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Abstract

This thesis presents measurements of collective modes and ultrafast carrier 
relaxation dynamics in charge-density-wave (CDW) conductors and colossal 
magneto-resistance (CMR) manganites by means of femtosecond time-resolved 
optical spectroscopy. In these experiments, a femtosecond laser pump pulse excites a 
broad frequency spectrum of low-energy collective modes and electron-hole pairs via 
interband transitions in the material, thereby changing its optical properties. The low- 
energy collective excitations and quasiparticle relaxation and recombination processes 
are monitored by measuring the resulting photoinduced absorption as a function of 
probe pulse wavelength and time delay after photoexcitation. Therefore, the technique 
enables direct real-time measurements of non-equilibrium low-energy collective 
excitations and quasiparticle recombination dynamics.

First, we developed a general model to describe the photogeneration and 
detection mechanism of collective modes based on light absorption in two-color 
pump-probe experiments. The excitation of the density wave states can be well 
described by a spatially and time-dependent order parameter, which includes phase 
and amplitude excitations (phasons and amplitudons). The excitation mechanism is 
different from previous pump-probe transmission experiments in weakly absorbing 
crystals, in which the wave-vector of the excited modes is determined by the phase- 
matching condition of the pump beam. Since the absorption depth in CMR and CDW 
conductors is -100 nm for wavelengths in the visible to infrared range, a broad 
spectrum of collective modes with frequencies down to a few GHz are excited and 
propagate normal to the surface into the material. According to the model, the 
dispersion of the long-wavelength phason and amplitudon can be measured by 
changing the probe wavelength.

Second, we performed the first pump-probe spectroscopy from the ultraviolet to 
mid-infrared wavelength range to study low-frequency collective excitations, 
including temperature evolution, dispersion, damping, and anisotropy of amplitude 
mode and transverse phason in quasi-one dimensional CDW conductors, K0.3M0O3 
and K0.33M0O3 on ultrafast time scale. The transverse phason exhibits an acoustic-like 
dispersion relation in the frequency range from 5 - 4 0  GHz. The phason velocity is 
strongly anisotropic with a very weak temperature dependence. In contrast, the 
amplitude mode exhibits a weak (optic-like) dispersion relation with a frequency of 
1.66 THz at 30 K.

Third, we present femtosecond time-resolved infrared spectra from doped 
perovskite manganite thin films and single crystals. A low-energy collective mode is 
observed and discussed in terms of the opening of a pseudogap resulting from 
charge/orbital ordering phases. The softening of the collective mode cannot be 
explained solely by electronic instability. A cooperative Jahn-Teller type distortion of 
the Mn0 6 octahedra coupled to the collective mode is necessary to explain our results. 
Moreover, the quasiparticle dynamics in the vicinity of the metal-insulator transition 
is strongly affected by the presence of a pseudogap, phase separation and percolation, 
which are strongly dependent on temperature. Furthermore, a very long-lived 
relaxation process is observed, both in the metallic and insulating phase but which is 
absent in the paramagnetic phase. Therefore it is ascribed to a slow spin relaxation 
process. The dynamics of the spin system is further investigated in strained and 
unstrained thin films, which show a strong strain effect.

xi
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Chapter 1

Introduction

1.1  Strongly correlated electron systems

Understanding the physics of strongly correlated systems [1] -  i.e., systems 

exhibiting a strong interplay among the electronic-, lattice-, spin-, and/or orbital 

degrees of freedom (e.g., the high Tc cuprates [2], magnetic oxides [1, 3-5], heavy 

fermion systems [6], etc.,) -  has evolved into one of the most important problems 

confronting the condensed matter and materials science communities for several 

reasons.

First, strongly correlated systems tend to exhibit a rich variety of phases due to 

a strong competition among the various degrees of freedom [1]. The complex phase 

diagrams of correlated systems typically involve the close proximity of disparate 

phases, such as antiferromagnetic insulating, exotic superconducting, ferromagnetic, 

and non-Fermi liquid metallic, whose relationships are not yet well understood. It is 

therefore of great scientific interest to explore the relationship among the disparate

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

phases exhibited by these systems, particularly by studying the evolution of structural 

and dynamical properties of these systems across their diverse phase boundaries.

The effect of strong electron-electron correlations on the basic properties of a 

compound can be seen by considering the case of LaM n03, which, although not 

discussed further in this thesis, represents a very typical example. This oxide, if 

treated within the independent-electron approximation (i.e., writing the total wave 

function of the ^-electron system in the form of an antisymmetrized product of 

single-electron wave functions), is expected to be metallic, with an odd number of 

electrons per unit cell and a partially filled rf-band. In reality, as a consequence of 

strong correlations, which suppress charge fluctuations and therefore the electrical 

conductivity, LaM n03 is a rather good insulator at all temperatures, with an optical 

gap of about 3 eV [7].

Second, the diverse phases of many strongly correlated systems are also 

associated with exotic and dramatic phenomena whose origins are not yet well 

understood, including: “colossal” sensitivities of physical properties (e.g., structure, 

transport properties, magnetic properties, etc.) to external perturbations, including 

magnetic field [8-9], and optical illumination [10]; self-organization of charges (e.g., 

charge ‘stripe’) [11], orbitals (e.g., orbital-ordering) [11], and/or spins (e.g., magnetic 

polaron formation); and exotic phase behavior, such as non-Fermi liquid behavior, 

and electronic phase separation on length scales ranging from nanometer to 

micrometer [12]. Understanding the nature and origin of these exotic phenomena, as 

well as the novel states of matter exhibited by correlated systems, is o f great scientific 

interest.

Third, in addition to the substantial fundamental interest in the exotic properties 

exhibited by strongly correlated systems, it has long been recognized that the dramatic
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responsiveness of these materials to external control makes these systems potentially 

technologically useful as switches, sensors, and storage components. Importantly, a 

deeper understanding of how the exotic phases and physical properties of strongly 

correlated systems can be controlled is an essential prerequisite to effectively utilizing 

these systems as devices.

The dramatic transport properties exhibited by strongly correlated systems 

have raised a common central issue: what is the nature of the low-energy collective 

excitations? The low-energy collective modes participate in the diverse phase 

transitions exhibited by correlated systems and they respond to small external 

perturbations that drive static and dynamical transport. The collective modes, 

including the orbital degree of freedom, have a great impact on extraordinary 

properties. For example, Chuang et al. concluded that the exotic Fermi-surface 

topology in a layered manganite La^Sri.sM ^Oy is due to charge density wave (CDW) 

instabilities even in the ferromagnetic metallic state [13].

A detailed understanding of the intricate dynamics of electronic-, lattice-, spin-, 

and/or orbital degrees of freedom in strongly correlated systems therefore requires a 

careful investigation of how the low energy excitations evolve through the various 

phases of correlated systems. In this thesis, we apply time-resolved optical techniques 

to investigate the low energy dynamics of two prototypical strongly correlated 

systems:

a) CDW conductors

One-dimensional systems with modulated CDW are ideal for studying collective 

excitation phenomena. One such example is the linear chain compound K0.3M0O3 

(KMO) which undergoes a metal-insulator transition at T c d w  = 183 K. A CDW 

ground state develops below T c d w  where the long-range order appears. Above the
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Peierls transition temperature, KMO is an anisotropic metal. Electrical conductivity 

along the chains is typically three orders of magnitude smaller than that of copper and 

one to three orders of magnitude larger than perpendicular to the chains [14].

The structure of KMO contains rigid units comprised of clusters of ten distorted 

M o06 octahedra, sharing corners along the monoclinic 6-axis, as illustrated in Fig. 1. 

This corner sharing provides an easy path for the conduction electrons along the chain 

direction. The chains of the distorted Mo06 octahedra also share corners along the 

[102] direction and form infinite slabs separated by the alkaline cations. Along the 

chains, electrons are highly delocalized.

b

[102]

Figure 1. The schematic structure of K0.3M0O3 [14].
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b) Doped Manganites
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Figure 2. a) Crystal structure of doped manganites: L A {,xRExM n 03 b) the magnetic 
phase diagram of the Lai.xCaxMn03 system from Schiffer et al. [18],

Thin films of doped manganites with large magnetoresistance at room temperature 

open up new possibilities for applications in diverse areas of technology, including
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magnetic random access memories and read heads for hard disk drives. The recent 

interest in magnetoresistance of doped perovskite manganites was initiated by the 

discovery of a large room-temperature magnetoresistance, of the order AR/i?(FT=0) > 

60% with a 7-tesla field, in epitaxial thin films, Lao.67Bao.33Mn0 3  [15]. This was soon 

followed by the report of McCormack et al. [16] and Jin et al. [17] that thin-film 

Lao.67Cao.33Mn03  exhibits AR/R(H=6 T) = 127000% at 77 K. This large 

magnetoresistance effect has since been referred to as “colossal magnetoresistance”.

Manganites share the same crystal structure as the mineral perovskite. As shown 

in Fig. 2 (a), each manganese atom is surrounded by six equal-distance oxygen atoms 

to form a regular MnC>6 octahedron. The six oxygen atoms occupy the faces of a cube. 

Between the octahedral, at the comers of the cubes, lies a mixture of trivalent rare 

earth (LA) and divalent alkaline earth (RE) cations. These cations act as a charge 

reservoir for the manganese-oxygen bonds. Manganites have the general formula LAi_ 

xRExMn0 3 , and the overall manganese valence ranges from 3+ (atomic 3d4 

configuration at x=0) to 4+ (3d3 at x=l).

The magnetic phase diagram of the Lai.xCaxMn0 3  system is shown in Fig. 2(b) 

[18]. This phase diagram is also qualitatively true for other doped manganite 

perovskites such as Ndi.xSrxMn03  and Lai_xSrxMn03  [1]. The Curie temperature 

peaks around x ~ 0.3. The maximum Curie temperature of 380 K was observed in 

Lao.7Sro.3Mn0 3 . The structural properties o f the doped manganite perovskites show a 

strong correlation to their magnetic state. When the value of doping level x is 

increased, a metallic and ferromagnetic state develops, accompanied by a diminishing 

orthorhombic distortion.
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1. 2 Time-resolved nonlinear optical spectroscopy

The experimental requirements for studying low-energy dynamics of complex phase 

behavior and phase transitions in strongly correlated systems are quite severe, 

particularly in the long-wavelength limit. Specifically, the need to investigate the low 

energy dynamics directly in systems for which the charge-, spin-, lattice-, and orbital- 

degrees of freedom are often of comparable importance demands a versatile 

spectroscopy capable o f coupling to all these excitations. While stationary infrared 

spectroscopy measures the total of all contributions to the mid-infrared reflectivity 

and cannot clearly discern spectrally similar components, nonlinear time-resolved 

spectroscopy can provide such a distinction by separating the components in the time- 

domain.

Nonlinear optical interactions of laser fields with matter provide powerful 

spectroscopic tools for the understanding of microscopic interactions and dynamic 

processes. The ability to control pulse duration (to few femtoseconds), bandwidths 

(up to a 1 Hz resolution), and peak intensities (up to 1019 W/cm2) provides novel 

probes of elementary dynamic events. The advent of laser pulse sequences with 

controlled shapes and phases have opened up new directions with exciting 

possibilities. By virtue of the recent development of femtosecond lasers, ultrafast 

time-domain spectroscopies, especially pump-probe techniques, have been applied to 

studies of coherent excitations in various materials.

The strong coupling between spin, charge, and lattice degrees of freedom in 

strongly correlated systems makes it possible to manipulate the material properties via 

cooperative effects induced by optical excitation. The characteristic of the approach is 

that the system investigated is no longer in thermodynamic equilibrium. It is rather in 

an excited state whose decay into electronic-, spin-, and lattice- degrees of freedom is
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being probed. The electromagnetic responses of the materials often occur on different 

time-scale. Recent ultrafast optical experiments on high-Tb superconductors (HTS) 

and colossal magnetoresistance (CMR) materials have given information on the time 

scales o f carrier and condensate relaxation dynamics by nonequilibrium excitation of 

the carrier system at photon energies o f 1.5 eV and subsequently studying its 

dynamics either at the same interband energies or in the far-infrared range [19-21]. 

Furthermore, the pump-probe technique has been shown to be a powerful tool for 

studying ultrafast magnetization dynamics. Time resolved magneto-optical techniques 

have been employed in ordinary metals to investigate de- and re-magnetization for 

several years, beginning with the key experiment by Beaurepaire et al. [22]. Most 

recently, a pump-probe magneto-optical Kerr effect (MOKE) technique has been 

employed to the direct investigation of ultrafast spin dynamics in a double exchange 

ferromagnet, Sr2FeMo06 [23]. The authors observed a slow spin relaxation process 

toward the quasi-equilibrium state through weak heat exchange with the reservoir at 

quasi-equilibrium temperature [23].

In order to clarify the mechanisms behind the formation o f the low-energy 

condensate of strongly correlated systems, it is essential to understand the elementary 

excitations in the mid-infrared energy range [24], The low-energy electromagnetic 

response of strongly correlated systems contains valuable information on electronic 

excitations and their correlated dynamics. However, the collective modes usually 

appear in the millimeter range (~ 1-10 meV), which is very difficult to reach by 

conventional optical spectroscopy. The limitation has been overcome by using mid- 

infrared pump-probe and THz time-domain spectroscopy (TDS), which are powerful 

tools to reveal the low-energy charge dynamics of strongly correlated material 

systems [24-25]. In particular, THz time-domain spectroscopy is a coherent ultrafast
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optical technique in which electric field transients are used to measure the complex 

conductivity of a material. A sample can be optically excited and probed with a 

terahertz (THz) pulse to measure induced conductivity changes with picosecond 

resolution. Spin- and lattice- relaxation dynamics have been demonstrated with THz- 

TDS in Lao.7Cao.3Mn03  and LaojSro^MnCh thin films [25].

Recently, time-resolved optical studies revealed collective excitations in the 

CDW conductor KMO [26]. Here, we present two-color spectroscopic experiments 

pump probe of CDW conductors and CMR manganites in the mid-infrared regime. 

The data provide completely new spectroscopic information on the dispersion relation 

and temperature evolution of low energy excitations in strongly correlated systems 

[26]. We will discuss in detail the detected collective oscillation modes and the 

electronic and/or magnetic excitation and relaxation processes, in order to explore the 

low energy dynamics of different correlated phases, and elucidate the manner in 

which these dynamics evolve through low temperature phase transitions, e.g., metal- 

insulator, charge-ordering, ferromagnetic-paramagnetic.

1. 3 Scope of this thesis

In the course of this thesis, I performed the first time-resolved spectroscopic 

measurements on two distinct, but related compounds, whose common feature is that 

they all belong to the class of strongly correlated electron systems:

Charge density wave conductor - The collective CDW excitations in quasi-one 

dimensional CDW conductors, blue bronze (K0.3M0 O3) and red bronze (K0.33M0 O3) 

are investigated for the first time in the long-wavelength limit for a broad temperature 

range (from 4 K -  325 K). The transverse phase mode (phason) and amplitude mode 

(amplitudon) are in different low-frequency regimes. Under weak light illumination (5 

mW) of KMO at 30 K the transverse phason exhibits an acoustic-like dispersion
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relation in the long-wavelength limit. The dispersion relation of the transverse phase 

mode is measured in the frequency range from 5 - 4 0  GHz by time resolved transient 

reflectivity spectroscopy. In contrast, the amplitude mode exhibits a weak (optic-like) 

dispersion relation with a frequency Q+(q = 0) = 1.66 THz at 30 K. The discussion of 

the low-energy collective excitations includes the temperature evolution, dispersion 

relationship and anisotropy of amplitudon and transverse phason.

Colossal magnetoresistance manganites - The first time-resolved spectroscopic 

data obtained from doped perovskite manganite thin films and single crystals are 

presented over a wide temperature range. The observed low-energy collective mode is 

discussed in terms of the opening of a pseudogap and charge/orbital ordering phases. 

Distinct charges modify the uniformity o f the charge density, leading to the 

development of the CDW condensate, which cooperates with a Jahn-Teller distortion 

and competes with the electron itinerancy favored by double exchange. Damping of 

the oscillatory component of the transient reflectivity in the vicinity o f the MI 

transition is discussed with respect to inhomogenous phases. The temperature 

evolution o f a soft-lattice mode provides further information about electronic and 

structural instability and phase changes. Furthermore, we showed that the 

quasiparticle dynamics in the vicinity of the metal-insulator transition are strongly 

affected by the presence of a pseudogap, phase separation and percolation, which are 

strongly dependent on temperature. A very long-lived relaxation process observed in 

time-resolved transient reflectivity measurements from doped manganite single 

crystals and thin films is ascribed to a slow spin relaxation. We also discuss strain- 

dependent spin dynamics in NSMO near the metal-insulator transition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

1. 4 Outline

In chapter 2, we give a brief theoretical description of the collective modes, 

photoexcitation and relaxation processes, focusing on the recent work on one­

dimensional CDW conductors and CMR manganites. In section 2.1, we first present a 

model for the initial photoexcited carrier relaxation processes in metallic phase with 

no contribution from the spin system. Next, we extend the investigation to include 

electron-spin and spin-lattice interaction. In section 2.2, we briefly review some of the 

most important properties of the low energy excitation spectrum and collective modes 

in CDW conductors. Next, we describe the theory for the excitation o f amplitudon 

oscillations in reflectivity or transmission experiments in CDW material referred to as 

the displacive excitation of coherent modes (DECM). Finally, we describe the 

mechanism of photo-generation of coherent transverse phasons based on light 

absorption in two-color pump probe experiments.

In chapter 3, we present the experimental techniques. The descriptions include 

the three-wave mixing processes, the laser systems, and the experimental setups used 

for this thesis. In the last part of this chapter, we describe the sample preparation and 

characterization for ID CDW and CMR materials.

In chapter 4, we present our first-time time-resolved spectroscopic data obtained 

from the quasi-one dimensional CDW conductors, K0.3M0 O3 and K0.33M0 O3, in 

which collective modes have been studied extensively both theoretically and 

experimentally. We analyze the data by using the model introduced in chapter 2. This 

enables us to obtain important information about the low-energy collective excitations, 

including the temperature evolution, dispersion relationship and anisotropy of 

amplitudon and phason.
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In chapter 5, we present ultrafast time-resolved nonlinear spectroscopic data on 

doped perovskite manganites. We first give a general introduction to the CMR 

phenomena, focusing on charge ordering phases and phase separation in LCMO, a 

prototypical CMR material. In section 5.2, we present the first time-resolved 

spectroscopic data taken for a LCMO thin film and single crystal, which reveal a 

strongly damped low-energy collective mode. In section 5.2.4, we discuss 

quasiparticle dynamics in the vicinity of a metal-insulator transition in terms o f small 

polaron formation and phase separation/percolation. Finally, a very long-lived 

relaxation component observed in time-resolved transient reflectivity measurements 

from doped manganites are ascribed to a slow spin relaxation process, which also 

shows a very strong strain effect in NSMO thin films.

In chapter 6, we give a summary and outlook.
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Chapter 2

Theory of time-resolved optical spectroscopy

Recently, femtosecond pump-probe techniques have been applied to the study of 

various materials. In pump-probe experiments on a number of conducting or 

semiconducting materials, besides the relaxation processes, oscillations have been 

observed in reflectivity (or transmission through thin samples) with frequencies that 

correspond to acoustic and optical phonon modes, as well as, amplitudon and phason 

[27-31]. A number of mechanisms have been proposed to explain the relaxation and 

oscillation processes in semiconductors and metallic phases, including Allen’s model, 

the displacive excitation of coherent phonons (DECP), impulsive stimulated Raman 

scattering (ISRS), and the propagation of acoustic longitudinal stress pulses [27-32]. 

In this chapter, we briefly review some of the most important properties of these 

mechanisms, focusing on reflectivity changes in a low energy excitation spectrum 

associated with different phases. First, we consider the energy transfer following 

photoexcitation between three subsystems: the electron gas, the spin system, and the

14
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lattice. We present a model for the initial photoexcited carrier relaxation processes in 

the metallic phase with no contribution from the spin system [32]. The model predicts 

that the thermal relaxation of electrons in metals is determined by the electron-phonon 

relaxation time, which is proportional to the average electron-phonon coupling 

constant, X, a very important parameter in the theory of strongly correlated systems. 

Next, we extend the investigation to time-resolved pump-probe studies with electron- 

spin and spin-lattice interaction. Further, we describe the theory for the excitation and 

detection of amplitudon oscillations in transient reflectivity or transmission 

experiments from CDW conductors. In the last section, we focus on the photo­

generation mechanism of coherent phasons based on light absorption in two-color 

pump probe experiments. According to the model, the dispersion o f the long- 

wavelength phasons can be measured by changing the probe wavelength. The model 

is sufficiently general to treat low-energy collective mode excitations in colossal 

magnetoresistance materials as well as charge-density wave conductors.

2 .1  Photoexcited carrier relaxation

The material response to a high-intensity ultrashort photoexcitation can be treated by 

considering the energy transfer between three subsystems: the electron gas at 

temperature Te, the spin system at temperature Ts, and the lattice at temperature 7). 

The dynamics o f the whole system is governed by the internal relaxation of each 

subsystem and its interaction and energy exchange with the others. The temporal 

evolution of the system is phenomenologically described by coupled differential 

equations [33-35]:
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Ce( T ) ^  = -G e,(Te - T , ) - G J T e - Ts) + P(t) (1)
at

C ,< T ,) ^  = Gel(T, -T ,)  + Gsl(Ts - T , ) - kV 2T, (2)
at

C , ( T , ) ^ -  = G J T ,- T , ) - G « ( T , - T , )  (3)
at

where kV27) represents lattice thermal conductivity losses; Ce, Cs, and C/ are the 

electronic, spin, and lattice contribution to the specific heat, respectively; Gei, Ges, and 

Gsi are parameters describing the electron-lattice, electron-spin, and spin-lattice 

energy transfer rates among the three subsystems. Heat conduction through phonons 

should dominate the electronic heat conduction, given the rather large electrical 

resistivity in correlated systems (even in metallic state), according to Wiedemann- 

Franz law. The laser term P(t) is applied to the electronic system since the initial 

heating process occurs only in the electron bath.

First, we discuss a model for the initial photoexcited carrier relaxation processes 

in a metallic phase with no contribution from the spin system.

2.1. 1 Coupled electron lattice systems

i(3) Excited 
\  state

jl.
Nonadiabatic 
Transfer (4)

Pump

Relaxation (5)
(1) Equilibrium 

initial state

Distance

Figure 3. An excitation-deexcitation cycle. Details see text.
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As shown in Fig. 3, an initial correlated state (1) is partially promoted to the excited 

electronic state by the pump pulse (2), leaving a “ hole”  in the ground state density. 

The excited state population moves to the crossing point (3) where it can cross back to 

the ground state potential via a nonadiabatic transition (4). Once on the ground 

electronic potential surface the hot vibration cools back to the bottom of the well (5). 

The dynamics is followed in time by a short - weak probe pulse (6). The electron-

tiE
electron thermalization time Te_e  [36], where E is the carrier energy

2  nE

measured from the Fermi energy Ef, is of the order of several femtoseconds. We can 

assume the process to be instantaneous since r e_e is fast compared to the pulse 

duration. As Te_e is much faster than the period of a typical phonon vibration, 

electrons are decoupled from the lattice, and the electronic system can be described 

with the electronic temperature Te which differs from the lattice temperature 7). 

Because the heat capacity of the electron gas is much smaller than the heat capacity of 

the lattice, Te can be much higher than 7). In experiments performed with high 

photoexcitation density pulses Te can reach several hundred or even thousand degrees 

K above T\.

By measuring the temporal dependence of the reflectivity change on the 

picosecond timescale we can experimentally determine the relaxation time o f the 

photoexcited electronic system. In general two effects should be considered: first, the 

energy relaxation due to electron-electron scattering and scattering with other 

excitations (phonons, plasmons, etc.), and second, the transport o f energy out of the 

probed volume.

Energy relaxation through electron-phonon scattering was theoretically 

investigated by Allen in 1987 motivated by experimental data [32]. Dr. Allen
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followed the model of Kaganov et al. [37] considering the system of electrons and 

phonons with thermal distribution functions fk and hq determined by Te and 7), 

respectively. Furthermore, he assumed that i) diffusion driven by spatial 

inhomogeneities is negligible, which is a good approximation in the case where the 

mean free path is short, ii) acceleration due to external or internal fields is negligible, 

and iii) no other collision processes are important. The collision integrals describing

the time development offk and hq can be approximated by

{ / * 0 - / J ( « o  + 1 M e * - Ev - naQ) + no ^ k  - * * ■  + a ® G )l

~ ( l "  fk  ) f k'b o  + lM ** _ £k- + hoJo )+ nQS{ek - e k. - ha>Q )j> (4)

= fk(l ~ f A nQ5isk -C f +hoQ)-{”Q + lM et - e k. (5)

where k  and Q are the electron and phonon wave vectors, respectively, Nc is the 

number of unit cells in the sample and M w  is the electron-phonon matrix element

normalized to the unit cell of magnitude (EFha)D)112. The additional factor 2 in the 

second equation accounts for electron spin degeneracy. In this model, Allen 

considered other collision processes - electron-electron (e-e) and phonon-phonon (ph- 

ph) scattering - being active in keeping the distributions fk  and hq equal to local 

equilibrium distributions characterized by Te and 7], which depend on time. In the 

case where the geometry of the experiment prevents electron transport out of the 

probed volume or the electron mean free path is short in comparison with the optical 

skin depth, the e-e and ph-ph collision integrals are equal to zero. If fk and n<g are 

known at t = 0 , and the above assumptions stand, then the equations determine their 

temporal evolution. Dr. Allen calculated the rate of energy exchange by taking into
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account that El ~ 3NcksTi, since most of the experiments were performed at room 

temperature and EL ~ E0 + yTe2 12, where y= i?NcNokB2/2 (No is the density o f state of

both spins per unit cell. A simple expression for the rate of change of the electronic 

temperature was derived

dt nkBTe

( i  i / a\ A

(6)
v \ ° * 1 j1 n U 2)k2BTeT,+ ■ "

where xico"^ = 2 J^[o:2F (q )/q ]q "c?Q  and c?F(£2) is the product of the electron

phonon coupling strength cf, and the phonon density of states F (Q ), both functions 

o f energy. From Eq. (6), Allen was able to extract the values of the average electron- 

phonon coupling constant using experimental data from Au [38], Cu [39] and W [40]. 

The obtained values are in very good agreement with the X extracted from resistivity 

[41] and neutron scattering data [42], In the following years several measurements of 

A.-S of various metals exhibiting superconductivity at low temperatures were carried 

out by a group at MIT [43-44], always in very good agreement with the data obtained 

by other techniques. This group also performed the pump-intensity dependence 

measurements again in excellent agreement with Allen’s model. The average 

electron-phonon coupling constant, X, is a very important parameter in the theory of 

strongly correlated systems, because the coupling parameter reflects the two-way 

competition more directly than temperature and measures the strength with which 

valence electrons interact with the crystal lattice. Recently, the decrease of the 

electron-phonon coupling constant has been used to explain the spectral weight 

transfer of doped manganites including the increase of the lower band width in the 

ferromagnetic metallic state [43-45].

2.1. 2 Correlated spin systems
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Besides the interactions between the electrons and lattice, the coupling of electron- 

spin and spin-lattice degrees of freedom is also very important to describe the physics 

of strongly correlated systems. For example, the response of a magnetic material 

following photoexcitation can be treated by considering the energy transfer between 

the three subsystems: the electron gas at temperature Te, the spin system at 

temperature Ts, and the lattice at temperature 7). The dynamics of the whole system is 

governed by the internal relaxation of each subsystem and its interaction and energy 

exchange with the others. The temporal evolution of the system is 

phenomenologically described by Eqs. (1) - (3) [33-35].

Within the dipole approximation, optical transitions preserve the electronic 

spins, AS1 = 0 , such that the spin polarization of the excited electronic distribution is 

the same as in the ground state. According to Eqs. (1) - (3), the onset of 

demagnetization, and dynamic spectral weight transfer (DSWT), is governed by the 

electronic, lattice, and magnetic contributions to the specific heat, the energy 

exchange rates Gy, and their temperature dependence. The absorption change due to 

DSWT can be expressed as:

^ - D S W T  =  ^ DSWT,  (® p u m p  ’ ® probe  ’ T) +
DSWT, ( .V p u m p  ’ ®  probe >T )

x [1 -  exp(-f / t sI ) ] . (7)

The first term represents the demagnetization due to electronic-spin interaction, 

whereas the second term represents the dynamics governed by the slow lattice-spin 

thermalization and its lattice-spin interaction time constant.

Based on the principle of causality, the Kramers-Kronig transformation states 

that a change in the absorption coefficient (AA) throughout the spectrum Q [45] leads 

to a change in the index o f refraction:
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M ^ p u m p  ’  ®  probe

2 “j-QAA(a)pump; Q .) ^  

n  I Q 2 -Q )2probe
(8)

For the colossal magnetoresistance material Lao.7Cao.3Mn0 3  (LCMO), given the 

electronic heat capacity coefficient, y ~ 5 mJ/mol.K2 [46-47] and a deposited energy

temperature heating at 7c can be estimated as ATe ~ 65 K. Electron-lattice energy 

exchange occur on a picosecond time scale through the strong electron-phonon 

coupling. The lattice with its larger specific heat (Debye temperature 0d ~ 450 K), C/ 

~ 110 J/mol.K [48-49], acquires an excess temperature of A7} ~ 0.6 K at 7c. The 

measured temperature-dependent time constants vary from ~ 110 ps at 260 K to 20 ps 

below 50 K which is in good agreement with the model expected with a weak spin- 

orbital coupling [33].

2. 2 Photoexcited collective modes

In this section, we discuss the mechanisms for photo-excitation of low energy 

collective modes in the well-known CDW system K0.3M0 O3, and doped manganites 

Lai.xCaxMn0 3 . As expected for a complex order parameter, |A|e*, both phase and

amplitude excitations occur. In first approximation, the modes are decoupled and 

represent independent oscillations of the amplitude and phase of the order parameter 

[14]. First, we discuss the amplitudon oscillations based on the model of displacive 

excitation of coherent phonons (DECP), where only Ai symmetry Raman-active 

modes are observed.

2. 2. 1 Amplitudon oscillations

density E ~ 0.25 pJ/cm2 typical in pump-probe experiments, the initial electronic
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A charge-density wave is a modulation o f the conduction electron density in a metal 

and an associated modulation of the lattice atom positions’. The collective modes are 

formed by electron-hole pairs, involving the wave vector 2Ar, when electrons and 

holes on the opposite side of the Fermi surface are coupled, referred to as “Fermi 

nesting”. This leads to the formation of CDW and the accompanying lattice distortion. 

In quasi-one-dimensional metals at low temperatures, the elastic energy cost to 

modulate the atomic positions is less than the gain in conduction electron energy, so 

the CDW state is the preferred ground state. At high temperatures, the electronic 

energy gain is reduced by thermal excitation of electrons across the gap, so the 

metallic state is stable. The second-order phase transition that occurs between the 

metallic and charge-density wave states is known as the Peierls transition [50]. The 

CDW develops along the chain direction. The CDW state is characterized by a 

complex order parameter t// = Ae,<s. The amplitude A determines the size of the 

electronic energy gap and the magnitude of the atomic displacements. The phase

amplitudon charge density fluctuation

atomic displacement 

) « - © § © «  © . 0  0  0 *  §  - •  © ©~ ©

Figure 4. A schematic of amplitudon excitation in ID CDW.

1 A detailed description o f  the CDW phenomenon and mechanism is given in the recent book by 
Griiner [24]
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^determines the position of the CDW relative to the underlying lattice. Variations of 

<f> and A can arise from collective modes known as phasons and amplitudons, 

respectively.

The modulation of the amplitude A changes the condensation energy and has 

therefore a finite frequency. As shown in Fig. 4, fluctuations of the single particle gap 

in charge density wave materials also lead to fluctuations of the ionic positions. The 

amplitude mode oscillation energy is substantially lower than the gap energy [14].

Temperature dependences of amplitude mode frequencies and damping were 

studied experimentally in KMO by Raman scattering [51] and neutron spectroscopy 

[52], At temperatures close to zero, the amplitudon frequency is ~ 1.7 THz. The 

frequency lowers as T^P is approached [51-52], but no drop to zero occurs. This 

seems to indicate that the amplitude excitations are controlled by the mean-field 

behavior of the distorted Peierls chain [53], Neutron data show continuous behavior at 

T ™, meaning that the amplitude mode frequency does not drop abruptly at TC3D due 

to a finite coupling to the phase modes [14].

The dispersion relation of the amplitude mode was evaluated first by Lee, Rice, 

and Anderson using a one-dimensional electron-phonon Hamiltonian [54]. In the 

long-wavelength limit, the electron-phonon interaction transforms the acoustic 

phonons near the zone boundary into an optical (Q+) and an acoustic branch (Q„). The 

dispersion relation for the optical branch (Q+) is obtained for the frequency of the 

amplitude mode:

n l = U a Ur)2 + \ { - ^ \ v Fq )‘ , (9)
3 \ m * J

where X is the electron-phonon coupling constant, a 2kp is the phonon frequency, m* 

is the effective mass, vF is the Fermi velocity, and q is the wave number.
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Since for amplitude mode oscillations there is no net displacement o f the 

electronic charge with respect to the ion positions, the mode is expected to be Raman 

active and of Ai symmetry (Ai modes are the so-called "breathing modes", which do 

not lower the symmetry of the lattice; the Ai symmetry displacements preserve the 

symmetry o f the actual lattice and have a continuum of possible values; the 

equilibrium position of Ai displacements is determined by minimizing the free energy 

of the system).

Excitation of the amplitude modes depend on the instantaneous surrounding 

electron density n{t) as shown in Fig. 4, which in turn involves displacements of the 

ions about their equilibrium positions, Qo. By deriving the time dependence of the 

ionic coordinate Q(t), we can find the displacement of the amplitudons.

In our measurements, the pump pulse produces a time dependent displacive 

excitation of the charge-density amplitude. The displacement is strongly coupled with 

vibrations of the ion equilibrium position Qo(t). Since the typical time of the 

perturbation of the electronic system r, is much shorter than the vibration period of 

the collective mode In !coA , the photoexcitation can be thought of as a S(t) -  

function-like perturbation of the charge density. In turn, the response of the 

amplitudon to this perturbation is a modulation of the reflectivity ARA / R of the form: 

A{T)e~n cos(a>t) based on the DECP mechanism [29]. The derivation below assumes 

the density of occupied states, n(t), as the source of DECP [29].

The time scale to increase n(t) in bands above Ef after photoexcitation is short 

compared to the equilibration time of the ionic system. The instantaneous change of 

n(t) leads to a change in the quasi-equilibrium A\ ionic coordinate and thereby 

coherently exciting Ai vibrational modes.

The equation describing the rate of change of n(t) in the sample is:
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^  = pP{t)-/3n{t) (10)
at

The first term on the right-hand side is the rate of carrier generation in the excited 

band, which is assumed to be proportional to the pump pulse temporal profile: 

P(t) = E g (t) is the energy in the excitation pulse arriving per unit area per unit 

time at the surface and p is the proportionality constant. The second term is the 

transfer rate of electrons back to the ground state. The source of excitation o f the Ai 

mode is the dependence of the equilibrium Ai coordinate Qo(t) on n(t). We take this 

dependence to be linear: Q0 (t) = m (t) .

The equation governing the time dependence of the coordinate Q(t) is then: 

d 2Q(t) „ 2r^  ,w ,v , ^ . .dQ{t) n n
. 2 — ®oLG( 0  2 o(v] 2y , ( 11)

at at

Here co0 is the angular frequency of the A\ mode, and y  represents the damping 

constant o f the modes.

Assuming that the excitation from the pump pulse is short compared to the A\ 

phonon oscillation cycle, we can approximate the normalized pulse shape function, 

g(t) with a £ -function giving the exponential time dependence of np{t) oc e_/J. Then 

the time dependence of the coordinate Q(t) is given by:

6 ( 0  = , - e^ ( c o s ( ® f ) - ^ s in ( f f lO ] -  (12)
K  + P  - 2 Pr) CO

where co -  *Ja>Q - y 1 . The reflectivity R is a function of the complex dielectric

constant, which is in turn modulated by n, Te, and Q. If R(0) is the unperturbed 

reflectivity before the arrival of the pump pulse, then the differential reflectivity 

change, AR(t), due to the photoexcitation can be written as:
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By writing the reflectivity in terms of complex dielectric function and approximating 

the sufficiently narrow pump and probe pulses as ^-function, we obtain the time 

dependence of the photoinduced reflectivity

The fit to the differential reflectivity taken at low temperatures on ID charge density 

wave insulator K0.3M0O3 and 2D charge density wave insulator lT-TaS2 using Eq. (14) 

gives an excellent agreement with the theory [55-56].

In DECP the oscillations in transient reflectivity AR(t) are excited with a cos(crt) 

dependence, where t -  0 is the time of arrival of the probe pulse. The phase shifts 

from a simple cos {cot) were found to be rather small, since a>o is usually an order of 

magnitude larger than f i  and y. An important prediction of DECP model is also the 

linear dependence of the oscillatory amplitude on the pump pulse integrated intensity 

that has also been experimentally confirmed [55-56]. The main difference between 

DECP and ISRS or other nonlinear impulsive excitation mechanisms is that in case of 

DECP the Ai symmetry modes should be the only ones observed [29].

2. 2. 2 Phason oscillations

0©0 + /? 2 - 2  fiy)
[e -  e * (cos(a>t) -  ———sin(®f)] (14)

with

and
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Besides the amplitude mode, other important collective excitations in quasi-one 

dimensional CDW systems are the phase modes (phasons). Phasons are the linear 

excitations of the order parameter: phase (j) in CDW systems. The phase displacement 

can be parallel or perpendicular to the direction of the CDW. The former represents a 

longitudinal phase mode (Fig. 5a)), the latter a transverse phase mode (Fig. 5b)).

At long wavelengths, the longitudinal phasons are subjected to quasi-particle 

excitation and Coulomb forces. Lee, Rice, and Anderson pointed out that Coulomb 

interaction will raise the longitudinal phason frequency to a longitudinal optic (LO)

a)
q q

Motion II b axis

Longitudinal phason

Motion q 1 b j ransverse Phason

Figure 5. a) A schematic of longitudinal phason excitation in ID CDW; b) A 
schematic of transverse phason excitation in ID CDW.
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frequency at zero temperature and the CDW becomes rigid due to pinning at impurity 

sites [54].

Recently, Viroztek and Maki applied a thermal Green’s function theory to 

calculate the dispersion relations of the collective CDW modes taking into account 

long-range Coulomb interaction and quasi-particle screening [57]. The longitudinal 

phase mode (as shown in Fig. 5a)) exhibits a linear acoustic-like dispersion for 

wavevectors q less than the Thomas-Fermi screening wavevector qo and becomes an 

optic-like mode with an energy gap when no screening occurs, i.e., q > qo [14]:

where the phase velocity, c0 = (m lm *)U2vF, q is the wave number, f s is the static

condensate density { f s < 1 ) and q0 = o)pv~F{(1 -  f s)1/2with co the plasma frequency.

The dispersion relation of the longitudinal phase mode provides a sensitive probe for 

the screening of Coulomb interaction by quasi-particles and the depinning of the 

CDW modes. When Coulomb forces are screened by quasi-particles excited above the 

Peierls gap, the collective motion is compensated by the quasi-particle current and the 

longitudinal phase mode remains acoustic [14].

In contrast, the transverse phase modes (as shown in Fig. 5b)) are unaffected by 

Coulomb interaction. In this case, the following dispersion relation is obtained for the 

frequency o f transverse phase mode (Q.) [14]:

Below, we describe quantitatively the process in which a low-energy transverse 

phason wave packet is generated and detected by nonlinear time-resolved

< 1«  q o

3
^L- = ~^^'a>2kFfs  Co4r 5 q » q a> (15)

n 2r- =(c0q)2- (16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

spectroscopic measurements [26]. The phason oscillations cause a change in dielectric 

constant, As, which results in a modulation of AR(t). The basic idea is depicted in Fig. 

6 .

Probe

Pump

Probe

Phason

Figure 6 . Schematic diagram of phason excitation and detection.

The pump light passes through a CDW crystal and is absorbed in the top 

layers. The heated charge carriers expand and generate a disturbance of the CDW. 

The charge density excitation will propagate away from the surface into the material. 

In this way, the transverse phasons are excited and propagate normal to the surface. 

We use a time-delayed probe light pulse to detect the frequency spectrum of the 

charge density fluctuation. Part of the probe light pulse is reflected by the wave front 

of the charge-density fluctuations, and the remainder at the surface o f the CDW single
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crystal. These reflections interfere constructively or destructively depending on the 

position and time of the CDW excitation.

Since the penetration depth, £  of the light is small compared to the laser spot 

size (~ 2  mm for our case) on the sample, a one-dimensional treatment of the 

propagation of the CDW is acceptable [27, 58]. The CDW amplitude at distance z 

from the surface is denoted D(z,t). The reflectivity undergoes a change AR because 

the optical constants of the crystal are changed by the propagating CDW:

where a  is a constant in first approximation. The complex amplitude of the probe 

pulse reflected from the CDW will be:

where k  is the wave number of the light in the material, 9 is the angle between the

probe pulse. If the reflection coefficient at the surface o f the film is ro, then the 

effective reflection coefficient, allowing for interference, is:

We can express the CDW excitations in terms of its Fourier components Dq\

(17)

(18)

wave vector of the probe pulse and the surface normal, and E0 is the amplitude of the

(19)
0

To first order approximation in D(z,t), the time-dependent part of R(t) is:

AR(t) -  r la  Jl)(z, t) exp( - 2 ikz cos B)dz + c.c. (20)
0

00

D (z,t) = jdqDg exp[i(qz -  coqt)]exp(-yqt) (21)
0
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where coq and yq are the frequency and damping of the phason with wave vector q in 

the z-direction. Inserting Eq. (21) into Eq. (20) yields

AR(t) = 2m l aDK exP exP(_ \ 0  + c-c• (22)

with K  = 2k cos 6 (phase matching condition).

We see from Eq. (22) that AR(t) should be an oscillatory function of the time 

delay At of the probe beam relative to the pump beam. The model is in excellent 

agreement with our recent measurements in blue bronze (K0.3M0O3) and red bronze 

(K0.33M0O3) single crystals and doped manganite (e.g. Lao.67Cao.33Mn0 3 ) thin films 

[26, 59]. Such oscillations generally occur provided that (i) the CDW crystal is 

strongly absorbing, i.e., £ < A/ncosd  , (ii) At < 2tb (A t being the optical pulse 

duration and r B is the oscillation period in A R ), (iii) a  is large enough for the 

oscillations to be resolved, and (iv) there is coherent overlap between the optical 

reflections.

An important feature of the result is that for a specific probe wavelength AR(t) 

only involves one particular Fourier component Dk of the excited CDW oscillation. 

The frequency of the oscillations is the frequency of a transverse phason with 

wavenumber K, and the damping of the oscillations is the damping of the same 

phason. Thus, from a measurement of Ai?(t) one can deduce the phase velocity and 

damping rate of phasons of a defined frequency in the Brillouin range.

The only requirement is that the Fourier component Dk is large enough to give 

measurable oscillations in A/?(t). The duration of CDW propagation in the sample is 

of order £ /v  with phase velocity v, which is typically a few picoseconds (~ 10 ps in 

K0.3M0O3 and K0.33M0 O3). So the actual duration At of the optical pulse has little 

influence provided that At < £ / v . The temporal Fourier transform o f the CDW
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excitation in the material is proportional t o   ------- . This corresponds to a broad
(v /^ )  + ica

spectrum down to frequencies of order v i  B, ( - 1 0  GHz for K0.3M0 O3 and K0 .33M0 O3). 

The coherent modes across a range of wave vectors near the Brillouin zone center are 

excited and peaked at a wave vector of order one inverse laser penetration depth. The 

penetration depth of the light (~ 100 nm) is small compared to the laser spot size (~ 2 

mm) on the sample, and therefore modes with a wavevector normal to the surface are 

predominantly excited.
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Chapter 3

Experimental details

In section 3.1, we describe the experimental methods of infrared-pulse generation, the 

light sources, and two slightly different pump-probe setups used for the experiments 

in this thesis. In section 3.2, we present some details on preparation and sample 

characterization of CMR manganites and CDW conductors.

3 .1  Femtosecond time-resolved optical spectroscopy

The development of femtosecond laser systems has opened the door for studying 

ultrafast dynamical processes, which range from nuclear motion in molecules to 

relaxation mechanisms of charge carriers in solids. A characteristic of the approach is 

that the system investigated is no longer in thermodynamic equilibrium. It is rather in 

an excited state whose decay into electronic-, spin-, and lattice- degrees of freedom is 

being probed. In this section, we present the experimental methods, setups, the light 

sources and the detection systems used for our nonlinear time-resolved experiments in 

this thesis.

33
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3.1.1 Three-wave mixing processes as an infrared source

Three-wave mixing is a versatile method for generating short and tunable pulses at 

wavelengths ranging from ultraviolet (> 200  ran) to mid-infrared (up to 20  fjm). 

Examples of three-wave mixing are sum-frequency generation (SFG), second- 

harmonic generation (SHG), difference-frequency generation (DFG), and optical 

parametric generation and amplification (OPG and OP A). These techniques are now 

standard practice in time-resolved spectroscopy [60-62]. In these processes, 

oscillating electrical fields at two or three different frequencies are coupled to each 

other.

For OPA wavelength conversion used in this thesis, we employed a specially 

designed crystal, /^-barium borate (BBO). This crystal has, due to its crystal symmetry 

(or the absence thereof), both a nonzero x(2) and a strong birefringence, which we 

utilize for phase-matching. In general, the phase-matching can be of 'type 1' (pump 

polarization is perpendicular to both signal and idler), 'type 2 ' (pump and idler 

polarizations are perpendicular to the signal), or 'type 3' (pump and signal 

polarizations are perpendicular to idler). The infrared pulses used for the time- 

resolved experiments presented in this thesis are all generated by OPA processes.

In general, the dielectric polarization P(t) at time tin  a medium can be written as 

a power series in the electrical field:

Pit) oc x {l)E(t) + x {2)E 2 (0  + X i3)E 3 (0  + ’ •' (23)

Here, the coefficients are the n-th order susceptibilities of the medium. For any 

three-wave mixing process, the second-order term is crucial; it is only nonzero in 

media that have a broken inversion symmetry. If  we write

E(t) = E le,0i‘ + E2e ^ ‘ + c.c„ (24)
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where c.c. denotes the complex conjugate, the second-order term in Eq. (1) will read 

P [2\ t )  Y t X {2\ E ^ E l le i(m m ai)‘ + c-c-> (25)

where the summation is over (no,ni,n2,mi,m2) = (1,2 ,0 ,2 ,0), (1,0 ,2 ,0 ,2 ), (2 ,2 ,0 ,0 ,0), 

(2,0,2,0,0), (2,1,1,1,-1), (2,1,1,1,1). The six combinations (nx,mx) correspond, 

respectively, to the second harmonic of E\, the second harmonic of E2, the optically 

rectified signals of E\ and E2, the difference frequency, and the sum frequency. A 

medium that is pumped by the fields E\ and E2 will radiate a field E2 with an angular 

frequency a>3=mia>i+m2 (0 2 .

In a typical situation, we have to consider the position dependence o f the 

electrical fields. The electrical fields are traveling waves with an electric field

Ej (x,t) = e l{‘0j‘~kjX\  (26)

at position x, with the wave vector k j = n{coj )coj / c , where c is the velocity of light 

and n(a>j) is the index of refraction of the medium at angular frequency o)j . Thus, the

second-order polarization angular frequency 0)3 is:

P (2\ x , t )  oc £  E"' _ (27)

At each position x, the oscillating second-order polarization radiates at angular 

frequency 0)3 and a corresponding wave vector k 3 = n(co3 )co3! c . Constructive

interference, and therefore a high intensity 0)3 field, will occur only if

k3=miki+m2k2. (28)

This is known as the phase matching condition. Typically, three-wave mixing is done 

in a birefringent crystalline material (i.e., the index of refraction depends on the 

polarization and direction of the light that passes through), where the polarizations of 

the fields and the orientation of the crystal are chosen such that the phase-matching 

condition is fulfilled.
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Optical parametric amplification is a special case of difference frequency 

generation {a)3 =coi-o2) where the pump field amplitude E\ is much larger than £ 2. The 

field £ 3  that is generated causes £2  to increase by the simultaneous DFG process 

(co2=a>i-co3). Because phase matching for the generation of 0)3 implies phase matching 

for the generation of co2, light at frequencies <x>2 and 0)3 is generated simultaneously. 

The latter means that in OPA, a photon at frequency coj is 'split' into two photons at 

frequencies co2 and 6)3. The two fields at frequencies co2 and co2 are usually referred to 

as signal (the one with the higher frequency) and idler (the lower frequency), and the 

field at coj is called the pump (not to be confused with the term 'pump' in a pump- 

probe experiment). Parametric generation (OPG) is the limiting case where, initially, 

£ 2=£3= 0 . Though Eq. (39) suggests that second-order polarizations at neither co2 nor 

003 would be generated, the latter does happen in reality, because of quantum- 

mechanical properties of the electric field.

3.1. 2 Pulse generation for pump-probe experiments

The essential components of femtosecond time-resolved optical systems are very 

stable pulsed lasers. In the experiments performed in our laboratory, we use three 

combined subpicosecond laser systems, including a Ti:sapphire oscillator (Tsunami, 

Spectra-Physics), a Ti:sapphire regenerative amplifier (Spitfire, Spectra-Physics) and 

an optical parametric amplifier (OPA-800C, Spectra-Physics). The pulses with 150-fs 

duration are tunable in wavelength from 400 nm to 10 pm.

Mode-locked Ti:sapphire oscillator

A schematic of the mode-locked Ti:sapphire laser (Tsunami, Spectra-Physics) is 

shown in Fig. 7 [63]. The Ti:sapphire crystal is pumped through a pump beam
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steering mirror (Pi) and a pump beam focus mirror (P2) by a continuous wave 

Nd:YAG laser (Millennia V, Spectra-Physics) with an output power of 5 W at a 

wavelength of 532 nm.

F a s t
P h o t o d i o d eA O M  O C

P r ,
O u t p u t  
B r e w s t e r  
W  i n d o w

B e a m
S p l i t t e r

M o d e l  3 9 5 5  
A O M  D r i v e r  E l e c t r o n i c sT i :  s a p p h i r e  R o d

I n p u t
B r e w s t e r
W i n d o w R e s i d u a l

P u m p
B e a m  D u m p

Figure 7. Configuration of the mode-locked Ti:sapphire laser (Tsunami, Spectra- 
Physics).

The cavity beam is centered and focused in the Ti:sapphire rod by cavity focus 

mirrors (M2 and M3). The cavity fold mirrors (M4 and M5) fold the beam and allow 

the laser to run in a mode-locked mode at convenient repetition frequencies near 80 

MHz. The prisms (Pri and Pfy) in conjunction with the prisms, Pr2 and Pr3, 

compensate for positive group velocity dispersion (GVD) in the cavity. The tuning slit 

is used to adjust the laser wavelength and the output pulse bandwidth. The prism 

mirrors (M6 through M9) direct the cavity beam from M5 through the prisms and into 

the acoustic-optic modulator (AOM). The AOM is driven by an RF electronics 

module to provide proper pulsing at start-up. At the cavity end, the high reflector, Mi, 

reflects all laser light back into the cavity whereas the output coupler, M 10, another 

cavity end mirror, allows a small percentage (< 5%) to pass through as the output
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beam. At the output (~ 800 nm wavelength), an additional beam splitter reflects a 

small amount of the beam to a silicon diode detector. The fast silicon diode is used for 

monitoring the pulsed/CW operation.

The critical alignment of the laser system includes pumping and mode-locking 

optimization. First, the pump illumination in the oscillator must be collinear with the 

cavity mode over a relatively long length of the laser rod. The pump light is focused 

to a narrow line within the rod and the oscillating laser mode is similarly focused and 

overlapped within the same volume - known as longitudinal pumping. The second 

procedure is the mode-locking optimization. It includes dispersion compensation 

control (pulse width) and output power. First, one adjusts the prism dispersion until 

the spectrum increases in bandwidth when more prism glass is inserted into the beam. 

Then one optimizes the Tsunami output power. A power meter is placed in the 

Tsunami beam path and mirrors Mi and Mi0are adjusted for maximum output power 

with the procedure: first vertical (blue) button then horizontal (green) button. The 

pump power and dispersion compensation can be varied to obtain the desired output 

power and pulse width. The optimization procedure can be performed with the help of 

a spectrum analyzer and an auto-correlator.

Regenerative Ti:sapphire amplifier

Figure 8 shows the configuration of our regenerative Ti:sapphire amplifier system 

(Spitfire, Spectra-Physics) [64]. The seed pulse from the Ti: sapphire oscillator 

(Tsunami, Spectra-Physics) goes through a Faraday isolator (optical diode), which 

prevents pulses from traveling back into the oscillator, and a pockels cell, which is 

used as a gate allowing a single pulse to enter the amplifier cavity. This pulse then 

makes several passes through the Ti:sapphire crystal, which is pumped by a Q-
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Figure 8. A Schematic of the regenerative Ti:sapphire amplifier system (Spitfire, 
Spectra-Physics).

switched, frequency-doubled neodymium-doped yttrium lithium fluoride (Nd:YLF) 

laser. Once most of the pump energy has been extracted from this crystal by the seed 

pulse, a second electro-optic modulator (Pockels Cell) switches the amplified pulse 

out of the cavity.

The regenerative amplifier is usually operated close to saturation in order to 

maximize efficiency and pulse-to-pulse stability. Depending on the beam diameter in 

the crystal and the amount o f pump energy, the Ti:sapphire regenerative amplifier is 

capable of delivering gains as high as 106. By the time the overall gain has passed 105, 

the pulse energy in a regenerative Ti:sapphire amplifier typically begins to approach 

the millijoule level. For femtosecond pulses, the resultant high peak power would 

damage the Ti:sapphire laser crystal. To avoid catastrophic damage, pulses in 

regenerative amplifiers are stretched in time (~ 200 ps) before amplification and
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recompressed after. Because the gain per individual pass is low and many passes are 

required, it is vitally important to minimize cavity losses in order to optimize net gain 

per pass. This necessitates the use of low-loss optics that feature high reflectivity and 

very low scatter. In terms of output characteristics, one of the major advantages of a 

regenerative amplifier is that the spatial profile and pointing of the output beam is 

defined by the cavity. With a well-designed cavity, our regenerative amplifier is 

capable of delivering transform-limited ultrafast pulses in a very high-quality TEMoo 

mode.

To ensure optimum alignment of the amplifier, it can be operated first as a laser 

in the absence o f a seed pulse. The procedure should be: turn off the triggering o f the 

two Pockels cells, remove the quarter-wave plate, adjust the pump beam and cavity 

end mirror alignment to optimize lasing in “free-running” mode, and replace the wave 

plate indicating no lasing. The trick is to make sure that the beam passes through the 

two cavity irises. The next step is to align the mode-locked seed beam into the Spitfire 

resonator. The procedure should be: close the shutter of the pump laser (Evolution X), 

reflect the seed beam into the cavity, tune the seed beam through the cavity-aligned 

irises by adjusting two mirrors leading the seed beam into the cavity. Then one can 

finish the final optimization with both the pump beam and the seed beam in the cavity. 

The procedure should be: optimize the overlap of the seed beam and pump beam in 

the laser rod by checking the intra-cavity pulse train spectrum on the oscilloscope, 

optimize the timing synchronization of the pockels cells with maximum output, 

optimize the output beam mode by slightly tuning the cavity focus mirror and end 

mirrors, repeat the above steps and finally have a round and clean mode output beam 

with maximum power. Details on the stretch and compress optimization are given in 

the Spitfire manual for the detailed procedures [64].
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Figure 9. Layout of the optical parametric amplifier (OPA-800C, Specta-Physics). 

Optical parametric amplifier

Another important pulse generation source is the OPA-800C laser system (Spectra- 

Physics). The OPA system converts the 800 nm pulses from the Ti:sapphire amplifier 

to longer wavelengths through a type-2 OPA process (section 3.1.1). The system uses 

a BBO crystal as the nonlinear medium. The output pulses are tunable in the range 

1140 -1600 nm (signal) and 1600 - 2650 nm (idler). Furthermore, a special-cut BBO 

crystal and an AgGaS2 crystal provide the second-harmonic and different-frequency 

mixing (DFM) of the signal and idler beams (600 nm -1150 nm, 3 - 1 0  pm).

The femtosecond OPA-800C layout is shown in Fig. 9. The amplified 

Ti: sapphire beam is first reflected off two mirrors that flip the polarization from 

horizontal to vertical, then it is split into two legs. In the first leg, approximately 96% 

of the energy is transmitted and used for pumping the OPA. The remaining < 4% is
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reflected by a beam splitter BSi to produce a white light continuum that provides the 

seed pulse for the OPA. A half-wave plate and a thin film polarizer control the beam 

energy, and a lens focuses the beam into a sapphire plate where the white light (WL) 

continuum is generated. The beam is re-collimated and relayed to the OPA crystal 

through a variable delay stage.

In the second leg, the major portion of the amplified beam is split into two pump 

beams, each of which is down-collimated to pump the BBO crystal. About 15% of the 

beam is used to pump the first pass (preamplifier stage) and the reminder is used to 

pump the second pass (power amplifier). In the preamplifier stage, the pump beam is 

steered to the BBO crystal by using a dichroic mirror, Di, and combined with the 

white light that is generated in the WL arm. The white light is temporally overlapped 

with the pre-pump by optimizing the first delay stage. The signal and idler beams 

generated in the preamplifier stage provide the seed pulse for the power amplifier 

stage.

The power amplifier pump beam is overlapped collinearly with the returning 

idler beam in the BBO crystal for the final amplification. The second delay stage is 

used to temporally overlap the power pump beam with the idler beam returning from 

mirror WLR4. The amplified signal and idler output wavelengths are determined by 

the phase-matching angle of the BBO crystal. Meantime, we have to adjust each delay 

stage for optimum output energy. The critical point for optimizing the OPA system is 

to overlap different beams in the BBO crystal as described above. More details are 

given in the OPA-800C manual [65],

3 .1 . 3 Experimental setup
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Two slightly different pump-probe setups have been used for the experiments in this 

thesis. Both setups allow polarization-resolved, wavelength-dependent time resolved 

optical studies, over a temperature range from 4-325 K.

Two-color setup

Delay stage

Monochromator

Beam splitter

probe beam

samplechopper lens

pump beam
Cry os tat

lens
k/2 plate

lensl
Signal detector

Figure 10. Pump-probe setup for two color experiments.

Figure 10 shows our two-color polarization-resolved pump-probe setup. The 150-fs 

pump pulses at 1.55-eV or 3.1-eV photon energy are delivered by a Ti:sapphire 

regenerative amplifier, whereas an optical parametric amplifier (OPA-800C, Spectra- 

Physics) provides the probe pulses with 150-fs duration tunable in wavelength from 

400 nm to 10 pm. Two calcium fluoride lenses (focus length: 50 cm) are used to 

collimate the pump and probe pulses into an overlapping region of the sample with 

spot-diameter 2 mm. The sample is mounted either in a cryostat for temperature 

dependent measurements (down to 4 K) or on a rotation stage for polarization- 

resolved measurements. The pump beam polarization is adjustable with respect to the 

polarization of the probe beam. A translation stage provides the variable time delay
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between the pump and probe pulses. The typical pump beam power for our 

experiments is less than 10 mW, and the probe beam power is less than 1 mW. The 

samples are mounted in an optical cryostat for temperature-dependent measurements.

For the detection, the reflected probe beam is focused onto a small photo-diode 

by a calcium fluoride lens through neutral density filters. Three different detector 

systems are used for different wavelength ranges to measure the reflectivity change 

(AR). They are a home-built Si photo diode detector, a commercial liquid nitrogen- 

cooled HgCdTe (MCT) photoconductive detector (EG&G Judson, Model J15D) and a 

InSb infrared detector (EG&G Judson, Model J15InSb-S01M-60) usable for 

wavelengths from 400 nm to 920 nm, 900 nm to 5500 nm, and 5500 nm to 10000 nm, 

respectively. The detected signal is first amplified by a low-noise voltage preamplifier. 

A SR250 gated integrator & boxcar averager, and a lock-in amplifier are used to 

average and extract the transient change of the reflected signal, AR, of the probe beam. 

The wavelength of the probe beam is measured with a monochromator.

One-color setup

Figure 11 shows our one-color, polarization-resolved setup. The setup for one-color 

experiments differs from the two-color setup in that the probe pulse is a small fraction 

of the pump pulse instead of a separately generated pulse. By means of a beamsplitter 

and two rutile (Ti0 2 ) polarizers, the polarization components parallel and 

perpendicular to the pump pulse polarization are measured separately. The other 

parameters and schemes in one-color measurements are the same as those of the two- 

color experiments.
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Figure 11. Pump-probe setup for one-color experiments.

3. 2 Sample preparation and characterization

3. 2.1 Quasi-one dimensional CDW conductors

K0.3M0 O3 (blue bronze) and K0.33M0O3 (red bronze) single crystals used in our 

experiments were prepared by Dr. Zhuan Xu from Zhejiang University in China using 

the electro-crystallization of high-temperature solution (ENTS) method [66 ]. The 

KMO crystals have a typical dimension of 2 cm along b axis as shown in Fig. 12 a). 

The crystal composition and structure were analyzed by Type AN 10 X-ray energy 

dispersive spectrometer (EDS) and Philips APD1700 X-ray diffractometer (XRD) 

with Cu Ka radiation. The resistivity (Fig. 12b)) and differential resistance were 

determined by a four-probe method using a Datron Autocal Digital Multimeter (Input 

resistance >10,000 M fi) and Lock-in Amplifier (Princeton Applied Research, Model 

5210).
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Figure 12. a) photograph of K0.33M0O3 single crystal having a typical dimension of 
2 cm along b axis; b) Resistivity (p) along the chain direction as a function of 
temperature in K0.3M0O3.

3. 2. 2 CMR manganites

The single crystals of LaMn03  and Lao.7Cao.3MnC>3 used in our experiments were 

grown by Dr. N. H. Hur’s group (Center for CMR Materials, and Superconductivity 

Laboratory, Korea Research Institute of Standards and Science, Korea) using the 

floating zone method [67].

The structures of the samples were checked with a Rigaku RAD diffractometer 

using Cu Ka radiation (XRD) with the power of 3 kW. The oxygen content o f the 

samples were determined by iodometric titration and the cation compositions of the 

single crystals were checked by electron-probe microanalysis using an electron 

microscope. The scanning electron microscopy (JEOL6400) was employed to 

examine the surface morphology. Magnetic and transport data were measured on a
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Quantum Design MPMS-5 SQUID magnetometer or a PPMS-7 magnetometer [67]. 

The single crystals were polished or cleaved before our optical measurements.
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Figure 13. Resistivity (p) as a function of temperature in NSMO thin films 
on different substrates.

Thin film manganite samples used in our measurements were provided by Qi 

Li’s group from Penn State University grown by pulsed laser deposition [59, 68 ]. Five 

REo.67Ao.33Mn0 3 thin-film samples (where RE is a trivalent rare earth element and A 

is a divalent alkali dopant), including Lao.67Sr0.33M n03, Pro.67Sro.33M n03, 

Lao.67Cao.33M n03, Ndo.67Sro.33M n03, and Pro.67Cao.33M n03 o f different thickness (100, 

200 and 400 nm) were grown on three different substrates: NdGa03 (NGO) (110), 

LaA103 (LAO) (100), and SrTi03 (STO) (100) (5*5 mm2) [59, 68], The STO, LAO, 

and NGO substrates induce compressive, tensile, and no strain in the manganite films. 

The magnetic and transport properties of the samples were characterized by electrical 

resistivity (Fig. 13) and magnetization measurements.
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Chapter 4

Low dimensional CDW systems

Charge-density-wave conductors show strikingly nonlinear and anisotropic electrical 

properties, gigantic dielectric constants, unusual elastic properties, and rich dynamical 

behaviors [14, 69]. Recently, the main motivation for studying CDW materials was to 

test the validity of theoretical models of dynamic phase transition. CDW dynamics 

has been discussed in relation to vortex lattice systems in type-II superconductors and 

collective excitations in colossal magnetoresistance materials [56, 70-71].

In this chapter, we present the first time-dependent spectroscopy from the 

ultraviolet to mid-infrared spectrum of low-frequency collective excitations: 

dispersion, damping, and anisotropy of amplitude mode (AM) and phase mode (PM) 

in quasi-one dimensional CDW conductors, K0.3M0 O3 and K0.33M0O3 on ultrafast 

time scales. First, we give a general introduction to the CDW phenomenon, focusing 

on the low energy excitation spectra in a quasi-one dimensional material, K0.3M0O3.

48
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In the next sections, we present our time-resolved spectroscopic data from the quasi- 

one dimensional CDW conductors, K0.3M0 O3 and K0.33M0O3. We analyze the data by 

using the theoretical model introduced in chapter 2. The discussion of the low-energy 

collective excitations includes the temperature evolution, dispersion relationship and 

anisotropy of amplitudon and transverse phason.

4 .1  Introduction to quasi-one dimensional CDW conductor

4 . 1 . 1  CDW ordering in quasi-ID materials

A detailed description of the CDW phenomenon is given in the recent book by Grtiner 

[14]. A charge-density wave is a modulation of the conduction electron density in a 

metal and an associated modulation of the lattice atom positions. Although similar 

modulations are observed in many different types of solids, those which give rise to 

the unusual properties of quasi-one-dimensional metals have three special features: (1) 

like superconductivity, CDW formation is due to an instability of the metallic Fermi 

surface involving electron-phonon interaction; (2) CDW results in energy gaps at the 

Fermi surface; and (3) CDW wavelength is Xc=7i/kF, where kF is the Fermi wave 

vector [72].

The main reason for the occurrence of CDW in quasi-ID materials is the 

reduction o f phase space from three-dimensions (3D) to one-dimension. This can be 

explained in terms of a ID electron gas. In this case, the Fermi surface consists of 

only two points: one at kF&nd the other at -kF. The electronic susceptibility in ID for 

T= 0 is given by Lindhard response function [73]:

(29)
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exhibiting a divergence at q=2kF [74]. This implies that any small external 

perturbation leads to a divergent charge redistribution suggesting that at T= 0 the 

electron gas itself is unstable with respect to the formation of a periodically varying 

electron charge density with the wavelength n  / kF. This divergent response function 

caused by the topology of the Fermi surface - usually referred to as Fermi nesting - 

leads to various instabilities at low temperatures, depending on the particular 

interaction of the electronic system. The CDW ground state develops in low 

dimensional metals as a consequence of the electron-phonon interaction. In quasi-one- 

dimensional metals at low temperatures the elastic energy cost to modulate the atomic 

positions is less than the gain in conduction electron energy, so the CDW state is the 

preferred ground state. At high temperatures, the electronic energy gain is reduced by 

thermal excitation of electrons across the gap, so the metallic state is stable. The 

second-order phase transition that occurs between the metallic and CDW states is 

known as the Peierls transition [14].

4.1.  2 Collective excitations in ID CDW conductors

As expected for a complex order parameter |A|e,<#, both phase (())) and amplitude (A)

excitations occur. In first approximation, the modes are decoupled and represent 

independent oscillations of the amplitude and phase of the order parameter. Both the 

amplitude and phase modes are the low-energy collective excitations in CDW 

materials. These modes are relevant to strong exchange effects and electron-electron 

correlations.

CDWs, mostly studied so far, are incommensurate (IC) with respect to the 

underlying lattice. The spatial variation of the CDW phase in an IC structure is
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referred to as a phason. A dynamical mode associated with this CDW variation, also 

referred to as the phason, is theoretically a gapless long-wave length excitation, which 

carries an electrical current.

First, we discuss the longitudinal phason (Fig. 5(a)). From frequency-dependent 

conductivity measurements it follows that the dynamics of the pinned CDW in 

K0.3M0O3 is quite complex [75]. In the q = 0 limit, the phase excitation corresponds to 

the translational motion of the undistorted condensate. Such a translational motion 

does not change the condensation energy and consequently the excitation for q = 0 is 

gapless. One finds that the frequency of the mode remains finite at q = 0 due to 

pinning o f the CDW by impurities. Pinning acts as a restoring force shifting the 

phason frequency to some finite value also at q = 0. AC conductivity data at 

temperatures well below 7)3/J show a well-defined high frequency pinning mode (q = 

0) at ~ 0.1 THz and a distribution of low-frequency pinning modes [75].

At very low temperatures (T  «  T 3D), the electrical and thermal properties of 

CDW conductors exhibit many features characteristic of a glass. The single-particle 

density is very small and the screening is ineffective, so the CDW is stiffened by 

Coulomb interactions. Only pinning-related CDW compressions and expansions 

change the charge density. The long-range Coulomb forces modify the phason 

dispersion relation q )  and bring a strong temperature dependence in the

dispersion relation. When Coulomb forces are screened by quasi-particles excited 

above the Peierls gap, the collective motion is compensated by the quasi-particle 

current and the longitudinal phase mode remains acoustic [14]. The dispersion 

relation of the longitudinal phase mode provides a sensitive probe for the screening of 

the Coulomb interaction by quasi-particles and the depinning o f the CDW modes.
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In contrast, the transverse phase modes (Fig. 5(b)) are unaffected by Coulomb 

interaction. The transverse phason dispersion remains acoustic in the entire 

temperature range as indicated by Viroztek and Maki [57]. The transverse modes do 

not involve an electrical current. In general, the transverse phason velocity is 

comparable to the sound velocity and is of an order or much smaller than the 

longitudinal phason velocity at very low temperature (T  «  T 2D) [57],

Besides the two different phason modes, another important collective excitation 

of the CDW state is the amplitude mode. The modulation o f the CDW amplitude 

changes the condensation energy and has therefore a finite frequency. In CDW 

conductors, fluctuations of the single particle gap lead to fluctuations of the ionic 

positions. The amplitude mode oscillation frequency is substantially lower than the 

gap frequency. Since amplitude mode oscillations involve no net displacement of the 

electronic charge with respect to the ionic positions, the mode is expected to be 

Raman active. Its temperature dependence can be calculated within the Ginzburg- 

Landau theory and was found to drop to zero at the Peierls transition temperature.

Experimentally, the temperature dependence of amplitude mode frequency and 

damping was studied recently by time-resolved nonlinear pump-probe technique, as 

well as, Raman and neutron spectroscopy [31, 76-77]. The amplitude excitations are 

controlled by the mean-field behavior of the distorted Peierls chain. At temperatures 

close to zero, the amplitudon frequency in K0.3M0O3 is coA ~ 1.7 THz. The frequency 

softens as T 3D is approached, but does not drop to zero completely [14]. Neutron data 

also show continuous behavior at T 3D . It follows that at q = 2kp there is an 

overdamped structure in the vicinity of T 3D that evolved from underdamped Kohn 

anomaly and separates into amplitude and phase modes at temperatures below T 3D.
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Theoretical studies of the dynamics of the Peierls chain [77] indeed show coupling

between phason and amplitudon in some temperature interval below T 3D and indicate

that the dynamics of the collective modes is not strongly affected by interchain 

coupling. This is supported by neutron [77] and Raman [76] data as well.

4. 2 Low-energy CDW dynamics

K0.3M0O3 is the most intensively studied quasi-ID CDW conductor due to the 

availability of large single crystals. In this section, we report on the first time-resolved 

spectroscopic measurements of the collective CDW excitations in quasi-one 

dimensional CDW conductors, K0.3M0 O3 and K0.33M0O3 in the long-wavelength limit 

at 30 K. We present the dispersion relation (in the frequency range from 5 - 4 0  GHz), 

phase damping constant, temperature dependence and anisotropy of the transverse 

phase mode in K0.3M0O3 and K0.33M0O3. The dispersion relation, damping and 

temperature dependence of amplitude mode were studied as well.

4. 2 .1  Dispersion relation of the collective modes

In the time-resolved experiments, a K0.3M0O3 (or K0.33M0O3) single crystal is excited 

by 150-fs pump pulses at 1.55-eV photon energy delivered by a Ti:sapphire 

regenerative amplifier operating at 1-KHz repetition rate. The KMO single crystal (5 

mm*5 mm*0.5 mm) is c-axis oriented. The probe beam, polarized parallel to the 

sample surface, probes directly the (a'-b)-plane reflectivity, where a' represents the 

[102] direction of the K0.3M0 O3 (or K0.33M0O3) single crystal. The b-axis is the 

direction along the chain. An optical parametric amplifier (OPA-800C, Spectra- 

Physics) provides the 150-fs probe pulses tunable in wavelength from 400 nm to 10
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pm. The unfocused pump beam, spot-diameter 2 mm, and the time-delayed probe 

beam are overlapped on the sample with their polarization perpendicular to each other. 

The typical pump beam power is less than 4 mW, and the probe beam power is less 

than 1 mW. The change of the reflected probe beam intensity (AR) induced by the 

pump beam is recorded as a function of time delay for different wavelengths of the 

probe beam (2probe = 400 nm - 2.5 pm). A SR250 gated integrator & boxcar averager, 

and a lock-in amplifier are used to measure the transient reflectivity change AR  of the 

probe beam.
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Figure 14. Transient reflectivity change AR at 800-nm probe wavelength from 

K0.3M0 O3 single crystal at 35 K. The inset depicts the fast oscillations on a short 

time scale.

Figure 14 shows the time evolution of AR for a K0.3M0 O3 single crystal at 35 K. 

The data are taken with pump and probe wavelength at 800 nm. The probe beam 

polarization is parallel to the chain direction (E || b). The decay of AR shows two
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damped oscillatory components on top of a bi-exponential decay. The fast oscillations 

of AR are shown on a picosecond time scale in the inset of Fig. 14. The trace shows 

several damped oscillations. The frequency of these oscillations is ~ 1.67 THz 

obtained by Fourier transformation. This value is in good agreement with the 

frequency of the amplitude mode in K0.3M0O3 obtained from previous time-resolved 

optical measurements [31], as well as neutron [77] and Raman scattering [76]. The 

amplitude of the fast oscillation is independent of the probe pulse polarization and 

rather isotropic in the a'-b plane, which is consistent with the Ai symmetry of the 

amplitude mode [31]. Besides the fast oscillation, the data also reveal a slow strongly 

overdamped modulation of Ai? (Fig. 14). The frequency of this mode is ~ 0.015 THz.
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Figure 15. Transverse phase (Q.) and amplitude (Q+) mode dispersion 

relations of K0.3M0O3 at 30 K in the long-wavelength limit.
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To identify the origin of these slow oscillations we performed spectroscopic 

measurements of AR as a function of probe wavelength in the range of 400 to 2500 

nm.

The dispersion relations of the slow and fast oscillations of AR in K0.3M0O3 at 

30 K are displayed in Fig. 15. The wave number is given by q = 2n/X, where X is the 

probe wavelength and n is the refractive index of K0.3M0 O3. The dispersionless 

amplitude mode exhibits a gap for q —> 0, with a frequency Cl+(q = 0) ~ 1.66 THz 

(Fig. 16). This value is close to the frequency of the unrenormalized longitudinal 

optical phonon mode, a>2k = 1.5 THz [14]. From Q +(q = 0) = X']/2coUf follows that

X' is approximately unity in good agreement with the value obtained from mean field 

theory and recent optical studies [14], The observed frequency dependence o f the 

slow oscillation is in full agreement with the linear dispersion relation of the 

transverse phase mode as predicted by Eq. (16). The slope of the Q.-branch gives a 

phason velocity o f c0 = 1.4± 0.1 x 103 m/s. This value is in very good agreement 

with the transverse phason velocity predicted by Viroztek and Maki [57].

The frequency of these collective modes is found to be independent of the 

polarization and wavelength of the pump beam. This excitation mechanism is 

different from previous pump-probe transmission experiments in weakly absorbing 

crystals [78], in which the wave-vector of the excited modes is determined by the 

phase-matching condition of the pump beam. Since the absorption depth in K0.3M0 O3 

is - 1 0 0  nm for wavelengths in the visible to infrared range, a broad spectrum of the 

collective mode down to frequencies of order v /£  (~ 5 GHz for K0.3M0 O3 and 

K0.33M0O3) are excited and propagate normal to the surface into the material. We use 

a time-delayed probe light pulse to detect the frequency spectrum of the charge 

density fluctuation. Part of the probe light pulse is reflected by the wave front of the
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excited charge-density fluctuations, and the remainder at the surface of the CDW 

single crystals. These reflections interfere constructively or destructively depending 

on the position and time of the charge density modulation (Chap. 2). Because of the 

phase matching condition for the probe pulse, the frequency of the oscillations is the 

frequency of a transverse phason with certain wavenumber, and the damping of the 

oscillations is the damping of the same phason. Thus, from a measurement of Ai?(t) 

we can deduce the phase velocity and damping rate o f transverse phasons with low- 

frequency in the Brillouin range.

In principle, both the longitudinal and transverse phason should couple to the 

probe pulse and give oscillatory components to the time-resolved reflectivity change, 

AR(t). However, since the pump spot size at the crystal is quite large, the sample 

surface within that spot is excited in a more or less spatially uniform manner. The 

pump pulse is strongly absorbed at the surface, so that the excitation of the sample has 

a large gradient going into the sample from the surface, and a very small gradient 

across the pump spot. The wave vector component must be very nearly zero in any 

direction along the surface (also along the chain direction) but can be large in the 

direction normal to the surface (i.e. "transverse" direction). This is similar to 

femtosecond excitation of acoustic wavepackets that propagate into the sample from a 

strongly absorbing sample, e.g., work by Hao and Maris [79-80]. Thus, the charge 

density wave propagation develops in K0.3M0O3 normal to the surface, i.e., (a'-b) 

plane, so that only the transverse phason is generated. The photo-induced transverse 

phason shows a linear acoustic-like dispersion relation in the long-wavelength limit as 

shown in Fig. 15. The behavior is consistent with theoretical prediction of the 

transverse phason [57].
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Further information on the transverse phason dynamics is obtained from the 

dependence of period, amplitude, and damping rate on the doping concentration 

between the two bronze oxides. Figure 16 shows the time evolution of AR for a 

K0.3M0 O3 single crystal at 30 K and a K0.33M0 O3 single crystal at 290 K. The data are 

taken with the pump laser wavelength at 800 nm, whereas the probe wavelength is
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Figure 16. The time evolution of AR at E || b for a) a K0.3M0O3 single crystal at 30 
K; and b) a K0.33M0O3 single crystal at 290 K with the pump laser wavelength at 800 
nm, and the probe wavelength at 800 nm and 400 nm, respectively.

800 nm and 400 nm, respectively. The probe beam polarization is parallel to the chain 

direction (E || b). Similar to the blue bronze, the red bronze signal, AR, also shows a 

slow oscillatory component on top of a bi-exponential decay. However, the 400-nm 

data of red bronze reveal a longer modulation period of 31.3 ps (E || b) as compared to 

23.5 ps observed in K0.3M0O3. The oscillations in K0.33M0O3 persist well for at least
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Ar=600 ps with very little damping. Similarly, the 800-nm data of K0.33M0O3 (Fig. 16 

(b)) shows at least three modulation period in contrast to the strongly overdamped 

modulation of AR at 800-nm probe wavelength for K0.3M0O3 (Fig. 16 (a)). This is 

consistent with polarized reflectivity spectra of K0.33M0O3, which show different 

intensities and resonances with respect to K0.3M0O3 [81].

In contrast to the fast damping rate, t a =10 ps, observed for the amplitude 

mode [76], a least-square fit of the 400-nm data in K0.3M0O3 gives a damping 

constant t p  > 55 ps for the transverse phason oscillation at Q. = 0.035 THz (Fig. 16 

(a)). Although the damping constant is in good agreement with the underdamped 

response from ac-conductivity measurements [82], the value is quite different from 

the parameters reported in far-infrared [83] and neutron scattering measurements [77]. 

The difference can be explained by the coupling between pinned modes and 

transverse phasons in distinct frequency range. The mode is very weakly damped at 

microwave frequencies (q)o/2k » 1010 Hz) [26],

4. 2. 3 Anisotropy of the transverse phason

Figure 17 (a) shows the transient reflectivity change AR of K0.3M0O3 at room 

temperature measured with the probe beam polarization parallel (E || b) and 

perpendicular (E ±  b) to the chain direction. The pump laser wavelength is 800 nm, 

whereas the probe wavelength is 400 nm. In contrast to the 800-nm trace in Fig. 14, 

which shows only one strongly damped oscillation, the 400-nm data reveal clear 

modulations with a period of 23.5 ps (E || b) and 33 ps (E 1  b), which persist well for 

five periods.

The inset o f Fig. 17 shows the anisotropy of the transverse phason oscillation 

period in the a'-b plane at room temperature. From Eq. (16), Q r_ = cq, the transverse
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phason velocity with E 1  b is calculated as Cj. = 1.1 ± 0.1 x 103 m/s, which is smaller 

than the transverse phason velocity with E |[ b, cy = 1.4 ± 0.1 x 103 m/s. This 

anisotropy is due to the difference of the CDW coupling along and normal to the 

chains [26].
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Figure 17. a) Transient reflectivity change AR in K0.3M0 O3 at 400-nm probe 
wavelength with the polarization vector parallel (E || b) and perpendicular (E _L b) 
to the chain direction. The inset shows the anisotropy of the oscillation period in 
the a'-b plane; b) The anisotropy of the oscillatory pump-probe signal for different 
probe polarization angle with respect to the b axis (0 vs.b) on K0.33M0O3.

For a quasi-ID system density wave fluctuations on the neighboring chains 

become correlated because of the inter-chain interactions and this leads to a transition 

to a ground state with three-dimensional, long-range order. The Coulomb interactions 

between two neighboring chains tend to align the chains with a certain coherence 

length, £1. The coupling is different (anisotropic) parallel and perpendicular to the
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chain. The anisotropy can be observed as the probe beam polarization is rotated from 

parallel (E || b) with the chain direction to perpendicular (E 1  b). The argument is 

supported by x-ray data from K0.3M0O3 [84]. The analysis of the Bragg pattern shows 

a crossover at ~ 200 K from 3D fluctuation region that exists up to approximately 20 

K above to a region where quasi-2D fluctuations exist [84],
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Figure 18. Temperature dependence data of the transverse phason velocity, C|| in 
K0.3M0O3 along the chain direction.

In contrast to the blue bronze, K0.3M0O3, the anisotropy must be more 

pronounced in red bronze, K0.33M0O3, considering that the states at Ef in the blue 

bronze are delocalized, whereas they are localized in K0.33M0O3 [81]. Due to further 

reduction o f the phase space, only short-range correlations occur in K0.33M0O3 along 

the chain direction. Coulomb interactions cannot lead to a coherent CDW modulation 

on the neighboring chains. Our anisotropy measurements on K0.33M0O3 support this 

argumnent. As shown in Fig. 17b), a strong oscillatory signal occurs when the
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polarization of the probe beam is parallel to the chain direction, E || b. The oscillations 

fade away in the direction of E _L b. The results are in agreement with stronger 

anisotropy of the 4 d  electronic band structure, in K0.33M0O3 vs. K0.3M0 O3 [81].

It is interesting to further discuss the temperature evolution of the transverse- 

phason spectrum. In contrast to the longitudinal phason, which splits into two modes: 

one acoustic and one optical mode in the presence of Coulomb interaction, the 

transverse modes remain acoustic in the entire temperature range. Figure 18 shows the 

temperature dependence data of the transverse phason velocity, C||, in K0.3M0O3 along 

the chain direction, cy shows a very weak temperature dependence. This is in good 

agreement with the theoretical predictions [57]:

cl lX [m/m;(T)]U2 (30)

where m is the electron mass, m] (T ) is the temperature dependent phason mass in the 

static limit. The results are also strikingly confirmed by neutron inelastic scattering 

measurements [77].

In summary, we have measured for the first time dispersion and anisotropy of 

the collective CDW excitations in quasi-one dimensional CDW conductors, blue 

bronze (K0.3M0O3) and red bronze (K0.33M0O3) in the long-wavelength limit for a 

broad temperature range (from 4 K -  325 K). A linear gapless (acoustic-like) 

dispersion relation is observed for the low-energy transverse phasons. The phason 

velocity is strongly anisotropic with a very weak temperature dependence. The 

amplitude mode exhibits a weak (optic-like) dispersion relation with a frequency Q+(q
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= 0) = 1.67 THz at 30 K. This mode is softening and disappearing as T  approaches

Tcdw .
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Chapter 5

Colossal magneto-resistance manganites

The richness of the physical properties of CMR manganites originates from the strong 

interplay between the charge, lattice, orbital, and spin degrees of freedom found in 

these systems [85-98]. Although several mechanisms, involving double exchange 

(DE) [85-87], electron-phonon interactions [88-97], and electron-electron correlations 

[85-87, 97-100], have been proposed to explain the observed CMR effect, a clear 

understanding of its microscopic origin is still lacking. Presently, the dynamics of 

Jahn-Teller (JT) distortions of the MnC>6 octahedra and charge-ordering phases are 

found to be crucial to elucidate the metal-to-insulator (MI) transition and the CMR 

effect [88-100],

In this chapter, we present ultrafast time-resolved nonlinear spectroscopic data 

from the ultraviolet to mid-infrared range near the MI transition in doped perovskite 

manganites: Lao.67Cao.33MnC>3 (LCMO), Lao.67Sro.33Mn03 (LSMO), Ndo.67Sr0.33Mn03 

(NSMO), and LaMnCT+s (LMO). We first give a general introduction to the CMR

64
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phenomena, focusing on charge ordering phases and phase separation in a 

prototypical CMR material, LCMO. In the next section, we present the first time- 

resolved spectroscopic data taken from LCMO thin film and single crystal, which 

reveal a strongly damped low-energy collective mode. The origin of this mode is 

attributed to the opening o f a pseudogap resulting from charge/orbital ordering phases. 

The regular pattern of the valence electrons modifies the uniformity of the charge 

density, leading to the development of a CDW condensate which cooperates with 

Jahn-Teller distortion and compete with the electron itinerancy favored by double 

exchange (DE) mechanism. Damping of the oscillatory components in the vicinity of 

the MI transition is discussed with respect to inhomogenous phases. The temperature 

evolution of a soft-lattice mode provides further information about electronic and 

structural instability and phase changes. In section 5.2.4, we discuss quasiparticle 

dynamics in the presence of small polarons, phase separation and percolation. Further, 

a very long-lived relaxation component is observed in time-resolved transient 

reflectivity measurements from LCMO, LSMO, NSMO and LMO single crystals and 

thin films. The results are ascribed to a slow spin relaxation process caused by 

pseudogap opening and phase segregation. Last, we discuss the effect of strain on spin 

dynamics in NSMO near the metal-insulator transition.

5 .1  Introduction

5. 1. 1 Electronic properties o f doped manganites

One peculiar feature of the doped manganite perovskites is the close association of 

ferromagnetism with metallic conduction. Zener [85] proposed the mechanism of 

double exchange to explain this correlation. Doping of the trivalent rare-earth site by
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divalent ions causes a corresponding number of Mn3+ ions to become Mn4+. The 

displacement of these holes (sometimes referred to as Zener carriers [85]) increases 

the conductivity. The strong positive exchange coupling between the Mn3+ and Mn4+ 

ions in Mn3+-0-M n4+ provides a mechanism for ferromagnetic ordering. A resonance 

hybrid between the two states Mn3+-0 2'-Mn4+ and Mn4+-0 2'-Mn3+ is 

energetically favored. For such a simplified model, the transfer integral for one 

electron becomes [85-87] ttJ = btj cos(6l1/ / 2), where f7. is the angle between the two

ionic spins and by is the coupling constant. When considered in the environment of an 

extended lattice, this interplay between dopant level and the magnetic ground state 

leads to the theoretical proposal of either a canted or a spiral ground state for the Mn 

spin, with 6F determined by dopant concentration x  [85-87].

Double exchange provides a mechanism for the simultaneous onset of 

metallicity and ferromagnetism. On the other hand, Millis et al. [88-89] showed that a 

Hamiltonian containing only double exchange is insufficient to account for the large 

magnetoresistance observed in these CMR compounds. The calculated resistance is 

too small. It has an incorrect temperature- and magnetic-field dependence when 

compared with experiment. They concluded that a strong electron-phonon interaction, 

in this case, mediated by the Jahn-Teller coupling of the Mn3+ ions, must be included. 

The competing tendency, toward localization, comes about through the Jahn-Teller 

effect, in which a valence electron stabilizes a local distortion o f the oxygen 

octahedron surrounding each manganese atom. In this way, a carrier can be trapped 

by a self-induced crystal distortion.

Energetically, the competition between double exchange and Jahn-Teller effect 

may be understood as follows. Double exchange delocalizes the valence electrons, 

lowering their kinetic energy. By contrast, localized valence electrons save energy
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because they produce Jahn-Teller distortions. However, localized electrons have a 

higher kinetic energy, and delocalized electrons suppress the Jahn-Teller effect (and 

electron-phonon coupling effects in general). Therefore, the competition between 

double exchange and Jahn-Teller effect typically leads to complex mesoscopic 

textures of doped manganites.

5 .1 . 2 Charge ordering and phase separation of CMR manganites

Manganites display three electronic phases: charge-ordered insulator (COI), 

ferromagnetic metal (FMM), and a paramagnetic phase (PM). The COI, FMM, and 

PM phases may be plotted on a schematic diagram such as Fig. 19 [100]. At any point 

in the diagram, the thermodynamically stable phase depends on the relative strengths 

of two competing processes: double exchange and Jahn-Teller effect as discussed 

above. The vertical axis of the phase diagram is temperature, which influences the 

two-way competition in that ordered phases typically form below a few hundred
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Figure 19. A schematic phase diagram of doped manganites from N. Mathur et al 
[16].
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Kelvin. The horizontal axes is the electron-phonon coupling parameter, A, which 

reflects the two-way competition and measures the strength with which valence 

electrons interact with the crystal lattice. COI and FMM states have very similar 

energies, resulting in the two-phase coexistence of FMM and COI regions [98,100- 

102]. The similarity of the energies of the FMM and COI phases leads to a sensitive 

balance between FMM and COI regions that can be tilted in favor of the COI phase 

by an increase in the structure distortion away from the ideal cubic perovskite lattice 

[98,100-102], The structural distortion can be increased by applying internal pressure 

by the substitution of smaller ions at the A site (A site refers to the ABO3 perovskite 

structure) or by applying anisotropic stress [102].

Beyond the pure phase behavior, the observation of electronic phase separation 

in these materials is generally accepted. It has been shown that for a wide range of 

temperature and lattice coupling constant, A, there is a coexistence of FMM and COI 

phases [98,100-102], which can be tilted in favor of the FMM phase by the 

application of a magnetic field or external hydrostatic pressure. The phase co­

existence has been observed also for different values of hole-doping concentration x 

[100]. For example, the tendency has been verified for doping levels o f LCMO in the 

middle of the FM regime. Evidence of charge inhomogeneities at low temperature 

was reported from muon spin resonance [103], x-ray absorption [104], and optical 

experiments [105-106], whereas at high temperatures polaron-like inhomogeneities 

were inferred from neutron scattering experiments [92, 107] and x-ray absorption

[108]. The phase transition and associated magnetoresistance properties were also 

related to a percolation of metallic ferromagnetic domains from scanning tunneling 

spectroscopy [109].
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5. 2 Experimental results

In the doped magnanites, it has recently been recognized that dynamic or spatially 

fluctuating correlations of charge/spin/orbital degrees of freedom can play an 

important role in the CMR phenomena [85-98]. The nanoscale fluctuating 

charge/orbital modulations cooperate with Jahn-Teller distortions and compete with 

the electron itinerancy favored by double exchange [88-100]. Recently, neutron 

scattering experiments showed that short-range correlation of the so-called CE-type 

charge ordering exists in the ferromagnetic (FM) manganite, LCMO, above the Curie 

temperature 7c, explaining its large resistivity and magnetoresistance near 7c [92, 

107]. Therefore, it is fundamentally important to better understand the dynamic or 

short-range charge/spin stripes, in relation to the physical properties of the CMR 

materials.

In this section, we report on the first time-resolved spectroscopic measurements 

of the collective excitations and quasiparticle dynamics in a prototypical CMR 

material, LCMO, in the long-wavelength limit. The quasiparticle dynamics in the 

vicinity of a metal-insulator transition are discussed with respect to the opening of a 

pseudogap, phase separation and percolation. Furthermore, we elucidate the origin of 

a strongly damped low-energy collective mode, its dispersion relation, temperature 

evolution and dependence on hole-doping concentration of LCMO.

5. 2 .1  Opening of pseudogap

The low-temperature state of LCMO is a very poor metal with the resistivity on the 

order of the inverse of Mott’s minimum metallic conductivity. Such poor conductivity 

would typically be regarded as the outcome of either very strong scattering (a short 

mean free path on the order of the lattice constant) or a very small number o f carriers
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(small Fermi surface (FS) volume). However, ARPES experiments in layered 

manganites directly showed that neither can be the case [13]. In order to resolve this 

inconsistency, other mechanisms must be included, the most obvious of which is the 

suppression o f spectral weight near EF [13].

Unusual behavior in the spectral weight of the ARPES dispersive peak, falling 

rapidly over quite a large energy scale (nearly 0.5 eV) as the peak approaches E?, was 

previously termed the “pseudogap” (Fig. 20) [110-111], It is not expected in the 

simple theory of metals, in which the spectral weight remains constant until it is cut 

by the Fermi function. This pseudogap will decrease the conductivity by removing a 

large portion of the carriers from the conduction process. As the temperature is raised 

above 7c, the pseudogap removes nearly all remaining spectral weight at EF, which is

Pseudogap

W ~ 4 eV

Figure 20. A schematic illustrating the up and down-spin density of states for 3- 
dimensional manganites. The experimentally observed pseudogap at Ep is also 
indicated [99].
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consistent with the insulating behavior of the high-temperature phase. Therefore, the 

pseudogap appears to be critical for explaining the poor conductivity of both phases.

The loss of spectral weight due to pseudogap opening can be monitored as a 

function of temperature and probe pulse energy by measuring the reflectivity change, 

ARo (i.e., AR(t=0)), in our two-color pump-probe setup as described in Chap. 4. The 

principle of the measurement is similar to thermo-modulation spectroscopy, which 

involves periodically perturbing the sample’s temperature and measuring the changes 

in the optical absorption spectrum occurring in synchronism with the perturbation 

(Fig. 21). Since electron-electron scattering, r e_e, is much faster than the period of a

typical phonon vibration, electrons are decoupled from the lattice, and the electronic 

system can be described by high photoexcitation density pulses. Since only changes in

a)

Ef

1 d-band

D(E)

E

d-band

D(E)

c)

m 4
y

^ ____
Aa

Figure 21. Thermomodulation mechanism: a) photoexcitation, where the arrows 
represent possible electronic transitions from occupied (hatched) to unoccupied 
electronic states, results in b) Fermi smearing thereby opening some states and 
blocking others for optical transition, c) A derivative-like feature (i.e. absorption 
A a) with respect to the probe photon energy co when the probe photon energy 
matches the energy of d-band to Ef transition [56].
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the optical spectrum are measured, the modulation spectroscopy is very sensitive to 

the critical points in the band structure, i.e. the presence of narrow bands below EF 

giving rise to large joint density of states [112].

For the transient reflectivity measurements the samples were mounted in an 

optical cryostat. The laser system consists of a Ti:sapphire regenerative amplifier 

(Spitfire, Spectra-Physics) and an optical parametric amplifier (OPA-800C, Spectra- 

Physics) delivering 150-fs short pulses at a 1-kHz repetition rate tunable from 400 nm 

to 10 pm. A two-color pump-probe setup is employed with the pump beam power < 6 

mW and the probe beam power < 1 mW as described in Chap. 4.

Under pump-illumination, the Fermi distribution of unoccupied states, 

p  = 1 -1  /{I + exp[-(isF - E d -  had) / kT] increases slightly for fico < EF -  E d . That is 

d p /d t > 0 , and more d-band electrons absorb probe photons, resulting in a 

reflectivity decrease ( dR0/R Q <0) ,  i.e. transient absorption. On the other hand, for 

hco> E F - E d, there is a decrease in the number of unoccupied states above Ef and 

thus dR0 / R0 > 0 i.e. transient bleaching. As tico = E F -  Ed, there is no modulation of 

the unoccupied state sampled, because to first order d p /d t = 0 [112].

As shown in Fig. 22(a), the polarity reversal with increasing temperature can be 

understood easily in terms of a pump-induced change in unoccupied electronic states 

near the Fermi level. These states are probed by monitoring the change in reflectivity 

at a probe energy o f 1.08 eV, 0.51 eV and 1.55 eV, respectively. The probe pulse 

induces transitions of electrons from the upper edge of a filled eg band of d  electrons 

(EJ) to an unoccupied eg band close to the Fermi level.

Thus, for LCMO single crystal (Fig. 22(a)), the polarity reversal represents the 

opening o f a pseudogap with increasing the temperature. We consider fit the data
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Figure 22. The reflectivity change AR0 (at Ar=0) in LCMO single crystal as a 
function of a) temperature with a probe energy at 0.51 eV, 1.08 eV, and 1.55 eV, 
respectively; b) probe energies at 10 K and 60 K.

taken with a probe energy of 1.08 eY (Fig. 22 a)). At very low temperature ( T « T C), 

ARo is constant with the same joint spectral density around Ef. ARo starts to decrease 

at T ~ 50 K. The pseudogap size reaches 1.08 eV at 100 K as temperature increases. 

Above Tc, A.Ro is constant again with no change of the pseudogap. For comparison, 

we repeat the measurement with a probe energy of 0.51 eV and 1.55 eV (Fig. 22(a)). 

We can clearly see a similar trend of the reflectivity change, ARo, although for 0.51 

eV (1.55 eV) probe pulse A Ro remains negative (positive) for the whole temperature 

range, as expected for hco < (>)EF - Ed, respectively.

The opening of a pseudogap is also confirmed by the spectroscopic pump-probe 

measurements at 10 K and 60 K (Fig. 22(b)). The pseudogap size clearly shifts from
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0.92 eV to 1.02 eV with increasing temperature. This is in good agreement with the 

loss of spectral weight around 7c observed by recent ARPES spectra [13, 110-111, 

113].

A number of possibilities exist to explain the pseudogap, both intrinsic and 

extrinsic. We begin with the extrinsic possibilities, which we argue can be largely 

excluded. First, there is the extrinsic ohmic loss effect due to poor conductivity [114]. 

However, recent experiments [115-116] and theories [116] convincingly argue that 

this is very unlikely to be a major concern. Next, there is the matrix element effect, 

which will modulate the spectral intensities near Ef and in general has both energy- 

and momentum-dependent terms. Chuang et al. have taken their ARPES spectra at

0 . 0 0 4
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(800 nm at 180 K)
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Figure 23. Time evolution of AR for LCMO single crystal at 180 K.
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various photon energies (between ~ 20 and 50 eV) and polarizations for layered 

manganites [13]. The authors indicated that the spectral weight loss trend is still 

robust although the weights do vary slightly with photon energy, which excludes the 

matrix element effect. Additionally, optical conductivity experiments have also shown 

the absence of the Drude peak in LCMO [97], which may be closely related to the 

pseudogap. Intrinsic effects to explain the pseudogap include Jahn-Teller effects [88- 

89, 117], polaronic [118-119] or bipolaronic [120] effects, strong on-site Coulomb 

interactions [121], and electronic phase separation [88, 122]. Time-resolved 

spectroscopy can be used to probe the dynamics of these intrinsic effects and to 

elucidate their relationship to the pseudogap.

5. 2. 2 Dispersion relation of the collective mode

Figure 23 shows a typical time evolution of AR  for LCMO single crystal. The data are 

taken at 180 K with pump and probe wavelength of 800 nm. After the initial laser 

pulse excitation (process 1), the decay of AR clearly shows an oscillatory component 

on top of a multi-exponential decay (process 2, 4, 5). The slow oscillations (3) of AR 

are strongly overdamped. Only one, or at most two, oscillations can be observed in 

the trace of AR. The frequency of this mode is estimated to be ~ 30 GHz. To identify 

the origin o f the slow oscillations, we performed spectroscopic measurements o f AR 

in LCMO thin films as a function of probe wavelength in the range 400 nm to 5500 

nm.

Figure 24 displays the coherent overdamped oscillations of the LCMO film at 

several probe wavelengths varied from ultraviolet (400 nm) to mid-infrared (2300 nm) 

without the exponential decaying part. The oscillatory signals can be observed in the
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whole wavelength range. With increasing probe wavelength the oscillations become 

weaker and more damped. Two oscillations can be observed for the probe wavelength 

range from ultraviolet (~ 400 nm) to near-infrared (~ 1000 nm). However, only one 

oscillation is observed for probe wavelengths above 1250 nm. More interestingly, the

2300 nm (5 x) 2300 nm

1400 nm (4 x)
1400 nm

1050 nm
1050 nm

900 nmO)
900 nm

800 nm
800 nm

725 nm
725 nm

600 nm
600 nm

400 nm
400 nm

0 10 20 30 40 50 60 70 20

Time (ps) Frequency (GHz)

Figure 24. a) Time evolution of reflectivity change, AR for LCMO thin film with 
probe wavelengths varied from ultraviolet to mid-infrared; b) Fourier transforms of 
the AR traces shown in a).

oscillation component shows a strongly dispersive behavior.

The change of oscillation period can be well identified with the shift of the 

oscillation maximum and minimum. The oscillations become slower from ultraviolet 

to mid-infrared range (Fig. 24 (a)). As shown in Fig. 24 (b), the frequency of the
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oscillations decreases from 73.83 GHz at 400 nm to 37.4 GHz at 800 nm to 21.8 GHz 

at 2300 nm.
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Figure 25. Collective mode dispersion relation of LCMO at room temperature.

The dispersion relation of the slow oscillation of AR  in LCMO at room 

temperature is displayed in Fig. 25. The wave number is given by q = 2n/X , where X 

is the probe wavelength and n is the refractive index of LCMO [123]. By changing the 

wave vector of the probe photon the frequency of the oscillations in LCMO increased 

proportional to the wave number. The slope gives a phase velocity of Co = 7.1 + 0.1 x 

103 m/s.

The frequency of the coherent mode found to be independent of the polarization 

and wavelength of the pump beam. The wave-vector of the excited modes is 

determined by the phase-matching condition of the probe beam as described in Chap.
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2. Since the absorption depth in LCMO is ~ 100 nm for wavelengths in the visible to 

infrared range, a broad spectrum of coherent modes are excited and propagate normal 

to the surface into the material up to frequency, ~ 2 THz. In what follows, we argue 

that the observed oscillations are due to a transverse phason in LCMO resulting from 

charge-ordering phase.

Most recently, Biswas et al. confirmed that the substrate strain can induce 

charge-ordering phases in LCMO based on their low-temperature magnetic force 

microscopy and magnetotransport measurements [124]. Additionally, charge-ordering 

characteristics in LCMO have been recently reported by Fath et al. from scanning 

tunneling spectroscopy [109]. With this technique, a clear phase-separated state was 

observed below 7c using thin film [109].

a) b) c-axis

Energy
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<0> M n 3+ O M n 4+
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Charge density

JT.distortio

R eal space position

Figure 26. a) Schematic plot for density wave formation: k  space as indicated from 
ARPES measurements; b) CE-type structure as proposed in LCMO along the c 
axis by Asaka et al.[42]; c) density wave formation in real space with a wave 
length of 3.3a for layered manganites [26].
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New evidence for charge-ordering lies in the Fermi surface (FS) topology 

deduced by recent angle-resolved photoemission spectroscopy (ARPES) 

measurements of layered CMR oxide, La^Sri.gM^O? [13]. The authors suggested 

that key to many properties of the manganites appear to be parallel straight sections of 

the FS, which are highly susceptible to nesting instabilities [13]. The hole-like 

portions are very straight, more than expected from local spin density approximation 

calculation, especially near the comers of the hole pockets. Such straight parallel 

segments indicate that the electronic properties of these compounds should be 

considered as quasi-ID. This is consistent with recent experimental [126-127] and 

theoretical works [128] showing stripe ordering. The straight FS segments are also 

prone to produce (and originate from) nesting instabilities; that is, a large portion of 

the FS is connected in k  space to another reciprocal lattice vector Figure 26a) 

shows the schematic plot explaining such an effect, where the main band hybridizes 

with an Umklapp band shifted by the amount G in k  space. The hybridization opens 

a gap 2A, which lowers the electronic energy of the system. Fermi nesting means that 

large portions of the FS will be gapped, gaining more energy and making the 

distortion more likely, which is consistent with the insulating behavior above 7c.

The charge and orbital ordering in LCMO can be viewed as a quasi-one- 

dimensional electronic structure with reduced dimensionality as compared to the well- 

known charge-exchange (CE)-type structure: d3x 2_r2 or d 1-rl orbital ordering of

Mn3+ occurs along the c axis (Fig. 26(b)). The d3z2_rl orbital of Mn3+ is clipped by 

three Mn4+ ions. Such a regular pattern of the distinct charges modifies the uniformity 

of the charge density, leading to the development of the CDW condensate.
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The coherent oscillations in our measurements show strong dependence of 

period, amplitude, and damping rate on the hole doping concentration and average A- 

site ion radius, rA. This indicates that the observed oscillations are closely related to 

the charge density wave, i.e., the collective excitation mode.

We measured hole doping concentration dependence of AR in LMO. Similar to 

the LCMO sample, the reflectivity change, AR, also shows a slow oscillatory 

component on top of a bi-exponential decay in its parent compound LMO. However, 

the 800-nm data of LMO reveal a clearly different modulation period of ~ 45 ps, in 

contrast to ~ 27.6 ps observed in LCMO. The oscillations in LMO are weaker but 

persist longer.

Further evidence comes from the differences in the dependence o f period, 

amplitude, and damping rate on the average ,4-site ion radius, rA in LCMO and PCMO 

single crystals. The average ,4-site ion radius, rA, is directly related to the electronic 

properties o f the various manganite phases based on microscopic Hamiltonians, 

including strong electron-phonon JT and/or Coulomb interactions [88-89, 117, 121]. 

As reported by Fiebig et al., the modulation period for PCMO single crystal at 800 nm 

is ~ 40 ps [129], which is much longer than in LCMO.

Additionally, recent studies suggest that the ground states of manganite tend to 

be intrinsically inhomogeneous due to strong tendencies toward phase separation, 

typically involving ferromagnetic metallic and antiferromagnetic charge- and orbital- 

ordered insulating domains. The oscillations in the time-resolved spectroscopic data 

are due to the antiferromagnetic charge- and orbital- ordered insulating phases. As 

indicated by Dagotto et al., electronic phase separation between phases with different 

carrier densities leads to nanometer-scale coexisting clusters [12]. In contrast to the 

small damping rate in CDW conductors, the strongly overdamped behavior of the
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oscillatory component in LCMO can be explained by the broad size distribution for 

the nanoscale regions and irregularly shaped mixed-phases [12]. Moreover, we do not 

observe any anisotropy in LCMO because of its percolative nature [12].

More details of our data (Fig. 26c) can be explained by the coupling of the 

nesting-induced CDW with the Jahn-Teller distortion. For example, as indicated by 

ARPES, the pseudogap depletes spectral weight from a large energy range (~ 1 eV) 

around E?, which is a very large energy scale for a CDW-style gap alone (Fig. 21). 

Further, the gap edges are experimentally observed to be “soft” or gently sloping, as 

opposed to the sharp edges expected from a simple CDW gap (Fig. 20). The 

cooperation of the CDW with the Jahn-Teller distortion explains these unusual 

phenomena, as the typical energy scale o f the Jahn-Teller distortion is near 1 eV. In 

addition, x-ray results indicate that the magnitude of the Jahn-Teller distortion varies 

in space, meaning that the resulting gap will have various energy scales and so the gap 

edge will be soft. This also implies that the carrier hopping probability t y  will vary 

from one site to another. Recent theoretical calculations suggest that if  such a 

variation in t y  exists, then nanoscale phase separation and percolative conduction are 

expected [130].

5. 2. 3 Temperature evolution of the collective mode

Evidence for cooperation of CDW with Jahn-Teller distortion is found from the 

temperature evolution of the low-energy collective mode. Figure 27 shows 

measurements of AR  from an LCMO thin film as a function of time delay A t  between 

the pump and probe beam at different temperatures near 7c. In addition to the
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instantaneous electronic response to the pump pulse and two different decay processes, 

an overdamped oscillatory component is clearly observed for different temperatures.
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Figure 27. Transient reflectivity change AR of LCMO on NGO at different 
temperatures near 7c.

Figure 28 displays the coherent overdamped oscillations of the LCMO film at 

several temperatures (below and above 7b) without the exponentially decaying part. 

At T « T C, the oscillations are less damped, three or more are observed due to a 

relatively small damping constant. With increasing temperature, the oscillations 

become more damped and only two are found around 7c due to a heavy damping 

constant. Above 7b the oscillations become stronger again. Figure 28 (b) shows the 

corresponding Fourier transforms of the signal transients of Fig. 28 (a). The frequency 

of the oscillations decreases from 64.1 GFlz at 10 K to 35.3 GHz at 7b, and finally
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increases to 53.75 GHz at room temperature. The oscillations exhibit clear softening 
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Figure 28. (a) Coherent oscillations of LCMO at different temperatures without 
decay components; (b) Fourier transforms of the signal transients shown in (a).

At a photon energy of 1.55 eV, the real part of the dielectric function o f LCMO 

is constant with temperature as shown by Kim et al [123]. Therefore, the softening of 

the oscillations cannot be explained by collective modes of CDW alone, where the 

frequency shift would be related only to the background dielectric function. A 

cooperative Jahn-Teller type distortion of the Mn06 octahedra coupled to the CDW 

can explain our results. This is in very good agreement with recent electrical transport 

measurements at low temperatures, which showed a strong coupling between the 

carriers and a low-frequency JT-distorted phonon mode [88-89, 117, 121].
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X-ray diffuse scattering measurements and ARPES of a layered manganite, 

Lai.2Sri.8Mn207  give direct evidence for a slowly modulated cooperative Jahn-Teller- 

type distortion of the MnC>6 octahedra where the strength of the distortion is 

determined by the amplitude of the charge modulation [13, 131]. As shown in Fig. 29, 

if the MnC>6 octahedron is Jahn-Teller distorted, the probability that another MnOg 

octahedron is similarly distorted will oscillate within the sheet along the modulation 

direction, and approach zero with increasing distance from the origin due to the finite

Figure 29. Crystallographic representation of the one-dimensionally modulated 
structure associated with CDW in a layered manganite, La^Sri.sM ^O? [131].

range of correlations [131]. When viewed in this fashion, the smoothly varying 

pattern of orbital stripes that forms perpendicular to the modulation direction is 

readily apparent. The Jahn-Teller effect cooperates with the CDW and competes with 

the itinerancy energy of double exchange. The structural correlations cause complex 

rotations of the Mn06 octahedra, exotic orderings of the electronic orbitals, and 

commensuration effects that relate to periodicity mismatches between the crystal 

lattice and the magnetic and electronic lattices [13, 131].

The softening of the collective mode may provide significant information about 

local structural changes associated with charge density fluctuations. As predicted by 

the soft-mode model of structural phase transitions, at each transition the frequency of
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soft normal modes decreases as Tc is approached from above or below. In Fig. 28b), 

the Fourier spectra between 10 and 290 K show clearly structural phase transition 

behavior. In particular, we note that the frequency shift of the observed low frequency 

oscillations near Tc is comparable to those measured for internal TO phonon modes, 

i.e., the bending and stretching modes of the MnC>6 octahedra. This phonon consists 

mainly of a stretching vibration of the bond between the manganese ion and the 

oxygen ion, which is situated along the direction o f the mode polarization. Therefore, 

the softening of collective mode is associated with the orthorhombic distortion of 

GdFe0 3  type.

5. 2. 4 Quasiparticle dynamics

Further information on electron-, lattice-, and spin- degree of freedom can be obtained 

from quasiparticle relaxation dynamics. As shown in Fig. 23, the decay of AR in the 

metallic phase of LCMO shows three-component behavior, two positive and one 

negative in magnitude. At low temperature (T < Tc), AR shows initially a fast positive 

bi-exponential decay with relaxation times ta= 0.5 ~ 4 ps and tb = 50 ~ 100 ps. The 

fast process reveals the thermalization of photoexcited quasi-particles which occurs 

on a time scale z q p  = 0 . 3 - 3  ps. The second process is characteristic for JT polaron 

relaxation and is related to the inhomogenous nature of the material. Here, we discuss 

the second process.

Figure 30 shows the temperature dependence of Ai?(t=0) = ARq. The vertical 

dotted line denotes Tc as determined by electrical resistivity and magnetization 

measurements. To ensure that the pump-probe experiments are performed in the third- 

order regime we have measured the power dependence of AR0, and found the
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expected linear dependence on the pump intensity (shown in the inset of Fig. 31). We 

also measured ARo as a function of temperature at two different power levels 15 and 

27 mW (shown in Fig. 30). The temperature dependence of AR for the two power 

levels (ARo normalized at 260 K) is identical indicating that the pump intensity 

weakly perturbs the system.
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Figure 30. ARo of LCMO vs temperature for two different pump beam power.

In the optical spectrum, LCMO has a broad absorption band at 1.3 eV, which is 

evident in the paramagnetic phase. Several groups have attributed this 1.3 eV 

absorption band to charge transfer excitation of an electron from the lower JT split eg 

level of a Mn3+ ion to the unoccupied and unsplit eg level of adjacent Mn4+ ions [132]. 

Moreover, Zhao et al. found a fast conductive transient (-150  ps) in impulsive optical 

conductivity measurements from LCMO and attributed this component to the
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photoionization of the Jahn-Teller small polaron close to Tc [132]. This interpretation 

is consistent with our data. As shown in Fig. 30, the excitation process is first 

enhanced with increasing temperature near Tc, i.e., from 230-260 K due to the 

increased overlap of the photon energy with the JT split eg band. The transient 

reflectivity signal then decreases above Tc as the band broadens and the absorption 

decreases. At low temperature (Y « T c ) ,  AR gradually decreases with lowering 

temperature. The absorption behavior below Tc is consistent with a large polaron as 

indicated by Kim et al [123], Further evidence for polaron formation is given by the 

temperature dependence of the fast relaxation time xB associated with the positive 

component of AR (shown in Fig. 31)). Based on the electronic nature o f the optical
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Figure 31. Temperature dependence of second fast relaxation component, t b; 
Inset shows the power dependence of ARo.
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transitions at 1.55 eV, the fast decay time xB is related to the thermalization and 

localization time of electrons made itinerant by photons. For the ferromagnetic 

metallic state, xB is found to be between 20 to 100 ps indicating the existence of 

itinerant large polarons. This component can still be observed around 4 K, well below 

Tc. Near Tc, Jahn-Teller effects begin to dominate, xB is enhanced by almost an order 

of magnitude due to the formation o f JT small polaron, which will localize carriers. In 

the PI state (above Tc), tb > 800 ps, because the localization time is relatively long.

However, recent studies have shown that individual polarons may not be 

sufficient to describe the carrier dynamics of manganites near the Curie temperature. 

Several theoretical and experimental results indicate that spatial phase separation may 

occur between hole-rich (FM) and hole poor (antiferromagnetic insulating) regions

[109]. This tendency should be least for doping levels of LCMO in the middle of the 

FM regime. Still, evidence of charge inhomogeneities at low temperature was 

reported from muon spin resonance [103], x-ray absorption [104], and optical 

experiments [105-106], whereas at high temperatures polaronlike inhomogeneities 

were inferred from neutron scattering experiments [92, 107] and x-ray absorption 

[108]. The phase transition and associated magnetoresistance properties were also 

related to a percolation of metallic ferromagnetic domains from scanning tunneling 

spectroscopy [109]. The phase transition behavior shown in Figs. 30 and 31 also 

indicate the percolative nature of the MI transition. In particular the gradual increase 

of xB from 30 to 200 ps in the range from 150 to 250 K is indicative of the coexistence 

of high-volume region associated with delocalized carriers and a low-volume region 

associated with localized carriers. In this context, the spontaneous metal-to-insulator 

transition is associated with a low to high volume transition.
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5. 2. 4 Slow spin relaxation process

In addition to the initial fast relaxation processes, a very long-lived negative AR 

remains sufficiently long, decay time ts l  ~ 100 /us, that a negative signal is clearly 

observable even after 1 ms in LCMO and LMO (Figs. 32a) and b)). Transient optical 

reflectivity and transmission measurements from charge-ordered PCMO, LCMO,
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Figure 32. Transient reflectivity AR of: a) LCMO and b) LMO single crystals 
around Tc (or Tn) at 800 nm. The dotted lines indicate the zero position.

LSMO, and NSMO thin films, as well as, single crystals have also shown a negative 

long-lived component at low temperature. Further information on the long-lived
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relaxation process in LCMO and LMO is obtained from the temperature dependence 

of AR  measured at a time-delay t = 500 ps, referred to as Ai? (Fig. 32).
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Figure 33. Temperature dependence of A R  at At = 500 ps: a) LCMO single crystal 
(̂ pump = 1 -4 pm/ziprobe = 800 nm) and 400-nm thin film (ApUmp = 800 nm A^obe =
5.2 pm), and b) LMO single crystal (/Ipump ~ 1-29 pm//lprobe = 800 nm). The solid 
lines indicate the power-law dependence.

The temperature dependence of A R for LCMO single crystal (LpUmp = 1.4 pm! 

Vobe =800 nm) and thin film (LpUmp = 800 nm/Aprobe = 5.2 pm) are qualitatively the

same and independent of wavelength (Fig. 33a)). The normalized A R increases with 

increasing temperature followed by an abrupt drop to zero around Tc. In contrast, for

LMO (Lpump = 1.29pm=/ A,probe = 800 nm) A R decreases slowly at low temperature 

and drops significantly around Tn (Fig. 33b)).
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We observed this long-lived relaxation component both in the metallic and 

insulating phase as indicated in the transient optical reflectivity and transmission 

measurements from charge-ordered PCMO, LSMO, NSMO, and LCMO. But there is 

no evidence of this component in the transient reflectivity change of the paramagnetic 

phase as we measured from LSMO thin film, which shows a phase transition from 

ferromagnetic metal to paramagnetic metal at 325 K. Thus the component can only be 

related to the magnetic ordering phase, i.e., ferromagnetic or antiferromagnetic states.

The non-zero A R above TV indicates that a residual anti-ferromagnetic (AFM) order 

exists in LMO above the Neel temperature. The long-lived decay of AT? is ascribed to 

a slow spin relaxation process.

The fact, that in both manganites A R drops nearly to zero above the transition 

temperature, is a strong indication that the long-lived A R signal arises: a) from a 

metastable excitation involving localized states, and b) that the decay of these states 

involves a spin-flip process. The lifetime tSl ~ 100 /us of these metastable states is 

comparable with the spin-lattice relaxation time measured by the juSR technique [103], 

Similar results have been reported by Kise et al. from time-resolved pump-probe 

magneto-optical Kerr study on the critical dynamics of the double exchange 

ferromagnet: Sr2FeMoC>6 [23]. The authors suggested a slow spin relaxation process 

toward the quasi-equilibrium state through weak heat exchange with the reservoir at 

quasi-equilibrium temperature.

The solid line in Fig. 33b) shows that A.R m LMO follows approximately a (TV 

- T)a dependence (a  = 0.5), which is similar to the temperature dependence of the 

magnetization. As the temperature approaches Tn and the magnetic order decreases in 

LMO, the metastable state excitations resulting from spin scattering decreases and 

A R starts to drop. In contrast to LMO, the T-dependence of AT? is more complex in
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LCMO. The transient reflectivity first increases with increasing temperature and then 

for T > 0.97c follows a (7c - T f  dependence with 7? ~ 0.8 -1 (solid line in Fig. 33a)).
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Figure 34. The relaxation time tb as a function of temperature T for LCMO and 
LMO single crystals. The solid line indicates the power-law dependence. The inset 
depicts a schematic diagram of carrier excitation/relaxation processes in LCMO.

The various processes giving rise to the photoinduced reflectivity change in 

LCMO are depicted in Fig. 34 (inset). An ultrashort laser pulse first excites electrons 

via interband transitions. These hot electrons very rapidly release their energy via 

electron-electron and electron-phonon collisions reaching QP states near the Fermi 

energy (step 1). The QPs can recombine with states in the pseudogap (step 2) or relax 

to metastable states via spin-flip processes (magnons are released) caused by strong 

electron-lattice coupling (step 3). The carriers in the metastable states will relax with a 

recombination rate y =1 !xSl , while magnons are absorbed (step 4). As the pseudogap
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opens up with increasing temperature and the spectral weight of states at the Fermi 

level decreases the decay rate of excited QPs decreases (step 2) and more 

quasiparticles will be scattered into metastable states (step 3). This effect leads to the 

initial rise of A R which is inverse proportional to the density o f states in the 

pseudogap, i.e., for T ~ 0.97c , AR <x(Tc -  T)~b with b ~ 0.3 - 0.5 (solid line in Fig. 

33a)).

Further information on the relaxtion dynamics of photoexcited quasi-particles 

can be obtained from the polaron relaxation time tb. Figure 34 shows tq as a function 

o f temperature for LMO and LCMO single crystals. In LMO single crystal, tb is 

found to be completely temperature independent below 7V consistent with a static 

Jahn-Teller gap. For LCMO single crystal, tb remains nearly constant below 0.45 Tc 

and starts to increase above 0.77c. A similar T-dependence has been reported in 

LCMO thin films (Fig. 32). The relaxation time tb follows a (Tc - T)'p dependence,

i.e. t b  ocl/A i?, shown as a solid line in Fig. 34. This result strongly supports our 

interpretation that the quasi-particle relaxation dynamics involves fully spin-aligned 

pseudogap states near Ef.

Recently, ultrafast melting o f a charge-ordered state has been reported in the 

photo-irradiated colossal magnetoresistive compound PCMO [129]. Pump-probe 

spectroscopy experiments reveal the formation of a conducting phase with typical 

features of an insulator-metal transition after less than 1 ps [129]. This phase is 

metastable and can be maintained in ~ ps time scale. The metastable states are 

determined by energy barriers with a wide distribution of energies that lead to a 

distribution o f relaxation times and stretched exponential forms of relaxation. Thus, 

the temperature evolution of the long-lived relaxation component provides
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quantitative insight into the structure of the free energy surface in the ordered phases 

of doped manganites and its temperature evolution [133].

5. 2. 5 Strain-effect on spin relaxation dynamics

Uniaxial lattice distortion can easily be introduced in thin films due to lattice 

mismatch between the film and substrate. Understanding the role of strain and
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Figure 35. Transient reflectivity AR  o f NSMO (400 nm) on different substrates:
(a) LaA103 (001), (b) SrTi03 (001), NdGaCh (110), and (d) NdGa03 (110) with 
postoxygen annealing. The dotted lines indicate the zero line.

microstructure on magnetism and transport is a necessary step in elucidating the 

origin of CMR in manganites [134-143]. In this section, we report on the effect of 

strain on carrier relaxation dynamics in NSMO near the MI transition temperature.
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NSMO thin films grown on three different types of substrates with thickness 

400 nm and different growth condition (with or without post-annealing) are employed. 

The substrates are LaA103 (001) (LAO), SrTi03 (001) (STO), and N dG a03 (110) 

(NGO), which can induce biaxial compressive, tensile, and very little strain in the 

NSMO thin films, respectively. The NSMO thin films were grown epitaxially on 

these substrates by pulsed laser deposition [144]. The samples were characterized by 

electrical resistivity and magnetization measurements (the Curie temperatures are 225 

K, 215 K, and 228 K for LAO, STO, and NGO substrates respectively).

Figure 35 a) - d) shows measurements of A/? from thin NSMO films on 

different substrates as a function of time delay t between the pump and probe beam at 

different temperatures. The dotted lines show the zero position. The decay of AR in 

the metallic phase of NSMO also shows three-component behavior, two positive and 

a negative one. The positive ones decay with characteristic times on the 

subpicosecond and picosecond time scale. Here, we mainly focus our discussion on 

the long-lived negative component of AR.

The temperature-dependent AR signal from NSMO thin films on different 

substrates (LAO, STO, and NGO) are quite distinct as shown in Fig. 35 (a) ~ (d). For 

instance, at T=  0.957c, the pump-probe signal drops below the zero line around t ~ 

250 ps for the compressively strained NSMO thin film on LAO substrate (Fig. 35(a)), 

while for tensile strained NSMO thin film on STO substrate AR stays positive far 

beyond 400 ps (Fig. 35(b)), and for near-zero strained NSMO on NGO, AR becomes 

negative after only a few picoseconds (Fig. 35(c)). The transient reflectivity signal of 

the oxygen post-annealed NSMO sample grown on NGO is shifted towards positive 

values compared to the as-grown sample [Fig. 35(d)]. The positive part o f the 

transient reflectivity signal becomes much longer (> 450 ps) for the annealed sample.
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Figure 35 indicates that the relaxation dynamics of NSMO depends strongly on the 

strain, structure, and oxygen content of the film. The difference in dynamical behavior 

is attributed to changes in grain boundaries (unit cell volume) and long-range 

magnetic ordering.

The dynamics of the spin system in strained NSMO is very different from that
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Figure 36. Long relaxation component II vs the temperature obtained from AR 
for different strained NSMO thin films. The solid lines show fits Eq. (31).

of the unstrained material. The very slow spin thermalization process below Tc 

indicates the anomalously long spin wave relaxation in NSMO thin films (Fig. 35). 

The temperature dependence of the long relaxation component, 11, is in good
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agreement with magnetic susceptibility measurements. As shown in Fig. 36, the 

dramatic change in n  as the temperature approaches Tc indicates that this negative 

component of AR directly reflects the critical behavior of the magnetic phase 

transition. Time-resolved reflectivity measurements provide us a unique opportunity 

to study the dynamics of the spin system and the order-disorder characteristics of the 

ferromagnetic-paramagnetic phase transition in NSMO [12].

The manganites tend to be intrinsically inhomogeneous due to a strong tendency 

towards phase separation. The phase separation has two different origins: (i) 

electronic phase separation between phases with different carrier densities that leads 

to nanometer scale coexisting clusters, and (ii) disorder induced phase separation with 

percolative characteristics between equal-density phases, driven by disorder near the 

first order metal-insulator transition. Both types of phase separation will qualitatively 

lead to similar temperature dependence of the order parameter. However, strain- 

induced static distortion waves will affect mainly the disorder induced phase 

separation. As shown in Fig. 36, the behavior of II proceeds in two stages: above a 

“disordering” temperature Tm, a disordered paramagnetic phase appears, and the 

parameter n  exhibits a power-law dependence on the temperature. Systems with 

power-law decay of order-correlation parameters are said to have quasi-long-range 

order (QLRO) [145]. Thus, this intermediate state of mixed ferromagnetic metal and 

paramagnetic insulator phases clearly shows a temperature-dependent QLRO. Above 

Tc, the spin correlation is short range, and the ferromagnetic phase disappears.

The order-correlation parameter, i.e., IT, allows us to relate the critical behavior 

of the ordering parameter to the critical exponents of the static parameters, i.e., 

correlation length and spin-wave stiffness in the X Y  model. The QLRO-disorder 

transition is caused by reduced thermodynamic stiffness, similar to the Kosterlitz-
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Thouless (KT) transition [146], According to the two-dimensional X Y  model the 

order-correlation parameter, i.e., n, diverges exponentially around Tm as:

£(T) cc exp{B[ Tu  /(T-TM)Y} (31)

where 0.1696 < v < 0.4. The solid lines in Fig. 36 show fits o f Eq. (31) for NSMO 

films grown on different substrates. The arrows indicate the disordering temperature 

Tm of the different strained NSMO films. Figure 36 shows that the power-law decay 

of long-range correlations [Eq. (1)] depends strongly on the strain. Strain creates static 

distortion waves in the interfacial region caused by the thin film-substrate interaction 

potential and leads to the breakdown of long-range spin ordering. At low temperature, 

the disorder concentration is very low (tending exponentially toward zero with T—>0 

K) and the internal correlation inside the film does not change significantly in 

response to strain consistent with a constant value of n .  With an increase in 

temperature, static distortion waves caused by strain break down the order parameters. 

If the substrate is commensurate with the two-dimensional (2D) lattice, such as the 

NSMO thin film grown on a slightly strained NGO substrate, the strain force will be 

weaker and the long-range spin correlation can be kept toward higher temperature ( ~ 

0.87c). For incommensurate substrates, like in the case of NSMO on STO or LAO, 

the long-range spin correlation will be strongly disturbed by the creation of static 

distortion waves. Thus, the critical spin-disordering temperature TM is much lower (~

0.67c) compared to the case of NSMO on NGO substrates. The “disordering” 

temperature Tm varies according to the creation of static distortion waves under 

different strain forces.
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Chapter 6

Summary and conclusions

We have studied in detail the detected collective oscillation modes and the electronic 

and/or magnetic excitation and relaxation processes in CDW and CMR conductors in 

order to explore the low energy dynamics of different correlated phases, and elucidate 

the manner in which these dynamics evolve through low temperature phase transitions, 

e.g., metal-insulator, charge-ordering, ferromagnetic-paramagnetic. We have 

investigated the low-energy collective excitations of the charge-density wave in the 

quasi-one dimensional conductors: K0.3M0 O3 and K0.33M0 O3 by time-resolved two- 

color pump-probe spectroscopy. The dispersion relation of the transverse phase mode 

is measured in the frequency range from 5 - 4 0  GHz by time resolved transient 

reflectivity spectroscopy. We developed a model to describe the photogeneration and 

dectection mechanism of collective modes based on light absorption in two-color 

pump probe experiments. According to the model, the dispersion of the long- 

wavelength phasons can be measured by changing the probe wavelength. The model
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

is sufficiently general to be applied to the investigation of low-energy collective mode 

excitations in colossal magnetoresistance materials as well as charge-density wave 

conductors.

Under weak light illumination (< 5 mW) of K0.3M0O3 at 30 K, the transverse 

phase mode exhibits an acoustic-like dispersion relation in the low-frequency limit, in 

agreement with the classical CDW theory [14, 70]. Furthermore, the phason velocity 

is anisotropic with the velocity perpendicular to the chains being significantly smaller. 

The amplitude mode exhibits a weak (optic-like) dispersion relation with a frequency 

of 1 .66T H zat30K .

Our data obtained by femtosecond time-resolved spectroscopy on doped 

perovskite manganites show that the physics of low-energy collective modes is 

closely related to the opening of a pseudogap resulting from charge/orbital ordering 

phases. The charge and orbital ordering in LCMO can be viewed as a quasi-one- 

dimensional electronic structure with reduced dimensionality as compared to the well- 

known charge-exchange (CE)-type structure: d 3x2_f2 or d3yl_rl orbital ordering of

Mn3+ occurs along the c axis. The <̂ 3z2_r2 orbital o f Mn3+ is clipped by three Mn4+

ions. Such a regular pattern of the distinct charges modifies the uniformity of the 

charge density, leading to the development of the CDW condensate. Moreover, the 

coupling of the nesting-induced CDW with the Jahn-Teller distortion explains the 

temperature evolution of our data. Such a regular pattern of the distinct charges 

modifies the uniformity of the charge density, leading to the development of a CDW 

condensate, which cooperates with Jahn-Teller distortion and compete with the 

electron itinerancy favored by double exchange. Evidence for this mechanism is 

provided by the temperature evolution of the low-energy collective mode. The 

softening of the oscillations cannot be explained by collective modes of CDW alone.
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A cooperative Jahn-Teller type distortion of the MnC>6 octahedra coupled to the CDW 

is necessary to explain our results. This is in very good agreement with recent 

electrical transport measurements at low temperatures, which showed a strong 

coupling between the carriers and a low-frequency Jahn-Teller distorted phonon mode.

These observations led us to investigate quantitatively the photoexcited carrier 

relaxation dynamics in doped manganites. We show that the quasiparticle dynamics in 

the vicinity of a metal-insulator transition are strongly affected by the presence of a 

pseudogap, phase separation and percolation, which are strongly dependent on 

temperature. Further, a long-lived relaxation component is also observed, both in the 

metallic and insulating phase as indicated in the transient optical reflectivity and 

transmission measurements from various manganites. There is no evidence o f this 

process in the transient reflectivity change of the paramagnetic phase as measured in 

LSMO thin film, which shows a phase transition from ferromagnetic metal to 

paramagnetic metal at 325 K. Therefore this long-lived process is strongly related to 

the magnetic ordering phase, i.e., ferromagnetic or antiferromagnetic states. The 

dynamics of the spin system in strained NSMO is found to be very different from that 

of the unstrained material. The very slow spin thermalization process below Tc 

indicates the anomalously long spin wave relaxation in NSMO thin films.
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