
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2003

Power considerations for memory-related microarchitecture Power considerations for memory-related microarchitecture

designs designs

Zhichun Zhu
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhu, Zhichun, "Power considerations for memory-related microarchitecture designs" (2003).
Dissertations, Theses, and Masters Projects. Paper 1539623427.
https://dx.doi.org/doi:10.21220/s2-az56-s960

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623427&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623427&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-az56-s960
mailto:scholarworks@wm.edu

Power Considerations for Memory-related Microarchitecture Designs

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Zhichun Zhu

2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

'/

Zhichun Zhu

Approved, July 2003

daodong Zhang
Thesis Advisor .

Phil Kearns

Brucp'TiOwekamp

Dimitrios Nikolopoulos

TH11 , L ' < /-5V v£U -v

Robert Noonan

) U -vv-

Jun Yang
University of California, Riverside

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Table of Contents

A cknow ledgm ents vii

List o f Tables viii

L ist o f F igures x

A bstract xiii

1 Introduction 2

1.1 Importance of Low-power Architecture D e s ig n s .. 3

1.2 Our W o r k ... 4

2 Background 8

2.1 Sources of Power C o n su m p tio n .. 8

2.2 Low-power T echniques.. 9

2.2.1 Power-saving Techniques at Physical, Circuit and Logic Levels . . . 10

2.2.2 Power-saving Techniques at Architectural L ev e l.................................... 11

2.2.3 Power-saving Techniques at Software L e v e l .. 12

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Evaluation Environm ent 15

3.1 Evaluation M e tr ic s ... 15

3.1.1 Performance M e tr ic s ... 15

3.1.2 Power and Energy M etrics... 16

3.1.3 Energy-efficiency Metrics ... 17

3.2 Performance Evaluation T o o ls ... 18

3.3 Energy Consumption Evaluation T o o ls ... 21

3.4 W orkloads... 22

4 A ccess M ode P redictions for Low-power Cache D esign 25

4.1 Significance of Low-power Cache D e s ig n .. 25

4.2 Related W o rk .. 27

4.3 Comparisons between Phased and Way-prediction C a c h e s 28

4.4 AMP C a c h e s .. 31

4.4.1 S tra te g y .. 31

4.4.2 Power C o n su m p tio n ... 33

4.5 Access Mode P re d ic to r s ... 34

4.5.1 D e s ig n s .. 34

4.5.2 A c c u ra c y .. 37

4.5.3 O v e rh e a d .. 38

4.6 Multicolumn-based W ay-prediction... 39

4.6.1 Limitation of MRU-based W ay-pred iction .. 39

4.6.2 Multicolumn Cache ... 42

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6.3 Power Considerations for Multicolumn C a c h e 45

4.7 Experimental Environment .. 49

4.8 Experimental R esu lts ... 50

4.8.1 Comparisons of Multicolumn and MRU C a c h e s 50

4.8.2 Energy Reduction of AMP C a c h e s ... 53

4.8.3 Energy-efficiency of AMP C ach es.. 59

4.9 S u m m a ry ... 62

5 Look-ahead A daptation Techniques to R educe Processor Pow er C onsum p­

tion 64

5.1 Motivation ... 64

5.2 Load Indicator Schem e.. 68

5.2.1 Power Saving Opportunity .. 68

5.2.2 Load I n d ic a to r ... 70

5.3 Considerations for Load Indicator S ch em e .. 75

5.4 Experimental Environment .. 78

5.4.1 Power Savings ... 80

5.5 Effectiveness of Load Indicator Schem e... 82

5.6 Combining Local and Look-ahead O p tim iza tio n s ... 85

5.6.1 Motivation ... 85

5.6.2 Load-instruction In d ica to r... 88

5.7 Comparisons between Different S ch em es.. 90

5.7.1 Power Savings ... 90

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7.2 Performance I m p a c t .. 92

5.7.3 Energy Reduction ... 93

5.7.4 Different C onfigurations... 94

5.7.5 Average Intervals in Each Power M ode .. 96

5.8 Load-register Indicator S c h e m e .. 97

5.9 Effectiveness of Load-register Schem e.. 100

5.9.1 Power Savings .. 100

5.9.2 Energy S av in g s .. 102

5.10 Related W o rk ... 103

5.11 S u m m a ry .. 105

6 C onclusion and Future W ork 107

6.1 Conclusion .. 107

6.2 Future Work ... 109

Bibliography 112

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

Pursuing this degree is a long journey for me. I have learned a lot during this journey, not
only from the study, the research work, but also from many people including my adviser,
my professors, and my fellow students. I would like to thank all of them for their help. First
of all, I want to thank my adviser, Dr. Xiaodong Zhang, for his mentoring during these five
years. He created an excellent research environment for his students by his guidance, hard
working, determination, high standard, and vast knowledge.

The Department of Computer Science at the College of William and Mary is a wonderful
place for me to pursue my Doctoral degree. I would like to thank all faculty and staff in
this department for their help in these years. I would like to acknowledge Dr. Phil Kearns,
Dr. Bruce Lowekamp, Dr. Dimitrios Nikolopoulos, and Dr. Robert Noonan for serving the
dissertation committee. I would also like to thank Dr. William Bynum, Dr. Evgenia Smirni,
and Dr. Andreas Stathopoulos for serving the proposal committee. Especially, I thank Dr.
William Bynum for reviewing many of my manuscripts. I want to thank Dr. Evgenia Smirni,
Dr. Andreas Stathopoulos, and Dr. Dimitrios Nikolopoulos for their great help and advices
in my career development. I would also like to acknowledge Vanessa Godwin for the great
help she has offered to me in my graduate study.

I would like to thank the members of the High Performance Computing and Software
Lab and other graduate students, Songqing Chen, Xin Chen, Lei Guo, Song Jiang, and Qi
Zhang, who have helped to create an environment full of stimulation. I also want to thank
Dr. Xing Du for his great help in my research.

I want to thank Dr. Jun Yang from University of California at Riverside, to take time
from her busy schedule to serve as the external member of the committee. I would also like
to acknowledge Dr. Yiming Hu from University of Cincinnati, for his kind help in my career
development.

I would also like to acknowledge the funding agencies that provided funds and equip­
ment tha t supported my research: Sun Microsystems, for their donations of experimental
equipments, and the National Science Foundation and the Air Force Office of Scientific
Research, whose grants funded the majority of my graduate research.

I want to thank all my family members. I cannot imagine how I can go through this
without their support. My special thanks go to my mother for encouraging me during
difficult times, for taking care of my life, and for all she has done for me.

At last, but definitely not at least, I want to thank my husband for his care, his support,
his encouragement, his tolerance, and his confidence on me. I am so lucky to have him to
be with me for all the good and hard times.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Descriptions of SPEC2000 benchmarks [66].. 24

4.1 Comparisons of sizes and misprediction rates of different access mode predic­

tors. The separate 64 KB instruction cache (iLl) and the data cache (dLl)

are 8-way with block size of 64 B. The unified L2 cache (uL2) is 8-way with

block size of 128 B. The misprediction rates are the average over all the

SPEC2000 programs.. 37

4.2 The overall hit rates and first hit rates of multi-column and MRU structures

for LI instruction cache. The cache is 64 KB with block size of 64B.............. 52

4.3 The overall hit rates and first hit rates of multi-column and MRU structures

for LI data cache. The cache is 64 KB with block size of 64B.......................... 53

4.4 The overall hit rates and first hit rates of multi-column and MRU structures

for L2 cache. The cache is 4 MB with block size of 128B........................ 54

4.5 Access latencies for the way-prediction hit/m iss and phased access on 64 KB

4-way LI and 4 MB 8-way L2 caches . 60

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 The distribution of high demanding, low demanding, and idle windows for

program swim .. 74

5.2 Experimental param eters... 79

5.3 Percentage of execution time in low power mode, and percentage of power

reduction on the issue logic and execution units by the load indicator scheme

under the system with 1 GHz processor.. 82

5.4 Parameters for instruction indicator. E C and D C are the conditions for

enabling and disabling the low power mode. I i p c and F P i p c are the number

of integer instructions issued per cycle and the number of floating point

instructions issued per cycle, resp ec tiv e ly ... 85

5.5 The conditions for enabling and disabling the low power mode under different schemes.

L D is the number of outstanding load misses. ITeg and Freg are the numbers of free integer

and floating-point registers. T E x x and T D x x are thresholds for enabling and disabling

the low power mode, respectively. ... 99

5.6 The conditions for enabling and disabling the low power mode by the load-register indicator

scheme. L D is the number of outstanding load misses. Ireg and Freg are the numbers of

free integer and floating-point registers, respectively.. 103

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

4.1 The access patterns for (a) a conventional n-way set-associative cache; (b)

a phased n-way set-associative cache; and (c) a way-prediction n-way set-

associative cache... 26

4.2 Cache access latencies of the tag path, data path, sequential access, and

parallel access on a 16-KB, 4-way set associative cache with block size of

32-byte. The values are estimated using the CACTI model [58]...................... 29

4.3 The hit rates for SPEC2000 benchmarks on an eight-way 64 KBytes data

cache with block size of 64 Bytes and an eight-way 4 MBytes unified L2

cache with block size of 128 Bytes.. 30

4.4 The access pattern of n-way AMP cache... 32

4.5 Way-prediction strategy for MRU cache.. 41

4.6 Overall cache hit rate and first hit rate of a 64 KB MRU data cache for

program 172.mgrid... 42

4.7 Way-prediction strategies for multicolumn cache... 44

4.8 Way-prediction strategy for multicolumn cache without swapping........... 45

4.9 Comparisons of the first hit rates among the multicolumn and MRU caches. 51

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.10 Energy reduction of multicolumn caches compared with MRU caches. . . . 55

4.11 Energy consumption of multicolumn cache, phased cache, and AMP cache.

The system has four-way 64 KB instruction and data caches and eight-way

4 MB L2 cache.. 56

4.12 Decomposition of energy consumed by instruction, data, and L2 caches. . . 57

4.13 Energy consumed by data and L2 caches... 58

4.14 CPI and E-D product reductions of the AMP cache compared with the mul­

ticolumn cache... 61

4.15 CPI and E-D product reductions of the AMP cache compared with the phased

cache.. 62

5.1 Comparisons of the optimization based on current system status and the

look-ahead optimization.. 66

5.2 Sampled IPC values and number of outstanding loads during an arbitrarily

selected 1024-cycle interval for program swim. “W64” and “W32” correspond

to the sample window sizes of 64 cycles and 32 cycles, respectively 72

5.3 CDF of arrival interval of miss stream s... 76

5.4 Distribution of the number of concurrent accesses... 77

5.5 IPC values under the system with 1 GHz processors... 83

5.6 Percentage of total execution time in low power mode under our scheme

(load) and instruction indicator (instruction).. 86

5.7 Percentage of power reduction... 91

5.8 Normalized IPC values.. 92

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.9 Percentage of energy reduction.. 93

5.10 Power reduction under systems with processor speed scaling from 466 MHz

to 1 GHz and 2 GHz.. 95

5.11 Average intervals in the low power mode and the normal execution mode

under different schemes... 96

5.12 Percentage of power reduction under the load indicator, load-instruction in­

dicator, and load-register indicator schemes on systems with 1 GHz processors. 101

5.13 Percentage of total execution time in the low power mode under the load-

register indicator scheme. The load and register portions correspond to the

low power execution periods triggered only by the load indicator and the

register indicator, respectively. The overlap portion corresponds to those

caused by both triggers... 102

5.14 Percentage of energy reduction under the load indicator, load-instruction

indicator, and load-register indicator schemes under systems with 1 GHz

processors.. 104

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

The fast performance improvement of computer systems in the last decade comes with the
consistent increase on power consumption. In recent years, power dissipation is becoming
a design constraint even for high-performance systems. Higher power dissipation means
higher packaging and cooling cost, and lower reliability. This Ph.D. dissertation will inves­
tigate several memory-related design and optimization issues of general-purpose computer
microarchitectures, aiming at reducing the power consumption without sacrificing the per­
formance. The memory system consumes a large percentage of the system’s power. In
addition, its behavior affects the processor power consumption significantly. In this disser­
tation, we propose two schemes to address the power-aware architecture issues related to
memory:

• We develop and evaluate low-power techniques for high-associativity caches. By dy­
namically applying different access modes for cache hits and misses, our proposed
cache structure can achieve nearly lowest power consumption with minimal perfor­
mance penalty.

• We propose and evaluate look-ahead architectural adaptation techniques to reduce
power consumption in processor pipelines based on the memory access information.
The scheme can significantly reduce the power consumption of memory-intensive ap­
plications. Combined with other adaptation techniques, our schemes can effectively
reduce the power consumption for both compute- and memory-intensive applications.

The significance, potential impacts, and contributions of this dissertation are:

1. Academia and industry R&D has solely targeted the objective of high performance in
both hardware and software designs since the beginning stage of building computer
systems. However, the pursuit of high performance without considering energy con­
sumption will inevitably lead to increased power dissipation and thus will eventually
limit the development and progress of increasingly demanded mobile, portable, and
high-performance computing systems.

2. Since our proposed method adaptively combines the merits of existing low-power cache
designs, it approaches the optimum in terms of both retaining performance and saving
energy. This low power solution for highly associative caches can be easily deployed
with a low cost.

3. Using “a cache miss” , a common program execution event, as a triggering signal to
slow down the processor issue rate, our scheme can effectively reduce processor power
consumption. This design can be easily and practically deployed in many processor
architectures with a low cost.

xiii

with permission of the copyright owner. Further reproduction prohibited without permission.

Power Considerations for Memory-related Microarchitecture Designs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Computer system designs have been totally driven by the dedicated pursuit of high per­

formance for several decades. As a consequence, we have seen a technique trend tha t well

matches the Moore’s law: both the clock rate of a processor and the number of transistors

inside a chip double for every eighteen months over the last decades. However, this fast

improvement on system performance does not come with no cost. As the performance im­

proves exponentially, the chip power consumption also increases significantly. For instance,

the power dissipation of the Alpha processors increases from 30 W atts on an early product

21064, to 50 W atts on 21164, then to 90 W atts on 21264. It is estimated tha t this value

will reach 125-150 W atts on the future product 21464 [78]. In recent years, the high power

consumption has put a lot of pressure on computer system designs. For example, in order

to keep the processor running correctly under this high power consumption (which leads to

high tem perature), some special cooling and package techniques must be applied.

This dissertation will investigate several memory-related design and optimization issues

of general-purpose computer architectures. For general-purpose systems, high performance

is still the major concern. Thus, low-power designs for those systems should reduce power

consumption without (or only with a slight) performance loss.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 3

1.1 Im p ortan ce o f L ow -pow er A rch itectu re D esign s

Traditionally, power consumption is a major concern for portable system designers. On

one hand, users’ demand on computation power is ever increasing. Today, many portable

systems have processing power comparable to desktops or even servers produced just a few

years ago. On the other hand, the operation of those systems is limited by the battery

lifetime. Users’ requirement on light weight and long operation time never ends. Although

the advancement on battery technology does increase the battery lifetime, the improvement

is only linear, far behind the exponential power increase. Thus, reducing power consumption

can directly improve the usability of those systems.

In recent years, power consumption is becoming a critical design constraint even for

high-end computer systems. Higher power dissipation means higher packaging and cooling

cost, and also means lower reliability. For instance, it is estimated tha t once the processor

dissipates more than 40 W atts, every W att increase on power consumption costs about

$1 [64] in cooling and package. W ith the fast increase on power consumption, the air-cooled

techniques will reach their limits soon. The urge for some other fancy cooling techniques

such as water-cooled techniques seems not feasible due to their cost, noise, and weight. The

increasing power consumption of computer systems may also cause environment problems.

US EPA estimates tha t 10% of current electricity usage in US is directly due to desktop

computers. In addition, this percentage may increase in the future as ubiquitous computing

becomes more and more popular.

Power issues have been attacked at almost all design levels ranging from physical to

application. Traditionally, low-power circuit and logic techniques, such as reducing the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 4

supply voltage value and logic optimization, are the major research focuses in this field.

These techniques have been effectively reducing the power dissipation of a single transistor

or a single device. However, as the number of transistors inside a chip and the clock rate

increase exponentially, low-power CMOS and logic designs alone can no longer solve all the

power problems. Computer system designs must be pow er-aw are. This requires work to

be done in architecture, operating systems, and compiler [41, 52], Architectural approaches

has been and will be playing an im portant role here. For example, the projected power

consumption of Pentium III 800 MHz processor scaled from Pentium Pro technique would

reach 90 W atts. After careful designs and optimizations at architectural level, the product’s

power consumption is only 22 W atts [21].

1.2 Our W ork

As the speed gap between processor and memory continues to widen, the design of mem­

ory system becomes increasingly im portant to the performance of many applications. To

achieve high performance, large, highly associative, and multi-level caches are commonly

deployed in today’s computer systems. To tolerate long memory access latency, modern

processors widely exploit complicated issue logic. As a consequence, the memory system

contributes a large amount of the system’s power consumption. In addition, the behavior

of memory system also affects the power consumption of other components significantly.

This Ph.D. dissertation will investigate several memory-related design and optimization is­

sues of general-purpose computer architectures, aiming at reducing the power-consumption

without sacrificing the execution performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 5

We focus on designs and optimizations of processor pipeline and caches, which are not

only the critical paths to host program executions, but are also major power consumers in a

computer system. For example, it is estimated tha t the motherboard consumes more than

50% of the notebook power [41, 52]. Even for high-end computer systems, the processor is

the single most power-hungry component and contributes about 25% of total system power

consumption [70].

As stated above, processor is a particularly im portant target for power-aware designs

due to its high power dissipation within a small die size (e.g. Alpha 21264 consumes 90

W atts within 314 m m 2 area). High-performance processors normally consist on-chip caches

to reduce the memory stall time. On-chip caches occupy about 40% of the chip area and

belong to the major power consumers in microprocessors. For instance, on-chip caches

in Alpha 21264 processors consume 15% of the to tal power [32], It is estimated tha t this

portion will further increase to 26% in a future product, the Alpha 21464 processors [78]. For

some low-power processors with simple execution logics, this percentage may be even larger.

As an example, in a low power embedded processor SA-110, caches consume 43% of its total

power [54]. Thus, it is very im portant to reduce the on-chip cache power consumption.

Our first work targets reducing power consumption of set-associative caches. Set-

associative caches are widely used for their ability to reduce cache conflict misses. However,

the conventional implementation of set-associative caches is not energy-efficient because

multiple blocks in a set are accessed for each cache reference but at most one block will

contain the required data. We notice tha t none of existing techniques are optimized for

both cache hits and misses in terms of performance and power consumption. Since cache

hit rates are highly application-dependent, those techniques only perform well for a certain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 6

type of applications. To address this limit, we propose an access mode prediction (AMP)

cache tha t dynamically applies different access modes based on the cache hit/m iss predic­

tion. Our experimental results indicate tha t the AMP cache can achieve the lowest energy

consumption across a wide range of applications with optimal performance.

To boost performance, modern processors can issue multiple instructions in each cycle

and execute instructions in the order different from tha t in the program. To support those

features, the issue logic and execution units are very complicated and contribute a large

percentage of processor power consumption. For example, the issue logic and execution

units consume about 40% of the total processor power in Alpha 21264 [78]. Thus, dynamic

adjusting the processor issue rate can significantly reduce the processor power consump­

tion [6].

Our second work focuses on reducing the processor power consumption based on the

memory access information. When a cache load miss falls to the main memory, it is almost

certain tha t the processor will stall for this memory access thus the full processor issue rate

is not necessary to maintain the performance. We propose a load indicator scheme that

adjusts the processor issue rate according to the existence of main memory accesses. Our

experiments show tha t this simple scheme is very effective in reducing the power consump­

tion for memory-intensive applications. This scheme can be further combined with other

indicators based on the average number of instructions issued in each cycle or the number of

unoccupied registers to reduce power consumption for both compute- and memory-intensive

applications.

The significance, potential impacts, and contributions of this dissertation are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 7

1. Academia and industry R&D has solely targeted the objective of high performance

in both hardware and software designs since the beginning stage of building com­

puter systems. However, the pursuit of high performance without considering energy

consumption will inevitably lead to increased power dissipation and thus will eventu­

ally limit the development and progress of increasingly demanded mobile, portable,

and high-performance systems. This dissertation will address this important issue by

focusing on power considerations for memory-related microarchitecture designs.

2. Since our proposed method adaptively combines the merits of existing low power

caches, it approaches the optimum in terms of both retaining performance and saving

energy. This low power solution for highly associative caches is easy to be deployed

with a low cost.

3. Using “a cache miss” , a common program execution event, as a triggering signal to

slow down the processor issue rate, our schemes are able to accurately and effec­

tively save unnecessary processor power consumption. This design can be easily and

practically deployed in many standard and special processors with a low cost.

The dissertation is organized as follows. In the next chapter, we will present some

technical background about low power designs. Then, we will introduce the evaluation

environment in Chapter 3. In Chapter 4, we will discuss the low power cache designs based

on dynamic power mode switching. In Chapter 5, we will present our work in reducing

pipeline power consumption using memory access information. Finally, we will summarize

our work and discuss future work in Chapter 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

In this chapter, we will briefly discuss the sources of power consumption and introduce some

existing work in reducing the power consumption.

2.1 Sources o f P ow er C on su m p tion

In CMOS circuitry, power are consumed by two different types of activities. Dynamic power

dissipation is caused by the capacitance charging and discharging as signals transit from 0

to 1 and from 1 to 0. The dynamic power dissipation can be expressed as in [52]:

Powerdynamic — — ■ C ■ V ■ A ■ / , (2-1)

where C is the capacitance of switching nodes, V is the supply voltage, A is the activity

factor, and / is the clock frequency.

The capacitance C is a function of wire length and transistor size, which are determined

by the underlying circuit technology. The value of C is also roughly proportional to the

number of transistors in the circuit. The activity factor A is the average transition proba­

bility, which is determined by the circuit implementation and the program behavior. The

value of A is between 0 and 1.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 9

Another type of power dissipation is static power consumption. Different from the

dynamic power dissipation that only arises due to signal transitions, the static power is

consumed in absence of any switching activity. It is caused by leakage current flowing

through every transistor tha t is powered on. The static power consumption can be modeled

at the architectural level as in [15]:

PoweTs t a t i c = N ■ V • k d e s i g n ' I l e a k i (2.2)

where N is the number of transistors, V is the supply voltage, kdesign is an empirically deter­

mined param eter representing the characteristics of a transistor, and 7/eafc is a technology-

related param eter describing the leakage current per transistor.

Currently, the dynamic power dissipation dominates the total chip power consumption.

It accounts for more than 95% of the total power dissipation. The static dissipation only ac­

counts for 2-5% of the total chip power [43]. Thus, like most existing low-power techniques,

our work focuses on reducing the dynamic power consumed by the computer systems. As

transistors become smaller and faster, the percentage of static power dissipation will increase

in the future [15]. There is an increasing number of research projects targeting reducing

the static power consumption. Other sources of power consumption also only account for

a very small percentage of the total chip power, such as the short-circuit power dissipation

due to the finite-slope input signals.

2.2 L ow -pow er T echniques

As stated in Chapter 1, the increasing power consumption has become a severe design

constraint as the computer systems become faster and more complicated. Researchers have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 10

proposed low-power techniques at almost all design levels, ranging from physical level to

software level, to address this issue [41, 92],

2.2.1 Power-saving Techniques at Physical, Circuit and Logic Levels

Equations (2.1) and (2.2) show that the basic principle of low-power design is to reduce the

supply voltage, reduce the capacitance, reduce the switching frequency, reduce the short

circuit currents, and reduce the leakage currents. These goals can only be achieved by the

technology advancements at physical and circuit levels. Other techniques, such as transistor

pin ordering, delay paths balancing, and network restructuring, can produce low-energy gate

and functional unit designs. Those logic optimizations can also effectively reduce the circuit

power consumption.

Traditionally, the major research focus in low-power design area is on techniques at

these design levels. Researchers have proposed many techniques to effectively keep the chip

power consumption at a reasonably low level. However, the fast increase on both speed

and complexity of computer systems has pushed the power dissipation to a point tha t the

low-power techniques at physical, circuit, and logic levels alone can no longer solve all the

problems.

In general, the supply voltage V decreases by 30% for each process generation, and the

wire width also reduces by about 30% (which decreasing the capacitance of each transis­

tor) [15]. Both reductions can help keeping the power consumption down. On the other

hand, the number of transistors inside the chip doubles for each process generation. In

the meantime, the clock frequency of processor also doubles for every 18 months. These

two factors will push the chip power consumption up. As a simple estimation, we can see

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 11

tha t the chip capacitance C will increase to 0.7 x 2 x C in the next process generation, the

supply voltage V will decrease to 0.7V, and the clock rate / will double to 2 /. According

to Equation (2.1), the chip dynamic power dissipation will increase by about 40% for each

process generation, even after the low-power circuit level techniques have been applied.

Thus, the dramatic increases on both complexity and clock frequency of computer systems

have already made it necessary to consider power issues at high design levels.

2.2.2 Power-saving Techniques at A rchitectural Level

In most cases, reducing power consumption and improving performance have conflicting

interests. For instance, from Equation (2.1), we can see tha t slowing down the clock is a

straightforward solution for reducing power dissipation. However, the execution time of a

program is inversely proportional to the clock rate / . Thus, it is crucial to make trade-offs

between performance and power consumption for power-aware designs.

As a natural bridge between software and circuits, the architectural design can effectively

utilize the low-level power-saving techniques according to the program’s execution behavior

and achieve a good balance between performance and power consumption. Since the major

target for high-end computer systems is still high performance, the power-aware designs

for those systems should reduce the power consumption without (or only with a slight)

performance loss.

Normally, the design of a general-purpose computer system is optimized to achieve the

best average performance for a wide range of representative applications. As a consequence,

it is common tha t part of hardware resources are underutilized for a specific application.

Disabling those underutilized resources will not affect the system performance while the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 12

power consumed by those resources can be saved.

A lot of work has been done at the architectural level to reduce the power consumption of

the whole computer system, including the processor, cache, memory, and bus. For example,

pipeline gating [51] reduces the energy consumption of processors with branch prediction

mechanisms by determining when the prediction is likely to be incorrect and preventing

wrong-path instructions from entering the pipelines. The filter cache [47] adds a very small

buffer between the CPU and LI cache to filter references to the LI cache. A hit on the

buffer will consume less energy than an access to the LI cache due to the smaller size of

the buffer. Signal encoding with Gray code [67] or invert coding [42] can reduce the energy

consumption on the bus by reducing the bit switching frequency. Compression is another

type of effective approaches to reducing the energy consumption of processor core, cache,

and bus. The compression can be based on significant bytes, zero, or other frequently used

values [20, 75, 80].

Researchers have also proposed many architectural schemes to reduce the static power

consumption. For instance, the cache decay technique can reduce the cache leakage power

by predicting those blocks which will not be used anymore and placing those blocks in a

low leakage standby mode [43].

We will discuss architectural low-power techniques related to our work in more details

in subsequent chapters.

2.2.3 Pow er-saving Techniques at Software Level

The techniques for energy reduction at software level can be applied at three different layers:

algorithm/application, compiler, and operating systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 13

The most effective approach of energy reduction is algorithm optimization. In this

aspect, reducing energy consumption is identical to reducing computation complexity [92].

As a simple example, if a 30% reduction of the number of instructions to be executed results

in reducing the program’s execution time by 30%, this can be directly converted to 30% of

energy saving if the power consumption of each instruction is a constant.

Some performance-oriented compilation techniques are also beneficial to energy con­

sumption. For example, loop transformations and data transformations can improve the

program locality thus reduce the memory stall time. These techniques can also reduce the

energy consumption because they can reduce the number of memory references which are

more energy hungry than cache accesses. However, some performance-oriented optimization

is not the best from energy consumption point of view. For example, compared with the

performance-oriented instruction re-ordering, the energy-oriented one can reduce the energy

consumption by 10-15% [41]. So it is necessary to perform optimizations based on different

targets.

As the traditional resource manager, operating systems also play an im portant role in

energy saving. Currently, many hardware devices provide multiple power modes where those

modes with lower power dissipation have longer response time. Operating systems can take

advantage of this feature for power management. Dynamic power management achieves

energy-efficient computation by selectively turning off system components when they are

idle or partially unexploited [9]. For example, spinning down the disk when its inactive

time passes a threshold is a commonly used policy for energy reduction. ACPI (Advanced

Configuration and Power Interface) is an open industry specification tha t defines the manner

in which the OS, motherboard hardware, and peripheral devices talk to each other regarding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 14

power usage [40].

Although software level techniques are effective in reducing power dissipation, their ef­

fects only restrict to a specific application (algorithm or compiler techniques) or a specific

execution environment (OS power management). To deliver a product (processor or com­

puter system) with targeted power consumption, it must still rely on power-aware designs

and optimizations at architectural level.

In this dissertation, we will present two memory-related architectural designs to reduce

the system power consumption.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Evaluation Environment

3.1 E valu ation M etrics

3.1.1 Perform ance M etrics

A direct indicator of system performance is the execution time or delay of a group of

representative programs on the target computer system. For the purpose of computer ar­

chitecture research, two related metrics, C P I (cycles per instruction) and its reciprocal

I P C (instructions per cycle), provide more insightful informations about the system per­

formance. The execution time or delay (D) of a program can be expressed as:

D = I ■ C P I ■ (1//), (3.1)

"■ D = ! n h ' (32)

where I is the number of instructions executed, and / is the clock rate. D is measured in

unit of Second.

The value of C P I is determined by two factors. The first one is the program’s behavior,

such as the inherent instruction-level parallelism (ILP) and the program locality. The

C P I also depends on the underlying architecture, for example, the instruction set, the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION ENVIRONMENT 16

processor issue rate, and the cache size. Analyzing the change and breakdown of the C P I

or I P C values can provide many insightful informations on architectural designs, such as

the performance bottleneck and the effectiveness of a new scheme.

3.1.2 Power and Energy M etrics

Power consumption of a system is the rate at which energy is drawn over time. It is

measured in unit of Watt. The power consumption directly determines the system operation

temperature. Thus, it is essential to guarantee tha t the power consumption will never be

so high to drive the system reaching a dangerous temperature level [36]. Lower power

dissipation will alleviate some burdens on packaging and cooling systems, and make the

system more reliable.

Energy consumption is measured in unit of Joule. Its relationship with power dissipation

is expressed as:

E — P ■ D, (3.3)

where E and P are energy and power consumptions, respectively. Lower energy consump­

tion means more useful work can be done for a given energy budget. For portable systems,

reducing energy consumption means increasing the battery lifetime.

According to Equation (3.3), it seems to be straightforward tha t reducing either power

consumption P or execution delay D can effectively reduce the energy consumption. How­

ever, in most cases, reducing power consumption comes at the cost of degrading performance

(i.e. enlarging the delay). For example, slowing down the clock rate can effectively reduce

the power dissipation, since P cc f (Equation 2.1). On the other hand, slowing down the

clock rate will also enlarge the execution time, since D oc (1 //) (Equation 3.2). Thus,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION ENVIRONMENT 17

simply slowing down the clock rate cannot save energy. Low-power designs need to also

consider their performance impact.

3.1.3 Energy-efficiency M etrics

In some cases, a low-power technique is also beneficial to performance or at least without

negative effects on performance. For example, loop optimization not only reduces the pro­

gram’s execution time, but also reduces its energy consumption on memory systems. In

these cases, using energy or power consumption metric is sufficient to evaluate the effec­

tiveness of the technique.

However, as we discussed above, in most cases, a design optimized to performance

causes unnecessary energy consumption. As an example, aggressively allowing multiple

instructions executing on different branch paths can improve the performance of superscalar

processors. However, the energy consumed by instructions executed on wrong-paths is

wasted. Thus, designers must make trade-offs on performance and energy for their target

systems. A new metric is needed to evaluate this trade-off.

The energy-delay product (E D P) is widely adopted by researchers to evaluate the

energy-efficiency of their designs [12, 31, 39, 47, 48, 67, 92].

E D P = E ■ D. (3.4)

In general, lower energy consumption corresponds to longer execution time. The target of

energy-efficient designs is to find the optimal design point where the energy-delay product

is minimized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION ENVIRONMENT 18

Authors in [13, 52] argue tha t it is more appropriate to apply different metrics for

different classes of systems. For low-power portable systems, the battery life limits the

system operations. Users are more tolerant for slow response time on those systems. Thus,

energy is the primary consideration there. This makes the power-delay product (P D P),

which is identical to energy (E), be a natural metric for such kind of systems. On the

other hand, for the highest-performance server-class systems, the program delay is more

im portant than the energy consumption. As a reflection, it may be more suitable to over­

weight the delay part. E D 2P (E ■ D 2) metrics are more appropriate for the highest-end

systems. E D P metrics cannot be applied across diverse classes of systems for comparing

system efficiency. However, E D P metrics are still useful for a given class of systems [52].

In our study, we will use the E D P metric to evaluate the power-performance trade-offs,

since our analysis is within a single class of systems, the general-purpose systems.

3.2 P erform an ce E valu ation Tools

The most straightforward and convincing way to evaluate the performance of a target

system is direct measurement. For example, to promote their products, computer vendors

normally report the SPEC results of the products by running the standard benchmarks

provided by Standard Performance Evaluation Corporation [66]. In order to provide detailed

information on system performance, today’s high-performance processors provide hardware

counters tha t can monitor the number of certain events happening during a program’s

execution. For instance, users can use hardware counters to check the cache miss rate of a

given program and identify the performance bottleneck.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION ENVIRONMENT 19

Although the direct measurement is accurate, several factors limit its usage in the ar­

chitecture research. The hardware counters can only monitor a few events at a time. More

importantly, the direct measurement can only be performed on existing systems. Thus, it is

not suitable for evaluating new ideas with variants of architecture parameters. Simulation

and modeling are more suitable on tha t situation.

Normally, modeling requires a relatively small amount of computation resources and

takes a short time. However, modern computer systems are very complicated. For instance,

the processor can issue multiple instructions in each cycle; instructions can be executed

speculatively; and memory access latency is not a constant. All these factors make it very

difficult if not impossible to develop an accurate and attractable model for real architectural

study.

Simulation has been extensively used for the computer architecture research because

of the high cost on building hardware prototypes and also because of its accuracy in es­

timating performance of complicated computer systems. SimpleScalar tool set [14] is the

most commonly used simulator for evaluating new ideas for uniprocessor systems in re­

cent years. It is an execution-driven simulator that generates simulation results on the

fly and produces comprehensive statistics for the program execution. The most advanced

simulator in the tool set, sim-outorder, emulates a superscalar processor with five-stage

pipelines1 and multi-level memory systems. It supports several advanced techniques such

as multi-issue, out-of-order execution, speculative execution, and non-blocking load/store.

Currently, SimpleScalar supports two instruction sets. The PISA version supports the Sim­

pleScalar Instruction Set Architecture which is a close derivative of the MIPS instruction

1 The five stages of the pipeline are fetch, dispatch, execution, writeback, and commit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION ENVIRONMENT 20

set. The Alpha version supports Alpha ISA and can directly run binary code compiled on

real Alpha systems.

We use the Alpha version of sim-outorder simulator in our experiments and insert some

new functions to the simulator for our study. For example, we have implemented the

multicolumn-based way-prediction on the cache access function for our low-power cache

study.

SimpleScalar only emulates the behavior of the processor. Compared with those sim­

ulators (e.g. SimOS [60]) tha t emulate the behavior of the whole system, including the

processor, memory, disks, and operating systems, SimpleScalar cannot capture the pro­

gram’s execution behavior due to context switches or system calls. However, compared

with those whole-system simulators, it provides more detailed and flexible simulations on

the processor, which is the target in our study. In addition, the benchmark we have used

in our study, SPEC 2000 [66], mainly consists scientific applications, whose execution be­

havior is much less dependent on operating systems than commercial workloads. In order

to characterize the execution behavior of commercial workloads, we need to use the whole-

system simulators [84, 27]. However, since the major concern of this dissertation focuses on

microarchitecture, using a detailed processor simulator is more suitable. In addition, our

experimental results will not be favored due to those behaviors tha t cannot be captured

by the simulator. For example, the variants of cache miss rate would be larger if context

switches are performed. This will make our low-power cache designs save more energy than

tha t under the single process environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION ENVIRONMENT 21

3 .3 E n ergy C on su m p tion E valu ation Tools

Energy consumption can be analyzed by either simulation-based or probabilistic-based tech­

niques [41]. Simulation-based techniques accurately monitor transitions at each cycle and

use lower level analysis results to construct higher level models. In contrast, probabilistic-

based techniques view signals as random transitions between 0 and 1 with certain statistical

characteristics. Normally, simulation-based techniques are more accurate than probabilistic-

based ones but take much more computation time.

Until recently, power estimation tools are only available at low design levels, such as

Hspice [5] and PowerMill [68]. Although these circuit level simulations can accurately

estimate dynamic and static power dissipation within a few percentage, they are not very

useful for making architectural decisions [12]. Their simulation is too slow. Thus, they are

only practical for circuits with relatively small number of transistors. More importantly,

these tools need complete circuit designs as input which are not available at architectural

level design stage.

Researchers have been making efforts to provide energy estimation tools at the archi­

tecture level. As a regular structure, cache has been a good candidate for energy analy­

sis [67, 42, 46, 58]. For example, authors in [42] propose an analytical energy dissipation

model for conventional set-associative caches and use it to evaluate several low power tech­

niques. CACTI [79] is an analytical model for estimating the access and cycle time of

direct-mapped and set-associative caches. It takes the cache size, block size, associativity,

and process parameters as input. It has been extended to CACTI 2.0 [58] tha t includes

both timing and power models for on-chip caches. We use CACTI 2.0 to estimate the power

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION ENVIRONMENT 22

consumption of different implementations of set-associative caches in our study.

Only until recently, energy consumption simulations for the integrated system are pub­

licly available [12, 74], W attch [12] integrates parameterized power models of common struc­

tures in modern superscalar processors into the SimpleScalar architectural simulator [14].

The cycle-level performance simulator generates cycle-by-cycle hardware access counts for

each basic module and inputs these counts to the parameterized power models to estimate

the power dissipation of the whole processor and each component. SimplePower [74] also

builds its infrastructure on the SimpleScalar simulator. However, it uses a combination of

analytical and transition-sensitive models for energy estimation. For regular structures such

as caches, the analytical models are applied. For other components such as functional units

whose energy consumptions are dependent on the switching activity and capacitance, the

transition-sensitive models are applied. The simulator contains switch capacitance tables

for functional units for each input transition obtained from lower level simulations. Table

lookups are done based on the input bits and output bits for the estimated components.

W attch provides fully parameterizable power model for the processor, while SimplePower

only provides parameterized model for caches. The currently publicly available version of

SimplePower only models energy consumption for an in-order 5-stage pipelined data path

with perfect caches running only integer instructions.

3 .4 W orkloads

SPEC CPU2000 is an industry-standardized benchmark suite tha t contains compute inten­

sive benchmarks exercising a wide range of hardware [66]. It is extensively used to evaluate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION ENVIRONMENT 23

the performance of the processor, memory, and compiler.

The SPEC CPU2000 suite consists of two groups of benchmarks, the integer one

(CINT2000) and the floating point one (CFP2000). Table 3.1 describes all the programs

briefly [66].

We use SPEC CPU2000 as workload in our study. The reference input data files are

used in the experiments. We use the precompiled Alpha version of SPEC2000 binaries [77]

and run it under SimpleScalar simulator. To eliminate the start-up effects, we fast-forward

the first four billion instructions, then collect detailed statistics on the next one billion

instructions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION ENVIRONMENT

Category Program Description
CINT2000 164.gzip Compression

175.vpr FPGA Circuit Placement and Routing
176.gcc C Programming Language Compiler
181.mcf Combinatorial Optimization
186. crafty Game Playing: Chess
197.parser Word Processing
252.eon Computer Visualization
253.perlbmk PERL Programming Language
254.gap Group Theory, Interpreter
255.vortex Object-oriented Database
256.bzip2 Compression
300.twolf Place and Route Simulator

CFP2000 168.wupwise Physics / Quantum Chromodynamics
171.swim Shallow Water Modeling
172.mgrid Multi-grid Solver: 3D Potential Field
173.applu Parabolic / Elliptic Partial Differential Equations
177.mesa 3-D Graphics Library
178.galgel Computational Fluid Dynamics
179.art Image Recognition / Neural Networks
183.equake Seismic Wave Propagation Simulation
187.facerec Image Processing: Face Recognition
188.ammp Computational Chemistry
189.1ucas Number Theory / Primality Testing
191.fma3d Finite-element Crash Simulation
200.sixtrack High Energy Nuclear Physics Accelerator Design
301.apsi Meteorology: Pollutant Distribution

Table 3.1: D escriptions of SPEC2000 benchmarks [66].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Access M ode Predictions for

Low-power Cache Design

4.1 S ign ificance o f Low -pow er C ache D esign

As we have stated in Chapter 1, the successful pursuit of high performance on computer

systems has produced a negative byproduct of high power dissipation. Circuit-level tech­

niques alone can no longer keep the power dissipation under the reasonable level. Increasing

efforts have been made on reducing power dissipation via architectural approaches [13]. One

research focus is on reducing the power consumed by on-chip caches, which are among the

major power consumers in microprocessors.

Today’s computer systems normally consist multi-level memory hierarchy. The perfor­

mance of caches is critical to many applications’ performance. To achieve high performance,

the size of caches is getting larger, and the associativity of caches is also increasing. In

addition, many processors embrace both level one and level two caches on chip. As a conse­

quence, on-chip caches occupy about 40% of chip area and consume a large portion of chip

power. For instance, on-chip caches in Alpha 21264 processors consume 15% of the total

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 26

Access the set

 i___
Access all the a
taps and n data

I
(a) Traditional n-way

Cache

F igure 4.1: T he access patterns tor (̂ aj a conventional n-way set-associative cacne; ptj a pnased
n-way set-associative cache; and (c) a way-prediction n-way set-associative cache.

power [32]. It is estimated tha t this portion will further increase to 26% in a future prod­

uct, the Alpha 21464 processors [78]. This percentage can be even larger in some low power

processors. For example, caches consume 43% of the total power of embedded processor

SA-110 [54],

Set-associative cache is commonly used in modern computer systems for its ability to

reduce cache conflict misses. However, a conventional set-associative cache implementation

is not power-efficient by its nature. As Figure 4.1-(a) shows, a conventional n-way set-

associative cache probes all the n blocks (both tag and data portions) in a set for each

cache reference. However, at most block will contain the required data. The percentage of

wasted energy will increase as the cache associativity n increases. We have already seen

high-associativity caches in some commercial processors. For example, Intel Pentium 4

processor exploits four-way LI caches and an eight-way L2 cache. Thus, it is very im portant

Access the set

1

Access the set

Access all the
ntagsI

Access 1 data

(b) Phased n-way Cache

Yes

Prediction
correct

Way
prediction

Access the predicted
way (1 tag and 1 data)

Access all the
remaining ways (n-1
tags and n-1 data)

(c) Way-prediction n-way Cache

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE

to reduce the power consumption of set-associative caches.

27

4.2 R e la ted W ork

An effective approach to reducing the power consumption of a set-associative cache is to

reduce the number of memory cells involved for an access. One scheme is to divide each

data RAM into several sub-banks, and to only activate the words at the required offset

from all cache ways [67]. Another alternative is to selectively disable a subset of cache ways

during execution periods with modest cache activity [3]. Other examples of techniques to

reduce cache energy consumption include the one used in SA-100 processor which divides

each of the 32-way instruction and data caches into 16 fully-associative caches and enables

only one-eighth of the cache for each access [54]. The filter cache [47] adds a very small

buffer between the CPU and LI cache to filter references to the LI cache. A hit on the

buffer will consume less energy than an access to the cache due to the much smaller size

of the buffer. The tag comparison elimination technique keeps links within the instruction

cache and allows instruction fetch to bypass the tag array [50, 85]. This only works for

instruction caches whose access patterns are regular and predictable.

Two representative techniques in reducing the power consumption of set-associative

caches are the phased cache and way-prediction cache [39]. The phased cache [11, 34] first

compares all the tags with the accessing address, then probes the desired data way only.

The way-prediction technique first speculatively selects a way to access before making a

normal cache access. Combining these two techniques, the predictive phased cache [37] first

probes all the tag sub-arrays and the predicted data sub-array. This approach reduces the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 28

energy consumption of non-first hits (cache hits whose locations are mispredicted) in the

way-prediction cache at the price of increasing energy consumption for both first hits (cache

hits whose locations are correctly predicted) and cache misses.

4.3 C om p arisons b etw een P h a sed and W ay-pred iction

C aches

Figure 4.1-(b) and (c) illustrate the access patterns for phased and way-prediction n-way

set-associative caches, respectively. Compared with the conventional implementation, the

phased cache only probes one data sub-array instead of n data sub-arrays1. However, the

sequential accesses of tag and data will increase the cache access latency. As shown in

Figure 4.2, the tag path without output takes about 1.15 ns, and the data path alone

without output takes about 0.90 ns on a 16-KB, 4-way set associative cache with block size

of 32-byte2. Under the conventional implementation, the tag and the data are accessed in

parallel. Each cache access takes about 1.32 ns. In contrast, if the tag and the data are

accessed one by one, the access latency will be almost doubled to 2.22 ns. Thus, although

the phased implementation can reduce the power consumption of set-associative caches, it

will increase the cache access latency and harm the overall system performance.

The way-prediction cache first accesses the tag and data sub-arrays of the predicted

way. For instance, the MRU-based way-prediction cache always accesses the most recently

accessed block in a set first. If the prediction is not correct, it then probes the rest of tag

and data sub-arrays simultaneously. An access in phased cache consumes more energy and

1 Each way comprises a tag sub-array and a data sub-array.
2The values are estimated using the CACTI model [58].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 29

Cache Access Latency
(16KB, 4-way, 32B/block)

uaea

■ Output

■ Selection

■ Multiplexor

□ Compare

□ Sense amplifier

■ Word/bit line

■ Decode

Datapath Tag path Serial access Parallel
access

Figure 4.2: Cache access latencies o f the tag path, data path, sequential access, and parallel access
on a 16-KB, 4-way set associative cache w ith block size of 32-byte. The values are estim ated using
th e CACTI m odel [58].

has longer latency than a correctly predicted access in way-prediction cache, but consumes

less energy than a mispredicted access. When the prediction accuracy is high, the way-

prediction cache is more energy-efficient than the phased cache [39].

The way-prediction hit rate is bounded by the cache hit rate which is highly application-

dependent. Figure 4.3 shows the hit rates of all the SPEC2000 benchmark programs on a

64 KBytes data cache and a 4 MBytes L2 cache3. Most applications have LI data cache

hit rates as high as 95% with a few exceptions, such as art whose hit rate is only 65%.

The distribution of L2 cache hit rates is even more diverse than tha t of LI cache hit rates.

Fourteen of the twenty-six programs have L2 cache hit rates higher than 95%, while ten

3We will discuss the experimental environment in details at Section 4.7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 30

100%

60%

50%

♦ dLl hit rate
uL2 hit rate

F igure 4.3: T he hit rates for SPE C 2000 benchmarks on an eight-way 64 K B ytes data cache w ith
block size of 64 B ytes and an eight-w ay 4 M B ytes unified L2 cache w ith block size of 128 B ytes.

programs have L2 cache hit rates below 80%.

The way-prediction cache will consume less energy on applications with good locality,

while the phased cache will consume less energy on applications with poor locality. Thus,

neither way-prediction cache nor phased cache can perform consistently well in power saving

across all these applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AMP CACHE 31

4 .4 A M P C aches

4.4.1 Strategy

The energy consumption of a cache access can be minimized if a cache hit is handled by

the way-prediction mode, while a cache miss is handled by the phased mode. Motivated

by this relationship between a cache access mode and its energy consumption, and by

the application-dependent cache hit patterns, we propose to use an access mode prediction

technique based on cache hit/m iss prediction for low power cache design [89]. It combines

the energy-efficient merits of both phased and way-prediction cache structures. In the case

of predicted cache hits, the way-prediction scheme is applied to determine the desired way

and to probe tha t way only. In the case of predicted misses, the phased scheme is applied

to access all the tags first, then probe the required way only. We call this AM P cache.

Figure 4.4 presents the access sequence controlled by access mode predictions. Upon a

reference, the access mode predictor makes a decision based on the cache access history. If

the predictor indicates tha t the way-prediction mode should be applied, the following access

sequence will be handled by the way-prediction scheme. Otherwise, it will be handled by

the phased access scheme.

The two most im portant components in the AMP cache design are the access mode

predictor and the way-predictor.

• Access Mode Predictor

A good access mode predictor is essential to select a suitable access technique for

each cache reference. Since we target at low power cache design, the access mode

predictor should only add little overhead on both latency and energy consumption.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 32

Access the set

Yes

Yes

P red iction ''\N o
correct ?

Use way
prediction

Way
prediction

Access 1 data

Access Mode
Prediction

Access all the
n tags

Access the predicted
way (1 tag and 1 d a ta)

Access all the
remaining ways (n-1

tags and n-1 d a ta)

Figure 4.4: The access pattern of n-way AM P cache.

Motivated by existing branch prediction techniques, we derive a simple predictor that

uses a global access history register and a global pattern history table obtaining high

prediction accuracy.

• Way-predictor

A good way-predictor can minimize the energy consumption of cache hits. Previous

studies have shown tha t MRU-based way-prediction can effectively reduce the energy

consumption of set-associative caches. However, we find tha t as the cache associativity

increases, the effectiveness of MRU-based way-prediction in energy saving continues

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 33

to decrease. To address this problem, we study several way-prediction policies and

find th a t the multicolumn-based way-prediction is a nearly optimal technique. It is

highly effective for energy reduction of high associativity caches. We also propose a

power-efficient variant of multicolumn cache to eliminate the swapping operation in

the original design.

4.4.2 Power Consum ption

In this section, we will use a simplified timing and energy model to quantify the observation

tha t we have discussed above. The latency and energy consumption of different types

of caches used in our experiments are estimated based on the CACTI timing and power

consumption model [58].

Let E tag and E data be the energy consumed by a tag sub-array and a data sub-array

upon a reference, respectively. For a correctly predicted hit in the way-prediction cache, the

energy consumed is Etag + Edata> compared with n ■ Etag + Edata in the phased cache, where

n is the associativity of the cache. On the other hand, a miss in the way-prediction cache

will consume (n + 1) • E tag + (n + 1) • E data. in comparison with (n + 1) • E tag + E data in the

phased cache. Regarding the access latency, a correctly predicted hit in the way-prediction

cache takes one time unit, compared with two time units in the phased cache. Our objective

is to pursue the lowest possible energy consumption and latency for both cache hits and

misses.

Let H , M , and Wf, be the numbers of cache hits, misses, and write-backs, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 34

A phased cache, a way-prediction cache, and an AMP cache consume energy as follows:

Ephased — H ■ (n • Etag + Edata) + M ■ ((« + 1) • Efag + Edata) (4 -1)

+ W & • E d a ta t

Ewayjprediction = H ■ (Etag A Edata) A M • ((ti 1) • Etag A Edata) (4*2)

A M r ■ Tl ■ Edata A Wfc • Edata ~l~ ^wjmispredi

E a MP — H{Etag A Edata) A M((n A 4)Etag A Edata) A Wb ■ Edata (4-3)

"I" A Ajnispredi

where Aw_miSpred and ^ A.mispred are the energy overheads of mispredictions in the way-

prediction cache and the AMP cache, respectively. M r is the number of read misses.

For an AMP cache with a perfect access mode prediction and a prefect way-prediction, its

energy consumption is the lower bound of energy consumption for the set-associative cache.

The misprediction overhead is determined by both the accuracy of access mode predictor

and tha t of way-predictor. We will discuss these two predictors in following sections.

4.5 A ccess M o d e P red ictors

4.5.1 D esigns

Authors in [82] propose to use cache hit/m iss prediction for improving load instruction

scheduling. In order to reduce the memory bandwidth requirement, authors in [72] use

miss prediction to dynamically mark which load instruction is cacheable/non-allocatable.

We want to apply cache hit/m iss prediction to choose way-prediction or phased access for

energy savings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 35

This is different from most work in predicting cache behavior which targets prefetching

or reducing cache miss rate. For example, the next cache line and set predictor is used for

instruction fetch prediction and branch prediction [19]. Prediction caches use a history of

recent cache misses to predict whether a replaced cache line will be accessed in the near

future thus should be put into the victim cache to reduce the overall cache miss rate [10].

The access mode predictor shares a similar objective with the branch predictor. Thus,

we derive the access mode predictor from existing branch predictors [65, 81, 55, 53]. The

intuition behind the access mode predictor is tha t cache misses are clustered and program

behavior is repetitive. Technically, nearly all branch prediction techniques may be adapted.

However, since we target at reducing cache power consumption, the access mode predictor

must be simple. Thus we only present variants with low resource requirements here.

Each cache (instruction, data, or L2) has its own access mode predictor, which uses its

reference address or hit/m iss history as the index to the prediction table. We have studied

following prediction variants.

• Saturating counter.

This prediction has the simplest implementation. It is based on the two-bit saturating

up/down counter [65]. Each cache has its own prediction table. The number of entries

in the table equals the number of cache sets. Each entry is a two-bit saturating

counter. When a cache reference arrives, its set index determines which counter

should be accessed. If the most significant bit of the counter is “1” , the way-prediction

scheme will be applied. Otherwise, the phased scheme will be applied. The counter is

incremented for each way-prediction hit and is decremented for each way-prediction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 36

miss or cache miss.

• Two-level adaptive predictor.

Another alternative is derived from the two-level adaptive branch predictor [81]. We

implement both GAg and PAg versions. In the implementation derived from GAg

version, a global &-bit access history register records the results of the most recent k

accesses. If the access is a way-prediction hit, a “1” is recorded; otherwise, a “0” is

recorded. The global access history register is the index to a global pattern history

table which contains 2k entries. Each entry is a two-bit saturating counter. In the

implementation based on PAg version, each set has its own access history register.

A single pattern history table is indexed by all the access history registers. In our

experiments, the number of entries in the global pattern history table for both GAg

and PAg predictors is set to the number of sets in the corresponding cache.

• (M,N) correlation predictor.

This is based on the scheme proposed in [55]. An M -bit shift register stores the

hit/m iss history for the most recent M accesses. Each set has 2M entries which

are indexed by the M -bit register. Each entry is an TV-bit counter. We apply (2,2)

predictor in the experiments.

• gshare predictor.

The gshare predictor is originally proposed in [53]. The global pattern history table is

indexed by the exclusive OR of the global access history with the set index of current

reference. The number of entries in the table is equal to the number of sets in the

cache in our experiments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 4. AM P CACHE

4.5.2 Accuracy

37

Access Mode Predictor Size (bits) Misprediction Rate (%)
iLl dLl uL2 iLl dLl uL2

Saturating Counter 256 256 8K 0.11 5.68 14.44
GAg -256 -256 -8 K 0.12 4.97 5.51
PAg - I K - I K -56K 0.13 3.94 3.83
(2, 2) - I K - I K -32K 0.11 5.27 13.43
gshare -256 -256 —8K 0.12 6.01 15.57

Table 4.1: Comparisons of sizes and m isprediction rates of different access m ode predictors. The
separate 64 K B instruction cache (iL l) and th e data cache (d L l) are 8-way w ith block size of 64
B. The unified L2 cache (uL2) is 8-way w ith block size o f 128 B. The m isprediction rates are the
average over all the SPEC 2000 programs.

Table 4.1 compares the sizes and misprediction rates of five different policies tha t are

discussed above on the system with 8-way 64 KB instruction/data caches and an 8-way 4

MB L2 cache. In our experiments, for saturating counter, a 128-entry 2-bit (32-byte) table

is used for instruction and data caches, and a 4096-entry 2-bit (1-KB) table is used for L2

caches. For GAg and gshare, both the instruction cache and the data cache have a 32-byte

global pattern history table and a 7-bit global access history register; the L2 cache has a 1

KB global pattern history table and a 12-bit global access history register. For PAg, both

instruction and data caches have a 32-byte global pattern history table and a 112-byte local

access history register table; the L2 cache has a 1-KB global pattern history table and a

6144-byte local access history register table. For (2,2), both instruction and data caches

have a 128-byte table and a 2-bit register; the L2 cache has a 4-KB table and a 2-bit register.

The values of misprediction rates presented are the average over all the twenty-six

SPEC2000 programs. The two-level adaptive predictor PAg obtains the lowest mispre­

diction rates which are below 4% on instruction, data, and L2 caches. However, it also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 38

occupies more additional area than other predictors. The GAg predictor gains the second

lowest misprediction rates which are below 6% on both LI and L2 caches and requires the

smallest additional area.

4.5.3 Overhead

We decide to select the GAg predictor in the remaining of our experiments for several

reasons. The prediction accuracy of GAg is only slightly lower than tha t of PAg. However,

the GAg predictor requires much less additional space for recording access history than the

PAg predictor. For GAg predictor, the 8-way 64 KB instruction and data caches only need

a 32-byte global pattern history table and a 7-bit global access history register each; the 4

MB L2 cache only requires a 1 KB global pattern history table and a 12-bit global access

history register. Regarding the area, the overhead of GAg predictors for instruction and

data caches is only 0.05%, and is only 0.02% for L2 cache.

More importantly, unlike other predictors, the GAg predictor does not require the ad­

dress of the next cache reference to perform the mode prediction. Thus, the access mode can

be selected before the next cache reference arrives. Since the access time of the small predic­

tion table is less than the access time of the cache, there is no timing overhead introduced

by the GAg predictor. Regarding the energy consumption, our simulation results indicate

tha t the overall overhead on instruction, data, and L2 caches by using mode predictors is

under 0.8% for all the programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 39

4.6 M u ltico lu m n -b ased W ay-pred iction

In the previous section, we discuss the selection of access mode predictors. The effectiveness

of the AMP cache on energy reduction depends not only on the accuracy of access mode

predictor, but also on the underlying way-prediction technique. In this section, we will

introduce a way-prediction technique based on multicolumn caches [83].

Way-prediction caches were originally proposed for reducing the average access latency of

set associative caches [22, 2, 44, 1, 18, 83]. Some prediction strategies are used to predict the

way containing the desired data and read from tha t way first. Hash-rehash [2], MRU [22, 44],

column-associative [1], predictive sequential associative [18], and multicolumn [83] caches

are a few such examples.

Way-prediction techniques can also be beneficial for power saving in set-associative

caches [39]. If the way-prediction is correct, which is called a first-hit in this paper, only

the desired way is probed. In this case, the power consumption is close to tha t in a direct-

mapped cache. However, if the prediction is wrong, the way-prediction cache will consume

more energy than a conventional implementation because some additional operations are

performed to maintain the prediction mechanism. Thus, the accuracy of the prediction

technique, measured by the first-hit rate, is crucial to the reduction of power consumption.

4.6.1 Lim itation of M RU -based W ay-prediction

Authors in [39] propose to use the MRU way-prediction technique to reduce the power

consumption for set-associative caches. Authors in [46] show tha t the hash-rehash, the

column-associative, and the MRU way-prediction techniques effectively reduce the power

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 40

dissipation of two-way set-associative caches. Previous studies have shown tha t an MRU-

based way-prediction cache is more power-efficient compared with other techniques [39, 46].

The MRU cache maintains an MRU list tha t marks the location of the most recently

used (or accessed) block for each set. For any reference mapping into the set, the search

always begins from the MRU location. This search order is effective for both level one

and level two caches because of the temporal locality in reference streams [44]. For low-

associativity caches, such as two-way or four-way caches, the MRU technique works well in

predicting the desired way. However, as the cache associativity further increases, the MRU

structure may potentially decrease the first-hit rate.

Figure 4.5 shows how an MRU cache searches the locations for two coming references on

a four-way associative cache which has four sets. For clarity, only the tag and set portions

of a reference are presented here. Thus the first reference (0001013 maps to set “01” with

tag “0001” .

Upon the first reference 000101. the MRU cache begins its search from way 1 according

to the MRU information of set 1 (Figure 4.5). The predicted way does not contain the

desired data, then the MRU cache probes all the remaining ways as the second attem pt. In

this example, the first reference is a cache miss. Thus, the least recently used block at way

2 is replaced and the corresponding MRU information is updated to point to way 2. When

the second reference to the same set, 101101. arrives, the search still begins from the MRU

location, which is way 2 now. This is not a first hit. The MRU cache then probes all the

remaining ways and finds the desired block at way 3. The MRU information is updated

again to reflect the fact tha t the MRU location is way 3 now. In this example, neither of

the two references is a first hit on the MRU cache.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 41

reference 1
f 000101 1

(^updated^)' replaced

reference 2
[101101 1 set MRU info way 0

—/ ? " d0000

S

updated

set MRU in fo / way 0

way 1 way 2 way 3

1101 0001 (Isl —/ T d
1011

way 1

0000 1101

way 2 way 3

0001 1011

F igure 4 .5: W ay-prediction strategy for MRU cache.

In an MRU cache, the number of search entries is equivalent to the number of sets. As

the cache associativity doubles for a fixed cache size and a fixed block size, the number of

search entries in the MRU cache is halved. This means the number of entries available for

way-prediction is reduced by half. The interference on the MRU information will be worsen.

Normally, this causes the way-prediction accuracy to decrease. As shown in Figure 4.6, our

experiments indicate tha t for the SPECint2000 program 172. mgrid, as the associativity of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AMP CACHE 42

First Hit Rate (Program 172.mgrid)

120%

100% -

60% -

S overall
MRU first-hit
Multicolumn first-hit

40%

20%

0% -I

16-way4-way 8-way

Cache Associativity

Figure 4.6: Overall cache hit rate and first hit rate of a 64 KB M RU data cache for program
172.mgrid.

64 KB LI MRU data cache increases from four to eight, then to sixteen, the first hit rate of

the cache drops from 91.8% to 81.3%, then to 59.4%, respectively. This trend is consistent

with the results presented in [22]. In addition, the first hit rate of high-associativity MRU

cache falls far behind the overall cache hit rate. This indicates tha t the MRU-based way-

prediction is not optimal in power-saving.

4.6.2 M ulticolum n Cache

The multicolumn cache [83] has addressed the limitation of MRU cache discussed above. The

authors observe tha t the importance of a cache block in a set may be different to different

references mapping into the same set. To consider the differences, The authors define a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 43

concept of major location as the location on which a reference can be directly mapped4,

and use the major location as the guidance for the access sequence. The multicolumn cache

maps a block as in a direct-mapped cache but replaces a block as in a set-associative cache.

As the associativity increases, the first-hit rate does not change much in the multicolumn

cache. The number of search entries in the multicolumn cache equals the product of the

number of sets and the cache associativity. Thus, as the associativity increases for a fixed

cache size and a fixed block size, the number of search entries in the multicolumn cache

remains the same. Using the same program 172.mgrid as example, as the associativity of

a 64 KB LI multicolumn data cache increases from four to eight, then to sixteen, the first-

hit rate keeps the same (92.7%, 92.7%, and 92.7%, respectively, as shown in Figure 4.6).

In addition, the first hit rate of multicolumn cache is very close to the overall cache hit

rate. This indicates tha t the multicolumn is a nearly optimal way-prediction policy, since

the cache hit rate is the upper bound of first hit rate tha t can be achieved by any way-

prediction policy.

Figure 4.7 shows the search sequence in a multicolumn cache for the same reference

stream in Section 4.6.1. For the first reference 000101. its tag is “0001” . For an n-way set

associative cache, the major location of a reference is determined by the low order logn

bits of its tag. Thus the major location of the first reference is way 1. The search begins

here. The predicted way does not contain the desired block, then all the remaining ways

are probed as the second attem pt. Since this reference is a cache miss, the LRU block at

way 2 is replaced. However, the new block (000101) and the block already residing at way 1

4For an n -way set associative cache, the major location of a reference is determined by the low order
log n bits of its tag.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 44

reference 1
[000101 1

major
location 01

rep laced ^)

way 1 X way 2

reference 2
(101101) major

location 11

0000 0001 1101 1U i 1 M s t

F igure 4.7: W ay-prediction strategies for m ulticolum n cache.

(110101) have the same major location “01” . The design of multicolumn cache ensures that

the MRU block is always at its major location. In this example, the new block (000101) is

placed at its major location way 1, and the block originally at way 1 (110101) is swapped

to way 2. For the second reference (101101). its major location is way 3. Thus the tag and

data portion of way 3 are probed as the first attem pt. This is a first hit. In comparison,

the second reference is a non-first hit in the MRU implementation due to the interference

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 45

reference 1
[000101 I

major
location 01

MRU info/
major major /najor majpr

set loc 0 loc ‘ loc 2 Job 3

0
1 00 ~oT 10 11
2
3 s _____

---- 1 — V - 1 ---- 1

way 0 \w ay 1 / way 2 way 3
loc 2 .Job 3 jag data tag \ data tag data tag data

0000
XzUT*1101 f 1st

updated

major major/major major

1011
—

replaced
way 1 " r way 2 way 3

0000 1101 0001 1011

reference 2
[101101] major

location 11

major major major maj
way 2 \

0000

F igure 4.8: W ay-prediction strategy for m ulticolum n cache w ithout swapping.

on MRU information.

4.6.3 Power Considerations for M ulticolum n Cache

In the original design of multicolumn caches, a swapping mechanism is applied to ensure

tha t the MRU block always resides at its major location after a reference (though other

data blocks may replace it later). From power consumption point of view, swapping is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 46

expensive operation. Two cache ways are involved in each swapping operation. The power

consumption approximately equals the cost of two accesses to a single way.

In order to eliminate the swapping operation, we propose a power-efficient variation for

the multicolumn cache. An index entry is maintained for each major location in a set to

record its MRU information.

Figure 4.8 shows the implementations of multicolumn caches without swapping. We still

use the same access sequence used in Section 4.6.1 as the example. For the first reference

(000101). its tag is “0001” , and its major location is “01” . The MRU information of major

location 1 at set 1 is retrieved, which points to way 1. Thus, the search begins from here.

The predicted way does not contain the desired block, then all the remaining ways are

probed as the second attem pt. This reference is a cache miss, the LRU block at way 2

is replaced. However, the new block (000101) and the block already residing at way 1

(110101) have the same major location 1. Since the new block (000101) is the most recently

accessed block whose major location is 1, the MRU information of major location 1 needs

to be updated to reflect this change. In the implementation without swapping, the MRU

information of major location 1 is updated to point to way 2 where the new block resides.

By recording the MRU information for each major location, the MRU block does not need

to always reside at its major location. Thus, the energy-consuming swapping operations are

avoided. For the second reference (101101), its major location is 3 and the corresponding

MRU information points to way 3. The tag and data portions of way 3 are probed as the

first attem pt. This is a first hit. No swapping is performed and the MRU information keeps

unchanged.

There are several performance and energy consumption trade-offs in the implementations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 47

of multicolumn caches. For the original design, the search always begins from the major

location of a reference, which is determined by a simple bit selection on the reference

address. Thus, the decision of a search order will not lengthen the cache access time, and

will not consume additional energy. However, to maintain this way-prediction mechanism,

the swapping operation may be performed. This swapping operation is energy-consuming,

and may also delay subsequent coming references.

On the other hand, the implementation without swapping avoids the energy-consuming

operation at the price of additional cache area for recording MRU information, of additional

energy consumption for retrieving MRU information, and of possible increase on cache access

time. Just like the MRU cache, the multicolumn cache without swapping needs to fetch the

MRU information first. Since the reference address is used to index the MRU information

table, the retrieval of MRU information may lengthen the cache access time. However,

the arguments for MRU cache can also be applied here. If the reference address could be

available earlier, the cache access could begin at an earlier pipeline stage [18]. In addition,

the overhead of fetching MRU information can be tolerated for L2 caches [44].

Regarding the area, the overhead of recording the MRU information is trivial. Compared

with the MRU cache which has one MRU entry for each set, the multicolumn cache without

swapping has a larger MRU table where each block has an MRU entry. However, the MRU

table in the multicolumn cache still only accounts for a very small portion of the data array.

The area overhead is log(associativity)/ (b locksize ■ 8). The cache block size in a modern

computer system is normally at least 32 bytes. Thus, the area overhead is very small. For

example, considering a sixteen-way set-associative cache with block size of 64 bytes, each

set needs 64 bits to record the MRU information. The MRU table only accounts for less

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 48

than 1% of the data array.

One more dimension of the MRU table in the multicolumn cache also makes the access

more complicated. It is necessary to first identify which one of the n MRU entries in a

set to be fetched. This is determined by the major location of the reference. Since the

determination is from a bit selection, the latency of fetching the MRU information in the

multicolumn cache is comparable to tha t in the MRU cache. Furthermore, the bit selection

also makes it possible to only probe the desired entry. As the result, the power consumption

for indexing the MRU table in the multicolumn cache is also comparable to tha t in the MRU

cache. The energy consumption overhead of accessing such a small MRU table is also trivial.

We evaluate the frequency of swapping operations in eight-way multicolumn caches un­

der the default system configuration in our experiments. For all the SPEC2000 benchmarks,

on average, only 0.2% of references to the instruction cache involve swapping operations,

while 3.8% and 12.0% of references to the data and L2 caches involve swapping operations,

respectively. Since for LI instruction cache, the possibility of a reference involving a swap­

ping operation is very low, it is more feasible to directly use the major location as the

search guidance, in company with swapping operations for this latency-sensitive cache. On

the other hand, the possibility of a reference to L2 cache involving a swapping operation

is as high as 12.0%, which means about 20% additional energy will be consumed by the

swapping operation. In this case, it seems more feasible to apply the multicolumn imple­

mentation without swapping and overlap the fetch of MRU information with the accesses

to LI caches.

In summary, the original multicolumn cache design has no overhead on cache access

latency. However, it requires energy-consuming swapping operations to maintain the way-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AMP CACHE 49

prediction mechanism. The multicolumn implementation without swapping eliminates the

swapping operations at the cost of trivial increase on cache area and access latency. In our

experiments presented in the following sections, we will utilize the multicolumn cache with

swapping for instruction and data caches which are latency-sensitive and involve relatively a

small percentage of swapping operations, and apply the implementation without swapping

for L2 cache which is not so latency-sensitive but involves a large percentage of swapping

operations.

4 .7 E xp er im en ta l E n vironm en t

CACTI [79] is a timing model for on-chip caches. It has been extended to CACTI 2.0 [58]

tha t includes both timing and power models. We use CACTI 2.0 to estimate the power

consumption of different implementations of set-associative caches in our study. For caches

with access mode predictions, we estimate the energy consumption of first-hits, non-first-

hits, misses, and write-backs in both way-prediction and phased accessing modes, respec­

tively. We use the SimpleScalar tool [14] to collect the cache access and program execution

statistics. We modified the cache simulator in order to emulate the behavior of different

way-prediction and mode prediction approaches.

SPEC CPU2000 is a comprehensive benchmark suite that contains compute intensive

benchmarks exercising a wide range of hardware. We use the precompiled Alpha version

of SPEC2000 binaries [77]. The reference input data files are used in the experiments. We

fast-forward the first four billion instructions, then collect detailed statistics on the next

one billion instructions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 50

In our execution-driven simulation, the memory hierarchy is the main focus. The sim­

ulated 1 GHz 8-issue processor has separate 64 KB instruction and data caches with block

size of 64 Bytes, and a unified 4 MB L2 cache with block size of 128 Bytes. This config­

uration is similar to those used in high-end workstations such as Alpha 21264, and Ultra

Sparc III. The associativity of LI and L2 caches ranges from four to sixteen. The caches

have two sub-banks in each data RAM [67]. We assume that 0.18 /rm technology is used.

4.8 E x p er im en ta l R esu lts

4.8.1 Com parisons of M ulticolum n and M RU Caches

As we have stated in previous sections, the first-hit rate is crucial for power reduction of way-

prediction caches. In this section, we will first compare the first-hit rate of the multicolumn-

based way-prediction with tha t of the MRU-based way-prediction for set-associative caches.

Figure 4.9 shows the difference of first-hit rates between the multicolumn and MRU

caches as the cache associativity increases. For clarity, this figure only presents the average

first-hit rates of all the SPEC2000 programs and the first-hit rates of two representative

programs vpr (an integer program) and facerec (a floating-point program). The overall hit

rates and the first-hit rates of MRU and multicolumn instruction, data, and L2 caches on

each program are presented in Table 4.2 to Table 4.4, respectively.

The first-hit rates of MRU caches decrease as the cache associativity increases. In

contrast, the first-hit rates of multicolumn caches keep almost unchanged. For example, as

the cache associativity increases to sixteen, the first-hit rate of the MRU L2 cache is only

40% of tha t of the multicolumn L2 cache for program vpr. In addition, the first-hit rates of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 51

Overall hit rate Multicolumn first-hit rate * MRU first-hit rate

100% -

60% -

40% -

20% -

16-way16-way 4-way16-way 4-way4-way !-way*-wayl-way

uL2dLl

F igure 4 .9 : Com parisons of th e first hit rates am ong the m ulticolum n and M RU caches.

multicolumn caches are very close to the overall cache hit rates, which are the upper bounds

of first-hit rates, at different cache levels and for different cache organizations. The average

first-hit rates of multicolumn caches are above 98% of the average overall cache hit rates.

On the other hand, the first-hit rates of MRU caches have noticeable differences compared

with the overall cache hit rates. For the sixteen-way L2 cache, the average first-hit rate of

MRU-based way-prediction is only 69% of the average overall hit rate.

In terms of first-hit rates, the multicolumn-based way-prediction is a nearly optimal

way-prediction technique. However, high first-hit rate is not our final target. Figure 4.10

illustrates the effectiveness of multicolumn-based way-prediction in reducing cache energy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 52

program four-way eight-way sixteen-w ay
overall m ul-col MRU overall m ul-col M RU overall m ul-col M RU

164.gzip 1.0000 1.0000 0.9955 1.0000 1.0000 0.9955 1.0000 1.0000 0.9955
175.vpr 1.0000 1.0000 0.9975 1.0000 1.0000 0.9975 1.0000 1.0000 0.9637
176.gcc 0.9996 0.9961 0.9898 0.9998 0.9962 0.9851 0.9999 0.9962 0.9824
181.m cf 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
186.crafty 1.0000 0.9997 0.9750 1.0000 0.9997 0.9564 1.0000 0.9997 0.9404
197. parser 1.0000 1.0000 0.9995 1.0000 1.0000 0.9939 1.0000 1.0000 0.9914
252.eon 1.0000 0.9979 0.9897 1.0000 0.9979 0.9802 1.0000 0.9979 0.9639
253.perlbmk 0.9993 0.9969 0.9895 0.9998 0.9969 0.9774 1.0000 0.9970 0.9706
254.gap 1.0000 0.9988 0.9943 1.0000 0.9988 0.9867 1.0000 0.9988 0.9795
255.vortex 0.9961 0.9897 0.9694 0.9981 0.9904 0.9615 0.9986 0.9906 0.9474
256.bzip2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9889
300.twolf 1.0000 0.9990 0.9909 1.0000 0.9990 0.9869 1.0000 0.9990 0.9800
168.wupwise 1.0000 1.0000 0.9981 1.0000 1.0000 0.9963 1.0000 1.0000 0.9837
171.swim 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
172. mgr id 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9903
173.applu 1.0000 1.0000 0.9987 1.0000 1.0000 0.9942 1.0000 1.0000 0.9934
177.m esa 1.0000 0.9990 0.9894 1.0000 0.9990 0.9785 1.0000 0.9990 0.9577
178.galgel 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
179.art 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
183.equake 1.0000 0.9962 0.9860 1.0000 0.9963 0.9642 1.0000 0.9963 0.9531
187.facerec 1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 1.0000 1.0000 0.9937
188.ammp 1.0000 0.9995 0.9992 1.0000 0.9995 0.9983 1.0000 0.9995 0.9974
189.1ucas 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
191.fma3d 0.9996 0.9970 0.9913 1.0000 0.9971 0.9873 1.0000 0.9971 0.9802
200.sixtrack 1.0000 0.9991 0.9991 1.0000 0.9991 0.9987 1.0000 0.9991 0.9845
301.apsi 1.0000 0.9995 0.9911 1.0000 0.9995 0.9863 1.0000 0.9995 0.9834
Average 0.9998 0.9988 0.9940 0.9999 0.9988 0.9894 0.9999 0.9988 0.9816

T a b le 4 .2: T he overall hit rates and first hit rates o f m ulti-colum n and M RU structures for LI
instruction cache. T he cache is 64 K B w ith block size o f 64B.

consumption. This figure shows the reduction of overall energy consumed by instruction

cache, data cache, and L2 cache under the multicolumn-based way-prediction compared

with the MRU-based way-prediction. Compared with the MRU-based way-prediction, the

multicolumn-based technique can reduce the overall energy consumption of four-way in­

struction, data, and L2 caches by 0.1% to 39.6% (6.8% on average). As cache associativity

increases to eight, the energy reduction is 0.4% to 50.3% (16.6% on average). For sixteen­

way caches, the energy reduction of multicolumn caches is even more promising, which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 53

program four-way eight-way sixteen-way
overall m ul-col MRU overall m ul-col MRU overall m ul-col M RU

164.gzip 0.9896 0.9840 0.9692 0.9898 0.9839 0.9574 0.9900 0.9839 0.9351
175. vpr 0.9617 0.9343 0.9027 0.9621 0.9343 0.8539 0.9624 0.9343 0.8083
176.gcc 0.9512 0.9500 0.9453 0.9512 0.9500 0.9406 0.9513 0.9500 0.9326
181.m cf 0.8087 0.8039 0.7952 0.8084 0.8035 0.7841 0.8079 0.8032 0.7488
186.crafty 0.9942 0.9677 0.9252 0.9967 0.9683 0.8473 0.9973 0.9684 0.7851
197. parser 0.9803 0.9720 0.9455 0.9809 0.9719 0.9170 0.9811 0.9720 0.8794
252.eon 0.9998 0.9945 0.9733 0.9999 0.9945 0.9559 0.9999 0.9945 0.9172
253.perlbmk 0.9977 0.9922 0.9742 0.9985 0.9925 0.9616 0.9989 0.9925 0.9403
254.gap 0.9973 0.9964 0.9921 0.9973 0.9964 0.9874 0.9973 0.9964 0.9773
255.vortex 0.9929 0.9820 0.9623 0.9939 0.9821 0.8928 0.9948 0.9822 0.8734
256.bzip2 0.9821 0.9772 0.9443 0.9824 0.9772 0.9331 0.9826 0.9772 0.9159
300.twolf 0.9490 0.9411 0.9123 0.9490 0.9409 0.8920 0.9494 0.9410 0.8610
168.wupwise 0.9893 0.9746 0.9675 0.9893 0.9746 0.9611 0.9893 0.9746 0.9513
171.swim 0.9175 0.9145 0.9134 0.9149 0.9145 0.9119 0.9149 0.9145 0.8869
172.mgrid 0.9665 0.9270 0.9179 0.9665 0.9270 0.8131 0.9665 0.9270 0.5935
173.applu 0.9431 0.9351 0.9185 0.9432 0.9352 0.8958 0.9432 0.9352 0.8651
177.mesa 0.9962 0.9954 0.9799 0.9962 0.9954 0.9405 0.9963 0.9954 0.9050
178.galgel 0.9884 0.9706 0.8783 0.9884 0.9706 0.8056 0.9884 0.9706 0.6926
179.art 0.6599 0.6565 0.6457 0.6599 0.6565 0.6323 0.6599 0.6565 0.6072
183.equake 0.9999 0.9999 0.9893 0.9999 0.9998 0.9753 0.9999 0.9998 0.9154
187.facerec 0.9672 0.9657 0.9476 0.9672 0.9657 0.9411 0.9672 0.9657 0.9260
188.amm p 0.9371 0.9295 0.9115 0.9379 0.9296 0.8989 0.9384 0.9297 0.8726
189.1ucas 0.9188 0.9145 0.9034 0.9188 0.9145 0.8882 0.9188 0.9145 0.8585
191.fma3d 1.0000 0.9996 0.9925 1.0000 0.9996 0.9726 1.0000 0.9996 0.9518
200.sixtrack 0.9880 0.9774 0.9371 0.9882 0.9775 0.8805 0.9882 0.9775 0.8080
301.apsi 0.9719 0.9337 0.8899 0.9720 0.9337 0.8626 0.9720 0.9337 0.8257
Average 0.9557 0.9457 0.9244 0.9559 0.9458 0.8963 0.9560 0.9458 0.8552

T a b le 4 .3: The overall hit rates and first hit rates of m ulti-colum n and M RU structures for LI data
cache. T he cache is 64 K B w ith block size of 64B.

ranges from 5.1% to 67.3% (40.0% on average).

4.8.2 Energy R eduction of A M P Caches

Figure 4.11 compares the energy consumption of multicolumn cache, phased cache, and

the AMP cache. We have measured the energy consumed by four-way instruction, data,

and eight-way L2 caches. All the values are normalized to the energy consumed by the

multicolumn implementation. The results show tha t the relative energy consumption of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AMP CACHE 54

program four-way eight-way sixteen-way
overall m ul-col M RU overall m ul-col M RU overall m ul-col M RU

164.gzip 0.9831 0.9816 0.9773 0.9827 0.9813 0.9713 0.9825 0.9811 0.9374
175.vpr 0.9994 0.9994 0.8233 0.9994 0.9994 0.5972 0.9994 0.9994 0.4011
176.gcc 0.9981 0.9969 0.8416 0.9981 0.9969 0.7289 0.9981 0.9969 0.6378
181.m cf 0.7076 0.6879 0.5329 0.6926 0.6720 0.5068 0.6858 0.6653 0.4764
186.crafty 0.9956 0.9909 0.9358 0.9922 0.9895 0.7615 0.9908 0.9903 0.5612
197. parser 0.9700 0.9569 0.8405 0.9702 0.9561 0.7516 0.9701 0.9556 0.6512
252.eon 0.9941 0.9940 0.9332 0.9905 0.9904 0.9844 0.9880 0.9879 0.9874
253.perlbm k 0.9988 0.9941 0.9628 0.9977 0.9977 0.9126 0.9959 0.9958 0.8960
254.gap 0.7590 0.7545 0.7401 0.7589 0.7545 0.7221 0.7590 0.7546 0.6896
255. vortex 0.9812 0.9572 0.8869 0.9729 0.9448 0.7706 0.9669 0.9346 0.6591
256.bzip2 0.9806 0.9647 0.8126 0.9803 0.9637 0.6521 0.9791 0.9623 0.4663
300.twolf 0.9995 0.9995 0.8252 0.9995 0.9995 0.6364 0.9995 0.9995 0.4880
168.wupwise 0.6617 0.6484 0.5480 0.6460 0.6398 0.5213 0.6433 0.6382 0.4990
171.swim 0.6983 0.6808 0.6802 0.7048 0.6878 0.6862 0.7048 0.6878 0.6859
172.mgrid 0.7686 0.6956 0.6883 0.7678 0.6957 0.6826 0.7663 0.6957 0.5229
173.applu 0.6645 0.6574 0.6484 0.6644 0.6567 0.6463 0.6644 0.6567 0.6307
177.mesa 0.8909 0.8676 0.8365 0.8936 0.8686 0.7916 0.8931 0.8683 0.7132
178.galgel 0.9930 0.9916 0.5660 0.9939 0.9919 0.5491 0.9939 0.9919 0.4934
179.art 0.9998 0.9998 0.5669 0.9998 0.9998 0.4646 0.9998 0.9998 0.4273
183.equake 0.7344 0.7348 0.7340 0.7343 0.7342 0.7237 0.7342 0.7342 0.7052
187.facerec 0.7460 0.7328 0.7065 0.7460 0.7328 0.6810 0.7464 0.7328 0.4594
188.amm p 0.7407 0.5977 0.4367 0.6188 0.5444 0.3665 0.5972 0.5337 0.2916
189.1ucas 0.5550 0.4207 0.2955 0.6155 0.4810 0.3557 0.6118 0.5051 0.3855
191.fma3d 0.9994 0.9994 0.9994 0.3659 0.3648 0.3659 0.3574 0.3591 0.3556
200.sixtrack 0.9982 0.9949 0.7412 0.9982 0.9952 0.6656 0.9982 0.9951 0.5141
301.apsi 0.8321 0.8292 0.6986 0.8310 0.8284 0.5947 0.8309 0.8283 0.5002
Average 0.8711 0.8511 0.7407 0.8429 0.8256 0.6573 0.8406 0.8250 0.5783

T a b le 4 .4 : T he overall hit rates and first hit rates o f m ulti-colum n and M RU structures for L2
cache. T he cache is 4 M B w ith block size of 128B.

the multicolumn and phased caches is application-dependent. Among all the twenty-six

programs, phased caches consume less energy than multicolumn caches for six programs.

Compared with multicolumn caches, phased caches may consume up to 37% more energy

or up to 40% less energy, depending on the program behavior. On average, phased caches

consume 16.7% more energy than multicolumn caches.

For all the programs, the AMP caches consume less energy than multicolumn caches.

The energy reduction is 8.6% on average and up to 46.2%. This indicates tha t the AMP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 55

—+— 16-way
—*— 8-way
—*— 4-way
 16-way average
 8-way average
 4-way average

50%

40%

30%

20%

10%

0%

Figure 4.10: Energy reduction of m ulticolum n caches compared w ith M RU caches.

caches can effectively save energy on way-prediction misses and cache misses. Compared

with phased caches, the AMP caches consume less energy for all the programs but one (mcf).

This exception is due to the very high miss rates on data and L2 caches and the irregular

access patterns of the program. For mcf, the AMP caches consume 31.1% more energy than

phased caches. For other programs, the access mode prediction technique can reduce the

energy consumption of phased caches by 10.6% to 27.1%. For all the programs, the average

energy reduction of AMP caches is 20.0%, compared with phased caches. This indicates

th a t the location of many references can be correctly predicted by the way-prediction policy

and significant amount of energy can be saved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 56

1.60

1.40
de
a 1.20

g 1.00
U
12 0.80u
e W
'S 0.60

I
g 0.40 o
Z

0.20

—•— Multicolumn
Phased

—*— Mode Prediction

0.00 (N ±3
o . o .23
S £ S

3 3 8 ’3
Q . W 00
« S 13 ^

<u u
u s<u 3

Figure 4.11: Energy consum ption of m ulticolum n cache, phased cache, and A M P cache. The
system has four-way 64 K B instruction and data caches and eight-way 4 M B L2 cache.

To show more details about energy reduction of caches with access mode predictions, we

use six programs as examples and show the decomposition of energy consumed by instruc­

tion, data, and L2 caches in Figure 4.12. All of the values are normalized to the overall

energy consumption of multicolumn caches. Looking into the decomposition of energy

consumed by instruction, data, and L2 caches, we find tha t phased instruction caches con­

sistently consume more energy than both multicolumn and AMP instruction caches. This is

due to the high first-hit rates of multicolumn and AMP instruction caches. Compared with

these two caches, the phased cache consumes more energy for first-hits. The relative energy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 57

177.mesa

F igure 4.12: D ecom position of energy consum ed by instruction, data, and L2 caches.

consumptions on data and L2 caches are application dependent. For example, lucas has

high L2 cache miss rates. Since the phased cache has lower energy consumption for misses

than the multicolumn cache, the L2 phased cache consumes much less energy than the L2

multicolumn cache. The cache with access mode predictions always intends to consume the

lowest possible energy for both hits and misses. For program lucas, its energy consumption

on instruction cache is comparable to tha t of multicolumn cache, and its energy consump­

tion on L2 cache is comparable to tha t of phased cache. Our study show tha t the cache

with access mode predictions is the most energy-efficient one.

The percentage of energy consumed by instruction phased caches is application-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 58

B M u ltico lum n

■ Phased
□ Mode Prediction

F igure 4 .1 3 : Energy consum ed by data and L2 caches.

dependent. It ranges from 26.4% (for art) to 82.0% (for fmaSd). Since the phased in­

struction cache always consumes more energy than the multicolumn and AMP instruction

caches, to make a more fair comparison, we assume the instruction caches always have the

same AMP structure.

Figure 4.13 compares the energy consumption per instruction by only data and L2 caches

for the three different cache implementations. For seventeen of the twenty-six programs,

the multicolumn data and L2 caches consume less energy than the phased data and L2

caches by up to 26.6%. For the other nine programs, the phased implementation consumes

less energy than the multicolumn implementation by up to 63.4%. On average, their energy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 59

consumption is comparable to each other. The phased implementation consumes 0.3% more

energy than the multicolumn implementation on average. The AMP data and L2 caches

consume less energy than the multicolumn data and L2 caches for all the programs by up

to 60.2% and 14.4% on average. For twenty-two programs, the AMP caches consume less

energy than the phased implementation by 6.1% to 26.7%. For the other four programs,

the phased implementation consumes less energy than the AMP caches by 5.5% to 39.7%.

On average, the AMP data and L2 caches consume 10.7% less energy than the phased data

and L2 caches.

In summary, the multicolumn cache consumes less energy for applications with high

cache hit rates, while the phased cache consumes less energy for applications with low hit

rates. Since the hit rate is highly application-dependent especially at data cache and L2

cache, neither the multicolumn cache nor the phased cache works well for a wide range of

applications in terms of energy reduction. In contrast, the AMP cache always intends to

consume the lowest possible energy for both cache hits and misses. It consumes less energy

than both the multicolumn and the phased caches for a wide range of applications.

4.8.3 Energy-efficiency of A M P Caches

Regarding the access latency, a correctly predicted hit in the multicolumn cache or in the

AMP cache has shorter latency than an access in the phased cache. Table 4.5 presents the

access latency for a way-prediction hit, a way-prediction miss, and a phased access by using

the CACTI model. According to these obtained values, we set the cache access latency

by processor cycle in our experiments as follows. For instruction and data caches, a way-

prediction hit takes one cycle, a way-prediction miss or a phased access takes two cycles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AMP CACHE 60

iL l/d L l L2
Way-prediction Hit 0.90 ns 1 cycle 5.85 ns 6 cycles
Way-prediction Miss 1.61 ns 2 cycles 11.39 ns 12 cycles
Phased Access 1.88 ns 2 cycles 10.77 ns 12 cycles

Table 4.5: Access latencies for th e way-prediction h it/m iss and phased access on 64 K B 4-way LI
and 4 M B 8-way L2 caches.

For L2 cache, a way-prediction hit takes six cycles, a way-prediction miss or a phased access

takes twelve cycles.

There is a concern tha t the AMP cache may not efficiently handle access sequences

with varied latencies. However, for the way-prediction caches such as MRU cache, it is

also necessary to handle accesses with varied latencies. Thus, the AMP cache does not

introduce additional complexity to deal with different access latencies compared with the

way-prediction caches. For the same reason, the mixture of phased accesses with way-

prediction hits does not introduce additional complexity in solving the conflicts on accessing

data array, compared with the mixture of way-prediction misses with way-prediction hits.

Figure 4.14 and Figure 4.15 compare the performance and energy-delay product of the

AMP cache with those of the multicolumn cache and the phased cache, respectively.

Compared with the multicolumn cache, the AMP cache may mispredict the access modes

of some way-prediction hits and perform phased accesses. This only slightly increases the

average cache access latency and degrades the overall performance. Among the twenty-six

programs, the AMP cache gets the same CPI for seven programs compared with the multi-

column cache. The maximum CPI increase is 1%. The average CPI increase is only 0.1%.

This indicates tha t only a very small percentage of way-prediction hits are mispredicted as

phased accesses by the access mode predictor. The AMP cache obtains almost the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 61

■ CPI reduction ■ ED reduction
35%

30%

25%

20%

15%

10%

5%

0%

■5%

Figure 4 .1 4 : CPI and E-D product reductions of the A M P cache com pared w ith the m ulticolum n
cache.

performance as the multicolumn cache.

Way-prediction hits have shorter latencies than those of phased accesses. Thus, the

average access latency in the AMP cache is shorter than that in the phased cache. Compared

with the phased cache, the CPI reduction of the AMP cache ranges from 0.4% to 14.9%,

and is 6.1% on average.

The AMP cache reduces the energy-delay product by 8.5% on average (up to 46.2%)

compared with the multicolumn cache, and by 24.8% on average (up to 35.3%) compared

with the phased cache.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 62

B CPI reduction BED reduction

16.5%

Figure 4.15: CPI and E-D product reductions of the AMP cache compared with the phased cache.

4.9 S um m ary

The way-prediction cache and phased cache are two existing techniques in reducing the

power consumption of set-associative caches. However, neither minimizes energy consump­

tion for both cache hits and misses. Their effectiveness in reducing energy consumption is

highly application-dependent. In order to further reduce the energy consumption of set-

associative caches, we propose a cache structure with access mode predictions (AMP cache)

which combines the merits of way-prediction and phased accessing together. Our study

shows the following results:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AM P CACHE 63

• W ith a simple access mode prediction based on cache hit/m iss prediction, the AMP

cache can effectively reduce the energy consumption for a wide range of applications

under systems with moderate to high associativity caches. For example, the AMP

cache reduces energy consumed by four-way LI and eight-way L2 caches by 9% and

20% on average (up to 46% and 27%) compared with the multicolumn and phased

implementations, respectively.

• The AMP cache is an energy-efficient design. It can reduce the energy-delay product

of a system with four-way LI and eight-way L2 caches by 9% and 25% on average

(up to 46% and 35%) compared with the multicolumn and phased implementations,

respectively.

• The multicolumn-based way-prediction technique is a nearly optimal scheme, which

can correctly predict the locations of 98% of cache hits on average. For four-way,

eight-way, and sixteen-way caches, multicolumn-based way-prediction can reduce the

energy consumption by 7%, 17%, and 40% on average, respectively, compared with

MRU-based way-prediction. In addition, the AMP cache can also utilize other way-

prediction techniques.

• The AMP cache can exploit the same mechanism used in the way-prediction cache to

handle the varied latencies from different access modes and way-prediction hits and

misses.

• The additional overhead of access mode predictor and multicolumn-based way-

prediction is negligible measured by cache area, access latency, and energy consump­

tion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Look-ahead A daptation Techniques

to R educe Processor Power

Consum ption

5.1 M o tiv a tio n

The pursuing of high performance on general purpose processors has been increasing the

speed as well as the complexity of processors. As a byproduct, the last decade has seen a

dramatic increase of processor power consumption [78]. To address this issue, researchers

have targeted reducing processor’s power dissipation with minimum performance impacts.

One effective approach at architectural level, called architecture adaption, is to adaptively

activate and deactivate hardware resources in accord with the dynamic changes of a running

program’s execution behavior [17, 6, 29, 56, 61]. This is based on an observation tha t

the program execution behavior varies significantly among different programs and among

different execution phases of a single program [76].

There are two key factors in architecture adaptation [61]: (1) when to trigger the adap-

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 65

tation, i.e., under what conditions to activate/deactivate resources; and (2) what adaptation

techniques to apply. Our work focuses on the first issue.

In order to reduce processor power consumption while retaining performance, most

existing solutions try to meet the current program requirement with a minimum number of

active resources. However, this type of approaches shares a common limitation: the adaption

is triggered after the change of demand has been detected. W ithout the foreknowledge of

future demand variants, resources are kept active when the current demand is high, even if

the demand is going to drop. Figure 5.1-(a) shows an example of power-saving optimization

based on a current system status. The monitored value is compared with a threshold at

the end of each sampling window (the dots). At time A, the scheme will put the processor

into a normal execution mode based on the current knowledge tha t the measured value is

higher than the threshold. However, it does not foresee that a slack exists between time B

and D, where the processor is almost idle.

Ideally, the deactivation of hardware resources should start earlier than the drop point

to maximize the power saving, subject to maintaining the same performance. As illustrated

in Figure 5.1-(b), part of the work is delayed to time C. However, since the same amount

of work is finished before time D, the overall performance remains the same although the

processor stays at the low power mode for a longer time. Thus, the optimization based on

current system status loses some power-saving opportunities compared with the look-ahead

optimization.

In this study, we show tha t some hardware events can accurately predict future demand

degradation thus hardware resources can be deactivated confidently in advance even if the

current demand is high. Specifically, this study utilizes the events of main memory accesses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 66

normal
—«

low-

slack

frame

threshold

(a) Optimization based on current system status

low-
work redistribution

..........................
threshold

T .
i , slacks frame <

(b) Look-ahead optimization

Figure 5.1: Comparisons of the optimization based on current system status and the look-ahead
optimization.

to trigger architecture adaptation.

As the speed gap between processors and memory continues to widen, the memory access

latency consistently increases compared with processor cycle time. Once an L2 cache load

miss to main memory happens, it is almost certain tha t the processor will stall for this cache

miss (although the processor may perform some useful work for subsequent instructions

before stalling). For example, considering a moderate system configuration, a 4-way issue

processor with a 128-entry instruction window runs at 2 GHz clock rate, and the memory

access latency is 100 ns. Once a load miss happens, the load cannot be resolved within 200

cycles, while the instruction window will become full in 32 cycles at the full issue rate and

this will force the processor to stall. Thus, when a load miss happens, maintaining the full

processor issue width is wasteful even if the current program demand is high. In addition,

this resource degradation period will enlarge as the speed gap between the processor and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 67

memory continues to widen.

We propose a new scheme, called load indicator, tha t triggers the processor issue rate

adaption with the existence of main memory accesses. In particular, the scheme reduces the

issue width when a load miss occurs, and resumes the full issue rate when all outstanding

loads finish. Previous studies have shown tha t adjusting the processor issue rate is an

effective adaption technique for power-saving [6, 61]. W ith an accurate prediction on future

demand degradation, the load indicator scheme redistributes the CPU work over a relatively

long period of time to maximize the power saving while achieving the same performance.

Our experiments show that, for memory-intensive applications, this scheme can save

more power with a performance loss comparable to tha t of the pipeline balancing tech­

nique [6] which periodically adjusts the processor issue rate based on the average issued

IPC (instructions per cycle). For seven memory-intensive applications from SPEC2000

benchmark suites, our scheme can reduce the power consumption on the issue logic and

execution units by 24% and 11%, respectively. The total processor power consumption is

reduced by 5.4% on average with a performance loss of 0.5%, compared with a 4.2% average

power saving with a performance loss of 0.7% by the pipeline balancing technique.

The load indicator scheme foresees the degradation on resource demands caused by

memory accesses. Thus it only has effects on memory-intensive applications. We further

propose two variants of the scheme to cover a wider range of applications. The first variant,

called load-instruction indicator scheme, utilizes information of both load misses and the

IPC changes (in the absence of load misses) to adjust the processor issue rate. The second

variant, called load-register indicator scheme, reduces the processor issue rate when cache

load misses happen or the number of free registers drops below a threshold, and resumes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 68

the full issue rate when there are no outstanding load misses and the number of free regis­

ters increases above another threshold. Both variants captures power saving opportunities

caused by program behavior changes and hardware constraints besides main memory ac­

cesses. They effectively save energy for applications with a wide range of memory stall

portions.

5.2 L oad In d icator Schem e

As indicated in [76], the execution behavior of programs varies significantly among different

programs and among different execution phases of the same program. Thus, architectural

adaptations based on program requirement variants are effective on reducing processor

power consumption with a negligible performance loss [17, 6, 29, 56, 61].

5.2.1 Power Saving O pportunity

The primary target of modern general purpose processors is high performance. Modern

processors can execute multiple instructions in each cycle to boost performance. Out-of-

order execution is supported by most state-of-art general purpose processors to improve

performance. These techniques improve processor performance significantly. As a simple

example, for a system with 16 KB instruction/data caches (1 cycle access time) and 256

KB L2 cache (6 cycle access time), as the processor issue width increases from four to eight,

the performance of SPEC2000 program 171.swim improves by 25%; on the other hand, if

the processor only supports in-order execution, the performance will degrade by 45%.

Although these techniques do improve the performance effectively, they also increase the

energy consumption significantly. In order to execute multiple instructions concurrently, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 69

processor needs to consist multiple functional units. Compared with the single-issue pro­

cessors, the duplicate of functional units also means multiplication on energy consumption

of datapath. In order to support out-of-order execution, the issue logic of processor is much

more complicated than that only supports in-order execution. For an n-way issue in-order

execution processor, the issue logic only needs to check the dependency and data availabil­

ity of the first n instructions in the instruction window. In comparison, for an n-way issue

out-of-order execution processor, the issue logic needs to check all the m instructions in

the instruction window and select n ready instructions whose data dependences are solved

and the corresponding functional units are available. In general, m n, the issue logic

picks n ready instructions out of m entries. We can see that the issue logic of out-of-order

execution processor is much more complicate than tha t of in-order execution processor. The

increasing complexity of issue logic also corresponds to the increase on energy consumption.

As a consequence, the issue logic and execution units consume about 40% of the total

processor power consumption. Previous studies have shown tha t adjusting the processor

issue rate is an effective power-saving technique, which can effectively reduce the power

consumed by the issue logic and execution units [6, 61]. Authors in [6] propose a technique,

called pipeline balancing, tha t dynamically adjusts processor issue width for each sampling

window based on the average issued IPC measured in the previous window. For convenience

of discussions, we will call this technique as instruction indicator in following sections.

Authors in [61] propose a technique tha t uses the mean functional unit utilization and the

number of structural hazard over the last period to trigger the issue rate adaptation for the

next period.

Those techniques share a common limitation. They capture the change of program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 70

behavior after the change has happened. More importantly, they cannot foresee the re­

source requirement degradation. Thus, they only perform power optimization based on the

current knowledge of program behavior. As shown in Figure 5.1, this property loses some

opportunities in power saving.

If a scheme can accurately predict a future program demand degradation, it is safe

to only satisfy a part of the currently demanded work. The main idea of our look-ahead

optimization is to redistribute work over a relatively long period of time in order to generate

more power saving opportunities while finishing the same amount of work over tha t period.

In principle, this is similar to many power-saving schemes for multimedia applications.

For multimedia applications, as long as the demanded work of a “frame” finishes within a

deadline, the performance is considered to be the same regardless the work real completion

time. Thus, redistributing the work within a frame using dynamic voltage scaling is effective

in saving power and retaining performance [38, 61].

However, general-purpose applications do not have such a concept of “frame” as mul­

timedia applications do. Thus, the question here is how to find time periods within which

work can be redistributed to save energy while the same amount of work can be finished

within the periods.

5.2.2 Load Indicator

There are several possible solutions to identify the performance degradation in advance, such

as by providing hints from the application, compiler, or operation systems. For example,

authors in [73] propose to use a compiler-driven static IPC prediction at the loop-level to

guide the fetch throttling for energy saving. Our study explores a hardware-based indicator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 71

with a simple implementation, catching current technology trend.

As the speed gap between processors and memory continues to widen, the memory ac­

cess latency increases consistently relative to the processor cycle time. Researchers have

proposed many techniques to reduce the average memory access latency, for example, de­

ploying advanced DRAM technologies [25, 88], exploiting the DRAM row buffer local­

ity [86, 28, 87], and reordering current memory accesses [59, 90]. However, even after

applying those latency-reduction techniques, for modern multi-issue, multi-GHz processors,

once a cache load miss to main memory happens, it is almost certain that the processor

will stall due to the long main memory access time. Thus, maintaining a partial processor

issue width is enough to retain the performance from the time when the load miss happens

to the time when the missing data are returned. The existence of load misses sends a signal

of future reduction of program requirements on computation resources.

Figure 5.2 shows the sampled IPC values of program swim and the number of outstand­

ing cache load misses in a representative 1024-cycle interval during the program’s execution.

For clarity, we only present the floating point IPC values in the figure. The integer IPC

values have a similar pattern. The system configuration will be presented in details in

Section 5.4. From the figure, we can see tha t normally multiple cache load misses happen

together. From the starting time when the first cache load miss occurs to the ending time

when all the load misses return, the program execution behavior forms a “frame” : an active

period followed by an idle period. This result shows tha t the information of load misses can

be used to accurately predict the future performance degradation.

This figure also presents the measured IPC values under different sampling window

widths. Larger window size smooths out spurs and avoids thrashing between different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 72

3
L o a d

F P W 64
F P W 32

F P t h r e s h o l d2 . 5

2

1 . 5

1

0 . 5

0
0 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

T i m e I n t e r v a l (c y c l e)

Figure 5.2: Sam pled IPC values and num ber of outstanding loads during an arbitrarily selected
1024-cycle interval for program swim. “W 64” and “W 32” correspond to the sam ple window sizes of
64 cycles and 32 cycles, respectively.

power modes (e.g. from cycle 192 to cycle 256). However, larger window size may also fail

to capture the change of program behavior (e.g. from cycle 480 to cycle 544). Thus, the

sampling window size must be tuned carefully.

We propose a scheme, called load indicator, tha t saves power by reducing the issue width

when one or more load misses occur, and retains performance by resuming the full issue

rate when there are no outstanding load misses1. In the implementation, a register is used

to record the number of outstanding L2 cache load misses. When a load miss happens, if

the processor is in the normal execution mode (i.e., with the full issue rate), the processor

will transit to the low power mode. In the low power mode, the processor issue rate and the

1 We only consider cache load misses since normally write misses can be well handled by write buffers and
will not directly cause the processor stall.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 73

number of active functional units are reduced by half. When a load miss is returned or a

speculated load miss is squashed2, the register value is decreased by one. When the register

value drops to zero, the processor will return to the normal execution mode immediately.

if (a cache load miss happens)

miss register value + 1;

if (processor is in normal mode)

processor transfers to the low power mode;

if (a cache load miss resolves)

miss register value - 1;

if (miss register value = 0 AND processor is in low power mode)

processor returns to the normal mode;

The load indicator can identify the execution periods when a program does not require

the full processing power. Several techniques can be applied during those periods to reduce

the processor power consumption. For instance, if the processor has a dual speed pipeline

structure [57, 62], instructions can be issued to the slow pipeline when cache load misses

happen. In this study, we apply the technique of reducing the processor issue rate because

this is a very effective technique and can be applied to most architectures.

The complexity of the load indicator scheme is low, and the overhead is trivial. Only

one register is added to record the number of outstanding loads. The control logic is also

very simple because it only checks the register value then makes the adaptation. There

2 The scheme does not distinguish between true and speculative load misses for simplicity. Our experi­
ments show that this only has small impact on power consumption and performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 74

Scheme High dem anding window Low dem anding window Idle window
Percent /P C / I P C F Percent I P C / I P C F Percent

Norm al execution 60.4% 0.9852 0.7620 17.7% 0.2980 0.1945 21.9%
Load indicator 55.9% 0.9741 0.7644 23.8% 0.4070 0.2660 20.3%

Table 5.1: T h e distribution o f high dem anding, low dem anding, and idle w indows for program
swim.

is some additional logic to adjust the processor issue rate. However, compared with clock

gating at each component on a cycle-by-cycle basis, the adjustment of issue rate is at a

coarser level. The additional power consumed by the scheme is negligible.

Table 5.1 presents the redistribution of work after applying the load indicator scheme

using program swim as the example. Under normal execution, at 60.4% of sampling win­

dows, either the issued integer IPC value IP C i or the issued floating point IPC value IP C f

is higher than its corresponding threshold. On the other hand, the processor issues almost

no instructions at 21.9% of sampling windows. This indicates tha t a large space is left to

shift some of the work from the high demanding windows to the low demanding or idle

windows. After applying the load indicator scheme, the percentage of sampling windows

with high issued IPC values drops to 55.9%, while the percentage of sampling windows with

low IPC values increases to 23.8%, and the percentage of idle windows drops to 20.3%. The

average IPC values in low demanding windows also increase. This indicates tha t more work

is done in low IPC windows, and the processor gets more chances to run in the low power

mode.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 75

5.3 C on sid eration s for Load In d icator Schem e

A concern on the load indicator scheme is tha t reducing the processor issue rate when a

main memory access happens will slow down finding the next main memory access and

might degrade the performance. Another concern is tha t the existence of main memory

accesses might make the processor issue rate switching too frequently. However, these two

concerns do not affect the effectiveness of the load indicator scheme, because normally main

memory accesses are clustered together.

In [90], we study the burstiness of main memory accesses. The system configuration is

as follows. The processor is 4-way issue running at 2 GHz speed. The instruction and data

caches are 4-way 64 KB with 2-cycle access latency, and the L2 cache is 4-way 1 MB with

8-cycle access latency. The memory system is a 2-channel Direct Rambus DRAM system

with 60 ns access latency.

We first measure the arrival intervals of cache misses so as to gauge the burstiness in

the miss stream. If a large fraction of accesses arrive in short intervals, tha t indicates

the miss stream is highly bursty. Because the DRAM access delay will slowdown the

instruction execution and the speed of the processor generating cache misses, we configure

a perfect DRAM system tha t has the latency of L2 cache hit and an infinite bandwidth.

Figure 5.3 shows the CDF (Cumulative Distribution Function) of the arrival interval of

memory accesses of fifteen selected SPEC2000 programs. The top and the bottom figures

contain the floating point and integer programs, respectively.

All of the applications have a dense distribution on short intervals. For example, m cf

has 22% distribution at the zero cycle interval, which means tha t 22% of misses follow some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 76

LLo
o

0.4

w upw ise ---------
swim -
m g r id
applu
galgel ---------

art ---------
f a c e r e c

am m p
lucas

0.2

150 20050 100
Arrival Interval (cycle)

0

0.8

0.6

u_oo
0.4

0.2 v p r -
g c c ---------
m c f

p a r s e r
b z ip 2 ---------
twolf-------

150 20050 1000
Arrival Interval (cycle)

F igure 5 .3: C D F of arrival interval o f m iss streams.

other misses at the same cycle. For swim, 10% of misses follow some other misses at the

same cycle. For m cf and swim, the average arrival intervals are nine cycles and 25 cycles,

respectively. Among the fifteen selected programs, eight of them have more than 25% of L2

misses clustered within seven cycle intervals, and four of them have more than 40% of L2

misses clustered within seven cycle intervals.

Figure 5.4 further presents the distribution of the number of concurrent accesses in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 77

0.8

0.6

0.4
/ 179 .art —

181 .mcf
171 .swim
1 89 ,tucas
173 .applu

301 .apsi — •
1 8 7 .facerec

178 .galgel

0.2

N um ber of C oncurren t A c c e sse s

1.2

t 08
'n
nj
XIg
© 0.6
>

3
E3o

0.4
172.m grid —

188 .am m p —
168,w upw ise

1 76 .gcc
300.twolf —

256 .bzip2 - -
175 .vpr

0.2

8 16 322 4
N um ber of C oncurren t A c c e sse s

Figure 5.4: Distribution of the number of concurrent accesses.

bursty phase, when two or more outstanding memory references happen together. The

top figure contains programs with the fraction of bursty phase higher than 40%; and the

bottom one contains programs with the lower bursty phase fraction. Most programs have

high burstiness in the bursty phase. In general, programs with a higher fraction of bursty

phase tend to have higher probability on large number of concurrent accesses. For all the

programs presented in the top figure, more than 40% of bursty references are grouped with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 78

at least three other references. Even for some programs with a small bursty phase fraction,

the burstiness inside the bursty phase is still high. For example, program bzip2 only spends

6% of its execution time in the bursty phase, however, more than 60% of concurrent accesses

are clustered as groups with at least eight references.

These indicate that normally multiple memory accesses happen in very short intervals.

There are two reasons for high burstiness. First, when a miss happens, it is highly possible

th a t the current working set does not reside in the cache, thus more misses are expected to

happen in the near future. Second, wide-issue processors execute multiple instructions per

cycle, thus make cache misses be clustered.

The clustering of memory accesses makes the load indicator scheme effective in capturing

power saving opportunities while still maintaining the performance. Even when the proces­

sor issue rate reduces, the next memory access can still be found before previous memory

accesses finish. In addition, the clustering of memory accesses also makes the processor

issue rate switch not too frequently. We will discuss the power mode switch frequency in

more details in Section 5.7.5.

5.4 E xp er im en ta l E nvironm ent

We use sim-alpha as the simulator, which has been validated against a 466 MHz Alpha

21264 processor [26]. The Alpha 21264 processor is a supercalar processor tha t can issue

up to four integer instructions and two floating-point instructions every cycle. Its pipeline

contains seven basic stages. The on-chip instruction cache is 64 KB, 2-way set-associative

with block size of 64 bytes, and contains a line predictor and a way predictor. The on-chip

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 79

Processor speed 466 MHz/1 GHz/2 GHz
Processor issue rate 6-way
Functional units 4 int ALU, 4 int Mult

1 fp ALU, 1 fp Mult
Integer queue 20 entries
Floating-point queue 15 entries
Reorder buffer 80 entries
Load queue size 32
Store queue size 32
Register file 80-entry integer

72-entry floating point
Instruction cache 2-way 64 KB, 64 B block

1/1/2 cycle hit latency
D ata cache 2-way 64 KB, 64 B block

3 /3 /4 cycle hit latency
L2 cache 1-way 2 MB, 64 B block

7/12/14 cycle hit latency
DRAM latency 2(RAS), 4(CAS), 2(precharge)

2 (controller) bus cycles
Bus bandwidth 1.2/1.6/2.1 GB/s

Table 5.2: Experimental parameters.

data cache is 64 KB, 2-way set-associative with 64-byte blocks, and is backed up with an

8-entry victim buffer [45, 24], The off-chip L2 cache is 2 MB direct-mapped with 64-byte

blocks. The memory bus is 128-bit wide and operates at 75 MHz speed [26]. Considering

the current processor speed, we also scale the processor speed to 1 GHz and 2 GHz in our

experiments. The cache access latency, DRAM access latency, and bus bandwidth are scaled

accordingly. The scaled cache access latency is estimated by the CACTI 3.0 model [63].

We assume tha t the process technique for caches is also scaled down as the processor speed

increases. We also assume tha t the DRAM access latency and bus bandwidth improve by

30% when the processor speed increases from 466 MHz to 1GHz, and from 1 GHz to 2 GHz.

Table 5.2 presents the key parameters in the experiment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 80

We modify the simulator to model our schemes and the pipeline balancing technique.

The processor issue rate is dynamically adjusted when the conditions defined by the schemes

are satisfied. The modified version also collects the statistics of program’s execution behav­

ior under each power-aware design for calculating the power consumption.

SPEC CPU2000 benchmark programs are used as the workloads [66]. We use the pre­

compiled Alpha version of SPEC2000 binaries [77]. The reference input data files are used

in the experiments. The first four billion instructions are fast-forwarded. Then, the detailed

statistics are collected on the next one billion instructions.

5.4.1 Power Savings

Reducing the processor issue rate can reduce the power consumed by the issue logic and

execution units [6]. These are two major power consumers in the processor. Among the 72-

W att power consumed on average by the 600 MHz Alpha 21264 processor, 18% is consumed

by the instruction issue units, 10% is consumed by the integer execution units, and another

10% is consumed by the floating-point execution units [32], We use these data in calculating

power savings.

We assume tha t as the processor speed increases, the percentage of power consumed by

the issue logic and the execution units does not change. This assumption is conservative

and does not favor our schemes. As the processor speed increases, the percentage of power

consumed by the issue logic and execution units tends to increase. For example, the issue

units and execution units including the driving clocks consume 46% and 22% of total pro­

cessor power for the projected Alpha 21464 processor [78]. As estimated in [6], the 46%

of power consumption includes the power consumed by register files and register mapping,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 81

thus the issue logic consumes about 23% of total power.

The Alpha 21264’s pipeline has a cluster structure. The integer registers and functional

units are organized as two clusters. The floating-point registers and functional units form

another cluster [45, 24]. We assume tha t reducing the processor issue rate only reduces

the power consumed by the issue logic and the integer functional units. This is also a

conservative assumption. When the issue width is reduced by half, one of the integer

cluster is gated.

There is an argument tha t reducing processor issue rate cannot bring much energy saving

when aggressive clock gating techniques are applied to each component on a cycle-by-cycle

basis. However, the increased design and verification complexity, clock skew, and inductive

noise make implementing such aggressive clock gating challenging [69, 13]. Thus, the best

granularity a t which clock gating is applied is a trade-off between power saving and design

complexity [69]. In addition, gating at a coarser grain may save more power since an entire

resource or block can be powered off [13, 6]. Even if aggressive clock gating is applied,

deactivating resources by architecture adaptation may save the remaining power after clock

gating [61].

As discussed in [6], since reducing the issue rate does not change the number of instruc­

tions executed by the execution units, it can only reduce the power consumed by the clocks

driving execution units. The clock network consumes 32% of processor power. Assuming

the percentage of power consumed by clocks is a constant for each component, reducing

the issue rate by half can reduce the power consumed by the clocks driving the integer

execution units by half. It equals the saving on total processor power consumption by

10% x 32% x 1/2 = 1.6%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 82

m cf art swim lucas applu ammp facerec
Tim e in low power m ode (%) 91.9 73.8 88.1 79.9 70.2 47.8 30.8
Power reduction on issue logic (%) 32.2 25.8 30.8 28.0 24.6 16.7 10.8
Power reduction on execution unit (%) 14.7 11.8 14.1 12.8 11.2 7.6 4.9

Table 5.3: P ercen tage o f ex ecu tio n tim e in low pow er m od e, and p ercentage o f pow er red u ction
o n th e issu e log ic and ex ecu tio n u n its by th e load in d ica tor schem e under th e sy stem w ith 1 G H z
processor.

It is normally unknown how many instructions can be issued in a given cycle until all

the choices are exhausted. Thus, reducing the issue rate will reduce the amount of issue

attem pts if the program execution time is not extended. Therefore, reducing the issue

rate can save power on both issue arbiters and clocks for the issue logic. For the issue

logic, the arbiters including the driving clocks consume 70% of the issue queue power.

Thus, reducing the issue rate by half can reduce the to tal processor power consumption by

18% x 70% x 1/2 = 6.3%. The total processor power reduction by halving the issue rate is

6.3% + 1.6% = 7.9%. This estimation method is the same as tha t used in [6].

5.5 E ffectiven ess o f Load In d icator Schem e

In this section, we will discuss the effectiveness of the load indicator scheme on reducing

processor power consumption for memory-intensive applications. The results on a wider

range of applications will be presented in Section 5.7. All results are for the system with 1

GHz processor unless mentioned specifically.

From the SPEC2000 benchmark suite, we select seven memory-intensive applications,

whose memory stall portions are higher than 20% under our experimental setup3. Table 5.3

3 The memory stall portion of a program is defined as the percentage of tim e difference between running
the program under a real system and under a system w ith an infinitely large L2 cache.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 83

B Normal
B Always-halving
□ Load indicator

ammpswim

Figure 5.5: IPC values under the system with 1 GHz processors.

shows the percentage of power reduction on the issue logic and execution units for these

seven applications by the load indicator scheme. The load indicator scheme puts the proces­

sor in the low power execution mode at 30.8% (for program facerec) to 91.9% (for program

mcf) of the total execution time. On average, the processor spends 68.9% of time in the low

power mode. This translates to 24.1% (35% x 68.9%) and 11.0% (16% x 68.9%) average

reduction on the power consumed by the issue logic and execution units compared with the

normal execution scheme, respectively. Thus, the load indicator scheme is very effective in

capturing power saving opportunities for memory-intensive applications.

For general-purpose computer systems, the reduction of processor power consumption

must not cause severe performance loss. Figure 5.5 shows the IPC values of the seven

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 84

memory-intensive applications under different schemes. Compared with the scheme tha t

the processor always executes under the normal mode [normal), the scheme tha t always

reduces the processor issue rate by half (always-halving) decreases IPC values by up to

13.9% (for program facerec). For program facerec, the always-halving issue rate scheme

can save power by 7.9% but at the price of 13.9% performance loss. This results in a 7.0%

increase on the total energy consumption. Thus, simply reducing the processor issue rate

is not a solution to save power and energy. The processor issue rate must be reduced at a

right time in order to retain performance and save energy.

The average performance loss by the load indicator scheme on the seven programs is

only 0.5%. The maximum IPC decrease is only 1.7% (on program lucas). Actually, the

performance of program applu is improved slightly because fewer mis-speculative instruc­

tions are issued and executed. As an example, program facerec is executed under the low

power mode by 30.8% of its total execution time. If the performance loss of 13.9% by the

alway-halving scheme were evenly distributed over the whole execution period, the perfor­

mance loss by reducing the issue rate at 30.8% of time would be 4.3%. However, the load

indicator scheme only decreases performance by 0.9% for the program. This indicates that

the load indicator can reduce the processor issue rate at the right time, and can save power

consumption and retain performance simultaneously.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 85

Parameters Values
Sample width 64 cycles
E C (I i p c < 1-1) & (F P i p c < 0.4)
DC (I i p c >1-2) | (F P i p c > 0.5)

Table 5.4: Parameters for instruction indicator. EC and DC are the conditions for enabling and
disabling the low power mode. I jp c and FPjpc are the number of integer instructions issued per
cycle and the number of floating point instructions issued per cycle, respectively.

5.6 C om b in in g L ocal and L ook-ahead O p tim ization s

5.6.1 M otivation

In previous sections, we have already shown tha t the existence of outstanding cache load

misses is a strong indicator reflecting future variants of program requirements on processor

resources. Based on this information, the load indicator scheme dynamically adjusts the

processor issue rate to save power consumption without degrading performance. However,

this technique only has significant impacts on memory-intensive applications. The programs

with negligible memory stall times seldom have chances to go to the low power mode. Thus,

their power consumption and performance will not be affected.

Figure 5.6 shows the percentage of program execution time in low power mode under

our scheme and the instruction indicator for fifteen SPEC2000 applications with a wide

range of computation and memory demands. The programs are sorted by their memory

stall portions, which range from 71% for m cf to 3% for twolf. The parameters used in the

instruction indicator scheme are summarized in Table 5.4. The parameters have already

been tuned for these applications under the system configuration.

For ten of the fifteen programs, the load indicator puts the processor in the low power

mode more or at least comparably frequently, compared with the instruction indicator. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 86

BLoad
■ Instruction

Figure 5.6: Percentage of total execution time in low power mode under our scheme (load) and
instruction indicator (instruction).

programs losing more than half of their total execution time to memory stall (m cf and art),

our scheme and the instruction indicator put the processor into the low power mode by

almost the same amount of time. Because main memory accesses are so frequent for these

two applications (more than five accesses per 100 instructions), the low IPC values are

mainly caused by the frequent memory stall. Thus, the load indicator and the instruction

indicator schemes capture the same effect from different perspectives. The look-ahead

ability of our scheme does not gain much because the execution demanding is already low

enough during most of the execution time. For programs with memory stall portions ranging

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 87

from 35% to 40% (applu to swim), our scheme captures much more opportunities to put the

processor to the low power mode than the instruction indicator. As discussed in Section 5.2,

this mainly comes from the prediction of future variants and the redistribution of current

work. For programs with modest memory stall portion (8% for mgrid to 29% for ammp),

the load indicator scheme captures more power-saving opportunities on four applications

and less opportunities on three applications. For applications with low memory stall portion

(about 3% for vpr to twolf), our scheme captures less opportunities to put processor to the

low power mode since only a small percentage of time has outstanding load misses.

Although using memory access information to guide the processor issue rate adjust­

ment is simple and timely, it fails to capture another important factor tha t also causes the

variants of program resource requirements — the change of program’s inherent instruction-

level parallelism (ILP). In contrast, the metric of instructions per cycle (IPC) reflects the

overall effects of the change of ILP and the change of program behavior due to limited

hardware resources [6]. However, in order to smooth out the spurs of IPC variants caused

by temporary factors, the IPC values used to trigger processor issue rate switching must

be monitored and averaged during a large enough time window. Thus, simply using IPC

variants as the indicator may also lose opportunities to save power or retain performance

due to the delayed captures and triggers.

In comparisons, the load indicator scheme is application- and system-independent; while

the instruction indicator scheme needs system- and application-dependent parameters. The

load indicator scheme captures the future program variants caused by memory accesses;

while the instruction indicator scheme captures the current program variants caused by

program’s inherent ILP changes and hardware constraints.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 88

5.6.2 Load-instruction Indicator

W ith the knowledge of future variants, it is possible to redistribute processor work in order

to generate more power saving opportunities. W ith the knowledge of current variants,

it is possible to capture current power saving opportunities. Combining these two kinds

of optimizations together, we propose another technique, called load-instruction indicator,

tha t utilizes both the memory access information and the IPC values to guide the processor

issue rate switches.

The scheme works as follows. When there are no outstanding load misses, the hardware

monitors the issued IPC and adjusts the processor issue rate, as in the instruction indicator

technique. When a cache load miss happens and the processor is in the normal execution

mode, the processor will switch to the low power mode. During the service of cache load

misses, the monitoring of issued IPC is suspended. It will be resumed when all the out­

standing load misses finish. By combining local and look-ahead optimizations, the switching

of processor issue rate can be done more effectively and more timely. The overhead of the

scheme is negligible, since both the load indicator and the instruction indicator have trivial

overhead.

There are several choices in suspending and resuming the IPC monitoring. One choice

is to clear all counters when a cache load miss is detected. Another choice is to just freeze

the values in the counters when cache load misses are served. We test both choices and find

tha t they almost perform the same. In our experiments, all the counters are cleared when

a load miss is detected.

if (a load miss happens) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 89

if (counter for load misses = 0)

record current power mode as previous mode

counter for load misses + 1

if (in normal mode)

transfer to low power mode

reset or stop counters for sampling cycle and issued instructions

>

if (a load miss is resolved) {

counter for load misses - 1

if (no outstanding load misses) {

return to normal mode (OR previous mode)

restart counters for sampling cycle and issued instructions

}

>

if (no outstanding load misses) {

if (reach sampling window boundary) {

if (in normal mode AND issued instructions below deactivating thresholds)

transfer to low power mode

if (in low power mode AND issued instructions above activating thresholds)

return to normal mode

reset counters for sampling cycle and issued instructions

>

else {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 90

sam pling cycle + 1

is su e d in s t r u c t io n s + number of in s t ru c t io n s is su ed in t h i s cycle

>

>

5.7 C om parisons b etw een D ifferent Schem es

In this section, we compare the three schemes we have discussed so far: the load indicator,

instruction indicator, and load-instruction indicator.

5.7.1 Power Savings

Figure 5.7 shows the processor power reductions under three different schemes for the fifteen

programs. We can see tha t for the seven memory intensive applications, the load indicator

reduces the processor power consumption by 5.4%, compared with a 4.2% power saving by

the instruction indicator scheme. In some cases, the power reduction difference is large.

For example, the load indicator saves 7.0% of total power for program swim, while the

instruction indicator only saves 2.1% of to tal power. As we have discussed in Section 5.2,

for this program, 60.4% of sampling windows have IPC values higher than the thresholds

under the normal execution, although almost no instructions are issued in 21.9% of sampling

windows. Thus, under the instruction indicator scheme, less than 40% of time windows can

be executed in the low power mode. In contrast, the load indicator scheme foresees the low

demanding and idle periods and delays current work. Thus, the processor can stay at the

low power mode much longer without causing severe performance loss. For three programs

whose memory stall portions are only about 3% (vpr to twolf), the load indicator saves less

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 91

□ I ,oail

■ Instruction
□ Load-instruction

Figure 5.7: Percentage of power reduction.

power than the instruction indicator. For all the fifteen applications, the power reduction

by the load indicator ranges from 0.5% (twolf) to 7.3% (mcf). The instruction indicator

saves power by 0.6% (mgrict) to 7.4% (mcf). The average power reductions by the load

indicator and the instruction indicator are 3.3% and 3.1%, respectively.

The load indicator performs better for memory-intensive applications, while the instruc­

tion indicator performs better for programs with small memory stall portions. The load-

instruction technique combines the merits of both techniques and achieves higher power

saving than either technique. The power reduction by the load-instruction technique ranges

from 1.5% (wupwise) to 7.3% (mcf). The average power saving is 4.4%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 92

I A lw ay s-h a lv in g B L o ad □ In s tru c tio n B L o ad -in stru c tio n

1.05

1.00 -

0 0.95 -
3h

0.90

o
Z 0.85

0.80

0.75

Figure 5.8: Normalized IPC values.

5.7.2 Perform ance Impact

Figure 5.8 presents the IPC values under the three schemes for the fifteen programs. The

results under the always-halving scheme are also presented as a reference. All the values are

normalized to the IPC results under the processor tha t is always in the normal execution

mode.

The load indicator causes the performance loss by up to 1.7% (lucas). The average

performance loss is 0.5%. The instruction indicator degrades performance by up to 3.7%

(facerec). The average performance loss is 0.9%. The load-instruction technique causes a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 93

□ Load
■ Instruction
□ Load-instruction

Figure 5.9: Percentage of energy reduction.

performance loss by up to 4.1% (vpr). The average performance loss is 1.1%. Among the

fifteen applications, the load indicator scheme gains higher IPC values than the instruction

indicator scheme on six programs. The load-instruction indicator scheme gains the lowest

performance on only six programs although it puts the processor into the low power mode

the most frequently.

5.7.3 Energy R eduction

The energy reduction is shown in Figure 5.9. The load indicator reduces the processor energy

consumption by 0.1% (wupwise) to 7.1% (applu). The maximum energy reduction by the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 94

instruction indicator is 6.3% (mcf). The load-instruction technique reduces the processor

energy consumption by up to 7.2% (applu). The load indicator and the load-instruction

indicator do not increase energy consumption for any program. However, the instruction

indicator increases the energy consumption for program facerec slightly (0.5%). This is

because the energy saved by the scheme cannot pay off the increase due to performance

loss. Among the fifteen programs, the load-instruction technique achieves the lowest energy

consumption for eleven programs. The average energy reduction by the load-instruction

technique is 3.2%, compared with 2.9% by the load indicator and 2.2% by the instruction

indicator.

For high performance systems, reducing power is mainly for temperature control. Under

this aspect, the energy-delay product (E D P) and E D 2P are two suitable metrics [13]. The

load indicator, instruction indicator, and load-instruction indicator can reduce the average

E D P by 2.4%, 1.3%, and 2.0%; and can reduce the average E D 2P by 1.9%, 0.3%, and

1.0%, respectively.

5.7.4 Different Configurations

Next, we will compare the effectiveness of the load indicator, instruction indicator, and

load-instruction indicator under different system configurations. We only present the power

saving results here. Figure 5.10 shows the percentage of reduction on the whole processor

power consumption. For clarity, we only present five representative applications in the

figure, which consist applications with high, moderate, and low memory access portions.

The average values are for all the fifteen applications. When the processor speed scales

from 466 MHz to 1 GHz and 2 GHz, the average power reduction by the load indicator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 95

HLoad
■ Instruction
□ Load-instruction

Averageswim

Figure 5.10: Power reduction under system s w ith processor speed scaling from 466 MHz to 1 GHz
and 2 GHz.

increases from 5.1% to 5.4% and 5.8%. As the speed gap between processor and memory

widens, the processor spends more time waiting for memory accesses to return. Thus, the

effectiveness of the load indicator in reducing power and energy consumption increases.

As the processor speed scales from 466 MHz to 1 GHz and 2 GHz, the average power

reduction by the instruction indicator increases from 2.9% to 3.1% and 5.8%; and the

average power reduction by the load-instruction indicator increases from 4.0% to 4.4% and

6.6%. The load-instruction indicator always gains the largest power saving under different

system configurations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 96

5000 1

4500 - ■ Normal
HI Low4000 -

3500 -

3000 -

2500 -

2000 -

Load-instruction1500 -
Instruction

1000 - Load:

500 -

Figure 5.11: Average intervals in the low power m ode and the normal execution m ode under
different schemes.

5.7.5 Average Intervals in Each Power M ode

Figure 5.11 compares the average intervals in the low power mode and the normal execution

mode under the three schemes. On average, the programs stay at the low power mode for

236 cycles before returning to the normal execution mode under the load indicator scheme.

The average interval in the normal execution mode is 631 cycles. Under the instruction

indicator scheme, the average intervals in the low power mode and the normal execution

mode are 859 cycles and 1101 cycles, respectively. The average low power interval of the

load-instruction scheme is 260 cycles, and the average normal execution interval is 196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 97

cycles.

In general, the load indicator scheme generates shorter intervals in each power mode than

the instruction indicator scheme. This indicates tha t the load indicator scheme are more

responsive than the instruction indicator scheme. On the other hand, the load indicator

scheme causes the programs with low memory stall portions to stay at the normal execution

mode longer than the instruction indicator scheme. This is because the load indicator

cannot capture the changes of program behavior due to the program ILP variants. For

most programs, the load-instruction indicator scheme causes the most frequent power mode

switching. It can capture the variants of program behavior more timely than the other two

schemes, and can cover both compute- and memory- intensive applications.

5.8 L oad-register In d icator Schem e

In previous sections, we have already shown tha t the load indicator scheme is an effective

look-ahead technique in capturing the power saving opportunities caused by main memory

accesses. The load indicator can be further combined with the instruction indicator to save

power for both compute- and memory-intensive applications. A different direction to extend

the load indicator in order to cover a wider range of applications is to combine it with other

early indicators tha t reflect the changes of program behavior. One of such indicators is the

usage of hardware resources.

Each on-the-fly instruction occupies some hardware resources, such as physical registers,

reorder buffer entries, and load/store queue entries. When there are only a small number of

free entries left in those hardware resources, it is very likely tha t the processor will stall in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 98

the near future. The cumulation of occupied entries may come from the lack of ILP among

the on-the-fly instructions or from the lack of other hardware resources.

For the system used in our study, we find tha t the number of free physical registers can

be used to identify the execution periods in which programs only require partial processor

issue width. We propose a scheme tha t uses both the register usage information and the

cache load miss information to trigger the issue rate switching. We call this scheme load-

register indicator. The scheme reduces the processor issue rate when the number of free

registers drops below a threshold or when there are outstanding load misses. The full issue

rate is resumed when the number of free registers increases above another threshold and

when there are no outstanding load misses. Considering tha t the shortage of functional

units may also cause instructions holding registers for a long time, the scheme checks the

availability of functional units when the number of free registers drops below the switching

threshold. If any instruction fails to get the required functional unit in the previous cycle,

the processor will stay at the normal execution mode.

if (a cache load miss happens)

miss register value + 1;

if (processor is in normal mode)

processor transfers to the low power mode;

if (number of free registers < threshold_low AND no FU shortage)

if (processor is in normal mode)

processor transfers to the low power mode;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 99

Schemes Enabling low power m ode Disabling low power m ode

Load indicator L D > 0 L D = 0
Load-register indicator { L D > 0) I {Ireg < T E i r)

I {Freg < T E f R)
{L D = 0) & {Ireg > T D i r)
& {Freg > T D f r)

Table 5.5: T he conditions for enabling and disabling the low power m ode under different schem es. LD
is the number of outstanding load misses. Ireg and Freg are the numbers o f free integer and floating-point
registers. T E x x and T D x x are thresholds for enabling and disabling the low power mode, respectively.

if (a cache load miss resolves)

miss register value - 1;

if (miss register value = 0 AND number of free registers > threshold_high

AND processor is in low power mode)

processor returns to the normal mode;

In contrast to the load indicator scheme, which needs no system-dependent parameters,

the load-register scheme requires system-dependent threshold values to trigger the processor

issue rate switching. However, the load-register scheme has effects on a wider range of

programs, as shown later in the experimental results. The increase of hardware complexity

of the load-register scheme is also trivial. Only the counters for the free registers and the

comparators to the thresholds are needed.

The load-register scheme can capture the variants of program resource requirements

caused by both the changes of ILP and the limited hardware resources. In addition, it can

identify the program behavior changes more timely than the instruction indicator because

the existence of cache load misses and the number of free registers can be monitored at finer

time granularity than the IPC values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 100

Table 5.5 summarizes the conditions for enabling and disabling the low power mode

under the load indicator and the load-register indicator schemes.

5.9 E ffectiven ess o f L oad-register Schem e

In this section, we will show that, the combination of cache load misses and the number of

free physical registers can be used to identify power saving opportunities for both compute-

and memory- intensive applications.

5.9.1 Power Savings

Figure 5.12 compares the processor power reduction under the load-register scheme with

the load indicator and the load-instruction indicator schemes. For all the fifteen applica­

tions, the load-register indicator scheme saves more power than the load indicator scheme.

Compared with the load-instruction indicator scheme, the load-register indicator scheme

saves more or at least comparable power for thirteen programs. Only for two programs,

vpr and twolf, the load-register scheme saves less power than the load-instruction indicator.

The power reduction by the load-register scheme ranges from 2.4% (for gcc) to 7.8% (for

swim). The average power reduction is 5.5%, which is 69% of the maximum power saving

tha t can be achieved by halving the processor issue rate. In comparisons, the load indicator

scheme and the load-instruction indicator scheme only achieve 42% and 56% of the maxi­

mum power saving, respectively. The power savings for ten programs by the load-register

indicator scheme is higher than 5%. In contrast, only five programs get power saving higher

than 5% under the load indicator scheme; and five programs have power saving higher than

5% under the load-instruction indicator scheme.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 101

■ Load
■ Load-instruction
□ Load-register

Figure 5.12: Percentage of power reduction under the load indicator, load-instruction indicator,
and load-register indicator schem es on system s w ith 1 GHz processors.

Figure 5.13 further shows the decomposition of program execution time in the low power

mode under the load-register indicator scheme for the fifteen SPEC2000 applications. The

load and register portions correspond to the low power execution periods triggered only by

the load indicator and the register indicator, respectively. The overlap portion corresponds

to those caused by both triggers. In general, the existence of cache load misses triggers more

transitions to the low power mode for applications with high memory stall portions, and

the shortage of free registers plays more important roles for applications with low memory

stall portions.

Table 5.6 summarizes the parameters used in the load-register scheme.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 102

□ Register
■ Overlap
■ Load

Figure 5.13: Percentage of to ta l execution tim e in the low power m ode under the load-register
indicator scheme. T he load and register portions correspond to the low power execution periods
triggered only by the load indicator and th e register indicator, respectively. The overlap portion
corresponds to those caused by both triggers.

5.9.2 Energy Savings

The reduction of energy consumption is shown in Figure 5.14. The load-register technique

reduces the processor energy consumption by up to 8.8% (applu). However, it increases the

energy consumption for programs wupwise and vortex by 3.0% and 0.2%, respectively. This

is because the energy saved by the scheme cannot pay off the increase due to performance

loss. The average energy reduction by the load-register technique is 3.0%, compared with

2.9% by the load indicator and 3.2% by the load-instruction indicator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 103

Conditions Values
Enabling (L D > 0) | (Ireg < 8) | (Freg < 4)
Disabling (L D - 0) & (Ireg > 12) k (Freg) > 8)

Table 5.6: The conditions for enabling and disabling the low power m ode by the load-register indicator
scheme. LD is the number of outstanding load misses. Ireg and Freg are the numbers of free integer and
floating-point registers, respectively.

In comparison, both load-instruction indicator and load-register indicator can effectively

reduce power consumption for compute- and memory-intensive applications. Both need

system-related parameters to guide the issue rate adjustment. The load-register scheme can

make the adjustment at a finer grain than the load-instruction indicator. Our experimental

results indicate tha t further combining the load indicator, the instruction indicator, and

the register indicator can only bring diminishing power-saving return compared with either

load-instruction or load-register schemes.

5.10 R ela ted W ork

Recently, there has been an increasing number of studies targeting reducing the power

consumption of general-purpose processors. Pipeline gating reduces the processor energy

consumption by preventing wrong-path instructions from entering the pipelines [51]. Au­

thors in [29] propose power saving techniques to avoid unnecessary comparisons at the

wake-up logic. Dynamically adjusting the issue queue size, the reorder buffer size, and the

load/store queue size is an effective approach to reducing the power consumption of issue

logic [17, 29, 56].

Authors in [30] propose a method to reduce processor energy consumption by switch­

ing the processor execution between out-of-order and in-order execution modes under the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 104

■ Load
■ L oad-in struction

□ Load-register

Figure 5.14: Percentage of energy reduction under the load indicator, load-instruction indicator,
and load-register indicator schemes under system s w ith 1 GHz processors.

guidance of an external performance indicator. The dual speed pipeline processor saves

power by executing non-critical instructions in slow components and retains performance

by executing critical instructions in fast components [57, 62], The Pentium 4 processor

explores the StopClock structure to reduce the power consumption, where the clock signal

to a bulk of processor logic is halted for a short time period [33]. The pipeline balancing

technique dynamically adjusts the processor issue rate for each sampling window based on

the monitored IPC [6]. Authors in [8] propose to use the current rate of instructions pass­

ing pipeline stages to throttle the processor front-end for power saving. Authors in [38, 61]

target energy saving for multimedia applications by using dynamic voltage scaling and ar­

chitectural adaptation at the granularity of a frame and a fixed period within the frame.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 105

Buyuktosunoglu et. al. propose a combination of fetch gating and issue queue adaptation

to reduce the power consumed by the front-end instruction delivery path [16]. Huang et. al.

propose a positional adaptation technique tha t chooses configurations based on particular

code sections [35].

The effectiveness of load indicator scheme in reducing processor power consumption

depends on the memory system performance. Recently, researchers have proposed to utilize

the idle intervals to perform precomputation-based prefetching [4, 7, 23, 49, 91]. Those

are performance-oriented techniques, which perform a large number of speculative (maybe

duplicate or useless) operations, thus may not be efficient from an energy consumption

point of view. Different from those performance-oriented techniques, our work targets

energy saving by utilizing the idle intervals.

5.11 S um m ary

Adjusting the processor issue rate based on the resource requirement of programs can ef­

fectively reduce the processor power consumption with a negligible performance loss. Our

study has shown tha t the existence of cache load misses is a strong indicator reflecting

the reduction on a near future resource requirement. For memory-intensive applications,

simply applying this indicator can capture most of the program behavior variants timely.

Compared with the pipeline balancing technique using the instruction indicator, the load

indicator can save more power with comparable performance losses.

The load-instruction scheme adaptively utilizes both the load indicator and the instruc­

tion indicator used in the pipeline balancing technique. Compared with the load indicator,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. LOOK-AHEAD ADAPTATION 106

this scheme can capture the current power saving opportunities caused by the program ILP

variants. Compared with the pipeline balancing, it can identify future program variants

and redistribute current work. As shown by our experimental results, the load-instruction

scheme works well for both compute- and memory- intensive applications.

The number of free registers can also indicate the variants of program future resource

requirements timely. The load-register indicator utilizes the information of both cache load

misses and the register utilization, and is also effective for both compute- and memory­

intensive applications.

The load indicator, the load-instruction indicator, and the load-register indicator

schemes reduce the processor power consumed by the issue logic and execution units. They

can be applied together with other techniques tha t reduce power consumed by other com­

ponents such on-chip caches to further reduce the total processor power consumption.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion and Future Work

6.1 C onclu sion

W ith the dramatic improvements on fabrication techniques and architecture designs, com­

puter system performance has been increasing exponentially for several decades. A negative

byproduct of this fast performance improvement, nevertheless, is the undesirable increase of

power consumption. High power consumption shortens battery lifetime of portable systems

and causes high cooling and package cost on performance-oriented systems. To countercheck

this trend, researchers have proposed a number of techniques at various design levels. As

a natural bridge between circuits and applications, architectural designs play an important

role in reducing system power consumption. They can effectively utilize low-power circuit

techniques by exploiting application characteristics.

A principle in low-power architecture designs is to avoid unnecessary operations when­

ever possible. For general-purpose systems, the system designs are optimized to achieve the

best performance for a wide range of applications. Thus, it is common tha t a significant

amount of hardware resources are underutilized for a specific application or during a certain

execution period. However, those underutilized resources will consume the same amount

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSION AND FUTURE WORK 108

of power if no power-aware designs are applied. In this dissertation, we have discussed two

memory-related low-power microarchitecture designs tha t reduce unnecessary accesses to

caches and processor pipelines.

Set-associative caches are widely used in modern computer systems because they can

reduce cache conflict misses and improve the memory system performance. However, the

conventional implementations of set-associative caches are not energy-efficient by their na­

ture. Our first work proposes an access mode prediction cache structure to address this

issue. We find tha t the way-prediction technique only works well for applications with

good locality, while the phased technique only works well for application with poor local­

ity. The cache energy consumption can be minimized when a cache hit is handled by the

way-prediction technique and a cache miss is handled by the phased technique. The AMP

cache dynamically applies these two techniques for the next cache reference based on the

cache hit/m iss prediction. We also optimize a way-prediction scheme, multicolumn-based

way-prediction, for energy reduction. Our experimental results indicate tha t the AMP

cache with multicolumn way-prediction is a nearly optimal cache structure in terms of both

energy consumption and performance, compared with existing solutions.

Our second work focuses on reducing power consumption on the processor pipeline. Dy­

namically adjusting the processor issue rate is an effective technique to reduce the power

consumed by the issue logic and execution units. We find tha t a simple scheme based on

the existence of main memory load accesses can predict the future degrade on computation

demands and capture the power saving opportunities. Our study indicates tha t this load

indicator scheme can effectively reduce the power consumption for memory-intensive ap­

plications with negligible performance impacts. The load indicator scheme can be further

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSION AND FUTURE WORK 109

combined with other indicators to save power for both compute- and memory-intensive

applications. The load-instruction indicator scheme utilizes both the existence of mem­

ory accesses and the number of instruction issued in each time window. The load-register

scheme uses the memory access information and the number of unoccupied registers to guide

the issue rate switching. Different from the load indicator scheme, the later two schemes

need some system-dependent parameters to make the adaptation. However, they can cover

a wider range of applications.

The techniques we have proposed in this dissertation can be applied together with each

other or with power-saving techniques tha t target other components to further reduce the

power consumption of the whole system.

6.2 F uture W ork

This dissertation has been focused on hardware approaches. Based on our experience on low

power designs, further significant improvements are likely to come from hardware/software

cooperations at different levels, which have been studied but mainly for performance ob­

jectives. At the system level, for example, operating systems may actively turn on/off

computing nodes, hard disks, or a portion of processors in multiprocessors, as long as fu­

ture performance demand is predictable. At a lower level, profiling tools may analyze phases

of runtime power demands for a particular application, and then the processor power can be

adjusted to the phases with appropriate hardware support. Currently, it is hard to predict

the performance loss of a program after applying the architecture adaptation. This fact is

undesirable especially for applications requiring guaranteed or predictable response time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSION AND FUTURE WORK 110

we want to first study how to control the performance loss with software support. W ith the

flexibility and long-range visibility, software may help to address this issue by providing some

feedback information to the adaptation mechanism. We also want to study, when software

support is present, how to dynamically choose the best indicator or the best combination

of indicators, and how to reduce the complexity and overhead of the implementation.

SMT (simultaneous multithreading) [71], a recent advance in computer architecture,

also provides new platforms for low power research. On SMT processors, multiple threads

share some common hardware resources such as instruction fetching units, physical regis­

ters, instruction issue queue, scheduling logic, caches, and main memory units. How to

efficiently and effectively utilize those resources among multiple threads is an im portant

research topic. Some hardware resources, particularly caches, may be either shared or

partitioned for the threads, each with tradeoffs on performance for different application

scenarios. If all or most threads are memory-intensive applications, cache conflict may be

a severe issue and thus partitioned cache is preferred to avoid significant performance de­

grade. On the other hand, when the threads have unbalanced working set sizes, shared

caches are favored because the caches will be better utilized than partitioned caches. While

performance-oriented studies have been conducted, energy efficiency has received mush less

attentions. Prom an energy consumption point of view, building caches using small blocks

is much more energy-efficient, because a smaller fraction of chip area will be charged. Thus,

partitioning data caches, especially large L2 or even L3 caches, is favored by energy saving.

We are investigating approaches tha t partition the caches into a number of small blocks and

dynamically assign those blocks to threads according to their current data access patterns.

Our future research attem pts to answer the following questions: (1) how to implement cache

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSION AND FUTURE WORK 111

partitioning efficiently, without the increase of cache access time; (2) how to dynamically

assign blocks to multiple threads to maximize performance; and (3) how to improve cache

energy efficiency by dynamically turning on/off cache blocks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A. A g a r w a l a n d S. PUDAR. Column-associative caches: a technique for reducing the
miss rate for direct-mapped caches. In Proceedings o f the 20th International Symposium
on Computer Architecture, San Diego, CA, 1993.

[2] A. A g a r w a l , M. H o r o w i t z , a n d J. H e n n e s s y . Cache performance of operating
systems and multiprogramming workloads. AC M Transactions on Computer Systems,
6(4):393—431, November 1988.

[3] D. H. A l b o n e s i . Selective cache ways: On-demand cache resource allocation. In
Proceedings of the 32nd Annual AC M /IE E E International Symposium on Microarchi­
tecture (MICRO-32), pages 248-259, 1999.

[4] M. A n n a v a r a m , J. M. P a t e l , a n d E. S. D a v id s o n . D ata prefetching by dependence
graph precomputation. In Proceedings o f the 28th Annual International Symposium on
Computer Architecture, pages 52-61, 2001.

[5] Avant! Corporation. Avant! Star-Hspice Data Manual, http://www.avantcorp.com.

[6] R. I. B a h a r a n d S. M a n n e . Power and energy reduction via pipeline balancing. In
Proceedings of the 28th Annual International Symposium on Computer Architecture,
pages 218-229, 2001.

[7] R. B a l a s u b r a m o n i a n , S. D w a r k a d a s , a n d D. H. A l b o n e s i . Dynamically allo­
cating processor resources between nearby and distant ILP. In Proceedings of the 28th
Annual International Symposium on Computer Architecture, pages 26-37, 2001.

[8] A . BANIASADI a n d A . MOSHOVOS. Instruction flow-based front-end throttling for
power-aware high-performance processors. In Proceedings of the 2001 International
Symposium on Low Power Electronics and Design, pages 16-21, 2001.

[9] L. B e n i n i , A. B o g l i o l o , a n d G. D. M i c h e l i . A survey of design techniques for
system-level dynamic power management. 8(3), June 2000.

[10] J. E. B e n n e t t a n d M. J. F l y n n . Prediction caches for superscalar processors. In
Proceedings of the 30th Annual IE E E /A C M International Symposium on Microarchi­
tecture (MICRO-30), pages 81-91, 1997.

[11] W . J. B o w h i l l a n d e t . a l . A 300 MHz 64 b quad-issue CMOS RISC microprocessor.
In Proceedings of IEEE International Solid-State Circuits Conference, 1995.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.avantcorp.com

BIBLIOGRAPHY 113

[12] D. B r o o k s , V. T iw ari, a n d M. M a r t o n o s i . W attch: A framework for
architectural-level power analysis and optimizations. In Proceedings of the 27th Annual
International Symposium on Computer Architecture, pages 83-94, 2000.

[13] D. M. B r o o k s , P. B o s e , S . E . S c h u s t e r , H. J a c o b s o n , P. N. K u d v a ,
A. B u y u k t o s u n o g l u , J.-D . W e l l m a n , V. Z y u b a n , M . G u p t a , a n d P. W.
C o o k . Power-aware microarchitecture: Design and modeling challenges for next-
generation microprocessors. IEEE Micro, 20(6):26-44, November/December 2000.

[14] D. C. B u r g e r a n d T. M. A u s t i n . The simplescalar tool set, version 2.0. Technical
Report CS-TR-1997-1342, University of Wisconsin, Madison, 1997.

[15] J. A . B u t t s a n d G . S . S o h i . A s ta t ic p ow er m o d e l for a rc h ite c ts . In Proceedings
of the 33rd annual IE E E /A C M international symposium on Microarchitecture, p a g es

191-201, 2000.

[16] A. B u y u k t o s u n o g l u , T. K a r k h a n i s , D. A l b o n e s i , a n d P. B o s e . Energy efficient
co-adaptive instruction fetch and issue. In Proceedings of the 30th Annual International
Symposium on Computer Architecture, 2003.

[17] A. B u y u k t o s u n o g l u , S . S c h u s t e r , D. B r o o k s , P. B o s e , P. C o o k , a n d D. A l -
BONESI. An adaptive issue queue for reduced power at high performance. In Workshop
on Power-Aware Computer Systems, in conjunction with ASPLOS-IX, 2000.

[18] B . CALDER, D . G r u n w a l d , AND J . E m e r . Predictive sequential associative cache.
In Proceedings of the Second International Symposium on High-Performance Computer
Architecture (HPCA ’96), pages 244-253, 1996.

[19] B. C a l d e r a n d D. G r u n w a l d . Next cache line and set prediction. In Proc. of
the 22nd Annual International Symposium on Computer Architecture, pages 287-296,
1995.

[20] R . C a n a l , A . G o n z a l e z , a n d J . E . S m it h . Very low power pipelines using sig­
nificance compression. In Proceedings of the 33rd Annual IE E E /A C M International
Symposium on Microarchitecture (MICRO-33), pages 181-190, 2000.

[21] D. C a r m e a n . Invited talk: Power, a perspective from the desktop. In Kool Chips
Workshop, in conjunction with MICR033, 2000.

[22] J. H. C h a n g , H. C h a o , a n d K. S o . Cache design of a sub-micron CMOS system/370.
In Proceedings of the l f t h Annual International Symposium on Computer Architecture,
pages 208-213, 1987.

[23] J. D. C o l l i n s , H. W a n g , D. M. T u l l s e n , C. H u g h e s , Y .-F . L e e , D. L a v e r y ,
AND J. P . S h e n . Speculative precomputation: Long-range prefetching of delinquent
loads. In Proceedings of the 28th Annual International Symposium on Computer A r­
chitecture, pages 14-25, 2001.

[24] Compaq Computer Corporation. 21264/EV68CB and 21264/EV68DC Hardware Ref­
erence Manual, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 114

[25] V . CUPPU, B . JACOB, B . D a v is , a n d T . M u d g e . A performance comparison of
contemporary DRAM architectures. In Proceedings of the 26th Annual International
Symposium on Computer Architecture, pages 2 2 2 -2 3 3 , 1999.

[26] R . D e s i k a n , D . B u r g e r , AND S. W. K e c k l e r . Measuring experimental error in
microprocessor simulation. In Proceedings of the 28th Annual International Symposium
on Computer Architecture, pages 266-277, 2001.

[27] X. Du, X. Z h a n g , a n d Z. Z h u . Memory hierarchy considerations for cost-effective
cluster computing. IEEE Transactions on Computers, 49(9):915-933, Sept 2000.

[28] W . f e n L in , S. K. R e i n h a r d t , a n d D. B u r g e r . Reducing DRAM latencies with
an integrated memory hierarchy design. In Proceedings of the Seventh International
Symposium on High-Performance Computer Architecure, pages 301-312, 2001.

[29] D. F o l e g n a n i a n d A. G o n z a l e z . Energy-effective issue logic. In Proceedings of
the 28th Annual International Symposium on Computer Architecture, pages 230-239,
2001 .

[30] S. G h ia s i , J. C a s m ir a , a n d D. G r u n w a l d . Using IPC variation in workloads with
externally specified rates to reduce power consumption. In Workshop on Complexity-
Effective Design, in conjunction with the 27th Annual International Symposium on
Computer Architecture, 2000.

[31] R. G o n z a l e z a n d M. H o r o w i t z . Energy dissipation in general purpose micropro­
cessors. IEEE Journal of Solid-State Circuits, 31 (9):1277—1284, September 1996.

[32] M. K. G o w a n , L. L. B i r o , a n d D. B. J a c k s o n . Power considerations in the design
of the Alpha 21264 microprocessor. In Proceedings of the 1998 Conference on Design
Automation, pages 726-731, 1998.

[33] S. H. G u n t h e r , F. B in n s , D. M. C a r m e a n , a n d J. C. H a l l . Managing the impact
of increasing microprocessor power consumption. Intel Technology Journal, Ql, 2001.

[34] A. H a s e g a w a , I. K a w a s a k i , K. Y a m a d a , S. Y o s h i o k a , S. K a w a s a k i , a n d
P. B is w a s . SH3 — high code density, low-power. IEEE Micro, 15(6): 11—19, December
1995.

[35] M. H u a n g , J. R e n a u , a n d J. T o r r e l l a s . Positional adaptation of processors:
application to energy reduction. In Proceedings of the 30th Annual International Sym­
posium on Computer Architecture, 2003.

[36] M. H u a n g , J. R e n a u , S.-M. Y o o , a n d J. T o r r e l l a s . A framework for dynamic
energy efficiency and temperature management. In Proceedings of the 33rd Annual
IE E E /A C M International Symposium on Microarchitecture (MICRO-33), pages 202-
213, 2000.

[37] M. H u a n g , J. R e n a u , S.-M. Y o o , a n d J. T o r r e l l a s . LI data cache decomosition
for energy efficiency. In Proceedings of AC M /IE E E International Symposium on Low
Power Electronics and Design, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 115

[38] C. J . H u g h e s , J. S r in iv a s a n , a n d S. V. A d v e . Saving energy with architectural
and frequency adaptations for multimedia applications. In Proceedings of the Sf th
Annual International Symposium on Microarchitecture, pages 2 5 0 -2 6 1 , 2001 .

[39] K. I n o u e , T. I s h i h a r a , a n d K. M u r a k a m i . Way-predicting set-associative cache for
high performance and low energy consumption. In Proceedings of the 1999 International
Symposium on Low Power Electronics and Design, pages 273-275, 1999.

[40] Intel Corporation. AC P I specification minimizes power usage by PCs.
http: / / www.intel.com.

[41] M. J . Irwin a n d V. N a r a y a n a n . L ow power design: From soup to nuts. Tutorial
in conjunction with ISCA 2000, 2000.

[42] M . B. K A M BLE AND K . G h o s e . Analytical energy dissipation models for low-power
caches. In Proceedings o f the 1997 International Symposium on Low Power Electronics
and Design, pages 1 4 3 -1 4 8 , 1997.

[43] S . K a x i r a s , Z . H u , a n d M . M a r t o n o s i . Cache decay: Exploiting generational
behavior to reduce cache leakage power. In Proceedings of the 28th Annual International
Symposium on Computer Architecture, pages 2 4 0 -2 5 1 , 2001 .

[44] R. E. K e s s l e r , R. JO O SS, A. L e b e c k , a n d M. D. H i l l . Inexpensive implementa­
tions of set-associativity. In Proceedings o f the 16th Annual International Symposium
on Computer Architecture, pages 1 3 1 -1 3 9 , 1989.

[45] R. E. K e s s l e r . The Alpha 21264 microprocessor. IEEE Micro, 19(2):24-36, 1999.

[46] H . K im , V. N a r a y a n a n , M. K a n d e m ir , a n d M. I r w in . Multiple access caches:
Energy implications. In Proceedings o f the IEEE Computer Society Annual Workshop
on VLSI (WVLSP00), 2000.

[47] J . K in , M . G u p t a , a n d W . H . M a n g io n e - S m i t h . The filter cache: An energy
efficient memory structure. In Proceedings of the 30th Annual International Symposium
on Microarchitecture, pages 1 8 4 -1 9 3 , 1997.

[48] A . L e b e c k , X . F a n , H . Z e n g , a n d C . E l l i s . P ow er aw are p a g e a llo c a t io n . In Pro­
ceedings of the 9th international conference on Architectural support for programming
languages and operating systems, p a g es 105-116, 2000.

[49] C .-K . L u k . Tolerating memory latency through software-controlled pre-execution in
simultaneous multithreading processors. In Proceedings of the 28th Annual Interna­
tional Symposium on Computer Architecture, pages 4 0 -5 1 , 2001 .

[50] A. M a , M. Z h a n g , a n d K. A s a n o v i c . Way memoization to reduce fetch energy in
instruction caches. In Workshop on Complexity-Effective Design, in conjunction with
the 28th International Symposium on Computer Architecture, 2001.

[51] S. M a n n e , A. K l a u s e r , a n d D. G r u n w a l d . Pipeline gating: Speculation control
for energy reduction. In Proceedings of the 25th Annual International Symposium on
Computer Architecture, pages 1 3 2 -1 4 1 , 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.intel.com

BIBLIOGRAPHY 116

[52] M. M a r t o n o s i , D. B r o o k s , a n d P. B o s e . Modeling and analyzing cpu power and
performance: Metrics, methods, and abstractions. Tutorial in conjunction with HPCA
2001 , 2001 .

[53] S. M c F a r l i n g . Combining branch predictors. Technical Report TN-36, Digital Equip­
ment Corporation, Western Research Lab, June 1993.

[54] J. M o n t a n a r o a n d e t . a l . A 160-M H z 32-b 0.5-W CMOS RISC microprocessor.
Digital Technical Journal, 9(1):49—62, 1997.

[55] S.-T . P a n , K. So, a n d J. T. R a h m e h . Improving the accuracy of dynamic branch
prediction using branch correlation. In Proceedings of the Fifth International Con­
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-V), pages 76-84, 1992.

[56] D. PONOMAREV, G . K u c u k , a n d K . G h o s e . Reducing power requirements of in­
struction scheduling through dynamic allocation of multiple datapath resources. In
Proceedings of the Sf th Annual International Symposium on Microarchitecture, pages
90-101, 2001.

[57] R. P y r e d d y a n d G . T y s o n . Evaluating design tradeoffs in dual speed pipelines. In
Workshop on Complexity-Effective Design, in conjunction with the 28th International
Symposium on Computer Architecture, 2001.

[58] G . R e in m a n a n d N . J o u p p i. An integrated cache timing and power model. Technical
report, COMPAQ Western Research Lab, 1999.

[59] S. R i x n e r , W . J. D a l l y , U. J. K a p a s i , P. M a t t s o n , a n d J. D. O w e n s . Memory
access scheduling. In Proceedings o f the 27th Annual International Symposium on
Computer Architecture, pages 128-138, 2000.

[60] M. R o s e n b l u m , E. B u g n i o n , S. D e v i n e , a n d S. A. H e r r o d . Using the SimOS ma­
chine simulator to study complex computer systems. ACM Transactions on Modeling
and Computer Simulation, 7(1) :78—103, January 1997.

[61] R. S a s a n k a , C. J. H u g h e s , a n d S. V. A d v e . Joint local and global hardware
adaptations for energy. In Proceedings of the Tenth International Conference on A r­
chitectural Support for Programming Languages and Operating Systems (ASPLOS-X),
2002 .

[62] J. S. S e n g , E. S. T u n e , a n d D. M. T u l l s e n . Reducing power with dynamic
critical path information. In Proceedings o f the 34th Annual International Symposium
on Microarchitecture, pages 114-123, 2001.

[63] P . S h iv a k u m a r AND N . J o u p p i. An integrated cache timing, power, and area model.
Technical report, COMPAQ Western Research Lab, 2001.

[64] D. SlNGH AND V. T i w a r i . Power challenges in the internet world. In Cool Chips
Tutorial - An industrial perspective on low power processor design. In conjunction with
the 32nd Annual International Symposium on Microarchitecture, pages 8-15, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 117

[65] J. E. S m it h . A study of branch prediction strategies. In Proceedings of 8th Annual
International Symposium on Computer Architecture, pages 135-148, 1981.

[66] Standard Performance Evaluation Corporation. SPEC CPU2000.
http: / / www.spec.org.

[67] C.-L. Su AND A. M. DESPAIN. Cache design trade-offs for power and performance
optimization: a case study. In Proceedings 1995 International Symposium on Low
Power Design, pages 63-68, 1995.

[68] Synopsys Inc. PowerMill Data Sheet, http://www.synopsys.com.

[69] V. T i w a r i , D. S in g h , S. R a j g o p a l , G. M e h t a , R. P a t e l , a n d F. B a e z . Reducing
power in high-performance microprocessors. In Proceedings of the 1998 Conference on
Design Automation, pages 732-737, 1998.

[70] Tom’s Hardware Guide. Comparison of 21 Power Supplies.
http://www.tomshardware.com /howto.

[71] D. TULLSEN, S. E g g e r s , AND H. L e v y . Simultaneous multithreading: Maximizing
on-chip parallelism. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 392-403, 1995.

[72] G. T y s o n , M. F a r r e n s , J. M a t t h e w s , a n d A. R. P l e s z k u n . A modified approach
to data cache management. In Proceedings of the 28th Annual International Symposium
on Microarchitecture, pages 93-103, 1995.

[73] O. U n s a l , I. K o r e n , C. K r is h n a , a n d C. M o r i t z . Cool-fetch: Compiler-enabled
power-aware fetch throttling. AC M Computer Architecture Letters, 1:100-103, 2002.

[74] N. V i j a y k r i s h n a n , M. K a n d e m ir , M. J. I r w in , H. S. K im , a n d W. Y e . Energy-
driven integrated hardware-software optimizations using SimplePower. In Proceedings
of the 27th Annual International Symposium on Computer Architecture, pages 95-106,
2000 .

[75] L . V i l l a , M . Z h a n g , a n d K . A s a n o v i c . Dynamic zero compression for cache energy
reduction. In Proceedings of the 33rd Annual IE E E /A C M International Symposium on
Microarchitecture (MICRO-33), pages 214-220, 2000.

[76] D. W . WALL. Limits of instruction-level parallelism. In Fourth International Con­
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 1991.

[77] C. W EAVER, http://www.simplescalar.org/spec2000.html. SPEC2000 b in aries .

[78] K. W lLCOX AND S. M a n n e . Alpha processors: A history of power issues and a
look to the future. In Cool Chips Tutorial - An industrial perspective on low power
processor design. In conjunction with the 32nd Annual International Symposium on
Microarchitecture, pages 1 6 -3 7 , 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.spec.org
http://www.synopsys.com
http://www.tomshardware.com/howto
http://www.simplescalar.org/spec2000.html

BIBLIOGRAPHY 118

[79] S. J. E. W i l t o n a n d N. P. J o u p p i. An enhanced access and cycle time model for
on-chip caches. Technical Report WRL Research Report 93/5, DEC Western Research
Laboratory, 1994.

[80] J. Y a n g , Y. Z h a n g , a n d R. G u p t a . Frequent value compression in data caches. In
Proceedings o f the 33rd Annual IE E E /A C M International Symposium on Microarchi­
tecture (MICRO-33), pages 258-265, 2000.

[81] T .-Y . Y eh a n d Y. N. P a t t . Alternative implementations of two-level adaptive branch
prediction. In The 19th Annual International Symposium on Computer Architecture
(ISCA), pages 124-134, 1992.

[82] A . YOAZ, M . E r e z , R . R o n e n , a n d S. J o u r d a n . Speculation techniques for improv­
ing load related instruction scheduling. In Proceedings of the 26th Annual International
Symposium on Computer Architecture (ISCA ’99), pages 4 2 -5 3 , 1999.

[83] C . Z h a n g , X. Z h a n g , a n d Y. Y a n . T w o fast and high-associativity cache schemes.
IEEE Micro, 17(5):40-49, September/October 1997.

[84] X . Z h a n g , Z. Z h u , a n d X . D u . Analysis of commercial workload on SMP multipro­
cessors. In Performance’99 (extended abstract), 1999.

[85] Y. Z h a n g a n d J. Y a n g . L ow cost instruction cache designs for tag comparison
elimination. In Proceedings of A C M /IEEE International Symposium on Low Power
Electronics and Design, 2003.

[86] Z. Z h a n g , Z. Z h u , a n d X. Z h a n g . A permutation-based page interleaving scheme to
reduce row-buffer conflicts and exploit data locality. In Proceedings of the 33rd Annual
International Symposium on Microarchitecture, pages 32-41, 2000.

[87] Z. Z h a n g , Z. Z h u , a n d X. Z h a n g . Breaking address mapping symmetry at multi­
levels of memory heirarchy to reduce dram row-buffer conflicts. Journal of Instruction-
Level Parallelism, 3, October 2001.

[88] Z. Z h a n g , Z. Z h u , a n d X. Z h a n g . Cached DRAM for ILP processor memory access
latency reduction. IEEE Micro, 21(4):22-32, July/A ugust 2001.

[89] Z. Z h u a n d X. Z h a n g . Access-mode predictions for low-power cache design. IEEE
Micro, 22(2):58-71, M arch/April 2002.

[90] Z. Z h u , Z. Z h a n g , a n d X . Z h a n g . F in e-g ra in p r io r ity sch ed u lin g on m u lt i­
ch a n n e l m em o ry sy s te m s . In Proceedings the Eighth International Symposium on High-
Performance Computer Architecture, p a g es 1 0 7 -1 1 6 , 2002 .

[91] C . Z i l l e s a n d G. S o h i . Execution-based prediction using speculative slices. In
Proceedings of the 28th Annual International Symposium on Computer Architecture,
pages 2-13, 2001.

[92] V. V. Z y u b a n . Inherently low-power high-performance superscalar architectures. PhD
thesis, University of Notre Dame, Department of Computer Science and Engineering,
2000 .

with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Zhichun Zhu

Zhichun Zhu is born in Zhuzhou, Hunan, China. She received her B.S. degree in Computer

Engineering from Huazhong University of Science and Technology (HUST), Wuhan, Hubei,

China, in 1992. She entered the Ph.D. program in Computer Science at the College of

William and Mary in Fall 1998. Her research interests are computer architecture, perfor­

mance evaluation, and parallel and distributed computing. She is a student member of the

IEEE and the ACM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Power considerations for memory-related microarchitecture designs
	Recommended Citation

	tmp.1539734415.pdf.k6Oeq

