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ABSTRACT

Domain and Type Enforcement (DTE) is a simple and well-known access control system,
which has been used at the microkernel level in SPIN, the kernel level in Unix, and the user-
space library level in CORBA. This work implements DTE as a Linux Security Module, and
provides tools for the composition and analysis of policies. The goal is to bring Mandatory
Access Control in Linux to the level of ease of use of cryptography tools and libraries.

Tools have been created to edit DTE policies and query transitions through different
privilege levels. A subtle modification of the Bell LaPadula (BLP) access control model’s
star property, applied to a DTE policy, results in a relation on types which permits us to
concisely express, and therefore verify, goals for that policy. Policy creation is simplified
using composition of policy modules, and enhanced by automatic verification of persistence
of any desirable properties, including the modified BLP relation on types, across module
application.

XV
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Chapter 1

Introduction

Access control in Unix systems, though certainly better than that in many other popular
operating systems, leaves much to be desired. In particular, the combination of a trusted
user, lack of mandatory access control, and far too many services running under the trusted
user’s id, are partly responsible for the large number of security-related advisories for Linux

and other Unix systems.

Domain and Type Enforcement introduces mandatory access control to Linux, assigning
labels to subjects and objects, and enforcing an access policy for all subjects, including the

trusted user. It thereby greatly increases the potential for security in Linux systems.

1.1 Contributions

Research into improved OS access control is certainly far from stagnant. However, most of
this is just that - research. This work addresses a deficiency in real, usable, yet complete

mandatory access control systems.
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CHAPTER 1. INTRODUCTION 3

First, an existing and well understood mandatory access control system, domain and
type enforcement (DTE) [2], is implemented as a run-time loadable module for Linux.
Rather than requiring even a cursory understanding of kernel compilation and installation,
this allows anyone to install and begin using DTE with very little preparation. Furthermore,
since we paid careful attention not just to correctness, but also to efficiency concerns, the
implementation is not only useful, but also does not negatively impact performance.

Next, a set of administration tools has been implemented. This allows a system admin-
istrator to control a rather complicated access control system without having to study the
syntax of the policy files. A brief tutorial will be sufficient to explain DTE policies and
their administration. This tutorial also has been created.

Finally, the administration tools have been engineered so as to aid in the validation or
refutation of invariants.

This work therefore presents a complete mandatory access control system, providing the
necessary tools for system or security administrators to create, analyze, validate and finally

implement security policies.

1.2 Organization

Chapter 2 provides background on the history and state of the art of systems security.
Chapter 3 discusses our implementation of DTE for Linux. Chapter 4 discusses the per-
formance of our implementation. Chapter 5 presents a formal analysis of the access rights
of domains as restricted by a DTE feature, entry points. Chapter 6 discusses issues with

policy administration, and presents a pair of tools designed to address specific problems
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CHAPTER 1. INTRODUCTION 4

with editing a textual policy file. Chapter 7 presents a method for formal analysis of DTE
policies. Chapter 8 presents a tool for constructing policies from a set of small modules, and
uses the method presented in Chapter 7 to provide automatic enforcement and maintenance

of any security properties across module application.
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Chapter 2

Background

2.1 Security Nomenclature

Throughout this work, we will use the following nomenclature. Subjects are entities which
can perform actions. For instance, a user is a subject. Processes started by the user are
also subjects. Objects are generally file system objects, however they can be anything to
which a subject can receive some sort of access. Subjects can therefore also be objects, as
subjects can have access to each other. Security policies assign labels, representing some
kind of security information, to subjects and objects, and determine access rights based
upon these labels.

Most popular operating systems implement discretionary access control (DAC). They
allow access rights to objects to be fully specified by the owners of these objects. Typically,
an object is owned by the subject who created it. This has some major shortcomings. For
instance, it facilitates Trojan horse attacks, where code, pretending to be friendly to the
user, quietly gives away the user’s access rights. Since the code is run as the user, who has
the power to give away access rights to objects he owns, this is perfectly legitimate.

Mandatory access control (MAC) enforces a system-specified security policy which users

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. BACKGROUND 6

cannot modify [41]. For instance, a MAC policy might prevent users from giving away write
access to their own objects. Ideally, MAC and DAC should be combined such that users

can dictate access policies to their own objects, but within reasonable and safe limits.

2.2 Access Control Policies

An access control policy defines labels, subjects, objects and permissions, and dictates how
and when labels are assigned to subjects and objects, as well as how and when permissions
are decided and enforced.

This section reviews some traditional mandatory access control policies. The earlier
are designed for security — preventing unauthorized data access — while the later address
integrity — preventing unauthorized users from corrupting data. This reflects the historical

shift, caused by a shift from military to business interests motivating research.

2.2.1 Bell-La Padula (BLP)

Bell and La Padula[4], while using a formal model to study the Multics system, introduced
an access control policy intended to enforce the military security policy. This policy requires
that no subject may read data classified at a higher security level than its own.

Military systems define a security level as a pair ([, C), where [ is a security level, and
C is a set of categories. A category can be any kind of label which is meaningful within the
context of the policy. A partial order is imposed upon security levels as follows: A security
level Ly = (I1,C}), is said to dominate another level Ly = (I3, C2) provided that Iy < I,

and Cs C (. This is written as L1 o Lo.
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CHAPTER 2. BACKGROUND 7

In order to properly enforce the military security policy, BLP maintains properties. The
first property, known as the “simple security property”, or ss-property, states the obvious

goal:

ss-property: If subject S is granted observe access to object O, then L(S)

L(0).

In other words, if S may observe object O, then its security clearance must dominate,
that is, be greater than or equal to, that of the object. By itself, this property permits two
subjects S7 and S3 to violate the military security policy through collaboration. Assume

there is an object Oy, such that

L(81)  L(O1) o L(S).

In this case, S5 is not allowed to observe O1, but S; is. By itself, the ss-property permits S;
to leak the information contained within O; to subject Ss. To accomplish this, S; copies

the data from O; into an object O3 such that

L(81) o L(O1) o L(S3) ox L(Os).

This scenario is displayed graphically in Figure 2.1. To prevent this security policy

violation, BLP also contains the *-property 1:

x-property: If subject Sy is granted observe access to object Op, and modify

access to Og, then L(O3) oc L(Oy).

lPronounced “star-property”.
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CHAPTER 2. BACKGROUND 8

This property prevents the situation displayed in Figure 2.1 from occurring. Once S; has
read the data contained in O;, any object which it subsequently creates or modifies will
have a security level at least as great as that of Oy. S> is this not permitted to read the

data copied to Os,.

Subjects Objects Security
Level

Figure 2.1: Data Leakage with BLP ss-property alone.

2.2.2 Rings

A ring-based policy specifies N concentric rings of protection. Privilege increases toward the
center of the rings, with the center ring, known as ring 0, being the most privileged. Every
object and subject is located within a particular ring. Subjects may not access objects
within a deeper ring, that is, objects with a lower security level. A process changes its
ring level by making a call to a procedure within a different level. However the process is
associated with a lower bound, below which it may not pass. Furthermore, moving to a
lower ring level is only allowed for certain entry points. The MULTICS operating system

used ring-based access control[48).
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CHAPTER 2. BACKGROUND 9

The Intel 386 architecture is also a ring-based system, using four rings, referred to as
privilege levels [28, Chapter 9.5]. Popular operating systems such as Linux, however, use
only two [7, Page 37]. Ring 0 implements the kernel or supervisor mode, while ring 3 usually
implements user mode. User mode instructions are not allowed to rewrite supervisor mode
code. A system call is a call to code located in ring 0, so that, only for the duration of the
system call, the privilege level drops to level 0. In this way, the kernel (or the operating
system) is protected from user software. At the same time, it gives the kernel the power it
needs allow multiple programs or processes in user-mode, while protecting them from each

other.

— Access

* Execute

emmmTT . O Process
I N D Object

Exetute,
e
[

(superuser)

Figure 2.2: Security rings
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CHAPTER 2. BACKGROUND 10

2.2.3 Clark-Wilson

Most early work in access control was sponsored by the military. As such, the work centered
around secrecy, which is the primary concern of the military. Clark and Wilson pointed
out [9] that for the sake of commerce, integrity is at least as important as, perhaps more
important than, secrecy. They created an access control policy to provide integrity, and
compared its requirements to those of secrecy systems.

The policy which they presented was based upon three definitions.

e Data with whose integrity we are concerned will be called Constrained Data Items

(CDI).

e Integrity Verification Procedures (IVP) are procedures which verify the initial state

of a CDIL

e Transformation Procedures (TP). Given a valid initial state of a CDI, A TP transforms

it into another valid state.

The system itself ensures that only certain users, under certain conditions, may execute
a given TP, and that only some TPs may be used to modify a CDI. However, a large part
of the policy exists outside the system, in the form of verification that the TPs and IVPs
are correct, as well as the lists of users which may invoke TPs and lists of TPs which may
alter CDIs. This means that with each software upgrade, any updated TPs or configuration
files must be revalidated, a potentially costly proposal. In contrast, in a system which has
been verified to satisfy the BLP policy, only an upgrade of the operating system requires

revalidation.
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CHAPTER 2. BACKGROUND 11

To understand why, one must consider that, in BLP, the OS defines the entire access
control policy. In a Clark-Wilson integrity control system, the TPs, CDIs, and lists of users
permitted to use TPs and lists of TPs permitted to modify CDIs, are each a part in defining
the policy. That is, these files are a part of the trusted computing base (TCB), and proving
the correctness of any system requires verification of the TCB. We start to recognize a
trade-off, then, between the power offered by a more malleable TCB, and the work involved

in its verification.

2.2.4 Strict Integrity

Prior to Clark and Wilson, Biba attempted to address integrity using the inverse of BLP [5].
Once a subject S reads an object Oi, it is no longer allowed to write any object O, :
L(Oz) > L(0O1). In this way, users, or programs running on their behalf, are prevented from
contaminating data with less trusted data.

This policy does not provide a method for taking in user data. Clearly, user data must
be considered low integrity. Raising its integrity would have to be done by a trusted process.
While this may sound reasonable, Clark and Wilson point out that a trusted process is one
which is outside the integrity policy. Going outside the integrity policy to handle any type
of user input is unacceptable. In the Clark-Wilson policy, the Trusted Procedures which

handle this work are made an integral, and verified, part of the integrity policy.

2.2.5 Type Enforcement

From the work of Clark and Wilson, it may be observed that while security levels are best

associated with subjects, integrity levels are better associated with programs (TPs).
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CHAPTER 2. BACKGROUND 12

Type Enforcement was introduced by Boebert and Kain of Honeywell [6] in 1985 as a
method of implementing integrity systems without relying on a trusted user. It labeled
objects as well as subjects, and specified access from subjects to objects, and from subjects
to other subjects, in two matrices. Subject labels were called domains, and object labels
were called types. Subject to subject access consisted of subjects transitioning to other
domains. Domains were associated with procedures. For any procedure, a subject, which
consisted of a procedure running in some domain, would be allowed to execute the procedure
and remain in the current domain, execute the procedure and enter another domain, or not
be allowed to execute it at all.

Subject to object access could be read, write, and execute. Type Enforcement was
implemented first in the Secure Ada project (LOCK), and later by TIS in Trusted XENIX
[1]. Secure Computing still uses TE in its Sidewinder firewall product [10].

Assured pipelines were introduced as an aside during the introduction of Type Enforce-
ment. An assured pipeline is a non-bypassable subsystem through which data must flow
between a particular source and destination. Boebert and Kain listed three requirements

for demonstrating the security of an assured pipeline.
1. The subsystem which the pipeline attempts to enforce is indeed non-bypassable.

2. The transformation applied by the subsystem cannot be reversed or modified after

the pipeline.
3. The subsystem is correct.

Assured pipelines are useful for proving that the transfer of data between security or

integrity levels (or labels) is controlled.
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2.3 Policy Representation

In Section 2.2, we presented several access control policies. Here we present the common

methods of representing access control policies in the literature and in operating systems.

2.3.1 Access Control Matrix

In an access control matrix (ACM, see Figure 2.3), each row represents a user, and each
column represents an object. An entry located at row u and column o specifies the access
which w is granted to 0. While conceptually simple, ACM’s are not used in implementation
because the matrices become very large and sparse, wasting valuable memory. However,
they are frequently used to explain, and to make formal arguments about, access control

policies.

Objects (files)
f1 | 2 30
ul | r r 184
Subjects u2 | rw frwx X
(users)
u7 | r A A

Figure 2.3: Sample ACM for 7 users and 30 files.

2.3.2 Access Control List

An access control list (ACL, see Figure 2.4) is an abbreviated version of an ACM. At each

object is stored a list of all users who may access the object and the types of access permitted
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for each. Therefore, if only one user may access an object O, then the list need only contain

one subject, not all subjects defined for the system.

Objects(files)
f1 fz\ f3§
ul,r| |ul,r ul,rw
u2,rw u2,1\:wx uZ{x
u/,r

Figure 2.4: Sample ACL corresponding to above ACM.

2.3.3 Capabilities

The use of an ACL can be viewed as splitting an ACM into its columns, and then com-
pressing these. Capabilities are sometimes described as doing the same thing by rows.

A capability [14] is a pair {o,r} where r specifies a set of access rights to object 0. A
process has a list of these capabilities, and the union of the pairs in the list specifies the
full access rights of a process. See Figure 2.5 for the running example expressed in terms of
capabilities. A process may create, destroy, modify, and grant capabilities to other processes.
While the use of capabilities makes for a very flexible and powerful system, it has some
problems. One is the difficulty of discovering which processes posses a certain capability,

and, by extension, of tracking the propagation of capabilities. Most real operating systems
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therefore do not use capabilities.

Capabilities are, however, used in modern extensible systems such as SPIN [39]. In
SPIN, capabilities are used to provide both extensibility, and security between extensions.
Capabilities in this case are implemented through namespaces. Extensions call each other’s
functions by raising events, and provide functionality by registering event handlers. For
instance, a memory management extension might save information to disk by raising an
event which causes a file system extension to save the information. By binding a new event
handler to this same event name, another extension can extend, or limit, functionality. For
instance, a compression or encryption extension could extend the file system extension’s
write event handler by processing the data before passing it along to the file system exten-
sion’s event handler. An extension cannot receive functionality which cannot be requested
by raising some event. In other words, it cannot cause actions without the appropriate

capability.

ul —{r—>f1 F—{r—>f2 —{rw—>130]
u2 —{rw—>f1 —{rwx—>f2—{x—>f30 |

Subjects
(users)

u7 [r=>fl |

Figure 2.5: Capabilities representing same access rights above.
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2.4 Role Based Access Control

In discretionary access control (DAC) systems, policies are specified in terms of rights to
objects granted to users and groups. The user who creates an object usually owns it, and
hence possesses all rights to that object. The owner may grant access rights to other users.

This is not how things are usually done in real life. Rather, subjects assume certain
roles. For instance, the originator of a document may not be the author, or the owner,
or the one who should be able to grant access rights to that document. All of these are
normally assumed to be true in computing systems. Role based access control (RBAC)
attempts to make computing systems resemble real life access systems more closely [47].

Roles are used in two ways. In SELinux [33] and many other RBAC implementations,
they are simply used as a “hat” which a user wears in order to be granted extra privi-
leges. When most people speak of role based access control, they think of this very simple
interpretation.

Clark and Wilson [9] presented an access control system where roles are used to im-
plement separation of duties as required in common accounting practices. As described in
Section 2.2.3, CDIs may only be modified by a set of TPs. The TPs must be executed by
some combination of roles. For instance, a cashier and a manager might both be required
to be present in order to modify the amount in the register. This means that any two
(different) people who may assume these roles may come together to run the TP, in order
to modify the CDI, but neither may do so alone. This is a powerful concept. However, it is
sufficiently complicated that it is implemented only in proprietary software, aimed mainly

at banking institutions. Beyond the complexity of creating the operating system itself, one
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must also deal with maintaining such a system. In order for this system to be secure, the
membership of all roles must be verified, as must the list of roles required to authorize a

TP. Furthermore, each TP must be verified each time the code might change.

2.5 UNIX

In Unix systems, access rights to objects are specified for users and groups, and stored with
the object. Usually, every person who will use the system is assigned a unique user id. Each
user is associated with at least one group. The default group is listed in the user definition,
which is found in the password file (/etc/passwd). A user can be placed in additional
groups by placing the username in the group definition in the groups file (/etc/group). A

running process carries along its real and effective user and group IDs.

2.5.1 File System

The UNIX file system is based upon file descriptors, called inodes. Inodes can be uniquely
reference by an integer, known as the inode number, and the file system upon which they
are located. All file objects, including directories, devices and normal files, are represented
as inodes. A directory is a file associating file names with inodes. For instance, a directory

might associate the following:
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File Name | Inode Number
filet 32079
file2 32167
file3 32254

diri 33152
filed 32056
fileb 32254

Notice that file3 and fileb are associated with the same inode. This file can be ref-
erenced using either name. It may also be associated with other names in other directories,
and will not be deleted until all names are removed. However, since an inode number is
unique only to the file system on which it is located, all names which are associated with
this inode must be located on the same file system. Every directory contains at least two
entries, “.” and “..”. These always refer to the directory itself, and the parent directory,
respectively.

A Unix system starts with a particular disk partition mounted as the root file system
(/). Other disk partitions can then be mounted on top of any existing directory. Mounting a
partition on a directory places the root of the file system located on the new partition at the
specified mount point. For instance, if a partition /dev/hda3 is mounted on /usr/local,
then any request to access a file under /usr/local will look up the part of the path-
name after /usr/local on the mounted partition. If any files or directories existed under
/usr/local on the root partition, they are now hidden until /dev/hda3 is unmounted.

This allows all file systems to be viewed as one large tree.
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Figure 2.6: Sample Unix file system.

A sample Unix file system tree is shown in Figure 2.6. In this figure, for example, the file
/mnt/cdrom/install.sh is on the cdrom file system, yet this fact is entirely unimportant

to users on the system, as the file appears just like any other.

2.5.2 File Access

Unix permissions do a remarkable job of allowing for great expressiveness using a minimal
amount of space. As mentioned above, a Unix system recognizes individual user ids and
specified groups of users. People who wish to use the system are assigned a user id and
default group. Each user may belong to several other groups as well. Each file is assigned
one owning user and group. Access permissions are then specified using 12 bits. Basic
permissions consist of read, write, and execute permissions, specified individually for the
user owning the file, the group owning the file, and the rest of the world. Since a file can
be a file or a directory, these permissions are multiplexed as follows. Read permission on
a file permits viewing of the file contents. Read permission on a directory does likewise,

but the contents of a directory are the names of files under that directory. Similarly,
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write permission on a file allows modifying the file’s contents, whereas write permission
to a directory is required to rename, create or delete a file under that directory. Execute
permission on a file is self-explanatory, but execute permission on a directory is interpreted
as the right to descend that directory — that is, to view the contents of files the directory
contains, subject to the individual file permissions. Therefore it is possible to allow reading
a file’s contents, but not its name, and vice versa.

Three more bits are used for file permissions. One is the sticky bit, which has two
interpretations. First, a program whose sticky bit is set remains in swap after termination.
Second, a file under a directory whose sticky bit is set may only be deleted or renamed by
the owner of the file or the owner of the parent directory, regardless of access permissions.
The other two bits are setuid and setgid. Executing a setuid program file changes the
process’ effective user id to that of the file owner. The setgid bit does the same for the

process’ group.

2.5.3 Signal Access

Unix processes can communicate by sending each other signals. Some signals force a process
to be suspended or killed, while others can be ignored or handled by the process’ own signal
handlers. A process is allowed to send signals to other processes owned by the same real
or effective user id. Under Linux, a signal may also be sent to any process under the same

process session, that is, between processes sharing the same controlling terminal.
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2.5.4 Superuser

There is, in most systems, the notion of a superuser, named root in Unix systems. The
superuser may access any file, send any signals, and change any permissions. In order to
limit damage due to the compromise of a system, superuser file access can be limited for
remote file systems, but, for ease of remote administration, it often is not. Obviously, the
compromising of superuser on a system renders the system entirely untrustworthy, as the
attacker can do anything he likes, including replacing system monitoring tools with versions
hiding his own activity. Patching the vulnerability exploited by the attacker is insufficient
since anything else may have been damaged, so the only solution is to rebuild the system
from original media and backups predating the attack. Unfortunately, more and more
services are offered by most machines, and these usually require access to privileged files or
services. If any of these services are compromised, the attacker becomes the superuser and

hence owns the system.

2.5.5 POSIX Capabilities

The nature of the superuser, that one either has all its powers or none, is a major problem.
POSIX capabilities [25] attempt to solve this by splitting the superuser’s powers into a set
of distinct capabilities, such as the ability to open a restricted port (< 1024), modify the
network configuration, or trace any process. A process is created with a set of permitted
capabilities, and may further restrict these at will before starting a new process. For
example, the talkd service may only need access to restricted network ports, so that it may
be started with only the CAP_NET_BIND_SERVICE capability. If talkd is later compromised,

the attacker’s privileges on the system are still very limited, despite being root on the
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system.

POSIX capabilities are similar to Dennis and Van Horn’s classical capabilities [14] in
the way they relate to a process and can be granted or given up individually. They differ
in that POSIX capabilities do not designate rights to objects, but rather specify generic
subsets of the superuser’s powers.

Linux partially supports POSIX capabilities [30]. Processes carry three bitmaps, rep-
resenting the Inheritable, Permitted, and Effective capabilities. Executable files will also
carry capabilities, but the Linux VFS does not yet support them. In the meantime, a file’s
capability sets are assumed to be empty, barring two exceptions. If the user executing the
file is root, then the file’s Inheritable set is full, and the file’s Permitted set is full except
for CAP_PSET, which permits granting capabilities to other processes. The same is done
if the file is setuid root, and, in addition, the file’s effective set is full.

Equations 2.1 through 2.3 show how capabilities are computed upon file execution. Here
pX denotes a process attribute X, and fX denotes a file attribute X. While pX denotes the
attribute before the file execution, pX' denotes the same attribute as it was recomputed
during file execution, and as it will be applied for the remainder of this execution. The
attributes are P for the permitted set, F for the effective set, and I for the inheritable set

of capabilities.

pl' = pI (2.1)
pP' = fPV(fIApl) (2.2)
pE' = pP'AfE (2.3)
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Clearly capabilities cannot be computed correctly until file capabilities are implemented.
In the meantime, however, the code supporting capabilities is implemented in the rest of

the kernel, and this code is now used for implementing other features. For instance, calling
setuid(0)

currently sets all capabilities for the calling process, and a process which attempts to use
nice to adjust the scheduling priority for another process is checked for the CAP_SYS_NICE

capability, rather than for the effective uid of 0 [7, Pages 556-558].

2.5.6 Domain and Type Enforcement

Domain and Type Enforcement was first presented by O’Brien and Rogers [37], and was
an extension of Type Enforcement, presented in Section 2.2.5. It differed from TE in part
by specifying policies in an intuitive policy language rather than using two matrices. TIS
based the first Unix implementation of DTE [2] on OSF/1 MK4.0. Their domain transition
semantics were somewhat different from those in TE. A domain transition in TE occurs
every time a domain executes a file for which the security policy mandates a transition.
In DTE, a second, voluntary type of transition is added. The mandatory transition is
called an auto transition, while the voluntary transition is called exec. If a domain D;
has auto access to Ds, and a process under D; executes a file which is an entry point to
Dy, then the process is automatically switched into domain Dy. If domain D; has exec
access to Dy, and a process under D; executes an entry point to Do, the process by default
remains under domain D,. However, if it so requests, it may, on the same execution, be
switched to D». Voluntary transitions are useful for programs, such as login or sshd, which

may need to switch to one of several domains, depending upon the credentials presented.
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Mandatory transitions are useful both for restricting untrusted programs, and for fitting
legacy programs into a DTE policy without requiring any rewriting or recompilation.

DTE is designed to fit elegantly with the concepts of UNIX. Object labels are assigned
hierarchically, in a structure mirroring the file system tree. Types are assigned to pathnames
using either explicit or recursive rules. An explicit type assignment rule assigns the type
only to the pathname, whereas a recursive type assignment rule assigns the type to all the
pathname’s descendants.

At the same time, a clean separation is maintained between the UNIX DAC and DTE’s
MAC. The policy type assignment rules interpose a layer between DTE types and UNIX
files. Domains transitions are performed only at file execution, and have nothing to do with
UNIX users. Creating relationships between users and domains is thus left to user-space
programs, such as login and su, or PAM modules acting on their behalf. While some see
this as a deficiency [38], we believe that leaving the amount and method of cooperation
between MAC and DAC to the system configuration is one of DTE’s strengths.

DTE was developed with the purpose of mediating access between users, files, and
network traffic. The underlying concepts of DTE have also been applied at other levels.
SPIN used DTE to protect kernel extensions from each other [39], while OO-DTE [35]

applies DTE to a distributed object framework, CORBA.

2.6 Linux File System Architecture

Linux abstracts away file system specific details behind the Virtual File-System Switch

(VFS). Applications call VFS functions, which in turn know how to deal with the real file

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. BACKGROUND 25

system.

Every file and directory in use is represented by a VFS inode, which holds the relevant
metadata, such as file size and access permission, as well as pointers to file system specific
functions to operate on the file or directory. In this way, the VIS need know nothing about
how to actually open a file on the file system in use. In fact, a file system can be provided as
a module, simply telling the Linux kernel what functions to call for applicable operations.

An inode is the operating system’s representation of file metadata. A process, however,
needs to have its own representation of files, able to store some data which may be different
from another process’ for the same file. The file structure includes a pointer to the inode,
as well as data regarding access permissions with which the file was opened, and a pointer
into the file representing the current position.

The inode has a pointer into the directory cache. The directory cache is a hash table
of structures called dentries, each of which contains a path component’s name, as well as
pointers needed to construct pathnames, such as the parent directory and, if this is the root
of a mounted file system, the covered directory.

A vismount structure contains data regarding a mounted file system or VFS sub-tree,
including pointers to the mount point and root of the mounted file system, and other mounts
of the same file system. It is the glue which holds together one tree constructed from many
file systems, as well as folds within itself (as will be seen later). A superblock contains
information about a block device containing a mounted file system, and pointers to the
vfsmounts which mount this device.

Figure 2.7 shows the use of some of these structures when the cdrom on /dev/hdc is

mounted under /mnt/cdrom, and contains files README and FILES in its root directory. The
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Figure 2.7: Linux VFS-related kernel structures.

links represent pointers between the various structs. For instance, the dentry representing

/mnt/cdrom has a d_vfsmnt pointer set, indicating that a file system is mounted on top of

the dentry. The value of the pointer is the address of the vismount struct representing the

mount instance of device /dev/hdc. The vismount struct in turn points back to the dentry

on which it is mounted.

2.7 Stackable File System

As noted above, every VFS inode in Linux contains pointers to the file system specific

operations to be used on the associated file. Stackable file systems increase the levels of
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indirection, allowing programmers to introduce a feéture to any file system in the form
of filters rather than by having to modify the file system itself. Zadok has introduced
stackable file systems to Linux as well as FreeBSD and Solaris [17]. The most obviously
useful application of stackable file systems is the transparent implementation of encrypted
file systems. Figure 2.8 demonstrates the use of stackable file systems. On receiving a write
request, the kernel calls the stackable layer first, which, in this case, encodes the file data in
some way. It could also encode the filename or file attributes. After this, the write function
for the file system upon which the file is located is called. A read is performed in the reverse
order, calling the file system specific read function first, then calling the filter specified by

the stackable file system to decode the data read from disk.

Traditional VFS
Stackable fs
emacs
wiite()
encode:data

imode J__>fenerypt_data
ext2_write

Figure 2.8: An example of a stackable file system.

A stackable file system can be mounted in one of two ways. It can be mounted as
an overlay, such that the mountpoint of the decoded file system is on top of the encoded
file system. In this case, after the mount command, the encoded file system is no longer

visible. The stackable file system can also be mounted at a different mountpoint. In this
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case files can be accessed either decoded, through the new mountpoint, or encoded, through
the original mountpoint.

Increasing the power of stackable file systems even further, FiST, a new language for
defining stackable file systems, allows things such as fan-in and fan-out, where one block
seen by the VFS could correspond to many blocks on the underlying file system, or vice
versa [57]. This could be used, for instance, to implement a RAID file system layer, or a

file system compression layer.

2.8 Networking

It is taken for granted today that computers should be networked to allow communication
(between people), data sharing, and often sharing of processor and memory power. For far
too long, however, network security has been mostly dependent upon the goodwill of users.
For instance, it has been only recently that ssh, or secure shell, has begun to replace telnet
for connecting to remote machines, even though telnet sends passwords in plain text, so that
any user able to listen to network packets meant for other processes and other machines
can read these passwords.

Type Enforcement and DTE have been applied to network packets as well as files [10, 53].
Every network packet is labeled with a type. This type can be determined by the domain
from which it was generated, or, for firewalls, by the network (card) from which it comes.
TIS used this to implement DTE-enabled NFS. The NFS server, then, can determine the
type of files it exports, rather than rely on the client’s policy to be synchronized with its

own.
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2.9 Other Projects

Much recent work in systems security implements very simple security policies. An example
of this is LOMAC [22], which is basically a two ring system (see Section 2.2.2) intended
to separate services under Linux from user processes. Another example is the HP Trusted
Linux system [13], which compartmentalizes services such that they cannot interact. In this
way, compromised services have no ability to compromise one another.

Other systems security projects offer versions of existing OS distributions which have
been modified to address particular known weaknesses. Examples of these are the Immunix
System [18], a version of RedHat Linux offering protection against stack smashing attacks
and format bug exploits, as well as an enhanced ability to restrict system access by services,
and OpenWall, which does not offer its own distribution, but a set of patches to protect
against very specific vulnerabilities [15].

In the following sections, we discuss a few recent and current projects in more detail.

2.9.1 Linux-ACL

Unix file permissions can only specify read, write and execute permissions for the owning
user, the owning group, and the rest of the world (see section 2.5.2). The Linux-ACL project
[26] does not elaborate on the types of access, but allows access specification for additional
users and groups. This allows a user, for instance, to provide write access to 'another user
without having to request a new group containing the two users, or having to give write
access to a larger group or the rest of the world. Linux-ACL is now being implemented on

top of extended attributes, which permit specification of arbitrary types of access by name.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. BACKGROUND 30

ACLs (and extended attributes) present several problems, because they are not a part
of the original file system. Neither backup utilities nor tools such as tar are able to pre-
serve ACLs. However, the ACL information can be extracted into separate files and then
reapplied.

Linux-ACL remains useful on a DTE system. Domain and Type Enforcement is designed
to be a mandatory access control system and, as such, does not allow users to control the
domain to type access allowed. ACLs allow a very convenient method for quickly and

precisely specifying the needed access control to a user’s files.

2.9.2 LIDS

The Linux Intrusion Detection System [56] aims to implement mandatory access control and
improve intrusion detection through increased and improved kernel logging. Implementation
of MAC may appear a separate problem from IDS, however without MAC any log created
by the IDS is vulnerable to attack, rendering the IDS itself useless. Since intrusion detection
is usually accomplished through logging, and minimal access reduces file vulnerability, LIDS
adds append as a possible type of file access.

The contributions of LIDS sit between those of capabilities (see section 2.3.3) and DTE.
Access rights may be specified by subject and object. The object can be a file or directory.
The subject may be omitted, in which case the access rights apply for the whole system, or
the subject may be an executable. These access rights may descend down the file system
tree. Processes, however, do not inherit access rights from their parents, and access rights
may not be passed to other processes as capabilities can, which limits the power of LIDS.

For instance, since access rights are associated with an executable, different users starting
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/bin/bash will receive the same access rights, whereas DTE or classical capabilities allow
different situations to associate different access rights with instances of the same executable.
However, as a quick tool to protect sensitive files or implement more robust logging, LIDS

is very useful.

2.9.3 TE and DTE

Other teams are working on implementations of Type Enforcement and DTE. Secure com-
puting still sells its Sidewinder firewall project which uses Type Enforcement [10]. TIS, now
a part of Network Associates (NAI), still maintains its BSD-based DTE system [2], and is
rumored to be starting a FreeBSD implementation. Finally, a project at Science Appli-
cations International Corporation (SAIC) has been working to implement DTE in Linux,

although it appears either progress is slow, or updates are not being announced.

2.9.4 SELinux

SELinux is a joint project of NAI, the Secure Computing Corporation (SCC), and the
National Security Agency (NSA), to implement the Flask [46] security architecture in Linux.
The goal of Flask is to support a wide variety of security policies. It separates access
control into two separate services. The Security Server stores access control policies and
makes access decisions. The Object Manager enforces the policies. On an object create
request, for instance, a client asks the Object Manager to create an object, who in turn
forwards the request to the Security Server. Policies implemented under SELinux include
Type Enforcement, Role Based Access control (RBAC), and Multi Level Security (MLS).

This project is important for many reasons. First, it shows that the government is
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serious about system security. Second (resulting from the first), it should cause kernel
developers to take improved access control more seriously. Third, since this appears to be a
high level access control system — that is, it facilitates the implementation of access control
policies, rather than dictating one — it will be a useful stepping stone for the NSA as well
as others to continue research into security and access control.

However, its practicality remains to be seen. Whereas LIDS errs in being too simple
and too limited in its ability to express security policies, SELinux may go too far the other
way. System administrators should not need to spend weeks learning how to use a system
to protect against a new talkd exploit. Hopefully, DTE will fit nicely between these two

extremes.

2.9.5 HP-LX

HP has developed a distribution of Linux designed to minimize damage due to compromise
of system services. They argue explicitly that, regardless of due diligence, systems will
be compromised. HP-LX [16] provides features in order to contain both file access and
communications by processes. This appears to be based upon the compartmentalization
offered by their previous Trusted Linux [13] implementation. It also includes TripWire [21]
to ensure the integrity of important system files; a script which performs several functions
to ensure a safe system, such as remove suid/sgid bits from executables; and a secure audit

daemon, which is protected within a compartment.
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2.10 Other Work in Security Policies

Very little work has been published regarding security policies. Most systems security work
has been aimed toward implementation of security enhanced systems, with little or no
thought given to policy creation, analysis, and maintenance. A recent SELinux paper [44]
explains the syntax of various textual policy configuration files in great detail, but does not
offer any assistance beyond the textual policy specification. Another SELinux paper [34]
presents a specific policy, and discuses its meeting several specific criteria, such as confine-
ment of the sendmail service. It does not offer any formal specification of these criteria or
the policy.

Fraser and Badger performed automated analysis of DTE policies [23] in order to allow
safe updates to a running DTE system’s policy. This is the best example of formal policy
analysis to date, and we base some of our work upon this paper.

It is clear from the above review of recent and current work in systems security that
there is a shortage of research into the subject of security policy configuration. This work

aims to address that shortage.
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DTE

This chapter discusses our DTE kernel module implementation in detail. Since a goal of
our project was to provide a mandatory access control system which is both easy to install
and to administer, it naturally must be implemented for current kernels. Since Linux is a
very quickly evolving operating system, this requires constant vigilance. Operations upon
which an implementation is based at one moment can become wholly meaningless within a
few kernel versions.

A prototype of our DTE implementation was presented at the Atlanta Linux Showcase
(ALS)[27]. Many of the details in the implementation still hold true. However much has
changed. This chapter presents the current implementation of DTE. Section 3.1 discusses
the new framework upon which the DTE implementation is based. Section 3.2 discusses
the fundamental decisions concerning the implementation. Section 3.3 introduces some
important data structures, while Section 3.4 presents algorithms for fundamental DTE
operations. Next we show the configuration file syntax and the DTE API in Sections 3.5
and 3.6, respectively. The chapter closes with a demonstration of the effectiveness of DTE

in stopping real-world attacks against otherwise vulnerable systems.

34
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3.1 LSM

The Linux Security Module (LSM) project is a response to Linus Torvalds’ call [51] for a
general framework to support security extensions. Responding to a paper [33] presenting
the SELinux access control system, Torvalds announced that he would not accept any such
patches into the kernel. Rather, he asked the security community to provide a set of truly
generic security patches. These patches should allow all, or at least many, of the existing
security projects to work as Linux modules, without requiring any further kernel patching.
This would absolve Torvalds of having to make any decisions on a single appropriate access
control policy.

Crispin Cowan took the initiative [11] in creating the LSM project [50, 54], which was
joined by other noteworthy people such as Stephen Smalley and David Wagner. Many
groups working on projects to extend access control in Linux were represented, including
SELinux [33], Immunix [19], and projects by HP and IBM. Clearly, each of these groups had
developed its own methods of dealing with certain problems. Every issue to be addressed
by LSM, therefore, raised much discussion and required a great deal of compromise.

The LSM architecture, as recommended by Torvalds, became a structure containing
pointers to functions which perform various security checks, as well as data initialization
to support these checks. By default, the functions pointed to by this structure are dummy
functions which default to permissive behavior. Wherever the kernel performs a sensitive
operation, for instance opening a file with write permissions, a call to an LSM function is
first made. If the LSM function returns an error, then the modification is not performed.

A security module, when loaded, may redirect any or all of the LSM function pointers to
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its own functions, in order to accomplish its goals.

Clearly these functions, and the places whence they are called, will affect what sorts
of policies can be used. A significant part of the design of DTE for Linux 2.5 consisted of
taking part in the LSM project in order to ensure that it was able to support DTE as a

module.

3.1.1 LSM Design

As described above, the overall design of LSM is modeled after the design of other Linux
subsystems such as the VFS [29]. The active security policy is represented by a set of
function pointers. These function pointers are dereferenced and called throughout the
kernel to make policy decisions. Inserting a new security policy therefore consists merely of
redirecting these function pointers. A few other design decisions bear discussion, however.

First, since security policies are now loaded as modules, the question may be raised of
what sort of policy is needed, or wanted, in the base kernel. On the one hand, we want the
LSM project to minimize intrusion into the existing kernel code. This will maximize the
chances of LSM being accepted into the mainstream kernel, which is, of course, the main
purpose of this project. On the other hand, by simplifying the base Linux kernel’s security
policy, performance will improve. This will be a particular advantage for embedded Linux
systems. In this case, the allure of this performance increase outweighed the increased code
intrusion. POSIX capabilities [30], which have been a part of the Linux kernel since version
2.2, were removed from the kernel and are now provided as an LSM module. The Linux
base security policy under LSM is therefore the simple “root is everything” which most

sysadmins prefer.
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An issue which has undergone much discussion was that of module stacking. The naive
first impulse is to ask for the ability to load combinations of arbitrary modules. For instance,
it would be advantageous to load the capabilities module along with the DTE module.
However, arbitrary composition of security policies is not possible [24]. LSM’s solution is
to allow policies to define the register and unregister functions. Some LSM module
will be the first to be loaded. Subsequent module insertion requests will be handled by
this module. Therefore, if the author of the first module is aware of another module, and
finds the other module to compose nicely with his own, then his module may permit the
second module to load. If the second module implements an inode_permission function,
for instance, then the first module’s inode_permission function may first call the second
module’s function. Provided this function permits the requested action, the first module
may perform its own check.

Another issue which the LSM project faced was communication of modules with user-
space programs. Most existing enhanced access control policies, since they required patching
the kernel anyway, simply introduced system calls. However, LSM could not simply reserve
a large block of new system calls so that all LSM modules could have their own. In addition,
the currently preferred method of providing communication between the kernel and user
levels is to implement a small pseudo file system [31].

The solution implemented by LSM was to reserve a single system call, called simply
security. This system call takes three arguments. The first is an integer named id,
which identifies the LSM module with which the user-level program wishes to interact. The
second is another integer variable call, which identifies the particular system call of the

LSM module which the user-level program wishes to invoke. The third argument is a void
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pointer, which may contain any data the module wishes to accept, plus buffers for return
data. In general this will be a structure, which will itself point to several arguments. For

an example of how this is used, see the details on the DTE API in Section 3.6.

3.2 DTE Design Decisions

3.2.1 Entry Types

DTE facilitates restricting file system and signaling access to precisely that needed for
processes to accomplish their tasks. Further protection is afforded through entry points.
Entry points are binaries whose execution may trigger or allow transitioning to another
domain. A domain may be entered only while beginning execution of one of its entry
points.

Our prototype DTE implementation, as well as the DTE implementation by TIS, spec-
ified entry points as lists of binaries. Our LSM DTE module, however, uses lists of entry
types instead. There are several reasons motivating this switch. First, we no longer need
to reconstruct the executable’s filename to confirm its being an entry point. This in itself
provides two benefits. The consideration of how mounting activity such as multiple mounts
and per-process namespaces affects the actual filename is left entirely up to the file-type
resolution subsystem, rather than needing to be duplicated locally at the DTE auto and
exec decision algorithms. This both reduces the amount of code, and therefore the risk
of dangerous bugs, and increases performance. It also prevents time of check to time of
use races [45], where an attacker, or valid activity, is able to change an object between the

permissions check, and the use of the object.
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Additionally, the use of entry types is beneficial to policy administration for two reasons.
When creating a new domain under the prototype DTE system, for instance login_d, it is
tempting, and permitted, simply to define /bin/login as the entry point without giving it
any further thought. Most likely, its type will be the same as that of all other files under
/bin. This is the location of many binaries which are frequently updated. Write access
under /bin will therefore likely be quite liberal.

By requiring the definition of an entry type, we require the separate specification of
access to the login binary, which encourages providing minimal access to entry points, if
only on account of laziness — providing more liberal access than needed provides no benefits
and takes more work than providing the minimal access. Doing so also reminds the policy
administrator of the importance of the entry points which, in the case of login_d, will
likely encourage him to move /bin/login to /sbin, since no one should have create access
to /sbin, but such access under /bin is, again, likely to be granted more freely.

Finally, in chapter 8, we will introduce a relation on types which provides a quick glimpse
of the secrecy and integrity properties of types. When specifying entry types instead of
entry points, the presence or absence of integrity for entry types, which is crucial to domain
security, becomes immediately obvious. This information is of course also available when
entry points are used, but obtaining it requires more work. A policy administrator would
have to look up the type of each entry point to a domain and determine it’s place in the
type relation. This extra work interferes with the concept of interface zen [8], by placing

needless obstacles in the way of obtaining information.
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3.2.2 File Type Resolution

DTE assigns types to files hierarchically. A DTE policy contains a set of type assignment

statements. Each statement is of the form

assign -e typel pathl
assign -u type2 path2

assign -r type3 path3 path4

and binds a typename to one or more pathnames. The option indicates the type of binding.
If it is “-e”, for “explicit”, then the type is assigned only to the specified pathname itself. If
“u”, for “under”, then the pathname is assumed to be a directory, and the type is assigned
to descendants of this directory, but not the directory itself. The option “-r”, as shorthand

“-eu”, is also permitted.

for

TIS’ implementation of DTE used the policy’s type assignment statements to initialize
the type assignments. However, a running system did not consult the type assignment
statements when assigning types to newly created files or files which were moved. When a
file was moved, it retained its original type, in effect creating a new type assignment rule.
When a file was created, it was assigned a default type based upon the creating domain [3].

Our implementation of DTE works somewhat differently. We consider the above system
to be too complex. In many cases there may be no way to predict the type assigned to
a particular file. To discover the type, we must either know the entire history of file sys-
tem activity, or query the DTE system. In our prototype DTE implementation, the type

assignment rules were always followed. Therefore, the type assigned to a file was always

predictable, given only the pathname. This presented two implementation challenges. The
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first was a performance issue on a directory move. Since each descendant of the directory
may be assigned a new type as a result of the directory move, the types cached for any
descendants had to be forgotten. For a large directory tree, this could be time consum-
ing. However, since the values can simply be NULL’ed, and reloaded when needed, the
performance impact was seldom noticeable.

The second implementation challenge was the result of hard links. As discussed in
Section 2.5.1, Unix presents all files, devices, and directories as files. Files themselves are
usually a set of data blocks, but always organized by a descriptor called the inode. Inodes
are simply referenced by a number unique on the file system. A filename, then, points to
an inode number. Many filenames can point to the same inode number. Each filename is
called a “link,” and a file is not truly deleted until the last remaining filename referencing
the inode is deleted.

When a DTE system opens a file whose DTE type is not cached, it uses the provided
pathname to determine the DTE type. Clearly, since more than one name can refer to
a file, the actual type assigned to a file depends on the name first used to open the file.
Subsequent open system calls for the same inode will not recalculate the typename so long
as the type information remains cached, even though a different process, under a different
domain, may use a different pathname to open the file. The solution which our prototype
implemented was to use one file for each file system to specify inode numbers pointed to
by more than one name, along with the pathname which should be used to determine the
inode’s type. On an open call, if the inode being read was listed in this file, the pathname
listed in the file was appended to the file system’s mountpoint, and this pathname was used

to determine the file’s type, rather than the pathname provided by the user.
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In the LSM DTE implementation, directory moves still incur the overhead of uncaching
the type information for all descendants. The file system specific hard link file, however,
is no longer supported, as the problem with hard links is solved by support for extended
attributes.

As of Linux kernel version 2.4, the run-time hierarchical assignment of types to files
met with another challenge. A file system can now be mounted more than once on the
same system. Assume a file system containing a file named filel is mounted under both
/mnt/fs1 and /scratchl. DTE handles this in several ways. By default, DTE stores the
first location under which a file system is mounted. If the file system is mounted under a
second location, DTE will continue to use the first mount location as the base of pathnames
under that file system, even if the first mount instance is removed. Only when all mounts
of the file system are removed, will this information be released. Alternatively, the DTE
policy may specify a pretend mount location for a device. When the file system stored on
this device is mounted, DTE will always pretend it was mounted under the pretend path,
regardless of the actual mount location. Finally, the DTE policy may forbid mounting of
a device under any location other than one which is specified. This location is called the

restrict location.

3.2.3 Extended Attributes

The LSM DTE implementation supports file-type bindings through extended attributes.
Each file system with persistent inodes may contain a file at its root named dteeaf. This
file is initialized using DTEedit, the policy creation tool presented in Section 6.1. It specifies

the type for every inode number up to the maximum allowed inode number on the file
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system. Since this number is often very large, we conserve space by creating a table for
each file system relating the type name to an index, which can be as small as 1 byte 1. By
reserving space for nonexistent inodes, we eliminate the need to search for an inode entry

in the file. Rather, we can calculate the position of an entry in constant time as

p=1+s X1,

where £ is the offset of the beginning of the inode table, s is the size of an index entry, either
1 or 2 bytes, and 7 is the inode number. Furthermore, when a new file is created, there is
no need to shuffle existing entries to keep the table sorted.

Since extended attributes establish a correspondence between types and inode numbers,
rather than between types and pathnames, the hard link problem is automatically solved.
Extended attributes are purely optional. If the file dteeaf exists at the file system root,
then the extended attributes table is automatically read and maintained. If not, then we
rely on the traditional hierarchical method of type assignment.

While extended attributes are a useful enhancement to the DTE implementation, we
wish to maintain the strictly pathname based type assignment. Therefore, when a new file
is created on a file system supporting extended attributes, its type is determined in the
same way as for a file system which does not support extended attributes. The calculated

type is then stored in the dteeaf file.

!This is dependent only upon whether there are fewer than 128 defined types.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. DTE 44

3.2.4 Policy Updates

A user friendly system would allow unloading of the DTE module, rereading of the policy
configuration file, or loading of policy updates. However, each of these options may be
unsafe. If an attacker is able to update the security policy, the system cannot be truly
secure. There may be situations where updates are acceptable. For instance, if it can be
proven that updates can only be loaded by someone sitting at console in a locked room
under heavy guard, this may be acceptable.

TIS studied the safety of updates to a live DTE policy [23]. However, their work was
aimed at updates intended only to eztend a policy. Updates which violated current secrecy
or integrity properties were refused. This was useful in their situation, where a project team
would provide a policy update which increased control over objects (and subjects) which
they already controlled. For instance, they might increase control over their own CVS root.

The updates which most people would like to apply would most likely violate existing
security properties. For instance, while configuring a new login service, such as SRP [55],
one might find one had forgotten to provide write access to the utmp file. A policy update
to grant this access would most likely be refused by TIS’ update system.

We believe refusing policy updates or removals is the responsible choice. For the case
of testing a new service, as in the above example, or testing an entirely new policy, our
DTE implementation provides a verbose mode which reports, but does not reject, access

violations.
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3.2.5 Networking

The TIS implementation of DTE assigned types to network packets [2]. DTE systems

explicitly sent the type, as well as the domain of the originating process, along with network
packets sent to other DTE systems. Network data from non-DTE systems are assigned types
based upon the address of the originating host.

This DTE implementation does not mediate network access. On a secured network,
between DTE systems whose policies are closely synchronized, the ability to have the DTE
subsystem assign domain and type information, and mediate access accordingly, may be
useful. In most cases, however, there are several reasons why this is not trustworthy. First,
any discrepancy between the DTE policies on two machines can make it unsafe for one
machine to trust the DTE information assigned to network data by the other machine.
Second, provided the network is not secure, an insidious machine could impersonate a valid
machine, in order to either observe or corrupt sensitive data. Clearly additional security
measures can be added in order to make the DTE information on network packets. However,
the resulting security does not justify the additional complexity at the operating system
level.

DTE is better applied to network security by using DTE to protect encryption and
signature keys on the local system, and using these keys to authenticate and encrypt network

data.
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3.3 Data Structures

Most data structures used by DTE are static, set up at the parsing of the configuration file.
Two arrays are filled with null-delimited lists of names, one with names of types, and the
other with pathnames. All structures which reference types or pathnames will point into
these structures, reducing a great number of string comparisons to pointer comparisons.
The specification of each domain is represented in memory by a dte_domain_t structure.
Every process’ task_struct points to the dte_domain_t structure representing the domain
under which it is running. The dte_domain_t structure contains lists representing all of
the domain’s access to types and domains. Access to a type is represented by a structure
containing a bitmask indicating the type of access, and a pointer into the list of typenames.
Storing domain access is more complicated. First we store the list of entry types, that
is, the names of types which may be executed to enter this domain. Next we create a
list of structures containing both a pointer to other domains, and an indication whether
auto or exec access is allowed to the other domain. Third, we store a list of structures
indicating which signals may be sent to processes running under other domains. Finally, in
order to speed up the search for mandatory domain transitions, which must be performed
on every file execution, we store an altered version of the domain transition list which
we call the list of gateways. A gateway lists a domain name along with the name of one
of its entry types. The list of gateways out of each domain contains an entry for each
entry type to every domain to which the source domain has auto access. The gateways
are stored on a hash list. In our prototype implementation, this setup allowed mandatory

domain transition checks to be performed in constant time with respect to the policy size
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and structure. While the structure has remained the same, the switching from entry point
to entry type specifications will doubtless affect the running time. Since the prototype
needed to recalculate the executable’s pathname, whereas the current version can pick the
typename from the inode, running time should be reduced even further.

Every inode structure contains a pointer to the name of the type assigned to the file.
Consistent with the terminology presented in Section 3.2.2, the pointer to the inode’s own
type is called the etype, while the pointer to the default type for all it’s children is called

the utype. As discussed in Section 3.2.2, the file’s type can be decided in two ways.

MAP NODES INODES
~—~NULL «—~Toot_t
=—=~NULL m aroot_t

o —>Toot_t «—>TO0t_t

o

d . ~NULL ~—log_t
adm Cadm>

v ~\NULL —log_t

oot t m r~ro0t_t

# extract from the sample policy:
default_rt  roof_t
assign —eu log_t /var/fadm

Figure 3.1: Inodes and corresponding mapnodes.

If the file is being created, or if there is no extended attributes file, then the policy’s
type assignment rules are used to assign a type to the inode. Type assignment rules are
stored in memory by a tree of mapnodes. The mapnode tree structure mimics the file system
tree. Figure 3.1 depicts a set of mapnodes alongside the associated inodes. When reading a

mapnode for the first time, type assignment proceeds as follows. First we initialize both the
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etype and utype to the parent inode’s utype. Next we search for a mapnode corresponding
to the current pathname. To find the mapnode corresponding to /etc, for instance, we look
for a mapnode corresponding to the parent inode, and, if this exists, search it’s children
for one named etc. If no mapnode corresponds to /etc, we retain the initialized values
for the utype and etype. If a mapnode does exist, we link the inode to the mapnode for
future reference, and overwrite the etype and/or utype, provided the values stored in the
mapnode are non-NULL. Since we must represent the file system tree in mapnodes down to
the deepest level specified in any type assignment rule, there will likely be mapnodes acting
only as placeholders, not representing any type assignment rules themselves. In these cases,
both etype and utype would be NULL.

Alternatively, an inode’s DTE type can be read from an extended attributes file. The
file pointer for this file is stored in the file system’s super_block, along with the table re-
lating typenames to indices for this file system. The file’s etype is read from the extended
attributes file. Unfortunately, we must compute and store the hierarchical type assignment
information, that is, the utype and mapnodes, for inodes even if we used extended at-
tributes to compute the etype. This is because we may create a file, or mount a file system,
underneath this inode. In either case, we will need the inode’s mapnode and utype infor-
mation. This completely negates the performance advantage which extended attributes are
supposed to provide. However, extended attributes remain useful for their resistance to the

hard link, mounting, and namespace problems.
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3.4 Algorithms

Following are some of the algorithms used by the current DTE implementation. The un-
derlying design decisions are described above. The LSM functions are grouped according
to the kernel functions to which they relate.

All DTE functions begin with a check for a variable called dte_initialized, which is
set to true only when the security fields for all DTE-controlled kernel objects have been
initialized. This is necessary because LSM binds the DTE functions before it gives DTE a

chance to initialize the security fields on DTE-controlled kernel objects.

3.4.1 Mount

There are several mount-related L.SM hooks. The first is initially called to ensure that the
requested mount action is in fact allowed. DTE forbids mounting only if the policy file has
specified a mount restriction for the device being mounted, as discussed in Section 3.2.2.

This condition is checked by the dte_check.sb function:

int dte_check_sb (struct vfsmount *mnt, struct nameidata *nd)
{

struct super_block *sb = mnt->mnt_sb;

struct dte_mntr *r;

if (dte is initialized) {

r = get_mount_restriction(sb->s_dev);
if (r) {
path = pathname of mountpoint;
if (r->path != path &% r is a strict mount) {
return -EPERM;
}
if (r->path == path &% r is a pretend mount) {
// set "real" parent pointers;
sb_sec->mnt_parent = mntget(nd->mnt);
sb_sec->mountpoint = dget(nd->dentry);
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return 0;

The dte_check_sb function also must perform a part of the hierarchical DTE informa-
tion setup. Most of this is performed later, since we need information gathered during the
remaining mount operation to complete it. However, in the case where the mounted device
is associated with a pretend mount rule, but is being mounted in the specified pretend loca-
tion, waiting until after the mount completes means that, when using the pretend location
to specify the real parent vfsmount and mountpoint, the new device is already mounted
on the pretend location. In this case, therefore, we must set up these pointers prior to the
mount operation.

The post_addmount LSM function is called after the mounting of most file systems. The
sole exception is the root file system, whose mount is followed by post_mountroot. As these

two functions do much the same thing under DTE, we present only post_addmount.

void dte_post_addmount (struct vfsmount *mnt, struct nameidata *nd)

{
/* set up external attributes file info */
dte_setup_eafile(mnt->mnt_sb, mnt);
/* set up hierarchical information */
hierarchical_setup(mnt) ;

}

As discussed in Section 3.2.3, DTE handles file type resolution in two distinct ways.
One is based upon the file system hierarchy. The other is based upon an external attributes
file. Some initialization for each method is required at mount time. These are handled by

the hierarchical_setup and dte_setup_eafile functions.
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void dte_setup_eafile(struct super_block *sb, struct vfsmount *mnt)
{

struct dte_sb_sec *sb_sec = sb->s_security;

if (sb_sec~>initialized)
return; /* This device has previously been mounted */

fp = open file "dteeaf" on this file system;
sb_sec->ntypes = read number of types from fp;
for (i=0; i<sb_sec->ntypes; i++) {

sb_sec->type_conv[i] = read next type name from fp;
sb_sec->initialized = 1;
sb_sec->offset = location of start of typename list in fp;

If the file has not been previously mounted, dte_setup_eafile checks for the existence
of an extended attributes file. If this exists, then it builds an array binding integer indices
to typenames, as specified by the file. It also records the offset of the start of the actual
listing of extended attributes, but does not begin to read in types for any inodes. Finding
the type for a particular inode number can now be done in constant time by adding the
inode number, multiplied by the size of a type indei in the extended attributes file, to the
offset.

The hierarchical setup function also returns early if the file system has previously been

mounted.
void hierarchical_setup(struct vfsmount *mnt)
{

struct super_block *sb = mnt->mnt_sb;
struct dte_sb_sec *sb_sec = sb->s_security;

if (sb->initialized)

return;

This function must set up the pretend mount location. This is done by setting two
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pointers in the superblock’s security field. 2 This function must also insert the inode for the
root of the mounted file system into the mapnode tree (see Section 3.3). This is the infor-
mation which is will be used to determine how the file system fits into the type assignment
tree.

As mentioned above, if the device is mounted on its pretend location, then dte_check_sb
will have set the pretend mount location on the superblock before mounting completes. In

this case, we need only insert the inode into the mapnode tree.

if (sb->mnt_parent has already been set up) {
copy_dte_data(mnt->root_inode,
sb_sec->mountpoint->inode) ;

If no pretend mount location is specified for this device, then we set the pretend location
to the mount point. If this device is mounted a second time, then hierarchical _setup will

shortcut, and the pretend mount location will continue to point to this first mount point.
if (no pretend mount restrictions for this device) {
sb_sec->mnt_parent = mnt->mnt_parent;
sb_sec->mountpoint = mnt->mnt_mountpoint;

copy_dte_data(mnt->root_inode,
sb_sec->mountpoint->inode);

Finally, if the device is associated with a pretend location, but is being mounted else-
where, then we set up the pretend location here. The reason we cannot also handle this case
in dte_check_sb is that we must perform a path lookup to obtain the (dentry, vfsmount)

pair corresponding to the pathname. We cannot do this in dte_check_sb because that

Two pointers are needed because a pathname in the Linux kernel is uniquely identified by a
(dentry,vfsmount) pair. In fact we are only after one thing, the pathname, but no such thing exists in
the kernel.
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is called holding a lock which may not be held for the path lookup function. The path
lookup is not needed in dte_check_sb because we already have the mount point’s (dentry,

vismount) pair.

else {
path_lookup(pretend path name, &nd2);
sb_sec->mnt_parent = nd2.mnt;
sb_sec->mountpoint = nd2.dentry;
copy_dte_data(mnt->root_inode,
sb_sec->mountpoint->inode) ;
}

3.4.2 File Type Resolution

File type resolution is accomplished using the mapnodes, as described in Section 3.3. By
properly setting mapnode information on root inodes at mount time, we do not need to
worry at all about the issues of multiple mounts or directory binding at inode lookup time.
The following algorithm is implemented as dte_real_postlookup, which is called by LSM
after any inode is first read from disk, that is, the first time a file is read.

The hierarchical type assignment information must be maintained even if we use ex-
tended attributes, in case a file system not using extended attributes is mounted at a lower
level. Barring any contradictory type assignment rules, both the etype and utype are

inherited from the parent directory’s inode.

static inline void dte_real_postlookup (struct inode *ino,
struct dentry *d, int create)
{

struct dte_inode_sec *p, *c;
/* assign types using the hierarchical scheme */

¢ = inode->security;
p = inode->parent->security;
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c->utype = c->etype = p->utype;
c—->initialized = 1;

c->map = mapnode_getkid(p->map, d->name);

if (c->map != NULL) {
c->map = mapnode_getkid(p->map, d->name);
c->etype = c->map->etype;
c->utype = c->map->utype;

The function returns if the device does not have an external attributes file. It also returns
if the inode is of a newly created file. This is because DTE uses type assignment rules to
determine the type of files which are created on a file system using an external attributes
file. This contrasts to SELinux’ TE and TIS’ DTE, which use the creating process’ domain
and the type of the parent directory to assign a type.

If the file is not new, and the file system uses extérnal attributes, then the file’s types

are taken from the external attributes file:

if (create ||
this device has no external attributes file) {
return;

buf = read type index from ea file at offset+inode #;
c—>utype = c->etype = convert buf to type name;

We now show informally how this algorithm, combined with the above mount algorithms,
correctly handles multiple mounts and directory binding.

To show that we correctly handle multiple mounts, we will access a file dir1/dir2/file,
which is located on a file system mounted at least twice. If the file system stores typenames
as external attributes, then, as there is no ambiguity in inode numbers, the same type will

be returned for diri/dir2/file regardless of file system mount activity. We therefore
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assume there is no external attributes file. The dte_real postlookup function bases the
types of files (and directories) based upon the mapnode tree information stored at the parent

directory, using the following excerpted pseudo code:

c->map = mapnode_getkid(p->map, d->name);

if (c->map !'= NULL) {
c->map = mapnode_getkid(p->map, d->name);
c->etype = c->map->etype;
c—>utype = c->map->utype;

Therefore the types returned for diri/dir2 and diri/dir2/file depend purely on the
correct insertion of dirl into the mapnode tree. This is done at mount time.
The dte_post_addmount function calls hierarchical_setup, which first performs the

following check:
if (sb->initialized)
return;

In other words, if the superblock is already initialized, which means that this device has
been previously mounted, then we do not continue. Therefore, the first path under which
the device was mounted will continue to be that used for file type resolution, as it should
be. The simple case of multiple mounts is therefore (trivially) correctly handled.

Later, hierarchical_setup contains the following code:

if (no pretend mount restrictions for this device) {
clone security field on mnt’s root inode from
the mountpoint dentry->d_inode.
} else {

path_lookup(pretend path name, &nd2);

clone security field on mnt’s root inode from
nd2.dentry->d_inode;
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Cloning an inode’s security field also copies its pointer into the map node tree. If the
DTE policy configuration file specifies a pretend mount location for this device, the mapnode
for that location is used for the root inode of the newly mounted file system. Otherwise,
the mapnode for the specified mountpoint is used.

Finally, looking again at the dte_real _postlookup function, when dirl is looked up,
we will look at the parent inode’s mapnode for a child mapnode by diri’s name. If this
does not exist, we copy the parent inode’s utype to dirl’s etype and utype. Since the
parent inode is the inode for the file system’s root dentry, and since we have shown that
this inode’s security field is correctly assigned at mount time, multiple mounts are correctly
handled by the file type assignment algorithm.

Directory binding is a remount of a specific directory within an already mounted file
system, on top of a new mountpoint. The very act of reading the directory as part of binding
it, ensures that the security field for the inode for this directory is already initialized. This

is not a part of the DTE code, but occurs within the do_loopback function at the line
err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);

It will therefore have been correctly set before it was ever bound. We refrain from explicitly

constructing the obvious inductive proof.

3.4.3 Inode Permission

Since type names are set at the time when inodes are first read from disk, the DTE inode
permission function is quite simple. It consists only of a few safety checks, followed by
a check through the current domain’s list of type accesses for the requested access to the

inode’s type. Checks for file execute permission are delayed until after a domain transition.
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static inline int dte_real_inode_permission(struct inode *inode, int mask)

{
struct dte_ta *ta; /* a dte type access structure ptr */
ta = search for type access from current domain to inode->etype;
if (!ta)
return;
if (S_ISDIR(inode->i_mode)) {
if ((mask&MAY_EXEC) && !(dte_descend_access(ta->access)))
DENY_ACCESS("dir x");
if ((mask&MAY_WRITE) && !(dte_create_access(ta->access)))
DENY_ACCESS("dir w");
if ((mask&MAY_READ) && !(dte_readdir_access(ta->access)))
DENY_ACCESS("dir r");
} else {
if ((mask&MAY_WRITE) && !(dte_fw_access(ta->access)))
DENY_ACCESS("file w");
if ((mask&MAY_READ) && !(dte_fr_access(ta->access)))
DENY_ACCESS("file r");
}
return O;
}

3.4.4 Execve

Section 2.5.6 details the two types of domain transitions allowed under DTE. These are
called auto and exec transitions. A process must request an exec transition. This is done

using a new system call:

static long dte_do_exec(void *data)

The pointer sent to this function must reference the following struct:

struct dte_exec_struct{
char *fnam;
char **argv;
char **envp;
char *domain;
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The system call begins by reading this structure from user space. It searches the DTE

exec rules for one permitting the current domain to transition to data->domain.

ts = current->security;
if (!'dte_may_exec_to(ts->dte_domain, dest)) {
log("dte: domain %s may not exec to domain %s.\n",
ts->dte_domain->name, dest->name);
err = -EACCES;
goto out_putf;

We next back up the current domain, set the new domain, and begin execution of the
requested file using the standard execve system call. We must temporarily store the old
domain for three reasons. First, since the executable file data->fnam may not yet have been
loaded from disk, we wait until we are certain the file’s type has been calculated in order
to determine whether this file is an entry point to the destination domain. If it is not, then
the process must be returned to its original domain. Similarly, if execution fails early on,
we must also reset the domain. An example of such a failure would be the file data~>fnam
not existing on the file system. Third, since an auto transition overrides an exec transition,
we will need the old domain in order to ensure that no auto transition existed for the old
domain and the new executable file.

Finally, if the execve system call fails, we reset the original domain.

ts->dte_back = ts->dte_domain;
ts->dte_domain = dest;
err = execve(es.fnam, es.argv, es.envp);
if (ts->dte_back) {
ts->dte_domain = ts->dte_back;
ts->dte_back = NULL;

The execve system call calls the function prepare binprm, which calls the LSM function

bprm_set_security in order to set security module information. In DTE, this function
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handles both auto domain transitions, and the final entry point check for exec transitions.
It begins by checking for an auto transition, using the dte_auto_switch function. If such
a transition is required, it takes place, potentially overriding a requested exec transition.
Otherwise, if an exec transition has been requested, we ensure that the file being executed

is an entry point to the new domain.

if (!'dte_auto_switch(s->etype)) {
/* Log the mandatory domain switch */
} else if (ts—>dte_back &&
!dte_domain_has_ep(ts->dte_domain, s->etype)) {
/* this domain transition is not allowed */
log("dte: type %s is not ep to domain %s.\n",
s->etype, ts->dte_domain->name);
ts—>dte_domain = ts->dte_back;
ts—->dte_back = NULL;
return -EACCES;

Next execution is attempted. If it fails, the process’ original domain is reset. Otherwise,

the process begins execution of the new file under its new domain.

ret = dte_check_x(ts—->dte_domain, s->etype);
if (ret) {
/* not allowed */
log("dte: domain %s may not execute type %s.\n",
ts->dte_domain->name, s->etype);
if (ts->dte_back) {
ts->dte_domain = ts->dte_back;
ts->dte_back = NULL;

}

return ret;
}
ts->dte_back = NULL;
return O;

Section 3.3 explains that a list of gateways is created for each domain. The function

dte_auto_switch, called from the DTE version of bprm set_security, searches the list
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of the source domain’s entry types for the type assigned to the file being executed. If it
is found, then dte_auto_switch returns 0, indicating that an auto domain transition is
required. Otherwise, it returns 1. Since the check for an auto transition is reduced to one
hash calculation, performance impact is minimized despite dte_auto_switch being called
for every file execution.

static int dte_auto_switch(char *type)

{
ts = current->security;
curd = ts->dte_domain
if (ts->dte_back) {
/* in a dte_exec, we want to use the original domain */
curd = ts—>dte_back;
}
if (curd has no gateways)
return 1;
gw = entry in gateway hash table for type;
if (gw) {
if (ts->dte_back) {
log overridden exec transition;
ts->dte_domain = gw->domain;
} else {
ts->dte_back = ts->dte_domain;
ts->dte_domain = gw->domain;
}
return 0;
}
return 1;
X

3.4.5 DTE Module Init

The switch to LSM involved allowing DTE to be installed as a module after system boot had
completed. Important kernel structures have already been created, without DTE security
information attached, and important information has already been lost. For instance, while

we have access to the process tree, processes may have already reparented themselves. More
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importantly, for processes which have performed sequences of execve, only the filename of
the latest execve invocation is available. This means that we cannot know how to assign
domains to processes correctly. To cope with this situation as best we can, we use the
following algorithm:

int setup_dte_module(void)

{
/* read dte config file ... */
/* assign a specified default domain to all processes: */
lock_kernel();
for_each_task(taskp) {
taskp->security = kmalloc(sizeof (struct dte_task_sec),
GFP_KERNEL) ;
task_sec = (struct dte_task_sec *)taskp->security;
task_sec->dte_domain = default_domain;
task_sec->dte_back = NULL;
}
/* Set up the root of the file system... */
/* And walk the entire file system tree loaded so far, assigning
DTE types: */
dte_walk_dcache_tree_full(root_mnt, root_sb->s_root);
}

3.5 Configuration File

When a DTE system boots, it reads a policy from the configuration file, which is located
at /.dte/dte.conf. This file is structured as follows. It begins with a declaration of the
types and domains used in this policy. Next it defines the default domain, which is assigned
to the first process. It also defines the etype and utype for the root of the file system. This

is followed by domain specifications and type assignment rules.
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<dte_config> ::=
types <type_name> { <type_name> }
domains <domain_name> { <domain_name> }
default_d <domain_name>
default_et <type_name>
default_ut <type_name>
<domain_spec>
{ <domain_spec> }
<type_assignment>
{ <type_assignment> }

Each domain specification lists, in order, the entry types, the domain’s access to types,
its permitted and required transitions to other domains, and the signals which it may send
to other domains. Each domain access may be auto or exec. Type access may be any
combination of “r” for file read, “w” for file write, “x” for file execute, “I” for directory read
(lookup), “c” for directory write (create), “d” for directory descend, or “a” for file append.
Enforcement of file append is, however, not yet implemented. The signal in a signal access
rule may be a comma-delimited list of signal numbers, or “0” for “any signal.”

The list of type assignments follows. A type assignment statement may associate several

4

paths with one type. Each statement binds the pathnames as “-e” for explicit, “-u” for

7%

under, or “-eu” or “-r” for both. Their meanings are discussed in Section 3.2.2.

<domain_spec> ::= spec_domain <domain_name>
(<number> { <entry_type> } )
(<number> { <type_access> })
(<number> { <domain_access> })
(<number> { <signal_access> })
<type_assignment> ::= assign <assign_option> <type_name> <path_name>
{ <path_name> }

Each of the above statements must adhere to a very specific syntax. Their specifications

follow.
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<assign_option> ::= "~e"["-u"|"-r"|"-eu"
<entry_type> ::= <type_name>

<type_access> ::= <type_acc_token> "->" <type_name>
<domain_access> ::= <domain_acc_token> "->" <domain_name>
<signal_access> ::= <number> "->" "Q"

<signal_access> ::= <number> "->" <domain_name>

<name> 1:= <letter> { <letter> | <digit> }
<type_name> ::= <name>

<domain_name> ;1= <name>

<path_char> 1:= <letter> | <digit>

<path_element> ::= <path_char> { <path_char> }
<path_name> 1:= "/" <path_element> { <path_name> }
<number> 1:= <digit> { <digit> }

<type_acc_token> ::= <type_acc_piece> { <type_acc_piece> }
<type acc piece> e "r"I"w"I"x" "l”I"c"l"d"l"a"
<domain_acc_token> ::= "auto" | "exec"

A few notes follow which are not expressed in the BNF specification. First, to continue
any statement onto the following line, the line must be ended with a \. Second, in domain
specifications, the numbers preceding each of the type, domain and signal accesses must be

the exact number of access specifications following.

3.6 DTE API

DTE multiplexes the LSM security system call to provide three ways of interacting with
the DTE subsystem. Since these three are provided through one system call, they are
not themselves true system calls. However, as they allow user-space programs to interact
with the kernel through a kernel trap, and since they most closely resemble system calls in
purpose and function, we will nevertheless refer to them as syscalls.

The three DTE syscalls are called get_type, get_domain, and dte_exec. They are

invoked by calling the security system call and sending the integer code 10 as the first
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argument, in order to specify that these are directed toward the DTE subsystem; an integer
between one and three as the second argument to identify the specify DTE syscall; and a
pointer to a structure as the third argument. The structure in the third argument contains
the actual arguments being used by the DTE syscall.

The code snippets below explain the usage of these syscalls.

e get_type
This call is used to learn the type assigned to a file. It receives a string containing
the pathname to be queried, as well as a buffer and an integer specifying the buffer

size. The type name is stored in the buffer.

struct dte_gt_struct {
char *fnam;
char xbuf;
int buflen;
};
int security(int id=10, int call=1, struct dte_gt_struct *gt);

e get_domain
This call is used to learn the domain under which a process is running. It receives

an unsigned integer representing the process id, as well as a buffer and an integer

specifying the buffer size. The domain name is stored in the buffer.

struct dte_gd_struct {
unsigned int pid;
char *buf;
int buflen;
}
int security(int id=10, int call=2, struct dte_gd_struct *gd);
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e dte_exec
This call requests a voluntary transition to a new domain while beginning execution of
a new file. Tt is sent the pathname to be executed, the domain to which to transition,
as well as the lists of arguments and environment variables. If execution of fnam
triggers a mandatory domain transition, then execution proceeds under the required

domain, and the requested domain transition does not occur.

struct dte_exec_structq{
char *fnam;
char **argv;
char **envp;
char *domain;
};

int security(int id=10, int call=3, struct dte_exec_struct *de);

3.7 Effectiveness

To show the effectiveness of our DTE implementation, we picked a high-proﬁle vulnera-
bility, namely the buffer overflow in wu-ftpd[49], and showed how our implementation of
DTE can prevent an attacker from obtaining a root shell. Our goal was to show that we
could protect the system from the wu-fipd vulnerability (the posted exploits as well as fu-
ture or hand-crafted ones) without modifying the binary. In order for ftp to retain its full
functionality, it would need to be made DTE-aware so that it could, like login, allow ftp
to transition into the domain associated with a user being authenticated. We did not do
this, but set protections such that users can retrieve files from, if not deposit files onto, the

server. Anonymous ftp was fully functional.
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The policy shown in Figure 3.2 prevents domain ftpd_d from executing any system bi-
naries other than /usr/sbin/in.ftpd and binaries located under “ftp/bin/ (lines 19-21).
These files are defined to be of the type ftpd_xt (lines 29 and 30), which the domain ftpd_d
may execute but not write (line 20). Only ftpd_d may execute this type (lines 9-21), and
root_d automatically switches to ftpd_d on execution of /usr/sbin/in.ftpd (line 12), since
that is an entry point to ftpd_d (line 19). The exploits to be found on the internet to
take advantage of this vulnerability will therefore fail, as they expect to be allowed to run
/bin/sh. Nor can a script be written to upload and run a Trojan horse, since the only

types which fipd_d is allowed to write may not be executed by anyone.

The script which we tested was wuftpd2600, which can be found at the Security Focus
website [20]. It connected to our test machine, and exploited the buffer overflow. However,
the DTE-enabled kernel refused to allow the ftpd_d domain to execute /bin/sh. The script
therefore hung, and the system was not compromised. The error messages in Figure 3.3

were sent to syslog. In contrast, the plain 2.3.28 kernel happily provided a root shell.
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# ftpd protection policy

types root_t login_t user_t spool_t binary_t 1lib_t passwd_t shadow_t dev_t \
config t ftpd_t ftpd _xt w_t

domains root_d login_d user_d ftpd_d

default_d root_d

default_et root_t

default_ut root_t

default_rt root_t

spec_domain root_d (/bin/bash /sbin/init /bin/su) (rwxcd->root_t \
rwxcd->spool_t rwcdx->user_t rwdc->ftpd_t rxd->1ib_t rxd->binary_t \
rwxcd->passwd_t rxwcd->shadow_t rwxcd->dev_t rwxcd->config t \
rwxcd->w_t) (auto->login_d auto->ftpd_d) (0->0)

spec_domain login_d (/bin/login /bin/login.dte) (rxd->root_t rwxcd->spool_t \
rxd->1ib_t rxd->binary_t rwxcd->passwd_t rxwcd->shadow_t rwxcd->dev_t \
rxwd->config_t rwxcd->w_t) (exec->root_d exec->user_d) (14->0 17->0)

spec_domain user_d (/bin/bash /bin/tcsh) (rwxcd->user_t rxwcd->shadow_t \
rwxcd->spool_t rxd->1lib_t rxd->binary_t rwxcd->passwd_t rwxd->root_t \
ruxcd->dev_t rxd->config_t rwxcd->w_t) (exec->root_d) (14->0 17->0)

spec_domain ftpd_d (/usr/sbin/in.ftpd) (rwcd->ftpd_t rd->user_t rd->root_t \
rxd->1ib_t r->passwd_t r->shadow_t rwcd->dev_t rdx->ftpd_xt \
rd->config_t rwcd->w_t d->spool_t) () (14->root_d 17->root_d)

assign -u /home user_t

assign -u /tmp spool_t

assign -u /var spool_t

assign -u /dev dev_t

assign -u /scratch user_t

assign -r /usr/src/linux user_t

assign -u /usr/sbin binary_t

assign -e /usr/sbin/in.ftpd ftpd_xt

assign -r /home/ftp/bin ftpd_xt

assign -e /var/run/ftp.pids-all ftpd_t

assign -r /home/ftp ftpd_t

assign -e /var/log/xferlog ftpd_t

assign -r /1lib 1lib_t

assign -e /etc/passwd passwd_t

assign -e /etc/shadow shadow_t

assign -e /var/log/wtmp w_t

assign -e /var/run/utmp w_t

assign -u /etc config_t

Figure 3.2: A DTE policy to protect from wu-ftpd, with line numbers added.

Aug 4 13:12:03 wicked kernel: do_exec: d_t_check_x returned 1(exec denied).
Aug 4 13:12:03 wicked kernel: do_exec: domain ftpd_d type root_t.

Figure 3.3: Error messages resulting from attempted wu-fipd exploit.
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Chapter 4

Performance

We began the performance analysis of LSM and DTE by using the LMBench [36] benchmark
suite. Some of the LMBench benchmark attempts to measure hardware performance, and
therefore was not relevant. We present and discuss the relevant LMBench results in Sec-
tion 4.1. For those areas which the benchmark showed were significantly affected by DTE,
we analyze the cause of the performance impact in more detail in Section 4.2 by directly
timing the kernel operations involved. That section also investigates some performance hits
which we expect, but which LMBench does not measure. Finally, in Section 4.3 we perform
a macro-benchmark to analyze the overhead perceived by users of the system.

All benchmarks were performed on a 400 MHz Pentium II class system with a 2.51
nanosecond clock and 128M ram. LMBench calculated the actual clock speed as 398MHz
(1/2.51). Therefore, for all tests which measured clock cycles, we report results in microsec-
onds calculated by dividing by 398. Background processes were kept to a minimum by not

starting services such as X windows, lpd and cron.

68
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4.1 LMBench Results

The LMBench suite was executed ten times on each of an unaltered 2.5.6 kernel, an LSM-
enabled 2.5.6 kernel with no modules loaded, an LSM kernel using only the capabilities
module, an LSM kernel with the DTE module loaded, and an LSM kernel with the capa-
bilities module stacked on top of the DTE module. The means and standard deviations
are presented in Appendix B. In our discussion, we will mainly compare the stock 2.5.6
kernel, the LSM kernel with the capabilities module loaded, and the LSM kernel with the
DTE module loaded. The capabilities module rarely made a significant impact on the re-
sults. However, we use it rather than LSM with no modules, because the stock kernel uses
capabilities. Whereas capabilities significantly enhance the security of the stock kernel, the
DTE kernel can be made secure without the aid of the capabilities module. We therefore
consider the most appropriate comparisons to be of the stock kernel, the LSM kernel us-
ing the capabilities module, and the LSM kernel using only the DTE module. Section 4.1.1
presents file system and virtual memory performance. Section 4.1.2 presents process-related
performance. Since the context switch and memory latency results are strictly hardware

measurements, we do not discuss them here.

4.1.1 File System and VM Performance

4.1.1.1 Mmap

Counter-intuitively, mmap latency improved in LSM, and improved even more for the DTE
module. The difference amounted to less than 0.5%. Nevertheless, mmap is an important

method of file access, and the lack of performance impact due to either LSM or DTE is a
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pleasing, if expected, result.

4.1.1.2 File Creation

File creation involves the following LSM hooks from inode_ops: create(), post_create(),
and a call to permission() for each parent directory contained within the pathname. In
DTE, the create() call is empty, while the post_create() call performs the same tasks
which would be needed if the file were read from disk for the first time. This includes
determining the appropriate DTE types and, if necessary, hooking into the mapnode tree.
If extended attributes are in use, then post_create () must also write the newly determined
type for this inode into the extended attributes file.

The LSM code introduced a 2-3 microsecond overhead for creation of any size file. The

DTE code introduced an additional six to eight microseconds.

4.1.1.3 File Deletion

File deletion involves the following LSM hooks: inode_ops—permission() for EXEC per-
mission at the parent inode, followed by inode_ops—unlink(). The unlink() function is
empty for DTE. Any extra cost incurred by DTE over LSM is, therefore, the same as if we
were simply accessing the file. Figure 4.1 shows the relevant measurements for the file dele-
tion benchmarks. The first column shows the size of files being deleted, the second column
shows the deletions per second, and the third column shows the time (in microseconds) to
delete a file. Note that the similar times for 1k and 4k file deletions are accounted for by
the file system’s 4k blocksize. The DTE overhead appears to be about 2.9 microseconds

above the LSM time.
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At this point a note about precision is in order. While the 95% confidence interval
for 10 runs of our LMBench file deletion results was 0.15 microsecond, a subsequent trial,
on the same hardware but a rebuilt system, returned numbers which differed by as much
as 4 microseconds from the first run, but again exhibited a 95% confidence interval of
0.15 microsecond. This suggests the possibility that the overhead depends greatly upon
particular conditions in the file system’s free inode and free block bitmaps.

Deletions Per Second For Various 2.5.6 Kernels
65000 I Y T T

l L.SM Kernel »'——r——l
LSM+DTE Module +--%--+
60000 LSM-Free Kernel :--%--- |
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40000 _

Deletions/Second

35000 + » " .

30000 |- . . .
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File Size in Kilobytes

Figure 4.1: LMBench results for file deletion

4.1.2 Process-Related Performance

4.1.2.1 Null Call

A system call allows user code to interact with the operating system. To obtain a mea-

surement of the time to perform a null system call, that is, the time required for only the
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operating system overhead involved in performing a system call, LMBench uses a call to
sys_getppid. This is a short system call, into which LSM fortunately inserts no hooks.
Therefore it remains a good null system call test for us. It is mentioned here only be-
cause of the unexpected result of the LSM kernel outperforming the plain kernel, with all
combinations of inserted modules. This would appear to be an artifact of the extra LSM

information in memory, purely by accident, resulting in better distribution of data in cache.

4.1.2.2 Stat() and Open()/Close()

For our purposes, these benchmarks are closely related. This is because both open() and
stat () call open namei(), which calls permission() and post_lookup() for each path
element leading up to the filename. Provided the file’s dentry information is cached, as it
is when the same file is repeatedly opened and closed, no other LSM hooks are called.
The DTE overhead is significant, adding 33% to the stock kernel’s time for stat()
and 29% for open()/close(), as opposed to the 4% increase for stat() and 2% increase
for open()/close() imposed by the capabilities module. The DTE permission() and
post_lookup functions are quite short, and do not seem to account for this overhead. We

therefore analyze this further in section 4.2.1.

4.1.2.3 Signals

The time to install a signal handler was not affected by either LSM or DTE. However,
the time to send a signal, as expected, was affected. The capabilities module introduced
0.1 microsecond overhead over the stock kernel, and the DTE module added an additional

microsecond. This represents the cost of a single LSM function call, which involves two
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pointer dereferences, the saving of the return value, and the following test of the return

value. The hook being called, for both the dummy and capabilities module, does only a

return 0;

The benchmark sends a signal only to itself. Since DTE shortcuts for any signal sent
to a process within the same domain, this is not a good test of the DTE signal code.
Therefore, micro-benchmarks to further investigate DTE signal performance are developed

in Section 4.2.3.

4.1.2.4 Fork

The time to fork a new process did not differ significantly between kernels. Indeed, forking

and exiting a process introduce only three LSM hooks, each of which consists of simply

return 0O;

for the dummy and capability modules. In DTE, the overhead is constant, always consisting

of one memory allocation, two conditionals, and four simple assignment statements.

4.1.2.5 Fork and Exec

The addition of an exec() call introduces a much larger amount of work for the DTE
module. The kernel must now check the DTE policy for mandatory domain transitions,
which will depend upon the current domain and the type of the file being executed. The
DTE module did not perform significantly worse than the DTE-free LSM kernel. This
result confirms the validity of using a hash table of gateways (see Section 3.3) to speed up

the search for required automatic domain transitions. Under the DTE policy used during
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these tests, the user_d domain, under which the benchmarks were run, had auto transition
rights to 4 domains, through 4 gateways. However, a poor hash table implementation could
cause the cost of checking for domain transitions to increase as a function of the number of

gateways. Therefore, Section 4.2.2 will analyze this cost in more detail.

4.2 Micro Benchmarks

LMBench is designed as a general benchmark to test OS and hardware performance. We
now present more detailed tests of some parts of the DTE code. We chose to profile any
code involved in suspicious or disappointing results from LMBench, as well as any code

which we felt was not adequately profiled by LMBench.

4.2.1 Permission()

As mentioned in the LMBench results, the dte_inode permission() function appears to
take an inordinate amount of time. This function only calculates the hash value of a type
name, steps through the list of hash collisions to find the requested type name, and performs
a few comparisons to determine whether to grant access. An obvious potential bottleneck
is therefore the hash function, which we investigate first.

The hash function we use is that used by the Linux directory cache, or dcache. The
dcache takes pathnames, descends the directory tree, and returns a file’s inode number.
Its hash table has therefore been thoroughly examined [32] and optimized. However, in
order to minimize memory usage while accommodating for the fact that the number of
hash entries will vary, we simply used a hash table of the exact size needed to store the

number of entries. To measure the impact of this memory optimization on performance, we
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calculated the maximum depth of any domain to type access specification in the chain of
hash collisions, for each domain specification. In our stock kernel, the mean maximum over
all domains was 6.2 + 2.6. By switching to hash tables containing twice the needed number
of entries, we reduced the average of maxima to 5.1 £ 2.6. It appeared worthwhile to make
this same change to the hash tables storing entry points, signal accesses, domain accesses,
and gateways, and investigate the resulting performance impact. However, doing so gave
mixed results, as some LMBench results grew worse.

Our next step was to time the open_namei () call, the dte_inode_permission() function
as a whole, and two pieces of the dte_inode_permission() function. In particular, we
timed the actual calculation of the hash value of the type name, and the subsequent search
through the list of collisions. Outliers ! were removed from the data sets, as these generally
reflected disk reads, which are far slower than the action being timed, and render data
meaningless by making the (already large) standard deviation far larger than the mean.
Our results come from three separate runs. The first timed open_namei (), the second timed
dte_inode_permission(), and the third timed the hash operations. We ran the LMBench
file system latency test each time. The separate runs were necessary since open namei()
calls permission(), and permission() contains the hash operations, so that the action of
logging deeper timing results would affect the calling functions.

The DTE kernel’s dte_inode permission() function took an average of .64 + .005
microseconds. The permission function mainly calculates the hash value of the typename,

and searches through hash collisions for the correct hash table entry. Calculating the hash

1We defined outliers as those numbers which were at least an order of magnitude larger than the numbers
which were not outliers. A significant gap existed between those numbers which we removed, and those which
we retained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. PERFORMANCE 76

value took .367 £ .002 microseconds, while stepping through collisions took .21 + .0005
microseconds.

The file which was being accessed by LMBench during the open()/close() test was
/usr/tmp/lmbench. This causes permission() to be called 4 times, accounting for 2.4 of
the 3.3 microseconds of overhead in itself. In addition to this, we must add the function
call overhead, as well as the overhead for post_lookup. Although each of these is small in
itself, we have at least accounted for the majority of the overhead, which appears to stem
from the actual hash calculation.

We also did a simple timing of all calls to open_name(). However, as this function is
called for all pathname accesses, ranging from quick reads from cache, to reads from disk,
to file creations, the numbers varied far too much to be of any use in comparing the small
differences arising from the LSM and DTE performance hits. Severe outliers, which were
an order of magnitude greater than the majority, were again removed, but variance was still
too great for the numbers to be very informative. The open namei() function averaged
125.85 4 .96 microseconds under a plain LSM-free kernel, and 134.31 £ .98 microseconds
under DTE. Many calls, however, completed in less than 7.5 microseconds. Clearly, in order
to garner meaningful information about the DTE overhead, we would have to use a more
intrusive method of timing open namei() to allow us to choose the instances timed. This
intrusion, of course, would itself affect the results. Since we have measured the parts of
open_namei () which will individually constitute DTE overhead, we did not perform further

profiling.
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4.2.2 Execve()

On file execution, the DTE kernel must search for a rule stating that the current domain
must enter a new domain upon executing the new file. As this search was feared to become
a tremendous bottleneck to DTE performance, the auto domain transition information is
stored on a hash table for each domain. Therefore an issue which merits investigation is
whether the amount of DTE overhead for file execution is constant, as should be the case
with a hash table, or whether it grows as a function of the number of gateways out of
the current domain. We created 10 domains, containing an increasing number of gateways
from 0 to 100 in steps of 10. We then created a directory containing 100 differently named
versions of hello world, none of which were actually gateways. In order to prevent console
output from skewing our results, we closed standard output before executing hello world.
Under a modified kernel which reports the run-time for fs/exec.c:execve(), we entered
each of these domains, and executed a script which ran each of the 100 programs 10 times.
Note that this is a very artificial test meant to find bugs or suboptimal code. In reality, the
use of entry types, as opposed to entry points, means that few domains will ever need more
then two entry types.

Table 4.2 lists the mean execution time and standard deviation for the execution times.
Clearly, the number of gateways does not affect execution time. Combined with the LM-
Bench results showing little overall performance impact of DTE on file execution times, this

proves the efficacy of our design.
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File Execution Times For Varying Numbers Of Gateways
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Figure 4.2: File execution times for varying numbers of gateways.
4.2.3 Signal

DTE only controls signals which are sent to processes running under a different domain than
the process sending the signal. Therefore, the DTE function controlling signals shortcuts
for signals which do not cross domain boundaries. The LMBench results measured only this
shortened code path. We inserted profiling into the DTE signaling code in order to obtain
more satisfying measurements. For signals which are not sent to a different domain, our
tests measured an overhead of .86+.07 microseconds. This is a little less than the LMBench
results. However, as it does not include the time for a context switch while calling the DTE
signal hook, the numbers do appear to agree. For signals crossing domain boundaries, DTE

takes 2.40 £ .21 microseconds.
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4.3 Macro Benchmark

All of the above benchmarking and micro-benchmarking is very useful in finding coding
errors or code paths which may benefit from optimization. However it is far less reliable
as an indicator of the total impact of DTE (and LSM) on real computational tasks. We
therefore finish our performance evaluation with the commonly accepted standard for macro-
benchmarking, namely a kernel compile. Under each of a plain 2.5.6 kernel, an L.SM kernel
with the capability module loaded, and an LSM kernel with the DTE module loaded, we

perform

make clean

make bzImage

We timed only the actual compilation, not the "make clean”. The first compilation
under every kernel took 1007 seconds. However, the test machine had sufficient memory to
keep all source code in memory after the first compile, so that new file creation and deletion
became much more important. Under the plain kernel, subsequent compilations took 995
seconds. Under the LSM kernel with capabilities loaded, these took 996 seconds. Using
the DTE module, they took 997 seconds. A performance impact of 0.1% certainly seems

negligible in return for a robust and flexible MAC system.
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Chapter 5

Access Rights of Domains

A feature of DTE systems which is too often ignored in analysis is the ability of entry points
to restrict a domain’s access rights. Here we attempt to gain a greater understanding of
the effects which an entry point can have on a domain’s real access rights. We begin with

a few simple definitions.

Definition 5.0.1 RW(d) represents domain d’s immediate type accesses under some DTE

policy.
Note that RW (d) is immediately available from a DTE policy file.
Definition 5.0.2 7 (d) represents the set of domains to which d is allowed to transition.

Whether the transition is auto or exec is irrelevant to 7(d). The purpose of the auto
transition right is to accommodate legacy applications which are not DTE-aware. It is a
useful architectural feature, but can be ignored here. Note that, if a file f; leads to an auto
transition from one domain d; to another domain ds, the same functionality could be coded
into another file fo of a different type, and executed under domain d;. Therefore auto
transitions do not limit the access rights of d;, except in the rare case wherein d; cannot

write or replace any files which it can execute. In any case 7 (d) is not affected.

80
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Definition 5.0.3 A(d) represents the full set of type accesses which a process under domain

d can exploit.

We say that a process can exploit a type access if it is able to execute arbitrary instruc-
tions taking advantage of this type access. For instance, to exploit the type access r->x_t,
a process must be able to read any files of type x_t at any time. Obviously, a process under
domain d; can exploit RW(d,). If a process under d; is subverted, then the attacker can
execute arbitrary code taking full advantage of any type accesses in RW(d;). If di can
transition to dg, the same process may or may not be able to exploit RW (d2). Whether or
not it can will depend upon the entry points to ds. The same is true for RW (d3), where
ds € T(dy). If all domains under some system have a shell as an entry point, then the full

set of access rights of any domain is:

Axiom 5.1

A(dy) = RW (dy) U (Vd; € T(d;) : A(dy))

As an example, consider a policy wherein d3 € T (ds), dy € T(d1), tay ¢ RW(dy),
tay ¢ RW(dy), but tay € RW(ds). In this case, a process under d; could execute the

following call:

transition(d2, "/bin/sh -c \"transition d3 /bin/sh -c \\\"rm £1\\\"\"")

This call would cause a domain transition to domain dy on execution of a shell. The
arguments provided to this shell would in turn request a transition to domain ds on execution

of another shell. That shell, in turn, could request removal of a file whose removal requires

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. ACCESS RIGHTS OF DOMAINS 82

type access ta;. In this way, a process running under domain d; can, at any time, exploit
RW (ds).

We can prevent this by using stricter entry points. If ds can be entered only though
a program which can only return the current time, and which cannot itself be subverted,
then a process running under d; cannot force d» to execute a shell under ds with arbitrary
arguments.

In order for a process under d to fully exploit RW (d,) where d,, is a domain to which

d can transition, one of the following must be true:
e d can overwrite the entry point to d,
e d can exploit a security vulnerability of an entry point to d,

e The entry point to d, allows arbitrary instructions to be executed. For instance, it is

a shell.

We now begin to address the problem at hand:

Definition 5.0.4 A (d) represents A(d) as limited by the entry point of d.

In order to safely take into account the effect of entry points on a domain’s access rights,

we must ensure two things:

1. All entry points must not be writable or movable by anyone. If anyone is able to
overwrite or replace an entry point, then we can no longer count on this entry point’s
restrictions to limit a domain’s access.

This can be verified automatically by a generic policy analysis tool, as it is simply a

feature of the DTE policy itself.
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2. The code for all entry points must be verified to perform correctly. It takes only a

single buffer overflow against an entry point to render all its protection useless.

This must be performed on a case by casc basis. Henceforth, when we state an entry

point’s functionality, we assume that this verification has been correctly performed.

Clearly it pays to have a small number (preferably one) of entry points, and to make
this (these) as simple as possible, so as to ease its verification.

We need a way of expressing the effect of an entry point on a domain’s rights. However,
an entry point will take into account some information which we can only glean from the
actual process, such as a password offered by a user.

In the following, P represents a user process. We treat it as an object, dereferenced using
“”. For instance, P.d returns the domain label for process P, while P.pwd is interpreted
as a password provided by the process and, presumably, by a user to the process. In the
interest of brevity, we allow A(P) to be used as shorthand for A(P.d), T(P) for 7 (P.d), and
RW (P) for RW(P.d). Whereas T (d) returns a list of domains to which d may transition,

T (P) returns a list C; = (C4,. .., Cy) of processes, one for each domain to which P.d may

transition.

Definition 5.0.5 d.L is a function representing the entry point to d. It behaves as follows:

o d.L(RW (P)) returns a subset of RW (P), containing all elements of RW (d) which the

entry point to d, given the information stored under P, does not expressly forbid.

o d.L(T(P)) returns a subset of T(P), containing all elements of T (P) which the entry

point to d, given the information stored under P, does not expressly forbid.
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Finally, before we give a formula representing the access rights of a domain as limited

by its entry points, we wish to rephrase a caution mentioned above more formally.

Axiom 5.2 If a domain d has more than one entry point, or the entry point may be over-

written or replaced by any other domain, then

Ar(d) = A(d).

That is, the entry points may not be assumed to limit the access of d. This also means

that

d.L(RW(d) = RW(d) (5.1)

Lemma 5.1

Ap(P) = Pd.L(RW(P)) U U AL(C)).
vC; eP.d.L(T(P))

Proof: We use D* to represent the set of domains consisting of D and all its descendants.

This equation simply expands Axiom 5.1 to account for limits imposed by entry points.
We therefore show its correctness by showing that the only two cases in which Az (d) differs
from A(d), are correct.

First, according to Axiom 5.2, if there exists more than one entry point to P.d, or the
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entry point is unverified, then we substitute

Pd.L(RW(P.d)) = RW(P.d) (5.3)

PA.L(T(Pd) = T(P.d) (5.4)

into the above equation, which then collapses back to that of Axiom 5.1.

Now let us assume that for some domain @ € D*, there is only one, verified, entry point,
and it restricts P.d’s access such that rux->root_t ¢ RW(Q). There are two possibilities.
If no other domain in D* may receive rwx->root_t access, then clearly P cannot ever
receive this access right.

Alternatively, some domain R.d € D* does have rux->root_t access. Then this access
will be contained in R.d.L(RW (R.d)), so that A (P), into which R.d.L(RW (R.d)) is union-
ed, will also contain rwx->root_t.

The argument for the validity of L£(7(P.d)) takes the exact same form as that for

L(RW (P.d)). |

It seems likely that, in most cases, the entry point will simply act as a barrier. Cer-
tainly this would be the safest behavior, least likely to be subject to programming errors.

Equations 5.5 and 5.6 are an example of £ acting as a barrier.

_ 1) if P.pwd # “god”
LEW(P)) = { RW(P) otherwise (5:5)
_ ¢ if P.pwd # “god”
LTP) = { T(P) otherwise (56)
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We see that careful analysis of entry points can provide more precise values of RW (d)
and T(d). We will take advantage of this feature in Section 6.2 in order to decrease the

number of false positives when searching for dangerous transitions.
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Chapter 6

Policy Administration Tools

The configuration language read by the LSM DTE module is defined in Section 3.5. It is
modeled after TIS’ DTEL DTE policy language [2], which is very intuitive, well organized,
and concise, such that one can reasonably understand a policy by reading its definition.
However, the policy must specify a large number of relations between various domains, and
between domains and types. Therefore, no matter how well the policy definition language is
thought out, there will be certain problems with dealing with the policy files directly which

cannot be surpassed.

¢ Repetitive typing
For any policy which segments the file system into a reasonably large number of types,
access will likely need to be specified from most domains to most types. This involves
retyping each typename up to |D| times, along with as many somewhat cryptic yet
repetitive access types, such as rxld. Furthermore, each typename is listed once in
the type enumeration line, and must be bound to real objects at least once among the
type assignment lines. Clearly, the probability of making a typographical error is not
insignificant. In the best case, such an error will result in an unbootable system. In

the worst case, it will result in a system which runs fine, but under an erroneous and

87
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dangerous security policy.

e Dense text
The policy language is very concise. This allows a quick scan of a portion of the
policy file to give a good feel, for example, for the structure of a domain. However,
providing a large amount of information in a small amount of space can serve to mask
a syntactic or semantic error. For instance, a missing \ to continue to the next line
might be easily missed, or a missing or extraneous d among the rxl type access can
be hard to spot. An alternative would be to make the policy language very verbose.

For instance, a domain definition could be

domain login_d begin
entry types begin
login_et

entry types end

type access begin

read,write,exec to login_et

type access end

domain login_d end

However this could serve just as well to mask errors. Most domains definitions would
likely be split among several pages, preventing related keywords from being seen to-
gether. This makes it harder to match begin and end statements. Perhaps more

importantly, the expansion of domain definitions would make it much harder to un-
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derstand a domain. This is both because the number of keywords begin to overwhelm
the number of meaningful identifiers, (access types, typenames, and domain names),
and because the process of looking through several pages to find information to define
a single domain interferes with what is known as interface zen [8]. In other words,
by forcing a policy administrator to look through several pages, the train of thought

which was working toward understanding the policy is being interrupted.

e Visual presentation
Clearly a text file can provide exactly one visual presentation. By setting up macros in
a text editor, it is possible, for example, to automatically follow a domain transition
definition to the definition of the destination domain. However, several more ideal

presentations come quickly to mind.

The DTE policy defines new classes of subjects and objects, namely types and do-
mains, and defines relations between these, as well as between these and existing
subjects and objects. For instance, between domains are connections indicating al-
lowed auto and exec domain transitions, as well as connections indicating permitted
intra-domain signals. There exist also connections from domains to types indicating
which types may be executed to enter a domain, and more domain to type connections
indicating which types a domain may read, modify or execute. One must consider a
combination of these connections in order to analyze how domains may affect each

other.

Understanding a policy requires understanding all of these connections. Different

views of a policy, therefore, may show different sets of connections, from different
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viewpoints.

An intuitive way to think about a policy is as a directed, labeled graph. The nodes
represent domains, types, and files. Edges may represent four types of entities. Edges

» o«

from domains to other domains are labeled “auto,” “exec,” or with a set of signal
numbers, and represent either a permitted domain transition or signal rights. The
domain transition edge labels might optionally refer to the entry types which may be
used to effect the transition. Edges from domains to types may be labeled “e” for
entry type, as well as any subset of “rwxlcda” to describe domain to type access as
described in Section 3.5. Edges from types to files represent “-e,” “-u,” or “r” type
assignment rules. Finally, Edges may exist between files, representing the file system
layout. An edge from file filel to file2 tells us that file2 is a child of filel. The
last type of edge is only partially a result of the policy — as a result of the “pretend”

mount rules described in Section 3.2.2 — but is certainly a part of a complete policy

representation.

We define F' as the set of files, T as the set of types, and D as the set of domains. The
graph G = (V,E), where V = (DUT U F), and E contains the edges we described.

Formally:

E = (Vdi,dy € D,l € (auto,exec, (0...31)*)) : (d1,d2,1)
U(Vd € D,t € T,z € {r,w,x,1,c,d,a,e}) : (d,t,2")

U(Vf1 fa € F) = (f1s f2)
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Displaying a DTE policy in this format would be far more useful to policy analysis
than the policy file itself. However, the full graph would be overwhelming. The
policy administrator must be allowed to look at subsets of this graph which emphasize
particular connections or sets of connections. One of the tools which we will present
does just this, presenting subsets of this graph which we have ourselves found useful

in policy analysis.

¢ Error patterns

As discussed above, a DTE policy defines many connections between subjects and
objects. In some cases, connections of two or more types should not exist simultane-
ously. However, these connections may be defined in different sections of the policy,
making them hard to spot. Or, the sheer number of these connections may make it
impractical to spot an inappropriate pair by eye. Consider that, if we have ten connec-
tions of some type, but one pair of connections is not appropriate, we must consider
E?:lz' = 45 pairs. In Section 7.4, we will present a very minimalistic policy, providing
only enough detail to support an intelligent login daemon. Even in this policy, shown
in Appendix A.1.1, the number of domain to type access rules is 86, each of which
specifies between one and seven type accesses taken from the set {r,w,x,1,¢,d,a} as

described in Section 3.5.

In building DTE policies, we have found several error patterns resulting from such
interactions of connections. While they are hard to spot by eye, they are simple to

find automatically.

1. Conquering
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We say that a domain Dy can conquer another domain Dy provided that
(a) D; may transition to Dy
(b) e is an entry point to Dy

(¢) D; may write or replace e

Clearly, in this case, we can say of the privileges of Dy

T(D1) = T(D)UT(Dy)

RW(D:1) = RW(Di)URW(D,)

since any actions which D is allowed to perform, D; could also perform, by
writing the instructions into e, and requesting a domain transition to Dy upon

execution of e.

2. Trojan
Entry points are a domain’s only means of protection from untrusted code. For
some domains, protection from untrusted code is moot, since they are meant
to run shells and user-compiled or user-written code. The user_d domain pre-
sented in Section 7.4 is an example. However, many domains will be designed
to temporarily expand a user or daemon’s access rights while performing a spe-
cific, restricted task. In such cases, the domain’s entry points must be designed
such that the domain’s privileges cannot be used for any unintended purposes.
An attack wherein a system is tricked into executing untrusted code is called a

Trojan horse attack.

For domains whose entry points are untrusted, we may wish to check for any
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pathnames to which the domain has execute access, and which the domain my
itself replace. Since replacing the pathname can mean overwriting the file itself,
or writing to any of its parent directories, this is clearly a check best performed

automatically.

3. Insufficient entry type access
A domain which cannot be entered is a useless domain. A domain cannot be
entered if it cannot execute its own entry points, or if it cannot descend the file
system tree down to the entry points. This will cause denial of service to either
user domains or system services. Furthermore, we have pointed out the danger
of vulnerability to Trojan attacks. The usefulness of Lemma 5.1 depends entirely
upon carefully considered entry types, which must not be vulnerable to attack.
Any domain with insufficient entry type access likely has not been sufficiently
analyzed. For these reasons, automated checks for sufficient entry type access

for all domains is desirable.

Our policy analysis tool will detect the presence of these conditions. In the following
sections we present DTEedit and DTEview, which, together address each of the above

concerns. A third tool, DTEbuild, will be presented in the next chapter.

6.1 DTEedit

DTEedit is a Gtk-enhanced graphical user interface for creating and editing DTE policies. It
is mainly intended to address the excessive typing and dense text problems associated with

editing policies in text format. Typing is dramatically reduced by asking the user to enter
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type and domain names exactly once, to inform DTEedit of their existence. Thereafter,
specification of access to or from any domain or type is by list selection, as is selection
of type of access (rwxlcda for type access, and auto or exec for domain access). When
entering type assignment rules, pathnames can be selected by browsing the file system using
a file selection dialog, or by typing the pathname. Figure 6.1 demonstrates specification of

exec domain transition access from login_d to root_d.

From domain:|login_d

]

boot_d
root_d © auto
user_d
login_d
To domain: O exec

Cancel

Gonce

v

Figure 6.1: Adding new domain specification rule in DTEedit.

The problem of dense text is solved simply by presenting only a small piece of a policy
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at once. In Figure 6.2, for instance, we see only the domain transitions permitted out of
domain login_d. Furthermore, syntactical symbols are not necessary, so the -> separating
access specification from domain name, and parentheses, are not necessary, as they are

replaced by the structure of the domain specification table.

ntro I Fite save/load tmcsldomﬂ domain apu:llypo assigns ||yp- m-lAnlgn Ext Attr

Domains I*{ Entry Points |Typo Acmul Domain Access ’ﬁgml Accass

daemon_d presy el New
boot_d Transition|Domain

root_d exac root_d || [Delete
user_d exec user_d Edit

Tmz_

SIGL j—

Figure 6.2: Viewing a domain specification in DTEedit.

For the most part, DTEedit is not helpful in presenting the policy in new formats. A
domain specification is still entered and viewed as a set of entry types, a set of domain
transitions, a set of type accesses, and a set of signal accesses. One exception is for viewing
type assignments. A long list of type assignment rules is simply not useful in understanding
the resulting type assignment tree. Therefore, DTEedit provides a file manager which walks
the host machine’s file system, and displays the results of applying the currently entered
type assignment rules to the file system.

DTEedit is meant to provide a safer alternative to manually typing policies. Many
people far prefer typing to excessive use of the mouse. Nevertheless, the use of DTEedit is
strongly encouraged for the sake of reduced typographical, syntactic, and semantic errors,

as well as a better understanding of the policy during construction.
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6.2 DTEview

DTEedit addresses our first two concerns with usage of text-file policies for editing and
analyzing policies. The latter two concerns are addressed by DTEview. DTEview is a
Perl/TK tool which begins by detecting any error patterns discussed on page 91, and
warning the administrator if they are present. Two of the error patterns, namely insufficient
entry point access and conquering, are always warned against. The third, the ability by a
domain to overwrite and execute a type, is acceptable in very many cases, so that warning
of all instances would provide enough false positives that a policy administrator would likely
ignore all such warnings. Therefore, the administrator may tell DTEview of any domains
about which he is concerned. This is done by adding them to an array called @paranoid wx
in the file restrictions.pl. Any domains listed in this array will be checked to ensure
that there is no type which they can both overwrite and execute. Figure 6.3 shows such a

DTEview warning.

Faranoid witefhs e

Iftpd_d can write/replace BN'D execute type ftI;ci_xt. k ‘

....... _Dismiss | N

Figure 6.3: An error pattern popup warning in DTEview.

DTEview goes on to provide three ways of viewing the policy. The first presents a tool
acting like a file-manager, but showing the DTE type information for files and directories. In
addition, this tool displays the pathname which DTE would actually use for typename res-
olution. Recall that due to mounting activity and mount restrictions, this may be different

from the given pathname. Figure 6.4 shows the file-manager view in DTEview.
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E_!‘ Path: /home/fip

. Real Path: /homestp

in et: fipd 4

bin ut: fipd_x|

NComing ef fipd_

ncoming ut: fipd

Enter Path:
Path:

fhomertp

Draw Path

Quit

Figure 6.4: The file-manager tool in DTEview.

The second view presented by DTEview is a domain transition analysis. It begins with
the first process (/sbin/init) running under the default domain. It also displays all domain
transitions permitted from this domain, and all entry types through which the transitions
may occur. The resulting type/domain pairs are shown as children of the first process
in a tree. From here, at any level, one domain may be chosen to be expanded, showing
either the permitted domain transitions, or the permitted type accesses. Clearly, we are
presenting a restricted view of the full policy graph G. Another way this could be presented
would be to keep the graph structure. In fact, another tool which was created presented
a 3-D fly-through universe view of a policy. However, while perhaps more amusing than
the domain transition tree view of DTEview, it was no more informative, and quite a bit
more confusing. Again, we wish to present simplified, clearer views of the policy. The 3-D

universe policy view would be much more useful as an initial policy view. After gaining an
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initial understanding of the policy in this way, the user could select a focused view, like the
domain transition tree, to concentrate on a particular feature or problem.

Since the number of type accesses is typically very large, when type accesses are dis-
played, DTEview offers a bit of help. First, type accesses are sorted by typename. Second,
any write or create accesses are flagged in red. This highlights the more dangerous accesses
which an administrator is likely interested in. Third, middle-clicking on a type will bring
up a list of all paths to which this type is assigned. Finally, DTEview is able to present a
filtered view of the type accesses. For instance, the administrator may request only those
type access containing rwa, that is, read, write, and append, access. Figure 6.5 shows the
domain analysis view, with type accesses out of daemon_d filtered to show only types to

which daemon_d has full (rwxlcd) access.

. [ Fsoinainit

getty_xt

dasmon_d

b xid wded

| base_t bin_t conf_t gey i getty _xt

; Back toinit | A filter g | quit f

Figure 6.5: Domain transition analysis in DTEview

The third view is based upon reachability queries. There are two types of queries. The
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first searches through G;.

gl = (DaEl)

E, = (Vdi,d2 € D,l € (auto,exec)) : (d1,ds,)

For the query Q(d; € D,dy € D,n € I), DTEview returns all paths from d; to ds
containing fewer than n edges. This corresponds to all the ways in which a process under
domain d; can make at most n domain transitions to end up in domain ds. The second

type of query searches the larger graph G,.

g2 = (D U T)a E2)

E, = (VdeD,teT,a € {r,w,x,l,c,d,a}): (d,¢,ai)

A query Q(deD,t€T,n € I,a; € {r,w,x,1,¢c,d,a}) returns paths originating at d and
terminating at any domain ds representing a domain which has type access a: to type t.

DTEview finds all paths satisfying a query and displays the sequence of domain transi-
tions for the first path. An example is shown in Figure 6.6. The user can step through all
the paths, and may, at any point, click on the displayed path to bring it up in the domain
transition analysis view for further analysis. While working back in the domain transition
analysis view, the user may right-click on a domain to select it as the source domain, or on
a type to select it as the target type, in the reachability query. In this way we attempt to
offer simplified views of the policies, while still allowing quick switching from one view to a

place of interest in the other.
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Figure 6.6: A reachability query in DTEview.

Normal queries take into account only the DTE policy file. Queries therefore calculate
access rights of domains according to Axiom 5.1. Lemma 5.1 limits the access rights of
domains based upon the properties of entry points to other domains. DTEview assertions
provide the same power to queries.

An entry point is a file whose execution may be used to trigger a domain transition.
While the DTE policy specifies whether a domain transition from dy to da is permitted, the
entry point(s) to dz may consider additional system parameters. Based upon these, it may
choose to refuse entry, allow restricted entry, or allow full access. ! A DTEview assertion

is intended to describe an entry point’s behavior. The assertion takes the form:

{d:ind:outd", <ACTION>}

!Note that it may only restrict access using UNIX features. The set of DTE access rights for ds is not
malleable, but the entry point to d2 can simply refuse to execute system calls leading to violation of some
set of rights.
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where ind is the source domain, outd is the destination domain, and d indicates that this

assertion pertains to domain transitions. “<ACTION>” may be one of the following:

<ACTION> ::= IGNORE

<ACTION> ::= IGNORE_SAY <STRING>
<ACTION> ::= SAY <STRING>
<ACTION> ::= REJECT

Some transitions likely should be entirely forbidden. For example, since we do not trust
the binary /usr/sbin/in.ftpd, we do not wish it to enter the root_d domain under any
circumstances. The REJECT action is intended for such a situation. REJECT strings are
checked and warned against when DTEview starts up. These will become far more useful
in the next few chapters, when we begin to build policies from components which are joined
using generic access rules.

On the other hand, if we search for dangerous transitions, we may not wish to be
distracted by transitions which we know to be safe. For instance, the binary /sbin/login
may be a modified version of /bin/login, whose code has been verified not to allow root
logins unless the login occurs on console, in a locked room under heavy guard. In this case,
we may wish for transitions from /sbin/login into the root._d domain to be ignored.

Clearly, an ignore action {d:ind:outd:IGNORE} should be used only when it is known
that outd ¢ ind.£(7 (ind)). An action which we believe more useful is IGNORE_SAY.
When this action is tied to a transition from domain ind to domain outd, any paths
containing this transition are still shown. However, STRING will be printed above the

arrow representing the transition. STRING is meant to be a brief description of ind. L.
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For instance, if £ has been verified to allow logins only from a physiéally secure local console,

then STRING might be
Verified denied unless on local console

The policy administrator may choose whether the remaining threat is relevant to his
current query. If not, he may ignore it. Else, he may study it. While an SAY action labels
the associated transition with the specified string, an IGNORE_SAY action also changes
the color of the edge to indicate that this transition may most likely be ignored, subject to
the condition specified in the string.

Before administrators use this mechanism to analyze security policies, it must be shown
that proper use of these assertion labels will not cause a query to return incomplete results.

We begin with a rather obvious axiom:

Axiom 6.1 Let G be a domain transition graph representing some policy. Let dy and do be
any two distinct domains in the policy, such that dy may not transition to da. That is, no
edge from dy to ds exists in G. Let X be the set of assertions relating to G, and let £ € X
be an assertion relating to a transition from dy to do. Then any query made under X will

produce the same results as the same query made under X — €.

In other words, an assertion on a domain transition which the policy does not allow,
will not affect the outcome of any queries.

In the following theorem, we continue to define the graph of all domain transitions as G.
The graph containing the domain transitions as allowed by | Jyycp d-L, that is, the graph
containing all domain transitions which are allowed by the entry points, is G’. X is the set

of assertion labels read by DTEview, and £ is an individual assertion label in X.
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Theorem 6.1 A query for transition paths from domain dy to domain da containing fewer
than n domain transitions, with assertion labels in X correctly reflecting L for all entry
points, will return all possible paths from di to ds in G'.

Proof:

We will prove this by induction over the number m of assertion labels. Our base case:

We take it for granted that, in the absence of any assertions, DTEview will correctly
return all paths from d; to ds containing fewer than n transitions. This is a matter of
correctly coding a simple graph algorithm.

Inductive Step: Assume that for a query under m — 1 assertions, DTEview returns all
paths in G'. Then for a query under m assertions, DTEview returns all paths from d; to do
ing'.

As defined above, an assertion can be of the following types:

1. REJECT:

A rejection is only checked at the start of DTEview. It does not affect the search for

paths to satisfy a query.

2. SAY:
This type of assertion only returns extra information, displayed above certain domain

transitions. It cannot prevent a path from being returned in response to a query.

3. IGNORE:
If an ignore for a transition from domain d, to dj is correctly applied, this means the

following:

(a) d, has only one entry point
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(b) The entry point to d, cannot be overwritten by any domain.

(c) The code of the entry point to d, must be verified such that, while the transition

from d, to dp may in fact be permitted by the policy,

dy ¢ da-L(T(da))- (6.1)

Another way of saying this, is that the edge from d, to dj is not in G’, although

it may exist in G.

Since G’ does not contain an edge from d, to dp, then, by Axiom 6.1, any query made
under X — £ will return the same results as the same query made under X'. Since
|X — €] = m — 1, we know, by induction, that DTEview will return this set of paths

correctly.

4. IGNORE_SAY:
This case could be treated two ways. First, since paths including a transition tied
to an IGNORE_SAY assertion are not excluded from query results, as paths which
include a transition tied to an IGNORE assertion are, we could treat IGNORE_SAY
as a SAY assertion, which is trivially shown to be safe. However, we would like to
show that the administrator can take the IGNORE_SAY action at its word, in effect

becoming a part of DTEview’s behavior, and trust the results.

The proof of safety for IGNORE_SAY is much like that for IGNORE. The difference
is that, at Equation 6.1, we must take the process and system state into account.

Equation 6.1 becomes:
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dy ¢ P.d.L(T(P.d)). (6.2)

There are now two cases. If the state of P is such that P.d.L allows the transition,
then correct application of the assertion label means that the administrator does not
ignore the transition. The assertion is therefore trivially safe. If the state of P is such
that P.d.L does not allow the transition, then Equation 6.2 collapses to Equation 6.1.

In this case, we can revert to the proof of safety for IGNORE labels.

To make this more concrete, a quick example. In the case of an assertion
{d:da:db:IGNORE_SAY "Verified denied unless on local console"}

the administrator must decide whether logins on local console fall into the threat
which he is currently assessing. If so, then he will study paths including transitions

from da to db. If not, then he ignores these paths.

In Lemma 5.1, we see that the other function of £ is to limit RW (d). Therefore, we

would of course like to use the following type of label as well:
{t:ind:access,outt", <ACTION>}

However, this is dangerous. Recall Axiom 5.1, which states:

Ap(P) = P.d.L(RW(P)) U U AL(C)).
VCjeP.d.L(T(P))
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For instance, assume that we created the label {t:ind:rw->t1:IGNORE}. Now, even though
the label is presumably correct, such that ind is in fact denied rw->t1, this only limits
P.d.L(RW(P)). In order to obtain the full Az (P), we must union this with access rights
for all domains which may be reached through P.d. The IGNORE, IGNORE_SAY, and
SAY labels are therefore not safe for type access assertions. However, we do support the
REJECT action. This is, again, a simple and useful way of ensuring some basic properties

about a complex policy which could be the result of automated composition of several pieces.

This chapter presented tools designed to solve some of the obvious problems encountered
while editing and viewing policies. These tools have not gone beyond the traditional con-
cepts of DTE. The next two chapters present methods for analyzing and creating policies,

culminating in a novel method for policy composition.
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Chapter 7

Analysis of DTE Policies

In chapter 6, we presented DTEview as a tool designed to aid the analysis of DTE policies.
We now present some further methods for analyzing policies.

In a paper [23] about the safe run-time extension of DTE policies, TIS presented the idea
of analyzing DTE policies using simpler, well-understood access control policies. Since the
policies expressible by DTE policies are a superset of those expressible by many traditional
access control policies, it is possible to search for properties of those traditional policies
which are exhibited in a particular DTE policy. TIS used this concept by asserting that
any such properties exhibited in the DTE policy must not be violated by modifications to
the policy. We feel this concept is also useful for the analysis of a static DTE policy.

We will begin in the next section by showing how searching for properties of the Bell-La
Padula access control policy in a DTE policy can yield useful information. Section 7.2 will
discuss the limitations of this first attempt, and section 7.3 proposes a far more powerful,
yet still very simple, extension of the Bell-La Padula policy. Here we prove that this
modified BLP policy is capable of expressing the Clark-Wilson and pipeline policies. Finally,

section 7.4 applies this idea to several DTE policies.

107
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7.1 Using the BLP x-Property

The Bell La Padula access control system, discussed in section 2.2.1, maintains two access
rules. The simple security rule relates the security level of objects to those of subjects.
We only use BLP to relate objects, and therefore ignore this rule. The second rule is to
maintain the *-property, which dictates that if a subject may observe object O1, and also
may modify object Oy, then the security level of O is less than or equal to that of Oy. If
this is not the case, then the subject is able to leak information from a higher security level
to a lower security level. A second subject, permitted to observe Os but not Oy, can then
access information in O; with the aid of the first subject.

We will use the *-property to introduce a partial relation on types in a DTE policy.
Figure 7.1 shows the algorithm used to calculate the BLP less than relation from a policy

file.

leqlist = {};
for each domain D do
for each type T1 which D can read do
for each type T2 which D can write do
add "T1:T2" to leqlist
done
done
done
for each string in leqlist do
print string
done

Figure 7.1: Algorithm to calculate BLP < relation

We define observe access as r, or a simple file read. That is, we do not consider directory
read or directory descend to be observe accesses for this analysis. However, we define modify

access as file write (w), file append (a), and directory create (c). In addition, modify access
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to any parent directory of a file £ constitutes modify access to f itself, since f can be
replaced with an entirely new copy.

We would like to consider what information may be gleaned from the BLP relation
applied to the types of a DTE policy. The three strongest results which we may find for a
type in the context of a given policy are that it is unrelated to all other types, that it is
strictly less than all other types to which it is related, or that it is strictly greater than all
other types to which it is related. Each of these cases can be shown to convey important

information regarding the security or integrity properties of the type.

1. Type Tj is unrelated to all other types.

In this case there exists no domain permitted to access both 77 and any other type.
Therefore no one is able to corrupt the data in 7} using data from any other type, *

and no one may leak the data from 7} to any other type.

The integrity claim may not prevent subjects from erasing data from 77, or replacing
the data with all 1’s. However, Trojan horse attacks, as a particular example, are
nearly impossible, as the Trojan horse cannot be read from any other types. The
attack is possible only if the Trojan horse is hard-coded into the subject’s source code.
Verification of entry points, and assurance that entry points cannot be replaced, will

prevent this final Trojan horse attack.

2. Type T is strictly less than all other types to which it is related.

There exist domains which may read type T}, as well as modify other types T;. There-

"Note that, in Unix, all devices are files, and hence even random data (from /dev/random) must come
from files of some type.
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fore data from T can be leaked to T;. However, there exists no domain which may
write T} and also read another type. Therefore, data may not be moved from any

other types to 77. We consider 73 to be of high integrity.

3. Type T; is strictly greater than all other types to which it is related.

There exist no domains which may read T} and write other types. Information from
T, cannot be leaked to any other types. This is a strong secrecy claim. However,
there exist domains which may modify 77 while reading other types. The integrity of

T, is therefore shown to be suspect.

By imposing a BLP relation onto a DTE policy, and searching the relation for the above

three conditions, we hope to provide some automated analysis of DTE policies.

7.2 Limitations of BLP

The BLP policy is a simple one. This is useful in that it allows us to introduce a simple
relation on types. However, a consequence of its simplicity is a lack of expressiveness. BLP
works well if we can keep security domains completely segregated. By this we mean that
no domains are provided access to the same types. Consider a top secret type Tg, to which
only one domain Dg has read access, and no domains have write access. This domain may
need to warn other domains of certain conditions, for instance corrupted data under Tg.
This requires Qrite access to some type Ty, to which other domains have read access. By

BLP,
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If there exist any domain which has read access to Ty, then, by transitivity, Ts < T;
for all types T; to which these other domains have write access. Consequently, information
can be leaked from T to each such T;. In order to prevent this, we must prevent all other
domains from having write access to any Tj : Tg < Tj;. In other words, we are segmenting
Dg such that all types to which it can write are unreadable by all other domains. A graph
of the BLP relation for the types of a DTE policy which segments a domain Dg in such
a way, is shown in figure 7.2. In this particular case, the types TS, TX and TY may not be
accessed by any domains other than Dg, which itself may not access any types other than
these three. 2 The dotted arrow from user_t to TS indicates that Dg may have modify
access to TS and observe access to user_t. In that case, the integrity of the secret_group

group is affected, but not its secrecy.

proc_t

base t

Figure 7.2: BLP for policy excerpt with disjoint type group.

Let us assume there is a type, T, whose secrecy properties we would like to analyze. It

is possible to create a domain which may read Ts, but may not write any of the common

ZThis is not strictly necessary. In fact, other domains are restricted only in that if they have observe
access to T'S, TX or TY, they may not have modify access to other types, and vice versa.
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types, such as files under /proc and /dev. However, such access may be required. As
Lemma 5.1 shows, the domain’s access rights may also be limited by a single effective,
verified entry point. In this case, we can label this domain a trusted domain. This means
that the domain exists outside the BLP policy. Due to BLP’s lack of expressiveness, this is
the only way to express this concept. However, by completely exempting the domain from
the BLP policy, the domain becomes far too powerful.

Consider the assured pipeline (see Section 2.2.5) shown in Figure 7.3. If syslog_d is
allowed to write dev_t, then, since it may read in_log_t, in_log_t < dev_t, instantly
lowering it to the same security level as most types on the system.

If we define syslog_d as a trusted domain, in_log_t becomes strictly greater than all
other types, since all other domains may write to it, while reading common types. However,
we now lose much useful information regarding syslog_d. For instance, we may have
another assured pipeline, whose information is transformed by another domain. By defining
both domains as trusted, we can no longer identify cross-talk between these pipelines.
Furthermore, we cannot express the concept that syslog_d should not be able to write its
entry points. The complete resistance of entry points of syslog_d to subversion will surely

be a condition of any trust we place in syslog_d.

7.3 Modified BLP

We have shown the need to increase the expressiveness of the BLP relation, as well as the
insufficiency of trusted users as a means of addressing this deficiency. We now present a

more powerful way of expressing concepts such as assured pipelines in BLP. Our modified
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BLP, or MBLP, will be made more expressive than BLP through the addition of two simple
concepts: secrecy with exception, and integrity with exception. These concepts will be
implemented in analysis by a set of two types of statements, which are to be read alongside

a DTE policy. The two statement types are:

secret <typel> except from <domain_1_1> [,<domain_1_n>]

and

protect <type2> except from <domain_2_1> [,<domain_2_n>]

These provide four hints for analysis. The first is our explicitly intended purpose.
Namely, when building our list of types which domain domain_1_1 may read, we do not
add typel to the list. This means that, if domain_1_1 has write access to some type
type_1w, then we will ignore the BLP -property, and we will not use this fact to define
typel < type_1w. Of course, it does not prevent us coming to this same conclusion through
some other domain’s type accesses.

Second, they indicate that a separate check should be made to ensure their correctness.
The DTE policy should deny all domains (except domain_1_1 through domain_1_n) read
access to typel. Likewise, all domains (except domain_2_1 through domain_2_n should be
denied modify access to type2. If this is not the case, a warning flag should be raised.

Third, as a consequence of the previous two hints, while building the read list for any
domain, we can ignore typel altogether. If we find that a domain has observe access to
typel, then there are only two possibilities. Either the domain is listed as an exception
to typel’s secrecy, in which case we are instructed to ignore it. Otherwise, the domain is

not listed as an exception. In this case, the domain is in fact not allowed to read typel,
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a condition we have already enforced under the second hint. Therefore, we know that any
case wherein a domain is allowed to read typel is irrelevant to the MBLP < relation.
Finally, since the domains listed as exceptions to security and integrity declarations are
being provided an extra measure of trust, we wish to ensure that they are worthy of such
trust. We therefore check that the entry points to all such domains, in addition to all
trusted domains, are themselves protected, and inform the policy administrator that the

code of the entry points must be verified.

[ all domains ]

auditor_d

append
read

in_log_t syslog d out_log_t

Figure 7.3: Sample Assured Pipeline
A precise definition of the MBLP < relation follows.
Ve € Danda,b € T : mr(z,a) A mw(z,b) = L{a) < L(b) (7.1)
where
mr(z,a) = r(z,a)Are(z,a) Aid(z) Ait(a) (7.2)
mw(z,a) = w(z,a) Awe(z,a) Aid(z) Ait(a) (7.3)

Here re(z,a) means that domain z is on the read exception list for type a. Likewise,
rw(z,a) means domain 7z is on the write exception list for type a, while id(x) and it(a)

mean that domain z and type a, respectively, are trusted (i.e., to be ignored).
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7.3.1 MBLP Enforces Clark-Wilson CDIs

The secret and protect keywords are in the spirit of trusted users in BLP and ring policies.
However, they can also be used to implement Clark-Wilson and assured pipeline policies.
We show the former here, and the latter in Section 7.3.2.

To show that Clark-Wilson policies can be implemented using these two rules, we begin
by describing a policy excerpt whose purpose is to enforce a Clark-Wilson policy. We
then show a set of rules which allows us to express the required properties. As described
in Section 2.4, a Clark-Wilson policy specifies constrained data items (CDIs), which are
data which may be modified only by certain sets of transformation procedures (TPs). We
will implement this as follows. For each of the n CDIs, we will define a type cdi_ti €
(cdi_t1..cdi_tn), and a domain cdi_di € (cdi_dl..cdi_dn) . The entry points to each
domain will be the TPs which are allowed to modify the CDI. The policy excerpt is shown

in Figure 7.4

types ... cdi_tl ... cdi_tn cdi_dl_et ... cdi_dn_et ..
domains ... cdi_dl ... cdi_dn .

spec_domain cdi_dl (1 cdi_di_et) (... w->cdi_t1) (0) (0)

spec_domain cdi_dn (1 cdi_dn_et) (... w->cdi_tn) (0) (0)

Figure 7.4: Policy excerpt defining Clark-Wilson policy.
We specify the following n MBLP rules to check for the security of Clark-Wilson CDIs:

protect cdi_tl except from cdi_dl

protect cdi_tn except from cdi_dn
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We must show that two properties hold. Namely, that each CDI may be modified only
by the associated TPs, and that the TPs may only be executed by authorized subsets of

users.

Theorem 7.1 Each CDI may be modified only by the associated TPs.
Proof: Only domain cdi_dj can modify cdi_tj, and it can be entered only through its
entry points, which are the TPs allowed to modify cdi_tj. Note that MBLP is only

enforcing the domain to type access, not entry points. Since the code for all entry points

must be meticulously verified anyway, we consider this sufficient. |

Theorem 7.2 TPs may only be executed by certain subsets of users.

Proof: This second restriction requires policy administrators to review the TP code on

a case by case basis, in order to ensure that (a) only the authorized users are allowed
to complete execution, and (b) authorized users cannot cause the TP to run any other
(unauthorized) code. However, Clark and Wilson found no more automated way of enforcing
this restriction, and acknowledged this as a weakness of their policy, as well as of, perhaps
the integrity problem as a whole. In other words, this is a feature of CDI’s, rather than a

weakness of DTE. [ |

7.3.2 MBLP Enforces Assured Pipelines

An assured pipeline, introduced in Section 2.2.5, permits the control of data flow through
a system. To show that secret and protect statements can express assured pipelines, we

begin with the DTE policy excerpt in Figure 7.5. The pipeline is implemented as domain
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pipe_d with a single restrictive (and verified) entry point. It flows data from type src_t

into type dest_t. We define the following two rules:

protect dest_t except from pipe_d

secret src_t except from pipe_d

Showing that this policy implements an assured pipeline requires proving the following

three statements, mentioned in Section 2.2.5.

Theorem 7.3 Data may not flow from src_t to dest_t exzcept by passing exclusively
through pipe_d.

Proof: We know that cwa — dest_t ¢ RW (d;) for all domains other than pipe_d, whose
entry point implements the pipeline’s functionality. If this were not so, an MBLP analysis

would detect and warn of another domain’s write access to dest_t. [ ]

Theorem 7.4 The pipeline’s results cannot be reversed or modified.

Proof: The policy ensures that cwa — dest.t ¢ RW (d;) for all domains except pipe_d.

The policy administrator must verify the entry point to dest_t to ensure that it cannot
be used in order to rewrite results of already completed transformations. Since pipe_d is
listed as an integrity exception, an MBLP analysis program would warn of any domains
which could overwrite or replace the entry point, so that once the entry point’s code has

been verified, the entry point remains trustworthy. [

Theorem 7.5 Subsystem s correct.

Proof: This is proven by the implementer of the entry point to pipe_d, or the policy

administrator, on a case by case basis. |
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Of course, while secret and trusted statements are very expressive, we still wish to
allow labeling domains as fully trusted, The type accesses allowed such a domain will not
affect the calculation of the BLP < relation. For instance, the following line would be added

to the halt domain:
trusted domain halt_d

Now the fact that halt_d is able to read and write all domains will not necessarily cause
all types to be of equal security level, as it would without either this statement, or large
number of secret and trusted statements. One side-effect of declaring a domain as trusted
should be for the policy analysis program to declare the trusted domain’s entry types as
protected without exceptions, and warn the policy administrator to verify the code of all

executables which are assigned these entry types.

types ... src_t dest_t piped_et ...
domains ... daemon_d pipe_d ...

spec_domain daemon_d (...) (...) (auto->pipe_d) (...)
spec_domain pipe_d (piped_et) (... w->dest_t r->src_t) (...)

assign -e piped_et /sbin/piped_executable

Figure 7.5: Policy excerpt implementing an assured pipeline.

The algorithm to calculate our modified BLP relation is shown in Figure 7.6.

7.4 Examples of Analysis Using MBLP

We are now ready to analyze several policies using the modified BLP relation. When

discussing the partial relation induced on types by the modified BLP, we will relate it in
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for each secret type t do
if untrusted domain d may read t
ensure d is an exception to t’s secrecy
for each protected type t do
if untrusted domain d may write t
ensure d is an exception to t’s protection
for each untrusted domain d do
readlist = NULL
writelist = NULL
for each type access from d do
if access==read and not secret(type)
readlist .= type;
if access==write|replace and not protected(type)
writelist .= type;
for each readel in readlist do
for each writeel writelist do
define "readel <= writeel"

Figure 7.6: Algorithm to calculate the modified BLP relation

the form of a directed graph. Nodes in this graph will be types, or sets of types. An edge
from node V; to node V5 indicates that V3 < V5. In general, we will combine types which
are equal into one node, so that, for the most part, an edge from V; to Vo will actually
indicate V) < Vo. Where this is not the case, the cycle will be made obvious.

We begin with what we will call our base policy, shown in Appendix A.1.1. Figure 7.7
shows the associated BLP relation graph.

In the base policy, the level of most types is equal. The only types which are not
equal to all others are base_t, disk_t, getty_xt, login_et, sbin_t, shell_t. We have no
information to relate any of these types to each other, however all are less than the group
of all other types.

Now let us analyze a more complicated policy, which implements a passw_d domain to

which users can switch to safely change passwords. This policy is shown in Appendix A.1.2.
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base_t

disk_t

getty_xt
login_et\ ” " ./’. \\\\\\\ \.\\
S Conglomerate i
sbin_t

shell t / _________________________

Figure 7.7: BLP less than relation graph for base policy.

If we do not specify any secrecy or protection rules, the result is the ordinary BLP relation,
shown in Figure 7.8. The entry type passw_et cannot be overwritten by anyone, and is
therefore strictly less than or unrelated to all other types. However, passw_t and shadow_t
are both equal to most other types, since passw_d may read and write both these types in

addition to log_t, which is equal to the majority of types in the policy.

base_t
disk_t

getty_xt

login_et\ e

—— Conglomerate )
passw_et /

Shell_t / ...................

sbhin t

Figure 7.8: BLP less than relation for password policy.
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Now let us define some protection rules to be taken into account while calculating the

modified BLP. We will use the following set of rules:

secret shadow_t except from passw_d, login_d

protect passw_t except from passw_d

By making login_d and passw_d exception domains, we automatically cause our algo-

rithm to add the following rules:

protect passw_et

protect login_et

This will provide some bit of assurance that thesc domains, which have been granted
unusual power, will not easily be subverted.

The resulting BLP relation is shown in Figure 7.9.

base_t
disk_t
getty, xt
login_et—___ T

i Conglomerate
/._..——"\_
passw_et S

passw_t/ ...................

shell_t

2
Y
1
§
4
1
i
i
i
i
;
i
i
i
;
S
A
E
s)
3
'l'P

sbin t

Figure 7.9: Modified BLP less than relation for the password policy.

Now type shadow_t is strictly greater than all other types. This is because shadow_t

may only be read by passw_d, which is listed as a secrecy exception. Consequently, during
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calculation of the MBLP < relation we say that no domains may read shadow_t. However,
since we did not list any integrity rules regarding shadow_t, it was listed in the write
set for passw_d. Since passw_d could read 1ib_t, while it could write shadow_t, the BLP
calculation algorithm found that 1ib_t < shadow_t. Note that if we had used the following

rule:

protect shadow_t except from passw_d

then shadow_t would have been unrelated to all other types.

The modified BLP also relates passw_t as strictly less than all types to which it is
related. This is because, the only domain which may write to passw_t is listed as a write
exception, causing passw_t not to be placed in its write set. The type is therefore not
placed in any write sets, and therefore is never calculated to dominate any other types.
The combination of the passw_t protection rule, and the resulting BLP relation, provide
us more information about who may write to passw_t than we would have either using
straight BLP, or by listing passw_d as a trusted domain.

Chapter 6 provided straightforward tools for editing and viewing DTE policies. This
chapter presented more intricate techniques for policy analysis. The next chapter will
similarly expand upon the creation of policies. The work of this chapter will also become

more practical as it is integrated into the process of policy composition.
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Chapter 8

Construction of DTE Policies from

Modules

Chapter 6 presents tools to create, edit, and analyze DTE policies. However, when working
with large policies, patterns begin to emerge. Policies typically consist of several sets of
domains and types. The entities within a set work together to achieve some goal. However,
the sets often interact very little. For instance, in the ftp policy presented in Figure 3.2, the
domain ftpd_d, and the types ftpd_t and ftpd_xt, work together to protect the system
from an unsafe binary. By removing these entities, and all references to them, the remaining
policy becomes simpler. We will call this collection of domains, types, and all access rules
pertaining to them, a module. The Ftp module is shown in Appendix A.2.3. The remaining
base module is shown in Appendix A.2.1.

Allowing policies to be composed from simple, meaningful, and coherent pieces, will serve
several purposes. First, creation of policies will become far more efficient. For instance,
when adding a new domain to an existing policy, one might have to enter hundreds of type
accesses in order to get it properly interacting with the current policy. In contrast, modules

allow domains and types to be grouped at several levels, and access to be specified using

123
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any of these groups.

Second, adding a feature to a policy, such as a new method of controlling access to the
shadow file, or protection from a critical binary in which an as-yet unsolved vulnerability
has been found, will become a simpler task. The module can be written entirely from its
own point of view. Furthermore, in researching the state of the current policy, in order
to understand how to properly insert a new feature, one need only look at those modules
which can affect the new functionality.

Third, modules may be helpful in simplifying the analysis, and proof of invariants, of
policies. For instance, several modules may be trivially shown to be irrelevant to the ability
of the inetd daemon, if remotely exploited, to erase the utmp log file.

Finally, because a module generally encodes domains, types, and access rules which work
together toward some end, it is a natural way to express the security policy changes necessary
for a new piece of software. Software companies and free software groups, therefore, could
distribute policy modules along with software packages.

We begin by describing the behavior of the DTE Policy Compiler (dpc), which we have
written to construct a policy from modules. Next, we describe in detail, and prove the
correctness of, methods to automatically ensure certain properties will maintained after
module application. Finally, in order to show the usefulness of this idea, we will present
several modules which, while simple and clean in themselves, will compose into a very

powerful policy.
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8.1 Policy Compiler File Formats

This section provides syntax specifications of the dpc control file, modules files, and patch

files.

8.1.1 Control File Specification

The DTE policy compiler takes its instructions from a single control file. By default, this
file is called control, although another file can be named on the command line. The sample
control file shown in Figure 8.1 applies the Ftp module and a set of service modules to the
base modules. In this section, we provide the BNF specification of the dpc control file,

interspersed with further explanations.

<control_file> <command_line> *

<command_line> <read_cmd> |
<load_policy_cmd> |
<apply_cmd> |

<patch_cmd> |

<write_cmd>

<load_policy_cmd> ::= load_policy <policy_module> <policy_name>

The load_policy statement causes dpc to load a Policy Consistency Package, or pcp.
Section 8.2 will describe this feature in detail. A pcp is implemented as a Perl module,
meaning that the pcp named BLP must be located in the file BLP.pm. The <policy_module>

is the name of the Perl module which implements the pcp. The <policy_name is the name
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which dpc will assign to this pcp. The assertion statements discussed in Section 8.1.2 will

associate themselves with pcp using this name.

<read_cmd> ::= read <file_glob>

This causes dpc to read a module file or set of module files from disk. Simple filename
globbing is supported. For instance, line 3 in Figure 8.1 causes all files under directory
Service to be read. A module file may contain any number of modules, none of which
need reflect the filename. Each module is stored separately in memory. They are not yet

combined.

<apply_cmd> ::= apply <module_glob>

Instructs dpc to apply a specified module or list of modules to the current policy. Ap-
plying a module means that its types and domains are added to the policy, and access
rules between the types and domains of all applied modules are resolved. The algorithm
for doing so is discussed in detail in Section 8.1.2. The modules must have previously
been read using the read command. Modules may be specified by module name, or by
namespace hierarchy. The namespace hierarchy is delimited by “.”. Appending “*” to a
module name indicates all modules at this level level should be applied, while a “+” in-
dicates all descendants must be applied. For instance, line 4 of Figure 8.1 would cause
modules named “System.base.types” and “System.base.domains” to be applied, but not
“System.base.security.passw”. Line 6, however, would cause “Service.daemons.sshd” as

well as “Service.daemons.security.login.sshd” to be applied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 8. CONSTRUCTION OF DTE POLICIES FROM MODULES 127

All modules specified in a single apply directive are applied simultaneously. See the
discussion of domain and type grouping in Section 8.1.2 for details of how this affects the

timing and, therefore, the results of group expansion.

<patch_cmd> ::= patch <file_name>

This feature allows patching the final policy with simple changes for the sake of policy
testing. A patch file can specify addition or removal of type assignment statements, domain

transition rules, domain signal rules, entry points, and domain to type access rules.

<write_cmd> ::= write <file_name>

This instructs dpc to write the policy as calculated thus far to the specified filename.
Specifying the name stdout directs dpc to write to standard output. Line 8 in Figure 8.1
causes dpc to write the policy to the file dte.conf. Any number of write commands may
occur throughout the control file, allowing the saving of policies at various stages of module
application.

The remaining lines complete the above definitions.

<file_glob> <file_exp> +

<file_exp> <pathname> | <pathname>."*"

<module_glob> <module_exp> +

<module_exp> <module_name> | <module_name>.".*x" |
module_name.".+"

# In other words, these are basic strings:

<module_name> ::= [a-zA-Z] [a-zA-Z\-_0-9.]+
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<path-name> <file_name> [ / <file_name> ]*

<file_name> [a-zA-Z] [a-zA-Z\-_0-9.]+

<policy_name> [a-zA-Z] [a-zA-Z\-_0-9.]+

<policy_module> [a-zA-Z] [a-zA-Z\-_0-9.]+

01. load_policy blp_mod blp
02. read System/Base

03. read Service/*

04. apply System.base.*

05. apply Service.ftp

06. apply Service.daemons.+
07. patch ftp.assert

08. write dte.conf

Figure 8.1: Sample dpc control file.

8.1.2 Module File Specification

Here we discuss the structure of a module file. We will use the Ftp module shown in

Appendix A.2.3 as an example. The module syntax specification follows.

<module_file> <module>+

<module> Module <mod_name>
[<domain_def>|<type_def>|<group_def>]+

end

<domain_def>

domain <dom_name>

<dom_line>+
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end

A module file may contain more than one module. Each module may contain several

domain, type, and group definitions, as well as the access rules pertaining to them.

<dom_line> ::= entries <type_name>+ |
[absolute] signal [in]out] <gen_dom> <sig_num> |
[absolute] domain [in|out] <gen_dom> [auto|exec|none] |
[absolute] type <gen_type> <type_acc> |
assert <policy_name> <data>

DEFAULT_DOMAIN

The domain definitions declare a (unique) name for the domain, a set of entry types,
and a set of access rules pertaining to the new domain. Domain transition or signal access
rules may be “in”, in which case they specify access from other domains to the new domain,
or they may be “out”, defining access from the new domain to other domains. Since types
are passive objects, which cannot themselves access other types or domains, the type access
rules in a domain definition do not include the “in” or “out” keyword.

Exactly one domain definition applied to a policy must contain the keyword “DE-

FAULT_DOMAIN”. That domain will be assigned to the first process on the system.

<type_def> ::= type <type_name>
<type_line>+

end
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<type_line> ::= <path_type> <path_name>+ |
[absolute] access <gen_dom> <type_acc> |
<default_type> |

assert <policy_name> <data>

<default_type> ::= DEFAULT_ETYPE | DEFAULT_UTYPE | DEFAULT_RTYPE

Type definitions declare a (unique) name for the type, a set of paths assignment rules,
and a set of access rules. Clearly, the access rules are only incoming from domains. Either
one type must also be associated with the “DEFAULT_RTYPE” keyword, or both the
“DEFAULT_ETYPE” and “DEFAULT_UTYPE” keywords must be associated with one
type each, in order to define default types for the file system.

Both type and domain definitions may contain “assert” statements. These are used for
maintenance of policy constraints. They are stored with the type definition until module
application, but their interpretation and enforcement is defined by the pcps as described in
Section 8.2. The last line of the ftpd xt type definition in the Ftp module is an example of

an assert statement, instructing a module loaded as “blp” to label this type as protected.

<group_def> group domain <dom_name>
import <dom_name>+

end

<group_def> group type <type_name>

import <type_name>+
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end

all | none | <dom_name>

<gen_dom>

<gen_type> all | none | <type_name>

Grouping is accomplished on several levels. First, one may simply specify “all” to refer
to all domains or types which are currently known. Second, a group definition in a module
may define a named group of domains or types. For instance, the module segment listed
in Figure‘8.3 defines a domain group consisting of several domains which are not trusted.
The module segment listed in Figure 8.4 defines a type which is actually called root_t.
Since this is the typename which will be used in the final DTE policy, no names within the
namespace may actually clash. 1 Modules may refer to this type using any of the following

names:

1. root_t

2. base.extraneous.root_t

3. all

4. base.extraneous.*

5. base.extraneous.+

6. base.+

!This could be worked around by automatically randomizing the name in the event of a clash, but this
simply was not a great concern for this prototype.
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In addition, any type groups which have imported this type can also be used to refer to
this type.
The name base.extraneous may be a real type, or it may simply be a namespace

placeholder, depending on whether any module defines a type by that name.

<type_name> ::= [a-zA-Z] [a-zA-Z0-9_.]1%
<dom_name> ::= [a-zA-Z] [a-zA-Z0-9_.]1+*
<path_name> 1:= [ /<file_name> ] +
<policy_name> ::= [a-zA-Z] [a-zA-Z0~-9_1x*
<data> 1= %

8.1.2.1 Priority of Access Rules

Since domains and types can declare conflicting access rules, we must clearly define the
priority of access rules. Much thought has been given to the current priorities, which have
been somewhat modified following experience with an earlier module compiler prototype.
The priority takes the form of an integer between 1 and 8. The priority assigned to access
rules is shown in Table 8.2.

If two rules exist pertaining to the access permitted from a domain to another domain
or type, then the rules with the highest priority will be applied. For instance, the base
module’s definition of type base_t specifies that all domains have “absolute” access “rx1d”

to base_t. However, the Ftp module’s definition of domain ftpd.d contains the statement:
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Type of access Priority level
Absolute in

Absolute out

Single destination in
Single destination out
Group in

Group out

Default ("all”) in
Default (”all”) out

= N Wk OO ~

Figure 8.2: Priorities of access rules

absolute type all none

Since an “absolute in” access rule has a higher priority than “absolute out”, ftpd_d will
receive “rxld” access to base_t. Without this, it would not be able to access any other
types, as it could not descend to the files of those types. Similarly, the types defined in
the Ftp module must specify access from domain ftpd._d as “absolute”, as that is the only
access which will override that listed in the specification for ftpd_d. On the other hand, the
specification for type bin_t includes a normal “group in” definition. As this is of a lower
priority than “absolute out”, the access rule specified by the Ftp module is chosen, denying
ftpd_d all access to type bin_t. This is a crucial element of the Ftpd module, preventing
the ftp server from providing attackers with root shells, for instance.

Note that incoming access always overrides outgoing access. More specific rules override

more general rules, unless the “absolute” keyword is present in one of the rules.

8.1.2.2 Group Expansion

As explained in Section 8.1, the module compiler applies sets of modules when directed to
do so by the control file. Since more modules can be read later, we must clearly define the

behavior of group expansion.
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For named domain and type groups, the group is simply expanded at the time of module
application. If the group has not yet been defined, an error is raised and compilation fails.
For namespace globbing, that is, * and +, the currently defined descendants and children
(respectively) of the parent being expanded are used. For instance, assume we applying a

module which contains the rule

domain some_domain
type base.exec.+ rwx

end

If the only children of base.exec defined thus far are base.exec.sbin and
base.exec.bin, then only these types are included in this rule. A later module may define
type base.exec.javabin, but this type will not be added to the access rule.

The all group behaves differently, however. An access rule directed at all will be
expanded at the time of module application. However, a generic form of the rule is also
stored. All such generic rules are expanded each time a set of modules is applied. If the
rule had not previously been applied, any policy consistency modules will be consulted at
the new rule creation, just as with any other new access rule. For example, the base module
defines default access “rld” to type base_t for all domains. This rule is expanded after

each module application, so that all domains will be granted this access.

8.1.2.3 Inheritance

An issue which may deserve further consideration is that of inheritance. It would seem to

make sense to construct the type namespace such that certain properties, perhaps “absolute”
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access rules, are automatically inherited by the children of a type. On the other hand, this
may simply needlessly complicate the process of policy creation, the simplification of which

is the precise goal of the policy compiler.

8.1.3 Patch File Specification

The patch file may specify any access rules, entry point, or type assignments which must,
or must not, be a part of the final policy, regardless of the result of module application.
The patch file is read and applied at the point where the control file instructs dpc to do
s0. Presumably, this would usually be the last action prior to writing the final policy. A

sample patch file is shown in Figure 8.5. The syntax of the patch file follows.

il

<patch_file> <patch_line>*

<patch_line> [not] <patch_cmd>

<patch_cmd> domain_ep <domain> <type> |
domain_type <domain> <type_acc> "to" <type> |
domain_trans <domain> <x_acc> "to" <domain> |

domain_sig <domain> <signal> "to" <domain> |

type_assign <type> <ta_option> <path_name>

All aspects of the policy can be controlled by the patch file. No group expansion of any
type is performed, so only plain domain and type names may be used. The meaning of
a statement may be inverted by prepending with the word “not”. For instance, line 4 of
Figure 8.5 indicates that the domain ftpd_d may not have read access to type shadow_t. If

this access was granted by some module, then the access will be revoked.
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In the case of a violation of a type assignment assertion, only a warning is given. This
is because there is no single correct way to handle the violation. For instance, in the case
of line 5 of Figure 8.5, if /etc/passwd is assigned the etype user_t as a result of a rule
assigning user_t recursively to /etc, it is not clear whether dpc should revoke the original
rule, or simply issue a conflicting rule for only the file /etc/passwd.

The remainder of the patch file specification follows.

<x_acc> ::= "auto" | "exec" | "none"
<type_acc> ::= "none" | [rwxlcdal+

<signal> ::= [0-32] | "none"

<ta_option> pi= Mer | Mey" | "-e" | "-eu"
<domain> ::= [a-zA-z] [a-zA-Z_0-9]*

<type> ::= [a-zA-2z] [a-zA-Z_0-9]*
<path_name> ::= <file_name> [ / <file_name> ]*
<file_name> ::= [a-zA-Z] [a-zA-Z\-_0-9.]+

group domain untrusted_domain_group
import ftpd_d talkd_d fingerd_d
end

Figure 8.3: A group declaration combining some untrusted domains

type base.extraneous.root_t
DEFAULT_RTYPE
[...]

end

Figure 8.4: A possible definition of type root.t.
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01. domain_type ftpd_d none to sbin_t
02. domain_type ftpd_d none to bin_t
03. domain_type ftpd_d rld to base_t
04. not domain_type ftpd_d r to shadow_t
05. not type_assign user_t -e /etc/passwd

Figure 8.5: A sample dpc patch file.

8.2 Automatic Maintenance of Policy Constraints

In chapter 7, we analyze DTE policies by using concepts from simpler access control systems
to introduce relations on objects and subjects. TIS used this concept to enforce the main-
tenance of specific relations across applications of run-time policy changes. We generalize
this idea by building into dpc a pluggable architecture to support maintenance of policy
constraints for any policy.

Using the 1load_policy directive in the control file, the policy compiler is instructed to
load a Policy Consistency Package, or pcp. The pcp is a generic Perl module. For instance,

in the line
load_policy BLP blp

‘BLP’ is the name of the file (minus .pm extension) wherein the package is located, and
‘blp’ is the keyword which DTE modules will use to identify the module.

Recall that the dpc applies modules when requested by a line in the control file such as
apply Service.ftpd Users.*

All modules specified in the ‘apply’ line will be applied simultaneously. For any type or
domain introduced in some module, the pcp will make consistency guarantees for all subse-

quent module applications. The pcp must define two functions, pre_apply and post_apply.
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e pre_apply is called before the domains and types defined in the modules about to
be applied are added to the global lists of domains and types. The pcp can there-
fore calculate the security properties, levels, or relations which exist and must be

maintained.

e post_apply is called after the modules have been fully applied. The pcp may now
decide whether any security properties which existed at pre_apply have been violated,
and act accordingly. Since the pcp is a full Perl module, it can choose to simply warn

of the violation, or stop the policy compiler altogether.

A pcp can thus be written to calculate and maintain any type of relation or property
found to exist prior to module application. Obvious examples include the BLP < relation,
the Ring policy < relation, assured pipelines, and the MBLP < relation. To provide further
information to a pcp, modules may use the “assert” keyword as described in Section 8.1.2.
The module syntax specifies that assert statements should include the pcp name followed by
any data. The entire assert statement is stored with the rest of a module’s information for
the domain or type to which the assertion relates, so that the pcp may find all assertions
relevant to it during pre_apply and post_apply. The BLP pcp does not make use of
“assert”. The pcp to enforce the modified BLP presented in Section 7.3 uses “assert” to

append secret and protect statements with types and domains.

8.2.1 Correctness of the BLP PCP

We have implemented a sample pcp to enforce the maintenance of the BLP *-property. The

main code of the pcp is shown in Appendix A.3.2, A.3.3, and A.3.4. We now show that
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BLP.pm will in fact detect any violations of the BLP *-property. Recall that the *-property

states:

Ve € Danda,b € T : r(z,a) Aw(z,b) = L(a) < L(b)

We define D and T as the sets of domains and types known before module application,
and D’ and T" as the same sets after module application. We must show that pre_apply
correctly calculates the < partial relation as defined by the *-property. Then we will show
that, for all types in 7', any changes to the < relations which are introduced by the module

applications will be detected.

Theorem 8.1 BLP::calculate_blp correctly computes the BLP < partial relation.

Proof:

We will show this by contradiction. Let us assume that some domain y has read access
to a type ¢, and write access to a type d, but calculate.blp does not report ¢ < d.

Calculate blp iterates over all domains in D. Therefore, the loop spanning lines 04 to
17 would be entered once with $dom set to y. Since we have said that y has read access
to ¢, the hash table $domain~>{"realta"} exists, and contains the entry {"y","c"}. We
therefore will enter the loop begun on line 08 with $typel set to c¢. $value will contain the
string representing access from y to ¢, which we have said contains ‘r’. We therefore begin
the loop on line 11. Since we know y to have write (‘w’) access to “d”, we will reach line
14, with $typel=c and $type2=d. This contradicts our assertion. %BLP::1leq does contain

{llyll , "d"}.
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We must also show that %BLP: :1leq does not contain any pairs {"u","v"}, where in fact
it is not the case that L(u) < L(v). Let us assume that this did in fact occur. This could only
happen if there exists a domain “y” such that main: :domains{"y"}->{"realta"}~->{"u"}
contains “r”, and %main::domains{"y"}->{"realta"}->{"v"} contains “w”’. We will
claim without proof that this could occur only if in fact domain “y” had read access to

type “u”, and write access to type “v”. But if this is the case, then, by the BLP *-property,

L(u) < L(v).

Theorem 8.2 At BLP::pre_apply, BLP calculates the correct < relation

Proof:

BLP: :pre_apply is shown in Appendix A.3.3. Let us assume that there exists y € D
and ¢,d € T such that r(y,c) A w(y,d), but %BLP: :1eq does not contain {"c", "d"}.

BLP: :pre_apply calls BLP::calculate_blp. Therefore, if 4BLP::1leq does not con-
tain {"c¢", "d"}, then BLP: :calculate_blp did not correctly calculate the BLP < partial
relation. However, we have shown that it does in fact correctly calculate <.

We can use the same argument to show that if %BLP: :1eq contains {"c","d"}, then it

must be that L(c) < L(d).

Theorem 8.3 If the BLP < partial relation between the types in T changes after module

application, then the changes will be reported in line 13 of BLP: :post_apply.
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Proof:

We will prove this by contradiction. BLP::post_apply is shown in Appendix A.3.4.
Let us assume that the application of a module introduces a new relation e < f on two
preexisting types e and f. We will attempt to show that BLP: :post_apply will not come to
line 13 with ($a="e",$b="£"), that is, it will not warn of this change in the BLP < partial
relation.

Line 04 computes %post_leq using BLP::calculate blp. As a consequence of our
previous proof, we know %post_leq to correctly represent the BLP < partial relation.
Therefore, {"e","f"} € %post_leq, and the loop beginning at line 05 will be entered with
$a="e". Since e € T, we will pass line 06. Line 07 will set $b="£". Again, since f € T, we
will pass line 08. Finally, since e # f, we will pass line 09.

By our previous argument, the fact that L(e) £ L(f) at BLP: :pre_apply means that
("e","f") ¢ %BLP::leq. We state without proof that the the function path_exists orig

shown in Appendix A.3.1 is correct. It therefore will detect that ("e","f") ¢ %BLP::1leq,

and that there exists no (¢1,...,%,) € T such that

(6,t1), (tlatZ)a SRR (tn—latn)’ (tnv f) € %BLP :: leq

That is, there exists no set of types related by < such that, by transitivity, e < f. The
function path_exists_orig therefore return false. Therefore, line 13 of BLP: :post_apply
will be reached with $a="e" and $b="£", generating a warning about the change in the

BLP < partial relation.
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8.2.2 Modified BLP PCP

The MBLP policy is introduced in section 7.3. We have coded a pcp to implement MBLP.
Relevant excerpts of the code are shown in Appendix A.4.

We wish to show that this pcp correctly detects changes in the MBLP < relation. As in
the BLP pcp correctness proof, we begin by showing that calculate mblp in fact computes
the correct MBLP < relation on all types. A precise specification of the relation is given in

Equation 7.1.

Theorem 8.4 The calculatemblp function shown in Appendiz A.4.1 correctly calculates
the MBLP < relation.

Proof: Before calling calculate mblp on line 5, pre_apply calls setup.asserts on line

4. This function walks through all MBLP assert statements which have been read. These
assert statements specify secret types, protected types, trusted (ignored) domains and types,
and secrecy and protection exceptions. As these lists are stored as simple arrays, we state

without proof that each of the above functions returns the appropriate boolean:

1. is_ignore_type(type)

2. is_ignore_domain(domain)

3. is_secret_type(type)

4. is_protected_type(type)

5. is_protect_exception(type, domain)

6. is_secret_exception(type, domain)
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The MBLP is defined in Equations 7.1 through 7.3. We begin by showing that, if the
relation

t1 <t

is defined by the calculate mblp function, then it is in fact the case that ¢t; < ¢5. The

definition of this relation occurs at line 27.

27: append_leq(%leq, $typel, $type2);

At this point, the variable $dom represents the domain d, the variable $typel represents
the type t; to which d has read access, and the variable $type2 represents the type d to
which d has write access. To reach line 27 with each of these variables so set, each of the

following must be true:

1. d is not a trusted domain. Else this domain would be skipped at line 07.

2. d has read access to t;. Else this type would be skipped at line 11.

3. t; must not be an ignored type. Else this type would be skipped at line 12.

4. d is not listed as a secrecy exception for t;. Else this type would be skipped at line

13.

5. d has write access to t3. Else this type would be skipped at line 20.

6. t3 is not an ignored type. Else this type would be skipped at line 21.

7. d is not a write exception for £;. Else this type would be skipped at line 22.
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Conditions 1-4 satisfy each condition in Equation 7.2, while conditions one and 5-7 sat-
isfy Equation 7.3. This combination satisfies the left hand side of Equation 7.1. Therefore,
if calculate_mblp defines #; < ¢o for some policy, then this relation holds under MBLP.

We next show that if it is the case that ¢; < ty, then the calculate mblp will define
t1 < tg. If t; < 9, then by Equations 7.1 through 7.3, there must be some domain d such
that mr(d,t;) and mw(d,t3). By the definitions of mr(d,t1) and mw(d,t2), the domain
must not be a trusted domain, ¢; and t2 must not be ignored types, and d must not be
a read exception for ¢; or a write exception for 2. Looking back to the calculate mblp
function in Appendix A.4.1, we see the main loop spanning lines 4 to 30 iterates over all
domains. Lines 6 and 7 skip a domain only if d is a trusted domain or has no permitted
type accesses at all. Otherwise we reach the nested loop which begins with line 9, iterating
over all types to which d has some access. Types to which d does not have read access, or
which are ignored types, are skipped on lines 11 and 12. Line 13 skips to the next type if d
is a secrecy exception for the current type. Lines 18 through 28 iterate again over all types
to which d has access. Line 20 limits the loop to types to which d has write access, and
line 21 skips types for which d is a write exception. Note that each case where a type has
been skipped has corresponded to an exception in Equations 7.2 or 7.3. In all other cases,
we reach line 27, which defines the relation ¢; < ¢s.

The function calculate mblp therefore correctly calculates the MBLP < relation for

any DTE policy.
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Theorem 8.5 If a module M adds a new MBLP < relation between two preexisting types,
then post_apply will warn of this new relation.

Proof: We have shown in Theorem 8.4 that calculate mblp correctly calculates the MBLP

< relation. Line 05 of pre_apply places the < relation into the variable %leq. As this is
called before module application, %leq contains exactly the MBLP < relation prior to
application of module M. Line 04 of post.apply places the result of calculate mblp
into the variable %post_leq. As this is called after application of module M, %post_leq
contains exactly the MBLP < relation after application of module M.

Assume module M added a relation a < b, where prior to application of M, a &£ b. This
means that at line 09 in post_apply, %post_leq(a) does contain b, while %leq(a) does
not. Through the nested loops spanning lines 07-18 and 09-17, each pair of base types (a, b)
for which %post_leq defines a < b will be checked. Since %leq does not also define a < b,
line 17 will warn of the new relation. Since, again, we have shown %post_leq and %1leq to
be correct, this will be the case if and only if the module M introduced this relation, while

the policy prior to application of M did not contain this relation. [

In Sections 7.3.1 and 7.3.2 we showed that the modified BLP can enforce assured
pipelines and Clark-Wilson CDIs. Since we have just shown that the MBLP pcp correctly
enforces the maintenance of modified BLP properties across module application, it follows
that the MBLP pcp can be used to enforce assured pipelines and CDIs. Of course, other
policy consistency packages can be written to enforce any access control policies desired by
the security administrator. This is the most significant contribution of policy compiler’s

pcp architecture.
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8.3 Sample Modules

Previous sections have argued for the usefulness of modules, and presented their syntax.
This section will present present several modules which we have used, to the same ends. We
begin with a base module, which defines types and domains which will be used by all other
modules. Next we present a module to introduce a password domain, which éan be used
by ordinary users to change their passwords, a task requiring permissions which ordinary
users lack. Following is an Ftp module, implementing protections similar to those of the
policy presented in [27]. Finally, we present a module to implement an assured pipeline for

the system log daemon.

8.3.1 Base Module

The feasibility of specifying simple but powerful modules in order to enhance a DTE pol-
icy will depend on the ability to specify an appropriate base module. We desire little or
no namespace clashing between modules, but also wish to keep modules concise, with a
minimum number of access rules. Therefore we want very few, well thought out domains.
We want to avoid having too many types, but at the same time we want to split up files
which have a system-wide meaning. For instance, it is not our place to assign types to the
/etc/sshd_config and related files. However, it is better that we take care of /1ib and
/usr/1ib now, since there is not one single module which can lay claim to those. A base
module which we believe satisfies these subjective criteria is shown in Appendix A.2.1.
The domain groups under Admin are undefined in the base module, but are intended to

be defined in later modules, either as domains or groups of domains. For instance, each
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could be defined as a group containing the root_d domain, although this would result in a

far less secure system than this base module is attempting to produce.

8.3.2 Password Module

The base module defines types passw_t and shadow_t, and assigns type passw_t to file
/etc/passwd and shadow_t to /etc/shadow. However, it does little with these types.
Users may not change their passwords, for instance, as they are simply denied all access to
shadow_t.

The password module shown in Appendix A.2.2 defines a new domain, passw_d, which
may be entered through /usr/bin/passwd by any domains defined in the base module.
Type passw_t is redefined to include a lock file and the temporary file /etc/passwd.tmp.
It may now be read by all domains, since anyone is welcome to basic user information.
However, it may be written only by passw_d. Type shadow_t is also redefined. All domains
are denied any access to it. The only exceptions are login_d, which may read the shadow
file, in order to verify users logging in, and passw_d, which may write shadow_t in order to
change passwords. Note that, under this policy, a successful attack against most daemons
running on the system will still not allow the attacker to read even encrypted passwords.
So long as we write a simple, and secure, passwd program, this module affords the same

flexibility as any current Unix system, combined with far greater security.

8.3.3 Ftp Module

The £ftp module is a purely restrictive one. It is designed to allow anonymous ftp to be

offered despite known and unpatched vulnerabilities in the ftp daemon. It first denies all
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domains, except the newly defined ftpd_d domain, execute access to /usr/sbin/in.ftpd.
It next prevents ftpd_d transitioning into any other domains, and denies it execute access
to any but its own executables, located under /home/ftp/bin, its entry point, and system
libraries. It is therefore impossible, for instance, to offer a root shell, since £tpd_d may not
execute a shell. Write access is very strictly guarded as well. Since ftpd_d may not execute
any types which it may modify, there is no possibility of any Trojan horse attacks, The ftp

module is shown in Appendix A.2.3.

8.3.4 Syslog

The syslog module, shown in Appendix A.2.4, implements an assured pipeline (See Chap-
ter 2.2.5) as an ideal setting for Bruce Schneier’s secure logging scheme [43]. No logging
algorithm can in itself prevent an attacker from forging new log entries. This algorithm,
however, facilitates the detection of modification or deletion of log entries which were com-
mitted before the system compromise. The hope is that one of the committed log entries
will warn of the attack in progress. In combining this algorithm, an assured pipeline, and
the enhanced protection of DTE over all system services, we aim for these approaches to
complement each other, providing a more secure system than either could provide sepa-

rately.

8.3.5 Control File

The module compiler must be directed by a control file. For the sake of completeness, a

control file directing dpc to create a DTE policy from all the modules listed above follows.
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read base.module
apply System.Base
read passw.mod
read ftp.mod

read syslog.mod
apply Service.*
write stdout

write dte.conf

8.4 Conclusion

This chapter presented a method and tools for creating security policies from modules. The
tool provides support for enforcement of arbitrary policy assertions or relations between
domains and types. We believe the result is a system which is at the same time simple,
powerful, and flexible enough to permit collaboration in construction of security policies. By
permitting a community to standardize upon a generic base module and type and domain
namespace hierarchies, it becomes possible for a new application to be distributed with a
policy module which can be integrated into end user policies. The work presented in this
chapter is therefore essential to the end goal, stated in Chapter 1, of providing both easy

to use and simple to administer mandatory access control for Linux.
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Chapter 9

Implementation Extensions

The current DTE implementation is sufficient to set up a flexible and secure MAC system.
However, several extensions would far increase its usability. We discuss these here, and
provide implementation details. However, these extensions have not been implemented.
The first extension copes with a new Linux file system feature, namespaces. The second
provides a new method for assigning types to files, which is useful in particular for the
/proc file system.
Finally, we describe not a kernel extension, but a method for extending DTE protections

to network services. We use the traditional example of an NFS server.

9.1 Namespaces

A new, thus far little used feature in Linux, is that of per-process namespaces [52], a concept
first introduced in the Plan 9 operating system [40]. Traditionally, all processes in a Unix
system see the same file system tree. Initially, the same is true under Linux. A new option
to the fork system call requests the cloning of a new file system tree. The forked process

then receives a copy of the tree, cloned recursively starting from the file system root. Any
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changes effected by mount activity in the new tree are seen only by the forked process and
its descendants. Likewise, changes to the old tree are not seen by processes using the new

tree.

9.1.1 Problem

The file system clone is implemented by a recursive copy of vismount structures. These
kernel structures are the glue which holds file system trees together, and are shown in
Figure 2.7. For instance, a mount of /dev/hda3 under /mnt/misc would create a vfsmount
structure with pointers to the root dentry for the file system stored on /dev/hda3, as
well as its superblock, and insert this structure at the d_vfsmnt pointer of the dentry
for /mnt/misc. If /dev/hda3 is already mounted under /mnt/disk, for instance, a mount
of /mnt/diskl/scratch/dl would result in a similar vfsmount, but with its root dentry
pointer set to the scratch/d1 directory on that disk.

In Chapter 3, we show that the malleability introduced by binding is resolved by using
information stored at the superblock. A “real” mount location for a file system points to a
vfsmount /dentry pair, which together specify a single location in the file system tree. We
refer the real mount location of a file system as the “real parent” of the root of the mounted
file system’s root directory. When using multiple namespaces, the real mount location for
a file system may point to a vfsmount not in the current process’ namespace. At first
glance this feature seems safe to ignore. However, it becomes dangerous when processes
exit and namespacés are destroyed. The following scenario is not handled by the current

DTE implementation:
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0: Process 1 Process 2

1: fork(clone, ...)

2: (begin under new namespace)
3: ... mount /dev/hda3 /mnt/b

4: exit

5: 1s /mnt/b

At line 5, the lookup of /mnt/b will cause the kernel to dereference the real parent
vismount for /mnt/b, which existed under the namespace for process 2. Since this names-

pace no longer exists, the reference is invalid.

9.1.2 Solution

The problem introduced by per-process namespaces could be dealt with in several ways.
We will mention two. The first is to ensure that all real parent vfsmount structures are
located in the original namespace, and that this namespace is never deleted. The second,
simpler solution would be to increase the namespace usage counter each time one of its
vfsmounts is referenced by a superblock’s real parent pointer. This prevents the namespace
being deleted until all such superblocks are freed.

Both of these solutions permit the crossing of namespaces during a dte._d.path call,
which is the only function using the real parent pointers. However, since throughout all
mount activity, DTE maintains information permitting it to recall the original tree struc-
ture, as described in Section 3.3, this will cause no ill effects. The additional code required

to cope with namespaces is shown in Figures 9.1 through 9.3.
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File: security/dte/read_policy.c
Beginning at line: 1543

int read_dte_config(void)

{
struct dte_fdata stat;
char *c;
int line = 0;
int err = 0;
/* initialization of variables and memcaches */
num_dte_domains = 0;
+ dte_root_ns = current->namespace;
+ atomic_inc(&namespace->count) ;
+ dte_root_dentry = dget(current->fs->root);
+ dte_root_mnt = mntget (current->fs->rootmnt) ;

dte_domains = kmalloc(8192,GFP_KERNEL);

dte_type_cache = kmem_cache_create("dte_type_names",4096,
0,0,NULL,NULL);

dte_path_cache = kmem_cache_create("dte_path_names",4096,
0,0,NULL,NULL) ;

Figure 9.1: Modification to DTE setup to store root namespace and prevent its unloading.

9.2 Accommodating proc

The policy analysis sections (Sections 6 and 8) demonstrated that in order to allow powerful
constructs such as CDIs and assured pipelines, it must be possible to segment domains. This
means that they are not forced to read and write types which other domains may access.
There is nothing inherent in Unix systems to prevent this. Executables to be run by a
segmented domain may be compiled statically, eliminating the need to access shared library
types, and may access their own private /tmp directories. Likewise access to devices need

only be carefully planned in advance. However, Linux does make it impossible to segment
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File: security/dte/mount.c
Beginning at line: 188

/* This function looks a pathname up much as the plain path_lookup,
but always starts from the root directory of the root namespace */
int dte_path_lookup(const char *name, unsigned int flags,
struct nameidata *nd)

{
nd->last_type = LAST_ROOT; /* if there are only slashes... */
nd->flags = flags;
spin_lock{(&dcache_lock);
/* Because of how we are called, the pathname must
* always be absolute! */
nd->mnt = dte_root_mnt;
nd->dentry = dte_root_dentry;
nd->o0ld_mnt = NULL;
nd->o0ld_dentry = NULL;
current->total_link_count = 0;
return link_path_walk(name, nd);

Figure 9.2: New DTE function to descend pathname using root namespace.

a domain using purely static policies. The problem is that domains must have access to
files under /proc, the pathnames to which cannot be predicted. If a process running under
domain user_d has process id (pid), then its proc files will be located under the directory
/proc/(pid)/.

The only way to handle this using purely static policies is to assign a common type
to /proc, which all domains may read and write. However, the introduction of the BLP
relation (see Section 7.2) on types will expose the problems this introduces. In brief, it

provides a venue for domains to leak secret information to each other, as well as a source
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File: security/dte/mount.c
(...continued...)

void hierarchical_setup(struct vfsmount *mnt)
{
[...1
/* Now get an nd struct for the given pathname.
* Note we do so using the root of the root namespace
retval = dte_path_lookup(r->path,
LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
&nd2) ;
o]
if (retval) {
[ Log error message ]
} else if (nd2.mnt !'= mnt) {
[ Log the pretend mount ]
/* Now we hook the pretend pathname - which, again,
* came from the root namespace */
sb_sec->mnt_parent = mntget(nd2.mnt);
sb_sec->mountpoint = dget(nd2.dentry);
dte_copy_ino_sec(nd2.dentry->d_inode, mnt->mnt_root->d_inode);
path_release(&nd2);
return;

Figure 9.3: Modification to DTE hierarchical mount information setup.

of information with which to corrupt high integrity data. !

Most DTE-like implementations take a much more dynamic approach to type-name
binding than our implementation. Once a file system has been initialized using the type
assignment rules of some policy, any files subsequently created are assigned typenames
based upon the domain creating the file. Conceptually, this greatly complicates the state

of a system after it has run for some time. One cannot actually predict the type which is

'For instance, the data for a Trojan horse replacement for a critical binary
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assigned to a file except immediately after system initialization. > However, for the proc
file system, this approach provides a natural solution.

We are not willing to give up the clarity of static type-name binding which our imple-
mentation of DTE uses for permanent file systems. However, for one-time file systems, the
more dynamic approach may often be the right one. Of course, since we currently see a case
where an alternative is useful for a one-time file system, we cannot predict that we will not
find such a case for a persistent file system. We therefore propose the following non-trivial
enhancement to our implementation of DTE.

All domains will be associated with a default type, as is the case in other DTE-like
systems. In most cases this will be ignored, and type assignment will continue to be based
upon pathnames. However, a new form of mounting restriction will be allowed. In ad-
dition to specifying “pretend” mounting pathnames by device, as well as mount location

restrictions, policies will be able to specify statements of the form

restrict [maj] [min] use_default_domain_type

or

restrict fstype use_default_domain_type

For instance, specifying

restrict proc use_default_domain_type

will give us our desired result.

ZNote that this is not system boot. System initialization is a one-time event.
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It must be noted that the proc deficiency is mainly one of analysis. Actually using
/proc to directly leak information is infeasible, as no process is allowed write access under

/proc/(pid). Therefore /proc could at best be used as a subliminal channel [42].

9.3 Providing Network Security

Most existing TE and DTE implementations have extended their protections by sending
domain and type information along with each network packet. We now consider in greater

detail the justifications for doing so.

9.3.1 Security

In Section 3.2.5, we claim that extending DTE protection to network packets is not very
helpful. Consider a domain name server. We might wish to assign some type, such as
auth_dns_t, to all DNS query responses. This type name would indicate that the source
of the packet was in fact a valid DNS server. In this way, any packets not of this type
could be considered unsafe. However, subsequently claiming that packets which are of this
type are safe, would be fallacious. Simply typing network packets does not provide any
additional security. Forging this information is no more complicated than forging a packet
to come from a different host, which would still be required were we not using DTE over
the network.

In order to make the DTE type information worthwhile, it must be authenticated using
a public key cryptosystem. > An example protocol is shown in Figure 9.4. This protocol

aims to authenticate the server, but takes no steps to authenticate the client to the server.

3No existing implementation of TE or DTE has gone to this effort.
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We assume that dispensing DNS information does not violate any security policy. The DNS
server possesses private key PR, and all clients have access to its corresponding public key
PU. We use Epp to indicate public key encryption, Dpy to indicate public key decryption,
and Ck to indicate symmetric key encryption and decryption. @) is the DNS query.

Implementing this protocol at the kernel level would greatly complicate the DTE code,
but would be worthwhile if it in fact provided additional security. In fact, there is no doubt
that this protocol in itself provides a great deal of security. However, integrating DTE into
this protocol gains us nothing. The addition of the auth_dns_t field into the responses by
the DNS server provides no security beyond that afforded by the protocol itself. Therefore,
the protocol might as well be implemented at the application level, or outside the DTE
subsystem at the kernel level. The private key PR should, of course, be protected using
DTE such that no service running on the DNS server, except the DNS service itself, is
allowed to read, or modify the key. Now the key verifies that the DNS server is not being
spoofed, and nothing but a compromised named itself could compromise the key. Of course,
if named is compromised, nothing can be done, so this service also must be protected using
DTE.

We have just shown that DTE cannot protect a client from a malicious server. Likewise,
DTE cannot protect a server from a malicious client. An obvious example is an NFS server
which exports file types along with the file system. While a friendly and DTE-aware system
may respect the type assignments, a malicious client will simply ignore this information and
freely publicize top secret data.

Finally, extending DTE over the network makes the synchronization of policies through-

out the network far more important. For instance, an NFS server might export a file of
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type sbin_t. It would seem prudent for the server to deny root write access to this type,
which generally contains more important, and less frequently updated, types than bin t.
However, if any client is configured to permit root write access to sbin_t, perhaps for the
sake of convenience, then the server’s policy is immediately compromised. Provided that
DTE control of networking does become a reality, policy synchronization may become an
interesting new area of research, as the question of authenticating the source of updates,
and minimizing the requisite trust placed in the subsystem performing the updates, appears

quite complicated.
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Step | DNS Server DNS client
1 Create nonce R

2 P; = Egpp(R,1,”auth_dns_t”)

3 Send Py Receive P;
4 (R, X, T) = Dicpy (P)
5 Break unless T' = "auth_dns t” and X =1
6 P, = Cgr(Q,2)
7 Receive P Send P,
8 | (@ X,2) =Cr(P)

9 Break unless X =2

10 Calculate response as V'

11 P3 = Cg(V,3,”auth_dns_t”)

12 Send P3 Receive P;
13 (V,X,T) = Cr(P3)
14 Break unless T = "auth_dns t” and X =3
15 Use V

Figure 9.4: Protocol to provide server authentication
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9.3.2 Convenience

We have shown above that using DTE to protect network data is not justified. Of course,
there remains the possibility that DTE-controlled networking provides convenience. DTE
would append two pieces of information to each network packet. The first is the type of the
data, however that is determined. The second is the domain of the process which generated
the data.

For many system services, these provide no additional information. Some services pro-
vide only one type of data, which is uniquely identified by the port over which the service
is accessed. Examples include ntpd, which provides clock synchronization information, and
fingerd, which provides user information.

The example which TIS provided of a useful feature supported by the DTE control of
networking is for exporting DTE types along with files from a NFS server. In this section

we discuss methods of integrating DTE and NFS.

9.3.2.1 Static Type Assignment

NFS can, of course, be used with our DTE prototype without any further extension. The
simplest, and perhaps safest, method of doing so would be to assign an untrusted type,
external_t, to a paﬁh /nfs, under which all file systems imported over NFS are mounted.
The NFS server can be set up so as to prevent modification of files, while the client forbids
execution of NFS-mounted files.

This protocol is not very useful. Files served by NFS need to appear to be a more natural
part of the client file system. With a little planning, however, static type assignment

to local pathnames can be used provide adequate support for NFS. For instance, if we
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were to import server:/export/usr/local under /nfs/usr/local, we could assign an
appropriate type, be that bin_t or nfs bin_t, while another file system from the same
server, server:/export/home could be mounted under /afs/home2, and again assigned an
appropriate type. This simple and obvious solution should in fact be sufficient, since NFS
setups are in most cases very static. A file server may export some binaries in order to
save space on clients, and some /home and data directory trees in order both to facilitate
centralized backups, and to allow users access to their data from any client. Once the
exports are in place, they rarely change, unless the file server itself undergoes a significant

change as well, such as the installation of a new disk.

9.3.2.2 Server-Directed Type Assignment

TIS was not satisfied with this setup. They wanted to grant the NFS server the ability to
export typenames along with files. In this way, an administrator could decide that a new
directory, server:/export/usr/local/sbin, should be assigned nfs_sbin_t, and make
the change only once, at the server. Perhaps more convincing, types created by users under
server:/export/home would be exported under the appropriate type. TIS therefore typed
all network packets, and created a DTE-aware NFS client which used this information to
assign types to NFS files. In addition, it used the source domain attribute to file write
requests from NFS clients in order to authenticate NFS writes. If we wish to provide this
functionality, we have two options. First, we can, as TIS did, extend DTE functionality
into the kernel networking code. Second, we can modify the NFS server and client code to
provide this functionality with less additional kernel support.

The implementation which we propose will alter the NFS protocol to explicitly export
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the type of a file along with a file itself. The NFS server now requires no expansion of DTE
controls. The nfsd daemon is modified to add an int dte_type field to the nfs fattr
structure, which we append at the end of the fs/nfsd/nfsxdr.c:encode_fattr function,
and decode at the end of the fs/nfs/nfs2xdr.c:xdr decode fattr function. The NFS
client simply copies the dte_type field from the svc_fh structure into the LSM inode security
field. These extensions are shown in Figures 9.5 through 9.8. In addition, at the start of the
NFS mount, the server and client must agree on an index to typename conversion, which
of course predisposes agreement on a set of typenames.

As a further extension of the nfsd daemon, it could be permitted to set types exported
to clients differently than those on the server. For instance, the directory served from
server:/export/home may be labeled export_t at the server, but home_t at the client.
Since clients and servers frequently view the same file system differently, this should be a
very useful feature.

The administrative conveniénce afforded by this architecture can be combined with
increased security by using a two-way version of the public key cryptography protocol
described in Figure 9.4. In that case the NFS server can refuse to serve any files, or only
files of certain types, based upon the client’s key, or lack thereof, and clients can be assured
of the authenticity of the data they are served. Additionally, since adding the dte_type
field to the svc_fh field amounts to a fundamental NFS incompatibility, the server must
fall back to the standard protocol if it is to be allowed to serve non-DTE clients. This was
not a problem for TIS, as they utilized the IP options field to share type information, which

non-DTE machines would simply ignore. 4

“This is not quite true, as some operating systems crashed when presented with nonstandard IP options.
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We have proposed an alternative architecture for NFS servers to share type information
with DTE-aware clients. We argue in its favor on account of the simpler implementation -
only a few lines of kernel code need be changed. However, TIS’ solution is more general.
Should there in fact turn out to be many services which benefit from the sharing of DTE
types, then TIS’ solution will be more appropriate. We, however, do not believe this to be
the case, and feel that DTE is better used to protect binaries, libraries, and cryptographic

keys, than to directly protect network protocols itself.

9.4 Conclusion

This chapter presented extensions to, and uses of, the DTE module whose implementation
we feel would significantly enhance the module’s usefulness. These extensions have not yet

been implemented, but are considered a fruitful area of future work.

DTE network servers therefore did not send DTE information to such hosts.
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File: fs/nfsd/nfsxdr.c
Beginning at line: 134

static inline u32 *
encode_fattr(struct svc_rgst *rqstp, u32 *p, struct svc_fh *xfhp)

{

if (rqstp->rq_reffh->fh_version ==
&& rgstp->rq_reffh->fh_fsid_type ==
&& (fhp->fh_export->ex_flags & NFSEXP_FSID))
*p++ = htonl((u32) fhp->fh_export->ex_fsid);

else
*p++
*pt

sb_sec

*p++
*p++

*pt+ =
*ptt+ =
*p+t+ =

*p++
*p++
*ptt

return p;

htonl ((u32) stat.dev);

htonl((u32) stat.ino);

= (struct dte_inode_sec) stat.dentry->inode->i_security;
htonl ((u32) sb_sec->etype);

htonl({(u32) sb_sec->utype);

htonl((u32) stat.atime);

0;

htonl((u32) lease_get_mtime(dentry->d_inode));
0;

htonl ((u32) stat.ctime);

0;

Figure 9.5: The code to export DTE types from NFS server.
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File: fs/nfs/nfs2xdr.c
Beginning at line: 98

static u32 *
xdr_decode_fattr(u32 *p, struct nfs_fattr *fattr)
{
[...]
fattr->du.nfs2.blocksize = ntohl (*p++);
fattr->rdev = ntohl (*p++);
fattr->du.nfs2.blocks = ntohl (*p++);
fattr->fsid = ntohl (xp++);
fattr->fileid = ntohl (¥p++);
+ fattr->etype = ntohl (xp++);
+ fattr->utype = ntohl (xp++);
p = xdr_decode_time(p, &fattr->atime);
p = xdr_decode_time(p, &fattr->mtime);
p = xdr_decode_time(p, &fattr->ctime);
fattr->valid |= NFS_ATTR_FATTR;
if (fattr->type == NFCHR && fattr->rdev == NFS2_FIFO_DEV) {
fattr->type = NFFIFO;
fattr->mode = (fattr->mode & “S_IFMT) | S_IFIFO;
fattr->rdev 0;

]

}

return p;

Figure 9.6: Code to import DTE types into NFS client from the network.
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File: fs/nfs/inode.c
Beginning at line: 645

/*
* Look up the inode by super block and fattr->fileid.
*/
static struct inode *
__nfs_fhget(struct super_block *sb, struct nfs_fh *fh,
struct nfs_fattr *fattr)

{
[...1
if (inode->i_state & I_NEW) {
[...]
inode->i_size = new_isize;
inode->i_mode = fattr->mode;
inode->i_nlink = fattr->nlink;
inode->i_uid = fattr->uid; ‘
inode->i_gid = fattr->gid;
+ i_sec = (struct dte_inode_sec *)inode->i_security;
+ i_sec->etype = nfs_conv_dtetype(sb, fattr->etype);
+ i_sec->utype = nfs_conv_dtetype(sb, fattr->utype);
[...]
} else
nfs_refresh_inode(inode, fattr);
[...]

out:
return inode;

out_no_inode:
printk("__nfs_fhget: iget failed\n");
goto out;

Figure 9.7: NFS client code to copy DTE types into inodes at first read.
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File: fs/nfs/inode.c
Beginning at line: 997

int
__nfs_refresh_inode(struct inode *inode, struct nfs_fattr *fattr)
{

[...]

inode->i_mode = fattr->mode;

inode->i_nlink = fattr->nlink;

inode->i_uid = fattr->uid;

inode->i_gid = fattr->gid;
+ i_sec = (struct dte_inode_sec *)inode->i_security;
+ i_sec->etype = nfs_conv_dtetype(sb, fattr->etype);
+ i_sec->utype = nfs_conv_dtetype(sb, fattr->utype);

if (fattr->valid & NFS_ATTR_FATTR_V3) {
/*
* report the blocks in 512byte units
*/
inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used);
inode->i_blksize = inode->i_sb->s_blocksize;

Figure 9.8: NFS client code to insert DTE types into inodes on refresh.
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Conclusion

This work has presented an efficient, non intrusive implementation of Domain and Type
Enforcement for the Linux kernel. It also presented user-level tools for the creation, analysis,
and maintenance of DTE policies.

Parallel to this effort, a few other projects have also implemented various security ex-
tensions and mandatory access control systems for Linux. The most popular of these is the
National Security Administration (NSA)’s SELinux. At the moment, SELinux supports
Type Enforcement, on which DTE was based, as well as RBAC. Its RBAC implementation,
however, is designed as a bridge between the Unix user concept, and TE domains. Most
SELinux work is taking two forms. First, the security module itself is continually being
improved. As it benefits from NSA employees being paid for working on SELinux full time,
it has consistently been fastest out of all LSM modules to keep up with changes to the Linux
kernel. Second, much work is being done to develop useful SELinux policies. Note that this
is distinct from the work presented here. We provide tools and processes for analyzing and
building policies. The SELinux project, without the benefit of such tools, is attempting
to develop policies which both secure a Linux system, and minimize user impact. In other

words, the work presented here should benefit the SELinux policy developers.
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Clearly, a useful next step for this project would be to join efforts with the SELinux
community. Extending the DTE Policy Composer (dpc) to output both DTE and SELinux
TE policies should be straightforward. Further modifications to support SELinux RBAC
could easily be implemented as a post-processing filter, such as dpc’s “patch”. We would
also like to consider merging the two, such that a module can specify both TE and RBAC
rules.

Another direction in which we plan to take this work, is to study and implement more
peps for dpc. A pcp can implement any type of algorithm which involves attaching infor-
mation to a type or domain in a module definition, and using this information to observe
and record properties before and after all subsequent module applications. The pcp could
therefore enforce maintenance of powerful access control policies such as assured pipelines,
or the modified BLP which our pcp enforces. It can also enforce arbitrary assertions, such
as “No domain which may read type a.t, should ever be allowed to reach domain b.d.”
Further possibilities should emerge as we continue to study properties of both safe and
unsafe policies.

Despite adapting our tools to work with SELinux policies, the DTE kernel module will
continue to be maintained. There are several reasons for this. First, we feel the DTE module,
by using hierarchical assignment rules and not typing network packets, is a lightweight LSM
module ideal for use in many situations. Second, as the LSM project is not yet complete,
it will benefit from the availability of several modules. This availability will continue to
demonstrate the value of LSM to critics, as well as help to keep LSM true to its goal of
providing generic support for multiple policies.

We would also like to complete implementation of the extensions listed in Chapter 9.
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Addressing the problem of namespaces will soon not be optional. Providing additional
methods for specifying file-type resolution will greatly extend the usefulness of DTE. Finally,
we would like to implement the protocol shown in Figure 9.4. Following the example of
the key server provided by Plan 9 [12], the service would be provided to local servers
over a pseudo file system. It would also be loaded as a separate kernel module, for two
important reasons. First, it allows us to keep implementations of complicated secret and
public key cryptographic functions outside the DTE module. Second, as flaws are found
in the implementation, or even the protocol itself, addressing these flaws will not require
distribution of a whole new DTE module. This extension would not be required to protect
a stand-alone system using DTE, and such a system should therefore not be slowed down
or complicated by the extensions, nor be forced to upgrade due to flaws in the extension.

A more dangerous, but promising, endeavor would be to enhance the DTE kernel module
such that it can process pcps. A DTE policy could load a set of pcps at boot time, and
permit application of modules which do not violate the pcp at run-time. This would be
similar to TIS’ run-time dynamic policy modification, but with several advantages. The
use of arbitrary pcps would enhance both its power and usefulness. The use of modules,
rather than policy excerpts, would encourage the application of complete, well thought out
modules, rather than the piecemeal application of policy rules. Finally, as a module is
considered one entity, its application or refusal would be one atomic action. The question
of whether a subset of the submitted rules should be retained if another rule is rejected is
moot.

As the number of people using the internet for financial transactions, email, and enter-

tainment purposes continues to increase, computer security is becoming a common topic of
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mainstream media. As a result, most people are aware of the inadequate security offered
by current operating systems. In this work we presented both a module which significantly
enhances the security of the Linux operating system, and tools aimed at simplifying its

configuration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A

DTE Policy, Modules, and PCP

Listings

A.1 Sample DTE Policies

A.1.1 Base Policy

types base_t bin_t boot_t conf_t dev_t disk_t getty_xt init_t \
1lib_t log_t login_et mnt_t oshell_t package_t proc_t root_t sbin_t \
shell_t tmp_t tty_t user_t varrun_t wdev_t

domains boot_d daemon_d login_d root_d user_d

default_d boot_d

default_et base_t
default_ut base_t

spec_domain boot_d (0) (17 rxld->base_t rxld->bin_t rwxlcd->boot_t \
rwxlcd->conf_t rwxlcd->dev_t rxld->init_t rwxlcd->1ib_t rwxlcd->log_t \
rwxlcd->mnt_t rxld->oshell_t rwxlcd->proc_t rxld->sbin_t rxld->shell_t \
rwxlcd->tmp_t rwlcd->tty_t rwxlcd->varrun_t rwlcd->wdev_t) \
(2 auto->daemon_d auto->login_d) (1 0->0)

spec_domain daemon_d (1 getty_xt) (18 rld->base_t \
rx1d->bin_t rxld->conf_t rxlcd->dev_t rxld->getty_xt rxld->1lib_t \
raxld->log_t rwxlcd->mnt_t rxld->oshell_t rxld->package_t \
rwxlcd->proc_t rxld->sbin_t rxld->shell_t rwxlcd->tmp_t rwlcd->tty_t \
rld->user_t rwxlcd->varrun_t rwlcd->wdev_t) (1 auto->login_d) (1 0->0)

spec_domain login_d (1 login_et) \
(16 rid->base_t rxld->bin_t rld->conf_t rxld->1ib_t rwxlcd->log_t \
rx->login_et rx->oshell_t rwxlcd->proc_t rld->root_t rxld->sbin_t \
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rx->shell_t rwxlcd->tmp_t rwlcd->tty_t rld->user_t rwxlcd->varrun_t \
rwlcd->wdev_t) (2 exec->root_d exec->user_d) (1 0->0)

spec_domain root_d (1 shell_t) \
(19 rld->base_t rwxlcd->bin_t rwxlcd->conf_t rwxlcd->dev_t rxld->disk_t \
ruxlcd->1ib_t rwxlcd->log_t rwxlcd->mnt_t rwxlcd->oshell_t \
rwxlcd->package_t rwxlcd->proc_t rwxlcd->root_t rxld->sbin_t \
rx->shell_t rwxlcd->tmp_t rwlcd->tty_t rwxlcd->user_t rwxlcd->varrun_t \
rwlcd->wdev_t) (1 auto->login_d) (1 0->0)

spec_domain user_d (2 shell_t oshell_t) (16 rld->base_t rxld->bin_t \
rxld->conf_t rld->dev_t rxld->1lib_t rwxlcd->mnt_t rx->oshell_t \
rxld->package_t rwxlcd->proc_t rxld->sbin_t rx->shell_t rwxlcd->tmp_t \
rwlcd->tty_t rwxlcd->user_t rwxlcd->varrun_t rwlcd->wdev_t) \
(1 auto->login_d) (2 14~>0 17->0)

assign -e bin_t /bin

assign -e oshell_t /bin/ash
assign -e oshell_t /bin/bash
assign -e oshell_t /bin/csh
assign -e oshell_t /bin/sh
assign -e oshell_t /bin/tcsh
assign -e shell_t /sbin/sh
assign -e login_et /sbin/login
assign -e boot_t /boot
assign -e dev_t /dev

assign -e tty_t /dev/ttydir
assign -e wdev_t /dev/wdevs
assign -e conf_t /etc

assign -e lib_t /1ib

assign -e log_t /log

assign -e disk_t /lost+found
assign -e mnt_t /mnt

assign -e package_t /opt
assign -e proc_t /proc
assign -e root_t /root
assign -e sbin_t /sbin
assign -e init_t /sbin/init
assign -e getty_xt /sbin/mingetty
assign -e tmp_t /tmp

assign -e bin_t /usr/bin
assign -e lib_t /usr/i486-linux-1ibc5
assign -e lib_t /usr/lib
assign -e lib_t /usr/libexec
assign -e sbin_t /usr/sbin
assign -e tmp_t /usr/tmp
assign -e lib_t /var/lib
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assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

-e
-e
-€
-€
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-u
-
-u

log_t /var/log
package_t /var/opt
varrun_t /var/run
tmp_t /var/tmp
bin_t /bin

boot_t /boot

dev_t /dev

tty_t /dev/ttydir
wdev_t /dev/wdevs
conf_t /etc

init_t /etc/rc.d
user_t /home

lib_t /1lib

log_t /log

disk_t /lost+found
mnt_t /mnt
package_t /opt
proc_t /proc
root_t /root
sbin_t /sbin

tmp_t /tmp

bin_t /usr/bin
1ib_t /usr/i486-1linux-1ibch
lib_t /usr/lib
lib_t /usr/libexec
sbin_t /usr/sbin
tmp_t /usr/tmp
1lib_t /var/lib
log_t /var/log
package_t /var/opt
varrun_t /var/run
tmp_t /var/tmp

A.1.2 Password Policy

types base_t bin_t boot_t conf_t dev_t disk_t getty_xt init_t \
1lib_t log_t login_et mnt_t oshell_t package_t proc_t root_t sbin_t \
shell_t tmp_t tty_t user_t varrun_t wdev_t passw_et passw_t shadow_t
domains boot_d daemon_d login_d root_d user_d passw_d

default_d boot_d

default_et base_t
default_ut base_t
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spec_domain boot_d (0) (17 rxld->base_t rxld->bin_t rwxlcd->boot_t \
rwxlcd->conf_t rwxlcd->dev_t rxld->init_t rwxlcd->1ib_t rwxlcd->log_t \
rwxlcd->mnt_t rxld->oshell_t rwxlecd->proc_t rxld->sbin_t rxld->shell_t \
rwxlcd->tmp_t rwlcd->tty_t rwxlcd->varrun_t rwlcd->wdev_t) \
(2 auto->daemon_d auto->login_d) (1 0->0)

spec_domain daemon_d (1 getty_xt) (18 rld->base_t \
rx1d->bin_t rxld->conf_t rxlcd->dev_t rxld->getty_xt rxld->lib_t \
raxld->log_t rwxlcd->mnt_t rxld->oshell_t rxld->package_t \
ruxlcd->proc_t rxld->sbin_t rxld->shell_t rwxlcd->tmp_t rwlcd->tty_t \
rld->user_t rwxlcd->varrun_t rwlcd->wdev_t) (1 auto->login_d) (1 0->0)

spec_domain login_d (1 login_et) \
(18 rld->base_t rxld->bin_t rld->conf_t rxld->lib_t rwxlcd->log_t \
rx->login_et rx->oshell_t rwxlcd->proc_t rld->root_t rxld->sbin_t \
rx->shell_t rwxlcd~>tmp_t rwlcd->tty_t rld->user_t rwxlcd->varrun_t \
rwlcd->wdev_t r->shadow_t r->passw_t) (2 exec->root_d exec->user_d) \
(1 0->0)

spec_domain root_d (1 shell_t) \
(21 rld->base_t rwxlcd->bin_t rwxlcd->conf_t rwxlcd->dev_t rxld->disk_t \
rwxlcd->1lib_t rwxlcd->log_t rwxlcd->mnt_t rwxlcd->oshell_t \
rwxlcd->package_t rwxlcd->proc_t rwxlcd->root_t rxld->sbin_t \
rx->shell_t rwxlcd->tmp_t rwlcd->tty_t rwxlcd->user_t rwxlcd->varrun_t \
rwlcd->wdev_t r->passw_et r->passw_t) \
(2 auto->login_d auto->passw_d) (1 0->0)

spec_domain user_d (2 shell_t oshell_t) (18 rld->base_t rxld->bin_t \
rxld->conf_t rld->dev_t rx1d->lib_t rwxlcd->mnt_t rx->oshell_t \
rxld->package_t rwxlcd->proc_t rxld->sbin_t rx->shell_t rwxlcd->tmp_t \
rwlcd->tty_t rwxlcd->user_t rwxlcd->varrun_t rwlcd->wdev_t r->passw_et \
r->passw_t) \
(2 auto->login_d auto->passw_d) (2 14->0 17->0)

spec_domain passw_d (1 passw_et) (7 rld->base_t rld->user_t rx->passw_et \
rwlcd->passw_t rwlcd->shadow_t rld->1lib_t rwlcd->log_t) \
(0) (14->0 17->0)

assign -e bin_t /bin

assign -e oshell_t /bin/ash
assign -e oshell_t /bin/bash
assign -e oshell_t /bin/csh
assign -e oshell_t /bin/sh
assign -e oshell_t /bin/tcsh
assign -e shell_t /sbin/sh
assign -e login_et /sbin/login
assign -e boot_t /boot
assign -e dev_t /dev

assign -e tty_t /dev/ttydir
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assign -e wdev_t /dev/wdevs
assign -e conf_t /etc

assign -e lib_t /lib

assign -e log_t /log

assign -e disk_t /lost+found
assign -e mnt_t /mnt

assign -e package_t /opt
assign -e proc_t /proc
assign -e root_t /root
assign -e sbin_t /sbin
assign -e init_t /sbin/init
assign -e getty_xt /sbin/mingetty
assign -e tmp_t /tmp

assign -e bin_t /usr/bin
assign -e 1lib_t /usr/i486-linux-1libc5
assign -e 1lib_t /usr/lib
assign -e lib_t /usr/libexec
assign -e sbin_t /usr/sbin
assign -e tmp_t /usr/tmp
assign -e 1lib_t /var/1lib
assign -e log_t /var/log
assign -e package_t /var/opt
assign -e varrun_t /var/run
assign -e tmp_t /var/tmp
assign -u bin_t /bin

assign -u boot_t /boot
assign -u dev_t /dev

assign ~u tty_t /dev/ttydir
assign ~u wdev_t /dev/wdevs
assign ~u conf_t /etc

assign ~u init_t /etc/rc.d
assign ~u user_t /home
assign ~u 1lib_t /1ib

assign ~u log_t /log

assign ~u disk_t /lost+found
assign ~u mnt_t /mnt

assign -u package_t /opt
assign ~u proc_t /proc
assign -u root_t /root
assign -u sbin_t /sbin
assign -u tmp_t /tmp

assign -u bin_t /usr/bin
assign -u 1lib_t /usr/i486-linux-1libcb
assign ~u lib_t /usr/lib
assign -u lib_t /usr/libexec
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assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

-u
-u
-u
-u
-ua
-u
-u
-e
~-e
-e

sbin_t /usr/sbin

tmp_t /usr/tmp

lib_t /var/lib

log_t /var/log

package_t /var/opt

varrun_t /var/run

tmp_t /var/tmp

shadow_t /pwd/shadow

passw_t /pwd/passwd /pwd/passwd.tmp /pwd/.pwd.lock
passw_et /sbin/passwd

A.2 Sample DTE Modules

A.2.1 Base Module

Module System.Base

type base_t

DEFAULT_RTYPE

absolute access all rld

absolute access boot_d rxld

end

type bin_t

upath /bin

upath /usr/bin

upath /usr/local/bin

absolute access all rxld

access Admin.services.+ rwxlcd

end

type boot_t
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rpath /boot
absolute access all none
access boot_d rwxlcd
access Admin.kernel rwlcd
end
type conf_t
access boot_d rxlcd
access Admin.config rwxlcd
absolute access all rxld
rpath /etc
end
type dev_t
rpath /dev
absolute access getty_d rxld
access boot_d rwxlcd
access login_d rwlcd
access Admin.config rwxlcd
absolute access all rld
end
type disk_t
absolute access all none
access Admin.services.+ rwxlcd

rpath /lost+found

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. DTE POLICY, MODULES, AND PCP LISTINGS

end
type getty_xt
epath /sbin/mingetty
access getty_d rx
end
type init_t
absolute access boot_d rxld
epath /sbin/init
upath /etc/rc.d
end
type lib_t
absolute access all rxld
access boot_d rwxlcd
access Admin.services.+ rwxlcd
rpath /1ib /usr/lib /usr/local/lib /usr/libexec /var/lib
rpath /usr/i486-linux-1libcbh
end
type log_t
access boot_d rwxlcd
access getty_d raxld
access login_d rwxlcd
access root_d rwxlcd

access Admin.+ rld
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absolute access all none
rpath /log
rpath /var/log
end
type login_et
epath /bin/login
epath /bin/su
absolute access login_d rx
absolute access all none
access‘Admin.services.+ rwxlcd
end
type oshell_t
epath /bin/ash
epath /bin/csh
epath /bin/tcsh
access all rx
access Admin.* rwxlcd
end
type proc_t
rpath /proc
access all rwxlcda
end

type root_t
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rpath /root
absolute access all none
access root_d rwxlcd
end
type sbin_t
rpath /sbin /usr/sbin /usr/local/sbin
absolute access all rxld
access Admin.sbin rwxlcd
end
type shell t
epath /bin/bash
epath /bin/sh
access all rx
end
type tmp_t
access all rwxlcd
rpath /tmp /usr/tmp /var/tmp
end
type tty_t
access all rwlcd
rpath /dev/ttydir
end

type user_t
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access getty_d rld
access login_d rld
access Admin.* rld
access user_d rwxlcd
upath /home

end

type varrun_t
access all rwxlcd
rpath /var/run

end

type wdev_t
rpath /dev/wdevs
absolute access all rwlcd

end

domain System.boot_d
DEFAULT_DOMAIN
domain out getty_d auto
signal out all O

end

domain Service.getty_d
entries getty_xt

domain out login_d auto
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domain in boot_d auto
domain in Admin.services.+ exec
signal out all O
end
domain Service.login_d
entries login_et
domain in Admin.services.+ exec
domain in login_d auto
domain out Users.* exec
signal out all O
end
domain Users.root_d
entries shell_t
domain in login_d auto
domain out all none
signal out all O
end
domain Users.user_d
entries shell_t oshell_t
domain in login_d auto
absolute domain out Users.* none
signal out all 14,17

end
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end

A.2.2 Password Module

Module Service.password
domain passw_d
entries passw_et
domain in Users.* auto
absolute domain out all none
type all none
type user_t rld
signal out all 14,17
signal in all none

end

type passw_et

absolute access all r

access passw_d rx

epath /bin/passwd /usr/bin/passwd
end
type passw_t override

absolute access all rid

access passw_d rwlcd

epath /etc/passwd
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epath /etc/passwd.tmp /etc/.pwd.lock
end
type shadow_t

absolute access all none

access passw_d rwlcd

access login_d rld

epath /etc/shadow /etc/shadow.tmp
end

end

A.2.3 Ftp Module

Module Service.ftp
domain ftpd_d
entries ftpd_et
domain in all none
domain out all none
domain in boot_d auto
domain in Admin.services.+ exec
absolute type all none
signal out boot_d 14,17
signal out Admin.services.+ 14,17

end
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type ftp_t
aaccess all none
absolute access ftpd_d rld
rpath /home/ftp

end

type ftpd_et
access all r
absolute access ftpd_d rx
epath /usr/sbin/in.ftpd

end

type ftpd_xt
access all none
absolute access ftpd_d rxld
access root_d rwcld
rpath /home/ftp/bin
assert blp protect

end

type ftpd_wt

access all none

absolute access ftpd_d rwcld
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rpath /home/ftp/incoming
end

end

A.2.4 Syslog Module

Module Service.syslog
domain syslog_d

entries syslog_xt # /usr/sbin/secure_syslog_d
domain in all none
domain in boot_d auto
domain out all none
type urandom_t r
type dev_t r # in case no urandom type
signal in all none
signal out boot_d 14,17

end

type syslog_xt
access all none
access boot_d r
access syslog.d rx
epath /usr/sbin/secure_syslog._d

end
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type syslog_in_t

access all a

access syslog_d r

epath /var/log/secure_log_in
end
type syslog_out_t

access all none

access root_d r

access syslog_d ra

epath /var/log/secure_log_out
end

end

A.3 Excerpts of BLP PCP

Following are exceprts of the code for the BLP pcp.

A.3.1 Finding Paths

The following code finds paths within the < graph.

00: sub path_exists_orig {

01: my ($search_leq) = shift @_;
02: my ($a, $b) = @_;

03: my ($t1, $t2);

04: my (%leq2);

05:

06: foreach $t1 (keys (%$search_leq)) {

07: next unless $t1 eq $a;

08: return "true" if leq_contains($$search_leq{$a}, $b);
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09:

10: while (defined($$search_leq{$t1}) and $$search_leq{$t1} ne ’’) {
11: ($t2, $$search_leq{$t1}) = split ’:’, $$search_leq{$tl}, 2;
12: %leq2 = Y$search_leq;

13: if (path_exists_orig(\%leq2, $t2, $b)) {

14: return "true";

15: }

16: }

17: }

18: return °’’;

19: }

A.3.2 Relation Calculation

This is the code to compute BLP relation resulting from a DTE policy.

00: sub calculate_blp {
01: my (%leq);
02: my ($dom, $domain, %hlist, $typel, $type2, $value, $value2);

03:

04: foreach $dom (keys (%main::domains)) {

05: $domain = $main: :domains{$dom};

06: next unless exists $domain->{"realta"};
07: %hlist = %{$domain->{"realta"}};

08: foreach $typel (keys (%hlist)) {

09: $value = $hlist{$typel}->[0];

10: next unless index($value, "r") !'= -1;
11: foreach $type2 (keys (%hlist)) {

12: $value2 = $hlist{$type2}->[0];

13: next unless has_modify_acc($domain, $type2);
14: append_leq(\%leq, $typel, $type2);
15: }

16: }

17:  }

18: return %leq;

19:}

A.3.3 Pre-Apply

This is the BLP pre_apply function.

00: sub pre_apply {
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01: my ($self) = @_;

02: my ($type, $domain);
03: %baset = %main::types;
04: %leq = calculate_blp();
05: print "Pre-apply ";

06: print_blp(%leq);

07: }

A.3.4 Post-Apply

This is the BLP post_apply function.

00: sub post_apply {

01: my ($self) = @_;

02: my ($a, $b, $path_exists);

03:

04: %post_leq = calculate_blp();

05: foreach $a (keys (%post_leq)) {

06: next unless defined $baset{$al};

07: foreach $b (split ’:’, $post_leq{$a}) {

08: next unless defined $baset{$b};

09: next if $a eq $b;

10: %search_leq = %leq;

11: $path_exists = path_exists_orig(\¥%search_leq, $a, $b);
12: if (not $path_exists) {

13: print "BLP VIOLATION: $a newly <= $b.\n";
14: }

15: }

16: }

17: }

A.4 Excerpts of MBLP PCP

Following are excerpts of the code for the MBLP pcp.

A.4.1 Relation Calculation

00: sub calculate_mblp {
01: my (%leq);
02: my ($dom, $domain, %hlist, $typel, $type2, $value, $value2);
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03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27
28:
29:
30:
31:
32:
33:

foreach $dom (keys (%main::domains)) {

$domain = $main: :domains{$dom};
next unless exists $domain->{"realta"};
next if is_ignore_domain($dom);
%hlist = %{$domain->{"realta"}};
foreach $typel (keys (%hlist)) {
$value = $hlist{$typel}->[0];
next unless index($value, "r") != -1;
next if is_ignore_type($typel);
next if is_secret_exception($typel, $dom);

# Now, since dom is not a secrecy exception:

if (is_secret_type($typel)) {

print "MOD_BLP: $dom should NOT read type $typel.\n";

}
foreach $type2 (keys (%hlist)) {
$value2 = $hlist{$type2}->[0];

next unless has_modify_acc($domain, $type2);

next if is_ignore_type($type2);
next if is_protect_exception($type2, $dom);

# Now, since dom is not a protection exception:

}

if (is_protected_type($type2)) {

print "MOD_BLP: $dom should NOT write type $type2.\n";

}
append_leq(\%leq, $typel, $type2);

return %leq;

A.4.2 Pre-Apply

00: sub pre_apply {

my ($self) = Q_;

my ($type, $domain);
%baset = Jmain::types;
setup_asserts();

%leq = calculate_mblp();

01:
02:
03:
04:
05:
06:
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A.4.3 Post-Apply
00: sub post_apply {

01: my ($self) = @_;

02: my ($a, $b, $path_exists);
03:

04: %post_leq = calculate_mblp();

05: # for each a,b, post_leq{$a} =b, and a,b both in base_types, make sure
06: # leq{$a} = $b;

07: foreach $a (keys (Vpost_leq)) {

08: next unless defined $baset{$a};

09: foreach $b (split ’:’, $post_leq{$a}) {

10: next unless defined $baset{$b};

11: next if $a eq $b;

12: %search_leq = %leq;

13: $path_exists = path_exists_orig(\%search_leq, $a, $b);
14: if (not $path_exists) {

15: print "MBLP VIOLATION: $a newly <= $b.\n";
16: }

17: }

18: }

19: }
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LMBench Results

LMBench {36] was used to measure the performance of the stock 2.5.6 linux kernel, as
well as the LSM 2.5.6 kernel. The LSM kernel was tested using the dummy module, the
capabilities module, the DTE module, and the capabilities module stacked on top of the
DTE module. The results are listed here. For the sake of brevity and readability, we report

only the mean and deviation of 10 runs.

B.1 Stock Kernel

Host 0S Description Mhz

skull-spl Linux 2.5.6 1686-pc-linux-gnu 398

Processor, Processes - times in microseconds - smaller is better
Mhz null aull open selct sig sig fork exec
call I/0 stat clos TCP  inst hndl proc proc

mean 0.90 1.61 9.15 11.9 62.5 2.23 6.99 475 1846
sigma 0.01 0.03 .09 0.2 2.4 .02 .03 5 16
95% CI .008 .023 .068 .151 1.81 .01i5 .023 3.77 12

Context switching - times in microseconds - smaller is better

2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw

194
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mean 2.338 18.8 55.7 19.9 132.0 26.5 205.4
sigma 0.140 0.3 5.6 0.8 9 3.0 2.0
95% CI .106 .226  4.22 .603 6.79 2.26 1.51

*Local* Communication latencies in microseconds - smaller is better

2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP

ctxsw UNIX UDP TCP conn
mean 2.338 13.2 26.0 47.8 112.7 73.3 158.3 255
sigma 0.140 0.4 0.3 0.60 0.5 1.1 1.9 1
95% CI .106 .302 .226 .452 .377 .829 1.43 .754

File & VM system latencies in microseconds - smaller is better

0K File 10K File Mmap Prot Page
Create Delete Create Delete Latency Fault Fault

mean 123.6 15.6 259.0 38.9 1301.5 1.702 5.70000
sigma 0.2 0.1 0.2 0.1 23.9 0.022 0.45826
95Y% CI .151 .075 .151 .075 18.0 .017 .346

*Local* Communication bandwidths in MB/s - bigger is better

Pipe AF TCP File Mmap Bcopy Bcopy Mem Mem

UNIX reread reread (libc) (hand) read write
mean 177 115 122 149.3 277.8 135.7 142.4 277 170.11
sigma 11 5 47 0.2 0.0 0.7 1.1 0 0.03
95Y% CI 8.29 3.77 35.4 .151 .000 .528 .829 .000 .023

B.2 LSM Kernel Using Dummy Module

Processor, Processes - times in microseconds - smaller is better
Mhz null null open selct sig sig fork exec
call I/0 stat clos TCP inst hndl proc proc

mean 0.859 1.61 9.49 12.0 64.8 2.20 7.10 474 1870
sigma 0.003 0.02 0.10 0.1 3.0 0.06 0.01 3 16
95% CI .002 .015 .076 .075 2.26 .045 .008 2.26 12.1
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Context switching - times in microseconds ~ smaller is better

2p/OK 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw

mean 2.568 19.2 54.6 21.4 150.2 27.4 202.6
sigma 0.172 0.1 1.3 3.9 12.1 2.8 2.6
95% CI .130 .075 .980 2.94 9.12 2.11 1.96

*Local* Communication latencies in microseconds - smaller is better

2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP

ctxsw UNIX UDP TCP conn
mean 2.558 13.4 25.6 45.2 114.0 76.5 157.3 257
sigma 0.172 0.4 0.4 0.7 0.5 0.6 7.8 2
95% CI .130 .302 .302 .528 .377 .452 5.88 1.51

File & VM system latencies in microseconds - smaller is better

OK File 10K File Mmap Prot Page
Create Delete Create Delete Latency Fault Fault

mean 126.3 17.4 260.7 41.8 1295.3 1.689 5.40
sigma 0.3 0.1 0.4 0.2 20 0.024 0.49
95 CI .226 .075 .302 .151 15.1 .018 .369

*Local* Communication bandwidths in MB/s - bigger is better

Pipe AF TCP File Mmap Bcopy Bcopy Mem Mem

UNIX reread reread (libc) (hand) read write
mean 187 118 80.8 149.4 277.8 135.6 142.3 277 170.2
sigma 3 3 3.1 0.1 0.04 0.7 1.1 0 0.1
95% CI 2.26 2.26 2.34 .075 .030 .528 .829 .000 .075

B.3 LSM Kernel Using Capabilities Module

Processor, Processes - times in microseconds - smaller is better

Mhz null null open selct sig sig fork exec
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call 1I/0 stat clos TCP  inst hndl proc proc

mean 0.859 1.62 9.52 12.1 64.5 2.18 7.10 475 1870
sigma 0.003 0.03 0.13 0.2 2.3 0.00 0.01 3 20
98% CI .002 .023 .098 .161 1.73 .000 .008 2.26 15.1

Context switching - times in microseconds - smaller is better

2p/OK 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw

mean 2.55 19.3 56.2 21.0 143.5 30.2 205.5
sigma 0.11 0.2 5.6 1.7 7.5 4.9 2.3
95% CI .081 .161  4.22 1.28 b5.66 3.69 1.73

*Local* Communication latencies in microseconds - smaller is better

2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP

ctxsw UNIX UDP TCP conn
mean 2.55 13.7 256.8 45.8 113.8 76.2 161.8 256
sigma 0.11 0.3 0.3 0.6 1.2 1.1 1.6 1.4
95% CI .083 .226 .226 .452 .905 .829 1.21 1.06

File & VM system latencies in microseconds - smaller is better

0K File 10K File Mmap Prot Page
Create Delete Create Delete Latency Fault Fault

mean 126.0 17.0 260.6 41.9 1298 1.730 5.60
sigma 0.2 0.1 0.3 0.1 18 0.031 0.49
95% CI .161 .075 .226 075 13.6 .023 .369

*Local* Communication bandwidths in MB/s - bigger is better

Pipe AF TCP File Mmap Bcopy Bcopy Mem Mem

UNIX reread reread (1libc) (hand) read write
mean 181 117 80.8 148.6 277.8 136.4 143.4 277 170.1
sigma 9 4 7.3 1.9 0.05 0.2 0.3 0 0.05
95% CI 6.79 3.02 5.50 1.43 .038 .1561 .226 .000 .038
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B.4 LSM Kernel Using DTE Module

Processor, Processes - times in microseconds - smaller is better
Mhz null null open selct sig sig fork exec
call 1I/0 stat clos TCP  inst hndl proc proc

mean 0.86 1.62 12.2 15.4 67.0 2.18 7.20 480 1885
sigma 0 o0.01 0.1 0.1 3.6 0 0.01 4 18
95% CI .000 .008 .075 .075 2.71 .000 .008 3.02 13.6

Context switching - times in microseconds - smaller is better

2p/OK 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw

mean 2.424 19.5 54.2 20.7 145.0 28.9 206.6
sigma 0.136 0.1 0.4 0.9 15.8 4.3 1.5
95% CI .103 .075 .302 .679 12.0 3.24 1.13

*Local* Communication latencies in microseconds - smaller is better

2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP

ctxsw UNIX UDP TCP conn
mean 2.424 13.7 25.8 45.0 113.3 77.7 162.6 260.6
sigma 0.136 0.2 0.4 0.6 0.9 1.8 1.5 2.498
95% CI .103 .151 .302 .452 .679 1.36 1.13 1.88

File & VM system latencies in microseconds - smaller is better

0K File 10K File Mmap Prot Page
Create Delete Create Delete Latency Fault  Fault

mean 131.6 19.4 268.3 44.8 1295 1.640 5.80
sigma 0.3 0.1 0.3 0.1 24 0.033 0.40
95% CI .226 .075 .226 075 18.1 .025 .302

xLocal* Communication bandwidths in MB/s - bigger is better

Pipe AF TCP File Mmap Bcopy Bcopy Mem Mem

UNIX reread reread (libc) (hand) read write
mean 182 118 88.8 149.3 277.8 136.5 143.7 277 170.16
sigma 2 2 28.3 0.1 0.03 0.11 0.3 0 0.05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B. LMBENCH RESULTS 199

95% CI 1.561 1.51 21.3 .075 .023 .083 .226 .000 .038

B.5 LSM Kernel Using DTE and Capabilities Module

Processor, Processes - times in microseconds - smaller is better
Mhz null null open selct sig sig fork exec
call I/0 stat clos TCP  inst hndl proc proc

mean 0.859 1.62 12.2 15.56 68.0 2.183 7.20 479 1903
sigma 0.003 0.01 0.1 0.3 4.7 .004 0.01 4 37
95% CI .002 .008 .075 .226 3.54 .003 .008 3.02 27.9

Context switching - times in microseconds - smaller is better

2p/OK 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw

mean 2.531 19.4 54.4 20.7 147.5 29.3 203.3
sigma 0.167 0.28 0.7 0.7 20.7 3.3 5.3
95% CI .126 211 .528 .528 15.6 2.49 4.00

*Local* Communication latencies in microseconds - smaller is better

2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP

ctxsw UNIX UDP TCP conn
mean 2.531 13.8 25.8 45.0 113.4 76.7 162.8 260
sigma 0.167 0.4 0.3 0.4 0.5 1.1 1.7 2
95Y% CI .126 .302 .226 .302 .377 .829 1.28 1.51%1

File & VM system latencies in microseconds - smaller is better

0K File 10K File Mmap Prot Page
Create Delete Create Delete Latency Fault Fault

mean 131.6 19.3 268.3 44.9 1296.3 1.613 5.40
sigma 0.3 0.1 0.4 0.1 22 0.019 0.49
95} CI .226 .075 .302 .075 16.6 .014 .369

*Local* Communication bandwidths in MB/s - bigger is better
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Pipe AF TCP File Mmap Bcopy Bcopy Mem Mem

UNIX reread reread (libc) (hand) read write
mean 183 118 103 149.3 277.79 136.6 143.7 277 170.1
sigma 5 2 40 0.1 0.03 0.1 0.1 0 0.049
95% CI 3.77 1.51 30.2 .075 .023 .075 .075 .000 .037
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