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ABSTRACT

The environmental and human impacts o f wildfires have grown considerably in 
recent years due to an increase in their frequency and coverage. Effective wildfire 
management and suppression requires real-time data to locate fire fronts, model their 
propagation and assess the impact o f biomass burning. Existing empirical wildfire 
models are based on fuel properties and meteorological data with inadequate spatial 
or temporal sampling. A geosynchronous space platform with the proposed set of 
high resolution infrared detectors provides a unique capability to monitor fires at 
improved spatial and temporal resolutions. The proposed system is feasible with 
state-of-the-art hardware and software for high sensitivity fire detection at saturation 
levels exceeding active flame temperatures. Ground resolutions o f 100 meters per 
pixel can be achieved with repeat cycles less than one minute. Atmospheric 
transmission in the presence o f clouds and smoke is considered. Modeling results 
suggest fire detection is possible through thin clouds and smoke. A semi-empirical 
cellular automata model based on theoretical elliptical spread shapes is introduced to 
predict wildfire propagation using detected fire front location and spread rate. Model 
accuracy compares favorably with real fire events and correlates within 2% of 
theoretical ellipse shapes. This propagation modeling approach could replace 
existing operational systems based on complex partial differential equations. The 
baseline geosynchronous fire detection system supplemented with a discrete-based 
propagation model has the potential to save lives and property in the otherwise 
uncertain and complex field o f fire management.
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2

INTRODUCTION

The impact o f wildfires on property and human life is significant. According to 

the National Fire Data Center (www.usfa.fema.gov), the U.S. has one o f the highest fire 

death rates in the industrialized world. In 1999, over 3500 Americans lost their lives as 

the result o f fire. Furthermore, fire kills more Americans than all natural disasters 

combined. According to the National Interagency Fire Center (www.nifc.gov), there 

were 122,827 wildfires in the U.S. in 2000, accounting for over 8.4 million acres of 

burned land. There were as many as 86 large fires active in one day, which is officially 

defined as a fire that covers an area o f 100 acres or more. The estimated yearly cost of 

fire suppression was $1.3 billion. It is likely that the fire season o f 2000 will be one of 

the worst recorded seasons in history. Since that time there has been a slight reduction in 

wildfire activity, but the impact on lives and property continues to be substantial.

Thought this example refers to wildfires in the U.S., the problem is not constrained 

locally, but extends globally. The ability to save lives and decrease fire suppression costs 

on a global basis are worthy goals of any fire management approach and one o f the 

motivations for this research.

Though wildfires have a significant impact on property and human life, the 

impact o f global biomass burning on the Earth’s atmosphere cannot be overlooked. The 

trace gases emitted during the biomass burning process are responsible for changes in gas 

cycling, photochemistry, greenhouse gas production, acid rain deposition, and aerosols
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that influence cloud behavior. The emission rates o f these gases are not well known on a 

global and yearly basis. As the distribution and duration o f biomass burning has 

increased, so has the release o f emission products, and their corresponding impacts on the 

environment and climate (Penner et al., 1992; Andreae, 1991; Crutzen and Andreae, 

1990). Trace gas and aerosol emissions are dependent on the biomass fuel type, the 

intensity o f the fire, and the duration o f the combustion process (Lobert and Wamatz, 

1993). The amount o f time spent in flaming versus smoldering conditions directly 

impacts emission rates (Cofer et al., 1996). At present, it is commonly assumed that the 

time spent in each phase is 50 percent (Levine, 1991). Accurate emissions models 

require detailed knowledge o f fire events that does not currently exist. A dedicated fire 

monitoring satellite would allow these measurements over local regions to improve 

model correlation and assess future impacts on the environment. According to the USDA 

Forest Service National Strategic Plan (Anon, 1999), emission models should be linked to 

models o f fire behavior in a geographically resolved system and provide for aggregation 

or scaling to all spatial scales. Quantitative information about the spatial and temporal 

distribution o f fires is critical to fire ecology and management, atmospheric chemistry 

and forestry (Levine, 1991). In order to effectively manage and suppress a wildfire, the 

behavior o f the fire must be predictable. This research will introduce a method to acquire 

temperature and propagation histories o f fires that will directly benefit fire management 

and biomass emission models.

The study o f biomass burning and its impacts is an important and diverse 

problem. NASA is particularly interested in studying fire extent and severity to evaluate 

the impact on global warming (Levine et al., 1995). For example, NASA Langley
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Research Center submitted a proposal for the first dedicated space-based fire monitoring 

system called “FireSat” in response to the NASA Office o f Earth Science Announcement 

of Opportunity for the Earth System Science Pathfinder (ESSP) Mission in 1996 (Levine 

et al., 1996a). According to NASA’s Earth Science Enterprise Research Strategy Plan 

(www.earth.nasa.gov), which defines the strategic vision for the next 10 years, one o f the 

primary research themes is “Biology and Biogeochemistry o f Ecosystems and the Global 

Carbon Cycle”. Fire may produce as much as 40% of the global annual production o f 

CO2 (Levine, 1994, 2001; Levine et al., 1997a), which is the overwhelming greenhouse 

gas in our atmosphere. Another impact o f biomass burning is the direct and indirect 

impacts o f smoke aerosols on climate (Kaufman and Fraser, 1997; Hobbs et al., 1997; 

Christopher et al., 1996, 1998). Smoke aerosols from biomass burning directly impact 

the radiative balance by increasing reflected shortwave radiation and indirectly impact 

the radiative balance by acting as cloud condensation nuclei to precipitate the formation 

o f cloud particles. The combination o f these two impacts yields a net radiative cooling 

that may be comparable to the net radiative warming due to atmospheric carbon dioxide 

(Houghton, 1990). Finally, global biomass burning also impacts the biogeochemical 

cycling o f nitrogen and carbon gases from the soil to the atmosphere (Levine et al., 

1997b). Recent NASA studies o f the nitrogen and carbon budget (Levine et al., 1996b) 

suggest improved fire detection is required to assess biogeochemical cycling with 

adequate accuracy. With a global increase in the occurrence o f biomass burning, there 

will certainly be a corresponding increase in the release o f emission products and their 

detrimental impact on our environment and climate. Aside from the secondary processes 

of chemistry and climate change, one cannot underestimate the direct human health
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problems associated with fire. The World Health Organization (www.who.int) has 

identified particulates and gases emitted from fires as detrimental to human health and 

the cause o f human respiratory problems (Levine, 2000). Each o f the aforementioned 

problems can directly benefit from improved fire research as we learn more about 

biomass burning processes and the extent of their scientific and human influence.

One can envision a geosynchronous space satellite 35,000 kilometers (km) above 

the Earth monitoring the U.S. for active fires at a resolution of 100 meters. A large fire, 

greater than 100 acres, is detected in the West. The infrared (IR) detector system scans 

toward the fire and focuses on the scene to obtain time-dependent temperatures as the fire 

propagates quickly toward a community. Scene information is correlated with a 

Geographical Information System (GIS) to precisely locate the fire on land maps. These 

empirical temperature data are used as inputs to a cellular automata model that quickly 

predicts the future propagation o f the fire. The results are processed on-orbit and then 

relayed to firefighters in the field within minutes of the last measurement. Fire managers 

are able to efficiently deploy and adjust resources ahead o f the moving fire front in an 

effort to control the fire. Post-fire data are compiled by atmospheric scientists to 

determine the biomass burning emissions during the event and the overall impact to the 

atmosphere and land. Temperature histograms over the entire fire scene allow correlation 

with emission models to predict the gaseous emissions. These emissions are further used 

in climate change models to assess the impact of biomass burning on our atmosphere.

All of these products are possible with a dedicated set o f instrumentation and algorithms. 

Though futuristic in its approach, the results are achievable with minor improvements in 

technology and modeling.
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No satellite currently exists with the direct intention of providing real-time data 

and fire modeling results for scientific and fire management purposes. The existing data 

for fire modeling and management comes from aircraft operations or as a secondary 

product from earth observing satellites. In all cases, these data sets are either insufficient 

in spatial or temporal sampling to provide useful information. In the case of aircraft 

operations, the local spatial sampling is excellent as the aircraft is typically flown at low 

altitudes with high-resolution sensors, but the coverage is poor as the aircraft is only able 

to cover limited ground within the allotted flight time. Temporal sampling o f aircraft is 

better than low-altitude spacecraft, but still lacks suitable repeatability over all parts of 

the fire to develop accurate propagation measurements. An Earth observing spacecraft 

has a different set o f concerns. The spatial sampling is broad, in that the ground footprint 

can cover an area much larger than an aircraft, but the ability to achieve adequate 

coverage for fire detection and growth monitoring depends on the orbit. Low-Earth orbit 

satellites have limited orbit repeat cycles so their temporal sampling is limited. 

Geosynchronous orbits provide the best combination o f spatial and temporal sampling, 

but they have yet to provide a consistent global data product (Prins and Menzel, 1994). 

Though global coverage is not achievable for locating wildfires throughout the world 

with one satellite system, adequate regional ground resolution can be obtained with a 

dedicated geosynchronous system. Ideally, a family of geosynchronous satellites could 

be used to provide continuous monitoring of major parts o f the Earth’s land surface, but 

the cost o f such a system of satellites would be prohibitive. Providing a constant Earth 

view is the temporal benefit of a geosynchronous orbit and an essential requirement for
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fire detection and propagation monitoring. This baseline geosynchronous approach will 

serve as the focus o f this research.

The presented research is separated into three chapters: (I) Fire Detection, (II) 

Radiation Modeling, and (III) Propagation Modeling. Chapter I. (Fire Detection) 

presents a review and comparison o f existing satellite systems, presents a detector system 

uniquely suited for geosynchronous applications, and defines the resolution capabilities 

of such a system for identifying and tracking fires. Chapter II. (Radiation Modeling) 

focuses on the selection o f infrared wavelengths for active fire detection, presents a 

method for fire scene identification and assesses expected detector performance and 

measurement degradation due to clouds and smoke. Chapter III. (Propagation Modeling) 

presents a review and comparison o f existing fire propagation models, presents a new 

cellular automata model and compares the model to theoretical ellipse shapes and to real 

fire events. In summary, this research defines and analyzes the performance o f a remote 

sensing fire detection system for geosynchronous orbit and presents a specific 

propagation modeling application suitable for the fire management community. Such a 

system would be superior to existing space-based and ground-based systems and has the 

potential to significantly contribute to future fire research and benefit the fire 

management community.
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CHAPTER I. FIRE DETECTION

Fire Detection from Space

Several satellites currently provide data for fire monitoring and assessment. Their 

capabilities vary considerably in terms o f spatial resolution, temporal resolution, spectral 

bands, and temperature saturation threshold (Table 1-1). In all cases these satellite 

systems are tailored for radiation studies not directly focused on fire detection and 

monitoring. The fire monitoring capabilities o f these systems are a secondary benefit that 

has been increasingly realized over time. Up to now, only the extent o f fires has been 

measured from satellites, but detailed information vital for fire fighting is needed from 

these space-based systems. Data from future space-based sensors can be integrated with 

resources on the ground for effective fire management. Until that goal is realized, there 

will be significant shortcomings in science data for fire research.

8
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Satellite Instrument
Detector

Wavelength
(um)

Detector
Saturation

(K)

Spatial
Resolution
(m/pixel)

Temporal 
Repeat Cycle

NOAA-9 AVHRR (1) 3.7 327 1000 9 days

GOES VAS (2) 3.9 335 13800 Continuous

EOS MODIS (3) 4.0 500 1000 16 days(4)

Research Research 3.6 1800 100 Continuous

Table 1-1. Summary o f fire detection capabilities from space. Saturation temperature 
and spatial resolution are key improvements over existing platforms. References: (1) 
Kennedy et al., 1994; (2) Prins and Menzel, 1992; (3) Kaufman and Justice, 1998;
(4) Killough, 1997.

The current satellite system most often used to detect fires is the NOAA Polar 

Orbiting Satellite and the Advanced Very High Resolution Radiometer (AVHRR) 

instrument. The most recent NOAA satellite (NOAA-12) started instrument operations 

on September 17, 1991 (Kennedy et al., 1994). All o f the NOAA satellites are in near- 

polar sun-synchronous 833-870 km orbits with various equator crossing times. Satellites 

7, 9, and 11 have ascending orbit crossing times in the early afternoon (2:30 pm) and 

satellites 6, 8, 10, and 12 have orbit crossing times later in the day at 7:30 pm. Though 

intended for clouds and aerosol research, the instrument has been increasingly used for 

biomass burning detection. Fire detection using AVHRR data has been well studied 

(Robinson, 1991; Giglio et al., 1999; Kaufman et al., 1990; Matson et al., 1987). Spectral 

channels in the visible, near-IR and thermal-IR allow detection o f active fires and 

associated background regions. Ground resolution can approach 1-km for Local Area 

Coverage (LAC) data sets and 4-km for Global Area Coverage (GAC) data sets.
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Researchers use various spectral combinations to identify fire scenes and discriminate 

smoke from fire (Kaufman and Justice, 1998).

The GOES satellite uses a 5-channel imaging radiometer in geosynchronous orbit. 

This orbit remains fixed over the Earth in a constant position, thus providing the needed 

temporal resolution over the critical fire regions o f the United States (U.S.). The major 

disadvantage with the current system is the limited spatial resolution (13.8 km) in the 

mid-IR fire channel. This data set has been used by Prins and Menzel (1992, 1994) to 

study fire scenes in South America over large scale areas using an Automated Biomass 

Burning Algorithm (ABBA).

The EOS-TERRA platform (launched December 18, 1999) and the EOS-AQUA 

platform (launched May 4, 2002) will provide a multi-spectral narrowband radiometer 

(MODIS) for biomass burning detection. This instrument is well suited to studying the 

impacts o f biomass burning on a global basis due to sun-synchronous polar orbits with 

equatorial crossing times o f 10:30 a.m. and 1:30 pm, respectively. Specific MODIS fire 

data products will be available from the EOS-TERRA and EOS-AQUA spacecraft 

(Kaufman and Justice, 1998). The MODIS fire products use the 1 km resolution channels 

at 3.9 pm and 11 pm with improved saturation levels o f 500K and 400K, respectively, to 

detect active fires. Fire observations will be made two times a day from the TERRA 

platform (10:30 am and pm) and four times a day when the AQUA platform (1:30 pm 

and 1:30 am) is also in orbit. These MODIS data products build on heritage algorithms 

for operational fire monitoring used with the GOES and AVHRR sensors. The MODIS 

fire products provide information on the location o f a fire, its emitted energy, the flaming 

to smoldering ratio, and an estimate o f area burned. MODIS cloud masks will be used to
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detect cloud contamination of the scene. This MODIS data set will be the most 

comprehensive fire data product available in the near future.

There have been a few other attempts to utilize existing instrumentation for fires. 

These include the Defense Meteorological Satellite Program (DMSP) Optical Linescan 

System (OLS) and the Visible and Infrared Scanner (VIRS) on the Tropical Rainfall 

Measuring Mission (TRMM). The DMSP OLS instrument possesses a wide swath, high 

overpass frequency measurement in the visible to near infrared (0.58 to 0.91 jim) for 

active fire monitoring. Due to the limited capability to accurately distinguish fires from 

solar contamination, it has primarily been used to supplement nighttime verification o f 

AVHRR fire measurements (Fuller and Fulk, 2000). The VIRS instrument has been 

recently used for remote sensing o f fires and the study o f smoke aerosols (Giglio et al., 

2000; Rosenfeld, 1999). The TRMM platform was launched on November 28, 1997 with 

a 350 km altitude and a 35 degree inclined orbit (Kummerow et al., 1998). This platform 

covers the mid-latitude regions with a precessing orbit that allows sufficient diurnal 

sampling. The VIRS narrowband radiometer has five sensor channels that are similar to 

those used by AVHRR, but with a lower instantaneous field-of-view (IFOV) limited to 

2.11 km. Though relatively new to the fire detection community, VIRS data will likely 

be studied in more detail and supplement future fire detection research.

This research considers a geosynchronous satellite system for fire monitoring due 

to its continuous temporal sampling. In order to achieve high spatial resolution, one must 

consider the optical design constraints o f large primary mirror structures. Ground 

resolution from a geosynchronous platform is primarily limited by diffraction at the edge 

of optical components. This is commonly referred to as diffraction-limited resolution.
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For a satellite at altitude h, the ground resolution at nadir is a function o f the aperture or 

primary mirror size D and wavelength X (Wertz and Larson, 1999):

x  = 2A4h_X 
D

In the case o f a geosynchronous satellite with an infrared detector at 3.7 pm, the primary 

mirror diameter would be 3.2 meters for a ground resolution o f 100 meters. Though this 

may seem large for existing Earth monitoring systems, one should consider the 2.4 meter 

diameter o f the Hubble Space Telescope (HST). This is currently the largest unclassified 

primary mirror structure in space. Advancements in technology could lead to future 

space telescopes that are 100 times larger than HST, or on the order o f 250 meters in 

diameter. These large structures will certainly require lightweight, deployable, thin-film 

technology advancements that may be in their early stages, but have already captured the 

interest o f NASA officials and the remote sensing community (www.sandia.gov). The 

Next Generation Space Telescope (NGST) Project, located at NASA Goddard Space 

Flight Center has projected that the active primary mirror for its next planned mission in 

2009 will be nearly 8 meters in diameter and capable o f deploying on orbit 

(www.gsfc.nasa.gov). This primary mirror diameter would allow ground resolutions 

better than 33 meters per pixel for future fire monitoring. For the purpose o f this 

research, a ground resolution o f 100 meters per pixel will be assumed. This order of 

magnitude improvement in spatial resolution will allow detection o f many fires in their 

earliest stages o f growth that would otherwise be undetected by existing space systems.
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Detector Approach

The specific wavelength bands for the two detectors in this research will be 

shown in Chapter 2 (Radiation Modeling). At this point, the detector system along with 

its operational constraints and performance will be discussed.

The detector system will consider a pixel ground resolution o f 100 meters by 100 

meters. Therefore, each pixel corresponds to a ground area o f one hectare (ha), which is 

commonly used by fire researchers to describe bum areas. It is anticipated that the 

instrument would be focused on the continental U.S. as its primary target. The total area 

o f the U.S. is approximately 960 megahectares (Mha) or 3.8 million square miles. This 

assumes an approximate North-South dimension of 2400 km and an approximate East- 

West dimension of 4000 km. It is anticipated that scanning the entire country 

continuously is not necessary. Rather, one would scan smaller portions o f the country to 

look for critical fire events in locations that have been defined as fire hazards. Once 

located, the instrument could focus its attention on the active fire event to obtain critical 

temperature and time history data o f the fire scene. In any case, it is obvious there are 

many approaches to fire monitoring that are both desirable and feasible. Several o f these 

operational cases are presented below.

A recent survey o f infrared detector capabilities was conducted by Rockwell 

Scientific (Pan, 2002) to evaluate focal plane array concepts using Mercury-Cadmium- 

Telluride (HgCdTe) materials. It was determined that several candidate detectors exist
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for fire applications, but careful consideration must be given to focal plane array format, 

operating temperature, scanning methods and pixel integration time. A numerical model 

(Tennant and Cabelli, 1998) was used to perform parametric studies o f these variables to 

identify a baseline approach that is both feasible and optimal for geosynchronous fire 

detection. The model was developed applying Planck’s Law, semiconductor physics, 

HgCdTe material properties and other physical device parameters to calculate signal-to- 

noise (SNR) ratio as a function o f detector temperature, scene temperature and 

integration time. No attempt was made to significantly alter the model, but numerous 

cases were studied to develop a baseline approach for the presented research. The 

remaining content o f this chapter will present the results o f these parametric studies and 

discuss their implications for fire detection.

As previously mentioned, the goal o f this research is to develop a fire propagation 

model which relies on effective identification and detailed knowledge o f the fire scene at 

any location in the U.S. Three separate approaches could be considered for mapping the 

country: staring, scanning or nutating (Figure 1-1).
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Staring Scanning

►

Nutating

Figure 1-1. Various operational scanning methods can be used for infrared fire 
detectors. The nutating method is a compromise between staring and scanning that 
enhances performance and reduces engineering complexity.

The staring approach would use large format arrays to stare at large ground 

footprint areas and move those arrays consecutively from one scene to the next to obtain 

full ground coverage. Though large arrays are available (Cabelli et al., 2000) there are 

operational issues that prohibit large charge capacity and fast refresh times, as well as 

mechanical concerns with moving across the scene. With a typical 1000 x 1000 pixel 

array, it would require 960 footprints to cover the U.S. (assuming a 2400 km x 4000 km 

total area) at 100 meter pixel resolution. With a detector integration time o f 20 

milliseconds (ms), it is possible to cover the U.S. in approximately 19 seconds, not 

accounting for oversampling or mechanical lag. The real problem with this approach
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appears to be the mechanical complexity o f stopping and starting the detector optical 

system. Mechanical lag and oversampling would certainly increase coverage time. For 

comparison purposes, the large fires experienced in Yellowstone National Park in 1988 

(Rothermel et al., 1994) occupied a total bum area o f 683,305 ha, with individual fire 

cells as large as 59,685 ha (September 9 for North Fork Fire cell). The staring footprint 

could easily acquire measurements for an entire fire scene o f this magnitude. This 

particular fire would have occupied 68% of the total instrument footprint with a pixel 

resolution o f one hectare.

Another approach is linear scanning using long and narrow arrays (1000 x 1). 

Considering a detector integration time o f 20 ms and 2 times oversampling, one could 

scan the U.S. in 16 minutes, with this method. The advantages o f this system are more 

efficient packaging and higher charge capacity which increases saturation levels and 

detector sensitivity. Obviously, the drawback to this approach is the slower coverage 

rate.

The nutating approach is an excellent compromise to scanning and staring. A 

matrix o f linear or square arrays can be arranged such that each element nutates around 

its center point to allow for redundancy in sampling. Nutation can be accomplished by 

smoothly rotating the optical assembly in a circular or sweeping pattern. Redundancy 

could be obtained either by over scan (with appropriate increase in scan time) or by 

adding additional detectors in a time delayed integration mode. The nutating mode 

would provide high scene refresh rates while avoiding mechanical complexity in motion. 

The large detector spacing allows designs with high charge capacity and has the potential 

for multi-band detectors. From geosynchronous orbit, this nutation approach requires +/-
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3.28 degrees o f total slew angle to cover the boundaries o f the U.S. The nutating 

approach can also produce repeatable coverage rates approaching one minute, which is 

desired and appropriate for monitoring fire progression and temperature history. 

According to Merrill and Alexander (1987), the nominal flame front residence time for 

forest fires is 30 to 60 seconds. This is the length o f time for the flaming zone or front to 

pass a given point. Refresh or repeat cycle times near one minute would certainly 

accommodate these residence times and allow active tracking o f fire front position.

Detector temperature is another consideration that must be carefully considered in 

the implementation process. Theoretically, it is possible to detect active fires with room 

temperature detectors near 300K, and these FPA devices do exist (Tennant and Cabelli, 

1998). The larger issue becomes detector sensitivity and integration time. Room 

temperature detectors possess high dark current (inherent device current) that may exceed 

the photon current o f the scene. In this case it is difficult to resolve the background scene 

temperature. The example in Figure 1-2. uses a 100-meter square fire (1 hectare) at 

1000K to show the impact o f detector temperature on dark current and SNR.
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Figure 1-2. Detector dark current and SNR vs. detector temperature. Detector 
temperatures above 250K suffer severe degradation in SNR and increases in dark current. 
Assumes 3.4 to 3.8 urn detector wavelength, 1000K fire, lha fire area, 300K background, 
20fis detector integration.

These results suggest a detector temperature near 200K provides optimum SNR. 

Furthermore, the implications o f cooling to 200K are not prohibitive. Active cryocooling 

is not required for this level o f cooling, but thermoelectric cooling (TEC) can easily 

achieve 200K. These mature devices are typically configured in multistage dewars to 

produce intermediate cryogenic temperatures o f 190K to 200K (Chorier and Tribolet, 

2001).

Two important parameters affecting detector performance are signal charge 

capacity and integration time. These parameters directly impact SNR performance, 

saturation temperature and overall sensitivity to low temperature fires. For effective fire 

detection it is desired that SNR be greater than 10 to allow at least one order o f 

magnitude signal to noise separation and thus adequate resolution o f a fire signal.
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Detector saturation temperature should exceed 1300K to resolve the hottest active fires 

scenes (Vines, 1981). Finally, low-temperature smoldering fires near 500K (Chandler et 

al., 1983) should be adequately resolved. Variations in signal charge capacity and 

integration time can achieve these objectives.

The state-of-the-art 1000 x 1000 infrared detector array has an electron charge 

capacity o f 2.0E+07 electrons, without complex and untested techniques for dynamic 

range adjustment (Pan, 2002). It is possible to achieve higher capacities o f 2.0E+08 for 

linear arrays (1000 x 1) with future capabilities even approaching 2.0E+09. This order- 

of-magnitude improvement in charge capacity will result in higher SNR for fire scenes 

(Figure 1-3).
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Figure 1-3. Detector SNR vs. fire scene temperature for detector electron charge 
capacities o f 2.0E+07 to 2.0E+09. Improvements in electron charge capacity greatly 
enhance SNR over typical fire scene temperatures. Assumes 3.4 to 3.8 um detector 
wavelength, 200K detector, lha fire area, 300K background, 20ps detector integration.
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Another parameter impacting detector performance is pixel integration time. This 

is the cycle time required to discharge the detector capacitor and remove the absorbed 

electron charge from incident scene radiation. Optimal integration time requires system 

tradeoffs considering detector architecture and operational strategy. The current 

technology allows integration times between 2 microseconds (|is) and 20 ms for square 

staring arrays. Faster integration times and even variable integration times are possible 

with linear arrays that allow more space for electronics. Faster integration times and high 

charge capacity allow high saturation temperatures necessary for detection o f active fires. 

Figure 1-4 shows detector saturation temperatures as a function o f signal charge 

(2.0E+07 to 2.0E+09 electrons) and pixel integration times (2 (is and 20 ms).
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Figure 1-4. Detector saturation temperature (K) vs. detector charge capacity (electrons) 
for detector integration times o f 2 (is and 20 ms. Current state-of-the-art charge 
capacities o f 2.0 E+08 electrons and integration times o f 2 (is allow a detector saturation 
temperature near 1800K. Assumes 3.4 to 3.8 um detector wavelength, 200K detector, 
lha fire area, 300K background.
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Saturation temperatures above 1000K are possible for all charge capacity cases 

with an integration time o f 2 |is. Though this high saturation level is desired for the 

resolution o f active fires, sensitivity to low temperature fires near 500K will be degraded 

(Figure 1-5). This degradation may not be detrimental if  SNR remains high, but in all 

cases, optimization o f saturation temperature, integration time, and charge capacity must 

be considered for the design o f an operational fire detector.
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Figure 1-5. Percent reduction in Signal to Noise Ratio (SNR) vs. fire scene temperature 
(K). Sensitivity to low temperature fires near 500K is greatly reduced for detector 
systems with saturation temperatures near 1800K. Assumes 3.4 to 3.8 um detector 
wavelength, 200K detector, lha fire area, 300K background, 20ps detector integration 
time and 2.0E+08 charge capacity.
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Pixel format and detector packaging are also important considerations for a fire 

detection system in space. Large format arrays will require significant electronics 

support and additional cooling capabilities. Smaller linear array formats will relieve 

some o f these constraints. Rockwell Scientific (Sarlot et al., 1999) currently produces 

large format (1024 x 1024) and linear arrays with pixel dimensions o f 18.5 |im.

Assuming a linear array (1000 x 1) aligned with the North-South direction across the U.S. 

to cover 2400 km, the detector array length would approach 0.5 meters to accommodate 

24 linear detectors. Additional detectors could be added in the East-West direction for 

redundancy or overlap without increasing the overall dimensions beyond 0.5 meters 

(Figure 1-6). Practical engineering judgment suggests this is not an unrealistic detector 

size and future technology advancements will likely improve this constraint.
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Figure 1-6. Example layout o f linear (1000 x 1) detector arrays. This layout could be 
used to scan the entire U.S. (2400 km by 4000 km) using a nutating approach.

Detector sensitivity is best measured by a parameter called Noise Equivalent 

Temperature Difference (NETD). For a given wavelength band and scene temperature, 

the NETD is the smallest resolvable temperature difference that the detector can resolve 

when SNR = 1.0.

Assume AT «  T  and S is the detector signal, then

S{T + A T ) - S ( T )  = a t

s (t )

where fi  is a constant. Assume
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NET D = A r = ^ M ! =
s{r)-p s {t )-p

and AS = N  if  SNR = 1.0. If AT = IK  then

S{T + 1 )-S{T)  = P-S{T)  (1-4)

Substituting into the NETD equation yields:

N  _  N  _  !
S ( T ) - p ~  S(T + l ) - S ( T ) ~  S{T + l) S { f J

N  N

Using this equation, NETD can be evaluated by calculating SNR at two temperatures 

separated by IK, assuming a known and fixed detector noise, N.

The 3.4 to 3.8 Jim wavelength band was used to evaluate NETD at a detector 

temperature o f 200K and an integration time o f 20 |is (Figure 1-7). The peak detector 

sensitivity is located near 800K since the chosen wavelength band has a peak radiation 

emission near that temperature according to the Planck function (Figure 2-1). This 

clearly shows how detector sensitivity can be optimized for a given scene temperature.

In this case, a 650K to HOOK active fire can be detected within 0.1K accuracy. 

Adjustments in the detector wavelength band will tend to shift this curve such that the 

best sensitivity always coincides with the peak o f the Planck radiance function as defined 

by Wien’s Law (Figure 2-2).
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Figure 1-7. Noise Equivalent Temperature Difference (NETD) vs. fire scene temperature 
(K). Active fires near 1000K can be detected within 0.1K accuracy. Assumes 3.4 to 3.8 
um detector wavelength, 200K detector, lha  fire area, 300K background, 1800K 
saturation, 20(j.s detector integration time and 2.0E+08 charge capacity.

Considering the presented parameter studies, a baseline fire detection system is 

presented. This system appears feasible with state-of-the-art hardware and software, 

though improvements are certainly expected in the near future. This detector system 

would have significant impact on our ability to monitor active fires and provide the 

necessary inputs to the cellular automata model developed in Chapter III o f this research. 

A summary o f the baseline fire detector system is shown in Table 1-2.
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Parameter Value
Array Type HgCdTe
Wavelength 3.4 to 3.8 pm
Array Format 1000 x 1 Linear
Pitch per Pixel 18 pm
Temperature 200K
Scan Type Nutating 24 x 40

Integration Time 20 ps
Charge Capacity 2.0E+08 electrons
Saturation Limit 1800K

Refresh Rate 40 sec (Entire U.S.)
Resolution 100 sq. meters

Primary Mirror 3.2 m diameter
NETD Sensitivity 0.093K at 1000K

Table 1-2. Baseline detector parameters for a fire detection and monitoring system. The 
combination o f these parameters yields a feasible system with high saturation 
temperature, fast refresh rates and outstanding temperature sensitivity.

The desire to achieve shortwave infrared data (near 3.6 jam) and longwave 

infrared data (near 10 pm) simultaneously, is an additional requirement that may be 

solved by recent multi-color detector advancements (Waterman et al., 2002). Separate 

detector devices require mechanical and optical constraints that significantly add to 

instrument complexity. The ability to measure both the active fire signature and the 

surface background temperature simultaneously is now possible by stacking detector 

arrays to achieve passive filtering o f the scene (Figure 1-8). Along the same optical path 

one can collect shortwave infrared energy and then transmit the remaining longwave 

infrared energy to the next detector layer. Alignment and complex electronic 

configurations are no longer critical engineering issues. This approach could easily allow
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on-board processing with a Dozier (1981) algorithm to achieve outstanding sub-pixel 

resolution with minimal calibration and post-processing.

Fire
Radiation

Electronics I

Figure 1-8. A multi-wavelength detector approach allows absorption o f shortwave (SW) 
energy and transmission o f longwave (LW) energy to the underlying layer. Mechanical 
and optical constraints are considerably reduced.
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Active Fire Testing

Detector saturation is another important parameter for active fire detection from 

space. Saturation occurs when the fire scene energy exceeds the measurement range limit 

o f the detector channel and only the maximum possible value is reported for all 

temperatures above this threshold. The importance o f a high temperature threshold 

detector can be seen in recent testing conducted at the NASA Langley Research Center.

A small controlled bum was conducted on January 31, 2001 at the Impact Dynamics 

Facility in cooperation with the City of Hampton, Virginia Fire Department. Two 

prototype detectors were tested to determine their performance capabilities for 

monitoring active fires in the field. Data was obtained over a 30 by 30 foot area o f 

Christmas trees and hay bales using a 320 by 240 pixel array at 1-minute time intervals 

for the duration o f the bum. Visual (Figure 1-9) and infrared images (Figure 1-10) o f the 

fire scene easily verify the burning and non-burning areas according to temperature. An 

accurate determination o f an active fire perimeter requires detectors with high 

temperature thresholds, such as those used in this field test.
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Figure 1-9. Visual image o f a controlled bum test 7 minutes after ignition. Active flames 
can be seen in a circular pattern near the middle. NASA Langley Research Center, 
Hampton, Virginia, January 31, 2001.
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Figure 1-10. Infrared image o f a controlled bum test 7 minutes after ignition. 
Temperatures correspond to the active flames seen in Figure 3. NASA Langley Research 
Center, Hampton, Virginia, January 31, 2001.

Figure 1-11 shows the range of pixel temperatures measured over the entire bum 

period. Temperatures range from ground conditions near 300K to flaming conditions 

over 1000K. A temperature and time history o f any fire event could be used to assess the 

maximum bum temperatures and thus allow correlation with biomass burning emission 

models. Therefore, high temperature detectors have two important features for fire 

monitoring. First, the fire perimeter can be accurately identified and tracked with no 

scene discrepancies due to the ability to measure high temperatures. Second, the 

temperature and time history o f a fire event could be used to assess biomass burning 

emission rates and help to improve future models.
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Figure 1-11. Pixel Temperature vs. Time o f the controlled bum test. Measured 
temperatures ranged from 300K (ground) to 1000K (active fire) over the 40-minute bum 
test. NASA Langley Research Center, Hampton, Virginia, January 31, 2001.

Wildfire burning yields two general types o f fire: flaming and smoldering (Lobert 

and Wamatz, 1993). Flaming fires tend to bum hot (above 900K) with complete 

combustion allowing the formation of oxidized compounds such as carbon dioxide. 

Lower temperature (below 900K) smoldering fires produce incomplete combustion and 

the formation o f carbon monoxide (Andreae, 1991). A major challenge facing those who 

study biomass burning is determining the amount o f time spent in flaming versus 

smoldering conditions (Tsai, 2000). The presented fire detection system would 

significantly improve our knowledge o f these processes.
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Resolution Capabilities

Adequate fire detection relies on the ability to resolve both small fire areas, for 

the assessment o f fire intensity and accurate flaming temperatures, and large fire areas for 

the assessment o f fire boundaries and propagation maps. It will be shown that the 

presented approach is an improvement over existing fire detection instrumentation, such 

as the Advanced Very High Resolution Radiometer (AVHRR) and the Visible 

Atmospheric Sounder (VAS). The resolution capabilities are a function o f detector 

saturation temperature, footprint area and the detector noise limit.

Detector saturation is the key parameter in the evaluation o f the maximum 

resolvable fire area. At fire temperatures above the saturation temperature the resolvable 

area is smaller than the footprint area due to the increased radiance from the fire scene. 

Figure 1-12 shows the maximum resolvable fire area per pixel as a function o f fire 

temperature for AVHRR, VAS and the baseline detector (assuming 3.7 pm). All cases 

show reduced resolution as the fire temperature exceeds the detector saturation. In the 

case of AVHRR, Kennedy et al. (1994) suggested that a 400 m2 (4% of a pixel footprint) 

fire at 800K would saturate the 3.7 pm channel. In the case o f VAS, Prins and Menzel 

(1994) suggested that a 5.0E+06 m2 (2.6% of a pixel footprint) fire at 450K would 

saturate the 3.9 pm channel. VAS is less susceptible to saturation than AVHRR due to 

its larger pixel footprint area (190 times greater). The presented detector shows a clear 

improvement over AVHRR beyond 500K, but does not approach VAS due to the lower
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pixel footprint needed to resolve small fires and flaming temperatures. The choice o f 

1800K as the detector saturation temperature limits maximum resolution at fire 

temperatures below this temperature, but improves sub-pixel resolution at temperatures 

above 1000K where intense flames or high wood fuel temperatures may exist (Vines, 

1981). The ability to resolve fires as large as 1000m2 (10% of a pixel footprint) at 

extreme temperatures near 1800K is now possible.

1.0E+07

^  1.0E+06
CM
<
E
s ' 1.0E+050
3
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E
1 1.0E+03
xns
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Fire Temperature (K)

Figure 1-12. Maximum resolvable fire area per pixel vs. fire temperature for existing 
and presented fire monitoring instrumentation. Resolvable area is limited by saturation 
and the footprint area o f the detector. The presented instrument saturates at 1800K and is 
limited to one hectare resolution (100 meters by 100 meters square), but shows 
improvement over NOAA-AVHRR.

\ GOES-VAS

1 NOAA-AVHRR |
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The minimum resolvable fire area depends on the sensor noise limitations and 

footprint area, as the measured radiance must be discemable over the background surface. 

This is often referred to as the noise equivalent temperature or the equivalent brightness 

temperature associated with a measurable radiance. AVHRR has a noise limitation o f 

0.1K and VAS has a noise limitation of 0.2K (Prins and Menzel, 1994). It is expected 

that the detectors will have noise limitations near 0.1K. Figure 1-13 shows the minimum 

resolvable fire area per pixel as a function of fire temperature for AVHRR, VAS and the 

baseline detector (assuming 3.7 pm). Due to its small footprint area (10,000 m2), the 

baseline detector will be able to resolve low intensity fires (500K) as small as 0.24 m 

and high intensity fires (1800K) as small as 49 cm . This is a significant improvement 

over existing instrumentation, including AVHRR (100 times better) and VAS (>10,000 

times better). Though detection o f small fires is desirable, it is uncertain if  areas as small 

as 49 cm2 are desired for the extreme cases. Further research and discussions with fire 

management officials would be necessary to determine the desirable resolution in these 

extreme minimum and maximum cases.
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Figure 1-13. Minimum resolvable fire area per pixel vs. fire temperature for existing and 
presented fire monitoring instrumentation. Resolvable area is limited by noise equivalent 
radiance and the footprint area o f the detector. The instrument will have a noise 
limitation below 0.1K and a footprint o f one hectare (100 meters by 100 meters square). 
This approach shows significant improvement over both NOAA-AVHRR and GOES- 
VAS to resolve small fires.

It has been shown that the presented detector system provides improved spatial 

and temporal sampling over existing instrumentation with the use o f dedicated fire 

channels for efficient and practical fire monitoring. Furthermore, the increased temporal 

sampling o f active fire scene data will provide the necessary inputs to the cellular 

automata propagation model presented in Chapter III o f this research.
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CH APTER II. RADIATION M ODELING

Fire detection from space requires an understanding o f fundamental radiative 

energy transfer. This chapter will present the following topics: the radiation principles of 

fire detection; a method for determining fire scene temperatures; radiation modeling to 

identify wavelength regions for fire detection; and an analysis o f the impact o f clouds and 

smoke on fire detection. This background information and modeling provides the 

foundation o f the planned approach and describes the baseline expected performance of 

an operational fire detection system.

36
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Radiation Principles

The physical principles associated with blackbody radiation are described below 

with the general equations taken from Wertz and Larson (1999). The total energy 

radiated from a blackbody source such as a fire on Earth, varies with temperature 

according to the Stefan-Boltzmann’s Law:

E = g T 4 (2-1)

where E  = Energy (W/m2 ) ,T = Absolute Temperature ( K), and 

G = Stefan - Boltzmann Constant (5.67E -08 W / m 2K 4).

The spectral distribution o f this thermal radiation or blackbody radiation is given 

by Planck’s Law. This is the radiated energy o f a source for a specific wavelength.

(2-2)
A5 ( e kn  - 1 )

where E x = Energy per unit wavelength (W / m 2jjm),X = Wavelength (/zm),

T  = Absolute Temperature (K), h — Planck's Constant (6.626E - 34 Ws2), 

c = Speed o f Light (3.0E + 08 m/s),  and k  = Boltzmann's Constant (1.38E - 23 Ws/ K ).

Dividing the Planck’s Law expression by the solid angle ( K steradians) yields the 

spectral radiance.
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E ,
L , = - ±  (2-3)

n

where Lx is the Spectral Radiance (W / m 2 ■ ftm ■ s r ) .

In the case o f fire monitoring, wavelengths o f 3 to 5 pm are suitable for 

monitoring flaming conditions with blackbody temperatures above 500K and longer 

wavelengths near 8 to 10 pm are more suitable for measuring Earth background 

temperatures near 300K (Figure 2-1).
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Figure 2-1. Planck’s Law radiance as a function o f wavelength for various absolute 
temperatures typical o f ground conditions (300K) and active fire temperatures (500 to 
1800K).
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Analysis o f the radiance curves in Figure 2-1 shows that the peak spectral 

radiance for a given temperature decreases with wavelength. Differentiating the Planck’s 

Law function and solving for the wavelength o f peak radiance yields W ien’s 

Displacement Law.

K J T  = 2898 (2-4)

This expression shows that a forest fire with a maximum flame temperature of 

1000K would emit at a peak spectral radiance o f 2.898 pm (Figure 2-2). A detector with 

a spectral response centered at this wavelength would be very sensitive to these fires, as 

compared to detectors at other wavelengths. The challenge in identifying any detector 

wavelength will be to use this spectral information along with atmospheric attenuation to 

achieve the optimum wavelengths for fire detection and monitoring. In the case o f the 

detector suite presented for this research, the wavelengths will be chosen to identify high- 

temperature boundaries o f an active fire along with the low-temperature Earth 

background.
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Figure 2-2. W ien’s Law distribution as a function o f wavelength and temperature. At a 
given blackbody temperature the peak emitted radiance is found at the corresponding 
wavelength. For an active fire at 1000K this wavelength is 2.9 microns.
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Temperature Inversion

Determination o f pixel temperatures in a wildfire scene is critical for evaluating 

the fire frontal location and the corresponding high intensity regions o f the fire. To date, 

there are three basic approaches for scene temperature measurement from a space 

instrument. These are (1) single-channel temperature thresholds, (2) multi-channel 

contextual techniques, and (3) multi-channel sub-pixel resolution techniques. The 

lattermost approach is known as the Dozier (1981) model and will be the baseline method 

for this research. A brief explanation o f the advantages and disadvantages o f each 

approach is included in this section.

The single-channel temperature threshold approach is the simplest to employ, in 

that only one detector is required to identify fire scenes. The method is based on emitted 

scene radiance, such that the emitted radiance Lx , from the Earth’s surface received at 

the detector is a function o f Planck’s Law E(A,T)  and the spectral response function of 

the detector </>(X) . Assuming a constant emissivity e  over the small range of 

wavelengths for a single detector channel, the total emitted radiance o f the scene is:

- f  E (X ,T )d X )d X7T J

J $(X)dA
0
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In order to determine the scene brightness temperature TB for a given radiance, 

the spectral response function o f the detector 0 (/I) must be known. Assuming this is the 

case, the scene brightness temperature (T) can found by inverting the emitted radiance 

function and Planck function:

T =-1B
ch

kX-  In 1 + 2 h e 2 ,

L , X 5

(2 - 6)

For the case o f AVHRR, the 3.7 pm channel has been used for fire discrimination 

(Pereira and Setzer, 1993; Chuvieco and Martin, 1994) by employing a temperature 

threshold equivalent to the saturation temperature (322 to 331 K) o f the detector 

(Robinson, 1991; Kidwell, 1991). Unfortunately, this approach has been the subject of 

many reports scrutinizing and discussing its effectiveness in mixed scenes where 

saturation is caused by reasons other than active fires (Robinson, 1991; Giglio et al.,

1999; Setzer and Verstraete, 1994; Kennedy et al., 1994). In particular, deserts and high 

albedo targets have been known to cause saturation without the presence o f fires. For this 

reason, the presented detector for near-infrared detection o f active fires will utilize a 

maximum temperature saturation well above the devices on existing platforms.

Additional discussions on this topic and detector wavelength will be discussed in the 

following sections o f this chapter.

The multi-channel contextual approach utilizes the discrete responses from 

detectors with spectral bands located in the mid-infrared (active fires) and the thermal- 

infrared (background). In this case fire discrimination is determined by employing a
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series o f specific thresholding criteria that test for fire on a pixel-by-pixel basis. This 

general technique considers threshold values (k:,k2,k3) for the near-IR channel

brightness temperature TA and the mid-IR channel brightness temperature TB , as well as 

a combination o f both. This approach has been widely used for fire detection using 

AVHRR (Lee and Tag, 1990; Flasse and Ceccato, 1996; Flannigan and Vonder-Haar, 

1986).

t a  > K ; Ta - T b > k 2 ; Tb > k 3 (2-7)

The threshold values are determined empirically and typically vary by region.

The main disadvantage o f this approach is that it is insensitive to variations in usual land 

surface temperature changes during the time period and for the area under study. Prins 

and Menzel (1994) used this approach as the basis for their GOES VAS Automated 

Biomass Burning Algorithm (ABBA), but later switched to a Dozier (1981) algorithm.

In all o f the cases, temperature thresholds are still used to make the final assessment of 

fire existence. Although simple to apply, they are still prone to saturation problems in the 

mid-IR channels and lack the subpixel discrimination necessary to determine 

temperatures.
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Dozier Algorithm

The favored approach to fire scene identification is a multi-channel sub-pixel 

resolution technique developed by Dozier (1981). This theoretical method uses a 

bispectral approach to derive the sub-resolution brightness temperatures o f both the 

active fire and the background scene in a composite image. The non-linear behavior of 

Planck’s Law produces large increases in radiance for mid-IR wavelengths (near

3.7 jam) even for small increases in temperature. For thermal infrared wavelengths near 

the peak emissions o f the background Earth (near 11.0 pm) the relative change in 

emission with temperature is an order o f magnitude smaller (Figure 2-3). It is this 

characteristic that forms the basis for the Dozier algorithm and allows the sub-pixel 

resolution capabilities.
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Figure 2-3. Planck Radiance vs. Temperature for Mid-IR (3.7 pm) and Thermal-IR 
(11.0 pm) spectral bands over a range o f temperatures (300K ground to 1000K active 
fire) representing fire scenes. The differential response is the basis for the Dozier sub
pixel resolving algorithm.

This general approach has been used extensively for the analysis o f fire scenes 

using AVHRR data (Prins and Menzel, 1992; Lee and Tag, 1990; Flannigan and Vonder- 

Haar, 1986). The capability to resolve small fires within a large footprint is the major 

benefit o f this approach. A sub-pixel fire (one that occupies only a small portion o f the 

pixel footprint) increases the mid-IR radiance significantly more than the thermal-IR 

radiance. In the case o f an active fire at 1000K (typical o f the NASA LaRC controlled 

bum test shown in Figures 1-9 and 1-10) a mid-IR channel (3.7 pm) would receive 375 

times more radiation than a thermal-IR channel (11.0 pm) at a background temperature o f
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300K assuming no atmospheric attenuation. It is this differential response which is the 

basis for the Dozier algorithm.

The Dozier algorithm approach is applicable to a geosynchronous satellite system 

to yield improved spatial resolutions. The presented set o f detectors for this research will 

consist o f a near-infrared channel XA near the peak flame temperature o f active fires TA, 

and a mid-infrared window channel XB near the peak background ground temperature 

Tb . The basic premise o f the Dozier algorithm is that a measured scene radiance in a 

given channel is an amalgamation o f radiances from various scene sources. For example, 

if  an active fire covers a fraction ( / )  o f the pixel’s area, then the fraction (1 -  / )  may be 

considered to be at another (non-fire) background temperature (TB). The fire scene 

temperature ( TA) is a function o f the inverted radiances (L A and LB) and the fractional 

radiance o f the two sources A and B.

These two non-linear equations can be solved numerically (Flannigan and 

Vonder-Haar, 1986) since they only contain the unknowns TA and / .  Once solved, the 

fraction o f the scene containing fire will be known as well as the temperature o f the 

active fire.

'A  V Background (2-8)

LbTb = f - T B(TFire) + ( ! - / ) ■  LB(Tt*B v  Background (2-9)
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Radiation Modeling

Not all emitted radiation from a fire scene or the Earth’s surface will reach a 

detector in geo-synchronous space orbit. Atmospheric absorption or scattering imposes 

transmission losses. Understanding these losses is critical to choosing the appropriate 

wavelength bands for a fire monitoring spacecraft. The transmission must be maximized 

to design an optimal detector capable o f measuring small radiances and resolving small 

temperature variations. This research will include an examination o f gaseous absorption 

and the effects o f smoke and clouds on the radiance measured by the detectors. 

Identifying the limitations and sensitivity in satellite detection o f fires is important to 

justifying the planned approach. It will be shown that fire detection can be made with the 

presented detector in the presence o f thin clouds and smoke of moderate optical depth.

The initial modeling cases in this chapter did not consider which wavelengths 

would be best for detecting fires. One must consider atmospheric transmission and the 

impact o f gaseous or molecular continuum absorption as a first step in identifying optical 

spectral regions and eliminating spectral bands with large attenuation or opaque regions. 

Additionally cloud and smoke properties must be evaluated to determine their impact on 

the measured radiance.

All radiation modeling in this research uses the PcModWin program by Ontar 

Corporation (Anon, 2001) to calculate atmospheric transmission and radiance over 

specified wavelength regions. PcModWin provides a PC-compatible program to run the
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MODTRAN (MODerate resolution TRANsmission) atmospheric code, developed by the 

U.S Air Force Research Laboratory. Various versions o f the code have been widely used 

over the past 25 years, beginning with the original LOWTRAN code. The code 

calculates spectral transmittance and radiance for user-defined atmospheric paths at all 

frequencies from the microwave through the visible part o f the spectrum with a 

maximum resolution o f 2 wavenumbers (cm '1).

The MODTRAN transmission calculations use three temperature dependent 

parameters: absorption coefficient, line density and average line width. Absorption due 

to lines (specific wavelengths) is calculated using the Curtis-Godson approximation and 

the Voigt line shape. Absorption and scattering due to gas molecules and particulates 

(aerosols) are included. Radiation calculations include atmospheric self-emission, direct 

solar irradiance and solar scattering. The governing equations for MODTRAN are based 

on radiometric principles found in many radiative transfer texts. These equations are far 

too extensive to list, and they are beyond the scope o f this research. The capability and 

flexibility o f MODTRAN allows a preliminary assessment o f fire scene radiance in a 

single computer program.

The choice o f a mid-IR wavelength for active fire detection depends on the 

expected fire scene temperatures. Approximately 470K-550K is required to sustain 

exothermic reactions in cellulostic fuels (Chandler et al., 1983), 570K-650K is required 

for flaming combustion (Albini, 1980), 800K is typical for burning grass (Langaas and 

Muirhead, 1988), intense flames bum near 1300K (Vines, 1981) and wood fuels have 

maximum burning temperatures o f 1700K-1800K. As an example, the recent controlled 

bum tests o f trees and hay at NASA LaRC (Figure 1-11) reached a maximum
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temperature o f 1047K. Therefore, a range o f 500K-1800K is expected for active fires, 

with the most typical range at 500K-1000K (Robinson, 1991). Wien's law (Figure 2-2) 

shows that the suitable spectral region for these temperatures falls between 2.9 |im  and

5.8 pm. This spectral region was analyzed to determine an optimum location for a future 

detector. PcModWin was used to calculate atmospheric transmission for this wavelength 

region (Figure 2-4). The simulation assumed total transmission to the top-of-the- 

atmosphere (TOA) without clouds, smoke or aerosol attenuation, and a 1976 Standard 

Atmosphere. The curves clearly show peak transmission in the 3.5 pm to 3.9 pm region, 

which is consistent with existing fire monitoring instrumentation and is appropriate for 

the fire detection wavelengths in this research.
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Figure 2-4. Total atmospheric transmission to the top-of-the-atmosphere (TOA) in the 
mid-IR region (2.9 pm to 5.8 pm), assuming nadir viewing. According to W ien’s Law 
(Figure 2-2), these wavelengths are best suited for monitoring active fires. Transmission 
is best in the 3.5 pm to 3.9 pm range, which is typical o f existing fire detection 
instrumentation and the approach in this research.

Figure 2-5 shows the transmission losses due to water vapor and carbon dioxide. 

The shape of the transmission curve is dominated by water vapor absorption, with the 

exception o f 4.2 pm to 4.6 pm, which is dominated by carbon dioxide absorption.
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Figure 2-5. Transmission due to water vapor and carbon dioxide to the top-of-the- 
atmosphere (TOA) in the mid-IR region (2.9 pm to 5.8 pm), assuming nadir viewing. 
The total opacity (Figure 2-4) near 4.3 pm is primarily due to carbon dioxide and losses 
across the rest o f the spectral region can be attributed primarily to water vapor 
absorption. Atmospheric absorption is a key element in the selection o f fire detection 
bands to minimize transmission losses and increase detector measured radiance.
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To monitor active fires and accurately measure intensity it is imperative to use a 

detector with shorter wavelengths and higher saturation than is currently utilized in space. 

Existing systems were not specifically designed for fire monitoring, but in this research, 

the focus will be to define a system to monitor active fires. According to these 

preliminary results, a wavelength range o f 3.5 pm to 3.9 pm is appropriate for active fire 

detection.

According to the National Climatic Data Center (NCDC) at the National Oceanic 

and Atmospheric Administration (NOAA) the long term (1895 to 2000) average annual 

temperature for the contiguous U.S. is 285K ( www.ncdc.noaa.gov). If one considers the 

summer months o f July or August, when fires are typically more severe and numerous, 

the average surface temperatures will be higher. According to the U.S. Standard 

Atmosphere (Anon, 1966), the surface temperature in July ranges from 294K (45 degrees 

North latitude) to 301K (30 degrees North latitude). W ien’s Law (Figure 2-2) shows the 

suitable spectral region for these temperatures falls between 9.6 pm and 9.9 pm. A bias 

toward higher surface temperatures would require shorter wavelengths below 9.6 pm, but 

this may not be an efficient wavelength if  atmospheric transmission is low. Conversely, 

fires can occur during the winter months which correspond to cooler surface temperatures 

and wavelengths above 10 pm. In either case, atmospheric transmission modeling will 

help to define the appropriate wavelength.

PcModWin was used to calculate atmospheric transmission for a wavelength 

region o f 8.0 pm to 12.0pm , assuming similar boundary conditions as for the mid-IR 

case. Figure 2-6 shows the total transmission is best from 8.0 pm to 9.3 pm and from

10.0 pm to 12.0 pm . Figure 2-7 shows the transmission losses due to water vapor and
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ozone in these same wavelengths. Transmission is dominated by water vapor absorption 

with the exception o f 9.3 pm to 10.0 pm, which is dominated by ozone absorption.
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Figure 2-6. Total atmospheric transmission to the top-of-the-atmosphere (TOA) in the 
thermal-IR region (8.0 pm to 12.0 pm), assuming nadir viewing. According to W ien’s 
Law (Figure 2-2), these wavelengths are best suited for monitoring background surface 
temperatures. Transmission is best from 8.0 pm to 9.3 pm and from 10.0 pm to 12.0 pm, 
which is typical o f existing fire detection instrumentation.
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Figure 2-7. Transmission due to water vapor and ozone at the top-of-the-atmosphere 
(TOA) in the thermal-IR region (8.0 pm to 12.0 pm). The high opacity (Figure 2-6) from 
9.3pm to 10.0 pm is primarily due to ozone and losses across the rest o f the spectral 
region can be attributed primarily to the water vapor. Atmospheric absorption is a key 
element in the selection o f fire detection bands to minimize transmission losses and 
increase detector measured radiance.
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The results from these preliminary simulations suggest 3.5 pm to 3.9 pm is the 

best mid-IR wavelength for active fire detection. This is due to minimal atmospheric 

transmission losses and a peak emitted radiance at equivalent blackbody temperatures o f 

743K to 828K, according to Wien’s Law. Shorter wavelengths, corresponding to higher 

temperatures above 1000K, are not feasible due to high opacity from water vapor 

absorption. The best thermal-IR wavelength for measuring background surface 

temperature is 10.2 pm to 10.6 pm. Though typical summer surface temperatures (294K 

to 301K) suggest wavelengths o f 9.6 pm to 9.9 pm, this region is dominated by ozone 

absorption. A more appropriate wavelength is 10.2 pm, which corresponds to the 

average annual temperature o f the contiguous U.S. (285K) and has minimal transmission 

losses.
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Impact of Clouds

The impact o f smoke and clouds must be considered in the detector design 

process and in the operations process. Many existing fire detection algorithms, such as 

AVHRR and MODIS (Kaufman and Justice, 1998) utilize a process to detect clear-sky 

scenes without cloud contamination before considering fire detection. This severely 

limits the data available for monitoring fires from space, because no simple solution 

exists. It is anticipated that the detector will allow fire detection through thin cirrus 

clouds and smoke. The atmospheric modeling in this research will aim to define the 

limitations and capabilities o f fire detection under these conditions.

MODTRAN was used to model the effects o f three basic cloud types on fire 

detection: cumulus, stratus, and cirrus. Baseline parameters exist in MODTRAN for each 

cloud type. The ability to detect a 1000K fire will be measured by calculating the 

expected SNR for each cloud type as a function o f cloud layer thickness. A noise 

equivalent radiance o f 1.3 W / m 2 sr- jjm (0.1K resolution at 1000K) was assumed for 

all cases. As discussed in Chapter I, an SNR above 10 will adequately allow the 

detection o f active fires beyond noise levels. This threshold will be used to determine the 

potential for detecting active fires whose radiation signal is attenuated by clouds in the 

atmosphere.

The cumulus cloud cases assumed a cloud base at 0.66 km, a thickness range o f 0 

to 100 meters, and default cloud extinction coefficient o f 92.6 km '1 at 0.55 pm. The
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extinction is a measure o f radiation attenuation due to liquid water droplets and ice 

particles along the optical path. The average water droplet size is 10 |im. In the case o f 

stratus clouds, the cloud base is 0.33 km, the thickness range is 0 to 100 meters and the 

cloud extinction coefficient is 56.9 km '1. Figure 2-8 shows SNR for these two cloud 

types as a function o f cloud thickness. As expected, strong water vapor absorption results 

in high attenuation and large optical depth (the product o f column density and extinction 

coefficient). Due to low SNR at minimal cloud thicknesses, it is doubtful one can detect 

active fires through nominal cloud layers o f these types. Only in the thinnest cloud layers 

may it be possible to resolve an active fire.
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Figure 2-8. Signal-to-Noise Ratio (SNR) as a function o f cloud thickness for common 
cumulus and stratus clouds. SNR degrades to 10 for cumulus clouds greater than 50 
meters thick and stratus clouds greater than 80 meters thick. These low thresholds 
suggest fire detection through cumulus an stratus clouds is unlikely.
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The cirrus cloud cases are considered separately, since their optical depth is much 

lower and cloud attenuation allows fire detection even at large thicknesses. A cloud base 

o f 10 km, typical o f a mid-latitude summer atmosphere, was assumed. Tops o f cirrus 

clouds are often closely associated with the tropopause boundary, and have been 

observed as high as 15 km. A cloud thickness range o f 0 km to 5 km was assumed. High 

cirrus clouds are known to have a median thickness o f 1.0 km (Figure 2-9) and show little 

or no variation with season. They also tend to be more persistent than cumulus or stratus 

clouds due to the increased levels o f ice and lower evaporation rates. Additionally, the 

cloud extinction coefficient is a linear function o f cloud thickness (0.14 per km) and is 

independent o f wavelength for the mid-infrared region (Kneizys, 1983).
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Figure 2-9. Histogram o f cirrus cloud thickness. The median cloud thickness is 1.0 km. 
Since cirrus clouds less than 2 km thick account for 75% of the cirrus cloud cases, the 
capability to resolve active fires is important to a fire detection system utility.
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The previously mentioned baseline assumptions were used to calculate SNR over 

the range o f cloud thicknesses. Figure 2-10 shows it is possible to resolve fires with 

adequate SNR at even the largest thicknesses (5 km) and certainly at the median cirrus 

layer thickness o f 1.0 km.
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Figure 2-10. Signal-to-Noise Ratio (SNR) as a function o f cirrus cloud thickness. 
Mid-IR fire detection is possible through a median cirrus clouds o f 1.0 km thickness and 
even the thickest cirrus clouds near 5 km thickness.
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Impact of Smoke and Urban Aerosols

A useful feature o f PcModWin is its inclusion o f aerosol transmission and 

emission effects. Though there are several included aerosol models (rural, navy 

maritime, urban, tropospheric, fog, desert) none o f these directly model smoke aerosols. 

Radiance transmission through smoke is effectively modeled with a user-defined code 

using the following approach. First, a smoke character (soot or organic), particle size 

distribution and concentration is chosen. These parameters are based on current smoke 

research literature. Second, the smoke parameters are used in a Mie calculation code to 

obtain extinction, absorption and scattering coefficients over specific wavelengths for fire 

detection. Finally, the aerosol coefficients are placed in PcModWin with a user-defined 

aerosol input code to obtain the measured radiance through smoke. It is expected that 

variations in aerosol parameters will allow definition o f specific fire detection limitations 

important to the presented approach. The ability to detect fires through smoke will 

greatly enhance the capabilities o f a future mission.

While extensive measurements o f aerosol optical properties are required at 

various locations and stages o f fire growth to fully assess radiation transfer issues, a 

preliminary assessment can be gained by measuring the sensitivity o f radiation 

transmission and fire detection to variations in smoke aerosol type and size distribution. 

Smoke aerosol type is largely dependent on fire stage and flame temperature. Flaming  

combustion yields increased levels o f carbonaceous soot whereas smoldering combustion
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yields high levels o f organic particles. Black carbon mass concentrations vary widely 

among smoke aerosol references (Table 2-1).

Reference
Carbon 
Mass %

Location

Martins et al., 1996 1.5 to 22.5 Washington, U.S.
LeCanut et al., 1996 15 South Africa
Hobbs et al., 1996 5 to 8 Washington, U.S.
Mazurek et al., 1991 1 to 10 Ontario, Canada
Ross and Hobbs, 1998 5 to 11 Brazil
Kaufman et al., 1992 5 to 10 Amazonas
Pereira et al., 1996 5 Brazil
Maximum Range 1 to 22.5

Table 2-1. Black carbon mass concentrations in smoke over fires. A wide range of 
carbon concentrations have been measured with a maximum range o f 1% (far from the 
fire) to 22.5% (close to the active flame front). Radiation absorption and scattering 
depend strongly on carbon content.

Volume and mass distribution also depend on the fire stage. Flaming combustion 

yields increased concentrations o f carbon soot with smaller mean mass particle sizes near 

0.1 pm diameter. Most particles encountered in field experiments (Ross et al., 1998; 

Martins et al., 1996) appeared nearly spherical, which is the assumption used in this 

research. As fires progress toward the smoldering phase, smoke aerosols grow in size 

due to inefficient burning processes and increased coagulation. Measurements by 

Martins et al. (1996) show that the diameter o f smoke particles increased at an average 

rate of 0.11 pm per hour as they were transported downwind o f the active fire front.
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Smoke aerosol particles have approximately the same size distribution as sulfate aerosols 

(Penner et al., 1992) with a median mass diameter o f approximately 0.3 pm.

This research will focus on active fire detection in the region nearest the fire front. 

For this reason, two particle size distributions were chosen for flaming conditions and 

smoldering conditions within 2 hours o f fire ignition. This variation will certainly bias 

the results towards smaller particles, but will benefit a sensitivity study o f fire detection 

near active fire fronts. A log-normal distribution is defined for each of the modeled 

conditions according to Martins et al. (1996).

N(R) = —  exp
Ryj2nRs

(\n{R)-\n(RM) f  
2 Rs2

(2-10)

Flaming conditions had a mean particle radius ( RM ) o f 0.069 pm and a standard 

deviation ( Rs ) o f  0.50 pm. Smoldering conditions had a mean particle radius of 

0.201 pm and a standard deviation o f 0.46 pm.
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Figure 2-11. Normalized smoke aerosol size distributions for flaming and smoldering 
conditions according to Martins et al. (1998). A higher concentration o f small particles 
exists near flaming areas and a broader distribution o f larger particles exists far from the 
flame front in smoldering areas. Particle size affects radiation absorption and scattering 
and the ability to view fires through smoke.

To determine the mass o f aerosol material in the atmosphere, an aerosol 

concentration or average mass density must also be specified. For this study, a value of 

1.5 g/cm3 will be considered. This value was based on a review of several smoke 

property references (Table 2-2) and represents a mixture o f carbon and organic aerosols 

in typical smoke.
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Reference Aerosol Density (g/cm3)
Ross and Hobbs, 1998 Carbon 1.8, Organic 1.2
Hobbs et al., 1996 Average 1.5
Martins et al., 1996 Average 1.5
LeCanut et al., 1996 Average 1.3

Table 2-2. Aerosol density variations in smoke over active fires. A wide range of 
aerosol densities have been measured with an average value o f 1.5 g/cm3. Aerosol 
density affects radiation attenuation due to absorption and scattering.

Richard E. Davis o f the NASA Langley Research Center used the AGAUS82 Mie 

scattering module o f the U.S. Army’s EOSAEL radiative transfer suite (Anon, 2001) to 

perform the Mie calculations over a spectral region o f 3.0 mm to 4.0 mm. The standard 

Mie technique (see for example: Van de Hulst, 1981; or Bom and Wolf, 1975) for 

calculating radiative properties o f aerosols provided the single scattering albedo (ratio o f 

scattering extinction to total extinction), and the extinction, absorption and scattering 

coefficients. These parameters were provided to the author o f this research and 

subsequently used in MODTRAN to develop a user-defined aerosol model. Once the 

aerosol model was defined for a layer near the surface, the thickness and surface 

meteorological range o f that layer were varied to simulate the impact on attenuation o f 

the fire signal.

The standard Mie scattering technique used in AGAUS82 considers independent 

homogeneous spherical particles for the calculation o f scalar single-scattering properties 

(Miller, 1983). This technique is based on electromagnetic theory that describes the 

interaction o f a spherical particle and a plane wave. The formal solution o f the
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Helmholtz equation with the appropriate boundary conditions is the basis for Mie theory 

(Van de Hulst, 1981).

Az'¥ + k zm / '¥ = Q (2-11)

In this equation k  is the wavenumber in a vacuum and m is the index o f refraction o f the
I

propagating medium.

2 n
K.

k =  ------  and m = mreal + i mitnaginaiy (2-12)

In most cases, k  is replaced with the non-dimensional Mie size parameter.

x = k r  where r  = particle radius (2-13)

The simple solution to the Helmholtz equation yields:

V J /  _  g ikm z+ ikc t  ^ 2

where c is the speed o f sound in a vacuum. In the case o f standard atmospheric 

extinction, the refraction index m has a negative imaginary part and therefore, the wave 

is damped. For the specific Mie case, the equation is transformed to spherical 

coordinates and the separable solution becomes:
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[cos/#] , ,  N , s
(2 -15)[sin /0J

The first term is either a sin or cosine function, where / and n are integers and n > l >  0 . 

The second factor is an associated Legendre function ( /  *  0 ) and the third factor is a 

spherical Bessel function.

n'W=Vr?-L(i>,(*)) (2-i6)
ax

Z n ( X )  =  j ^ ~  Z  l ( X )  (2- !7)V 2* »+-

Assuming that the outside medium is a vacuum ( m = 1), the particle has an arbitrary 

index o f refraction, and the incident radiation is linearly polarized, the scalar solutions o f 

the tangential electromagnetic waves can be written (Van de Hulst, 1981) as:

II cos* COS0) (2-18)
kr n(n + 1)
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These scalar solutions to the wave equation are related to the electric field 

strength ( E )  and the magnetic field strength ( H )  by the vector fields M v and N  such 

that:

mk M ¥ = curl N v (2-20)

E  = M v +i N u (2-21)

H  = m ( - M u +i N v) (2-22)

The preceding equations are more general, whereas typical Mie theory is usually 

characterized by quantities called efficiency factors (Q) .  These quantities are expressed 

as Qe,Qa, and Qs, representing extinction, absorption and scattering, respectively. When 

multiplied by the geometric cross-sectional area o f the particle, the efficiency factors give 

cross-sections ( C ).

2
(2-23)

C, = w 2Qs = n r2 — V (2 «  + l)(|a„|2 +\bnf ) (2-24)

The relationship between all factors considers that the total extinction is a combination of

absorption and scattering processes.

(2-25)
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The efficiency factors and cross-sections are functions o f the complex index of refraction 

( m ), the radius o f the spherical particle (r) ,  and the wavelength o f the incident radiation. 

The angular dependence o f the scattered radiation is found in the Legendre polynomial 

phase function ( P) .  This phase function is also a function of radius, wavelength and the 

index o f refraction.

The extinction efficiency factor ( Qe)and cross-section ( Ce) are directly related to 

the total attenuation o f radiant energy as it passes through the atmosphere and interacts 

with a spherical particle. MODTRAN assumes absorption by gaseous particles and 

single scattering o f energy account for all o f the energy loss along a path. The total 

transmission ( T )  along a path length (x )  through the atmosphere is expressed as:

T  = e~Q‘x (2-26)

Calculated efficiency factors are input as a function o f wavelength within MODTRAN. 

The code assumes the parameters are normalized so that the extinction factor is 1.0 at 

0.55 pm. As an example, thick smoke would have a high extinction efficiency factor and 

therefore result in low total transmission. This low transmission results in low signal 

strength for fire detection.

The general Mie equations provide the basis for the AGUAS82 Mie scattering 

calculations. Additional depth on this topic can be found in Mie theory texts (Van de 

Hulst, 1981; Bom and Wolf, 1975). More specific descriptions o f the Mie theory used in 

AGAUS82 are found in Miller (1983).
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The radiative properties o f smoke aerosols depend on the complex refraction 

index, which is one o f the parameters used as input to Mie calculations (Toon and 

Ackerman, 1981). The complex index of refraction can be linearly weighted for varying 

carbon mass concentrations to reflect known differences in aerosol types (black carbon 

and organic). At mid-IR wavelengths near 3.7 pm, the refraction index o f carbon soot is 

1.900 -  0.570 i and the refraction index of organic aerosols is 1.500 -  0.000 i (Fenn et 

al., 1985). Assuming a carbon mass range o f 1% to 22.5%, the weighted refraction index 

varies from 1.504 -  0.0057 i to 1.590 -  0.128 / ,  respectively. This parameter variation 

will be used for Mie calculations to represent smoldering and flaming extremes. 

Variations in refractive index, size distribution and density were used as inputs for Mie 

calculations. The following parametric cases were considered (Table 2-3).

Parameter Case 1 Case 2
Fire Type Flaming Smoldering

Real Refraction Index 1.590 1.504

Imaginary Refraction Index -0.128 -0.0057

Density (g/cm3) 1.5 1.5

Mean Particle Radius (RM) 0.069 0.201

Particle Standard Deviation (RS) 0.50 0.46

Table 2-3. Mie calculation input parameters. Variations in refractive index, density and 
size distribution will affect absorption and scattering properties o f smoke aerosols and 
impact the visibility o f fire through smoke.
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Signal-to-Noise Ratio (SNR) was calculated for the two cases in table 2-3 over a 

smoke vertical thickness range o f 0 meters to 800 meters and a surface meteorological 

range o f 10 meters to 1000 meters. This vertical thickness range adequately represents 

typical forest fire scenes. Studies o f forest fires in the Pacific Northwest (Hobbs et al., 

1996) indicated smoke plume thicknesses as large as 800 meters, with average plume 

thicknesses near 400 meters. The surface meteorological range ( M  R) is defined in 

MODTRAN according to

3-912
M  r  = (2-27)

where f i  is the extinction coefficient (km'1) evaluated at 0.55 pm wavelength and M R is 

measured in kilometers. M R is approximately 30% greater than the observer visibility 

range. A surface meteorological range near 1000 meters is the typical threshold for 

dangerous aerosol levels in the atmosphere and a range near 10 meters represents 

extremely thick smoke near an active fire front.

Figure 2-12 shows SNR as a function o f M R for a thin vertical smoke layer (100 

meters) and a thick vertical smoke layer (800 meters). As previously discussed, an SNR 

above 10 should allow adequate signal resolution and successful fire detection. 

Variations in aerosol physical parameters (flaming or smoldering) had minor impacts on 

SNR. At detector wavelengths near 3.7 pm there is only a small dependence on aerosol 

parameters as defined in Table 2-3. Smaller smoke aerosols, typical o f flaming 

conditions (dotted line) had lower radiation attenuation and therefore higher SNR, as
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compared to the smoldering (solid line) case. SNR is more dependent on vertical layer 

thickness than M R. Thin vertical layers near 100 meters height will allow fire detection 

with a M R less than 10 meters. Thicker vertical layers near 800 meters height allow fire 

detection at a M R o f 20 meters.
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Figure 2-12. Signal-to-Noise Ratio (SNR) as a function of vertical smoke plume 
thickness in meters and Surface Meteorological Range ( M R) in meters. SNR is excellent 
for M R values above 100 meters. A mild degradation in SNR occurs for M R values 
below 100 meters, but these visibilities are typical o f extreme dense smoke conditions. 
The ability to detect active fire fronts through smoke is excellent.

These extreme values o f surface meteorological range, or smoke visibility, are not 

typical o f common fires. Aerosol warning systems often use a hazardous level that 

coincides with a M R o f 1000 meters. As an example, the intense smoke from the 1997 

fires in Kalimantan and Sumatra, Indonesia (Levine, 1999) yielded visibilities as low as 

100 meters. Considering visibilities in this range, the ability to detect an active fire front
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through even the thickest smoke is excellent. The smoke cases presented in this research 

bound the extreme conditions o f any fire and support the finding that smoke is generally 

transparent at 3.7 pm. These results are very promising for the presented detector 

system.

As a comparison with smoke, the MODTRAN urban aerosol model was used to 

calculate SNR for a variety o f visibility levels (Figure 2-13). The urban aerosol model 

assumes a boundary layer (0 km to 2 km altitude) o f aerosols with a variable surface 

meteorological range, or visibility. Urban aerosols contain large concentrations o f sulfate 

particles which are similar in size to smoke aerosols (Penner et al., 1992). Penner 

suggests that effectively all o f the optical effects are associated with particles having a 

mass-averaged radius o f 0.3 pm. Therefore, it is expected that radiation attenuation due 

to absorption and scattering for urban aerosols will be similar for those o f smoke, but 

only slightly higher due to larger particle sizes.
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Figure 2-13. Signal-to-Noise Ratio (SNR) as a function o f urban aerosol surface 
meteorological range (visibility) in the boundary layer (0 km to 2 km above the surface). 
Urban aerosols with high levels o f sulfate are similar to smoke aerosols. Fire detection is 
possible for even intense levels o f aerosols with visibility as low as 100 meters.

These results are similar to the expected fire detection performance through 

smoke aerosols and therefore, add to the credibility o f the modeled smoke cases. In both 

cases, fire detection through these small aerosols is promising for reasonable 

concentration levels o f particulates.

An evaluation o f photos from numerous fire scenes suggests an active fire front is 

frequently not covered with thick smoke inhibiting fire detection. Wind will tend to blow 

smoke downwind of the active fire region, allowing unobstructed views o f the high- 

temperature flame front (Figure 2-14). In fire events with complicated boundaries from
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multiple sources, this may not be true. As fires grow large and boundaries become more 

defined, a continuous fire front is more likely.

Figure 2-14. Photograph of an active fire front. Wind driven fires often tend to push 
thick smoke far downwind o f the active fire front allowing the front to have improved 
exposure for remote sensing. Larger fires with an extended frontal region have a greater 
tendency to exhibit this behavior.

In all cases the ability to monitor a fire through smoke or clouds will depend on 

the sensitivity o f the detector and its ability to resolve small changes in radiance. If a fire 

is detected in the presence o f clouds or smoke one can assess its location and extent, but 

the ability to resolve accurate fire temperatures is doubtful. This information would 

depend on a knowledge o f the cloud or smoke parameters which could only be partially 

resolved with more detectors at other spectral bands and even then, is well beyond the 

scope of this research. Therefore, this research has concentrated on the limitations o f fire

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75
detection as they apply to resolving fire perimeter locations and the extent o f their spread 

and relative intensity. These results are critical to the fire growth model defined in 

Chapter III o f this research.
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CHAPTER III. PROPAGATION MODELING

Fire Propagation Models

The ability to mathematically model and predict wildland fire propagation for 

varying fuel and meteorological conditions is an important, difficult and largely unsolved 

problem. The behavior o f wildland fires is based on a complicated set o f parameters that 

describe the rate o f spread, the fire perimeter shape and the intensity o f the burning 

biomass (Albini, 1984). The basis for most fire behavior modeling is the Rothermel 

(1972) model. This model calculates the local intensity and rate o f spread for the head of 

a surface fire based on wind and fuel parameters. The Rothermel local behavior 

predictions can be combined with a model o f fire shape and spread (Anderson, 1983) to 

predict the spatial spread o f a fire over time. The majority of existing fire spread models 

use the empirical Rothermel algorithms as the basis for calculation. Predicting wildfire 

behavior has been the subject o f much research (Cheney et al., 1998; Richards and Bryce, 

1995; Burgan and Rothermel, 1984; Albini, 1984, 1976) over the 30 years since 

Rothermel first introduced his algorithms. Ground-based fire models such as BEHAVE 

(Andrews, 1986) and FIREMAP (Vasconcelos and Guertin, 1992) are the most recent 

examples o f operational models for field use based on empirical data. In all cases these 

approaches rely on an accurate assessment o f the fuel conditions and the atmospheric 

conditions. The availability and variability o f these parameters makes it extremely
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difficult to predict wildfire behavior over long time intervals. In the case o f  field 

management, firefighters are able to make measurements of atmospheric and fuel 

parameters in specific locations and then use handheld computers to predict short-term 

propagation. Though this is effective in the local region of the measurement, the entire 

fire region is not sampled. With the aid o f satellite imagery, large regions can be sampled 

to determine their temperature and propagation history. Though this does not provide 

fuel or atmospheric conditions in the local region, it does provide a real-time history o f 

the fire temperature and propagation, which ultimately depend on these ground-based 

parameters. It is proposed that these temperature and propagation results could be 

extrapolated in time and position to predict the propagation o f a fire and the areas o f high 

intensity. This extrapolation is based on the assumption that the region near the fire front 

has homogeneous terrain and atmospheric conditions. This assumption is likely valid for 

near-term propagation predictions, but as with any fire model, fails at extended time due 

to fuel and atmospheric variability.

Existing fire models fall into two basic categories: those using a grid-based 

discrete system, or Cellular Automata (CA) models, and those using a continuous non

discrete system, or differential equation models. This research uses a grid-based discrete 

system to map the measured empirical fire spread data to discrete locations within the 

footprint. Once known, these parameters provide the basis for propagating a CA model 

to achieve fire spread forecasts. Using a non-discrete method for propagating a fire 

would require numerous boundary conditions, known atmospheric conditions, and a large 

set o f linked partial differential equations. The solution for such a system would be 

highly complex and require significant computer time.
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Partial differential equations can be used to describe the growth of a fire for 

homogeneous wind and fuel conditions (Richards, 1995). The fire perimeter can be 

located at specific time intervals as closed continuous curves, known as isopleths. Small 

discontinuities are typically insignificant and ignored, though large time and spatial 

scales are considered. Propagation o f a fire over time yields perimeter shapes such as 

standard ellipses (Catchpole et al., 1982; Anderson, 1983), double ellipses (Albini, 1976), 

lemniscates and ovoids (Peet, 1967) as shown in Figure 3-1. The most common fire 

perimeter shape and the one used by most ground-based wildfire models is the standard 

ellipse. Whether one uses non-discrete or discrete modeling approaches, a consistent 

trend is the use o f elliptical spread shapes for fire propagation.
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Figure 3-1. Various fire perimeter shapes in the equilibrium phase. Though wind and 
fire fuel parameters can impact spread shape, the standard ellipse shape is widely 
accepted and preferred in the fire modeling community.

Most non-discrete models assume elliptical spread shapes with Rothermel (1972) 

or McArthur (Noble et al., 1980) rate-of-spread functions to predict forward movement. 

As previously stated, their disadvantage lies in the complexity o f the equations and the 

required boundary condition data. Additionally there are problems with concavities and 

loops (Richards, 1990; Richards and Bryce, 1995; Knight and Coleman, 1993) in the 

predicted shapes that require clever numeric solutions which add to the overall 

computational burden. These problems are nonexistent in discrete methods further 

exemplifying the complexity o f non-discrete methods as compared to a discrete CA 

approach.
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Cellular Automata Modeling

Many physical systems in nature are characterized by their highly complex 

behavior. These include fluid flow, crystal growth and wildfire propagation. It has been 

shown that the behavior o f these dynamic systems can be duplicated using the simplistic 

method o f CA modeling (Wolfram, 1984). All o f the CA models presented in this 

chapter were developed using FORTRAN-90 (Anon, 1998) on a personal computer. This 

choice o f computer language does not imply that the code is exclusively formulated for 

FORTRAN-90. Familiarity with FORTRAN coding and subroutines was the primary 

driver for this choice, though it is entirely possible to formulate this model in any other 

computer code. A variety o f CA cases will be discussed throughout the chapter. Only the 

generic portion o f the final fire propagation code has been listed in Appendix 1, since it is 

the core o f the model and represents the key CA algorithms. Numerous available 

subroutines and personally developed code were used to verify the elliptical shape 

algorithms, but the basic set o f CA algorithms is the only data required for 

implementation in a future fire propagation model.

The discrete method o f CA fire modeling is based on a homogenous matrix of 

cells representing the ground footprint o f  a fire scene. The local state o f  each cell 

depends on the bum fraction o f that cell. Cells that are unbumed have an initial state of 

0.0. Cells that are completely burned have a state o f 1.0. If a cell state exceeds 1.0, the 

cell state is reset to 1.0, thereby eliminating infinite cell state values. As a fire progresses
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across a landscape, the cells will ignite from the initial state and completely bum after 

some time depending on the spread rate o f the fire.

The cellular automata method presented in this research could be classified as a 

coupled map lattice (CML), since the local state o f a single cell depends on the state o f its 

neighboring cells (Figure 3-2).

S|-i,j+i ®i,j+l Si+l,]+l

S.-1J s u

®i j l S l+l,j-l

Figure 3-2. Cellular Automata cell structure depicting central cell and surrounding cells 
in a two-dimensional lattice form. The central cell state is coupled to its surrounding 
cells and can therefore represent fire ignition and propagation.

The state o f the central cell SLJ at some future time step (t+1) can be expressed as

a function o f its neighboring cells at the previous time step (t). One can use the four 

orthogonal neighbors, known as a Von Neumann neighborhood (Von Neumann, 1966), 

or the eight closest neighbors, known as a Moore neighborhood (Toffoli and Margolus, 

1985). As previously stated, the state function is limited to cell state values o f 1.0, so a
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minimization function is also included. These cell state equations are known as the CA 

rules for this model.

4-Cell Approach:
1.0, sij+nsi^+s;^

(3-1)

8-Cell Approach: ST =m in

L0, S ‘J + f ( S U J + Slj+l + 

S L J + S ‘J_l) + D0 . f ( S U J+l + 

sLij+i+sLv-i+sLj-j
(3-2)

In the case o f the eight cell approach, a diagonal factor (D0) is introduced to 

decrease the weighting o f the diagonal cells connected to the central cell. Karafyllidis

and Thanailakis (1997) argued that this diagonal factor is 2(42 -1 )  = 0.828. An analysis 

o f the diagonal factor in this research has determined this is in error by a factor o f 4. A 

correctly chosen diagonal factor should yield a near-perfect circular spread shape. The 

following discussion will justify this finding.

The probability o f a fire propagating from cell A  to B (P ab) depends on the 

distance between cell centers (Lab) and the cross-sectional area between cell centers 

(A ab)- The baseline case is a square cell with a side dimension o f 1.0 and a probability o f 

ignition between these cells o f 1.0 (Figure 3-3).
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B

A

Figure 3-3. Baseline cell configuration with a probability of ignition between A and B of
1.0. Length dimension and Cross-Sectional Area are also 1.0. CA Model rules are based 
on these ignition probabilities.

If a cell has a dimension o f yfl  the distance between cell centers reduces the

ignition probability to - 1« 0.414. In this case (Figure 3-4), the cross-sectional area 

between cell centers is similar to Figure 3-3, in that the area is the square o f the length 

dimension. Only the longer distance between cell centers reduces the probability.

L ab = V2 « 1.414

Aab= (-J2) ■(■£) = 2

P AB = -l)=(0 '/2 -l)-0.414

Figure 3-4. Cell configuration with larger dimensions. The cross-sectional area is the 
square o f the length dimension. The increased distance between cell centers reduces to 
probability o f ignition.

•  B

•  A
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Now consider the more interesting diagonal case (Figure 3-5). Assuming a side 

dimension of 1.0, similar to Figure 3-3, the distance between the cell centers is

V2 (similar to Figure 3-4), but the cross-sectional area is only one-half o f the square o f 

the length dimension. Therefore, the probability o f ignition is further reduced to

V2 - l
— - —  = 0.207. This value differs from the diagonal factor o f Karafyllidis and 

Thanailakis (1997) by a factor o f 4, since their documented value was 0.828.

P A B  =

L a b -  a/ 2  »  1 . 4 1 4

( A ^  a ab
T2v ab  y

(Lab- 0 =  0.207

Figure 3-5. Diagonal cell configuration has a reduced probability due to smaller cross- 
sectional area (one-half o f the orthogonal cases) and a larger length dimension (similar to 
Figure 3-4). This probability factor will replace the factor used by Karafyllidis and 
Thanailakis (1997) to optimize circular spread shapes.

A variety o f diagonal factors were tested in the CA model and compared with 

exact circles. The most simplified case o f a perfect circle represents fire spread in the 

absence o f wind. The diagonal factor presented in this research (0.207) yields errors less 

than 0.1% (Figure 3-5) when compared to the factor (0.828) used by Karafyllidis and 

Thanailakis (1997).
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Figure 3-6. Circle shape error versus CA diagonal factor. The shape error is calculated 
against a perfect circle in 3 locations along the perimeter. The diagonal factor o f 0.207 
clearly models circular growth better than that presented by Karafyllidis and Thanailakis 
(1997).

A qualitative comparison of shape error is possible using contour plots from the 

CA model o f simple fire growth with no wind. Figure 3-7 shows contour plots using a 

diagonal factor o f 0.207 and 0.828. The smaller factor clearly represents a smooth 

circular contour, whereas the larger factor, with shape errors near 4%, displays distorted 

contour shapes. An accurate diagonal factor is important for an 8-cell CA model to 

accurately model near-circular spread shapes. Many fires exhibit these shapes in low 

wind conditions. Additionally, accurate circular models will help to avoid further 

distortion when translating these CA algorithms to elliptical spread shapes common in 

wind-driven fire conditions.
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Factor* 0.207 Factor* 0.828

Figure 3-7. Cellular automata spread contours for two diagonal factors. Physical 
dimensions and time are equal, yet arbitrary. The factor o f 0.207 produces near-circular 
shapes with little or no distortion. The factor o f 0.828 produces noticeable contour 
distortion. Modeling fire spread in low or no wind conditions requires accurate modeling 
o f circular spread.

Wind is the most important driving factor in the spread of wildland fires (Beer, 

1993; Richards, 1990; Alexander, 1985; Anderson, 1983; Rothermel, 1983). Though an 

effective wind velocity in the vicinity o f the fire perimeter may be known, its local 

velocity at the fire front may vary. This local velocity is ultimately responsible for the 

fire spread at all points along the perimeter. The significance o f this situation is that 

empirical data o f fire spread could be used to assess this local wind and fire interaction. 

Measuring the local fuel and wind parameters along a fire front is not feasible, but 

measuring fire parameters from remote sensing applications is possible. It is anticipated 

that fire propagation can be predicted using empirical data from a geosynchronous 

satellite. The active fire front locations can be identified using high temperature 

thresholds for flaming conditions. Once these positions are known the rate o f spread can
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be calculated in the same positions based on time integration over neighboring areas. 

Assuming homogeneous fuel parameters and a constant wind, the fire can be propagated 

using a CA model that assumes an elliptical spread shape. This research develops a 

classic CA approach and then demonstrates its potential use with a satellite fire detection 

system. The performance of such a system is measured against real fire events, 

theoretical equation models o f fire spread and empirical models o f fire spread.

The effect o f wind is accommodated in the CA model by adding a non-uniform 

weighting function to the CA local rule. These weighting functions connect the local 

cellular structure and can be thought o f as variable probability factors for fire spread in a 

particular direction. For instance, higher weighting factors would equate to a high 

probability that the fire would spread in that direction. In the 8-cell case the weighting is 

based on the cardinal wind directions (Figure 3-8) and corresponds to the surrounding 

eight cells o f any one cell in the model. The cardinal wind directions and adjusted CA 

local rule are:

Sjj = K j  + (^ 7  * +W1* S ‘j+l +W3* S ‘+lJ +W5* ) +

D0-(W%*SUJ+X +W 2*s'+lj+1 +W 4*S,MtH +W6*S‘_1J_l)

where W1 = South Wind, W2 = Southwest Wind, W3 = West Wind, W4 = Northwest 

Wind, W5 = North Wind, W6 = Northeast Wind, W7 = East Wind, and W8 = Southeast 

Wind.
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Figure 3-8. Cellular Automata weighting factors representing the eight cardinal wind 
directions. Weighting factors impact fire position and shape.
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Elliptical Fire Spread Shapes

The approach for space is based on measuring real-time locations o f the fire 

perimeter and determining the rate o f spread in the heading direction (V h) and the 

backing direction (V b). Careful evaluation of the measured data over time will allow 

determination o f these parameters. This will be accomplished by finding the areas o f the 

detector footprint with high temperatures (likely corresponding to the fire perimeter) and 

then evaluating their growth rate and direction. Once the maximum heading rate and 

direction are found, the backing rate and direction will be found by measuring the same 

parameters in the opposite coordinate direction (180 degrees from the heading direction). 

In most cases, the backing rate will reflect the lowest spread rate in the entire scene and 

may not correspond to the direction exactly opposite the heading direction. With the 

known heading and backing spread rates, the fire will be propagated with specific ellipse 

spread shapes. The ellipse spread shapes are measured by the length to breadth ratio 

(L/B) o f the ellipse (Figure 3-9).
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Fire Origin

VH
*  B

L

Figure 3-9. Elliptical fire spread shapes are measured by the length (L) and breadth (B) 
ratio (L/B) corresponding to the heading velocity (V h) and the backing velocity (V b) 
directions. The heading velocity is in the direction o f maximum fire spread rate.

Alexander (1985) developed an empirical relationship between the length to 

breadth ratio (L/B) o f a wind-driven forest fire and the international standard 10-meter 

open wind speed in kilometers per hour.
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This relationship was based on data from 29 fires from 1938 to 1983 (Figure 3-10).
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Figure 3-10. Length to breadth (L/B) elliptical fire spread ratio as a function of 10-meter 
open wind speed for 29 forest fires (Alexander, 1985). The model, developed by 
Alexander, was primarily fit to forest fuels, but logging slash and grassland were 
included for comparison. Elliptical spread shapes (L/B) clearly depend on wind velocity.

Though this model is empirical in nature, it clearly shows a relationship between 

wind speed and fire shape. Obviously, wind speed cannot be measured from space, so 

other data must be utilized. Therefore, heading and backing spread rates must be 

determined for propagation modeling from space.

Alexander (1985) developed a relation between the length to breadth ratio (L/B) 

and the heading to backing velocity ratio (V h/V b) that is entirely based on elliptical 

mathematic equations.
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(3-5)

The desire was to measure the L/B ratio in the field and predict Vh/Vb ratios. In 

this approach, the Vh/Vb parameter is the independent variable and thus the equation was 

inverted to obtain a formula more useful for this research and space applications.

In this case a computed heading velocity (V h) and backing velocity (V b) are used 

to calculate the elliptical L/B ratio which becomes the basis for future propagation. The 

premise o f the approach is that once the heading and backing velocity are computed via 

space measurements, the fire can be propagated in time with a length to breadth ratio 

according to this relationship (Figure 3-11).

(3-6)
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Figure 3-11. Fire spread length to breadth ratio (L/B) as a function o f heading to backing 
velocity ratio (V h/V b). Measured spread velocities from space can be used to propagate a 
CA model to predict future fire locations according to elliptical spread parameters (L/B).

The real strength in this approach lies in the ability to use space-based 

information rather than rely on sparse ground-based data that is likely taken at the wrong 

location and untimely for rapidly changing fires. The spread relationship shown in 

Figure 3-11 is not based on empirical data, but solely on mathematical manipulations of 

ellipse equations. Therefore, the only true assumption in the entire process is that fires 

spread in elliptical shapes (Figure 3-12). As previously discussed, this is a good 

assumption and one generally accepted by the fire community.
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Figure 3-12. Photograph o f a typical wildland fire obtained from the USDA Forest 
Service. The active fire front is propagating downwind in an elliptical shape pattern. 
These spread shapes are typical o f modeled and actual fires.

The ability to accurately represent elliptical spread shapes was tested using 4-cell 

and 8-cell CA models. The ellipse perimeter contour shapes generated at each time step 

were compared to a geometrically exact ellipse at three locations (Figure 3-13). First the 

length-to-breadth (L/B) ratio is calculated at each time step and then the actual perimeter 

is compared with a true ellipse having the same L/B ratio at three quadrant locations. In 

the headfire direction, errors are calculated at one-half the semi-major axis and three- 

fourths o f the semi-major axis. In the backfire direction, the quadrant error is only 

calculated at one-half the semi-major axis.
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Figure 3-13. CA models o f elliptical spread shapes were compared with geometrically 
perfect ellipses at three quadrant locations. Errors can be minimized to create CA 
weighting algorithms for accurate fire spread modeling.

Both the 4-cell and 8-cell CA models were tested to simulate theoretical ellipse 

shapes. Assuming symmetrical growth with respect to the major axis, the 4-cell model 

has three free weighting parameters (W7, W l, and W3) and the 8-cell model has five free 

weighting parameters (W7, W8, W l, W2, W3). The factor W3 was fixed at 1.0 for all 

cases, since the parameters can be scaled with respect to W7 to achieve various rates of 

spread. Therefore, there were actually two free variables for the 4-cell model and four 

free variables for the 8-cell model. Scalability and rate o f spread will be discussed in 

more detail in later sections.

The weighting parameters correspond to the cardinal directions shown in 

Figure 3-8. CA computer subroutines were developed to alter a single free parameter, 

while fixing the remaining parameters. Though this is not a formal gradient-descent 

method, the approach yielded adequate results with minimal computational complexity.
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An average ellipse quadrant error was calculated in each case to determine the desired 

change in the variable parameter for the next case. Using this iterative approach it was 

possible to test ellipse shape errors for the 4-cell and 8-cell models over a L/B range o f 0 

(circle) to 7 (elongated ellipse). Figure 3-14 shows the average quadrant error for 

numerous selected cases as well as curvefits for these data. A simplistic qualitative 

analysis suggests the 8-cell model is superior to the 4-cell model since it yields ellipse 

shape errors below 2% for all cases. The 4-cell model is too simplistic for simulating 

near circular shapes and ellipses with low L/B ratios (less than 3). In these cases, the 

errors are high and produce distorted spread shapes. Quantitatively, it could be argued 

that the 4-cell model is entirely suitable for L/B ratios above 3.0. The errors for these 

cases are nearly the same as the 8-cell case and computational complexity is lessened.
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Figure 3-14. Average shape error compared to a perfect ellipse geometry defined by the 
ellipse length-to-breadth (L/B) ratio. The 8-cell model achieves errors below 2% for all 
cases, but the simplistic 4-cell model achieves nearly the same errors for L/B ratios 
greater than 3.0. Polynomial curvefits were used for illustration of general trends.

Further examination o f the data raises the question o f how much distortion is 

created with a 5%, 10% or 20% ellipse quadrant error. It may be possible to tolerate 

larger errors if  the shape distortion is not severe. Figure 3-15 displays various distortions 

(0,5,10, and 20 percent) for a circular (L/B=1.0) case and an elliptical (L/B=3.0) 

geometry. Qualitatively, errors near 5% appear reasonable, though a 10% or 20% error 

severely distorts a circular and an elliptical fire.
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Circle Model (L/D = 1.0) 
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5% Error

10% Error
20% Error

Figure 3-15. Circle (L/B=1.0) and ellipse (L/B=3.0) contour shapes with average 
distortion errors o f 0,5,10, and 20 percent. High shape errors above 5% produce severely 
distorted spread shapes. Accurate fire propagation models cannot tolerate high 
distortions while maintaining spread accuracy. The CA algorithm developed in this 
research achieves less than 2% distortion error.

This qualitative argument supports an approach that utilizes an 8-cell method for 

L/B ratios between 1.0 and 3.0 and the more simplistic 4-cell method for L/B ratios 

between 3.0 and 7.0. The following piecewise algorithm was developed from the 

modeling results. Each free parameter weighting function was fit to an exponential curve 

for both the 4-cell model (Figure 3-16) and the 8-cell model (Figure 3-17). The final 

algorithm for each o f the 8 reference weighting parameters is shown below as a function 

o f the L/B ratio, which will be designated hereafter as /? . These reference parameters 

are based on an elliptical expansion with a major axis in the vertical direction.

Circle

5% Error

10% Error

20% Error
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Figure 3-16. Free variable weighting factors as a function of length to breadth ratio for 
the 4-cell CA model. Exponential curve fits were used to develop a single algorithm for 
each parameter, W5 and W7. The R2 regression errors were 0.827 and 0.996, 
respectively.
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Figure 3-17. Free variable weighting factors as a function o f length to breadth ratio for 
the 8-cell CA model. Exponential curve fits were used to develop a single algorithm for 
each parameter, W8, W6, W5, and W7. Each curve fit was forced to go through the 
intercept (1.0,1.0) to achieve a near-perfect circle at L/B = 1.0. The R2 regression errors 
for each weighting function were 0.931, 0.905, 0.867, and 0.986, respectively.

Since the final algorithm is a curve fit o f numerous weighting factors, its 

performance was tested over a range o f /? ratios (Figure 3-18). In all cases, elliptical 

quadrant errors are below 2% and accurately depict geometric shapes.
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Figure 3-18. Geometric shape error as a function of length to breadth (L/B) ratio for the 
final CA algorithm. Average errors are below 2% for all cases. The piecewise CA 
algorithm utilizes an 8-cell model for /? < 3 and a 4-cell model for f i  > 3 . This single 
algorithm can form the basis for future CA fire propagation codes. A polynomial curve 
fit o f the data is included for visualization purposes only.
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Fire Model Algorithm

Now that the general algorithm has been presented, several issues must be 

considered to implement the code in a practical application case. First, the presented CA 

model does not produce instantaneous shape convergence. Assuming the fire starts from 

any fixed point in space, the shape o f the fire perimeter will evolve over time to produce 

a converged value. Figure 3-19 shows the shape error as a function of iteration for a 

circular case /? =1.0 and an ellipse /? =4.0. Average errors are reduced below 5% after 

120 iterations in both cases. Convergence to the desired elliptical shape requires minimal 

iterations and therefore minimal computing impact.
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Figure 3-19. Geometric shape error as a function o f CA model iterations. Average errors 
are reduced below 5% after 120 iterations for both the circle case (L/B = 1.0) and the 
ellipse case (L/B = 4.0). Errors are typically higher for ellipses due to their irregular 
shape. The small number o f required iterations will consume minimal computer time for 
a real fire application.

Once convergence is met, the position o f the fire boundary depends solely on the 

number o f iterations. Each iteration can be thought o f as a discrete increment o f time 

which defines the temporal resolution of the model. In order to increase the rate o f 

spread without an increase in iterations, an additional scaling factor (R) can be added to 

the algorithm.

(I%(P)*SUj +Wl(/3)*S‘J+i +

D0Wz(P)*s;_1J+l+w2(/3)*sUj+l +
w4 (p) * + W6 (/?) * S ' ^ )

min 1.0, S ‘j  +R (3-8)
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This scaling factor has an influence on shape error which grows with higher 

spread rates. Figure 3-20 shows shape error as a function of scaling factor (R) for a 

circular spread case (1.0) and an ellipse case (4.0). The algorithm developed in the 

previous sections used a factor o f 0.1 for all cases.
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Figure 3-20. Quadrant shape error as a function o f scaling factor. Scaling factors above 
0.5 may distort spread shapes. Careful balancing o f scaling factor and the number of 
iterations will allow accurate fire spread rates.

Clearly large scaling factors tend to increase shape errors, but this can be avoided. 

Choosing a small scaling factor o f 0.10 will limit the shape error, but require more 

iterations to achieve the same total spread distance. There are multitudes o f combinations 

o f scaling factor, length to breadth ratio and iteration numbers that can be evaluated in 

further research, but are far too extensive to list here. It is suggested that one fix the
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scaling factor at 0.10 and specify the number o f iterations to achieve the desired spread 

rates. Spread rates are dependent on direction, but can be easily measured in the course 

o f a solution to adjust the number o f iterations and achieve the desired spread rate.

Grid dependency is another parameter that should be considered for discrete- 

based solutions. Finer cell sizes and larger grids should demonstrate no appreciable 

change in the results. Grid dependency was tested for a circular case (L/B = 1.0) and an 

elliptical case (L/B = 4.0). Average shape errors were measured for increasing grid size 

(Figure 3-21). In each case the circle or ellipse filled nearly the entire grid space. This 

was accomplished by increasing the number o f iterations for larger grid dimensions. 

Larger grid dimensions, corresponding to finer CA meshes, have little or no affect on 

shape error results, and therefore, show the CA model is grid independent.
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Figure 3-21. Average shape error as a function o f square grid dimension. Circle shape 
errors are very small and nearly constant for increasing grid dimension. Ellipse shape 
errors converge to nearly constant values for grids larger than 400 cells. Constant shape 
errors for increasing grid dimensions show that the CA model is grid-independent.
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The final parameter added to the CA weighting algorithm will account for 

variations in wind direction. Up to this point, the CA weighting algorithms have 

considered elliptical expansion with a major axis in the vertical direction. This would 

only be the case for a northerly wind. To account for winds in all directions, it is 

necessary to develop a coordinate rotation and adjust the wind factors for directions that 

fall between the 8 orthogonal or diagonal directions. Several assumptions will be 

considered: (1) Wind is measured clockwise from the vertical axis where a northerly 

wind corresponds to a wind direction angle o f zero, as shown in Figure 3-22, (2) The 

previously calculated weighting functions will be called the reference weighting factors 

Wx (ref)  , since they correspond to a zero degree wind direction, and (3) Wind direction 

will fall into one o f 8 sectors (S), according to Figure 3-22.

Wind Direction Wind Sectors (S)
Angle (a) go

Figure 3-22. Diagrams o f wind direction and wind sector for calculating CA weighting 
factors. Factors can be adjusted for winds in any direction using a combination o f the 
weighting factors closest to the sector containing the given wind direction.
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Considering these assumptions, the wind weighting factor for any arbitrary wind 

angle, Wx (a ) , can be written as a function of the wind angle ( a ), wind sector ( S ), and 

the two reference weighting factors that bound the sector of that wind ( Wref). The wind

angle ( a ) is expressed in degrees, whereas the wind sector ( S ) is an integer value from 

1 to 8.

W,

»*(«)=■

X - S + 8 (ref)- 1 + - 0 L - S
45c

+ W.X - S + 9 (ref)- S -
a

45°
45

(3-9)

A variety o f possible fire spread shapes and directions are possible with the 

presented CA algorithm. Figure 3-23 shows a simulation o f an elliptical fire in wind- 

driven conditions emanating from a single point source. It is also possible to achieve 

blended contours for spreading fires originating from numerous points with the same 

elliptical spread shapes (Figure 3-24). In a typical space application, knowledge o f the 

wind direction is derived from the fire perimeter data which propagates in a direction 

coincident with the wind.
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Figure 3-23. Cellular automata fire spread contours depicting fire boundary locations. 
The simulation used a wind angle o f 90 degrees and a length-to-breadth ratio o f 2.0, for 
500 iterations. Unequal weighting factors create an elliptical fire spread shape typical of 
an actual fire in wind driven conditions.

Figure 3-24. CA model fire spread contours considering a fire originating from 3 
separate sources. The simulation used a wind angle o f 90 degrees and a length-to-breadth 
ratio of 2.0, for 500 iterations. Spread algorithms easily allow blending o f fire spread 
contours.
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Wind direction and speed can also be changed to depict real-time changes in fire 

growth. As an example, the baseline elliptical fire in Figure 3-23 was modified to change 

the wind direction from westerly (90 degrees) to south-westerly (45 degrees) and to 

increase the wind speed by increasing the elliptical length-to-breadth ratio. Additionally, 

a solid obstruction such as a structure or water was included to display the spread shapes 

as they are influenced in time. These complexities were simulated using the CA model 

and the results shown in Figure 3-25.

Figure 3-25. CA fire spread contours depicting fire boundary locations with changing 
wind speed and direction and a solid obstruction in the spread path. The simulation used 
a wind angle o f 90 degrees and a length-to-breadth ratio o f 2.0, for the first 200 iterations. 
The wind angle was changed to 45 degrees and a length-to-breadth ratio o f 3.0 for the 
next 1000 iterations. CA models can be simply modified for a variety o f wind and 
surface obstruction conditions.
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The formulation o f CA weighting factors is a critical result o f this research. It has 

also been shown that various combinations o f wind speed and direction can be modeled 

with this single algorithm. Since the advantage of CA model lies in its simplicity, 

limiting the algorithm complexity while maintaining accuracy will be a key to proving 

the notion that this CA approach is an improvement over existing fire modeling 

approaches. The algorithm has been presented in several parts throughout this chapter. 

Appendix A contains the entire algorithm in summary format including the required CA 

model input parameters. Appendix B contains the basic FORTRAN-90 code required to 

implement the algorithm for any cellular automata fire model. The listed code does not 

include user-defined inputs, such as pre-bumed areas or user-defined outputs such as 

perimeter output routines. It is expected that future researchers could add these routines 

for their particular application.
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Real Fire Event Comparisons

As a final step, and one that ultimately tests the utility o f the CA model, the model 

results were compared with two separate real fire events. After an extensive literature 

search, it was determined that there were very few real fire events with sufficient 

documentation to measure fire propagation boundaries over time. The two selected fire 

events were the 1996 Bee Fire (Fujioka, 2001) in San Bernardino National Forest, 

California and the 1967 Sundance Fire (Anderson, 1968) in Idaho.

The Bee Fire occurred in the California San Bernardino National Forest from June 

2 to July 3 ,1996. The USDA Forest Service collected fire growth perimeters at several 

time intervals (Weise and Fujioka, 1998). The fire generally propagated to the northeast 

(45 degrees according to the directions defined in Figure 3-23) from its starting location 

at the base o f the San Jacinto Mountains. After 3 days o f uncontrolled movement, the 

fire was suppressed and contained within a 3848 ha area. Figure 3-26 shows three 

measured fire perimeters at 10, 43 and 103 minutes after ignition. Raw perimeter data 

was obtained directly from Francis Fujioka (Fujioka, 2001) to generate this plot.
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Figure 3-26. Observed fire perimeters from the 1996 Bee Fire. Axis units are in meters, 
relative to the starting location at the origin point. Southwest winds at approximately 2 
m/s resulted in general fire propagation to the northeast.

The fire perimeter measurements were constrained in the backfire direction. This 

resulted in a lack o f data near the ignition point. Perimeter 1 and 3 exhibited near

elliptical spread patterns in the headfire direction that were consistent with the southwest 

wind. Perimeter 2 exhibited an irregular growth lobe in the northwest comer that can be
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partially attributed to a change in wind direction. A mesoscale model predicted winds 

out o f the southeast near 17:00 hours (Fujioka, 2001). This analysis provides evidence of 

growth toward the northwest that would explain this irregular lobe.

Three CA model cases were compared with actual fire perimeters (Table 3-1). In 

each case the starting position was determined by the previous known perimeter, which is 

typical o f the intended model application for space. The propagation angle was fixed at 

45 degrees and the length-to-breadth ratio was calculated for each specific case. The 

number o f iterations was varied to simulate the intended rate o f spread from the known 

perimeter.

Case Starting Point Angle L/B Iterations
1 16:47 Origin (0,0) 45.0 2.66 428
2 16:57 Perimeter #1 45.0 2.66 1285
3 17:30 Perimeter #2 45.0 2.41 664

Table 3-1. Cellular automata fire model inputs for the 1996 Bee Fire simulation. Each 
case was initiated from the previous known fire perimeter, which is consistent with the 
intended model operation for a space application.

Case 1 was a special case, since it started from a fixed point (origin) and did not 

have a known perimeter. The measured rate o f spread at perimeter 1 was 0.785 m/s and 

the estimated backfire spread rate was 0.030 m/s. Using equation 3-6, the calculated 

L/B ratio was 2.66. In order to achieve the appropriate spread rate at 45 degrees 

propagation angle, 428 iterations were required. Figure 3-27 shows the observed (solid 

black) and predicted (dotted red) perimeters based on these biased model parameters. 

Since this case started from a point versus an actual known perimeter, it does not truly
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reflect the intended application for space. Conversely, the elliptical shape pattern does 

reflect the growth of the actual fire quite closely for most of the perimeter. The only area 

o f poor correlation is the southeast lobe o f the perimeter.

450
M o d e l  

P e r i m e t e r  # 1  
( d o t t e d  l i n e )

400

350

300
S2a>
a>
E

250

200

|  150 
©
> 100
<3

S t a r t i n g  P o i n t  ( 0 , 0 )  
1 6 : 4 7  P O T

0)
CC

A c t u a l  P e r i m e t e r  # 1  
( s o l i d  l i n e )-50

-100
-100 -50 0 50 100 150 200 250 300 350 400 450

Relative Easting (meters)

Figure 3-27. Observed and predicted fire perimeters originating from a single starting 
point for the 1996 Bee Fire. Axis units are in meters relative to the starting location. 
Cellular automata model predictions correlated well with observed perimeters for much 
of the fire perimeter.
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Case 2 is more typical o f the intended application o f the propagation model, since 

it starts at a known fire perimeter with measurable spread rates. The measured 

propagation angle was consistent with the known wind direction o f 45 degrees. As in 

case 1, the L/B ratio was 2.66, based on measured headfire and backfire velocities. The 

number o f iterations was increased to 1285 to accommodate for the increased time (33 

minutes) between perimeter 1 and 2. Figure 3-28 shows the results for case 2.
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Figure 3-28. Observed and predicted fire perimeters originating from perimeter #1 for 
the 1996 Bee Fire. Axis units are in meters relative to the starting location. Cellular 
automata model predictions overpredicted the observed perimeter due to a decreasing 
spread rate during the long time interval between measurements.
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It is obvious from Figure 3-28, that the fire was changing rapidly over the 33 

minute period between perimeter 1 and 2. The large errors in predicted perimeter 

locations can be attributed to the decreased rate o f spread. With more frequent data 

acquisition it is likely the errors would be significantly reduced. Figure 3-29 shows the 

actual measured rate o f spread over the time o f the fire. The reduced rate o f spread prior 

to the measurement o f perimeter 1 caused on overprediction o f the fire perimeter.
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Figure 3-29. Observed rate o f spread for the 1996 Bee Fire. Errors in model predictions 
can be largely attributed to the significant changes in rate o f spread over the life o f the 
fire.
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Case 3 was run similar to case 2. A propagation direction o f 45 degrees was 

selected to reflect the first measured perimeter and to be consistent with the known wind 

direction. Selecting a propagation angle solely based on perimeter 2 data would have 

skewed the results toward the northwest. Had more data been available, it is likely the 

measured direction would have neared 45 degrees. An analysis o f perimeter 2 revealed a 

lower headfire spread rate (0.212 m/s) and lower backfire spread rate (0.010 m/s) that 

resulted in nearly the same L/B ratio (2.41). Similar to case 2, the number o f iterations 

was based on the desired spread rate for the intended time period. Figure 3-30 shows the 

results for case 3.
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Figure 3-30. Observed and predicted fire perimeters originating from perimeter #2 for 
the 1996 Bee Fire. Axis units are in meters relative to the starting location. Cellular 
automata model predictions underpredicted the observed perimeter due to an increasing 
spread rate during the long time interval between measurements.

A summary o f the results from all 3 cases is shown in Figure 3-31. The ratio o f 

the observed to predicted perimeter radius is shown as a function o f direction angle 

measured from the starting point. Though these simulations produced large errors for 

cases 2 and 3, the results were comparable to errors reported by Fujioka (2001) in his 

simulations using the FARSITE (Finney, 1998) partial differential equation code.
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Reported perimeter errors varied from 0.6 to 2.6 in the cases analyzed by Fujioka. Aside 

from the intermittent data acquisition, it is also likely that the light winds (near 2 m/s) 

would allow minor perturbations in spread direction as local wind bursts could influence 

the behavior.
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Figure 3-31. Ratio o f observed to predicted perimeter radius versus direction angle for 
the 1996 Bee Fire simulation. Cellular automata predictions produced large errors in 
some directions. These errors were consistent with those reported by Fujioka (2001) 
using FARSITE (Finney, 1998).

A second set o f simulations were compared to the 1967 Sundance Fire in northern 

Idaho (Anderson, 1968). This rapidly moving fire originated near Sundance Mountain 

and burned an area over 20,000 ha. On September 1, 1967, the fire traveled 16 miles in a 

period o f 9 hours. The Northern Forest Fire Laboratory was assigned to investigate the 

physical phenomena o f the fire and document historical development. Fire front
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locations were determined by a combination of actual field measurements and personal 

interviews from multiple sources. The variance in data sources slightly diminished the 

credibility o f the actual fire front, but its general path and shape were constructed with 

reasonable success. Figure 3-32 shows the constructed fire perimeters at 6 different time 

intervals in relation to the estimated starting location at the origin o f the graph. These 

perimeters were digitized from fire perimeter plots in Anderson (1968). It is apparent 

from the figure that the fire perimeters exhibited elongated elliptical shapes typical of 

rapidly moving wind-driven fires.
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Figure 3-32. Observed fire perimeters from the 1967 Sundance Fire. Axis units are in 
meters, relative to the starting location at the origin point. Southwest winds resulted in 
general fire propagation to the northeast.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



122

The measured winds during the Sundance Fire were recorded at regular intervals 

(Figure 3-33). In all but one measurement, the wind direction was southwesterly, with 

the lone anomaly exhibiting west-southwesterly wind. Over the course o f the fire, wind 

speed steadily increased from approximately 34 to 71 km/hr.
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Figure 3-33. Measured wind velocity (km/hr) as a function o f time during the Sundance 
Fire. A steady increase in wind speed resulted in increased rate o f spread and elliptical 
spread shapes with more eccentricity, or a higher length to breadth ratio.
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Five CA model cases were compared with actual fire perimeters (Table 3-2) such 

that each CA model cell was 24.8 meters wide. In each case the starting position and 

propagation direction were determined from the previous known perimeter. Length-to- 

breadth ratio was calculated similar to the previous simulation using equation 3-6. The 

backing fire rate o f spread was fixed at 0.088 km/hr based on perimeter data from the 

18:00 time sample. This was the only backfire perimeter data available for determining 

backfire spread rate. The number o f iterations were determined by the required fire rate 

o f spread for each starting fire perimeter and the scaling factor in the CA algorithm.

These assumptions were used to simulate fire propagation for comparison with the 

measured fire perimeter at the next time interval. The results from these five CA model 

cases are shown in Figures 3-34 through Figure 3-38.

Case Starting Point Angle L/B Iterations
1 1 4 : 0 0  Perimeter # 1 4 5 . 0 2 . 1 2 3 6 7

2 1 5 : 0 0  Perimeter # 2 5 0 . 7 2 . 3 5 5 0 0

3 1 6 : 0 0  Perimeter # 3 4 1 . 4 2 . 9 1 1 0 9 0

4 1 8 : 0 0  Perimeter # 4 3 0 . 5 2 . 7 1 1 3 9 9

5 2 0 : 0 0  Perimeter # 5 5 0 . 8 3 . 0 1 2 8 1 8

Table 3-2. Cellular automata fire model inputs for the 1967 Sundance Fire simulation. 
Each case was initiated from the previous known fire perimeter, which is consistent with 
the intended model operation for a space application.
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Figure 3-34. Observed and predicted fire perimeters for the 1967 Sundance Fire 
originating from the known perimeter at 14:00. Axis units are in kilometers relative to 
the starting location. Cellular automata model predictions correlated well with the 
observed perimeter with only slight underpredictions in the northeast quadrant.
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Figure 3-35. Observed and predicted fire perimeters for the 1967 Sundance Fire 
originating from the known perimeter at 15:00. Axis units are in kilometers relative to 
the starting location. Cellular automata model predictions correlated reasonably well 
with the observed perimeter with only slight underpredictions in the northeast quadrant.
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Figure 3-36. Observed and predicted fire perimeters for the 1967 Sundance Fire 
originating from the known perimeter at 16:00. Axis units are in kilometers relative to 
the starting location. Cellular automata model predictions correlated reasonably well 
with the observed perimeter with only slight underpredictions in the northeast quadrant.
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Figure 3-37. Observed and predicted fire perimeters for the 1967 Sundance Fire 
originating from the known perimeter at 18:00. Axis units are in kilometers relative to 
the starting location. Cellular automata model predictions correlated reasonably well 
with the observed perimeter with only slight underpredictions in the northeast quadrant.
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Figure 3-38. Observed and predicted fire perimeters for the 1967 Sundance Fire 
originating from the known perimeter at 20:00. Axis units are in kilometers relative to 
the starting location. Cellular automata model predictions correlated reasonably well 
with the observed perimeter with only slight underpredictions in the northeast quadrant.
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All o f the results from the 5 cases are shown in Figure 3-39. The ratio o f the 

observed to predicted fire perimeter radius is shown as a function o f direction angle. The 

average error o f the observed to predicted perimeter length was 12%, for all cases. This 

is a reasonable correlation considering several factors. As shown in Figure 3-33, wind 

velocity steadily increased over the course o f the fire, so slight underprediction o f the 

headfire front was expected. Furthermore, the time separation between perimeters was 

one or two hours. In case 5, the actual perimeter traveled nearly 9 km over 2 hours. It is 

likely that predicted perimeters at smaller time intervals, such as 30 minutes or one hour, 

would have improved correlation errors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

Case 3<D
E Case 4

Case 20)
CL
730)*■>o
73
<Di -
Q.
O+■>
73O>
©WS3
O

Case 1
0.9 Case 5

0.8
20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120

Angle from North (degrees)

Figure 3-39. Ratio o f observed to predicted perimeter radius versus direction angle for 
the 1967 Sundance Fire simulation. Cellular automata predictions underpredicted the 
actual fire perimeters by an average o f 12%. Errors were highest in the primary headfire 
direction due to steadily increasing wind speed.

All o f the reported simulations were conducted on a 1.6 GHz Pentium-4 PC. The 

computational time for an entire scene is relatively short and could likely be improved 

with optimization of the computer coding. As an example, a 1000 by 1000 grid required 

206 seconds of actual clock time to complete 1000 iterations. Other variations o f grid 

size and iteration quantity scaled as expected. In a typical space application, it would be 

possible to measure a fire perimeter, conduct a CA simulation for a 1000 by 1000 scene 

and repeat the process every few minutes. Real-time data could be transferred to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



131

ground on these same time intervals creating a functional data product for fire 

management.

This chapter has presented a cellular automata fire propagation model suitable for 

space applications and wildfire management. Algorithms were developed using a 

coupled map lattice for a Moore neighborhood cellular structure. Weighting parameters 

for cell-state equations were determined for various elliptical eccentricities to minimize 

shape distortion below 2%. The presented algorithm was tested against two real fire 

events with favorable results. Simulations were conducted using known fire perimeter 

data without wind or fuel data. This is vastly different from existing fire propagation 

models which require highly variable and often undermeasured parameters. The 

presented simulations require minimal computational complexity and have the potential 

to provide a functional data product for future fire management.
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Future Research

NASA Langley Research Center continues to pursue fire research and the 

development o f a dedicated space-borne fire monitoring system. Up to this point, 

scientific support has been excellent, but funding approval for significant advancement 

has been insufficient. Priorities for Earth Science research have focused on climate 

modeling and atmospheric chemistry, with the study o f fire as a secondary benefit gained 

from existing instrumentation. A full mission dedicated to fire research will require 

substantial technology development and demonstration o f key operational and scientific 

concepts. Only at this point will the scientific and budget constraints reach an acceptable 

level to make this mission a reality. With this said, it is not only likely, but inevitable, 

that a dedicated fire mission will be part o f our future.

Prior to this reality, it is possible to plan for a series o f scaled tests and 

demonstrations. Once a functional fire detector system is developed, its performance can 

be evaluated using ground-based tests, balloons, manned aircrafts, or Unmanned Aerial 

Vehicles (UAV’s). Even a “piggy back” mission in Low Earth Orbit (LEO) will be a 

cost savings over a geosynchronous mission. Many issues associated with saturation 

temperature, sampling methods, and general engineering design trades can be evaluated 

with these tests. In addition to the detector performance, it will be possible to perform 

early testing o f fire propagation algorithms in controlled conditions with known spread 

conditions. Correlation with existing fire codes will be important to demonstrate the
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flexibility and simplicity o f the new algorithms. An extension o f the algorithms to 

include Geographical Information System (GIS) data could certainly improve accuracy. 

The baseline grid-based scene could include known obstructions, terrain slope, and other 

pertinent data that could influence the fire spread weighting algorithms.

Ultimately the future o f this research relies on the ability to measure the existence 

of fire, predict its movement and communicate that information to those fire managers 

and scientists with a desire for the information. With further improvements in 

communication and computer technology it may be possible to develop automated 

optimization algorithms that direct the available fire fighting resources in near real time. 

This will likely save lives and property, thereby achieving the ultimate goal of scientific 

research.
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Conclusions

This research was motivated by the need for improved wildfire monitoring to 

complement existing fire management and ultimately reduce the loss o f property and 

human life. An effective space-borne monitoring system will allow near real-time 

tracking of fire boundaries and the post-fire assessment o f biomass burning emissions on 

our climate. Fire front location and intensity data can be used in propagation models to 

predict future frontal locations. Trace gas emissions from active fire fronts can be 

determined from measurements o f fire temperature over time. Existing wildfire 

monitoring systems depend on aircraft or ground data with sparse temporal and spatial 

sampling. A space-borne satellite, detector system and propagation model can provide 

the foundation for the next generation o f fire science. Such a system would be superior 

to standard methods with the potential to significantly contribute to future fire research 

and benefit the general public.

The geosynchronous satellite system uses a nutating detector array to yield a 

spatial resolution o f 100 meters per pixel with a repeatable coverage rate approaching one 

minute. Careful selection o f detector operating temperature, saturation temperature, 

signal charge capacity and integration time allows optimization o f signal to noise 

performance. Radiation modeling was used to verify the selection o f 3.7 pm for active 

fire detection and 10.2 pm for background ground temperatures. A temperature inversion 

technique utilizing both detector channels allows sub-pixel resolution o f the scene.
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Radiation attenuation due to clouds and aerosols was evaluated to define the limitations 

and capabilities o f the detector system. Fire detection through thin cirrus clouds and 

intense smoke layers is possible. A survey o f state-of-the-art detector capabilities and an 

assessment o f active fire tests suggest the presented system is viable for active fire 

detection from space.

A coupled map lattice discrete cellular automata model was developed to predict 

wildfire propagation based on semi-empirical fire perimeters measured from a space- 

borne detector system. Cell state algorithms for an 8-cell neighborhood correlated within 

2% of theoretical circular and elliptical spread shapes. Variations in wind speed and 

direction are accommodated in the cell weighting algorithms. The simplicity and 

efficiency o f the model is an improvement over existing spread models based on partial 

differential equations. Simulations o f the 1996 Bee Fire and the 1967 Sundance Fire 

suggest reasonable correlation o f actual fire perimeters with accuracies near those of 

existing propagation models. Improved temporal sampling of perimeter data would 

likely improve correlation. These simulations require active fire perimeter locations and 

eliminate the need for insufficient wind and fuel data. The potential for a functional fire 

data product for the fire management community is certainly possible.
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APPENDIX A: CELLULAR AUTOMATA A LG O RITH M  SUMMARY

Cellular Automata Local Rule:

\ w7(P)*SUj +W1(/3)*S‘u+1+ T

S $  =m in 1.0, LKj +R-
Wl{P)*S,M J+W5{P)*S[j_l) + 

D0 -{wi { /3 y su J+x+w2{ i3 r s tMJ+x + 

W4(/3)* S ‘m j_x+W6(/3)*SUh ) I

Constants:

VH -  Headfire Velocity VB -  Backfire Velocity

/?  _ 1
Dn = — —  « 0.207 

2
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Weighting Parameters:

Wt =1.0

w7 =w} 

w ,= w 2

r  -3.52(/?-1.0)

[0.4era88/J

e -1.29(^-1.0)

0

1 < /? < 3 
3 < /? < 7

1 < /? < 3 
3 < /? < 7

tr4 = r 6 

r 5

r e -2.14(/?-1.0)

lo

1 < /? < 3 
3 < /? < 7

f -2.160W.O) ! < < 3

[l .44e“0'65̂  3</3<7

Wind Direction Function:

a
45°

Wind Direction Wind Sectors (S)
Angle (a )  go

315° 45 '

90 '

135°225 '
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APPENDIX B: CELLULAR AUTOMATA FORTRAN-90 CODE

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P r o g r a m  MAIN
INTEGER I , J,DIMX,DIMY,LOOP,TEND,X,SEC2  
INTEGER STARTX,STARTY 
REAL FAC,BETA,RFAC,WIND,SEC1  
REAL, DIMENSION( 3 0 0 0 , 3 0 0 0 )  ::  A , B , C , F X , F Y
REAL, DIMENSION(1 0 0 )  : :  W,WNEW
INTEGER, DIMENSION( 3 0 0 0 )  ::  SUB1, SUB2
O P E N ( U n i t = 2 , F i l e = ' o u t p u t . d a t ')  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* D e f i n e  p a r a m e t e r s
*
* A = F i n a l  M a t r i x  V a l u e s  ( a f t e r  t i m e  s t e p )
* B = I n i t i a l  M a t r i x  V a l u e s  ( b e f o r e  t i m e  s t e p )
* C = P e r i m e t e r  C o n t o u r  M a t r i x
* FX = P e r i m e t e r  X - C o o r d i n a t e s
* FY = P e r i m e t e r  Y - C o o r d i n a t e s
* DIMX = L a t t i c e  X - D i m e n s i o n  ( m e t e r s )
* DIMY = L a t t i c e  Y - D i m e n s i o n  ( m e t e r s )
* STARTX = C e l l  S t a r t i n g  X - C o o r d i n a t e
* STARTY = C e l l  S t a r t i n g  Y - C o o r d i n a t e
* w l  = N o r t h  w i n d  w e i g h t i n g
* w2 = NE w i n d  w e i g h t i n g
* w3 = E a s t  w i n d  w e i g h t i n g
* w4 = SE w i n d  w e i g h t i n g
* w5 = S o u t h  w i n d  w e i g h t i n g
* w6 = SW w i n d  w e i g h t i n g
* w7 = W est  w i n d  w e i g h t i n g
* w8 = NW w i n d  w e i g h t i n g
* WIND = T r u e  w i n d  d i r e c t i o n  (CW f r o m  N o r t h = 0 . 0  d e g )
* BETA = L e n g t h  t o  B r e a d t h  R a t i o
* RFAC = ROS F a c t o r  ( c o n s t a n t  a t  0 . 1 0 )
* TEND = Number o f  I t e r a t i o n s
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* I n p u t  P a r a m e t e r s
*

WIND = 9 0 . 0  
BETA = 2 . 0 0  
RFAC = 0 . 1
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TEND = 5 0  0
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* C e l l  D i m e n s i o n s  a n d  I t e r a t i o n s
*

DIMX = 1 0 0 0  
DIMY = 1 0 0 0  
STARTX = 500  
STARTY = 500

'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'kit'k'k'k'k'k'k'k'k'kie'k'k'k'k'k'k'k'kie'k'k'k-k'k'k'k'k'k'k'k'k'k'k
* M a t r i x  I n i t i a l i z a t i o n
* B u rn  F r a c t i o n  = 0
* A = C u r r e n t  Time S t e p
* B = P r e v i o u s  Time S t e p
*

DO 80 1 = 1 , DIMX 
DO 81 J = 1 , DIMY 

A ( I ,  J)  =0 . 0 
B ( I , J ) = 0 . 0  
C ( I , J ) =0 . 0 

81 CONTINUE
80 CONTINUE

*

* D e f i n e  P r e - B u r n e d  A r e a s
*

B(STARTX,STARTY)= 1 . 0
*

'k'k'k'k'k'k'k'kicic'k'k'k'k'k'k'k'k'k'k'k'k'kic'k'kit'k'kic'k'k'klt'k'k'kic'k'k-k'k'k'k
* C a l c u l a t e  W e i g h t i n g  A l g o r i t h m s
*

W( l )  = 1 . 0
*

IF  ( B E T A .L T . 3 . 0 1 )  THEN 
W(4)  = EXP( - 2 . 1 4 * ( BETA- 1 . 0 ) )
ELSE
W (4) = 0 . 0  
END IF

*

IF  ( B E T A . L T . 3 . 0 1 )  THEN 
W(5)  = EXP( - 2 . 1 6 * ( BETA- 1 . 0 ) )
ELSE
W( 5 ) = 1 . 4 4  * E X P ( -  0 . 6 5  *BETA)
END IF

*

IF  ( B E T A . L T . 3 . 0 1 )  THEN 
W(8) = EXP( - 1 . 2 9 * ( BETA- 1 . 0 ) )
ELSE
W ( 8)  = 0 . 0
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END IF
*

I F  ( BETA. LT. 3 . 0 1 )  THEN 
W(7)  = EXP( - 3 . 5 2 * ( BETA- 1 . 0 ) )
ELSE
W(7)  = 0 . 4 0 * E X P ( -  0 . 88*BETA)
END IF

*

w (3) = w (7)  
w (2)  = w (8)  
w (5)  =w (4)

'k'k'k-k'k'k'kif'k-k'k'k'k'k'k-k-k'k'k'k'kie'k'k'k'k-k-k'k'k'k'kif'k-k'k'kidck-k'k'k'k'k-k'k-k'k'k'k'k
* C a l c u l a t e  Wind D i r e c t i o n  A d j u s t m e n t s
*

SEC1 = WIND /  4 5 . 0  
SEC2 = I N T (SE C l)

*

DO 1 30  X = 1 , 8
S U B 1 (X ) = X - l - S E C 2 + 8  

I F  ( ( X - 1 - S E C 2 + 8 ) . G T . 8 . 0 )  THEN 
S U B 1 ( X ) = X - 1 - SEC2 

END IF
SUB2 ( X ) = S U B 1 ( X ) +1 

I F ( ( S U B 2 ( X ) ) . G T . 8 . 0 )  THEN 
S U B 2 ( X ) = S U B 2 ( X ) - 8  

END IF
WNEW(X)=W(S U B 1 ( X ) ) * ( SEC1- SEC2) +W( SUB2( X) ) * ( 1 -  

SEC1+SEC2)
13 0 CONTINUE

*
'k'k'k'k'k'k'k'k'k'k'k'kie'k'k'k-k'kie'k'k'k'k-k-kick'k'k-kic'k'k'k'k'k'k'k'k'k'k'k-k'k'k-k'kif'k'k'k'k
* G e n e r a l  CA L o c a l  R u l e
*

DO 51 LOOP=l, TEND 
DO 82 1 = 1 , DIMX 
DO 83 J = 1 , DIMY

A ( i , j ) = B ( i , j ) + R F A C * ( ( W N E W ( 3 ) * B ( i - 1 , j ) +
> WNEW( 1 ) * B ( i , j - 1 ) +WNEW( 5 ) * B ( i , j  +1)  +
> WNEW( 7 ) * B ( i + 1 , j ) ) +  0 . 2 0 7 1  * (WNEW( 2 ) *B ( i - 1 , j -

1 ) +
> WNEW( 4 ) * B ( i - 1 , j + 1 ) + W N E W ( 8 ) * B ( i + 1 , j - 1 ) +
> WNEW( 6) *B( i  + l ,  j + 1 )  ) )

21  I F  ( A ( i , j ) . G T . 1 . 0 )  THEN
A ( i , j ) = 1 .  0 

END I F  
83 CONTINUE
82 CONTINUE
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DO 85 1 = 1 , DIMX 
DO 86 J = 1 , DIMY 

B ( I , J )  =A ( I , J)
86 CONTINUE 
85 CONTINUE

*

FAC=LOOP*1 . 0
DO 87 J = 1 , DIMY
DO 88 1 = 1 , DIMX
IF ( ( B ( i , j ) .GT.  ( 0 . 9 9 9 ) )  .AND.

> ( C ( i , j ) .EQ.  (0 . 0 ) ) )  THEN
C ( i , j ) =FAC

END I F  
88 CONTINUE
87 CONTINUE

‘k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k i c ' k ' k - k - k - k ' k ' k ' k ' k - k - k - k ' k ' k - k ' k ' k ' k - k i c ' k ' k ' k - k - k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k i c ' k ' k ' k ' k ' k ' k

51 CONTINUE
‘k i f ' k - k i c i c ' k i c i t ' k ' k ' k l t ' k ' k ' k i e ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k i e ' k ' k J c ' k ' k ' k ' k - k ' k ' k ' k ' k - k ' k i t ' k ' k

* C a l c u l a t e  F i r e  P e r i m e t e r  C o o r d i n a t e s
*

DO 92 J = 1 , DIMY
DO 93 1 = 1 , DIMX

F X ( I , J ) = 0 . 0  
; F Y ( I , J ) =  0 . 0 

I F ( ( C ( I , J ) . G T . ( 0 . 9 9 9 ) ) .AND.
> ( ( C ( I - 1 , J)  .EQ.  ( 0 . 0 ) )  .OR.
> ( C ( I , J - l ) . E Q . ( 0 . 0 ) ) .OR.
> ( C ( 1 + 1 , J ) . E Q . ( 0 . 0 ) ) .OR.
> ( C ( I , J + 1 )  -EQ.  ( 0 . 0 ) )  ) )
>THEN

F X ( I , J ) =1 
F Y ( I , J ) = J  

END IF  
93 CONTINUE
92 CONTINUE

- k ' k i e ' k ' k ' k ' k ' k - k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k i e ' k ' k i e ' k ' k ' k i c ' k i c ' k ' k ' k i e ' k ' k - k r k ' k - k ' k ' k r k r k i e ' k ' k ' k

* W r i t e  P e r i m e t e r
DO 33 J=DI MY, 1 , - 1
WRITE( 2 , 4 5 )  ( C ( i ,  j ) , i  = l , DIMX)

3 3 CONTINUE
45  FORMAT( l x , 1 0 0 F 7 . 2)

*

WRITE( 2 , * )
DO 152 J = 1 , DIMY 
DO 153 1 = 1 , DIMX
IF ( ( F X ( I , J )  .GT. ( 0 . 0 0 1 ) )  .OR.
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> ( F X ( I , J ) . L T . ( - 0 . 0 0 1 ) )  .OR.
> ( F Y ( I , J ) . G T . ( 0 . 0 0 1 ) )  .OR.
> ( F Y ( I , J)  . LT.  ( - 0 . 0 0 1 )  ) )
>THEN

F X ( I , J ) = (I-STARTX)
F Y ( I , J ) = (J-STARTY)

WRITE( 2 , 1 5 4 )  F X ( I , J ) , F Y (I , J )
END IF

I F ( (F X ( I , J ) . GT. 0 . 0 ) . OR. ( F Y ( I , J ) . GT. 0 . 0 )  ) THEN 
WRITE( 2 , 1 5 4 )  F X ( I , J ) , F Y ( I , J)
END I F

*

153 CONTINUE 
152 CONTINUE
154 F O R M A T ( lx ,2 F 1 0 .2 )

' k ' k ' k ' k i e r k ' k ' k ' k ' k ' k i f i c k ' k ' k ' k ' k ' k r k i f i f - k ' k ' k ' k ' k ' k i e i e - k i f ' k ' k - k i e i f i e ' k ' k - k - k i f ' k i c i c - k ' k r k i c ' k ' k i e i e i e ' k ' k

PRINT *
PRINT S i m u l a t i o n  C o m p l e t e '
PRINT *
CLOSE ( U n i t =2)
STOP

END
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