ess log in _d r id

epath /e tc /sh ad ow /etc /shadow .tm p

end

end

A .2.3 F tp M odule

Module S e r v ic e . f t p

domain ftpd_d

e n t r i e s f tp d _ e t

domain in a l l none

domain out a l l none

domain in boot_d auto

domain in A d m in .se rv ic e s .+ exec

a b so lu te type a l l none

s ig n a l out boot_d 14,17

s ig n a l out A d m in .serv ices .+ 14,17

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX A. D TE POLICY, MODULES, AND PCP LISTINGS

type f t p _ t

aaccess a l l none

a b so lu te a ccess ftpd_d r id

rpath /hom e/ftp

end

type f tp d _ e t

a c c es s a l l r

a b so lu te a ccess ftpd_d rx

epath / u s r / s b i n / i n . f t p d

end

type f tp d _xt

a c c e s s a l l none

a b so lu te a ccess ftpd_d r x ld

a c c ess root_d rwcld

rpath /h o m e /ftp /b in

a s s e r t b lp p r o tec t

end

type ftpd_wt

a c c ess a l l none

ab so lu te a ccess ftpd_d rwcld

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A P P E N D IX A . D T E P O LIC Y, M ODULES, A N D P C P L ISTIN G S

rpath /hom e/ftp /incom ing

end

end

A .2.4 Syslog M od u le

Module S e r v ic e . s y s lo g

domain sy s log_d

e n t r i e s sy s lo g _ x t # /u s r / s b in /s e c u r e _ s y s lo g _ d

domain in a l l none

domain in boot_d auto

domain out a l l none

type urandom_t r

type dev_t r # in case no urandom type

s ig n a l in a l l none

s ig n a l out boot_d 14,17

end

type sy s lo g _ x t

a c c e s s a l l none

a c c e ss boot_d r

a c c e s s sys log_d rx

epath /u s r / s b in /s e c u r e _ s y s lo g _ d

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX A. D TE POLICY, MODULES, AND PCP LISTING S

type s y s lo g _ in _ t

a c c ess a l l a

a c c es s sy s lo g _ d r

epath /v a r / lo g / s e c u r e _ lo g _ in

end

type sy s lo g _ o u t_ t

a c c es s a l l none

a ccess root_d r

a ccess sy s log_d ra

epath /v a r / lo g /s e c u r e _ lo g _ o u t

end

end

A .3 Excerpts of BLP PC P

Following are exceprts of the code for the BLP pep.

A .3.1 F inding P ath s

The following code finds paths w ithin the < graph.

00: sub p a th _ e x is t s _ o r ig {
01: my ($search_leq) = s h i f t
02: my ($a, $b) =
03: my ($ t i , $ t 2) ;
04: my (*/,leq2) ;
05:
06: foreach $ t l (keys (7,$search_leq)) {
07: next u n le s s $ t l eq $a;
08: return "true" i f leq _ co n ta in s ($ $ se a r c h _ le q {$ a } , $ b) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX A. D TE POLICY, MODULES, AND PCP LISTIN G S 190

09:
10: w h ile (d e f in e d ($ $ se a r c h _ le q {$ t l}) and $ $ se a r c h _ le q { $ t l} ne ’ ’) {
11: ($ t2 , $ $ se a rc h _ le q {$ t l>) = s p l i t ’ $ $ s e a r c h _ le q { $ t l } , 2;
12: */.leq2 = '/,$search_leq;
13: i f (p a th _ ex is ts_ o r ig (\° / . le q 2 , $ t2 , $b)) {
14: return "true";
15: >
16: >
17: >
18: return
19: >

A .3.2 R ela tion C alcu lation

This is the code to compute BLP relation resulting from a DTE policy.

00: sub c a lc u la te _ b lp {
01: my C/,leq);
02: my ($dom, $domain, % hlist , $ t y p e l , $type2, $va lu e , $ v a lu e 2) ;
03:
04: foreach $dom (keys (‘/,main: :domains)) {
05: $domain = $main::domains{$dom};
06: next u n le s s e x i s t s $dom ain->{"realta"};
07: ’/ .h l i s t = 7,-($domain->{"realta"}};
08: foreach $ ty p e l (keys (7,h l i s t)) {
09: $value = $ h l i s t { $ t y p e l } - > [0] ;
10: next u n le s s in d e x ($ v a lu e , "r") != -1 ;
11: foreach $type2 (keys (7 .h l i s t)) {
12: $value2 = $ h l i s t { $ t y p e 2 } - > [0];
13: next u n le s s has_modify_acc($domain, $ t y p e 2) ;
14: append_leq(\7.1eq, $ t y p e l , $type2) ;
15: }
16: }
17: }
18: return 7.1eq;
19:}

A .3.3 P re-A p p ly

This is the BLP pre_apply function.

00: sub pre_apply {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEN D IX A. D TE POLICY, MODULES, AND PCP LISTINGS

01: my ($ s e l f) =
02: my ($ ty p e , $domain);
03: ’/.baset = '/.main: :typ es;
04: y.leq = c a lc u la t e _ b lp () ;
05: p r in t "Pre-apply
06: p r in t_ b lp (‘/,leq) ;
07: >

A .3.4 P ost-A p p ly

This is the BLP post_apply function.

00: sub post_apply {
01: my ($ s e l f) =
02: my ($a, $b, $ p a t h _ e x i s t s) ;
03:
04: ’/ .post_ leq = c a lc u la t e _ b lp () ;
05: foreach $a (keys (‘/ ,p o s t_ leq)) {
06: next u n le s s d e f in e d $baset{$a};
07: foreach $b (s p l i t $p ost_ leq {$ a }) {
08: next u n le s s d e f in e d $baset{$b>;
09: next i f $a eq $b;
10: */,search_leq = ‘/.leq;
11: $ p a th _ e x is ts = p a t h _ e x i s t s _ o r i g (\ ‘/ ,search_leq , $a, $b) ;
12: i f (not $ p a th _ e x is t s) {
13: p r in t "BLP VIOLATION: $a newly <= $ b . \n " ;
14: >
15: }
16: >
17: }

A .4 Excerpts of M BLP PC P

Following are excerpts of the code for the M BLP pep.

A .4.1 R ela tion C alcu lation

00: sub calcu late_m blp {
01: my (‘/ . leq);
02: my ($dom, $domain, ‘/ . h l i s t , $ t y p e l , $ type2, $va lu e , $ v a lu e 2) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEN D IX A. D TE POLICY, MODULES, AND PCP LISTINGS

03:
04: foreach $dom (keys (‘/.main: :dom ains)) {
05: $domain = $main::domains{$dom};
06: next u n le s s e x i s t s $domain->{"realta">;
07: next i f is_ignore_dom ain($dom);
08: '/ .h list = ’/ ,{$dom ain->{"realta"}};
09: foreach $ ty p e l (keys (' / .h l is t)) {
10: $value = $ h l i s t { $ t y p e l } - > [0];
11: next u n le s s in d e x ($ v a lu e , "r") != -1;
12: next i f i s _ ig n o r e _ t y p e ($ t y p e l) ;
13: next i f i s _ s e c r e t _ e x c e p t io n ($ t y p e l , $dom);
14: # Now, s in c e dom i s not a se cr e c y excep tion :
15: i f (i s _ s e c r e t _ t y p e ($ t y p e l)) {
16: p r in t "M0D_BLP: $dom should NOT read type $ ty p e l . \n " ;
17: >
18: foreach $type2 (keys (‘/ .h l i s t)) {
19: $value2 = $ h l i s t { $ ty p e 2 } - > [0];
20: next u n le s s has_modify_acc(Sdomain, $ ty p e 2) ;
21: next i f i s _ ig n o r e _ ty p e ($ ty p e 2) ;
22: next i f i s_ p r o te c t_ e x c e p t io n ($ ty p e 2 , $dom);
23: # Now, s in c e dom i s not a p r o t e c t io n exception:
24: i f (is_ p r o te c te d _ ty p e ($ ty p e 2)) {
25: p r in t MM0D_BLP: $dom should NOT w r ite type $type2 .\n"
26: }
27: append_leq(\‘/ , leq , $ t y p e l , $ ty p e 2) ;
28: }
29: >
30: >
31:
32: re tu rn ’/.leq;
33: }

A .4.2 P re-A p p ly

00: sub pre_apply {
01: my ($ s e l f) =
02: my ($ typ e , $domain);
03: ’/.baset = ’/.main: :types;
04: s e t u p _ a s s e r t s () ;
05: ’/.leq = c a lc u la te _ m b lp () ;
06: >

with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX A. D TE POLICY, MODULES, AND PCP LISTINGS 193

A .4.3 P o st-A p p ly

00: sub post_apply {
01: my ($ s e l f) =
02: my ($a , $b, $ p a t h _ e x i s t s) ;
03:
04: '/,post_leq = c a lc u la te _ m b lp () ;
05: # f o r each a ,b , p o s t_ le q {$ a } =b, and a ,b both in b ase_ typ es , make sure
06: # leq{$a> = $b;
07: foreach $a (keys (7.post_leq)) {
08: next u n le s s d e f in ed $b aset{$a};
09: foreach $b (s p l i t $post_ leq{$a>) {
10: next u n le s s d e f in ed $baset{$b};
11: next i f $a eq $b;
12: ’/.search_leq = 7,leq;
13: $ p a th _ e x is ts = p a th _ ex is ts_or ig (\7»search _ leq , $a, $b) ;
14: i f (not $ p a th _ e x is ts) {
15: p r in t "MBLP VIOLATION: $a newly <= $b .\n";
16: }
17: >
18: }
19: }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

LM Bench Results

LMBench [36] was used to m easure the performance of the stock 2 .5 .6 linux kernel, as

well as the LSM 2 .5 .6 kernel. The LSM kernel was tested using the dum my module, the

capabilities module, the D TE module, and the capabilities m odule stacked on top of the

DTE module. The results are listed here. For the sake of brevity and readability, we report

only the m ean and deviation of 1 0 runs.

B .l Stock Kernel

Host OS D e sc r ip t io n Mhz

s k u l l - s p l Linux 2 .5 .6 i6 8 6 -p c - l in u x -g n u 398

P rocessor , P rocesses - t im es in microseconds - sm aller i s b e t t e r

Mhz n u l l n u l l open s e l c t s i g s i g fork exec
c a l l I/O s t a t c lo s TCP i n s t hndl proc proc

mean
sigma
95°/. Cl

0 .9 0 1 .61 9 .1 5 11 .9 62 .5 2 .23 6 .9 9 475 1846
0 .01 0 .0 3 .09 0 .2 2 .4 .02 .03 5 16
.008 .023 .068 .151 1.81 .015 .023 3 .7 7 12

Context sw itch in g - t im es in microseconds - sm aller i s b e t t e r

2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX B. LM BENCH RESULTS 195

mean 2.338 18.8 55 .7 19 .9 :132.0 26 .5 205 .4
sigma 0 .140 0 .3 5 .6 0 .8 9 3 .0 2 .0
957. Cl .106 .226 4. 22 .603 6 .7 9 2 .26 1 .51

♦Local* Communication l a t e n c i e s in microseconds - sm aller i s b e t t e r

2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP
ctxsw UNIX UDP TCP conn

mean 2.338 13.2 26 .0 4 7 .8 112.7 73 .3 158.3 255
sigma 0 .140 0 .4 0 .3 0 .6 0 0 .5 1 .1 1 .9 1
957. Cl .106 .302 .226 .452 .377 .829 1 .43 .754

F i l e & VM system l a t e n c i e s in microseconds - sm aller i s b e t te r

OK F i l e 10K F i l e Mmap Prot Page
Create D ele te Create D e le te Latency Fault Fault

mean 123.6 15.6 259 .0 3 8 .9 1301.5 1.702 5.70000
sigma 0 .2 0 .1 0 .2 0 .1 23 .9 0 .022 0.45826
957. Cl .151 .075 .151 .075 18.0 .017 .346

♦Local* Communication bandwidths in MB/s - b igger i s b e t t e r

Pipe AF TCP F i l e Mmap Bcopy Bcopy Mem Mem
UNIX reread reread (l i b c) (hand) read w rite

mean 177 115 122 149.3 277 .8 135.7 142.4 277 170.11
sigma 11 5 47 0 .2 0 .0 0 .7 1 .1 0 0 .03
957. Cl 8 .2 9 3 .7 7 3 5 .4 .151 .000 .528 .829 .000 .023

B.2 LSM Kernel Using Dummy M odule

P rocessor , P rocesses - t im es in microseconds - sm aller i s b e t te r

Mhz n u l l n u l l open s e l c t s i g s i g fork exec
c a l l 1 /0 s t a t c lo s TCP i n s t hndl proc proc

0 .859 1 .61 9 .4 9 12 .0 64 .8 2 .20 7 .1 0 474 1870
0 .003 0 .0 2 0 .1 0 0 .1 3 .0 0 .0 6 0 .01 3 16

.002 .015 .075 .075 2 .2 6 .045 .008 2 .26 12.1

mean
sigma
957, Cl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX B. LM BENCH RESU LTS 196

Context sw itch in g - t im es in microseconds - sm aller i s b e t t e r

2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw

mean 2.558 19.2 54 .6 21 .4 150.2 27 .4 202 .6
sigma 0.172 0 .1 1 .3 3 .9 12.1 2 .8 2 .6
957. Cl .130 .075 .980 2 .94 9 .12 2.11 1.96

♦Local* Communication l a t e n c i e s in microseconds - sm aller i s b e t te r

2p/0K
ctxsw

Pipe AF UDP RPC/
UNIX UDP

TCP RPC/ TCP
TCP conn

mean 2.558 13 .4 25 .6 4 5 .2 114.0 76 .5 157.3 :257
sigma 0.172 0 .4 0 .4 0 .7 0 .5 0 .6 7 .8 2
957, Cl .130 .302 .302 .528 .377 .452 5 .88 1 .51

F i l e & VM system l a t e n c i e s in microseconds - sm aller i s b e t t e r

OK F i l e 10K F i le Mmap Prot Page
Create D e le te Create D e lete Latency Fault Fault

mean 126.3 17 .4 260 .7 41 .8 1295.3 1.689 5 .40
sigma 0 .3 0 .1 0 .4 0 .2 20 0 .024 0 .49
957. Cl .226 .075 .302 .151 15.1 .018 .369

♦Local* Communication bandwidths in MB/s - b igger i s b e t t e r

Pipe AF
UNIX

TCP F i le
reread

Mmap
reread

Bcopy
(l i b c)

Bcopy
(hand)

Mem
read

Mem
w rite

mean 187 118 80 .8 149.4 277.8 135.6 142.3 277 170.2
sigma 3 3 3 .1 0 .1 0 .04 0 .7 1.1 0 0 .1
957. Cl 2 .2 6 2 .26 2 .34 .075 .030 .528 .829 .000 .075

B.3 LSM Kernel Using Capabilities M odule

P rocessor , P rocesses - t im es in microseconds - sm aller i s b e t t e r

Mhz n u l l n u l l open s e l c t s i g s i g fork exec

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEN D IX B. LM BENCH RESU LTS 197

c a l l I/O s t a t c lo s TCP i n s t hndl proc proc

mean 0 .859 1 .62 9 .52 12.1 64 .5 2 .1 8 7 .1 0 475 1870
sigma 0 .003 0 .0 3 0 .13 0 .2 2 .3 0 .0 0 0 .01 3 20
957. Cl .002 .023 .098 .151 1 .73 .000 .008 2 .26 15.1

Context sw itch in g - t im es in m icroseconds - sm aller i s b e t t e r

2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw

mean 2 .55 19 .3 56 .2 21.0 143.5 30 .2 205.5
sigma 0 .11 0 .2 5 .6 1.7 7 .5 4 .9 2 .3
957, Cl .081 .151 4 .22 1.28 5 .66 3 .69 1.73

♦Local* Communication l a t e n c i e s in microseconds - sm aller i s b e t t e r

2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP
ctxsw UNIX UDP TCP conn

mean 2 .55 13 .7 25 .8 4 5 .8 113.8 7 6 .2 161.8 256
sigma 0 .11 0 .3 0 .3 0 .6 1 .2 1 .1 1 .6 1 .4
957, Cl .083 .226 .226 .452 .905 .829 1.21 1 .06

F i l e & VM system l a t e n c i e s in microseconds - sm aller i s b e t t e r

OK F i l e 10K F i le Mmap Prot Page
Create D e le te Create D e le te Latency Fault Fault

mean 126.0 17 .0 260 .6 41 .9 1298 1.730 5 .60
sigma 0 .2 0 .1 0 .3 0 .1 18 0 .031 0 .49
957, Cl -151 .075 .226 .075 13 .6 .023 .369

♦Local* Communication bandwidths in MB/s - b igger i s b e t t e r

Pipe AF
UNIX

TCP F i le
reread

Mmap
reread

Bcopy
(l i b c)

Bcopy
(hand)

Mem
read

mean 181 117 80 .8 148.6 277.8 136.4 143.4 277
sigma 9 4 7 .3 1 .9 0 .05 0 .2 0 .3 0
957. Cl 6 .7 9 3 .02 5 .5 0 1.43 .038 .151 .226 .000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEN D IX B. LM BENCH RESU LTS 198

B.4 LSM Kernel Using D TE M odule

P rocessor , P rocesses - t im es in m icroseconds - sm aller i s b e t t e r

Mhz n u l l n u l l open s e l c t s i g s i g fork exec
c a l l I/O s t a t c lo s TCP i n s t hndl proc proc

mean 0 .8 6 1 .62 12 .2 15 .4 6 7 .0 2 .1 8 7 .2 0 480 1885
sigma 0 0 .0 1 0 .1 0 .1 3 .6 0 0 .01 4 18
957. Cl .000 .008 .075 .075 2 .71 .000 .008 3 .0 2 13.6

Context sw itch in g - t im es in m icroseconds - sm aller i s b e t t e r

2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw

mean 2.424 19.5 54 .2 20.7 145.0 28 .9 206.6
sigma 0.136 0 .1 0 .4 0 .9 15.8 4 .3 1.5
957. Cl .103 .075 .302 .679 12.0 3 .24 1 .13

♦Local* Communication l a t e n c i e s in microseconds - sm aller i s b e t t e r

2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP
ctxsw UNIX UDP TCP conn

mean 2 .424 13 .7 2 5 .8 4 5 .0 113.3 77 .7 162.6 260 .6
sigma 0 .136 0 .2 0 .4 0 .6 0 .9 1 .8 1 .5 2 .498
957, Cl .103 .151 .302 .452 .679 1 .36 1 .13 1 .88

F i le & VM system l a t e n c i e s in m icroseconds - sm aller i s b e t t e r

OK F i l e 10K F i l e Mmap Prot Page
Create D e le te Create D e le te Latency Fault Fault

mean 131.6 19 .4 268 .3 44 .8 1295 1 .640 5 .80
sigma 0 .3 0 .1 0 .3 0 .1 24 0 .033 0 .40
957. Cl .226 .075 .226 .075 18.1 .025 .302

♦Local* Communication bandwidths in MB/s - b igger i s b e t t e r

Pipe AF TCP F i l e Mmap Bcopy Bcopy Mem Mem
UNIX reread reread (l i b c) (hand) read w rite

mean 182 118 8 8 .8 149 .3 277 .8 136.5 143.7 277 170.16
sigma 2 2 2 8 .3 0 .1 0 .03 0 .11 0 .3 0 0 .05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX B. LM BENCH RESULTS 199

95% Cl 1.51 1.51 2 1 .3 .075 .023 .083 .226 .000 .038

B.5 LSM Kernel Using DTE and Capabilities M odule

P rocessor , P rocesses - t im es in m icroseconds - sm aller i s b e t te r

Mhz n u l l n u l l open s e l c t s i g s i g fork exec
c a l l 1 /0 s t a t c lo s TCP in s t hndl proc proc

mean 0 .859 1 .62 12 .2 15 .5 68 .0 2 .183 7 .20 479 1903
sigma 0 .003 0 .01 0 .1 0 .3 4 .7 .004 0 .01 4 37
95% Cl .002 .008 .075 .226 3 .5 4 .003 .008 3 .0 2 27 .9

Context sw itch in g - t im es in m icroseconds - sm aller i s b e t t e r

2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw

mean 2.531 19.4 54 .4 20 .7 147.5 29 .3 203.3
sigma 0.167 0 .28 0 .7 0 .7 20 .7 3 .3 5 .3
95% Cl .126 .211 .528 .528 15.6 2 .49 4 .0 0

Local Communication l a t e n c i e s in m icroseconds - sm aller i s b e t t e r

2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP
ctxsw UNIX UDP TCP conn

mean 2 .531 13 .8 2 5 .8 4 5 .0 113.4 76 .7 162.8 260
sigma 0 .167 0 .4 0 .3 0 .4 0 .5 1 .1 1 .7 2
95% Cl .126 .302 .226 .302 .377 .829 1 .28 1.51

F i le & VM system l a t e n c i e s in microseconds - sm aller i s b e t t e r

OK F i l e 10K F i l e Mmap Prot Page
Create D e le te Create D elete Latency Fault Fault

mean 131.6 19.3 268.3 44 .9 1296.3 1.613 5 .40
sigma 0 .3 0 .1 0 .4 0 .1 22 0.019 0 .49
95% Cl .226 .075 .302 .075 16.6 .014 .369

♦Local* Communication bandwidths in MB/s - b igger i s b e t t e r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPEND IX B. LM BENCH RESULTS 200

Pipe AF TCP F i l e Mmap Bcopy Bcopy Mem Mem
UNIX reread reread (l i b c) (hand) read

mean 183 118 103 149.3 277.79 136.6 143.7 277
sigma 5 2 40 0 .1 0 .0 3 0 .1 0 .1 0
95'/, Cl 3 .77 1.51 30 .2 .075 .023 .075 .075 .000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] N a t i o n a l S e c u r i t y A g e n c y . Evaluated platforms: Trusted xenix.
http ://w w w .rad ium .ncsc .m il /tpep /ep l/en tr ies /C S C -E P L -92-001-A .h tm l.

[2] L e e B a d g e r , D a n i e l F . S t e r n e , D a v id L. S h e r m a n , K e n n e t h M. W a lk e r , a n d
S h e i l a A. H a g h ig h a t . A dom ain and type enforcement unix prototype. Proceedings
of the Fifth U SE N IX U N IX Security Symposium , June 1995.

[3] L e e B a d g e r , D a n i e l F. S t e r n e , D a v id L. S h e r m a n , K e n n e t h M. W a lk e r , a n d
S h e i l a A. H a g h ig h a t . Practical dom ain and type enforcement for unix. Proceedings
of the IE E E Symposium on Security and Privacy , pages 66-77, May 1995.

[4] D .E . B e l l a n d L .J . La P a d u la . Security com puter systems : Unified exposition
and multics interpretation. Technical report, Hanscom AFB. Bedford. MA. Rep. ESD-
TR-75-306., M arch 1976.

[5] K . J . B ib A. Integrity considerations for secure com puter systems. USAF Electronic
System s Division, 1977.

[6] W .E . B o e b e r t AND R .Y . K a in . A practical alternative to hierarchical integrity
policies. Proceedings o f the National Computer Security Conference, 8:18, 1985.

[7] D a n i e l P . B o v e t a n d M a r c o C e s a t i . Understanding the Linux Kernel. O ’Reilly,
Sebastopol, CA, January 2001.

[8] T o m C h r is t ia n s e n . Interface zen, November 1999.
h t t p : / / s l a s h d o t . o r g /fe a tu r e s /9 9 /1 1 /3 0 /0 9 5 4 2 1 6 . shtml.

[9] D a v id D . C l a r k a n d D a v id R . W i l s o n . A com parison o f com m ercial and m ili
tary com puter security policies. Proceedings of the IE E E Symposium on Security and
Privacy, pages 184-194, 1987.

[10] S e c u r e C o m p u t in g . Type enforcement technology for access gateways and vpns.
h t t p ://www. secure-com puting . com.

[11] C r is p in C o w a n , A pril 2001. h ttp ://m ail.w irex.com /piperm ail/linux-security-
module /2001-April: /0005.htm l.

[12] R u ss Cox, E r ic G r o s s e , R o b P ik e , D a v e P r e s o t t o , a n d S e a n Q u in la n . Se
curity in p lan 9. Proceedings of the Usenix Security Symposium, 11, August 2002.

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.radium.ncsc.mil/tpep/epl/entries/CSC-EPL-92-001-A.html
http://slashdot.org/features/99/11/30/0954216.shtml
http://www.secure-computing.com
http://mail.wirex.com/pipermail/linux-security-

BIBLIO G RAPH Y 202

[13] C h r is D a l t o n a n d T s e H u o n g C h o o . An operating system approach to securing
e-services. Communications o f the A C M , 44, 2001.

[14] JA C K B. D e n n is a n d E a r l C. V a n H o r n . Program m ing semantics for m ultipro
gram m ed com putations. Communications o f the A C M , 9 (3) : 143—155, M arch 1966.

[15] S o l a r D e s ig n e r , h t tp : / /w w w .o p e n w a l l .c o m / .

[16] N i g e l E d w a r d s , J o u b e r t B e r g e r , a n d T s e - H u o n g C h o o . A secure linux p lat
form. Proceedings o f the A nnual L inux Showcase and Conference, 5, November 2001.

[17] I o n B a d u l e s c u E r e z Z a d o k a n d A l e x S h e n d e r . Extending file systems using
stackable tem plates. Proceedings o f the 1999 U SENIX A nnual Technical Conference,
1999.

[18] C r is p in C o w a n e t a l . h t t p : / www.im m u n ix .o r g /.

[19] C r is p in C o w a n e t AL. Stackguard: A utom atic adaptive detection and prevention of
buffer-overflow attacks. Usenix Security Conference, 7, January 1998.

[20] S e c u r i t y F o c u s . Enterprise security and th rea t m anagement systems,
h ttp : / / www.securityfocus.com.

[21] R o n F o r r e s t e r a n d B r ia n R o b is o n , h t t p : / / w w w .t r i p w i r e .o r g / .

[22] T im o t h y F r a s e r . Lomac: Mac you can live with. Usenix Annual Technical Confer
ence, 2 0 0 1 .

[23] T im o t h y F r a s e r a n d L e e B a d g e r . Ensuring continuity during dynamic security
policy reconfiguration in dte. Proceedings o f the IE E E Symposium on Security and
Privacy, 1998.

[24] V i r g i l D . G l i g o r , S e r b a n I. G a v r i la , a n d D a v id F e r r a i o l o . On the formal
definition of separation-of-duty policies and their composition. Proceedings of the IE E E
Symposium on Security and Privacy, May 1998.

[25] P O S IX S e c u r i t y W o r k in g G r o u p . Posix system api am endm ent 1003.le: P rotec
tion, audit and control interfaces (withdrawn), oct 1997.

[26] A n d r e a s G r u n b a c h e r . h t t p : / / a c l . b e s t b i t s . a t .

[27] S e r g e H a l l y n a n d P h i l K e a r n s . Domain and type enforcement for linux. Proceed
ings o f the A tlanta L inux Showcase, 4, October 2000.

[28] Intel . Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture.
1997.

[29] M i c h a e l J o h n s o n . A tour of the linux vfs, 1996.
h t t p ://w w w .linuxdoc . org /L D P/khg/H yperN ew s/get/fs /v fstour.h tm l.

[30] A l e x a n d e r K j e l d a a s . Linux capability faq vO.l, 1998.
http ://w w w .uw sg.indiana.edu/hyperm ail/linux/kernel/9808-l/0178.h tm l.

with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.openwall.com/
http://www.immunix.org/
http://www.securityfocus.com
http://www.tripwire.org/
http://acl.bestbits.at
http://www.linuxdoc.org/LDP/khg/HyperNews/get/fs/vfstour.html
http://www.uwsg.indiana.edu/hypermail/linux/kernel/9808-l/0178.html

BIBLIO G RAPH Y 203

[31] G r e g K r o a h -H a r tm a n . How the pci hot plug driver filesystem works. Linux Journal,
97, May 2001.

[32] C h u c k L e v e r . Linux kernel hash table behavior: Analysis and improvements. Pro
ceedings o f the A tlanta Linux Showcase, 4, October 2000.

[33] P e t e r L o s c o c c o a n d S t e p h e n S m a l l e y . Integrating flexible support for security
policies into the linux operating system. Usenix Technical Conference, June 2001.

[34] P e t e r A. Loscocco a n d S t e p h e n D. S m a l l e y . M eeting critical security objectives
w ith security-enhanced linux. Proceedings o f the Ottowa L inux Symposium, Ju ly 2002.

[35] D u r w a r d M c D o n n e l , D a v id S a m e s , G r e g g T a l l y , a n d R o b b L y d a . Security
for d istribu ted object-oriented systems. D ARPA Information Survivability Conference
and Exposition, June 2001.

[36] L a r r y M c V o y a n d C a r l S t a e l i n . lmbench: Portable tools for performance anal
ysis. Usenix Technical Conference, 1996.

[37] R . O ’B r ie n a n d C. R o g e r s . Developing applications on lock. Proceedings of the
National Computer Security Conference, 14:147-156, October 1991.

[38] A m o n O t t . The role com patibility security model. Nordic Workshop on Secure I T
Systems, November 2002. http://w w w .rsbac.org/rc-nordsec2002.

[39] P r z e m y s la w P a r d y a k a n d B r ia n N. B e r s h a d . Dynamic binding for an extensi
ble system. Proceedings o f the Second Symposium on Operating Systems Design and
Implem entation, pages 201-212, 1996.

[40] R o b P ik e , D a v e P r e s o t t o , K e n T h o m p s o n , H o w a r d T r i c k e y , a n d P h i l W in -
t e r b o t t o m . The use o f name spaces in plan 9. Operating System s Review, 27(2):72-76,
A pril 1993.

[41] SA IC . Access control m ethods, h t t p : / / r e s e a r c h - c i s tw .s a i c .c o m / c a c e / .

[42] B r u c e S c h n e ie r . Applied Cryptography. John Wiley & Sons, Inc, New York, NY, 2
edition, 1996. C hapter 4.2: Sublim inal Channels.

[43] B r u c e S c h n e ie r a n d J o h n K e l s e y . Cryptographic support for secure logs on
untrusted machines. Proceedings o f the Seventh U SENIX Security Symposium, pages
53-62, January 1998.

[44] S t e p h e n S m a l l e y . Configuring the selinux policy, June 2002.
h t t p : //www.n s a . gov/selinux/D ocum entation/W H E R E ISIT /.

[45] R a y S p e n c e r , S t e p h e n S m a l l e y , P e t e r L o s c o c c o , M ik e H ib le r , D a v e A n
d e r s e n , a n d J a y L e p r e a u . The flask security architecture: System support for
diverse security policies. Usenix Security Symposium, 9, 1999.

[46] N A I S t e p h e n S m a l l e y , h t tp : / /w w w .c s .u ta h .e d u / f lu x / f lu k e /h tm l / l in u x .h tm l .

with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.rsbac.org/rc-nordsec2002
http://research-cistw.saic.com/cace/
http://www.nsa.gov/selinux/Documentation/WHEREISIT/
http://www.cs.utah.edu/flux/fluke/html/linux.html

BIBLIO G RAPH Y 204

[47] R i t a C . S u m m m ers. Secure Computing: Threats and Safeguards. McGraw-Hill, NY,
1997.

[48] A n d r e w S. T a n e n b a u m . Modern Operating Systems. Prentice Hall, Englewood Cliffs,
N J, 1992.

[49] C M U C o m p u t e r E m e r g e n c y R e s p o n s e T e a m . Cert ad
visory ca-2000-13: Two input validation problems in ftpd.
h t t p : //w w w . c e r t . o rg /a d v iso r ie s /C A -2 0 0 0 -1 3 .h tm l.

[50] LSM D e v e l o p m e n t T e a m . Linux security modules, 2001. h ttp ://lsm .im m un ix .o rg /.

[51] L in u s T o r v a l d s . Call for a general m odule extension for access control in linux,
2001. h t t p : / / m a i l .w ire x . c o m /p ip e rm a il/ l in u x -s e c u r ity -m o d u le /2 0 0 1 -A p r i l /
000005 .h tm l.

[52] A l e x a n d e r V ir o . Per-process namespaces for linux.
h t tp : / / lw n. net /2001 /0301 /a/ nam espaces.php3.

[53] K e n n e t h M . W a lk e r , D a n i e l F . S t e r n e , M. L e e B a d g e r , M i c h a e l J . P e t k a c ,
D a v id L S h e r m a n n , a n d K a r e n A. O o s t e n d o r p . C onfining root program s w ith
dom ain and ty p e enforcem en t(d te). U SE N IX U NIX Security Symposium , 6, 1996.

[54] C h r is W r i g h t , C r is p in C o w a n , S t e p h e n S m a l l e y , J a m e s M o r r i s , a n d G r e g
K R O A H -H A R T M A N . Linux security modules: General security support for the linux
kernel. Proceedings of the Eleventh Usenix Security Symposium , 11, August 2002.

[55] T h o m a s W u. The secure rem ote password protocol. Proceedings of Internet Society
Network and Distributed System Security Symposium, pages 97-111, M arch 1998.

[56] H u a g a n g X ie a n d P h i l ip p e B io n d i. h t t p : / / w w w . l i d s .o r g .

[57] E r e z Z AD O K AND JA SO N N ie h . Fist: A language for stackable file systems. Proceed
ings o f the U SEN IX Technical Conference, June 2000.

with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cert.org/advisories/CA-2000-13.html
http://lsm.immunix.org/
http://mail.wirex.com/pipermail/linux-security-module/2001-April/
http://www.lids.org

VITA

Serge Edward Hallyn

Serge Hallyn was born in Brugge, Belgium. He graduated in 1992 from Downers Grove

N orth High School in Downers Grove, Illinois. He obtained a BS in com puter science and

physics from Hope College, MI, in 1996. In 1998, he obtained his MS in com puter science

from the College of W illiam and Mary, in W illiamsburg, Virginia, where he continued to

pursue his Ph.D .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Domain and type enforcement in Linux
	Recommended Citation

	tmp.1539734415.pdf.mUQdx

