
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

2002 

Simulation techniques in an artificial society model Simulation techniques in an artificial society model 

Barry Glenn Lawson 
College of William & Mary - Arts & Sciences 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Lawson, Barry Glenn, "Simulation techniques in an artificial society model" (2002). Dissertations, Theses, 
and Masters Projects. Paper 1539623405. 
https://dx.doi.org/doi:10.21220/s2-e8bw-6b46 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M 
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623405&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-e8bw-6b46
mailto:scholarworks@wm.edu


 
 
 

NOTE TO USERS 
 
 

Page(s) not included in the original manuscript are 
unavailable from the author or university. The  

manuscript was microfilmed as received 
 
 

                                         14, 81, 126                                   
 

 
 
 

This reproduction is the best copy available. 
 
 
 
 

 
 





SIMULATION TECHNIQUES IN AN ARTIFICIAL SOCIETY 

MODEL 

A Dissertation 

Presented to 

The Faculty of the Department of Computer Science 

The College of William & Mary in Virginia 

In Partial Fulfillment 

Of the Requirements for the Degree of 

Doctor of Philosophy 

by 

Barry Glenn Lawson 

2002 



APPROVAL SHEET 

This dissertation is submitted in partial fulfillment of 

the requirements for the degree of 

Approved, June 200~ ),.{' J 

tei>llffi;K. Park l~li'd·L ad) 
• Thesis Advisor D 

Z: Granfranco Ciardo 

Weizhen Mao 

elL-
Evgenia Smirni 

Lawrence Leemis 
Department of Mathematics 

ii 



To my family, for their love, support, and patience . .. 

llJ 



Table of Contents 

Acknowledgments 

List of Tables 

List of Figures 

Abstract 

1 Introduction 

1.1 Background 

1.2 Motivation 

1.3 Overview . 

2 Model Description 

2.1 Conceptual Model 

2.2 Specification Model . . 

2.2.1 Model Parameters 

2.2.2 The Landscape . 

2.2.3 The Agents . . . . 

iv 

ix 

X 

xvi 

xvii 

2 

3 

5 

7 

8 

9 

11 

11 

12 

14 



2.2.4 Behavioral Rules 

2.2.5 Time Evolution . 

2.2.5.1 Synchronous Time Evolution 

2.2.5.2 Asynchronous Time Evolution 

2.3 Computational Model . . . . . . . . . 

2.3.1 Implementing the Landscape 

2.3.2 Implementing the Agents . . . 

2.3.3 Implementing the List of Events 

2.3.4 Implementing the Simulation . . 

3 Artificial Society Model Output 

3.1 Initial Conditions . 

3.2 Landscapes . . . . 

3.3 Experimental Results . 

3.3.1 Basic Output for Two-Peak Landscape. 

3.3.2 Output for Two-Peak Landscape with Large T 

3.3.3 Output for Two-Peak Landscape with Large A(O) 

3.3.4 Output for Large Dimension Two-Peak Landscape 

3.3.5 Output using Other Landscapes . . . . . . . . . . . 

3.3.6 Output using Alternate Fields of View and Cell Shape . 

3.3.7 Output using Non-Periodic Landscape Boundary Conditions 

3.3.8 Output with Movement and Reproduction Uncoupled 

3.3.9 Output Summary . . . . . . . . . . . . . . . . . . . . . . 

v 

17 

20 

21 

22 

28 

29 

30 

31 

32 

34 

35 

36 

38 

39 

42 

45 

45 

47 

50 

52 

54 

58 



4 The Event List 

4.1 Background . . . . . . .. . . 

4.2 Event List Implementations 

4.2.1 Sorted Singly-Linked List 

4.2.2 Henriksen's Algorithm . 

4.2.3 Splay Tree .... 

4.2.4 Calendar Queue 

4.2.5 Spatially Based Multilists 

4.3 Event List Performance 

4.4 Event List Summary . . 

5 Job Scheduling in Parallel Systems 

5.1 Background . . . . . . . . . . . 

5.2 Scheduling Workload Analysis. 

5.2.1 The Arrival Process 

5.2.2 The Service Process 

5.2.2.1 Classification Using Accurate Service Estimates 

5.2.2.2 Classification Using Inaccurate Service Estimates 

5.3 Scheduling Policies . . . . . . . . . 

5.3.1 Single-Queue Backfilling . 

5.3.2 Multiple-Queue Backfilling Using Accurate Estimates 

5.3.3 Multiple-Queue Backfilling Using Inaccurate Estimates. 

5.3.4 Backfilling with Job Priorities and Reservations ..... 

vi 

59 

60 

61 

62 

63 

65 

69 

72 

75 

79 

80 

81 

83 

84 

85 

87 

89 

91 

91 

93 

96 

98 



5.3.4.1 Single-Queue Backfilling with Priorities .. 

5.3.4.2 Multiple-Queue Backfilling with Priorities . 

5.3.4.3 Backfilling with Reservations 

5.3.5 Scheduling Policies Summary 

5.4 Performance Analysis . . . . . . . . 

5.4.1 Backfilling Policy Comparison Using Accurate Estimates . 

5.4.2 Backfilling Policy Comparison Using Inaccurate Estimates . 

5.4.3 Backfilling Policy Comparison Under Heavy Load . . 

5.4.4 Backfilling Policy Comparison Under Job Priorities . 

5.4.5 Backfilling Policy Comparison Under Reservations 

5.4.6 Policy Comparison Summary . . . . . . . . . . . . 

6 Summary and Future Work 

A Random Variable Models 

A.l Uniform .. 

A.2 Exponential 

A.3 Equilikely 

A.4 Bernoulli 

A.5 Random Variate Generator Code 

B Related Simulation Models 

B.1 Soil Erosion Model . . . . 

B.2 Prisoners' Dilemma Model . 

vii 

99 

100 

100 

101 

101 

103 

105 

109 

111 

117 

119 

120 

123 

123 

124 

125 

126 

127 

131 

131 

138 



Bibliography 142 

viii 



ACKNOWLEDGMENTS 

First, I would like to acknowledge my thesis advisor, the late Steve Park, for the tutelage, 

the conversation, and especially his "philosophy ... for free". May I influence and inspire a 

generation of students in the same manner as he. 

Special thanks goes to my committee chair, Dick Prosl, for always looking out for me. 

I also want to thank the following faculty members for their assistance and understanding 

during this process: Gianfranco Ciardo, Larry Leemis, Weizhen Mao, Evgenia Smirni, and 

Andreas Stathopoulos. Thanks to Vanessa Godwin and the myriad of assistants for their 

great support. Thanks also to Clinch Valley College professors Emmet Low and George 

Culbertson for their influence, and thanks to fellow CVC alum Lisa Stanley for her friend

ship. 

Many friends I gained while at W&M deserve special recognition for providing inter

esting diversions, whether athletic, inspirational, musical, or philosophical: Jack Cowardin, 

Ernest and Gaelle Frazer, Jessen and Beth Havill, Scott and Molly Hayes, Joel and Heidi 

Hollingsworth, Mark and Dawn Idema, Wenlei Mao, Jim McCombs, Rance Necaise, Gregg 

and Kia Rippel, Ken Sollars, Beverly Thompson, Ed Tober, Khurshid Usmani, Gregg 

Wheeler, the Fredericksburg Baseball Club, the Friday basketball crew, and Walnut Hills 

Baptist Church. I want to extend a special thank you to Missy Rau for being a great friend 

(and for proofreading). 

I would like to express deepest appreciation to my parents, Leon and Peggy Lawson, 

for all they have done for me. Thanks to the rest of my family for their love and support. 

Most importantly, thanks to the Lord for the gift of life. 



List of Tables 

3.1 Proportion of replications that exhibit oscillatory behavior using asynchronous 

time evolution with agent movement and reproduction· uncoupled, and ges-

tation period 11 = 0.0. All landscapes have common resource mean of 128. . 55 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

Time complexities for sorted linked list .... 

Time complexities for Henriksen's algorithm . 

Time complexities for Sleator-Tarjan splay tree 

Time complexities for Jones-modified splay tree . 

Spatially based multilist sublist assignments with S = 3 

Spatially based multilist sublist assignments with S = 4 

63 

65 

67 

68 

74 

74 

5.1 Summary statistics of the four selected workloads. All times are reported in 

seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 

5.2 Proportions of (possibly) crashed jobs for three parallel workload traces 98 

5.3 Number of missed reservations for single- and multiple-queue backfilling with 

proportions of 0.01. 0.05. and 0.25 of the total jobs requesting reservations . L18 

B.l Payoff p to cell (xL, yL) encountering cell (x2, Y2) . . . . • . . . . . . . . . . 138 

X 



List of Figures 

2.1 X x Y landscape grid . . . . . . . . . . . . . . . . . . . . . . 

2.2 A 50 x 50 landscape using "Y(x, y) as defined in Equation 2.2. 

2.3 The FOV for an agent at (x, y) if rp = 3 ........... . 

2.4 Landscape from Figure 2.2 with 400 initial agents placed at random 

2.5 The one-cell von Neumann neighborhood for an agent at (x, y) 

2.6 Typical agent wealth synchronous time history . 

2. i Typical agent wealth asynchronous time history . 

3.1 The landscapes of varying resource capacity distributions used in our exper-

12 

14 

15 

17 

19 

22 

28 

iments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

3.2 Asynchronous(--) vs. synchronous(---) time evolution of agent carrying 

capacity forT= 2500 on a 50 x 50 tw<rpeak landscape with 0.16 of the total 

cells initially populated at random . . . . . . . . . . . . . . . . . . . . . . . 40 

3.3 Asynchronous(--) vs. synchronous(---) time evolution of agent carrying 

capacity forT= 2500 on a 100 x 100 tw<rpeak landscape with 0.16 of the 

total cells initially populated at random . . . . . . . . . . . . . . . . . . . . 41 

xi 



3.4 Asynchronous(--) vs. synchronous(---) time evolution of agent carrying 

capacity for T = 25 000 on a 50 x 50 two-peak landscape with 0.16 of the 

total cells initially populated at random . . . . . . . . . . . . . . . . . . . . 43 

3.5 Asynchronous(--) vs. synchronous(---) time evolution of agent carrying 

capacity forT= 25000 on a 100 x 100 two-peak landscape with 0.16 of the 

total cells initially populated at random . . . . . . . . . . . . . . . . . . . . 44 

3.6 Asynchronous (--) vs. synchronous (- - -) time evolution of agent car-

rying capacity for T = 2500 on a 50 x 50 two-peak landscape with initial 

population of 2000 agents placed at random . . . . . . . . . . . . . . . . . . 46 

3. 7 Asynchronous ( --) vs. synchronous (- - -) time evolution of agent carrying 

capacity for T = 2500 on 500 x 500 and 1000 x 1000 two-peak landscapes 

with 0.16 of the total cells initially populated at random . . . . . . . . . . . 47 

3.8 Asynchronous (--) vs. synchronous (- - -) time evolution of agent carrying 

capacity for T = 2500 and initial seed 12345 on 100 x 100 landscapes of 

different resource distributions with 0.16 of the total cells initially populated 

at random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

3.9 Asynchronous (--) vs. synchronous (- - -) time evolution of agent carrying 

capacity for T = 2500 and initial seed 12345 on 100 x 100 digital image 

landscapes with 0.16 of the total cells initially populated at random 49 

3.10 Alternate Fields of View (FOV) for an agent at (x, y) if rp = 3 . . . . . 50 

xii 



3.11 Asynchronous(--) vs. synchronous(---) time evolution of agent carrying 

capacity using alternate agent fields of view (FOV) forT= 2500 and initial 

seed 12345 on 100 x 100 two-peak landscape with 0.16 of the total cells 

initially populated at random . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

3.12 Asynchronous(--) vs. synchronous(---) time evolution of agent carrying 

capacity with non-periodic boundary conditions forT = 2500 and initial seed 

12345 on 100 x 100 landscapes of different resource distributions and 0.16 of 

the total cells initially populated at random . . . . . . . . . . . . . . . . . . 53 

3.13 Asynchronous(--) vs. synchronous(---) time evolution of agent carrying 

capacity for T = 2500 and initial seed 12345 on 100 x 100 landscapes of 

different resource distributions with 0.16 of the total cells initially populated 

at random. For asynchronous time evolution, agent movement and mating 

are uncoupled, with gestation period 11 = 1.0. . . . . . . . . . . . . . . . . . 57 

4.1 A sample singly-linked list event list 62 

4.2 A sample Henriksen's event list 64 

4.3 A sample splay tree event list . 66 

4.4 Rotation for node r with parent q but no grandparent 67 

4.5 RR rotation for splay operation . 68 

4.6 RL rotation for splay operation . 69 

4.7 A sample calendar queue event list 70 

4.8 A sample multilist event list schematic using Henriksen"s sublists 

xiii 



4.9 Execution times using sorted linked list and Henriksen's event list imple

mentations with p = 0.8 of the total cells occupied for increasing landscape 

sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

4.10 Execution times using Henriksen's, splay tree, and calendar queue event list 

implementations with a proportion p = 0.8 of the total cells occupied for 

increasing landscape sizes . . . . . . . 

4.11 Execution times using spatially-based multilist event list implementations 

with a proportion p = 0.8 of the total cells occupied for increasing landscape 

77 

sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 

5.1 Total number of arriving jobs per week as a function of time (weeks) . . . . 85 

5.2 Actual service time characteristics of the four workloads using four-part clas-

sification . . . . . . . . . . . . . . . . . . . . . . . 

5.3 Service time overestimates as a function of time . 

88 

90 

5.4 An example 32-processor system in which multiple-queue backfilling permits 

the four initial partition boundaries to adapt as workload conditions change 95 

5.5 Overall and per-class aggregate slowdown ratio 'R. for each of the four traces. 

Using actual service times as accurate estimates, we compare multiple-queue 

backfilling (with four-part classification) to single-queue backfilling, both 

without speculative execution. . . . . . . . . . . . . . . . . . . . . . . . . . . 104 

xiv 



5.6 Slowdown ratio 1?, per 1000-job submissions as a function of time for each of 

the four traces. Using actual service times as accurate estimates, we com-

pare multiple-queue backfilling (with four-part classification) to single-queue 

backfilling, both without speculative execution. . . . . . . . . . . . . . . . . 106 

5. 7 Overall and per-class aggregate slowdown ratio 1?, for each of the four traces 

using inaccurate user estimates. Using user-provided inaccurate estimates, 

we compare multiple-queue backfilling (with three-part classification) to single

queue backfilling, both employing speculative execution. . . . . . . . . . . . 107 

5.8 Slowdown ratio 1?, per 1000-job submissions as a ftmction of time for each 

of the four traces. Using user-provided inaccurate estimates, we compare 

multiple-queue backfilling (with three-part classification) to single-queue back

filling, both employing speculative execution. . . . . . . . . . . . . . . . . . 108 

5.9 Overall and per-class aggregate slowdown ratio 1?, for each of the four traces 

with increasing system load. All slowdown ratios are computed relative to 

single-queue backfilling under the same load. . . . . . . . . . . . . . . . . . 110 

5.10 Overall and per-class aggregate slowdown ratio 'R, for each of the four traces 

where p = 0. 75 of the total jobs have high priority . . . . . . . . . . . . . . 112 

5.11 Slowdown ratio 'R. per 1000 job submissions as a function of time for high 

priority and low priority jobs for each of the four traces where p = 0. 75 of 

the total jobs have high priority. . . . . . . . . . . . . . . . . . . . . . . . . 114 

5.12 Overall and per-class aggregate slowdown ratio 1?, for each of the four traces 

where p = 0.95 of the total jobs have high priority . . . . . . . . . . . . . . 115 

XV 



5.13 Slowdown ratio 1?, per 1000 job submissions as a function of time for high 

priority and low priority jobs for each of the four traces where p = 0.95 of 

the total jobs have high priority . . . . . . . . . . . . . . . . . . . . . . . . . 116 

5.14 Overall aggregate slowdown ratio 'R for each of the four traces with propor-

tions of 0.01, 0.05, and 0.25 of the total jobs requesting reservations . . . . 117 

5.15 Distribution tails of the delays experienced by jobs requesting reservations 

with a proportion of 0.25 of the total jobs requesting reservations . . . . . . 118 

A.1 Probability density function of a Uniform (a, b) random variable. . 124 

A.2 Probability density function of an Exponential (p) random variable 125 

A.3 Probability density function of an Equilikely (a, b) random variable 126 

A.4 Probability density function of a Bernoulli (p) random variable with p = 0.6 126 

8.1 Effect of stabilize rule on center cell 133 

8.2 Effect of develop rule on center cell . 133 

8.3 Example 50 x 50 landscape to be developed 136 

8.4 Synchronous application cf the develop rule to Figure 8.3(b) 137 

8.5 Asynchronous application of the develop rule to Figure 8.3(b) . 137 

8.6 Synchronous application of the Prisoners' Dilemma . . . . . . . 

B. 7 Asynchronous application of the Prisoners' Dilemma, t = 30 . 

xvi 

140 

141 



ABSTRACT 

"Artificial society" refers to a generic class of agent-based simulation models used to dis
cover global social structures and collective behavior produced by simple local rules and 
interaction mechanisms. Artificial society models are applicable in a variety of disciplines, 
including the modeling of chemical and biological processes, natural phenomena, and com
plex adaptive systems. We focus on the underlying simulation techniques used in artificial 
society discrete-event simulation models, including model time evolution and computational 
performance. 

Although for some applications synchronous time evolution is the correct modeling ap
proach, many other applications are better represented using asynchronous time evolution. 
We claim that asynchronous time evolution can eliminate potential simulation artifacts pro
duced using synchronous time evolution. Using an adaptation of a popular artificial society 
model, we show that very different output can result based solely on the choice of asyn
chronous or synchronous time evolution. Based on the event list implementation chosen, 
the use of discrete-event simulation to incorporate asynchronous time evolution can incur 
a substantial loss in computational performance. Accordingly, we evaluate select event 
list implementations within the artificial society simulation model and demonstrate that 
acceptable performance can be achieved. 

In addition to the artificial society model, we show that transforming from a synchronous 
to an asynchronous system proves beneficial for scheduling resources in a parallel system. 
We focus on non-FCFS job scheduling policies that permit jobs to backfill, i.e., to move 
ahead in the queue, given that they do not delay certain previously submitted jobs. Instead 
of using a single queue of jobs, we propose a simple yet effective backfilling scheduling 
policy that effectively separates short from long jobs by incorporating multiple queues. By 
monitoring system performance, our policy adapts its configuration parameters in response 
to severe changes in the job arrival pattern and/or resource demands. Detailed performance 
comparisons via simulation using actual parallel workload traces indicate that our proposed 
policy consistently outperforms traditional backfilling in a variety of contexts. 

xvii 



Sil'IIULATION TECHNIQUES IN AN ARTIFICIAL SOCIETY 

l'IIODEL 



Chapter 1 

Introduction 

An artificial society is an agent-based model used to study emergent processes as they evolve 

on a landscape. Such processes may include population dynamics, group formation, envi

ronmental and economic imp~.cts, propagation of disease, cultural influences, and combat. 

The artificial society is an in silico laboratory [28] in which societies are "grown" in the 

computer. The goal is to realize complex collective (i.e., macroscopic) social behaviors of 

interest that result from the behavior of heterogeneous individuals controlled by relatively 

simple rules defined on a local (i.e., microscopic) level. 

Generally, artificial society simulation models consist of three components: a landscape, 

agents, and a set of behavioral rules. The landscape is typically a tw~dimensional grid 

of cells containing a heterogeneous distribution of one or more resources of interest to 

the agents. The agents are rational actors that move about on the landscape, interacting 

with the landscape and other agents. Together, the agents comprise the population to be 

studied, e.g., people or insects. The time-evolved progression of the agents on the landscape 

is controlled by behavioral rules that determine how agents interact with the landscape and 

with one another. 

The complexity that results from the combination of these components within a sim-

2 



CHAPTER 1. INTRODUCTION 3 

ulation model is easily overlooked. Indeed, serious consideration must be given to the 

underlying simulation details because in many applications artifacts in the output can re

sult. In this work, for applications involving natural asynchronous behavior we promote 

asynchronous time evolution, in which different event types occur at random at their own 

characteristic rates. We inves:igate in detail the impact of time evolution in a popular, rep

resentative artificial society model, and examine the corresponding simulation issues that 

arise. 

1.1 Background 

The idea of simulating artificial societies has its foundations in cellular automata based 

work. Cellular automata (CA) were introduced in the late 1940s by John von Neumann (107) 

and Stanislaw Ulam. In the context of physical systems, Arthur Burks (14) subsequently 

completed and extended the work started by von Neumann. Cellular automata became 

even more popular with the advent of John Conway's "Game of Life" (34) and gave rise to 

the use of cellular automata in games. Another example of the use of cellular automata, 

and perhaps the first to apply CA in a societal application, was Thomas Schelling's model 

to study segregation (96). 

More recent works by Gutowitz [43), Toffoli and Margolus [105], and Wolfram [110, 111] 

considered theoretical aspects and scientific applications of cellular automata, including 

mathematical analysis, computation theory, and various physical, chemical, and biological 

applications. More specifically, cellular automata based models have been used to study 

percolation [41), earthquakes and forest fires [5, 6, 42), soil erosion, and fluid dynamics [24, 



CHAPTER 1. INTRODUCTION 4 

105]. Cellular automata have also been used in the study of complex adaptive systems [49], 

cooperative behavior (e.g., the Prisoners' Dilemma model [2, 27, 45, 80]), and population 

dynamics (33]. 

The term artificial society, originating in work by Builder and Bankes at the RAND 

Corporation in the early 1990s [11], refers to an agent-based model used to study emer

gent processes. Interest in such models increased as a result of the 2050 Project, in which 

research centers such as the Brookings Institution and the Santa Fe Institute were com

missioned to study and predict the evolution of society under the threat of ever-depleting 

natural resources. In recent years, agent-based models have achieved growing popularity in 

applications from many different disciplines. Agent-based models have been used in appli

cations from the social sciences (e.g., [28, 36, 37, 38, 39, 53, 79]), in military applications 

(e.g., [66, 89]), and in applications in the "hard" sciences, including biology, chemistry, ecol

ogy, engineering, geography, and marine biology (e.g., (25, 26, 57, 65, 72]). Moreover, work 

based on the same agent-based model and conducted parallel to the work presented herein 

has been the topic of several recent graduate-level theses at William and Mary [44, 75, 76]. 

Several languages and software packages have been developed for implementing artificial 

society simulation models. For example, Mitchell Resnick at MIT marketed software to the 

general public [88]. Swarm [73], an object-oriented package developed at the Santa Fe 

Institute, is a popular means for implementing artificial society simulations (e.g., [72, 103]). 

The objective of the Swarm simulation system is to provide as a standard an easy-t~ 

use language for agent-based simulations. Other modeling languages of varying levels of 

complexity include AgentSheets [87], Ascape [83], ARVA (developed at the University of 

Caen, France), MIMOSE (Micr~ and Multilevel Modeling Software) (74], SDML (Strictly 



CHAPTER 1. INTRODUCTION 5 

Declarative Modeling Language) [77], and UMDBS (Universal Micro Data Base System) 

[95]. 

Artificial society models are popular because social processes and emergent behavior are 

often too complex to study by traditional methods. Historically, social scientists attempt 

to study social behavior by dividing processes into individual subprocesses and combining 

the individual observations. However, such approaches are difficult to address scientifically 

because the effects of the individual subprocesses and their complex interactions are not well 

defined [44]. Furthermore, attempts to use mathematical models fail to fully encapsulate 

the complexity available via simulation. Admittedly, the use of simulation models to study 

complex social behavior has its detractors [112], but the ubiquity of such models coupled 

with explicit requests for simulation approaches [19, 36, 45, 46, 68] give merit to this ever

growing field of study. 

1.2 Motivation 

The work herein began in an attempt to reproduce the results from the artificial society 

simulation model presented in (28]. Despite considerable experimentation, we were never 

able to reproduce all the results. These failures prompted us to evaluate and question 

the underlying simulation approaches used by the authors. We were further motivated by 

Wilson [109] who also questioned the scientific nature of the results. We determined that 

many of the modeling decisions used in (28] are unnatural, ambiguous, and produce artifacts 

in the results. Accordingly, we began to search for studies that address these problems. 

Works in related journals and edited collections (e.g., [37, 38, 54]) generally focus on 



CHAPTER 1. INTRODUCTION 6 

the design of various behavioral rules or the application of models to specific societal ap

plications. The use of genetic algorithms and artificial intelligence is also a common theme 

[45, 60, 79, 108]. Little, if any, significance is placed on the details of the simulation model 

at the computational level. In fact, a scientific approach to simulation is noticeably absent 

in recent works [4, 27, 28, 53, 103]. The availability of custom modeling languages, such 

as Swarm, leads some modelers to dismiss simulation issues [103]. Such languages claim to 

simplify and standardize the implementation of agent-based models, but do not promote or 

facilitate an investigation of the underlying simulation techniques. Although the languages 

may have the capability to model asynchronous behavior (e.g., [12, 13]), we were unable to 

find any detailed investigations exploiting this capability. 

Miiller et al. [79) specifically request interdisciplinary coordination so that the "soft" 

sciences can benefit from the scientific approaches commonly used in the "hard" sciences. 

Most recent related works by authors in the "hard" sciences focus on efficient parallel 

implementations of agent-based models [20, 21, 22, 40, 104). The use of asynchronous time 

evolution is noted in some recent studies [9, 20, 23), but no investigation of the effects of 

time evolution and the other questionable simulation issues from (28) is provided. Aside 

from the work presented herein and published elsewhere (62), such an investigation is absent 

from the literature. For this reason, we investigate in detail the effects of the time evolution 

of a representative artificial society model and the associated simulation issues that arise. 



CHAPTER 1. INTRODUCTION 

1.3 Overview 

7 

The remainder of this dissertation is organized as follows. In Chapter 2, a detailed descrip

tion of the artificial society simulation model used throughout is presented. This model 

is based on the extensive artificial society model defined in (28]. We use a subset of the 

behavioral rules defined in (28], and modify these rules to be more realistic. In Chapter 3, 

we present results from our simulation model that exhibit very different behavior based 

solely on the choice of synchronous or asynchronous time evolution of the modeL Through 

detailed investigations we show that different behavior can result for a variety of initial 

conditions and model parameters. Because the required implementation can result in very 

poor performance, in Chapter 4 we present appropriate data structures and associated al

gorithms for the implementation. Using our artificial society simulation model, we evaluate 

and compare the performance of each of these data structures, and show that acceptable 

computational performance can be achieved. In Chapter 5, we show that, like the artificial 

society model, transforming from a synchronous to an asynchronous system also improves 

job scheduling for resources in parallel systems. We describe in detail a new policy for job 

scheduling, and we provide results showing that our policy outperforms the standard policy 

in a variety of contexts. Finally, in Chapter 6 we provide concluding remarks and areas for 

future research. 



Chapter 2 

Model Description 

We use the term "artificial society" to refer to an agent-based model used to study so

cial processes as they evolve on a landscape. Among these processes are agent interaction 

with the landscape, population dynamics (including birth, death and reproduction), eco

nomic, cultural and disease interactions, and combat. The artificial society is in essence a 

"computational laboratory" in which the evolution of social processes can be studied. The 

underlying motivation is an attempt to discover the emergence of interesting macro-scale 

social structures and collective behavior by defining simple micro-scale rules and interaction 

mechanisms. 

Because our goal is to promote an alternative approach for artificial society discrete

event simulation models, not to develop fundamentally new models, we base our work on 

an adaptation of the extensive artificial society model presented in (28]. To demonstrate 

that different results can be obtained using asynchronous versus synchronous time evolution 

in an artificial society model, we balance functionality with model complexity by including 

only a subset of the rules defined by Epstein and Axtell. In some instances, we modify these 

rules to be more realistic. Our model can be easily extended to include additional rules. 

The organization of this chapter is based on the principle that models should be devel-

8 



CHAPTER 2. MODEL DESCRIPTION 9 

oped at three levels - conceptual, specification, and computational1. The development of 

a model at the conceptual level involves describing and understanding the model at a high 

level. The specification level of a model incorporates variables, equations, algorithms and 

logic to describe the model in more detail. The computational level of a model is character

ized by the actual implementation of the model as a computer program. A comprehensive 

definition of our artificial society model follows. 

2.1 Conceptual Model 

Consider a discrete-event simulation model comprised of agents inhabiting a landscape. 

As time evolves, the agents move about the landscape interacting with the landscape and 

with one another. All actions and interactions between the landscape and the agents are 

controlled by a set of micro-scale rules. The model is characterized by a global clock, by 

the number and location of agents on the landscape, and by the spatial distribution of 

landscape resources. 

The landscape in our artificial society model is the environment in which the agents 

operate and with which they interact. The landscape consists of a two-dimensional grid 

of cells containing a heterogeneous distribution of one or more distinct resources. These 

resources are gathered and consumed by the agents to survive. Each landscape cell may be 

occupied by at most one agent at any time. At each cell the level of each resource changes 

with time as it is gathered and consumed by the agents. Each resource at each cell has an 

associated regrowth rate and ma.ximum capacity. As regrowth occurs, depleted landscape 

1See Algorithm LLl of [82]. 



CHAPTER 2. MODEL DESCRIPTION 10 

resources are replenished. 

Agents gather and consume resources as they move about the landscape. At any time 

during the evolution of the model, each agent has a distinct location on the landscape, 

characterized by the cell the agent occupies, and a distinct field of view, measured in 

landscape cells. Each agent has perfect knowledge of other agents and of landscape resource 

levels within its field of view; an agent has no knowledge or memory of agents and landscape 

resource levels outside its field of view. In addition, an agent has a characteristic metabolic 

rate for each resource it gathers and consumes. Any resources gathered by an agent, but 

not consumed, are retained for future use and, in this way, an agent's "wealth" can grow 

without constraint. If an agent's wealth diminishes to zero, the agent dies from starvation. 

As time evolves, three micro-scale behavioral rules control the actions and interactions 

between the landscape cells and the agents. Under the regrowth rule, a depleted resource at 

a given cell is replenished up to the maximum capacity of that cell. Under the movement 

rule, an agent moves to the unoccupied cell with maximum resource within its field of 

view, then gathers and consumes the resources at that cell. Under the reproduction rule, 

neighboring fertile agents of the opposite sex breed and, in this way, produce new agents. 

The model is initialized by placing on the landscape a random distribution of agents, 

each with characteristic attributes and initial states. Consistent with the behavioral rules, 

as time evolves agents move about the landscape interacting with one another and with the 

landscape. Statistics are gathered during the model's lifetime to provide data for analyzing 

the resulting macro-scale behavior of the agents. 



CHAPTER 2. AtiODEL DESCRIPTION 11 

2.2 Specification Model 

The following definitions provide the basis for developing the artificial society model at the 

specification level. Both the landscape and agents are defined by dynamic states, which 

change with time, and static attributes, fixed for the lifetime of the model. In the nota-

tion to follow, we adopt the convention of using uppercase letters to represent cardinality 

parameters, lowercase letters to represent dynamic states, and lowercase Greek symbols to 

represent static attributes. 

2.2.1 Model Parameters 

In anticipation of providing a detailed description of the artificial society model, we define 

the model attributes 

T: the maximum simulated time for the model; 

X, Y: the vertical and horizontal landscape dimensions respectively; 

N: the number of distinct landscape resources 

and model variables 

t: time2 (0 ~ t ~ T); 

A(t): the number of agents on the landscape at timet. 

Following convention, time begins at t = 0 and ends when t = T. The landscape dimensions 

X and Y, fixed for the lifetime of the model, are quantified in landscape cells and are 

naturally discrete. The number of agents .4(t) is a function of time. and is also naturally 

discrete. The number of resources N is fixed for the lifetime of the modeL and is naturally 

2Time can be modeled as either synchronous (fixed-increment time steps) or asynchronous (random event 
times). \Ve defer the discussion of synchronous and asynchronous time evolution until Section 2.2.5. 



CHAPTER 2. MODEL DESCRIPTION 12 

discrete. When necessary, we use subscript a= 0, 1, ... , .. 4(t) - 1 to distinguish agents and 

subscript n = 0, 1, ... , N - 1 to distinguish resources. 

2.2.2 The Landscape 

An (x, y) integer-valued spatial coordinate system is used to identify cells in the landscape. 

The landscape is a two-dimensional grid with dimensions X x Y. Define X= {0, 1, ... , X-

1} andY= {0, 1, ... , Y -1 }. Then each cell in the X x Y landscape is distinguished by its 

(x,y) position with (x,y) EX x Y. We rotate the coordinate system 90 degrees relative to 

a conventional (x, y) orientation so that increasing x indexes rows from top to bottom and 

increasing y indexes columns from left to right, as shown in Figure 2.1. 

X 

X-1 

Figure 2.1: X x Y landscape grid 

The landscape is subject to periodic boundary conditions. That is, the four boundaries 

wrap around from right to left and from bottom to top, creating a toms. For an X x Y 

landscape, any (x',y') cell that lies beyond the landscape boundaries, i.e., (x',y') rt X x Y, 



CHAPTER 2. MODEL DESCRIPTION 13 

is equated to a corresponding cell (x, y) EX x Y within the boundaries via the equation 

(x, y) = (x' mod X, y' mod Y). (2.1) 

For example, if X= Y =50 then cells ( -1, 20) and (49, 20) are equivalent and cells (52, 50) 

and (2, 0) are equivalent. 

Each (x, y) cell in the landscape is characterized by the attributes 

'Yn(x,y): the capacity of resource nat cell (x,y); 

Pn(x, y): the regrowth rate of resource nat cell (x, y) 

and the state variables 

rn(x, y, t): the level of resource n at cell (x, y) at time t; 

d( x, y): the most recent time of resource depletion at cell ( x, y); 

o(x, y, t): the occupancy status of cell (x, y) at time t. 

The attributes 'Yn(x, y) and Pn(x, y), and the state variable rn(x, y, t) are quantified in real

valued units of resource. The state variable d(x, y) is a quantified in units of time. Because 

at most one agent can occupy any cell at timet, o(x, y, t) is modeled naturally as Boolean. 

In the remainder of this discussion, for simplicity we let N = 1 so that agents consider 

only one resource of interest on the landscape. This permits us to omit the n subscripts in 

our notation, with the understanding that n = 0 if the n subscript is omitted. 

With this assumption, we define the real-valued resource capacity at an (x, y) landscape 

cell by the equation 

r(x, y) = f{x- X/4, y- Y/4) + f(x- 3X/4, y- 3Y/4) (2.2) 



CHAPTER 2. MODEL DESCRIPTION 

rj>: the field of view (FOV) attribute; 

JS: the metabolic rate of resource consumption; 

u: sex (male or female); 

{3: the time of birth; 

..\: lifespan; 

a: the age when reproductive capability begins (puberty); 

w: the age when reproductive capability ends (a < w); 

11: the gestation period (for females) 

and the state variables 

w(t): the amount of resource wealth (holdings) at time t; 

(x, y): the landscape cell currently occupied by the agent; 

m(t): pointer to the current mate (if any). 

y 

X 

Figure 2.3: The FOV for an agent at (x, y) if¢> = 3 

15 

As illustrated in Figure 2.3, the field of view (FOV) attribute 4> quantifies how far an 

agent can "see" in each of the four primary grid directions (north, south, east, and west) 

from the current (x, y) location. (p is naturally integer-valued and positive: typically 4> « 

min{X, Y}. The metabolic rate I' is quantified in real-valued units of resource consumed 

per unit time. The sex of an agent u is naturally modeled as Boolean. The remaining 



CHAPTER 2. MODEL DESCRIPTION 16 

attributes are quantified in units of time. Death occurs naturally at time {3 + ..\, but may 

occur prematurely as a result of starvation. 

An agent's wealth w(t) is quantified in real-valued units of resource, and can be arbitrar-

ily large. The current location (x, y) of an agent is naturally represented as an integer-valued 

coordinate pair. If an agent successfully mates with another agent at timet, the state m(t) 

points to the mate; otherwise, m{t) is undefined. 

Acceptance-rejection is used to generate the initial distribution of agents on the land-

scape4 • Given an X x Y landscape, the (x, y) landscape cells to be occupied at timet= 0 

by the A(O) initial agents are determined according to Algorithm 2.1 to follow. 

I* initially o(x, y, t) = false for all (x, y) at time t = 0 *I 
for (a = 0; a < .4(0); a++) { 

} 

do{ 
x = Equilikely(O, X -1);5 
y = Equilikely (0, Y- 1); 

} while ( o(x, y, 0) ); 
o(x, y, 0) = true; 

Algorithm 2.1: Initially distribute agents 

Figure 2.4 is a graphical depiction of a random initial distribution of A(O) = 400 agents 

on the X x Y = 50 x 50 landscape shown in Figure 2.2. Each agent is represented as an 

orange circle within a landscape cell. 

"For a discussion of acceptance-rejection, refer to Section 7.6 of [82). If the initial number of agents 
.-l(O) is not small relative to the number of landscape cells, acceptance-rejection will be computationally 
inefficient. 

5 For a discussion of Equilikely random variates, refer to Section 6.4 of [82). 



CHAPTER 2. MODEL DESCRIPTION 17 

Figure 2.4: Landscape from Figure 2.2 with 400 initial agents placed at random 

2.2.4 Behavioral Rules 

Three types of behavioral rules control the actions and interactions of the landscape cells and 

agents [28]. Agent-agent rules govern both the actions of a single agent and the interaction 

of one agent with another. Agent-environment rules govern the interaction of an agent with 

one or more cells on the landscape. Environment-environment rules govern both the actions 

of a single landscape cell and the interaction of one landscape cell with neighboring cells. 

Each of the artificial society model rules defined below corresponds to exactly one of these 

three types. 

We balance functionality with model complexity by including only a subset of the be

havioral rules defined in [28]. In our artificial society model, we admit only the rules for 

resource regrowth, agent movement, and agent reproduction. Our model can be easily 

extended to include additional rules. Resource regrowth and agent movement remain as 

defined in [28]. We modify the agent reproduction rule to be more realistic, incorporating 



CHAPTER 2. MODEL DESCRIPTION 18 

a gestation period6 • Comprehensive definitions for each of the three rules follows7 • 

Resource Regrowth Rule 

The resource regrowth rule is an environment-environment rule defined as follows. At each 

unoccupied (x, y) cell, the resource is replenished at a rate of p(x, y) resource units per unit 

time up to the maximum capacity -y(x, y), so that fort' > t 

r(x, y, t') = min { -y(x, y), r(x, y, t) + (t' - t)p(x, y)}. (2.4} 

Agent Movement Rule 

The agent movement rule is an agent-environment rule defined for each agent as follows. 

• Look at all cells within the FOV defined by if>. 

• Select the closest unoccupied (x, y) cell with maximum resource8 and move to that 

• Immediately collect all resources currently at the cell. 

• If w(t) = 0, where tis the current time of movement, the agent dies. 

6 If the gestation period 'l = 0, the behavior of agents under our reproduction rule is the same as if the 
gestation period was omitted from the rule. 

71n the rule definitions to foUow, we denote successive time steps as t and t' respectively where t < t'. 
We discuss time evolution in more detail in Section 2.2.5. 

8 In the unlikely case that two or more cells containing this local maximum are equidistant from the agent, 
the tie is broken stochastically. 

9 If N > 1, agents have a resource preference. Then, consistent with [28], the maximum resource at time 
tis given by 

max {g(wo(t) + ro(x,y,t), Wt(t) + rt(x,y,t), . .. , w.v-t(t) + r.v-t(:r,y,t))} (2.5) 
V(r.y)EFOV 

where 

with 
.V-1 

Af = L Pn· 
n=O 



CHAPTER 2. ~IODEL DESCRIPTION 19 

Agent Reproduction Rule 

The agent reproduction rule is an agent-agent rule. For reproduction occurring at timet, 

we define an agent to be fertile if all the following are true. 

• The agent is of childbearing age, i.e., fJ +a$ t < fJ + w. 

• The agent is not currently reproducing with any other agent, i.e., m(t) is undefined. 

• The agent will not die naturally by the end of the gestation period, i.e., t + 11 < fJ + ,\. 

• At the end of the gestation period, the agent will have amassed greater wealth than 

its initial wealth, i.e., w(fJ) < w( t + 17) 10 • 

We then define the "responsible mate" mating algorithm for a fertile agent attempting to 

reproduce as follows. 

• Select one of the four nearest neighbor agents (if any) of the opposite sex from the 

agent's one-cell von Neumann neighborhood, shown in Figure 2.5. 

y 

I > 

Figure 2.5: The one-cell von Neumann neighborhood for an agent at (x,y) 

• If the selected neighbor agent is fertile and if there is an unoccupied cell (for the child) 

within the one-cell von Neumann neighborhood of either agent, the neighbor agent is 

a cand-idate for mating. 

10The amount of wealth at the end of the gestation period is 

w(t + 11) = w(t) + 11(p(x, y)- p). {2.6) 



CHAPTER 2. MODEL DESCRIPTION 20 

• Repeat until the candidate with maximum wealth is found or the nearest neighbor 

search is exhausted with no available candidate. 

If a mate is found, i.e., there is at least one candidate agent, the female agent of the pair 

becomes pregnant. Throughout the gestation period, neither the male nor the female agent 

can move or attempt further reproduction. 

Consider a new agent a = 3 conceived at time t by parent agents a = 1 and a = 2 and 

born at time t + 71· Each parent agent endows half of its initial wealth to the new agent so 

that, at time t + q, the wealth of agent a = 1 decreases by w 1 ({31) /2 resource units and the 

wealth of agent a = 2 decreases by w2(f32)/2 resource units. The initial wealth of the new 

agent at the time of birth {33 = t + 71 is the sum of the endowments from each parent agent 

according to 

(2.7) 

The sex of the new agent is chosen via a fair coin flip. The remaining attributes for the 

newborn agent are inherited directly from one of the parent agents chosen via a fair coin 

flip. At the time of birth, the unoccupied cell with maximum resource from the union of 

the one-cell von Neumann neighborhoods of both parents is selected for the child to occupy. 

If no such cell is available the child dies at the time of birth 11 • 

2.2.5 Time Evolution 

Too often given little consideration in many artificial society discrete-event simulation mod-

cis. time evolution is an important part of our research. We agree synchronous (fixed-

11 If 1J > 0, during the gestation period other agents may occupy all cells adjacent to the parents. Conse
quently, at the time of birth a cell may not be available for the child to occupy. 



CHAPTER 2. MODEL DESCRIPTION 21 

increment) time evolution may be appropriate in certain models if, for example, movement 

is seasonally motivated. However, many other models are more accurately modeled using 

asynchronous evolution (random event times). In anticipation of presenting in Chapter 3 

results obtained using both types of time evolution, a comprehensive definition of each type 

follows. 

2.2.5.1 Synchronous Time Evolution 

Synchronous time evolution involves fixed-increment time steps, with time conventionally 

denoted t = 0, 1, 2, ... , T. All events of interest must occur precisely at these time steps. 

For instance, in the Epstein and Axtell model all agents attempt to move simultaneously, 

once each time step. All agents attempting to reproduce must also do so once each time 

step. For serial program execution, this kind of parallel activity is not possible and so it 

is necessary to randomize the order in which agents act at each time step. Without this 

randomization, the agents will always act in the same order introducing a bias that can 

produce artifacts [28}. 

Given the model attribute T, which defines the number of simulated time steps, the 

artificial society model evolves synchronously in time according to Algorithm 2.2 to follow. 

Note the ambiguity in the order of events inside the while loop. For example, the modeler 

must decide whether the landscape should be updated before or after the agents move. 

Figure 2.6 depicts a typical agent wealth time history for a synchronous time simulation 

model. Note the agent's wealth changes only at fixed-increment event occurrences according 

to 

w(t) = max{O, w(t - 1} + r(x, y, t) - JL }. (2.8} 



CHAPTER 2. MODEL DESCRIPTION 

initialize the landscape; 
initialize the agents; 
t =0; 
while (t $ T) { 

move and reproduce the agents; 
update the landscape; 
update the agent list; 
randomize (shuffie) the agent list; 
t++; 

} 

Algorithm 2.2: Synchronous time evolution 

If w(t) = 0, the agent dies at time t. 

w(t- 2) 
• • I I 
I I 

wealth 
I 

w(t- 3) I 

' • I 
I 

• ' w(t- 1) I 

0 ; w(t) 

t-3 t-2 t-1 t 

Figure 2.6: Typical agent wealth synchronous time history 

2.2.5.2 Asynchronous Time Evolution 

22 

time 

Asynchronous time evolution permits each type of event to occur at random at its own 

characteristic rate. In this way, individual agent movement events and reproduction events 

occur at distinct times. That is, whereas the order of agent actions must be specifically 

randomized at each time step in the synchronous case, randomization is inherent in the 

asynchronous case. In addition, in the asynchronous case there is no ambiguity in the order 

of events. 



CHAPTER 2. MODEL DESCRIPTION 23 

Next-Event Simulation Model 

To facilitate asynchronous time evolution, we construct our artificial society model using a 

next-event simulation approach. For a next-event simulation model, we must clearly define 

the simulation clock, the system state, the event types, and a set of algorithms for each 

event type that define the state changes that occur when each type of event occurs [82]. 

The simulation clock is the real-valued global time parameter t. At any time 0 ~ t ~ T, 

the following set of variables defines the system state. 12 • 

• A(t); 

• o(x, y, t) and r(x, y, t) and d(x, y) for all (x, y) E X x Y; 

• (x, Y)a and wa(t) and ma(t) for all a= 0, 1, ... , A(t) - 1. 

Accordingly, there are four types of events that can change the state of the system. 

• Movement and corresponding resource consumption by agent a at time t will change 

(x,y)a and Wa(t), o(x,y,t) and r(x,y,t) for the departed and newly occupied land-

scape cells, and d(x, y) for the departed landscape cell. 

• The death of agent a at time t will change A(t) in addition to both o(x, y, t) and 

d(x, y) for (x, Y)a-

• A successful mating by agent a with another agent a' at timet will change ma(t) and 

mar (t). 

12 For convenience, the state description includes some variables that could be determined by summing 
other variables. For instance, .-l(t) can be determined by summing o(x,y,t) for all (x,y) E ,\' x Y. Accord
ingly, the state description is not minimal. 



CHAPTER 2. MODEL DESCRIPTION 24 

• The birth of a new agent a" from parent agents a and a' at timet will change wa(t), 

Wa'(t), ma(t), and ma'(t). If there is an unoccupied landscape cell for the new agent 

to occupy, the birth will change A(t), create (x, y)a" and Wa"(t), and change o(x, y, t) 

and r(x, y, t) for (x, Y)a"· 

Because there is a gestation period, the state of the system can change when agents 

mate and when a new agent is born. For this reason, the reproduction rule, as defined in 

Section 2.2.4, is modeled by two distinct types of events. A mating event type initiates the 

gestation period if the female agent becomes pregnant. Since a mating event is an attempt 

to reproduce, the mating event does not guarantee pregnancy. A birth event type signals 

the end of the gestation period when the new agent is born (if possible). Both of these 

event types can change the state of the system as described above. 

Asynchronous Inter-Event Times 

For each event type, inter-event times are assumed to be iid Exponential ( 1/ v) where v is 

the rate of occurrence of that event type. Equivalently, each event type is modeled as a 

stationary Poisson process with rate v13• The mating event type can either be coupled with 

the movement event type or modeled as a separate stationary Poisson process. H the two 

event types are coupled, a mating event occurs for an agent each time a movement event 

occurs for that agent. 

13 It is common to assume that a stochastic process which occurs "at random" is a stationary Poisson 
process. 



CHAPTER 2. MODEL DESCRIPTION 25 

Asynchronous Resource Regrowth 

Resource regrowth is not considered an event type, but rather an inherent part of the other 

event types. Consistent with [28), at t = 0 the resource level at each (x, y) cell is the same 

as the resource capacity at that cell. As time evolves, cell resources are depleted only when 

an agent occupies a cell. While a cell remains occupied, the resources continue to grow, but 

are continuously gathered by the occupying agent; at the moment an agent departs, the cell 

has no resources. As time evolves further, the resources can then regrow up to the resource 

capacity at that cell, provided the cell does not become occupied again. Because the onset 

of regrowth is a direct result of the interaction of an agent with a landscape cell, we include 

regrowth as part of the movement, mating, and birth event types. 

For each (x, y) landscape cell, as time evolves d(x, y) is defined by the last time an agent 

departed that cell. At time t > d(x, y), we compute the current level of resource at cell 

( x, y) according to the equation 

r(x, y, t) =min { -y(x, y), p(x, y)(t- d(x, y)) }· (2.9) 

Asynchronous Agent Movement 

Consistent with the previous discussion of asynchronous resource regrowth, we now redefine 

the collection of resources by an agent under the movement rule. When an agent moves 

to an unoccupied cell, the agent immediately collects all resources currently at the cell. 

While occupying the cell, the agent continues to collect the resources as they regrow and 

consumes them sufficient to satisfy its metabolic rate. The wealth of the agent throughout 



CHAPTER 2. MODEL DESCRIPTION 26 

this process of resource collection and consumption is computed as 

w(t') =max { 0, w(t) + r(x, y, t') - (t'- t)JL} (2.10) 

where t is the current time of movement and t' > t is the next time of activity, either 

movement or reproduction, for the agent 14 • 

Asynchronous Time Evolution Algorithm 

Given T, the artificial society model evolves asynchronously in time according to Algo-

rithm 2.3 to follow. The algorithm presumes the existence of a function dequeueEventO 

that returns the next (most imminent) event in simulated time. Within the algorithm, note 

each of the four types of events previously defined. 

L·
1Note that r(x,y,t') accounts for both the initial resources collected at timet and the resources collected 

as they regrow during (t,t'). 



CHAPTER 2. MODEL DESCRIPTION 

initialize the landscape; 
initialize the agents; 
e =dequeueEvent(); 
while (e.time $ T and A(t) > 0) { 

switch (e.type) { 

} 

} 

case movement : 
vacate the current cell; 
select and occupy the (x, y) cell within the FOV with maximum resource; 
update the wealth of the agent; 
schedule the next movement event for the agent; 

case death: 
A(t)- -; 
vacate the current cell; 

case mating: 
execute the mating algorithm; 
if ( mating is successful ) { 

} 

compute endowments and update the wealths of the parents; 
update the mate pointers of each parent; 
schedule the birth event; 
cancel any parent events to occur before the birth; 

case birth: 
update the wealths of the parents; 
schedule the next event occurrences for each parent; 
if ( there is an (x, y) cell for the new agent ) { 

} 

A(t)++; 
initialize the new agent; 
occupy the selected (x, y) cell with the new agent; 
update the wealth of the new agent; 
schedule the next event occurrences for the new agent; 

e =dequeueEvent(); 

Algorithm 2.3: Asynchronous time evolution 

27 



CHAPTER 2. MODEL DESCRIPTION 28 

Figure 2. 7 depicts a typical agent wealth time history for an asynchronous time simula-

tion model. Note that the agent's wealth changes linearly over time between random event 

occurrences. If the agent's metabolic rate p. is less than regrowth rate p(x, y) of the occupied 

cell, the wealth of the agent will increase between events. If p. is greater than p(x, y), the 

agent's wealth will decrease. If p. is greater than p(x,y) the agent may die. Specifically, if 

w(t"') = 0 as illustrated then death occurs at time r ~ t"' where 

wealth 

' 

0 

' \ 
\ 

w(t") + r(x y t") 
T = t" + ' ' . 

I'- p(x, y) 

w(t") 

t t' t" 

----- I' < p(x, y) 
-- I'> p(x,y) 

' \ 

T t"' 

Figure 2. 7: Typical agent wealth asynchronous time history 

2.3 Computational Model 

(2.11) 

time 

We now address the model at the implementation level. The class capability available in 

C++ naturally lends itself to implementing the artificial society model. Consequently, we 

utilize separate class representations for landscape cells, for the entire landscape, for agents, 

and for maintaining a list of future simulated events. In the following discussion. we assume 

the model is implemented with asynchronous time evolution using next-event simulation. 



CHAPTER 2. MODEL DESCRIPTION 29 

2.3.1 Implementing the Landscape 

The Cell class encapsulates all states and attributes for an individual landscape cell. In-

eluded in this class are member functions for modifying the cell states; also included are 

functions for retrieving the values of the states and attributes. Omitting unnecessary de-

tail LS, the basic class structure for a landscape cell follows. 

class Cell { 
public: 

void deplete(double t); 
void occupy(Agent• agent); 
void vacate 0 ; 

II updates time of depletion 
II occupies the cell 
II vacates the cell 

double getCapacity(int n); II returns nth resource capacity 
double getRegrowthRate(int n); II returns nth regrowth rate 
double getLevel(double t, int n); II returns nth resource level at 
bool isOccupied(); II returns occupancy status 

private: 
long x, y; II the (x,y) position of this cell 
vector<double> gamma; II vector of N resource capacities 
vector<double> rho; II vector of N regrowth rates 

t 

double t_d; II most recent time of resource depletion 
bool o; II occupancy status 
Agent• agent; II agent occupying this cell (if any) 

}; 

Consistent with the discussion of resource regrowth in Section 2.2.5.2, for each cell we 

store the most recent time of resource depletion rather than the current level of resource. 

In this way, a resource level at time t can be computed using Equation 2.9. Initially, the 

last time of depletion is undefined for all ( x, y) E X x Y. 

15 In all class definitions to follow, for brevity we omit the constructor and destructor member functions 
with the understanding that any necessary initialization and cleanup are implemented in these functions. 



CHAPTER 2. MODEL DESCRIPTION 30 

Within the Landscape class, a two-dimensional data structure represents the landscape 

proper. A vector16 of Cell pointers represents a single row of landscape cells. The entire 

landscape is then composed of a vector of landscape rows, i.e., a vector of vector data 

structures containing Cell pointers. The basic class structure for the landscape follows. 

class Landscape { 
public: 

Cell• operator()(long x, long y); 

private: 

II returns a pointer to (x,y) cell 

vector< vector<Cell•> > landscape; II two-dimensional "array" of Cells 
}; 

2.3.2 Implementing the Agents 

The Agent class encapsulates all states and attributes for an individual agent. Included in 

this class are member functions that implement the agent movement, mating, birth, and 

death events. In addition to the states and attributes defined in Section 2.2.3, we also 

include the next times of occurrence of each event type for the agent. The basic class 

structure for an agent follows. 

class Agent { 
public: 

void 
void 
Agent• 
Agent• 

move(Landscape• landscape); II movement event 
die(Landscape• landscape); II death event 
mate(Landscape• landscape); II mating event 
deliver(Landscape• landscape); II birth event 

EventType getNextEventType(); II returns type of next event 

16 An object of the vector container class, defined in the C++ Standard Template Library, is treated 
much the same as an ordinary one-dimensional array, e.xcept that the vector class automatically manages 
dynamic memory allocation [1}. Nested vector data structures are treated like multi-dimensional arrays. 



CHAPTER 2. MODEL DESCRIPTION 

private: 
II agent attributes 
double phi; 
vector<double> mu; 
vector<double> w_at_beta; 
bool sigma; 
double beta; 
double lambda; 
double alpha; 
double omega; 
double eta; 

II agent state variables 
long X, y; 
vector<double> tlj 

Agent• m_t; 

II 
II 
II 
II 
II 
II 
II 
II 
II 

II 
II 
II 

defines the agent,s field of viev (FOV) 
vector of N metabolic rates 
vector of N initial resource vealths 
sex of the agent {MALE, FEMALE} 
time of birth 
lifespan 
age vhen reproduction begins 
age vhen reproduction ends 
gestation period (for females) 

current (x,y) position of the agent 
vector of N current resource vealths 
pointer to the mate (if any) 

II next times of occurrence of each event type 
double t_move; II time of next movement for this agent 
double t_mate; II time of next mating attempt 
double t_deliver; II time of next birth event 
double t_die; II time of natural death 

}; 

2.3.3 Implementing the List of Events 

31 

In the implementation of a next-event simulation model, a suitable data structure is chosen 

to store the list of future events in simulated time. The simulation engine drives the time 

evolution of the model by appropriately accessing events in this list. We defer further 

discussion of the event list until Chapter 4. 

The EventList class encapsulates the details of the chosen event list data structure. 

Included in this class are member functions for accessing the event list. Omitting details, 

the basic class structure of the event list follows, presented here for clarity in the next 

section. 



CHAPTER 2. MODEL DESCRIPTION 

class EventList { 
public: 

32 

void changeEvent(Agent• a); II cancel an event and reinsert 
void deleteEvent(Agent• a); II remove an event 
void dequeueEvent(Agent• a, doublet t); II return most imminent event 
void enqueueEvent(Agent• a); II insert an event 

private: 
II details for the implemented event list data structure 

}; 

2.3.4 Implementing the Simulation 

Given the maximum simulated time T and given A_t initialized to A(O), the following code 

summarizes the simulation engine that drives the time evolution of the artificial society 

simulation model. Note this code is an implementation of Algorithm 2.3 with details of the 

execution of each event type contained in the corresponding Agent member function. 

Landscape• landscape =new Landscape(); 
EventList• event_list =new EventList(); 
double t = 0.0; 
Agent• agent, mate, child; 

II initialize the agents 

II initialize the landscape 
II initialize the event list 
I I time parameter 

for (long a • 0; a < A_t; a++) 
event_list->enqueueEvent(nev Agent(landscape)); 

II get the first event in simulated time 
event_list->dequeueEvent(agent, t); 

vhile (t < T 1:1: A_t > 0) { 
switch (agent->getNextEventType()) { 

case HOVE: 
agent->move(landscape); 
event_list->enqueueEvent(agent); 
break; 



CHAPTER 2. MODEL DESCRIPTION 

} 

} 

case MATE: 
mate= agent->mate(landscape); 
event_list->enqueueEvent(agent); 
if (mate) 

event_list->changeEvent(mate); 
break; 

case DELIVER: 
child= agent->deliver(landscape): 
event_list->enqueueEvent(agent); 
if (child) { 

A_t++; 
event_list->enqueueEvent(child); 

} 

break; 

case DIE: 
A_t--; 
agent->die(landscape); 
event_list->deleteEvent(Agent• a); 
delete agent; 
break; 

II get the next event in simulated time 
event_list->dequeueEvent(agent, t); 

33 



Chapter 3 

Artificial Society Model Output 

We do not claim asynchronous time evolution to be the best approach for all artificial s~ 

ciety models. In fact, we agree that synchronous time evolution may be appropriate for 

certain models used to simulate synchronous systems. However, many real-world systems 

evolve asynchronously in time and such systems are more appropriately modeled using 

asynchronous time evolution. Moreover, asynchronous time evolution in an artificial soci

ety model does not guarantee different results than synchronous time evolution, but very 

different behavior may result. Accordingly, careful consideration must be given to the time 

evolution of the model. 

The goal of the work in (28] was to examine collective social behavior by using a discrete

event simulation model based on simple rules and initial configurations. Our focus here is 

on the implementation of the simulation model rather than the development of new artificial 

society models or the social interpretation of the results produced by these models. With 

this motivation, we provide results from the artificial society model defined in Chapter 2 to 

support our claim that, based on the choice of asynchronous or synchronous time evolution, 

very different behavior can be observed in the resulting output. 

The experimental results to follow were motivated by an attempt to replicate the re-

34 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 35 

suits Epstein and Axtell obtained when combining agent movement with reproduction [28]. 

Despite considerable experimentation, we were never able to reproduce some of the results, 

specifically Figure 111-4 {refer to [28]) depicting large amplitude population oscillations. The 

authors claim that "internal dynamics alone are sufficient to generate cataclysmic events" 

(28]. Although we do not discount such a statement in general, we claim that, with the 

agent rules as defined in (28], the oscillatory behavior shown in Figure Ill-4 is a simulation 

artifact caused primarily by synchronous time evolution. Moreover, this oscillatory behavior 

is very much dependent upon initial conditions. To date we have been unable to determine 

the initial conditions used in [28] exactly. 

3.1 Initial Conditions 

The initial conditions for the experiments presented in this chapter are motivated by similar 

initial conditions defined in [28], and were determined experimentally by varying the initial 

conditions from [28). For the figures presented in the sections to follow, we initialize an 

X x Y landscape with N = 1 resource. The resource regrowth rate at each {x, y) cell is 

p(x, y) = 1.0. Unless otherwise noted, a proportion p = 0.16 of the landscape cells are 

initially occupied by agents placed at random. The initial wealth of each of these agents is 

w{O) = 10.0. The attributes for each agent are initialized as random variates according to1 

1 Refer to Appendix A for a discussion of random variates. 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 

¢>: Equilikely (I, 6); 

J..l: Unifonn (1.0, 4.0); 

-\: Unifonn (60.0, 100.0); 

o: Unifonn (12.0, 15.0); 

w: Unifonn (40.0, 50.0) for females, Uniform (50.0, 60.0) for males. 

36 

The agents execute the movement rule and the reproduction rule with f1 = 0.0. Unless 

otherwise noted, reproduction and movement are coupled, i.e., the mating event type is not 

modeled as a separate process. Inter-event times are assumed to be iid Exponential (Ifv) 

with v = 1.0, giving a mean inter-event time of 1.0 consistent with the integer time steps 

employed in [28]. 

3.2 Landscapes 

Because Epstein and Axtell never reveal their model for the landscape resource capacity 

distribution (perhaps for brevity), there is some uncertainty in our choice of the distribution. 

Nonetheless, for our attempts to replicate results from [28], we use a tw~peak Gaussian 

distribution that closely resembles the distribution used by Epstein and Axtell (see Figure 

11-1 of [28]). The resource capacity at each landscape cell is defined by Equation 2.2. A 

graphical depiction of our tw~peak landscape is shown in Figure 3.l(b), where the brightest 

green corresponds to the areas of highest resource capacity and black corresponds to the 

areas of lowest resource capacity. 

Rather than restrict the model to this tw~peak Gaussian landscape, we also consider 

the time evolution of the model on the seven additional landscapes shown in Figure 3.1. 



CHAPTER 3. ARTIFTCTAL SOCTETY MODEL OUTPUT 37 

(a) One Peak (b) Two Peaks (c) Three Peaks 

(d) Four Peaks (e) Sixteen Peaks (I) Random 

(g) Aerial (h) Australia 

Figure 3.1: The landscapes of varying resource capacity distributions used in our experiments 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 38 

Included in these figures are four additional Gaussian distributions (of one, three, four, and 

sixteen peaks2), one random distribution, and two digitized aerial photographs. In addition 

to varying the location of resource capacity peaks, this collection of distributions provides 

a representative mix of periodic boundary discontinuities. As described in Section 2.2.2, 

the landscape wraps around from top to bottom and from right to left, forming a torus. 

In landscapes with symmetric distribution (namely one, four, and sixteen peaks}, an agent 

that moves across a landscape boundary reappears on the opposite boundary, encountering 

an exact reflection of the local resource capacity distribution. However, in asymmetric 

distributions, such as the two-peak Gaussian and Australia digital image, an agent crossing 

a landscape boundary is likely to move immediately from a high to a low resource capacity 

locale (or vice versa). In the following sections, we systematically examine output from the 

artificial society model using each of these landscapes. 

3.3 Experimental Results 

Using the initial conditions and landscapes defined in the previous two sections, we now pro-

vide results that exhibit very different behavior based solely on the choice of asynchronous 

or synchronous time evolution of the model. The statistic of interest that we consider here 

is the agent cafTYing capacity [28} of the landscape, i.e., the number of agents that the 

2The additional Gaussian distributions in Figure 3.l(a),{c)-(e) are constructed by modifying -y(x, y) as 
defined in Equation 2.2. From this equation, a single resource peak is constructed using f(x-JrX, y-J11Y), 
where Jr and J 11 are the x- and y-displacements of the peak from the upper left border, ~;th 0 < Jr < 1 and 
0 < 511 < 1. By summing together multiple f(-), multiple landscape peaks are achieved. For e."<ample, the 
three-peak distribution shown in Figure 3.l(c) is constructed using the equation 

-t(x. y) = f(x- 0.25X, y- 0.25Y} + f(x- 0.25X, y- 0.75Y) + f(x- 0.75X, y- 0.5Y). 

In addition, as more peaks are added to the landscape, the fJr and fJ11 terms in Equation 2.3 are S)"Stematically 
decreased to yield an appropriate mean and standard de,.;ation of the resource capacity. 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 39 

landscape is able to support. As in [28], we examine the carrying capacity as a function of 

simulated time. The resulting carrying capacity is most affected by the initial conditions 

defined in Section 3.1. For the figures presented here, we have selected a set of initial condi-

tions that produce significantly different output for asynchronous versus synchronous time 

evolution of the model. 

3.3.1 Basic Output for Two-Peak Landscape 

For Figure 3.2, we initialize an X x Y = 50 x 50 two-peak landscape with A(O) = 400 agents 

placed at random. Depicted in the figure is the time evolution of the agent carrying capacity 

with T = 2500 for six different initial random number generator seeds3 • Generally, syn-

chronous time evolution (represented by the dashed lines) produces a carrying capacity that 

is highly oscillatory across time, with some amplitudes approaching 1500 agents, or nearly 

2/3 of the maximum population. In contrast, asynchronous time evolution (represented 

by the solid lines) produces a much more stable carrying capacity across time. Epstein 

and Axtell propose explanations of the large oscillations in terms of population dynamics. 

However, these figures provide strong evidence that the oscillations are instead simulation 

artifacts resulting from the use of synchronous time evolution. 

Figure 3.3 depicts the time evolution of the agent carrying capacity for an X x Y = 

100 x 100 two-peak landscape with an initial A(O) = 1600 agents placed at random. The re-

maining state and attribute parameters are the same used for Figure 3.2. Again, undamped 

oscillatory behavior is present in the output produced using synchronous time evolution 

3 In addition to the sbc: figures presented in Figure 3.2, similar behavior was observed using 100 other 
initial random number generator seeds. 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 

2500 

2000 

a 
ISOO g 

c 
n 
I 
s 1000 

500 

0 '---...l..---"-----'------''---~ time 
0 500 1000 1500 2000 2500 

(a) seed = 12345 

:!500 

2000 

a 
ISOO g 

c 
n 
I 
s 1000 

soo 

0 <---...l..---'-----'-----''---......._ time 
0 500 1000 I 500 2000 2500 

(c) seed = 56789 

2500 

2000 

a 
ISOO g 

c 
n 
I 
s 1000 

500 

0 '---...l..---'-----'------''---~ time 
0 500 1000 1500 XJOO 2500 

(e) seed = 23456 

2500 

2000 

a 
1500 g 

c 
n 
I 
s 1000 

500 

0 

2500 

2000 

a 
1500 g 

c 
n 
I 
s 1000 

500 

0 

: 1500 
e 
n 
I 
s 1000 

500 

0 

'---.J.....--'---'-----'------''-- time 
0 500 1000 1500 XJOO 2500 

(b) seed = 54321 

<---.J.....--'----'-----'----''-- time 
0 500 1000 1500 2000 2500 

(d) seed = 98765 

<---.J.....--'----'----L---''-- time 
0 500 1000 1500 2000 2500 

(f) seed = 65432 

40 

Figure 3.2: Asynchronous (--) vs. synchronous (-- -) time evolution of agent ca.rt};ng capacity 
for T = 2500 on a 50 x 50 two-peak landscape with 0.16 of the total cells initially populated at 
random 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 41 

10000 10000 

8000 8000 

a 6000 g 
a 6000 II 

e e 
n n 
I 

4000 s 
I 

-1000 s 

2000 2000 

0 0 
0 soo 1000 1500 2000 2500 0 soo 1000 1500 2000 2500 

(a) seed = 12345 (b) seed = 54321 

10000 10000 

8000 8000 

a 6000 g 
a 6000 g 

e e 
n n 
I 

4000 s 
I 

4000 s 

2000 2000 

0 0 '---..l...---'---L.--'---'-- time 
0 500 1000 I 500 2000 2500 0 SOO 1000 I 500 2000 2500 

(c) seed= 56789 (d) seed = 98765 

10000 10000 

8000 8000 

a 6000 g 
a 6000 I 

e e 
n n 
I 

4000 s 
I 

-1000 s 

2000 2000 

0 
'--_...._ _ _.._ _ __._ __ ...___...__ nme 

0 
0 soo 1000 1500 2000 2500 0 soo 1000 1500 2000 2500 

(e) seed = 23456 (f) seed = 65432 

Figure 3.3: Asynchronous(--) vs. synchronous (-- -) time evolution of agent cariJing capacity 
for T = 2500 on a 100 x 100 two-peak landscape with 0.16 of the total cells initially populated at 
random 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 42 

(dashed lines) but not in the output produced using asynchronous time evolution (solid 

lines). Although some initial oscillations can be seen in the asynchronous case, the am

plitude is damped considerably compared to the synchronous case, and the oscillations are 

quickly suppressed. Moreover, changes in the output from one initial seed to another are far 

less dramatic using asynchronous time evolution. That is, unlike the synchronous results, 

the asynchronous results are not sensitive to the random variate sequence of movement and 

reproduction, as manifested by the choice of initial seed. 

3.3.2 Output for Two-Peak Landscape with Large T 

We feel that T = 2500, as suggested by Epstein and Axtell, may not yield a sufficient 

measure of the long-term time evolution of the agent carrying capacity. For this reason, 

Figure 3.4 depicts the time evolution of the carrying capacity with the same initial conditions 

and 50 x 50 two-peak landscape as Figure 3.2, but with T = 25 000. In general, the highly 

oscillatory behavior in the output produced by synchronous time evolution persists, while 

asynchronous time evolution produces a stable carrying capacity". Notice in Figure 3.4(a) 

that the oscillatory behavior in the synchronous case is eventually suppressed, but not until 

after T = 15000. In Figure 3.4(e), the oscillatory behavior is suppressed even more quickly, 

but reappears around T = 22 500. For the remaining four seeds, the oscillatory behavior 

persists for the lifetime of the model. 

Similarly, Figure 3.5 depicts the time evolution of the agent carrying capacity for the 

same initial conditions and 100 x 100 two-peak landscape as Figure :1.:1, but with T = 25 000. 

Again, oscillatory behavior persists in the output produced by synchronous time evolution. 

4 Similar behavior was observed using 100 other initial seeds. 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 

a 
g 
e 
n 
I 
s 

2500 

2000 

: 1500 
e 
n 
I 
s 1000 

soo 

(a) seed = 12345 

0 ti-
0 5000 10000 15000 20000 25000 

(c) seed = 56i89 

2500 

2000 

a 
1500 g 

e 
n 
I 
s 1000 

500 

0 time 
0 5000 10000 15000 20000 25000 

(e) seed = 23456 

2500 

2000 

a 
1500 g 

e 
n 
I 
s 1000 

500 

(b) seed = 54321 

2500 

2000 

~ 1500 
e 
n 
I 
5 1000 

soo 

0 umc 
0 5000 10000 15000 20000 25000 

(d) seed = 98i65 

2500 

2000 

a 
1500 g 

e 
n 
I 
s 1000 

soo 

o u-o 5000 10000 15000 20000 25000 

(f) seed = 65432 

43 

Figure 3.4: Asynchronous(--) vs. synchronous(---) time evolution of agent carrying capacity 
for T = 25 000 on a 50 x 50 tw<rpeak landscape with 0.16 of the total cells initially populated at 
random 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 

a 
g 
c 
n 
I 
s 

a 
ll 
c 
n 
I 
s 

a 
g 
c 
n 
I 
s 

10000 

8000 

6000 

4000 

2000 

0 

10000 

8000 

6000 

4000 

2000 

~--~--~--~--~--~-time 
5000 10000 15000 20000 25000 0 

(a) seed = 12345 

0 time 
0 5000 10000 15000 20000 25000 

(c) seed = 56i89 

10000 

8000 

6000 

4000 

2000 

0 ame 
0 5000 10000 15000 20000 25000 

(e) seed = 23456 

10000 

8000 

a 6000 g 
c 
n 
I 

4000 s 

2000 

0 

(b) seed = 54321 

10000 

8000 

a 6000 ll 
c 
n 
I 

4000 s 

2000 

0 time 
0 5000 10000 15000 20000 25000 

(d) seed= 98i65 

10000 

8000 

a 6000 
& 
c 
n 
t 

-1000 s 

2000 

0 time 
0 5000 10000 15000 20000 25000 

(f) seed = 65432 

44 

Figure 3.5: Asynchronous (--) vs. synchronous(---) time evolution of agent carrying capacity 
for T = 25 000 on a 100 x 100 two-peak landscape with 0.16 of the total cells initially populated at 
random 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 45 

In contrast, asynchronous time evolution quickly produces a stable agent carrying capacity5 • 

3.3.3 Output for Two-Peak Landscape with Large .4(0) 

Furthermore, we choose not to restrict our results to a model with only p = 0.16 of the 

landscape cells initially populated. We consider an initial population determined by the 

long-term asynchronous time evolution carrying capacity achieved when p = 0.16 of the 

total cells are initially populated at random. In Figure 3.6, we initialize a 50 x 50 two-

peak landscape with A(O) = 2000 agents placed at random. In this figure, synchronous 

time evolution again produces highly oscillatory behavior. Asynchronous time evolution 

also produces some initial oscillations6 (although typically much smaller in amplitude than 

synchronous time evolution) but the oscillations are eventually suppressed, yielding a stable 

agent carrying capacity. Also note that asynchronous time evolution produces the same 

long-term carrying capacity for A(O) = 400 agents (Figure 3.2) and for .4(0) = 2000 agents 

(Figure 3.6). Similar behavior was observed using a 100 x 100 two-peak landscape initialized 

with A(O) = 1600 agents and .4(0) = 8000 agents. 

3.3.4 Output for Large Dimension Two-Peak Landscape 

We also consider the time evolution of the carrying capacity on two-peak landscapes of 

increasing dimensions, namely X x Y with X= Y and X E {150, 200, 250, 300, 350, 400, 

450, 500, 1000}, each with p = 0.16 of the total cells initially populated at random. For 

5 0nce again, similar behm.;or was observed using 100 other initial seeds. 
6 Despite considerable experimentation (including agent state/attribute distributions constructed using 

statistics gathered over many time steps), we were unable to determine a set of initial conditions that 
produced an initially stable carrying capacity. That is, we were able to reduce, but not eliminate, the initial 
drop in agent carrying capacity. 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 

2500 

2000 

~ 1500 
e 
n 
t 
s 1000 

500 

0 

2500 

2000 

3 
1500 g 

e 
n 
t 
s 1000 

500 

0 

2500 

2000 

~ 1500 
e 
n 
t 
s 1000 

500 

0 

0 500 1000 I 500 2000 2500 

(a) seed = 12345 

'----'---'-----'-----''----'-- time 
0 SilO 1000 1500 2000 2500 

(c) seed = 56789 

0 500 1000 1500 2000 2500 

(e) seed = 23456 

2500 

2000 

a 
1500 g 

e 
n 
t 
s 1000 

500 

0 

2500 

2000 

a 
1500 g 

e 
n 
t 
s 1000 

500 

0 

2500 

2000 

: JSOO 
e 
n 
t 
s 1000 

500 

0 

'---~---'-----'--~'----'--rime 
0 500 1000 1500 1000 2500 

(b) seed = 54321 

:~;&f~~~~~~~~~t~~~~~ 

·~~~~~~~~~~~~~~~~~i~~ 

'----'----'-----'-----'--.!.-- time 
0 500 1000 1500 2000 2500 

(d) seed = 98765 

.__ __ ....__ _ _._ _ ___._ _ ___. ___ .....__ time 
0 500 1000 1500 :ooo 2500 

(f) seed = 65432 

46 

Figure 3.6: Asynchronous(--) vs. synchronous(---) time evolution of agent carrying capacity 
for T = 2500 on a 50 x 50 tw~peak landscape with initial population of 2000 agents placed at 
random 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 47 

200000 850000 

19SOOO 800000 

a 190000 g 
a 750000 g 

c c 
n n 
I ISSOOO s 

I 700000 s 

180000 650000 

17SOOO 
~--~--~~--~--~ti~ 

1000 ISOO 2000 2500 

600000 
~--~--~~--~--~ u~ 
SOO 1000 I SOO 2000 2500 soo 

(a) 500 x 500 (b) 1000 X 1000 

Figure 3.7: Asynchronous(---) vs. synchronous(---) time evolution of agent carrying capacity 
forT = 2500 on 500 x 500 and 1000 x 1000 two-peak landscapes with 0.16 of the total cells initially 
populated at random 

brevity, we present in Figure 3. 7 only those results for X x Y = 500 x 500 and X x Y = 

1000 x 1000. In both figures, we restrict the horizontal and vertical scales to emphasize 

the differences in the output produced by asynchronous and synchronous time evolution. 

Similar to the output for smaller dimensions, synchronous time evolution produces large 

oscillations in the carrying capacity, while asynchronous time evolution produces a stable 

carrying capacity (after small initial oscillations). Also note for these larger dimensions that 

the long-term carrying capacity produced by asynchronous time evolution no longer tracks 

the mean of the oscillations produced by synchronous time evolution, as observed for the 

smaller dimensions. That is, the long-term mean agent population is significantly higher 

for asynchronous than for synchronous time evolution on the larger landscapes. 

3.3.5 Output using Other Landscapes 

To show that these different behaviors are not confined to the two-peak landscape, we 

now consider the time evolution of the agent carrying capacity on the seven other resource 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 48 

10000 10000 

8000 8000 

a 
6000 g 

a 6000 g 
e e 
n n 
I 

4000 5 
I 

4000 5 

2000 2000 

0 0 
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 

(a) One Peak (b) Three Peaks 

10000 10000 

... ... ::::·· .· . . :.. ': .:": : .... . :~ -~ ;1.::. i\ f 
8000 8000 

a 
6000 g 

a 6000 g 
e e 
n n 
I 

4000 5 
I 

4000 5 

2000 2000 

0 
...._ _ _._ _ __._ _ __. __ ,__ _ _.__ time 

0 '----'----'-----'------'--'-- time 
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 

(c) Four Peaks (d) Sixteen Peaks 

10000 

8000 

a 6000 g 
e 
n 
t 

4000 s 

2000 

0 
,__......_ _ __._ _ _,_ _ __. __ ....._ time 

0 500 I 000 I 500 2000 :!500 

(e) Random 

Figure 3.8: Asynchronous(--) vs. synchronous(---) time evolution of agent carrying capacity 
for T = 2500 and initial seed 12345 on 100 x 100 landscapes of different resource distributions with 
0.16 of the total cells initially populated at random 



CHAPTER 3. ARTIFICIAL SOCIETY At!ODEL OUTPUT 49 

10000 10000 

8000 8000 

a 6000 g 
a 6000 g 

e • n n 
I 

4000 s 
I 

4000 s 

2000 2000 

0 u~ 
0 500 1000 1500 2000 2500 

0 u~ 
o sao 1000 1soo 2000 2500 

(a) Aerial (b) Australia 

Figure 3.9: Asynchronous(--) vs. synchronous(---) time evolution of agent carrying capacity 
forT = 2500 and initial seed 12345 on 100 x 100 digital image landscapes with 0.16 of the total 
cells initially populated at random 

capacity distributions given in Figure 3.1. Figure 3.8 depicts the carrying capacity for 

the five additional constructed resource capacity distributions, i.e., the four Gaussian and 

the random distributions. Each figure was generated with T = 2500 using a 100 x 100 

landscape and p = 0.16 of the total cells initially populated at random. As with the tw~ 

peak landscape, synchronous time evolution produces large oscillations while asynchronous 

time evolution produces a stable carrying capacity. Figure 3.9 depicts similar results using 

the two digital photographs for the resource capacity distributions. Figures 3.8 and 3.9 

suggest that the different behaviors present in synchronous and asynchronous output are 

independent of the choice of underlying resource capacity distribution. 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 50 

y y 

X • X • 

(a) Eight-directional FOV (b) Moore FOV 
y y 

(c) Six-directional hex FOV (d) Complete hex FOV 

Figure 3.10: Alternate Fields of View (FOV) for an agent at (x,y) if r/J = 3 

3.3.6 Output using Alternate Fields of View and Cell Shape7 

To further show that different output can be achieved based solely on the choice of asyn-

chronous or synchronous time evolution, we consider two alternate fields of view (FOV). In 

addition to the four-directional FOV depicted in Figure 2.3, we consider model output us-

ing an eight-directional FOV, depicted in Figure 3.10(a}, and a Moore neighborhood FOV, 

depicted in Figure 3.10(b). Using the eight-directional FOV, an agent with field of view 

attribute ¢J located at cell (x,y) can see cp cells from (x,y) in each of the eight directions 

north, northeast, east, southeast, south, southwest, west, and northwest. Using the Moore 

neighborhood FOV. an agent with field of view attribute cp located at (x, y) can see any cell 

'Thanks to Bryan \Valter for his assistance in developing the code for this section during a research 
project for UMSA, an undergraduate research course at \Villiam and Mary. 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 51 

in the (24>+ 1) x (24>+ 1) square of cells centered at (x, y) 8 • Using either the eight-directional 

or Moore neighborhood FOV, an agent attempting to reproduce will consider as a potential 

mate any fertile agent of the opposite sex located in one of the eight nearest neighbor cells. 

Furthermore, we consider model output using hexagonal shaped cells, rather than square 

cells, and two associated fields of view. With this modification, we consider a six-directional 

hexagonal FOV, depicted in Figure 3.10(c), and a complete hexagonal FOV, depicted in 

Figure 3.10(d). Using the six-directional hexagonal FOV, an agent with field of view at

tribute 1> located at cell (x, y) can see 1> cells from (x, y) in each of the six directions west, 

northwest, northeast, east, southeast, and southwest. Using the complete hexagonal FOV, 

an agent with field of view attribute 4> located at cell (x, y) can see any cell in the hexagon 

consisting of 1 + 34>(4> + 1) cells centered at (x, y)9 . Using either of these hexagonal FOVs, 

an agent attempting to reproduce will consider as a potential mate any fertile agent of the 

opposite sex located in one of the six nearest neighbor cells. 

Figure 3.11 depicts the carrying capacity for T = 2500 using a 100 x 100 tw~peak 

landscape with p = 0.16 of the total cells initially populated at random. The remaining 

initial conditions are the same as described in Section 3.1. Again, oscillatory behavior is 

present in the output produced using synchronous time evolution, while asynchronous time 

evolution produces a stable carrying capacity. This figure provides strong evidence that the 

differences in output are not biased by the choice for agent field of view. 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 52 

10000 10000 

8000 8000 

a 6000 g 
a 

6000 g 

" " n n 
I 

4000 • 
I 

4000 s 

:!000 :!000 

0 time 
0 500 1000 I 500 !000 :!500 

0 time 
0 500 I 000 1500 !000 :!500 

(a) Eight-directional FOV (b) Moore FOV 

10000 10000 

8000 
. · ......... ·•. ;. :::'·.:·· :·. :·.: _: •. :··.:'::'::'":._: 

8000 

a 6000 g 
a 6000 g 

" " n n 
I 

4000 • 
I 

4000 s 

:!000 1000 

0 ~-'---'---"'---"'---"'-- time 0 
0 500 1000 1500 !000 :!500 0 500 1000 1500 :!000 :!500 

(c) Six-directional he..x FOV (d) Complete he..x FOV 

Figure 3.11: Asynchronous(--) vs. synchronous(---) time evolution of agent carrying capacity 
using alternate agent fields of view (FOV) for T = 2500 and initial seed 12345 on 100 x 100 tw~peak 
landscape with 0.16 of the total cells initially populated at random 

3.3.7 Output using Non-Periodic Landscape Boundary Conditions 

We also consider the effect on output of removing the periodic landscape boundary con-

ditions. That is, the landscape no longer forms a torus, but rather the FOV of an agent 

near the landscape border is reduced in size because of the agent's proximity to the border. 

8 Note that by permitting diagonal movement. any cell in the square of cells centered at (x,y) is at most 
t/J cells away from (x,y). 

9 Similar to the Moore neighborhood FOV, by permitting diagonal movement any cell in the hexagon is 
at most cp cells away from (x,y) 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 53 

1()000 10000 

8000 8000 

a 
6000 g 

a 6000 g 
c c 
n n 
I 

4000 s 
I 

4000 s 

2000 2000 

0 
.___.._ _ _.__ _ __._ _ ____. __ ...._ time 

0 
~..-_...__ _ _._ _ __._ _ ____. __ ...._ nme 

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 

(a) One Peak (b) Two Peaks 

10000 10000 

... 

8000 8000 

a 6000 g 
a 

6000 g 
c c 
n n 
I 

4000 s 
l 

4000 s 

2000 2000 

0 .___....___-'----'----'--"-- time 0 orne 
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 

(c) Three Peaks (d) Four Peaks 

10000 10000 

8000 8000 

a 
6000 I! 

a 6000 g 
c c 
n n 
I 

4000 s 
I 

4000 s 

2000 2000 

0 .._ _ _._ _ _,__ _ __._ _ __.'----"-orne 0 
.___...__ _ _._ _ ___._ _ ___. __ ...__ orne 

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 

(e) Sbcteen Peaks (f) Random 

Figure 3.12: Asynchronous(--) vs. synchronous(---) time evolution of agent carT}ing capacity 
with non-periodic boundary conditions for T = 2500 and initial seed 123-15 on 100 x 100 landscapes 
of different resource distributions and 0.16 of the total cells initially populated at random 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 54 

Figure 3.12 depicts the agent carrying capacity using non-periodic boundary conditions 

on 100 x 100 landscapes with different resource capacity distributions. For each figure, 

T = 2500 and p = 0.16 of the total cells are initially populated at random. Note that the 

output produced using asynchronous time evolution is essentially unaffected by the use of 

non-periodic boundary conditions, i.e., as with periodic boundary conditions, a stable car

rying capacity results after small initial oscillations. However, the output produced using 

synchronous time evolution is dependent on the underlying resource capacity distribution 

when using non-periodic boundary conditions. The output produced using synchronous 

time evolution and landscape distributions that have no large discontinuities at the borders 

(Figure 3.12(a),(d)-(f)) contains large oscillations in the carrying capacity; output produced 

using landscape distributions that have dramatic border discontinuities (Figure 3.12(b) and 

(c)) do not contain large oscillations. These figures suggest that, unlike asynchronous time 

evolution, the output produced using synchronous time evolution is sensitive to the under

lying resource capacity distribution when non-periodic boundary conditions are employed. 

3.3.8 Output with Movement and Reproduction Uncoupled 

Finally, we consider the effects on output that result from uncoupling agent movement and 

reproduction under asynchronous time evolution. As described in Section 2.2.5.2, when 

using asynchronous time evolution the mating event type can either be coupled with the 

movement event type or modeled as a separate stationary Poisson process. Unlike all 

previous results presented, here we assume that the two event types are uncoupled, each 

with inter-event times that are £id Exponential (Ifv) with v = 1.0. 

First we consider output that results from uncoupling agent movement and reproduc-



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 55 

Landscape Std Dev 70 Std Dev 80 
One Peak 0.35 0.01 

Two Peaks 0.24 0.00 
Three Peaks 0.20 0.00 
Four Peaks 0.37 0.10 

Sixteen Peaks 0.46 0.11 
Random 0.19 0.00 

Aerial 0.50 0.03 
Australia 0.25 0.00 

Table 3.1: Proportion of replications that exhibit oscillatory behavior using asynchronous time 
evolution with agent movement and reproduction uncoupled, and gestation period TJ = 0.0. All 
landscapes have common resource mean of 128. 

tion, with gestation period 11 = 0.0. For each of the seven landscapes, Table 3.1 shows 

the proportion of 100 replications in which large oscillatory behavior appears using asyn-

chronous time evolution with movement and reproduction uncoupled and 11 = 0.0. For each 

landscape, we consider two different resource capacity distributions (each with resource ca-

pacity mean of 128): one with a resource capacity distribution standard deviation of 70, 

and one with standard deviation of 80. For each of the 100 replications, we use a 100 x 100 

landscape with p = 0.16 of the total cells initially populated at random, and with the 

remaining initial conditions as defined in Section 3.1. 

In this case, as shown in Table 3.1 the likelihood that oscillatory behavior occurs using 

asynchronous time evolution is dependent on the standard deviation of the underlying re-

source capacity distribution. As shown in the table, a resource capacity standard deviation 

of 70 results in a significantly higher proportion of replications that exhibit large oscillatory 

behavior using asynchronous time evolution, while a standard deviation of 80 results in 

very few replications that exhibit such behavior10 • Note that. consistent with the results 

10Standard deviations less than iO produce roughly the same proportions as a standard deviation of iO. 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 56 

presented earlier in this chapter, results produced using asynchronous time evolution with 

movement and reproduction coupled are not sensitive to the standard deviation of the un

derlying resource capacity, i.e., a stable carrying capacity is consistently produced. Also 

note that synchronous time evolution produces highly oscillatory behavior regardless of the 

standard deviation of the underlying resource capacity distribution. Moreover, by uncou

pling movement and reproduction using asynchronous time evolution and by adjusting the 

standard deviation of the resource capacity distribution, we are able to mimic the highly 

oscillatory behavior produced by synchronous time evolution, but only by significantly al

tering the underlying event sequence. 

We also consider the effect of uncoupling agent movement and reproduction, but with 

gestation period 71 = 1.0. As depicted in Figure 3.13, by incorporating a nonzero gestation 

period, the mean agent carrying capacity is lowered significantly compared to the output 

from synchronous time evolution. Note that, in this case, asynchronous time evolution 

consistently produces output with persistent small oscillations, but with the amplitude of 

oscillations reduced dramatically compared to synchronous time evolution. 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 57 

10000 10000 

8000 8000 

a 
6000 I! 

a 6000 I! 
e e 
n n 
{ 

4000 s 
{ 

4000 s 

2000 2000 

0 
,__...._ _ _,_ _ _._ _ __. __ J....... time 

0 500 I 000 I 500 :!000 2500 
0 

....__...._ _ _,_ _ __.__.-....___...__ urne 
0 500 1000 I 500 2000 2500 

(a) One Peak (b) Two Peaks 

10000 10000 

8000 8000 

a 
6000 I! 

a 6000 I! 
e e 
n n 
{ 

4000 s 
{ 

-1000 s 

2000 2000 

0 '---..1.....--'----'-----''---'- Ullll: 
0 500 I 000 I 500 :!000 2500 0 500 1000 I 500 2000 2500 

(c) Three Peaks (d) Four Peaks 

10000 

8000 

0 '---..1....--'----'-----'--..__ time 0 
....__..__ _ _,_ _ __._ _ _..___..__timc 

0 500 1000 I 500 :!000 2500 0 500 1000 1500 :!000 2500 

(e) Sixteen Peaks (f) Random 

Figure 3.13: Asynchronous(--) \·s. synchronous(---) time evolution of agent carrying capacity 
for T = 2500 and initial seed 12345 on 100 x 100 landscapes of different resource distributions 
with 0.16 of the total cells initially populated at random. For asynchronous time evolution, agent 
movement and mating are uncoupled, with gestation period 71 = 1.0. 



CHAPTER 3. ARTIFICIAL SOCIETY MODEL OUTPUT 58 

3.3.9 Output Summary 

Again, we reemphasize that we are not promoting asynchronous time evolution as the best 

approach for all artificial society models, but we present these results as evidence that very 

different output can result from modeling time synchronously or asynchronously. We have 

shown that different output is independent of the landscape size, the underlying landscape 

distribution, the maximum time of the simulated model, the initial agent population, the 

agent field of view, and the landscape cell shape. Moreover, unlike synchronous time evo

lution, asynchronous time evolution is not sensitive to the landscape boundary conditions, 

nor to the random sequence of events as manifested by the choice of initial seed. In ad

dition, asynchronous time evolution provides more flexibility to the model by permitting 

easy changes to complex behavioral rules, such as the separation of agent movement and 

reproduction and the incorporation of a gestation period. In summary, we claim that seri

ous consideration must be given to the time evolution of the artificial society model, and 

we offer asynchronous time evolution as an attractive alternative for those models involving 

natural asynchronous behavior. 



Chapter 4 

The Event List 

A discrete-event simulation model requires the use of a time-advance mechanism to ensure 

that simulated events occur in the correct order. In a next-event simulation, next-event 

time advance is typically coupled with event scheduling (82). The next occurrence for each 

possible event type is scheduled for execution at some simulated time in the future. The 

time-advance mechanism repeatedly determines the most imminent possible event in the 

schedule and advances the simulation clock to this event's scheduled time of occurrence. 

The data structure that represents the schedule of events to occur in simulated time is 

called an event list. 

Although asynchronous time evolution can reduce simulation artifacts in an artificial 

society discrete-event simulation model, computational performance can suffer dramatically 

unless the event list is implemented properly. In this chapter we first provide background 

discussion on previous event list research. We then introduce select standard and novel data 

structures and associated algorithms for implementing the event list in our modeL Finally 

we demonstrate that acceptable computational performance can be achieved by a judicious 

choice of the event list implementation. 

59 



CHAPTER 4. THE EVENT LIST 

4.1 Background 

60 

In the literature, comparative studies of event list data structures attempt to generalize for 

use in many applications [56, 67, 91). This type of generalization provides basic guidelines 

for selecting an event list implementation, but does not determine the best implementation 

for a specific application. Indeed, no single implementation is best in all applications [56). 

The most widely used approach for measuring event list performance in a discrete-event 

simulation is the classic hold model [32, 47, 48, 55, 56, 67, 71]. In the hold model, the set 

of pending events is represented by a priority queue in which the priority of each event is 

the time that event is to occur. The execution of an event causes exactly one new event to 

be scheduled, thereby ensuring an event list of constant size. A hold operation consists of 

an enqueue, which schedules an event at some future time, and a dequeue, which finds and 

returns the most imminent event in the priority queue. Performance is measured using the 

average time required for a hold operation as a function of queue size. 

Even in the simplest form of our artificial society model, i.e., with agent movement but 

no reproduction, the associated event list does not conform to the hold model. As time 

evolves, agent mortality produces an event list that is not of constant size. With agent 

reproduction included in the model, the execution of a single event can cause more than 

one new event to be scheduled. Hence, performance measurement within the hold model 

provides insight, but an investigation of the performance of event list implementations 

within our artificial society model is required. 



CHAPTER 4. THE EVENT LIST 61 

4.2 Event List Implementations 

Our goal is not an exhaustive comparison of available event list data structures. Such work 

exists in the framework of the hold model [56, 67, 91]. Instead our goal is to compare the 

performance of selected event list implementations in our representative artificial society 

model. Our selections are based on the results of these previous event list comparisons and 

the corresponding suggestions by the authors. We choose to examine event list implemen-

tations that perform consistently well in the hold model, are of general interest, and/or 

are best suited for additional event list operations such as arbitrary deletion and priority 

changes. 

There are three basic types of event list structures: list-based structures (e.g., linked 

list), tree-based structures (e.g., heaps, binary trees), and multiple-list structures (e.g., 

two-list). For this study, we consider one representative structure from each of the three 

basic types based on results and suggestions by other authors. In addition, because we 

want identical output regardless of the event list implementation, we consider only stable 

implementations. A stable event list implementation is one in which events with identical 

time stamps are always processed in FIFO order (56}. 

Based on the event types defined in Section 2.2.5.2, there are three event list operations 

to consider1 when evaluating an event list implementation: dequeue, enqueue, and cancel2 • 

A dequeue operation finds and returns the most imminent event in the event list. An 

enqueue operation schedules an event by inserting the event in the appropriate position in 

1 As defined in Section 2.3.3, the EventList class contains four member functions. \Ve do not consider 
deleteEvent ( ·) here because, in the conte.xt of the artificial society simulation model, the delete operation 
consists only of freeing the memory of a dequeued event. 

2 Note the changeEvent(·) member function defined Section 2.3.3 is composed of a cancel operation (to 
be described) followed by a subsequent enqueue operation. 



CHAPTER 4. THE EVENT LIST 62 

the event list. A cancel operation finds and removes a designated event from the event list. 

Before we introduce the selected event list implementations, consider the components 

of a typical event. In our artificial society model, each element in the event list should 

contain the time that an event is to occur, the type of that event, and a pointer to the 

corresponding agent. Given that each agent can execute only one type of event at a time, 

we simplify the event list by including only the most imminent event for each agent. In this 

way, there is one event per agent in the event list. For each agent, the type of the most 

imminent event can be determined from the agent data structure, as given in Section 2.3.2. 

Hence, an element in the event list contains only the time of the event and a pointer to the 

associated agent. This event structure is used throughout the remainder of this chapter. 

4.2.1 Sorted Singly-Linked List 

Easy to implement and understand, a singly-linked list data structure is the natural first ap-

proach for representing the event list. If we sort the events by increasing time of occurrence, 

we obtain a sample event list like the one shown in Figure 4.1. 

be ad 1.23 1.97 2.15 2.90 
... .... .... .... , Agent 4 , Agent 2 Agent 9 , Agent 21 , 

'lr 't 't II 

Figure 4.1: A sample singly-linked list event list 

Using this approach, the next event to occur in simulated time is always the first element 

in the linked list. In this way, a dequeue operation simply returns the first element, i.e., the 

head, of the linked list; the time complexity of a dequeue operation is therefore constant. 



CHAPTER 4. THE EVENT LIST 63 

For an enqueue operation, a linear search ensues (starting from the head) to determine the 

appropriate insertion point. Similarly, a cancel operation requires a linear search. Carre-

spondingly, the time complexities of the enqueue and cancel operations are linear. For a 

large number of events, i.e., as the number of agents grows, these linear searches seriously 

degrade the computational performance of the simulation. The time complexities of the 

three event list operations using a sorted singly-linked list are summarized in the following 

table. 

Operation Complexity 
dequeue 0{1} 

enqueue O(A(t)) 

cancel O(A(t)) 

Table 4.1: Time complexities for sorted linked list 

4.2.2 Henriksen's Algorithm 

Henriksen's algorithm (47, 48], a list-based structure, involves a clever modification to the 

sorted linked list approach and is reported to perform in practice as well as any tree-based 

priority queue structure (56, 67]. The linked list in Henriksen's approach is sorted by 

decreasing event time, as shown in Figure 4.2. To facilitate easy insertions and deletions, 

the list includes minimum and maximum time sentinels at the ends. Because the next event 

to occur in simulated time is always the next-to-last element in Henriksen's linked list, a 

dequeue operation remains a constant time operation, as in the sorted linked list. 

For an enqueue or cancel operation, complete linear searches of the linked list are avoided 

by using an auxiliary search array, also depicted in Figure 4.2. Each element in this search 



CHAPTER 4. THE EVENT LIST 64 

array consists of a scheduled event time and a pointer to the associated event in the linked 

list. The search array contains sample times from the event list; these samples are sorted 

by decreasing event time. A standard binary search of the search array is used to find the 

smallest time in the search array greater than the event time sought. Beginning with the 

event in the linked list pointed to by that search array element, a descending linear search 

of the linked list ensues until the desired event time is found or it is determined that the 

event time is not in the list. 

2 1 0 

4.15 7.89 00 ... 

' ' \ ~ 
-oo 2.27 4.15 00 he ad 

I--f-e "'- ~ ... .L - -.... Agent 2 ..... Agent 9 .... ..... 

-.: 
'It v --= 

Figure 4.2: A sample Henriksen's event list 

During the linear search of the linked list, Henriksen's "pull" technique [48) attempts to 

keep the search array pointers evenly distributed throughout the linked list. While descend-

ing the linked list, each Kth event encountered is placed into the next successive element in 

the search array3 , where " is a predefined constant4 • The goal of the "pull" technique is to 

reduce the length of the linear search through the linked list. Using Henriksen's algorithm, 

the average and amortized cost of an insertion in the hold model is sublinear (59). More 

3 \Ve initially allocate a dynamic search array of size 1024 elements. The end of the search array, deter
mined by the number of valid entries in the array, is maintained. \Vhen necessary, the size of the search 
array is systematically doubled. 

4 \Ve use the same"= 4 defined by Henriksen (48}. 



CHAPTER 4. THE EVENT LIST 65 

specifically, the amortized cost is often O(log(A(t))) and is limited by 0( JA(t}) in the 

worst case (91]. The time complexities of the three event list operations using Henriksen's 

algorithm are summarized in the following table. 

Operation Complexity 
dequeue 0(1) 

enqueue 0 ( JA{t}) (amortized} 

cancel 0 ( JA{t}) (amortized) 

Table 4.2: Time complexities for Henriksen's algorithm 

4.2.3 Splay Tree 

The splay tree, originally developed by Sleator and Tarjan (100] and shown to be the most 

efficient tree-based priority queue implementation in practice5 [56, 67), is a form of binary 

search tree (BST) that uses splay operations to maintain a balanced tree. Tree operations, 

such as inserts, deletes, and joins, are performed in the same manner as in a typical BST, 

but are followed by a splay operation. A sample splay tree implementation of the event list 

is depicted in Figure 4.3. 

A splay operation consists of a sequence of rotations that brings the most recently 

accessed node to the root of the tree. At the same time, the splay brings other nodes 

encountered on the search path closer to the root. More specifically, the splay rotations 

halve the distance from the root to any node encountered on the search path [98). 

A splay at node r is defined by the following steps [50). 

5 \Vithin a "-ariation of the hold model, Marin claims the complete binary tree (CBT) is the most efficient 
tree-based priority queue implementation (67]. Despite multiple requests, we were unable to obtain a copy 
of the corresponding technical report referenced in [67]. 



CHAPTER 4. THE EVENT LIST 66 

5.61 

Agent 4 

4.15 9.03 

Agent 9 Agent 15 

2.27 5.34 7.89 10.22 

Agent 2 Agent 7 Agent 3 Agent 14 

Figure 4.3: A sample splay tree event list 

1. If r is the root, the splay terminates. 

2. If r has parent q but no grandparent, the required rotation is shown in Figure 4.4. 

3. If r has parent q and grandparent p then one of the following four rotations is possible. 

• If q is the right (R) child of p and r is the right (R) child of q, the required RR 

rotation is shown in Figure 4.5. 

• If q is the left (L) child of p and r is the left (L) child of q, the required LL 

rotation is symmetric to the RR rotation. 

• If q is the right (R) child of p and r is the left (L) child of q, the required RL 

rotation is shown in Figure 4.6. 



CHAPTER 4. THE EVENT LIST 67 

q r 

Figure 4.4: Rotation for node r with parent q but no grandparent 

• If q is the left (L) child of p and r is the right (R) child of q, the required LR 

rotation is symmetric to the RL rotation. 

Using a splay tree as defined by Sleator and Tarjan, the amortized time complexity of 

a dequeue operation is O(log A(t)) (98, 100]. Note that single worst-case operations can 

take linear time; we are guaranteed not that each operation is efficient, but that the average 

cost of all operations is efficient. Similarly, the amortized time complexities of the enqueue 

and cancel operations are O(log A(t)). Using a splay tree as defined in [100), the time 

complexities of the three event list operations are summarized in the following table. 

Operation Complexity 
dequeue O(log A(t)) (amortized) 

enqueue O(log A(t)) (amortized) 

cancel O(log A(t)) (amortized) 

Table 4.3: Time comple:cities for Sleator-Tarjan splay tree 

Jones improved the splay tree implementation specifically for use in discrete-event simu-

lation by eliminating redundant operations [56]. Jones noted that for a dequeue operation, 



CHAPTER 4. THE EVENT LIST 68 

p r 

Figure 4.5: RR rotation for splay operation 

no priority comparisons are required because the minimum time element will always be the 

leftmost item in the tree. As a result, splay rotations used to bring the minimum time 

element to the root of the tree can be eliminated. By keeping track of the location of the 

current minimum time element in the tree, the dequeue operation can be performed in con-

stant time (67]. Because the Jones-modified splay tree is specialized for the enqueue and 

dequeue operations of discrete-event simulation, we use its implementation6 rather than 

the Sleator-Tarjan splay tree. For a splay tree implemented with Jones's modifications, the 

time complexities of the three event list operations are summarized in the following table. 

Operation Complexity 
dequeue 0{1) 

enqueue O{log A(t)) (amortized) 

cancel O{log A(t)) (amortized) 

Table 4.4: Time complexities for Jones-modified splay tree 

6 The splay tree implementation is a conversion of Jones's Pascal code referenced in [56]. 



CHAPTER 4. THE EVENT LIST 69 

p r 

Figure 4.6: RL rotation for splay operation 

4.2.4 Calendar Queue 

The calendar queue [10) is a multiple-list priority queue used for representing the event list. 

The calendar queue is modeled after a typical desk calendar. One schedules a future event 

on the calendar by writing the event in the calendar block corresponding to the day the 

event will occur. Certain days (blocks) may have multiple events while other days may have 

no events. Multiple events within the same day are naturally sorted by increasing time. 

Upon implementation, each "day" is represented by a sorted linked list, where each 

element in the list corresponds to an event to occur during that day. An array of pointers, 

one pointer to each day (i.e., to each linked list), represents the calendar "year". By making 

the calendar circular, events can be scheduled for up to one year in advance. In addition, 

events can be scheduled for more than one year in advance by including in each calendar 

entry the year that the associated event is to occur. Because the calendar is circular, events 

can be scheduled for any year in the future, avoiding the need of an overflow list found in 



CHAPTER4. THEEVENTLfflT 70 

other multiple-list priority queue implementations (e.g., the Lazy Queue [92)). 

5.34 5.61 10.22 
Day 1 , Agent 7 Agent 4 ' .. H ,. Agent 14 

Day 2- 1,, 
I' 

2.27 7.89 
Calendar -7- Day 3 ' .. --11• / Agent 2 Agent 3 

Day 4 II• 
I' 

4.15 9.03 
Day 5 Agent 9 , Agent 15 .. --11• 

Figure 4. 7: A sample calendar queue event list 

An example representation of a calendar queue event list for the artificial society model 

is shown in Figure 4.7. In this example, the calendar consists of five days, each of length 

1.00 time units, so that the length of one calendar year is 5.00 time tmits. Day one of the 

current year contained events with time stamps in the range [0.00, 1.00); day two contained 

events with time stamps in the range [1.00, 2.00); and so forth. The third day is the current 

day of the current year. Moreover, the events to occur within one calendar year of the 

current day have time stamps 2.27, 4.15, 5.34, and 5.61. The remaining three events in 

the queue fall outside the length of one year from the current day and so occur during the 

following year. 

For a dequeue operation, the next event to occur is determined by scanning the calendar, 

starting with the current day, nntil the first encountered event within the current year is 

located. If no events occur within the current year, the year is incremented and the process 

repeated. For an enqueue or cancel operation, the day (i.e., array element) containing the 



CHAPTER 4. THE EVENT LIST 71 

event is determined using a simple hashing function 7, and a linear search of the linked list 

representing that day determines the correct location of the event. 

The length of a year is chosen so that most events (about 75%) occur within one year, 

i.e., an event is scheduled for no more than one year after the time at which it was enqueued 

[10). To avoid long linear searches, the length of a day is chosen so that no day contains an 

excessive number of events; this length should be roughly the average difference in the time 

stamps of successive events [10). In addition, the length of a year and the length of a day 

are allowed to change dynamically as the number of enqueued events grows and shrinks. 

Whenever the number of events exceeds twice the number of days per year, the calendar 

is copied onto a larger calendar containing twice the number of days as the previous calendar. 

Similarly, if the number of days per year falls below one-half the number of days per year, 

the calendar is copied onto a smaller calendar containing half the number of days8 • The 

length of a day must also be adjusted accordingly (i.e., either halved or doubled) when 

copying events onto a new calendar. 

Brown argued via intuition and experimentation that the calendar queue has 0(1) av-

erage performance per operation [10]. However, copying the calendar, as described above, 

has O(A(t)) cost. In addition, Ronngren et al. showed the worst-case amortized cost for an 

insertion in the calendar queue to be O(A(t)) [92). 

1 Let t., be the time stamp of an event e, d be the length of one day, and n be the number of days in one 
year. Then the day containing event e is determined using the equation 1 + (tefd) mod n. 

8 In this way, the number of days per year is always a power of two. 



CHAPTER 4. THE EVENT LIST 72 

4.2.5 Spatially Based Multilists 

A spatially based multilist is a novel approach for implementing the event list for the 

artificial society discrete-event simulation model. The multilist is constructed using multiple 

instances of one of the previous event list implementations, either Henriksen's, splay tree, or 

calendar queue. Henceforth, we refer to such an instance by the term sublist. The number 

of sublists S is a compile-time parameter. A container array encapsulates the collection 

of sublists. Events are distributed among the sub lists as described below. A schematic of 

a multilist with three Henriksen's sublists is depicted in Figure 4.8. The schematic is the 

same for splay tree or calendar queue sublists except for appropriate sublist modifications. 

sublist 1 

mint 

sublist 2 

container 

sublist 3 

Figure 4.8: A sample multilist event list schematic using Henriksen's sublists 

As time evolves, the next event to occur in simulated time resides in exactly one of the 



CHAPTER 4. THE EVENT LIST 73 

sublists. Because this sublist can be any of the existing sublists, the time of the event with 

minimum time stamp in each sublist is maintained in the container array. Admittedly, the 

overhead of maintaining the sublist minima in the container array is likely to be prohibitive 

for small models, i.e., for a small number of agents. However, the goal of the spatially based 

multilist implementation is to judiciously separate the event list into several smaller event 

lists, thereby reducing the size of any one list to be searched. We expect this separation 

will be beneficial for very large models. 

Newly scheduled events are distributed among the sublists based on the current spatial 

location on the landscape of the agent associated with that event9 • Given a predefined 

number S of sublists, the event for an agent currently located at cell (x, y) is assigned to 

sublist s via the equation 

s = { 

rJ 
1 + 2• 

1 + ~ + r~1. 

where 0 ~ s <Sand{)= ((x ·X)+ y) modS. 

{)mod 2 = 0 
(4.1) 

{)mod 2 = 1 

A potentially frequent spatial bias exists if we assign events to sublists based on con-

tiguous landscape cells. That is, when agents cluster in distinct regions of the landscape, 

certain sublists can become more heavily loaded than others. Equation 4.1 above attempts 

to avoid such a bias by assigning the events for agents in contiguous landscape cells to dif-

ferent sublists. As an example, if S = 3 the sublist assignments of those events for agents (if 

any) located in the first eight contiguous landscape cells are shown in Table 4.5. Table 4.6 

shows the assignments if S = 4. 

9 \Ve also experimented with assigning events to sublists at random. Because the spatially based approach 
gave smaller e:'Cecution times than the random approach, we present only the spatially based assignments 
here. 



CHAPTER 4. THE EVENT LIST 74 

(x,y} {0,0} {0,1} {0,2} {0,3} {0,4) (0,5) {0,6) {0,7) 
s 0 2 1 0 2 1 0 2 

Table 4.5: Spatially based multilist sublist assignments with S = 3 

(x,y} (0,0) (0,1) {0,2) {0,3) {0,4) (0,5) {0,6) {0,7) 
s 0 2 1 3 0 2 1 3 

Table 4.6: Spatially based multilist sublist assignments with S = 4 

For a dequeue operation, the most imminent event in simulated time is retrieved as 

follows. Let s be the index of the minimum time stored in the container array. Then the 

minimum time stamp event from sublist s (i.e., the most imminent event in simulated time) 

is dequeued according to the protocol of the sublist implementation. The time in position 

s of the container array is then updated with the time of the new minimum time stamp 

event in sub list s. 

For an enqueue operation, the event is assigned to sublist s using Equation 4.1 and the 

(x, y) position of the associated agent. The event is then enqueued in sublist s according to 

the protocol of the sub list implementation. If the inserted event is the minimum time stamp 

event in sublist s, the time in positions of the container array is updated accordingly. 

For a cancel operation, the sublist s containing the event to be canceled is determined 

using Equation 4.1 and the (x, y) position of the associated agent. The event is then located 

and removed from sublist s according to the protocol of the sublist implementation. If the 

canceled event was the minimum time stamp event in sub list s, the time in position s of the 

container array is updated with the time of the new minimum time stamp event in sublist 

s. 



CHAPTER 4. THE EVENT LIST 75 

4.3 Event List Performance 

Although asynchronous time evolution can reduce simulation artifacts in the output prcr 

duced by an artificial society model, execution time of the simulation can be prohibitively 

large without a judicious choice for the event list implementation. Therefore we now present 

performance results for each of the previous event list implementations within the artificial 

society simulation showing that acceptable execution times can be achieved. Most com-

parative studies of event list implementations measure execution performance in terms of 

a single hold operation [56, 67, 91]; however, our interest is in the overall performance 

for an entire simulation run. Accordingly, the performance measure of interest here is the 

execution time of the entire simulation. 

For all results to be presented, we employ asynchronous time evolution with agent 

movement and reproduction coupled and gestation period 71 = 0.0. We consider the ex-

ecution time of the simulation using an X x Y twcrpeak landscape with X = Y and 

X E { 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} 10 • To evaluate the event list imple-

mentations under heavy load, we use the initial conditions presented in Section 3.1. The 

resulting carrying capacity stabilizes to a proportion of 0.8 of the total cells occupied, and 

accordingly we initially populate p = 0.8 of the total cells at random. We simulate for a 

maximum time ofT = 1000 because by that time a stable agent carrying capacity has been 

achieved. All timing results were obtained using a dedicated Pentium III 1 G Hz processor 

with 1GB of RAM. 

10The effect of landscape size on execution time is negligible. The e.xecution time is directly related to the 
size of the event list, i.e., to the number of agents. For convenience, we specify the number of agents as a 
proportion of the landscape size X x Y. 



CHAPTER 4. THE EVENT LIST 76 

Figure 4.9 depicts sample execution times for the artificial society simulation initialized 

as described above using a sorted linked list and Henriksen's event list implementations. As 

shown, even for a relatively modest event list size (approximately 32 000 events on a 200 x 200 

landscape), the sorted linked list gives a prohibitively large execution time. Comparatively, 

Henriksen's algorithm provides an execution time on the order of 10 minutes, proving the 

sorted linked list implementation to be inappropriate in this context. 

24 

H 
0 
u 12 r 
s 

0 

• Henriksen's 

o linked list 

50 
)( 

50 

tOO 
)( 

too 

Landscape Size 

t50 
)( 

t50 

200 
)( 

200 

Figure 4.9: Execution times using sorted linked list and Henriksen's event list implementations 
with p = 0.8 of the total cells occupied for increasing landscape sizes 

Figure 4.10 depicts sample execution times for the artificial society simulation initial-

ized as described above using Henriksen's, splay tree, and calendar queue event list imple-

mentations. Each value displayed is the average time for ten replications along with the 

corresponding 95% confidence interval (to "fat-dot" accuracy). As shown for the two sepa-

rate event list loads in Figure 4.10(a) and (b), each of the three event list implementations 

provides tremendous improvements in execution time compared to the sorted linked list im-

plementation. Note that for a 1000 x 1000 landscape with heavy load (approximately 800 000 



CHAPTER 4. THE EVENT LIST 

6 

5 

H 4 
0 
u 3 r 
s 

2 

l 

0 

• Henriksen's 
<> splay tree 
o calendar queue 

100 200 300 400 
X X X X 

100 200 300 400 

500 
X 

500 

600 
X 

600 

700 
X 

700 

Landscape Size 

800 
X 

800 

900 
X 

900 

1000 
X 

1000 

77 

Figure 4.10: Execution times using Henriksen's, splay tree, and calendar queue event list imple
mentations with a proportion p = 0.8 of the total cells occupied for increasing landscape sizes 

events), all three implementations provide execution times at most one-fourth that of the 

sorted linked list implementation for a 200 x 200 landscape (approximately 32 000 events). 

Moreover, of the three implementations, calendar queue yields the best performance with 

an execution time improvement of nearly an hour or more compared to Henriksen's and the 

splay tree for a 1000 x 1000 landscape. 

Figure 4.11 depicts sample execution times for the artificial society simulation using 

the spatially based multilist implementations11 described in Section 4.2.5. Again, each 

value displayed is the average time for ten replications along with the corresponding 95% 

confidence interval (to "fat-dot" accuracy). All three multilist implementations provide 

execution times comparable to the basic implementations shown in Figure 4.10. Note that 

the calendar queue, the best of the implementations in Figure 4.10, also performs best as a 

11 \Ve e.xperimented with spatially based multilist implementations with two, four, and eight sublists. 
Because the performances for each were comparable, we present only the results for spatially based multilists 
with two sublists. 



CHAPTER 4. THE EVENT LIST 

6 

5 

H 4 
0 
u 3 r 
s 

2 

1 

0 

• Henriksen's sublists 
o splay tree sublists 
o calendar queue sublists 

lOO 200 300 400 500 
X X X X X 

lOO 200 300 400 500 

600 
X 

600 

700 
X 

700 

Landscape Size 

78 

!!00 900 LOOO 
)( X 

!100 900 LOOO 

Figure 4.11: Execution times using spatially-based multilist event list implementations with a 
proportion p = 0.8 of the total cells occupied for increasing landscape sizes 

sublist implementation. 

Furthermore. relative to the results in Figure 4.10. the multilist implementation using 

Heuriksen:s sublists does not perform as well as the basic Henriksen's implementation. On 

a 1000 x 1000 landscape with heavy load, the multilist implementation yields an execution 

time of nearly one half hour more. Conversely, the multilist implementation using splay 

tree sublists performs better than the basic splay tree implementation. In this case. on a 

1000 x 1000 landscape with heavy load. the multilist implementation yields an execution 

time of approximately one half hour less. Also note that the multilist implementation using 

calendar queue sublists performs equivalently to the basic calendar queue implementation. 



CHAPTER 4. THE EVENT LIST 

4.4 Event List Summary 

79 

As shown by the results in the previous section, unless the event list in our artificial society 

model is implemented using an appropriate data structure, asynchronous time evolution 

leads to prohibitive performance for large models. Using a representative implementation 

from each of the three basic event list structure types, performance improves dramatically. 

Moreover, although our spatially based multilist implementations perform comparably to 

the basic implementations, the multilist only proves beneficial relative to the basic splay 

tree implementation. In terms of execution time alone, based on these results the calendar 

queue is the implementation of choice. If simplicity of the implementation is paramount, 

Henriksen's implementation is much simpler than the calendar queue but provides execution 

times only slightly worse. In conclusion, the results presented herein show that, as desired, 

asynchronous time evolution as promoted in Chapter 3 can be incorporated into the artificial 

society simulation model while maintaining acceptable computational performance. 



Chapter 5 

Job Scheduling in Parallel Systems 

In Chapter 3, we showed that converting the artificial society model from a synchronous 

to an asynchronous model provides a more realistic model and reduces simulation artifacts. 

Similarly, in this chapter we show that converting from a synchronous to an asynchronous 

model improves performance in job scheduling within parallel systems. Our work is based 

on the idea of backfilling, a non-FCFS scheduling policy which permits a select few jobs 

to jump ahead of a job that cannot begin service immediately. Unlike standard backfilling 

paradigms which use a single queue of jobs, we transform the system into an asynchronous 

model by splitting the system into multiple disjoint partitions, with one queue per partition. 

Jobs are classified and assigned to one of these partitions according to the estimated job 

duration. We show that such classification improves the average job slowdown by reducing 

the likelihood that a short job is overly delayed in the queue behind a very long job. 

In this chapter, we present a detailed description of, and results from, our new schedul

ing policy. We begin with a discussion of background information and an analysis of the 

workloads used in our study, then describe our new backfilling policy in detail, and con

clude by presenting performance comparisons of our new policy in relation to the standard 

backfilling policy. 

80 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 82 

policies. 

Backfilling has been proposed as a more efficient alternative to simple static FCFS 

schedulers (78, 102]. Backfilling reduces resource fragmentation and increases system uti

lization by executing jobs in an order different than their arrival order, thereby exploiting 

otherwise unused processors. Users are expected to provide nearly accurate estimates of 

the job execution times. Using these estimates, the scheduler rearranges the waiting queue, 

allowing short jobs to move ahead of long jobs provided certain previously submitted jobs 

are not delayed. Various versions of backfilling have been proposed (58, 78, 86]. Keleher 

et al. characterize the effect of job length and parallelism on backfilling performance (58]. 

Perkovic and Keleher propose sorting by job length to improve backfilling and introduce 

the idea of speculative execution, in which long jobs are given a short trial execution to 

detect whether or not the jobs crash (86]. 

Industrial schedulers that are widely accepted by the high performance community, in

cluding the Maui Scheduler (8, 69], PBS Scheduler [8, 85], and IBM LoadLeveler (52], offer a 

variety of configuration parameters. In these schedulers, available configuration parameters 

include multiple queues to which different job classes are assigned, multiple job priorities, 

multiple scheduling policies per queue, and the ability to treat interactive jobs differently 

from batch jobs. The immediate benefit of such flexibility in policy parameterization is the 

ability to customize the scheduling policy according to the site's needs. However, optimal 

policy custom.ization to meet the needs of an ever changing workload is an elusive goal. 

In this work, we propose a simple yet effective batch scheduler policy that is based on the 

extensively analyzed aggressive backfilling strategy [78]. Our policy is inspired by related 

work in task assignment for distributed servers that strongly encourages separation of jobs 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 83 

according to their length, especially for workloads with execution times characterized by 

long-tailed distributions [90, 97]. Similarly, observed high variance in job execution times 

in parallel workload traces advocates separating long from short jobs in parallel schedulers. 

In contrast to other backfilling related works, our policy maintains multiple queues and 

effectively separates short from long jobs. Our policy requires only an a priori definition 

of job classes and then the policy adjusts its processor-to-class allocations automatically. 

Furthermore, we employ speculative execution to ensure better job separation according to 

the actual job execution time. The effective separation of jobs coupled with speculative 

execution permits our policy to outperform the standard backfilling policy in variety of 

contexts. In the following section, we present detailed analyses of the workload traces used 

in the simulation to evaluate our proposed policy. 

5.2 Scheduling Workload Analysis 

The difficulty of scheduling parallel resources is deeply interwoven with the inherent vari

ability in parallel workloads. Because our goal is to propose a robust policy that works 

efficiently regardless of the workload type, we first closely examine real parallel workloads 

of production systems. We select four workload logs from the parallel workload archive [30]. 

Each log provides the arrival time of each job (i.e., the job submit time), the number of 

processors requested, the estimated service time of the job, the actual service time of the 

job, the start time of the job, and possible additional resource requests (e.g., memory per 

node). The selected traces are summarized below. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 84 

• CTC: This trace contains entries for 79 302 jobs that were executed on a 512-node 

IBM SP2 at the Cornell Theory Center from July 1996 through May 1997. 

• KTH : This trace contains entries for 28 487 jobs executed on a 100-node ffiM SP2 at 

the Swedish Royal Institute of Technology from October 1996 through August 1997. 

• PAR: This trace contains entries for 37 910 jobs that were executed on a 416-node 

Intel Paragon at the San Diego Supercomputer Center during 1996. Because this 

trace contains no user estimates, we use the actual run times as accurate estimates. 

• SP2: This trace contains entries for 67 665 jobs that were executed on a 128-node 

IBM SP2 at the San Diego Supercomputing Center from May 1998 through April 

2000. 

5.2.1 The Arrival Process 

The arrival process significantly affects the performance and scheduling decisions in any 

queueing system. To visualize the time evolution of the arrival process, in Figure 5.1 we 

plot for each trace the total number of arriving jobs per week as a function of time. We 

observe bursts in the arrival process1, but not of the same magnitude as the "flash crowds" 

experienced by web servers [90]. Significant differences in the per-week arrival intensity exist 

within each workload, as well as across all workloads. For this reason we focus not only on 

aggregate statistics (i.e., the average performance measures obtained after simulating the 

system using the entire workload trace), but also on transient statistics within specific time 

windows. 

1Bursts also e.xist relative to smaller time units (e.g., days and hours), but such graphs are omitted for 
the sake of brevity. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 85 

(a)CTC (b)KTH 
3SOO 1200 

3000 1000 "' "' ~ .c 
0 2SOO 0 .... - 800 '- '-
0 

2000 
0 .. .. 

.8 1! 600 e 1SOO e 
:= := z 

1000 
z 400 

soo 200 

0 s 10 IS 20 25 30 3S 40 4S 0 s 10 15 20 25 30 3S 40 4S 
week week 

(c) PAR (d)SPl 
2000 8000 

7000 

"' 1600 "' .c 6000 ~ 0 0 -.... .... 
'- 1200 0 5000 0 ... .. 1! 4000 .8 e 800 e := 3000 := z z 

400 

0 10 20 30 40 so 100 
week week 

Figure 5.1: Total number of arriving jobs per week as a function of time (weeks) 

5.2.2 The Service Process 

In addition to the arrival process, the service process also affects scheduling decisions and 

performance in a queueing system. Table 5.1 provides summary statistics for the selected 

traces2 • Observe the wide disparity of the mean actual job service time across workloads. 

Also notice the difference (of as much as two orders of magnitude) between the mean and 

the median actual service times within a workload. The high coefficients of variation (C.V.) 

2 A common characteristic in many of these traces is that the system administrator places an upper limit 
on the job service time. If this limit is reached, the job is killed. Our statistics include the terminated jobs; 
t.herefore, some of our output statistics are higher than those reported elsewhere (e.g., see [29}). 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 86 

in actual job service times coupled with the large differences between mean and median 

values suggest the existence of a "fat tail" in the distribution of service times. Log-log com-

plementary distribution plots confirm the absence of a heavy tail in the distributions [29], 

but actual run times nonetheless remain very skewed within each workload. This type of 

distribution advocates separating jobs according to their duration to different queues in 

order to minimize queueing time of short jobs that are delayed behind very long jobs. 

Mean Actual Median Actual CV Actual Mean Estim. Median Estim. CV Estim. 
Workload Service Time Service Time Service Time Service Time Service Time Service Time 
CTC 10983.42 946 1.65 2-1323.75 10800 1.07 
KTH 8877.07 8-17 2.34 13 678.01 ·1200 1.80 
PAR 7000.02 155 1.90 - - -
SP2 6 118.96 514 2.37 14 337.18 5400 1.39 

Table 5.1: Summary statistics of the four selected workloads. All times are reported in seconds. 

The differences between the mean and median values for estimated service times are also 

large (of nearly an order of magnitude difference), and the C.V. of estimated service times 

are also large. More importantly, however, are the discrepancies between the actual and 

estimated service times. Notice that the mean estimated service time is consistently twice 

the size of the mean actual service time. Also note that the differences between the median 

actual and median estimated service times are an order of magnitude difference or more. 

These differences are evidence that users tend to overestimate the service times of jobs to 

prevent jobs from being killed. As a result, to develop a robust scheduling policy we must 

evaluate the classification policy that separates jobs into different queues within the context 

of accurate estimates (i.e., using actual service times from the workloads as estimates) and 

inaccurate estimates (i.e., using user-provided service estimates from the worklo~ds). 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 87 

5.2.2.1 Classification Using Accurate Service Estimates 

We first consider the classification policy assuming accurate service estimates. We use 

the actual job service times as accurate estimates and, because Table 5.1 indicates wide 

variation in actual job service times, we classify jobs according to these estimates. After 

experimenting with several different classifications, we select the following four-part clas-

sification. Although no classification will give an equal proportion of jobs per class across 

all workloads, our classification provides a representative proportion of jobs per class, as 

shown in Figure 5.2. 

• class 1: Short jobs have actual service time ::; 100 seconds. 

• class 2: Medium jobs have actual service time > 100 seconds and ::; 1000 seconds. 

• class 3: Long jobs have actual service time > 1000 seconds and ::; 10 000 seconds. 

• class 4: Extra-long jobs have actual service time > 10000 seconds. 

Figure 5.2 presents the actual service time characteristics of the four selected workloads. 

The left column depicts the overall and per-class mean actual job service time as a function 

of the trace time3 • The center column depicts the overall and per-class C.V. of the actual 

job service time. Finally, the right column depicts the proportion of jobs per class. 

As shown in Figure 5.2, the mean actual job service times and the overall C.V. (solid 

line) vary significantly across time. As expected, for all workloads the per-class C.V. is 

considerably smaller than the overall C. V. For all four traces the proportion of jobs in each 

3 For statistical significance, we compute workload statistics for batches of 1000 jobs, but plot each batch 
as a function of the arrival time of the first job in the batch. 



CHAPTER 5. JOB SCHEDULING IN Pi\.RALLEL SYSTEMS 

,\11 Jobs 

class I t<= 100 sec) 

(a)CTC 

class 2 (> 100 sec and<= 1000 sec) 
class J (> IIMIO sec and <= 111000 sec) 
cla.'iS .a (> I oooo sec) 

~ 
~ IUIMHJ 

::e 
~~~~~~~._~~-w--~----

5 Ill 15 211 :!5 )II .lS 411 45 

!blKTH 

~ SUINIU 

" E 41MNMI • 
f.= ... \ 
" .:= i: JIMMMI 

'"' "' .1! !IMNMI 
~ 
= i:; IIMMMI 

::e 

Ccl PAR 

w~ck 

i 
' 

'' 

.151MMI .---,r---,----,------,-, 

i -~ 
~ JIMKIII 

),! = :!51KMI 
~ 
-~ 1UfNHJ 

:: 
~ 1!5fNMJ 

~ IUfMHI = 
~ 

::e 

cdlSP2 

, 
\ 

i 
'~ 

' ' 

SIMKNI ,.--.,..---.,.--.,..---,...--,-, 

~~~-~~~~---~,1-I-~)1-1--J~II--5~11~ 

week 

h,---,-----r---...---.,-----~ 

:II -Ill hll XII liM I 

wed' 

class I 

class2 

:, II.K 

0 
")l ll.h 

~ 
c: 
0 
·;: 11.4 

~ 

£ 0.2 

11.11 

,. II M 
~ 
0 
""" ll.h 
~ 
c: 

·= :: 0 . .1 

t 0.1 

;; 11.4 

~ 
t. 11.1 

Ill :!II 

:!0 -Ill f>il 
Wt!Ck 

da'i.~J 

cla.'i.~ .. 

88 

XII IlK I 

Figure 5.2: Actual sen·ice time characteristics of the four \Vorkloads using four-part classification 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 89 

class varies dramatically with time. In other words, duration demands are very different 

from week to week. Considerable variation is also present in the proportion of jobs per 

class. For example, the PAR workload consists primarily of short, i.e., class one, jobs. For 

all four workloads, the proportion of jobs in each class varies dramatically from week to 

week. 

5.2.2.2 Classification Using Inaccurate Service Estimates 

We now consider the classification policy assuming inaccurate estimates. Figure 5.3 depicts 

the average estimated and average actual service times versus time for the three traces 

that provide estimates. As shown, user estimates are consistently twice the actual service 

time. While the four-part classification in the previous section works well for accurate 

estimates, inaccurate estimates lead to inappropriate classification of many jobs. That is, 

overestimation can lead to a job that, based on its actual service time, should be grouped 

into a class different than the class selected based on the estimate. As such, short jobs may 

be unwittingly grouped with long jobs, thereby defeating the goal of separating jobs based 

on job duration. In addition, because of the overestimates very few jobs will be classified 

as short jobs, effectively rendering the first class useless. 

To address these problems, we assume that a user will naturally overestimate the service 

time of a job to prevent the job from being killed. In effect, we collapse the four-part 

classification into the following three-part classification based on workload analysis that 

shows large overestimates. 

• class 1: Short jobs have estimated service time ::; 1000 seconds. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 

35000 

~ 30000 .... 
'025000 

] 20000 e 
~ 15000 

10000 

5000 

(a)CfC 

5 10 15 20 25 30 35 40 .J5 
week 

35000 

"' 
30000 

-§ 
25000 .... ._ 

0 ... 20000 
~ e 15000 :::1 z 

10000 

5000 

0 
0 20 

35000 

30000 
"' -§25000 .... ._ 
~ 20000 
~ e 15000 
:::1 

z 10000 

5000 

0 
0 5 

(c)SP2 

40 60 
week 

Estimated Actual 

(b)KTII 

10 15 20 25 30 
week 

80 100 

Figure 5.3: Service time overestimates as a function of time 

90 

35 40 45 

• class 2: Medium jobs have estimated service time > 1000 seconds and < 10 000 

seconds. 

• class 3: Long jobs have estimated service time > 10 000 seconds. 

As we will show, this three-part classification coupled with speculative execution permits 

our proposed backfilling policy to perform well even in the presence of poor user estimates. 

In summary, we see that workloads vary significantly and follow no discernible trends as 

they evolve in time. In addition. the classification of jobs is very dependent on whether or 

not user estimates of service times are accurate. Despite such variability, in the following 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 91 

section we describe a novel, robust scheduling policy that offers performance guarantees 

under such transient workload conditions. 

5.3 Scheduling Policies 

In this section, we describe a new job scheduling policy, based on backfilling, that adapts its 

own parameters according to changing workload conditions. Our policy divides the system 

into multiple partitions, one queue per partition, to effectively separate jobs according to 

their duration. The goal is to reduce the average job slowdown by decreasing the number 

of short jobs delayed in the queue behind long jobs. Before introducing our new policy, we 

first describe the basic single-queue backfilling paradigm. 

5.3.1 Single-Queue Backfilling 

Backfilling is a commonly used scheduling policy that attempts to minimize fragmentation 

of system resources by executing jobs in an order different than their submission order 

(58, 78]. A job that is backfilled is allowed to jump ahead of jobs that arrived earlier 

(but are delayed because of insufficient idle processors) in an attempt to exploit otherwise 

currently idle processors. The order of job execution is handled differently by two types 

of backfilling. Conservative backfilling permits a job to be backfilled provided it does not 

delay any previous job in the queue. Aggressive backfilling ensures only that the first job 

in the queue is not delayed. We consider only aggressive backfilling because results have 

shown its performance to be superior to conservative backfilling (78]. 

Basic aggressive backfilling is a non-preemptive, space-sharing policy that assumes a 

single queue of jobs to be executed . .Jobs enter this queue when submitted by the user. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 92 

Each job is characterized by its arrival time, by the number of processors required (i.e., 

the job width), and by an estimate of the expected service time. Any job that attempts to 

execute for a time greater than its estimated service time is terminated by the system. 

The single-queue backfilling policy always attempts to backfill as many queued jobs as 

possible. In general, the process of backfilling exactly one of these many jobs occurs as 

follows. Define the pivot job to be the first job in the queue. If there are currently idle 

processors sufficient for the pivot job, the scheduler starts executing the pivot immediately, 

and a new pivot is defined appropriately. Otherwise, the scheduler sorts all currently exe

cuting jobs in order of their expected completion time. The scheduler can then determine 

the pivot time, i.e., the time when sufficient processors will be available for the pivot job. 

At the pivot time, any idle processors not required for the pivot job are denoted as extra 

processors. The scheduler then searches for the first queued job that 

• requires no more than the number of currently idle processors and will finish by the 

pivot time, or 

• requires no more than min {currently idle processors, extra processors}. 

If such a job is found, the job is backfilled, i.e., the scheduler starts executing the job 

immediately; otherwise, the scheduler continues searching the list of queued jobs until either 

a job is backfilled or the search is exhausted. 

This process of backfilling exactly one job is repeated until all queued jobs have been 

considered for backfilling. Hence, the single-queue backfilling policy attempts to backfill 

as many jobs as possible until no more jobs can be backfilled. This basic single-queue 

aggressive backfilling algorithm, employed whenever a job is submitted to the system or 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 

whenever a job completes execution, is outlined in Algorithm 5.1. 

for (all jobs in queue) { 
pivot = first job in queue; 

} 

pivot time = time when sufficient processors will be available for pivot job; 
extra= idle processors at pivot time not required by pivot; 
if (job is pivot) { 

if (current time equals pivot time) 
start job immediately; 

} else { 

} 

if (job requires :::; currently idle procs and will finish by pivot time) 
start job immediately; 

else if (job requires :::; min{ currently idle procs, extra procs}) 
start job immediately; 

Algorithm 5.1: Basic single-queue aggressive backfilling algorithm 

93 

Single-queue aggressive backfilling ensures that once a job becomes the pivot, it cannot 

be delayed. A job may be delayed in the queue before becoming the pivot, but when the job 

reaches the front of the queue, the job is assigned a scheduled starting time. If a currently 

executing job finishes early, the pivot may begin executing earlier than its assigned starting 

time, but it will never begin executing after the assigned starting time. 

5.3.2 Multiple-Queue Backfilling Using Accurate Estimates 

Because the performance of any scheduling policy is sensitive to the transient nature of 

the impending workload, we propose a multiple-queue backfilling policy that permits the 

scheduler to quickly change parameters in response to workload fluctuations. Our goal is 

to decrease the average job slowdown by reducing the number of short jobs delayed in the 

queue behind longer jobs. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 94 

The multiple-queue backfilling policy splits the system into multiple disjoint partitions, 

with each partition assigned its own separate queue of jobs. The splitting is accomplished 

by classifying jobs and assigning them to one of the partitions according to job duration 

as described in Section 5.2.2.1. As jobs are submitted to the system, they are placed in 

the queue in exactly one of these partitions based on the user estimate of service time. Let 

te be the estimate (in seconds) of the service time of a submitted job. In the presence of 

accurate estimates, we advocate the use of four separate queues, one per job class (i.e., per 

system partition), and assign the job to the queue in partition p according to the following 

equation, consistent with the job classification presented in Section 5.2.2.1. 

{ 

1, 
2, 

p= 3, 
4, 

0 
100 

1000 
10000 

< te $ 
< te $ 
< te $ 
< te 

100 
1000 
10000 

for accurate te 

Note that the assignment of a job to a queue is based solely on the user estimate of job service 

time and not on the number of requested processors. Initially, the processors are distributed 

evenly among the partitions. As time evolves, processors may move from one partition to 

another (i.e., the partitions may contract or expand) so that currently idle processors in one 

partition can be used for immediate backfilling in another partition. Hence, as shown in 

Figure 5.4 the partition boundaries become dynamic, allowing the system to adapt itself to 

changing workload conditions. We stress that the policy does not starve a job that requires 

the entire machine for execution. When such a job is ready to begin executing (according 

to the job arrival order), the scheduler allocates all processors to the partition where the 

job is assigned. After the job completes, the processors will be redistributed among the 

partitions according to the ongoing processor demands of each partition. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 95 

8 8 8 8 ... lO 2 8 l2 

nnnn 
queue l queue 2 queue 3 queue 4 queue l queue 2 queue 3 queue 4 

Figure 5.4: An e.-'Carnple 32-processor system in which multiple-queue backfilling permits the four 
initial partition boundaries to adapt as workload conditions change 

The multiple-queue backfilling policy considers all queued jobs (one at a time, in the 

order of arrival regardless of queue). Similar to the single-queue backfilling policy, define 

the following: 

• idlep: the number of currently idle processors in partition p; 

• pivotp: the first job in the queue in partition p; 

• pivot-timep: the scheduled starting time for pivotp (i.e., the earliest time when suffi-

cient processors will be available for pivotp)i and 

• extra, : the number of idle processors in partition p at pivot-timep not required for 

pivotp. 

The sufficient processors available at pivot-timep consist of idlep and, if necessary, some 

combination of idle and/or extra processors from other partitions such that no other pivot 

that arrived earlier than pivotp is delayed. The assignment of a scheduled starting time to 

a pivot job will never delay any current pivot in another partition (i.e., any other pivot that 

arrived earlier), suggesting that the algorithm is deadlock-free. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 96 

The policy always attempts to backfill as many queued jobs as possible. In general, 

exactly one of these many jobs is backfilled as follows. Let p be the partition to which the 

job belongs. If the job is pivotp, the scheduler starts executing the job immediately only if 

the current time is equal to pivot-timep, in which case a new pivotp is defined appropriately. 

If the job is not pivotp, the scheduler starts executing the job immediately only if there are 

sufficient idle processors in partition p without delaying pivotp, or if the partition can take 

idle processors sufficient to meet the job's requirements from one or more other partitions 

without delaying any pivot. 

This process of backfilling one job is repeated, one job at a time in the order of arrival 

regardless of queue, until all queued jobs have been considered for backfilling. Hence, the 

multiple-queue backfilling policy attempts to backfill as many jobs as possible until no 

more jobs can be backfilled. This multiple-queue aggressive backfilling algorithm, employed 

whenever a job is submitted to the system or whenever a job completes execution, is outlined 

in Algorithm 5.2. 

5.3.3 Multiple-Queue Backfilling Using Inaccurate Estimates 

In the presence of inaccurate estimates, the four-part classification for multiple-queue back

filling suffers because short jobs can be unwittingly grouped with long jobs based on poor 

user estimates. As such, in this case we advocate the use of three separate queues to ac

count for user overestimates. Let te be the estimate (in seconds) of the service time of a 

submitted job. We assign the job to the queue in partition p according to the following 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 

for (all jobs in order of arrival) { 

} 

p = partition to which job is assigned; 
pivotp = first job in queue in partition p; 
pivot-timep =earliest time when sufficient procs (from this and perhaps other 

partitions) will be available for pivotp; 
extra, = idle processors in partition pat pivot-timep not used by pivotp; 
if Uob is pivotp) { 

if (current time equals pivot-timep) { 

} 

reassign procs (if required) from other partitions to partition p; 
start job immediately; 

} else { 

} 

if Uob requires ::; idlep and will finish by pivot-timep) 
start job immediately; 

else if Uob requires ::; min{idlep, extra,}) 
start job immediately; 

else if Uob requires ::; idlep plus some combination of idle/extra procs 
from other partitions such that no pivot is delayed) { 

reassign necessary procs from other partitions to partition p; 
start job immediately; 

} 

Algorithm 5.2: Multiple-queue aggressive backfilling algorithm. 

equation, consistent with the job classification presented in Section 5.2.2.2. 

{ 

1, 
p= 2, 

3, 

0 
1000 

10000 

1000 
10000 for inaccurate te 

97 

Additionally, with inaccurate estimates the four-part classification suffers because many 

jobs appear to crash. Table 5.2 shows the significant proportion of total jobs that have 

estimated run times greater than 1000 seconds but actual run times less than 180 seconds. 

As a result, many jobs with short actual service times but long estimates are inappropriately 

grouped with long jobs. Because the impact of queueing delay is much more profound on 

short jobs than long, a significant decline in the average job slowdown results. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 98 

Trace Total Jobs Crashed Jobs Proportion 
CTC 79302 12903 0.16 
KTH 28487 3000 0.11 
SP2 67665 15974 0.24 

Table 5.2: Proportions of (possibly) crashed jobs for three parallel workload traces 

To remedy this situation, we also employ speculative execution of jobs" to weed out a 

large proportion of crashed jobs [86]. If the estimated service time of a submitted job is 

greater than 1000 seconds (i.e., belongs to partition two or three), the job is immediately 

scheduled for speculative execution for a maximum of 180 seconds5 . If the job does not 

terminate within the allotted 180 seconds, the job is killed and is then placed into the 

queue in partition p (determined using the estimated service time) in increasing order of 

arrival time. Then, according to the multiple-queue backfilling policy, the job will be subject 

to future scheduling for its full estimated service time. 

5.3.4 Backfilling with Job Priorities and Reservations 

Scheduling jobs on a site that is part of a computational grid imposes additional challenges. 

The policy must cater to three classes of jobs: local jobs (parallel or sequential) that should 

be executed in a timely manner, jobs external to the site that do not have high priority 

(i.e., jobs that can execute when the system is not busy serving local jobs), and external 

jobs that require reservations (i.e., jobs that require resources within a very restricted time 

frame to be successful). 

·within the context of scheduling resources in a computational grid, we therefore sup-

·
1\Vithin the context of real systems, as a general rule jobs cannot be killed and restarted. Speculative 

execution can be used, howe..,·er, by permitting a user to flag a job as restartable (when appropriate) with 
the anticipation of improved slowdown. 

5 \Ve experimented with speculative e.."<ecution times from one to five minutes. Speculative execution for 
a ma."cimum of three minutes removes most of the jobs that appear to crash, as depicted in Table 5.2. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 99 

plement the single- and multiple-queue backfilling policies by considering static job priority 

levels and job reservations. 

• We consider jobs submitted by local users to have high priority and those jobs sub

mitted by external sources (i.e., from elsewhere in the computational grid) to have 

low priority. Our goal is to serve these external jobs as quickly as possible without 

inflicting delays on local jobs. 

• We assume that the system also serves jobs that require reservations. Our goal is to 

serve these jobs as close to the requested reservation time as possible regardless of the 

consequences on remaining jobs. 

5.3.4.1 Single-Queue Backfilling with Priorities 

Single-queue backfilling is modified to incorporate job priorities as follows. If a job being 

inserted into the queue has high priority, the job is placed into the queue after any queued 

high priority jobs that arrived before it. If the job has low priority, it is placed into the queue 

after all queued high priority jobs and after any queued low priority jobs that arrived before 

it. This queue ordering ensures that all high priority jobs are considered for backfilling 

before any low priority job. Note that a high priority job will immediately become the 

pivot if the current pivot has low priority; the displaced low priority pivot is placed into the 

queue in order of arrival. Also note that any job inserted into the queue after speculative 

execution will replace a pivot job of the same priority that has later arrival time. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 100 

5.3.4.2 Multiple-Queue Backfilling with Priorities 

Multiple-queue backfilling is modified to incorporate job priorities as follows. If a job is 

classified and assigned to partition p, the job is placed into the queue in partition p after 

any queued high priority jobs in partition p that arrived before it. If the job has low 

priority, it is placed into the queue in partition p after all queued high priority jobs and 

after any queued low priority jobs in partition p that arrived before it. The multiple-queue 

policy considers high priority jobs first for backfilling (in their order of arrival, regardless 

of partition) followed by low priority jobs (in their order of arrival, regardless of partition). 

Similar to the single-queue policy, a high priority job assigned to partition p will immediately 

become pivotp if the current pivotp has low priority; the displaced low priority pivotp is 

placed into the queue in partition p as described above. Also note that any job inserted 

into the queue in partition p after speculative execution will replace pivotp of the same 

priority if the latter has greater arrival time. 

5.3.4.3 Backfilling with Reservations 

Apart from job priorities, we also briefly describe here the inclusion of job reservations in 

both multiple-queue and single-queue backfilling. A user may schedule a reservation for 

future execution of a job if, for example, a dedicated environment is desired. Accordingly, 

when a request for a reservation is submitted, the scheduler determines the earliest time 

greater than or equal to the requested reservation time when the job can be serviced, and 

immediately schedules the job for execution at that time. For simplicity, we assume that 

once a job receives a reservation, the reservation will not be canceled nor can the time of 

the reservation be changed. Furthermore, we assume that all non-reservation jobs are of the 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 101 

same priority. Therefore, the process of backfilling with reservations in the single-queue and 

the multiple-queue policies remains as described before, with the exception that backfilling 

must respect all reservations. 

5.3.5 Scheduling Policies Summary 

In summary, both the single-queue and multiple-queue policies backfill jobs in order to 

exploit idle processors and reduce system fragmentation. Both policies ensure that once 

a job reaches the front of the queue, it cannot be delayed. However, by classifying jobs 

according to job length, the multiple-queue policy reduces the likelihood that a short job 

will be overly delayed in the queue behind a very long job. Additionally, because processors 

are permitted to cross partition boundaries, the multiple-queue policy can quickly adapt to 

a continuously changing workload. Unlike commercial schedulers that typically are difficult 

to parameterize, multiple-queue backfilling requires only an a priori definition of job classes, 

and then the policy automatically adjusts the processor-t~class allocations. 

5.4 Performance Analysis 

In this section, we evaluate via simulation the performance of the single-queue and multiple-

queue backfilling policies presented in the previous section. Our simulation experiments 

are driven using the four workload traces from the Parallel Workload Archive described 

in Section 5.2. From the traces, for each job we extract the job's arrival time. the user 

estimate of the job service time (if available), the actual job service time, and the number 

of requested processors. Because we do not use the job completion times from the traces, 

the scheduling strategies used on the corresponding systems are not relevant to our study. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 102 

Consequently, our experiments fully capture the fluctuations in job arrival rate and service 

demands. 

We consider aggregate performance measures, i.e., average statistics computed for all 

jobs for the entire experiment, and transient performance measures, i.e., snapshot statistics 

for batches of 1000 jobs that are plotted across the experiment time and illustrate how well 

the policy reacts to sudden changes in the workload. The performance measure of interest 

here is the job slowdown s defined by the equation 

d 
.s=l+-

1/ 

where d and v are respectively the average delay time and actual service time of a job6 • To 

compare the performance results of multiple-queue backfilling with standard single-queue 

backfilling, we also define the slowdown ratio 'R. by the equation 

where s 1 and sm are the single-queue and multiple-queue average slowdowns respectively7 • 

'R. > 0 indicates a performance gain obtained using multiple queues relative to a single 

queue; 'R. < 0 indicates a performance loss suffered using multiple queues relative to a 

single queue. 

6 Bounded slowdown [iS] is another popular performance measure. Because the performance of the two 
policies is qualitatively the same using either of the two measures, we omit performance results obtained for 
bounded slowdown. 

7 Because of the min{st, sm} term in the denominator, 1l is a fair, properly scaled measure of the perfor
mance that equally quantifies gain or loss experienced using multiple queues relative to a single queue. H 
we instead use sm (or st) in the denominator, we bias the measure toward gains (or losses). 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 103 

5.4.1 Bacldilling Policy Comparison Using Accurate Estimates 

We first compare the performance of the two backfilling policies using actual service times 

from the workloads as accurate estimates. Because the estimates are accurate, for the 

results in this section we compare the performance of multiple-queue backfilling (using the 

four-part classification described in Section 5.2.2.1) to single-queue backfilling, both without 

speculative execution. 

Figure 5.5 depicts the aggregate slowdown ratio R of multiple-queue backfilling relative 

to single-queue backfilling (computed using the average slowdown obtained using each pol

icy) for each of the four traces. Figure 5.5(a) depicts R for all job classes combined, while 

Figures 5.5(b)-(e) each depict 'R. for an individual job class. As shown in Figure 5.5(a), 

multiple-queue backfilling provides better overall average job slowdown (i.e., R > 0). With 

the exception of the extra-long job class, multiple-queue backfilling also provides better av

erage job slowdown within each of the individual job classes, as shown in Figures 5.5(b)-(e). 

By separating jobs into separate queues, a queued job competes directly only with jobs 

in the same queue for access to resources. Relative to using a single queue, short jobs 

therefore tend to gain access to resources more quickly, while long jobs tend to be delayed 

slightly. As a result, short jobs are assisted at the expense of long jobs using the multiple

queue policy, thereby improving the average job slowdown. Figures 5.5(b)-(e) confirm that, 

by splitting the system into multiple partitions, we manage to reduce the number of short 

jobs delayed behind extra-long jobs. Across all workloads, jobs belonging to all but the 

extra-long job class achieve significant performance gains. Extra-long jobs experience a 

decline in average slowdown, but the magnitude of decline is generally much less than the 



CH.4.PTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 104 

(a) All Classes 
1.6 

1.4 

.2 1.:?. 
;:; 
~ 
c 
:t 0.8 
0 
~ 

0.6 :t 
0 

(;i 0.4 

0.2 

0 
ere KTH PAR SP2 

(c) Class 2 ( 100 <time<= 1000) 
1.6 lA I 

I 
1.4 1.2 

I 

.5! 1.2 
;:; ;; 
~ 
c 

~ 
0.8 c 

:t 0.8 
0 
~ 

0.6 :t 
0 
(;i 0.4 

~ 
"5 0.6 
~ 

0.4 (;i 

0.2 0.2 

0 0 
CTC KTH PAR SP2 ere KTH PAR SP2 

(d) Class 3 (1000 < time <= 10000) (e) Class 4 (time> 10000) 
0.8 0 

0.7 -0.05 
0.6 

I 

.9 -0.1; ;:; 
0.5 

;; 
~ ~ -0.15 c 
:t 0.4 :; 
0 0 -0.2 ~ 

0.3 
~ 

:t :; 
0 ~ -0.25 (;i 0.2 

0.1 -0.3 

0 -0.35 
CTC KTH PAR SP2 CTC KTH PAR SP2 

Figure 5.5: Overall and per-class aggregate slowdown ratio 'R for each of the four traces. Using 
actual service times as accurate estimates. we compare multiple-queue backfilling (with four-part 
classification) to single-queue backfilling, both without speculative execution. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 105 

magnitude of improvement seen in the other job classes. 

Transient measures illustrate how well each policy responds to sudden arrival bursts. 

Furthermore, transient measures reflect the end-user perception of system performance, 

i.e., how well the policy performs during the relatively small window of time that the user 

interacts with the system. Figure 5.6 depicts transient snapshots of the slowdown ratio 

versus time for each of the four traces. For all traces, marked improvement (i.e., 'R. > 0) 

in slowdown is achieved using the multiple-queue backfilling policy. Although the single

queue policy gives better slowdown (i.e., 'R < 0) for a relatively few batches, multiple-queue 

backfilling excels with more frequent and larger improvements. 

5.4.2 Backfilling Policy Comparison Using Inaccurate Estimates 

We now compare the performance of the two backfilling policies using user-provided inaccu

rate estimates. For the results in this section, we compare the performance of multiple-queue 

backfilling (using the three-part classification described in Section 5.2.2.2) to single-queue 

backfilling, both employing speculative execution. 

Figure 5. 7 depicts the aggregate slowdown ratio 'R. of multiple-queue backfilling relative 

to single-queue backfilling for each of the four traces. Figure 5.7(a) depicts 'R. for all job 

classes combined, while Figures 5.7(b)-(d) each depict 'R. for an individual job class. As was 

the case with accurate estimates, multiple-queue backfilling provides better job slowdown 

(i.e., 'R. > 0) for all classes combined in the presence of inaccurate estimates, as shown 

in Figure 5.7(a). With the exception of the long job class in the two SDSC workloads, 

multiple-queue backfilling also provides better average job slowdown within each of the 

individual job classes, as shown in Figures 5.7(b)-(d). 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 106 

(a)CTC (b) KTII 
8 2 
7 
6 1.5 

0 s 0 
·~ 

4 
.i 

~ ~ 

= 3 = ~ ~ o.s 
0 2 0 
~ ~ 
~ ~ 0 0 .sa til 0 ~ 

-I -0.5 
-2 

-30 s 10 IS 20 25 30 3S .$() 4S -10 s 10 IS 20 25 30 3S 40 4S 
week week 

(e) PAR (d) SP2 
7 12 

6 10 
s 

0 .9 8 ·a 4 'a 
~ ~ 

~ 3 = 6 
~ 

0 2 0 4 ~ ~ 
~ ~ 
0 0 
til til 2 

0 

-I 0 

20 40 60 80 100 
week week 

Figure 5.6: Slowdown ratio 'R. per 1000-job submissions as a function of time for each of the four 
traces. Using actual service times as accurate estimates, we compare multiple-queue backfilling (with 
four-part classification) to single-queue backfilling, both without speculative execution. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 107 

(a) All Clas.'ies (b) Clas.'i 1 (time<= 1000) 
0.9 1.2 

0.8 

0 
0.7 

.5: ·a 0.6 ;;; 0.8 
ell: ell: 

= 0.5 = ~ ~ 0.6 
0 0.4 0 
'0 '0 
~ 

0.3 
;s; 

0.4 0 .2 ;;; 
0.2 

en 

0.2 
0.1 

0 0 
CTC KTH PAR SP2 CTC KTH PAR SP2 

(c) Class 2 ( 1000 <time <= 10000) (d) Class J (time> 10000) 
1.2 0.4 

0.3 
.52 .5: 
;;; 0.8 ;;; 
ell: ell: 0.2 = = ~ 0.6 $ 
0 0 
'0 '0 0.1 ~ $ 
0 0.4 0 
;;; ;;; 

0.2 0 

0 -0.1 
CTC KTH PAR SP2 CTC KTH PAR SP2 

Figure 5. 7: Overall and per-class aggregate slowdown ratio 'R for each of the four traces using 
inaccurate user estimates. Using user-prm.;ded inaccurate estimates. we compare multiple-queue 
bacldllling (with three-part classification) to single-queue backfilling, both employing speculative 
execution. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEAtfS 108 

Furthermore, Figure 5.8 depicts transient snapshots of the slowdown ratio versus time 

for each of the four traces. Again, noticeable improvement is achieved (i.e., 'R > 0) using 

multiple-queue backfilling. Notice that for a few batches, single-queue backfilling gives 

better performance, e.g., the two large negative spikes for the CTC workload. However, 

across time 'R is predominantly positive for all traces, corresponding to the performance 

gains depicted in Figure 5. 7. 

(a)CTC (b) KTII 
3 5 
2 4 

0 0 3 ·a 0 "i 
ell: ell: 2 = -I = ~ ~ 
0 -2 0 -a "0 
~ -3 3: 
0 0 

F;j F;j 0 
-4 
-5 -I 

-6 -2 
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 

wee It wee It 

(c) PAR (d)SP% 
40 8 
35 

6 
30 

.5! 0 
"i 25 ;:; 4 
ell: ell: 

= 20 = 
~ 3: 2 0 0 15 "0 -a 
~ 3: 
0 10 0 0 

F;j F;j 

5 
-2 

0 
-5 -4 

0 10 20 30 40 50 0 20 40 60 80 100 
weelt wee It 

Figure 5.8: Slowdown ratio 'R per 1000-job submissions as a function of time for each of the 
four traces. Using user-provided inaccurate estimates, we compare multiple-queue backfilling (\\ith 
three-part classification) to single-queue backfilling, both emplo)ing speculative execution. 

Because multiple-queue backfilling with speculative execution performs well given poor 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 109 

user estimates, and because workload analysis shows that users frequently overestimate 

job service times, henceforth we assume inaccurate estimates. For all figures to follow, we 

therefore compare multiple-queue backfilling using three-part classification to single-queue 

backfilling, both employing speculative execution. 

5.4.3 Backfilling Policy Comparison Under Heavy Load 

Most scheduling policies perform well under low system load because little, if any, queueing 

is present. To further evaluate multiple-queue backfilling, we now consider its performance 

under heavy system load when scheduling is more difficult. We impose a heavier system 

load than that of the trace by linearly scaling (reducing) subsequent interarrival times in 

the trace. Effectively, we linearly increase the arrival rate of jobs into the system. Note 

that with this modification, we preserve the statistical characteristics of the arrival pattern 

in the original trace, except that the same jobs now arrive "faster". 

Figure 5.9 again depicts the aggregate slowdown ratio 'R using multiple-queue backfilling 

relative to single-queue backfilling for each of the four workloads. For each workload, we 

display 'R. for the original arrival rate and for arrival rates multiplied by factors of 1.25 and 

1.50. In all figures, the multiple-queue and single-queue backfilling policies experience the 

same rate of arriving jobs. 

Consistent with the results presented in Figure 5. 7, multiple-queue backfilling provides 

better average job slowdown than single-queue backfilling for all job classes combined and 

for each individual job class (with the exception of the two SDSC workloads in the long job 

class) using the original arrival rates. When we increase the arrival rates, multiple-queue 

backfilling continues to provide better average job slowdown for all job classes combined 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 110 

4 

3.5 
0 3 "i 

Ill: 2.5 = ~ 2 0 .., 
~ 

1.5 0 
;;; 

0.5 

0 
CTC 

60 

50 
0 
'i 

40 ~ 

= ~ 30 0 .., 
~ 
0 20 ;;; 

10 

0 

CTC 

(al All Classes (b) Class I (lime<= 10001 

5 .---------------------------------, 

KTH PAR SPl 

(cl Clas..'i 2 (1000 < time <= 100001 

KTH PAR SPl 

4.5 
0 4 
~ 3.5 
= 3 
~ 2.5 
~ ., 
0 -
;;; 1.5 

I 
0.5 

0 
CTC 

n 
! I 

LLn 
u 

CTC 

Muluplicauve Increase tn Arnval Rale 

KTH PAR 

I d) Cla.'i..'i 3 Uimc > 100001 

KTH PAR 

~----~ r~· ... ~~~:~ 

1.00 1.25 1.50 

SP2 

SP2 

Figure 5.9: Overall and per-class aggregate slowdown ratio R for each of the four traces with 
increasing system load . .-\11 slowdown ratios are computed relative to single-queue backfilling under 
the same load. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 111 

(Figure 5.9(a)) and for the small and medium job classes (Figures 5.9(b) and (c)). Notice 

that as system load becomes heavier, backfilling become more difficult and a corresponding 

decrease in performance for class three jobs results. As discussed earlier, a queued job 

competes directly only with other jobs in the same queue so that short jobs tend to be 

scheduled more quickly and long jobs tend to be delayed slightly. Therefore, multiple-queue 

backfilling assists shorter jobs at the expense of long jobs, and a decline in the performance 

of the long job class is unavoidable (Figure 5.9(d)). 

5.4.4 Backfilling Policy Comparison Under Job Priorities 

We now consider policy performance within the context of scheduling as part of a compu-

tational grid by incorporating job priorities. We assume that jobs have one of two possible 

priorities. High priority jobs are local jobs, and therefore should be executed in a timely 

manner. Low priority jobs are jobs originating from an external source that can be serviced 

when the system is not occupied with local jobs. Our goal is for multiple-queue backfilling 

to provide performance gains for both priorities. 

We first consider a system in which a proportion 1-p = 0.25 of the total submissions are 

from an external source in the computational grid, i.e., p = 0. 75 of the total jobs are high 

priority. We select at random8 p = 0. 75 of the total jobs from the trace to be high priority 

jobs, so that the remaining 1 - p = 0.25 are low priority jobs. Figure 5.10 depicts the 

corresponding aggregate slowdown ratio R. of multiple-queue backfilling relative to single-

queue backfilling for each of the four traces. Figure 5.10{a) shows R. for all job classes 

8 The jobs selected at random are determined by the random number sequence as manifested b:r the choice 
of initial seed. \Vhile different initial seeds give slightly different results, the qualitative analysis remains the 
same - multiple-queue backfilling consistently outperforms single-queue backfilling. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 112 

combined, while Figures 5.10(b)-(d) each show 'R for an individual job class. For each 

trace, we also provide "R as computed for high priority jobs, for low priority jobs. and for 

both priorities combined. As shown in Figure 5.10(a), multiple-queue backfilling provides 

better average job slowdown than single-queue backfilling for all job classes combined. Also 

note that, with the exception of the long job class depicted in Figure 5.10( d), multiple-queue 

backfilling tends to perform better within each of the individual job classes. Again, because 

multiple-queue backfilling assists shorter jobs at the expense of long jobs, a decline in the 

performance of the long job class is unavoidable. 

Cal All Classes 
0.~5 

0.4 
0 0.35 ·a 

0.3 a: 
c 

0.25 " 0 ., 0.2 

" 0 0.15 ;,;; 
0.1 

0.05 

0 
CTC KTH PAR SP2 

(cl Clas.~ 2 (1000 < time <= 100001 

2r---------------------------~ 
i 
j 

J 

Jj 
I 

1.5 

0.5 

0 1 em tJ . 
-0.5 

CTC KTH PAK SP2 

All Jobs 

c 
~ .., 

0.9 
0.8 
0.7 
0.6 
0.5 

~ 0.~ f 
;,;; 0.3 

0.2 

(bl Class 1 Uime <= 10001 

0.1 r ;~; 
0 :__.__ "'""'----'-

ere KTH 

(d) Class J (lime > 100001 

" c.:.:_ 
SP2 

·• O::rt--------------------------~i 

~ 005~ J 1 
..,_: -0.0~ r, _..J] 0""13 ~c,/ 1 
cr. I I ·.· I 

~~;~ LJ . J 
' i -0.2 '-----------------------------' 

CTC KTH PAR SP2 

f . . .. . . ' . : ,, 
High Priority Low Priority 

Figure 5.10: Overall and per-class aggregate slowdown ratio R. for each of the four traces where 
p = 0.75 of the total jobs have high priority 

Notice that in many cases, the performance gains for low priority jobs are of greater 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 113 

magnitude than the gains for high priority jobs. These differences in magnitude are at

tributable to the fact that, because high priority jobs are given preferential treatment, both 

the multiple- and single-queue policies assist high priority jobs. The single-queue policy 

causes low priority jobs to suffer as a result of assisting the high priority jobs. However, 

because the multiple-queue policy effectively partitions jobs, multiple-queue backfilling im

proves slowdown for both priorities. 

Because a system that is part of a computational grid can experience dramatic changes 

in workload across time, we also consider the transient performance of multiple-queue versus 

single-queue backfilling under job priorities. Figure 5.11 depicts transient snapshots of the 

slowdown ratio versus time for each of the four traces where p = 0. 75 of the total jobs have 

high priority. Each figure shows slowdown ratio snapshots for high priority jobs and low 

priority jobs. Again, marked improvement in slowdown is achieved ('R > O) using multiple

queue backfilling. Although single-queue backfilling provides better slowdown ('R < O) for a 

few batches, 'R is positive for a majority of the batches corresponding to performance gains 

using multiple-queue backfilling. 

We also consider a system in which only 1 - p = 0.05 of the submissions are external, 

i.e., p = 0.95 of the total jobs have high priority. Figures 5.12 and 5.13 are analogous to 

Figures 5.10 and 5.11, except p = 0.95 of the total jobs have high priority. Again, we see 

that multiple-queue backfilling improves average job slowdown for all job classes combined 

and, with the exception of long jobs in the two SDSC workloads, for the individual job 

classes. Also note the larger vertical axis scales in Figure 5.12 corresponding to even larger 

performance gains than when p = 0.75 of the total jobs have high priority. 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 114 

5 

4 

3 

2 

0 

-1 

-2~~~--~~--~~~--~~~ 

25 

.2 20 ;:; 
Cl:: 
c 
::c 
.g 
::c 
0 

Vi 

15 

10 

5 

0 

0 5 10 15 20 25 30 35 40 45 
week 

(c) PAR 

-5~--~----~--~----~--~~ 
0 10 20 30 

week 
40 50 

High Priority 

3 

2 

0 

-1 

0 5 10 15 20 25 30 35 40 45 
week 

(d) SPZ 
s....------.----.--------.-----r---__,., 

4 

-1 

-2~--~----~----~--~----~ 
0 20 40 60 80 100 

week 

Low Priority 

Figure 5.11: Slowdown ration per 1000 job submissions as a function of time for high priority 
and low priority jobs for each of the four traces where p = O.i5 of the total jobs have high priority 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 115 

1.2 
0 ·a 

ell: 

i 0.8 
0 

1 0.6 
0 

en 0.4 

0.2 

0 

.'.5 

3 

0.5 

(a) All Clas..u~ 

ere KTH PAR SP2 

(c) Cla.'i..~ 2 (1000 <lime<= 100001 

0 t...._.=-.:..~....--l-

ere KTH PAR SP2 

All Jobs 

1.2 

0.8 

0.6 

0.4 

0.2 

0 

0.4 [ 

o.3 L 
0.2 I 

~ o.1 r 

l-o.~ ~ 
o I :;; -o.2 \ 

-o.3 r 
-Q.4 

ere 

(b) Class 1 (lime<= 1000) 

KTH PAR 

(d) Cla.'IS J Clime> 100001 

[)_ 

SP2 

1 

,
j. I i 
i 

. 

' -o.s....__ ______________ _,.J 

ere KTH PAR SP2 

!:,· ''\'">''~-'''<-':! 
High Prionty Low Pnonty 

Figure 5.12: Overall and per-class aggregate slowdown ratio R, for each of the four traces where 
p = 0.95 of the total jobs have high priority 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 116 

(a) ere (b) KTH 
4 12 

3 10 

.2 2 .2 8 ::; ::; 
~ ~ 

= = 6 
~ ~ 
0 .g "0 4 ~ ~ 
0 .9 Ci5 -1 til 2 

-2 0 
.·.: .. ·.· 

-3 -2 
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 

week week 

(c) PAR (d)SP2 
12 8 

10 7 

8 
6 

0 .2 
-~ '; 5 
~ 6 Cl:: 4 = = ~ 4 ~ 3 0 0 
"0 "0 
~ 2 ~ 2 -. 

.9 0 
til Cii 

0 
0 

-2 -1 
-4 -2 

0 10 20 30 40 50 0 20 40 60 80 100 
week week 

--------------------
High Priority Low Priority 

Figure 5.13: Slowdown ratio 1?, per 1000 job submissions as a function of time for high priority 
and low priority jobs for each of the four traces where p = 0.95 of the total jobs have high priority 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 117 

5.4.5 Backfilling Policy Comparison Under Reservations 

We further evaluate policy performance for scheduling within a computational grid by in-

corporating reservation requests. For each of the four traces, Figure 5.14 depicts the average 

job slowdown for all classes combined with proportions of 0.01. 0.05, and 0.25 of the total 

jobs requesting reservations. As shown, multiple-queue backfilling provides better average 

job slowdown for proportions of 0.01 and 0.05, and provides comparable slowdown for a 

proportion of 0.25. 

0.9 .--------------------, 

0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0 
-0.1 

0.. [L Q._ 
CTC KTH PAR SP2 

Proportion of Jobs Requesting Reservation 

c=J -0.01 0.05 0.25 

I 
I , 
' 

1 
l 

~ 
j 

J 
I 

I 
I 

Figure 5.14: Overall aggregate slowdown ratio R. for each of the four traces with proportions of 
0.01. 0.05, and 0.25 of the total jobs requesting reservations 

In addition. Table 5.3 shows the number of missed reservations for single-queue and 

multiple-queue backfilling for each of the four traces with proportions of 0.01. 0.05. and 

0.25 of the total jobs requesting reservations. Note that both policies miss roughly the same 

number of reservations. For a proportion of 0.25 of the total jobs requesting reservations, 

Figure 5.15 depicts for each trace the tail of the distribution of delays experienced by jobs 

requesting reservations. As shown. multiple-queue and single-queue backfilling achieve 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEAtiS 118 

Proportion of Number of Single-Queue Multiple-Queue 
Workload Reservations Reservations Missed Missed 

CTC 0.01 761 19 13 
0.05 3908 90 90 
0.25 19897 1396 1441 

KTH 0.01 273 9 12 
0.05 1421 45 38 
0.25 7178 567 546 

PAR 0.01 374 5 1 
0.05 1873 7 9 
0.25 9543 138 119 

SP2 0.01 652 54 46 
0.05 3349 294 250 
0.25 16968 4051 3983 

Table 5.3: Number of missed reservations for single- and multiple-queue backfilling with proportions 
of 0.01, 0.05, and 0.25 of the total jobs requesting reservations 

(a)CTC (b)KTH 
0.01 0.02 

"' 0.008 "' 0.016 
.c .c 
0 0 - -... 0.006 ... 0.012 0 0 
c c 
0 0 

"[o.~ ·e 0.008 t ~ 0.002 0.~ 

0 0 
10000 30000 50000 70000 90000 50000 I 00000 I 50000 200000 250000 

reservation delay reservation delay 

(c) PAll (d)SI'l 

0.003 

"' 
0.04 

.c 
"' 0 .c - 0 ... 

0.002 - 0.03 0 ... 
c 0 
0 c ·e 0 

&. ·e 0.02 

~ 0.001 &. 
0 
1!: 0.01 

0 0 
10000 30000 5ooo.1 70000 50000 150000 250000 350000 

resenration delay reservation delay 

Multiple-Queue Single-Queue 

Figure 5.15: Distribution tails of the delays experienced by jobs requesting reservations with a 
proportion of 0.25 of the total jobs requesting reservations 



CHAPTER 5. JOB SCHEDULING IN PARALLEL SYSTEMS 119 

roughly the same distribution for reservation delays. Although we cannot claim signifi

cant improvement relative to the number of missed reservations and the distribution of 

reservation delays, multiple-queue backfilling performs as well as single-queue backfilling. 

5.4.6 Policy Comparison Summary 

The comparison results in the previous sections provide strong evidence that the multiple

queue backfilling policy outperforms the standard single-queue backfilling policy. In the case 

of accurate user estimates, our four-part classification alone is sufficient for the multiple

queue policy to achieve better average job slowdown. In the case of inaccurate estimates, 

our three-part classification coupled with speculative execution of jobs provides better slow

down. In addition, we have shown that multiple-queue backfilling performs even better 

under heavy system load. We have also shown multiple-queue backfilling to be a robust 

scheduling policy for systems within a computational grid, providing improved slowdown 

under job priorities and reservations. Consequently, because of its ability to automatically 

adapt to changing workload conditions, because of its robustness, and because of its evi

dent performance benefits, we claim multiple-queue backfilling to be superior to standard 

single-queue backfilling. 



Chapter 6 

Suminary and Future Work 

In this dissertation, we presented work based on an artificial society simulation model. In 

this model, new rules can be easily added and modified to simulate a variety of behaviors. 

By systematically perturbing the set of input parameters, we can scientifically evaluate the 

output that results from carefully controlled initial conditions. Hence, this area of study 

contains an essentially unlimited number of research topics of interest. However, in the 

work presented here, we restricted ourselves to the study of time evolution of the model 

and the corresponding simulation issues that arise as a result of the implementation. 

In Chapter 2, we carefully defined a representative artificial society simulation model 

based on a model taken from the social sciences literature. For the sake of simplicity, we 

included only a subset of the possible rules, but modified the included rules to be more 

realistic. We also described in detail the two options available for time evolution of the 

model: synchronous and asynchronous time evolution. 

In Chapter 3, we provided results from our artificial society simulation model showing 

that very different behavior can result based solely on the choice of asynchronous or syn

chronous time evolution. Through systematic experimentation, we showed that different 

behavior can be observed for a variety of model parameters and initial conditions. 

120 



CHAPTER 6. SUMMARY AND FUTURE WORK 121 

In Chapter 4, we showed that the next-event simulation approach required to incorporate 

asynchronous time evolution into the model can lead to prohibitive execution times unless 

implemented properly. Based on other authors' suggestions from previous event list and 

priority queue research, we presented results showing that acceptable computational per

formance can be achieved, and made suggestions for appropriate event list implementations 

for artificial society models. 

In Chapter 5, we showed that, like the artificial society model, scheduling resources in a 

parallel system also benefits by transforming from a synchronous to an asynchronous system. 

We described in detail a new multiple-queue backfilling scheduling policy that partitions 

the system based on job service estimates. We presented results showing that our policy 

outperforms the standard single-queue policy using accurate or inaccurate estimates. Our 

policy also excels in the presence of job priorities, and is robust even with job reservations. 

In conclusion, the following topics are potential extensions to the work presented in this 

dissertation. 

• Parallel simulation: Because of the limited computing and memory constraints of 

uniprocessor machines, parallel simulation of artificial society models is required for 

very large models. A direct consequence of parallelization is improved execution time. 

Previous work in this area concentrated on distributed memory implementations. We 

would like to explore parallelization in the context of shared memory and study the 

potential speedups for our artificial society simulation model. 

• Other models of interest: We would also like to explore the topics discussed in this 

dissertation within artificial society models from other applications. Because of the 



CHAPTER 6. SUMMARY AND FUTURE WORK 122 

popularity of agent-based simulation, there are many interesting models from which we 

can choose in order to examine the effects of time evolution and associated simulation 

issues. 

• Extend multiple-queue backfilling: Additional avenues of study in this area include 

priority aging of jobs and further evaluation of the job partitioning policy and its 

parameters. We would also like to investigate multiple-queue backfilling in systems of 

heterogeneous processors and clusters of processors. 



Appendix A 

Random Variable Models 

The material in this appendix, taken directly from (82], summarizes those continuous and 

discrete random variable models used in our artificial society discrete event simulation 

model. For each random variable X, we define the set of possible values of X, the probabil-

ity density function (pdf) of X, and the mean and standard deviation of X 1• The code used 

to generate realizations of these random variables is provided at the end of this appendix. 

A.l Uniform 

The continuous random variable X is Uniform (a, b) if 

• the real-valued parameters a, b satisfy a < b 

• the possible values of X are X= {x I a< x < b} 

• the probability density function of X is 

1 
f(x) =

b-a 
a<x<b 

1In the definitions to followT the use of p to represent the mean and the use of u to represent the standard 
deviation is consistent \\ith conventional statistical notation and is not to be confused \\ith the p and u 
notations from Chapter 2. 

123 



APPENDIX A. RANDOM VARIABLE MODELS 

as illustrated in Figure A.1 

f(x) J 
X 

a b 

Figure A.l: Probability density function of a Uniform(a,b) random variable 

• the mean of X is 

• the standard deviation of X is 

A.2 Exponential 

1 
11=-(a+b) 

2 

b-a 
a=--

M 

The continuous random variable X is Exponential (11) if 

• the real-valued parameter 11 satisfies 11 > 0 

• the possible values of X are X = { x I x > 0} 

• the probability density function of X is 

1 
f(x) = -exp(-x/11) 

11 

as illustrated in Figure A.2 

x>O 

124 



APPENDIX A. RANDOM VARIABLE MODELS 

f(x) 

0 X 

Figure A.2: Probability density function of an Exponential(Jl) random variable 

• the mean of X is I' 

• the standard deviation of X is 

A.3 Equilikely 

The discrete random variable X is Equilikely (a, b) if if 

• the parameters a, b are integers with a < b 

• the possible values of X are X = {a, a + 1, ... , b} 

• the probability density function of X is 

1 
f(x) = b-a+ 1 x =a, a+ 1, ... , b 

as illustrated in Figure A.3 

• the mean of X is 

a+b 
J'=--

2 

125 



APPENDIX A. RANDOM VARIABLE MODELS 127 

• the standard deviation of X is 

a= vfp(l-p} 

A.5 Random Variate Generator Code 

A random variate is an algorithmically generated realization of a random variable. Here we 

provide C code, written by Steve Park and David Geyer [82], to generate random variates of 

the corresponding random variable models presented above. Each random variate generator 

makes use of a function Random() that produces a real-valued number between 0.0 and 1.0. 

Random() is an implementation of a Lehmer generator for architectures that support 32-

bit two's complement arithmetic. In addition, by using the function SelectStreamO, each 

stochastic component in the artificial society simulation model is allocated one of256 disjoint 

streams of random numbers. Such disjoint streams provide a unique source of randomness 

for each stochastic component. The function Plant Seeds () can be used to set the initial 

random number seed for the collection of streams. 

#define MODULUS 2147483647 
#define MULTIPLIER 48271 
#define CHECK 
#define STREAMS 
#define A256 
#define DEFAULT 

399268537 
256 I• # of streams •I 
22925 I• jump multiplier •I 
123456789 I• initial seed, use 0 < DEFAULT < MODULUS •I 

static long seed[STREAMS] = {DEFAULT}; I• current state of each stream •I 
static int stream = 0; I• stream index, 0 is the default •I 
static int initialized = 0; I• test for stream initialization •I 



APPENDIX A. RANDOM VARIABLE MODELS 128 

double Random(void) 
I• =================================================================== 

{ 

• Random returns a pseudo-random real number uniformly distributed 
• betveen 0.0 and 1.0. 
• =================================================================== •I 

const long Q = MODULUS I MULTIPLIER; 
const long R = MODULUS % MULTIPLIER; 

long t; 

t =MULTIPLIER • (seed[stream]% Q) - R • (seed[stream] I Q); 
if (t > 0) 

seed[stream] = t; 
else 

seed[stream] = t + MODULUS; 
return ((double) seed[stream] I MODULUS); 

} 

void PlantSeeds(long x) 
/• ===================•=======z==z==========z========================== 

{ 

• Use this (optional) function to set the state of all the random 
• number generator streams by "planting" a sequence of states (seeds), 
• one per stream, vith all states dictated by the state of the default 
• stream. The sequence of planted states is separated one from the 
• next by 8,367,782 calls to Random(), 
* ===================================================================z •I 

const long Q = MODULUS I A256; 
const long R = MODULUS % A256; 

int j; 
int s; 

initialized = 1; 
s = stream; 
SelectStream{O); 
PutSeed(x); 

I• remember the current stream •I 
I• change to stream 0 •I 
I• set seed[O] •I 

stream = s; I• reset the current stream •I 
for (j = 1; j < STREAMS; j++) { 

x = A256 • (seed[j- 1]% Q)- R • (seed[j- 1] I Q); 
if (x > 0) 

seed[j] = x; 
else 

seed[j] = x + MODULUS; 
} 

} 



APPENDIX A. RANDOM VARIABLE }(!ODELS 129 

void SelectStream(int index) 
I• ======================================================================= 

• Use this (optional) function to set the current random number generator 
• stream -- that stream from which the next random number will come. 
• ======================================================================= 
•I 

{ 

} 

if ((initialized== 0) tt (index != 0)) { 
initialized= 1; 
PlantSeeds(DEFAULT); 

} 

stream = ((unsigned int) index) 1. STREAMS; 

double Uniform(double a. double b) 

I• protect against •I 
I• un-initialized streams •I 

I• =========================================================== 
• Returns a uniformly distributed real number between a and b. 
• NOTE: use a < b 
• =========================================================== 
•I 

{ 

return (a+ (b- a) • Random()); 
} 

double Exponential(double m) 
I• ========================================================= 

• Returns an exponentially distributed positive real number. 
• NOTE: use m > 0.0 
• ========================================================= 
•I 

{ 

return (-m • log(l.O- Random())); 
} 

long Equilikely(long a. long b) 
I• =========--===================================~==========--========== 

• Returns an equilikely distributed integer between a and b inclusive. 
• NOTE: use a < b 
• =================================================================== 
•I 

{ 

return (a+ (long) ((b- a+ 1) • Random())); 
} 



APPENDIX A. RANDOM VARIABLE MODELS 

long Bernoulli(double p) 
I• ======================================================== 

• Returns 1 vith probability p or 0 vith probability 1 - p. 
* NOTE: use 0.0 < p < 1.0 
• ======================================================== 
•I 

{ 

return ((Random()< (1.0- p))? 0 1); 
} 

130 



Appendix B 

Related Si~nulation Models 

In this appendix, we provide results from models similar to our artificial society model to 

further support our claim that the time evolution of a model can have a dramatic effect on 

the output. We replicate results from two different cellular automata based models without 

agents to demonstrate that, similar to time evolution in the artificial society model, very 

different results in output can be obtained by updating cells in an asynchronous, rather 

than a synchronous, manner. 

B.l Soil Erosion Model 

We consider the soil erosion model described in Section 9.5 of (105] used to study the 

relationship between land development and erosion occurring as a result of the development. 

The goal is to deterministically develop as much land as possible without causing the land 

to collapse by erosion from over-development. 

The landscape is a tw<rdimensional X x Y cellular automaton in which each (x, y) cell 

represents a plot of land. Each cell in the landscape can be in exactly one of two possible 

states, either undeveloped or developed. An undeveloped cell may become developed, but 

131 



APPENDIX B. RELATED SIMULATION MODELS 132 

once a cell has become developed, it cannot revert back to an undeveloped state, i.e., there 

is no land reclamation in the model. 

Two separate processes may cause an undeveloped cell to become developed. One 

of these processes simulates the intentional development of a landscape cell by human 

action. The second process simulates the natural erosion of a landscape cell that results 

from over-development of neighboring landscape cells by humans. To model each process, 

a deterministic rule is applied on a cell-by-cell basis across the landscape. The develop 

rule, which simulates intentional land development, and the stabilize rule, which simulates 

erosion, are defined as follows. 

• Stabilize Rule: An undeveloped cell is considered "stable" and will remain undevel

oped provided there is an undeveloped cell within the nine-cell Moore neighborhood 

somewhere to the north (any of the northwest, north or northeast positions), some

where to the south, somewhere to the west, and somewhere to the east; otherwise 

the undeveloped cell is considered "loose" and will become developed as a result of 

erosion. 

• Develop Rule: An undeveloped cell is considered safe for intentional development 

provided there is an undeveloped cell at each position to the immediate north, south, 

west, and east; otherwise the undeveloped cell cannot be developed. 

We adopt periodic boundary conditions so that each cell is the center of its own nine-cell 

Moore neighborhood. 

Figure 8.1 shows the effect of the stabilize rule on the center cell for three nine-cell 

Moore neighborhood examples. Undeveloped cells are white; developed cells are shaded. 



APPENDIX B. RELATED SIMULATION MODELS 133 

The undeveloped center cells in Figure B.l(a) and (b) are stable and will therefore remain 

undeveloped when the stabilize rule is applied to the landscape. Because there is no unde-

veloped cell to the west, the undeveloped center cell in Figure B.l(c) is unstable and will 

become developed (i.e., erode) when the stabilize rule is applied. 

Stable 

? 

(a) 

Stable 
...... ······· ............. .... .. ..... .. ······· ..... . ······ ······· 

~:~:~:~:~:~:~ :~:~:~:~:~:~: 

? 
.. . . . . . . . . ........... . . . . . . . . . . . . . ····· ...... . ....... ..... . 

:~:~:):): ~:~:~:~:):: 

(b) 

Figure B.l: Effect of stabilize rule on center cell 

Loose 

? 

(c) 

Figure B.2 shows the effect of the develop rule on the center cell for two nine-cell Moore 

neighborhood examples. The undeveloped center cell in Figure B.2(a) is considered safe 

for development and will become a developed cell when the develop rule is applied to the 

landscape. Because there is a developed cell to the immediate north, the undeveloped center 

cell in Figure B.2(b) is unsafe for development and will remain an undeveloped cell when 

the develop rule is applied. 

Safe Unsafe 

? ? 

(a) (b) 

Figure B.2: Effect of develop rule on center cell 

All cells are initially undeveloped except for a small proportion p of cells selected at 



APPENDIX B. RELATED SIMULATION MODELS 134 

random that are developed. The evolution of the landscape occurs as a three-step process. 

• The landscape is stabilized via repeated application of the stabilize rule until there is 

no change in the state of any cell. 

• Provided there are remaining undeveloped cells, the develop rule is applied to the 

landscape to deterministically develop as many undeveloped cells as possible. 

• The landscape is again stabilized via repeated application of the stabilize rule until 

there is no change in the state of any cell. 

The final stabilization step causes the landscape to either achieve a stable configuration 

with p < 1.0, or to completely erode, in which case p = 1.0. 

The develop rule can be applied to the landscape either synchronously or asynchronously1• 

In this context, synchronous updating involves applying the rule to all cells simultaneously 

in parallel so that a change in the state of any cell is not realized by other cells. Two 

copies of the landscape are maintained to achieve this parallelism. One copy is the land-

scape before the develop rule is applied. The decision of whether to develop a cell is based 

on state information of the cells using this copy. The second copy contains the updated 

state information of the cells after the develop rule is applied. For an X x Y landscape, 

synchronous application of the develop rule is shown in Algorithm B.L 

Asynchronous updating is characterized by applying the develop rule in sequence to 

(x, y) cells selected at random, without replacement. For each application of the develop 

nue to an (x, y) cell, the landscape is appropriately updated so that subsequently selected 

1 Because the stabilize rule is applied repeatedly until no cell changes state, the discussion of asynchronous 
or synchronous application is not relevant to the stabilize rule. 



APPENDIX B. RELATED SIMULATION MODELS 

while ( no change in the state of any cell ) 
for (x = 0; x <X; x++) 

for (y = 0; y < Y; y++) 
Stabilize{x, y); 

for (x = 0; x <X; x++) 
for (y = 0; y < Y; y++) 

Develop{x, y); /* in parallel using two landscape copies *I 

while ( no change in the state of any cell ) 
for (x = 0; x <X; x++) 

for (y = 0; y < Y; y++) 
Stabilize(x, y); 

Algorithm B.l: Develop Rule algorithm- synchronous application 

135 

cells will recognize any change in state from previously selected cells. Therefore, only one 

copy of the landscape is required for asynchronous application of the develop rule. For an 

X x Y landscape, asynchronous application of the develop rule is Algorithm 8.2. 

while ( no change in the state of any cell ) 
for (x = 0; x <X; x++) 

for (y = 0; y < Y; y++) 
Stabilize(x, y); 

while ( there remain cells to be selected ) { 

} 

select an (x, y) cell at random, without replacement; 
Develop(x, y); /* in sequence using one landscape copy* I 

while ( no change in the state of any cell ) 
for (x = 0; x < X; x++) 

for (y = 0; y < Y; y++) 
Stabilize(x, y); 

Algorithm 8.2: Develop Rule algorithm - asynchronous application 

Replicating the results from (105] verifies that very different output can be observed if 

the develop rule is applied asynchronously rather than synchronously. As a specific example, 



APPENDIX B. RELATED SIMULATION MODELS 136 

consider an X x Y = 50 x 50 landscape with p = 0.17 initially developed cells selected at 

random, as shown in Figure B.3(a)2 • This initial configuration results in p = 0.19 developed 

cells after the first application of the stabilize rule, as shown in Figure B.3(b). 

(a) Initial p = 0.17 development (b) p = 0.19 after first stabilize rule 

Figure 8.3: Example 50 x 50 landscape to be developed 

Synchronous application of the develop rule to the landscape in Figure B.3(b) produces 

p = 0.58 developed cells, and when the stable rule is reapplied, the landscape completely 

erodes as illustrated in Figure 8.4. However, asynchronous application of the develop rule 

produces p = 0.39 developed cells, and when the stable rule is reapplied, the landscape 

maintains a stable configuration of p = 0.39 developed cells as illustrated in Figure 8.5. 

Admittedly, this is an extreme example, but it emphasizes our claim that results can be 

very sensitive to the choice of synchronous or asynchronous updatingl. 

21n Figures 8.3 - 8.5, undeveloped cells are green and developed cells are black. 
3 For both synchronous and asynchronous application of the develop rule, the final proportion of developed 

cells is dependent on the random variate sequence that };etds the initial proportion of developed cells, as 
determined by the choice of the initial seed. For asynchronous application, the final proportion of developed 
cells is also dependent on the random variate sequence of (x, y) cells selected for updating, also determined 
by the choice of initial seed. We use 123456789 as the initial seed for the results shown. We observe nearly 
identical results for other initial seeds. 



APPENDIX B. RELATED SIMULATION MODELS 137 

(a) p = 0.58 after develop rule (b) p = 1.00 after final stabilize rule 

Figure 8.4: Synchronous application of the develop rule to Figure B.3(b) 

(a) p = 0.39 after develop rule (b) p = 0.39 after final stabilize rule 

Figure 8.5: Asynchronous application of the develop rule to Figure B.3(b) 



APPENDIX B. RELATED SIMULATION MODELS 138 

B.2 Prisoners' Dilemma Model 

We now consider the long-standing Prisoners' Dilemma model [3] for studying the evolution 

of cooperative behavior. As in [80], we extend the model to two dimensions by representing 

the landscape as an X x Y cellular automaton. In this model, each (x, y) cell assumes one 

of two possible states, either cooperator or defector. The dilemma is an encounter between 

two neighboring cells in which payoffs are awarded according to the states of the cells. The 

payoff p to cell (x1, yt) interacting with cell (x2, Y2) is defined by Table 8.1, where T, R, P, 

and S are parameters with S ~ P < R < T. 

defector 
cooperator 

defector 
cooperator 

cooperator 
cooperator 

defector 
defector 

p 

T 
R 
p 

s 
Table 8.1: Payoff p to cell (x1, yt) encountering cell (x2, Y2) 

Similar to the soil erosion model, the encounter between cells can be applied in a syn-

chronous or asynchronous manner. The synchronous application of the Prisoners' Dilemma 

proceeds as follows. Each cell totals the payoffs from interactions with each of the cells in 

its nine-cell Moore neighborhood, including an interaction with itself. Once all cells have 

accumulated their payoffs, the state of each ( x, y) cell then becomes the state of the cell with 

the largest total payoff within (x, y)'s neighborhood. This sequence of events, constituting 

one time step, continues indefinitely or until there is no change in the landscape. For an 

X x Y landscape, the dilemma evolves synchronously according to Algorithm 8.3. 

To replicate the results from [80], we use non-periodic boundary conditions on an X x 



APPENDIX B. RELATED SIMULATION A-!ODELS 

while ( no change in the state of any cell ) { 
for (x = 0; x <X; x++) 

} 

for (y = 0; y < Y; y++) 
SumPayoffs(x, y); 

for (x = 0; x <X; x++) 
for (y = 0; y < Y; y++) 

EvaluateState(x, y); /* in parallel using two landscape copies * / 

Algorithm B.3: Prisoners' Dilemma algorithm - synchronous application 

139 

Y = 99 x 99 landscape so that cells on the border have fewer neighbors than those in the 

interior. A nine-cell Moore neighborhood is used, and the payoff parameters areS= P = 0, 

R = 1, and T = 1.9. 

If the landscape is updated synchronously, two copies of the landscape are required to 

apply the dilemma to all cells simultaneously in parallel. Any change in the state of a cell 

does not affect other cells until the next time step. Starting with an initial configuration 

of a sole defector in the middle surrounded by all cooperators, as shown in Figure 8.6(a), 

an "evolutionary kaleidoscope" evolves after t = 30 time steps, as shown in Figure 8.6(b)4 • 

Successive time steps continue to produce varied symmetrical patterns. 

Asynchronous application of the Prisoners' Dilemma is characterized by applying the 

dilemma in sequence to (x, y) cells selected at random, without replacement. At timet= 0, 

initial payoffs are computed for each cell in the landscape. An (x, y) cell is then selected 

at random, and its state becomes the state of the cell with the largest payoff in (x, y)'s 

neighborhood. Any payoffs for cells affected by the possible change in state of cell (x, y) are 

4 Consistent with [80], in Figures 8.6 and 8.7, blue corresponds to a cooperator cell that was a cooperator 
in the previous time step, red corresponds to a defector following a defector, green to a cooperator following 
a defector, and yellow to a defector follo\\oing a cooperator. 



APPENDIX B. RELATED SIMULATION MODELS 140 

{a) Initial configuration {b) Generation t = 30 

Figure 8.8: Synchronous application of the Prisoners' Dilemma 

recomputed. Another (x, y) cell is selected at random and the process is repeated. One time 

step is complete when all cells in the landscape have been selected and updated. Hence, 

only one copy of the landscape is required. The dilemma evolves asynchronously according 

to Algorithm 8.4. 

vhile ( no change in the state of any cell } { 
do { 

} 

for (x = 0; x < X; x++} 
for (y = 0; y < Y; y++} 

if (any payoff for (x, y} needs recomputing} 
SumPayoffs(x, y}; 

select an (x, y) cell at random, without replacement; 
EvaluateState(x, y); /* in sequence using one landscape copy*/ 

} vhile ( there remain cells to be selected ); 

Algorithm 8.4: Prisoners' Dilemma algorithm- asynchronous application 

Similar to the results in (51], kaleidoscopic patterns no longer emerge if we update the 



APPENDIX B. RELATED SIMULATION MODELS 141 

landscape asynchronously. For the initial configuration given in Figure B.6(a), Figure B.7 

shows the landscape after t = 30 time steps using asynchronous updatinlf. Notice that, un-

like with synchronous updating, there is a majority of defectors and there are no symmetrical 

patterns. After only a few more time steps, the landscape achieves a stable configuration 

of all defectors. These results provide further evidence that asynchronous updating may 

be desirable because synchronous updating can "introduce spurious, undesired symmetries" 

[105]. 

Figure 8.7: Asynchronous application of the Prisoners' Dilemma, t = 30 

5 1n the asynchronous case, the resulting configuration is dependent on the random variate sequence of 
(x, y) cells selected for updating, as detennined by the choice of initial seed. We use 123456789 as the initial 
seed for the results shown. 



Bibliography 

(1) MATTHEW H. AUSTERN. Generic Programming and the STL: Using and Extending 
the C++ Standard Template Library. Addison-Wesley, 1999. 

[2] ROBERT AXELROD. The Complexity of Cooperation. Princeton University Press, 
Princeton, NJ, 1997. 

(3) ROBERT AXELROD AND WILLIAM D. HAMILTON. The evolution of cooperation. 
Science, 211:1390-1396, March 1981. 

(4) ROBERT AXTELL, ROBERT AXELROD, JOSHUA M. EPSTEIN, AND MICHAEL D. 
COHEN. Aligning simulation models: A case study and results. Computational and 
Mathematical Organization Theory, 1:123-141, 1996. 

[5] PER BAK AND K. CHEN. A forest-fire model and some thoughts on turbulence. 
Physics Letters A, 147(5-6):297-299, 1990. 

[6] PER BAK AND CHAO TANG. Earthquakes as a self-organized critical phenomenon. 
Journal of Geophysical Research, 94(Bl1):15635-15637, November 1989. 

(7) JERRY BANKS, JOHN S. CARSON II, BARRY L. NELSON, AND DAVID M. NICOL. 
Discrete-Event System Simulation. Prentice Hall, third edition, 2001. 

[8) B. BODE, D.M. HALSTEAD, R. KENDALL, AND Z. LEI. The Portable Batch Sched
uler and the Maui scheduler on Linux clusters. In Proceedings of the 4th Annual Linux 
Showcase and Conference, pages 217-224, Atlanta, GA, October 2000. 

(9) ERIC BONABEAU, GUY THERAULAZ, AND JEAN-LOUIS DENEUBOURG. The synchro
nization of recruitment-based activities of ants. Santa Fe Institute Working Paper 
98-01-002, Santa Fe, NM, January 1998. 

[10] RANDY BROWN. Calendar queues: A fast 0(1) priority queue implementation for 
the simulation event set problem. Communications of the ACM, 31(10):122Q-1227, 
October 1988. 

[11] C. H. BurLDER AND S.C. BANKES. Artificial Societies: A concept for basic research 
on the societal impacts of information technology. R.4ND Report P-7740, 1991. 

[12] ROGER BURKHART. The Swarm multi-agent simulation system. Position paper for 
OOPS LA '94 Workshop on 'The Object Engine', 1994. 

142 



BIDLIOGRAPHY 143 

[13] ROGER BURKHART. Schedules of activity in the Swann simulation system. Position 
paper for OOPSLA '97 Workshop on 00 Behavioral Semantics, 1997. 

[14] Arthur W. Burks, editor. Essays on Cellular Automata. University of Illinois Press, 
Urbana, IL, 1970. 

(15) S.H. CHIANG, R.K. MANSHARAMANI, AND M.K. VERNON. Use of application char
acteristics and limited preemption for run-to-completion parallel processor scheduling 
policies. In Proceedings of the 1994 AC.M S/Gk!ETRICS Conference on Measurement 
and k!odeling of Computer Systems, pages 33-44, 1994. 

[16] S.H. CHIANG AND M.K. VERNON. Production job scheduling for parallel shared 
memory systems. In Proceedings of the International Parallel and Distributed Pro
cessing Symposium 2001 (IPDPS 2001), San Francisco, CA, April 2001. 

[17] J. CoRBALAN AND J. LABARTA. Performance-driven processor allocation. In Pro
ceedings of the Fourth Symposium on Operating Systems Design and Implementation 
(OSDI), pages 59-72, San Diego, CA, October 2000. 

(18) J. CORBALAN, X. MARTORELL, AND J. LABARTA. Improving gang scheduling 
through job performance analysis and malleability. In Proceedings of the Interna
tional Conference on Supercomputing 2001, pages 303-311, Sorrento, Italy, 2001. 

(19] PAUL DAVIDSSON. Agent based social simulation: A computer science view. Journal 
of Artificial Societies and Social Simulation, 5(1), January 2002. 

(20} E. DEELMAN AND B.K. SZYMANSKI. Simulating Lyme disease using parallel discrete 
event simulation. In Proceedings of the 1996 Winter Simulation Conference, J.M. 
Charnes, D.J. Morrice, D.T. Brunner, and J.J. Swain, editors, pages 46-53, 1996. 

(21} E. DEELMAN AND B.K. SZYMANSKI. Breadth-first rollback in spatially explicit sim
ulations. In Workshop on Parallel and Distributed Simulation (PADS 'g7), pages 
124-131. IEEE, 1997. 

(22} E. DEELMAN AND B.K. SZYMANSKI. Dynamic load balancing in parallel discrete 
event simulation for spatially explicit problems. In Workshop on Parallel and Dis
tributed Simulation (PADS '98}, pages 46-53. IEEE, 1998. 

(23} J ORDI DELGADO AND RICHARD V. SOLE. Self-synchronization and task fulfillment 
in social insects. Santa Fe Institute Working Paper 98-08-069, Santa Fe, NM, August 
1998. 

(24} Jacques Demongeot, Eric Goles, and M. Tchuente, editors. Dynamical Systems and 
Cellular Automata. Academic Press, London, 1985. 

[25} CATHERINE DIBBLE. Theory in a complex world: Agent-based simulations of geo
graphic systems. In First International Conference on GeoComputation, Leeds, UK, 
September 1996. 



BIBLIOGRAPHY 144 

(26] DOUGLAS D. DONALSON AND ROGER M. NISBET. Population dynamics and spatial 
scale: Effects of system size on population persistence. Ecology, 80(8), 1999. 

[27) JOSHUA M. EPSTEIN. Zones of cooperation in demographic Prisoner's Dilemma. 
Santa Fe Institute Working Paper 96-06-042, Santa Fe, NM, December 1997. 

[28) JOSHUA M. EPSTEIN AND ROBERT AXTELL. Growing .4rtificial Societies. Brookings 
Institution Press, Washington, D.C., 1996. 

[29) DROR G. FEITELSON. Metrics for parallel job scheduling and their convergence. 
In Proceedings of the Seventh Workshop on Job Scheduling Strategies for Parallel 
Processing, D. G. Feitelson and L. Rudolph, editors, volume 2221 of Lecture Notes in 
Computer Science, pages 188-206. Springer-Verlag, 2001. 

[30) Parallel Workload Archive. http: I /wvv. cs .huj i. ac. il/labs/parallel/workload/. 

[31) GEORGE S. FISHMAN. Principles of Discrete Event Simulation. Wiley-Interscience, 
1978. 

[32) WILLIAM R. FRANTA AND KURT MALY. A comparison of heaps and the TL structure 
for the simulation event set. Communicat:ons of the ACM, 21(10):873-875, October 
1978. 

(33) Ross A. GAGLIANO AND MICHAEL R. LAUER. Discrete element models and real life 
duals. In Proceedings of the 1994 Winter Simulation Conference, J.D. Tew, S. Mani
vannan, D.A. Sadowski, and A.F. Seila, editors, pages 625-632, 1994. 

[34) MARTIN GARDNER. The fantastic combinations of John Conway's new solitaire game 
'Life'. Scientific American, 223(4):12~123, April1970. 

(35) D. GHOSAL, G. SERAZZI, AND S.K. TRJPATHI. Processor working set and its use 
in scheduling multiprocessor systems. IEEE Transactions on Software Engineering, 
17(5):443-453, May 1991. 

[36) NIGEL GILBERT. Simulation: An emergent perspective. Conference on New Tech
nologies in the Social Sciences, LAFORIA (Paris), October 1995. 

[37) Nigel Gilbert and Rosaria Conte, editors. Artificial Societies: The Computer Simu
lation of Social Life. UCL Press, London, 1995. 

[38] Nigel Gilbert and Jim Doran, editors. Simulating Societies: The Computer Simulation 
of Social Phenomena. UCL Press, London, 1994. 

[39) NIGEL GILBERT AND KLAUS TROITZSCH. Simulation for the Social Scientist. Open 
University Press, Buckingham, 1999. 

(40) K. GLASS, M. LIVINGSTON, AND J. CoNERY. Distributed simulation of spatially 
explicit ecological models. In Workshop on Parallel and Distributed Simulation (PADS 
'97), pages 6Q-63. IEEE, 1997. 



BffiLIOGRAPHY 145 

(41] HARVEY GOULD AND JAN TOBOCHNIK .• 4n Introduction to Computer Simulation 
Methods: Applications to Physical Systems (Part 2). Addison-Wesley, Reading, MA, 
1988. 

(42] G. GRINSTEIN AND C. JAYAPRAKASH. Simple models of self-organized criticality. 
Computers in Physics, 9(2):164, 1995. 

[43] Howard Gutowitz, editor. Cellular .4utomata: Theory and Experiment. MIT Press, 
Cambridge, MA, 1991. 

[44] DIANE HARROLD. Economic markets within an artificial society model. Technical 
report, Dept. of Computer Science, College of William & Mary, May 2000. 

[45] RAINER HEGSELMANN. Cellular automata in the social sciences: Perspectives, re
strictions and artefacts. klodelling and Simulation in the Social Sciences from the 
Philosophy of Science Point of View, pages 209-233, 1996. 

(46] RAINER HEGSELMANN AND ANDREAS FLACHE. Understanding complex social dy
namics: A plea for cellular automata based modelling. Journal of Artificial Societies 
and Social Simulation, 1(3), June 1998. 

[47] JAMES 0. HENRIKSEN. An improved events list algorithm. In Proceedings of the 
1977 Winter Simulation Conference, R. Sargent, J.W. Schmidt, and H.J. Highland, 
editors, pages 547-557, 1977. 

[48] JAMES 0. HENRIKSEN. Event list management -a tutorial. In Proceedings of the 
1983 Winter Simulation Conference, J. Banks, B. Schmeiser, and S. Roberts, editors, 
pages 542-551, 1983. 

(49] JoHN HoLLAND. Hidden Order: How Adaptation Builds Complexity. Addison
Wesley, 1995. 

(50] ELLIS HOROWITZ, SARTAJ SAHNI, AND DINESH MEHTA. Fundamentals of Data 
Structures in C++. Computer Science Press, 1995. 

(51] BERNARDO A. HUBERMAN AND NATALIE S. GLANCE. Evolutionary games and 
computer simulations. Proceedings of the National Academy of Sciences, 90:7716-
7718, August 1993. 

[52] IBM LoadLeveler. 
http://vvv-l.ibm.com/servers/eserver/pseries/softvare/sp/loadleveler.html. 

[53] YANNIS M. IOANNIDES. Evolution of trading structures. Santa Fe Institute Working 
Paper 96-04-020, Santa Fe, NM, April1996. 

[54] The Journal of Artificial Societies and Social Simulation. Nigel Gilbert, editor. 
http://jasss.soc.surrey.ac.uk/. 

(55] ARNE JONASSEN AND 0LE-.JOHAN DAHL. Analysis of an algorithm for priority queue 
administration. BIT Numerical Mathematics, 15{4):409-422, April1975. 



BIBLIOGRAPHY 146 

[56) DoUGLAS W. JONES. An empirical comparison of priority-queue and event-set im
plementations. Communications of the AC.M, 29{4}:30Q-311, April1986. 

(57) CATHOLIJN M. JONKER AND JAN TREUR. Agent-based simulation of animal be
haviour. CWI National Research Institute for Mathematics and Computer Science, 
December 1998. Report SEN-R9835. 

(58) P. KELEHER, D. ZOTKIN, AND D. PERKOVIC. Attacking the bottlenecks in back
filling schedulers. Cluster Computing: The Journal of Networks, Software Tools and 
Applications, 3{4}:245-254, 2000. 

[59) JEFFREY H. KINGSTON. Analysis of Henriksen's algorithm for the simulation event 
set. S/Akl Journal of Computing, 15(3}:887-902, August 1986. 

[60) Christopher G. Langton, editor. Artificial Life: An Overview. MIT Press, Cambridge, 
MA, 1997. 

(61) AVERILL M. LAW AND W. DAVID KELTON. Simulation Modeling and Analysis. 
McGraw-Hill, third edition, 1999. 

(62) BARRY G. LAWSON AND STEVE PARK. Asynchronous time evolution in an artificial 
society model. Journal of Artificial Societies and Social Simulation, 3(1}, January 
2000. 

(63) BARRY G. LAWSON AND EVGENIA SMIRNI. Multiple-queue backfilling scheduling 
with priorities and reservations for parallel systems. In Proceedings of the Eighth 
Workshop on Job Scheduling Strategies for Parallel Processing (to appear), Edinburgh, 
Scotland, July 2002. 

(64) BARRY G. LAWSON, EVGENIA SMIRNI, AND DANIELA PUIU. Self-adapting backfilling 
scheduling for parallel systems. In International Conference on Parallel Processing 
(to appear), Vancouver, B.C., August 2002. 

[65] P. Maes, editor. Designing Autonomous Agents: Theory and Practice from Biology to 
Engineering and Back. MIT Press, Cambridge, MA, 1990. 

[66] STEVE MAINS. Optimizing Combat Capabilities by Modeling Combat as a Complex 
Adaptive System. PhD thesis, Dept. of Computer Science, College of William & Mary, 
2002. To Appear. 

[67] MAURICIO MARiN. An empirical comparison of priority queue algorithms. Technical 
Report PRG-TR-10-97, University of Oxford, 1997. 

(68] J.P. MARNEY AND HEATHER TARBERT. Why do simulation? Towards a working 
epistemology for practitioners of the dark arts. Journal of A.rtificial Societies and 
Social Simulation, 3(4}, October 2000. 

(69] Maui Scheduler Open Cluster Software. http: I /mauischeduler. sourceforge. net/. 



BIBLIOGRAPHY 147 

(70) C. McCANN, R. VASWANI, AND J. ZAHORJAN. A dynamic processor allocation 
policy for multiprogrammed shared memory multiprocessors. ACM Transactions on 
Computer Systems, 11(2):146-178, May 1993. 

(71) WILLIAM M. McCORMACK AND ROBERT G. SARGENT. Analysis of future event-set 
algorithms for discrete event simulation. Communications of the ACM, 24(12):801-
812, December 1981. 

[72] BARRY McMULLIN. SCL: An artificial chemistry in Swarm. Santa Fe Institute 
Working Paper 97-01-002, Santa Fe, NM, January 1997. 

(73] NELSON MINAR, ROGER BURKHART, CHRIS LANGTON, AND MANOR ASKE
NAZI. The Swarm simulation system: A toolkit for building multi-agent simula
tions. Santa Fe Institute Working Paper 96-06-042, Santa Fe, NM, June 1996. 
http://vvv.swarm.org/. 

[74] MICHAEL MOHRING. Social science multilevel simulation with MIMOSE. In So
cial Science Microsimulation, K.G. Troitsch, U. Muller, N.E. Gilbert, and J. Doran, 
editors, pages 123-137. Springer-Verlag, 1996. 

[75] NATHAN T. MooRE. Artificial Societies: A computational model of disease transmis
sion. Master's thesis, Dept. of Computer Science, College of William & Mary, August 
1999. 

[76] RACHEL I. MOORE. Artificial Societies: A computational approach to studying com
bat. Master's thesis, Dept. of Computer Science, College of William & Mary, .July 
1999. 

(77] SCOTT Moss, HELEN GAYLARD, STEVE WALLIS, AND BRUCE EDMONDS. SDML: 
A multi-agent language for organizational modelling. CPM Report 97-16, Centre for 
Policy Modelling, Manchester Metropolitan University, March 1997. 

(78) A. MUALEM AND D. G. FEITELSON. Utilization, predictability, workloads, and user 
runtime estimates in scheduling the IDM SP2 with backfilling. IEEE Transactions on 
Parallel and Distributed Systems, 12(6):529-543, June 2001. 

(79) H. J. MULLER, TH. MALSCH, AND 1. SHULZ-SCHAEFFER. Socionics: Introduction 
and potential. Journal of Artificial Societies and Social Simulation, 1(3), June 1998. 

(80] MARTIN A. NOWAK AND ROBERT M. MAY. Evolutionary games and spatial chaos. 
Nature, 359:826-829, October 1992. 

[81] J. OUSTERHOUT. Scheduling techniques for concurrent systems. In Proceedings of 
the Third International Conference on Distributed Computing System, pages 22-30, 
October 1982. 

(82} STEVE PARK AND LAWRENCE LEE~IIS. Discrete-Event Sim·ulation: .4 First Course. 
College of William and Mary, Williamsburg, VA, 1999. 



BffiLIOGRAPHY 148 

[83) MILES T. PARKER. What is Ascape and why should you care? Journal of Artificial 
Societies and Social Simulation, 4(1), January 2001. 

[84) E. W. PARSONS AND K.C. SEVCIK. Coordinated allocation of memory and processors 
in multiprocessors. In Proceedings of the 1996 ACM SIGMETRICS Conference on 
1\t/easurement and Modeling of Computer Systems, pages 57-67, May 1996. 

[85) Portable Batch System. http: //vvv. openpbs. org/. 

[86) D. PERKO VIC AND P. KELEHER. Randomization, speculation, and adaptation in 
batch schedulers. In Proceedings of Supercomputing 2000 (SC2000}, November 2000. 

(87) A. REPENNING, A. IOANNIDOU, AND J. ZOLA. AgentSheets: End-user programmable 
simulations. Journal of Artificial Societies and Social Simulation, 3(3), June 2000. 

[88) MITCHELL RESNICK. Turtles, Te1-mites and Traffic Jams: Explorations in Massively 
Parallel 1\t/icroworlds (Complex Adaptive Systems). MIT Press, Cambridge, MA, 1997. 

(89) C. REWERTS, P. SYDELKO, J. DOLPH, A. SHAPIRO, AND T. TAXON. An object
oriented, individual-based, spatially explicit environmental model. In 4th Interna
tional Conference on Integrating GIS and Environmental Modeling (GIS/EM4}, Al
berta, Canada, September 2000. 

(90) ALMA RISKA, WEI SUN, EVGENIA SMIRNI, AND GIANFRANCO CIARDO. AdaptLoad: 
effective balancing in clustered web servers under transient load conditions. In Inter
national Conference on Distributed Computing Systems (ICDCS 2002) {to appear), 
Vienna, Austria, July 2002. 

(91) ROBERT RONNGREN AND RASSUL AYANI. A comparative study of parallel and se
quential priority queue algorithms. A CM Transactions on Modeling and Computer 
Simulation, 7(2):157-209, April 1997. 

(92) RoBERT RONNGREN, JENS RIBOE, AND RASSUL AYANI. Lazy queue: A new ap
proach to implementing the pending event set. International Journal in Computer 
Simulation, 3:303-332, 1993. 

(93) E. ROSTI, E. SMIRNI, L.W. DOWDY, AND G. SERAZZI. Robust partitioning policies 
for multiprocessor systems. Performance Evaluation, 19(2-3):141-165, 1994. 

(94) E. ROSTI, E. SMIRNI, G. SERAZZI, L.W. DOWDY, AND K.C. SEVCIK. Processor 
saving scheduling policies for multiprocessor systems. IEEE Transactions on Com
puters, 47(2):178-189, February 1998. 

(95) THOMAS SAUERBIER. UMDBS- a new tool for dynamic microsimulation. Journal of 
.4rtificirzl Societies and Social Simulation, 5{2), March 2002. 

[96] THOMAS ScHELLING. 1\t/ir.romotives and Macrobehavior. Norton, 1978. 



BIBLIOGRAPHY 149 

[97] B. SCHROEDER AND M. HARCHOL-BALTER. Evaluation of task assignment policies 
for supercomputing servers: The case for load unbalancing and fairness. In Proceedings 
of the 9th IEEE Symposium on High Performance Distributed Computing (HPDC 
'00}, pages 211-220, August 2000. 

[98] ROBERT SEDGEWICK. Algorithms in C++. Addison-Wesley, 3rd edition, 1998. 

[99] S. SETIA, M.S. SQUILLANTE, AND S.K. TRIPATHI. Analysis of processor allocation 
in multiprogrammed parallel processing systems. IEEE Transactions on Parallel and 
Distributed Systems, 5(4):401-420, April1994. 

(100] DANIEL SLEATOR AND ROBERT TARJAN. Self-adjusting binary search trees. Journal 
of the AC.M, 32(3):652-686, July 1985. 

(101] E. SMIRNI, E. RosTI, L.W. DOWDY, AND G. SERAZZI. Adaptive scheduling policies 
for multiprocessor systems. Journal of Systems Architecture, 44(9):703-721, June 
1998. 

(102] D. TALBY AND D.G. FEITELSON. Supporting priorities and improving utilization 
of the IBM SP2 scheduler using slack-based backfilling. In Proceedings of the 13th 
International Parallel Processing Symposium, pages 513-517, April 1999. 

(103] PIETRO TERNA. Simulation tools for social scientists: Building agent based models 
with Swarm. Journal of Artificial Societies and Social Simulation, 1(2), March 1998. 

(104] G. THEODOROPOULOS AND B. LOGAN. A framework for the distributed simulation of 
agent-based systems. In Proceedings of the 13th European Simulation "'lulticonference 
(ES"'l '99}, pages 58-65. Society for Computer Simulation, 1999. 

(105] TOMASO ToFFOLI AND NORMAN MARGOLUS. Cellular Automata Machines: A New 
Environment for Modeling. MIT Press, Cambridge, MA, 1987. 

[106] A. TUCKER AND A. GUPTA. Process control and scheduling issues for multipro
grammed shared-memory multiprocessors. In Proceedings of the 12th ACM Sympo
sium on Operating Systems Principles, pages 159-166, 1989. 

[107] JOHN VON NEUMANN. Theory of Self-Reproducing Automata. University of Illinois 
Press, Urbana, IL, 1966. Edited by Arthur W. Burks. 

(108] A. MARTIN WILDBERGER. Introduction & overview of 'artificial life' -evolving intel
ligent agents for modeling & simulation. In Proceedings of the 1996 Winter Simulation 
Conference, J.M. Charnes, D.J. Morrice, D.T. Brunner, and J.J. Swain, editors, pages 
161-168, 1996. 

[109} GREGORY V. WILSON. From Active X to cargo-cult science. Dr. Dobb's Journal, 
:159:117-119, September 1997. 

[110] STEPHEN WOLFRAM. Cellular automata as models of complexity. Nature. 311(4):419-
424, October 1984. 



BffiLIOGRAPHY 150 

(111] STEPHEN WOLFRAM. Theory and Appl·ications of Cellular Automata. World Scientific 
Publishing Co. Pte. Ltd., Singapore, 1986. 

[112] JEFFREY R. YOUNG. Using computer models to study the complexities of human 
society. The Chronicle of Higher Education, July 1998. 



VITA 

Barry Glenn Lawson 

Barry Glenn Lawson was born in Norton, Virginia on November 29, 1971. He graduated 

from Coeburn High School in Coeburn, Virginia in 1989. He graduated from Clinch Valley 

College (now the University of Virginia's College at Wise) in 1993 with a Bachelor of 

Science degree, majoring in both Mathematics and Computer Information Systems. He 

entered the College of William and Mary in 1994, received a Master of Science degree 

in Computer Science in 1996, and will receive a Doctor of Philosophy degree in Computer 

Science in August 2002. Starting in August 2002, the author assumes a tenure-track position 

as Assistant Professor in the Department of Mathematics and Computer Science at the 

University of Richmond in Richmond, Virginia. 


	Simulation techniques in an artificial society model
	Recommended Citation

	3075249.pdf

