
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2012

Detecting Abnormal Behavior in Web Applications Detecting Abnormal Behavior in Web Applications

Zi Chu
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Chu, Zi, "Detecting Abnormal Behavior in Web Applications" (2012). Dissertations, Theses, and Masters
Projects. Paper 1539623355.
https://dx.doi.org/doi:10.21220/s2-rycp-n008

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-rycp-n008
mailto:scholarworks@wm.edu

Detecting Abnormal Behavior in Web Applications

ZiChu

Changzhou, Jiangsu, P.R. China

Master of Engineering, Southeast University, 2006

Bachelor of Engineering, Southeast University, 2003

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
May 2012

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

~Chu
Approved by the Committee, Apri12012

Committee Chair
Associate Professor Haining Wang, Computer Science

The College of William & Mary

Associate Professor 6tJr1LitC()fl;J)Science
The College of William & Mary

Associate Professor Weizhen Mao, Computer Science

~~
Assistant Professor Gang Zhou, Computer Science

The College of William & Mary

~~ or.Odra Widjaja
Bell Laboratories, Alcatel-lucent

COMPLIANCE PAGE

Research approved by

Protection of Human Sybjects Committee

Protocol number(s): PHSC-2010-05-19-6734-hxwanJ

Date(s) of approval: May 31, 2010

ABSTRACT PAGE

The rapid advance of web technologies has made the Web an essential part of our daily lives.
However, network attacks have exploited vulnerabilities of web applications, and caused
substantial damages to Internet users. Detecting network attacks is the first and important step
in network security. A major branch in this area is anomaly detection. This dissertation
concentrates on detecting abnormal behaviors in web applications by employing the following
methodology. For a web application, we conduct a set of measurements to reveal the
existence of abnormal behaviors in it. We observe the differences between normal and
abnormal behaviors. By applying a variety of methods in information extraction, such as
heuristics algorithms, machine learning, and information theory, we extract features useful for
building a classification system to detect abnormal behaviors.

In particular, we have studied four detection problems in web security. The first is detecting
unauthorized hotlinking behavior that plagues hosting servers on the Internet. We analyze a
group of common hotlinking attacks and web resources targeted by them. Then we present an
anti·hotlinking framework for protecting materials on hosting servers. The second problem is
detecting aggressive behavior of automation on Twitter. Our work determines whether a
Twitter user is human, bot or cyborg based on the degree of automation. We observe the
differences among the three categories in terms of tweeting behavior, tweet content, and
account properties. We propose a classification system that uses the combination of features
extracted from an unknown user to determine the likelihood of being a human, bot or cyborg.
Furthermore, we shift the detection perspective from automation to spam, and introduce the
third problem, namely detecting social spam campaigns on Twitter. Evolved from individual
spammers, spam campaigns manipulate and coordinate multiple accounts to spread spam on
Twitter, and display some collective characteristics. We design an automatic classification
system based on machine learning, and apply multiple features to classifying spam
campaigns. Complementary to conventional spam detection methods, our work brings
efficiency and robustness. Finally, we extend our detection research into the blogosphere to
capture blog bots. In this problem, detecting the human presence is an effective defense
against the automatic posting ability of blog bots. We introduce behavioral biometrics, mainly
mouse and keyboard dynamics, to distinguish between human and bot. By passively
monitoring user browsing activities, this detection method does not require any direct user
participation, and improves the user experience.

Dedicated to my family for their love.

Contents

Acknowledgments

List of Tables

List of Figures

1 Introduction

2 Hotlinking Investigation and Countermeasures

2.1 Problem Statement

2.1.1 Exsiting hotlinking techniques

2.1.2 Defense Against Hotlinking .

2.2 Measurement

2.2.1 Measurement of Hotlinked Images .

2.2.1.1 Chosen Websites

2.2.1.2 Data Collection

2.2.1.3 Data Analysis .

iv

ix

xii

2

6

.. . . 9

10

14

14

15

15

16

17

2.2.2 Measurement of Hotlinked Software Packages

2.2.3 Postmortem Analysis of A Hotlinking Attack

2.3 Framework Design

2.3.1 Design Details and Modules

2.3.1.1 HTIP Request Filtering Module

2.3.1.2 Session Creation/Authentication Module ..

2.3.1.3 Download Authorization Module

2.3.2 Strict Policy .

2.3.3 Loose Policy

2.4 Implementation . . .

2.4.1 Web Server Setup .

2.4.2 Technical Details

2.5 Evaluation

2.5.1 Security Analysis .

24

26

31

31

32

34

35

36

37

39

39

39

40

40

2.5.1.1 Effectiveness against Direct Hotlinking . . . 41

2.5.1.2 Effectiveness against Hotlinking via Referer Fabrication . . 41

2.5.1.3 Effectiveness against Hotlinking via Cookie Vulnerabilities 41

2.5.1.4 Effectiveness against Hotlinking via Session Vulnerabilities 42

2.5.2 Usability Analysis 42

2.6 Related Work 44

2. 7 Conclusion . 45

3 Detection of Dots on Twitter 47

v

3.1 Related Work 50

3.2 Measurement 53

3.2.1 Data Collection . 53

3.2.2 Ground Truth Creation 54

3.2.3 Data Analysis . 57

3.3 Classification 67

3.3.1 Entropy Component 68

3.3.1.1 Entropy Measures 68

3.3.2 Spam Detection Component 70

3.3.3 Account Properties Component 71

3.3.4 Decision Maker . 73

3.4 Evaluation . 74

3.4.1 Methodology 75

3.4.2 Classification System Training . 75

3.4.3 Classification System Accuracy 76

3.4.4 Twitter Composition 78

3.4.5 Resistance to Evasion 79

3.5 Conclusion 80

4 Detection of Social Spam Campaigns on 1\vitter 82

4.1 Related Work 84

4.1.1 Background of Twitter 84

4.1.2 Social Spam Detection 86

vi

4.1.3 Scope of This Chapter

4.2 Characterization

4.2.1 Data Collection

4.2.2 Clustering .

4.2.3 Ground Truth Creation

4.2.4 Campaign Analysis .

4.3 Design.

4.3.1 Classification Features

4.3.1.1 Tweet-level Features .

4.3.1.2 Account-level Features

4.3.1.3 Campaign-level Features

4.3.2 Content Semantic Similarity

4.3.3 Machine Learning Classifier

4.4 Evaluation

4.4.1 Training.

4.4.2 Cross Validation

4.4.3 System Overhead .

4.5 Conclusion ..

5 Detection of Blog Bots via Behavioral Biometrics

5.1 Background and Related Work

5.1.1 Existing Web Bot Detection

5.1.2 Behavioral Biometrics

vii

.

.

..

.

.. . .

..

89

90

90

91

92

93

98

99

99

100

102

103

105

106

106

107

110

110

112

115

116

117

6

5.2 Behavior Characterization .

5.2.1 Blog Bots

5.2.2 UI Data Collection .

5.2.3 UI Data Measurements . .

5.3 System Design

5.3.1 Webpage-embedded Logger ..

5.3.2 Server-side Detector ...

5.3.2.1 Log Processor .

5.3.2.2 Classifier

5.3.2.3 Decision Maker

5.4 Evaluation

5.4.1 Experimental Setup .

5.4.2 System Performance

5.4.3 System Overhead . .

5.5 Discussion . .

5.6 Conclusion

Conclusions and Future Work

6.1 Conclusions .

6.2 Future Work .

Bibliography

Vita

viii

......

119

119

122

125

127

128

130

130

133

135

135

135

136

139

140

141

143

143

144

146

156

ACKNOWLEDGMENTS

This dissertation would not have been accomplished without the support of many people. First

and foremost I would like to extend my deepest appreciation to my advisor, Dr. Haining Wang, for

his constant guidance with my research and encouragement for my life. It has been a great honor to

be his Ph.D. student and friend.

I would like to thank Dr. Qun Li, Dr. Weizhen Mao, Dr. lndra Widjaja and Dr. Gang Zhou for

serving on my thesis committee and for their valuable comments and feedback. I would also like

to thank the staff of the Computer Science Department and International Student Office for all of

their assistance for an international student who came to the States to pursue his studies alone. In

particular, I would like to thank Vanessa Godwin, Jacqulyn Johnson and Stephen Sechrist.

My sincere appreciation also goes to fellow graduate students and various friends that have

warmly assisted with me in the past five years, Chuan Yue, Steven Gianvecchio, Mengjun Xie, Qi

Zhang, Bo Sheng, Ningfang Mi, Yunlian Jiang, Zhenyu Wu, Aaron Koehl, Zhen Ren, Yu He, Jeff

Wera, Bo Dong, Feng Yan and others. I feel grateful to have worked with and been inspired by such

brilliant people.

Finally, and the most important, I would like to express my deepest gratitude to my parents,

Xiaodong Chu and Jijun Yin, to my wife, Yijie Yang, to my aunt and uncle, Heting Chu and Jianmin

Shen, and to my global family in Williamsburg, Eugenic and Drayton Hamm, for their love and

support in my Ph.D. journey.

ix

List of Tables

2.1 Category Breakdown by Top-Level Domain

2.2 Image Hotlinking Distribution per Site Homepage .

2.3 Unique Victim Site Distribution by TLD (16 categories).

2.4 TLD Distribution of Unique Sites that Hotlinking Software Packages .

2.5 File Storage Log

2.6 Download Authorization Log .

3.1 Top 10 Tweeting Devices

3.2 Confusion Matrix

3.3 Feature Weights

4.1 A Clustering Example of Semantic Similarity

4.2 Algorithm Performance Comparison

4.3 Feature Performance Comparison

5.1 User Input Actions

5.2 Classification Features of User Actions

5.3 True Positive and Negative Rates vs No. of Actions per Group .

X

.......

.

16

18

22

26

32

35

64

77

79

104

107

110

119

132

136

5.4 True Positive and Negative Rates vs Number of Groups 138

xi

List of Figures

2.1 Basic Forms of Linking Web Objects . .

2.2 Fabricating HTIP ..REFERER via PHP .

2.3 HTML snippet exploiting cookie vulnerability .

2.4 HTML snippet of exploiting session vulnerability

2.5 CDF of the number of hotlinked images per homepage

2.6 Count of Hotlinked Image without Authorization for top 40 Blog Sites

2. 7 CDF of the number of hotlinked software packages per site . .

2.8 Daily traffic in terms of image requests

2.9 Daily Data Transmission (in MB) Caused by Hotlinking

2.10 Daily traffic in terms of client IP addresses

2.11 The hourly traffic distribution of four selected days

2.12 Anti-Hotlinking Framework Overview

2.13 Session Creation and Authentication

2.14 User Download Procedure

2.15 Modified snippet exploring session vulnerability .

3.1 Numbers of Followers and Friends .

xii

9

10

12

13

22

23

25

28

29

30

30

32

35

36

42

55

3.2 CDF of Account Reputation 57

3.3 Inter-arrival Timing Distribution of Accounts 59

3.4 CDF of Tweet Count 61

3.5 CDF of Account's Relative Entropy 62

3.6 Tweeting Device Makeup . . 63

3.7 External URL ratio in tweets 64

3.8 Tweets Posted on Daily/Hourly Base . 65

3.9 Account Registration Date (Grouped by Quarter) 66

3.10 Classification System 68

4.1 URL Statistics of Campaigns . . 91

4.2 CDF of Campaign Active Time . 94

4.3 Inter-arrival Timing Distribution of Campaigns 95

4.4 CDF of Entropy of Campaign Posting Inter-arrivals 96

4.5 CDF of Account Diversity Ratio of Campaigns 98

5.1 Displacement for Point-and-Click 120

5.2 Speed for Point-and-Click 121

5.3 Movement Efficiency for Point-and-Click 125

5.4 Inter-arrival Time Distribution for Keystroke . 127

5.5 Detection System Architecture 129

xiii

Detecting Abnormal Behavior in Web Applications

Chapter 1

The rapid advance of web technologies has made the Web an essential part of our daily lives. Peo

ple perform a variety of important activities on the web, such as searching, communicating, online

shopping, and entertaining. However, network attacks have exploited vulnerabilities of web appli

cations, and caused substantial damages to Internet users. For example, the Internet Security Threat

Report by Symantec [133] shows that attacks have increasingly become Web-based. The shift in

the motivation of attackers from "attacking for fun" to "attacking for profit" has made attacking

techniques more sophisticated. Detecting network attacks is the first and important step in network

security. A major branch in this area is anomaly detection.

Anomaly detection refers to detecting patterns that do not conform to the established normal be

haviors [74]. Anomaly detection is effective in detecting unknown attacks, which the conventional

detection methods often fail to capture. In particular, a typical method of anomaly detection defines

a profile representing normal behaviors, and declares any significant deviation from the normal pro

fi)e as an anomaly. There are some chaUenges for anomaly detection. First, it is difficult to define a

normal profile that can accurately separate normal behaviors from anomalous ones, as the boundary

between normal and anomalous behavior is often indistinct. Second, attackers often adapt to make

their malicious behaviors close to normal ones.

The focus of this dissertation is on detecting abnormal behaviors in web applications. The basic

methodology we used is briefly described as follows. For a web application, we conduct a set of

2

CHAPTER 1. INTRODUCTION 3

measurements to reveal the existence of abnormal behaviors in it. We observe the differences be

tween normal and abnormal behaviors. By applying a variety of methods in information extraction,

such as heuristics algorithms, machine learning, and information theory, we extract features useful

for building a classification system to detect abnormal behaviors.

The major research contributions of this dissertation are summarized below.

(1) Investigation of hotlinldng and its countermeasures

Hotlinking is a web behavior that links web resources on a hosting site into a webpage belonging

to another site. However, unauthorized hotlinking is unethical, because it not only violates the

interests of hosting sites by consuming bandwidth and detracting site visiting traffic, but also violates

the copyrights of protected materials. To fully understand the nature of hotlinking, we conduct a

large-scale measurement study and observe that hotlinking widely exists over the Internet and is

severe in certain categories of websites. Moreover, we perform a detailed postmortem analysis

on a real hotlink-victim site. After analyzing a group of commonly used hotlinldng attacks and

the weakness of current defense methods, we present an anti-hotlinking framework for protecting

materials on hosting servers based on existing network security techniques. The framework can

be easily deployed at the server side with moderate modifications, and is highly customizable with

different granularities of protection. We implement a prototype of the framework and evaluate its

effectiveness against hotlinking attacks.

(2) Detection of bots on '1\vitter

Twitter is a new web application playing dual roles of online social networking and micro

blogging. Users communicate with each other by publishing text-based posts. The popularity and

open structure of Twitter have attracted a large number of automated programs, known as bots,

which appear to be a double-edged sword to Twitter. Legitimate bots generate a large amount of

CHAPTER 1. INTRODUCTION 4

benign tweets delivering news and updating feeds, while malicious bots spread spam or malicious

contents. More interestingly, in the middle between human and bot, there has emerged cyborg

referred to either bot-assisted human or human-assisted bot. To assist human users in identifying

who they are interacting with, this chapter focuses on the classification of human, bot and cyborg

accounts on Twitter. We first conduct a set of large-scale measurements with a collection of over

500,000 accounts. We observe the difference among human, bot and cyborg in terms of tweeting

behavior, tweet content, and account properties. Based on the measurement results, we propose a

classification system that includes the following four parts: (1) an entropy-based component, (2) a

machine-learning-based component, (3) an account properties component, and (4) a decision maker.

It uses the combination of features extracted from an unknown user to determine the likelihood

of being a human, bot or cyborg. Our experimental evaluation demonstrates the efficacy of the

proposed classification system.

(3) Detection of social spam campaigns on Twitter

The popularity of Twitter greatly depends on the quality and integrity of the contents contributed

by users. Unfortunately, Twitter has attracted spammers to post spam content which pollutes the

community. Social spamming is more successful than traditional methods such as email spamming

by using social relationship between users. Detecting spam is the first and very critical step in the

battle of fighting spam. Conventional detection methods check individual messages or accounts

for the existence of spam. Our work takes the collective perspective, and focuses on detecting

spam campaigns that manipulate multiple accounts to spread spam on Twitter. As a complement to

conventional detection methods, our work brings efficiency and robustness. More specifically, we

design an automatic classification system based on machine learning, and apply multiple features to

classifying spam campaigns. The experimental evaluation demonstrates the efficacy of the proposed

CHAPTER 1. INTRODUCI'ION 5

classification system.

(4) Detection ofblog hots through behavioral biometrics

Blog hots are automated scripts or programs that post comments to blog sites, often including

spam or other malicious links. An effective defense against the automatic form filling and posting

from blog hots is to detect and validate the human presence. Conventional detection methods usu

ally require direct participation of human users, such as recognizing a CAPI'CHA image, which

can be burdensome for users. Our work presents a new detection approach by using behavioral bio

metrics, primarily mouse and keystroke dynamics, to distinguish between human and bot. Based on

passive monitoring, the proposed approach does not require any direct user participation. We collect

real user input data from a very active online community and blog site, and use this data to char

acterize behavioral differences between human and bot. The most useful features for classification

provide the basis for a detection system consisting of two main components: a webpage-embedded

logger and a server-side classifier. The webpage-embedded logger records mouse movement and

keystroke data while a user is filling out a form, and provides this data in batches to a server-side de

tector, which classifies the poster as human or bot. Our experimental results demonstrate an overall

detection accuracy greater than 99%, with negligible overhead.

The remainder of this dissertation is organized as follows. Chapter 2 details our investigation

of hotlinking and presents an anti-hotlinking framework for protecting materials on hosting servers.

Chapter 3 covers the measurement and classification of hots on 1\vitter. Chapter 4 describes the

detection of social spam campaigns on 1\vitter. Chapter 5 presents the blog bot detection system

based on behavioral biometrics. Finally, Chapter 6 concludes the dissertation and outlines directions

for the future work.

Chapter 2

With the rapid advance of Web technologies, websites not only display text-based information,

but also host various types of materials including images, media clips, software installation files,

and so on. Those hosted materials of great interest and high value help websites attract users and

increase site traffic. To date, more and more websites link web elements provided by third parties.

Hotlinking, as a web phenomenon, can be defined as including a linked object (often in the form

of an image or document) from one site that actually hosts it into a web page belonging to another

site. A hotlinking site has no need to host linked objects itself. In the context of social engineering,

hotlinking is a double edged sword. The ethical boundary between benign and malicious hotlinking

is whether the linking behavior is authorized by the hosting site or not.

Authorized hotlinking is beneficial to site interaction. For example, a site may include some

ad images provided by an advertisement syndicator to make advertising revenue. It does not need

to host any ad images by itself, but link them from the syndicator's server. More specifically, the

webpage contains a JavaScript snippet provided by the syndicator; during the execution, JavaScript

embeds ad links from the syndicator. In this way, the syndicator can dynamically change ad contents

and obtain the first-hand trace of ad display. Since the above interaction is approved by both parties,

it is a benign hotlinking behavior.

By contrast, unauthorized hotlinking is often harmful to hosting sites. There are some common

reasons for unauthorized hotlinking listed as follows. First, some web developers are unprofes-

6

CHAPI'ER 2. HarLJNKING INVESTIGATION AND COUNTERMEASURES 7

sional. Their laziness makes them to directly link web objects hosted somewhere else. Second, the

hotlinking site may not have enough online storage space to host all the materials it wants to dis

play or accommodate bandwidth demands by frequent visits. Third, the hotlinking site attempts to

display some "grey materials" such as pirated media. Hotlinking instead of hosting such materials

may dodge legal prosecution.

Considering the simplified website operation model from the economical perspective, the site

hosting cost is attributed to paying the hosting service provider for storage space and bandwidth

quota, while the gain includes website brand effect and online advertisement revenue. As far as the

gain outweighs the cost, this economically sustainable model drives the prosperity of the Internet

community. However, the rampant unauthorized hotlinking has recently disturbed the harmonious

development of websites, because this unethical behavior violates the interests of hosting sites in

terms of the following aspects.

• Bandwidth theft. Most websites hosted on third-party hosting servers have to pay for a lim

ited amount of traffic delivery. If the bandwidth consumption exceeds the prepaid quota, the

website may be charged more or, in the worst-case scenario, shut down temporarily. It is

evident that stealing bandwidth increases the site hosting cost. From this perspective, unau

thorized hotlinking is also known as leeching or bandwidth theft [141].

• Visitor traffic loss. Many websites hosting free materials rely on online advertising revenue.

They display ads assigned by syndicators (like Google AdSense [30] and Yahoo! Advertising

(62]) on web pages, and are paid for ad impressions or clicks. If the hosted materials are

hotlinked, visitors are directly brought to hotlinking pages. Since legal hosting pages are

bypassed, no advertising revenue is generated. Visitor traffic loss could also reduce the site

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 8

brand effect. Users view or download popular hotlinked materials through hotlinking sites

without knowing the existence of the hosting site.

• Copyright infringement. Many web objects (such as photographs and software programs)

are copyrighted or licensed. Owners have exclusive rights to display their works publicly

[130]. Hotlinking, even in the form of inline linking or framing, such objects in the commer

cial environment may infringe copyright, and is not justified by fair use [23].

The chapter focuses on the malicious (i.e., unauthorized) hotlinking. In the context of a hotlink

ing attack, we call the site that actually hosts the object the hosting site or victim site, and the site

that hotlinks the object the hot/inking site throughout the chapter. To fully understand the nature

of hotlinking, we conduct a large-scale measurement study over the Internet, targeting two popu

lar types of web materials, images and software packages. In the image-centric measurement, we

choose 1,453 popular websites and check for images hotlinked in their homepages. We find out that

about 75.0% of sites hotlink images. To decide whether such hotlinking behaviors are authorized

or not, we further analyze the nature of images and their hosting sites. A great amount of images

are hosted on special-purposed sites (such as ad syndicators and traffic monitoring sites) and thus

should be considered as hotlinked with authorization. However, we also observe that unauthorized

hotlinking widely exists in certain categories of websites like blogging. In the software-centric

measurements, we select 100 popular software packages as the targets. We search the Internet for

websites linking those software binaries, and find out that most hosting sites are hotlinking vic

tims. Since the download link appears in the hotlinking page, the visitor can directly download the

software package without visiting the hosting site.

It is a cat-and-mouse game between hotlinking attack and anti-hotlinking defense. The chapter

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES

Ll: Oo to Page b
L2:
L3: <object>

<param namc="movic" valuc="V.cornlmedia/d.swf'>
<embed src="V.comlmcdia/d.swf' typc="application/x-shockwavc-ftash"><lcmbcd>

</object>
I.A: Download PDF<Ia>

Figure 2.1: Basic Forms of Linking Web Objects

9

analyzes a series of commonly used hotlinking attacks and corresponding defense methods. Inte-

grating with the existing anti-hotlinking techniques, we present an anti-hotlinking framework for

protecting hosting sites. We also implement a prototype of the proposed framework to demon-

strate its feasibility, and evaluate its effectiveness against hotlinking attacks in terms of security and

usability. The framework can be easily deployed at the server side with moderate modifications.

Moreover, it is highly customizable with different granularities of protection, with which a web-

master can define the different requirements that visitors must complete to qualify for downloading

resources.

The remainder of this chapter is organized as follows. We present the threat model along with

some common hotlinking attacks in Section 2.1. We describe the large-scale measurement-based

study of hotlinking over the Internet in Section 2.2. We detail our anti-hotlinking framework design

in Section 2.3. The framework implementation and evaluation are given in Sections 2.4 and 2.5,

respectively. Section 2.6 surveys some related work. The chapter concludes in Section 2. 7.

2.1 Problem Statement

Hotlinking generally involves two parties: hotlinking sites and victim sites (namely original sites

or hosting sites). The HTML snippet shown in Figure 2.1 gives an example of hotlinking with four

types of regular web objects. Suppose the example page URL of the hotlinking site is www.H.com/h.hbn.

http://www.V.comAmages/c.jpg%22/
http://www.V.com/files/e.pdf'/
http://www.H.com/h.htm

CHAPI'BR 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES

$server= 'www.H.com';
$host= 'www.V.com';
$target = '/fileslinstall.rpm';
$refcrer = 'www.V.com/'; II Fake Srefcrer injected here
Sfp = fsoclropen(Sserver, Sport, $crmo, $crrstr, 30);
fwrite($fp, $out);

Figure 2.2: Fabricating HITP ..REFERER via PHP

10

All of the linked objects are hosted by the victim site, V.com. Linking another web page (shown as

Ll) is not considered as the hotlinking behavior since visitors will be directly brought to that page.

L2 to lA show how to hotlink an image, flash clip and file, respectively.

We assume that the hotlinker owns an independent domain name (such as H.com), and fully

operates a web server that hosts his site. We further assume that the hotlinking attack is constrained

by the same-origin policy enforced by browsers, since the same-origin policy has been widely used

in modem browsers. The policy isolates web contents from different schemes, hosts or ports [99].

For example, the scripts from http://H.com cannot access or modify the content of http:/N.com on

the same page.

The objectives of a hotlinker include: (1) hotlinking web objects hosted on other servers into

web pages of his own, and (2) ensuring hotlinked objects to be normally displayed or accessed

on the client-side. The first goal is easy to achieve by using similar codes shown in Figure 2.1.

The second goal is more challenging to reach, since the hotlinker has to detect and bypass the anti-

hotlinking mechanisms enforced by hosting sites. In the following, we list some common hotlinking

techniques, and analyze how they evade the corresponding defense countermeasures.

1.1.1 Exsiting hotlinldng techniques

Directly hotlinking web objects into hotlinkers' web pages (known as Direct Hotlinking) is the

basic form of hotlinking attacks. It can simply use HTML codes displayed in Figure 2.1. As a

http://www.V.com/

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 11

counterattack against Direct Hotlinking, many hosting sites currently use a straightforward Referer

based technique. It judges the Referer field in the incoming HTTP request header. If the Referer

does not belong to its own domain, the hosting site determines that the requested material is linked

from another domain (namely hotlinked) and thus refuses to respond. According to the HTTP

protocol specification [35], the Referer field allows the client to identify the URI of the resource

from which the Request-URI was obtained. Therefore, checking the Referer field is an effective

way to prevent hotlinking as long as the integrity of Referer can be guaranteed.

Hotlinking sites can fabricate the Referer field to bypass the widely used Referer-based de

fense. Figure 2.2 shows an example of using PHP code to fake H1TP ..REFERER for outgoing

H1TP request headers 1• An arbitrary fake Referer could be injected at the statement $referer =

'www.Any.com/'. When a user clicks on the hotlinked download link, the browser generates an

H1TP request for that file (www.V.com/fileslinstall.rpm), and H1TP ..REFERER is changed into

'V.com/', instead of the real one (H.comlh.htm). Because the victim server always allows web pages

in its own domain to link hosted materials, this type of attacks evades the Referer-based defense. T.

Chen et. al [76] and N. Chou et. al [77] confirm in their research of web-based identification theft

again that, the Referer field is easy to fabricate.

Many websites have realized the vulnerability of HTTP Referer, and have improved anti-hotlinking

methods with the help of cookie and session mechanisms. Cookie is a piece of data that a server

stores on the browser to maintain the HTTP communication state between the client and server

sides, since the H1TP protocol itself is stateless [35]. If the server receives the cookie issued by

itself, it can tell that the user has already visited the site before and thus grants the file download.

Different from cookie, the session mechanism stores information on the server side except a

1 tampering with lfiTP request header can also be achieved using other scripts or tools

http://www.Any.com/'
http://www.V.com/files/install.rpm

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 12

<iframe src="V.cornlv.htm" style="display:none">
Download RMP Package<la>

Figure 2.3: liTML snippet exploiting cookie vulnerability

session ID on the client side [34]. To implement the session tracking, there are two methods to store

session id on the browser: (1) using cookie to record session ID, or (2) URL Rewriting. Since the

former method works similarly with the cookie mechanism, we use the latter one as an example to

describe how the session mechanism work. When the browser visits www.V.com/v.htm, the server

creates a session with a unique ID. Suppose that the server implements URL Rewriting via PHP

[1 0]. The session ID will be automatically appended to the links towards the same domain as a

URL parameter (such as www.V.com/v.htm?PHPSESSID=5k32d0). When the server receives the

request, it authenticates the session ID and returns the file if the id is valid.

However, the defense framework purely based on cookie or session mechanism can still be

evaded by more sophisticated hotlinking attacks, which are described as follows. In the hotlinking

attack against Cookie Protection as shown in Figure 2.3, the hotlinker can include a hidden iFrame

on the hotlinking page to bypass the cookie check. When the browser parses the HTML document of

h.htm, the iFrame will load the page v.htm from V.com. V.com then stores a cookie in the browser.

When a user clicks the download link, an HTIP request (GET /files/install.rpm HTI'P/1.1) is sent to

V.com, and the cookie issued by V.com is also included in the request header. After V.com receives

its cookie, it returns an HTI'P response containing the file install.rpm to the browser. Note that the

file should be considered as hotlinlced in h.htm because the legal page v.htm is hidden in the iFrame

and never displayed to the user. [119] and [109] furthermore discuss securing and extending cookie

with security properties.

Simple HTML tricks can also be used to bypass the session-based defense (namely Hotlinking

http://www.V.com/v.htm
http://www.V.com/v.htm?PHPSESSID=5k32d0

CHAPTER 2. HaruNKING INVESTIGATION AND COUNTERMEASURES

<script> function append..sid(){
retrieves SID;
var fileUnltObj = documenlgetElementByld("fileLink");
var newURL = fileLinkObj.getAUribute("href') + "?&PHPSESSID=SID";
fileLinkObj.setAUribute(''href', newURL);

}</script>

Download RMP Package<la>

Figure 2.4: IITML snippet of exploiting session vulnerability

13

against Session Protection). Figure 2.4 shows such an instance. We assume that a session ID is

passed to the browser via URL Rewriting. After the browser parses the HTML document of the

page h.htm, it sends an HTIP request (GET www.V.com/v.htm HITP/1.1) attempting to obtain

the fictitious image via the URL specified by the href attribute of the tag. When V.com

establishes the session with the browser and assigns a session ID, the malicious JavaScript code,

append..sid(), can be triggered to retrieve the session ID and then append it to the href attribute

of the file download link with the JavaScript functions getAttribute() and setAttribute(). Thus, the

request URL for the file will be artificially rewritten with the legal session ID. Once V.com receives

the HTI'P request and validates the session ID, it grants the file request and the anti-hotlinking

defense becomes void. The legal page v.htm is not displayed because it is included in an

tag, and of course fails to render. The naughty script exists in the hotlinking page, and it is beyond

the ability of script purifying techniques deployed by benign servers [135]. [117] listed some more

complicated session hijacking cases as the authors evaluated the security level of some popular free

web-mail.

http://www.V.com/v.htm
http://www.V.com/files/install.rpm

CHAPTER 2. HarLJNKING INVESTIGATION AND COUNTERMEASURES

2.1.2 Defense Against Hotlinldng

14

There are two places to enforce anti-hotlinking, the client side and server side. Since end users do

not have direct motivation to defend against hotlinking, the client side is not the ideal place for anti

hotlinking. First, hotlinking is transparent to end users. Very few users would even notice or care

whether embedded web materials are from other domains or not. Second. anti-hotlinking may dete

riorate user-perceived performance and even interfere with users' browsing activities. For example,

some defense methods simply refuse H1TP requests for hotlinked objects, and thus involved web

contents fail to load on the browser. By contrast, unauthorized hotlinking steals server resources and

costs revenue loss to victim sites. Thus, we believe that the server-side is the appropriate place to

deploy the anti-hotlinking framework, and it is the responsibility of hosting sites to protect their ma

terials from being hotlinked. Our proposed anti-hotlinking framework adopts this design principle

(see more details in Section 2.3).

2.2 ~easuremment

In this section we first conduct a large-scale measurement study to understand the nature of hotlink

ing in a quantitative way. Among the regular types of hotlinked web objects, we choose image

and software installation packages (a typical representative of large-sized files) as the measurement

targets. Then we observe a hotlinking attack on a web server and perform a detailed analysis based

on the logs of the hotlinking victim. Our analysis is focused on the negative effect on the hotlinking

victim

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 15

2.2.1 Measurement of Hotlinked Images

With the development of Web 2.0, web sites interact with each other much closer than ever before.

Web pages of a site may link a variety of materials hosted on third-party sites, such as scripts and ad

contents. Among them, images are the most hotlinked. In this part of image-centric measurements,

we choose some representative sites, and record images hotlinked in site homepages.

Hotlinking is a simple web technique. Whether it is ethical or not to hotlink depends on how it

is used. Hotlinking an image with the authorization from its hosting site is benign and acceptable.

For example, the site homepage links an image hosted by a traffic monitor site. Each request for

the homepage triggers a request for the hotlinked image. In this way, the monitor site traces visitor

traffic for the client site. On the other hand, intentional hotlinking without authorization is unethical.

For instance, a blog hotlinks a copyrighted photograph from the official site of a celebrity to attract

click traffic. In this case, displaying the image is against the owner's will, and incurs additional

transfer traffic for the hosting site.

We cannot determine hotlinking is authorized or not merely based on the URL of the hotlinked

image. We analyze the characteristics of images and their hosting sites to classify authorized and

unauthorized hotlinking with the help of a set of pre-defined rules. We focus more on unauthorized

hotlinking.

2.2.1.1 Chosen Websites

The target websites for measurement are chosen as follows. We select 15 categories listed by Alexa

[5], and take the top 100 sites from each category. These categories are mainly divided based on

site content. Alexa is a well-known web archiving site that consistently monitors web traffic and

site popularity ranking. We also add a 16th category-blogging. From ranking lists published by

CHAPTER 2. HOTIJNKING INVESTIGATION AND COUNTERMEASURES 16

18ble 2.1: Category Breakdown by Top-Level Domain
Category com net org gov cdu cc other Total
Arts 85 3 4 0 0 7 1 100
Business 90 2 0 1 0 7 0 100
Computers 91 1 6 0 0 2 0 100
Games 96 2 2 0 0 0 0 100
Health 61 2 15 14 2 5 1 100
Home 89 1 3 5 0 2 0 100
News 85 0 2 0 0 13 0 100
Recreation 88 2 3 3 0 3 1 100
Reference 37 0 10 6 38 8 1 100
Regional 64 0 2 3 0 31 0 100
Science 49 1 15 19 6 10 0 100
Shopping 95 0 1 0 0 4 0 100
Society 68 1 11 10 1 7 2 100
Sports 86 0 2 0 0 12 0 100
World 38 4 4 0 0 53 1 100
Slogging 319 17 11 9 1 47 5 400
Total 1441 36 91 61 48 211 12 1900
Unique 1115(76.7%) 34(2.3%) 72(5.0%) 28(1.9%) 43(3.0%) 151(10.4%) 10(0.7%) 1453

[18, 20], we include the top 400 blog sites, as many of such sites greatly hotlink images because of

their shortages in hosting storage space and bandwidth quota.

Table 2.11ists the breakdown summary of all the 16 categories by DNS Top-Level Domain

(1LD) for comparison. Note that some sites are listed in multiple categories. For example, www.google.com

appears in both the Computers and World categories. Besides, some sites have multiple domain (or

sub-domain) names listed (i.e., news.bbc.co.uk and bbc.co.uk). We run the analysis toolkit to elim-

inate the duplicates to have the unique site numbers listed at the bottom of Table 2.1. We can see

that 1,115 (77%) unique sites belong to the .com TI.D, which is the dominant domain in our chosen

sites, followed by the country code (denoted as cc) 1LD that contributes 151 (10%) unique sites.

The rest of 1LDs takes up 13% of the chosen sites.

2.2.1.2 Data Collection

We develop a Firefox extension along with some script commands to automatically visit the home-

pages of target sites one by one. Displaying a webpage on a browser generally involves the fol-

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 17

lowing two steps: (1) after the browser loads the page. it parses the HTML document; and then (2)

the browser performs a series of actions to display the page on a best-effort basis. including execut-

ing dynamic codes (like JavaScript). downloading embedded images. and so on. After the browser

loads and parses the page. our Firefox extension logs all the outgoing requests for web objects (like

images. JavaScript snippets •. css files. etc) made by the browser in real-time. We believe that this

dynamic logging mechanism is more accurate than the traditional static content check over web

objects pre-included in the HTML document, since many contents are dynamically generated such

as ads inserted by third-party JavaScript. The extension stays at each site homepage for 45 seconds

before switching to next site2• After collecting all the homepage logs, we run a toolkit mainly writ-

ten in Java to retrieve image object information from each log based on extension type and to decide

whether an image object is hosted locally or hotlinked from other sites based on URI.

2.2.1.3 Data Analysis

We first describe the analysis and processing of image measurement results, which are summarized

in Table 2.2. For the homepage of each website, it may include two types of images: those hosted

by the site itself and those hotlinked from other sites. We can distinguish these two types of images

by comparing URis of the site and images. If the homepage of a site links any images hosted by

other sites. the site is categorized as Site with Hotlinking Behavior (Column 2 in Table 2.2). There

is nothing wrong with using hotlinking. However. the key issue here is to differentiate between

authorized and unauthorized hotlinking. Our large-scale measurement involves 1,453 sites, and the

majority of these sites link images from many other sites. It is very time-consuming to manually

2We measure the load time of 100 sample site homepages. Most of them do not exceed 20 seconds. Thus, we set a
safe threshold value here, 45 seconds, which is long enough for fully displaying a page.

CHAPTER 2. HarLINKING INVESTIGATION AND COUNTERMEASURES 18

Tabl 2.2 e :Image H nkin Di 'bu otli lg strt tion per Site Homepage
Category Sites w/HL Sites w/ Unauth-HL Sites w/ Auth-HL

Behavior Unauthorized HL Image Ave. Authorized HL Image Ave.
Arts 70 19 (27.1%) 2.79 69(98.6%) 10.55
Business 36 5 (13.9%) 1.60 34(94.4%) 14.41
Computers 40 7 (17.5%) 2.29 39(97.5%) 16.15
Games 57 11 (19.3%) 3.00 56(98.2%) 11.45
Health 50 6 (12.0%) 2.00 49(98.0%) 10.47
Home 64 18(28.1%) 1.78 61 (95.3%) 11.10
News 78 16(20.5%) 1.88 78 (100%) 13.22
Recreation 39 8(20.5%) 3.38 39 (100%) 9.54
Reference 35 6(17.1%) 3.17 34(97.1%) 11.74
Regional 26 8 (30.8%) 1.50 25 (96.2%) 19.32
Science 29 13 (44.8%) 2.15 26(89.7%) 7.19
Shopping 56 23 (41.1%) 3.22 52(92.9%) 11.96
Society 35 13(37.1%) 3.46 28 (80.0%) 13.82
Sports 41 18 (43.9%) 3.72 36(87.8%) 8.31
World 39 12 (30.8%) 2.50 31 (79.5%) 10.48
Blogging 395 273 (69.1%) 9.00 360 (9l.l%) 32.35
Total w/o blog 695 183 (26.3%) 2.55 (avg) 657 (94.5%) 11.98 (avg)
Total 1090 456 (41.8%) 2.96 (avg) 1017 (93.3%) 13.25 (avg)

check whether a site obtains the authorization from another to hotlink an image. Based on our

observations, we apply the following three rules for processing the measurement results.

• Rule 1. If the page of site A contains any iFrames or scripts from site B, and B includes

images in iFrames or dynamically inserts via scripts, it is considered that A is authorized to

hotlink those images from B. This fact implies the cooperation relationship between the two

sites. In this case, B plays the role of content (image) provider. Take online ad assignment as

an example. A includes an iFrame from syndicator B, and B puts links of ad images in the

iFrame, and dynamically changes them to update ad content. This rule also applies to many

other web applications, such as site traffic monitoring, and webpage tagging.

• Rule 2. A white list is created to cover the popular sites in the categories which generally

authorize hotlinking from themselves. The representative categories include advertising syn-

dicators (such as Google Syndication [32], 2mdn [1] and DoubleClick [24]), web performance

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 19

accelerators (such as Akamai and Speedera [3]3), and image hosting/cloud service (such as

Flickr [25] and CacheFly [21]4). Moreover, the white list includes a few partnerships between

specific sites, such as yahoo.com and yimg.com, where the latter hosts images for the former.

This partnership suggests authorized hotlinking.

• Rule 3. Web pages often include a large amount of very small images mostly in the format

of GIF and PNG. These small images are mainly used as tags of social networks (such as

Facebook, Dig and Twitter), toolbar logos, face expression symbols, and so on. Generally

hosting sites of such small images authorize and solicit hotlinking to spread their brand names.

In our measurement, we set the threshold as 1 OK.B5. Any images whose sizes are less than

the threshold are classified as authorized hotlinking.

A program equipped with the above rules is used to automatically distinguish unauthorized

hotlinking behaviors from authorized ones. If an image follows any of the rules, it is labeled as an

authorized hotlinked image. Otherwise, it is labeled as an unauthorized hotlinked image. The auto-

matic determination saves us from burdensome manual check over hotlinked images. However, the

side-effect is the possible false negatives (unauthorized hotlinking misjudged as authorized hotlink-

ing) and false positives (authorized hotlinking misjudged as unauthorized hotlinking). We randomly

select 20% of the sites with hotlinking behavior to perform the manual check. For each hotlinked

image, we examine the characteristics of hotlinking and victim sites, their relationship, and the

content and size of the image. Then we determine whether hotlinking the image is authorized or

not, and compare with the decision made by the program. The false negative ratio is 0.1 %. Very

3These sites let nonnal sites to hotlink special-purposed images, and trace image requests to gather statistical infor
mation about nonnal sites

"These sites provide online storage services most of which are free, and their policies explicitly allow hotlinking
5 According to the measurement results in our crawl experiment, the majority of this type of images are smaller than

lOKB.

CHAPTER 2. HOTLlNKING INVESTIGATION AND COUNTERMEASURES 20

few images should have been judged as unauthorized hotlinking based on their contents. However,

due to their sizes smaller than the threshold value in Rule 3 (namely lOKB), they are misjudged

as authorized hotlinking by the program. The false positive ratio is 3.7%, which is caused by the

following two reasons.

• The incompleteness of the white list in Rule 2. For example, it does not contain a site (im

agevenue.com) providing free image hosting. Hotlinking images from this site should be

considered as authorized. Besides, the list misses specific relationships between some sites.

For example, our manual check discovers the redirection from bdd.com to randomhouse.com,

which suggests the site partnership. Thus hotlinking is authorized between the two sites.

• The setting of image size threshold in Rule 3. Our manual check observes that some images

whose sizes are greater than the IOKB threshold. However, their contents of ads strongly

suggest the authorized hotlinking.

Our manual check confirms the accuracy of the automatic classification of authorized and unau

thorized hotlinking. Now we analyze the statistical data listed in Table 2.2. A site containing such

images is categorized as a site with authorized hot/inking behavior (Column 5 in Table 2.2). We

divide the sum of authorized hotlinked images by the number of sites with authorized hotlinking

behavior to obtain the average of authorized hotlinked images per site (Column 6 in Table 2.2).

Similarly, we count the sites with unauthorized hotlinking behavior (Column 3 in Table 2.2) and

compute the average of unauthorized hotlinked images per site (Column 4 in Table 2.2), respec

tively. If a site hotlinks both types of images, it is counted in both Column 3 and Column 5.

In the first 15 categories without blogging, 46.3% of the sites (namely, 695 out of 1,500) hotlink

images. In other words, more than half of the sites (53.7%) host all the images by themselves

CHAPTER 2. HaiLINKING INVESTIGATION AND COUNTERMEASURES 21

and do not hotlink. Among the hotlinking sites, most sites (94.5%) manifest authorized hotlinking

behaviors, and the average of authorized hotlinked images per site is 11.98. Only a minority of sites

(26.3%) have unauthorized hotlinking behaviors, and the average of unauthorized hotlinked images

per site is 2.55. Such measurement results are expected. Those top sites from the 15 categories are

mostly owned by large organizations. They have adequate online storage space and traffic quota,

and can host any images by themselves. They do not have strong motivations to "steal" images

from others. They perform hotlinking mainly for site interaction. We manually check the nature

of authorized hotlinked images, and find out that most of them are for online advertising, webpage

tagging, and site partnership displaying.

However, the blogging category is an exception. Most blogging sites (395 out of 400) hotlink

images. Among them, 273 blogging sites have unauthorized hotlinking behaviors. The unauthorized

ratio of 69.1% is much higher than the average ratio (26.3%) of the other 15 categories. The average

of unauthorized hotlinked images per site is 9.00, much higher than the average (2.55) of the other

15 categories. It is not surprising to observe that hotlinking is severe in the blogging category.

The reasons are: (1) many blog sites are operated by individuals who are not professional web

developers. They tend to use search engines to look for pictures and then directly link them instead

of hosting them. Besides laziness, they do not have the clear conscience on copyright infringement

their (unauthorized) behaviors have done. (2) many blog sites do not have enough online storage and

traffic quota, and have to intentionally hotlink from other sites. On the other hand, the proportion

of blogging sites that have authorized hotlinking behavior is 91.1 %, which is very close to the

average (94.5%) of the other 15 categories. This is because blog sites also have needs of regular site

interaction, such as online advertising and traffic monitoring. However, the average of authorized

hotlinked images per site is 32.35, much higher than the average (11.98) of the other 15 categories.

CHAPTER 2. HO'ILINKING INVESTIGATION AND COUNTERMEASURES 22

Blog sites link a large amount of small images for user avatars and face expressions. Furthermore,

blog pages display more ad images than regular wcbpages .

.I 0.8 .
I
10.8
'S 0.4--
10.2

10°

F1gure 2.5: CDF of the number of hotlinked images per homepage

For those sites with unauthorized hotlinking behaviors (456 in our measurements), Figure 2.5

shows the cumulative distribution function (CD F) of the number of unauthorized images hotlinked

per homepage. Around 81.2% of the site homepages hotlink at least 10 images. While the maximum

value of outdegree is 221, the mean is 6.52, and the standard deviation is 13.36. The fact suggests

that, if a site conducts unauthorized hotlinking, the behavior may be regular instead of occasional.

The corresponding CDF curve of authorized hotlinking is also shown in Figure 2.5 as a reference.

The maximum value of outdegree in the authorized curve is 469, the mean is 18.63, and the standard

deviation is 31.90.

Tabl 2.3 U . Vi . s· Di .bu . b TLD (16 ries) e mque teton tte stn tion >Y catego
Top-Level Domain No. of Unique Victim Sites

com 2,453 (78.8%)
cc 343 (11.0%)
net 161 (5.2%)
org 118 (3.8%)
gov 6 (0.2%)
mise 31 (0.9%)
Total 3,112 (100%)

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 23

Since a great amount of images are hotlinked all over the Internet, besides "hotlinking culprit",

we also want to know the general distribution of victim sites. For images hotlinked without autho-

rization in our measurement, we get URLs of their hosting sites. Table 2.3 shows Top-Level Domain

(TLD) distribution of victim sites. The majority of victims belong to the .com domain (78.8%). The

second largest victim domain is the .cc domain (11.0%). The remaining domains account for a small

portion (1 0.2%).

Figure 2.6: Count of Hotlinked Image without Authorization for top 40 Blog Sites

Since image hotlinking is severe in the blogging category, we conduct a deep measurement

which targets images hotlinked by the site, not merely by the homepage. More specifically, we pick

up top l 0% sites (namely, 40 out of 400) in the blogging category based on the number of hotlinked

images per homepage. We modify wget [29] to crawl these top 40 sites. For each site, starting from

the homepage, the crawler visits the internal pages linked in the homepage in a recursive way, with

the recursive depth set as three6. After acquiring an (incomplete) internal page list of a site, we still

use our Firefox extension to visit all these pages to accumulatively log images hotlinked by the site.

6We believe that the 3-depth-level is a good balance between site coverage and measurement time. A larger depth will
incur much greater running time in a nearly exponential way and also generate more duplicate pages.

CHAPTER 2. HarLINKJNG INVESTIGATION AND COUNTERMEASURES 24

Figure 2.6 shows the total number of hotlinked images for the top 40 blogging sites we measured.

A site surprisingly hotlinks 222 images. Averagely speaking, each of these 40 blog sites hotlinks

about 25 images. It confirms again that these target blog sites do hotlink a large amount of images

without authorization.

Based on the above measurement results, we can draw the following conclusions. (1) The

behavior of hotlinking images is very common over the Internet. (2} For the majority of top sites

in the first 15 categories except blogging measured by us, they have their own servers for image

storage. Linking images hosted by other sites is usually for web interaction (such as advertising

and traffic tracing}. Such behaviors are authorized by hosting sites. (3} A small proportion of sites

(such as blog sites measured above} hotlink a large amount of images without authorization. This

unethical behavior infringes the interest and rights of hosting sites.

2.2.2 Measurement of Hotlinked Software Packages

Among the various types of files hotlinked over the Internet, the software installation packages (such

as .exe and .rpm} are more prone to becoming hotlinked. Due to the large file size, hotlinking may

cause significant resource consumption to hosting sites. Therefore, software package is selected as

the measurement target in the file category of hotlinking. In the previous image-centric measure

ments, we start from hotlinking sites and trace back to victim sites. In this part, we reverse the order

and trace from victims to hotlinkers. The measurement procedure is explained as follows.

Based on download times and popularity, we choose 100 top free software packages as sug

gested by [26, 16]. Our software set covers various categories ranging from security software to

developer tools. For each software package, we manually obtain its official download URL that

usually belongs to its author/publisher site. We use a PHP-written script to search web pages that

CHAPTER 2. HarLINKING INVESTIGATION AND COUNTERMEASURES 25

contain official download URLs via the standard query API provided by Google. We argue that, in-

eluding the official download URL on a third-party page is a kind of hotlinking, because the visitor

can directly download the software by clicking on the hotlinked URL without visiting the official

download page. In most cases, such hotlinking behaviors are not authorized or expected by software

owners. Software owners may use CDN (content delivery network) sites to spread files for faster

download. However, this case is not hotlinking at all, since CDN sites do host software packages

by themselves.

For each package, we generate a log including the first 100 results (namely, URLs of hotlink-

ing pages) returned by Google. The result ranking is decided by search relevance and popularity.

Thus, we believe that the top I 00 results are appropriate for the measurement sampling purpose.

If the number of the results returned is less than 100, we take the actual number. After collect-

ing logs of these 100 software packages, we use our Java-written toolkit to process them and do a

comprehensive analysis presented as follows.

j
J! 0.8

fo.s
I o ...
~
15 I 0.2
...

0o 20 40 60 80 100 120 140
No. of Pages 1hat Hodlnk Software per Site

Figure 2. 7: CDF of the number of hotlinked software packages per site

In our measurement result set, the 100 software packages are hotlinked by 3,020 sites in 7,539

unique web pages. For the above hotlinking sites, Figure 2.7 shows the CDF of the number of

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 26

hotlinked software packages per site. Around 33.8% of the sites hodink 2 or more software packages

(may in different pages). The maximum value of the CDF curve is 128. It is a forum-style site where

"warmhearted" users publish 128 hotlinking download URLs (including duplicates) in multiple

posts. The curve mean is 2.50 with the standard deviation of 5.79.

Table 2.4 TLD Di 'bu. fU . s· th Hotlinkin S ft : stn uono ruque ttes at 1g o ware Packages
Top-Level Domain No of Unique Hodinking Sites

com 1859 (61.6%)
cc 481 (15.9%)
net 372 (12.3%)
org 202 (6.7%)
info 42 (1.4%)
mise 63 (2.1%)
Total 3020(100%)

Moreover, Table 2.4 lists the distribution of the 3,020 hotlinking sites by Top-Level Domain.

The majority are from the .com domain (61.6%). Subsequently, the .cc and .net domains contribute

15.9% and 12.3%, respectively. The remaining domains account for 10.2%.

The above analysis manifests that hotlinking software packages is a common problem over

the Internet. It also happens to other types of file resources, such as documents and audio/video

clips. Because of the large file size, frequent hotlinking incurs significant consumption in network

bandwidth and computing resources. It is essential to deploy anti-hotlinking methods to protect

hosting sites.

2.2.3 Postmortem Analysis of A Hotlinldng Attack

To fully understand the damages caused by hotlinking towards hosting sites, such as system bur-

den and traffic theft, we collected raw traces from a victim server and performed a forensic-style

postmortem analysis on a real hodinking attack.

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 27

The hotlinking attack is briefly described as follows. One user of the victim server hosted a

folder of many images of a popular commercial product under his web directory. He posted a lot of

articles containing some of the above images at a few third-party sites. Due to the attractive contents

and images, those articles were frequently referred by others. Eventually they drew a large amount

of click traffic. Since the images were hosted at the victim server, numerous image requests were

redirected to it, consuming many computing and network resources. Finally, the victim server was

overwhelmed and crashed. The user was not conscious of his hotlinking behavior and the serious

damages induced to the server. It is the system administrator who noticed the crash of the victim

server and blocked the public Internet access to that user's directory, which ends the hotlinking event

lasting in a continuous period of 40 days from the first week December, 2008 to the early January,

2009.

The victim server is installed with Apache 2.2.4 running on an Intel Xeon 64-bit workstation,

which is equipped with quad-processors of 3GHz, 12MB L2 cache, 16GB memory, 300GB hard

disk and 1 Gbps LAN connection. The victim server grants the direct HTTP access to any files in

a user's web directory if the file path is given correctly. Namely, hotlinking is allowed, and no

anti-hotlinking defense is deployed. The image folder contains around 1,000 images in the format

of JPEG. The size of a single image varies from 50KB to 300KB, and the total size of the image

folder is about 130MB. Each entry in the raw server log records the response to an HTTP request,

including fields like the client IP address, timestamp, the file path of the requested object at the

server, and the Referer of the HTTP request. The total size of the 40 days' logs is 400MB. After

removing those entries irrelevant to image hotlinking, we reduce the total log size to around 200MB.

With the help of the Referer field, we trace back to the hotlinking source. A set of articles

were posted at some third-party sites, more specifically, nine BBS-style forums and one EBay-style

CHAPTER 2. HarLINKING INVESTIGATION AND COUNTERMEASURES 28

shopping site. The article pages included images hosted on the victim server in the form of <img

src="apachelimgslsample.jpg">. In this way the hotlinking relationship forms between those third-

party sites and the victim server. Most of those sites have a large user population, and generate a

large trace of user requests. The number of images embedded in the article pages ranges from 5

to 80. One page hotlinks 80 images with the total size of 12MB. When the browser displays the

page, it sends an HTI'P request for each embedded image to the victim server. The server returns

the image.

}
J .. .e

I
20 25 30 315 40

TDDe(day)

Figure 2.8: Daily traffic in terms of image requests

Figure 2.8 shows the number of daily requests for hosted images. The average number of daily

requests over the 40-day window is 11,872. The daily number gradually increases, and reaches the

summit of 165,430 on the last day when the victim server was crashed. The curve development

can be plausibly explained as follows. With the increase of user views and replies, the rank of the

article boosts. As a case of Matthew Effect (i.e., the rich get richer and the poor get poorer), it draws

more users, bringing more click traffic. There are three spikes over the last 10 days. We manually

CHAPTER 2. HOI'LINKING INVESTIGATION AND COUNTERMEASURES 29

checked the posts during that period, and found the obvious evidence of scripts7 that automatically

post replies to articles to keep them staying in the first few pages of the forums, thus attracting many

more viewers.

T'I.IDC (day)

Figure 2.9: Daily Data Transmission (in MB) Caused by Hotlinking

Figure 2.9 shows the daily data transmission caused by hotlinking. We first compute the data

transmission, Ti, caused by a single file, as Ti = Fi * Ri, where Fi is the size of the file i, and

Ri is the number of requests for the file i. The daily data transmission is calculated as the sum of

that of all the files requested that day, i.e., Td = Ei Ti. The curve in Figure 2.9 is similar to that in

Figure 2.8. The data transmission increases gradually over the first 30 days, and surges drastically

over the last 10 days. The average daily data transmission caused by image hotlinking is around

1.7GB. The maximum occurs on Day 40 at 22.7GB, followed by Day 35 at 12.3GB.

Figure 2.10 illustrates the number of daily client IP addresses, which can be used to roughly

estimate the number of daily visitors. The average of daily IP addresses is 490, while the maximum

of 2,215 appears on Day 35 followed by the second highest of 1 ,950 on Day 40. Over the 40 days,

7For example, the reply interval is short and almost fixed. Furthermore, many recently registered accounts are used.

CHAPTER 2. HarLINKING INVESTIGATION AND COUNTERMEASURES

2000

I ...
e::
>.. 1000

!
';

-i. 1500

0
10 20

Time(day)

•

30

Figure 2.10: Daily traffic in terms of client IP addresses

on average, each IP address requested 24 hotlinked images.

-- --DIIy24

1
-e--DIIy30 - -•-DIIy35
--o.¥40 -! 120110

100GO

J 1000

... 1000 0

~ -20110

2 4 • • 10 12 14 11 II 20 22 ll4

T111111(bour)

Figure 2.11: The hourly traffic distribution of four selected days

30

Among the 40-day logs, we choose four days for more detailed analysis. The result is presented

in Figure 2.11. Days 30, 35, and 40 are selected due to their top data transmissions. The number of

the daily IP addresses of Day 24 (497) is the closest to the average (490), and thus that day is used as

the average case. The curve shapes of the first three days are similar. The peak appears from 9:00 to

15:00, followed by another wave from 17:00 to 21:00. This matches the regular timetable of human

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 31

visitors, since more people tend to surf the Internet during working hours and in the evening. Day

40 is a special case, where starting from 8:00, the hourly traffic reaches 18,000 requests with the

summit at 20,000 (namely 5.6 requests per second). The victim server is overwhelmed by the large

amount of incoming HTI'P requests. In the following period, its performance drops sharply and

the response becomes extremely slow. The server crashes around 16:00. The system administrator

restarts the server manually and blocks the public access to the user image folder afterwards.

2.3 Framework Design

Based on the existing network security techniques, we present an anti-hotlinking web framework for

hosting sites. Our design goal is to greatly increase the hotlinking difficulty and to defeat most com

mon forms ofhotlinking with easy deployment. In reality, webmasters can control the granularity of

anti-hotlinking by defining different protection policies and applying them to the framework based

on the requirements of their sites. Currently the framework provides two policies, Strict Policy and

Loose Policy, for the demonstration purpose. In this section, we first describe the design details of

the framework and then present the two protection policies.

2.3.1 Design Details and Modules

Figure 2.12 illustrates the anti-hotlinking framework that consists of three major modules. The

HTTP Request Filtering Module filters incoming HTI'P requests and blocks direct access to hosted

resources. The file entrance page contains the other two modules. The Session Creation/Authentication

Module creates and manages sessions to maintain the HTI'P communication status between the

server and client. Different protection policies may require different steps, and the user must com-

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 32

File Entrance Page ~~~~ Ajax Communication
I
I

Hotllnkl"' I

Request
I

Session Creation/
I Download I

Authentication Authorlzalon
Legal Request

Module Module

AleUnkUst

Invalid LUi!l LiD~~

~
[") Session Info Log

Request ~,!!~link~ • HITP Request ~ [) Download Auth log Return File

Filtering Module Database

Figure 2.12: Anti-Hotlinking Framework Overview

plete them to become eligible for downloading. The Download Authorization Module checks the

download authorization log and determines whether the download request can be granted. If so, the

server will return the file to the client. The intra-page communication of the file entrance page is

supported by the AJAX techniques. The page address in the browser does not change, and only the

page content in the inner window updates smoothly. The detailed description of these modules are

given as follows.

2.3.1.1 HTTP Request Filtering Module

The main function of this module is to transform the incoming HTIP request into the legal form

required by the framework and to block the direct access to hosted resources. The module uses the

following three functional blocks.

'lBble 2.5: File Storage Log
Unique FileJD File Name Storage Path

T85X4PNS install.rpm root/files/

Unique file ID and entrance page. The site assigns each of its hosting files a unique file ID,

and this solves the problem of duplicate file names. Currently, our framework uses three types of

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 33

information to generate the unique file ID: original file name, file upload timestamp and user ID

(either the user account name or the IP address) where appropriate. The site then hashes the above

information into the file ID and maintains a file storage structure table as shown in Table 2.5. A

unique entrance page can be created for each file based on its file ID.

Limiting HTIP requests. Most sites without anti-hotlinking defense directly grant Hn'P re

quests for hosted resources as long as the resource path is given correctly. Limiting HTTP requests

helps the site block the direct access to hosted materials. As an option, the site can use URL rewrit

ing of HTTP requests to achieve it. Suppose now the framework only directly grants Hn'P requests

for web pages (whose extensions are .htm and .php in our prototype) and some accessory web ob

jects required for normal page display (such as background images), while requests for all other

types of objects are redirected to corresponding entrance pages based on unique file ID. For exam

ple, the direct HTTP request for the file install.rpm in the form of www.site.com/fileslinstall.rpm is

prohibited and rewritten into www.site.com/download.php?fid=T85X4PNS.

Handling different HTIP requests. The module may receive three types of HTTP requests

for a file, and finally it transforms them into Legal Request, the only request type accepted by the

framework. The three types of HTTP requests are listed as follows. (1) Legal Request (in the form

of www.site.com/download.php?fid=T85X4PNS, with a valid fid) is directly brought into the file

entrance page. This format is always used by all internal pages of the hosting site. (2) Hotlinking

Request (in the form of www.site.com/fileslinstall.rpm, without a fid) that directly requests files is

rewritten into Legal Request based on the unique file ID mapping and then redirected to the file

entrance page. (3) Invalid Request (in the form of www.site.com/download.php?fid=~85X4PNS,

with an invalid fid) is redirected to a file-list page that shows legal download links of hosted files on

the server. When a user clicks on a legal download link, it generates a Legal Request and the user

http://www.site.com/download.php?fid=T85X4PNS
http://www.site.com/download.php?fid=T85X4PNS
http://www.site.com/files/install.rpm
http://www.site.com/download.php?fid=S85X4PNS

CHAPTER 2. H01LINKING INVESTIGATION AND COUNTERMEASURES 34

can continue to download.

2.3.1.2 Session Creation/ Authentication Module

The anti-hotlinking frameworlc needs to maintain the interaction status between the client and server

to determine whether the client becomes qualified to download the requested file. Both cookie and

session mechanisms can be used to maintain HTIP communication states. Our framework chooses

to use the session mechanism. The main reason is that, the session mechanism only has to store

session ID on the client-side, and maintains most session information on the server-side. It greatly

reduces the risk of the client-side forging and hacking. Session ID can be stored on the client-side

in the form of cookie or URL parameter. In either way, the server must authenticate the received

session ID to make sure it is not only valid, but also originally assigned to the client. Because HTIP

sessions build upon TCP connections, this module uses the essential information extracted from the

underlying TCP connection along with browser signature to perform session ID authentication. The

TCP information mainly includes the IP addresses and port numbers of source and destination. For

every session it initiates, the server creates an entry in the form of [session ID, TCP info, client

browser signature] in the Session Info Log.

When the HTIP request arrives at the file entrance page, the module determines whether the

client has an existing valid session by authenticating the session ID. The authentication procedure is

shown as Figure 2.13. If the authentication succeeds, the module creates an entry in the Download

Authorization Log and the client can start to execute the required download steps. Requirements

specified by different protection policies may vary. We give an example set of steps in Section

2.3.2. After the steps are fulfilled, Download Authorization Module decides whether the download

request will be granted or not.

CHAPTER 2. HGfLINKING INVESTIGATION AND COUNTERMEASURES 35

Flgure 2.13: Session Creation and Authentication

2.3.1.3 Download Authorization Module

FID Expire_TS
T85X4PNS 1227213501

The Download Authorization Log is a core log that stores information used by the site to decide

whether the file request can be granted or not. Table 2.6 lists a simplified log entry. Session.JD is as-

sociated with the client-side information (mainly about TCP connection and browser signature), and

FileJD is unique to each file. The first two fields together show a specific client requests to down-

load a specific file. The Stepj field is set as true after the corresponding step is completed. After

all the required steps are finished, the last three fields are set as follows. The Authorization field

is tum into true, the Authorization Code field is filled with a random string, and the Expire 1imes-

tamp field carries a timestamp that specifies when the Authorization Code expires. The Download

Authorization Log uses SessionJD and File.JD to locate the corresponding entry in the Download

Authorization Log. If (1) the Authorization field is true, (2) the Authorization Code field is valid,

and (3) the Expire Timestamp field is greater than the current timestamp, then the module authorizes

CHAPTER 2. HaTUNK.ING INVESTIGATION AND COUNTERMEASURES 36

the download request.

The module uses File..ID to locate the associated file entry in the File Storage Log, and reads

the file via the full file path. The site constructs an HTIP response containing the requested file and

returns to the client. The framework provides the following two options to handle the Authorization

Code field after the file request is granted. The first is the One-time Code Use option. Namely the

code may only be used once and expires after then. If the same user wants to download the same file

again, he will be redirected to Step_ I to start over even though the session is still alive. The second

is the Repeated Code Use option. The code can be repeatedly used untill it expires. This option

enables the user to download the same file multiple times during a certain time window. To prevent

the code from being abused, the web server can limit both the maximum number of simultaneous

download connections per IP address and the download speed per process.

2.3.2 Strict PoUcy

File: lnstall.rpm File: lnstall.rpm File: lnstall.rpm

1--·-~1 r~A&ree
Service Terms

~ --····· ··:
~=·-- I .;::;:::.. I

·• :T'•ll.,.._ ·· ·'--······J,l

t~~-f!l

Ale: lnstall.rpm

® ®

Figure 2.14: User Download Procedure

Hosting sites often accommodate high-importance and large-size resources, such as software

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 37

packages and documents. Hotlinking such resources may cause serious damages to hosting sites.

We introduce Strict Policy to protect this type of resources as follows.

The HITP Request Filtering Module filters the incoming resource request into the form of Legal

Request. When the request is directed to the File Entrance Page, the Session Creation/Authentication

Module guarantees an authentic session between the server and client.

The key feature of Strict Policy is that, it specifies a set of steps the user must fulfill to become

eligible for downloading. We emphasize that, the policy can generate as many steps as needed and

customize requirements for each step. These steps can serve different goals for hosting sites in

reality, like distinguishing human users from machines, displaying sponsors ads, and encouraging

users to buy premium download accounts, etc. We leave up to the webmaster the details of designing

steps. Our framework implements a combination of three simple steps as shown as Figure 2.14

purely for the demonstration purpose. The user must (1) correctly recognize a CAPI'CHA image,

which distinguishes human users from machines8, (2) check the Terms of Service checkbox, and (3)

wait a short time to activate the download link. The Strict Policy sets the download authorization

code to be one-time use. If the user wants to download the same file again, it has to repeat the steps

to generate another authorization code.

2.3.3 Loose Policy

While the Strict Policy is stringent and suitable for protecting the resources of great importance,

it is too cumbersome for users to download these widely-used web objects such as images. As an

alternative, we present a light-weight policy, Loose Policy, for protecting common web objects of

8Using CAPI'CHA is an option of distinguishing human users from machines. Its effectiveness against automated
clicks is out of the scope of the chapter.

CHAPTER 2. HarLINKING INVESTIGATION AND COUNTERMEASURES 38

less importance. Its design principle is to strike a good balance between resource protection and

anti-hotlinking cost.

Suppose hosted objects (such as images) are included in some web pages of the hosting site.

After a browser loads and parses the webpage, it sends a request for the embedded object to

the hosting site. According to Figure 2.12, the server rewrites the incoming HilP request into

Legal Request (like www.site.com/loose..download.php?fid=570UK14N). The download control

page (loose..download.php) calls the Session Creation/Authentication Module to judge whether the

browser has an active session with the server or not. If so, the Download Authorization Module will

return the object to the browser. Note that the process of executing steps is turn off in the Loose

Policy. The whole download control procedure does not involve any user interaction, and is totally

transparent to users. This is a big difference from the Strict Policy. Furthermore, the Download

Authorization Module takes the option of Repeated Code Use. This allows the browser for multiple

downloads towards the same object during the session lifetime.

If there is no active session between the browser and hosting site, it is very likely the direct

object request is triggered by a hotlinking webpage9 . The control page will redirect the browser

to a default page that builds an active session and displays some notification information like The

requested object is originally hosted at www.site.com (click here to visit the genuine hosting site).

The page stays for a short time period (like three seconds) customizable by the site. After that, the

request will be granted and object will be sent to the browser to appear in the page.

9It is almost impossible for a user to know the object URL that is long and contains random strings without visiting
the hosting page. There is a slim chance that the user enters the object URL on the browser to directly visit it. In this
situation, we think that the user intends to visit the hosting site. The redirection action will happen, but it does not hinder
the user's browsing experience.

CHAPTER 2. HarLINKJNG INVESTIGATION AND COUNTERMEASURES

2.4 Implementation

39

In this section, we describe the implementation details of our anti-hotlinking framework prototype.

It is deployed on the server-side and does not require modifications on the client-side. It only

requires browsers to run a small amount of assistant JavaScript codes that are supported by modem

out-of-box browsers.

2.4.1 Web Server Setup

We choose Apache (version 2.2.8) [7] as the web server based on which our anti-hotlinking pro

totype is deployed. It runs at a workstation with Intel dual-processor 2.2GHz and 2GB of RAM.

Three additional modules, modJimitipconn, modJ>andwidth and mod..rewrite, are added to the

server. The mod.Jimitipconn module [9] limits the maximum number of simultaneous download

connections per IP address. Similarly, the mod_bandwidth module [8] limits the download speed

of a single connection. The mod..rewrite module [10] rewrites the requested URL on-~e-fty based

on configuration rules with the style of Perl formal expressions. In our framework, rewriting HTI'P

requests is achieved by modifying .htaccess file and putting it into proper directories.

2.4.2 Technical Details

We use PHP 5.2.5 [40] as the back-end programming language. Most web pages in our framework

are written in PHP. Our framework uses PHP functions to implement session communication, and

to store related variables in the $..SESSION array. SessionJD can store on the browser in the form

of cookie. If the browser disables cookies, PHP can detect it and transfer SessionJD to the browser

as a query parameter of URis. The webmaster can enable the PHP Transparent Session Support

function by turning on the statement session.useJran...sid = 1 in the php.ini configuration file. In

CHAPTER 2. HarLINKING INVESTIGATION AND COUNTERMEASURES 40

the current PHP page, SessionJD will automatically append to all the internal URis of the hosting

domain. Another important function module, CAPrCHA [22], is also implemented in PHP. We use

a pseudo-random algorithm to generate a string consisting of a fixed number of random characters.

They are drawn on the image in a random font with the help of the GD library [27]. Some random

background noise is also added to thwart character recognition algorithms.

Our framework uses a small amount of JavaScript codes that are embedded in webpages and run

at the client-side. It provides a few additional functions to enhance the user experience, and does not

affect the core download control procedure of the framework at all. If the browser disables running

JavaScript, a client can still finish the download procedure. The framework provides Ajax-style

(Asynchronous JavaScript and Xml) [2] intra-page communication based on prototype.js [41]. The

advantage brought by Ajax is that, it retrieves data from the server asynchronously in the background

without interfering with the display of the current page.

2.5 Evaluation

In this section, we present the system evaluation of the proposed framework in terms of security and

usability, with the focus on the Strict Policy.

2.5.1 Security Analysis

From the security perspective, the Strict Policy provides a much stronger defense against hodinking

attacks than the Loose Policy. We use the Strict Policy to demonstrate the effectiveness of our

anti-hodinking framework against the four different types of hodinking attacks presented in Section

2.1.1, respectively.

CHAPI'ER 2. HOTLINKING INVESTIGATION AND COUN1ERMEASURES 41

2.5.1.1 Effectiveness against Direct HotUnking

Since the site applies URL Rewriting towards incoming HTfP requests, the request for a file will

be redirected to the download entrance page. The server does not directly return the file in response

to the HTfP request. Therefore, the attack of Direct Hotlinking will be defeated.

2.5.1.2 Effectiveness against Hotlinking via Referer Fabrication

The site does not use the HTI'P ..REFERER field in the received HTIP request header to determine

whether it should return the file or not. Instead, it uses the control procedure shown in Figure 2.12

to make the decision. Thus, fabricating an HTTP ..REFERER by using the domain of the hosting

server does not help hotlinking at all.

2.5.1.3 Effectiveness against Hotlinking via Cookie Vulnerabilities

To demonstrate the effectiveness against a hotlinking attack that explores cookie vulnerabilities,

we suppose SessionJD is stored on the browser in the form of cookie. The hotlinking page,

H.comlh.htm, can contain an iFrame from the victim site V.com to make the browser establish a

session with V.com. When the browser requests a file that is hotlinked in h.htm and hosted by

V.com, V.com will call the Session Creation/Authentication Module to validate the current session.

The session validation will pass. However, the hotlinking will fail to execute the required steps

(shown in Figure 2.12). The reason is that, the same-origin policy prevents the malicious code on

h.htm to access the iFrame of V.com. Therefore, the malicious code cannot complete the required

steps, such as CAPI'CHA image recognition, even if it has the ability of automated scripting. Since

the hotlinking page disables the user to view the legal page by setting the iFrame hidden, the user

will not help finish the required steps either.

CHAPI'ER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES

<a id="fileLink" href="www.V.com/filesldownload.php?fid=T85X4PNS&sid=Sk32d0"

>Download RMP Package

Figure 2.15: Modified snippet exploring session wlnerability

2.5.1.4 Effectiveness against Hotlinking via Session Vulnerabilities

42

Suppose the malicious code shown in Figure 2.4 manages to steal the session ID, and append it to

the file download hotlink. The last two HTML statements in Figure 2.4 can be modified as Figure

2.15 shows. Now the legal file request along with the valid session ID and file ID is sent to the

web server. It can pass the check of Session Creation/Authentication Module. However, the File

Entrance Page (namely, download.php) cannot be displayed on the client side. It is discarded by

the browser because the returned file type is IITML document rather than image expected by the

 tag. The download steps on this page cannot be completed by the user. Thus, this type of

hotlinking attacks will also be defeated.

2.5.2 UsabiUty Analysis

After the Strict Policy is enforced on the hosting site, the download request for the hotlinked file

will be redirected to the specific entrance webpage. First, the site creates a session with the browser

or validates the existing session. This procedure is totally transparent to the user, and the induced

time delay is hardly to be noticed. Second, the user needs to fulfill some steps required by the

hosting site before he becomes qualified for downloading. The time consumption of this procedure

is determined by the details of the requirements. In our prototype, the three example steps take

around 20 seconds to complete10• On one hand, this is unavoidable trade-off a hosting site has to

10The third step requires the user to wait 10 seconds, which can be skipped by the webmaster in reality.

http://www.V.com/downIoad.php
http://www.V.com/files/download.php?fid=T85X4PNS&sid=5k32dO

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 43

make; on the other hand, the hosting site must design the download steps carefully to maintain the

users' interests of the site.

The Loose Policy is responsible of delivering the requested object (often images) to the client

browser. It does not involve any user interaction. When the server receives an object request,

the Loose Policy performs additional steps listed as follows. In comparison with the direct HTI'P

response, it causes some minor delays.

• If there is no active session, the server needs to create a session for the client, and logs related

information to the session file. The time consumption is labeled as Delay_l.

• If the session ID rendered by the client does not match the server log (i.e., it is stolen from

others), the server will delete the current session and create a new one. The time consumption

is labeled as Delay ...2.

• If the session ID is legal, it will pass the server authentication. The time consumption is

labeled as Delay.3.

To measure the delay in each of the above cases, we use a Firefox browser to visit a Apache

server protected by the Loose Policy. We conduct 50 visits for each case. The server records the

timestamps (in millisecond) of the event start and end, and calculates the delay. On average, Delay _l

is lO.Oms, Delay...2 is 7.3ms, and Delay.3 is ll.lms. Overall, the additional delays induced by the

Loose Policy are minor and hard to be noticed by the client.

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 44

2.6 Related Work

We have already discussed several common hotlinking attacks in Section 2.1, and in this section we

survey related work in a boarder scope.

Hotlinking against session protection shares much in common with web session hijacking. Ses

sion hijacking [116] is an attack of taking over a user session by stealing the session ID and imper

sonating the authorized user. After that, the attacker gains access to the sensitive information stored

in the session. The main countermeasure is improving session management on both server-side and

client-side to protect session ID. End-to-end secure channels like SSL can prevent session ID from

being intercepted by passive eavesdroppers. The drawback of SSL is that, it brings much additional

cost to the communication [108]. As a result, many sites only use SSL to protect the initial lo

gin page, and the following communication is conducted over plain HTTP. The session ID may be

exposed in the insecure network again.

Sessionlock [63] provides a light-weighted approach to securing web sessions against eaves

dropping. After the server sets up the session with the client, it stores the session ID in the client

browser as the form of fragment identifier. The browser signs outgoing HTIP requests with the

fragment identifier via HMAC to present its identity to the server. Since the browser never sends

fragment identifier over the Internet, the eavesdropper cannot intercept the session ID. However,

this method is not appropriate for fighting against hotlinking that explores session vulnerability.

The hotlinking site can set up a legal session with the hosting site, and embeds the assigned session

ID into hotlinking pages for the user to share. In other words, the user can send requests signed by

the legal session ID without visiting the hosting site.

Cookie vulnerabilities exploited by hotlinking is in the field of cookie security. HTrP cookies

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 45

have serious security and privacy concerns [69]. Cookie theft is the act of intercepting cookies by

an unauthorized party. Cookies may be stolen via packet sniffing over the Internet. This scenario is

similar to session hijacking. Cross-site scripting attack is another way to steal cookies [140, 102].

Usually the attacker posts malicious code into a webpage, and by running it, the browser itself will

send cookies to the attacker. HttpOnly flag is the countermeasure that protects cookies from cross

site scripting, and it makes cookies inaccessible to client-side programs (such as JavaScript). It was

first introduced by Microsoft [112] and supported in PHP since version 5.2.0. However, it has not

become the industry standard.

Currently, there are some web sites that provide online storage and file delivery service, such as

[42, 38]. They have also deployed anti-hotlinking measures. However, their implementation details

remains sealed.

2. 7 Conclusion

In this chapter we investigate the hotlinking phenomenon with the focus on unauthorized hotlink

ing. We perform a series of large-scale measurements targeting two types of hotlinked objects,

images and software packages. Our measurement results show that hotlinking widely exists over

the Internet and is severe in some categories of websites like blogging. We also conduct a detailed

postmortem analysis on a real hotlink-victim site, which shows that unexpected large amount of

hotlinking traffics can easily overwhelm the victim server. Moreover, we analyze a set of regu

lar hotlinking attacks that explore the weakness of current defense methods. To defend against

hotlinking attacks, we present an anti-hotlinking framework based on the existing network security

techniques. The framework is highly customizable with different granularities of protection that

CHAPTER 2. HOTLINKING INVESTIGATION AND COUNTERMEASURES 46

webmasters can specify. A prototype of the framework is implemented with the support of the two

download policies, Strict Policy and Loose Policy. Its effectiveness against hotlinking attacks is

evaluated in terms of security and usability.

Chapter 3

Twitter is a popular online social networking and micro-blogging tool, which was released in 2006.

Remarkable simplicity is its distinctive feature. Its community interacts via publishing text-based

posts, known as tweets. The tweet size is limited to 140 characters. Hashtag, namely words or

phrases prefixed with a # symbol, can group tweets by topic. For example, #Justin Bieber and

#Women's World Cup are the two trending hashtags on Twitter in 2011 [51]. Symbol@ followed

by a usemame in a tweet enables the direct delivery of the tweet to that user. Unlike most online

social networking sites (i.e., Facebook and MySpace), Twitter's user relationship is directed and

consists of two ends, friend and follower. In the case where the user A adds B as a friend, A is

a follower of B while B is a friend of A. In Twitter terms, A follows B. B can also add A as his

friend (namely, following back or returning the follow), but is not required. From the standpoint of

information flow, tweets flow from the source (author) to subscribers (followers). More specifically,

when a user posts tweets, these tweets are displayed on both the author's homepage and those of his

followers.

As reported in August 2011, Twitter has attracted 200 million users and generated 8.3 million

Tweets per hour [54]. It ranks the lOth on the top 500 site list according to Alexa in December

2011 [50]. In November 2009, Twitter emphasized its value as a news and information network

by changing the question above the tweet input dialog box from "What are you doing" to "What's

happening". To some extent, Twitter has transformed from a personal micro-blogging site to an

47

CHAPTER 3. DETECTION OF BarS ON TWITTER 48

information publish venue. Many traditional industries have used Twitter as a new media channel.

We have witnessed successful Twitter applications in business promotion [6], customer service [17],

political campaigning [15], and emergency communication [132, 97].

The growing user population and open nature of Twitter have made itself an ideal target of

exploitation from automated programs, known as bots. Like existing bots in other web applications

(i.e., Internet chat [89], blogs [129] and online games [88]), bots have been common on Twitter.

Twitter does not inspect strictly on automation. It only requires the recognition of a CAPTCHA

image during registration. After gaining the login information, a bot can perform most human tasks

by calling Twitter APis. More interestingly, in the middle between humans and bots have emerged

cyborgs, which refer to either bot-assisted humans or human-assisted bots. Cyborgs have become

common on Twitter. After a human registers an account, he may set automated programs (i.e., RSS

feedlblog widgets) to post tweets during his absence. From time to time, he participates to tweet

and interact with friends. Cyborgs interweave characteristics of both humans and bots.

Automation is a double-edged sword to Twitter. On one hand, legitimate bots generate a large

volume of benign tweets, like news and blog updates. This complies with the Twitter's goal of

becoming a news and information network. On the other hand, malicious bots have been greatly

exploited by spammers to spread spam or malicious contents. These bots randomly add users as

their friends, expecting a few users to follow back1• In this way, spam tweets posted by bots display

on users' homepages. Enticed by the appealing text content, some users may click on links and get

redirected to spam or malicious sites2. If human users are surrounded by malicious bots and spam

tweets, their twittering experience deteriorates, and eventually the whole Twitter community will be

1 Some advanced bots target potential users by keyword search.
2Due to the tweet size limit, it is very common to use link shortening service on 1\vitter, which converts an original

link to a short one (i.e., http://bit.ly/dtUrnSQ). The link illegibility favors bots to allure users.

http://bit.ly/dtUmSQ

CHAPTER 3. DETECfiON OF BaTS ON TMTTER 49

hurt. The objective of this chapter is to characterize the automation feature of Twitter accounts, and

to classify them into three categories, human, bot, and cyborg, accordingly. This will help 1\vitter

manage the community better and help human users recognize who they are tweeting with.

In the chapter, we first conduct a series of measurements to characterize the differences among

human, bot, and cyborg in terms of tweeting behavior, tweet content, and account properties. By

crawling 1\vitter, we collect over 500,000 users and more than 40 million tweets posted by them.

Then we perform a detailed data analysis, and find a set of useful features to classify users into the

three classes. Based on the measurement results, we propose an automated classification system

that consists of four major components: (1) the entropy component uses tweeting interval as a

measure of behavior complexity, and detects the periodic and regular timing that is an indicator

of automation; (2) the spam detection component uses tweet content to check whether text patterns

contain spam or not3; (3) the account properties component employs useful account properties, such

as tweeting device makeup, URL ration, to detect deviations from normal; (4) the decision maker

is based on Random Forest, and it uses the combination of the features generated by the above

three components to categorize an unknown user as human, bot or cyborg. We validate the efficacy

of the classification system through our test dataset. We further apply the system to classify the

entire dataset of over 500,000 users collected, and speculate the current composition of1\vitter user

population based on our classification results.

The remainder of this chapter is organized as follows. Section 3.1 covers related work on 1\vitter

and online social networks. Section 3.2 details our measurements on Twitter. Section 3.3 describes

our automatic classification system on 1\vitter. Section 3.4 presents our experimental results on

3Spam is a good indicator of automation. Most sparn messages are generated by bots, and very few are manually
posted by humans.

CHAPTER 3. DETECTION OF Bai'S ON TWITTER 50

classification of humans, hots, and cyborgs on Twitter. Finally, Section 3.5 concludes the chapter.

3.1 Related Work

Twitter has been widely used since 2006, and there are some related literature in twittering [101,

106, 147]. To better understand micro-blogging usage and communities, Java et al. [101] studied

over 70,000 Twitter users and categorized their posts into four main groups: daily chatter (e.g.,

••going out for dinner"), conversations, sharing information or URLs, and reporting news. Their

work also studied (1) the growth of Twitter, showing a linear growth rate; (2) its network properties,

showing the evidence that the network is scale-free like other social networks [114]; and (3) the

geographical distribution of its users, showing that most Twitter users are from the US, Europe,

and Japan. Krishnamurthy et al. [106] studied a group of over 100,000 Twitter users and classified

their roles by follower-to-following ratios into three groups: (1) broadcasters, which have a large

number of followers; (2) acquaintances, which have about the same number on either followers or

following; and (3) miscreants and evangelists (e.g., sparnrners), which follow a large number of

other users but have few followers. Wu et al. [142] studied the information diffusion on Twitter,

regarding the production, flow, and consumption of information. Kwak et al. [107] conducted a

thorough quantitative study on Twitter by crawling the entire Twittersphere. Their work analyzed the

follower-following topology, and found non-power-law follower distribution and low reciprocity,

which all mark a deviation from known characteristics of human social networks. Kim et al. [82]

analyzed Twitter lists as a potential source for discovering latent characters and interests of users. A

Twitter list consists of multiple users and their tweets. Their research indicated that words extracted

from each list are representative of all the members in the list even if the words are not used by the

CHAPTER 3. DETECTION OF BaTS ON TWI'ITER 51

members. It is useful for targeting users with specific interests.

In addition to network-related studies, several previous works focus on socio-technological as

pects of Twitter [150, 132, 97, 127, 100], such as its use in the workplace or during major disaster

events.

Twitter has attracted spammers to post spam content, due to its popularity and openness. Fight

ing against spam on Twitter has been investigated in recent works [147, 92, 136]. Yardi et al. [147]

detected spam on Twitter. According to their observations, spammers send more messages than

legitimate users, and are more likely to follow other spammers than legitimate users. Thus, a high

follower-to-following ratio is a sign of spamming behavior. Grier et at. [92] investigated spam on

Twitter from the perspective of spam and click-through behaviors, and evaluated the effectiveness

of using blacklists to prevent spam propagation. Their work found out that around 0.13% of spam

tweets generate a visit, orders of magnitude higher than click-through rate of 0.003% - 0.006% re

ported for spam email. Exploiting the social trust among users, social spam may achieve a much

higher success rate than traditional spam methods. Thomas et. al [136] studied the behaviors of

spammers on Twitter by analyzing the tweets originated from suspended users in retrospect. They

found that the current marketplace for Twitter spam uses a diverse set of spamming techniques, in

cluding a variety of strategies for creating Twitter accounts, generating spam URLs, and distributing

spam.

Compared to previous measurement studies on Twitter, our work covers a relatively large group

of Twitter users (more than 500,000) and differs in how we link the measurements to automation,

i.e., whether posts are from humans, hots, or cyborgs. While some similar metrics are used in our

work, such as follower-to-following ratio, we also introduce some metrics, including entropy of

tweet intervals, which are not employed in previous research. Our work also detects spam content

CHAPTER 3. DETECTION OF BaTS ON lWITTER 52

through Bayesian classification. However, our work focuses on determining the automation degree

of Twitter accounts, and uses spam as one of the features in the classification.

'1\vitter is a social networking service, so our work is also related to recent studies on social

networks, such as Flickr, LiveJournal, Facebook, MySpace, and YouThbe [72, 114, 73]. In [114],

with over ll million users of Flickr, YouThbe, LiveJoumal, and Orkut, Mislove et al. analyzed link

structure and uncovered the evidence of power-law, small-world, and scale-free properties. In [73],

Chaetal. examined the propagation of information through the social network of Flickr. Their work

shows that most pictures are propagated through the social links (i.e., links received from friends

rather than through searches or external links to Flickr content) and the propagation is very slow

at each hop. As a result of this slow propagation, a picture's popularity is often localized in one

network and grows slowly over a period of months or even years. In [72], Cha et al. analyzed video

popularity life-cycles, content aliasing, and the amount of illegal content on YouTube, a popular

video sharing service. While YouTube is designed to share large content, i.e., videos, '1\vitter is

designed to share small content, i.e., text messages. Unlike other social networking services, like

Facebook or YouTube, '1\vitter is a micro-content social network, with messages being limited to

140 characters.

As '1\vitter is a text-based message system, it is natural to compare it with other text-based

message systems, such as instant messaging or chat services. Twitter has similar message length

(140 characters) to instant messaging and chat services. However, 1\vitter lacks "presence" (users

show up as online/offline for instant messaging services or in specific rooms for chat) but offers (1)

more access methods (web, SMS, and various APis) for reading or posting and (2) more persistent

content. Similar to '1\vitter, instant messaging and chat services also have problems with bots and

spam [89, 143]. To detect bots in online chat, Gianvecchio et al. [89] analyzed humans and bots in

CHAPTER 3. DETECTION OF Bai'S ON TWIITER 53

Yahoo! chat and developed a classification system to detect bots using entropy-based and machine

learning-based classifiers, both of which are used in our classification system as well. In addition,

as Twitter is text-based, email spam filtering techniques are also relevant [91, 149, 144]. However,

Twitter posts are much shorter than emails and spaced out over longer periods of time than for

instant messages, e.g., hours rather than minutes or seconds.

Twitter also differs from most other network services in that automation, e.g., message feeds, is

a major feature of legitimate Twitter usage, blurring the lines between bot and human. Twitter users

can be grouped into four categories: humans, bots, bot-assisted humans, and human-assisted bots.

The latter two, bot-assisted humans and human-assisted bots, can be described as cyborgs, a mix

between bots and humans [145].

3.2 Measurement

In this section, we first describe the data collection of over 500,000 Twitter users. Then, we detail

our observation of user behaviors and account properties, which are pivotal to automatic classifica

tion.

3.2.1 Data Collection

Here we present the methodology used to crawl the Twitter network and collect detailed user infor

mation. Twitter has released a set of API functions [138] that support user information collection.

Thanks to Twitter's courtesy of including our test account to its white list, we can make API calls up

to 20,000 per hour. This eases our data collection. To diversify our data sampling, we employ two

methods to collect the dataset covering more than 500,000 users. The first method is Depth-First

CHAPTER 3. DETECTION OF Bar'S ON TWITTER 54

Search (DFS) based crawling. The reason we choose DFS is that it is a fast and uniformed algo

rithm for traversing a network. Besides, DFS traversal implicitly includes the information about

network locality and clustering. Inspired by [90, 94], we randomly select five users as seeds. For

each reached user, we record its follower list. Taking the following direction, the crawler continues

with the depth constraint set as three. We customize our crawler with a core module of PHP cURL.

Ten crawler processes work simultaneously for each seed. After a seed is finished, they move to the

next. The crawl duration lasts one month, and 429,423 users are logged.

Similar to the work in [106] and [147], we also use the public timeline API to collect the infor

mation of active users, increasing the diversity of the user pool. Twitter constantly posts the twenty

most recent tweets in the global scope. The crawler calls the timeline API to collect the authors

of the tweets included in the timeline. Since the Twitter timeline frequently updates, the crawler

can repeatedly call the timeline API. During the same time window of the DFS crawl, this method

contributes 82,984 users to the dataset. We totally collect 512,407 users on Twitter combining both

methods.

3.2.2 Ground Truth Creation

To develop an automatic classification system, we need a ground truth set that contains known sam

ples of human, bot, and cyborg. Among collected data, we randomly choose different samples and

classify them by manually checking their user logs and homepages. The ground truth set includes

two thousand users per class of human, bot and cyborg, and thus in total there are six thousand

classified samples. In summary, the dataset contains 8,350,095 tweets posted by the sampled users

in their account life-time4 , from which we can extract useful features for classification, such as

44,431,923 tweets in the training set, and 3,918,172 tweets in the test set.

CHAPTER 3. DETECTION OF Bars ON TWITI'ER 55

(c) Cyborg

Figure 3.1: Numbers of Followers and Friends

tweeting behaviors and text patterns.

Our log-based classification follows the principle of the Thring test [137]. The standard Thring

tester communicates with an unknown subject for five minutes, and decides whether it is a human

or machine. Classifying Twitter users is actually more challenging than it appears to be. For many

users, their tweets are less likely to form a relatively consistent context. For example, a series of

successive tweets may be hardly relevant. The first tweet is the user status, like "watching a football

game with my buds." The second tweet is an automatic update from his blog. The third tweet is a

news report RSS feed in the format of article title followed by a shortened URL.

CHAPTER 3. DETECTION OF BaTS ON TWIITER 56

For every account, the following classification procedure is executed. We thoroughly observe

the log, and visit the user's homepage (http://twitter.com/#!lusemame) if necessary. We carefully

check tweet contents, visit URLs included in tweets (if any), and decide if redirected web pages

are related with their original tweets and if they contain spam or malicious contents. We also check

other properties, like tweeting devices, user profile, and the numbers of followers and friends. Given

a long sequence of tweets (usually we check 60 or more if needed), the user is labeled as a human if

we can obtain some evidence of original, intelligent, specific and human-like contents. In particular,

a human user usually records what he is doing or how he feels about something on Twitter, as he

uses 1\vitter as a micro-blogging tool to display himself and interact with friends. For example,

he may write a post like "I just saw Yankees lost again today. I think they have to replace the

starting pitcher for tomorrow's game." The content carries intelligence and originality. Specificity

means that the tweet content is expressed in relatively unambiguous words with the presence of

consciousness [137]. For instance, in reply to a tweet like "How you like iPad?", a specific response

made by human may be "I like its large touch screen and embedded 30 network". On the other

hand, a generic reply could be "I like it".

The criteria for identifying a bot are listed as follows. The first is the lack of intelligent or origi

nal content. For example, completely retweeting tweets of others or posting adages indicates a lack

of originality. The second is the excessive automation of tweeting, like automatic updates of blog

entries or RSS feeds. The third is the abundant presence of spam or malicious URLs (i.e., phishing

or mal ware) in tweets or the user profile. The fourth is repeatedly posting duplicate tweets. The fifth

is posting links with unrelated tweets. For example, the topic of the redirected web page does not

match the tweet description. The last is the aggressive following behavior. In order to gain attention

from human users, bots do mass following and un-following within a short period of time. Cy-

http://twitter.eom/%23l/username

CHAPTER 3. DETECI'ION OF BarS ON TWITTER 51

borgs are either human-assisted bots or bot-assisted humans. The criterion for classifying a cyborg

is the evidence of both human and bot participation. For example, a typical cyborg account may

contain very different types of tweets. A large proportion of tweets carry contents of human-like

intelligence and originality, while the rest are automatic updates of RSS feeds. It represents a usage

model, in which the human uses his account from time to time while the 1\vitter widget constantly

runs on his desktop and posts RSS feeds of his favorite news channel. Lastly, the uncertain category

is for non-English users and those without enough tweets to classify. The samples that are difficult

and uncertain to classify fall into this category, and are discarded. Some 1\vitter accounts are set

as "private" for privacy protection, and their web pages are only visible to their friends. We do not

include such type of users in the classification either, because of their inaccessibility.

1
0.9
0.8
0.7

~
0.6

e 0.5
0.4
0.3
0.2
0.1

0

3.2.3 Data Analysis

0

Bot --e---
Human ''
Cybo ····-~---·-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Account Reputation

Figure 3.2: CDF of Account Reputation

As mentioned before, 1\vitter API functions support detailed user information query, ranging from

profile, follower and friend lists to posted tweets. In the above crawl, for each user visited, we call

API functions to collect abundant information related with user classification. Most information

CHAPTER 3. DETECITON OF BGI'S ON TWITIER 58

is returned in the fonnat of XML or JSON. We develop some toolkits to extract useful informa

tion from the above well-organized data structures. Our measurement results are presented in the

question-answer format.

Ql. In terms of social relationship, do hots have more friends than followers? A user's tweets

can only be delivered to those who follow him. A common strategy shared by bots is following

a large number of users (either targeted with purpose or randomly chosen), and expecting some of

them will follow back. Figure 3.1 shows the scatter plots of the numbers of followers and friends for

the three categories. For better illustration, the scale is chopped and a small amount of extraordinary

points are not included. Figure 3.1 contains three different groups of users: group I where the

number of one's followers is clearly greater than the number of its friends; group n where the

situation is reverse; and group lli where the nodes stick around the diagonal.

In the human category, as shown in Figure 3.1(a), the majority of the nodes belong to group lll,

implying that the number of their followers is close to that of their friends. This result complies with

[114], revealing that human relationships are typically reciprocal in social networks. Meanwhile,

there are quite a few nodes belonging to group I with far more followers than friends. They are usu

ally accounts of celebrities and famous organizations. They generate interesting media contents and

attract numerous subscribers. For example, the singer Justin Timberlake has 1 ,645,675 followers

and 39 friends (the ratio is 42,197-to-1).

In the bot category, many nodes belong to group n, as shown in Figure 3.1(b). Bots add many

users as friends, but few follow them back. Unsolicited tweets make bots unpopular among the

human world. However, for some bots, the number of their followers is close to that of their friends.

This is due to the following reason. Twitter imposes a limit on the ratio of followers over friends

to suppress bots. Thus, some more advanced bots unfollow their friends if they do not follow back

CHAPTER 3. DETECI10N OF BaTS ON TMITER

g•
.!.
.j •

j.

I· s

• 10

H-Accouall

(a) Human

too ;

I

I I
10 ~; ;

I. i i I
I I ~ 10

l
! ~ i

! '
40

,;
I i i: .

i L

20

• 100

.:.

:~ E ' ·=· I i

i ,.
I. '

j !-.. '
:: ! : .. ;;,

" I ' ~ :;

"
!i

40 10

~sACCOUJdl

(c) Cyborg

20

10

,. .,
,·

100

40 10

Bot ACCOUDtl

(b) Bot

Figure 3.3: Inter-arrival Timing Distribution of Accounts

within a certain amount of time. Those hots cunningly keep the ratio close to 1.

59

10 100

Besides, we have observed that, normal human users are more likely to follow "famous" or

"reputable" accounts. We define and normalize

. follower ..no
Account Reputatton = f ll f . ed o ower _no+ rm _no

(3.1)

A celebrity usually has many followers and few friends (such as Justin Timberlake), and his rep-

utation is close to 1. In contrast, for a bot with few followers and many friends, its reputation is

CHAPTER 3. DETECI10N OF BaTS ON TWJTIER 60

close to 0. Figure 3.2 shows the cumulative distribution function (CDF) of account reputation for

three categories. The human category has the largest account reputation, closely followed by cy-

borg. However, bot's value is much lower. Around 60% of bots have fewer followers than friends,

causing account reputation less than 0.5.

Q2. Does automation generate more tweets? To answer this question, we measure the number

of tweets posted in a user's lifetime5• Figure 3.4 shows the CDF of the tweet counts, corresponding

to the human, bot and cyborg category. It is clear that cyborg posts more tweets than human and

'
bot. A large proportion of cyborg accounts are registered by commercial companies and websites as

a new type of media channel and customer service. Most tweets are posted by automated tools (i.e.,

RSS feed widgets, Web 2.0 integrators), and the volume of such tweets is considerable. Meanwhile,

those accounts are usually maintained by some employees who communicate with customers from

time to time. Thus, the high tweet count in the cyborg category is attributed to the combination of

both automatic and human behaviors in a cyborg. It is surprising that bot generates fewer tweets than

human. We check the bot accounts, and find out the following fact. In its active period, bot tweets

more frequently than human. However, bots tend to take long-term hibernation. Some are either

suspended by Twitter due to extreme or aggressive activities, while the others are in incubation and

can be activated to form bot legions.

Q3. Does autonw.tion generate higher tweeting frequency? Extended from the previous ques-

tion, here we examine account's tweeting frequency in active status. Figure 3.3 plots the inter-arrival

timing distribution of three categories. Due to space limit, each category contains 100 accounts.

Tweets posted by an account are sorted on timestamp, and the timestamp of the first tweet is set

as 0. An account is denoted as a vertical strip in the figure, and each of its tweets is denoted as a

'It is the duration from the time when his account was created to the time when our crawler visited it.

CHAPTER 3. DETECTION OF Bai'S ON TWI1TER

1
0.9
0.8
0.7

J;l.. 0.6

e 0.5
0.4
0.3
0.2
0.1

0
0 5000 10000

Tweet Count

Bot --a-
Human · ·

""'""'""'

15000

Figure 3.4: CDF of Tweet Count

61

20000

tiny segment in the strip. We observe the wide existence of burstiness (namely, a block of intensive

tweets) in bot, whereas human exhibits less intensive inter-arrival distribution. Automated programs

used by bot accounts can constantly operate in the background and intensively post tweets. Most

human users tweet with large inter-arrivals (such as hours), and manual behavior cannot generate

tweeting frequency as high as bot.

Q4. Is tweeting behavior regular or complex? In our measurement we have observed that, many

bots are driven by timers to post tweets at fixed inter-arrivals, and thus exhibit regular behavior.

In contrast, human behavior carries the inherent complexity [88, 89, 123]. We use entropy rate

to measure periodic or regular timing of account's posting behavior. More theoretical details of

entropy are presented in Section 3.3.1. For normalization, we define relative entropy as the entropy

rate of an account over the maximum entropy rate in the ground truth set. Figure 3.5 demonstrates

the CDF of relative entropy of the three categories. Entropy clearly separates bot from human. High

entropy indicates irregularity, a sign of manual behavior, whereas low entropy indicates regularity,

a sign of automation.

Q5. How do users post tweets? manually or via auto piloted tools? 1\vitter supports a variety

CHAPTER 3. DETECTION OF Bai'S ON TWITTER

IS u

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0

Bot --B-
Human
Cyborg "'

0.2 0.4 0.6 0.8
Relative Entropy

Figure 3.5: CDF of Account's Relative Entropy

62

of channels to post tweets. The device name appears below a tweet prefixed by "from." Our whole

dataset includes 41,991,545 tweets posted by 3,648 distinct devices. The devices can be roughly

divided into the following four categories. (I) Web, a user logs into Twitter and posts tweets via the

website. (2) Mobile devices, there are some programs exclusively running on mobile devices to post

tweets, like Txt for text messages, Mobile web for web browsers on handheld devices, 1\vitterBerry

for BlackBerry, and twidroid for Android mobile OS. (3) Registered third-party applications, many

third-parties have developed their own applications using 1\vitter APis to tweet, and registered

them with 1\vitter. From the application standpoint, we can further categorize this group into sub

groups including website integrators (twitpic, bit.ly, Facebook), browser extensions (1\veetbar and

Twitterfox for Firefox), desktop clients (1\veetDeck and Seesmic Desktop), and RSS feedslblog

widgets (twitterfeed and Twitter for Wordpress). (4) APis, for those third-party applications not

registered or certificated by 1\vitter, they appear as "API" in 1\vitter.

Figure 3.6 shows the makeup of the above tweeting device categories. Among them, the web-

site of 1\vitter is the most widely used and generates nearly half of the tweets (46.78%), followed

by third-party devices (40.18%). Mobile devices and unregistered API tools contribute 6.81% and

6.23%, respectively. Table 3.1 lists the top ten devices used by the human, bot, and cyborg cate-

CHAPTER 3. DETEC110N OF Bai'S ON TWIT'IER 63

API

3rd-Party

Figure 3.6: Tweeting Device Makeup

gories, and the whole datase~.

More than half of the human tweets are manually posted via the 1\vitter website. The rest of top

devices are mobile applications (Tweetie, UberTwitter, Mobile web, Txt, Twitter Berry) and desktop

clients (TweetDeck, Echofon and Seesmic). In general, tweeting via such devices requires human

participation. In contrast, the top tools used by bots are mainly auto piloted, and 42.39% of bot

tweets are generated via unregistered API-based tools. Bots can abuse APis to do almost everything

they want on Twitter, like targeting users with keywords, following users, unfollowing those who do

not follow back, or posting prepared tweets. 1\vitterfeed, RSS2Twitter, and Proxifeed are RSS feed

widgets that automatically pipeline information (usually in the format of the page title followed by

the URL) to Twitter via RSS feeds. Twitter Tools and Twitme for WordPress are popular WordPress

plug-ins that integrate blog updates to Twitter. Assetize is an advertising syndicator mainly targeting

at Twitter, and twitRobot is a bot tool that automatically follows other users and posts tweets. All

these tools only require minimum human participation (like importing 1\vitter account information,

or setting RSS feeds and update frequency), and thus indicate great automation.

Overall, humans tend to tweet manually and bots are more likely to use auto piloted tools.

6The whole dataset contains around 500,000 users, and the human, bot and cyborg categories equally contain 1,000
usersinthemurungdatas~

CHAPTER 3. DETECTION OF Bai'S ON TWITTER 64

Human Bot I eyborg All

II Web(50.5%) API(42.4%) Twitterfeed(31.3%) Web(46.8%)
12 1\veetDcck(9.2%) 1\vittcrfccd(26.1%) Web(23.~) 1\veetDcck(9.3%)
13 1\veetie(6.2%) twitRobot(13.1%) API(6.9%) 1\vittcrfced(7 .8%)
14 Uber1\vitter(3.6%) RSS21\vitter(2. 7%) Assetize(5.7%) API(6.2%)
IS Mobile web(3.0%) Twitter Tools(1.2%) HootSuitc(5.2%) Ecllofon(2.8%)
16 Txt(2.6%) Assetize(l.2%) WP to Twitter(2.4%) Tweetie(2.5%)
17 Echofon(2.2%) Proxifeed(l.l%) 1\veetDeck(l.S%) Txt(2.1%)
18 1\vitter8erry(2.1%) 1\veetDcck(1.0%) Ubel'l'witter(1.2%) HootSuitc(2.1%)
19 l\vitterrific(1.9%) bit.ly(0.9%) RSS2l\vitter(1.2%) Ubel'l'witter(1. 7%)
#10 Seesmic(1.6%) 1\vitmc for WordPress(0.8%) 1\vaitter(0.9%) Mobile web(1.5%)

Cyborgs employ the typical human and bot tools. The cyborg group includes many human users

who access their Twitter accounts from time to time. For most of the time when they are absent,

they leave their accounts to auto piloted tools for management.

0.9
Bot _,__

Human
0.8 Cyborg

0.7

1:1. 0.6
Q 0.5 u

0.4
0.3
0.2
0.1

o.s 1 1.5 2 2.5 3
External URL Ratio

Figure 3.7: External URL ratio in tweets

Q6. Do bots include more external URLs than humans? In our measurement, we find out that,

most bots tend to include URLs in tweets to redirect visitors to external web pages. For example,

spam bots are created to spread unsolicited commercial information. Their topics are similar to

those in email spam, including online marketing and affiliate programs, working at home, selling

fake luxury brands or pharmaceutical products 7• However, the tweet size is up to 140 characters,

1 A new topic is attracting more followers on 1\vitter. It follows the style of pyramid sales by asking newly joined
users to follow existing users in the spam network.

CHAP'IER 3. DETECITON OF Bai'S ON TWITTER 65

0.17

0.16
c
'f 0.1S ! 0.14

0.13

0.12

0.11

Human
Cyborg-

Mon. Tue. Wed. lbu. Fri. Sat. Sun.
Weekday

(a) Tweets by Day of Week

0.06

o.os
·~ 0.04

! 0.03

0.02

0.01

S 10 IS
Hour (Local Time)

(b) Hourly Tweets

Figure 3.8: Tweets Posted on Daily/Hourly Base

20

which is rather limited for spammers to express enough text information to allure users. Basically, a

spam tweet contains an appealing title followed by an external URL. Figure 3.7 shows the external

URL ratios (namely, the number of external URLs included in tweets over the number of tweets

posted by an account) for the three categories, among which the URL ratio of bot is highest. Some

tweets by hots even have more than one URL8. The URL ratio of cyborg is very close to the bot's

level. A large number of cyborgs integrate RSS feeds and blog updates, which take the style of

webpage titles followed by page links. The URL ratio of human is much lower, on average it is only

29%. When a human tweets what is he doing or what is happening around him, he mainly uses text

and does not often link to web pages.

Q7. Are there any other temporal properties of 1WiUer users helpful for differentiation among

human, bot, and cyborg? Many research works like [84] and [81] have shown the weekly and

diurnal access patterns of humans in the Internet. Figures 3.8(a) and 3.8(b) present the tweeting

percentages of the three different categories on daily and hourly bases, respectively. The weekly be-

havior of Twitter users shows clear differences among the three categories. While humans are more

active during the regular workdays, from Monday to Friday, and less active during the weekend, Sat-

8Many such accounts belong to a type of bot that always appends a spam link to tweets it re-tweets.

CHAPTER 3. DETECI'ION OF BaTS ON TWff"''ER 66

urday and Sunday, hots have roughly the same activity level every day of the week. Interestingly,

cyborgs are the most active ones on Monday and then slowly decrease their tweeting activities dur-

ing the week; on Saturday cyborgs reach their lowest active point but somehow bounce back a bit

on Sunday. Such a cyborg activity trend is mainly caused by their message feeds and the high level

of news and blog activities at the start of a week. Similarly, the hourly behavior of human is more

active during the daytime, which mostly overlaps with office hours. The bot activity is nearly even

except a little drop in the deep of night. Some more advanced hots have the setting of "only tweet

from a time point to another," which helps save API calls [52]. Thus, they can tweet more in the

daytime to better draw the attention of humans.

s ·e
8.
£

F1gure 3.9: Account Registration Date (Grouped by Quarter)

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

-Human-
Cyborg-
Total-

P.., .P,c>.PJ.~.P.., .P,c>.PJ.~.P..,.P.c>.PJ.~.P/.P.c>.PJ.~.
~~~~0000~~~~~~~~ 

QuarterlY ear 

Figure 3.9 shows account registration dates grouped by quarter. We have two observations from 

the figure. First, the majority of accounts (80.0% of humans. 94.8% ofbots, and 71.1% of cyborgs) 

were registered in 2009. It confirms the dramatic growth of1\vitter in 2009. Second, we do not find 

any bot or cyborg in our ground truth dataset earlier than March, 2007. However, human registration 

has continued increasing since Twitter was founded in 2006. Thus, old accounts are less likely to 

be hots. 



CHAPTER 3. DETECI10N OF Bai'S ON TWIITER 67 

Q8. Are users aware of privacy and identity protection on Twitter? Twitter provides a protected 

option to protect user privacy. If it is set as true, the user's homepage is only visible to his friends. 

However, the option is set as false by default. In our dataset of over 500,000 users, only 4.9% 

of them are protected users. Twitter also verifies some accounts to authenticate users' real identi

ties. More and more celebrities and famous organizations have applied for verified accounts. For 

example, Bill Gates has his verified Twitter account at http: I I twitter. com/bi llga tes. 

However, in our dataset, only 1.8% of users have verified accounts. 

3.3 Classification 

This section describes our automated system for classification of Twitter users. The system clas

sifies Twitter users into three categories: human, bot, and cyborg. The system consists of several 

components: the entropy component, the spam detection component, the account properties com

ponent, and the decision maker. The high-level design of our Twitter user classification system is 

shown in Figure 3.10. 

The entropy component uses corrected conditional entropy to detect periodic or regular timing, 

which is a sign of automation. The spam detection component uses a variant of Bayesian classi

fication to detect text patterns of known spam on Twitter. The account properties component uses 

account-related properties to catch bot deviation from the normal human distribution. Lastly, the 

decision maker based on Random Forest algorithm analyzes the features identified by the other three 

components and makes a decision: human, cyborg, or bot. 



CHAPTER 3. DETECflON OF Bai'S ON TWI1TER 68 

~ 
Account Properties 1---

Component 

,. Human 

Input -- Log Machine Learning Decision -Processor Component Maker 
Cyborg 

4 Bot 

L...., Entropy -Component 

Figure 3.10: Classification System 

3.3.1 Entropy Component 

The entropy component detects periodic or regular timing of the messages posted by a Twitter user. 

On one hand, if the entropy or corrected conditional entropy is low for the inter-tweet delays, it 

indicates periodic or regular behavior, a sign of automation. More specifically, some of the messages 

are posted via automation, i.e., the user may be a potential bot or cyborg. On the other hand, a high 

entropy indicates irregularity, a sign of human participation. 

3.3.1.1 Entropy Measures 

The entropy rate is a measure of the complexity of a process [79]. The behavior of bots is often 

less complex than that of humans [87, 98], which can be measured by entropy rate. A low entropy 

rate indicates a regular process, whereas a high entropy rate indicates a random process. A medium 

entropy rate indicates a complex process, i.e., a mix of order and disorder [96]. 

The entropy rate is defined as either the average entropy per random variable for an infinite 

sequence or as the conditional entropy of an infinite sequence. Thus, as real datasets are finite, the 



CHAPTER 3. DETECTION OF BaTS ON TWITTER 69 

conditional entropy of finite sequences is often used to estimate the entropy rate. To estimate the 

entropy rate, we use the corrected conditional entropy [122]. The corrected conditional entropy is 

defined as follows. 

A random process X = {X;} is defined as a sequence of random variables. The entropy of such 

a sequence of random variables is defined as: 

m 

H(X1, ... ,Xm} =- l:P(x;)logP(x;), (3.2) 
i=l 

where P(xi) is the probability P(X; = x;). 

The conditional entropy of a random variable given a previous sequence of random variables is: 

(3.3) 

Then, based on the conditional entropy, the entropy rate of a random process is defined as: 

H(X) = lim H(Xm I X1. ... , Xm-d· 
m-+oo 

(3.4) 

The corrected conditional entropy is computed as a modification of Equation 5.3. First, the joint 

probabilities, P(X1 = x1, ... , Xm = Xm) are replaced with empirically-derived probabilities. The 

data is binned into Q bins, i.e., values are converted to bin numbers from 1 to Q. The empirically-

derived probabilities are then determined by the proportions of bin number sequences in the data. 

The entropy estimate and conditional entropy estimate, based on empirically-derived probabilities, 

are denoted as EN and CE respectively. Second, a corrective term,perc(Xm) · EN(X1). is added 

to adjust for the limited number of sequences for increasing values of m [122]. The corrected 



CHAPTER 3. DETECTION OF Bai'S ON TWI1TER 70 

conditional entropy, denoted as CCE, is computed as: 

CCE(Xm I Xt, ... ,Xm-1) = 
(3.5) 

CE(Xm I X1. ... ,Xm-1) + perc(Xm) · EN(X1) 1 

where perc(Xm) is the percentage of unique sequences of length m and EN (X 1 ) is the entropy 

with m fixed at 1 or the first-order entropy. 

The estimate of the entropy rate is the minimum of the corrected conditional entropy over dif

ferent values of m. The minimum of the corrected conditional entropy is considered to be the best 

estimate of the entropy rate from the limited number of sequences. 

3.3.2 Spam Detection Component 

The spam detection component examines the content of tweets to detect spam. We have observed 

that most spam tweets are generated by hots and only very few of them are manually posted by 

humans. Thus, the presence of spam patterns usually indicates automation. Since tweets are text, 

determining if their content is spam can be reduced to a text classification problem. The text classi

fication problem is formalized as f : T x C ~ { 0, 1}, where f is the classifier, T = { t1, t2, ... , tn} 

are the texts to be classified, and C = {c1, c2, ... , ck} are the classes [126]. A value of 1 for f(t,, Cj) 

indicates that text ti belongs to class Cj, whereas a value of 0 indicates it does not belong to that 

class. Bayesian classifiers are very effective in text classification, especially for email spam detec

tion, so we employ Bayesian classification for our machine learning text classification component. 

In Bayesian classification, deciding if a message belongs to a class, e.g., spam, is done by 

computing the corresponding probability based on its content, e.g., P(C = spamjM), where M is 

a message and C is a class. If the probability is over a certain threshold, then the message is from 



CllA.PTER 3. DETECTION OF BaTS ON TWITI'ER 71 

that class. 

The probability that a message M is spam, P(spamiM), is computed from Bayes theorem: 

P( IM) = P(Mispam)P(spam) = 
spam P(M) 

P(Mispam)P(spam) 
(3.6) 

P(Mispam)P(bot) + P(Minot spam)P(not spam) · 

The message Misrepresented as a feature vector (!I, h, ... ,In). where each feature I is one 

or more words in the message and each feature is assumed to be conditionally independent. 

P(spamiM) = 
n 

P(spam) II P(filspam) (3.7) 
i=l 

n n 
P(spam) II P(filspam) + P(not spam) II P(filnot spam) 

i=l i=l 

The calculation of P( spaml M) varies in different implementations of Bayesian classification. 

The implementation used for our machine learning component is CRM114 [148]. CRM114 is a 

powerful text classification system that offers a variety of different classifiers. The default classifier 

for CRM114 is Orthogonal Sparse Bigram (OSB), a variant of Bayesian classification, which has 

been shown to perfonn well for email spam filtering. OSB differs from other Bayesian classifiers in 

that it treats pairs of words as features. 

3.3.3 Account Properties Component 

Besides inter-tweet delay and tweet content, some 1\vitter account-related properties are very help-

ful for the user classification. As shown in Section 3.2.3, obvious difference exists between the 

human and bot categories. The first property is the URL ratio. The ratio indicates how often a user 

includes external URLs in its posted tweets. External URLs appear very often in tweets posted by 



CHAPTER 3. DETECTION OF BarS ON TWfiTER 72 

a bot. Our measure shows, on average the ratio of bot is 97%, while that of human is much lower 

at 29%. Thus, a high ratio (e.g., close to one) suggests a bot and a low ratio implies a human. The 

second property is tweeting device makeup. According to Table 3.1, about 70% tweets of human are 

posted via web and mobile devices (referred as manual devices), whereas about 87% tweets of bot 

are posted via API and other auto-piloted programs (referred as auto devices). The third property is 

the followers to friends ratio. 

The fourth property is link safety, i.e., to decide whether external links in tweets are mali

cious/phishing URLs or not. We run a batch script to check a URL in five blacklists: Google 

Safe Browsing, PhishingTank, URIBL, SURBL and Spamhaus [31, 39, 59, 48, 45]. Google Safe 

Browsing checks URLs against Google's constantly updated lists of suspected phishing and mal

ware pages. PhishingTank focuses on phishing websites. The mechanisms of URIBL, SURBL and 

Spamhaus are similar. They contain those suspicious websites that have appeared in spam emails, 

primarily Unsolicited Bulk/Commercial Email (UBFJUCE). If the URL appears in any of the black

lists, the feature of link safety is set as false. 

The fifth property is whether a Twitter account is verified. No bot in our ground truth dataset is 

verified. The account verification suggests a human. The sixth property is the account registration 

date. According to Figure 3.9, 94.8% ofbots were registered in 2009. The last two properties are 

the hashtag ratio and mention ratio. Hashtag ratio of an account is defined as the number of hashtags 

included in the tweets over the number of tweets posted by the account. Mention ratio is defined 

similarly. 

The account properties component extracts these properties from the user log, and sends them to 

the decision maker. It assists the entropy component and the spam detection component to improve 

the classification accuracy. 



CHAPI'ER 3. DETECTION OF BaTS ON TWIITER 73 

3.3.4 Decision Maker 

Our classification problem can be fonnulated as follows. Given an unknown user U represented 

by the feature vector, the decision maker determines the class C to which U belongs to. Namely, 

U =< /1, /2, ... , fn >~ C = {human, bot, cyborg}. We select Random Forest [70] as the 

machine learning algorithm, and implement the decision maker based on it. 

Random Forest creates an ensemble classifier consisting of a set of decision trees. The algorithm 

applies the random feature selection in [70] and bagging idea in [95] to construct a "collective 

forest" of decision trees with controlled variation. The decision tree contains two types of nodes, 

the leaf node labeled as a class, and the interior node associated with a feature. We denote the 

number of features in the dataset as M, and the number of features used to make the decision at a 

node of the tree as m( < < M). Each decision tree is built top-down in a recursive manner. For every 

node in the construction path, m features are randomly selected to reach a decision at the node. The 

node is then associated with the feature that is the most infonnative. Entropy is used to calculate the 

infonnation gain contributed by each of the m features (namely, how informative a feature is). In 

other words, the recursive algorithm applies a greedy search by selecting the candidate feature that 

maximizes the heuristic splitting criterion. 

WedenoteDas thedatasetoflabeled samples, and Cas the class with k values, C = {C11 C2, ... , Ck}· 

The information required to identify the class of a sample in Dis denoted as Info( D)= Entropy(P), 

where P, as the probability distribution of C, is 



CHAPTER 3. DETECT10N OF BaTS ON TWITTER 74 

If we partition D based on the value of a feature F into subsets { D1, D2, ... , Dn}, 

(3.8) 

After the value of feature F is obtained, the corresponding gain in information due to F is denoted 

as 

Gain(F, D) = lnfo(D) -lnfo(F, D), (3.9) 

As Gain favors features that have a large number of values, to compensate for this Gain Ratio 

is defined as 

G . Ra 0 (F D) Gain(F, D) 
am tw ' = Splitlnfo(F, D) (3.10) 

where Splitlnfo(F,D) is the information due to the splitting of D based on the value of attribute F. 

Thus, 

o ID1I ID2I IDnl 
Sphtlnfo(A, D) =Entropy( IDI , IDI , ... , IDI ) (3.11) 

More details of decision tree learning can be found in [105]. To classify an unknown sample, it 

is push downwards in the tree, and assigned with the class of the leaf node with which it ends up. 

Every decision tree determines a classification decision on the sample. Random Forest applies the 

majority voting of all the individual decisions to reach the final decision. 

3.4 Evaluation 

In this section, we first evaluate the accuracy of our classification system based on the ground truth 

set. Then, we apply the system to classify the entire dataset of over 500,000 users collected. With 

the classification results, we further speculate the current composition of 1\vitter user population. 

Finally, we discuss the robustness of the proposed classification system against possible evasions. 



CHAPTER 3. DEI'ECI10N OF BaTS ON TWITTER 75 

3.4.1 Methodology 

As shown in Figure 3.10, the components of the classification system collaborate in the following 

way. The entropy component calculates the entropy (and corrected conditional entropy) of inter-

tweet delays of a '1\vitter user. The entropy component only processes logs with more than 100 

tweets9• This limit helps reduce noise in detecting automation. A lower entropy indicates periodic 

or regular timing of tweeting behavior, a sign of automation, whereas a higher entropy implies 

irregular behavior, a sign of human participation. The spam detection component determines if the 

tweet content is either spam or not, based on the text patterns it has learned. The content feature 

value is set to 1 for spam but 0 for non-spam. The account properties component checks all the 

properties mentioned in Section 3.3.3, and generates a real-number-type value for each property. 

Given a Twitter user, the above three components generate a set of features and input them into 

the decision maker. For each class, namely human, bot and cyborg, the decision maker computes a 

classification score for the user, and classifies it into the class with the highest score. The training 

of the classification system and cross validation of its accuracy are detailed as follows. 

3.4.2 Classification System Training 

The spam detection component of the classification system requires training before being used. It 

is trained on spam and non-spam datasets. The spam dataset consists of spam tweets and spam 

external URLs, which are detected during the creation of the ground truth set. Some advanced spam 

hots intentionally inject non-spam tweets (usually in the format of pure text without URLs, such 

91be inter-tweet span could be wild on Twitter. An account may be inactive for months, but suddenly tweets at an 
intensive frequency for a short-term, and then enters hibernation again. It generates noise to the entropy component. 
Thus, the entropy component does not process logs with less than I 00 tweets. Besides, in practice it is nearly impossible 
to determine automation based on a very limited number of tweets. 



CHAPTER 3. DETECI10N OF BaTS ON TWITIER 76 

as adages10) to confuse human users. Thus, we do not include such vague tweets without external 

URLs. The non-spam dataset consists of all human tweets and cyborg tweets without external 

URLs. Most human tweets do not carry spam. Cyborg tweets with links are hard to determine 

without checking linked web pages. They can be either spam or non-spam. Thus, we do not include 

this type of tweets in either dataset. Training the component with up-to-date spam text patterns on 

Twitter helps improve the accuracy. In addition, we create a list of spam words with high frequency 

on Twitter to help the Bayesian classifier capture spam content. 

3.4.3 Classification System Accuracy 

We use Weka. a machine learning tool [93], to implement the Random Forest based classifier. We 

apply cross validation with ten folds to train and test the classifier over the ground truth set [111 ]. 

The dataset is randomly partitioned into ten complementary subsets with equal size. In each round, 

one out of ten subsets is retained as the test set to validate the classifier, while the remaining nine 

subsets are used as the training set to train the classifier. At the beginning of a round, the classifier 

is reset and re-trained. Thus, each round is an independent classification procedure, and does not 

affect subsequent ones. The individual results from ten rounds are averaged to generate the final 

estimation. The advantage of cross validation is that, all samples in the dataset are used for both 

training and validation, while each sample is validated exactly once. The confusion matrix listed in 

Table 3.2 demonstrates the classification results. 

The "Actual" rows in Table 3.2 denote the actual classes of the users, and the "Classified" 

columns denote the classes of the users as decided by the classification system. For example, the cell 

10 A typical content pattern is listed as follows. Tweet l, A friend in need is a friend in deed. Tweet 2, Danger is next 
neighbor to security. Tweet 3, Work home and make $3k per month. Check out how, http://tinyurl.com/bF234T. 

http://tinyurl.com/bF234T


CHAPTER 3. DETECI'ION OF BaTS ON TWITI'ER 77 

'IBble 3 2· Confusion Matrix .. 
Classified 

Human Cyborg Bot Total TruePos 
Human 1972 27 l 2000 98.6% 

Actual Cyborg 65 1833 102 2000 91.7% 
Bot 2 46 1952 2000 97.6% 

Avg 96.0% 

in the junction of the "Human" row and column means that 1972 humans are classified (correctly) 

as humans, whereas the cell of "Human" row and "Cyborg" column indicates that 27 humans are 

classified (incorrectly) as cyborgs. There is no misclassification between human and bot. 

We examine the logs of those users being classified by mistake, and analyze each category as 

follows. 

• For the human category, 1.4% of human users are classified as cyborg by mistake. One 

reason is that, the overall scores of some human users are lowered by spam content penalty. 

The tweet size is up to 140 characters. Some patterns and phrases are used by both human 

and bot, such as "I post my online marketing experience at my blog at http://bit.ly/xT6klM. 

Please Re1\veet it." Another reason is that the tweeting interval distribution of some human 

users is slightly lower than the entropy means, and they are penalized for that. 

• For the bot category, 2.3% of bots are wrongly categorized as cyborg. The main reason is 

that, most of them escape the spam penalty from the machine learning component. Some 

spam tweets have very obscure text content, like "you should check it out since it's really 

awesome. http://bit.ly/xT6klM". Without checking the spam link, the component cannot 

determine if the tweet is spam merely based on the text. 

• For the cyborg category, 3.3% of cyborgs are mis-classified as human, and 5.1% of them are 

mis-classified as bot. A cyborg can be either a human-assisted bot or a bot-assisted human. 

http://bit.ly/xT6klM
http://bit.ly/xT6klM


CHAPTER 3. DETECTION OF BaTS ON TW11TER 78 

A strict policy could categorize cyborg as bot, while a loose one may categorize it as human. 

• There is negligible mis-classification between human and bot. The classifier clearly separates 

these two classes. 

Overall, our classification system can accurately differentiate human from bot. However, it is 

much more challenging for a classification system to distinguish cyborg from human or bot. After 

averaging the true positive rates of the three classes with equal sample size, the overall system 

accuracy can be viewed as (96.0% ). 

Among the set of features used in classification, some play a more important role than others. 

Now we evaluate the discrimination weight of each feature. In every test, we only use one feature to 

independently cross validate the ground truth set. Table 3.3 presents the results sorted on accuracy. 

The entropy feature has the highest accuracy at 82.8%. It effectively captures the timing difference 

between regularity of automated behavior and complexity of manual behavior. Limited by tweet 

size, bot usually relies on URLs to redirect users to external web sites. This fact makes the URL ratio 

feature have a relatively high accuracy at 74.9%. Recognizing the tweeting device makeup (manual 

or automated) and detecting spam content also help the classification. By comparing the collective 

perfonnance in Table 3.2 and individual perfonnance in Table 3.3 , we observe that, no single feature 

works perfectly well, and the combination of multiple features improve the classification accuracy. 

3.4.4 Twitter Composition 

We further use the classification system to automatically classify our whole dataset of over 500,000 

users. We can speculate the current composition of Twitter user population based on the classifica

tion results. The system classifies 53.2% of the users as human, 36.2% as cyborg, and 10.5% as bot. 



CHAPTER 3. DETECTION OF BaTS ON TWIITER 79 

'IBble 3.3: Feature Weights 
Feature I Accuracy <% > I 
Entropy 82.8 

URLRatio 74.9 
Automated Device % 71.0 

Bayesian Spam Detection 69.5 
Manual Device % 69.2 
Registration Date 62.9 

Mention Ratio 56.2 
Link Safety 49.3 

Hashtag Ratio 47.0 
Followers to Friends Ratio 45.3 

Account Verification 35.0 

Thus, we speculate the population proportion of human, cyborg and bot category roughly as 5:4:1 

on Twitter. 

3.4.5 Resistance to Evasion 

Now we discuss the resistance of the classification system to possible evasion attempts made by 

hots. Bots may deceive certain features, such as the followers to friends ratio as mentioned before. 

However, our system has two critical features that are very hard for bots to evade. The first feature 

is tweeting device makeup, which corresponds to the manual/auto device percentage in Table 3.3 

Manual device refers to web and mobile devices, while auto device refers to API and other auto-

piloted programs (see Section 3.2.3, QS). 1\veeting via web requires a user to login and manually 

post via the Twitter website in a browser. Posting via HTI'P form is considered by Twitter as API. 

Furthermore, currently it is impractical or expensive to run a bot on a mobile device to frequently 

tweet. As long as Twitter can correctly identify different tweeting platforms, device makeup is an 

effective metric for bot detection. The second feature is URL ratio. Considering the limited tweet 

length that is up to 140 characters, most hots have to include a URL to redirect users to external 

sites. Thus, a high URL ratio is another effective metric for bot detection. Other features like timing 



CHAPTER 3. DETECTION OF Bai'S ON TWIITER 80 

entropy, bot could mimic human behaviors but at the cost of much reduced tweeting frequency. We 

will continue to explore new features emerging with the 1\vitter development for more effective bot 

detection in the future. 

3.5 Conclusion 

In this chapter, we have studied the problem of automation by bots and cyborgs on 1\vitter. As 

a popular web application, 1\vitter has become a unique platform for information sharing with a 

large user base. However, its popularity and very open nature have made 1\vitter a very tempting 

target for exploitation by automated programs, i.e., bots. The problem of bots on Twitter is further 

complicated by the key role that automation plays in everyday 1\vitter usage. 

To better understand the role of automation on Twitter, we have measured and characterized 

the behaviors of humans, bots, and cyborgs on 1\vitter. By crawling Twitter, we have collected 

one-month of data with over 500,000 Twitter users with more than 40 million tweets. Based on 

the data, we have identified features that can differentiate humans, hots, and cyborgs on 1\vitter. 

Using entropy measures, we have determined that humans have complex timing behavior, i.e., high 

entropy, whereas bots and cyborgs are often given away by their regular or periodic timing, i.e., low 

entropy. In examining the text of tweets, we have observed that a high proportion of bot tweets 

contain spam content. Lastly, we have discovered that certain account properties, like external URL 

ratio and tweeting device makeup, are very helpful on detecting automation. 

Based on our measurements and characterization, we have designed an automated classification 

system that consists of four main parts: the entropy component, the spam detection component, the 

account properties component, and the decision maker. The entropy component checks for periodic 



CHAPTER 3. DETEC110N OF Bars ON TWITI'ER 81 

or regular tweet timing patterns; the spa.m detection component checks for spa.m content; and the 

account properties component checks for abnormal values of Twitter-account-related properties. 

The decision maker summarizes the identified features and decides whether the user is a human, 

bot, or cyborg. The effectiveness of the classification system is evaluated through the test dataset 

Moreover, we have applied the system to classify the entire dataset of over 500,000 users collected, 

and speculated the current composition of Twitter user population based on the classification results. 



Chapter4 

With the tremendous popularity of online social networks (OSNs), spammers have exploited them 

for spreading spam messages. Social spamming is more successful than traditional methods such 

as email spamming by taking advantage of social relationship between users. One important reason 

is that OSNs help build intrinsic trust relationship between cyber friends even though they may not 

know each other in reality. This leads to users to feel more confident to read messages or even click 

links from their cyber friends. Facilitated by this fact, spammers have greatly abused OSNs and 

posted malicious or spam content, trying to reach more victims. 

Detecting spam is the first and very critical step in the battle of fighting spam. The definition 

of spam in this chapter is malicious, phishing or scam content. Our work chooses Twitter as the 

battlefield. Currently, Twitter is the most popular micro-blogging site with 200 million users. Users 

can post short textual messages, called tweets, of up to 140 characters. Twitter has witnessed a 

variety of spam attacks. Conventional spam detection methods on Twitter mainly check individual 

tweets or accounts for the existence of spam [ 131, 67]. The tweet-level detection screens individual 

tweets to check whether they contain spam text content or URLs. As of August 2011, around 8.3 

million tweets are generated per hour [54], and they demand near real-time delivery. Thus, the tweet

level detection would consume too much computing resources and can hardly meet time-stringent 

requirements. The account-level detection checks individual accounts for the evidence of posting 

spam tweets or aggressive automation behavior. Once an account is classified as a spam account 

82 



CHAPTER 4. DEI'ECI'ION OF SOCIAL SPAM CAMPAIGNS ON TWI1TER 83 

according to the Twitter rules of spam and abuse [56], the account will be suspended. Suspending 

spam accounts is an endless cat and mouse game as it is easy for spammers to create new accounts 

to replace suspended ones. 

Our work shifts the perspective from individual detection to collective detection and focuses 

on detecting spam campaigns. A spam campaign is defined as a collection of multiple accounts 

controlled and manipulated by a spammer to spread spam on Twitter for a specific purpose (e.g., 

advertising a spam site or selling counterfeit goods). Detecting spam campaigns is an important 

complement to conventional spam detection methods. Moreover, our work brings two additional 

benefits: 

• Efficiency. Our approach clusters related spam accounts into a campaign and generates a 

signature for the spammer behind the campaign. Thus, not only our work can detect mul-

tiple existing spam accounts at a given time, it can also capture future ones if the spammer 

maintains the same spamming strategies. 

• Robustness. There are some spamming methods which cannot be detected at individual 

level. For example, Twitter defines the behavior of "posting duplicate content over multiple 

accounts" as spamming. By grouping related accounts, our work can detect such a collective 

spamming behavior. 

We have performed data collection for three months in 2011, and obtained a dataset with 50 

million tweets posted by 22 million users. Our work focuses on the analysis of the tweets containing 

external URLs 1 The resulting dataset includes eight million tweets with URLs. For those tweets, 

1 Considering the short length of tweet, most sparn tweets must use external URLs to redirect users to spam sites. In 
this chapter, we assume that tweets without external URLs are non-sparn. Detecting sparn tweets without URLs can be 
addressed with existing techniques on detecting textual sparn content. 



CHAPTER 4. DETECTION OF SOCIAL SPAM CAMPAIGNS ON TWI1TER 84 

we crawl every URL. If URL redirection is used, we convert the original URL to its final landing 

URL. Then, we cluster tweets with the same final URL into a campaign, partitioning the dataset into 

numerous campaigns based on URLs. We perform a detailed analysis over the campaign data and 

generate a set of useful features to classify a campaign into two classes: spam or legitimate. Based 

on the measurement results, we present an automatic classification system using machine learning. 

We validate the efficacy of the classification system. The experimental results show high accuracy 

with low false positive rate. 

The remainder of the chapter is organized as follows. Section 4.1 presents a brief background 

of 1\vitter and covers related work of social spam detection. Section 4.2 details the data collection 

and measurements on 1\vitter. Section 4.3 describes our automatic classification system. Section 

4.4 evaluates the system efficacy for detecting spam campaigns. Finally, Section 4.5 concludes the 

chapter. 

4.1 Related Work 

As spammers often use 1\vitter-specific features to allure victims, we first briefly describe the back

ground of 1\vitter and its working mechanism. Then, we survey related work in social spam detec

tion and discuss the scope of our work. 

4.1.1 Background of Twitter 

1\vitter, released in 2006, has become a popular micro-blogging tool and online social network. 

Users post textual messages. known as tweets. The tweet length is up to 140 characters, which 

limits the spam content the spammer can include in a tweet. Thus. embedding an external URL in 



CHAPTER 4. DETECI10N OF SOCIAL SPAM CAMPAIGNS ON TWITTER 85 

a tweet becomes a routine for spammers to allure users to spam websites. Meanwhile, to facilitate 

URL posting, 1\vitter provides URL shortening services for users to convert an arbitrarily long URL 

to a short one2• 

A tweet may contain some textual features for better user interaction experience, which are also 

abused by spammers. A hashtag, namely a word or a phrase prefixed with the# symbol, is used 

to group tweets by their topic. For example, #Japan_ Tsunami and #Egyptian..Revolution are two of 

the worldwide trending hashtags on 1\vitter in March 2011. Spammers may attach popular hashtags 

to unrelated spam tweets to increase the chance of being searched. This spamming trick is called 

hashtag hijacking. The mention feature, namely the @ symbol followed by a username in a tweet, 

enables the direct delivery of the tweet to the user. This feature facilitates spamrners to directly send 

spam to targeted users. 

Different from most OSNs (such as Facebook and Myspace), the social relationship on 1\vitter 

is directed and need not be bidirectional. It consists of two roles, friend and follower. In the case 

where Alice adds Bob as a friend (namely, Alice follows Bob in Twitter's tenn), Alice is a follower 

of Bob, while Bob is a friend of Alice. Bob may also add Alice as a friend (namely, following back 

or returning the follow), but is not obligatory. From the perspective of information dissemination, 

followers of a user subscribe to receive tweets posted by the author. It is the goal of spammers to 

achieve a large number of followers, which allows broadcasting spam to many users. Acquiring 

followers is a big challenge for spammers. A common trick shared by spammers is to massively 

add normal users as friend and expect some of them to follow back. 

2For example, http://www.newyork.yankees.mlb.com can be shortened as http://aunlb.coml7sOhzZ. 

http://atmlb.com/7sOhzZ


CHAPTER 4. DETECI'ION OF SOCIAL SPAM CAMPAIGNS ON TWITTER 

4.1.2 Social Spam Detection 

86 

Traditional spam methods include sending spam emails [144] and creating spam web content [118]. 

The past few years have witnessed the rapid rise of online social networks. One key feature of such 

systems is the reliance on content contributed by users. Unfortunately, the system openness coupled 

with the large user population has made OSNs an ideal target of social spammers. By exploiting 

the social trust among users, social spam may achieve a much higher success rate than traditional 

spam methods. For example, Grier et al. analyzed the click-through rate of spam on Twitter [92], 

and found out that around 0.13% of spam tweets generate a visit, orders of magnitude higher than 

click-through rate of 0.003% - 0.006% reported for spam email [103]. 

Targeting the most popular micro-blogging site with 200 million users, spammers have launched 

various attacks on Twitter, including spreading malware, phishing and scams. For example, Koob

face [37], a worm targeting OSNs, broke out in 2009. It has several variants infecting Twitter along 

with other websites. Koobface spreads by delivering messages to cyber friends of a victim user 

whose computer has already been infected. And the message directs the recipients to a third-party 

website, where they are prompted to download what is purported to be an update of the Adobe Flash 

player. If the malware is executed, Koobface is able to infect those systems. Phishing is another 

security concern on Twitter. A wave of phishing attacks in early 2010 sent victim users private 

messages followed by a link to a fake Twitter login page, trying to steal account passwords. The at

tacks caused Twitter to re-design its private message system [53]. Moreover, Twitter is also glutted 

with unsolicited scam messages, such as advertising adult pills, credit debt consolidation and so on. 

According to Twitter's spam monitoring status [46], around ll% of messages on Twitter were sparn 

in August 2009. 



CHAPTER 4. DETECTION OF SOCIAL SPAM CAMPAIGNS ON TWITTER 87 

As a countermeasure, Twitter has released its rules against spam and abuse [56]. Accounts vio

lating the rules will result in permanent suspension. The set of rules mainly define spam on Twitter 

in the following categories of content, behavior and social relationship. In the content category, it 

is forbidden to post content or URLs of any kinds of sparn. Large numbers of unrelated @replies, 

mentions and #hashtags, or duplicate content are also disallowed. The behavior category covers 

both individual and collective behavioral codes. At the individual level, aggressive automation such 

as constantly running programs to post tweets without human participation is prohibited. At the 

collective level, using multiple accounts to post duplicate content is also considered as sparnming. 

In terms of social relationship, one cannot follow a large number of users in a short amount of time, 

or have a small number of followers compared to the number of friends it is following, or create or 

purchase accounts in order to gain followers. 

To avoid being detected by Twitter rules, social spammers have adopted a similar idea of email 

sparn campaigns by coordinating multiple accounts to achieve a specific purpose. The spammer 

distributes the workload among sparn accounts, thus individual accounts now may exhibit stealthy 

sparn behavior and fly under the radar. Besides, multiple accounts also can spread sparn to a wider 

audience. Some related studies have demonstrated the wide existence of spam campaigns on OSN s, 

such as Twitter and Facebook, respectively [92, 85]. The existing work mainly relies on the URL 

feature. More specifically, related messages with the shared final landing URL are clustered into a 

campaign. Then, the URL is looked up in URL blacklists. If the URL is blacklisted, the campaign 

is classified as a sparn campaign; otherwise it is legitimate. Currently, the existing detection meth

ods have some disadvantages listed as follows. First, URL blacklists have the lag effect, allowing 

more than 90% of visitors to click on a sparn URL before it becomes blacklisted [92]. Furthermore, 

URI.. blacklists can only cover part of spam URLs, and thus some spam campaigns may escape 



CHAPTER 4. DETECTION OF SOCIAL SPAM CAMPAIGNS ON TWIITER 88 

detection. Second, some URL blacklists generate false positive errors as they only check the host

name component of a URL, instead of the whole URL. For example, the URL shortening service 

http://ow.ly is listed on the URIBL blacklist [59] because it is greatly abused by spammers. Al

though http://ow.ly/6eAci is a benign URL that redirects to a CNN's report of Hutricane Irene, it is 

blacklisted by URIBL based on the hostname. Third, the URL feature generates false negative er

rors. For instance, consider a campaign that advertises a benign website in an aggressive spamming 

way. The spammer manipulates multiple accounts to post duplicate tweets about the website. The 

URL feature cannot classify the tweets as a spam campaign since the website URL is benign and 

not blacklisted. The first two disadvantages may be overcome by improving blacklisting process, 

but the third cannot be fixed by merely using the URL feature. Thus, the other features, such as 

collective posting content and behavior, should also be included. This chapter improves the existing 

work by introducing new features. The details of classification features are covered in Section 4.3.1. 

There is existing work that addresses the social spam problem from a variety of aspects [86, 

136, 139]. Thomas et al. [136] examined over one million spam accounts suspended by 1\vitter to 

characterize the behavior and lifetime of spam accounts. Their results confirm the appropriateness 

of classification features selected by this chapter, such as wide-spread abuse of URL shorteners, 

popular trends in hijacking and unsolicited mentions. Different from the analysis of [136] on spam 

accounts already classified by 1\vitter, our work designs a classification system to detect spam cam

paigns and involved accounts. Instead of building an independent spam filter for a social network, 

Wang et al. [139] proposed a framework for spam detection that can be used across all social net

work sites. The study of real datasets from several social networks demonstrates the feasibility 

of this experimental framework. Ghosh et al. [86] analyzed the strategies employed by 1\vitter 

spammers. By monitoring their link-creation strategies, they revealed that spammers adopt intelli-



CHAPTER 4. DETEC110N OF SOCIAL SPAM CAMPAIGNS ON TWITTER 89 

gent "collaborative" strategies of link-formation to avoid detection and to increase the reach of their 

generated spam, such as forming "spam-fanns" and creating a large number of links with targeted 

legitimate users. 

4.1.3 Scope of This Chapter 

A variety of spam attacks exist on 1\vitter. This chapter solely focuses on characterizing and de-

tecting large-scale spam campaigns conducted on 1\vitter. The definition of spam in this chapter is 

spreading malicious, phishing or scam3 content in tweets. Spammers may carry different purposes, 

but spam campaigns exhibit a shared feature that, they either create or compromise a large number 

of1\vitter accounts to spread spam to a wide range of audience. Our work does not screen individual 

tweets to detect spam, and may miss small spam campaigns4 • As a complement to existing spam 

detection methods, the main contribution of this chapter is detecting multiple related spam tweets 

and accounts in a robust and efficient way. 

Note that after detecting a spam campaign, a site administrator may further classify the involved 

accounts into Sybil and compromised accounts, and process them accordingly. Here Sybil accounts 

refer to those created by spammers and exclusively used to post spam tweets. Compromised ac-

counts refer to those used by legitimate users but hijacked by spammers to post spam without the 

observation of owners. Sybil accounts will be permanently suspended, while the owners of com-

promised accounts can be notified for spamming activities via their registration emails. 

3We define a scam as any webpage that advertises a spectrum of solicitations, including but not limited to pornography, 
online gambling, fake pharmaceuticals. 

4 According to our clustering algorithm presented in Section 4.2.2, a single tweet may be clustered as a campaign if 
no other related tweets exist in the dataset. 



CHAPTER 4. DETEC110N OF SOCIAL SPAM CAMPAIGNS ON TWITI'ER 

4.2 Characterization 

4.2.1 Data CoUection 

90 

To measure the pervasiveness of spam, we conduct the data collection on Twitter from February to 

April in 2011. Twitter releases a set of APis [138] that support large-scale data collection. Thanks to 

Twitter's courtesy of including our test accounts to its whitelist, our dataset accumulates more than 

50 million tweets posted by around 22 million accounts. We develop a crawler in PHP which taps 

into Twitter's Streaming API [57] and Search API [60], respectively. The Streaming API outputs a 

small proportion of real-time global tweets via random sampling, and constitutes the majority of our 

dataset. The Search API enables the crawler running specific searches against the real-time index 

of recent tweets. As the privilege of our test accounts only allows the sampling rate of global tweets 

at 1%, the Search API gathers some complementary tweets according to our interest, such as those 

containing a specific URL. Since this work studies spam campaigns, we exclude tweets without 

URLs, and focus on the remaining 8 million tweets with URLs in the dataset. Due to the limited 

length of tweets, most spam tweets contain URLs to allure users to visit external spam websites. 

Thus, we assume that tweets without URLs are not spam. As shown in Section 4.2.2, our clustering 

algorithm is based on shared URLs. 

URL redirection is widely used on Twitter. Normal users apply URL shortening services, such 

as t.co and bit.ly, to convert arbitrarily long URLs to short ones to better fit in tweets. Spammers also 

use shortening and other redirection techniques to hide original spam URLs and to avoid blacklist 

detection. We develop a Firefox extension in JavaScript to automatically visit every URL in the 

dataset and convert to its final landing URL if redirection is used. Some spammers tend to use long 

redirection chains that involve multiple hops (such as original URL ->intermediate URL -> ... -> 



CHAPTER 4. DEI'ECTION OF SOCIAL SPAM CAMPAIGNS ON TWITTER 91 

60 60 

ISO + 

~= 
+ 

+ + ++ -T 
U40 + * 
g 30 

+ + 
g30 

+ 
+ + + * 

.! 20 -t4- + 
~ ++ 

e It- + + + 
< 10 

+ + 
0 ... , 0 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 
Master URL Diversity Ratio Master URL Diversity Ratio 

(a) Legitimate Campaigns (b) Spam Campaigns 

Figure 4.1: URL Statistics of Campaigns 

final URL) to hide their traces. The extension records the whole chain, and provides a classification 

feature. 

4.2.2 Clustering 

We develop a clustering algorithm that clusters tweets into campaigns based on shared final URLs5. 

The idea behind the algorithm is that those tweets that share the same final URL are considered 

related. A tweet is modeled as the <textual content, URL> pair. A given campaign, Ci. is denoted 

by a vector Ci =< ui, T;, ~ >.where Ui is the shared final URL i for the campaign, T; is the set 

of tweets containing Ui. and Ai is the set of accounts that have posted tweets in Ti. Let C denote 

the current set of campaigns. The clustering procedure iteratively chooses without replacement an 

arbitrary tweet t in the dataset. If the tweet's URL is Ui' and Ci' E C, then the tweet is added in the 

campaign by updating r;, = r;, U { t}. If t's account, a, is also new, then an update Ai' = ~' U {a} 

is also performed. If Ci' ¢. C, then a new campaign Ci' is created and C = C U { Ci'} is updated. 

In our implementation, we store the dataset in MySQL database, and create a table for the 

clustering result. Every URL string is hashed, and the hash value is set as the table index. 1\vo URL 

5The subsequent campaign classification applies a variety of features, including both content and URL of tweets. 
More feature details are presented in Section 4.3.1. 



CHAPTER 4. DETECTION OF SOCIAL SPAM CAMPAIGNS ON TWI'ITER 92 

strings are compared by their indexed hash values to improve the clustering performance. Once 

complete, the dataset includes 5,183,656 campaigns. The largest contains 7350 accounts with 9761 

tweets posted. 

4.2.3 Ground Truth Creation 

After campaigns have been clustered, we need a ground truth set containing samples labeled as spam 

and legitimate campaigns. We can generate features from the two categories of labeled campaigns 

and develop a classification system. To create the ground truth, we choose some campaigns from 

our datasetfi, manually perform several heuristics tests, and use human expertise to label unknown 

campaigns. 

More specifically, we follow 1\vitter's spam rules during the manual inspection, and check both 

collective and individual features of an unknown campaign. First, we inspect the campaign's fi-

nal URL. A batch script is performed to check the URL in five blacklists: Google Safe Browsing, 

PhishingTank, URIBL, SURBL and Spamhaus [31, 39, 59, 48, 45]. More details of the blacklist 

detection will be presented in Section 4.3.1. As we pointed out in Section 4.1.2, Google Safe Brows-

ing and PhishingTank check the whole URL, while the other three only check the URL's hostname, 

which may generate false positives. Only if the URL is captured by the first two blacklists, is the 

related campaign directly labeled as spam without further manual inspection required. Otherwise, 

the human inspector visits the final URL in the browser, and checks the webpage content. 

Second, we check the tweet content of the campaign. The script extracts the textual content 

from all the tweets in the campaign. The human inspects the content to see if (1) it contains spam 

61be campaigns with a large number of accounts and tweets are favored during the selection, as large campaigns carry 
abundant collective behavior characteristics. 



CHAPTER 4. DETECI10N OF SOCIAL SPAM CAMPAIGNS ON TWITI'ER 93 

information, (2) it is unrelated with the URL's web content (namely, the URL is misleading), (3) 

duplicate or similar content is posted via single or multiple accounts. In addition, we also check 

content-related Twitter properties. For example, we inspect if tweets contain unrelated #hashtags or 

use @mentions to deliver unsolicited information to others. 

Third we check the automation degree exhibited in the campaign, as automation is a good in

dicator of spam. The script presents the human inspector with the posting device makeup, the 

medium, and the entropy value of the posting inter-arrival timing sequence. The formal description 

of these features will be detailed in Section 4.3.1. Aggressive automation may raise the red ftag, 

and influence the human's classification decision for the campaign. 

By taking all of the above into consideration, the human inspector reaches the decision to label 

the campaign as spam or legitimate. In practice, we find out that most spam campaigns carry obvious 

characteristics of URL and content, making it easy to differentiate them from legitimate campaigns. 

We acknowledge that we may make mistakes in labeling campaigns, but believe that the error rate 

is very low. Finally, the ground truth set contains 744 spam campaigns and 580 legitimate ones. 

4.2.4 Campaign Analysis 

We now examine the characteristics of spam campaigns and compare with legitimate ones. The data 

analysis leads to the formal definition of classification features in Section 4.3.1. 

We first discuss using URI... statistics to reveal account connection in the campaign. We have 

observed that accounts in a legitimate campaign are usually run by independent users, while those 

involved in a spam campaign are often controlled by the same spammer. The URL statistics can 

provide hints of account connection. For clarity, we first define two terms: master URL and affiliate 

URL. For a normal URL such as http://biy.ly/5As4k3, affiliate URLs with it can be created by 

http://biy.ly/5As4k3


CHAPTER 4. DETECTION OF SOCIAL SPAM CAMPAIGNS ON TWIT'.lE'R 94 

I 

0.9 
0.8 
0.7 

e 0.6 
0 . .5 
0.4 
0.3 
0.2 
0.1 

0 

Spam Campaign -a-
Legitimate Campai A 

0 10 20 30 40 .50 60 70 80 90 
Active Time in Days 

Figure 4.2: CDF of Campaign Active Time 

appending random strings as the query component to the URL, such as http://biy.ly/5As4k3?=xd56 

and http://biy.ly/5As4k3?=7yfd. The original URL is denoted as master URL. When the affiliate 

URL is clicked, the server still serves the web content of its master URL. Affiliate URLs help track 

the origin of click traffic. The spammer may use multiple accounts to advertise a spam URL. By 

assigning every account with a specific affiliate URL, the spammer can evaluate the spamming effect 

of individual accounts. This trick widely exists in online pyramid scams. Frequent appearance of 

affiliate URLs indicates strong connection among accounts. In contrast, different forms of master 

URLs indicate account independence. Although the tweets in a campaign share the same final 

URL, they may have different master URLs, such as http://bit.ly/lwgYxU and http://ow.ly/6jRqX7• 

Even if different users shorten the same final URL through a specific shortening service, they still 

get different forms of shortened URLs. For example, bit.ly may return two URLs for two users, 

http://bit.ly/1 wgYxU and http://bit.ly/3iMSl5, respectively. Moreover, the shortened URL contains 

a random string that is hardly possible to guess if the user was not infonned. Thus, the pervasiveness 

of master URLs, to some extent, implies the account independence in a campaign. We define the 

master URL diversity ratio as the number of unique master URLs over the number of tweets in a 

7 All the URLs in this paragraph lead to http://twitter.com. 

http://ow.ly/6jRqX7
http://bit.ly/3iMS15
http://twitter.coni


CHAPTER 4. DETEC110N OF SOCIAL SPAM CAMPAIGNS ON TWI1TER 95 

Flgure 4.3: Inter-arrival Timing Distribution of Campaigns 

campaign. A low ratio indicates the wide usage of affiliate URLs and account dependence, whereas 

a high ratio indicates the account independence. Figure 4.1 shows that more than 50% of spam 

campaigns use affiliate URLs, while only 3.6% of legitimate campaigns contain affiliate URLs. The 

average master URL diversity ratio of spam campaigns is 0.225, much lower than that of legitimate 

campaigns, at 0.423. 

Now we analyze the temporal properties of campaigns. We define the active time of a campaign 

as the time span between its first and last tweet in our dataset. We point out a limitation of our 

dataset as our collection runs for three months while a campaign may exist before and/or after the 

measured period. While the largest possible active time in our dataset is 90 days, the actual time 

may be greater. Figure 4.2 shows the cumulative distribution function (CDF) of active time (in days) 

of spam and legitimate campaigns. Around 40% of campaigns in both categories have active time 

less than 30 days. For those longer than 30 days, the average active time of legitimate campaigns 

is 72.0 days, greater than that of spam campaigns at 59.5 days. Thanks to the workload distribution 

among accounts, the spamming behavior of an account may be stealthy during its initial stage, and 

avoid Twitter's detection. It explains the equal proportions of both categories within the 30-day time 

window. The accumulation of spamming behavior and the increase of campaign size expose spam 



CHAPTER 4. DEIECI10N OF SOCIAL SPAM CAMPAIGNS ON TWITTER 96 

accounts, and many of them get suspended by Twitter. Beyond the 30-day window, the average 

active time of spam campaigns is clearly shorter than that of legitimate ones. However, more efforts 

need to be made to detect and eliminate spam campaigns in the initial stage for damage control. 

The burstiness characterizes the overall workload distribution of spam campaigns. Figure 4.3 

plots the inter-arrival timing pattern of two categories of campaigns. Due to space limit, each 

category contains 150 individual campaigns. Each campaign is represented by a vertical strip. In 

a campaign, tweets are sorted on timestamp, and the timestamp of the first tweet is set as 0. Each 

tweet corresponds to a tiny horizontal segment in the strip, and a block of intensive strips represent 

a burst of tweets in the campaign. A large number of spam campaigns show burstiness in the early 

stage. Some spammers aim to achieve the spamming goal in a quick way, and direct spam accounts 

to massively post tweets. Although the workload is distributed to multiple accounts, the inter-

arrival timing pattern can still be used to reflect the overall workload of the campaign. The gradual 

suspension of spam accounts causes the stagnation in the late stage. Many legitimate campaigns 

tend to take a while to grow up, and demonstrate burstiness in the late stage. A popular legitimate 

campaign generates the epidemic effect by making more users tweet about it, spreading to even the 

larger audience. 

0.9 
0.8 
0.7 

~ 
0.6 

Q 0.5 u 0.4 
0.3 
0.2 
0.1 

0 
0 

Spam Campaign -e
Lcgitimate Campaign ····A···· 

.,/),. ..... 

0.2 0.4 0.6 
Relative Entropy 

0.8 

Flgure 4.4: CDF of Entropy of Campaign Posting Inter-arrivals 



CHAPTER 4. DETECTION OF SOCIAL SPAM CAMPAIGNS ON TWI'ITER 97 

Entropy is another temporal property that detects periodic or regular timing of posting patterns 

in a campaign. As the campaign contains multiple tweets carrying individual timestamps, we sort 

the timestamps and generate the inter-arrival sequence of posting timing. In Information Theory, the 

entropy rate is a measure of the complexity of a random process [79]. A high entropy rate indicates 

a random process, whereas a low entropy rate indicates a regular one. As the inter-arrival sequence 

of the campaign is not infinite, we use corrected conditional entropy to approximate the entropy 

rate. More theoretical proofs can be found in [78]. The significance of entropy does not exist in 

its absolute numeric value, but relative tendency. To get relative entropy for every campaign, we 

normalize entropy values via dividing them by the maximum value of the campaign in the ground 

truth set. Figure 4.4 plots the CDF of relative entropy of posting inter-arrivals of both categories. 

Two curves interweave in the range between [0, 0.6]. The behavior of auto programs (namely 

Twitter hots) is often less complicated than that of humans, which can be measured by low entropy 

rate. A part of both spam and legitimate campaigns use auto programs to post, causing the low 

entropy. However, in the range between [0.6, 1], the relative entropy of the legitimate category 

is clearly higher than that of the spam category. The majority of spam campaigns (and a large 

proportion of their accounts) run auto devices to post, driven by regular or pseudo-random timers. 

In contrast, tweets in legitimate campaigns are mostly posted humans. The intrinsic irregularity and 

complexity of human behavior generates a higher entropy rate for legitimate campaigns. We also 

find an interesting fact that, a small part of spam campaigns post their tweets manually, generating 

high entropy. We speculate it is either a form of click farm on Twitter, or some spammers are not 

professional, and do not know how to run auto programs to tweet. 

Now we discuss a dilemma spammers often face, namely reusing spam accounts. If multiple 

tweets in the campaign are posted by an account, considering the tweets share the same final URL, 



CHAPTER 4. DETECTION OF SOCIAL SPAM CAMPAIGNS ON TWITrER 

0.9 
0.8 
0.7 

""' 0.6 e o.s 
0.4 
0.3 
0.2 

o.1 Llllllllk;;~~~~~:::__..._ _ _j 
0.2 0.4 0.6 0.8 

Account Diversity Ratio 

Figure 4.5: CDF of Account Diversity Ratio of Campaigns 

98 

the account exhibits the evidence of duplicated posting, which is an indicator of spam. We intro-

duce the account diversity ratio feature. For normalization, this feature is defined as the number of 

accounts in the campaign over that of tweets. Figure 4.5 plots the CDF of this feature of both cat-

egories. Spammers want to operate accounts in a stealthy way, which requires individual accounts 

to post few tweets. In reality, it costs effort to get followers to a spam account, and the number 

of "influential" accounts owned by a spammer is limited. Thus, the spammer tends to repeatedly 

use accounts to post duplicate spam, causing the low ratio. The figure clearly demonstrates that, 

the account diversity ratio of legitimate campaigns is much higher than that of spam campaigns. In 

particular, about 28.8% legitimate campaigns have the ratio as 1, meaning every tweet in the cam-

paign is posted by a unique account. The average ratio of legitimate campaigns is 86.4%, while that 

of spam campaigns is 45.0%. It further suggests that, legitimate campaigns have stronger account 

independence than spam campaigns. 

4.3 Design 

In this section, we first present the design philosophy of the classification system. In particular, 

we formally describe classification features and introduce semantic similarity to detect duplicate 



CHAPTER 4. DETECTION OF SOCIAL SPAM CAMPAIGNS ON TWITTBR 99 

content in a campaign. Then, we implement the classifier based on the Random Forest algorithm. 

4.3.1 Classification Features 

The classification involves a variety of features, ranging from individual tweet/account levels to a 

collective campaign level. No single feature is capable of discriminating effectively between spam 

and legitimate campaigns. Here we introduce these features used in our classification, and later the 

machine learning algorithm will decide the importance (namely weight) of the features during the 

training, which is shown in Section 4.4.1. 

4.3.1.1 Tweet-level Features 

We start with tweet-level features, as tweets are the atomic unit of Twitter. A tweet is modeled as 

the <textual content, original URL> pair. 

Spam Content Proportion. Some spam tweets carry explicit spam information, such as ''buy 

Viagra online without a prescription" and "get car loan with bad credit". We create a list of spam 

words with high frequency on Twitter to capture spam content. The tweet text is tokenized into 

words which are further checked in the spam word list. This feature is defined as the number of 

spam words over the total word number in a tweet . 

URL Redirection. We develop a Firefox extension to check the original URL in the tweet If 

URL redirection is used, it records the final landing URL. By recording the status change in the 

browser's address bar, the extension logs the whole redirection chain (such as original URL -> 

intermediate URL-> ... -> final URL). Besides the binary redirection ftag, hop number also serves 

as a useful feature. Spammers tend to use multi-hop redirection to hide spam origins and avoid URL 

blacklists. 



CHAPTER 4. DBTECI10N OF SOCIAL SPAM CAMPAIGNS ON TMITER 100 

URL Blacklisting. We check the final URL in five blacklists including Google Safe Brows

ing, PhishingTank, URIBL, SURBL, and Spamhaus [31, 39, 59, 48, 45]. Google Safe Browsing 

checks URLs against Google's constantly updated lists of suspected phishing and malware pages. 

PhishingTank focuses on phishing websites. The mechanisms of URIBL, SURBL and Spamhaus 

are similar. They contain suspicious websites that have appeared in spam emails, primarily Unso

licited Bulk/Commercial Email (UBFJUCE). For the first two blacklists, we download them to our 

database, and do the local lookup. For the remaining three lists, we inquire their servers by issuing 

DNS queries. If the URI.. appears in any of the blacklists, the feature is set as true. As the tweets in 

a campaign share the same final URI.., this operation only needs to be performed once. 

4.3.1.2 Account-level Features 

We also collect data of Twitter accounts involved in a campaign by calling Twitter's REST API [55], 

and present account-level features to characterize accounts. 

Account Profile. An account has a self-introduction profile consisting of a short description text 

and homepage URL. We check whether the description contains spam or the URL is blacklisted. 

Social Reladonship. Tweets of an account can only be delivered to its followers. To achieve 

a wide influence, the spammer needs to accumulate a large number of followers. However, normal 

users are unlikely to follow spam accounts. A common trick shared by spammers is following a 

great number of users (either targeted or randomly selected), and expecting some of them to follow 

back. Following back the friend request is considered as the etiquette on Twitter. Many spam victims 

blindly follow back "spammer friends" without carefully checking those suspicious accounts. For 

an account, we calculate its friend count, follower count, and the ratio between them. 

Account Reputation. Extended from the previous feature, we have observed that users are 



CHAPTER 4. DBTECI10N OF SOCIAL SPAM CAMPAIGNS ON TWITTER 101 

likely to follow "famous" accounts. This feature is calculated and nonnalized as folluwer count/ 

(follower count+ friend count). A celebrity usually has many followers and few friends8, and its 

reputation is close to 1. However, for a spammer with few followers and many friends, its reputation 

is close to 0. 

Account 'IBste. Intuitively, the account chooses whom to follow (namely, friends), and this 

reflects its "taste". If it follows spammers, its ''taste" is bad. By doing this, it helps spread spam 

to more users, making itself a "supporter" of spammers. This feature is defined as average Account 

Reputation of all the friends of the account. 

Lifetime Tweet Number. Spam accounts may get suspended for aggressively posting spam. 

Due to the short lifetime, averagely spam accounts may post fewer tweets. This feature shows the 

number of tweets an account has posted in lifetime when it is visited by our crawler. 

Account Registration Date. Spammers may frequently create new accounts to replace sus-

pended ones. Many spam accounts in our measurement have been created recently. 

Account Verification. Twitter verifies accounts for celebrities and organizations. It is difficult 

for spammers to acquire verified accounts. This binary feature shows whether the account is verified 

or not. 

Account Protection. For user privacy, an account that opts in the protection option makes its 

tweets invisible to general public, and only visible to approved followers. The option conflicts with 

the purpose of spreading spam to the wide audience, and may not be adopted by spam accounts. 

8For example, @Yankcca, the officiall\vitter account of New York Yankees, has 400,000 followers and only 29 
friends. 



CHAPTER 4. DETECTION OF SOCIAL SPAM CAMPAIGNS ON TWI1TER 102 

4.3.1.3 Campaign-level Features 

Collective features may reveal the characteristics of spam campaigns that cannot be observed through 

individual features. At last we present the campaign-level features as follows. The features of the 

account diversity ratio, the original URL diversity ratio, the affiliate link number and the entropy of 

inter-arrival timing have been explained in Section 4.2.4. 

Hashtag Rado. Spammers often hijack trending hashtags and append them to unrelated spam 

tweets to increase the chance of being searched and displayed. The feature is defined as the number 

of hashtags in the tweets over the number of tweets of the campaign. 

Mention Rado. Another trick spammers often play is using @mention to deliver spam to 

targeted users even without the existing social relationship. The feature is defined as the number of 

mentions in the tweets over the number of tweets of the campaign. 

Content Self-simllarity Score. A spam campaign may contain similar tweets created by spam 

content templates. Users in a legitimate campaign usually contribute content individually, and may 

not show a strong self-similarity. This feature measures the content self-similarity of the campaign. 

The details are presented in Section 4.3.2. 

Posting Device Makeup. Twitter supports a variety of channels to post tweets, such as web, 

mobile devices, and 3rd-party tools. The 8 million tweets in our campaign dataset are posted by 

44,545 distinct devices. In the perspective of behavior automation, they can be divided into two 

categories: manual and auto devices. Manual devices require direct human participation, such as 

tweeting via web browser or smart-phone. Auto devices are piloted programs that automatically 

perform tasks on Twitter, and require minimum human participation (such as importing Twitter 

account information). We manually label the top 100 devices as manual or auto, and use the tdash's 



CHAPTER 4. DETECI'ION OF SOCIAL SPAM CAMPAIGNS ON TWITI'ER 103 

API to process the rest. The tdash website monitors the statistics of'l\vitter devices by maintaining a 

database of 132 million indexed tweets and 159,000 detected devices [49]. In the campaign dataset, 

around 62.7% of tweets are posted by manual devices, and the rest 37.3% by auto devices. For 

every campaign, the script checks its posting devices against the labeled device list, and calculates 

the proportions of manual and auto devices as the value of posting device makeup. 

4.3.2 Content Semantic Similarity 

Spammers may use content templates to create similar spam tweets. Calculating semantic simi-

larity can detect duplicate or similar content in multiple tweets in the campaign. The calculation 

is challenging as short messages like tweets do not carry as many semantic features as long texts 

(i.e. email bodies). The traditional similarity measures, such as text shringling based on hashing, 

do not work well in the context of Twitter. Our work applies the Vector Space Model [125] that 

converts tweet texts into vectors, and then calculates the cosine similarity between them. Equation 

4.1 denotes the cosine similarity between two n-dimensional vectors, A and B. 

(4.1) 

For implementation, we use SenseClusters, an open-source program [43], that clusters text mes-

sages based on contextual similarity. Given the set of tweets in the campaign, we treat it as a text 

corpus, and generate a vocabulary by extracting distinct words from the corpus. Then we generate 

an occurrence matrix with tweets as rows, and words in the vocabulary as columns. The value of 

cell;i is the TF-IDF (Term Frequency- Inverse Document Frequency) weight [65], which repre-

sents the occurrence frequency of wordi in tweet;. The TF-IDF weight is a statistical measure 



CHAPTER 4. DETECI'ION OF SOCIAL SPAM CAMPAIGNS ON TWITIER 104 

that evaluates a word's importance to a text in the corpus. The importance increases proportionally 

to the number of times the word appears in the text, but is offset by the frequency of the word in 

the corpus. As the occurrence matrix may be very sparse, Latent Semantic Analysis (LSA) and 

Singular Value Decomposition (SVD) are performed for rank lowering while preserving the sim-

ilarity structure among rows [83, 80]. As the most intuitive approach, 1st-order similarity detects 

the number of exact words shared (or overlapped) between tweets. Because spam templates often 

adopt synonym interchanging for the purpose of obfuscation, our work applies 2nd-order similarity 

to measure similar tweets. Its general idea is to replace the context with something else that will still 

represent it, and yet likely provide more information from which similarity judgments can be made 

[121]. SenseClusters uses WordNet, a lexical database of English [113], for word replacement and 

expansion. Given the tweet corpus, SenseClusters divides N tweets into K clusters based on the 

semantic sense on the fly. 

'lllble 4.1: A Clustering Example of Semantic Similarity 
I Cluster l Size Proportion I Similarity Score I 

I ~ I E I ~:; I 
We present Table 4.1 as an example for the illustrative purpose. The tweet corpus is partitioned 

into three clusters, and a similarity score is assigned to each cluster to evaluate how similar the 

tweets it contains are. The semantic topics of Clusters 1 and 2 are credit card debt and music video, 

respectively. The remaining unrelated tweets are assigned to Cluster 3. 

Cluster 1. 

• How to consolidate credit card debt 

• Consolidate credit cards now to become debt free later 



CHAPI'ER 4. DETECTION OF SOCIAL SPAM CAMPAIGNS ON TWITTER 105 

•... 

Cluster2. 

• Amazing this music footage you'll like 

• This awesome music video hope u like 

•... 

Cluster3. 

• The remaining unrelated tweets 

We design Equation 4.2 to measure the self-similarity of the campaign's tweet content. 

lf 
. ~ clusteri..sizewl * clusteri..simw2 

se ..stm..score = L....t Kwa , 
i=l 

(4.2) 

where K is the number of semantic clusters in the campaign, and wl to w3 are weight factors with 

their tuning procedure presented in Section 4.4.1. 

4.3.3 Machine Learning Classifier 

Our classification problem can be defined as follows. Given a campaign, c =< u, T, A >. the 

classifier determines c as a either spam or legitimate campaign. We choose Random Forest [70] as 

the machine learning algorithm9, and train the classifier to make the binary decision. Random Forest 

serves as an ensemble classifier that includes multiple decision trees. The algorithm combines the 

bagging idea in [70] and random feature selection in [95] to construct a "forest" of decision trees 

with controlled variation. Suppose the training set contains M features, and each decision tree only 

9The reason is explained in Section 4.4.2 



CHAPTER 4. DETECTION OF SOCIAL SPAM CAMPAIGNS ON TWITTER 106 

uses m( < < M) features to reach the decision. The decision tree consists of two types of nodes, 

the leaf node labeled with the class, and the interior node that corresponds to a feature and links 

to a subtree. The tree is built from the root down to leaves in a recursive manner. During the 

construction path, every interior node is associated with the feature that is most informative among 

the remaining features not yet included in the path. Entropy is used to measure the information 

gain (namely, how informative a feature is). For classification, an unknown sample is pushed down 

the tree, and assigned with the class of the leaf node where the sample ends up. More details 

about decision tree can be found in [105]. Given a specific sample, every decision tree makes a 

classification decision (either spam or legitimate campaign in our case), and Random Forest applies 

the majority voting of all the trees to reach the final decision. 

4.4 Evaluation 

In this section, we first train the classifier. Then, we evaluate the accuracy of our classification 

system based on the ground truth set. 

4.4.1 Training 

As described in Section 4.2.3, our ground truth set consists of manually labeled campaigns. More 

specifically, 744 spam campaigns contain around 70,000 accounts and 131,000 tweets, whereas 580 

legitimate campaigns contain around 150,000 accounts and 180,000 tweets. 

Before training the classifier, we need to determine the content self-similarity feature by tuning 

the weight factors in Equation 4.2 with the following method. We choose Decision Tree as the 

tuner, and the feature represented by the self-similarity score as the only classification feature. We 



CHAPTER 4. DETECI'ION OF SOCIAL SPAM CAMPAIGNS ON TWITI'ER 107 

Table 4.2: Algorithm Performance ComiTson 
Feature I Accuracy(%) I FPR (%) FNR (%) I 

Random Forest 94.5 4.1 6.6 
Decision Table 92.1 6.7 8.8 
Random Tree 91.4 9.1 8.2 

KStar 90.2 7.9 11.3 
Bayes Net 88.8 9.6 12.4 

SMO 85.2 11.2 17.6 
Simple Logistic 84.0 10.4 20.4 

J48 82.8 15.2 18.8 

try different combinations of numeric values of w 1 to w3. In every test round, a combination 

generates a different self-similarity score for a campaign in the ground truth set. The decision tree 

associates the self-similarity feature with the root10, and calculates the best split between spam and 

legitimate campaigns. The combination of (w1 = 0.8, w2 = 0.5, w3 = 1) generates the highest 

overall accuracy on the ground truth set, and is chosen for Equation 4.2. As a campaign may be 

partitioned into a few semantic clusters, the cluster size proportion is no greater than 1. According 

to the algorithm of the SenseClusters, the cluster similarity score assigned is also no greater than 1. 

Note that w1 and w2 are decimal fractions, and they add more weights to the cluster size and cluster 

similarity. Furthermore, w2 makes cluster similarity more important than cluster size, as w2 is less 

than wl. 

4.4.2 Cross Validation 

By calculating the values of the features described in Section 4.3.1, a feature vector is generated 

for each campaign. Weka supports a collection of machine learning algorithms for classification, 

including mainstream categories of Bayes, trees and so on [93]. We try multiple algorithms in each 

category, list and compare performance results for the top classifiers with accuracy greater than 80% 

10 As it is the only feature in the classification. 



CHAPTER 4. DETECI'ION OF SOCIAL SPAM CAMPAIGNS ON TWITIER 108 

in Table 4.2. For each classifier, we use Cross Validation with ten folds to train and test it over the 

ground truth set [111]. The dataset is randomly partitioned into ten complementary subsets with 

equal size. In each round, one out of ten subsets is retained as the test set to validate the classifier, 

while the remaining nine subsets are used as the training set to train the classifier. At the beginning 

of a round, the classifier is reset and re-trained. Thus, each round is an independent classification 

procedure, and does not affect subsequent ones. The individual results from ten rounds are averaged 

to generate the final estimation. The advantage of cross validation is that, all samples in the dataset 

are used for both training and validation, while each sample is validated exactly once. 

Table 4.2 lists three metrics for evaluating the classification performance sorted on accuracy. 

Considering the confusion matrix with spam campaigns as positive cases, Accuracy is the proportion 

of samples that are correctly identified, False Positive Rate (FPR) is the proportion of negatives 

cases that are incorrectly classified as positive, and False Negative Rate (FNR) is the proportion of 

positives cases that are incorrectly classified as negative. During evaluation, we expect to constrain 

the FPR low at the cost of accepting the medium FNR. Classifying benign campaigns as spam 

upsets legitimate users, while missing a small part of spam campaigns is tolerable. Random Forest 

achieves the highest accuracy, lowest FPR and FNR, and hence is selected as the final classifier for 

our dataset. 

Some features play a more important role than others during the classification. Subsequently, 

we attempt to evaluate the discrimination weight each feature has. Similar to the tuning method 

for Equation 4.2, in each test, we use only one feature to independently cross validate the ground 

truth set with Decision Tree11 • The one with the highest accuracy may be considered as the most 

important feature. Table 4.3 presents the performance results of the top 10 features, which are also 

11 Random Forest transfonns to Decision Tree in the case of single-feature classification. 



CHAPTER 4. DETECI'ION OF SOCIAL SPAM CAMPAIGNS ON TWITTER 109 

sorted on accuracy. The Account Diversity Ratio feature has the highest accuracy at 85.6%. Tech

nically this one is not difficult to bypass, because spammers could use a large amount of accounts 

to distribute the workload and lower the ratio. However, spam accounts with limited nonnal fol

lowers cannot generate the satisfying propaganda. We speculate that, in reality, spammers tend to 

repeatedly use "influential" accounts to deliver spam to a wide audience. The Timing Entropy fea

ture captures the intrinsic complexity of human behavior, that is difficult for bot accounts to bypass. 

However, many spam campaigns involve manual accounts (probably in the form of click farm), that 

generate the high FNR at 22.8% for the feature. 

We are particularly interested in the performance of the URL Blacklists feature, as it is used as 

the only feature for spam campaign detection in some existing work. We present the performance 

comparison between our Random-Forest-based classifier that applies multiple features and the sin

gle blacklist feature. Blacklists are haunted by the inevitable lag effect, and cannot include all spam 

sites "in-the-wild". Besides, blacklists cannot detect duplicate spamming over multiple accounts. 

These factors generate a high FNR at 29.0%. By using multi-dimensional features, our classifier 

manages to capture more spam campaigns that would have been missed by the blacklist feature, 

and lowers the FNR at 6.6%. The low FPR of the blacklist feature is caused by the fact that, some 

blacklists only check the hostname of URL, and mis-classify some benign web pages hosted by 

blacklisted websites. The FPR of our classifier ( 4.1%) is slightly higher than that of the blacklist 

feature (3.2% ). Considering the big gain on FNR, we think the FPR cost is acceptable. Overall, our 

classifier improves the accuracy from 82.3% to 94.5%. 

Lastly, two content-related features, Content Self-similarity and Spam Word Ratio, sink in the 

bottom of the table due to the following reasons. First, a proportion of spam tweets deliver spam 

via the combination of innocent content and spam URLs. Second, spammers frequently change and 



CHAFrER 4. DETEcriON OF SOCIAL SPAM CAMPAIGNS ON TWI7TER 110 

'nlble 4.3: Feature Performance Comparison 
Feature I Accuracy(%) I FPR (%) I FNR (%) I 

Account Diversity Ratio 85.6 16.2 13.0 
Timing Entropy 83.0 9.5 22.8 
URL Blacklists 82.3 3.2 29.0 

Avg Account Reputation 78.5 25.6 18.3 
Active Time 77.0 16.2 28.3 

Affiliate URL No 76.7 9.6 34.0 
Manual Device % 74.8 10.3 36.8 

Tweet No 75.4 28.6 21.5 
Content Self Similarity 72.3 33.7 23.0 

Spam Word Ratio 70.5 25.8 32.4 

obfuscate spam words, and correspondingly, detectors need to keep the spam word list updated. 

Finally, limited by the text length, tweets do not carry abundant semantic characteristics. The appli-

cation of natural language processing in the further research could improve the detection accuracy 

of spam patterns and content similarity. 

4.4.3 System Overhead 

We run experiments on a workstation with an Inter Core 2 Duo 2.4 GHz CPU and 4 GB memory. 

The Random Forest classifier only costs 0.12 seconds for the cross validation over the ground truth 

set. Thus, the computational overhead is negligible. 

4.5 Conclusion 

Spam haunts social networks, as social relationship facilitate spam spreading. Conventional spam 

detection methods check individual accounts or messages for the existence of spam. Our work 

switches to the collective detection perspective by capturing spam campaigns involving multiple 

accounts. Our work uses features combining both content and behavior to distinguish spam cam-



CHAPTER 4. DETEC110N OF SOCIAL SPAM CAMPAIGNS ON TWliTER 111 

paigns from legitimate ones, and build an automatic classification framework. Our work can be 

applied to other social networks by integrating application-specific features. 

Detecting spam is an endless cat-and-mouse game, so the idea of building-once-and-using

forever is not realistic. The classifier is built with a specific set of features. As spamming methods 

may evolve in the future, some features may be added or replaced with new ones. The classifier 

should also be re-trained with the up-to-date ground truth dataset. 



Chapter 5 

Blogs (from weblog), are a popular application of Web 2.0. Internet users publish articles on blog 

sites, such as personal online diaries or news on a particular subject. Like normal web pages, blog 

pages are primarily textual combined with images, videos, and links. The distinctive feature of 

blog is user interaction, which allows visitors to leave comments to blog articles. A visitor fills 

in the comment form and submits it, and his comment will display below the article in reverse

chronological order. Unfortunately, the increasing popularity of blogs and the simplicity of posting 

comments have made it easy for blog bots to automatically post comments with malicious intent. 

According to the estimation of [44], about 83 percent of blog comments are injected by blog bots, 

indicating how rampant blog bots are in the blogosphere. Most of these automated comments are 

associated with spam websites, containing either traceback links to inflate search engine rankings 

[104], or other content to lure visitors to these sites. 

Since the majority of content generated by blog bots is unwanted by blog owners and visitors, 

blogging software has incorporated a variety of methods to discourage posting from these sources. 

Fundamentally, detecting human presence is an effective defense against blog bots. Conventional 

detection methods based on Human Interactive Proofs (HIPs) [75] usually require direct participa

tion from human users, such as CAPTCHA. As a reverse Thring test, it challenges a user with an 

image carrying alphanumeric text. The user must enter the exact text before the blog site can ac

cept the comment for submission. To cope with an advanced bot's capability for image recognition 

112 



CHAPTER 5. DEI'ECTION OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 113 

(namely, De-CAPTCHA), CAPI'CHA tools add image noise to the background canvas, and greatly 

distort characters [146]. However, such a CAPTCHA validation also requires non-trivial effort from 

human users. In some cases, users have to try several times to correctly recognize a CAPTCHA im

age because it has become more and more difficult even for human to read. Such a validation in 

place may effect a significant decrease in participation from human visitors. 

In this chapter, we present a new method based on passive monitoring for blog bot detection, as 

conventional detection systems have become a nuisance for human users. Our proposed approach 

employs behavioral biometrics, including mouse and keystroke dynamics, to distinguish between 

human and bot. It has two major advantages over existing solutions. First, it uses continuous mon

itoring throughout the entire user session, and eliminates single checkpoints. In contrast, blog sites 

deployed with the conventional detection face the dilemma of applying one-time test or multiple 

tests. On one hand, blog bots can pass the one-time test, such as account login, with the help of 

human. On the other hand, multiple tests, such as recognizing a CAPfCHA image before each 

comment posting, are too intrusive for human users. Our passive continuous monitoring resolves 

the above dilemma. Second, our method is non-interactive and completely transparent to users. 

Moreover, no detection decision needs to be made until the user submits the comment, which in 

tum saves system resources. We develop a passive, webpage-embedded logger to collect user input 

activities on a real, active blog site. By measuring and characterizing biometric features of user 

input data, we discover the fundamental differences between human and blog bot in how they surf 

web pages and post comments. These results greatly facilitate accurate detection of blog bots. 

We build a prototype of an automatic classification system that detects blog bots based on user 

input data. The system consists of two components, a webpage-embedded logger and a server

side detector. The logger is implemented as a JavaScript snippet that runs in the webpage on the 



CHAPTER 5. DETECI10N OF BLOG BOTS VIA BEHAVIORAL BIOMETRICS 114 

client browser. It records a user's input actions during her stay at the site and streams the data to 

the server-side detector. The detector processes raw user input (UI) data, and extracts biometrics-

related features. The core of the detector is a machine-learning-based classifier which is tuned with 

training data for the binary classification, namely determining whether the user is human or bot. 

Informed with the classification result, the server decides whether or not to accept the comment form 

submission 1• We evaluate the efficacy of the detection system by conducting a series of experiments 

over the user input dataset. The experimental results demonstrate that the system can detect 97.9% 

of current blog hots with extremely low false positive rate of 0.2%. 

As defense against hots is a challenging task, we acknowledge that our detection alone cannot 

eliminate the problem. However, our approach is a significant complement to conventional HIPs. 

We believe that, with the inherent irregularity and complexity of human behavior, it is extremely 

difficult if not impossible for a bot to completely mimic human behavior. Our behavior-based 

detection raises the bar for bot participation during this game of cat-and-mouse. 

The remainder of the chapter is organized as follows. Section 5.1 covers related work on blog bot 

and behavioral biometrics. Section 5.2 details our measurements and characterization of user inputs 

from human visitors and blog hots, respectively. Section 5.3 describes our automatic classification 

system. Section 5.4 evaluates the system efficacy for detecting blog hots. Section 5.5 discusses 

potential evasion against our detection system. Finally, Section 5.6 concludes the chapter. 

1 For instance, the server can be configured to accept the manual submission from human, and reject the automated 
form completion from bot. 



CHAPTER 5. DETECTION OF BLOG BarS VIA BEHAVIORAL BIOMETRICS 115 

S.l Background and Related Work 

From the perspective of blog content creation, there are two types of blog hots. The first type 

is the article posting bot, which automatically publishes blog articles. For example, it pipelines 

RSS feeds from other sites as articles into the blog site, or posts preset content for a spam blog 

(also known as a splog). Since the posting of articles usually requires the elevated privilege of the 

webmaster, article posting hots are not the focus of this study. The second type is the comment 

posting bot, which posts comments or replies to blog sites. Given a link to a blog site, this bot 

analyzes the HTML structure of the blog article, especially the .. leave a comment" form, fills in 

input fields, and posts a comment automatically. Most blog sites do not require visitors to register 

to post comments, and thus give ample space for hots to exploit. The focus of our work is on 

this bot type, and the term "blog bot" in the remainder of the chapter implicitly refers to comment 

posting hots. Currently, blog hots are mainly created to fulfill two tasks. First, the bot posts a 

comment with a backlink directing to a specific website (such as that of the bot owner)2• Posting 

backlinks to numerous blog sites has the effect of increasing the search engine traffic, in an attempt 

to boost search rankings for the originating site. The search industry has already employed some 

mitigation measures, such as Google's no-follow tag to prevent spam from polluting on search 

rankings. However, hots still massively generate inflation backlinks due to the ease and low cost of 

posting. Second, hots post comments with spam content (also known as spam comments) aiming to 

lure visitors to spam-related or other malicious sites3• Many blog sites eliminate spam comments 

based on content filtering, and Akismet [4] is such a distributed anti-spam web service. Each time 

2Here is an example of bacldink comment, "/don't really thinlc this is right, but believe whatever you want. Tire real 
story can be found here on my blog: http://myblog.com/blogl'. 

3 Here is an example of spam comment. "Thousands of cheap replica watches and fashionable designer bands at 
www.hot-replica.com/'. 

http://myblog.com/blog/'
http://www.hot-repUca.com/'


CHAPTER 5. DETECTION OF BLOG Bai'S VIA BEHAVIORAL BIOMETRICS 116 

a new comment is posted to the blog, it is submitted to Akismet, which checks content, runs other 

tests, and returns the spam detection result to the blog. Our work has the different research direction, 

and checks posting behavior instead of content posted. 

5.1.1 Existing Web Bot Detection 

There have been many previous works on web bot detection. Stassopoulou et al. [128] introduced 

a probabilistic modeling approach for web bot detection by analyzing server access logs. They 

constructed a Bayesian network that classifies log sessions as being crawler or human induced. 

Their classifier uses some features to characterize crawler and human behaviors, including maxi

mum sustained click rate, session duration, percentage of image requests, pdf/ps requests, 4xx error 

responses, and robots.txt file requests. Tan et al. [134] did a similar study by investigating nav

igational patterns of web hots. They extracted features from server logs such as total number of 

pages requested, average time between two HTML requests, and percentage of requests made with 

GET/POST methods, which are useful for a machine learning algorithm to distinguish between hu

man and bot. Park et al. [120] took web bot detection as a special form of the Turing test and 

defended the system by inferring whether the traffic source is human or bot. More specifically, their 

detection decision depends on evidence of mouse movement or keyboard activity from the client. If 

no human input activities are detected by a web server, the user is classified as bot. 

However, all these existing detection mechanisms are only effective for detecting form-injection 

hots that do not generate any human-like activities. They miss more advanced hots such as human

mimic hots, which can navigate web pages in the browser by generating simple user input actions. 

A web server cannot easily detect this type of bot by using navigational patterns or logs. Moreover, 

since human-mimic hots send mouse and keystroke actions to the browser, the detector in [120] is 



CHAPTER 5. DETECI10N OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 117 

deceived by the existence of forged human activity. Different from the previous detection research, 

our proposed approach does not merely depend on the presence of mouse or keystroke actions 

to distinguish human from bot. Our solution extracts features from UI actions that represent the 

inherent irregularity of human behaviors, and applies these features for bot detection. 

5.1.2 Behavioral Biometrics 

The fundamental idea of our approach is to exploit behavioral biometrics for bot detection. Biometrics

based authentication is defined as the automated use of a collection of factors describing human 

behavioral or physiological characteristics to establish or verify a precise identity [ 11 0]. It can be 

classified into two categories: physiological biometrics and behavioral biometrics. Physiological 

biometrics uses measurements from the human body, including fingerprints, iris, retina, and facial 

scanning, and so on. Behavioral biometrics uses measurements based on human actions, such as 

signatures, voice and keystroke dynamics. Compared with physiological biometrics, normally be

havioral biometrics do not require any special-purposed hardware for data collection, and are easy 

to employ. 

Among all behavioral biometrics, mouse and keystroke dynamics are the most common metrics 

attempted for on-line user authentication [68] [115] [64]. Keystroke dynamics measures duration 

(the length of time a key is pressed down) and inter-arrival time (the time from pressing one key to 

another) for keystroke actions. In the previous worlcs [68], [71], [115], the way that a user types 

at the keyboard is analyzed to identify its habitual typing rhythm and patterns. Mouse dynamics 

measures the characteristics of mouse actions of an individual user when it is interacting with the 

graphical user interface (GUI). Raw events generated by the mouse input device include cursor 

movement, mouse button press and release. In [64], high-level mouse actions are defined as the 



CHAPTER 5. DETECTION OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 118 

four meaningful combinations of raw events: Mouse-Move (i.e., general mouse movement), Drag

and-Drop (i.e., the action starts with mouse button down, movement, and then button released), 

Point-and-Click (i.e., mouse movement followed by a click or a double click), and Silence (i.e., no 

movement). Using neural networks, Ahmed et al. [64] modeled the mouse dynamics characteristics 

from the captured user input data. They implemented a detector that generates a signature for a user. 

User identification is conducted by comparing two signatures. 

Our chapter extends behavioral biometrics into blog bot detection, mainly using keystroke and 

mouse dynamics. In the context of blog user behavior characterization, keystroke and mouse dy

namics are complementary to each other. This is because human users move the mouse cursor to 

surf blog pages, and strike the keyboard to post comments. However, our work significantly differs 

from aforementioned biometric detectors. Our work distinguishes two classes of users, human and 

b1og bot, instead of identifying individual users. Some previous work indicates that, behavioral bio

metrics may generate non-negligible errors in identifying individuals as one's behavior may vary 

significantly [66]. Our evaluation results demonstrate behavioral biometrics works accurately for 

the problem of classifying two classes: bot and human, instead of user identification. 

The closest previous work to ours is [88], which also applies behavioral biometrics for detecting 

game bots in online games. On one hand, blog bot detection is different from game bot detection, 

due to different application environments4 • In [88], the user input actions are collected by the 

game client, while our work resorts to JavaScript in the blog page for user input collection. Neural 

networks are used in [88], while our work uses decision tree for classification. Decision tree is 

more efficient than neural networks on our dataset of user input activities, and the tree structure 

clearly presents how features are weighted during the classification. On the other hand, behavioral 

4Gamc bot operates on a map and fulfills a series of game-related missions. 



CHAPTER 5. DETECTION OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 119 

biometrics works well for both cases, and user input behaviors remain consistent in different online 

applications, either online blogging or online gaming. 

5.2 Behavior Characterization 

In this section, we analyze user behaviors, namely how a user surfs blog pages and posts comments, 

based on data collected from a large corpus of users. We first introduce three types of blog hots, 

then describe how we collect user input data from a blog site. Finally, we characterize the behavioral 

differences between human and blog bot, in terms of keystroke and mouse dynamics. 

Thble 5.1: User Input Actions 
I Action I Description 

Keystroke The press and release of the same key 
A set of continuous mouse moves with no 

Point mouse clicks, and the interval between two 
consecutive moves is no more than 0.4 second 

Click The press and release of the same mouse button 
Point -and-Click A point followed by a click within 0.4 second 

Drag-and-Drop 
Mouse button down, movement, and then 
mouse button up 

5.2.1 Blog Dots 

Fundamentally, current blog hots can be categorized into three different types based on their working 

mechanisms: Form Injection Bot, Human Mimic Bot, and Replay Bot. Form Injection Bots do not 

post comments via the browser. Rather, it directly sends an HTTP request to the server for the blog 

page where it plans to post comments. After receiving the HTML content of the requested page, 

it analyzes the HTML structure of the comment form. Then, it injects content into form fields5, 

'The fonn is usually well-structured, and the ID/name of each input field remains constant For example, <input 
type=''tcxt" name="ernail" I> is the text field to enter email address. Thus, the bot author programs the bot to recognize 



CHAPTER 5. DETECTION OF BLOG BaTS VIA BEHAVIORAL BIOMEfRICS 120 

Dilp~(px) 

(a) Human 

~-~----------------------------, 

Dilp--.m(px) 

(b) Human Mimic Bot 

Flgure 5.1: Displacement for Point-and-Click 

constructs a syntactically legal HTfP response with the HTML form data as the body, and sends it 

to the submission URL at the server. To evade the server's check on the HTI'P response, the bot often 

forges certain fields in the response header, such as Referer, User Agent, and Cookie. Furthermore, 

some bots are equipped with CAPTCHA deciphering capability to crack the CAPTCHA defense. 

However, they do not generate any mouse or keystroke events. Currently this type of bot is the most 

widely used blog bot in cyberspace [19, 58]. 

Contemporary detection methods have realized the importance of detecting human activities 

during the form filling procedure. A server only accepts a user as human if mouse or keyboard 

events are detected. Thus, bot authors are motivated to create a more advanced bot type, namely the 

Human Mimic Bot. These bots open a blog page in the browser, and use OS API calls to generate 

keystroke and mouse events. In this manner, it mimics human browsing behavior, fooling older 

detection methods. For example, the bot strolls down the page to the bottom by repetitively sending 

.. Press down-key" commands. Then, it moves the mouse cursor into each field of the comment form, 

and types in prepared text content by sending a sequence of keystrokes. Finally, the bot posts the 

fields and fill in appropriate content. 



CHAPTER 5. DETECI10N OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 121 

I 
0 --111011211100211003000-

Spoed (px/loc) 

(a) Human 

~~·~--------------------------~ 

0 110111000 110030002110113000 __ _ 

Spoed (pxllec) 

(b) Human Mimic Bot 

Figure 5.2: Speed for Point-and-Click 

comment by generating a mouse click on the submit button. The server cannot distinguish whether 

the UI events are generated via hardware (such as the mouse device and keyboard) or via software 

(such as Human Mimic Bot) by merely checking the received user input data. The server will be 

deceived by Human Mimic Bot if it only relies on the presence of UI events for bot detection. 

Some research into behavioral biometrics has found out that human behavior is more complex 

than bot behavior. Compared with the inherent irregularity and burstiness of human behavior, bots 

exhibit regular patterns of limited variety [88]. For example, many bots move the mouse cursor 

in straight lines at a constant speed, or strike keys with even intervals. Such perfect regular actions 

cannot be achieved by human. Thus, the server could detect Human Mimic Bot by taking behavioral 

complexity into account. With high fidelity of mimicry, Replay Bots are more advanced than Human 

Mimic Bots, and are probably the most difficult to detect among contemporary blog bots. When a 

human is filling a form, Replay Bot records her actions. Later on, it impersonates the human by 

replaying recorded traces on form submission pages. The standard interfaces utilized by popular 

blogs and message boards, such as WordPress or vBulletin, make such replay attacks possible. 

To characterize the bot behaviors, we use existing bot tools or libraries to configure the three 



CHAPTER 5. DETECTION OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 122 

types of blog bots. The Fonn Inject Bot is implemented as a PHP cURL script. The comment fonn 

at our blog site is submitted via the POST method. The cURL script assigns every input field with 

an appropriate value, encapsulates the fonn data into a string, and submits it to the PHP script at 

the server that processes the fonn. We configure the Human Mimic Bot based on the AutoHotkey 

script [12], which is an open-source Windows program designed for automating the Windows GUI 

and for general scripting6• We customize the script for our blog site, and thus it can generate actions 

corresponding to the page layout7• The script mimics all kinds of nonnal human actions, such as 

moving and clicking the mouse cursor, scrolling the page up and down, drag-and-dropping an area, 

and typing keys. To simulate various effects, we assign action parameters with different constants 

or random values. Taking mouse movement as an example, we change endpoint coordinates and 

movement speed to generate different traces. For keystrokes, we change the duration (the length of 

time the key is held) and inter-arrival time (the time from pressing one key to another) to generate 

different typing rhythms. We choose the Global Mouse and Keyboard Library for Windows [28] 

as the Replay Bot in our experiments, which has both record and replay capabilities. The record 

and replay are implemented using the mouse and keyboard APis in Windows. Specifically, for 

recording, global hooks are created to capture keyboard and mouse events; and for replaying, the 

keyb<Levent and mouse..event APis in Windows are used. 

5.2.2 UI Data Collection 

For client-side monitoring, we develop a logger written in JavaScript, which is embedded in the 

header template of every webpage, and in this way it records UI data during the user's entire visit at 

fi.ybcre are other similar bot tools that may generate simple human behavior, such as Autolt [13] and AutoMe [14]. 
7The page layout is different from page to page, and may affect how the Human Mimic Bot works. For example, by 

moving down the same amount of pixels, the mouse enters the comment form on one page, but falls out of the form on 
another page. 



CHAPTER 5. DETECI10N OF BLOO Bar'S VIA BEHAVIORAL BIOMETRICS 123 

the site. The user behavior is in constant monitoring, which prevents bots from bypassing routing 

checkpoints (such as CAPTCHA recognition during login). More specifically, five raw UI events 

generated by the user in the browser are collected, including Key Press, Key Release, Mouse Move, 

Mouse Button Press, and Mouse Button Release. The logger streams the UI data to the server for 

further processing and classification. More details of the logger implementation are presented in 

Section 5.3.1. Note that no user sensitive data content (e.g., password) is recorded by our logger. 

We have also obtained the approval from the Institutional Review Board (IRB) of our university, 

which ensures the appropriate and ethical use of human input data in our work. 

The collection of human UI data is described as follows. We collected data from a busy blog 

site consisting of over 65,000 members. The site averages 800 simultaneous online users, and in 

order to prevent spam, the site requires visitors to register with real credentials and log in before 

posting content. Content is manually reviewed by site administrators, moderators, and a community 

of dedicated users. Should an account post spam and be reported, the associated content is quickly 

removed and the account gets suspended. We collected data from 1,078 distinct signed-in site 

members during several two-hour monitoring sessions on a single day. The data collection was 

completely transparent to users, and the interactions consist of both reading and posting of content. 

Our real-world data with the large user population covers a wide range of human input behavior. The 

data also presents an advantage over the lab environment tests, where a user's performance might 

be at odds with her normal behavior. We maintain a high degree of confidence that the users in this 

dataset are indeed human, as their registrations are manually screened by site administrators, and 

posted content is screened by a community of users, resulting in a low overall observed incidence 

ofspam. 

Correspondingly, we run three types of blog bots to collect bot input data. By including user-



CHAPTER 5. DETECTION OF BLOO BaTS VIA BEHAVIORAL BIOMETRICS 124 

name and password to the POST data body, Form Inject Bots can post comments. As it does not 

open a webpage in the browser to generate any input events, the server does not receive any UI data. 

Thus, Form Inject Bots can be easily detected. We also run multiple instances of the Human Mimic 

Bot, and each instance is assigned with different settings (such as varied typing rhythms and mouse 

movement speeds) to generate different behavior. We generate the traces of Human Mimic Bot for 

30 hours. We run the Replay Bot for six rounds, which last for 2 hours in total. In each round, a 

human user fills in the comment form, and Replay Bot records the human trace and replays it. 

Lastly, we explain the reasons that we run customized hots in the controlled "sand box" to 

generate bot input data. First, ground truth creation and data collection is an example of the chicken 

or the egg causality dilemma. We must know the true identity of a user to label it as human or bot 

in the ground truth set. In other words, we cannot collect data in the wild and recognize what data 

are generated by bot or not. After being trained on the ground truth set, the classifier can distinguish 

between human and bot. Second, we do not create hots. Instead, we customize hots based on 

existing tools and libraries without changing their mechanisms. The authenticity of bot input data 

is reserved. In addition, a bot needs to be customized to operate on a specific blog site8, and no 

existing tools can be generative to all blogs. 

Raw UI events cannot efficiently describe user browsing activities. We develop a parser to 

integrate raw events into compound actions as shown in Table 5.1. For example, the Key Press 

event and the ·following Key Release event of the same key is integrated as a Keystroke action, and 

a set of continuous Mouse Move events are grouped as a Point action. 

8For example, the position of the submit button may vary in the wcbpage layout. The bot must be customized to move 
to the button and generate a click event on it 



CHAPTER 5. DETECTION OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 125 

j 

Eftll:ieacy 

(a) Human 

Eftlcieacy 

(b) Human Mimic Bot 

Figure 5.3: Movement Efficiency for Point-and-Click 

5.2.3 UI Data Measurements 

Based on the collected UI data from human and bot, we analyze the keystroke and mouse dynamics 

and characterize different behavioral patterns for humans and hots, respectively. For the profiling 

of bot behavior, we only use the traces of Human Mimic Bot, and exclude those of Form Inject Bot 

and Replay Bot9• 

Figure 5.1 and 5.2 illustrate two mouse kinematics features, displacement and speed, for the 

Point-and-Click action, respectively. In Figure 5.1 with the bin resolution of 100 pixels, we observe 

that human users generate far more displacements with short length than with long length. About 

60.64% of displacements are less than 400 pixels, while only 8.52% are greater than 1000 pixels. In 

contrast, hots tend to move the mouse at all displacements. Figure 5.2 with the bin resolution of 100 

pixels per second shows the movement speed of bot is faster than that of human. The average speed 

of bot is 1520.83 pixels per second in our observation, but the average speed of human is 427.43 

pixels per second. Furthermore, human speed is limited within 3500 pixels per second, due to the 

9Fonn Inject Bot generates no UI data. As Replay Bot replays traces generated by human, it is inappropriate to include 
human traces to characterize bot behavior. 



CHAPTER 5. DETECI10N OF BLOG BOTS VIA BEHAVIORAL BIOMETRICS 126 

physical movement constraints of human wrist and ann. Finally, we observe that some bots move 

the mouse at fixed speeds. 

Figure 5.3 shows the mouse movement efficiency for the Point-and-Click action, with the bin 

resolution of 0.02 second. For a mouse movement from the starting point to the end point, dis

placement is the segment length between the two points, and distance is the actual length traversed. 

Movement efficiency is defined as the ratio of displacement over distance. Straight line movement 

has the highest efficiency at 1. The more curvy the movement is, the lower its efficiency is. Our first 

observation is that bots move the mouse cursor with much greater efficiency than humans. About 

59.23% of bot movements achieve efficiency greater than 0.94, while only 28.60% of human move

ments are equally efficient. As the Point action is the integration of a set of continuous raw Mouse 

Move events, we could have treated several segments of Move event as the curve of Point action, 

which lowers the bot efficiency during the calculation. Thus, there could have been more bot move

ments with the efficiency of I (namely, straight movement). Our second observation is that, the 

probability of human movement efficiency follows a lognormal (3P) distribution in our dataset10, 

and the bot probability does not fit any well-known distributions. For humans, most movements are 

curves, since it is physically difficult to generate perfect straight lines over certain length or time. 

Figure 5.4 shows the distribution of inter-arrival times for the Keystroke action, with a bin reso

lution of 0.05 second. We make two observations from the figure. First, bots strike keys obviously 

faster than humans. About 21.49% of bot keystrokes are less than 0.05 second, and only 5.82% of 

human keystrokes are issued within that range. A human user has to look up keys on the keyboard, 

and moves her fingers to hit keys. Physical movements cannot compete with keystroke events gener

ated by software. Second, for bots, the probabilities of intervals at 0.05 and 0.25 seconds are greatly 

10Kolmogorov-Smimov test presents P-value of the distribution fining at 0.882 with a 99% confidence level. 



CHAPTER 5. DETECTION OF BLOG BaTS VIA BEHAVIORAL BIOMEI'RICS 127 

I 

IDiillrwl. (ICC.) 

(a) Human 

4 

0.11 

0.10 

I I 

IDWval (ICC.) 

(b) Human Mimic Bot 

F1gure 5.4: Inter-arrival Time Distribution for Keystroke 

4 I 

higher than other values. This implies that some bots may use periodic timers to issue keystrokes at 

fixed intervals. 

We also observe similar distribution patterns of Keystroke duration between human and bot. 

The keystroke duration is the elapsed time between a key press and its corresponding release. The 

distribution patterns are similar with those in Figure 5.4. Bots hold keys much shorter than humans. 

While 45.42% of bot keystrokes are held less than 0.3 second, only 23.11% of human keystrokes 

are within that range. A human needs time to move his finger up to release the key after he presses 

it down. In addition, for bots, the probability of intervals between 0.05 and 0.15 seconds are greatly 

higher than other values. The periodic timer may set fixed intervals between consecutive key press 

and release events. Due to the space limit, the related figures are not included in the chapter. 

5.3 System Design 

Our detection system is mainly composed of the webpage-embedded logger and the server-side 

detector. The logger collects UI activities in the client browser and sends data to the server. The 



CHAPTER 5. DEI'ECI'ION OF BLOG BOTS VIA BEHAVIORAL BIOMETRICS 128 

detector analyzes the UI data of a user and decides whether it is human or bot. The high-level 

system architecture is shown in Figure 5.5. 

5.3.1 Webpage-embedded Logger 

As mentioned in Section 5.2.2, the logger is implemented as JavaScript code, and embedded in every 

webpage of the blog site. As a result, JavaScript is required by the blog site and non-JavaScript 

clients are blocked from posting or must pass a conventional HIP, such as a CAPTCHA. When a 

user visits the blog, the logger runs silently inside the client browser. It is totally transparent to the 

user, and no extensions need to be installed. The logger collects five raw UI events generated by the 

user inside the browser, including Key Press, Key Release, Mouse Move, Mouse Button Press, and 

Mouse Button Release. Each event is associated with a JavaScript listener. After an event happens, 

the listener is triggered to generate a record in the JSON format [36]. Every record has several fields 

to describe the event attributes 11 . The polling rate of the logger is decided by the client operating 

system, and is generally high enough to capture UI events. For example, in Windows 7, the polling 

rate is 125Hz, namely polling every 8 milliseconds. The logger buffers the collected events within 

a small time window, and then sends the data in a batch to the server via Ajax (Asynchronous 

JavaScript and XML). The asynchronous communication mechanism helps save network traffic 

between server and client, as no additional traffic occurs when no events happen within the window. 

Besides, according to Section 5.4.2, only a certain number of user actions are needed to correctly 

classify a user. It also helps reduce network traffic. 

11 Take the following Mouse Move record as an example, {"time":l278555037098, ''type":"Mouse Move", "X":590, 
"Y": 10, "tagName":"DIV", ''tagiD":"footnote"}. The "time" field contains the time stamp of the event in the unit of 
millisecond. The two coordinates, X and Y, denote the mouse cursor position. The last two fields describe the name 
and ID of the OOM element where the event happens, such as <div ID="footnote">. In a record of Mouse Press, 
{"time":l278555074750, "type":"Mouse Press", "virtuaiKey":OxOl, ''tagName":"HI'ML''}, The "virtuaiKey" field de
notes the virtual-key code of OxO 1 in hexadecimal value, which corresponds to the left mouse button here. 



CHAPTER 5. DETECTION OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 129 

As our detection method is generic to other types of fonn bots, such as those automatically 

perfonn massive account registration and online voting, we need to address the privacy and security 

concerns of using the logger to collect user input data. First, we discuss the user privacy protection. 

As the logger is implemented as JavaScript code running in web pages of the blog site, it is strictly 

constrained by the same-origin policy [99] enforced by the browser, and thus cannot access content 

of other sites or programs. This makes it very different from the OS-level keyloggers. In other 

words, our logger can only access the data that a user generates on the blog, which will be submitted 

to the blog site anyway. Thus, the logger does not endanger user privacy. Second, we consider the 

confidentiality of user input content transferred over the Internet. When a user types in content on 

the webpage, the key values of strokes are recorded in the fonnat of virtual-key codes [61]. The link 

between the logger and the server is not encrypted. To prevent an eavesdropper from intercepting 

data packages in plain text and recovering the user input content, the logger replaces each key value 

of strokes with a wildcard character. This wildcard replacement enforces the confidentiality of user 

input content, and avoids the additional overhead by encryption. 

Server 

I 
I 
I ... ... ... 
l-~~~-~-~- .:..~~ --- __ , 

Flgure 5.5: Detection System Architecture 



CHAPTER 5. DEfECI'ION OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 130 

5.3.2 Server-side Detector 

The detector consists of three components: the log processor, the classifier, and the decision maker. 

The UI data of each user is processed by the log processor, which converts raw events into high

level actions and encapsulates an adjustable number of consecutive actions to form action groups. 

The classifier processes each action group in the user log and assigns it with a classification score, 

indicating how likely the action group is generated by human or bot. Finally, the decision maker 

determines the class of the user based on the classification results of action groups. Each of the 

components is explained as follows. 

5.3.2.1 Log Processor 

When the UI data arrives at the server, it is in the format of raw events, such as Mouse Move and 

Key Press. The raw data is stored at the back-end MySQL database, and can be easily grouped 

per user who generates the data. Before classifying a user, the log processor processes the user 

log by converting raw events into high-level UI actions defined in Table 5.1. Furthermore, the log 

processor calculates the timing entropy of intervals of the whole raw event sequence in the user log, 

which detects periodic or regular timing of the entire user behavior. 

The human behavior is often more complicated than that of bot [87, 78], which can be measured 

by entropy rate. It is a measure of the complexity of a process [79]. A high entropy rate indicates 

a random process, whereas a low indicates a regular process. The entropy rate is defined as the 

conditional entropy of an infinite sequence. As our real dataset is finite, the conditional entropy of 

finite sequences is used to estimate the entropy rate. For estimation, we use the corrected conditional 

entropy [122], which is defined as follows. 

A random process X = {Xi} is defined as a sequence of random variables. The entropy of such 



CHAPTER 5. DEI'ECI10N OF BLDG BarS VIA BEHAVIORAL BIOMETRICS 131 

a sequence is defined as: 

n 

E(Xt, ... , Xn) = - L P(xt. ... , Xn) log P(xt, ... , Xn), 
i=l 

where P(xt, ... , Xn) is the joint probability P(Xt = Xt. ... , Xn = Xn). 

Thus, the conditional entropy of a random variable is: 

Then the entropy rate of a random process is defined as: 

E(X) = lim E(Xn I Xt. ... , Xn-1)· 
n-+oo 

(5.1) 

(5.2) 

(5.3) 

The corrected conditional entropy is computed as a modification of Equation 5.3. First, the joint 

probabilities, P(Xt = Xt, ... , Xn = xn) are replaced with empirically-derived probabilities. The 

data is binned into Q bins, i.e., values are converted to bin numbers from 1 to Q. The probabilities 

are then determined by the proportions of bin number sequences in the data. The entropy estimate 

and conditional entropy estimate, based on empirically-derived probabilities, are denoted as EN 

and CE, respectively. Second, a corrective tenn, perc(Xn) · EN(Xt), is added to adjust for the 

limited number of sequences for increasing values of n [122]. The corrected conditional entropy, 

denoted as CCE, is computed as: 

CCE(Xn I Xt, ... ,Xn-d = 
(5.4) 

CE(Xn I X1, ... , Xn-d + perc(Xn) · EN(Xt) 

Based on Equation 5.4, we calculate the CC E of intervals of the raw event sequence for a user 

as the timing entropy. 



CHAPTER 5. DETECTION OF BLOO BaTS VIA BEHAVIORAL BIOMETRICS 132 

Finally, a set of classification features are generated for every action, which are listed in Table 

5.2. They are used by the machine-learning based classifier for bot detection. More specifically, 

we group raw Ul events into an action record as shown in Table 5.1. For example, a ••point" action 

contains a set of mouse move events. The value of duration feature is the timestamp difference 

between the last and first mouse move events. Similarly, the value of distance feature is the actual 

length traversed by all the mouse move events. The former seven features are directly retrieved from 

the action itself. In particular, the first four features are the basic ones, while average speed and 

move efficiency are derived from them12• These two derived features reveal the inherent correlation 

among features and accelerate the tree building. The last feature is the timing entropy of the whole 

event interval sequence of a user, not of a single action. An action only consists of several events, 

which are too few to extract timing regularity. It is statistically meaningful to calculate entropy 

at the user level. We include the entropy feature in the action record to inform the classifier the 

behavioral timing pattern of the user who generates the action. 

'nlble S.l: Classification Features of User Actions 
I Feature I Description 

Duration Mouse/keystroke actions 
Distance Mouse actions 
Displacement Mouse actions 
Displacement Angle Mouse actions 
Average Speed Mouse actions 
Move Efficiency Mouse actions 

Virtual Key Value 
Left/middle/right button for mouse actions, 
and a wildcard character for keystrokes 

Tuning Entropy Event interval sequence of the target user 

12 Average speed is distance over duration, and move efficiency is displacement over distance. 



CHAPTER 5. DETECTION OF BLDG BaTS VIA BEHAVIORAL BIOMETRICS 133 

5.3.2.2 Classifier 

Our classifier is based on the C4.5 algorithm [105] that builds a decision tree for classification. The 

decision tree predicts the class of an unknown sample based on the observed attributes. There are 

two types of nodes in the decision tree, the leaf node labeled with the class value (such as human 

or bot), and the interior node that corresponds to an attribute and links to a subtree. The tree is 

constructed by dividing the training dataset into subsets based on the attribute value test. This 

partitioning process is executed on each derived subset in a recursive manner. The fundamental 

ideas behind C4.5 are briefly described as follows. The tree is built from the root downward to 

leaves. During the construction path, each interior node must be associated with the attribute that is 

most informative among the attributes not yet included in the path. C4.5 uses entropy to measure 

how informative an attribute is. Given a probability distribution P = {PI, IJ2, ... , Pn}, the entropy 

of Pis defined as 
n 

E(P) = - LPi logpi, (5.5) 
i=l 

WedenoteDas thedatasetoflabeledsamples, and Cas the class with kvalues, C = {C1, C2, ... , Ck}· 

The information required to identify the class of a sample in Dis denoted as Info( D)= E(P), where 

P, as the probability distribution of C, is 

(5.6) 

If we partition D based on the value of an attribute A into subsets {Dt, D2, ... , Dm}. 

(5.7) 

After the value of attribute A is obtained, the corresponding gain in information due to A is denoted 



CHAPTER 5. DETECTION OF BLOG Bai'S VIA BEHAVIORAL BIOMETRICS 134 

as 

Gain( A, D) = Info( D) - lnfo(A, D), (5.8) 

As Gain favors attributes that have a large number of values, to compensate for this the C4.5 

algorithm uses Gain Ratio as 

G . . (A ) Gain(A,D) 
amRat1.o ,D = Splitlnfo(A,D) (5.9) 

where Split/nfo(A,D) is the information due to the splitting of D based on the value of attribute A. 

Thus, 

. ID1I ID2I IDnl 
Sphtlnfo(A, D) = E( IDI , IDI , ... , IDI ) (5.10) 

The gain ratio is used to rank how informative attributes are and to construct the decision tree, 

where each node is associated with an attribute having the greatest gain ratio among the attributes 

not yet included in the path from the root. In other words, C4.5 applies a greedy search by selecting 

the candidate test that maximizes the heuristic splitting criterion. 

We choose the C4.5 algorithm for the classification due to the following four reasons. First, it 

builds the decision tree in an efficient manner by processing a large amount of training data in a 

short time. Furthermore, the tree is robust even if assumptions, to some extent, are violated by the 

real data model. Second, it uses the white box model, which is easy to understand and interpret 

by boolean logic. Third, C4.5 is capable of processing both continuous and discrete values (such 

as numerical and categorical data), which is an improvement from the earlier ID3 algorithm [124]. 

Last, after the tree creation, C4.5 prunes the tree from top down with attempts to constrain the tree 

height and avoid overfitting. 

We use J48 as implementation, which is an open source Java program of the C4.5 algorithm 

in the Weka data mining tool [93]. Each action record is in such a format of feature vector as 



CHAPTER 5. DETECTION OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 135 

<duration, distance, displacement, displacement angle, average speed, move efficiency, virtual key 

value, timing entropy>, listed in Table 5.2. The J48 classifier takes input from all actions in an 

action group13, and outputs the classification result indicating whether the action group is generated 

by human or bot. 

5.3.2.3 Dedsion Maker 

The user log contains multiple action groups, and each group is determined by the classifier as 

generated by either human or bot. The decision maker presents the summary of the classifications 

of UI actions over a period of time by employing the majority voting rule. More specifically, if the 

majority14 of action groups are classified as human, then the user is classified as human, and vice 

versa. Since classification on individual actions cannot always be accurate, the more actions are 

included, the more confident the final decision is. 

5.4 Evaluation 

In this section we evaluate the efficacy of our detection system in terms of detection accuracy, 

detection time, and induced system overhead. 

5.4.1 Experimental Setup 

Our experiments are based on 239 hours of user traces, including 2CJ7 hours of human and 32 hours 

of bot15 • The traces are collected from more than 1,000 human users and two types of blog hots 

13Input is converted the ARFF format required by Weka[ll]. 
14 As our classification only involves two categories, human and bot, a majority means more than half of lhe votes. 
15The idle time is not included in the traces. The bot trace consists of 30 hours of Human Mimic Bot data and 2 boun 

of Replay Bot data. 



CHAPTER 5. DETECTION OF BLOG Bai'S VIA BEHAVIORAL BIOMETRICS 136 

(namely Human Mimic Bot and Replay Bot). The details about user composition are described in 

Section 5.2.2. In summary, the user input dataset consists of 4,520,165 raw events, which are further 

converted into 190,677 compound actions. 

Table 5.3: True Positive and Negative Rates vs No. of Actions per Group 

I Actions per Group I TPR I TNR I 
2 0.974 0.9993 
4 0.9945 0.9996 
6 0.9865 0.9989 
8 0.9879 0.9989 

We use cross validation with ten folds [111] to train and test the classifier on our UI dataset. 

The dataset is randomly partitioned into ten complementary subsets. In each round, one of the 

ten subsets is retained to validate the classifier (as the test set), while the remaining nine subsets 

are used to train the classifier (as the training set). Every round is an independent procedure, as 

the classifier is reset at the beginning of the round and then re-trained. The test results from ten 

rounds are averaged to generate the final estimation. The advantage of cross validation is that, all 

the samples in the dataset are used for both training and validation and each sample is validated 

exactly once. 

5.4.2 System Performance 

Our detection system has two adjustable parameters that affect the system performance: (1) the 

number of actions per group and (2) the total number of actions required to correctly classify a user. 

We describe the configuration procedure of each parameter as follows. 

We set different values for the number of actions per group, run cross validation tests, and then 



CHAPTER 5. DETECfiON OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 137 

calculate the true positive rate (TPR)16 and true negative rate (TNR)17 for each value. The results are 

listed in Table 5.3. During the classification, the classifier treats a group of actions as one entity18, 

and produces the classification result for the group, not for individual actions. In our experiment, 

the setting of four generates the highest TPR and TNR among all the values. Therefore, we set the 

number of actions per group as four. 

The second parameter, the total number of actions required to correctly classify a user, directly 

affects the system performance in terms of detection accuracy and detection time. Generally speak-

ing, the more actions observed from the user, the more accurate the classification result will be. On 

the other hand, processing more actions costs more time and increases the detection time. Given the 

number of actions per group is four, we run experiments with cross validation on the whole ground 

truth to determine how many actions are required to achieve a high accuracy. The results are sum-

marized in the column labeled as "Both Bots" in Table 5.4. Since each action group is configured 

to contain four actions, the total number of actions required equals the group number multiplied by 

four. The last row in Table 5.4 labeled as "Entire" corresponds to the baseline case, in which the 

classifier takes all the actions in the user log as input. It is used as upper-limit for accuracy compari-

son. We can see that the detection accuracy in terms of TPR and TNR increases as the total number 

of actions processed by the classifier increases. With the group number as 24 (namely 24 * 4 = 96 

actions in total), TPR and TNR are very close to those of the entire log. Besides, the accuracy gain 

increases very slowly after the group number exceeds 24. Thus, the system is configured to process 

24 action groups while each group includes 4 actions. Each group is labeled as either human or bot, 

16The true positive rate is the ratio of the number of bots which are correctly classified to the number of all the bots. 
17'The true negative rate is the ratio of the number of humans which are correctly classified to the number of all the 

humans. 
18 A series of consecutive actions represent continuous behavior well. 



CHAPTER 5. DETECI10N OF BLOG BarS VIA BEHAVIORAL BIOMETRICS 138 

and the user is eventually classified as the category with more labels using the majority voting rule. 

For example, if the action group sequence is labeled as <human, human, bot, human, · · · , human>, 

then the user is classified as human. The C4.5 algorithm generates a decision tree based on our 

dataset and prunes it afterwards. The construction procedure costs 4.96 seconds, and returns a tree 

with 57 nodes. The tree consists of 29 leaves and 28 interior nodes including the root. The overall 

detection accuracy is 0.9972 with the root mean squared error at 0.0244. 

'Thble 5.4: True Positive and Negative Rates vs Number of Groups 

Group No Both Bots Human Mimic Bot Replay Bot 
TPR TNR TPR TNR TPR TNR 

4 0.6975 0.9972 0.7016 0.998 0.6359 0.9992 
8 0.7673 0.9956 0.7710 0.9982 0.7117 0.9974 
12 0.8172 0.9973 0.8198 0.9991 0.7781 0.9982 
16 0.8788 0.9978 0.8802 0.9992 0.8578 0.9986 
20 0.917 0.9982 0.9208 0.9994 0.8599 0.9988 
24 0.9794 0.9983 0.9817 0.9996 0.9448 0.9987 

Entire 0.9945 0.9996 0.9964 0.9999 0.9660 0.9997 

The detection time is mainly decided by the total number of actions processed by the classifier. 

The average time per action is less than one millisecond. The overall time cost per user, including 

log processing and classification, is averagely 3.2 seconds. 

We speculate whether one bot type is more difficult to detect than the other. Thus, we separate 

the evaluation on Human Mimic Bot and Replay Bot to see how accurately our system can detect 

the two types of blog bots. More specifically, we derive two subsets of the ground truth: one with 

the entire trace of human and Human Mimic Bot, and the other with that of human and Replay 

Bot. The results are displayed in the last two columns in Table 5.4. We have two observations. 

Firstly, for each row, the TPR of Human Mimic Bot is greater than that of Replay Bot. It is easier 

to detect Human Mimic Bot thanks to the simplicity and regularity of its behavior. Due to certain 



CHAPTER 5. DETECTION OF BLOG BOI'S VIA BEHAVIORAL BIOMETRICS 139 

implementation deficiencies of the Replay Bot tools19, our system also effectively detects Replay 

Bot with the TPR greater than 0.966. Secondly, the 1NR is greater than the corresponding TPR for 

every bot type. In other words, the FNR is greater than the FPR. It reflects our design philosophy 

that, the system may miss capturing some bots, but it seldom mis-classifies human as bot to upset 

legitimate users. 

5.4.3 System Overhead 

As the detector is employed on the server side, it must be light-weight and scalable enough to ac

commodate numerous concurrent user classifications. We estimate the additional overhead induced 

by the detector for the case, in which 10,000 users access the server simultaneously. 

In terms of network bandwidth consumption, the logger streams the user input data in the JSON 

format to the server. An average user generates a trace at a size around 200 Kbytes. Then, the 

aggregated network bandwidth consumed at the server-side for receiving Ul data is about 4.2 Mbps. 

Considering the wide deployment of Gigabit Ethernet, this network bandwidth requirement can be 

easily met. 

The main memory cost at the server side is to accommodate user input actions and the decision 

tree outputs for each user. An input action contains eight features, and each feature occupies 5 

bytes, except the virtual key value with 2 bytes. Thus, a single action consumes 37 bytes. Each 

action group contains 4 actions, and is assigned with a result that occupies 1 byte. The detector 

only needs 24 action groups from the user log for classification, and thus classifying a single user 

consumes up to 3.49 Kbytes of memory. Scaled to 10,000 online users, the memory cost of the 

server will be 34.1 Mbytes, which is very affordable for a modem server. 

19More explanations are made in Section S.S. 



CHAPTER 5. DETECI'ION OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 140 

The computational overhead is also very minor. We run J48 in the Weka, a Java implementation 

of the C4.5 algorithm, on a workstation with an Inter Core 2 Duo 2.4 GHz CPU. The classification 

time is 10.85 seconds for the traces of 239 hours. 

5.5 Discussion 

Once attackers know the existence of our detection system, they will attempt to evade it. An ad

versary could directly send synthetic traces to the server, trying to deceive the detector. We discuss 

the trace forging in three aspects. First, the adversary records the trace when a human fills in the 

form, and replays it. Some current record-and-replay tools, such as the Global Mouse and Keyboard 

Library for Windows [28], cannot restore human trace with high fidelity and thus create detectable 

artifacts. For example, the timing of events is more regular in the replayed trace than the original 

human trace, which can be detected based on its regular and low entropy pattern. The difference 

can be identified by our detector. 

Second, suppose the bot tool would perfectly replay human trace. Then, the adversary has to 

record a different trace in real-time (typing them out by a person) for each different spam message 

it wants to post. Therefore, our detection system will at least significantly raise the bar against blog 

bots and their spamming cost. Third, as an alternative of replay, the adversary might be motivated 

to develop a complete generative model of human user-input dynamics, and send the bogus trace 

to the server bypassing the client-side logger. However, the inherent complexity and uncertainty 

of human behavior makes it a very difficult modeling problem, because no such a model exists yet 

according to our best knowledge. 

Now we discuss the limitation that enabling JavaScript in a browser is required for the blog sites 



CHAPTER 5. DETECITON OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 141 

protected by our system. With many popular sites, such as Twitter, Facebook, and Digger, being 

entirely dependent on JavaScript for key tasks [33] such as posting, we do not feel this requirement 

will cause any problem for most human users. According to a study of Internet user browser settings 

[47], only a tiny proportion (around 0.56%) of human users turn off JavaScript in practice. In other 

words, most human users will successfully generate UI data to the logger and pass our behavior de

tection even without noticing it. Bots could disable JavaScript to prevent the logger from obtaining 

their genuine traces. However, the disabled JavaScript will reveal the high likelihood of a bot being 

behind the browser. Meanwhile, to cope with this situation, a server can take one step back and 

resume the use of the conventional HIP methods, such as CAPI'CHA, to defend against bots. 

Lastly, we discuss the feasibility of applying our work to other interactive web applications. The 

core idea of this chapter is detecting human participation by analyzing the user input data, and it can 

be applied to those web applications that require human participation, such as forums and online 

social networks. However, developers need to fulfill some tasks during transplantation. They need 

to collect the ground truth data for their own applications, as user behavior (both of human and bot) 

may be application specific. Some features may also have to be replaced for accurate classification. 

5.6 Conclusion 

This chapter presents a blog bot detection system, which leverages the behavioral differences be

tween human users and bots in their mouse and keystroke activities. Compared to conventional 

detection methods based on Human Interactive Proofs, such as CAPfCHA, our detection system 

does not require additional user participation, and is thus both transparent and unobtrusive to users. 

We have collected real user input traces of 239 hours from a busy blog site. Based on these real 



CHAPTER 5. DETECI10N OF BLOG BaTS VIA BEHAVIORAL BIOMETRICS 142 

UI traces, we have discovered different user behavioral characteristics, and further developed use

ful features for classification. Our detection system consists of a webpage-embedded logger and 

server-side detector. The logger passively collects user activities and streams this data to the server. 

The detector processes the log and identifies whether it is generated by human or bot. The core of 

our detection system is the C4.5 algorithm that builds a decision tree. It takes the action stream as 

input, and classifies the user by the majority voting rule. 

We perform a set of experiments to tune the system parameters and evaluate the system's per

formance. The experimental results show that the overall detection accuracy is over 99%. The 

additional overhead induced by the detection is minor in terms of CPU and memory costs. Since 

the detection only requires user input traces, our method can be applied to detecting other types of 

form bots, such has account registration and online voting. 



Chapter 6 

In the previous chapters, we have detailed four problems and their solutions in the research area 

of detecting abnormal behaviors in Web applications. This chapter concludes the dissertation and 

outlines the future work. 

6.1 Conclusions 

Web applications have become a vital part of our daily lives. Unsurprisingly, network attacks have 

exploited various vulnerabilities of web applications, and caused substantial damages to Internet 

users. Anomaly detection is an important area of web security, which is especially effective in 

detecting unknown attacks. This dissertation focuses on detecting abnormal behaviors in web ap

plications by employing the following methodology. For a web application, we have conducted a 

set of measurements to reveal the existence of abnormal behaviors in it. Then, we have observed 

the differences between normal and abnormal behaviors. By applying a variety of methods in infor

mation extraction, such as heuristics algorithms, machine learning, and information theory, we have 

extracted features useful for building a classification system for detecting abnormal behaviors. 

Specifically, we have investigated four challenging problems of anomaly detection: web re

source hotlinking, aggressive automation of Twitter accounts, social spam campaigns on Twitter, 

and blog bots. We have proposed new solutions to address these problems, and developed system 

prototypes to validate the efficacy of our solutions. Our contributions include an anti-hotlinking 

143 



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 144 

framework for protecting web resources on hosting servers, a classification system that detects and 

classifies automation degree of 1\vitter accounts, a classification system that clusters social cam

paigns on 1\vitter and differentiates spam campaigns from legitimate ones, and a blog protection 

framework that monitors user input based on behavioral biometrics and distinguishes between hu

man bloggers and blog bots. Our experimental results have demonstrated that our proposed solutions 

are effective for tackling these real-world problems. 

6.2 Future Work 

We plan to continue the future work in the following directions. First, we will extend our method

ology of anomaly detection to other interactive web applications, especially social networks. User 

interaction is the distinctive characteristic of social networks. Adversaries including attackers and 

spammers may launch a variety of unknown attacks by interacting with benign users. Although 

attack forms may vary, an effective defense is still to detect abnormal behaviors that deviate from 

normal behaviors. 

Second, we plan to enhance web security in the environment of cloud computing. A feasible 

proposal is to implement the online detection of spam campaigns on 1\vitter or other social net

working platforms. We have implemented the offline detection of spam campaigns on 1\vitter in 

Section 4. A big challenge for online detection is scalability and latency. Facing the huge user 

population and unpredictable traffic, the underlying cloud infrastructure may meet scalability and 

latency demands by dynamically allocating and releasing computing resources. 

Third, we are very interested in how more advanced bots can mimic human behavior, and will 

pay close attention to the related research. In Section 5, we have used metrics including user input 



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 145 

dynamics and entropy to differentiate bot from human. Aware of our research, adversaries may be 

motivated to develop more advanced bots to evade the detection. For example, a bot may follow a 

verisimilar model of human user-input dynamics to generate input actions. To cope with that, we 

may need to develop new metrics to characterize the subtle behavioral difference between human 

and bot. 



Bibliography 

[1] 2mdn. http: I /2mdn. net/ [Accessed: Nov. 5, 2011]. 

[2] Ajax, asynchronousjavascript and xml. https://developer.mozilla.orq/en/ 
AJAX [Accessed: Nov. 5, 2011]. 

[3] Akamai, web application acceleration and performance management. http: I /www. 
akamai.com/ [Accessed: Jan. 12, 2011]. 

[4] Akismet, comment spam prevention for your blog. http: I I akismet. com/ [Accessed: 
Aug. 23, 2011]. 

[5] Alexa. http: I /www. alexa. com/ [Accessed: Jan. 15, 2010]. 

[6] Amazon comes to twitter. http: I /www. readwri teweb. com/archives/ amazon_ 
comes_to_twi t ter. php [Accessed: Dec. 20, 2009]. 

[7] The apache http server project. http: I /h t tpd. apache. orq I [Accessed: Dec. 20, 
2009]. 

[8] The apache module mod.bandwidth. http: I /www. cohproq. com/mod_ 
bandwidth. html [Accessed: Dec. 20, 2009]. 

[9] The apache module modJ.imitipconn.c. http:/ /dominia.orq/djao/ 
limitipconn.html [Accessed: Dec. 3, 2009]. 

[10] The apache module mod..rewrite uri rewriting engine. http: I /ht tpd. apache. orq I 
docs/ 1. 3 /mod/mod_rewri te. html [Accessed: Dec. 20, 2009]. 

[11] Attribute-relation file format (arft). http: I /www. cs. waikato. ac. nz/ml/weka/ 
arff .html [Accessed: Aug. 12, 2010]. 

[12] Autohotkey- free mouse and keyboard macro program with hotkeys. http://www. 
au tohotkey. com/ [Accessed: Sept. 15, 2010]. 

[13] Autoit, automation and scripting language. http: I /www. autoitscript. com/site/ 
autoit/ [Accessed: Mar. 17, 2011]. 

[14] Autome- automate mouse and keyboard actions. http://www.asoftech.com/ 
au tome/ [Accessed: Mar. 17, 2011]. 

146 

http://www
http://www


BffiUOGRAPHY 147 

[15] Barack obama uses twitter in 2008 presidential campaign. http: I I twitter. com/ 
BarackObama/ [Accessed: Dec. 20, 2009]. 

[16] The best free software of 2009, features by pc magazine. http: I /www. pcmag . com/ 
article2/0, 2817, 2338803, 00. asp [Accessed: Mar. 25, 2009]. 

[17] Bestbuy goes all twitter crazy with @twelpforce. http: I /twitter. com/in_social_ 
media/status/2756927865 [Accessed: Dec. 20, 2009]. 

[18] Blog top sites ranking. http: I /www. blogtopsi tes. corn/ [Accessed: Jun. 20, 2009]. 

[19] Blogbot by incansoft. http: I /blogbot. auto- subrni tters. com/ [Accessed: Oct. 
9, 2010]. 

[20] Blogftux top blog sites overall statistics. http://topsites.blogflux.com/ 
stats .php [Accessed: Jun. 20, 2009]. 

[21] Cachefty, content delivering. http: I /www. cachefly. corn/ [Accessed: Jun. 4, 2011]. 

[22] Captcha: Telling humans and computers apart automatically. http: I /www. captcha. 
net/ [Accessed: Jun. 4, 2011]. 

[23] The digital millennium copyright act of 1998. http://www.copyright.gov/ 
legislation/dmca.pdf [Accessed: Jun. 4, 2011]. 

[24] Doubleclick. http: I /www. doubleclick. corn/ [Accessed: Jun. 4, 2011]. 

[25] Flickr. http: I /www. flickr. com/ [Accessed: Jun. 4, 2011]. 

[26] Free software downloads and reviews by download.com. http: I /download. cnet. 
com/Best- Free- Software/1200- 20- 5154518. htrnl [Accessed: Jun. 4, 2011]. 

[27] Gd graphics library. http: I /www .boutell. corn/gd/ [Accessed: Jun. 4, 2011]. 

[28] Global mouse and keyboard library. http: I /www. codeproj ect. com/KB/ sys tern/ 
globalmousekeyboardlib. aspx [Accessed: Nov. 24, 2010]. 

[29] Gnu wget. http: I /www .gnu.org/software/wget/ [Accessed: Jun. 4, 2011]. 

[30] Google adsense. http: I /www.google.com/adsense/ [Accessed: Jun. 4, 2011]. 

[31] Google safe browsing API. http:/ /code.google.corn/apis/safebrowsing/ 
[Accessed: Aug. 27, 2011]. 

[32] Google syndication. http: I /googlesyndication. corn/ [Accessed: Oct. 12, 2009]. 

[33] How much of the web actually work without javascript. http: I I tobyho. com/How_ 
Much_of_the_Web_Actually_Work_Withou_Javascript [Accessed: Apr. 7, 
2011]. 

[34] Http state management mechanism, rfc2109. 
rfc2109. txt [Accessed: Oct. 12, 2009]. 

http://www.ietf.org/rfc/ 

http://www.pcmag
http://www.blogtopsites
http://download.cnet


BIBLIOGRAPHY 148 

[35] The hypertext transfer protocol (http), rfc2616. http:/ /www.w3 .erg/Protocols/ 
rfc2616/rfc2616. html [Accessed: Oct. 12, 2009]. 

[36] Json, javascript object notation. http: I /www. j son. orq I [Accessed: Nov. 5, 2010]. 

[37] Koobface. http: I /en.wikipedia.orq/wiki/Koobface [Accessed: Aug. 17, 
2011]. 

[38] Megaupload: the leading online storage and file delivery service. http://www. 
meqaupload. com/ [Accessed: Oct. 12, 2009]. 

[39] Phishtank, join the fight against phishing. http: I /www. phishtank. com/ [Accessed: 
Aug. 27, 2011]. 

[40] Php,hypertextpreprocessor. http://www.php.net/ [Accessed: Oct.l2,2009]. 

[41] Prototype javascript framework. https/ /www .prototypej s. orq/ [Accessed: Oct. 
12, 2009]. 

[42] Rapidshare: 1-click web hosting, easy filehosting. http: I /www. rapidshare. com/ 
[Accessed: Oct. 12, 2009]. 

[43] Senseclusters. http: I /senseclusters. sourceforqe. net/ [Accessed: Sept. 2, 
2011]. 

[44] Sophos security threat report: 2010. http://www.sophos.com/sophos/docs/ 
enq/papers/sophos-security-threat-report-jan-2010-wpna.pdf 
[Accessed: Oct. 17, 2010]. 

[45] The spamhaus project. http: I /www. spamhaus. orq/ [Accessed: Aug. 27, 2011]. 

[46] State of twitter sparn. http://bloq.twitter.com/2010/03/ 
state- of-twitter- spam. html [Accessed: Aug. 17, 2011]. 

[47] A study of internet users' cookie and javascript settings. 
http://smorqasbork.com/component/content/article/ 
84-a-study-of-internet-users-cookie-and-javascript-settinqs 
[Accessed: Apr. 7, 2011]. 

[48] Surbl. http: I /www. surbl. orq/lists [Accessed: Aug. 27, 2011]. 

[49] tdash's api of twitter applications statistics. http: I /tdash.orq/stats/clients 
[Accessed: Sept. 6, 2011]. 

[50] The top 500 sites on the web by alexa. http: I /www. alexa. com/topsites [Ac
cessed: Jan. 15, 2010). 

[51) Top trending twitter topics for 2011 from what the trend. http: I /bloq .hootsuite. 
com/top- twitter- trends- 2011/ [Accessed: Dec. 15, 2011]. 

[52) tweetadder, professional twitter marketing tool. http: I I tweetadder. com/ [Accessed: 
Sept. 5, 2011]. 

http://www
http://www.phishtank.com/tAccessed
http://senseclusters.sourceforge.net/fAccessed


BmLIOGRAPHY 149 

[53] Twitter blog: Avoid phishing scams. http://blog.twitter.com/2010/02/ 
avoid-phishing- scams .html [Accessed: Aug. 17, 2011]. 

[54] Twitterblog: Your world, more connected. http: I /blog. twitter. com/2011/08/ 
your-world-more-connected.html [Accessed: Aug.l7,2011]. 

[55] Twitter rest api resources. https: I /dev. twitter. com/docs/api [Accessed: Aug. 
30, 2011]. 

[56] The twitter rules. http://support.twitter.com/entries/ 
18311-the-twitter-rules [Accessed: Aug.17,2011]. 

[57] Twitter's streaming api documentation. https: I /dev. twitter. com/docs/ 
streaming- a pi [Accessed: Aug. 30, 2011]. 

[58] Ultimate wordpress comment submitter. http://www. 
wordpresscommentspammer. com/ [Accessed: Oct. 9, 2010]. 

[59] Uribl, realtime uri blacklist. http: I /http: I /www. uribl.com/about. shtml [Ac
cessed: Aug. 27, 2011]. 

[60] Using the twitter search api. https:/ /dev. twitter.com/docs/using-search 
[Accessed: Aug. 30, 2011]. 

[61] Virtual-key codes. http: I /msdn.microsoft. com/en-us/library/ms927178. 
aspx [Accessed: Nov. 5, 2010]. 

[62] Yahoo! advertising. http: I /advertising. yahoo. com/ [Accessed: Feb. 4, 2010]. 

[63] BEN ADIDA. Sessionlock: securing web sessions against eavesdropping. In Proceeding of 
the 17th international conference on World Wide Web, pages 517-524,2008. 

[64] AHMED AWAD E. AHMED AND ISSA TRAORE. A new biometric technology based on 
mouse dynamics. IEEE Trans. Dependable Secur. Comput., 4:165-179, July 2007. 

[65] AKIKO AIZAWA. The feature quantity: an information theoretic perspective of tfidf-like mea
sures. In Proceedings of the 23rd annual international ACM SIGIR conference on Research 
and development in information retrieval, pages 104-111, 2000. 

[66] LUCAS BALLARD, FABIAN MONROSE, AND DANIEL LOPRESTI. Biometric authentication 
revisited: understanding the impact of wolves in sheep's clothing. In Proceedings of the 15th 
conference on USENIX Security Symposium- Volume 15,2006. 

[67] FABRICIO BENEVENUTO, GABRIEL MAGNO, TIAGO RODRIGUES, AND VIRGILIO 
ALMEIDA. Detecting spammers on twitter. In Proceedings of the CEAS 20/0. 

[68] FRANCESCO BERGADANO, DANIELE GUNETTI, AND CLAUDIA PICARDI. User authen
tication through keystroke dynamics. ACM Trans. lnf. Syst. Secur., 5:367-397, November 
2002. 

[69] HAL BERGHEL. Hijacking the web. Commun. ACM, 45(4):23-27, 2002. 

http://www
https://dev


BmUOGRAPHY 150 

[70] LEO BREIMAN. Random forests. Machine Learning, 45:5-32, 2001. 

(71) MARCUS BROWN AND SAMUEL ]OE ROGERS. User identification via keystroke character
istics of typed names using neural networks. Int. J. Man-Mach. Stud., 39:999-1014, Decem
ber 1993. 

[72) MEEYOUNG CHA, HAEWOON KWAK, PABLO RODRIGUEZ, YONG-YEOL AHN, AND SUE 
MOON. I tube, you tube, everybody tubes: analyzing the world's largest user generated 
content video system. In Proceedings of the 7th ACM SIGCOMM Conference on Internet 
Measurement, San Diego, CA. USA, 2007. 

[73) MEEYOUNG CHA, ALAN MISLOVE, AND KRISHNA P. GUMMADI. A measurement-driven 
analysis of information propagation in the ftickr social network. In Proceedings of the 18th 
International Conference on World Wide Web, Madrid, Spain, 2009. 

[74) VARUN CHANDOLA, ARINDAM BANERJEE, AND VIPIN KUMAR. Anomaly detection: A 
survey. ACM Computing Surveys, 41(3), July 2009. 

[75) KUMAR CHELLAPILLA, KEVIN LARSON, PATRICE SIMARD, AND MARY CZERWINSKI. 
Designing human friendly human interaction proofs (hips). In Proceedings of the SJGCHI 
conference on Human factors in computing systems, 2005. 

[76] THOMAS CHEN AND PETER HENRY. Phishing and countermeasures: Understanding the 
increasing problem of electronic identity theft. Journal of Digital Forensic Practice, 1: 147-
149, July 2006. 

[77) N. CHOU, R. LEDESMA, Y. TERAGUCHI, D. BONEH, AND I. C. MITCHELL. Client-side 
defense against web-based identity theft. In Proceedings of the 11th Annual Network and 
Distributed System Security Symposium, Alexandria, VA, USA, 2004. 

[78) ZI CHU, STEVEN GIANVECCHIO, HAINING WANG, AND SUSHIL ]AJODIA. Who is tweet
ing on twitter: human, bot or cyborg? In Proceedings of the 2010 Annual Computer Security 
Applications Conference, Austin, TX, USA, 2010. 

[79) THOMAS M. COVER AND ]OY A. THOMAS. Elements of information theory. Wiley
lnterscience, New York, NY, USA, 2006. 

[80) JAMES DEMMEL AND WILLIAM KAHAN. Accurate singular values of bidiagonal matrices. 
SIAM J. Sci. and Stat. Comput, 11:873-912, 1990. 

[81) MARCEL DISCHINGER, ANDREAS HAEBERLEN, KRISHNA P. GUMMADI, AND STEFAN 
SAROIU. Characterizing residential broadband networks. In Proceedings of the 7th ACM 
SIGCOMM conference on Internet Measurement, San Diego, CA, USA, 2007. 

(82] IL-CHUL MOON DONGWOO KIM, YO HAN 10 AND ALICE OH. Analysis of twitter lists as 
a potential source for discovering latent characteristics of users. In To appear on CH/2010 
Workshop on Microblogging: What and How Can We Learn From It?, 2010. 

[83] GEORGES DUPRET. Latent concepts and the number orthogonal factors in latent semantic 
analysis. In Proceedings of the 26th annual international ACM SIGIR conference on Re
search and development in informaion retrieval, pages 221-226,2003. 



BffiUOGRAPHY 151 

[84] HENRY J. FOWLER AND WILL E. LELAND. Local area network traffic characteristics, with 
implications for broadband network congestion management. IEEE Journal of Selected Areas 
in Communications, 9(7), 1991. 

[85] HONGYU GAO, JUN HU, CHRISTO WILSON, ZHICHUN LI, YAN CHEN, AND BEN Y. 
ZHAO. Detecting and characterizing social spam campaigns. In Proceedings of the lOth 
annual conference on Internet measurement, pages 35-47,2010. 

[86] SAPTARSHI GHOSH, GAUTAM KORLAM, AND NILOY GANGULY. Spammcrs' networks 
within online social networks: a case-study on twitter. In Proceedings of the 20th interna
tional conference companion on World wide web, pages 41-42, 2011. 

[87] STEVEN GIANVECCHIO AND HAINING WANG. Detecting covert timing channels: An 
entropy-based approach. In Proceedings of the 2007 ACM Conference on Computer and 
Communications Security, Alexandria, VA, USA, October-November 2007. 

[88] STEVEN GIANVECCHIO, ZHENYU Wu, MENGIUN XIE, AND HAINING WANG. Battle of 
botcraft: fighting bots in online games with human observational proofs. In Proceedings of 
the 16th ACM conference on Computer and Communications Security, Chicago, IL, USA, 
2009. 

[89] STEVEN GIANVECCHIO, MENGIUN XIE, ZHENYU Wu, AND HAINING WANG. Measure
ment and classification of humans and bots in internet chat. In Proceedings of the 17th 
USENIX Security symposium, San Jose, CA, 2008. 

[90] MINAS GJOKA, MACIEJ KURANT, CARTER T BUTTS, AND ATHINA MARKOPOULOU. 
Walking in facebook: A case study of unbiased sampling of osns. In Proceedings of the 27th 
IEEE International Conference on Computer Communications, San Diego, CA, USA, March 
2010. 

(91] PAUL GRAHAM. A plan forspam. http: I /www .paulqraham. com/spam. html (Ac
cessed: Jan. 25, 2008]. 

[92] CHRIS GRIER, KURT THOMAS, VERN PAXSON, AND MICHAEL ZHANG. @spam: the 
underground on 140 characters or less. In Proceedings of the 17th ACM conference on Com
puter and communications security, pages 27-37,2010. 

(93] MARK HALL, EIBE FRANK, GEOFFREY HOLMES, BERNHARD PFAHRINGER, PETER 
REUTEMANN, AND IAN H. WITTEN. The weka data mining software: an update. SJGKDD 
Explor. Newsl., 11:1~18, 2009. 

[94] MONIKA R. HENZINGER, ALLAN HEYDON, MICHAEL MITZENMACHER, AND MARC 
NAJORK. On near-uniform uri sampling. In Proceedings of the 9th International World Wide 
Web Conference on Computer Networks, Amsterdam, The Netherlands, May 2000. 

[95] TIN KAM Ho. The random subspace method for constructing decision forests. Pattern 
Analysis and Machine Intelligence, IEEE Transactions on, 20:832 -844, aug 1998. 

[96] B A HUBERMAN AND T HOGG. Complexity and adaptation. Phys. D, 2(1-3), 1986. 



BmUOGRAPHY 152 

[97] A. L. HUGHES AND L. PALEN. 1\vitter adoption and use in mass convergence and emer
gency events. In Proceedings of the 6th International /SCRAM Conference, Gothenburg, 
Sweden, May 2009. 

[98] H. HUSNA, S. PHITHAKKITNUKOON, AND R. DANTU. Traffic shaping of spam botnets. 
In Proceedings of the 5th IEEE Conference on Consumer Communications and Networking, 
Las Vegas, NV, USA, January 2008. 

[99] COLLIN JACKSON, ANDREW BORTZ, DAN BONEH, AND JOHN C. MITCHELL. Protecting 
browser state from web privacy attacks. In Proceedings of the 15th international conference 
on World Wide Web, pages 737-744,2006. 

[100] BERNARD J. JANSEN, MIMI ZHANG, KATE SOBEL, AND ABDUR CHOWDURY. Twitter 
power: Tweets as electronic word of mouth. American Society for Information Science and 
Technology, 60(11), 2009. 

[101] AKSHAY JAVA, XIAODAN SONG, TIM FININ, AND BELLE TSENG. Why we twitter: un
derstanding microblogging usage and communities. In Proceedings of the 9th WebKDD and 
1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, San Jose, CA, 
USA, 2007. 

[102] TREVOR JIM, NIKHIL SWAMY, AND MICHAEL HICKS. Defeating script injection attacks 
with browser-enforced embedded policies. In Proceedings of the 16th international confer
ence on World Wide Web, pages 601-610,2007. 

[103] CHRIS KANICH, CHRISTIAN KREIBICH, KIRILL LEVCHENKO, BRANDON ENRIGHT, GE
OFFREY M. VOELKER, VERN PAXSON, AND STEFAN SAVAGE. Spamalytics: an empirical 
analysis of spam marketing conversion. Commun. ACM, 52:99-107, September 2009. 

[104] JUNG-HOON KIM, TAE-BOK YOON, KUN-SU KIM, AND JEE-HYONG LEE. Trackback
rank: An effective ranking algorithm for the blog search. In Proceedings of the Second 
International Symposium on Intelligent Information Technology Application - Volume 03, 
pages 503-507, Washington, DC, USA, 2008. 

[105] RON KOHAVI AND ROSS QUINLAN. Decision tree discovery. In In Handbook of Data 
Mining and Knowledge Discovery, pages 267-276. University Press, 1999. 

[106] BALACHANDER KRISHNAMURTHY, PHILLIPA GILL, AND MARTIN ARLITT. A few chirps 
about twitter. In Proceedings of the First Workshop on Online Social Networks, Seattle, WA, 
USA, 2008. 

[107] HAEWOON KWAK, CHANGHYUN LEE, HOSUNG PARK, AND SUE MOON. What is twitter, 
a social network or a news media? In Proceedings of the 19th international conference on 
World wide web, pages 591-600, 2010. 

[108] HOMIN K. LEE, TAL MALKIN, AND ERICH NAHUM. Cryptographic strength of ssUds 
servers: current and recent practices. In Proceedings of the 7th ACM SIGCOMM conference 
on Internet measurement, pages 83-92, 2007. 



BffiUOGRAPHY 153 

[109] F. LI, W. WANG, 1. MA, AND H. Su. Action-based access control for web services. In Pro
ceedings of the 2009 Fifth International Conference on Information Assurance and Security, 
volume 2, pages 637-642, 2009. 

(110] V ACLAV MATYAS JR. AND ZDENEK RIHA. Toward reliable user authentication through 
biometrics. IEEE Security and Privacy, 1:45-49, May 2003. 

[111] G. MCLACHLAN, K. DO, AND C. AMBROISE. Analyzing microa"ay gene expression data. 
Wiley, 2004. 

[112] MICROSOFT. Mitigating cross-site scripting with http-only cookies. http: I /msdn. 
microsoft .com/en-us/library/ms533046 .aspx [Accessed: Feb. 4, 2010]. 

[113] GEORGE A. MILLER. Wordnet: A lexical database for english. Communications of the 
ACM, 38:39-41, 1995. 

(114] ALAN MISLOVE, MASSIMILIANO MARCON, KRISHNA P. GUMMADI, PETER DRUSCHEL, 
AND BOBBY BHATTACHARJEE. Measurement and analysis of online social networks. In 
Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, San Diego, 
CA, USA, 2007. 

(115] FABIAN MONROSE AND AVIEL RUBIN. Authentication via keystroke dynamics. In Pro
ceedings of the 4th ACM conference on Computer and communications security, pages 48--
56, 1997. 

[116] ROBERT C. NEWMAN. Cybercrime, identity theft, and fraud: practicing safe internet
network security threats and vulnerabilities. In Proceedings of the 3rd annual conference on 
Information security curriculum development, pages 68-78, 2006. 

(117] PREECHA NOIUMKAR AND THAWATCHAI CHOMSIRI. Top 10 free web-mail security test 
using session hijacking. In Proceedings of the 3rd International Conference on Convergence 
and Hybrid Information Technology, Oakland, CA, USA, November 2008. 

(118] ALEXANDROS NTOULAS, MARC NAJORK, MARK MANASSE, AND DENNIS FETTERLY. 
Detecting spam web pages through content analysis. In Proceedings of the 15th international 
conference on World Wide Web, pages 83-92, 2006. 

[119] JOON S. PARK AND RAVI SANDHU. Secure cookies on the web. IEEE Internet Computing, 
4:36-44, July 2000. 

(120] KYOUNGSOO PARK, VIVEK S. PAl, KANG-WON LEE, AND SERAPHIN CALO. Secur
ing web service by automatic robot detection. In Proceedings of the annual conference on 
USENIX '06 Annual Technical Conference, pages 23-23, 2006. 

(121] TED PEDERSEN. Computational approaches to measuring the similarity of short contexts: 
A review of applications and methods. CoRR, abs/0806.3787, 2008. 

(122] A PORTA, G BASELLI, D LIBERATI, N MONTANO, C COGLIATI, T GNECCHI-RUSCONE, 
A MALLIANI, AND S CERUTTI. Measuring regularity by means of a corrected conditional 
entropy in sympathetic outflow. Biological Cybernetics, Vol. 78(No. 1), January 1998. 

http://msdn


BIBUOGRAPHY 154 

[123] A. PORTA, G. BASELLI, D. LIBERATI, N. MONTANO, C. COGLIATI, T. GNECCHI· 
RUSCONE, A. MALLIANI, AND SERGIO CERUTTI. Measuring regularity by means of a 
corrected conditional entropy in sympathetic outflow. Biological Cybernetics, 78(1):71-78, 
1998. 

[124] J. R. QUINLAN. Discovering rules from large collections of examples: A case study. Edin
burgh University Press, 1979. 

[125] G. SALTON, A. WONG, AND C. S. YANG. A vector space model for automatic indexing. 
Commun. ACM, 18:61~20, November 1975. 

[126] FABRIZIO SEBASTIANI. Machine learning in automated text categorization. ACM Comput
ing Surveys, Vol. 34(No. 1 ), 2002. 

[127] KATE STARBIRD, LEYSIA PALEN, AMANDA HUGHES, AND SARAH VIEWEG. Chatter 
on the red: What hazards threat reveals about the social life of microblogged information. 
In Proceedings of the ACM 2010 Conference on Computer Supported Cooperative Work, 
February 2010. 

[128] ATHENA STASSOPOULOU AND MARIOS D. DIKAIAKOS. Web robot detection: A proba
bilistic reasoning approach. Comput. Netw., 53:265-278, February 2009. 

[129] BRETT STONE-GROSS, MARCO COVA, LORENZO CAVALLARO, BOB GILBERT, MAR
TIN SZYDLOWSKI, RICHARD KEMMERER, CHRISTOPHER KRUEGEL, AND GIOVANNI 
VIGNA. Your botnet is my botnet: analysis of a botnet takeover. In Proceedings of the 
16thACM conference on Computer and Communications Security, Chicago, IL, USA, 2009. 

[130] LEE S. STRICKLAND. Copyright's digital dilemma today: Fair use or unfair constraints? 
part 2: The dmca, the teach act and othere-copying considerations. http: I lwww. as is. 
orgiBulletiniDec- 03lstrickland.html [Accessed: May. 2, 2009]. 

[131] GIANLUCA STRINGHINI, CHRISTOPHER KRUEGEL, AND GIOVANNI VIGNA. Detecting 
spammers on social networks. In Proceedings of the 26th Annual Computer Security Appli
cations Conference, 2010. 

[132] J. SUTTON, LEYSIA PALEN, AND IRINA SHLOVSKI. Back-channels on the front lines: 
Emerging use of social media in the 2007 southern california wildfires. In Proceedings of the 
2008 /SCRAM Conference, Washington, DC, USA, May 2008. 

[133] SYMANTEC. Internet security threat report, security research and analysis. http: I lwww. 
symantec.comlbusinessltheme.jsp?themeid=threatreport. 

[134] PANG-NING TAN AND VIPIN KUMAR. Discovery of web robot sessions based on their 
navigational patterns. Data Min. Knowl. Discov., 6:9-35, January 2002. 

[135] MIKE TER LOUW AND V.N. VENKATAKRISHNAN. Blueprint: Precise browser-neutral pre
vention of cross-site scripting attacks. In Proceedings of the 30th IEEE Symposium on Secu
rity and Privacy, Oakland, CA, USA, 2009. 

http://www


BIBUOGRAPHY 155 

(136) KURT THOMAS, CHRIS GRIER, DAWN SONG, AND VERN PAXSON. Suspended accounts 
in retrospect: an analysis of twitter spam. In Proceedings of the 2011 ACM SIGCOMM 
conference on Internet measurement conference, pages 243-258, 2011. 

[137] ALAN M. TURING. Computing machinery and intelligence. Mind, Vol. 59:43~. 1950. 

[138] TWITTER. Twitter api wild. https: I /dev. twitter. com/docs [Accessed: Aug. 28, 
2011]. 

[139] DE WANG, DANESH IRANI, AND CALTON Pu. A social-spam detection framework. In 
Proceedings of the 8th Annual Collaboration, Electronic messaging, Anti-Abuse and Spam 
Conference, pages 46-54, 2011. 

(140] GARY WASSERMANN AND ZHENDONG SU. Static detection of cross-site scripting vulnera
bilities. In Proceedings of the 30th international conference on Software engineering, pages 
171-180, 2008. 

[141] WIKIPEDIA. Inline linking (leeching, bandwidth theft). http: I /en. wikipedia. org/ 
wiki/Inline_linking [Accessed: May. 30, 2010]. 

[142] SHAOMEI WU, JAKE M. HOFMAN, WINTER A. MASON, AND DUNCAN J. WATTS. Who 
says what to whom on twitter. In Procee.ings of the 20th international conference on World 
wide web, pages 705-714,2011. 

(143) MENGJUN XIE, ZHENYU Wu, AND HAINING WANG. Honeyim: Fast detection and sup
pression of instant messaging malware in enterprise-like networks,. In Proceedings of the 
23rd Annual Computer Security Applications Conference, Miami Beach, FL, USA, 2007. 

(144) MENGJUN XIE, HENG YIN, AND HAINING WANG. An effective defense against email spam 
laundering. In Proceedings of the 13th ACM conference on Computer and Communications 
Security, pages 179-190, 2006. 

[145] JEFF YAN. Bot, cyborg and automated turing test. In Proceedings of the 14th Jnternational 
Workshop on Security Protocols, Cambridge, UK, March 2006. 

[146] JEFF YAN AND AHMAD SALAH EL AHMAD. A low-cost attack on a microsoft captcha. In 
Proceedings of the 15th ACM conference on Computer and communications security, pages 
543-554, 2008. 

[147] SARITA YARDI, DANIEL ROMERO, GRANT SCHOENEBECK, AND DANAH BOYD. Detect
ing spam in a twitter network. First Monday, 15(1), January 2010. 

[148] BILL YERAZUNIS. CRM114- the controllable regex mutilator. http:/ /crm114. 
sourceforge.net [Accessed: Jan. 25, 2008]. 

[149] JONATHAN A. ZDZIARSKI. Ending Spam: Bayesian Content Filtering and the Art of Statis
tical Language Classification. No Starch Press, 2005. 

[150] DEJIN ZHAO AND MARY BETH ROSSON. How and why people twitter: the role that micro
blogging plays in informal communication at work. In Proceedings of the ACM 2009 Inter
national Conference on Supporting Group Work, Sanibel Island, FL, USA, 2009. 

http://crxnll4


VITA 

ZiChu 

Zi Chu received his B.E and M.E. degrees in Computer Engineering from Southeast University, 

Nanjing, China, in 2003 and 2006, respectively. He enrolled in the Ph.D. program of Computer 

Science at the College of William and Mary in 2006. 

His research interests include Web applications, Internet security and privacy, statistical learning 

methods of abnormal behavior detection and social networking. 


	Detecting Abnormal Behavior in Web Applications
	Recommended Citation

	tmp.1539734415.pdf.jNqVo

