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Abstract 

The aging world-wide aviation fleet requires methods for accurately predicting the 
presence of structural flaws that compromise airworthiness in aircraft structures. 
~ondestructive Evaluation ()TOE) provides the means to assess these structures 
quickly. quantitatively, and noninvasively. Cltrasonic guided waves, Lamb waves. 
are useful for evaluating the plate and shell structures common in aerospace appli
cations. The amplitude and time-of-flight of Lamb waves depend on the material 
properties and thickness of a medium. and so they can be used to detect any ar
eas of differing thickness or material properties which indicate flaws. By scanning 
sending and receiving transducers over an aircraft. large sections can be evaluated 
after a single pass. However. while this technique enables the detection of areas of 
structural deterioration, it does not allow for the quantification of the extent of that 
deterioration. Tomographic reconstruction with Lamb waves allows for the accurate 
reconstruction of the variation of quantities of interest. such as thickness. through
out the investigated region. and it presents the data as a quantitative map. The 
location. shape. and extent of any flaw region can then be easily extracted from 
this tomographic image. Two Lamb wave tomography techniques using Parallel 
Projection tomography (PPT) and Cross Borehole tomography (CBT). are sho'w\'n 
to accurately reconstruct flaws of interest to the aircraft industry. A comparison 
of the quality of reconstruction and practicality is then made between these two 
methods. and their limitations are discussed and shown experimentally. Higher or
der plate theory is used to derive analytical solutions for the scattering of the lowest 
order symmetric Lamb wave from a circular inclusion. and these solutions are used 
to explain the scattering effects seen in the tomographic reconstructions. Finally. 
the means by which this scattering theory can be used to develop Lamb wave to
mographic algorithms that are more generally applicable in-the-field, is presented. 

Xlll 
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Chapter 1 

Introduction 

.-\s the world-wide aviation fleet continues to age, methods for accurately 

predicting the presence of structural flaws that compromise airworthiness in air

craft structures becomes increasingly necessary. ~ondestructive Evaluation (~DE) 

provides the means to assess these structures quickly. quantitatively, and noninva

sively. For example, ultrasonic guided waves. Lamb waves. are useful for evaluating 

the plate and shell structures common in aerospace applications. 

The velocity of Lamb waves d~pends upon the material properties and thick

ness of a medium, and so can be used to detect any areas of differing thickness or 

material properties which indicate flaws. Since the Lamb waves are guided wa\·es. 

they can travel large distances in the plate and shell structures being tested. There

fore. by scanning a pair of sending and receiving transducers over an aircraft. large 

sections can be evaluated after a single pass. Corrosion alters the velocity of Lamb 

'I.Vaves as they propagate through the thinned regions. By monitoring the change in 

arrival time of Lamb waves traveling between sending and receiving transducers at 

known separation, areas of only a few percent thickness reduction can be detected 

even if the corrosion is hidden. However, while enabling the detection of areas of 

2 
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CHAPTER 1. LVTRODCCTION 

structural deterioration. this technique does not allow for the quantification of the 

extent of the thinning. [n addition. extracting information from the data invoh·es 

compiex mathematics and requires time and trained personnel. Tomographic recon

struction with Lamb waves allows for the accurate reconstruction of the \·ariation 

of quantities of interest. such as thickness. throughout the investigated region. and 

it presents the data as a quantitative map. The location. shape. and extent of any 

flaw region can then be easily extracted from this tomograpnic image. 

The use of x-ray computerized tomography for medical non-invasive diagnos

tics is a mature technology. employing a set of projections around the body and a 

convolution-type of reconstruction to image cross-sections through the body. Differ

ent tomographic techniques exist using seismic waves to image subsurface structures 

for development of oil and mineral deposits. The technology from these industries 

has been borrowed and recombined in a new technique using ultrasonic Lamb \Va\·es 

as the probing energy for a cross field geometry tomographic reconstruction. This 

Lamb wave tomography has been applied to samples of interest to civilian and mil

itary aircraft. and has been shown to accurately reproduce hidden thinning areas in 

aluminum plates. [n addition. the limitations of this technique have been found. and 

the framework has been set to make Lamb wave tomography generally applicable 

for practical in-the-field inspections of aircraft. 

The organization of this dissertation is as follows. [n Chapter 2. a complete 

review of the Lamb wave literature and an overviev.· of the tomographic literature 

are presented. Following this, the key points for the present work are discussed. 

[n Chapter 3. the theory for Lamb waves propagating in a free. isotropic plate is 

presented. Then the experimental procedure is discussed and sample data is shown 

for the Lamb wave contact scanning of aluminum plates. :\'"ext. the theory. exper

imental apparati, and tomographic algorithms for Parallel Projection tomography 
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CHAPTER 1. I.VTRODCCTION 

( PPT) and Cross Borehole tomography (CBT) are presented. Results are shown 

for each method for the reconstruction of thinned regions in aluminum plates. and 

a comparison of the reconstruction quality and practicality of the two methods is 

made. Finally the limitations of PPT and CBT are discussed and shown experi

mentally by -;canning plates with through holes of increasing size. In Chapter -L 

analytical solutions for the scattering of plane. point source. and finite source Lamb 

wa\·es from a cylindrical flaw in a plate are derived. and the case of a cylindrical 

hole in a plate is specifically investigated. These solutions are used to explain the 

scattering effects seen in the tomographic reconstructions of an aluminum plate 

with a large hole. Finally, their application as corrections for the two tomographic 

techniques is discussed. In Chapter 5 the results and limitations of this work are 

summarized. and future directions of research are outlined. 
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Chapter 2 

Literature Review 

fn this chapter a chronological review of the literature for Lamb waves and 

tomography is presented. The review of the Lamb wave literature is complete. while 

that for the tomography focuses on the development of techniques and algorithms. 

Following the literature review is a brief discussion of the key points. 

2.1 Review of Lamb Wave Literature 

Fltrasonic guided waves are a special kind of ultrasonic wave that are guided 

or only propagate in certain structures. such as plates. shells. surfaces. interface 

layers~ rods and wires. They are much more complicated than simple elastic waves 

in that each wave consists of many modes \vhose individual propagation and atten

uation depend upon the generation frequency and guiding material parameters. rn 
addition, these modes are often grouped into subcategories describing their motion. 

For example, Lamb waves. which propagate in thin plates. are divided into groups 

of symmetric and asymmetric modes corresponding to the motion of the plate with 

respect to its center line. These modes, which are also called dilatational and flexu-

.j 
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ral. are designated by the notation (50. Sl. 52 .... ) and (.-tO . .4.1. .4.2 .... ) respecti\·ely. 

Since ultrasonic guided waves can tra\·el large distance in their respective guiding 

materials. they allow for the rapid nondestructi\·e e\·aluation of large areas. Below 

we present a reviev; of the development and applications of ultrasonic guided wa\·es 

with an emphasis on Lamb waves. 

1917-1950 

In 1911. Lamb published his \Vork on the theory of two dimensional elastic waves 

in plates in vacuum [1]. fn it he derived the dispersion relations. or .. period equa

tions .. as he called them. for the symmetric and asymmetric modes. He shmved 

that in the limit of small wavelength. these equations matched those for Rayleigh 

waves. and that in the limit of large wavelength. they matched the approximate 

solutions used previously. Lamb examined the first few symmetric and asymmet

ric modes assuming incompressibility, and he outlined the procedure for examining 

the symmetric modes when the material has some compressibility. fn 1934. Bal

cmuth described a new means of measuring the elastic moduli of a material by 

affixing a cross-section of piezoelectric quartz to the material and then driving it at 

various frequencies by applying a variable electric current [2]. This technique was 

the precursor to the piezoelectric transducers used today. fn 194.j. Osborne and 

Hart theoretically examined the interaction of an underwater explosion with a steel 

disc [:3]. In their work they followed the method of Lamb. but took into account 

the loading of the plate by water. Their dispersion equations for the symmetric 

and asymmetric modes match those of Lamb with the addition of terms correcting 

for the presence of water. They showed that those modes which have a wavenum

ber with an appreciable imaginary component rapidly leak off their energy into the 

water. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 2. LITER.-\.TCRE RE'VTE\\" -
' 

1951-1959 

In 19-) 1 .\[indlin derived a two-dimensional theory of flexural motions in isotropic. 

elastic plates from the three-dimensional equations of elasticity [-t]. His plate equa-

tions were extremely close to the exact values of Lamb ·s theory. but were much less 

computationally intense. In 19.54 Kane used .\[indlin"s two-dimensional plate theory 

to study the reflection of a straight-crested flexural wa\·e from the edge of a semi-

infinite plate [-5]. He found that a flexural \\·ave incident to the edge at an arbitrary 

angle produces three reflected waves: two flexural and one shear. In 19.56 Kane and 

.\t[indlin followed the procedure for the flexural waves. to derive a two-dimensional 

plate theory for extensional waves from the three-dimensional equations of elastic-

ity [6]. They then solved these equations for the case of axially symmetric vibrations 

of a circular disc and showed how they are accurate for low and high modes of thin 

plates and low modes of thick plates. while the equations of generalized plane stress 

are only accurate for low modes of thin plates. In 19-51 Kane studied the reflection 

of straight-crested dilatational waves at the edge of a semi- infinite plate using the 

two-dimensional plate theory [i]. He found that a dilatational wave incident to the 

edge at an arbitrary angle produces three reflected \vaves. two dilatational and one 

shear. He also showed that the plate theory was much closer to the exact Lamb 

theory than the generalized plane stress theory. Also in 19-57 \Vorlton presented 

the first experimental data taken using Lamb waves [8]. He submerged the test 

materials in water and used ultrasonic transducers at certain angles to preferen-

tially generate specific Lamb wave modes in the test material. He showed that 

laminar flaws and radial cracks could be detected in plates and hollow cylindrical 

objects. In 1959 Mindlin and Medick updated the approximate. two-dimensional 

equations of extensional motion of isotropic. elastic plates to include coupling with 
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symmetric thickness-shear. modes [9]. Gazis deri\·ed the characteristic equation for 

free harmonic waves propagating along a hollow cylinder of infinite extent [10]. and 

he presented numerical results for some representative cylinders [11}. 

1960-1969 

In 1960 Gazis. Herman. and \Vallis performed a theoretical study of surface waves 

in cubic crystals using both continuum theory and discrete particle theory [1:2]. They 

shmved that as the wavelength approached the partide spacing in the crystaL the 

discrete particle theory predicted dispersion while the continuum theory remained 

dispersionless. In 1961 \Vorlton published a second paper on experimental results 

using Lamb waves [1:3}. In this paper he rewrote Lamb ·s theory in the notation 

most commonly used today. and he plotted the phase velocity as a function of the 

frequency times thickness for the first several modes in aluminum and zirconium. 

:\"ext. using the experimental setup discussed in his previous paper he verified his 

dispersion curves with experimental data. and he demonstrated that as the plate 

thickness increased only the lowest order symmetric and asymmetric Lamb wave 

modes existed and they approached their Rayleigh \\"ave counterparts. He also 

showed that the Lamb waves were sensitive to the thickness change caused by a 

hole being drilled into the back of the plate. In 1964 Jones studied the propagation 

of Rayleigh waves in a two-layered medium [1-!J. In 1966 Gournay discussed how 

part of the electromagnetic energy from an incident laser is converted to an elastic 

wave in the absorbing medium, and showed results for a Q-switched ruby laser 

incident on various absorbing liquids [15]. In 1961 \"iktorov \\Tote a monograph 

on Rayleigh and Lamb waves that was to become a classic reference ·[16}. In this 

monograph he discusses Lamb wave theory for vacuum loaded plates, fluid loaded 

plates. and cylindrical layers, methods of Lamb wave generation and detection. and 
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their application to fl.avr detection in sheets. tubes. and other thin-walled shapes . 

.Jones and \\-hittier studied the character of interface wa,:es in a flexibly bonded 

interface between two dissimilar half spaces [11]. Ton·ik extended .\Iindlin ·s work on 

the reflection of wave trains from the free edge of a semi- infinite plate to incorporate 

an e\·anescent mode in the incident wave [18]. [n 1969 Hu de\·eloped a spherical 

model for the acoustic pressure wave generated by rapid laser heating in a liquid 

[19j. and h~im and Smith studied the thermal expansion of Lithium Tantalate and 

Lithium .\"iobate single crystals (:20}. 

1970-1974 

In 1970 Anderholm reported accurate measurements of a laser-generated stress 

wave in the immediate vicinity of the absorber region on a solid [21]. In 1972 0 ·I~eefe 

and Skeen showed that the magnitude of a laser induced stress wave in aluminum 

could be significantly increased by coating the aluminum target with a thin layer 

of a transparent. relatively volatile material [:22}. Fairand. \Vikox. Gallagher. and 

\Villiams showed that stress waves generated by a giant pulsed laser could change 

the in-depth microstructural and mechanical properties of 10/.j aluminum [23]. 

Dragonette used schlieren visualization to measure the group and trace velocity 

of guided modes generated in aluminum plates submerged in water [24]. Short 

acoustic pulses at different angles of incidence were used to generate the modes. 

and there was good agreement between the experimental angles that produced re

sults and those predicted by \Vorl ton's theory for plate thicknesses greater than 0.58 

times the longitudinal wavelength. For plate thicknesses beiO\v this. the agreement 

\vorsened probably due to the effects of the water loading. Smith used an ultrasonic 

immersion technique and simple elastic waves to measure the elastic constants of 

carbon fibers and their composites [2.5]. Rybak determined the average field for 
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longitudinal and flexural ~\-a\·es in a plate containing random inhomogeneities [:26). 

and he sturiied the effects of random coupling between flexural and longitudinal 

\·ihrations of plates [:til In 1913 .\"eubauer showed that for a finite beam incident 

on a liquid-solid interface at the Rayleigh angle. there was no separation between 

the specular and Rayleigh reflections as predicted. so the Rayleigh wave must ha\·e 

continuously radiated into the fluid [28] . .\"elson and Dong studied high frequency 

vibrations and waves in infinite homogeneous and laminated orthotropic plates us

ing the Ritz technique [29}. This technique uses exact expressions for the wa\·e 

form along the extent of the plate but uses generalized coordinates to model the 

through-the-thickness behavior of the plate. Lockett outlined the motion of material 

particles in. the initiation of, and the effect of pulse propagation on Lamb waves. 

and discussed their usefulness for detecting flaws on the inner and outer surfaces 

of tubes [:30]. Solie and Auld used a numerical implementation of a mathematical 

formalism to obtain dispersion relations for acoustic waves in arbitrarily anisotropic 

plates to present the plate wave dispersion relations for propagation in a 001-cut 

cubic plate [:31]. Germogenova used geometrical theory to model transverse flexure 

waves propagating in thin shells [32]. In 1974 Fairand. Clauer. Jung, and \Vilcox 

quantitatively assessed laser-induced stress waves by measuring the pressure envi

ronment at the back surface of the sample. Their results compared favorably with 

those predicted by a one-dimensional radiation hydrodynamics computer code [:3:3]. 

Fox used paint and water coatings to increase the stress generated in a target by a 

short-pulse laser, and showed that his results were comparable to the transparent 

overlay method applied in a vacuum [34]. 

1975-1979 

In 197.) Garber and Granato used a quasiharmonic-anisotropic- continuum model 
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to calculate the theoretical temperature dependence of second- order elastic con

stants in cubic materials [:3.5] In 1916 Pitts. Plona. and .\[ayer studied the theoretical 

similarities of Rayleigh and Lamb modes of vibration [:36]. In l911 von Gutfeld and 

.\[elcher generated 20-.\IHz acoustic waves from pulsed thermoelastic expansions of 

constrained surfaces, and used them for flaw detection [:31]. Rosenberg and Thurston 

showed how the relationship between the lowest Lamb-like plate modes of a tube 

and the surface modes of the tube is quite different from the relationship bet'l.veen 

the two lowest Lamb modes of a flat plate and the Rayleigh modes at the plate 

surfaces [:38] . .-\uld and Tsao used variational analysis to model the reflection of the 

fundamental symmetric Lamb wave at the free edge of a semi-infinite plate [:39]. In 

1918 Nayfeh and Nassar showed that the influence of bonding material on the dy

namic behavior of laminated composites increases with the stiffness of the bonding 

material. and that this influence can be modeled by either the trilaminated or re

duced model analysis (40}. Sachse and Pao developed a new technique to determine 

the dispersion relation and the propagational speeds of waves in dispersive solids 

using the fact that the phase spectrum of a broadband pulse is linearly related to the 

dispersion relation of the dispersive medium (41]. They applied their technique to 

measure the phase and group velocities of 'l.vaves in fiber-reinforced composite ma

terials and in thin wires. In 1979 Fiorito . .\-[adigosky, and Cberall used resonance 

scattering theory to study the interaction of acoustic waves with a fluid loaded plate 

and showed that their theory agreed with the exact theory and allowed for easier 

extraction of information (42}. Von Gutfeld and Budd studied the thermoelastic 

generation of ~!Hz elastic waves in a substrate covered by a metallic film in contact 

with a liquid, and their results showed that the magnitude of the strain wave was 

strongly dependent on the expansion coefficient of the liquid and the thickness of 

the metal film [43]. Claus and Kline used Stonely waves to examine the adhesive 
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bondline between two glass specimens and determined that Stonely wave attenua

tion increases as a function of increasing surface roughness [44]. Habeger. .\[ann. 

and Baum modeled paper as a homogeneous orthotropic plate. used a computer 

to deri\·e the dispersion relations at lm1.· frequencies. and experimentally \·erified 

portions of these dispersion curves [45]. Achenbach and Harris used elastodynamic 

ray theory to study the acoustic emissions produced by elementary processes of 

deformation and fracture at a crack edge [46}. 

1980-1981 

In 1980 Scruby, Dewhurst, Hutchins. and Palmer built a calibrated wide-band 

detection system to record the acoustic waveforms thermoelastically generated by 

unfocused laser radiation [47]. Using the data from this system they were able 

to characterize the relationship between the incident radiation and the waveforms 

recorded at the epicenter, and to develop a simple theoretical model for the thermoe

lastic source. Rokhlin used a numerical implementation of the generalized vViener

Hopf method to investigate the diffraction of Lamb waves by a finite crack in an 

elastic layer [48]. Schoenberg developed the theory for a linear slip condition be

tween two elastic media and derived the plane wave reflection coefficients for plane 

slip interfaces [49]. Rokhlin, Hefets, and Rosen .cveloped a model for the waveg

uide properties of a thin film separating two elastic half-spaces possessing a shear 

modulus higher than that of the film, and showed that a complex shear viscoelas

tic modulus of the film can be determined from experimental data of the interface 

wave velocity and transmission losses [-50}. In 1981 Hutchins. Dewhurst, and Palmer 

experimentally determined the directivity patterns of laser-generated ultrasound in 

aluminum, and showed that thermoelastic mechanisms dominate in the absence of 

plasma. while momentum transfer from ablating material dominates at higher power 
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densities [-51]. Rokhlin. Hefets. and Rosen showed how their interface-•.,;a\·e method 

could be used to predict the strength of adhesive bonds [-52] . .-\indow. Dewhurst. 

Hutchins. and Palmer studied the generation efficiency of longitudinaL shear. and 

Rayleigh modes laser-generated in a free metal surface without any confining layers 

and without any visible damage [.5:3]. :'\ayfeh. Chimenti .. -\dler. and Crane devel

oped a model fvr bounded acoustic beam reflection at the Rayleigh angle from a 

fluid-solid interface loaded by a thin solid layer. and obtained experimental results 

in agreement with the theory as long as the film thickness was small compared to 

the Rayleigh wavelength [54]. Parnes calculated and studied the dispersion rela

tions of waves propagating in a rod embedded in an elastic medium [.5.5]. Voyiadjis 

and Baluch presented a refined theory for flexural motions of isotropic elastic plates 

taking into account the influence of transverse normal strain and transverse normal 

stress together with rotary inertia and transverse shear [.56]. 

1982-1983 

In 1982 Bar-Cohen and Crane experimentally studied acoustic backscattering 

in the Rayleigh region from fiber-reinforced composites and found a significant in

crease in backscattering when the fibers or cracks were at normal incidence [.5/]. 

l~sing this information they were able to map fiber orientations and cracks within 

specific plies. Clark and Hart studied the reflection of shear and longitudinal waves 

from liquid layers of submicron thickness and found that the layers no longer acted 

as the predicted perfect reflectors for thicknesses at or below :3000 angstroms [.58]. 

Chimenti. Nayfeh, and Butler developed a theoretical model of the nonspecular 

reflection of finite acoustic beams incident at or near the Rayleigh· angle onto a 

fluid-solid interface loaded by an elastic layer. and supported it with experimental 

measurements [.59]. Jackins and Gaunaurd showed the usefulness of the resonance 
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scattering theory to model and provide physical interpretations for the scattering of 

radar from a set of two contiguous plane dielectric la,:·ers separating two dissimilar 

nonconducting media [60]. Datta. Shah. and Fortunko used a combined finite ele

ment and analytical technique to model the diffraction of shear horizontal waves by 

edge cracks at \·arious orientations and shmved good agreement with experimental 

data [61]. I\:nollman and Hartog used Rayleigh critical-angle reflectivity measure

ments to determine shear modulus gradients in adhesive interfaces [62]. Dewhurst. 

Hutchins. Palmer. and Scruby extended their previous work on quantitatively as

sessing la;:;er-generated acoustic waves in aluminum by using a wide range of laser 

power densities and various metallic samples [6:3]. Veith and Kowatsch reported 

the generation of continuous surface acoustic waves using a low intensity continu

ous wave dye laser instead of the usual pulsed high power Q-switched lasers [64]. 

Shah and Datta presented a stiffness method using the continuity of displacement 

and traction at the interfaces of the laminated composite medium and Floquet"s 

theory to model harmonic wave propagation in layered composites (6.5]. In contrast 

to earlier methods. theirs could be applied to anisotropic layers. 

1984-1985 

In 1984 Houze, Nongaillard, Gazalet. Rouvaen. and Bruneel described an ultra

sonic interferometric system for the measurement of coating thicknesses as thin as 

.j micrometers [66]. Royer and Dieulesaint developed a theoretical analysis for the 

thermal generation of Rayleigh waves in anisotropic materials. and showed that their 

results were in good agreement with experimental measurements from a piezoelec

tric crystal of lithium niobate [67]. Tam demonstrated the pulsed-laser generation of 

ultrashort acoustic pulses and their usefulness in measuring steel film thicknesses as 

thin as 12 micrometers [68]. Koshiba. Karakida. and Suzuki used a hybrid analytical 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER :2. LITER.-\TFR£ REFIEH/ l.j 

and finite element analysis. to model the scattering of the fundamental symmetric 

Lamb wave from wedge-shaped internal and surface cracks in an elastic plate [69}. 

[n 198-5 \'asudevan and :\Ial modeled the response of an infinite. homogeneous elas

tic plate to infinitesimal surface and internal disturbances using a classical integral 

transform technique (10]. Pilarski examined the possibility of using ultrasonic wave 

velocity measurements of surface. plate. or interface waves for the evaluation of 

adhesi\·e bond strength [11]. He numerically determined the dispersion curves for 

both layer-iay·er and layer-base systems with welded and smooth boundary condi

tions. and he experimentally determined relationships between the velocity of plate 

waves and bond strength. Chimenti and ~ ayfeh used experimental measurements 

of Leaky Lamb wave propagation in fiber-reinforced unidirectional composite lam

inates to generate dispersion curves and compared them to their theoretical pre

dictions [12]. Sessler, Gerhard-Multhaupt. \Vest. and von Seggern demonstrated 

the optoacoustic generation of subnanoseccnd acoustic pulses in quartz and several 

polymers [13]. Sontag and Tam used an interferometric technique to monitor both 

longitudinal and Lamb wave photoacoustic pulses generated by a weak laser pulse 

in silicon wafers [74]. Their technique provided a fully noncontact and nondestruc

tive means of measuring the elastic properties and orientation of thin silicon wafers. 

Dong and Huang used a finite-element method to model edge vibrations in lam

inated composite plates [7.5]. Maze. Izbicki. and Ripoche experimentally verified 

that resonances in the normal diffusion of an ultrasonic plane wave by cylinders 

and plates corresponded to the natural modes of the cylinders and plates [16]. 

1986-1987 

In 1986 Rokhlin and Marom used longitudinal waves obliquely incident on tvvo 

adhesively bonded layers to show that changes of the reflected amplitude during 
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curing occurred simultaneouslv with changes of the ultrasonic velocitY in the ad-- -
hesive. and so the quality of adhesive bonds could be determined [11]. Crosbie. 

De·whurst. and Palmer used nanosecond pulses from a :\'d:\':\G laser to excite 

clamped and partially clamped aluminum disks to resonance. and then used the 

generated flexural modes and longitudinal ring-around pulses to measure the depth 

of a flat-bottom hole on the surface of the disk [IS]. Tam and :\yers used sub-

nanosecond photoal:oustic pulse generation to simultaneously provide information 

on a thick substrate and thin coating and produce an ultrasonic image of the lay-

ered medium [19]. Chimenti and ~ayfeh showed that there is anomalous ultrasonic 

dispersion in fluid-coupled, fibrous composite plates resulting from a mixing of the 

two fundamental plate modes at phase velocities near the bulk composite transverse 

wavespeed [SO]. Thomsen, Grahn. ~laris. and Tauc reported experiments in which 

picosecond light pulses were used to generate and detect very short stress pulses 

in \'arious thin films [81]. Liu studied the frequency dependence of ultrasonic wave 

propagation in metal-matrix composite plates and showed that at frequencies be-

low lOMHz, the velocity dispersion is primarily controlled by the geometry of the 

plate with only minor contributions from the microstructure [82]. Bar-Cohen and 

Chimenti discussed the usefulness of Leaky Lamb wave analysis for the detection 

of flaws in graphite/epoxy composite plates [83] . .-\.ngel presented a numerical so-

lution for the scattering of Love waves by a surface-breaking crack normal to the 

free surface [84]. In 1987 Shah, Chin. and Datta used Datta's combined analyt

ical and finite element method [61] to study the scattering of in-plane body and 

surface waves by canted planar and normal surface-breaking branched cracks [8.5]. 

Dewhurst, Edwards, YlcKie, and Palmer used pulse laser generated and laser inter-

ferometer detected Lamb waves to estimate the thickness of thin metal sheets (86]. 

Lang, Kurkjian. McClellan, Morris. and Parks demonstrated a technique to esti-
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mate dispersion relations from arra_y·s of sonic logging waveforms [81J .. -\dler. Rose. 

Rokhlin. and .\" agy discussed the use of Lamb waves and Leaky Lamb waves for the 

characterization of fiber reinforced composites [88]. Caslini. Zanotti. and O"Brien 

used fracture mechanics to study matrix cracking and delamination in glass/epoxy 

composites [89]. 

1988 

In 1988 Zhang, Chen. and Ying experimentally studied the reflection of sin

gle Lamb wave modes from a free plate edge [90]. ..\"ayfeh and Chimenti experi

mentally generated dispersion curves for guided wave propagation in fluid-coupled 

fiber-reinforced composites and found excellent agreement with their theoretical 

predictions [91}. De Billy and Molinero investigated the reflection and transmission 

effects for angles of excitation of Lamb waves near the longitudinal critical angle 

and found that at this angle the leaky-surface- wave-radiation does not occur for liq

uid/solid/liquid configurations [92J. Pilarski and Rose found that transverse-wave 

ultrasonic oblique-incidence techniques are better for interfacial weakness detection 

than the previous longitudinal-wave techniques [9:3]. ); a_yfeh and Chimenti pre

sented a unified analytical treatment of the interaction of ultrasonic waves with 

arbitrarily oriented liquid-coupled orthotropic elastic plates. and they supported it 

with experimental data taken from a composite plate (94]. 11al described a ma

trix method for deriving the dispersion equation for guided waves in multilayered 

plates and half spaces which was free from numerical instability at high frequen

cies [95] _ Datta, Shah, Bratton, and Chakraborty presented a stiffness method to 

numerically determine the dispersion characteristics of waves propagating in a plate 

with an arbitrary number of arbitrarily anisotropic laminae [96]. Nagy, Jungman. 

and Adler used a broadband pulse- echo technique to measure backscattered Leaky 
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Lamb waves from a fiber- reinforced composite plate immersed in water [91]. Dean 

used measurements of Lamb wave velocities to determine the elastic properties of 

pla:5tics and other polymers [98]. ~[al and Bar-Cohen reviewed the ultrasonic non

destructi\·e techniques used for the detertion of defects in composites at that time 

and focused on the leaky guided wa\·e technique [99] . .\·[al and Bar-Cohen presented 

a matrix method to calculate the phase velocity of Rayleigh-Lamb waves traveling 

in fiber-reinforced composite plates made up of transversely isotropic laminae. and 

compared the theoretical results with leaky Lamb wave data [100]. 

1989 

In 1989 Hutchins. Lundgren. and Palmer described laser techniques for gener

ating and detecting transient ultrasonic Lamb waves in thin materials. and used 

measurements of the velocity and dispersion characteristics of the lowest order 

modes to estimate the thickness and elastic properties of the samples [101]. Tang 

and Henneke experimentally determined the dispersion curves for the lowest order 

symmetric and asymmetric Lamb wave modes in laminated composite plates. and 

showed that the lowest order asymmetric mode was sensitive to damage in com

posite plates such as stiffness reduction [102]. Tsukahara and Ohira calculated the 

reflection coefficients for a steel substrate with a polymer coating for both perfect 

and smooth bonding conditions, and showed that the frequency spectrum changed 

when the bonding became smooth [10:3] . .\IcDonald modeled photoacoustic pulse 

generation using generalized thermoelastic equations and the hyperbolic heat con

nduction equation to avoid an infinite thermal propagation property [104]. Dayal 

and Kinra developed an exact solution for the dispersion equation ·of for Leaky 

Lamb waves in an anisotropic plate. and showed agreement between the numerical 

and experimental results for a graphite/epoxy composite plate [105]. Bar-Cohen 
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and ~Ial experimentally studied the leaky Lamb wave phenomenon in composite 

laminates using pulses rather than toneburst or continuous waveforms. and showed 

that ,,·hen the pulses propagate obliquely to the fibers. they are strongly influenced 

by flaws within the laminate [106]. h]ine and Doroudian demonstrated the capa

bility of Lamb \'raves to detect artificial flaws and damage due to cyclic loading 

in adhesively bonded composite joints [107} . .\"ayfeh and Chimenti developed the 

anal_y·sis for the propagation of free waves in a general anisotropic plate. and pre

sented numerical free-wave dispersion results for a monoclinic and higher symmetry 

plates [108]. Kline. Doroudian. and Hsiao developed a numerical analysis procedure 

to calculate the dispersion relationships for plate waves propagating along arbitrary 

directions in a transversely isotropic plate [109]. Dayal. Iyer. and Kinra used mea

surements of wavespeed and attenuation for longitudinal and leaky Lamb waves to 

detect microcracks and characterize damage in composite plates [110]. )i"oiret and 

Roget made theoretical calculations of the wave propagation of a steady wave in 

a unidirectional composite plate and successfully compared them to experimental 

data found in the literature [111]. Epstein. Deason. Abdallah, and .\-Iurakami pre

sented a computational analysis for the propagation of elastic Lamb waves in an 

orthotropic media and used it to experimentally examine graphite/epoxy plates that 

had mechanical impact in the direction of the layering [ll2]. Tang and Henneke 

presented an approximate theory for the lowest Lamb modes in the low frequency. 

long wavelength region for a unidirectional laminate. and showed that it matched 

experimental results taken in the same region from laminates with and without 

damage [113]. Kapania and Raciti summarized the recent advances in the analysis 

of laminated beams and plates with an emphasis on vibrations and wave propaga

tions [114]. 
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1990 

In 1990 Papadakis wrote monographs on the measurement of ultrasonic veloc

ity [ll.j) and ultrasonic attenuation [116]. and Hutchins and Hayward '>\'rote a mono

graph on the radiated fields of ultrasonic transducers [117]. Balasubramaniam and 

Rose published a review of the breakthroughs in the utilization and understand

ing of guided plate waves in thin composites [118]. I~arim . .\[al. and Bar-Cohen 

presented a numerical procedure for the inversion of leaky Lamb wave data to de

termine the material properties of a ·waveguide. using a modified version of the 

simplex algorithm [119]. Spicer, .\·[cKie. and \Vagner used a numerical inversion of 

the Hankel-Laplace transform for the case of ultrasonic displacements in an infinite, 

homogeneous. isotropic plate which has been excited by a thermoelastic pulse. to 

determine the elastic moduli and plate thickness for thin and thick plates [120]. 

Xu and Datta showed that the spring model and density model approximations 

of the dispersion of elastic waves in a bonded plate only match the exact solu

tion in two overlapping regions of the density and stiffness ratios [121] . .\kDonald 

used a formulation of pulsed photoacoustic generation to show how the precursor in 

laser-induced ultrasound waveforms arises from the interaction of the thermal and 

elastic modes at the illuminated surface [122]. Deaton. McKie. Spicer. and \Vagner 

used a passively mode-locked, flashlamp-pumped ~d:'{.-\G laser with a long cav

ity to study the noncontact generation of narrow-band ultrasound in an aluminum 

sample [123}. Chimenti and Nayfeh presented numerous experimental results on 

ultrasonic reflection and guided wave propagation in biaxially laminated composite 

plates [124]. Burger, Duffer, and Schumacher described a new procedure for ultra

sonic evaluation of laminated composites using a short duration high energy laser 

pulse directed towards a selected location on the sample surface through an optical 

bundle to generate the plate waves and a noncontact fiber tip interferometer to 
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detect them [12.S]. ~ayfeh and Chimenti theoretically and experimentally studied 

the interaction of ultrasonic waves with multilayered monoclinic plates submerged 

in water [I:Z6]. Rokhlin and \Vang used the critical angle measurement and double 

transmission time-delay measurement ultrasonic methods to determine the elastic 

constants in thick sectioned composites. and the transmission resonance ultrasonic 

measurement to determine the elastic constants in thinner composites [121]. Bouden 

and Datta theoretically studied guided wave propagation in coated anisotropic me

dia [128]. Jansen and Hutchins used the filtered back-projection technique to tome

graphically image flaws in aluminum plates using ultrasonic Lamb waves. The plates 

were submerged in an immersion tank. and amplitude variation and propagation 

delay were used to image attenuation and velocity (129]. 

1991 

In 1991 Alleyne and Cawley presented an extension of the phase spectrum 

method for determining the phase velocity of dispersive waves to the case of multi

mode propagation (130]. Bratton and Datta used a hybrid technique that combined 

analytical and finite element techniques to model the scattering of Lamb waves from 

a surface breaking crack in a composite plate (1:31]. Datta and Shah used the same 

technique to model the scattering of Lamb 'Naves from general inhomogeneities in an 

elastic homogeneous isotropic plate (132]. :'\ akano and :'\ agai used the interference 

of two high powered lasers to generate coherent asymmetric Lamb waves in thin 

plates (133]. Dayal and Kinra used leaky Lamb waves to detect matrix cracking 

in fiber-reinforced composites (134]. Alleyne and Cawley published a second paper 

on their two- dimensional Fourier transform method [1:3.S]. Rokhlin and Wang ob

tained boundary conditions that relate stresses and displacements on both sides of a 

thin viscoelastic interface layer between two solids as an asymptotic representation 
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of the three-dimensional solutions in the limit of a small wavelength to thickness 

ratio (1:36}. \"ary presented an overview of the acousto-ultrasonic technique which 

was rie\·ised to assess diffuse flaw populations in composite materials [131}. Chi

menti and ~[artin demonstrated the sensitivity of leaky Lamb wav·es to defects in 

graphite-epoxy composite laminates [1:38]. 

~ ayfeh and Chimenti published their vmrk on the interactions of ultrasound 

with multilayered media in a second paper [1:39]. '{amanaka. ~agata. and .Koda gen

erated single-mode acoustic waves in multimode media using a laser beam scanned 

at the phase velocity of the desired mode [140] . .\""ayfeh discussed their theory for 

the general problem of elastic wave propagation in multilayered anisotropic me

dia [141]. Bobbin. \Vagner, and Cammarata used the measurement of pulse laser 

generated and heterodyne interferometry detected Lamb waves to determine the 

flexural modulus of thin films [142]. Rokhlin theoretically and experimentally· stud

ied the interaction of Lamb waves with lap-shear adhesive joints [143]. Balasub

ramaniam and Rose theoretically studied the effect of various flaws on the plate 

wave dispersion curves [144]. Datta, .Karunasena. and Shah used a hybrid finite 

element and analytic technique to study wave propagation and scattering from ma

trix cracks in multilayered composite plates [14-5]. ::\[al. Yin. and Bar-Cohen used a 

global matrix method to calculate the reflection coefficients and dispersion curves 

for unidirectional and angle-ply laminates immersed in water (146]. Liu. Datta. 

and Ju used a hybrid numerical method to investigate the scattering of transient 

Rayleigh-Lamb waves by a surface-breaking crack and compared their results with 

experiment [147]. Al-Nassar, Datta. and Shah used a combined finite-element and 

Lamb wave modal expansion method to study the scattering of time harmonic Lamb 

waves by a normal rectangular strip weldment [148]. 
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1992 

[n 1992 :\" ayfeh and Chien extended the analysis of the interaction of elastic wa\·es 

with anisotropic plates immersed in water to include linear piezoelectric effects [l-!9]. 

and subsequently extended this v1rork for anisotropic substrates [1-50]. Laperre and 

Thys modeled elastic wave dispersion in a liquid bilayer. and confirmed their the

ory with experimental results [1-51]. Bobbin. \Vagner. and Cammarata studied the 

e~ect of the orientation of the laser source and receiver. film thickness. and laser 

spot size on the waveform structure of the lowest order symmetric and asymmetric 

Lamb \Vave modes generated in thin films [l-52]. Karim. AwaL and Kundu studied 

the scattering of elastic waves in a plate by a distribution of cracks and inclusions 

using the hybrid finite element and analytical technique [153]. Alleyne and Ca·wley 

discussed the optimization of Lamb wave inspection for certain requirements [l-54]. 

Kautz experimentally determined dispersion curves in ceramic matrix composites 

and metal matrix composites using the acousto-ultrasonic technique [1.5-5]. Ditri. 

Rose. and Chen investigated using a mode"s energy distribution across the thickness 

of the layer as a means of determining the optimal Lamb wave mode for a given 

defect inspection [156]. Komsky, Daniel, and Lee used ultrasonic shear waves to 

determine layer orientation in multilayer multidirectional composites [1.57]. Schu

macher, Gien. and Burger used a laser and fiber optic based system to generate and 

detect transient Lamb waves in a steel plate. a unidirectional composite paneL and 

a section of seam welded stainless steel tubing [1-58]. Guo and Cawley presented 

numerical results predicted by finite element analysis for the propagation and inter

action with defects of the SO Lamb wave mode in composite laminates, and showed 

experimental results of long range inspections using this mode [1-59]. 

\Vu and Zhu showed that leaky Lamb waves can be used to measure the 

physical parameters ofliquids bordering plates [160]. Yamanaka. ::-.ragata, and Koda 
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further in\·estigated the nature of the acoustic waves generated using their phase 

\·elocity scanning method [161]. ).!al and Lih deri\·ed the theoretical solution for the 

response of a unidirectional composite plate to a dynamic surface load [162]. \"er

dict. Gien. and Burger performed a finite element study of Lamb wave interactions 

with fla\ved and unflawed rivet holes in thin plates [163]. Liu. Datta. and Shah 

used Datta's hybrid finite element and integral representation method to model 

the scattering of ultrasound by cracks in a glass plate [164]. Sun showed that low 

order plate waves in combination with an acoustic dampener could be used for 

delamination detection in aluminum plate assemblies [16.5]. Dewen and Cawley 

presented an ultrasonic scanning technique using Lamb wave modes to quantita

tively determine the cohesive properties of adhesive joints [166]. :VIal. Gorman. and 

Prosser used low-frequency experimental plate wave dispersion data to determine 

the elastic constants of a graphite/epoxy composite [161]. Hutchins presented an 

overview of the uses of pulsed lasers for quantitative ultrasonic nondestructive eval

uation [168]. Fergusson and Pilkey studied the formation of frequency-dependent 

structural matrices [169]. Alleyne and Cawley used finite element analysis to inves

tigate the interaction of Lamb waves with various defects simulated by notches and 

checked their results with experiment [110] . .Jansen and Hutchins published their 

work using Rayleigh waves to reconstruct images of surface defects in thick metallic 

samples and using Lamb waves to image defects in thin metallic plates. They again 

immersed the samples in an ultrasound tank and used the filtered back-projection 

method to reconstruct tomographic images from traveltime data [1 11]. 

1993 

In 1993 Pilarski, Rose, Ditri, Jiao, and Rajana discussed Lamb wave mode se

lection criteria for increased sensitivity to interfacial weaknesses of adhesive bonds 
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[17:2]. Chien. Sheen. and Raptis showed that time-of-flight measurements of acousto-

ultrasonic waves was a better technique for measuring material anisotropy then the 

standard stress wave factor measurements [173]. Costley· and Berthelot demon-

strated how using a Fresnel lens increases the signal-to-noise ratio of laser gener-

ated Lamb waves and how the dispersion curves of these Lamb waves can be de-

termined using laser ultrasonics [1 I-!]. Edwards .. -\.1-Kassim. and Palmer described 

the use of laser ultrasound for the generation and detection of Lamb waves for the 

measurement of sheet thickness [1 'i.j]. Komsky and ...\ .. chenbach applied their self-

calibrating ultrasonic technique to detect fatigue cracks in aircraft structures using 

Lamb waves [176]. Hutchins. Jansen. and Edwards showed that pulsed laser gener-

ated and electromagnetic acoustic transducer (E:YIAT) detected Lamb waves could 

be used to tomographically image changes in the structure of thin sheet material 

using the filtered-backprojection algorithm [1 i7]. :\Heyne. Pialucha, and Cawley 

presented a signal regeneration technique for the long-range propagation of highl.Y 

dispersive Lamb wave modes [1 18]. Noui and Dewhurst presented a laser beam de-

flection technique for the non-contact quantitative detection of ultrasonic Lamb 

waves [1 19]. Rao, Sheikh. and :Yiukhopadhyay used the finite element method 

to study the large-amplitude free flexural vibration of stiffened and unstiffened 

plates [180]. Liu and Datta applied there hybrid finite element and boundary inte-

gral method to investigate the scattering of ultrasound from two surface-breaking 

cracks of different lengths and one subsurface crack [181]. Eto. Costello. \Nenzel. 

\Vhite. and Rubinsky used a Lamb wave microsensor to measure the viscosity of 

dimethylsulfoxide solutions as a function of temperature [182}. Kundu and Maxfield 

determined Rayleigh and Lamb wave speeds in half-spaces and plates using the rate 

of change in the time of flight between a transmitter and receiver as the propaga-

tion distance was varied [183]. Schumacher. Burger. and Gien used their laser and 
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fiber optic system for Lamb wa\"e generation and detection in plates to im·estigate 

higher order Lamb wa\"e modes [184]. Pilarski. Ditri. and Rose presented proof for 

the \·anishing of the normal component of the particle displacement \·ector on the 

free surfaces of an isotropic. homogeneous plate for nonzero-order symmetric Lamb 

wa\'es [1S-Sj. 

1994 

fn 1994 Rose. Pilarski. Rajana. and Ditri studied the effect of a coating on the 

generation and detection of Lamb waves in aluminum samples [186]. Shull. Chi

menti. Datta. and J u experimentally and theoretically studied elastic plate \vave 

inspection of bilayered plates [187]. ).-[al, Lih. and Bar-Cohen described the ex

perimental setup and analytical procedure for determining the elastic constants of 

graphite/ epoxy composites using a pulsed leaky Lamb wave method [188]. Chien. 

Sheen. and Raptis extended Chien "s earlier work on ultrasonic wave propagation in 

a piezoelectric plate to a multilayered piezoelectric medium [189]. Yapura and Kinra 

presented the analysis to calculate the Lamb wave dispersion branches and mode

shapes for an isotropic solid-fluid bilayer [190]. Pilarski. Ditri. Rajana. and Rose 

examined the benefits of using non zero-order symmetric Lamb wave modes at the 

first critical angle for plate inspection [191]. Dayal presented an automated leaky 

Lamb wave measurement system and transformed the received ultrasonic signal 

into the frequency domain to determine the phase velocity and group velocity [192]. 

Schumacher and Burger presented digital signal processing techniques to calculate 

the phase velocity of laser generated and detected Lamb waves [193]. Alleyne and 

Cawley described the use of angle piezoelectric transducers for the generation of a 

single Lamb wave mode in a material [194]. Ditri. Pilarski. Pavlakovic, and Rose 

presented a model of the generation of guided waves in an infinite. homogeneous. 
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linearly elastic and isotropic layer by axisymmetric normal surface loading. I.e. a 

contact longitudinal wave transducer [19-5]. 

Seale. Smith. Prosser. and :\lasters used measurements of Lamb wave \·e-

locity to monitor fatigue damage in composite samples [196j. Sun and Johnston 

used Lamb wave amplitude and time-of-flight measurements to detect disbonds in 

bonded aluminum joints [197]. Lee. Khuri-Yakub. and Saraswat used measure-

ments of Lamb wave time-of-flight to measure the temperature of silicon wafers 

during rapid thermal processing (198]. Lowe and Cawley wrote a review and anal-

ysis of the plate wave techniques used for the inspection of adhesive and diffusion 

bonded joints [199]. Costley and Berthelot applied the two-dimensional fast fourier 

transform technique to laser generated waveforms to determine which modes and at 

what amplitudes Lamb waves had been generated in a thick plate [200]. \Vang, Jen. 

and Cheeke presented the velocity and mass sensitivity formulae for two-layer shear 

horizontal plate wave sensors [201] and two-layer sagittal plane wave sensors [202]. 

Chimenti derived and studied the velocity dispersion of guided plate waves in a plate 

composed of a coherent microstructured material. and found that the dispersion was 

due to both Lamb wave and microstructural dispersion [203]. Jansen. Hutchins. and 

:\Iottram used a Lamb wave immersion tomography technique using a transform al-

gorithm to image damage in advanced composite laminates [204]. Ditri and Rose 

theoretically studied the excitation of guided wave modes in generally anisotropic 

layers by finite strip sources placed on the surface of the layer [205]. Degertekin. Pei. 

Khuri-Yakub, and Saraswat performed in situ acoustic temperature tomography of 

semiconductor wafers by using measurements of Lamb wave time-of -flight to mea-

sure the temperature of the wafer along specific ray paths and then reconstructed 

the temperature distribution of the wafer using the simple linear equation solving 

approach [206]. Pierce studied the influence of structural wa\·e dispersion on the 
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scattering patterns of wa\·es incident on structures 'wvith fuzzy internals [201]. 

1995 

In 199.} \Villiam and ~lar_y· researchers proposed usmg ultrasonic Lamb waves 

to evaluate the interface structural integrity of aircraft [208] . .-\Heyne and Cawley 

used Lamb waves for the long range detection of internal and external defects in 

pipes [209]. Krauss used guided waves for the detection of interior flaws in layered 

materials [210]. Oksanen. Stor-Pellinen. and Luukka.la determined the mechanical 

properties of cardboard from measurements of photoacoustic Lamb waves [211]. 

\Vright. Hutchins. Gachagan. and Hayward used a non-contact laser/air transducer 

system to evaluate fiber-reinforced composites [212]. Pelts and Rose theoretically 

studied the wave structure produced in a linearly elastic orthotropic layer by an 

acousto-ultrasonic source [213]. Hansch. Rajana. and Rose presented an approach 

for automated data evaluation of guided waves in tubing for the classification of 

flaws [214]. Nagata, Huang, Achenbach. and .Krishnaswamy combined filtered 

back-projection tomography and laser-based ultrasonics to image defects in thin 

aluminum plates using Lamb wav~s [215]. .-\ddi:;on and ~Ic.Kie used a series of 

laser-based ultrasound line sources for the generation and detection of single mode 

Lamb waves in a plate [216]. Rose. Pilarski, and Rajana developed a double spring 

hopping probe for the Lamb wave inspection of lap splice joints in aging aircraft 

and tested it on a Boeing 737-222 [21 i]. 

Sun and Johnston experimentally studied the effect of rivet rows on the prop

agation of Lamb waves in mechanically fastened two-layer aluminum plates [218]. 

Johnson, Thompson, and Jamieson determined the Rayleigh and Lamb wave veloc

ities in diamond films using an acoustic microscope [219]. Safaeinili and Chimenti 

presented a general method for solving Lamb wave propagation in periodically-
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layered composites combi_ning Floquet analysis and the transfer matrix approach 

['220]. Ditri and Rajana theoretically analyzed the wedge method of generating 

guided waves in isotropic plates particularly focusing on the relationship between 

the angularly dependent excitation amplitude of a given mode and the physical 

parameters of the transducer and wedge used for excitation [221]. Lowe and Caw

ley compared reflection coefficient minima with the dispersion curves for ultrasonic 

wa\·es propagating along an embedded layer in a multilayered plate to determine if 

the :\ ull Zone technique provides accurate measurements of modal properties in ad

hesive and diffusion bonded joints [222]. Rajana. Hongerholt. Rose. and Ditri also 

published the experimental results for their analysis of the wedge method for gen

eration of guided waves [223]. Pei. Degertekin. Khuri-Yakub and Saraswat demon

strated a technique for in situ film thickness measurement using acoustic Lamb 

waves [224]. Huang, Brisada. and Rokhlin studied the scattering of longitudinal 

and shear ultrasonic waves from a multilayered fiber embedded in a matrix [225]. 

Karunasena. Liew, and Kitipornchai used a finite element technique to study the 

reflection of plate waves at the fixed edge of a composite plate [226]. Phipps studied 

the use of Lamb waves for the detection of disbands in aging aircraft [227]. 

Yamada and Khuri-Yakub presented a new ty·pe of point contact transducer 

of waveguiding structure operating in the ~IHz frequency range that could be used 

for the dry coupled generation of Lamb waves in silicon wafers [228]. Rebinsky and 

Norris derived a general solution for the scattering of acoustic and flexural waves 

from a three-member junction [229]. Gachagan. Pierce. Philp. :\-IcNab, Hayward, 

and Culshaw presented fiber optic technology for the detection of Lamb waves 

in composite plates and used it to detect a variety of flaws (2:30]. Rogers used 

measurements of the phase shift over a measured path length of Rayleigh-Lamb 

waves :n isotropic plates to determine the phase velocity of the wave and elastic 
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properties of the plate [231]. Tan. Guo. \Vong. and Tui used the lowest order 

s_y·mmetric Lamb wa\·e mode to experimentally locate and evaluate delaminations 

in composite plates [232]. and showed that their Lamb wave technique was better 

at locating near-surface delaminations than the com'entional pulse echo technique 

[2:3:3]. Bork and Challis used Lamb wave measurements and a linear network for 

data discrimination to nondestructively evaluate the adhesive fillet size in T -peel 

joints [2:34]. Zhu and \Vu determined the dispersion equations of Lamb waves in a 

plate bordered with a viscous liquid layer or half-space on both sides [2:3.5}. Opie 

proposed using tomographic imaging for Lamb wave ultrasonic imaging systems 

[236]. 

1996 

[n 1996 \Villiam and Mary Researchers proposed the use of ultrasonic Lamb waves 

for the evaluation of multilayer structural integrity [231}. Guo and Lim studied the 

propagation of Lamb waves in aluminum honeycomb structures using a multilayer 

model [238}. Seale and Smith theoretically and experimentally studied the effect of 

thermal damage in composites on Lamb wave propagation [239}. Cheng and Zhang 

developed a general theory for the propagation of coupled Lamb waves along an 

arbitrary direction in an orthotropic fiber composite plate [240}. Rajana, Cho. and 

Rose modified their earlier mode selection criterion to simply examining the vari

ation of the available energy at the surface along each mode. and compared their 

results with those from a boundary element method and from experiment [241}. Hi

rao. Yokota. and Fukuoka used the lowest order symmetric leaky Lamb wave mode 

to nondestructively evaluate the Young's modulus of VCR magnetic tapes [242}. 

Kundu. Karpur, Matikas, and Nicolaou studied the sensitivity of different leaky 

Lamb wave modes to defects in different layers of composite plates and produced 
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Lamb wave scanning images of these [ayers [2-!:3] . .Ji. Sulli\·an. and Balasubrama

niam used a model based on the Thomson-Haskell transfer matrix to analyze guided 

wave behavior in multi-layered inhomogeneous anisotropic plates [244]. Hirose and 

Yamano used a boundary element method to study the scattering of Lamb waves 

from a subsurface horizontal crack [245]. Chan and Cawley studied the effect of var

ious levels of attenuation on Lamb wave dispersion curves [246]. Chang. Guo. and 

:Ylalused the global local finite element method to study the characteristics of Lamb 

waves propagating across a lap joint model [2-!7]. Pei. Yousuf. Oegertekin. Honein. 

and Khuri-Yakub used a Hertzian contact to generate Lamb waves in pipes and 

plates without couplant, and they presented a filtered back-projection tomographic 

image of an aluminum plate with a depression milled into it [248]. 

Spies and Kroning used a Green's function technique to determine the dis

turbance resulting from a point source and to investigate Rayleigh wave propa

gation in a transversely isotropic half-space [249]. Hinders derived exact and an

alytical eigenfunction solutions for the scattering of lowest order symmetric and 

asymmetric Lamb waves from a disk (250]. Laurent and Bastien studied the ef

fect of transducer shape and electrical connection symmetry on the production of 

Lamb and shear-horizontal waves by interdigital transducers on both sides of a 

piezoelectric plate (251]. Alleyne and Cawley described a dry-coupled piezoelec

tric transducer system for the detection of corrosion in chemical plant pipework 

using cylindrical Lamb waves [252]. Sweet discussed the use of acoustic waves for 

the detection of first-time nuclear tests (253]. Desmet. Ka..,vald. :Ylourad. Lauriks. 

and Thoen theoretically and experimentally studied the behavior of Lamb waves 

in stresses polymer foils [254]. Kundu, :\Jaslov. Karpur. Matikas, and Nicolaou 

also produced Lamb wave images from titanium matrix composites [255]. Read 

and Seiler proposed the development of a Lamb wave scanning and tomographic 
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imaging instrument for the nondestructive e\taluation of metallic and composite 

plate-like structures [256]. [251]. [258]. Young. Yuan. and Dickinson presented a 

three-dimensional analysis of the free vibration of very thick rectangular plates 

\Vith depressions. grooves. or cut-outs [259]. 

Turner and \Veaver studied diffuse energy propagation on heterogeneous 

plates using structural acoustics radiative transfer theory [260]. Xiang. Liew. and 

h~itipornchai presented vibration solutions for circular and annular Yfindlin plates 

with concentric internal ring stiffeners [261]. Park. Kim. and Yoon showed the fea

sibility of Lamb wave ultrasonic inspection for the detection of flaws in insulated or 

inaccessible long steel pipes [262]. Castaings and Cawley described a finite element 

study of the generation of Lamb waves in plates from a finite air-coupled transducer. 

the interaction of these waves with defects. and their detection using an air-coupled 

transducer. and they compared it with experimental results [263]. Khmelevskaja

Plotnikova and Pavlov presented a nonlinear evolution equation for the study of 

the transversal structure of finite amplitude Lamb waves in the atmosphere near 

the Earth's surface [264]. Cho and Rose used the boundary element method for the 

study of the mode conversion of Lamb waves reflecting from an edge [265]. Cheng 

and Berthelot presented a model for the thermoelastic excitation of transient Lamb 

\vaves propagating along the principal directions in an orthotropic plate, and used 

it for a quantitative analysis of the noncontact and nondestructive detection of the 

elastic stiffness properties of machine-made paper using the laser-generated Lamb 

wave technique [266}. Balasubramanyam. Quinney. Challis. and Todd described a 

simple finite-difference method to simulate SO and .-U Lamb wave modes in plane 

metal sheets and corresponded their results \\"ith experiment [267]. Secora showed 

that Lamb wave experiments could be used to detect flaws in laboratory specimens 

and a damaged aircraft panel (268]. Seale conducted a theoretical and experimental 
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study to determine the effect of fatigue. thermal. and thermal-mechanical damage 

in composites on Lamb wave velocity [269]. 

1997 

[n 1997 Pelts. Cysyk. and Rose used the boundary element method for fla\\" clas

sification in wave guides [210]. Pavlakovic. Lowe. Alleyne. and Cawley presented 

DISPERSE. a general purpose program for creating dispersion curves using the 

global matrix method [211]. Singher. Segal. and Shamir performed a numerical 

study on the scattering of guided waves from a cylindrical flaw [212]. Cho. Hanger

holt. and Rose used a hybrid boundary element technique to study the effect of 

defect shape on the scattering of Lamb waves in an attempt to develop a means for 

flav .. · characterization [213]. Jia presented a modal analysis to describe the excitation 

of Lamb waves in an elastic plate using a liquid wedge transducer [214]. Alleyne 

and Cawley presented on site data from their dry coupled piezoelectric transducer 

system for corrosion detection in chemical plant pipework [2/.j] . .\Iaslov and Kundu 

theoretically predicted the leaky Lamb modes most sensitive to various internal de

fects in a composite laminate and verified their results experimentally [216]. Pierce. 

Culshaw. Philp, Lecuyer, and Farlow performed broadband measurements of Lamb 

wave dispersion in aluminum, carbon. and carbon/glass fibre hybrid composite ma

terials using a non-contacting optical technique and showed that their results agreed 

well with theoretical modeling [277]. Nayfeh and Xagy extended the work of Zhu 

and \Nu to produce the exact dispersion equations for a viscous fluid loaded plate 

that are not limited to low frequencies and viscosities. and they used them to il

lustrate the effect of viscous fluid loading on the attenuation of the· lowest order 

symmetric and asymmetric leaky Lamb wave modes [218]. Cathignol, Sapozhnikov, 

and Zhang showed that Lamb waves in the piezoelectric focused radiator were re-
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sponsible for the discrepancy· between the observed acoustic field and that predicted 

by 0":\"eirs formula [~19]. 

Briers. Leroy. and Shkerdin developed a model to describe the Lamb and 

Rayleigh waves generated by a liquid wedge [:280]. Kundu and ~Iaslov im·estigated 

the propagation of Lamb \Va\·es through a two-layered glass plate with different 

interface conditions in order to determine the effectiveness of Lamb waves to detect 

interface defects in addition to the interface strength [:281]. Kielczynski derived an 

analytical formula relating the attenuation of a Love wave propagating in a viscous 

surface layer deposited on a perfect elastic substrate to the viscoelastic properties 

of the waveguide structure [282] . .\Ioulin. Assaad. Dele barre. Kaczmarek. and Bal

ageas showed that Lamb waves could be effectively generated by a piezoelectric 

transducer embedded in a composite plate [28:3]. Zinin. LefeU\Te. Briggs. Zeller. 

Cawley. Kinloch. and Thompson showed that the behavior of the attenuation of 

surface acoustic waves propagating on a fast-on-slow layered system is anomalous 

past the shear wave velocity of the substrate cutoff point. and verified their re

sults using acoustic microscopy [284] . .\Iakarov and Belkova performed a numerical 

study of high velocity pseudosurface waves on coated Li.:'\b03 [28-5]. Jia developed a 

normal-mode theory for the nonspecular effects of a finite-aperture ultrasonic beam 

incident onto layered elastic media. and studied the features of leaky wave fields at 

liquid-solid and liquid-solid- liquid interfaces [286]. Poncelet and Deschamps theo

retically investigated the generation of Lamb waves in immersed plates by complex 

harmonic inhomogeneous plane waves which have complex frequency in contrast 

to leaky waves [287]. Darinskii derived approximate expressions for the leaky wave 

speed and the coefficients of plane wave conversion for a ··supersonic"' Rayleigh wave 

converted into a leaky wave by a thin solid layer on an anisotropic medium [288]. 

Kapoor and Schmidt developed an approximate analytical solution for the scatter-
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ing of sound from a three-dimensional protuberance on a thin. infinite. submerged 

elastic plate [ :289]. 

Lobkis developed a theoretical model of the effect of surface roughness on the 

propagation of elastic guided waves in plates [:290] and compared the results with 

experiment [291]. de Billy experimentally studied the scattering of antisymmetric 

edge modes [:292]. Los in studied the long and short-wave asymptotics of the flexural 

vibrations of an infinite. isotropic. elastic plate [29:3]. .\Ionkhouse. \Vilcox. and 

Ca.,.,dey described the development of flexible interdigital PVDF transducers for the 

generation and detection of Lamb waves in plates [294]. \Nang and Sherr used a T

matrix and boundary element hybrid method to study the scattering of elastic waves 

by a crack in an isotropic plate [295]. Guo. Achenbach. and Krishnaswamy presented 

the E~IAT generation and laser interferometer detection of single Lamb wave modes 

in thin plates [296]. Singher studied the applicability of ultrasonic guided waves for 

measuring bond strength [297]. Singher. SegaL and Shamir presented a theoretical 

model for the diffraction of ultrasonic guided waves propagating in a nonuniform 

elastic adhesive layer [298]. Schindel, Forsyth. Hutchins. and Fahr investigated the 

feasibility of using wideband air-couple ultrasonic transducers for evaluating the 

integrity of bonded aluminum lap joints [299]. 

Hassan and Nagy studied the feasibility of fatigue crack detection in fluid

filled cylindrical holes using circumferential creeping waves [:300]. Mal. Chang, and 

Gorman used the global local finite element method and experiments to study the 

interaction of Lamb waves with near-edge defects in a semi-infinite plate [:301]. 

Pecorari presented a model to predict the Rayleigh wave velocity changes due to 

distributions of one-dimensional, interacting surface cracks [302]. Chimenti and 

Lobkis reported experimental measurements and a theoretical calculation of the 

effect of surface roughness on guided waves propagating in a planar fluid-loaded solid 
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waveguide [:3Q:3J. Yang and Gung studied the influence of fluid conductivity on the 

propagation of acoustic wa\·es in a piezoelectric plate immersed in a conducting fluid 

[:30-l). E\·ans and Cawley studied the generation of diffuse Lamb waves in uniform 

rectangular plates [:30-3]. Guo. ).fal. Ono. and Gorman studied the nature of Lamb 

waves generated by microfractures in composite plates [:306]. \Vilcox. Castaings. 

~Ionkhouse. Ca\vley. and Lowe discussed the use of interdigital PVDF transducers 

to generate and receive a high order Lamb wave mode in a pipe [:301]. Yang, Caron. 

).!ehl. and Steiner presented a system for laser generation and detection of Lamb 

waves in graphite/polymer composite laminates [:308]. Rose. Barshinger. and Zaidi 

used ultrasonic guided waves for the inspection of titanium diffusion bonds [:309]. 

Shin, Quarry. and Rose explored the use of non-axisymmetric ultrasonic 

guided waves for faster and simpler inspection and defect sizing analysis in tubes 

[310]. Lowe .. -\.Heyne. and Cawley studied the mode conversion of guided waves by 

defects in pipes [311]. Alleyne. Cawley, Lank. and Mudge reported the first set 

of ·'blind trials'' using Lamb waves to inspect an insulated chemical plant pipe for 

defects [:312]. Rose, Jiao, and Spanner also presented their work on using ultra

sonic guided waves for piping inspection [:313]. El-.-\.zab . .\Ial. Bar-Cohen. and Lih 

used plate wave dispersion data to measure the thickness and elastic properties of 

electroactive polymer films (314]. Kawashima. Fujii. Sato. and Okade measured 

the acoustoelastic coefficients of aluminum with leaky Rayleigh waves [:315]. Li . 

. -\.chenbach, and Cheng used a time-resolved line-focus acoustic microscopy tech

nique to examine the reflection and transmission of leaky Rayleigh waves by a 

surface-breaking crack and to determine crack depth [:316]. \Vright. Hutchens. 

Jansen. and Schindel modified their earlier work on Lamb wave tomography by 

using air-coupled transducers instead of immersion or laser generation [317]. 
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1998 

In 1998 .\Iesquida. 0tero. and Ramos analyzed wave propagation in layered piezo

electric structures [:318]. Pierce. Culshaw. and Shan used a modulated continuous 

wa,;e Jiode laser to generate ultrasonic Lamb wa\·es in thin plates [319]. Darinskii 

extended his earlier work to show that leaky waves could also be generated in a 

crystal-thin solid layer by exceptional bulk waves [:320]. Pecorari presented a model 

of Rayleigh wave dispersion due to a distribution of semi-elliptical surface-breaking 

cracks [321]. \Vang and Zhang derived the dispersion equation of Love wave prop

agation in a transversely isotropic fluid-saturated porous layered half-space [:322]. 

Zhang, Xiong. Yu. Lan, and Li investigated the energy distributions of guided waves 

in multilayered elastic solid media [323]. Bescond and Deschamps modeled the dy

namical surface response of a semi-infinite anisotropic elastic medium to an impul

sive point source or line source at any location on its free surface [324]. Moreno and 

:\.cevedo evaluated the feasibility of using Lamb waves for thickness measurement 

in composite materials [325]. Kundu .. \laji, Ghosh. and .\'Iaslov used leaky Lamb 

waves for the detection of kissing bonds [:326]. Rose. Zhu, and Zaidi demonstrated 

how Lamb waves can be used to evaluate the diffusion bonding states in diffusion 

bonded titanium plates [327]. 

2.2 Review of Tomography Literature 

Tomography is the reconstruction of a two-dimensional cross section of a 

three-dimensional object in terms of some physical property of that object. This 

is accomplished by measuring values along a ray passing through the plane of the 

object, and relating those values to the physical property of interest. The majority 

of tomography research has been done in the medical and seismic fields. In the 
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medicaL field \vhere it is po~sibLe to scan an object from aU angLes. speed is criticaL 

whiLe in seismoLogy where only a Limited number of views is possible. accuracy· 

with limited data is criticaL Therefore two groups of tomographic reconstruction 

algorithms. transform methods and series expansion methods. have been de\·eloped. 

Beyond this. other algorithms have been created to o\·ercome the limitations of 

these two groups of methods. .-\. review of the development and applications of 

these algorithms is presented beLow. 

1917-1967 

In 1911, Radon [328] deveLoped the mathematics necessary to relate the val

ues measured along a ray passing through a two-dimensional object to a physical 

property of that object. Although this work forms the basis for all of the tomo

graphic techniques. it was overlooked for decades. and several other researchers 

later duplicated his work. The first tomography· which involved reconstructing a 

two-dimensional map of some physical property of an object by measuring some 

parameter along several rays through the object. was done in the field of radio 

astronomy fifty years after Radon ·s paper [329 J. 

1968-1973 

\Vith the advent of computers, it was possible to automate the required calcula

tions. This not only minimized the error in the calculations. but the time required 

as well. and this made medical imaging of cross-sections of the human body practi

cal. ~lost of the earliest codes to reconstruct tomographic images used the Radon 

transform to calculate the physical properties from the measured data~ but in 1970. 

Gordon. Bender, and Herman proposed a new direct method. the Algebraic Re

construction Technique (ART) (330]. This iterati\·e technique was superior to the 
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transform method in that it could reconstruct completely asymmetric objects. little 

storage was required so small computers could be used. it was directly applicable 

to X-ray photography. and it required fewer rays to reconstruct so less radiation 

was necessary. However. in 1911 Ramachandran and Lakshminarayanan de\·eloped 

a new reconstruction technique using convolutions [:3:31]. This convolution method 

was faster than both the transform method and the .-\RT method. but it required 

the object to be rotated bet'l.'l."een a parallel beam of radiation. The authors also 

mentioned that three-dimensional images could be obtained by combining the two

dimensional radiographs or electron micrographs. However. the idea of using parallel 

radiation was new and the existing devices only used divergent beam radiation. 

1974-1975 

In 1914. three key papers were published in the IEEE Transactions on .\"uclear 

Science. Gordon [3:32] published a tutorial on .-\RT in which he discussed the origi

nal ART algorithm and some revisions that had been undertaken to try and improve 

convergence and speed. Budinger and Gullberg [:333] examined several techniques 

for the reconstruction of :3-D isotope distributions in the head. heart or liver .. -\nd 

Shepp and Logan [334] generalized the convolution method of Ramachandran and 

Lakshminarayanan and studied its effectiveness in reconstructing a phantom sec

tion. Their 'I.Vork confirmed that the convolution method provided equivalent re

constructions in a shorter time. but the problem of the existing medical apparatus 

setup remained. In 1975 Lakshrninarayanan [:3:3.5] wrote a technical report in 'l.vhich 

he defined a convolution method to reconstruct images from divergent ray or fan 

beam data. Also in 1915, Tanaka and Iinurna [:3:36] examined various correction 

functions for minimizing the numerical noise present in the images obtained using 

the convolution method. 
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1976-1978 

In 197"6. Herman and Lent [:3:3/] did a comparison of se\·eral iterative techniques 

and the con\·olution method. They found that the accuracy of the ART and com·o

lution methods was comparable and that the Simultaneous Iterati\·e Reconstruction 

Technique (SIRT) method was inferior. However. in cases of missing rays and dif

ferent measuring models, the ART method was superior. Also in 1976. Dreike and 

Boyd. who were apparently unaware of Lakshminarayanan's technical report. pub

lished a paper in which they define a method for using the parallel beam convolution 

method with fan beam data [338}. In 1977. Peters and Lewitt [:339} also published 

a method for using the parallel convolution method which they called filtered back 

projection. with fan beam data. Their method depended upon the high symmetry 

possible \vhen scanning around a patient. and they claimed that it was better than 

the divergent ray convolution method because hardware implementation was im

practical for the current data taking times. Herman and ~ aparstek [:340} presented 

another method of reconstructing an image from divergent ray data which was as 

accurate as the parallel beam convo[ution method. This paper was important be

cause the authors acknowledged that Radon's formula for projections [:328} was the 

basis for the tomographic techniques, and they modified it for their own technique. 

\Vang [341} also published a paper using the parallel convolution method with fan 

beam data. However, Wernecke and D'.-\ddario [:3-t2J published a paper in which 

they used a maximum entropy factor to obtain reconstructions from noisy or limited 

data. This iterative method was slower than the direct methods. but was shown to 

be useful in radio astronomy applications. 

1979 
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In 1919 Dines and Lytle [:3-t:l] published the first paper using computerized to

mograph,y to reconstruct seismic data .. -\lthough others had used the Radon formula 

to obtain data from a· single ray. Dines and Lytle were the first to create a tr,vo di

mensional map of the properties of a cross section of earth between two boreholes. 

In their paper they examined the .-\RT and SIRT methods and presented recon

structions using SIRT. Kenue and Greenleaf [:344] published a paper in· which they 

presented three methods of increasing the speed of convolution for the filtered back

projection or convolution method. These methods were: extending the convolution 

kernel into Fourier space. generating a binary approximation for the kernel. and 

doing recursive convolution. 

1980-1982 

In 1980 Lytle and Dines [345] published a second paper in which they took into 

account the ray bending effects that seismic and electromagnetic rays can experi

ence when traveling in rock strata. They used an iterated sequence of numerical 

ray tracing and linear system inversion similar to that of their earlier paper. In 

1981 Thompson and Peters [346] published an article describing some specialized 

hardware to improve the speed of back-projection. This paper showed how impor

tant speed was for medical appiications. This was why the convolution methods 

implemented into hardware were chosen for the commercial computed tomography 

systems. 

1983 

In 1983 three important papers were published in the Proceedings of the IEEE. 

Censor [34 7] published a paper discussing all of the finite series-expansion tech

mques. Lewitt [348] published a paper discussing all of the transform methods of 
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reconstruction. and Bates. Garden. and Peters [:3-t9J published a paper discussing 

the future developments that the tomographic methods would be likely to undergo . 

. -\Lso in 198:3. \Vong. Hurley. and \Vest [:3.50] (who seem to have been unaware of the 

work by Dines and Lytle) published a paper using the simple Fourier back-projection 

technique to image crosshole data in crystalline rocks. However. ).;Ic:\1echan [:351] 

who was aware of the earlier seismic tomography papers. published his work on 

comparing the reconstructions of simulated seismic data using ART for crosshole. 

hole to surface. and combined configurations. where the combined geometry gave 

the best results. fchida. Sato. and Linzer [:3.52] published a paper in which the~· 

used the Fourier transform method to image the nonlinear ultrasonic parameter of 

a medium which describes the dependence of ultrasonic velocity on pressure. Munk 

and \Vunsch [3.53] introduced modal tomography for obtaining reconstructions from 

regions in the ocean where ray theory is not valid. such as when several rays arrive 

together and are indistinguishable. 

1984-1985 

In 1984 ).;Ienke [354] published a paper in which he examined the effect of the 

number and spacing of transducers in the boreholes. while Devaney [3.55] presented 

a filtered backpropagation method using the Born or Rytov approximations for geo

physical diffraction tomography. In 1985 Peterson. Paulsson. and :\-IcEvilly [3.56] ex

amined various ART techniques applied to real crosshole seismic data and found that 

while all of the algorithms produced accurate reconstructions. those with weighting 

functions were slightly better. Ivansson (3.51] examined the effectiveness of several 

techniques to reconstruct synthetic seismic data. He confirmed that methods using 

many cells and some kind of damping gave the best results. and that taking into 

account ray bending could improve results. Hartz. Bristow. and Mullani [358] de-
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\·eloped some hardware which they called a slice-backproject engine. to facilitate 

real-time time-of-flight positron emission tomography or TOFPET. while Uacer 

and :\[eng [:3.59] shO\"~:ed that with better computers simple matrix inversion tomog

raphy for PET was becoming practical. and they suggested the possibility of parallel 

processing to compete with other methods. 

1986 

In 1986 Testardi . .\"orton. and Hsieh [360} proposed acoustic dimensional reso

nance tomography >vhere they used resonance frequencies to map out one dimen

sional systems. This paper was noteworthy because the authors claimed the method 

could be used to nondestructively evaluate aluminum rods. Ivansson [361} compared 

the .-\RT. SIRT. and convolution-gradient ( CG) methods as applied to seismic bore

hole tomography. He found that CG converged faster than .-\RT which converged 

faster than SIRT. but the CG method required much more computer storage space. 

Gustavsson. Ivansson. Moren, and Pihl [:362} presented tomographic reconstructions 

using a fully in-the-field system that they had designed. Chang and McMechan [:36:3] 

used an excitation-time imaging condition to image vertical seismic profiling ( VSP) 

data. In this method, ray tracing was used to define the paths from the source 

to the receivers, then a finite-difference code was used to extrapolate the motion 

of the recorded wave field backward in time to the source. .-\t each step in the 

finite-difference code, the amplitude values at all points in the mesh intersected 

by the wave front were recorded. \Vhen the finite-difference code finished. an am

plitude map of the region had been generated. Jones. Georges. and Riley [:364} 

extended the earlier work of Munk and \Vunsch with modal tomography to account 

for asymmetric velocity profiles. Nakagawa. Hou. Cai. :\mold. \Vade, Yoneyama. 

and Nakagawa [365} presented a new method of nonlinear parameter imaging using 
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second-harmonic waves. 

1987 

fn 1987 Blackledge. Burge. Hopcraft. and \Vombell [:366] presented a method of 

quantitative diffraction tomography using the Born approximation for pulsed elastic 

waves. This method allowed the elastic parameters of a material to be reconstructed. 

and so could be applied to nondestructive evaluation. Scales [:367] presented another 

comparison between CG and ART. and he also found that the CG method converged 

faster than the ART method. Bording. Gersztenkorn. Lines. Scales. and Treitel [:368} 

presented reconstructions for both reflection and transmission seismic tomography. 

For the reflection case Iterative Migration Tomography (IMT). which uses Scales· 

CG algorithm combined with Kirchoff migration. was used. while the Singular Value 

Decomposition algorithm (SVD) was used for the synthetic transmission case. Chiu. 

Lynch. and Johannessen [369] used the direct matrix inversion technique to map out 

mesoscale eddies in the marginal ice zone. They found that resolution of different 

layers v.-as poor unless additional information was provided by satellites or moored 

points. U m and Thurber [370] presented a new approximate algorithm for two-point 

seismic ray tracing which accurately calculated the ray paths in far less time than 

the 3-D ray tracing programs. 

1988 

In 1988 Pratt and Worthington [:371] applied the diffraction tomography method 

of Devaney to the reconstruction of cross-hole seismic data. Dyer and Worthing

ton [372] discussed two common sources of distortion in seismic tomographic images. 

namely inaccurate source and receiver locations and ray bending effects. The au

thors presented a method for iteratively improving the source/receiver locations and 
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showed that ray bending_ is not nearly as important as ray coverage. East. \Vor

thington. and Goulty [:3'13] showed that for crosshole seismic data. the convolution 

backprojection algorithm was faster and less susceptible to noise than the SIRT 

algorithm. Lo. Toksoz. Xu. and \Vu [31 -t] presented the results of an ultrasonic 

laboratory study in which they compared the filtered backpropagation algorithm 

to SIRT. They found that for cases where the scattered field could be obtained. 

the diffraction tomography gave the best result: however. SIRT did not place any 

restrictions on the properties of the object to be measured and only the first ar

rivals had to be measured. Lines and LaFehr [:37.5] used ART to obtain a velocity 

profile for various models and then generated models using kinked-ray modeling 

and finite-difference acoustical modeling to check the accuracy. In all cases. the 

models were in agreement. but the authors noted that they were nonunique. The 

accuracy of the velocity model was improved by adding VSP or uphole data. Jones. 

Byars, and Casey [316] developed a VLSI architecture to perform multiple iterations 

per second for the expectation maximization (EM) algorithm for PET. Also Kak 

and Slaney [:371] published a tutorial overview of tomography that has become the 

classic reference for later works. 

1989-1990 

In 1989 Lines and LaFehr [318] published a second paper. and Bregman, Bailey. 

and Chapman [379] showed that their two-dimensional iterative ray tracing and 

damped least-squares inversion algorithm could be successfully applied to cross

hole seismic data. In 1990 Chen, Zimmerman. and Tugnait [:380] compared surface 

seismic imaging, reverse vertical seismic profiling ( RVSP ). and SIRT and found 

that RVSP and SIRT were better than surface imaging and were capable of re

solving complex structures. Pratt and Worthington [:381] presented a new method 
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of imaging crosshole data that was similar to diffraction tomography except that 

the method of finite-differences was applied directly to the frequency-domain \vave 

equation. In this paper the acoustic wave equation was used and it was shown 

that diffraction tomography was only better in cases where the weak-scatter ap

proximation was valid. Pratt then presented similar work using the elastic \vave 

equation both in a full paper [382] and a short note [:383]. For these methods. as in 

diffraction tomography. it was necessary to use the full waveform instead of just first 

arrival times. Jansen and Hutchins [129} used the filtered back-projection technique 

to image flaws in aluminum plates using ultrasonic Lamb waves. The plates were 

submerged in an immersion tank. and amplitude variation and propagation delay 

were used to image attenuation and velocity. Chen. Lee. and Cho [384] published 

their work on a parallel implementation of the convolution backprojection method. 

and Barresi, Bollini. and Del Guerra [38.5} published their work on using parallel 

processing for direct 3-D image reconstruction in 3-D PET. 

1991-1992 

In 1991 Pratt and Goulty [386} presented images of simulated crosshole data 

obtained by combining ray tracing and SIRT with wave-equation imaging in the 

frequency-domain. Atkins, Murray, and Harrop [381] discussed the benefits of par

allelizing their 3-D PET algorithm. and Chen. Lee, and Cho [:388] published their 

work on parallelizing the EM algorithm for :3-D PET. :\-loser [389} presented an

other method of ray tracing which calculated the shortest path traveltime through 

a network that represented the earth. In 1992 Jansen and Hutchins [171] published 

their work using Rayleigh waves to reconstruct images of surface defects in thick 

metallic samples and using Lamb waves to image defects in thin metallic plates. 

They again immersed the samples in an ultrasound tank and used the fi~tered back-
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projection method to reconstruct the images from traveltime data. Snieder and 

:\[alcolm [:390j presented the w:e of ray perturbation theory to calculate the travel

times and ray paths in :3-D heterogeneous media. Huang. Xie. Salkeld. Plakowski. 

Thorn. \\"illiams. Hunt. and Beck [:391] used a transputer and non-intrusive capac

itance sensor system for the process tomography of an oil/water flow in a 70 mm 

diameter pipe in real-time. 

1993 

fn 1993 Hutchins. Jansen. and Edwards [177] published another paper usmg 

Lamb wave data to produce tomographic images. However. in this work they used 

a laser to generate the Lamb waves and E.\L\Ts for detection. and they measured 

peak amplitude. time-of-flight. integrated energy of the spectral peak. and centroid 

of the spectrum location. Rajan. Frisk. Doutt. and Sellers [392] used the iterati\·e 

ray tracing and linear system inversion technique of Lytle and Dines [34-5] to image 

speed profiles in sea ice. Pade and .Ylandelis [:39:3] published a new computational 

thermal-wave diffraction tomography method and applied it to simulated data. :\.gi. 

Hurst, and Current [:394] presented a VLSI digital signal processor that could be 

used with both transform and iterative methods applied to fan-beam or parallel

beam data. Vasco and Majer [395]. Schuster and Quintus-Bosz [396], and Ammon 

and Vidale [397] all presented papers using wavepath eikonal tomography in which a 

finite-difference code was used to solve the elastic wave equation and backproject the 

wave front position with time. All of these authors seem to have been unaware of the 

earlier work by Pratt using the elastic wave equation. Farra [398] published a review 

of ray tracing methods in complex three-dimensional media .. -\sakawa and Kawanaka 

(399] presented a new ray tracing method called linear traveltime interpolation which 

was shown to be faster and more accurate than the finite difference methods. and 
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Fischer and Lees [-tOO} pres5=nted a technique for impro\·ing the efficiency of shortest 

path ray tracing. Goncharov and Voronovich [-tOl] studied modal tomography. and 

.Jones. Shang. and Georges [-t02] extended the nonperturbative modal tomography of 

.\funk and \\"unsch to a range-dependent environment. Isai..:sen and .\"ordtvedt [40:3] 

presented a new reconstr'J.ction algorithm for the process tomography of oil/ gas pipe 

flows and compared their results to those obtained using the linear back projection 

algorithm. 

1994 

In 1994 Ratcliff and ~.Veber [404} presented a new method for producing seismic 

images of subsurface salt regions called 3D prestack depth migration or PSDM. For 

this method the authors first used time migration techniques to develop an accu

rate velocity model which was then improved by their depth migration technique. 

PSD.YI provided much more accurate images. but it required large amounts of data 

and computational time. Zhang and Gong [405} published their work on computer 

simulation of acoustic nonlinear parameter tomography in which they used the fil

tered back-projection algorithm with various filters. Zhu and Chun [406} published 

their work on ray tracing in elastic and anelastic inhomogeneous media using com

plex rays. Jansen, Hutchins. and Mottram [204} extended their earlier work on 

Lamb wave tomography to composite plates. French [-tO/) discussed the improve

ments that massively parallel processing computers were providing for in-the-field 

seismic imaging. Jones and Georges [408] applied their nonperturbative ray to

mography method to simulated data from a range independent model, and Jones. 

Howe, :Ylercer. Spindel, and Georges [409] applied it to actual experimental data. 

vVang and Kline [410} developed an iterative ray tracing technique for isotropic 

and anisotropic materials based on Fermat's principle and implemented it with a 
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traditional ART algorithm. Degertekin. Pei. I\:huri-Yakub. and Saras·wat [~06J per

formed in situ acoustic temperature tomography of semiconductor wafers by using 

measurements of Lamb \Va\·e time-of-flight to measure the temperature of the •vafer 

along ~pecific ray paths and then reconstructed the temperature distribution of the 

wafer using the simple linear equation solving approach. 

1995 

In 199.5 Shang. \Vang. Jones. and Georges [-H 1] applied their nonperturba

tive modal tomography technique to numerically simulated range-independent and 

range-dependent cases. Nagata, Huang. Achenbach. and Krishnaswamy [215] used 

the filtered back-projection algorithm to produce tomographic images from Lamb 

wave attenuation data. A laser was used for generation and a dual point interferom

eter was used to measure the attenuation . .Jalinoos. Olson. A.ouad, and Balch [412J 

nondestructively evaluated concrete for flaws by applying the CG and SIRT algo

rithms with curved rays to acoustic traveltime data. Zhang and Gong [413] extended 

their earlier examination of filter influence on nonlinearity parameter imaging by 

considering four filters in the filtered convolution method. .Jalinoos. Olson. and 

.-\ouad [414] published their same work in another conference proceedings. Daily 

and Ramirez [415] discussed the potential of seismic tomography and electrical resis

tance tomography for environmental process tomography. Green. Horbury. Rahim. 

Dickins, Naylor, and Pridmore [416] used optical fibre sensors for the process tomog

raphy of low concentrations of conveyed particles in a flow. Hoyle [41 iJ studied the 

limitations of ultrasonic process tomography applied to dynamic flowing mixture 

processes. 

1996 
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In 1996 .Jalinoos and Olson [-!18] extended their previous work of examining con

crete members with two-sided access to examining large concrete sections between 

P\T access pipes in dams and bridges. In this ·.;·ork which was simply crosshole 

tomography applied to dams and bridges. they used the SIRT algorithm. Sullivan. 

h]ine . .\[ignogna. and Delsanto [419] modified the iterative ray tracing and Linear 

system inversion algorithm of Lytle and Dines [:345} to be used on a massively par

allel architecture. Zhang. Gong, and Ye [420} applied their acoustic nonlinearity 

parameter tomography to experimental data from real biological samples. Ingesson 

and Pickalov [421} presented an iterative projection space reconstruction algorithm 

for systems with irregular coverage. Their algorithm involved iterating between 

projection space and real space and applying a priori information and smoothing. 

Beck and \Villiams [422] reviewed the recent developments in the design and appli

cation of tomographic sensors for measurements in industrial processes. Hoyle [42:3} 

reviewed ultrasound and ultrasonic transducers and discussed their potential for pro

cess tomography applications. Zhu. Duvauchelle. Pelx. and Babot [424} used X-ray 

Compton backscattering techniques for the nondestructive evaluation of materials 

with applications to process tomography. Dyakowski [425] described the applica

tion of existing tomographic techniques to the process tomography of multi-pahse 

flm.,·s. Gibbs and Hall [426] showed that magnetic resonance imaging could be used 

in process tomography to perform fundamental studies of transport phenomena in 

heterogeneous. multipha.se systems. Schlaberg and Hoyle [427] described the devel

opment of an ultrasonic reflection tomography system for the real-time imaging of 

two-component flows. Pei, Yousuf, Degertekin. Henein. and Khuri-Yakub [248] used 

a Hertzian contact to generate Lamb waves in pipes and plates without couplant. 

and they presented a filtered back-projection tomographic image of an aluminum 

plate with a depression milled into it. 
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1997 

In 1991 Dickens and \Vinbov; [-!28] examined the resolution capability for 

the filtered back-propagation diffraction tomography algorithm with \·arious 

sourcejrecei\·er and target geometries. \Vright. Hutchens. Jansen. and Schindel [:317] 

modified their earlier work on Lamb wave tomography by using air-coupled trans

ducers instead of immersion or laser generation. Xu and Xu [429] used a filtered 

backprojection algorithm to image fan-beam and parallel-beam data from a bub

bly gas/liquid two phase flow. Subbarao . .\Iunshi. and :VIuralidhar [430] compared 

three additive ART. three multiplicative ART, SIRT. :VIaximum Entropy. and .\fin

imum Energy algorithms on phantom data and found that the .YIART:3 algorithm 

worked best on perfect projection data. They then proceeded to look at the effect of 

noisy data on the :\IART3 reconstructions. Interestingly, they cited Censor's 1983 

paper [:341] but appear to have ignored his comment on MART. He stated that 

the behavior of the MART algorithms in realistic situations where the equations 

are inconsistent is not well understood while the behavior of the ART algorithm 

is. Since Subbarao. Munshi, and :VIuralidhar onl_y· compared the algorithms using 

perfect simulated data, their conclusion that .\IART is better than ART is not nec

essarily true in realistic situations. Mensah and Lefebvre [431] presented the results 

of their enhanced compressibility tomography on biological phantoms in which they 

used ultrasonic diffraction tomography and reconstructed their quantitative images 

in terms of compressibility. Ko and .Yieyyappan [432] showed that for a computer 

simulated solid specimen. shear-wave scanning tomographic acoustic microscopy 

(STAM) had better resolution than longitudinal wave ST.-\:VL In their work they 

measured the shear wave energy and longitudinal v;ave energy at various insoni

fication angles and used the back-and-forth propagation algorithm to reconstruct 
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the images. \Veils. Smith.-and Suparta [4:3:3] showed how the bow-tie or hexaganol 

sampling pattern of Rattey and Lindgren provides a more efficient means of data 

taking for Convolution-Backprojection tomography than the standard square sam

pling. However. this technique required a more elaborate apparatus and control 

software. \"engrinovich. Oenkevich. Tillack and ~ockemann [434] presented a multi 

step reconstruction method for :30 X-ray tomography with a limited number of pro

jections and \·iews. Greenawald. Levenberry. Poranski. Everett. Simmonds. Batra. 

and Hu [4:35] showed that x-ray backscatter tomography can be used to monitor 

porosity distributivn in gasar-processed metal plates. Reibold and Kwiek [436] es

timated the uncertainty of ultrasonic field maps produced using light diffraction 

tomography. 

Schlaberg, '{ang, Hoyle, Beck, and Lenn (4:3'1] described the design of wide

angle transducers for a real-time ultrasonic process tomography system that pro

duces reflection mode tomographs of objects in a liquid. Hebber, Oldenburg. 

Farnocombe. and Celler [438] presented a means for estimating the dynamic pa

rameters of Single Photon Emission Computerized Tomography (SPECT) recon

struction directly from the projections. Beyer. Kinahan. and Townsend [439] inves

tigated the optimization of transmission and emission scan duration in 30 whole 

body PET. Yuasa, Akiba, Takeda. Kazama. Hoshino. \Vatanabe, Hyodo, and Oil

manian [440] described a new system of incoherent scatter computed tomography 

using monochromatic synchrotron X rays and discussed its potential to be used in 

in vivo medical imaging. Schiepers. Nuyts. \Vu. and Verma [441] showed that the 

maximum likelihood expectation maximization ( .\ILE:\1) iterative reconstruction 

method provided images of superior quality to the filtered back projection method 

at the expense of ten times the reconstruction duration when applied to PET data. 

Kinahan, Fessler, and Karp [442] presented imprO\·ed PET images by combining 
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\·olume imaging with the penalized weighted least squares statistical reconstruction 

method. Hawkins [-t-!:3] used Fourier transform resampling of a nonstandard exper

imental geometry to obtain a data set in a standard geometry. Celler. Sitek. and 

Harrop [-t-t-t] demonstrated that a series of collimated line sources parallel to the 

axis of rotation of the detector camera can be used inSPECT to generate sufficient 

data for the reconstruction of the attenuation map. Pan and .\Ietz [-!4-5] studied the 

noise characteristics of non-iterative methods in 2D SPECT image reconstruction. 

h~hosla and Singh [446] showed that the maximum-entropy method could be used 

for .\Iagnetoencephalographic source imaging. 

Heanue. Brown. Tang. and Hasegawa [4-ti] shO\,red that the effect of radionu

clide scatter in emission-transmission CT is small compared to the effect of attenua

tion and collimator blur. but scatter correction is still preferable to scatter rejection. 

:\"oo. Clack. and Defrise [448] examined the effectiveness of three Radon rebinning 

algorithms for cone-beam reconstruction from general discrete vertex sets. Johnson. 

Seidel. Carson. Candler. Safer. Green. and Daube-\Vitherspoon [-!49] evaluated the 

effect of six reconstruction algorithms on the image quality of a small animal PET 

camera. and determined that 3D expectation maximization ( E.\I) and :3D ordered 

subset expectation maximization (OSE~I) gave the best results. Chen . .\:Iiyanga. 

Yamanaka. )i"akai, Yamanaka. and :\"akai [4-50] used an X-ray emission computed 

tomography technique to produce three-dimensional images of laser-imploded tar

gets. ~agarkar. Gordon, Gupta, Vasile. Gothoskar. Squillante. and Entine [4-51] 

demonstrated the benefits of a CCD-based high resolution digital radiography sys

tem over the standard polycrystalline phosphor system for nondestructive evaluation 

applications. Glick, and Xia [452] presented a reconstruction approach which first 

processes the projection data to compensate for photon attenuation and the Limited 

nonstationary spatial resolution of the detector and then performs filtered backpro-
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jection to obtain better SP ECT reconstructions. Zeng. \Veng. and Gull berg [-!.5:3) 

showed a :\ILE:\I iterative technique for SPECT reconstruction from cone-beam pro

jections acquired \·ia nonplanar orbits. Yuasa .. -\.kiba. Takeda. I\:azama. Hoshino. 

\VatanabP. Hyodo. Dimanian .. -\.katsuka. and Itai [-!54] described an attenuation cor

rection method for fluorescent X-ray computed tomography using a least-squares 

method with singular value decomposition . .\Iaguire . .\Iissimer. Emert. Townsend. 

Dollinger. and Leenders [4-5-5} used a multiring PET instrument to perform PET 

on large rock samples in order to measure relative changes in porosity. Li and 

Hoyle (456J showed that the real-time performance of ultrasonic process tomogra

phy could be maximized by using multiple active sensors and a spectral analysis 

strategy. 

1998 

In 1998 Rust and \Veigelt [457J used the .-\.RT and .\ILEM algorithms with X-ray 

fluorescent computer tomography to quantitati\'ely calculate the distribution of a 

nonradioactive element within a cross section of a specimen. 

2. 3 Discussion 

From the Lamb wave literature, it can be seen that guided waves offer a rapid 

and quite sensitive means for examining interfaces. rods. pipes. wires, surfaces. and 

multilayer or solid plates. Specifically, Lamb waves can be used to rapidly inspect or 

characterize plate-like materials. Since the skin of an aircraft is made of plate-like 

materials, Lamb wave scanning offers a rapid. nondestructive means for the evalua

tion of flaws in the aircraft structure. However. in order to interpret the complicated 

Lamb wave signals, a highly trained individual is necessary. Therefore. we have 
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combined Lamb wave con~act scanning with tomography to produce an instrument 

capable of in-the-field inspection of aircraft. \vhich produces an image that can easily 

be interpreted by a technician. [n contrast to the other researchers ""·ho have per

formed Lamb wave tomography using the parallel projection techniques commonly 

used in earlier medical applications [129]. [111]. [lll]. [206]. [204]. [21-5]. [:H 1]. we 

have performed a review of tomography literature to determine the tomographic 

technique best suited for our application. 

Based upon this literature. the algebraic reconstruction technique ( :\RT) 

has been chosen as the most appropriate algorithm to be applied to Lamb wa\·e 

tomography. ART is superior to the transform. convolution. CG, and diffraction 

methods because it places no restrictions upon the objects to be reconstructed or 

upon the scanning geometry, it requires less computer storage space. and it can 

produce accurate reconstructions with fewer or missing rays. The :\RT algorithm 

also converges faster than other iterati\·e techniques such as SIRT. The limitations 

of .-\RT are its assumptions of straight rays and of a linear relationship between 

the difference in calculated and measured traveltimes and the required change in 

physical properties. vVe will address these problems later in the dissertation. 
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Chapter 3 

Theory and Experimental Results 

fn this chapter background theory and experimental results are presented. 

Cltrasonic Lamb "'rave contact scanning is first discussed. as are novel implementa-

tions for tomographic imaging with Lamb waves in Parallel Projection and Cross 

Borehole configurations. For both techniques. the experimental geometry and ap-

paratus are presented. The tomographic reconstruction algorithms used for each 

method of tomography are discussed. and a comparison is made between the results 

of these two methods. Finally. the limitations of these tomographic methods are 

shmvn. 

3.1 Lamb Wave Scanning 

[n order to perform quantitative tomographic reconstruction with Lamb 

waves. it is necessary to develop a theoretical framework \vhich accurately describes 

the dynamical behavior of an elastic plate. 

Consider [458] the conservation of mass. 

8p , a(pui) _ 
0 at T ax, - . 

. )6 

( :3.1) 
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the conservation of momentum. 

and the stress-strain relation for a homogeneous. elastic solid. 

I :3.:~) 

In these equations. ui(It • .r2 • .r3 • t) is the displacement of a particle located at 

It-I2.IJ at timet from its position in the zero stress state. the particle "·elocity 

is given by the material derivative of the particle displacement. 

the particle acceleration is given by the material derivative of the particle velocity. 

( :) .. j) 

and ei1 is the strain tensor given by 

( :3.6) 

Here CTij is the stress tensor. ci]kl is a tensor of elastic constants which are indepen-

dent of stress or strain, p is the mass density of the material per unit volume. X; is 

the body force per unit volume, and the indices range over 1.2.3. If we assume that 

the particle displacements and velocities are infinitesimal. then the nonlinear terms 

in Equations 3.4- 3.6 can be neglected [4-58] and we have for a linear. homogeneous. 

elastic solid. 

OU; 
v-=-
' 8t 

(:3.1) 

Finally if we assume that the solid is isotropic in addition to being linear, homoge-

neous. and elastic, then there are only two independent elastic constants, ,\and /-L. 
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which are called the Lame parameters. These assumptions allow us a sufficiently 

accurate description of the Lamb wa\·e ultrasonic measurements in this work. :\ow 

the ~tress-strain relation for a linearly elastic. homogeneous. isotropic solid can be 

written as 

where 

s,, = { 0 
if i = j 

( :3.9) 
if i =I= j 

and n = L 2. :3 [4.j8J. 

Plugging the linearized expression for strain into Equation :3.8 we have [4.j9J. 

(3.10) 

and substituting this into Equation :3.2. we have 

a (' 8ua _ (8ui , 8u1 )) - A--o· +Ji. - ~-OX) 8xo I) OX) OX, +X;= pn;. (:3.11) 

Simplifving this and noting that ~uq = ~- \Ve have 
- t.JXo •JXJ 

(:3.12) 

which is ~avier"s equation in index notation for the motion of a linearl.Y elastic. 

homogeneous. isotropic solid [458] [459]. Since there are no body forces that affect 

the Lamb waves we set X; = 0. and we can re\\.Tite :\avier's equation in vector 

notation as 

smce 

ll; -+ u ( :3.14) 
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According to HeLmholtz"s theorem. the displacement vector. U. = ( u 1• u2• u3 ). 

can be written in terms of two potentials as i.i. = vo + V x l-:. For Lamb waves we 

need only consider plane strain motion in the (.r 1 • .r2 )-plane. and we have u3 = 0 

with no dependence on .r3 for the other displacement components. So the potentials 

o and l.' satisfy the following scalar wave equations. 

(:3.1.)) 

\\·here V 2 = 32 + _3
2 

and C = (·'+2u) t Cy = (=P·) t are the longitudinal and J;f ~ L P • 

transverse bulk wave speeds respectively. For the material discussed in this work 

(aluminum). CL = 6568 m/s and cr = :3149 mjs. The nonzero displacement com-

ponents are given by 

o<JJ otJ u.,=----
~ 8x2 axl 

(:3.16) 

where 1.!.~ = i 3 • 0. and the relevant components of the stress tensor are then 

To investigate Lamb wave motion in an elastic layer (Figure 3.1) we consider 

solutions of the form 

which give 

(:3.19) 
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Figure 3.1: Coordinate system for Lamb wave propagation in an elastic layer. The plate is of thickness 2h, with the top and 
bottom of the plate given by x2 = ±h. Since the plate is infinite in extent, propagation in the x 1 direction can be assumed 
without loss of generality. 
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-..-..·here 

( :3.20) 

\\·e can suppress the e•(kx~-·.-~t) factor since it is a multiplier in all terms. Displace-

ments and stresses are then given by 

and 

d\f! 
ur = ik<P + -d 

X2 

( 
. d\f! ') c£2\f!) 

crr2 = f.l 2zk- + k-w + --.., 
dx2 d:c2 

( 
d<P 2 ) . (d?w . dw) a-22 = .X -- k ~ + 2f.l --2 - lk- . 
dx2 dx2 dx2 

(:3.21) 

(:3.22) 

:'-iote from Figure :3.2 that for the displacement in the x 1-direction the motion is 

symmetric (asymmetric) with regard to .r2 = 0 if u 1 contains cosines (sines). \vhile 

the displacement in the .r2-direction is symmetric (asymmetric) if u2 contains sines 

(cosines). 

Thus we can separate symmetric: 

( :3.23) 

and asymmetric modes: 
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Figure 3.2: Symmetric and Asymmetric motion of a plat.e for SO and AO Lamb wave propagat.iou respectively. 
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u1 = ik.-1.tsin(p.r2) -q82 sin(qxz) 

6 -~ 
·> 

If the boundaries are free at .r2 = ±h then the stress components. 0"12 and 0"22 • 

vanish there. In matrix form with .r2 =h . ...... e have for the symmetric case. 

( 

-"2p.ikpsin(ph) 

-()..k2 + (.-\ + 2p.)p2
) cos(ph) -2Jl.ikq cos( qh) ) ( :: ) -(: t25) 

and for the asymmetric case 

( 

"2Jl.ikp cos(ph) 

-(.-\k2 +(A+ 2p)p2
) sin(ph) 

For each case. the homogeneous system of boundary conditions has non-trivial so-

lutions when the determinant of the -coefficient matrix vanishes. or when 

- 2pikp sin(ph) 

for the symmetric case. and 

2jl.ikp cos(ph) 

-(Ak2 + (.-\ + 2p)p2 )sin(ph) 

Jl.(k2
- q2 )cos(qh) 

-211ikq sin( qh) 

=0 

=0 

(.3 ·r) • --1 

(:3.28) 

for the asymmetric case. These equations give us the dispersion relations for the 

Lamb waves. For the symmetric modes we get the dispersion relation 

tan(qh) 4k2pq 
= - ---:---'--':--:-

tan(ph) ( q2 - k2 )2 
(:3.29) 
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and for the asymmetric modes we get 

tan(qh) (q2 - k 2 ) 2 

-
tan(ph) -+.k2pq 

(:3.:30) 

These transcendental equations have an infinite number of solutions each 

corresponding to a particular Lamb wave mode. The symmetric and asymmetric 

modes are numbered independently and according to increasing cutoff frequency. 

So we have SO. 51. 52 ... for the symmetric modes and .4.0 . .4.1. .4.2 .... for the as}·m-

metric modes. Figure :3.3 shmvs the dispersion curves for the four lmvest modes 

( .-\.0. SO . . 4.1. 51) in an aluminum plate plotted as phase velocity in mm/ f.LS ver-

sus frequency-thickness in MHZ-mm. For the frequency-thickness range shown. all 

modes higher than 51 are cut off. and this is why only the first four modes are visi

ble. Notice that for low frequency-thicknesses. only the 50 and .4.0 modes exist. and 

they have quite distinct phase velocities. This is in contrast to the case of higher 

frequency-thicknesses where there are many modes which approach the same phase 

velocity value of :3.149 mm/ f.LS. which is the bulk shear wave velocity in aluminum. 

Specific Lamb wave modes are more sensitive to certain types of flaws. and 

techniques using oblique insonification in an ultrasound tank or angle block trans-

ducers have been developed for the excitation of specific modes. vVhile these tech-

niques work well in a laboratory environment where extreme care can be taken in 

maintaining the correct angle of insonification for a specific mode. they are not 

practical for automated scans of aircraft in-the-field. The first requires pieces of the 

aircraft to be placed in a tank, and the second requires the angle to be precisely 

maintained during the automated scan. In addition. if the material is not flat. then 

the angle will have to be carefully altered as the scan progresses. Again while this 

is possible in a laboratory, it is impractical to implement for in-the-field scanning. 

Another problem with generating Lamb \Va\"es is the coupling between the 
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transducer and the test m~dium. since at :\[Hz frequencies. the sound wa\·e cannot 

propagate across the small air gap between the sample and the contact transducers. 

Experiments performed in a tank avoid this problem because the entire sample and 

transducer are immersed in water through which :\[Hz frequency sound waves can 

propagate. However. as was stated above. tank experiments are not practical for in

the-field experiments. For contact transducers. there must always be a lay·er of >vater 

bet\\·een the transducer and the sample to ensure good coupling of the sound waves 

into the medium. One way to do this involves using ·squirters· ""·hich are special 

transducers that have a water source attachment. \Vater continually flows into the 

region between the transducer and the sample to provide coupling. However. while 

this works well. it requires that a water source and delivery system be included 

with the scanning system. This adds expense and complexity to the scanner. In 

addition. experiments performed in the field will not always be performed on flat 

samples. :\.ircraft have curved sides. and so experiments will be performed where 

the transducers are almost upside down. This can make it difficult for the squirters 

to provide equal coupling at all orientations. 

In this work normal incidence shear or longitudinal contact transducers are 

used. The transducers are spring loaded to the sample. and water is applied at 

the start of a scan. Since the transducers are spring loaded. they hold the water 

in position and carry it with them at each step in the scan. To generate the 

Lamb waves. the contact transducers are excited by a toneburst. and the Lamb 

wave modes are then allowed to develop as the ultrasonic energy propagates. Here 

toneburst refers to a Gaussian envelope containing a specified number of cycles at 

a specified frequency. The toneburst has a repetition rate such that the echoes 

from a previous toneburst die down before the next toneburst is generated. For this 

generation technique. the number of Lamb wave modes produced is only limited by 
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the frequency chosen for generation. This is in contrast to the oblique incidence 

methods which only· generate a single mode. In order to minimize the number 

of modes produced and so the complexity of the received signal. the frequency is 

chose:1 so that the frequency-thickness corresponds to the region where only the SO 

and .-\.0 modes propagate appreciably. From Figure :3.:3. it can be seen that this 

range corresponds to fd < 2.6 ~IHz-mm for aluminum. The A.l mode does not 

propagate appreciably because the attenuation of any mode near its cutoff point is 

very large. Since the phase velocity of the SO mode is faster than that of the .-\.0 

mode in this range in a pitch-catch setup. the SO mode will arrive first and will 

be distinct from the .-lO mode in the received waveform. Figures :3.4 and 3 .. j show 

two sample waveforms obtained from an aluminum plate of thickness 2.42 mm. 

using tv;o contact transducers in a pitch-catch arrangement excited by a three-cycle 

toneburst with a repetition rate given by 

GenerationFrequencyj6:300. ( :3.:31) 

In the first waveform. which was obtained at a lower frequency (fd = 1.51 ~IHz

mm). the SO and .4.0 modes are clearly distinguishable. In the second waveform 

\vhere the frequency has been increased (fd = 2.42 ~IHz-mm). the SO mode is still 

the first arrival, but the .4.0 mode is mixed in with noise and reflections from the 

plate edge. 

The frequency ievel generating the first waveform works well when changes 

in amplitude of the SO and .4.0 modes are used for flaw detection. However. even 

though amplitude measurements are often more sensitive to the presence of flaws. 

the received signals tend to be strongly affected by the variations in coupling in

herent in automated scanning. Therefore. time-of-flight measurements are used 

here because the aim of this work is to develop automated scanning methods that 
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don "t require an expert operator and that minimize human intervention as much as 

possible. 

In order to detect flaws by changes in time-of-flight. the frequency-thickness 

must be chosen so that the measurements are performed \\·here the dispersion curves 

have a high enough slope. Then a small change in thickness will cause a large enough 

change in the velocity and the time-of-flight can be detected with the available 

electronics. In Figure 3.6 the frequency-thickness range has been chosen so that 

only the region where the 50 and .-\.0 modes propagate appreciably is shown. From 

this figure. the regions of high slope for the .-\.0 and 50 modes are (fd < 0.8) ~IHz

mm and (2.0 .\IHZ-mm :s; fd :s; 2.6 ~IHZ-mm) respectively. It is convenient to 

monitor the 50 mode because no matter how complicated the waveform gets. it 

is always at the front of the waveform. The waveform shown in Figure 3.5 was 

obtained in the region of high slope for the SO mode. As was stated above. the .-\.0 

mode is mixed into the complicated signal. but the SO mode is easily detectable as 

the first arrival. 

For the measurements, a pair of normal incidence shear contact transducers in 

pitch-catch arrangement is automatically scanned in the direction perpendicular to 

the Lamb wave propagation. At each location of the transducer pair. the phase shift 

of the SO mode is acquired through pulse-phase-lock-loop (P2L2) circuitry [460}. 

This instrument compares the phase of its pulsed output signal. which is sent to the 

transmitting transducer, with that of the amplified and low-pass filtered returned 

signal from the receiving transducer. A frequency counter is connected to the output 

of the P2L2. which gives information on the phase difference of the two signals in 

terms of frequency. The value of this reference frequency can be used to calculate 

both the time of flight and. because the distance between the two transducers ts 

fixed. the integrated velocity of the Lamb waves. 
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Figure :3.7' shows the measured frequency· data from an aluminum sample with 

a :2 .. )-! em diameter .)09( thickness reduction flat-bottom hole simulating corrosion . 

. -\definite increase in the frequency. which corresponds to an increase in the velocity. 

is seen for the measurements over the thinned region. From the figure. the flaw carr 

be located between positions :39 and 65 with a length of approximately 26 mm 

along the scanning direction. By rotating the plate 90° and repeating the scarr 

(Figure :3.8). the flaw can be located between positions 41 and 63 \"~:ith a length 

of approximately 22 mm along that scan direction. This indicates that the flaw 

is contained in a rectangular region of 26 mm x 22 mm. .-\n image of this flaw 

region can be produced by manually processing the data and then multiplying the 

processed 0° and 90° data to produce a two-dimensional map [461]. In order for this 

to work. any data outside of the defined flaw region must be zero. so that erroneous 

flaw areas are not produced by the multiplication of the two data sets. For plates 

with isolated flaws this is approximately the case. Figures :3.9 and :3.10 show the 

data sets after the zeroing and normalization have taken place . .-\ two dimensional 

array of these values can be obtained ~y multiplying the elements of the processed 

0° data by those of the processed gpo data. that is 

where C;1 is the two-dimensional array. cO; is the processed 0° data array. c90j is 

the processed 90° data array, and i,j are summed to the number of data points in 

a scan. Figure 3.11 shows the image corresponding to this two-dimensional array. 

The flaw location is clearly visible. but there is no quantitative information about 

the magnitude or shape of the flaw. By taking scans along various orientations. 

we can continue to improve the mapping of the flaw shape and position. However. 

this method only provides a qualitative image of the flaw's location and relative 
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Figure 3. 7: Experimental frequency data obtained from a single .scan on an alun1inum plate with a 2.54cm diameter 50% 
thinning region. There is a definite increase seen in the frequency· values when the Lamb waves pass through the thinning 
region. From this plot we can determine the length of the flaw to Le 26mm in this scan direction. 
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Figure 3.11: Image corresponding to the two-dimensional array pr~duced by multiplying the processed 0" and 90° data :;c~l.s. 

A rectangular flaw region is clearly visible, but no information about the actual shape and magnitude of the flaw is availaiJic. 
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s1ze. [t does not provide any information about the magnitude of the flaw. and any 

information contained in the experimental data outside of the defined flaw area. 

is thrown away. Thus smaller secondary flaws can be overlooked. [n order to use 

the full unprocessed experimental data and obtain a quantitative map revealing 

:he location. size. and magnitude of any flaws. it IS necessary to use tomographic 

reconstruction methods. 

3.2 Parallel Projection Tomography 

Parallel Projection Tomography (PPT) is the method that was used in the 

first generation of medical imaging CAT scanners. It provides a quick means of 

producing accurate two-dimensional reconstruction images of cross-sections of a 

three-dimensional object as long as measurements can be taken from all angles. 

In addition. the reconstructions are greatly improved for cases of symmetric flaws. 

This same technique can be used to image the two-dimensional plate-like structures 

commonly found on aircraft via Lamb wave ultrasonics. 

Geometry and Apparatus 

Figure :3.12 shows schematically the geometry for Lamb wave PPT. The 

transducers are scanned along parallel lines with the Lamb waves propagating be

tween them. At each position in the scan a measurement of some property of the 

Lamb waves. which are assumed to propagate along the straight rays shown. is 

recorded. Once the measurement has been done along each of the rays for that 

orientation. the sample is rotated by a fixed amount and the measurement is re

peated. Projections consisting of seven parallel rays (transducer-pair positions) for 

four orientations (0. 4-5, 90 and 135 degrees) are shown. The ray density for PPT is 
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Figure 3.12: The geometry for parallel-projection tomography is shown here schematically for the case of seven parallel rays 
at four orientations. Note that the ray density is uniform, and a fairly large obstruction free ring (shaded area) is neces:mry 
for contact scanning. 
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uniform and the rays cov·er all angles since projections must be evenly spaced over 

180 degrees. both of which are critical to the quality of reconstruction. However. 

this can be a disadvantage for contact scanning. .-\s scans are taken along many 

orientations. a fairly large ring surrounding the region of interest (shown shaded 

in Figure :3.1:2) must be free of obstructions. This is necessary so that the scanner 

can freely rotate to the starting position of each scan without changing its center 

point. and so that the transducers wiU have uniform contact with the material for 

Lamb wave generation and detection. If there are obstructions in the ring region. 

then fewer orientations must be used to avoid them. and the scanner may have to 

be repositioned manually between scans. This is detrimental to the reconstruction 

quality. 

In this research an ultrasonic system has been built that allows Lamb wave 

scans to be made in the parallel projection geometry. .-\. schematic of the paral

lel projection scanner is shown in Figure :3.1:3. Broadbanded contact piezoelectric 

transducers generate and receive the Lamb waves in a pitch-catch arrangement. and 

a smaH amount of water is used to ensure consistent coupling. During the scan. the 

two transducers are scanned as a pair and their ori· .1tation to each other remains 

fixed. That is. the transducers are a fixed distance apart and are simply shifted to

gether along the scan direction without changing the direction in which they point. 

Because of this. shear contact transducers can be used which produce directional 

beam patterns that have a preferential amplitude along a certain direction. By 

aligning two shear contact transducers in pitch-catch mode. the signal along the 

0° direction wiH be preferentially received by the rer:eiving transducer. Thus. sig

nals due to reflections which are received along different angles are minimized. So 

for the parallel projection configuration, shear contact transducers which are au

tomatically scanned in the direction perpendicular to the Lamb wave propagation 
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Figure 3.13: The parallel projection scanning system is shown here schemhtically. A pair of shear contact. transducers in 
pitch-catch arrangement are scanned perpendicular to the directiOI~ of Lamb wave propagation. Measurements are taken at 
each point in the scan, and the sample is rotated by a computer controlled rotary table at the end of each scan iu order to 
obtain data from the different orientations. 
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are used. Two predominant signals. the lowest-order symmetric (SO mode is first 

arri\·al) and asymmetric ( .4.0 is second arri\·al) can be observed at a frequency in 

the range 0. 7" - L.) \1Hz for aluminum plates about 90 mil thick. .-\t each loca-

tion of the transducer pair. the frequency value corresponding to the phase shift 

in the signal is recorded using the P2L2 as described above. [n the laboratory 

setup the sample is automatically rotated by· a fixed amount between each scan 

by a computer-controlled rotary table in order to obtain data from the different 

orientations necessary for tomographic measurements. The frequency values for 

each projection are then the input for the tomographic algorithm that produces the 

reconstructed image. 

Algorithm 

For completeness, some of the standard development [:311] for recovering the 

image of a cross section of an object from parallel projection data is included here. 

\\"e define the projection at some angle (} along some line .r cos B + y sin() = t as 

Pa(t) _= 1: J(t. s)d.s 

\\·here ( t, s) is the coordinate system at an angle () to the ( .r. y) system (Fig-

ure 3.14). Here f(t,s) is called the object function. Fur example, if f(t.s) is the 

two-dimensional distribution of slowness in the plate. then Pa( t) is the time-of-flight 

projection for the angle a. The Fourier transform of Pa(t) is: 

Se(w) = 1-::c Pa(t)e-l:-:w.cdt 
-oo 

and substituting in our above definition for the projection gives 

( :3.:3-5) 
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Figure 3.14: The projectiou at some angle 0 along some line xcosQ + ysinll = t passing through an object function f(l 1 s) is 
shown. 
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If we transform this back into the ( .r. y) coordinate system. we have 

1-x: 1= Sg(w) = -:c -:-o J(.r.y)e-2~•u:(xcosr1+ysinrJ)d.rdy (:3.:36) 

and we see that the right-hand side is the two-dimensional Fourier transform of 

f(.r.y) at a spatial frequency of (u = 1.ccosO. e = I.L'SinO). or 

5 8 ( w) = F( w. 0) = F( w cos 0. I.L' sin 0) = F( u. v ). ( :3.:r;·) 

This equation indicates that by taking projections of an object function at many 

angles. 01 .. ()k· and Fourier transforming each of these. we can determine the corre-

sponding value for F( u. v). Then the object function. f( .r. y). can be recovered by 

using the inverse transform: 

J(x.y) = 1:1: F(u. v)e2:-:i(ux+t·y)dudv. 

Csing polar coordinates we can write this as 

12,. r= 
J(x,y) = o Jo F(w.O)el~iu:(xcosB+ysinB)l.cdwd() (:3.39) 

and splitting the 0-integration into two parts and noting that F( w. O+rr) = F( -u:. 0) 

we have 

J(x.y) = f,.joo F(w.O)ju:je2""itL·tdwd0 
Jo -oc 

(:3.-tO) 

\\·here we have used t = x cos 0 + y sin 0 for convenience. Finally. introducing 

(:3.-t 1) 

we write 

f(x.y) = 1"' Qe(:r:cosB+ysinO)d() ( :3.-t2) 
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which gtves the object function in terms of :r. y. and the projection angle. B,. 

However since we cannot take an infinite number of projections. these integrals 

need to be replaced with the appropriate summations. For example 

K 

·) .. 
-l.L I !.:ct(mk/.V) 
VIe 

f(x.y):::::: ; L Qe,(xcos e, + ysinOi). 
•=l 

Thus. the scan is made for [{angles O, and for .V points along each of those scans. 

In Figure :3.12 the scan is shown for 4 projection angles ofT points each, while in 

the experiment 18 projection angles of 100 points each have been used. Also in 

the experiments, a Convolution-Backprojection algorithm was used where instead 

of just taking the inverse transform ofF( w, ()) as in Equation :3.39. the convolution 

ofF( w. ()) and some filter function. h( w. 8). is calculated. Therefore, Equation :3.39 

is replaced by 

1
211" roo 

f(x, y) = o Jo F(.r- w. Y- ())h( w. O)e2:ciw(rcos9+ysin8)wdwd0. 

(3A4) 

Results 

Figure 3.15 shows a parallel projection tomographic reconstruction contour 

plot of Lamb wave contact scanning data taken on a 2.4-5 mm thick aluminum plate 

.,vith a 20 cm2 region of 50% thickness reduction. The image covers 100 x 100 mm 

and was reconstructed from 18 projections of 100 rays each. The thinned region 

is shown clearly as the white region in the center of the image. So PPT can be 

used to convert the data obtained using the mathematically complex Lamb waves 

into a quantitative map of the recorded frequency ,·alues for the inspected region. 
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and was reconstructed from 18 projections of 100 rays each. The thinned region is shown clearly as the white region in the 
center of the image. 
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These frequency values cap. then be converted to velocity or thickness values using 

the dispersion relations presented earlier. The location. size and magnitude of an,:· 

flaw regions can easily be distinguished from this map. which can be displayed 

as an image or further processed by a specialized algorithm for automated flaw 

detection. For example. the total \·olume of corrosion can easil v be calculated bv - -

simple algorithm. and a threshold valt!e can be used to mc>.ke airworthiness decisions. 

\\"hile PPT has been shown to give quite accurate results for symmetric flaws. 

such as the circular thinning. with 18 scans taken in 10° increments. many more 

orientations will be necessary for accurate reconstructions of less symmetric flaws 

and contact scanning is time intensive. In addition, while it is easy in a laboratory 

setting to rotate small samples for all of the necessary orientations. this becomes 

problematic for in-the-field applications. For example. an aircraft being inspected 

cannot be rotated. and a rotating plus scanning apparatus would be mechanically 

complex because its center point must remain exactly stationary, and the coupling of 

the transducers is a major concern. In addition. as more orientations are needed. a 

fairly large ring region must be obstruction free as was discussed earlier. This makes 

scanning riveted lap joints or doublers. which are of great importance in aircraft 

assessment. impossible. Finally, the desired end result of the aircraft inspection 

is to produce a map of the full aircraft composed from the individual scans. PPT 

tomography produces maps of circular regions. so either information will be missing 

between the individual maps or consecutive maps will have to overlap significantly. 

In the image above a square region inside of the actual circular data region is 

shown. These methods for producing the composite map are as inefficient and 

time consuming as point measurements (C-scans). Therefore. in order to develop 

a Lamb wave tomography method that can be practically applied in-the-field. a 

different method of tomography was developed. 
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3.3 Cross Borehole Tomography 

Geometry and Apparatus 

88 

Cross Borehole Tomography (CBT) is a technique commonly used in seismo

logical imaging where the detection of subsurface pockets of oil or natural gas. or the 

mapping of the properties of the Earth's crust are of interest. For these tests it is 

impossible to obtain measurements from all sides of the region of interest. Instead. 

two vertical holes are bored into the ground. and the two-dimensional area between 

them is reconstructed in terms of a physical parameter such as time-of-flight. In 

one hole. a seismic \•.:ave is generated at successive depths using an explosion or 

hydrophone. and the time-of-flight to each of the multiple receivers in the second 

hole is recorded. In contrast to the parallel rays in PPT. this results in sound waves 

traveling in criss-cross patterns across the region between the boreholes. Thus we 

have the name cross borehole. A line of receivers can also be placed along the 

surface for improved reconstruction. but there is never access to the fourth side. 

This method has been applied to the reconstruction of two-dimensional plate

like structures by having the senders and receivers in two parallel lines on the 

surface of the plate. The plate region between them can then be tomographically 

reconstructed. Figure 3.16 shows the scanning geometry and ray paths for CBT 

tomography for eight combinations of sources and receivers. )i"ote how the ray 

density varies and that the rays do not pass through the region of interest from 

all orientations. These drawbacks in the reconstruction quality are offset by the 

increased practicality of the measurement. Namely. only two narrow strips (shown 

shaded in Figure 3.16) need to be free of obstructions for contact scanning. These 

strips indicate the space necessary for the senders and receivers to freely move to 

all of the locations necessary for the tomographic reconstruction. This space is 
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Receivers Sources 

Figure 3.16: The scanning geometry and raypaths for cross borehole tomography are shown here schematically for the case of 
eight source::; and eight. receivers. Note that the sixty-four raypa.ths produced do not provide a. uniform ray density, but only 
two narrow obstructiou free strips (shaded} are necessary for contact scanning. 
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much smaller than that required for PPT. and since the scanning apparatus does 

not ha\·e to rotate. inspecring iines of ri\·ets is not a problem. The sending and 

recei ... ·ing positions can simply be located on either side of the line of rivets .. ·\.lso. 

since access is only required from t-..vo sides. the reconstructions are rectangular . 

.\"m ... · when a map of the full aircraft is composed from the individual tomographic 

maps. the images can simply be lined up next to one another. There are no gaps 

between the individual maps. and no data needs to be thrown a•vay. Therefore. 

CBT provides a far more practical means for producing a composite flaw map of a 

full aircraft than PPT . 

. -\.n ultrasonic system has also been assembled that allows Lamb wave scans to 

be made in the cross borehole geometry . .-\.schematic of the CBT scanner is shown 

in Figure :3.17. Broadbanded contact transducers in a pitch-catch arrangement are 

again used to generate and receive the Lamb v.raves. Euwever. they are scanned inde

pendently so that measurements are recorded at all of the necessary sender/ recei \·er 

positions. Since the relative orientation of the transducers is constantly changing 

during the scan. the highly directional shear transducers can not be used even 

though they usually give a better signal in contact scanning. Instead, longitud;nal 

contact transducers are used because their beam pattern is isotropic and signals can 

be received from any angle. Also. since the path length between the sender/receiver 

pairs varies during the scan. tht:. P2L2 cannot be used for measurements. The large 

changes in path length cause it to jump lock. and so its recorded values are mean

ingless. Instead, the received signal is sent to an oscilloscope. which digitizes the 

wa ... ·eform and sends it to a personal computer for further analysis. 
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Fig'ure 3.17: The cross borehole scanning system is shown here schematically. Two longitudinal contact. transducers are sclullwd 
iudependently to the various sender/receiver positions by two computer controlled linear scanrwrs. At <~ach seuder/receiv<!l' 
position, the received waveform is digitized and saved on a persoual computer for later analysis. 
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Expert System 

[n order to make use of the recorded Lamb wave data. it is necessary to 

extract the time-of-flight of the SO mode from each sender/receiver pair wa\·eform. 

\\.hile experts can pick out the correct part of the waveform by eye. they cannot 

determine the time value with high enough accuracy·. In addition. the number of 

waveforms required for tomographic reconstruction can reach well into the thou

sands which is far too many for a human to process. Therefore. a rudimentary 

expert system has been developed to automatically extract the time-of-flight \·alue 

from each waveform. 

In these experiments. the transducers are excited by a toneburst containing 

a specified number of cycles at a specified frequency. Each mode in the received 

waveform contains the same number of cycles at that same frequency. However. the 

waveform is complicated by noise. overlapping reflections. dispersion. and multiple 

modes. The human eye is able to pick the first pattern of specified cycles out of the 

noise and other complexity of the signal. but as was stated above, the number of 

waveforms and accuracy required make human interpretation impracticaL 

Instead a computer program· has been written \\'hich finds the best match 

to a specified normalized pattern. This pattern consists of a number of cycles at 

the operating and sampling frequencies used in the experiment. The computer pro

gram first calculates the estimated time-of-flight for a given raypath in the material 

without flaws and converts this value to a point location in the waveform. It then 

compares the specified pattern to a normalized portion of the waveform containing 

the same number of points as the pattern. For the results shown here. it begins 

\Vith the point 500 ahead of the time-of-flight estimate and shifts the normalized 

portion point by point until the portion starting on the point -500 after the time-
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of-flight estimate has been tested. For each portion. the error between the pattern 

and the normalized portion is calculated. and the SO time-of-flight value is taken 

as the starting point of the normalized portion with the least error. This is done 

for each wa\·eform to generate the file of arri\-al times needed as input for the C'BT 

algorithm . 

. -\s an example consider the waveform shown in Figure :3..5. Simply iook

ing at the plot of the waveform. an expert can detect the SO mode at a time of 

approximately 48 11s. The pattern shown in Figure 3.18 consists of :3 cycles at a 

generating frequency of 1.0.5 ~IHz and a sampling frequency of 100 MHz, where the 

amplitudes of the cycles are 0.6. 0.8. and 1.0 respectively. Using this pattern. the 

computer program determines the time-of-flight value to be 49.65 11s. The percent 

difference between this and the value estimated visually is :3.4%. However, this was 

for a relatively clear signal over an unflawed region of the aluminum plate. \Vhen 

the signal passes through flawed regions. its amplitude can drop below the noise 

level. and picking out the SO mode can be very difficult. 

In order to determine how much of an effect the accuracy of the time-of

flight values has on the reconstruction quality. a simulated sample is considered. 

Figure :3.19 shows a plate region with a square flaw placed offcenter. The veloc

ity value of the flaw is 20% greater than that of the plate which is chosen as 4 .. 5 

mm/ 11s. The SO time-of-flights can be calculated by mapping out the raypath for 

each sender/receiver pair and using the velocity values of the regions through which 

a given ray passes to calculate the time-of-flight for that raypath. From Figure 3.20. 

it can be seen that these time-of-flight values allm.,· for a quite accurate reconstruc

tion after only a single iteration. If however. we add noise to the time-of-flight 

values to simulate error in the determination of the time-of-flight, the reconstruc

tion quality decreases. 
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Figure 3.18: A sample pattern used to detect the SO mode in the received experin1ental waveforms. This pattern consists of 
3 cycles at a generating frequency of 1.05 Mlh and a sampling frequency of 100 MHz, where the amplitudes of the cycles arc 
0.6, 0.8, and 1.0 respectively. 
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'·, 
Figure 3.19: A simulated plate with an off center square flaw who~e material has a. 20% increase in velocity over the velocity 
of the plate ( 4.5 mm/ fLS.) 
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Figure 3.20: Reconstruction of the square flaw plate using the ART algorithm after a single iteration. Notice that with the 
accurate time-of-flight values possible in the simulation, the reconstruction is quite accurate after only one iteration. 
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:\. study was performed on the effect of adding various levels of random noise 

to the time-of-flight values on the quality of reconstruction after a single iteration. 

The noise was added by first determining the maximum percentage of noise to add . 

.Y. and then adding a random value between 0 and .V x t0 to each of the t1 \·alues. 

where t 1 i:: the array of the time-of-flight values. Figure :3.:21 shows a bar chart of the 

root mean square error between the simulated plate image and the reconstruction 

made with X noise for values of .V ranging from 0 to -!0. The vertical scale of -30 has 

been chosen so that the smaller RMS values are distinguishable. In fact. for X = 10 

the R.Y!S err0r has already increased by an order of magnitude. while for .V = :3'1 

and ~v = -W it has actually increased by 6 orders of magnitude and U) orders of 

magnitude respectively. Figures 3.:22. :3.:2:3. and :3.:24 show the reconstructions for 

.V = 10 .. V = :3i. and N = 40 respectively. In the first case, a blob in the area of 

the fla•v is partially visible behind a speckled pattern. while for the second and third 

cases, only a diagonal line is visible. A diagonal line is always obtained using the 

ART algorithm when there is either not enough data or the data is too inaccurate 

to converge. In addition, if enough iterations are done for any real data case. the 

solution always converges to the diagonaL Hm•.:ever. for more accurate data. this 

can take hundreds of iterations. and only a few are usually used. In addition. 

although a flaw is somewhat visible for the S = 10 case. the position and shape 

of the flaw are known. In general, such a reconstruction would not convincingly 

reveal a flaw. Also. while the N = 10 value calls for a maximum of tO% noise to 

be added, the majority of the noise would be less than this. Therefore. even a few 

percent inaccuracy in the time-of-flight values can cause the reconstructions to be 

unrevealing. This is why the development of an expert system to determine the 

time-of-flight values from the experimental waveforms has been so important to the 

results of this dissertation. 
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Figure 3.21: Bar chart of the RMS error in the reconstruction associated with different levels of added uoise. 
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Figure 3.22: Reconstruction of the square flaw plate using the ART algorithm when noise in the range of 0-10% has been 
added to the time-of-flight data. Afte'r a single iteration, the flaw is barely visible since its location is known. The RMS error 
has increased by an order of magnitude. 
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Figure 3.23: Reconstructiou of the square flaw plate using the ART .algorithm after IlOiS(l in the range of 0-:J?% has l>ccn added 
to the time-of-flight data. After a single iteration, the reconstruction only shows a diagonal Jiuc. Tllis diagonal line indicates 
that t.he data is too inaccurate t.o converge properly, and the RMS error has increased by 6 orders of 111agnitude. 
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Figure 3.24: Reconstruction of the square flaw plate using the ART algorithm after 'noise in the range of 0-40% has been added 
to the time-of-flight data. After a single iteration, the reconstruction again only shows a diagonal line. However, the RMS 
error has now increased by 15 orders of magnitude. 
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Algorithm 

In this section the calculation for geophysical cross borehole tomography is 

outlined for completeness. The geometry consists of a series of source and detector 

locations. and a ray projection exists for every combination. The intervening space 

is discretized as a rectangular grid space with a number of rays passing through 

each element in this space. The reconstruction of the value at each element. e.g. 

\Va\·e speed. involves solving a large set of equations .. -\n .-\.lgebraic Reconstruction 

l'echnique ( .-\.RT) has been chosen for this purpose [:3-t:JJ. 

In the Lamb wave measurements. ftot is the number of source locations and 

.!tot is the number of columns between the sources and receivers. This means that 

the area between the source and receiver line is divided up into a rectangular area 

with ij number of cells. A ray connects every combination of source and receiver. 

and the corresponding line which goes through the cells is defined as 

. (id.-is\ . . 
l = J) + 15 

ltot / 
( :3 .-1:.) ) 

where the source location is is and the detector location is i-t. To construct the data 

vector. we write 

( :3.-1:6) 

where the summation over i and j is implied. ~s,1k is the segment of the k-th 

ray passing through the cell ij, and fii corresponds to the value of the physical 

parameter of interest. e.g. wave speed. in the cell ij. 

In order to determine the values of fi1 for the discretized space, we first 

calculate the ~Sijko estimate the fii components. and calculate 9k 

gk - fq \ .,. "k 
- Jij~~.J • ( 3.-1:1) 
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~ext. for each ray ·we use the difference between the gk value and the corresponding 

data \a.[ue . ...\.g~. to calculate the update for the J,~ \·alues for that ray. 

where L~.: is the length of the k-th ray 

Then \Ve add the update to the current JG values for that ray 

f q+l rq ~ rq 
!) = J !) + J i)k (:3 .. 50) 

to obtain the next set of f;j values. fij+l. :\. single iteration involves repeating this 

process for all of the rays. and iterations are repeated until a specified number has 

been reached or until the residual has approached some small number 

r = L[g,_- A.gk]2. 
k 

In Figure 3.16 there are 8 sources and 8 receivers so a single iteration would involve 

64 rays. while for the experiment 20 sources and 20 receivers giving 400 rays and 

10 iterations have been used. 

Results 

Figure :3.25 shows a CBT reconstruction of the same 100 x 100 mm region 

of the aluminum sample used in the PPT reconstruction. This image was produced 

using the ART algorithm and 400 rays. Xote that although the much lower ray 

density in the flaw region decreases the accuracy of the reconstruction, the location 

and size of the thinned region are accurately reproduced. The CBT image is inher-

ently lower resolution because the number of pixels corresponds to a much coarser 

computational grid. 
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Fi~ure 3.25: Cross borehole tomographic reconstruction of the same 100 x 100 mm region of the aluminum sample is shown. 
This image was produced using the ART algorithm and 400 rays .. ~ote that although the much lower ray density in the flaw 
region decreases the accuracy of the reconstruction, both the location and size of the thinned regiou arc accurately reproduced. 
The CIJT image is iuhcrently lower resolution because tl1e number of pixels corresponds to a nutch coarser computationalljrid. 
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In general. the quality· of the reconstruction impro\·es \Vith the number of 

ray~ and the number of iterations. However. the value of -!00 rays was chosen in 

order to minimize the time required for the reconstruction. while still producing 

quality results (see the design study in :\ppendix :\. ). In addition. the .:;torage space 

required on a computer hard dri\·e for thousands of rays is exceedingly large. with 

e\·en mo~t'rn hard drives filling up after a few scans. For example. the Pentium Pro 

200 :\IHz computer with 196 :\[B of RA~[ and a 2 GB drive used in this experiment. 

was unable to process data sets with more than 4000 rays, and for data sets of 1600 

rays. the hard drive filled up after only 10 scans. The benefit of saving the waveform 

for each ray is that multiple features can be extracted for reconstruction purposes. 

although in this work, only the time-of-flight of the SO Lamb wave mode has been 

used. Therefore. in addition to producing quality reconstructions in less time. the 

choice of 400 rays enabled the data from many tomographic scans to be stored on 

the computer. and so provided the best results for the hardware used for this study. 

As computers continue to improve. tomographic data sets of thousands of rays .. ..-ill 

easily be stored and processed in very little time. Therefore. the quality of the 

CBT images will be improved. It should be noted that for aircraft applications. 

the reconstruction time is not a concern. The reconstruction shown here took .j 

seconds. and including the time to process the experimental data and extract the 

time-of-flight values, this value only increases to about .j minutes. 

As was stated earlier, one of the disadvantages of the PPT technique is that 

it requires measurements to be made from all sides of the region of interest. This 

is clearly impractical in any number of materials testing situations. and the CBT 

technique, which requires access to only t\\"O sides of the region. has been chosen 

for the development of a practical scanning technique .. -\s an example of a practi

cal situation where PPT is not possible. we consider a line of rivets along a plate 
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structure. [n the aircraft industry. the integrity of the rivets bonding the aircraft 

::;kin togerher and to the frame is extremely important. Scanning or rotating trans

ducers across a lap joint is problematic in terms of coupling and possible damage 

to the transducers. [n addition. uniform contact with the plate is necessary for 

the generation and reception of the Lamb waves and this is not possible when the 

transducers are placed on the line of rivets. 

The CBT technique offers an ideal solution since the sending and recetvrng 

positions can be lined up parallel to the line of rivets but on opposite sides. Then 

Lamb waves can be generated and received from uniform sections of the plate while 

fully investigating the line of rivets. Figure :3.:26 shows the results of a CBT scan 

on a :2.5:2 mm thick aluminum plate with a line of five :2.-54 em diameter thinned 

regions along the full length of the sample. .-\lthough it is not a line of rivets. 

the line of flaws still provides a situation where PPT is not possible. The scanned 

region. 160 x 130 mm. only covers four of the thinned regions. and due to the the 

ray density of CBT reconstructions and the hardware limitations on the number of 

rays possible. only the center thinned region has been fully reconstructed ·with a 

second flaw region partially reconstructed JUSt below. However. an image of a flaw 

region has been produced using CBT in a situation where PPT is not possible. As 

the use of more rays becomes possible. the reconstruction quality will improve. 

3.4 Discussion 

The most senous limitation in the tomographic reconstruction algorithms 

that have been presented in this chapter is that they neglect diffraction and ray· 

bending effects. [t was assumed that the thinning only caused the Lamb ••.:ave 

velocity to change. but that there was no scattering of the Lamb waves. For slight 
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Figure 3.26: CBT reconstruction of a region of an aluminum samP,le with a line of five thinned regions. Only the center llaw 
is fully reconstructed, but we are able to obtain an image from this' sample with the CBT method, when we are unable t.o do 
so with the PP'r method. 
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changes in thickness this i? a reasonable assumption. but for many flaws there will 

be significant scattering. In order to determine the importance of scattering effPcts. 

two throngh-hole samples have heen examined with the tomographic techniques. 

The first sample is a :2A:2 mm thick aluminum plate with a 1.-'5 em diam

eter hole milled through it. The 100 x 100 mm PPT reconstruction is shown in 

Figure :3.:27. while that for the CBT is shown in Figure :3.:28. [n both images. 

the hole is shown in the correct location and with about the correct size. but the 

higher resolution PPT image shows slight scalloping around the edges of the hole. 

Scalloping is indicative of diffraction. but the effects are quite small for this case. 

This is probably because this hole is only slightly larger than the element size of the 

transducer. Therefore. enough of the beam may be skirting the hole to minimize 

the diffraction effects. 

The second sample is a :2.3:2 mm thick aluminum plate with an irregular 2.-5-t 

em diameter hole milled through it. This is about t\vice as large as the transducer 

diameter. For this sample the 100 x 100 mm PPT reconstruction is sho·wn in 

Figure :3.:29. while the CBT reconstruction is shown in Figure :3.:30. This time 

definite scalloping and a starburst streaking effect are seen in the PPT image. and 

the hole in the CBT image has been reconstructed in the wrong position. Clearly 

scattering effects are important for this case and the diffraction effects can no longer 

be ignored. [n order for Lamb wave tomography to be fully applicable in-the-field. 

scattering needs to be accounted for in the tomographic algorithms. As a first step 

in this process, a theoretical understanding of the Lamb wa\·e scattering needs to 

be developed. [n the next chapter. the scattering theory necessary to model these 

effects is presented. 
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Figure 3.27: PPT reconstruction of an aluminum plate with a 1.50cm diameter through-hole. Note that although the hole 
is reconstructed in the correct position and with the correct shap~; it has some slight scalloping at thr edges. This indicates 
slight diffraction effects. 
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I"igure 3.28: CBT reconstruction of the aluminum plate with a 1.50.cm diameter through-hole. Again t.hcre is lower resolution 
due to the fewer rays, but the location and size are fairly accurately reproduced. 
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Figure 3.29: PPT reconstruction of the aluminum plate with a 2.54cm diameter tnrough~hole. The hole position and size are 
still accurately reproduced, but the scalloping is more pronounced and a starburst streaking pattem is visible. These indicate 
significant diffraction effects. 
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Figure 3.30: CBT reconstruction of the aluminu111 plat.e with a 2.54<;m diameter through-hole. The hole has been reconslmctcd 
in the wrong position. This also shows significant scattering effects for this flaw. 
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Chapter 4 

Scattering Theory 

\Vhile the simplest plate theories are often used to model the behavior of the 

lowest order asymmetric Lamb waves. they only describe the dispersionless region 

of the SO cun'e [250). Since we are using the dispersion of the SO wave to determine 

the changes in time-of-fl.ighL a theory that accurately models the behavior of the SO 

Lamb wave is necessary. In this chapter, the higher order plate theory of .Kane and 

:\'lindlin [I] for modeling lower order symmetric Lamb waves is presented. and we 

show that this approximate theory is ~alid over the frequency range of interest in our 

experiments. Next, using this theory, analytical expressions for the scattering of SO 

Lamb waves from a cylindrical inclusion in a plate are derived for an incident plane 

wave, a point source and a finite source. The expressions are explicitly evaluated 

for the case of a hole in a plate, and plots of the scattering behavior are used to 

explain the scattering effects seen in the images at the end of chapter 3. 

113 
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4.1 Theory of Kane and Mindlin 

Consider a homogeneous. isotropic, and linearly elastic plate lying in the 

.ry-plane bounded by air at the planes z = ±h (Figure :3.1). Because the thick-

ness is smalL the components of displacement for dilatational plate waves can be 

approximated by 

Ur = V:r(x,y.t) Uy = Vy(x,y,t) ( 4.1) 

where V:r. t'y, V:: are not functions of:;. For the study of free vibrations (of circular 

frequency w ). these plate displacement components can be expressed in terms of 

three independent scalar potentials, <i>1(x, y), ci>2(x, y), Ill as 

- (a¢1 r ao2 aw) -iwt 
V;r - ax T ax + ay e 

(
a01 a¢2 aw) -iwt 

Vy = -+---- e ay ay ax 

These potentials are chosen to satisfy the scalar Helmholtz equations 

where \72 is the 2-D Laplacian, and the effective wavenumbers are given by 

k- =- (a +,B)- -1- (-1)'1/J 2 3~~:2 [ w2 - ] 

' 2/3h wJ 

In the above equations, 

(i = L 2) 

(i=1,2) 

,2 
r.·2- ~ 

1\. - 2 • 

CT 

( 4.2) 

( 4.:3) 

( 4.4) 

( 4.5) 
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!L• = [((a+ J)""'. 
2 

- 1) 2 

+ 4a,8.:..:
2 (1- ''<)] t 

.2 . ,2 . ·-wo wo wo 
( 4.6) 

( 4. I) 

4=!:: 
p 

( 4.8) 

where p is the mass density of the plate material. A and p. are the Lame parameters. 

and q, cy and cp are the compressional, shear. and plate wave speeds in isotropic 

media. Also u..'o is the frequency corresponding to the first mode of pure thickness 

vibration of an infinite plate, and the parameter K
2 = ~~ is inserted ad hoc to 

improve the results [7]. 

Nmv we consider specifically straight crested or plane waves. If any one of 

the functions <Pt, <Pz, or W is taken to be proportional to ei-,x while the remaining 

two are set equal to zero, there results a plane wave propagating in the x-direction 

and having a wavelength and velocity equal to 2
::- and ~ respectively. In order to 

"' "' -
satisfy the above conditions, 

( 4.9) 

depending on which potential is nonzero. 

In order to compare this plate theory with the exact theory, the phase veloc-

ity, c, is considered. For ¢>i =/= 0, i = 1, 2, W = 0, 

( 

? [ 2 ] -1) t w- w . 
c = 2a4- (a+ /3)--;;- 1- ( -1)'0 w5 Wo 

( 4.10) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CH.4..PTER 4. SCATTERING THEORY 116 

and for Oi = 0. i = 1, 2, 1{1 =I= 0, 

C= CT- ( 4.11) 

Equation 4.11 obviously shows that the W =/= 0 wave matches the shear horizontal 

wave of exact theory: ho..,..,·ever. in order to verify these expressions for the SO ( i = L) 

and S 1 ( i = 2) Lamb waves, plots of these expressions for phase velocity versus f d 

can be examined. Figure 4.1 shows the SO and 51 dispersion curves for the exact. 

simple plate. and higher order plate theories. Notice that the higher order plate 

theory is in qualitative agreement with the exact theory over the full range of fd 

shown. Most importantly, the dispersion behavior of the SO and 51 modes has been 

captured by the higher order plate theory. The simple plate theory does not model 

the dispersion behavior of these modes, and the full three-dimensional theory is too 

complicated to use for scattering calculations. Therefore, these two-dimensional 

higher-order plate theory expressions for the SO and 51 Lamb wave modes contain 

enough of the mathematical complexity of the Lamb waves to model their behavior. 

but are not too complicated to prevent their use in scattering calculations. 

4.2 Scattering From Cylindrical Inclusions 

In this section the theory of Kane and Mindlin is used to study the scattering 

of plane, point source, and finite source SO Lamb waves from a cylindrical inclusion 

in a plate. Since we are considering a cylindrical flaw, these calculations are done 

in cylindrical coordinates. 

As in the previous section we consider an infinite plate that is homogeneous. 

isotropic and linearly elastic. vVe assume that the plate is bounded by air at the 

planes z = ±h and that there is an in-plane disk of radius r = a and thickness h', 
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Figure 4.1: Dispersion curves of the exact S'O, 5' I and approximate 5'0, 5' 1 Lamb wave modes, and of simple plate theory in 
aluminum. Note that the approximate theory is in qualitative agreement with the exact theory over t.he full range shown. 
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at the origin of a cylindrical coordinate system (Figure 4.2). The disk has material 

parameters (p', >..'. 11') that are arbitrarily different from those of the plate (p. >.., f.l). 

For thin plates we assume that the components of displacement in cylindrical 

coordinates are approximated sufficiently well by 

llr(r.O.t) = Vr(r.O,t) ue(r,O,t) = ve(r.O.t) u::(r.O.t) = ~v::(r.O.t) 

(-!.12) 

\.Ve then introduce three independent displacement potentials 6 1 ( r, B), 6 2 ( r. B). 

W(r, 0) allowing us to write the displacement components as 

_ (0¢1 O<f>2 ~OW) -iwt 
Vr - Or + ar + r o(} e 

( 
1 OrD1 1 002 OW) -iwt 

ve = --- + ----- e 
r i:){} r oB or 

( 4.13) 

These displacement potentials each satisfy a scalar Helmholtz equation: 

( 4.14) 

In these equations ki, K, O"i, 1/J, a, (3, w0 , and r;; are the same as in the previous 

section. 

In cylindrical coordinates, the plate stresses defined m terms of three-

dimensional stress theory are given by 
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( 4.15) 

For the geometry of this problem we will only be concerned with Nrr, Nra- and Sr::· 
Suppressing the e-i;.;t time variation, the necessary stress --omponents are given by 

. avr ( 1 ave l'r V::) 
(I =(..\+2u)-+), -. -+-+-rr ,... ar r ao r h 

( 
1 avr ave ve) CTre = f..l -- + - - -
r ao ar r 

(4.16) 

and the useful plate stresses can be written as 

1 r _ •) [ •) • 8Vr (..!:.ave Vr 1 U;: )] 
.\ rr - -h (A + -f..l) ar + A r ao + r T h 

'!t.T _ "'h ( 1 avr ave Ve) 
Lvre - L. f..l -- + -- -

r ao ar r 

(4.17) 

Plane Waves 

Now we consider the case of an incident plane S'O wave (Figure 4.3) described 

by, suppressing e-iwt, 

,.~..INC _ .rriNC _ 0 
'P2 - 't" - • (4.18) 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

y i 

Plane I I I I I I \I """'v \ 

Wave I I I I I I ..., '\. I X 

Figure 4.3: Coordinate system for a plane S'O Lamb wave inddent upon a cylindrical inclusion in an infinite plate 
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For a cylindrical scatterer at the origin of a cylindrical coordinate system. the 

general solutions of the scattered and transmitted waves are expanded as 

00 

0
sCA.T 
! - 2: .4.n Hn ( k1 r )e;no 

n=-= 

= 
O~C.4.T - 2: BnHn(k2r)einll 

n=-00 

00 

WSCAT = 2: CnHn(l\r)einll 

n=-oo 

-~ 

(j)TR.4NS 
. 1 - 2: A~Jn( k~ r )ein6 

n=-= 

00 

dJTR.4NS 
.2 - 2: B' J (k' r)einll n n 2 

n=-oo 

= 
wTRA.NS = L C~Jn(K'r)einll (4.19) 

n=-= 

where An, ... , C~ are unknown modal coefficients to be determined from the bound-

ary conditions, Jn are Bessel functions, and Hn are Hankel functions of the first kind. 

The Bessel and Hankel functions have been chosen so that the waves approaching 

zero and those approaching infinity are finite. 

In cylindrical coordinates, the plane wave is represented by 

,;.,INC _ eiktrcosB 
'+'1 - ' ( 4.20) 

and using the generating function for Jn ( x), 

= 
ex(t-1/t)/2 = 2: Jn(x)tn, (4.21) 

n=-oo 
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we can expand the incident plane wave potential as 

00 

c~{VC = L inJn(ktr)einO_ ( 4.22) 
n=-= 

Because of the form of the incident wave. we rewrite the scattered and transmitted 

\Vaves as 

00 

<f>SC.4.T _ 
l - 2::: A.nin Hn(ktr)einO 

n=-oo 

00 

cPSC.4T _ 
. 2 - 2:: Bnin Hn(k2r)einO 

n=-oo 

00 

\)!SCAT= 2:: Cnin Hn( /\." r)einO 
n=-oo 

00 

6TR.4NS 
l - 2::: :'l~ in Jn( k~ r )einO 

n=-oo 

00 

AT R..4N S "'"""" 
'+"2 - L-

n=-oo 

00 

B' :nJ (k' ) inO nl n 2r e 

wTR..4NS = L C~inJn(K'r)einO 

n=-= 
(4.2:3) 

where we have simply pulled a factor of in out of each modal coefficient for later 

convenience. 

For this problem, we need to consider continuity of displacements at r =a 

VINC + VSC.4T = VTR..4NS 
r r r 
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( 4.24) 

and continuity of plate stresses at r =a 

,yi.VC + ,ySC.4.T = yTRANS 
- rr - rr - rr 

VINC + 1ySC.4.T _ ·\:TRANS 
" rB - rB - ~ rB 

( 4.25) 

So we have six equations and six unknowns. After using Equations 4.13 and 4.1/, 

dropping the summations. and rewriting, these boundary condition equations be-

come 

An[(kta)H~(kta)] + Bn[(k2a)H~(k2a)] + Cn[(in)Hn(l\.·a)] 

+ .-1~[-(k~a)J~(k~a)J + B~[-(k;a)J~(k;a)] + C~[-(in)Jn(K'a)J 

- [-(kta)J~(kta)J 

+ .4.~[-(in)Jn(k~a)J + B~[-(in)Jn(k~a)J + C~[(A-'a)J~(E\'a)] 

( 4.26) 

( 4.27) 
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An [ ( cr~a
2

) Hn(k1a)] + Bn [ ( cr~a
2

) Hn(k2a)] 

+ .-1~ [-(~cr~~
2

)Jn(k~a)] +B~ [-(~cr~~
2

)Jn(k~a)] 
_ [- (cr~a

2

) 1n(k1a)] (-L28) 

A.n[ntHn(kta)- (kta)H~(kta)J 

+ Bn[n2Hn(k2a)- (k2a)H~(k2a)] 

+ Cn[(inK a)H~(l\ a) - (in)Hn(I{ a)J 

- A~ (~) ( ~') [a~ ln(k~a) - (k~ a)J~(k~ a)] 

- B~ (~) ( ~) [a;Jn(k~a)- (k;a)J~(k;a)J 

- C~ (~) (~) [(inl~·'a)J~(K'a)- (in)Jn(K'a)J 

- -[ntln(kta)- (kta)J~(kta)J 

A.n[(2inkta)H~(kta)- (2in)Hn(kta)J 

+ Bn[(2ink2a)H~(k2a)- (2in)Hn(k2a)J 

+ Cn[((Ka) 2
- 2n2)Hn(Ka) + (2Ka)H~(I\a)] 

- A~(~) ( ~) [(2ink~a)J~(k~a)- (2in)Jn(k~a)] 

- B~ (~) ( ~) [(2ink;a)J~(k;a)- (2in)Jn(k;a)J 

- C~ (~) ( ~) [((K'a?- 2n2)Jn(I\'a) + (2K'a)J~(K'a)J 
- -[(2inkta)J~(kta)- (2in)Jn(kta)] 

( 4.29) 

(4.30) 
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where 

.-tn [ ( fT~a
2

) (k1a)H~(k1a)] 

+ 8n [ (fT~a
2

) (k2a)H~(k2a)] 

.4~ (~) G')' [ ( ~~') (k;a)J~(k;a)] 
B~ (:') (~)' [ ( ~~') (k;a)J~(k;a)] 

- - [ ( fT~a
2

) (k1a)J~(k1 a)] 

cL fT1,2a 2 2 fT1.2a 1 2 ( 2 ) 2 
n1.2 = 2 c} -h-- (kua) + n - -h-

1 '2 (fT' a2 ) fT' a2 
t _ CL 1.2. (k' )2 + 2 1.2 a - -- --- - a n - --
1,2 2 Cf h' 1,2 h' 

126 

( 4.:31) 

( 4.:32) 

and the prime on the Bessel and Hankel functions denotes a(~,.J where gamma is 

the same as in Equation 4.9. Note that for this work we have used the fact that 

a a a(Tr) a - - ---- - ~~--

ar - a(rr) ar - , a(-;-r)" 
( 4.3:3) 

\Ve can rewrite the six boundary condition equations in matrix form as 

(k1a )H~ ( k1a) (k2a)H~(k2a) (in)Hn(I{a) -(k~a)J~(k~a) 

(in)Hn(k1a) (in )Hn(k2a) -(Ka)H~(K a) -(in )Jn(k~ a) 
., 

( u2ha. 
2 

) H n ( k2 a) h' u' a.2 
(u 1ha.- )Hn(k1a) 0 -( TT )Jn(k~a) 

Bn 842 843 844 

8s1 8s2 8s3 8s4 

861 862 0 864 
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-(k~a)J~(k~a) -(in)Jn(l\."'a) A.n -(kra)J~(kra) 

-(in )Jn( k~a) (A."' a )J~ (It"' a) Bn -(in )Jn( k1 a) 

( h' o-~a2 . J ( k' ) - TIT) n ·2a 0 Cn -( ""
1
ha

2 
)Jn(kra) 

-
B-ts B46 .-l~ C-tr 

(-:!.:34) 
B--::>0 Bs6 B' n Csr 

B6s 0 C' n c6l 

where 

B4r - [orHn(kra)- (kra)H~(kra)] 

842 [o2Hn(k2a)- (k2a)H~(k2a)] 

B43 - [(inf\a)H~(Ka)- (in)Hn(l\."a)] 

B4-t - - (~) ( ~) [o~Jn(k~a)- (k~a)J~(k~a)] 

B4s - (:) ( ~) [o~Jn(k~a)- (k~a)J~(k~a)] 

8 46 - (:') (~') [(inK'a)J~(K'a)- (in)Jn(b."'a)] (4.:3.3) 

Bsr - [(2inkra)H~(k1a)- (2in)Hn(kra)] 

Bs2 - [(2ink2a)H~(k2a)- (2in)Hn(k2a)] 

Bs3 [((Ka) 2 - 2n2)Hn(Ka)- (2Ka)H~(I\a)] 

Bs4 - (~) (~) [(2ink~a)J~(k~a)- (2in)Jn(k~a)] 

Bss - - (~) ( ~) [(2ink~a)J~(k~a)- (2in)Jn(k~a)] 

Bs6 - (~) ( ~) [((K'a)2 - 2n 2 )Jn(K'a) + (2!\'a)J~(K'a)] ( 4.36) 
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[( ·~) l 861 
o-r a- , 

- -h- (kra)Hn(kra) 

862 - [ ( o-~a
2

) (k2a)H~(k2 a)] 

864 - - (~) ( ~) 
3 

[ ( "i~') (k; a)J~(k;a)] 
865 - - (~) ( ~) 

3 

[ ( <T'~~') (k;a)J~(k;a)] ( 4.:3/) 

-[(2inkra)J~(kta)- (2in)1n(kra)] 

- [ ( o-~a
2

) (kra)J~(kta)] . ( 4.:38) 

Then using Cramer's rule, we can solve this matrix equation for the unknown modal 

coefficients and write them as 

where 

4.' = ~4 
• n ~0 

8 - ~2 
n- ~0 

8' = ~s 
n ~0 

C' = ~6 
n ~0 

(k1 a)H~(kra) (k2a )H~ (k2a) (in)Hn(I~a) 

(in)Hn(kra) (in )Hn( k2a) -( [{ a)H~(I\ a) 

( 4.39) 

- ( k~ a) J~ ( k~ a) 

-( in)Jn(k~ a) 

( 
0
\a.

2 
)Hn(kra) ('nt )Hn(k2a) 0 

h' 17' a.2 -( T7 )Jn(k~ a) 
~o= 

841 842 843 844 

8sr 8s2 8s3 Bs4 

8sr B62 0 B64 
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-( k~a )J~(k~a) -(in )Jn( [,."'a) 

-(in)Jn(k~a) ( K'a )J~ (I\·' a) 

h' u'a2 0 -( T7 )Jn(k~a) 
(4.-iO) 

8-ts B.t6 

8ss 8s6 

86s 0 

-(k 1 a)J~(k1 a) (k2a)H~(k2a) (in)Hn(Ka) - ( k~ a) J~ ( k~ a) 

-(in)Jn(kta) (in)Hn(k2a) -(Ka)H~(Ka) -(in )Jn( k~ a) 

-( 
171t )Jn(kta) (

172
:

2 

)Hn(k2a) 0 
h' u' <12 

-( TT )Jn(k~a) 
~t= 

C.u 842 843 844 

Cst 8sz 8s3 8s4 

C6t 8s2 0 864 

-( k~a)J~(k~a) -(in)Jn(K'a) 

-(in)Jn(k~a) ( K'a )J~ ( K' a) 

h' u' a2 0 -( TT)Jn(k~a) 
(4.41) 

845 3.1,6 

8ss Bs6 

B6s 0 
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( k1 a) H~ ( k1 a) -(k1 a).f~(k1a) (in)Hn(b . ."a) -( k~a )J~(k~ a) 

~,J 
(in)Hn(k1a) -(in).ln(k1a) -(1\a)H~(l\a) -(in)Jn(k~a) 

(<\a.
2 

)Hn(k1a) -( cr,t )Jn(k1a) 0 ( h' aj a
2 

) J ( k' ) - h h' n 1a 

841 c41 843 844 

8;;1 Cs1 8s3 Bs4 

8s1 Cs1 0 Bs4 

-(k~a)J~(k~a) -(in).ln(f{'a) 

-(in ).In( k~a) (I{' a )J~ (I\' a) 

h'<T;a2 (k' ) 0 -(;;/T)Jn 2 a 
( 4.42) 

B4s B.t6 

8ss 8ss 

8ss 0 

(k1a )H~ (k1a) ( k2a) H~( k2a) -(k1a)J~(k1a) -(k~ a )J~(k~ a) 

(in)Hn(k1a) (in )Hn( k2a) -(in).ln(k1a) -(in).ln(k~a) 

(u't )Hn(kta) (u1t )Hn(k2a) -(""'ha
2 

)Jn(k1a) h' ,.: a2 ~' 

..13= 
-( "h/il )Jn(k1a) 

841 B42 c41 844 

8s1 Bs2 Cs1 Bs4 

861 Bs2 Cs1 Bs4 
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-(k~a )J~( k~a) -(in)Jn(l\..1a) 

-(in)Jn(k~a) ( K'a)J~(n."'a) 

-( ~ ,.t~2 )Jn(k~a) 0 
(4.-t:J) 

845 846 

8ss 856 

865 0 

(kta)H~(kta) (k2a)H~(k2a) (in)Hn(Ka) -(kta)J~(kta) 

(in)Hn(kta) (in)Hn(k2a) -( [{ a)H~( K a) -(in)Jn(kra) 

( <T!ha.
2 

)Hn(kta) ( u 2t )Hn(k2a) 0 -(o-1
;

2 
)Jn(kta) 

~4= 
841 B42 843 c41 

8sr 852 8s3 Csr 

861 B62 0 C61 

-(k~a )J~(k;a) -(in )Jn( I\' a) 

-(in )Jn( k~a) ( K' a )J~ ([\."'a) 

h'<T'a2 I 
0 -( TTr)Jn(k2a) 

( 4.44) 

B.t5 846 

8ss 856 

865 0 
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(k1 a)H~(k1 a) (k2a)H~(kza) (in)Hn(A."a) -(k~a )J~( k~ a) 

(in)Hn(k1a) (in)Hn(kza) -(f{a)H~(Ka) -(in )Jn( k~ a) 
? ( "r2

) Hn(k2a) 
h' u' a.2 I ( Utr ) H n ( k1 a) 0 -(yr,)Jn(k1a) 

~5= 
841 842 843 844 

851 8s2 8s3 854 

861 8s2 0 864 

-(k1 a)J~(k1 a) -(in )Jn(I{1 a) 

-(in)Jn(k1a) ( [{
1 a) J~ ( K 1 a) 

-( "':

2 

)Jn(k1a) 0 
( 4.4-5) 

c41 846 

Cs1 8ss 

Cs1 0 

(k 1 a)H~(k1 a) ( k2a )H~ ( k2a) (in)Hn(A."a) - ( k1 a ) J 1 
( k 1 a ) 1 n. 1 

(in)Hn(k1a) (in)Hn(k2a) -(Ka)H~(Ka) -(in )Jn(k~ a) 

("'t )Hn(kra) ("
2t )Hn(k2a) 0 h'u'a.2 I 

-(T7)Jn(k1a) 
~s= 

841 842 843 844 

8sr 8s2 853 8s4 

8s1 8sz 0 8s4 
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-( k~a )J~( k~a) -(k1 a)J~(kta) 

-(in )Jn( k~a) -(in)Jn.(k1a) 

(h'u~a2 )J (k' ) -( Utha2 )Jn(kta) - T--'h' n -2a 
( -1.46) I. 

B4s C.n 

Bss C:_;t 

Bss Cst 

:\"ow we have expressions for the modal coefficients for the case of a plane 

wave incident upon a general cylindrical scatterer. However. in order to explain the 

scattering effects seen in Figures 3.29 and 3.30, the specific case of the cylindrical 

scatterer being a hole must be considered. In this case. the normal tractions at 

the boundary must equal zero. and we set A~ = B~ = C~ = 0. Now we have 

three unknown modal coefficients (An, Bn. Cn). Therefore. we only consider the 

three plate stress boundary conditions of Equation 4.25. For this case. the matrix 

equation becomes 

( 4.41) 

where the Bii 's and Cii 's are as defined in Equations 4.:3.5 - 4.38. Again applying 

Cramer's Rule we have 

. - ~1 An--, 
.6.o 

where the .6. 's are now 

B - ~2 
n- ~0 

c - ~3 
n- ~0 

( 4.48) 
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~o = 8 8 8 51 52 53 

841 c4l 843 

~2= 851 C51 853 

861 Csl 0 

Expanding these determinants then gives 

C.u 842 843 

~l = C51 852 853 

841 842 C4r 

~3= 8sr 8s2 Csr 

86r 862 c6l 

~0 (cr~a
2

) (k 1a)(a2(Ka) 2 +2n2(1- a2))H~(kla)Hn(k2a)Hn(Ka) 

+ 2 ( cr~a
2

) (k1a)(I\a)(a2 - n 2 )H~(kla)Hn(k2a)H~(I\a) 

+ (k1a)(k2a)(Ka) 2 ( cr~a
2

- cr~a
2

) H~(kla)H~(k2a)Hn(Ka) 

(4.-!9) 

( 4 .. 50) 

( 

2 ·)) 
2(k1a)(k2a)(Ka)(n2 - 1) cr~a - cr~a- H~(k1 a)H~(k2a)H~(Ka) 

( cr~a
2

) (k2a)(a1(Ka) 2 + 2n 2(1- ar))Hn(kra)H~(k2a)Hn(Ka) 

2 ( cr~a
2

) (k2 a)(Ka)(a 1 - n2 )Hn(kra)H~(k2a)H~(Ka) (4 .. 51) 
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~ 1 - - ( u~a
2

) (k1a)(adKa)2 + 2n 2(1- a:2))J~(kta)Hn(k2a)Hn(h.a) 

(
Uta

2
) • •) 1 1 • 2 -h- (kta)(Aa)(a:2- n-)Jn(kta)Hn(k2a)Hn(I\.a) 

. • 2 (a-.,a2 a-ta2) I I • 
(k1a)(k2a)(l\.a) h- h Jn(kta)Hn(k2a)Hn(l\.a) 

. ., ( a-2a2 a-t a2) + 2(k1a)(k2a)(ha)(n-- 1) -h-- -h- J~(k 1 a)H~(k2 a)H~(h.a) 

+ ( a-~a
2

) (k2a)(a:1(I\a)2 + 2n2(1- a:t))Jn(kta)H~(k2a)Hn(h.a) 

+ 2 ( a-~a
2

) (k2a)(Ka)(a: 1 - n2 )Jn(kta)H~(k2a)H~(Ka) (4.52) 

4n [ (a-2a
2 

a-1a
2

) 1 (a-1a
2

) ] ~3 =-;- (k2a) -h-- -h- (a:l- l)Hn(k2a)- -h- (a:2- a:dHn(k2a) . 

( 4.-54) 

The behavior of the SO Lamb wave field for the case of a plane wave incident 

upon a hole can now be examined using the equations for o[Nc. ¢f.C.4.T. and An. 

These equations are far too complicated to give any intuitive understanding, so 

instead plots of the magnitude of the scattered amplitude of the SO wave and of the 

vertical displacement of the top surface of the plate due to the combined incident 

and scattered SO wave at the point of measurement in the experiments are shown. 

Point Source 

\Ve next consider the case of the incident SO Lamb wave being generated by 

a point source. The geometry for this case is shown in Figure 4.4. Following the 
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discussion of Pao and Nlow [462], the incident wave potential from a point source 

in two dimensions can be expanded in cylindrical functions as. suppressing e-i..;t. 

( 4.55) 
n=-·::o 

This represents a cylindrical wave propagating outward from the source at 0 in the 

( r. if) coordinate system. Because of the axial symmetry of the source, only the 

zeroth order Hankel function is necessary. The scattered and transmitted fields are 

again given by Equation 4.19. in which the ·waves are propagating outward from the 

axis 0 in the ( r, B) coordinate system. Therefore, \\·e need to transform the incident 

wave from the (r,if) to the (r.fJ) coordinates. 

From Figure 4.4. we can see that 

r sin n = ro sin e 
r cos n = r cos (if - f)) = r - ro cos e, ( 4.56) 

and we can represent Hm(k1r)eimB as 

(4 .. 51) 

where C 1 is the contour path going from m = -I to m = f [462]. Because of the 

periodic properties of the integrand. we can write this integral expression as 

( 4.58) 

Then using Equation 4.56 and the fact that n = fJ- if. we have 

( 4 .. 59) 

Using Equation 4.21, we can write 

00 

eik1 r0 cos(B+o) = L ( -1)ne-in~ Jn(ktro )ein(IJ+o) ( 4.60) 
n=-oo 
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since 

in~ . :or ;r rr 
e- T = ( e -• 2 ) n = (cos - - i sin - t = ( - i ) n. 

2 2 
(-!.61) 

Plugging this into our integral gives 

:>o 

~ f eiktrcoso+im(o+B-f) L ( -1 te-inf Jn(ktro)ein(B+o}do. 
II lcl n=-oo 

( -L62) 

and reversing the order of summation and integration we have [462] 

X> 

~ L ( -lt Jn(ktro) 1 eiktrcoso+im(o+B-tJ+m(B+o-fld<I> 

II n=-= Ct 

( 4.6:3) 

or 

f ( -ltJn(ktro)ei(n+m)B ~ 1 eik1 rcoso+i(n+m)(o-tldci>. 

n=-= '' Ct 

( 4.64) 

So we see that 

'X) 

Hm(ktf)eimO = L ( -1tJn(ktro)Hn+m(ktr)ei(n+m}O ( 4.6-5) 

n=-= 

[462]. However since our source is given by H0 (k1r) which implies that m = 0, we 

can write 

00 

Ho(ktf) = L ( -1t Jn(ktro)Hn(ktr)einB. ( 4.66) 
n=-= 

This equation is appropriate for r ;:=: r0 since the Hankel function, which is dependent 

on r, is finite at infinity. However, if r :S r0 , then that Hankel function will cause 

the expression to diverge as r --1- 0. For this case it is necessary to replace the above 

equation by [462] 

00 

Ho(ktf) = L ( -lt Hn(ktro)Jn(ktr)einB ( 4.61) 
n=-oo 

where the r dependence is in the Bessel function which is finite at r = 0. 
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Since we are concerned with an incident \Vave starting at a distance r 0 and 

propagating towards r = 0. we are interested in the range where r :::; r0 , and so 

must use the second equation for the point source. Therefore. the incident potential 

is written as 

·x 

d>[Nc = 2:= ( -1r Hn(ktro)Jn(ktr)einG. ( 4.68) 

Because of the form of the incident wave, we rewrite the scattered and trans-

mitted waves as 

·::0 

<f>SCA.T _ 
. 1 - 2: An( -1 t Hn(ktr)einB 

n=-·:JO 

::0 

dJSC.4.T 
·2 - 2: Bn( -l)n Hn(k2r)einB 

n=-oo 

'X) 

WSCA.T = 2: Cn( -l)n Hn(f\r)einB 

n=-oo 

00 

d>[RANS = L .4.~(-l)nJn(k~r)einB 
n=-oo 

'X) 

d>fR.4NS = L B~(-1)nJn(k~r)einB 
n=-oo 

00 

wTRANS = L C~( -l)n Jn( I\'r)einB (4.69) 
n=-oo 

where we have now pulled a factor of ( -1 )n out of each modal coefficient for later 

convenience. 

The boundary conditions for this problem are again given by Equations 4.24 

and 4.25, providing six equations for the six unknowns. After using Equations 4.13 
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and 4.11, dropping the s~mmations. and rewriting, the boundary condition equa

tions for the point source case become 

.-ln[(kta)H~(kta)J + Bn[(k2a)H~(k2a)J + Cn[(in)Hn(Ka)J 

+ .-1~[-(k~a)J~(k~a)J + B~[-(k~a)J~(k~a)J + C~[-(in)Jn(l~·'a)] 

.-ln[(in)Hn(kta)J + Bn[(in)Hn(k2a)J + Cn[-(l\"a)H~(l\a)J 

+ .-1~[-(in)Jn(k~a)J + B~[-(in)Jn(k;a)J + C~[(l\'a)J~(h"'a)] 

(4.10) 

- [-(in)Hn(ktro)Jn(kta)J (4.11) 

An [ ( a~a
2

) Hn(k1a)] + Bn [ ( cr~a
2

) H 11 (k2a)] 

+ A~ [- ( ~ ai~
2

) Jn(k~a)] + B~ [- ( ~ ai~
2

) Jn(k;a)] 

- [- ( a~a
2

) Hn(ktro)Jn(kta)] (4.12) 

An[ertHn(kta)- (kta)H~(kla)J 

+ Bn[er2Hn(k2a)- (k2a)H~(k2a)] 

+ Cn[(inl\a)H~(I\a)- (in)Hn(Ka)J 

A~(~)(~) [er~Jn(k~a)- (k~a)J~(k~a)] 

B~ (:') ( ~) [er;Jn(k;a)- (k;a)J~(k;a)J 

C~ (~) ( ~) [(inK'a)J~(K'a)- (in)Jn(K'a)J 

- -[ertHn(ktro)Jn(kta)- (kta)Hn(ktro)J~(kta)J (4.1:3) 
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.-ln[(2inkla)H~(kta)- (2in)Hn(kla)] 

+ Bn[(2ink2a)H~(k2a)- (2in)Hn(k2a)] 

+ Cn[((I'-·a) 2
- 2n2)Hn(I\a) + (2!\a)H~(I\a)] 

A~(~) ( ~') [(2ink~a)J~(k~a)- (2in)Jn(k~a)] 

B~ (~) ( ~) [(2ink~a)J~(k~a)- (2in)Jn(k;a)] 

C~ (~) ( ~) [((K'a)2 - 2n 2 )Jn(E'a) + (2!\'a)J~(K'a)] 
- -[(2inkta)Hn(ktro)J~(kta)- (2in)Hn(ktro)Jn(kta)] (4.74) 

An [ ( o-~a
2

) (kta)H~(kta)] 

+ Bn [ ( o-~a
2

) (k2a)H~(k2a)] 

A~(~) (~)
3 

[(o-~~
2

) (k~a)J~(k~a)] 
B~ (:') ( ~) 

3 

[ ( o-i~
2

) (k~a)J~(k~a)] 
- [ ( o-~a 2

) (k 1 a)Hn(ktro)J~(kta)] (4.7.5) 

where the prime on the Bessel and Hankel functions. a 1,2 , and a~_2 are as defined 

above. 

Writing the six boundary condition equations in matrix form we have, 
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(k1 a)H~(k1a) (k2a )H~(k2a) (in) Hn( I\ a) -( k~ a )J~( k~ a) 

(in)Hn(k1a) (in)Hn(k2a) -(I\ a) H~( h-a) -(in )Jn(k~ a) 

(a.ha
2 )Hn(k1a) ((1Y

2 
)Hn(k2a) 0 h' u' a2 ) f ) -(hy Jn(k1a 

B.u B.u 843 844 

8s1 8s2 8s3 854 

861 862 0 864 

-( k~a )J~ ( k~a) -(in)Jn(I<'a) A.n cps 
ll 

-(in )Jn( k~a) (I\' a)J~( K' a) Bn cps 
21 

-( h' u2a
2 
)J ( k' ) 0 Cn cps 

h h' n 2a 31 
( 4. 76) -

845 8.~6 A~ 
cps 

41 

8ss Bs6 8' n 
cps 

51 

B6s 0 C' n 
cps 

61 

where the 8;/s are as given in Equations 4.35 - 4.37 and 

cps 
21 

cps 
31 - (

o-1a
2

) - h Hn(k1ro)Jn(k1a) 

cps 
"41 - -[a1Hn(k1ro)Jn(k1a)- (k1a)Hn(krro)J~(k1a)J 

cps 
51 - -[(2ink1 a )Hn(k1ro)J~(k1a) - (2in) Hn(k1ro)Jn(k1a )J 

c:~ _ -[ ( a~a2

) (k1 a)Hn(k1ro)J~(k1a)J. (4.77) 

Rewriting the matrix equation gives 
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( kt a) H~ ( k 1 a) (kza) H~( kza) (in) H n (I\ a) -(k~a)J~(k~a) 

(in )Hn(k1a) (in)Hn(kza) -(I\ a)H~( I\ a) -(in)Jn(k~a) 

( a\a
2 

)Hn(k1a) ( u~t )Hn(kza) 0 

841 842 

8s1 Bs2 

861 Bs2 

-(k~a )J~(k~a) 

-(in )Jn( k~a) 

( h' u~a2 )J (k' ) - T-;;t n 2a 

845 

8ss 

8ss 

8.~3 

Bs3 

0 

-(in )Jn( [,:'a) 

([{'a )J~ (h.' a) 

0 

8.~6 

8ss 

0 

-(k 1a)J~(kta) 

.:_(in)Jn(kta) 

-(u1t )Jn(k1a) 

and by Cramer ·s Rule the coefficients are 

h' u' a2 
- ( h V )J n ( k~ a ) 

844 

Bs4 

864 

1 4. 
Hn{lqro) • n 

1 8 
Hn(ktro) n 

1 c 
Hn(ktro) 'n 

1 4' 
Hn(ktro) • n 

t 8' 
Hn(ktro) n 

1 C' 
Hn(ktro) n 

( 4. 78) 
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where the ~ ·s are the same as in the case of a plane wave incident on a general 

cylindrical scatterer so that algebra does not have to be redone. 

Since we are specifically interested in the case of the scatterer being a cylin-

drical hole where the normal tractions at the boundary must equal zero. \'.re again 

set .4.~ = B~ = C~ = 0. This leaves three unknown modal coefficients (An, Bn. Cn). 

and only the three plate stress boundary conditions in Equation 4.25 are consid-

ered. For the case of a point source SO Lamb wave incident on a cylindrical hole, 

the matrix equation thus becomes 

841 Ht2 843 l 4. 
Hn(ktro) • n C-11 

Bs1 Bs2 Bs3 I B - Cs1 (4.80) 
Hn(ktro) n 

Bs1 Bs2 0 l c 
Hn(ktro) n c6l 

where the B;i ·s and C;i 's are as defined in Equations 4.:3.5 - 4.:38. Again applying 

Cramer's Rule we have 

where the .6. 's are the same as for the case of a plane wave incident upon a cylindrical 

hole (Equations 4.51 - 4.54). 

The behavior of the SO Lamb wave field for the case of a point source can now 

be examined using the equations for ¢fNC, ofCAT, and An· Since these expressions 

are far too complicated for an intuitive understanding of the behavior, plots of the 
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magnitude of the scattere~ amplitude of the SO wave and of the vertical displace

ment of the top surface of the plate due to the combined incident and scattered SO 

wave at the point of measurement in the experiments are examined. 

Finite Source 

In the laboratory experiments we use piezoelectric transducers to generate 

the Lamb waves in the plate. Piezoelectric transducers work by converting electrical 

signals into mechanical vibrations. These vibrations then generate the elastic waves 

in the test material. The transducers are. of course. finite sources, so the plane 

wave and point source incident ·waves do not accurately describe the Lamb wave 

propagation in the experiments. However. by Huygen's principle, we can model any 

finite source by a combination of point sources. 

While the longitudinal contact transducers radiate uniformly over the full 

range of angles, the shear contact transducers used in the PPT experiments. gen-

erate a directional Lamb wave field. This field for the shear contact transducers 

used in the experiments, has been measured to be 100% at ±0° . . 50% at ±20°, and 

26% at ±:30° [463]. A good approximation to this beam pattern has been found 

to be a line of five point sources at a distance r0 from the center of the coordinate 

system as shown in Figure 4.5. For the experimental value of r 0 equal to 8. /.5 em, 

the point separation to generate the expected beam pattern is 2B = 0.635 em, and 

the necessary amplitudes of the point sources are 

( . 1 •) 3 -) J = '-· .. .J C4 = 3.0. ( 4.82) 

For each point source we have incident and reflected SO Lamb waves given 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

y t 

-X 

Figure 4.5: Coordinate system for a finite source SO Lamb wave.incident upon a cylindrical inclusion in au infinite plate 
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by 

= 
oi-'"C(j) - L Cj( -l)n Hn(ktrj)Jn(krr)einBJ 

n=-·:o 

o{C.-l.T(j) - L CjA-~(-l)nHn(krr)einBJ ( 4.8:3) 

n=-= 
where 

( 4.84) 

and j = 1. 2. :3, 4, 5. 

In the same way that the finite source incident wave can be generated by 

summing the contributions of the individual point sources. 

5 
, INC(fs) ~ . LVC(j) 

C>r =L-Or • ( 4.85) 
j=l 

the SO scattered field for the finite source can be determined by first calculating the 

SO scattered field for each point source and then summing them. 

5 
SCA.T(fs) _ ~ . SC.4.T(j) 

Or -L-Or . ( 4.86) 
j=l 

In order to facilitate this process, the rj's and B;'s are defined in terms of r 0 • 8, 

and B. This is possible because a right triangle can be drawn connecting each ri to 

r 0 (e.g. Figures 4.6 and 4.7). For the geometry shown in Figure 4 .. 5, we have 

rr - ((r0 )
2 + (4B)2)t 

r2 - ((ro)2 + ( -48) 2 )~ 

r3 - ((rof + (2B)2)t 

r4 - ro 

r5 - ((ro)2 + ( -28) 2 )~ ( 4.81) 
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this case where the y-coordinate of the source point is greater than zero, 01 = 0 + t: 1• 
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and using 

E =arctan(;) ( 4.88) 

·we can define the angles 

f:l 1481 arctan ro 

f:2 1-481 arctan --;;--

f:J -
1•)81 

arctan ~0 I 
f:4 - 0 

Es ~--)81 arctan --;;-- . ( 4.89) 

Then since Yt.3 ..t ~ 0 (Figure 4.6), we have 

(-1.90) 

while for y2,5 < 0 (Figure 4.7), we have 

( 4.91) 

However, the point sources making up the finite source will not always be in 

the geometry shown in Figure 4.5. In the experiments, the transducer starts at a 

position well above the flaw and scans down past the flaw to a position well below 

the flaw. This means that in addition to the case of the finite source being centered 

on the flaw, we will also have cases where all of the point sources have Yi > 0 

(Figure 4.8) or Yi < 0 (Figure 4.9). Therefore, it is necessary to generalize the 

above expressions for the r/s and Bj's. This is done using a variable called SHIFT 

which defines they-coordinate of the center point source (Figures 4.8, 4.9). Using 

this variable, we now have, 
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rr - ((rof+(4B+SHIFT) 2 )t 

r2 ((r0 )
2 +(-4B+SHIFT)2 )t 

r3 

r-t 

r-
" 

and 

Then if Yi 2: 0, we tave 

while for Yi < 0, we have 

-

-

-

( ( r0 ) 
2 + ( 2 B + SHIFT) 2 ) t 

( ( ro) 2 + (SHIFT) 2 ) t 

{(r0 )
2 + ( -2B + SH I FT)2)t 

'

4B +SHIFT! arctan 
ro 

t2 - arctan 
1

-48 +SHIFT' 
ro 

1

2B+SHIFTI 
t::3 - arctan 

ro 

I
SHIFTI 

t::4 - arctan 
ro 

I

-2B+SHIFT! arctan . 
ro 

fJ--fJ+c J- ]' 

( 4.92) 

( 4.9:3) 

( -!.94) 

( 4.9.5) 

Now we have expressions for each point source in terms of the known pa-

rameters r0 , B, and (), and we can sum the individual contributions of the point 

sources to obtain the scattered field for the finite source. These equations are again 

far too complicated for an intuitive understanding of the behavior of the SO Lamb 

wave. Therefore, plots of the magnitude of the scattered amplitude of the SO wave 
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and of the vertical displacement of the top surface of the plate due to the combined 

incident and scattered SO wave at the point of measurement in the experiments are 

examined. 

4.3 Results of the Scattering Theory 

.\"ow that e~act and analytic closed-form expressions for the scattering of 

plane. point source. and finite source SO Lamb waves from a cylindrical hole in a 

plate have been derived, the results predicted by the theory can be used to explain 

the scattering effects seen in the images at the end of Chapter 3. The standard 

way to display scattering results predicted by theory is to show polar plots of the 

magnitude of the amplitude of the scattered wave as a function of B. Thus, for the 

incident plane wave where <Pf.CAT is defined by Equation 4.2:3. we have a scattered 

amplitude given by 

(4.96) 

The magnitude of this scattered amplitude is given by 

( 4.97) 

with 

( 4.98) 

and 

( 4.99) 

Similarly for the point source case where ¢fC.4.T is defined by equation 4.69. the 

magnitude of the scattered amplitude is given by 

(4.100) 
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with 

(4.101) 

finally for the finite source case \Ye have for each point source a scattered field 

defined by Equation 4.83, and so the scattered amplitudes are of the form 

(j = 1.2,:3.4.-5) ( 4.102) 

where the Ci ·s. A.{. 's, and Oi ·s are as given in Equations 4.82. 4.84, 4.94. and -L95. 

Since the scattered field for the finite source is given by the sum of the scattered 

fields for the individual point sources. the scattered amplitude for the finite source 

case is given by the sum of the individual scattered amplitudes, 

5 

L CJA~( -l)nein8J. ( 4.103) 
J=l 

The magnitude of the scattered amplitude for the finite source case is then 

l

it CiA.~( -1reine] . 
J=l 

( -!.104) 

Figures 4.10- 4.12 show the magnitude of the plane wave scattered amplitude 

for holes of radius a = 0.25 X lQ-2 m, a = Q. /.j X 10-2 m. and a = 1.21 X lQ-2 

m respectively. In order to match the experiments, the values ..\ = 6.29:3 x 1010 

kg/ms2
, J.l. = 2.677 x 1010 kg/ms\ p = 2700 kgjm3

, ....: = 2ii(L1) x 106 Hz, and 

h = 1.143 X w-3 m have been chosen. For the smallest hole (Figure 4.10). the 

largest lobe is in the 180° direction and the other lobes are of approximately the 

same amplitude and are about evenly spaced over the remaining range of angles. 

For the middle hole (Figure 4.11), the largest lobes are near 90° and 270°, there is 

only a small forward scattered component, and the remaining lobes are all in the 

backscattered direction. Finally for the largest hole (Figure 4.12), the largest lobes 
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Figure 4.10: Polar plot of the magnitude of the scattered amplitude of a plane wave incident from the left upon a hole with 
radius a = 0.25 x 10-2 m. Notice that the lobes are about evenly spaced over the range of angles with the largest lobe in the 
180° direction. 
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Figure 4.12: Polar plot of the magnitude of the scattered amplitude of a plane wa,.ve incident from the left upon a hole with 
radius a = 1.27 x I0-2 m. Again the lobes are almost entirely in the backscattered direction with the largest lobes in the 90° 
and 270° directions. The overall magnitude is slightly larger for this case. 
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are still near the 90° and 270° directions, there are more lobes in the backscattered 

direction. and there is still a small forward scattered component. Also notice that 

the overall magnitude is slightly larger for this case. For the incident plane \vave. 

the scattering does get more complicated as the size of the hole increases. but the 

forward scattered components are probably due to the infinite size of the plane 

wave. rather than any other scattering effects. 

Figures 4.1:3- 4.1.5 show the magnitude of the point source scattered ampli

tude for holes of radius a = 0.25 X 10-2 m. a = Q. 7.5 X lQ-2 m. and a = 1.27 X lQ-2 

m respectively. The values of A, p., p, w, and h are the same as above, and the point 

source has been located at a distance r 0 = 8./.5 x 10-2 m to the left of the holes. 

Comparing these plots to the plane wave results. we see that although the overall 

magnitude is much smaller. the distribution of the lobes in the point source results 

is almost identical to that in the plane wave results. This is probably due to the 

fact that the incident point source wave, while being cylindricaL still extends far 

past the hole in either direction, and so is similar to the plane wave. The forward 

scattering is again probably due to this rather than any other scattering effects. 

Figures 4.16- 4.18 show the magnitude of the finite source scattered ampli

tude for holes of radii a = 0.25 X 10-2 m, a = 0.75 X 10-2 m, and a = 1.27 X 10-2 m 

respectively. The values of A. p., p, w, and h are the same as above, and the center 

point source in the finite source has been located at a distance r 4 = 8.75 x 10-2 m to 

the left of the holes. The plots for the small and medium holes (Figures 4.16, 4.1 /) 

are again almost the same as those for the plane wave and point source cases aside 

from the actual magnitude values. However, the plot for the largest hole (Fig

ure 4.18), while still similar, does show some differences from the earlier plots. 

Except for just past the second backscattered lobe on either side of the x-axis 

where the magnitude drops to zero, there is a backsottered region that matches 
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Figure 4.13: Polar plot of the magnitude of the scattered amplitude of a point source wave incident from the left upon a hole 
with radius a = 0.25 X w-2 m. Notice that cveu though this wave is cyliudrical, the orientation and shape of the scattering 
pattern matches that of the plane wave case. 

CJ 

~ 
~ 

~ ;:o 
~ 

C/:) 

~ 

~ 
~ 
Q 

~ 
tr:1 
0 ;:o 
>-<: 

1-' 
O'l 
0 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

,, 

, ' 
I \ 

I 
I 
I 
I 

I 
I -' I 

I ' ' I 

\ ',, 1', I 

' ' ' \ '\ I 
',, ',, \ '-: 

' ' I 
' ' I 

' ' I ',, ', ' 
' ' I 

' ' I 

I 
I 
I 

0.4' I 

nz 

~--------'-,_ ',\ 
......... '~ ~"" ',, 

... ... ... ... .. 

I 
I 
I 
I 
I 1,, 

-S:~_: _- ;~ ~; =-:~~~:~ ,;~--:~ 
... .,. ",, ,, 

'.--L. 
'- I I 

' I 
I 

I 

I 
I 

I_ -

, 
\--- ... 

, , 

.,. , II ... , ,, 
' I 

' I 
I I I 

I I 
I I 

I I I I 
, 

1 
I 

1
1 I 

I I 1 I 
, I , I 

• I 

I 
I 
I 

·Ill 

·0.~1 I 
I 

I 

I 

' 

Figure 4.14: Polar plot of the magnitude of the scattered amplitude of a point soutce wave incident from the left upon a hole 
with radius a == 0. 75 x 10-2 m. Again this plot for the point source wave is very similar to the results of the plane wave case 
aside from the actual magnitude values. 
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Figure 4.15: Polar plot of the magnitude of the scattered amplitude of a point source wave incident from the left upon a hole 
with radius a = 1.27 x 10-2 m. This plot is also very similar in shape and orientation to that of the corresponding plane wave 
case. 
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Figure 4.16: Polar plot of the magnitude of the scattered amplitude of a finite sautee wave incident from the left upon a hole 
with radius a= 0.25 X 10-2 m. Notice that the results seen here ar'e almost identical to those seen in the corresponding plane 
and point source cases. This is because the hole is smaller than the beam width. 
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Figure 4.17: Polar plot of the magnitude of the scattered amplitude of a finite sour.ce wave incident from the left upon a hole 
with radius a = 0. 75 x 10-2 m. Again the results seen here are almost identical to those seen in the corresponding plane and 
point source cases. This is because the hole while close iu size to the beam width, still allows for some of the beam to wrap 
around it. 
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Figure 4.18: Polar plot of the magnitude of the scattered amplitude of a finite source wave incident from the left upon a hole 
with radius a = 1.27 x 10-2 m. The results seen here although similar to those seen in the corresponding plane and point 
source cases, do show some differences. There is a backscattered region corresponding to the front scattered one, and just past 
the second peak on either side of the x-axis, the magnitude goes to' zero. Also, the forward scattered region is slightly different 
in shape from that seen in the earlier plots. l<'or this case, the hole is slightly larger than the beam width, and so different 
effects are seen. 
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the forward scattered component. In addition, the shape of the forward scattered 

portion is slightly altered from the earlier plots. However. while the finite source 

should have a forward component due to scattering rather than the large width of 

the incident wave. the differences noted here are not significant enough to correlate 

with the scattering effects seen in the tomographic images. 

Next we consider the scattering results when the finite source has been shifted 

along the y-axis. Figures 4.19 - 4.21 and 4.22 - 4.24 show the magnitude of the 

scattered amplitude when the finite source has been shifted by +:3.0 x 10-2 m 

and -:3.0x 10 x 10-2 m respectively. Notice that the -:3 em shift cases are the same 

as the +:3 em shift cases inverted about the x-axis . and that there has been an 

overall decrease in magnitude. For the small hole (Figures 4.19, 4.22), the scattering 

pattern looks quite different from the centered source cases. The largest lobes are 

still in the backscattered area, but they have been shifted to match the new position 

of the source. Also, instead of many separate lobes, combined lobes are seen. The 

results for the middle hole (Figures 4.20, 4.23) basically look like a rotated version 

of those seen for the centered source cases. There is still the small forward scattered 

component, but it is joined by a small lobe. Also. combined lobes are again seen 

in the backscattered region. For the largest hole (Figures 4.2L 4.24), the results 

are essentially just a rotated version of those seen in the centered source case with 

the addition of a large combined lobe and slight variations in the magnitudes of the 

lobes. 

Figures 4.25 - 4.27 and 4.28 - 4.30 show the magnitude of the scattered 

amplitude when the finite source has been shifted by +·5.0 X 10-2 m and -.5.0 X 10-2 

m respectively. Again the -5 em shift cases are the same as the +5 em shift cases 

inverted about the x-axis, and there is an overall decrease in magnitude from the 

centered source case. For the small hole (Figures 4.25. 4.28). the scattering pattern 
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Fig.i.tre 4.19: Polar plot of the magnitude of the scattered amplitude of a finite sour'ce wave incident from the left upon a hole 
with radius a = 0.25 x 10-2 m when the source has been shifted by· +3 em in the y direction. This plot is rotated and shows 
a different lobe structure than the previous small hole cases. 
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Figure 4.20: Polar plot of the magnitude of the scattered amplitude of a finite source wave incident from the left upon a hole 
with radius a= 0.75 x 10-2 m when the source has been shifted by ·+3 em in they direction. This plot is essentially a rotated 
version of the corresponding centered source case. 
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Figure 4.21: Polar plot of the magnitude of the scattered amplitude of a finite source wave incident from the left upon a hole 
with radius a == 1.27 x 10-2 m when the source has been shifted by +3 em in the y direction. This plot is essentially a rotated 
version of the corresponding centered source case. 
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Fi'gure 4.22: Polar plot of the magnitude of the scattered amplitude of a finite source wave incident from the left upon a hole 
with radius a = 0.25 x 10-2 m when the source has been shifted by. -3 em in they direction. This plot is the inverse about the 
x-axis of the corresponding +3 em shift case. 
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Fig~re 4.23: Polar plot of the magnitude of the scattered amplitude of a finite sour'ce wave incident from the left upon a hole 
with radius a= 0.75 x 10-2 m when the source has been shifted by '.:.3 em in they direction. This plot is the inverse about the 
x-axis of the corresponding +3 em shift case. 
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Fig.ure 4.24: Polar plot of the magnitude of the scattered amplitude of a finite souf'ce wave incident from the left upon a hole 
with radius a = 1.27 x I0-2 m when the source has been shifted by ·-3 em in the y direction. This plot is the inverse about the 
x-axis of the corresponding +3 em shift case. 
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Figure 4.25: Polar plot of the magnitude of the scattered amplitude of a finite source wave incident from the left upon a hole 
with radius a = 0.25 x 10-2 m when the source has been shifted by +5 em in the y direction. This plot is rotated and shows 
a different lobe structure than the previous small hole cases. 
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Figure 4.26: Polar plot of the magnitude of the scattered amplitude of a finite source wave incident from the left upon a hole 
with radius a= 0. 75 x 10-2 m when the source has been shifted by .+5 em in they direction. This plot is essentially a rotated 
version of the corresponding centered source case. 
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,. 

Figure 4.27: Polar plot of the magnitude of the scattered amplitude of a finite sautee wave incident from the left upon a hole 
with radius a= 1.27 X 10-2 m when the source has been shifted by'+5 em in they direction. This plot is esse11tially a rotated 
version of the corresponding centered source case. 
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Figure 4.28: Polar plot of the magnitude of the scattered amplitude of a finite source wave incident from the left upon a hole 
with radius a = 0.25 X w-2 m when the SO~Jrce has been shifted by-~5 em in they direction. This plot is the inverse about the 
x-axis of the corresponding +5 em shift case. 
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Figure 4.29; Polar plot of the magnitude of the scattered amplitude of a finite som:ce wave incident from the left upon a hole 
with radius a= 0. 75 x I0-2 m when the source has been shifted by·~s em in they direction. This plot. is the inverse about the 
x-axis of the corresponding +5 em shift case. 
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Figure 4.30: Polar plot of the magnitude of the scattered amplitude of a finite soutce wave incident from th~ left upon a hole 
with radius a = 1.27 x 10-2 m when the source has been shifted by ·.5 em in the y direction. This plot is the inverse about the 
x-axis of the corresponding +5 em shift case. 
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looks quite different from _the centered source and ±:3 shift cases. Only two large 

lobes are seen in the backscattered direction. and three smaller lobes are seen in 

the forward direction. For the middle hole (Figures 4.26. 4.29). the results are 

again a rotated version of those seen previously. However. the magnitude of the 

backscattered lobes has increased, while that of the other lobes has decreased. A.lso 

note that the extra lobe in the fonvard direction has increased in magnitude. For 

the large hole (Figures 4.21. 4.30), the pattern is again rotated. The magnitude 

of the backscattered lobes has increased slightly from the ±:3 shift cases while that 

of the others has decreased slightly. There are some additional combined lobes. 

one of the backscattered lobes has gotten much smaller. and an additional forward 

scattered lobe has appeared. 

Although, some differences in the scattering patterns have been noted for 

the finite source case as the hole size increases, such as the existence of the forward 

scattering components and changes in the lobe structure. these differences are not 

dear enough to obviously represent the scattering effects seen in the tomographic 

images of the large hole. Therefore plotting the magnitude of the scattered ampli

tude as a function of () is not the optimum way to present the results. It assumes 

far-field and neglects physics that may be important here. Instead we will plot the 

values actually registered by the receiving transducers in the experiments. 

In our experiments we use a piezoelectric transducer to receive the Lamb 

waves. The vibrations of the surface of the plate cause the piezoelectric element to 

vibrate, and this generates the received electric signal corresponding to the Lamb 

waves. Therefore, instead of just the scattered amplitude as defined above. we 

need to examine the full motion of the top surface of the plate. In addition. the 

transducer is receiving the incident wave as well as the scattered wave, so we need 

to consider both of these contributions in our calculations. 
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Recall that the vertical motion of the plate is described by 

-
u=(r,O,t) = ~t·=(r.O.t), ( 4.105) 

where u= is as defined in Equation 4.13. At the top surface of the plate. = = h. so 

u= = v=. Therefore we can write the incident and scattered vertical displacement 

fields as 

,.. -+.SC.4.T +,.. o·SCATe-iwt 
v 1Y1 v',2 2 . 

However. since we are only measuring the SO contribution, we use 

to determine the full SO field. 

received by the transducer. 

· l.VC -iwt 
CY1 o 1 e 

,.,.,SC.4.Te-iwt 
(71""1 

( 4.106) 

( 4.107) 

(4.108) 

Using Equations 4.22 and 4.23, we can write u;uLL for the plane wave case 

as 

(4.109) 

where An is defined in Equation 4.48. For the point source case we have, using 

Equations 4.68 and 4.69, 

(4.110) 

where An is defined in Equation 4.81. Finally for the finite source case we have 

using Equation 4.8:3, a general expression for each point source given by 

(4.111) 
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where the .-1-;. 's. C/s, ri s. and fJj's are given by Equations 4.84. 4.82. 4.92. 4.94. 

and 4.9.5. Then the vertical displacement for the finite source case is given by 

5 

u;uLL = L u;uLL(j). ( 4.112) 
j=l 

In the experiments, the Lamb waves are generated at one location and re-

ceived at a separate location. For PPT. the transducers are moved together as a 

pair. and for a given scan. the generating and receiving locations can be represented 

by ( -x. y) and ( x. y) respectively. As the scan progresses, the x-coordinate of the 

receiver location remains fixed. while they-coordinate varies. Thus. we obtain data 

along a line parallel to they-axis (Figure 4.31 ). 

Since 

(} = arctan c;) ' (4.11:3) 

the vertical displacement of the combined incident and scattered SO waves, uf[ULL. 

can be calculated at each receiver location. Also, since the transducer is only sensi-

tive to the real motion of the plate, only the real part of the vertical displacement is 

used. These calculated vertical displacement values can then be plotted as a func-

tion of y to form vertical displacement curves. These curves represent the vertical 

displacement of the top surface of the plate along a specified line. x = constant. 

Figures 4.32 - 4.34 show the vertical displacement curves for the case of a 

plane 50 wave incident upon a hole of radius a = 0.25 X 10-2 m. a = 0. /.) X 10-2 m. 

and a = 1.27 x 10-2 m respectively. In order to match the experiments, the values 

). = 6.293xl010 kg/ms2
, p. = 2.677xl010 kg/ms2

, p = 2700 kg/m3 ,w = 27r(l.l)xl06 

Hz, and h = 1.143 x 10-3 m have been chosen, and the x-coordinate of the receiver 

line is set as 8. 75 x 10-2 m. In the absence of scattering, we would simply expect to 
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Figure 4.31: The line of receiver locations for a single scan in PPT .i.s shown for the geometry of a hole in a plate. Notice that 
since all of the points have the same x-coordinate, the line i:; parallel t.o the y-axis. 
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Figure 4.32: Vertical displacement curve for the case of a plane wave incident from the left upon a hole with radius a = 
0.25 x 10-2 m. Note that the magnitude of the vertical displacement is not uniform outside of the flaw area indicating 
scattering effects. Also, notice that the vertical displacement is negative except in the flaw region where it is positive. 
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see a uniform value for the vertical displacement except in the flaw area where we 

would expect a shadow region since the SO Lamb wave cannot propagate through 

the hole. Instead. we see fluctuations in the magnitude of the vertical displacement 

throughout the curve. These variations are due to the scattering of the plane ·wave 

from the hole. Comparing the three figures, we see that the majority of the curve 

is negative implying motion of the plate below :: = h (Figure 3.2). However. in 

the flaw region about y = 0, the vertical displacement is positive implying motion 

above :; = h (Figure :3.2). The main difference between the curves as the hole 

size increases is that the maximum negative peaks move farther away from y = 0 

and their magnitude decreases. However, there are no sharp changes in the curves 

for the largest hole, and so nothing to indicate the scattering effects seen in the 

tomographic images. 

Figures 4.35 - 4.37 show the vertical displacement curves for the case of 

a point source SO wave incident upon a hole of radius a = 0.25 x 10-2 m, a = 

0. 75 x 10-2 m, and a = 1.27 x 10-2 m respectively. The values of .X, f..l· p. r..~.:. h, 

and of the x-coordinate of the receiver line are the same as above. In addition. 

the .r-coordinate of the point source is set as -8.75 x 10-2 m. Since the incident 

wave is cylindricaL the vertical displacement values along a line will not show if the 

magnitude of the vertical displacement is uniform. Instead we focus on the flaw 

region. For the small hole (Figure 4.3.5), the vertical displacement is negative in 

the flaw region until y = ±1 where it switches to a positive value until y = ±2. 

Over this region, the magnitude of the vertical displacement is decreasing. For 

the middle hole (Figure 4.36), the vertical displacement remains negative out past 

y = ±2 and the magnitude is relatively constant other than small oscillations. 

Finally for the large hole (Figure 4.37), the vertical displacement is positive out to 

about y = ±1.3 where it becomes negative. The magnitude in this region gradually 
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Figure 4.35: Vertical displacement curve for the case of a point source wave incident from the left upon a hole with radius 
a = 0.25 x 10-2 m. Note that the vertical displacement is negative out until y = ±1, where it briefly switches to positive 
vertical displacement. 
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Figure 4.36: Vertical displacement curve for the case of a point source wave incident from the left upon a hole with radius 
a= 0.75 x 10-2 m. Note that the vertical displacement is negative pasty= ±2, and it has a relatively uniform character. 
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decreases until y = ±1.3 when it starts increasing again. This change in phase of 

the vertical displacement in the flaw region as the hole size increases could indicate 

the scattering effects seen in the tomographic images. It predicts a change in the 

motion of the plate. not just a change in the amplitude of the motion. However. 

the phase change is gradual for the point source case in which the incident wave 

still extends far past the flaw region. 

Figures 4.:38 - 4.40 show the vertical displacement curves for the case of 

a finite source SO wave incident upon a hole of radius a = 0.2.5 x 10-2 m. a = 
0. 75 x 10-2 m, and a = 1.27 x 10-2 m respectively. The values of ..\., J.l, p, w. h. 

and of the x-coordinate of the receiver line are the same as above. In addition. the 

x-coordinate of the point sources in the finite source is set as -8. /.5 x 10-2 m. In all 

three plots, we see that the magnitude is basically the same until we approach the 

edge of the hole. At this point the magnitude dramatically increases due to the large 

contribution of the scattered field with the incident field at the receiver location, 

and we have a large positive vertical displacement. Next, we consider the flaw 

region. For the small and medium holes (Figures 4.38, 4.39), the magnitude drops 

to almost zero at the edge of the hole, where the vertical displacement becomes 

negative. and then increases until y = 0. For the large hole (Figure 4.40), the 

magnitude again decreases until the very edge of the hole, where the curve starts to 

oscillate between positive and negative vertical displacement values until y = 0.2.5 

where the magnitude increases and the vertical displacement remains positive until 

y = 0. \Vhile the large magnitudes near the edges of the holes indicate scattering 

effects. the rapid oscillations and positive vertical displacement values in the flaw 

region of the large hole indicate some additional effects. In contrast to the motion for 

the two smaller holes, the motion of the plate with the large hole rapidly oscillates 

between positive and negative values at the edge and just inside the flaw region. 
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Figure 4.38: Vertical displacement curve for the case of a finite source wave inciqent from the left upon a hole with radius 
a = 0.25 x 10-2 m. Note the large vertical displacement values reco~ded near the edges of the flaw. These are due to the large 
scattered contributions. Also note that the magnitude drops to zero at the flaw edge where the vertical displacement becomes 
negative, and then gradually increases until the center of the flaw region. 
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Figure 4.39: Vertical displacement curve for the case of a finite source wave incident from the left upon a hole with radius 
a = 0. 75 X 10-2 m. Note the large vertical displacement values recorded near the edges of the flaw. These are due to the large 
scattered contributions. Again the magnitude drops to zero at the flaw edge where the vertical displacement becomes negative, 
and then gradually increases until the center of the flaw region. 
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Figure 4.40: Vertical displacement curve for the case of a finite source wave incident from the left upon a hole with radius 
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Then the plate settles into a positive vertical displacement at the center of the fla\v 

region in contrast to the negative vertical displacement seen for the two smaller 

holes. The rapid oscillations which are over an area smaller than the transducer 

element size. could be responsible for the streaking effects seen in the tomographic 

images, while the phase change at the center of the flaw region may be responsible 

for the scalloping or other effects. 

The scattering theory developed in this chapter has been shown to predict 

distinct behavior of the plate vertical displacement for the case of a finite source 

incident upon a hole of radius a = L27 x w-2 m. This correlates with the exper

imental results in which the starburst streaking pattern and scalloping were seen 

in the PPT image for the large hole in the aluminum plate. The vertical displace

ment curves shown above are for the PPT transducer arrangement of a transducer 

pair being scanned along the sample. Vertical displacement curves have not been 

calculated for the CBT transducer arrangement because the resolution of the CBT 

images was not high enough to show definite scattering effects. However, curves 

which represent the vertical displacement at all of the receiver locations for each 

sender location in the CBT geometry, can also easily be obtained. 
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Chapter 5 

Discussion and Future Work 

Lamb waves have been shown to provide a viable means for nondestructively 

evaluating large sections of plate-like structures such as those found in our nation's 

aging aircraft. Because Lamb waves are guided waves. they can propagate large 

distances in these plate-like structures, while their dispersive nature allows them to 

be sensitive to changes in thickness. This allows for defects such as corrosion to be 

rapidly detected. For example, when the experiment is performed in the frequency

thickness range of 2.0 MHz-mm ~ fd ~ 2.6 .MHz-mm for aluminum, a decrease in 

thickness corresponds to an increase in the velocity of the SO mode. Therefore, for 

the same distance, an SO Lamb wave passing through a region containing corrosion 

will have a faster time-of-flight than one passing through a flawless region. By 

scanning a pair of transducers along a plate structure, and recording the time-of

flight at each point in the scan, a one-dimensional map of any flaws can be obtained. 

For the actual scans however, a Pulse Phase Lock Loop (P2L2) can be used. The 

P2L2 circuitry determines the phase shift associated with the change in the time-of

flight, and uses this value to alter the frequency of the signal [460]. A plot of these 

frequency values corresponds to a plot of the velocity at each point along the scan 

195 
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since the dispersion relation can be used to convert the frequency values to velocity 

values. Lamb wave scans on aluminum plates have been shown to be sensitive 

to thinning (simulated corrosion) and holes in aluminum plates. By performing a 

second scan at 90° to the first, the location of any flaws can be determined along 

the second coordinate direction. By combining these two scans, a flaw region can 

be pinpointed in the two in-plane dimensions of the plate. 

Performing scans along several directions over the same region of interest al

lows for tomographic algorithms to be used to reconstruct a quantitative map of the 

SO mode velocities. Using the Lamb wave dispersion relations, these velocity values 

can be converted to thickness values. Therefore, a map of the region of interest 

which not only gives an accurate location for the flaw, but provides a quantitative 

measure of changes in thickness, can be obtained. Parallel Projection Tomography 

(PPT) using the Convolution-Backprojection algorithm is a straightforward exten

sion of the Lamb wave scanning. For PPT, a pair of transducers is scanned spanning 

a certain region of interest. The plate is then rotated, and another scan is performed 

along the next direction. This process is repeated until scans have been performed 

along several equally spaced orientations. For symmetric flaws. such as the circular 

thinning or small hole in a plate cases, PPT has been shown to give quite accurate 

results with 18 scans taken in 10° increments. However. for less symmetric flaws, 

many more orientations will be necessary for an accurate reconstruction. This is 

time intensive. In addition, while it is easy in a laboratory setting to rotate small 

samples for all of the necessary orientations, this becomes problematic for in-the

field applications. For exa.rnple, an aircraft being inspected cannot be rotated, and 

rotating the scanning apparatus is difficult because its center point must remain ex

actly stationary and the coupling of the transducers is a major concern. In addition, 

as more orientations are needed, a fairly large ring region must be obstruction free, 
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so that the apparatus can scan in all orientations. This makes scanning lines of riv

ets, lap joints, or doublers impossible. Finally, the desired end result of the aircraft 

inspection is to produce a map of the full aircraft composed from the individual 

scans. PPT tomography produces maps of circular regions, so either information 

\vill be missing between the individual maps, or adjacent maps will have to overlap 

significantly. This is inefficient and time consuming. 

Cross Borehole tomography ( CBT) using the Algebraic Reconstruction Tech

nique (ART) algorithm provides a solution to these problems. In CBT, the trans

ducers are independently scanned along two parallel lines. Because of the large 

changes in the distance between senders and receivers. the P2L2 can no longer be 

used since it jumps lock and the recorded values are inaccurate. Instead, the entire 

waveform for each sender/receiver pair is digitized and saved. A rudimentary expert 

system has been developed to extract the SO time-of-flight from each waveform. The 

expert system uses a pattern matching technique to locate the SO \Vave part of the 

waveform. and then records the starting point of that signal. This starting point is 

the time-of-flight, and the procedure is repeated for each sender/receiver pair. The 

ART algorithm then uses this data to·produce a map of the region under inspection. 

Because of its origins in seismological studies, CBT does not require symmetry in 

the flaws, and it only requires access from two sides. The ray density is nonuniform. 

there are fewer rays, and the rays intersect the flaw from fewer angles. All of these 

reduce the quality of the tomographic reconstruction. However, since the scanning 

apparatus does not have to rotate, inspecting lines of rivets is not a problem, and 

since access is only required from two sides along the surface, the reconstructions 

are rectangular. Therefore a composite tomographic flaw map of a full aircraft is 

much easier to construct. This method is far more practical for the development 

of an in-the-field testing apparatus for aircraft. The CBT method has been shown 
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to accurately reconstruct the location and size of the thinning and small hole cases 

in the aluminum plates. Due to the smaller number of rays and fewer ray orien

tations. the reconstructed images are coarser and do not accurately reproduce the 

exact shape of the flaw. However. the flaws are detectable and the potential for 

in-the-field inspections far outweighs the better reconstructions possible with the 

PPT method. 

Both PPT and CBT assume straight rays and no diffraction. 'While accurate 

for the thinning levels which motivated this work. these assumptions are not true 

in generaL In order to study the limitations of these assumptions, aluminum plates 

\Vith 0.75 em and 1.27 em radius through-holes have been studied. For the 0. 75 em 

radius hole, both the PPT and CBT reconstructed the hole in the correct position 

and with about the correct size. However. for the 1.27 em radius hole, PPT produced 

a reconstruction with a starburst streaking effect and scalloping around the edges 

of the hole which was smaller than the actual size. CBT reconstructed the 1.27 em 

hole in the wrong position and with inaccurate size and shape. Clearly, the straight 

ray and no diffraction assumptions are invalid for the large hole flaw. 

In order to understand why the small hole is accurately reconstructed while 

the large hole so strongly affected the reconstructions. theoretical calculations of 

the scattering of the SO waves from through-holes in aluminum plates have been 

calculated. Using the higher-order plate theory of Kane and Mindlin, the scattering 

of plane, point source, and finite source SO waves from 0.2-5 em, 0. 75 em and 1.27 

em holes in aluminum plates were simulated. FirsL polar plots of the magnitude of 

the scattered SO amplitude as a function of angle were examined. These plots did 

not show any special behavior for the large hole versus that of the small holes for 

plane, point source, or finite source incidence. Next, vertical displacement curves 

which plot the displacement of the top surface of the plate along a specified line 
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were examined. These ver_tical displacement values more accurately represent the 

experimental measurements, since the motion of the top surface of the plate provides 

the vibrations that produce the received signal. The plane wave and point source 

results did not show any distinctive behavior for the large hole. Ho·wever. the 

finite source case which most accurately describes the experiment, did show r2.pid 

oscillations in the vertical displacement of the top surface of the plate near the edge 

of the hole and a difference in phase of the vertical displacement at the center of the 

hole from that seen in the smaller hole results. Therefore, the theoretical results 

have shmvn that for a finite source SO Lamb wave scattering from a hole in a plate, 

as the hole reaches a size comparable to or larger than the beam width. distinct 

scattering effects occur. These effects are outside of the assumptions of the PPT 

and CBT and cause the effects seen in the tomographic reconstructions. 

Lamb wave scanning has been shown to be a rapid nondestructive means by 

which large sections of aircraft can be inspected. Applying tomographic algorithms 

to the Lamb wave data has allowed for quantitative maps of the plate regions studied 

to be produced. Two tomographic methods, PPT and CBT, have been shown 

to accurately detect flaws such as thinning, in plate structures. However. while 

PPT provides more accurate reconstructions, CBT is more practical for in-the-field 

testing of aircraft. Furthermore, the limitations of these two methods have been 

found experimentally and ha\'e been correlated with theoretical calculations. Future 

work will involve converting the laboratory apparati to practical in-the-field testing 

apparati, developing the expert system to be able to extract multiple parameters 

for multiple modes from the received waveforms, and using the scattering theory to 

develop new tomographic algorithms to take into account the diffraction and ray 

bending effects. 

For, the solution for the scattering of the SO Lamb wave from a circular 
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region can be used to develop a diffraction tomography algorithm (Appendix B). In 

addition, the theory of Kane and Mindlin can also be used to model the scattering 

and transmission of the SO wave at the interface between adjacent plates (Appendix 

C). In CBT. when we discretize the region between the sending and receiving ro\vs. 

the SO wave passes through adjacent cells. Therefore, this theory can be used to 

calculate the angle of the transmitted >vave at each cell boundary. and ray bending 

effects can be accounted for. 

Lamb wave tomography can provide a rapid and nondestructive way to in

spect entire aircraft in-the-field. The tomographic reconstructions produced will 

not only allow for the accurate detection of flaw location and size by simply viewing 

an image of the aircraft, but will also provide a quantitative map of any variations 

in thickness or other parameters corresponding to the flaws. since the mathematical 

complexity of the Lamb waves has been incorporated in the algorithms. Therefore. 

flaw location, size, and magnitude can rapidly be determined in-the-field. 
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Appendix B 

Diffraction Tomography 

The results of this work have shown that the straight-ray approximation is in-

valid for many cases. this appendix outlines an extension of Lamb wave tomography 

that accounts for scattering effects using the analysis of chapter 4. 

For inhomogeneous r:1edia, we can write the \Vave equation as 

( 8.1) 

Then. assuming that we can ignore the first and higher order derivatives of the 

acoustic parameters of the media, we can write this equation as 

( 8.2) 

where k0 is the average wavenumber of the medium and n is the complex refractive 

index at position r given by 

co 
n(r) = ~ 

c(r1 
(8.3) 

where Co is the propagation velocity in the medium in which the object is located. 

and c( r) is the propagation velocity at position 17 in the object. Finally, defining 
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the object function, 

(BA) 

we write 

(v2 + kJ)u(F') = -o(r)u(F). ( 8 .. 5) 

Now we consider the field. u( r). to be composed of an incident field. u0 ( F). 

and a scattered field. u 5 ( F). as 

(8.6) 

The incident field which is the fieid present without any inhomogeneities. is a solu-

tion to the equation 

(B. I) 

while the scattered field which represents that part of the field due only to the 

inhomogeneities, is what we are trying to find. Csing Equations B.6 and B. T. we 

get the following wave equation for just the scattered component: 

( 8.8) 

\Vhile this scalar Helmholtz equation can't be solved directly for u 5 (F}. a solution 

can be written in terms of the Green's function which is a solution of the differential 

equation 

The Green's function is written in three dimensions as 

eikoR 
g(F'j?) = --

4rrR 

(8.9) 

(8.10) 
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and in two dimensions as 

(8.11) 

where H~ 1 l(koR) is the Oth order Hankel function of the first kind. and R = jr- FT 

Since the Green's function. g(rjF'), is only a function ofF- F', we will write it as 

g(r- F'). In Equation 8.9. the object function represents a point inhomogeneity. 

and so the Green's function can be considered to represent the field from a single 

point sc<:~.tterer. It is possible to represent the forcing function of the inhomogeneous 

wave equation (Equation 8.8) as a summation of impulses weighted by o( r)u( rl and 

shifted by r. 

o(r)u(F) = j o(F')u(F')o(r- F')di'. (8.12) 

Since the left hand side of the inhomogeneous wave equation (Equation B.S) 

is linear. the scattered field from the whole object can be written as the sum of 

the scattered fields due to each point scatterer. Recalling that the Green ·s function 

represents the scattered field from a point scatterer, the total field due to the impulse 

o(F')u(F')o(i- F') is written as a summation of scaled and shifted versions of the 

impulse response. g( r), and we have 

us(r) = j g(r- F')o(F')u(F')dF'. 

Now we have an integral equation for u5 (r). but it is in terms of u = u0 + U 5 • 

There are two approximations which allow the integral equation (Equation 8.1:3) 

to be solved for the scattered field. If the scattered field. u 5 (r), is small compared 

to the incident field, u 0(i), we can use the first Born approximation to write the ith 

order Born scattered field as (377] 

(8.14) 
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If instead the change in the scattered phase over the wavelength is small. then we 

can use the Rytov approximation to write the scattered field as [:311] 

ua(r) = u0 (F} In[~+ lJ. 
uo 

:\Tote that for the Born approximation, u 8 (F} represents the complex amplitude of 

the field. while for the Rytov approximation, it represents the incident field times 

the complex scattered phase. 

Now we will derive the Fourier Diffraction Theorem which relates the Fourier 

transform of the measured forward scattered data to the Fourier transform of the 

object. Note that this theorem is only valid when the inhomogeneities in the object 

are weakly scattering. 

The integral equation for the scattered field. 

ua(F) = j g(r- F')o(F')u(F')di'. (8.16) 

can be considered as a convolution of the Green ·s function and the product of the 

object function and incident field. Let the incident field be a single plane \vave in 

two dimensions propagating along the y-axis. 

( 8.11) 

The two-dimensional Green's function given by Equation 8.1 L can be decomposed 

into plane waves as 

where 

g(r- F') = j_ leo ..!._ej[a(x-x')+Jiy-y'IJda 
4ii -co /3 

r= (x,y) _, ( ' ') r = x ,y 

(8.18) 

(8.19) 
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Since the scattered fields will be measured along a line. y = !0 • where !0 is greater 

than any y-coordinate in the object. the jy - y'j term can be replaced by !0 - y'. 

C sing this fact and our expressions for the incident field and Green ·s function. we 

can rewrite Equation 8.16 as 

ua(.z:. Y = lo) = _j_ J o(f')ejkoy' 1= ..!:_e;[o(x-x')+J(Io-y')]dodr' 
4;r -·X. 3 

( 8.:20) 

or 

( 8.21) 

Then since 

J o(r')e-;[ox'+(,3-ko)Y')ldF' = O(n .. J- ko) ( 8.22) 

where 0( n. ,J- k0 ) is the two-dimensional Fourier transform of the object function 

evaluated at a frequency of (n,,J- k0 ), we have 

ua(x,y = lo) = ]__ -;-eJ(ox+;3lo)Q(a.;3- ko)dn. '1 00 

1 
4;r -= ;3 

(8.2:3) 

Next. we define the Fourier transform of the one-dimensional scattered field. 

ua(:c.lo), as 

Ua(w, La) = 1: ua(x.l0 )e-j""xdx, (8.:24) 

and substituting Equation 8.23 into this expression we have 

( 8.2.5) 

Then since 

( 8.26) 
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we have 

f
ox, j 1 . 

U a(v..:.l0 ) = --= P e;iltao( a:. 3 - ko )2iib(,,; - a: )do:. 
--x. 4" p 

(8.21) 

or 

(8.28) 

This equation which is valid for ja:j < ko. relates the two-dimensional Fourier trans-

form of the object to the one-dimensional Fourier transform of the field at the 

receiver line. 

lising the scattering theory from Chapter 4. the scattered SO field from a 

point scatterer can be calculated. Then using this as the Green's function and our 

incident SO wave from Chapter 4, we can calculate an expression for the scattered 

SO Lamb wave field at the receiver line location. Taking the Fourier transform of 

this field and using Equation 8.28, the two-dimensional Fourier transform of the 

object function can be determined. Finally. by taking the inverse two-dimensional 

Fourier transform of this expression, the object function can be determined. Thus. 

the scattering theory of Chapter 4 can be used to develop a tomographic algorithm 

that takes diffraction effects into account. 
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Appendix C 

SO Scattering Between Adjacent 

Plates 

In this appendix, the scattering of the lowest order symmetric Lamb wave 

mode from a boundary hetween two adjacent plates with different material param-

eters is considered. We again use the theory of Kane and :\[indlin. 

Consider a plate lying in the xy-plane bounded by air at the planes :; = +h 

and :; = -h. Because the thickness is small the components of displacement for 

dilatational plate waves can be approximated by [i] 

-
Ux = Vx(x, y, t) Uy = Vy(x,y,t) u= = ~u=(x. y, t) 

where vx, vy, V:: .:!.re not functions of z. They can then be expressed in terms of 

three independent scalar potentials, ¢ 1(x,y), <P2(x,y), H(x,y) as 

(
Bc/Jt 8¢2 8H) . 

Vy = By + oy - ax exp -lv.:t 

240 
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These potentials are chosen to satisfy the equations of motion 

where v 2 is the 2-D Laplacian and 6; are the effective wavenumbers given by 

? :Jk2 [ (..o;2 ; ] J-:- = - (a+ 3)-- 1- (-1)"0 
• ·JPh ' .2 -,:J '-'.;0 

(i = 1.2) 

In the above equations, 

. _ h(-\ + 2G) ( 2 _ w
2

) 
a-, - k-\ 6; c2 ' 

L 
(i = 1,2) 

[( ? )2 2( ?)]t w- w w-
(a +,3)- -1 +4aB- 1--

W 2 w2 .2 
o o '-'-o 

4 ;3=-
4 

2 -\ + 2G 
CL = 2 G cr=

P 
2 4G(-\ +G) 

c - --'----
p p- p(A + 2G) 

where p is the mass density of the plate material, -\ and G are the Lame parameters, 

and C£, cr and cp are the compressional, shear. and plate wave speeds in isotropic 

media. Also w0 is the frequency corresponding to the first mode of pure thickness 

vibration of an infinite plate, and the parameter k 2 = ~~ is inserted to improve the 

results (7]. 

Now consider the general case of two plates in welded contact in the xy-

plane, with material parameters-\, G, p. h for the first plate. and Ar, G1 , p11 h1 for 
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the second plate. \Ve choose the potentials in order to represent an incident slow 

dilatational wave at angle t:1 to the boundary, which is in the yz-plane, and we write 

with fl. = y sin t: 1 - x cos c1 • The reflected and transmitted waves are assumed to be 

of the form 

.ref R ·r o 1 = 1 exp zu 1J.L 1 , 
.ref R . r 

<P2 = 2 expzu 1J.L 2 , 

with fl.;= ysinci +xcost:i fori= 1,2,3 

. trans T · r , 
<D 1 = 1 exp zu 1J.L 1 , 

. trans T · r ' o2 = 2 exp za 1J.L2 , H trans T · r ' = 3 exp ZUtf1. 3 • 

with J.Lj = y sin t:j - x cos t:j for j = l, 2, :3. The quantities Rr, R2 , R3 • T1, T2 , T3 are 

the unknown amplitudes of the reflected and transmitted waves respectively. The 

angles of incident, reflection and transmission t: 1 , ••• , t:6 are related by a Snell's law. 

In order to solve for the unknown amplitudes. we consider continuity of plate 

displacements and plate stresses at the boundary, x = 0. The plate displacements 

are as defined above and the plate stresses are given by 

. ·) [ ·) avx avy k>.. l 
Nx = _h (>..+_G) ax + >.. ay +Tv= 

Rx = 2h
2
G (av=) 

3 ax 
,u = ?hG (avy avx) •Yxy - ax + ay 

where Nx and Nxy are the usual forces per unit length which appear in the el

ementary theory of plates acted upon by forces in the middle plane, and Rx is 

a component of "pinching'' shear [7}. The continuity of displacement gives three 

equations 
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and the continuity of plate stresses gives three more equations 

,ymc , .yref = 1ytrans 
·.r '·.r ·.r 

Substituting the above expressions into these six equations and rewriting in matrix 

form we have 

r"2·) • •) 
o 1- Sill -€1 

65 cos t:s 

-6s sin €5 

h1 G1 r-2 sin ·)€ 
hG 0 5 - 5 

0 

0 

-66 sin €6 

-66cos t:6 

0 

h1 r2c . ) -To6 1 sm :.c6 

0 

!!1§..~ cos·).:: hG 6 -'-6 

-61 sin c1 

-2G6i sin c12 + pw2 

h2 G1 r ra( (7404 cos c4) 

hflg1 6~ sin 2c4 

The six unknown amplitudes for the reflected and transmitted waves can be 

determined by solving the above system of equations. This provides an analytic 
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solution for the reflection and transmission of the lowest order symmetric Lamb 

wave mode from a boundary between two plates. which allows the behavior of the 

scattering to be explored as a function of frequency. thickness. material parameters. 

and incident angle. 

In order to incorporate ray bending effects into CBT, it is necessary to cal

culate the refracted angle across each cell boundary defined in the reconstruction 

algorithm. The results of this appendix provide that necessary formu~a. 
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