
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2011

Analysis and Approximation of Optimal Co-Scheduling on CMP Analysis and Approximation of Optimal Co-Scheduling on CMP

Yunlian Jiang
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Jiang, Yunlian, "Analysis and Approximation of Optimal Co-Scheduling on CMP" (2011). Dissertations,
Theses, and Masters Projects. Paper 1539623351.
https://dx.doi.org/doi:10.21220/s2-tjmj-8k82

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-tjmj-8k82
mailto:scholarworks@wm.edu

Analysis and Approximation of Optimal Co-Scheduling on CMP

Yunlian Jiang

Tongnan, Chongqing, China

Bachelor of Science, University of Science and Technology of China, 2003

Master of Engineering, University of Science and Technology of China, 2006

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
August 2011

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Yunlian Jiang

Approved by the Committee, July 2011

Committee Chair
Assistant Professor Xipeng Shen, Computer Science

The College of William and Mary

Associate Professor Weizhen Mao, Computer Science
The College of William and Mary

Assistant Professor Denys P yv nyk, Computer Science
The College of William and Mary

Associate Professor Haining Wang, Computer Science
The College of William and Mary

#,."_.-· -·--"'1

c~ .. _-::::.-::1----
Gsenior Software Engineer Yaoqing Gao

IBM Canada Lab

ABSTRACT PAGE

In recent years, the mcreasmg des1gn complexity and the problems of power and heat
diSSipation have caused a sh1ft 1n processor technology to favor Chip Multiprocessors In
Ch1p Multiprocessors (CMP) architecture, 1t 1s common that multiple cores share some on
chip cache The shanng may cause cache thrashing and content1on among co-runmng
JObs Job co-scheduling IS an approach to tackling the problem by ass1gnmg JObs to cores
appropnately so that the contention and consequent performance degradations are
mm1m1zed Th1s d1ssertat1on a1ms to tackle two of the most prominent challengesm JOb co
scheduling

The f1rst challenge IS 1n the computational complexity for determm1ng opt1mal JOb co
schedules This d1ssertat1on presents one of the f1rst systematic analyses on the
complex1ty of JOb co-scheduling Bes1des provmg the NP completeness of JOb co
scheduling, 1t mtroduces a set of algonthms, based on graph theory and lnteger/Lmear
Programmmg, for computing optimal co-schedules or therr lower bounds m scenanos w1th
or w1thout JOb m1grat1ons For complex cases, 1t emp1ncally demonstrates the feas1b111ty for
approx1mat1ng the opt1mal schedules effectively by proposmg several heunst1cs-based
algonthms These d1scovenes fac11itate the assessment of JOb co-schedulers by prov1d1ng
necessary baselines, and shed 1ns1ghts to the development of pract1cal co-scheduling
systems

The second challenge res1des 1n the pred1ct1on of the performance of processes co-runnmg
on a shared cache Th1s d1ssertat1on explores the mfluence on co-run performance
pred1ctron rmposed by co-runners, program mputs, and cache conf1gurat1ons Through a
sequence of formal analysis, we denve an analytical co-run locality model, uncovenng the
mherent stat1st1cal connect1ons between the data references of programs s1ngle-runs and
the1r co-run locality The model offers theoretical ms1ghts on co-run locality analysis and
leads to a lightweight approach for fast pred1ct1on of shared cache performance We
demonstrate the effectiveness of the modelm enabling proact1ve JOb co-scheduling

Together, the two-d1mens1onal f1nd1ngs open up many new opportumt1es for cache
management on modern CMP by lay1ng the foundation for JOb co-scheduling, and
enhancmg the understanding to data locality and cache shanng s1gn1flcantly

To my parents, my wife Zhen and my son Ruiyang.

Table of Contents

Acknowledgments

List of Tables

List of Figures

1 Introduction

1.1 Definition of Problems

1.1.1 Job Co-Scheduling Algorithm Design .

1.1.2 Co-Run Performance Prediction

1.2 Contributions

1.2.1 Algorithm Design.

1.2.2 Performance Predictive Models

1.2.3 Cache-Contention-Aware Proactive Scheduler

1.3 Dissertation Organization

2 Complexity Analysis and Algorithm Design

2.1 Introduction

2.2 Definition of the Basic Min-Cm;t Co-Scheduling Problem .

2.3 Optimal Co-Scheduling in Dual-Core Systems (u = 2)

2.4 Optimal Co-Scheduling in u-Core Systems (u ~ 3)

2.4.1 Proof of the NP-Completeness

v

vi

viii

2

4

4

7

8

8

9

10

11

12

12

16

18

20

20

2.4.2 Integer/Linear Programming for Optimal Co-Scheduling .

2.4.2.1 Integer Programming Model

2.4.2.2 Computing Lower Bounds in Polynomial Time

2.4.3 Heuristics-Baf:led Approximation

2.4.3.1 Hierarchical Perfect Matching Algorithm

2.4.3.2 Greedy Algorithm .

2.4.3.3 Local Optimi:oation

2.5 Optimal Co-Scheduling with Migrations

2.5.1 Co-Schedule Space

21

22

24

24

25

25

28

28

:30

2.5.2 Finding the Optimal through A *-Search and Linear Programming 31

2.5.2.1 A*-Search Algorithm 31

2.5.2.2 A *-Search-Based Job Co-Scheduling . 32

2.5.3 Heuristics-Baf:led Estimation . . 34

2.5.3.1 A *-Cluster Algorithm

2.5.3.2 Local-Matching Algorithm

2.6 Makespan Minimization

2.6.1 NP-Completeness (u 2: 3, With or Without Job Migration)

2.6.2 Polynomial-Time Solution (u = 2, No .Job Migration)

2.7 Evaluation

2.7.1 Methodology

2.7.2 Basic Optimal Co-Scheduling

2.7.2.1 Optimal Co-Scheduling by Perfect Matching

2.7.2.2 Lower Bounds by Linear Programming ..

2.7.2.3 Estimation by Heuristicf:l-Baf:led Algorithms

2. 7.3 Optimal Co-Scheduling with Migrations

2.7.3.1 Optimal Co-Scheduling by A*-Search

2. 7.3.2 Estimation by Heuristicf:l-Based Algorithms

2.7.4 Makespan Results

ii

35

37

38

39

40

42

43

44

44

46

47

53

53

56

60

2.8 Insights for the Development of Practical Co-Scheduling Systems

2.9 Related Work

2.10 Summary ..

3 Co-Run Performance Prediction

3.1 Introduction

3.2 Inclusive Reuse Distance .

3.2.1 Inclusive Reuse Distance and Cache Sharing.

3.2.2 Connections to Single Runs

3.2.3 Data Sharing Case

3.3 Lightweight Model for Locality Prediction

3.3.1 Lightweight Model

3.3.2 Analysis

3.4 Handling Program Inputs for Co-Scheduling .

3.4.1 Influence of Program Inputs on Co-Run Performance .

3.4.2 Predictive Input-Behavior Models

3.5 Evaluation

3.5.1 Inclusive Reuse Signatures without Data Sharing

3.5.2 Inclusive Reuse Signatures with Data Sharing

3.5.2.1 Synthetic Traces

3.5.2.2 Traces from Real Programs

3.5.3 Predicting Co-Run Performance

3.6 Related Work

3.7 Summary ..

4 Cache-Contention-Aware Proactive Scheduling

4.1 Introduction

4.2 CAPS for Batch Processing

4.3 CAPS for Runtime Scheduling

iii

63

64

65

67

67

69

69

71

76

78

79

80

82

82

83

87

88

90

90

92

93

94

96

97

97

99

99

4.3.1 Cache-Contention Sensitivity and Competitiveness

4.3.1.1 Sensitivity ...

4.3.1.2 Competitiveness

4.3.2 Runtime Scheduling Policy

4.4 Evaluation

4.4.1 Methodology

4.4.2 CAPS for Batch Processing

4.4.3 CAPS for Runtime Scheduling

4.4.4 Influence of Prediction Errors on Co-Scheduling .

4.5 Related Work

4.6 Summary

5 Other Work

5.1 Correlation-Based Program Behavior Analysis .

5.2 Adaptive Speculation .

5.3 Summary

6 Conclusion

Bibliography

Vita

iv

100

100

101

103

104

105

105

109

114

114

116

117

117

121

123

124

127

133

ACKNOWLEDGMENTS

This dissertation would not have been possible without the support of many people.
First and foremost I would like to thank my adviser Dr. Xipeng Shen. It has been my
great honor and pleasure to be his Ph.D. student for the past five years. I sincerely thank
him for the invaluable guidance, encouragement, and inspiration that he has given me over
the course of my studies. I have always been encouraged by his passion and inspired by his
keen wit.

Poshyvanyk, Denys
I would also like to thank my committee members, Dr. Yaoqing Gao, Dr. Wenzhen

Mao, Dr. Denys Poshyvanyk and Dr. Raining Wang. I really appreciate their valuable
time and efforts. They have given lots of feedback and suggestions that helped me improve
the quality of this dissertation.

I am especially grateful to Dr. Yaoqing Gao, my mentor at IBM Toronto Lab. His
patience as well as rich experience and knowledge have made my internships truly productive
and memorable.

It is a pleasure to thank my colleagues and friends in William and Mary for their
tremendous academic and personal support throughout past years. I enjoyed the pleasant
research life with my collaborators, Eddy Zheng Zhang, Kai Tian, Feng Mao, Ziyu Guo.
Thanks also go to Zhen Ren, Chuan Yue, Ningfang Mi. Bo Sheng, and many others, who
have added tremendous enjoyment to my graduate life.

In addition, I am grateful to the staff in the Computer Science department for their
assistance over the years. My Ph.D. journey would not have been this smooth without
their help.

Finally, I would express my deepest gratitude to my family for their greatest love and
support all these years. I am indebted to my parents for their love and belief. Above all, I
would thank my wife Zhen for all the love and support through this journey.

v

List of Tables

2.1 Performance degradation ranges on AMD Opteron without job migrations . 44

2.2 Co-Run degradations and scheduling times on synthetic problems, with three

instances for each problem Hize (no migrations). 46

2.3 Schedule results from different algorithms. . . . 47

2.4 Assessment of the greedy algorithm by comparing with the random schedul-

ing results and the lower bound from the LP algorithm (no migrations). 51

2.5 Benchmarks . 54

2.6 Comparison of co-scheduling algorithms on 8 jobs on quad-core Intel Xeon

5150 processors 56

2.7 Co-scheduling 16 jobs on quad-core Intel Xeon 5150 processors 57

2.8 Co-scheduling 16 jobs on hyperthreads of Intel Xeon 5080 processors 58

2.9 Co-schedule makespan on eight jobs without job migration. The numbers in

the table are the makespan achieved with the respective schedule, relative to

the makespan when each job runs in isolation 60

2.10 Co-schedule makespan on eight jobs with job migration. The numbers in the

table are the makespan achieved with the respective schedule, relative to the

makespan when each job runs in isolation 61

3.1 Prediction accuracies of linear (LMS) and non-linear (NN and Hybrid) modeb. 86

3.2 Accuracy of inclusive reuse signature prediction 90

3.3 Accuracy of the Prediction of Concurrent Reuse Distance Histograms 91

vi

4.1 Performance Range'S of Benchmarks on Intel Xeon 5150 .

4.2 Detailed Coupling of Programs under Different Schedules

4.3 Whole-Program Speedup Brought by CAPS

4.4 Overall Performance Degradation Factors and Unfairness Factors

vii

105

107

112

113

List of Figures

2.1 An example of a degradation graph for 6 jobs on :3 dual-cores. Each partition

contains a job group sharing the same cache. Bold edges compose a perfect

matching. 19

2.2 The hierarchical view of a CMP system used in the hierarchical perfect match

ing algorithm. Each box represents a virtual chip except the chips on the

last level, which are real chips. Each circle represents a core. ('u: the number

of cores per real chip; m: the total number of real chips in the system.) 26

2.3 Hierarchical minimum-weight perfect matching.

2.4 Greedy Algorithm .

2.5 Local Optimization .

2.6 The search tree of optimal job co-scheduling with rescheduling allowed at the

end of a job. Each node in the tree, except the starting node, represents a

sub-schedule of the remaining jobs. Each edge represents one schedule of the

27

28

29

unfinished jobs. 30

2.7 Integer Linear Programming for computing Tdcg, the lower bound of degra-

dation. 34

2.8 Integration of clustering into A* search algorithm for approximation of opti-

mal co-scheduling. 37

2.9 Algorithm for minimum-bound perfect matching. 42

2.10 Performance degradations (top graph) and L2 cache miss rates (bottom

graph) in different co-schedules in Intel Xeon 5150 (no migrations). 45

viii

2.11 Performance degradation under different schedules.

2.12 Performance degradation under different scheduler:;.

2.13 Unfairness factors of different schedules.

2.14 Scalability of different scheduling algorithmr:; (no migrations).

2.15 Performance degradation rates of 8 jobs co-running on quad-core Intel Xeon

48

49

51

52

5150 processors. 55

2.16 Performance degradation rates of 16 jobr:; co-running on quad-core Intel Xco11

5150 processors. 57

2.17 Performance degradation rates of 16 jobs co-running on the hyperthreads of

Intel Xeon 5080 procesr:;orr:;. 58

2.18 Scalability of the approximation algorithms. 59

2.19 Co-schedule makespan on 16 jobs with job migration. The bars in the

graph are the makespan achieved with the respective schedule, relative to

the makespan when each job runs in isolation. The first two groups are the

results on real jos. The rest groups are the schedule resultr:; of synthetic jobs. 62

2.20 Optimalr:;chedules for cost minimization and makespan minimization on Xeon

5080 (2-smt) with no rescheduling. 63

3.1 An example of cache-block reur:;e signature 70

3.2 The boxplot showing the distribution of the performance degradation of each

program when it co-runs with the other 11 programs. The three boxplots in

a group respectively correr:;pond to the executions on test, tra·in, and refinputt>. 83

3.3 The real and predicted inclusive reuse signatures. 89

3.4 The distribution of the errors in the prediction of 12 cache mit>t>es and IPC. 93

4.1 The key components of the cache-contention-aware proactive scheduler (CAPS). 99

ix

4.2 Each program has 11 pair-wise co-runs, respectively with each of the other

11 programs. The points on the solid curve show the degradations of this

program in those co-runs; the points on the broken curve are of its co-runners.

(The points are connected for legibility.) The similarity between the two

kinds of curves shows the strong correlations between the degradations of a

program and those of its co-runners. 102

4.3 Performance degradation on dual-core (top graph) and quad-core (bottom

graph) systems by different schedulings. 106

4.4 Overhead of job co-scheduling 109

4.5 Performance degradation and normalized L2 miss rates by different scheduling111

4.6 The average performance degradation under different schedules. The ''a pos-

teriori" schedule is the best schedule obtained on all co-run information;

"CAPS-real" is the schedule by CAPS on real single-run behaviors; "CAPS

prod" is the schedule by CAPS on single-run behaviors predicted by the

models described in Chapter 3; "random" reflects the default schedule in the

CMP system. 114

X

Analysis and Approximation of Optimal Co-Scheduling on CMP

Chapter 1

Introduction

In a Chip Multiprocessors (CMP) system, multiple cores on a single chip typically share

certain resource, including the last-level cache, off-chip pin bandwidth, and memory bus.

The sharing, although shortening the communication among cores, causes resource con

tention among co-running jobs. Many studies have reported considerable, and sometimes

significant, effects of the contention on program performance and system fairness [23, 50, 66,

10, 28, 78]. The urgency for alleviating tho contention keeps growing as the processor-level

parallelism increases continuously.

Recent years have seen many interests in using job co-scheduling to alleviate the con

tention [59, 23]. The basic strategy of job co-scheduling is to assign jobs to cores in a way

that the overall influence from resource contention is reduced. Consider four jobs to run on

a machine with two dual-core chips. As resource sharing between sibling cores is more in

tense than sharing across chips, different assignmentH of jobs to the four cores typically lead

to different performance. Job co-scheduling helps find the appropriate job-core assignments

to minimize the negative influence of resource contention.

Job co-scheduling consists of two tasks. The first is to estimate the influence of cache

sharing on the performance of a job when it co-runs with other jobs. The second is to

determine the suitable co-schedules based on the estimation.

For the first task, there are some studies that have tried to characterize the influence

of cache sharing on program performance, most of them are either based on certain heuris-

2

3

tics (e.g., average access frequencies of cache sharers1 [10]) or some hardware extensions

(e.g., [49, 53]). Current treatments to cache sharing arc primarily through runtime moni

toring of low-level program behaviors (e.g., instructions per cycle (IPC), cache miss rates),

no matter the goal is a better cache partition [63, 29, 28, 50] or an enhanced job sched

uler [59, 60, 53, 23, 74, 20].

Unfortunately, the low-level behaviors, although easily obtainable, are often insufficient

for those techniques to exert their full power. Fir-st, the observed behaviors are time

dependent and co-runner---dependent: They reflect the execution of the past, not the future,

and they are for the co-run of a specific group of programs. As a result, one period of

sampling is typically insufficient for predicting a program's cache requirement or co-run

performance. Most existing cache management schemes address this issue by requiring

many periodic samplings and reshuffiings of co-run groups [23, 59]. This strategy leads

to the second limitation: As a sampling phase only prepares for but does not really do

cache-usage adjustment, the cache performance during those periods is often inferior, hence

hurting the benefits from the optimizations considerably. Finally and per-haps most impor-

tantly, the reactive scheme is hard to scale up for many cases in shared-cache management,

including job co-scheduling: The number of possible thread-to-core assignments increases

exponentially in the problem size (e.g., 2 million different assignments for 16 jobs on 8 dual

cores), making it infeasible to determine the optimal schedule by sampling every possible

co-run for a problem of reasonable size.

For the second task, most existing studies [10, 3, 59, 14, 23] rely on some simple tech

niques (for instance, trying a number of different co-schedules during runtime aud choosing

the best one.) The use of these techniques, although having shown interesting results, has

left a comprehensive understanding of the determination of optimal co-schedules yet to

achieve. This lack impairs the assessment of a co-scheduler~it is hard to tell how far the

co-scheduling results depart from the optimum and whether further improvement would

enhance the co-scheduler significantly~and hinders the development of job co-scheduling

1 Cache sharers refer to the processes that run concurrently on a shared cache.

4

algorithms. Moreover, finding optimal co-schedules is critical for understanding how the

various factors of CMP resource sharing affect program executions, as shown in a recent

study [78].

The goal of this dissertation is to solve the two fundamental problems. First, we reveal

the influence of cache sharing on program cache performance by uncovering the inherent

connections between the locality of program single-runs (i.e. runs with no cache sharers) and

that of their co-runs. Second, we explore the challenges on optimal co-scheduling of inde

pendent jobs (i.e., jobs with no data sharing among one another), we aim at answering three

questions under different scenarios : 1) How difficult is it to find optimal co-schedules? 2)

What algorithms can determine optimal co-schedules or reasonable lower bounds efficiently?

3)vVhen the optimal are too hard to find, can heuristics-based algorithms approximate them

effectively?

1.1 Definition of Problems

This section gives some basic definitions of the problem to be solved. First we describe the

problem of the algorithm design and analysis for job co-scheduling. We then present the

challenge on co-run performance prediction.

1.1.1 Job Co-Scheduling Algorithm Design

Roughly speaking, the optimal job co-scheduling tackled in this work is to decide the place

ment of a set of jobs on a number of cores ::;o that the makes pan of the schedule i::; minimized.

Finding optimal co-schedules in a general setting is extremelydifficult: A program's

fine-grained behaviors may change constantly, a program may migrate to any cores, and

program::; may start, terminate, or go through context switch at any time. It is necessary

to first define the scope and settings of the co-scheduling problem that this work tackles.

To make the problem tractable and meanwhile keep the analysis usefuL we specify

the following ::;ettings. Some of these settings may differ from certain practical scenarios.

5

However, as v,e will show (after presentmg the settmgs) they do not prevent the u<>e of the

computed co-scht-dules hom smvmg for Its mam goal facihtatmg the evaluatiOn of practical

co-schedulers

Marhznes The computmg bystem asbumed m this exploratiOn contams rn umform

chips, and each chip hac; u umform corec;2 There IS a cmtam amount of cache on each clup

that IS shared by the u cores on the chip Only one jOb can run on a cme at each time

pomt The executiOn bpeed of a jOb runnmg on a chip dependb on what jObb are placed on

the same chip, but has negligible dependence on how the rest of the jOb c;et are placed on

other chips The a,rchitecture IS a generah7ed form of CMP arclutectmes on the mar1.et,

mcludmg the modem chips fwm Intel IBM, and so on

Jobs The number and startmg time of JObs are set to be as follows The number of

jObs (denoted a5 n) Is equal to the number of cores n = rn * u This settmg IS to help focus

on the placement of JObs on coreb When n < rn * u, the pwblem can be converted to the

defined settmg If we consider that there are (rn * 11- n) extra dummy jobs that consume

no re'>ources If n > rn * u, the problem IS mme complex, reqmnng the consideratiOn

of temporal complexity (e g context switch) bec,Idec; the spatial placement of JOb'> The

tempmal complexity IS out of the scope of thib drssertatron But we note that this work

will be still useful for that settmg, as spatial placement btill exists db a bUb problem m It

All the JObs mmt start at the <>ame time This IS a typical assumptron m tra(lltiOnal joh

5chedulmg [38]

Job Mzgratzons A JOb can nugrate from one core to another, but the migratron only

happenc; when any of the JOb'> terrnmates Thi'> settmg comeb from the followmg reason Ab

well known, keepmg a proces5 on a processm I'> good for locality As a rec,ult, m practical

systems hke Lmux, occunenceb of Job migratiOn'> are mostly tnggered by load Imbalance [2]

In our c;ettmg, as the number of jobs equalc; the total number of cores, load changes only

when some JOb fimsheb Therefme, allowmg JOb migratiOn only at those times does not

CdU'>e large departure from real bcenanos

2 We u~e the term core& for snnphc1ty of dl'>CU&&JOn 1 he techmque& can abo be applied to thread
<.cheduhng m SMT '>ystems

6

This work focuses on job co-scheduling inside a multicore machine, which is the primary

component of the scheduling in any large multicore-based systems. So it assumes that all

processor chips are in the same machine and the migrations of a job among different chips

have similar overhead. (With certain extensions, the developed algorithms may be applica

ble to clusters consisting of multiple nodes. The extensions are mainly on the consideration

of the different overhead of migration within and across cluster nodes.)

Cr·ite-ria There are two criteria to evaluate the quality of a schedule, namely co-run

cost and makespan.

• Co-run Cost Cost refers to the total running times of all the jobs to be scheduled.

Minimit~ing the co-run cost means the computing efficiency of the CMP system is

maximized. This criterion is critical when the throughput is the key requirement of a

system.

• Makes pan refers to the time between the start of a job set and the finish of the last job

in the set. Minimizing makespan is important in situations where a simultaneously

received batch of jobs is required to be completed as soon as possible. For example, a

multi-item order submitted by a single customer needs to be delivered in the minimal

time. This kind of situation is especially common in server farms, data centers, and

compute cloud (e.g., the Amazon Elastic Compute Cloud). With the rapid rise of

these modern computing forms and their wide adoption of CMP, a good understand

ing to makespan minimization in multicore job co-scheduling becomes increasingly

important.

Performance Data. The performance degradation of a job when it co-runs with other

k (0 < k < u) jobs is a piece of critical information for job co-scheduling. We devote half

of this dissertation (Chapter 3) to prediction of co-run degradations.

In our discussion of the complexity and algorithms for optimal co-scheduling (Chapter 2),

however, we assume that the co-run degradation is known beforehand. This assumption

helps us concentrate on the algorithm design.

7

Because a program execution may vary constantly, the performance degradation of a

program in a co-run may vary across intervals. In our setting, we use the average degrada

tion through the entire co-run. A future enhancement is to combine with program phase

analysis [56, 57]. As previous studies do [59], we currently ignore phase changes to concen

trate on co-scheduling itself.

In our setting, jobs may relate with one another, but all degradations are greater than

one. As co-runs are typically slower than single-rum; because of cache and bus contention,

this setting holds in most cases.

1.1.2 Co-Run Performance Prediction

In a CMP system, the shared resource (e.g., last level cache, off-chip bandwidth) contention

can offen cause performance degradation. A program typically runs slower when it co-runs

other programs in a CMP system than it nms alone. The co-run performance of a program

is the running speed when it co-runs with some other programs in a given CMP system. In

this work, we explore the techniques to predict the co-run performance before the programs

actually run in the CMP system. The co-run performance prediction is funclamental to

job co-scheduling because only if the scheduler obtains the co-run performance of all the

programs can it make the appropriate schedule.

Co-Run performance prediction is a challenge because it involves many factors. Gener

ally speaking, the performance of a program is decided by the following factors: program

code, program inputs, system configurations, runtime environment, underlying architec

tures and so on. In our work, we assume that the underlying architecture is known, we only

consider the influence of program inputs and its co-runners.

Currently a program's performance is heavily affected by its memory behaviors. In our

work, we focus on the memory behaviors of a program in a CMP system such as last level

cache miss rate and so on.

8

1.2 Contributions

The contributions of this dissertation are summarized as follows.

- Algorithms. We analyze the computational complexities of joh co-scheduling, and

create a set of co-scheduling algorithms, both optimal ones and heuristic ones.

- Performance prediction. By combining program behavior analysis with cache manage

ment, we propose a locality-based model for program co-run performance prediction

on CMP.

- Scheduler construction. We design and evaluate a number of job co-scherlulers for

minimization of both co-run cost and makespan.

1.2.1 Algorithm Design

To get the optimal job co-scheduling is important for both theoretical analysis and practical

co-scheduling policy. Getting the optimal schedule can help evaluate current schedulers.

By comparing the performance different between optimal and current schedule, one can

decides whether further improvement would enhance the co-scheduler significantly, and

hinder the development of co-scheduling algorithms. Moreover, finding optimal co-schedules

is critical for understanding how the various factors of CMP resource sharing affect program

executions, as shown in a recent study [78]. In this dissertation, we propose algorithms to

schedule jobs on CMP system under different scenarios.

• Complexity Analysis. We analyze the computational complexities of job co-scheduling

under different scenarios (e.g. number of cores in one chip, different criteria, job

migration allowed or not). We have proved that if job migration is not allowed and

there are only two cores in one chip, the problem is polynomial solvable. If the

number of cores in one chip is greater than 2, the problem is NP-Complete no matter

job migration is allowed or not.

9

• Algorzthms for Dual-Core Systems We have adopted the clas&Ic Blos:;om [19] algo

uthm on degradatwn graph<:> for findmg optimal :;chedule:; for mnlti-:;ocket dual-core

'3ysstems for the mmimi7atwn of both ma,ke'3pan and co-run cost We further reduce

the complexity of make<:> pan mmimiLatwn problem from O(n4) to O(n2 5 log n)

• Approxzmatwn Algorzthms Be< au:;e of the computatiOnal complexities, we have pro

poc;ed heunstic algonthms for the < a'>f"'> where the optirnaJ :;olutwn IS hard to obtam

The different optimizatiOn objectives :stimulate different de'3Ign:; m the approxunatwn

algouthrns for both makespan mmimrLatwn and cost rnuurnizatwn Our de~:>Igned

algonthrn'3 mclude search bac;ed algonthms (e g , A* -clu-,ter), graph based algouthrns

(e g , hierarchical perfect matchmg), and local-optimal algonthm'3 (e g , greedy algo

nthm, local optimizatiOn&)

1.2.2 Performance Predictive Models

There have been '3ome pnor stmhes on predictmg co-run performance of proces:;es on CMP

Some of them propo:;e architectme extenswns to faohtate runtnne cache performance mon

Itonng [63, 29, 28 50] Some rely on penodical process rec;huffimg by OS to c;ample perfor

mance of a procesc; under vanous co-run -;ettmgs [59, 60, 53, 23, 74, 20] The'3e techmques

are pumanly ba:;ed on low-level program behavwrs (e g, mstructwns per cycle (IPC), cache

miss rates) obtamed through runtime momtmmg Unfortunately, the low-level behavwrs,

although easily obtamable, are often m~:>ufftuent for accmatc, :;cctlable, and large-:;cope per

formance predictron (elaborated m Section 3)

In this dissertation, we address co-run performance predictwn by explmtmg data locality

analy:;I<, at the program level Our approach centers on the development of two locality

models

• Incluszve Reuse Stgnatures \Ve mtroduce the concept of znclu~we reuse szgnature,

which IS a summary of LRU stack distances on a -,bared cache with all cache shar

ers' data references con'3Idered The model, through ngorous analysi'3, uncovers the

10

statistical connections between co-run locality and the locality of single runs, thus lay

ing the foundation for approximating co-run cache miss rates from program locality

analysis.

• Sensitivity and Competitiveness In light of inclusive reuse signatures, we develop a

lightweight model for efficiently predicting co-run data locality (or cache usage) from

the memory reference patterns of the programs' single runs. This model offers a

simple, efficient way to characterize the statistical expectation of the influence that a

process may impose on and receive from random co-runners. The high efficiency of

the model is the key to practical uses in shared-cache management. It achieves the

efficiency mainly by capitalizing the connection between time anrl. locality.

1.2.3 Cache-Contention-Aware Proactive Scheduler

Designing an effective shared-cache-aware scheduler is challenging. It requires the ability

to understand a program's demand and sensitivity to the shared cache. Moreover, the

online system requires extremely low runtime overhead. In this dissertation, we propose a

proactive online scheduler to schedule jobs onto CMP system online.

• Ojfiine Scheduler We integrate the techniques proposed in Chapter 2 and Section 3

into a batch scheduler. Given a set of jobs, it first predicts the co-run performance

degradations based on program behavior analysis and then uses algorithms proposed

in Chapter 2 to find the best schedule.

• Online Scheduler To satisfy the time constraint of online scheduling, we, based on

inclusive reuse distances, propose a model to predict a program's requirement to the

shared cache. The model provides an efficient way to characterize the sensitivity of a

process on cache contention and its potential influence on its co-runners. The predic

tive model is lightweight enough for online uses. Based on the sensitivity of programs,

online schedulers partition programs into a sensitive group and an insensitive group.

11

It pairs sensitive jobs with insensitive jobs to improve the thoughput of the whole

system.

1.3 Dissertation Organization

The dissertation is organized as follows. Chapter 2 describes our findings in the compu

tational complexity and algorithms of optimal co-scheduling on CMP. Chapter 3 presents

co-run performance predictive models. Chapter 4 concentrates on the construction of batch

and online co-schedulers. Chapter 5 briefly summarizes some of our other efforts for enhanc

ing the computational efficiency on CMP. And finally, Chapter 6 concludes this dissertation.

Chapter 2

Complexity Analysis and

Algorithm Design

2.1 Introduction

In modern Chip Multiprocessors (CMP) architecture, it is common that multiple cores share

certain levels of on-chip cache and off-chip bandwidth. As many studies have shown [23, 22,

50, 66, 10, 28], the sharing causes resource contention among co-running jobs, resulting in

considerable and sometimes significant degradations to program performance and system

fairness. Job co-scheduling is one of the approaches to addressing the contention problem.

Its strategy is to assign jobs to computing units in a way that the overall influence from

resource contention is minimized.

Unlike approaches proposed in architecture design (e.g., cache partition [49, 50, 28]),

job co-scheduling can typically be implemented without hardware extensions. It has drawn

many research interests in recent years, with a number of co-scheduling schemes devel

oped [59, 23. 14]. Most of the techniques use reactive co-scheduling. The runtime system

periodically changes the co-runners (i.e., the jobs sharing a cache) of a job to estimate

its cache requirement (e.g., [23]) or co-run performance (e.g., [59]). The scheduler then

changes the assignment of the jobs accordingly to group compatible jobs to the same chip

12

13

to reduce cache contention. Besides reactive scheduling, some research tries to predict co

run performance of programs (e.g., [37, 34]), which opens the opportunities for proactively

co-scheduling jobs without the need for runtime trials.

Even though those schemes have shown effectiveness in alleviating co-run contention

caused by cache sharing, efficiently finding optimal co-schedules or a good lower bound

remains an open question. Answering this question is important in two aspects. First, it

facilitates the evaluation of various co-scheduling systems. \iVithout knowing optimal co

schedules, it is hard to precisely determine how good a co-scheduling system is-how far the

co-scheduling results are from optimal co-schedules and whether further improvement would

enhance system performance significantly. Second, optimal co-scheduling algorithms pro

duced in answering that question can directly benefit the development of some co-scheduling

schemes, especially proactive co-scheduling schemes [37, 30, 32]. These schemes co-schedule

jobs based on the prediction of co-run performance, rather than through dynamically trying

and measuring various co-schedules and picking the best as most other (reactive) schemes

do. Therefore for proactive schemes, efficient optimal co-scheduling algorithms may simply

serve as their co-scheduling algorithms, or as the base for the development of lightweight

co-scheduling algorithms.

This chapter presents a systematic exploration towards optimal job co-scheduling on

CMP. It aims at answering the following three questions:

• How difficult is it to find optimal co-schedules?

• What algorithms can determine optimal co-schedules or reasonable lower bounds ef

ficiently?

• When the optimal are too hard to find, can heuristics-based algorithms approximate

them effectively?

There are two different criteria in Job co-scheduling, namely co-run cost and makespan.

The different optimization goals lead to different solutions. We first tackle the problem on

cost minimization.

14

Our exploration on co-run cost minimization consists of two components. The first

component is focused on the complexity of co-scheduling in a basic setting where no job

length variance or job migrations are considered. The discoveries fall in four aspects. The

first is a polynomial-time algorithm for finding optimal co-schedules on dual-core CMPs.

The algorithm constructs a degradation graph, models the optimal scheduling problem as a

minimum-weight perfect matching problem, and solves it using the Blossom algorithm [19].

The second is a proof that optimal co-scheduling on u-core processors is an NP-complete

problem when u is greater than 2, with or without job migrations allowed. 1 The third

is an Integer Programming (IP) formulation of the optimal co-scheduling problem for u

core systems (u > 2). The formulation offers a clean way for formal analysis; its Linear

Programming (LP) form offers an efficient approach to computing lower bounds for job co

scheduling. The final is a series of heuristics-based algorithms for approximating the optimal

schedules in u-core CMP systems (u > 2). The first algorithm, named the hierarchical

matching algorithm, generalizes the dual-core algorithm to partition jobs in a hierarchical

way. The second algorithm, named the greedy algorithm, schedules jobs in order of their

sensitivities to cache contention. To further enhance the scheduling quality, we develop an

efficient local optimization scheme that is applicable to the schedules produced by both

algorithms.

The second component expands the scope of the study with explorations on the com

plexities brought by job migrations that are incurred by job length variance. It shows the

exponential increase of the search space and investigates the use of A* -search for accel-

erating the search for optimal schedules. For large problems, it offers two approximation

algorithms, A *-cluster and local-matching algorithms, to effectively approximate optimal

schedules with good accuracy and scalability.

Makespan minimization differs from cost minimization. The optimal schedules for the

two criteria are typically different. In traditional job scheduling literature, the two criteria

have led to drastically different algorithms and complexity analyses [38]. As to be shown

1 For ea~e of explanation, the followmg de~cription assumes a platform that contains multiple u-core
single-threaded processors, with all cores on a chip sharing a cache.

15

later, for multicore job co-scheduling, the implication of their differences is pronounced as

well. The differences exist in every major aspect, from complexity analysis to algorithm

design to the ultimate scheduling results.

Motivated by the contrast of the increasing importance and the preliminary understand

ing of makespan minimization in multicore job co-scheduling, we initiate explorations in two

dimensions.

• First, we prove that makespan minimization in job co-scheduling is NP-complete on

systems with more than 2 cores per chip. The proof is based on a reduction from the

problem of Exact Cover by 3-Sets. We are not aware of any previous analysis of the

computational complexity.

• Second, by offering an O(n2·5 ·logn) algorithm (n is the number of jobs), we prove

that on dual-core systems with no job migrations, the problem is polynomial-time

solvable. To the best of our knowledge, this algorithm is the first polynomial-time

solution for this optimal co-scheduling problem.

Finally, we evaluate the algorithms on both real and synthetic problems, verifying the

optimality of the solutions produced by the co-scheduling algorithms (under certain con

ditions). Results of the heuristic algorithms demonstrate their capability to achieve near

optimal solutions with reasonable scalability in different scenarios: Compared to sharing

oblivious scheduling, they reduce co-run degradation by 5-20% on average, 1.4% away from

the optimum.

There has been a large body of research on optimal job scheduling. But to our surprise,

despite an extensive survey [38, 12], we have found no previous work that tackles an optimal

co-scheduling problem containing performance interplay among jobs as what the current co

scheduling problem involves. This work, although uncovering some interesting facts, is by

no means to answer all questions on optimal job co-scheduling. Instead, it hopefully may

serve as a trigger to stimulate further studies towards a comprehensive understanding to

this intricate problem.

16

The rest of this chapter is organized a& follows. Sections 2.2, Section 2.4 and Section 2.4

present the complexity analysis and algorithm design of the cost minimization problem

without job migration. Section 2.5 describes our exploration on job co-scheduling with

migrations. Section 2.6 reports our &olutions for the makespan minimization problem.

Section 2.7 evaluates our proposed algorithms on both real schedule problems and a set

of &ynthetic problems. Section 2.9 reviews some related and Section 2.10 summarizes this

chapter.

2.2 Definition of the Basic Min-Cost Co-Scheduling Problem

This section defines the basic min-cost co-scheduling problem, which concentrates on the

primary challenges in assigning jobs to cores without the considerations of the complexities

caused by job migrations. Section 2.5 will describe treatment of those complexities.

The problems discussed in thi& chapter concentrates on independent jobs-no jobs have

data shared with each other. Cache contention and the associated contention on memory

controllers and bus are the only effects of shared cache on the performance of co-running

programs. Hence, co-running programs typically run &lower than their single runs (i.e. the

runs with no co-runners) due to resource contention. This kind of performance degradation

is called co-run degradation. Formally, the co-run degradatzon of a job z when it co-runs

with all the jobs in &et S is defined as

d _ cCPI,,s- :,CPI,
'•5 - sCPI,

where cC P I,,s and sC PI, are the average numbers of cycles per instruction (CPI) respec

tively when the job z co-runs with the job set S or when it runs alone 2 • ("c" for "co-run";

"s" for "single run".) The definition uses CPI because it is a commonly used metric for

computing efficiency. Immediately following the definition, d,,s must be non-negative, and

d,,s, S d1,S if S' ~ S.

2 Job& are allowed to have drfferent length& If a JOb fimshe& after rtb &harerb do m a co-run, the cCPI of
the JOb rs computed as the total cyde& rt takes to fimsh d1vJded by rts total number ot mstructron<;

The basic optimal co-scheduling problem is as follows:

Given a set of n independent jobs, J1, J2, ... , Jn, and m identical chips with each

equipped with u identical computing units that share certain on-chip resource

uniformly, the goal is to find a schedule that maps each job to a computing unit

so that the total co-run degradation, L;~=l d~,s, is minimized, where, S is the

set of jobH that are mapped to the chip that J, iH mapped to under the schedule.

17

We use the sum of co-run degradations as the goal function for the following reasons. A

key object of co-scheduling is to maximize the computing efficiency of a CMP system, which

suggests the use of the sum of CPis of all jobs. However, the simple sum may cause an

unfair schedule that favorH high-CPI jobs to appear as effective. For instance, suppose two

schedules for two jobs A and B produce (CPIA=2, CPIB=l) and (CPIA'=l.4, CPIB'=1.5)

respectively. The second schedule appears to produce a smaller sum of CPis than the first,

but it degrades job B performance by 50% while improving job A performance by only 43%.

Replacing the absolute CPI values with co-run degradations in the sum helps avoid the bias

aH degradation reflects the normalized computing efficiency.

The problem of co-scheduling includes two parts. The first is to predict the degrada

tion of every possible co-run. The second is to find the optimal schedules so that the total

degradation is minimized given the predicted co-run degradations. Much research haH ex

plored the first part of the problem (e.g., [23, 37, 59]). This work specially focuses on the

second part, in which, we assume that the degradations of all possible co-runs arc known

beforehand (although Home algorithms to be presented do not require the full knowledge).

This assumption does not prevent practical uses of the co-scheduling algorithms pro

duced in this work. The first main use is to remove the obstacles for the evaluation of

various co-scheduling algorithms. Most current evaluations of a co-scheduling system com

pares only to random schedulers. But in practical design of a co-scheduler, it is important to

know the room for improvement-that iH, the distance from the optimum-for determining

the efforts needed for further enhancement and the tradeoff between scheduling efficiency

and quality. That is exactly what the algorithms in this work provide or approximate. For

18

such assessment, it is usually acceptable to collect the co-run performance of some jobs

offline even if that takes Home amount of time.

The second use of the algorithms is for proactive co-scheduling. Proactive co-scheduling

decides the schedule of jobs before the jobs start running. They typically use predicted

co-run performance of jobs [10, 3]. The co-scheduling algorithms proposed in this work

may help to determine the suitable schedules based on the predicted performance. We note

that errors in performance prediction, although possibly hurting the quality of the resulting

schedules, are tolerable to a certain degree in co-scheduling~even if the errors mislead a

co-scheduling algorithm to consider an optimal schedule to be 10% (rather than 20% in

truth) better (in terms of performance degradations) than other schedules, they do not

prevent the algorithm from picking the optimal one.

In this basic co-scheduling problem, the co-schedule to be found is static, meaning that

there are no job migrations during the execution of a job.

In the following description, we use an assignment to refer to a group of u jobs that

are to run on the same chip. (The influence on the performance of a job imposed by the

assignments of jobs on other chips is typically small and neglected in job co-scheduling. We

use a sched1tle to refer to a set of assignments that cover all the jobs and have no overlap

with each other~that is, a schedule is a solution to a co-scheduling problem.

2.3 Optimal Co-Scheduling in Dual-Core Systems (u = 2)

In this section, we present an efficient algorithm for finding optimal schedules in a special

case where the target systems have dual cores on each chip. It prepares for the explorations

on more complex cases.

We model optimal co-scheduling problems in this case as a graph problem. The graph

is a fully connected graph, named degradation graph. As illustrated in Figure 2.1, every

vertex in the graph represents a job, and the weight on each edge equals the Hum of the

degradations of the jobs represented by the two vertices when they run on the same chip.

19

With this modeling, the optimal co-scheduling problem becomes a mzmmum-wezght perfect

matchznq problem. A perfect matchzng in a graph is a &ubset of edges that cover all vertices,

but no two edges share a common vertex. A minimum-weight perfect matching problem is

to find a perfect matching that has the minimum sum of edge weight& in a graph.

Figure 2.1: An example of a degradation graph for 6 jobs on 3 dual-coreR. Each partition contains
a job group sharing the same cache. Bold edges compose a perfect matchmg

It is ea&y to prove that a minimum-weight perfect matching in a degradation graph

corresponds to an optimal co-schedule of the job set represented by the graph vertices. Firr,t,

a valid job schedule must be a perfect matching in the graph. Each resulting job group

corresponds to an edge in the graph, and the groups r,hould cover all jobs and no two groups

can share the same job, which exactly match the conditions of a perfect rnatchmg. On the

other hand, a minimum-weight perfect matching minimizes the &um of edge weights, which

is equivalent to minimizing the objective function of the co-ochedule defined in Section 2.2.

One of the fundamental discoveries in combinational optimization is the polynomial-

time blossom algorithm for finding minimum-weight perfect matchings proposed by Ed

monds [19]. It offers the polynomial-time solution to optimal co-scheduling on dual-cores.

The time complexity of the algorithm is O(n2m), where nand mare respectively the num

bers of nodes and the number of edges in the graph. Later, Gabow and Tarjan develop an

O(nm + n2 log n) algorithm [24]. Cook and Rohe provide an efficient implementation of the

blossom algorithm [11], which is used in this work.

20

2.4 Optimal Co-Scheduling in u-Core Systems ('u > 3)

When u, 2': 3, the optimal co-scheduling problem becomes substantially more complex than

on dual-core systems. This section first analyzes the complexity of the problem, and then

describes an IP /LP formulation of the problem for efficient lower-bound computation.

2.4.1 Proof of the NP-Completeness

This section proves that when n 2': 3, optimal co-scheduling becomes NP-complete. The

proof is via a reduction of Multidimensional Assignment Problem (MAP) [25], a known

NP-complete problem, to the co-scheduling problem.

First, we formulate the co-scheduling problem as follows. There is a set S containing

n clements. (Each element corresponds to a job in the co-scheduling problem.) Let Su

represent the set of all u-cardinality subsets of S. Each of those u-cardinality subsets,

represented by Gi, has a weight Wi, where i = 1, 2, · · · , (~). (G~ corresponds to a group of

jobs scheduled to the same chip, and its weight corresponds to the sum of the degradation

of all the jobs in the group.) The objective is to find nju, such subsets, Gp1 , Gp2 , • • • , GPn/u

to form a partition of S that satisfies the following conditions:

• U~~ Gp, = S. (Every job belongs to a subset.)

• 2.::~~~ Wp, is minimized. (Total weight is minimum.)

The first condition ensures that every job belongs to a single subset and no job can

belong to two subsets (as all the subsets together contain only (nju) * u = n jobs). The

second condition ensures that the total weight of the subsets is minimum.

We prove that this problem is NP-hard via a reduction from the MAP problem. The

objective of the MAP problem is to match tuples of objects in more than 2 sets with

minimum total cost. The formal definition of MAP is as follows:

• Input: u (11 2': 3) sets Q1,Q2,· · · ,Q,, each containing m elements, a cost function C:

Ql x Q2 x · · · x Qu---+ R, and a given value 0.

21

• Output: An assignment A that consists of rn subsets, each of which contains exactly

one element of every set Q k, 1 ~ k ~ u. Every member o:, = (a21 , a,2, ... , a,k) of A

has a cost c., = C(o:,), where 1 ~ i ~ rn and a,k is the element chosen from the set

Qk.

• Constraints: Every element of Qk, 1 ~ k ~ u, belongs to exactly one subset of

assignment A and 2.::::1 c, is equal to the given value 0.

MAP has been proven to be NP-complete by reduction from the three-dimensional

matching problem [25], a well-known problem first shown to be NP-complete by R. Karp [36].

We now reduce MAP to the co-scheduling problem. Given an instance of MAP, we

construct a co-scheduling problem as follows:

• Let S = U~=l Qk and n = rn * u.

• Build all the u-cardinality subsets of S, represented as G" 1 ~ i ~ (~). If a subset

G, contains exactly one element from every set Qk, 1 ~ k ~ u, its weight is set as

C(a1,a2,··· ,au), where Cis the cost function in the MAP instance, and ak is an

element chosen from Q~.;. Otherwise the weight is set to positive infinity.

For a given value of u. the time complexity of the construction is O(nu). It is clear that

a solution to this co-scheduling problem is also a solution to the MAP instance and vice

versa. This proves that the co-scheduling problem is NP-hard. Obviously. the co-scheduling

problem is an NP problem. Hence. the co-scheduling problem is an NP-complete problem

when ·u 2': 3.

2.4.2 Integer /Linear Programming for Optimal Co-Scheduling

The NP-completeness suggests that it is difficult if not impossible to generalize the algorithm

described in Section 2.3 into a polynomial-time algorithm for the cases when u is greater

than two. This section shows that optimal co-scheduling can be formulated as an IP problem

in general, and therefore many standard IP solvers may be used to compute the optimal

22

co-schedule& directly. Furthermore. the LP relaxed form offers an efficient way to compute

the lower bound& of the co-scheduling for an arbitrary u value.

2.4.2.1 Integer Programming Model

The IP formulation comes from the observation that optimal job co-scheduling defined in

Section 2.2 is essentially a partition problem: To find a way to partition the n jobs into

rn = ~ sets (corresponding to them chips), with each job falling into one set and each set

containing exactly u jobs, so that the total co-run degradation of all the jobs is minimized.

We formulate it as the following IP problem.

The variables of the IP are:

xs,, where 1 ::::; i::::; (~) and s~ <;;; {1, 2, ... , n} with !Btl = u, and s~ = SJ if and

only if i = J (1::::; i,j::::; (~).)

Each xs, is a binary variable, indicating whether the job set S~ is one of the sets

in the final partition result.

The objective function is:

min"'(~) d(S) · ·rs
L...t=l 1 • '

where, d(S1) is the sum of the co-run degradations of all the jobs contained in 81 when

they co-run on a single chip. that is, d(S~) = I:JES, d1,s,-{J}·

The basic form of the constraints is:

xs, E {0,1}, 1 ~ i ~ (:}
2:= xsk = 1;

k:lESk

2:= xsk = 1;
k:2ESk

... '

2:= Xih = 1.
k:nESk

23

The first constraint says that xs, can only be either 0 or 1 (1 moans that S1, is one of the

sets in the final partition result; 0 means otherwise.) The first of the other n constraints

means that there must be one and only one set in the final partition result that contains

job .h. The other constraints have the same meaning but on other jobs.

The basic form is intuitive but not amenable for efficient implementation. A refined form

converts the last n constraints in the basic form into a matrix-vector multiplication form.

In the form, A is an n x (~) matrix, with each element equaling either 0 or 1: The element

of A at position (i, j) is 1 if and only if i E SF-that is, job J, is in the job set denoted by

S1 . Apparently, tho matrix-vector equation is equivalent to the final n constraints in the

basic IP form. We call the matrix A the membership matrix as it indicates which sets a job

belongs to.

24

2.4.2.2 Computing Lower Bounds in Polynomial Time

The IP problem il:l not polynomial-time solvable. But its lower bound can be efficiently

computed through its LP form. The LP form is the same as the IP form except that the

first constraint becomes

0 ::; xs, :::: 1,

It is easy to see that a feasible solution of the IP problem must be a feasible Rolution

of the LP problem as well. The optimal value of the objective function in the LP, hence,

must be no greater than the value in the IP. As LP problems can be solved efficiently, this

relaxed form offers a fast way to compute lower bounds for optimal co-scheduling.

In our experiment, we employ the LP and IP solver in MATLAB to compute optimal co

schedules and the lower bounds. The LP solver, function linprog, is based on LIPSOL [75],

which is a variant of Mehrotra's predictor-corrector algorithm [47], a primal-dual interior

point method. The IP solver, bintprog, uses a LP-based branch-and-bound algorithm to

solve binary integer programming problems.

2.4.3 Heuristics-Based Approximation

Even though the IP model in the previous section formulates the optimal co-scheduling

problem in a clean manner, solving the model may still be infeasible for a large problem

given the NP-completeness of the job co-scheduling problem.

Vie design a set of heuristics-based algorithms to efficiently approximate the optimal

schedules. The first algorithm is a hierarchical extension to the polynomial-time algorithm

used when u = 2; the second is a greedy algorithm, which selects the local minimum in every

l:ltep. In addition, we introduce a local optimization algorithm to enhance the scheduling

results. We acknowledge that the theoretical accuracies of these algorithms are ideal to

have, but yet to develop. Our discussion instead concentrates on the intuitions of their

design and empirical evaluations.

25

2.4.3.1 Hierarchical Perfect Matching Algorithm

The hierarchical perfect matching algorithm is inspired by the solution on dual-core systems.

For the purpose of clarity, we first describe the way this algorithm works on quad-core CMPs,

and then present the general algorithm.

Finding the optimal co-schedule on quad-core CMPs is to partition then jobs into n/4

4-mernber groups. In this algorithm, we first treat a quad-core chip with a shared cache of

size Las two virtual chips, with each containing a dual-core processor and a shared cache of

size L/2. On the virtual dual-core system, we can apply the perfect matching algorithm to

find the optimal schedule, in which, the job set is partitioned into n/2 pairs of jobs. Next,

we create a new degradation graph, with each vertex representing one of the job pairs. After

applying the minimum-weight perfect matching algorithm to the new graph, we will obtain

n/4 pairs of job pairs, or in another word, n/4 4-member job groups. These groups form

an approximation to the optimal co-schedule on the quad-core system.

Using this hierarchical algorithm, we can approximate the optimal solution of u-core

co-scheduling problem by applying the minimum perfect matching algorithm log(u) times,

as shown in Figure 2.2. At each level, say level-k, the system is viewed as a composition of

2k-core processors. At each step, the algorithm finds the optimal coupling of the job groups

that are generated in the last step. Figure 2.3 shows the pseudo-code of this algorithm.

Notice that, even though this hierarchical matching algorithm invokes the minimum-weight

perfect matching algorithm log(u) times, its time complexity is the same as that of the

basic minimum perfect matching algorithm, O(n4), because the number of vertices in the

degradation graphs decreases exponentially.

2.4.3.2 Greedy Algorithm

The second heuristics-based algorithm is a greedy algorithm. Our initial design is as follows.

We first sort all of the u-cardinality sets of jobs in the ascending order of the total degra

dation of the jobs in a set when they co-run together. Let S represent the final schedule,

whose initial content is empty. We repeatedly pick the top set from the sorted order, none

Ievell
-y-

D. m*u/2
0 0 0 2 lo 1,--o -o-o -o-,1

;.; \:::::<::::=====~
-v-m*u/4

D.
log(u)

m

26

Figure 2.2: The hierarchical view of a CMP system used in the hierarchical perfect matching
algorithm. Each box represents a virtual chip except the chips on the last level, which are real chips.
Each circle represents a core. (1t: the number of cores per real chip: m: the total number of real
chips in the system.)

of whose members is covered by S yet, and put it into S until S covers all the jobs. This

design is intuitive~every time, the co-run group with minimum degradation is selected.

However, the result is surprisingly inferior---the produced schedules are among the worst

possible scherl.ules. We call this algorithm the naive greedy algorithm.

After revisiting the algorithm, we recognize the problem. Compared to other jobs, a

job that uses little shared cache tends to be both "polite"-----causing less degradation to its

co-runners, and "robust" ~suffering less from its co-runners. We call such a job a "friendly"

job. Becaw;;e of this property, the top sets in the sorted orrl.er are likely to contain only those

"friendly" jobs. After picking the first several sets, the naive greedy algorithm runs out of

friendly jobs, and has to pick those ::-;ets whose members are, unfortunately, all "unfriendly"

jobs, causing the large degradation in the final schedule.

i:Ve observe that if we assign "unfriendly" jobs with "friendly" ones, the "friendly''

jobs won't degrade much more than they do in the naive greedy schedule, whereas, the

"unfriendly" programs will degrade much less.

This observation leads to the following improved algorithm. We first compute the po

liteness of a job, which i:,; defined as the reciprocal of the sum of the degradations of all

co-run groups that include that job. During the construction of the schedule S, each time,

I* n JObs; u cores per ch~p; L: cache s~ze *I
I* JobGroupq conta~ns the hnal schedule *I
JobGroups +- {jJ,]2, , Jn}
k+-1
wh~le (k < u) {

cachePerVrrtualChtp +- k * 2 * Lj1t;
BmldGraph(JobGrottpq, cachePerVrrt1talChtp, V, E);
I* compute m~n-we~ght perfect match~ng and *I
I* store the match~ng pa~rs *I
R +- MtnlVetghtPerfMatchtng(V, E);
I* update jobGrottpo ;,I
reset jobGT"Oup8;
t +- 0;
for each node pau (vk, Vz) ~n R {

S +- Vk.]Ob6 U Vz.JObs;
jobGroup6[t + +] +- 6;}

k+-k*2;}
I* Procedure to bu~ld a degradat~on graph *I
BurldGmph(JobGroups, cachePerVtrt1mlChrp, V, E) {
reset V and E;
for each element g ~n JObGroups; {

node +- NewNode(g);
V.msert(node) ;}

for each pa~r of nodes (v,, v1) ~n V {
s +- v, .jobs U v1 .jobs;

}

w +- GetCo- RunDegmdatton (s, cachePerVtrtualChtp);
InsertEdgeV?e1ght(E, v,, v1 , w);}

Figure 2.3 Hterarchical mimmum-weight perfect matchmg.

27

we add a co-run group that satisfies the following two conditions: 1) It contains the job

whose polzteness is the smallest in the unassigned job list; 2) its total degradation is min

anum. Figure 2.4 shows the pseudo-code of this algorithm. This politeness-based greedy

algorithm manages to assign "unfriendly" jobs with "friendly" ones and proves to be much

better than the naive greedy algorithm.

The major overhead in this greedy algorithm includes the calculation of politeness and

the construction of the final schedule. Both have O(n(~)) time complexity, so the greedy

algorithm's time complexity IS O(n(~))

/* J JOb set, G co-run groups */
/* S schedule to compute */
CalPol~teness (J, G),
I +--- poll tenessSort (J),

s +--- 0,
for ~ +--- 1 to IJI {
~f JOb J[J[z]] not ~n S {

}
}

s +--- the group ~n G w~ th the least degr and
conta~mng J[J[~]] but not any JObs ~n S
St---SUs,

/* Procedure to compute pol~teness */
CalPol~teness (J, G){
for ~ +--- 1 to I Jl {

w +--- 0,

}
}

for each g m G that contams J[1] {
w +--- w + g degradat10n,}

J[1] polzteness +--- l/w,

Figure 2.4 Greedy Algonthm

2.4.3.3 Local Optimization

28

Local optimizatiOn IS a post-proces'lmg step for refinmg the schedule'3 generated by both

heunstiC'3-based algonthms For a given 'lchedule, the algonthm optum?es each pan of

dbSignmenb:, m the bchcdule For e.1ch pair, the algonthm enumerctte'> all possible ways to

evenly partitiOn the JOb'> contamed m them mto two part'l Each partitlOn corresponds to

one a.:,signment for tho'3e JOb'l, and the one that mmiml7es the sum of co-run degradat10ns

of thobe JObs IS taken as the hnal schedule for that pan F1gure 2 5 show" the pbeudo-code

The optimizatlOn on two a'lsignments needs to check (2;) /2 as'llgnments The algo

nthm m Figure 2 5 reqmres (~)2 /2 1terat1on'3 Therefore, the time complexity for tlu" local

opt1m1zat10n lb 0((~)2 euu))

2.5 Optimal Co-Scheduling with Migrations

W1th the understandmg of the bas1c optimal co-schedulmg problem, tlus sect10n expands

the bcope of the problem to mclude JOb m1grat10ns mto account In thlb ca.:,e, JObb may hmsh

/* S: a given schedule */
LocalOpt (S) {
m+-ISI;
for i +- 1 to m- 1 {

a 1 = S[i];
for j +- i + 1 to m {

a2 +- S[j];
(a~,a~)+- Opt2Assignments(a1 , a2);

a 1 =a~;
S[j] = a~;}

S[i] = a 1 ;}

}

Figure 2.5: Local Optimization

29

at different times, and rescheduling of the unfinished jobs may be necessary when some job

terminates and vacates a core. We call each scheduling or rescheduling a scheduling stage.

This work concentrates on the settings where rescheduling happens only when a job finishes;

there are at most n scheduling stages for n jobs.

Some terminology needs to be redefined in this setting. An assignment still refers to a

group of I< jobs that are to run on the same chip. We use a 8'Ub-schedule to refer to a set

of assignments that cover all the unfinished jobs and have no overlap with one another. A

schedule still refers to a solution to the co-scheduling problem. However, a schedule becomes

a set of sub-schedules that have been used from the start of the jobs to the finish of the

final job. Considering job length variances, we redefine the goal of the co-scheduling as to

find a schedule that minimizes the total execution time of all jobs 3 , expressed as

n

arg mJn L cTt (S'),

t=l

where, cTY'l is the time job i takes to finish in a co-schedule S. Other settings of the

problem remain the same as those described in Section 2.2.

Next, we first examine the increased co-schedule space of the extended problem, and

then present the use of A *-search-- based approaches for pruning the space to help find or

estimate optimal co-schedules efficiently.

3 It ib assumed that the clock starts at time 0 for all jobs no matter whether they are actually running_

30

2.5.1 Co-Schedule Space

vVe model the optimal co-scheduling problem as a tree-search problem as shown in Fig-

ure 2.6. For n jobs, there are at most n scheduling stages; each corresponds to a time point

when one job finishes since the previous stage. Every node in the tree, except the starting

node, represents a sub-schedule of the remaining jobs. The nodes at a stage, say stage

2, correspond to all possible sub-schedules for n - 2 + 1 remaining jobs. There is a cost

associated with each edge, equal to the total execution time spent by all job& between the

two stages connected by the edge. Let node2 represent a child of the node node1. Given

the state at node1, we assign the unfinished jobs to cores according to the sub-schedule

contained in node2; let t be the time required for the first remaining job to finish; the cost

on the edge from node1 to node2 is t * m, where m is the number of jobs that are alive

during that period of time.

The goal of the optimal co-&cheduling is to find a path from the starting node to any

leaf node (called a goal node) so that the sum of the costs of all the edges on the path is

minimum. The search space in this extended problem involves O(nn) nodes. In contrast,

the scheduling space in the basic problem tackled in previous sections contains only the

starting node and the first stage in the tree (without rescheduling); the total number of

nodes is exponentially smaller than that in this extended problem.

stage 1: co-sched. n jobs

stage 2: co-sched. n-1 jobs

stage n: co-sched. 1 job

Figure 2.6: The ;,earch tree of optimal job co-f>cheduling with rescheduling allowed at the end of
a JOb. Each node in the tree, except the starting node, represents a sub-schedule of the remaming
jobs. Each edge represents one schedule of the unfinished jobs.

31

2.5.2 Finding the Optimal through A *-Search and Linear Programming

To address the increased complexity, we investigate the use of A *-search, along with a linear

programming model for cost estimation.

2.5.2.1 A *-Search Algorithm

A* -search is an algorithm stemming from artificial intelligence [51] for fast graph search.

It has been used for many search problems, but not for job co-scheduling. This section

presents the basic algorithm of A *-search, and the next section will describe the special

challenges in applying A *-search to job co-scheduling.

A *-search is appealing in several aspects. It guarantees the optimality of its search

results, and meanwhile, effectively avoids visiting certain portion of the search space that

contain no optimal solutions. In fact, it has been proved that A *-search is optimally efficient

for any given heuristic function. That is, for a given heuristic function, no other optimal

algorithm is guaranteed to expand fewer nodes than A*-search [51]. Its completeness,

optimality, and optimal efficiency trigger our exploration of using it for job co-scheduling.

We use Figure 2.6 to explain the basic algorithm of A *-search. In the graph, there is a

cost associated with every edge. The objective is to find the cheapest route in terms of the

total cost from the starting node to a goal node. In A* -search, each node, say node d, has

two functions, denoted as g(d) and h(d). Function g(d) is the cost to reach node d from the

starting node. Function h(d) is the estimated cost of the cheapest path from d to a goal

node. So, the sum of g(d) and h(d), denoted as .f(d), is the estimated cost of the cheapest

route that goes from the start to the goal and passes through node d.

Often, the graph to be searched through is conceptual and does not exist at the beginning

of the search. During the search process, the A* -search algorithm incrementally creates the

portion of the graph that possibly contains optimal paths. Specifically, A *-search uses a

priority list to decide the next node to expand (i.e., to create its children nodes). Initially,

the priority list contains only the starting node. Each time, A *-search removes the node

with the highest priority from the top of the priority list and expands that node. After an

32

expansion, it computes the f(d) values of all the newly generated nodes, and inserts them

into the priority list according to their priority values, which are computed as 1 j f (d). Such

expansions continue until the top of the priority list is a goal node, a sign indicating that

an optimal path bars been found. The algorithm terminates. The use of the !(d)-based

priority list is the key for A *-search to avoid unnecessary expansions without sacrificing the

optimality of the search result.

Recall that f(d) is the sum of g(d) and h(d). The function g(d) is trivial to define-just

the cost from the starting node to node d. The definition of h(d) is problem-specific and

critical. The following two properties of A* -search reflect the importance of h(d):

• The result of A* -search is optimal if h(d) is a.n admissible heuristic-that is, h(d)

must never overestimate the cost to reach the goa.l4 .

• The closer h(d) is from the rea.llowest cost, the more effective A *-search is in pruning

the search space.

Determining a good definition of h(d) is the core of applying A* -search.

2.5.2.2 A *-Search-Based Job Co-Scheduling

Using A *-search for job co-scheduling is simply to apply the search algorithm in the co

scheduling space. The main complexity exists in the definition of the function h(d).

Recall that h(d) is the estimated cost of the cheapest pa.th from the node d to a. goa.l

node. When a.ll co-run degradations a.re non-negative, a. simple definition is the sum of the

single-run timers of a.ll the unfinished parts of the remaining jobs. This definition is legal

h(d) does not exceed the actual costs-but ma.y lead to large departure between the values

of h(d) and the actual costs because it does not consider co-run degradations.

In this work, we resort to Linear Programming for defining h(d). Suppose at node d

there a.re U unfinished jobs. We define h(d) = T.,+Tdeg' where T~ is the time the U jobs need

4 \Ve assume that the search is a tree search. There are some subtle complexities for other types of
search [51].

33

to finish their remaining parts if they each run alone, and Tdeg is the estimated minimum

of the total degradation of the U jobs during their execution from the node d to any child

of d.

We concentrate on the common case when all degradation ratef> are non-negative. In

this case, when U is not greater than the number of chips I, Tcieg is clearly 0 as there is

at most one job on each chip. Our following discussion is focused on the :;cenario where

U >I.

Consider a sub-schedule represented by one of the children nodes of n. The total degra-

dation of all U jobs in the sub-schedule equals the sum of the degradations on all chips.

The minimum degradation on one chip with b jobs can be ef>timated as follows. Let T m~n(d)

represent the minimum of the single-run times of the unfinished part of all the remaining U

jobs. Notice that the time lasting from d to any of its children must be no less than Tmm(d)

because of co-run degradations. Let rbmm be the minimum of the degradation rates of all

jobs when a job co-runs with b - 1 other jobs. It is clear that the degradation on the chip

must be no less than b * Tbmm * Tm~n(d)' which is taken as the estimation of the minimum

degradation of the chip. Therefore, the lower bound of the degradation of a sub-schedule .i

is dJ = -vf_1 b2 * rb * Tmm(cl)' where, b~ is the number of jobs a5signed to chip 2 in the L..,;,_ trntn

sub-schedule.

The value of Tdeg should be the minimum of dJ of all sub-schedules of the node d. To

determine the sub-schedule that has the smallest d1 , we need to find the values of b, so that

L;{=l b~ * Tb,mm * Trmn(d) is minimized under the constraint L; b~ = U. This analysis leads to

an Integer Linear Programming problem shown in Figure 2. 7. By relaxing the constraint

on x~ to 0 :=::; x~ ::; 1, the problem becomes a Linear Programming problem. which can be

solved efficiently using existing tools [1].

As a special case, when K = 2. the solution to the Integer Linear Programming is

equivalent to the following simple formula:

(2.1)

Definitions:
U number of unf1n1shed JObs,
[number of ch1ps,
K cores per ch1p, I < U ::; I* K,

m1n1mum degradat1on rate,
m1n1mum s1ngle run t1me
x _ { 1 the ~th core has a JOb aM~qned

' - 0 oth enm se

The number of JObs on the f-th ch1p

m(c) = .L,

Objective function:
I

rn~n L rn(c) * rrn(<),, * Trnm(<i)
f=l

Linear constraint:
n

Figure 2. 7 Integer Lmear Programmmg tor computmg Tdeq the lower bound of degradatiOn

34

The mtmtwn for the formula IS that m any sub-schedule of this scenano there must be

at lea:,t (U - I) chrps that have a parr of the unfuu~hed JOb& a~&Igned Otherwr&e, &orne

dnps mu-,t have more than two Jobs a<;signed, which IS not allowed m the problem <>ettmg

(SectiOn 2 2) The applicatiOn of the defimtwn of TdLq to such a sub-schedule leads to

Equation 2 1

2.5.3 Heuristics-Based Estimation

A limitatiOn of A* -&earch based algonthms rs rts high reqmrement for memory space It

keeps all open node& m the pnonty lrst, while the numbm of open nodes grow~ m exponential

to the problem srze m JOb co-'>chedulmg

In thrs ~ectron, we de&cnbe two heunstrc~-ba&ed algonthm& for wlvmg the optrmal

co-schedulmg problem m a scalable manner One algonthm the A *-cluster algonthm,

mtegrates clustermg mto the A *-search-ba&ed algonthm, the other algonthm, the local

matchmg algonthm, r& a generaliL:ed vcr&Ion of the graph-matchmg-based co-~chedulmg

algonthms mentiOned m Sectron 2 4 3 1

35

2.5.3.1 A *-Cluster Algorithm

A* -clm,tcr comb me:; A* -:;earch with clustermg techmque:; Through dustenng, the algo-

nthm control:; the number of reschedulmg stages by reschedulmg only when a duster of

JObE> fimE>h Also through clustermg, the algonthm av01ds the generatwn of sub-schedules

that are similcu to one another Together the two feature:; reduce the tunc complexity of

the problem '>Igmficantly

An optwn for JOb dustenng IS to group them baE>ed on their smgle-run tunes However

JObs wrth sm11lar :=,mglc-run tlme:; may need very different time:; to fimsh m co-run scenanos

Our solution IS an onlme adaptive :;trategy At the begmnmg, JOb'3 are clustered based on

their :;mgle-run trmes Dunng the expanswn of the search tree at each node, the algonthm

computes the state of the JOb set when the first clmter of the unfrmshed JObs complete

under the current sub-schedule (to reduce the number of scheduling stages), and

then regroups the other Job:; mto certam cluster" baE>ed on the time needed for each of

them to frmsh under the current sub-schedule Based on the clustenng results, dunng the

generation of childien nodes, the algonthm selects the sub-schedule" that are substantially

different from the already generated :;ub-E>chedules (to reduce the number of nodes at

a stage) A sub-schedule Is substantially different from another If they are not eqmvalent

when we consider all JObs m a cluster eqmvalent For example four JObs fall mto two

dusterE> as {{1 2}, {3 4}} The sub-E>chedule (1 3) (2 4) IE> con'>Idered eqmvalent to (1 4) (2

3), but different from (1 2) (3 4) (each pmenthesis pan contam a co-run group) Fmdmg

those novel sub-schedules only needs to solve a, frrst-order lmear equation :=,ystem, m which,

each unknown IS the number of the mstance:=, of a du:;ter mixture pattcrn5 mcluded m a

sub-schedule Each equatwn corresponds to one Job cluster On the left side Is the sum of

the number of the Job:; fallmg mto that duster m a E>Ub-schedule, and on the nght side It>

the total number of Jobs belongmg to that duster Every -,olutwn to the equatwn system

corresponds to a novel sub-schedule

5 An E>xample of clu~ter mixture pattE'rn~ fm quad-cme ch1p~ 1s an a~~1gnment that contam~ one JOb from
clu;ter 1 tv.o Jobs from cluster 2 and one JOb from clu;ter 3

36

The integration of clustering into A* -search is implemented inside procedure nextSub-

Schedule() (invoked in the middle of procedure Astar'()) as shown in Figure 2.8. The A*

algorithm uses this procedure to generate a child of the current node in the search tree.

Suppose the current node is not the starting node. At the first invocation of procedure

nextSubSchedule() by this node, the procedure computes the state of the job set when the

first cluster of the unfinished jobs complete under the current sub-schedule (to reduce the

number of scheduling stages), and then regroups the other jobs into certain clusters.

Based on the clustering results, during the generation of children nodes, each time the pro

cedure next VeryNewSubSchedule returns a sub-schedule that is substantially different from

the already generated sub-schedules (to reduce the number of nodes at a stage.) A

sub-schedule is substantially different from another one if they are not equivalent when we

regard all jobs in a cluster as the same. As an example, suppose 4 jobs fall into 2 clusters

as { {1 2}, {3 4 }}. The sub-schedule (1 3) (2 4) is regarded as equivalent to (1 4) (2 3), but

different from (1 2) (3 4) (each pair of the parentheses contains a co-run group.) Finding

those novel sub-schedules only needs to solve a first-order linear equation system. The un-

knowns are the numbers of instances of different mixing patterns of clusters; they must be

non-negative. Each equation corresponds to one job cluster: on the left side is the sum of

the number of the jobs falling into that cluster in each mixing pattern, on the right side is

the total number of jobs belonging to that cluster. Each solution of the equation system

corresponds to one novel sub-schedule. Details are skipped for lack of space.

In the algorithm, the starting node need~> a special treatment; The procedure nextSub-

Schedule() skips the state update step as there are no sub-schedules yet.

The first strategy reduces the height of the search tree, while the second reduces the

width. Together, they reduce the number of nodes at a stage significantly. from factorial,

IJ.~~ 1 (NJ:!!1-
1), to polynomial, O(n"~) ('y = C + (CK- C)/K!), for given a given C and

K Cis the number of clusters).

Although there are many clustering methods (e.g., K-means, hierarchical clustering [26]),

we use a simple distance-based clustering approach because the data to be clustered-the

I* Jobs conta1ns unf1n1shed JObs, ¥1
I* 1sF1rstinvoke 1s 1 1n1t1ally ¥1
Procedure nextSubSchedule() {

}

if (1sF1rstinvoke) {

}

foreach JOb 1n JOb9
est1mate_t1meToF1n1sh()ob),

if (th~s' = start) {

}

Cl = getEarl1estCluster(Job6),

I* update to the state when Cl f1n1shes *I
Jobs = Jobs - Cl,
update_t1meToF1n1sh(Jobb),

('9 = ReCluster(Job9),
1SF1rstinvoke=O,

I* get a substantwlly new sub-schedule *I
nextVeryNewSubSchedule(Job6, C6),

37

Figure 2.8 IntegratiOn of clu':>tenng mto A* E:>earch algonthm for apptoxtmatiOn of optmml co
&chedulmg

JOb lengths-are one-dtrnen'>lonal and the number of cluster<> 1s unknown beforehand G1ven

a sequence of data, the d1stance-based clustermg first sortf; the data m ascendmg order It

then computes the difference'> between every two adJacent data 1terns m the sorted sequence

Large differences md1cate clu5ter boundanes A difference IS considered large enough If Its

value IS greater than m + c5, where, m Ib the mean value of the difference::, m the ::,cquence

and c5 IS the 5tandard deviatwn of the chfference<> An example IS as follows

tlrnes to fimsh 10 15 18 32 35 51 53 56
difference& 5 3 14 3 .!§. 2 3

JOb cluster& X X X. (C X. X X X

mean dtfterence = 6 5, ~td =59

The tune complexity oft he clustermg algonthm IS 0(J), where J IS the number of remammg

Jobs

2.5.3.2 Local-Matching Algorithm

For even higher efficiency, we design a second approximatwn algonthm, which explores only

one path from the root to the goal m Figure 2 6 At each schedulmg pomt It selects the

38

schedule that minimizes the total running time of the remaining part of the unfinished jobs

under the assumption that no reschedules would happen. The asommption leads to local

optimum at each scheduling stage.

The key component of the algorithm is the procedure to compute the local optimum.

This step is the same as the basic job co-scheduling problem discussed in Section 2.2, except

that the number of jobs may be smaller than the number of cores as some jobs may have

terminated. iNe take a simple strategy to handle this case: treating the jobs that have

finished as pseudo-jobs, which exist but consume no computing resource. Therefore, if the

co-runners of a job are all pseudo-jobs, that job has no performance degradation at all. As

the pseudo-jobs have to be scheduled every time, this strategy introduces some redundant

computation. However, it provides an easy way to generalize the perfect matching algorithm

described in Section 2.3 and 2.4. Apparaently, the time complexity of the local-matching

algorithm is O(n5): The co-scheduling algorithm on a stage has complexity of O(n4), and

there are n stages.

2.6 Makespan Minimization

But besides cost, there is another important criterion in job scheduling, makcspan. Makespan

refers to the time between the start of a job set and the finish of the last job in the set. Min

imizing makespan is important in situations where a simultaneously received batch of jobs

is required to be completed as soon as possible. For example, a multi-item order submitted

by a single customer needs to be delivered in the minimal time. This kind of situation

is especially common in server farms, data centers, and compute cloud (e.g., the Amazon

Elastic Compute Cloud). With the rapid rise of these modern computing forms and their

wide adoption of CMP, a good understanding to makespan minimization in multicore job

co-scheduling becomes increasingly important.

Makespan minimization differs from cost minimization. The optimal schedules for the

two criteria are typically different. for multicore job co-scheduling, the implication of their

39

differences is pronounced as well. The differences exist in every major aspect, from com

plexity analysis to algorithm design to the ultimate scheduling results.

In this section, we analyze the inherent complexity of the makespan minimization in job

co-scheduling. We classify the problem instances into four cases: u ;:::: 3 with or without job

migration allowed, or u = 2 with or without job migration allowed. Here, u is the number of

cores per chip. We prove that the first two cases are NP-complete problems, but the fourth

is polynomial solvable by a perfect-matching-based algorithm. The complexity of the third

case is to be studied in the future. In addition, we present A *-search-based algorithms for

all the four cases.

2.6.1 NP-Completeness (u 2:: 3, With or Without Job Migration)

When more than two cores share a cache on a chip (u 2': 3), the makespan minimization is

an NP-complete problem. We prove this result by reducing a known NP-complete problem,

Exact Cover by 3-Sets (X3C) [27], to our problem.

First, we formulate our co-scheduling problem as a decision problem. Given a system

with m chips, each with u ;:::: 3 cores, there is a set J containing n = m · u jobs that are to

be scheduled on the cores. Consider all possible subsets of J with cardinality 'U, denoted by

.J1, · · · , J(~)· For each] 2 , which represents a group of u jobs that may be co-scheduled on

the same chip, let w2 be the maximum co-run time of all the u jobs in Ji. The question in the

decision problem is whether there are m disjoint subsets .Jp1 , • • • , JPrn that form a partition

of J such that max~d wp,} :S: B for any given bound B (where, Pl, · · · ,pm E {1, · · · , (~)}).

Note that the partition of J into m subsets of cardinality u is actually the construction

of a schedule of n jobs on m · u cores and that max~1 {wp,} is in fact the makespan of the

schedule.

The problem is clearly in NP. We prove that it is NP-complete via a reduction from

X3C, in which given a set X with lXI =3m, and a set C = {CiiC2 ~X and IC1 1 = 3}, the

question to ask is whether C contains an exact cover for X, i.e., m disjoint members of C,

say Cp1 , • • • , CPm, that makes a partition of C.

40

The reduction from X3C to our co-scheduling problem is straightforward. Given any

instance of X3C, namely X and C, we define an instance for co-scheduling, where (1) .] =X

with n =3m and u = 3, (2) for any J, <::;; .J with I.Jil = 3, if .J, E C then let Wi = 1, and if

.J, tf_ C then let w, = 2, and (3) B = 1.

The construction of the instance for co-scheduling can be done in O(n3) time. Fur

thermore, it is easy to show that C contains an exact cover for X if and only if there is

a schedule of jobs in .J to the 3m cores with a makcspan no more than 1. Therefore, the

co-scheduling problem with u = 3 is NP-complete.

The above proof holds regardless of whether job migration is allowed or not, because in

both settings, finding a schedule with makespan no more than one is equivalent to finding

an exact cover.

In the proof, it is assumed that u, the number of cores on each chip, is an input parameter

of the co-scheduling problem. When 'U is a treated as a constant, i.e., fixed once the hardware

is chosen, an extra step is necessary to prove the NP-completeness when u is greater than

3. In that scenario, the known NP-complete problem, Exact Cover by k-Set, can be used

in the reduction to the co-scheduling problem with any fixed u.

2.6.2 Polynomial-Time Solution (u = 2, No Job Migration)

\Ve prove that, when u = 2 and no job migrations arc allowed, the optimal co-schedules can

be found in polynomial time. We describe an O(n2·5 ·logn) algorithm as follows.

The algorithm uses a fully-connected graph, namely a co-run make.span graph, to model

the optimal co-scheduling problem. In this graph, each vertex represents a job; the weight

on an edge is the longer running time of the two jobs (represented by the two vertices

connected by the edge) when they co-run together.

Before describing the algorithm, we introduce the concept of a perfect matching. A

perfect matching in a graph is a subset of edges that cover all vertices of the graph, but

no two edges share a common vertex. We define the bound of a perfect matching as the

largest weight of all the edges it covers. It is easy to see that the perfect matching of a co-

41

run makespan graph with the minimum bound corresponds to a solution to the makespan

minimization problem: Each edge corresponds to an assignment (i.e., co-run group) and

the makespan equals to the bound of the perfect matching.

There are some algorithms for finding the minimum-weight perfect matching on a

weighted graph [19, 27]. However, they cannot apply to our problem directly because

their objective functions are typically the sum of edge weights, rather than the maximum

of edge weights in our problem.

We develop an algorithm to determine a minimum-bound perfect matching as shown in

Figure 2.9. We first construct a sorted list containing all the edges of a co-nm makespan

graph in an ascending order of their weights; the edge with the smallest weight resides on

the top of the list. We then use a binary search to determine the smallest top portion of

the sorted edge list that contains a perfect matching (regardless of weights) covering all

vertices. The binary search starts with the top half of the edge list and checks whether a

perfect matching can be found in those edges. A negative answer would suggest that more

edges are needed, so the algorithm would try the top three quarters of the edge list. A

positive answer would suggest that a smaller portion of the list may be enough to contain a

perfect matching, so the algorithm would try the top quarter of the edge list. This binary

search continues until it finds the smallest top portion of the edge list that contains a perfect

matching. The perfect matching found by this algorithm indicates the best schedule of the

jobs.

We claim that the resulted perfect matching is an optimal perfect matching on the orig

inal co-run makespan graph-that is, no perfect matchings on the original co-run makespan

graph have bounds smaller than the bound of the resulted perfect matching. The proof is

as follows.

Let M be the perfect matching produced by the algorithm, T be the makespan of the

corresponding schedule. and S be the smallest top portion of the edge list that contains M.

According to the algorithm, S is the smallest among all top portions that contains a perfect

matching.

42

Assume that there is a perfect matching M' whose makespan T' is smaller than T. Let

E' be the set of edges included in M'. Let S' be a set containing all the edges in the sorted

edge list from the top to the heaviest edge in E'. Because the edge list is sorted in the

ascending order of edge weights, E' <;;;; S'. So, S' contains a perfect matching. Because

T' < T, the weights of all the edges in E' and thus inS' must be smaller than T. While T

is the weight of some edge in S, hence S' c S. This contradicts with the assumption that S

is the smallest top portion of the edge list that contains a perfect matching, thus the proof

completes.

The time complexity of the perfect matching detection subroutine, findPerfMatch(G),

is 0(y'ri · m) [27], where n and m are t.he numbers of vertices and edges in the graph. In

the algorithm, the binary search process contains O(log n) invocations of perfect matching

detection. The value of m can be no greater than n 2 . The time complexity of the algorithm

is O(n2·5 ·logn).

/* V: vertex set; E: edge set */
/* S: generated perfect matching*/
L +-- sortEdges (E) ;

lbound +-- 1; ubound +-- I L I ;
G.vert'ices +-- V; S +-- 0;
while (1) {

curPos +-- l (ubound+lbound)/2 J;
if (curPos == ubound) return S;
G.edges +-- L[1:curPos];
S +-- findPerfMatch(G);
if (So/ NULL)

ubound +-- curPos;
else

lbound +-- curPos;}

Figure 2.9: Algorithm for minimum-bound perfect matching.

2. 7 Evaluation

In this section, we concentrate on the verification of the optimality of the results produced

by the optimal co-scheduling algorithms, the departure of the results by the heuristics-based

algorithms from the optimal, along with the efficiency and scalability of those algorithms.

43

2.7.1 Methodology

The machme:, we u:oe mclucte both dual core and u-core (u > 2) :ov:,tem:, For dual-core

ca<;es, we me a quad-core Dell PowerEctge 1850 server, whrch although named quad-core,

mclude:o two Intel Xeon 5150 2 66 GHz dual-core processors, each havmg a 4MB shared L2

cache Every core ha.:, a 32KB dediCated L1 data cache For the cases of u 2: 3, we use

machmes each eqmpped wrth two quad-core AMD Opteron proce<;sor:o runnmg at 1 9 GHz

Each core ha<; 512KB dedrcated L2 cache and shares a 2MB L3 cache wrth the other three

cores

Table 2 1 h&t.:, the 16 program<, uc;ed m the expenment'>, along wrth the ranges of therr

performance degradatwn:o when they co-run on the AMD machme The program<; are chosen

to cover both mteger and fioatmg-pomt benchmark<; and <;pan a wrde range of the appbcatwn

areas Therr executwn:o exhrbrt vanous patterns m memory and cache accesse<;-from havmg

few data reu:,es (e g , gzrp) to havmg many (e g , swrm) All program:, come from SPEC

CPU2000 except stream cornmg from a strearnmg benchmark [46] 6 Most of them have no

degradatwn m therr best co-runs, whereas m the worst co-runs, all the program<; show more

than 50% :,lowdown The large degradatwn range:, sugge:,t the potentral for co-:,chedulmg

In adcbtron, we employ some synthetrc problems tor large coverage and the te<;t of extreme

scenano<; In those problems, the JOb length<; and co-run degradatwn rates are :,orne random

value&

In the collectwn of co-run degradatwns, we follow Tuck and Tulhen's practrce [71],

wrappmg each program to make rt run 10 trrne:o con:oecutrvely and only collectmg the

behavwr of co-run:,, whrch are the runs overlappmg wrth other program:, The hrerarchrcal

perfect rnatchmg algonthrn reqmres the co-run performance on smaller vrrtual chrp'3 In

thr:, expenment, we collect :,uch mformatwn by runnmg 2 rmtance'> of 2 program:, (totally

4 JObs) on a quad-core pro(essor The degradatron I'> used a:, the e'3trrnatwn of that on a

vrrtual dual-core chrp for some algonthm'3 appbed to quad-core machmes

6 To focus on cache pelfonnance evaluatiOn we mcrea~ed the ~1ze of a data element to tlw width of a
cache !me

Table 2.1: Performance degradation ranges on AMD Opt.eron without job migrations
I Programs I min % I max % I mean % I median % I

ammp 0 79.97 5.12 2.93
applu 0 165.76 10.30 7.07
art 0 174.65 19.44 15.09
bzip 0 55.90 15.17 13.35
crafty 0 149.90 5.11 3.18
equake 0.32 191.77 27.08 18.35
facerec 0 192.20 23.30 17.98
gap 0 198.41 11.31 7.40
gzip 0 57.76 0.79 0.00
mcf 0 191.49 60.41 56.83
mesa 0 51.77 0.22 0.00
parser 0 87.14 8.46 5.88
stream 0 93.23 28.55 24.43
swim 0.84 176.32 18.85 15.23
twolf 0 182.89 57.05 54.44
vpr 0 83.42 24.78 21.66
average 0.07 133.29 19.75 16.49

2.7.2 Basic Optimal Co-Scheduling

44

In this section, we examine the capability of the perfect matching-based algorithm for

finding optimal co-schedules in dual-core systems, the lower bounds computed by the Linear

Programming model for ·u-core (u > 2) systems, and the quality of the co-schedules produced

by the heuristics-based algorithms.

2.7.2.1 Optimal Co-Scheduling by Perfect Matching

On the Intel machine, we conduct an exhaustive search for the best schedule among all

possible ones; the resulting schedule is the same as the schedule found by the minimum-

weight perfect matching algorithm, confirming the optimality of the scheduling results.

(Twelve of the 16 programs are used because of the high cost of the exhaustive search.)

Figure 2.10 shows the comparison among 3 different scheduling results. vVe use optimal

to represent the schedule found by the minimum-weight perfect matching algorithm. The

random bars show the average scheduling results produced by 1000 random schedules, cor-

45

responding to most current CMP scheduling systems, which are oblivious to shared cache.

The worst bars are the results from the worst among all schedules, demonstrating the pos-

sible consequence of careless scheduling. The co-run groups in the optimal co-schedule are

{ ammp+parser, art+cmfty, bzip+gap, eq·uake+mesa, gzip+mcf, twolf+vpr}.

The results show that the optimal schedule may reduce performance degradations sig-

nificantly, from over 15% of random scheduling to 7% on average. For some programs, the

cut is up to a factor of 5. The performance results match with the L2 miss rates shown

in the bottom graph, although not proportionally due to the different sensitivity of the

programs to L2 miss rates. On average, the optimal schedule reduces 20% L2 cache miss

rates relative to the random schedule and 28% relative to the worst schedule.

....... 40 I
-1- 35 ._. I

Dworst
67

g 30 -,-

"i 25 I

~ 20 +--- -
8101 ~15~-
't 5 : cCI <II :
0.. :

0
a.
E
E
<0

a.
E
E
<0

i: >-
d:: <0
<0
1..
u

Q)
~
<0
::J
0"
Q)

Drandom
73 so

•optimal

[I
a. '+-
<0 u

E Ol

a. u
~ E

--------~-- ... -=fh_
-~ --1 ~ -.lll

1...
a.
>

1..
a.
>

. ,JJ.JI ca.
a. a.
.N .N
.0 Ol

a.
.N
.0

<0
Ul
ClJ
E

<0
lJl
ClJ
E

-

·--

-

Figure 2.10: Performance degradations (top graph) and L2 cache miss rates (bottom graph) in
different co-schedules in Intel Xeon 5150 (no migrations).

46

It is worth noting that random scheduling may group some programs in the way the worst

scheduling does; the consequence is severe: 67% degradation for art, 73% for mcf, and 22.8%

on average. The optimal co-scheduling avoids those traps, making co-runs significantly

faster than the worst schedule on average. (Note that our goal is to minimize the overall

rather than each individual program's degradation. So, it is normal for certain programs

to run worse in the optimal schedule than in other schedules.)

2.7.2.2 Lower Bounds by Linear Programming

Table 2.2: Co-Run degradations and scheduling times on synthetic problemH, with three instances
for each problem size (no migrations).

Num of Jobs average degradation scheduling time (s)
brute-force /IP LP brute-force IP LP

8 0.35 0.:~2 0.01 0.09 0.03
8 0.29 0.29 0.01 0.04 0.05
8 0.26 0.26 0.01 0.04 0.03
12 0.28 0.27 0.31 2.07 0.05
12 0.28 0.27 0.84 1.28 0.06
12 0.27 0.26 0.56 2.06 0.05
16 0.26 0.26 14.07 12.11 0.16
16 0.26 0.26 11.77 8.25 0.15
16 0.26 0.25 11.72 16.48 0.12
20 0.26 0.25 13095 82.6 0.41
20 0.25 0.25 12728 48.82 0.4
20 0.25 0.25 12768 33.37 0.4

This section reports the results for validating the optimality of the solution produced by

the IP model, and assessing the lower bounds by the LP relaxation. 'vVe use a sequence of

synthetic problems (u is 4) to cover various cases. Table 2.2 reports the degradations of the

resulting co-schedules, along with the time the scheduling algorithms take. The co-schedules

produced by the IP algorithm always have the same degradations as the co-schedules found

by the brute-force search. The IP algorithm takes much less times than the brute-force

search does. The LP algorithm exhibits even better appeal: The degradations from it show

minor difference (less than 10%) from the optimal, but can be obtained in less than 1% of

the IP time for large problems.

47

More experiments show that the LP model can be solved in less than 200 seconds

for problems with less than 80 jobs, exhibiting good scalability. In the next section, the

LP model shows the usefulness in the assessment of the quality of the scheduling results

produced by heuristics-based algorithms.

2.7.2.3 Estimation by Heuristics-Based Algorithms

Using the collected degradations, we measure the effectiveness of the scheduling algorithms

by a comparison of four types of schedules: the optimal, the random, the hierarchical perfect

matching, and the greedy schedules, along with the enhanced version of the latter two when

local optimization is applied. The metric we use is the average performance degradation of

all programs.

We obtain the optimal schedule by solving the corresponding IP model; the result

matches with the exhaustive search result. To schedule 16 jobs on four quad-core chips,

the total number of possible schedules is 2, 627, 625. The search time increases exponen-

tially as the numbers of jobs and cores increase. We obtain the random scheduling result

by applying 1000 random schedules to the jobs and getting the average performance. The

random scheduling result corresponds to the performance of current CMP schedulers, which

are oblivious to cache contention.

Table 2.3: Schedule results from different algorithms.
I Algorithms I Programs on the same chip I

optimal ammp applu crafty equake
art parser mcf gap
bzip swim mesa gzip
facerec vpr stream twolf

hierarchical ammp art applu gzip
perfect crafty bzip mesa mcf
matching equake facerec parser stream

gap vpr swim twolf
greedy arnmp art applu equake

gzip bzip craft gap
mesa facerec mcf parser
stream vpr swim twolf

-
70 ,i()pti·;:;:;-~-6Greedy Ill Hi~-~~~-~~~~~-0 Rand~~
60

c 50 +----------------------11---------11------i
1:
0

:0:0
~ 40
~
g> 30
c

i 20
ll..

10 -~----- ' ---

' I I - ~-- I 1

-~---
- ---

' ' I

Figure 2.11: Performance degradation under different scheduleH.

48

To concentrate on the effectiveness of the two approximation algorithms, this section

reports their results when local optimization is not applied. Table 2.3 presents an optimal

schedule and the schedules generated by two approximation algorithms. (Random schedules

are not listed since we used 1000 of them.) The 4 programs in each table cell compose a co

run group. Figure 2.11 shows the co-run degradation of each program in different schedules

(some bars have 0 height and are thus invisible). The random schedules degrade the overall

average performance by 19.81%. The hierarchical perfect matching algorithm reduces the

degradation to 8.91 %, whereas the greedy algorithm reduces it to 6.52%. The schedules

produced by the two approximation algorithms have 5.08% and 2.40% more degradation

than the optimal schedule.

The two approximation algorithms have similar effects on 5 programs, art, bzip, fac-

erec, parser, and vpT. The greedy algorithm outperforms the hierarchical perfect matching

algorithm on all the other programs except ammp and swim. On the program 8tTeam,

the greedy algorithm outperforms the optimal schedule, which is not abnormal because

49

70 ~timal D Gree_~y-opt !il Hierar~h~I--~_B§_Q_~C?_~ ·1
60 1- -------- ---- -- ----- -------- --~

~ 5o +-------------- _________ _ _ I
o , I
~ I I :: " ----------------------~ --------------------1 ---J
c ' II

t

~ :: c -J
0 • I

Figure 2.12: Performance degradation under different schedules.

our objective function is to minimize the overall performance. The better schedules assign

jobs more balanced (as shown in Figure 2.13), which is the key to achieving better overall

performance.

Although the two approximation algorithms cut performance degradation of the random

schedules by 55.0% and 67.1% respectively, they still have considerable distances from the

optimal schedule. The local optimization brings them closer to the optimal.

Figure 2.12 presents the performance of the schedules generated by the two approxi-

mation algorithms with local optimization. Local optimization boosts the performance in

both schedules. For the hierarchical perfect matching algorithm, the average degradation is

reduced by 41.2%, from 8.92% to 5.21%; for the greedy algorithm, the reduction is 30.7%,

from 6.52% to 4.51%. Their average performance degradations become only 1.4% and 0.7%

away from the optimal, respectively.

A detailed analysis shows that the local optimization improves the performance of 7

programs, including the drastic improvement on eq'll,ake, gap, and mc.f For example, the

50

degradation of mcf is reduced from 29% to less than 0.38% when the local optimization is

applied to the two approximation algorithms. Meanwhile, the local optimization slightly

worsens the performance of art, appi'u, bzip, facerec, and swim, but the negative effects

are remarkably smaller than the enhancements. This result again shows the importance of

balance in co-scheduling.

Overall, the greerly algorithm slightly outperforms the hierarchical perfect matching

algorithm in terms of the reduction of the average performance degradation. But with local

optimization, both approximation algorithms produce close-to-optimal results, reducing

average co-run degradation by over 74%.

Given that the local optimization enhances the approximation algorithms so much, we

start to wonder whether local optimization alone is good enough for co-scheduling. To

get the answer, we apply local optimization to 1000 random schedules. The results show

that although sometimes the schedules are close to the optimal schedule, at many times,

the produced schedules are much more inferior than the optimal schedules. The worst

schedule result has up to 9. 77% degradation. The average performance degradation is

6.27%, considerably larger than what we get from the greedy and hierarchical algorithms

with local optimization.

We usc a set of synthetic problems to evaluate the quality of the heuristics-based al

gorithms more comprehensively. Given that the greedy algorithm shows the better perfor

mance than other approximation algorithms, we concentrate on this algorithm for further

evaluation. vVe use the LP model to compute the lower bounds. Table 2.4 shows the eval

uation results. The co-schedules produced by the greedy algorithm exhibit less than 11%

distance from the lower bound, indicating the high quality of the co-scheduler.

Co-Scheduling Fairnes

Fairness is another important factor in measuring the quality of scheduling. Following

the previous work [74], we measure the fairness of a schedule by unfairness factor, defined

as the coefficient of variation (standard deviation divided by the mean) of the normalized

performance (I PC col I PC.,2) of all jobs. A smaller unfairness factor means that the pro-

51

Table 2.4: Assessment of the greedy algorithm by comparing with the random scheduling results
and the lower bound from the LP algorithm (no migrations).

Num of Jobs 16 32 48 64 80
Deg of random sch. 0.62 0.63 0.62 0.63 0.63
Deg of LP sch. 0.26 0.25 0.25 0.25 0.25
Deg of Greedy sch. 0.29 0.27 0.26 0.25 0.26
Reduct. over random (%) 117.5 128.2 139.9 145.9 142.3
Distance from LP (%) 10.9 8.5 3.9 1.6 3.1

grams arc subject to more similar influence from cache sharing; thus. the system is more

fair.

Figure 2.13 shows that the optimal schedule has the best fairness, the random schedule

has the worst, and the local optimization improves fairness by about 30%. The consistency

between unfairness factor and overall performance degradation confirms the intuition that

in order to reduce the overall performance degradation, we need to balance the degradation

among different programs.

0.2

.2 0.15 +-----~·---
(.)
ns

LL
t/)

~ 01
c: ...
~
:5 0.05 +-----

0 I
o~'

Figure 2.13: Unfairness factors of different schedules.

Co-Scheduling Scalability

As mentioned in previous sections, the time complexities of the heuristics-based algo

rithms are as follows: O(nx(~))+(~)2 (2~•)) for the greedy algorithm, and O(n4)+(~)2 (2;))

52

for the hierarchical perfect matching (the (~) 2 (~~)) part is for the local optimization step),

where, n for job numbers, u for the number of cores per chip, and ~ for the number of

chips.

The greedy algorithm has the same complexity as the hierarchical perfect matching algo-

rithm when u is 4. However, as u increases, the overhead of the greedy algorithm increases

much faster than the hierarchical method, which shows that the hierarchical method is more

scalable. Given that n is typically much larger than u, the overhead of local optimization

is often a small portion of the total time.

We use synthetic problems including 16 to 144 jobs to measure the running times of the

two approximation algorithms with and without local optimization. Figure 2.14 depicts the

running times of the four algorithms when u is 4. The greedy algorithms consume more time

than hierarchical methods do. The result is consistent with the time complexity analysis

presented earlier in this section.

18 G':Q@~dy ._ GreedY:QQ!_.._,.... Hierarchical ._Hierarchical-opt I

16

(j) 14
-o

8 12
Q)

~ 10
Q)

E
i= 8
0> c ·c: 6 c
:J
0:: 4

2

0 ~

16 32 48 64 80 96 112 128 144

Number of Jobs

Figure 2.14: Scalability of different scheduling algorithms (no migrations).

53

2.7.3 Optimal Co-Scheduling with Migrations

This section evaluates the use of A *-search and the heuristics-based algorithms for co

scheduling jobs when job migrations are allowed. we first present the evaluation of the

scheduling algorithms on a mix of 14 parallel and sequential programs, and then show a

study of their scalability. vVe use two kinds of architecture. For CMP co-scheduling, the

machines are equipped with quad-core Intel Xeon 5150 processors running at 2.66 GHz.

Each chip has two 4MI3 L2 cache, each shared by two cores. Every core has a 32KB

dedicated L1 data cache. For SMT co-scheduling, the machines contain Intel Xeon 5080

processors (two 2MB L2 cache per chip) clocked at 3.73 GHz with Hyper-Threading enabled

(two hyperthreads per computing unit.)

The 14 test programs consist of 2 parallel programs from SPLASH-2 [62] and 12 pro

grams randomly selected from SPEC CPU2000. As we use two threads for each of the two

parallel programs, we have 16 jobs in total. \Ve did not use the programs from the entire

benchmark suites because the large problem size would make it infeasible to compare the

scheduling algorithms, especially with the brute-force search algorithm. We use the two par

allel programs (two threads per program) to examine the applicability of the co-scheduling

algorithms for parallel (in addition to sequential) applications. Table 2.5 lists the programs

with their co-run degradation ranges on the Intel Xeon 5150 processors. The big ranges of

degradations suggest the potential for co-scheduling.

The exponentially growing co-scheduling space makes it infeasible to determine the

optimal schedule for even 16 jobs through exhaustive search. So, we first use 8 jobs to reveal

the detailed comparisons among the co-scheduling algorithms, verifying the optimality of

the solution provided by the A *-search-based algorithm. We then use all the 16 jobs to

examine the performance and scalability of the two approximation algorithms.

2.7.3.1 Optimal Co-Scheduling by A*-Search

This experiment runs on Intel Xeon 5150 processors. We use the top 6 programs (8 jobs

as fmm and ocean have two threads each) in Table 2.5 to compare the performance of 6

54

Table 2 5· Benchmarks (

Benchmark single-run co-run degrad rate
time (s) min% max% mean%

fmm* 5.63 0.77 11.28 3.67
ocean* 13.52 2.13 58.81 19.73
ammp 21.10 1.66 30.24 12.62
art 2.22 2.31 75.42 27.78
bzip 10.90 0.00 38.95 3.31
crafty 6.75 0.07 12.33 4.95
equake 11.05 6.42 78.00 26.46
gap 2.90 2.09 34.34 11.02
gzip 14.10 0.00 13.06 2.19
mcf 7.86 8.23 125.36 42.37
mesa 15.33 0.65 15.15 5.18
parser :~.74 1.74 37.75 13.51
twolf 5.42 0.00 15.73 5.21
vpr 4.58 3.31 42.52 18.30

* : from SPLASH-2. Others from SPEC CPU2000.

different scheduling algorithms: brute-force, A*, A* -cluster, local-matching, no-resch, and

random schedulers. The bnJte-force scheduler conducts an exhaustive search of the entire

schedule space to find the best schedules. The no-resch scheduler· implements the optimal

co-scheduler proposed in the previous work [31], which considers no job-length differences or

possibilities of job rescheduling. The random scheduler schedules jobs in a random manner,

corresponding to the default schedulers in most existing systems, which are oblivious to

on-chip resource sharing. We obtain the random scheduling results by conducting random

scheduling for 100 times and picking the one with median performance.

Tho results verify the optimality of the scheduling results from the A* scheduler. It

produces the same schedule as the brute-force search scheduler does. Figure 2.15 shows the

co-run degradation rates of the 8 jobs in different schedules. The "optimal" bars represent

the results of the brute-force search and the A* scheduler. The random scheduler causes

8.4% degradation to the total running time. The schedule by the no-resch scheduler is

2.9% worse than the optimal, confirming that the scheduling algorithm, although able to

produce optimal schedules for the previously explored special setting, cannot guarantee the

optimality in this more general scenario. The two approximation algorithms, A *-cluster

-------- --- -~- -----
Ooptlmall!i.'IA':_-_ciiJ_ster 2'Jiocal-matching Ono-resch •random

20

18 ---------------- ----·

~ 16
0
...... 14 +------1--

Q,J

'lii 12
11::
c. 10
Q,J
c 8

§ 6 ...
8 4

----11---- ----

fmm-1 fmm-2 ocean- ocean- ammp art
1 2

Jobs
-------- ----------

bzip crafty Total
time

55

Figure 2.15: Performance degradation rates of 8 jobs co-running on quad-core Intel Xeon 5150
processors.

and local-matching algorithms, both achieve close-to-optimal results, only 0.4-0.5% away

from the optimal performance.

It is important to notice that the optimal schedule is a schedule that minimizes the total

running time, but not the running time of each individual program. Therefore, it is normal

to see that the optimal schedule causes larger degradation to some programs (e.g., crafty)

than other schedulers do in Figure 2.15. By degrading the performance of some programs

a little more, the optimal scheduler succeeds in decreasing the degradations of other more

significant programs, and hence achieves the overall optimum.

Table 2.6 compares the schedulers in other aspects. The A* scheduler finds the optimal

schedule by visiting only 0.05% of the nodes that brute-force search visits. It cuts the search

time from 470 seconds to 0.3 seconds. The significant reduction demonstrates its effective-

ness in space pruning. The two approximation algorithms use even less time for scheduling.

56

The nght-most two columns report the totalrunmng trmes and co-run degradatiOn rate<; of

the 8 JOb& under those schedules The random schedulmg results mcludc both the medran

and the worst performance of 100 random schedules to :;how the potentral nsks of current

:;hanng-oblrvrous schedulmg

Table 2.6 Compan'>on of co-'3chedulmg algonthmli on 8 JObli on quad-cote Intel Xeon 5150 proceli
i:>Olli

algonthm VlSlted '3chcd ulmg total exec deg
nodes trme (s) trme (:;) rate (%)

b1ute-force 16M 470 80 3 1 3
A* 7760 03 80 3 1 3
A *-cluster 11 0 008 80 6 1 7
local-matchmg 4 0 06 80 7 1 8
no-re'3ch 1 0 02 81 5 29
random - - 85 9-89 2 8 4-12 5

2.7.3.2 Estimation by Heuristics-Based Algorithms

To get he optrmal solutiOn for 16]Ob'3, the brute-force algonthm would take years Our

rmplementatwn of the A*-search algonthm (m .Java) rs subJect to memory shortage when

schedulmg more than 12 JObs (A memory-bounded versron [51] may help) In thrs sectwn,

we concentrate on the evaluatron of the two heunstrcs-ba'3ed approxrmatron algonthms on

schedulmg 16 JObs

Co-Scheduling Performance on CMP

Frgure 2 16 rl.eprct'3 the performance degradatwn rates on quad-core Intel Xcon 5150

processors, Table 2 7 reports the conespondmg summary data The random :;chedule:;

came 9 9% (up to 19 2%) degradatiOn to the total runnmg tune The non reschedule

algonthm reduces the degradatiOn to 3 7% whrle the A* -cluster and the local-matchmg

algonthrns further reduce the degradatiOn to 3 2% and 2 2%, respectrvely It rs remarkable

that the local-matchmg algonthm achreves the better re:;ult by takmg less than 0 6% trme of

what the A *-cluster algonthm takes Thrs result mdrcates that even though the A *-cluster

algonthm vrsrts more node'> m the schedule space, the maccuracy due to the clustermg has

caused consrderable enor<; to the :;chedulmg results

-------- ------~----

: L:"!A":clu~ter r.i! local: matching D no-resch • random_~

20

18

--.'"""-..----------- -40.3

------- -------

-- -

_i i -

Jobs

34.1
--- --- -----

------- ------

---- -- -------

-t~ttl Tsl I I -

57

Figure 2.16: Performance degradation rates of 16 jobs co-running on quad-core Intel Xeon 5150
processors.

Table 2. 7· Co-scheduling 16 jobs on quad-core Intel Xeon 5150 processors
algorithm visited sched. total exec de g.

nodes time (s) time (s) rate (%)
A *-cluster 721 109 149 3.2
local-matching 8 0.63 147 2.2
no-resch 1 0.03 150 3.7
random - - 159-172 9.9-19.2

Co-Scheduling Performance on Hyper-Threads

Figure 2.17 and Table 2.8 shows the experimental results when the 16 jobs run on

the Intel Xeon 5080 processors with hyperthreads enabled. The schedule from A* -cluster

reduces the median degradation rates of random schedules from 31.7% to 25.9%. The local

matching algorithm reduces the degradations to 22%, outperforming the no-resch algorithm

by 2.8%.

Compared to the retmlts in the multi-core experiments in Table 2. 7, the degradation

rates are clearly higher in this hyperthreacling experiments because of the more extensive

sharing of on-chip resource among jobs. The A *-cluster algorithm takes more time than in

58

~-.0.*-cluster rillocal-matching 0 no-ni"sch-. random1

70 76.5 83.4

60
~ ..

50-'-...... -~--- -- -- ----- ~~~
Gl ...
~ 40 1 -- 1-- -

01
Gl 30 '

IJ:
! Q

c

D
:I 20- - --~ ..
0

'

J ft v 10 I
I

o I 1 T

Figure 2.17: Performance degradation rates of 16 jobs co-running on the hyperthreads of Intel
Xeon 5080 processors.

the multicore experiments, even though it visits fewer nodes; this is because of the difference

in cluster sizes.

Table 2.8: Co-;;cheduling 16 jobs on hvperthreadH of Intel Xeon 5080 processors
"

algorithm visited sched. total exec de g.
nodes time (s) time (s) rate (%)

A *-cluster 315 198 325 26
local-matching 8 0.24 315 22
no-resch 1 0.03 322 25
random - - 340-382 32-48

Co-Scheduling Scalability

'vVe use 32 to 128 jobs to measure the running times of the two approximation algorithms

(K = 2). The jobs are artificial jobs with random values as their single-run times and co

run degradations. Figure 2.18 depicts the running times of the algorithms on the Intel

Xeon 5150 processors. The local-matching algorithm shows much better scalability than

the A *-cluster algorithm does: It takes only about 10 seconds to schedule 128 jobs, whereas,

the A *-cluster algorithm needs more than 2000 seconds. The reason for the difference is

that the number of paths A* -cluster needs to explore in the schedule tree increases as the

59

number of job:; increases, while the local-matching algorithm always explore a :single path.

The time increase of local-matching algorithm it. mmely due to the increased computation

for obtaining the best sub-schedule at each scheduling stage.

:§:
OJ
E
"' O"l
s
:;
"0
OJ
.c
(.)
(/)

100

90

80

70

60

50

40

30

20

10
------

~2 48 64

-----r-JOcaJ=matchm
~ster

80
Jobs

96
-'--~~_j

112 128

Figure 2.18: Scalability of the approximatiOn algonthms

Short Summary

We draw the following conclusions from all the experimental results:

• The A* -search-based algorithm effectively prunes search space. \Vhen the problem

t.izc is small, it can produce optimal :schedules efficiently.

• The local-matching algorithm show consistently better results than other approxima-

tion algorithms. Together with its good :;caJability, this algorithm i:; a desirable choice

for large co-scheduling problems.

• The previously proposed optimal co-scheduling algorithm lose:; the guarantee of the

optimality of its scheduling results when job lengths are different and rescheduling i:;

allowed. Even though it still produces good results, it is consistently outperformed

by the local-matching algorithm.

• The combination of clustering with A *-search shows good scheduling results, but is

not as scalable as the local-matching algorithm.

60

2. 7.4 Makespan Results

This section presents the experimental results of our algorithms on job co-scheduling for

minimizing the makespan.

We use two kinds of architecture for evaluating the co-scheduling algorithms. The

CMP co-scheduling experiments are on machines equipped with quad-core Intel Xeon 5150

processors clocked at 2.66 GHz. Every chip has two 4MB L2 caches, each shared by two

cores. Every core has a 32KB dedicated L1 data cache. For co-scheduling on Simultaneous

Multithreading (SMT) machines, we use a system with Intel Xeon 5080 processors (two

2MB L2 cache per chip) running at 3.73 GHz. There are two hyper-threads on each core.

We use the same job suite listed in Table 2.5. In addition, we generate some sets of jobs

whose single-run time and co-run degradations are set randomly. The use of these synthetic

problems helps overcome the limitations imposed by the particular benchmark set.

For each set of jobs, we test the scheduling in cases both with and without job migrations

(denoted as no rescheduling and rescheduling respectively.) The difference reflects the

benefits of rescheduling.

Table 2.9: Co-schedule makespan on eight jobs without job migration. The numbers in the table
are the rnakespan achieved with the respective schedule, relative to the rnake::;pan when each job
rnns in isolation <

jobs real synthetic
arch. 2-cmp 2-smt 2-core 4-core
trial 1 2 3 1 2 3
brute-force 1.005 1.023 1.49 1.49 1.58 2.11 2.16 1.65
A* 1.005 1.023 1.49 1.49 1.58 2.11 2.16 1.65
matching 1.005 1.023 1.49 1.49 1.58 - - -
A *-cluster 1.005 1.167 1.55 1.75 1.58 2.38 2.3 1.65
greedy 1.005 1.17 1.49 1.9 1.8 2.77 2.34 1.85
rand-min 1.005 1.023 1.55 1.49 1.69 2.24 2.16 1.65
rand-rued 1.016 1.255 1.81 2.7 2.22 2.55 2.34 1.88
rand-max 1.161 1.329 2.72 3.3 2.66 3.13 2.91 2.68

The data in Table 2.9 and Table 2.10 shows the schedule result for eight jobs on different

architectures without and with job migration respectively. For the 8 real jobs on Xeon 5150

(2-cmp), for instance, the optimal schedule found by the algorithm A* and matching are

61

Table 2.10: Co-schedule makespan on eight jobs with job migration. The numbers in the table are
the makespan achieved with the respective schedule, relative to the makespan when each job runs
in isolation

jobs real synthetic
arch. 2-cmp 2-smt 2-core 4-core
trial 1 2 3 1 2 3
A* 1.002 1.013 1.33 1.21 1.19 1.99 1.93 1.56
matching 1.002 1.023 1.37 1.43 1.52 - - -

A *-cluster 1.012 1.023 1.55 1.48 1.29 2.19 2.12 1.63
greedy 1.005 1.17 1.43 1.9 1.8 2.32 2.08 1.87
rand-min 1.005 1.023 1.49 1.49 1.58 2.11 2.16 1.65
rand-med 1.016 1.196 1.81 2.7 1.92 2.54 2.33 1.87
rand-max 1.161 1.329 2.72 3.3 2.66 3.13 2.91 2.68

all as follows: (fmm-1,ocean-1), (ammp,cafty), (art,bzip), (fmm-2,ocean-2), where fmm-n

and ocean-n are their nth threads, and each pair of parentheses include a co-running group.

The makespan is 0.5% larger than the makespan when the programs run in isolation.

The bottom 3 rows in the two tables reveal the minimum, median, and maximum of

the makespans of 100 randomly generated schedules, corresponding to the scheduling in

many existing systems, which work in a cache-sharing-oblivious manner. The minimum

makespans are close to the optimal in the "no rescheduling" cases, but are mostly over

10% larger than the optimal in the "rescheduling" cases. The median and maximum are

significantly larger than the optimal. For the eight real jobs, although random scheduling

is likely to produce near optimal makespan in the Xeon 5150 system, it causes over 20%

makespan increase on the SMT systems. These results indicate the risks of neglecting cache

sharing in job scheduling.

Besides the optimal co-scheduling results, Table 2.9 and Table 2.10 also list the perfor-

mance of the approximated schedules. On real jobs, the matching-based approximation pro-

duces near optimal results, the A *-cluster algorithm works similarly well except in the case

of "no rescheduling" on "2-smt" architecture where the makespan is about 14% larger than

the minimum. Because of the imprecision caused by clustering, both heuristic algorithms

significantly outperform the greedy and random scheduling in most real and synthetic cases.

On the other hand, their distances from the optimal reflect the room for improvement.

62

4
!11!1 matchmg A*-cluster greedy 1111 rand-mm I! rand-med rand-max

35

3

2.5

2

1.5

1

OS

0

2-smp 2-cmp 2s-1 2s-2 2s-3 4s-1 4s-2 4s-3

Figure 2.19· Co-schedule makespan on 16 jobs with job m1gration. The bar'> 111 the graph aJe the
makespan ach1eved with the respective schedule, relative to the makespan when each job runs 111

isolation. The fir:;t two groups are the re:;nlts on real jos. The re::,t groups are the ~:>chedule results
of synthetic jobs.

Figure 2.19 pre~>ents the results on 16 jobs when migration is allowed. It does not include

the brute-force and A* results because the former takes too much time (up to years with

job migrations) to finish and the latter requires too much memory to run. The results

of the heurbtic algorithms are consistent with the 8-job w;ults. Although the minimum

makespans from the random schedules occasionally get close to the results of the heuristic

algorithms, most random scheduling results are significantly worse than the matching-based

and A *-clm;ter-based approximations. The greedy algorithm, although performing not as

well as the other two heuristic algorithms, outperforms the median results from random

scheduling considerably.

The comparison between the ·'no rescheduling" and "rescheduling" result& shows that

when the "no rescheduling" algorithms cause non-negligible makespan increm;e, rescheduling

is usually able to reduce the makespan considerably.

Comparison with Cost Minimization

As mentioned earlier, the two scheduling criteria, makespan and total cost, typically lead

to different results. It is confirmed by the experimental result&. For example, Figme 2.20

63

'3hows the optimal schedules (without reschedulmg) for both cntena on the Xeon 5080 (2-

smt) machmc The schedule with mmnnum total co&t turns out to have 33% larger make& pan

than the c,chedule f10m the make'lpan mmimizatwn algonthms On the other hand, the

&chedule with mm1mum makespan cau&es extra cost as well Thl& difference confums the

need for '3tudle'3 on each of the cntena and the applicatwn of the corresponclmg algonthms

m diffeJ ent scenauos

cost mmzmzzatzon
schedule (fmm-1, crafty), (fmm-2, ocean-1), (occean-2, art), (ammp, bzip)
cost (Ie , total degradatwn) 12 13
makespan 58 02 c,ec

makespan mzmmzzatwn
c,chedule (fmm-1, blip), (fmm-2, art), (ocean-1, ammp), (ocean-2, crafty)
cost (1e , total dcgrddatwn) 12 88
make&pan 43 56 sec

Figure 2.20 Optunal &chcdules fm cost rmmrmzatwn and makespan rnmumL~atwn on Xeon 5080
(2-~mt) w1th no re'>chedulmg

2.8 Insights for the Development of Practical Co-Scheduling

Systems

The algonthms proposed m thrs work have two mam use& The first rs to help determme

the potential for co-schedulmg a '3et of JObs and to facilitate the as&es&ment of practical

co-&chedulmg system-., a& exemplified by &ome recent work [78] The second Ib to mspire

the development of co-schedulmg medldm'lm'l that are ready to be deployed m realr<Jtrc

&ettmgs Thl'> &ectwn present& wme le&wns and m&lght& for the second use

Our first obsmvatwn IS that simple algonthm& are capable of producmg close-to-opt1rnal

results, ac, &hown by the companson between the wnple greedy algonthm and the sophr&tr

catedlnerardncal perfect rnatchmg algonthm (Sectwn 2 7 2 3), and the companson between

the simple local matchmg algonthm and the A* algonthrns (Sectwn 2 7 3 2)

64

Second, in the design of greedy algorithms, it is important to distinguish "friendly"

jobs from "unfriendly" ones, and couple them together (Section 2.4.3.2) in the produced

schedule.

Third, large potential (e.g., 73% for me[) exists for using co-scheduling to improve

the performance of some applications running on CMP systems. Co-scheduling for those

applications is critical. On the other hand, some applications are less sensitive to co

scheduling than others. A mixture of them often means opportunities for effective co

scheduling results.

Finally, the local optimization is a cheap but effective way to refine co-scheduling re

sult:;. The re:sults in Section 2.7.2.3 are obtained after local optimizations cut degradations

by 41.2% and 30.7% for the hierarchical perfect matching algorithm and the greedy al

gorithm respectively. Local optimizations may serve as a post-processing step for various

co-scheduling algorithms.

2.9 Related Work

At the beginning of this project, we conduct an extensive survey, trying to find some

existing explorations on similar problems in the large body of scheduling research. However,

surprisingly, no previous work in traditional scheduling has been found tackling an optimal

co-scheduling problem that contain:; performance interplay among jobs as what the current

co-:scheduling problem involves. As Leung summarizes in the Handbook of Scheduling [38],

previous studies on optimal job scheduling have covered 4 types of machine environments:

dedicated, identical parallel, uniform parallel, and 'Unrelated parallel machines. On all of

them, the running time of a job is fixed on a machine, independent of how other jobs are

assigned, a clear contrast to the performance interplay in the co-scheduling problem tackled

in this current work. Even though traditional Symmetric Multiprocessing (SMP) systems

or NUMA platforms have certain off-chip resource sharing (e.g., on the main memory), the

influence of the sharing on program performance has been inconsiderable for scheduling

65

and has not been the primary concern in previous scheduling studies. Some scheduling

work [38] docs have considered dependencies among jobs. But the dependencies differ from

the performance interplay in co-scheduling in that the dependencies affect the order rather

than performance of the execution of the jobs.

Recent studies on multi-core job co-scheduling fall into two categories. The first class of

research aims at constructing practical on-line job scheduling systems. As the main effect

of cache sharing is the contention among co-running jobs, many studies try to schedule jobs

in a balanced way. They employ different program features, including estimated cache miss

ratios, hardware performance counters, and so on [23, 59, 32]. All these studies aim at

directly improving current runtime schedulers, rather than uncovering the complexity and

solutions of optimal co-scheduling.

The second class of research is more relevant to optimal co-scheduling. A number of

studies [10, 3] have proposed statistical models for the prediction of co-run performance.

The models may ease the process for getting the data needed for optimal scheduling.

Beside co-scheduling, researchers have explored some other approaches to exploiting

shared resource in multi-core architectures. In a recent study, Zhang and others [73] have

found that the effects of thread co-scheduling become prominent for many multithreading

applications only after some cache-sharing-aware transformations are applied. Several other

fitudies [33, 52] have explored the effectfi of program-level transformations for enhancing

the usage of shared cache. In addition, some other studies have tried to alleviate cache

contention through cache partitioning [49, 17], cache quota management [50], and so forth.

2.10 Summary

This chapter describes a study on the analysis of the complexity and the design of efficient

algorithms for determining the optimal co-schedules for jobs running on CMP. It presents a

set of discoveries, including the polynomial-time optimal co-scheduling algorithm for dual

core systemfi, the proof of the NP-completeness of the co-scheduling problem for fiystems

66

with more than two cores per chip, the IP /LP formulation of the optimal co-scheduling

problem, and a spectrum of heuristics-based algorithms for complex problems. Experiments

on both real and synthetic problems validate the optimum of the results by the optimal co

scheduling algorithms, and demonstrate the effectiveness of the heuristics-based algorithms

in producing near-optimal schedules with good efficiency and scalability.

Chapter 3

Co-Run Performance Prediction

3.1 Introduction

Starting with the adoption of Simultaneous Multithreading (SMT), cache sharing among

computing units has become increasingly common, especially as processor designs enter

the era of Chip Multiprocessors (CMP). The sharing is important for reducing inter-thread

latency, but also brings cache contention between co-running processes. Many studies have

shown considerable and sometimes significant effects of the contention on program perfor

mance and system fairness [23, 22, 50, 66, 20, 10, 28]. The urgency for alleviating the

contention keeps growing as the processor-level parallelism rapidly increases.

Data locality (or data reuse) is a critical factor in both language design and imple

mentation. Since 1960s, locality modeling-that is, analyses of data reuses patterns and

the influence on cache or memory performance-· has drawn decades of research interests,

especially on the management of virtual memory and cache [13, 45]. The explorations have

produced fundamental understanding to program locality and the behavior of dedicated

cache. However, for shared-cache behavior, the current understanding remains preliminary.

The major change caused by cache sharing for locality analysis is on cache-level interac

tions among computing units. In dedicated cache systems, the interactions mainly occur at

context switch time; while with shared cache, the interactions happen at almost every cache

access. The significantly complicated interactions pose many new challenges to the locality

67

68

models that have been developed before-new explorations are necessary for an enhanced

understanding of the implications of shared cache to program performance.

Even though some studies have tried to characterize the influence of cache sharing on

program performance, most of them are either based on certain heuristics (e.g., average

access frequencies of cache sharers1 [10]) or some hardware extensions (e.g., [49, .'53].) 'iVhat

is missing is a rigorous formulation of the interactions on shared cache and an in-depth

understanding on how cache sharing influences program cache performance. As a result,

current treatments to cache sharing are primarily through runtime monitoring of low-level

program behaviors (e.g., instructions per cycle (IPC), cache miss rates), no matter the goal is

a better cache partition [63, 29, 28, 50] or an enhanced job scheduler [59, 60, 58, 23, 74, 20].

In this chapter, we present some techniques to reveal the influence of cache sharing on

program cache performance by uncovering the inherent connections between the locality of

program single-runs (i.e. runs with no cache sharers) and that of their co-runs.

This work includes three components. First, we formulate the problem of predicting co

run cache contention as a problem of the prediction of program inclusive reuse signatures

which is a summary ofLRU stack distances [45] on a shared cache with all cache sharers' data

references considered--and conduct a theoretical analysis to expose the inherent statistical

connections between single-run memory behavior and co-run inclusive reuse signatures. The

theoretical analysis sheds insights on the prediction of eo-run performance from single-run

data locality. In light of that, we develop a lightweight model for efficiently predicting co-run

data locality (or cache usage) from the memory reference patterns of the programs' single

runs. The high efficiency of the model is the key to its uses in shared-cache management. It

achieves the efficiency mainly by capitalizing on the connection between time and locality.

Finally, We analyze the influence of program inputs on the predictive models. Based on the

analysis, we conduct an exploration in addressing the influence by constructing cross-input

predictive models for some memory behaviors that are critical for the co-run performance

prediction.

1 Cache sharers refer to the processes that run concurrently on a shared cache.

69

On AMD Opteron quad-core machines, the scheduling derived from out model achieves

close-to-optimal results, cutting cache-contention caused performance degradation by as

much as 63% on average, improving program performance by 9% on average (up to 50% for

individual applications.)

This work builds on decades of research in locality modeling. Enlightened by many

seminal cache studies [13, 45, 58], it takes a statistical view at the relation between data

references and cache behavior, and uncovers some inherent properties of co-run locality on

shared cache systems. It resides in the area of program locality analysis but opens oppor

tunities for proactive cache management on various levels of computing (e.g., scheduling on

operating systems, cache partition in architecture design.)

In the rest of the chapter, Section 3.2 introduces the concept of co-run inclusive reuse

signature and reveals its inherent connections with single-run locality through a statistical

model. Section 3.3 describes a lightweight approach for co-run performance prediction.

Section 3.4.1 presents our exploration on the impact from program inputs. Section 3.5

reports experimental results. Section 3.6 reviews the related work, followed by a short

summary.

3.2 Inclusive Reuse Distance

This section first introduces the model of inclusive reuse signature and the relation with

shared-cache performance. It then uncovers the statistical connection between inclusive

reuse signatures and the single runs' memory behavior, laying the foundation for the

lightweight inclusive locality model developed in the next section.

3.2.1 Inclusive Reuse Distance and Cache Sharing

On architectures without cache sharing, a widely used locality model is LRU stack distance,

or reuse distance, which is defined as the number of distinct data elements accessed between

the current and the previous reference to the same element [45]. Treating a cache block

70

as a data element leads to cache-block reuse distance. Researchers have used cache-block

reuse distance histograms, also called reuse signat'ures [16], to predict the performance of

a program when cache is not shared. Figure 3.1 illustrates the basic idea: Every memory

reference to the right of the cache-size line is considered a cache miss because too many other

data have been brought into cache since its previous reference. Although the prediction

assumes fully-associative cache, experiments have shown high accuracy for set-associative

cache as well [48, 76].

VJ 20% Q)
(.) ,-
$:1

2
<E 15%
2

- I Cache size
I

1-- I
I
I

4-<
0

I
I
I 10% $:1

Q)

.--I
I

- I -
8
Q)

A.
5%

I -I
I

-I
I
I
I n I

I
I

Reuse distance (cache blocks)

Figure 3.1: An example of cache-block reuse signature

Inclusive reuse distance is a straightforward extension of reuse distance for shared cache.

It is defined as the number of distinct data elements of all cache shar·ers that are accessed

between the current and the previous references to the same data element. Its histogram

is called inchtsive r·euse signature. For clarit.y, we call traditional reuse distance excl-asive

reuse distance, and name the corresponding histogram as e.Tclusive re11,se signature.

Three features of inclusive reuse signature make it desirable for characterizing data

locality on shared cache. First, it strongly correlates with cache performance. It can be

used to predict shared-cache miss rates in the same way as illustrated in Figure 3.1. Second,

it is independent to cache configurations; an inclusive reuse signature can be used to predict

the miss rates of shared caches of different sizes. This feature is important for reconfigurable

caches and cache partition. Finally, as we will show, inclusive reuse signatures can be derived

71

from single runs' memory behavior. This feature removes the need for direct collection of

inclusive reuse signatures of (often a large number of) co-runs, a key to the lightweight

model presented in the next section.

Like exclusive reuse signature, inclusive reuse signature cannot capture fine-grained

cache conflicts. However, both the previous experiments on exclusive reuse signature [43,

21, 76], and the evaluation in Section 3.5 show that this limitation does not prevent effective

uses of reuse f>ignatures. Hardware extenf>ions (e.g., [53]) allow the monitoring of fine

grained cache activities. Incluf>ive reuse signature on the other hand offers the overall cache

requirement of a program without the need for hardware modifications. The two different

techniques are complementary to each other.

3.2.2 Connections to Single Runs

This section presents the connection between single runs' memory behaviors and inclu

sive reuse signatures. This connection is critical for efficient attainment of inclusive reuse

signatures. We capture the connection through a series of probability and mathematical

inferences, expressed below. The intuition of the connection is that if we can compute the

number of distinct data elements accessed by each cache sharer in an arbitrary time inter

val, we can easily derive the inclusive reuse signature. We prove that this number can be

inferred from a f>pecial kind of reference histogram, namely time distance histogmm, of the

single-run of each process.

Time distance is defined as the number of memory references in a reuse interval2 . In

the reference f>equence "a b b c a", the time distance of the final access is 4 (while the reuse

distance is 2.) Time distance histogram is similar to reuse signature shown in Figure 3.1

except that the X-axis is replaced by time distance. Time distance histogram can be on

different levels: An entire data trace may have one overall time dif>tance histogram, while

each data object in the trace may have its own time distance histogram with the time

distances of only the references to that object contained.

2 We use logical time-that is, the number of data references-for the length of an interval.

72

Let M(Jl(b.) represent the statistical expectation of the number of distinct data ac

cessed by process j in an arbitrary time interval that ha~ length of b.. There are three steps

in computing M(J) (b.) from its time distance histogram. Step 1: From the time distance

histogram of each data object, we calculate the probability for a data object, say (0,), of

process j to appear in the interval, denoted by P,(b.). Step 2: From P,(b.) (i = 0, 1, · · · , N;

N is the total number of distinct data objects accessed by process J), we obtain the proba

bility for that interval to contain k (k = 0, 1, · · · , N) distinct objects of process j, denoted

by P(k, b.). Step 3: From P(k, b.), we compute the expected number of distinct objects

that process j accesses in the interval, which is the value of J\![CJl(b.).

Compute P,(b.)

For the object 0, to be accessed in a b.-long interval, it can be either accessed in the

first b.-1 time points. or, not until the end of the interval. With q,(b.) representing the

probability for the data to be not accessed until the end of the interval, ~ (b.) can be

expressed as

Hence the following equations:

P,(1)

P,(b.- 2) + q,(b.- 1);

P,(b.- 3) + q,(b.- 2);

Apparently P,(O) is 0 (no objects can he accessed in a 0-long interval.) Deduction from

these equations produces the following formula:

73

~

P,(6.) = L q,(T). (3.1)
r=l

Notice that q1 (T) equals the probability for 0, to 1) be the final data reference in an

interval of length T, and meanwhile, 2) have a time di&tance larger than T at that data

reference (otherwi&e, it would be al&o acces&ed at other points in that interval.) With p~ 1)

and p;2) respectively denoting the probabilities for the two conditions to hold. q, (T) can be

computed as q, (T) = Pil) p~2).

The probability p;2
) come& directly from the time distance hi&togram (denoted as H,)

of object 0, as I:f=r+l H,(8). With p;l) = n,jT (n, is the total references to 0, in all the

T data references in the execution). q,(T) can be computed as

T

q,(T) = ~ L H,(o).
8=r+l

(3.2)

Together, Equations 3.1 and 3.2 lead to the following computation of P,(6.) from the

time distance histogram:

(3.3)

Compute P(k. 6.) and M(J)(6_)

With P,(6.) (t = 0, 1, · · · , N), we can compute the probability for an interval to contain

k distinct data, denoted as P(k, 6.) as follows:

P(k, 6.) = Ls (the probability for the interval to contain and only contain all

the members of S).

where, S is a k-member subset of A

computed as follows3:

{OI,Oz,··· ,ON}· Using P,(6.), P(k,6.) can be

1 Th!& computatwn, a& mo&t trace-ba&ed locahty analy&e& (e g, [13, 58, 55]), a&bume& data dJ&tnbute
mdependently from one another Rebult~ ot those p1evwus studws have bhown mmor influence of the
assumptiOn on locahty charactenzatwn when the p10gram contams a large numbe1 of data

74

P(k,!J.) = (3.4)
S:ISI=k:S<;;A tES JEA-S

Recall that M(J) (!J.) is the statistical expectation of the number of distinct data accessed

by process j in an arbitrary time interval of length /J.. According to the definition of

statistical expectation, we can compute JI,{(J)(!J.) from P(k, !J.) as follows:

mm(D.-l,N)

M(1l(!J.) = L k. P(k, !J.) (3.5)
k=O

Equations (3.3,3.4,3.5) together form a model for computing the co-run inclusive reuse

signatures from the single-runs' time distance histograms and the numbers of data references

to each data element.

This probabilistic model uncovers the connections between the locality of single-runs and

co-runs. Although the high cost of the model prevents its direct uses (the time complexity

is O(N2N)), it lays the theoretical foundation for the prediction of co-run locality.

A Special Version on Cache-Line Level

Although the description of the model is on data object level, it applies to cache block

level as well by regarding one cache block of data as a single object.

Moreover, under a common assumption on cache lines, the model can have a much

simpler form. The assumption is that all cache lines are independent and identically dis-

tributed in the data reference trace. This is a typical assumption in previous cache behavior

modeling, ranging from the early f>eminal work [13, 45, 58, 68] to recent explorations [10, 55].

Under this assumption, all data objects have the same P(!J.)-that is, P,(!J.) = P1 (!J.)

(i,j = 1,2,· · · ,N). Recall that P(!J.) is the probability for a given object to appear in an

interval of length /J.. So, the assumption leads to that the probability for an interval to

contain k distinct data--that is, P(k, !J.)-obeys a binomial distribution. It's like having k

heads in the toss of N coins, with P(!J.) probability of showing heads for a coin. According

to binomial distribution, we have

75

(3.6)

Furthermore, tho assumption also significantly simplifies the computation of P(,0,.). Con

sider Equation 3.3. Because of the assumption of the same distribution of all data objects,

n, = T jN, and the time distance histograms of all objects would be the same as the time

distance histograms of the entire reference trace, denoted as H,(o) = H(o) (i = 1, 2, · · · , N.)

Therefore, Equation 3.3 becomes

6 T

P(,0,.) = ~ L L H(o). (3.7)
T=10=T+1

Equations 3. 7 and 3.6 are much simpler than their original version, Equations 3.3 and 3.4.

Together with Equation 3.5, they compose a model for inclusive cache-line-level reuse signa

ture prediction under the given assumption. (Tho results in Section 3.5.1 reflect the errors

brought by the assumption.) The time complexity becomes O(T2 * S) (assuming N < T),

where S is the number of sharers of a cache.

When there are no data sharing among cache sharers, a combination of their M(J)(fJ)s

(j = 1, 2, ... ,# of sharers) is enough to approximate their concurrent reuse distance his-

tograms. Let d be the time distance of a data reuse by process j. Suppose d~ is the

number of memory references by one of its cache sharers, process i, during the same

(physical) time period. The concurrent reuse distance of process j can be computed as

M(J)(d) + LzEJ's co-runner; M(z)(d,). (Note, the values of d and dzS may be different, de

pending on the relative speeds of cache sharers.)

This combination, however, is not sufficient for co-running threads in multithreading

applications because of the effects of inter-thread data sharing. Next, we will analyze the

case when there is data sharing among jobs.

76

3.2.3 Data Sharing Case

In this section, we use the following example for explanation the cases where data sharing

exists among jobs. There are two co-running threads T1 and T2. Suppose in a certain time

period, the memory reference sequence is

where, an K represents some reference conducted by T2. and the other letters represent the

references by T1. Clearly, this time period corresponds to a reuse interval of reference to

"a" in the standalone execution of T1 with standalone reuse distance of 3 (for accesses to

b, c, and d). vVe now examine its corresponding concurrent reu:so distance for clement "a"

in three scenarios.

• Scenario 1: All Ks are something different from the data accessed by T1. Let the four

K_s be "p q p q". Apparently, the concurrent reuse distance of the reuse interval is

just the sum of the numbers of distinct data in each of the two standalone reference

sequences: 3 + 2 = 5.

• Scenario 2: The four Ks are "p a p q". This scenario illustrates the first effect of data

sharing. The reference to "a" breaks the reuse interval into two: "a b l2. .1!" and ".1! b

l2. c d 5! a". The consequence is that the original reuse interval becomes meaningless.

The approximation of the ultimate concurrent reuse distances of T1 has to include a

reuse distance of 2 (for "a b .l2. .1!") and a reuse distance of 5 (for ".1! b .l2. c d 5! a").

• Scenario 3: The four Ks are "p c p c". This scenario illustrates the second effect of

data sharing. Because "c" is referenced by T1 in that interval, the references to it by

T2 should not be counted in the concurrent reuse distance. So the resulting concurrent

reuse distance is 3 + 1 = 4 (rather than 5 as in Scenario 1).

The last two scenarios show the two effects of data sharing on concurrent reuse distance

approximation.

77

To approximate the concurrent reuse distance of co-running threads, we first assume

no data shared across the threads. and apply the model described in Part I to compute a

concurrent reuse distance histogram, R' for each thread. We then revise R' by considering

the two effects of data sharing. The revision tries to find the statistical expectation of the

correct concurrent reuse distance for each reuse interval contained in R'.

To explain the revision step, we first introduce some notations. For simplicity, we

assume there are only two co-running threads. Let N1 and N2 represent the total numbers

of distinct data accessed by thread 1 and thread 2 (in their entire execution), S represent

the set of data shared by the two threads. Suppose that there is a rouse interval V with

ending elements as e accessed by thread 1 and its reuse distance in R' is d' (which needs

to be revised in this revision process). Let n 1 and n 2 be the numbers of distinct data

among the data accessed respectively by tho two threads in V; both can be computed by

Equation 3.5.

Treating the First Effect

The revision step first treats the interval-breaking effect that data sharing may impose

to the concurrent reuse distance (the second effect is temporarily ignored). It computes

the probability for the reuse interval V to be broken. That event happens only when the

following two events both occur. Tho first is that e is a shared data element; clearly the

probability is !S!fN1 . The second is that e ever appears in the references by thread 2 in

the interval V; as any of the n2 data elements could bee, the probability is n2/N2. So the

probability for the reuse interval to be broken is (!S!/N1) * (n2/N2). Because e may appear

anywhere in V, we assume the broken effect distributes to all sub-intervals of V uniformly.

The probability for the resulting reuse intervals to have reuse distance of a (a= 0, 1, ... , d')

is the same, which is (ISI/N1) * (n2/N2)/(d' + 1). Hence tho number of reuse intervals of

distance a in R' should increase by (!S!/N1) * (n2/N2)/(d' + 1). Meanwhile, because the

original reuse interval is broken, the number of reuse intervals of distance d' in R' should

decrease by (jSjjN1) * (n2/N2). We usc R" to denote the resulting histogram after this

treatment.

78

Treating the Second Effect

In the treatment to the second effect of data sharing on concurrent reuse distance, each

interval is not breakable as the interval-breaking effect has already been considered. For a

reuse interval V in R", let S1 denote the set of distinct data among all references conducted

by thread 1 in that interval, and S2 for thread 2. In R", the reuse distance of that interval

would be n1 + n2. In this step, we want to correct this distance value by considering that

there may be some overlap between S1 and S2. Let C represent the overlap set. Apparently,

C ~ S. The probability for /C/ = c is

where, (~:) * (~~) is the possible ways to have a reuse interval like V, (1~1)(~1-=!~1) is the

number of ways ford shared data to appear in S1, and (d) (N2 -d) is the number of ways for c n2-c

thread 2 to access c data in the d shared data accessed by thread 1.

Those probabilities are enough to compute the statistical expectation of the concurrent

reuse distance for every reuse distance in R'. Although our explanation uses two threads as

the example, the model supports an arbitrary number of co-running threads.

Recall that the time complexity to predict the co-run reuse distance is O(T2*S) (assum-

ing N < T), where Sis the number of sharers of a cache. As the number of data references

(T) is usually large, even with this simplified version, we need a still more lightweight model

for making co-run locality prediction feasible for real applications.

3.3 Lightweight Model for Locality Prediction

Based on the connection uncovered in the previous section, we propose a lightweight model

to predict inclusive reuse signatures efficiently enough for the uses in cache management.

79

3.3.1 Lightweight Model

The lightweight model is based on d~stznct blocks per cycle (DPC), a concept offering

lightweight connection between data reuses and time. Roughly speaking, DPC is the aver-

age footprint in a cycle. Formally, it is defined as the average number of distinct memory

blocks that are accessed in a CPU cycle. For cache analy:,is, it is natural to u~e the width of

a cache line as the size of a memory block. In that case, DPC equals the average frequency

of new cache lines being accessed. As an example, suppose a program accesses the following

memory blocks in 100 cycle:,: bl bl b3 b5 b3 bl b4 b2. The corre~ponding DPC

is 5/100 = 0.05 (footprint is 5). For cache sharers, their DPCs reflect their aggressiveness

in competing for cache resources. The following theorem more precisely characterizes the

connection between DPC and cache contention.4

Theorem 1 Suppose, wzth a set of processes P, process p shar-es a fully-as.soczatzve cache of

szze L but shares no data. For· an access by p whose excluszve reuse dzstance 1s d (d < L),

let a and a' be the average DPC of p and P m the reuse znterval. Then, zf and only zj

L~d < 1f;, the access remazns a cache hzt.

The proof of the theorem is straightforward. According to the definition of DPC, the

total number of distinct data elements accessed by processes P in the reuse interval is

(a'd/a). Therefore, the inclusive reuse distance of the current access by proce:,s p equals

(d+a'd/a). It is clear that the necessary and sufficient condition for the access to be a hit

in the fully-a~sociative cache is that its inclusive reu~e di~tance i~ le~s than the cache size,

that i:,, d +a' d/ a < L, which leads to the conclusion in the theorem.

The theorem suggests that along with exclusive reuse signatures, knowing the DPC of

every reuse interval is enough for computing the mi~s rates on a fully-associative shared

cache. Our experiments (reported in Section 3.5) demon~trate that the results from the

theorem can serve for estimation of the miss rates on set-associative cache as well, an

observation con~i~tent with prior studies on exclusive reuse signature~ [43, 76].

4 By default, the dJocuooJOn m thio chapter excludeo the memory acceoseo that are lnto m dedicated cacheo
as they do not reference the shared cache

80

For the uses in cache management, it is necessary to use DPC at a larger granularity to

trade accuracy for efficiency. Experiments on the tradeoff lead us to the use of CJ (the average

DPC of pin Theorem 1) at the granularity of reuse distance bars. At that granularity, each

bar, say barb, in the exclusive reuse signature of p has an average CJb, equal to l.:.aEbCJa/r,

where, CJa is the DPC of the reuse interval of memory reference a, and r is the number of

memory references covered by bar b. For CJ 1 (the average DPC of Pin Theorem 1,) we use

an even larger granularity. For a process in set P, denoted asp~, we take the average DPC

of all bars in the exclusive reuse signature of p~, expressed as

(3.8)

where, B: is the number of bars in the exclusive reuse signature of p~, r:b is the number of

memory references covered in bar b, and CJ:b is the average DPC of the bar. The CJ1 of P is

At this large granularity, according to Theorem 1, the data references in bar i in the

exclusive reuse signature of p are cache misses if d,CJ1 /((L- d,)CJ,) ;::: 1, where, d, is the

average exclusive reuse distance of bar i in the signature of p. Therefore, the increase of

cache miss rate of p caused by co-running with P can be estimated as follows:

{
1 X> 1

U(x) = 0 x < 1 (3.9)

where, A is the set of bars in the exclusive reuse signature of process p that contain distances

smaller than cache size L.

3.3.2 Analysis

The lightweight model essentially effects the following mapping:

81

where E, and O"i are the exclusive reuse signature and DPCs of process i, and m, is the

cache miss rate of the process when it co-runs with the other K 1 processes.

In contrast to the O(T2 * S) complexity of the inclusive reuse signature model, this

lightweight model reduces the complexity to O(B * S), where B is the number of bars in

the longest exclusive reuse signature and S is the number of cache sharers. The value of B

is limiterl by the data size and is usually small: It is less than 256 in our experiment, where

each bar in reuse signatures is 1K-wicle and a cache line is 64B wide.

The use of DPC is essential to the efficiency of the lightweight model, but as a tradeoff,

it causes approximation inaccuracy. Besides the errors clue to the large granularity, a

second source of inaccuracy is that the DPCs we use are measured (or predicted) from

the single-runs rather than co-runs of the processes. But it is important to notice that

many schemes of cache management make qualitative rather than quantitative decisions,

such as decisions on whether two programs should be scheduled together. This property

grants cache management some degrees of tolerance to the performance prediction errors.

Section 3.5 shows that with all the inaccuracy, the lightweight model still effectively keeps

the relative difference among processes' co-run performance degrarlations, and thus strikes

a reasonable tradeoff between accuracy and efficiency.

Efficient attainment of single-run locality information is a topic that has been studied

intensively in previous research. Previous approaches include static analysis [9], offline

profiling [45, 55], cross-run prediction [16] and so forth. In our experiments, we employ the

simplest approach, using binary instrumentation to measure the exclusive reuse distance

and DPC5 at every memory reference in a profiling run of each program. The studies on

this topic are orthogonal to this work: No matter how single run behaviors are obtained,

this work shows that they can lead to the estimation of co-run performance through the

proposed co-run locality models.

5 Jnstrumentation affects running time So, for DPC, we measure the number of distinct blocks per
im,truction instead, and then multiply that number by the average IPC of the non-instrumented run of the
program.

82

3.4 Handling Program Inputs for Co-Scheduling

On a given CMP architecture, cache contention depends on two factors: the programs that

run together, and their inputs. The first factor has been the main focus of previous studies.

This section concentrates on the second factor. The goal is to uncover the effects of program

inputs on CMP co-scheduling and to explore the solutions.

3.4.1 Influence of Program Inputs on Co-Run Performance

To explore the influence of program inputs on co-scheduling, we measure the co-runs of a

dozen SPEC CPU2000 programs on their test, train, and ref inputs. The machine we use

is a Dell PowerEdge 1850 server with two Intel Xeon 5150 2.66 GHz dual-core processors,

each equipped with a 4MB shared L2 cache. We measure the performance degradation of

a program when it co-runs with the other programs with the same types of input.

The boxplots in Figure 3.2 show the results. The differences among the boxplots inside

a group reveal the strong influence of program inputs on co-run performance. Among the

12 benchmarks, twolf and vpr are the two that have the largest performance variation across

inputs. The test runs of both of them have no performance degradation, no matter which

program is their co-runner. Whereas, their train runs show up to 15% and 36% degradations,

and their ref runs show up to 76% and 64% degradations. For the other programs, the train

and ref runs are 15% to 564% worse than those of their respective test runs (in terms of

median values). The results demonstrate that program inputs affect co-run performance

significantly.

The results also show a second phenomenon. Although the working sets of the pro

grams usually increase as input size increases, the co-run performance degradation doesn't

necessarily increase. For instance, the ref runs of equake, mcf, and parser clearly have less

degradation than their train runs. This phenomenon shows that co-run degradation does

not necessarily increase when the single-run cache miss rate increases. An extreme case

may convey the intuition behind: A program whose single run has no cache hits clearly

83

won't have any more cache misses when it co-runs with other programs; hence, its co-run

performance degradation must be negligible. This observation suggests that in the design

of co-scheduler, cache miss rate may not provide the sufficient information.

----~------- -- - -------~-------~
1 6

---- --- ---------------------- ---- ---

ma;
5

%

med1an

25°/o
rn1n

Figure 3.2: The boxplot showing the distribution of the performance degradation of each program
when it co-runs with the other 11 programs. The three boxplots in a group respectively correspond
to the executions on test, tm'in, and ref inputs.

3.4.2 Predictive Input-Behavior Models

Our approach to addressing the influence of program inputs is to build predictive input-

behavior models, which can predict program memory behavior from a given input. Because

some co-schedulers can estimate co-run performance from single-run memory behavior ami

then derive the best schedules, we need only the mechanism to accurately predict the mem-

ory behavior of a program's single-runs (on arbitrary inputs). The performance predictive

model is based on the following three memory behaviors: Reuse Signature, Accesses per

Instruction and Distinct Blocks per Cycle. We focus on the construction of the pre-

dictive models for each of the three kinds of memory behaviors through statistical learning

techniques.

The memory behavior of a single-run of a program, denoted by B, depends on the

running environment E, the program code P, and the input I. In this work, E and P

are given, and the goal is to find the function .f() mapping from I to B. With such a

function, plugging any input into .f() will generate the predicted behavior of the program's

corresponding single-run execution. We formalize the task as a statistical learning problem.

84

By feeding a program with different inputs, h, h, ... , IN, we observe the corresponding

behavior of the program's executions, represented by B 1 , B 2 , ... , BN. The input-behavior

pairs, < I,, Bi > (i = 1, 2, ... , N), compose a training set, from which we use regression

techniques to approximate function f.

Linear and Non-Linear Regression

Regression techniques are designed to discover the relation between a set of input at-

tributes and a set of outputs. Linear regression assumes that the relation can be expressed

by a linear function; non-linear regression permits more sophisticated functions.

Least Mean Squares (LMS) is a commonly used linear regression technique. Suppose f

is a linear function mapping input 1 to a behavior B for a given program. Given training

-=' data set < It, B1 > (i=1,2, ... ,N), the goal of LMS is to find the approximation of function

f, represented by}, such that the mean error squares, -ft 2:,~ 1 (Bt- }(I;_))2, is minimized.

LMS is simple and efficient, but applies to only linear functions. For non-linear regres-

sion, we choose the k-Nearest-Neighbor method. This method is an instance-based learning

technique. For a new query instance, it retrieves a set of similar instances from memory

and uses them to estimate the new output value. When k = 1, the method is named the

Nearest-Neighbor method, or NN in short. The approximated function }() has an implicit

and usually non-linear form [26]. The model building is simple, just recording the training

instances into a data structure that can be efficiently searched. There are many other sta-

tisticallearning techniques, such as Hegression Trees and Support Vector Machines; they

arc more complex and costly. We restrain ourselves to a small number of training runs in

order to limit the overhead of the offline profiling. Those more complex learning techniques

often require a larger training data set.

Besides LMS and NN, we also use a hybrid method. For a given program, it chooses

the better one between LMS and NN in terms of training errors. (The training error of

a model is the prediction error of the model when being applied to the training data.)

For each program showed in Figure 3.2, besides its test, train, and ref inputs included in

the SPEC suite, we obtained another input from the collection of additional representative

85

inputs attained by Berube and Amaral [4]. For programs not included in the collection

(ammp, art, equake, mesa, and twol/), we created an input by modifying the corresponding

ref input. We use train inputs for model testing, and the others for training.

Next, we show the effectiveness of the three regression techniques on each of the three

kinds of memory behavior that are used in the predictive model.

Prediction of Accesses per Instruction

The first question for building a model between program inputs and accesses per instruc

tion is the representation of program inputs. Given the close relation between program data

size (i.e., the number of distinct data items) and memory behavior, we adopt the approach

proposed by Ding and Zhong, characterizing a program input by the estimated data size

that can be obtained through distance-based sampling. Distance-based sampling observes

data reuses at the beginning of an execution and estimates data size based on long reuse dis

tances [16]. So, in this and the rest experiments, data size is the I, in the input-behavior pair

<I,, BI >, whereas the B, is specific to each experiment; it is the accesses per instruction

in this experiment.

The left half of Table 3.1 reports the accuracy in predicting accesses per instruction.

The three methods produce similar accuracies: 86.43% by LMS, 88.27% by NN, and 88.69%

by the hybrid method. Program equake shows the lowest accuracy (54.58%) mainly because

of its more complex relations between inputs and accesses per instruction. More training

inputs and more sophisticated models may be helpful.

Prediction of Distinct Blocks per Cycle

The statistic, distinct blocks per cycle, reflects the average cache requirement of a pro

cess. It can be regarded as a product of two factors:

DPC = DPI * IPC

where, DPI is the average number of distinct blocks accessed per instruction, and IPC is the

instructions per cycle. DPI is an attribute solely determined by the program; whereas IPC

86

Table 3.1: Prediction accuracies of linear (LMS) and non-linear (NN and Hybrid) models.
Programs Accesses per instruction DPI

LMS NN Hybrid LMS NN Hybrid
ammp 89.58 98.76 98.76 39.83 86.72 86.72
art 98.86 94.25 98.86 98.96 94.25 98.96
bzip 75.79 78.62 78.62 67.69 64.05 67.69
crafty 99.54 99.24 99.54 76.31 72.50 76.31
equake 54.58 54.42 54.58 82.27 82.13 82.27
gap 74.75 79.35 79.35 79.87 78.08 79.87
gzip 82.76 86.98 86.98 77.85 66.47 77.85
mcf 90.25 92.45 92.45 89.73 88.11 89.73
mesa 96.39 96.98 96.98 89.43 93.33 93.33
parser 96.02 98.61 98.61 89.49 70.42 89.49
twolf 97.11 98.10 98.10 52.12 86.75 86.75
vpr 81.50 81.50 81.50 96.30 95.28 96.30
Average 86.43 88.27 88.69 78.32 81.51 85.44

is a runtime behavior, attainable from hardware performance counters. The prediction of

DPC therefore can be conducted in two steps. Given a new input, an offline-trained model

predicts the DPI of the new execution. During the new execution, the DPC can be obtained

by multiplying the predicted DPI with the runtime IPC. Therefore, building a predictive

model for DPI is the key to the prediction of distinct blocks per cycle.

Because DPI is an average value for an interval, it is determined by the interval length.

For an interval containing nothing except one memory access instruction, the DPI is 1,

which is the upper bound of DPI under the assumption that one instruction may conduct at

most one memory access. As the interval becomes larger, DPI changes non-monotonically,

determined by the ratio of non-memory-access instructions and the frequency in which

memory-access instructions access a new object. When the interval length becomes large

enough to cover at least one access to all the blocks in the program, DPI decreases as the

interval length increases.

The DPI used in CAPS is the average DPI of all the reuse intervals6 , computed in the

following formula:

6 The reuse interval of a data reuse is the interval between the previous and the current access to the
same data item.

87

where, B is the number of bars in the reuse signature of the execution, r-, is the number of

memory references in bar z, and w, is the average of all the DPis of the reuse intervals in

bar i.

The right half of Table 3.1 shows that NN is slightly more accurate than LMS, 81.51%

versus 78.3%. The hybrid model yields an accuracy of 85.4%.

Reuse Signatures Previous work has explored the cross-input predictability of reuse

signatures. For example, Ding and Zhong have shown an accuracy of over 94% for the

prediction of the reuse signatures of 15 complex programs [16]. Their technique is based on

a desirable property of reuse signatures: No reuse distance of an execution can be larger

than the data size of the execution. (This property comes from the definition of reuse

distance.) They therefore test a set of sub-linear functions in training runs and choose

the best one as the model for the prediction of reuse signatures. This work adopts their

established technique.

3.5 Evaluation

In this chapter, we present an analytical model (including the variation on cache line level)

and a lightweight model for co-run locality prediction. Although the analytical model offers

insights on the underlying properties of the problem, the lightweight model is more suitable

for real uses. In light of that, this section concentrates on the evaluation of the lightweight

model. \Ve first report the results when no data sharing is allowed. After that, we evaluate

our model which consider the data sharing on both synthetic traces and traces from real

programs.

In order to test the model on traces with various data reuse patterns, we develop a trace

generator with the capability to produce data reference traces according to users' specifica-

tions, such as the number of distinct data, the frequency of memory accesseE> conducted by

88

each cache sharer and data reuse distributions. The parameters that control the generated

trace include the following:

• n 1, n 2 , ... , nk: the number of unique data blocks (in the unit of cache lines) in the

co-running programs.

• s: the data sharing rate. It is the total number of shared data blocks divided by n 1 .

• distr"ibution: the distribution of standalone reuse distances. We test the following

typical distributions: the random, the exponential (>. = -0.97), the Normal (mean=

100, std. = 33). Choosing these distributions is because they have been widely used

as the primitive distributions in statistical mixture models [26]; the reuse patterns in

many real traces can be regarded as the combination of those distributions [55].

The underlying scheme of the trace generator is a stochastic process similar to the one

used in standalone reuse distance studies [54].

3.5.1 Inclusive Reuse Signatures without Data Sharing

A direct evaluation of the basic analytical model is difficult because of the very high time

complexity of the model (On the other hand, a short trace cannot capture the necessary

statistical properties.) In this section, we instead evaluate the prediction accuracy produced

by the simplified cache-line-level model (i.e. Equations 3.5, 3.6 and 3. 7.) As it is a special

case of the basic analytical model, its evaluation results show some indirect evidence to the

validity of the basic model.

To completely expose prediction errors, we use the finest granularity: The width of

each bar in the histograms is 1. Figure 3.3 shows the real and predicted inclusive reuse

signatures for a trace containing 200000 references from two co-runners. Let n 1 and n 2

stand for the number of unique data blocks (in the unit of cache lines) in the two programs,

r for the data references ratio-that is,the total number of references conducted by the

second program divided by that of the first program. In the case shown in the graph,

0 014,---~--~-

0 012

(f)

fl O.D1
<:::
~
~ 0.008

0
<::: 0.006
0 u .t 0.004

0.002

Figure 3.3: The real and predicted inclusivf' reuse signatures.

89

n 1 = 200, n2 = 100, T = 0.5 and the data reuse distances in both programs obey a Normal

distribution (mean= 100, std.= 33). The differences in the numbers of data and references

in the two programs result in the drastic fluctuations in the middle part of the graph. Even

with those fluctuations, the predicted signature matches the real one well. The accuracy

is 95.5%. (Following previous work [16]. we define accuracy as (1- E/2), where E is the

sum of the absolute differences between the predicted and the real signatures at every reuse

distance. Division by 2 is to normalize the accuracy to [0, 1].)

Table 3.2 presents the accuracies on more traces whose reuse distances are of some

typical distributions (the exponential distribution's exponent iH .\ = -0.97. the Normal

distribution has mean = 100, std. = 33.) The reason for choosing these patterns is that

they arc some of the distributions that have been widely used as the primitive distributions

in statistical mixture models [26]; the reuse patterns in many real traces can be regarded aH

the combination of those distributions [55]. The bottom 3 groups above the average row are

the results when there are 4 co-runners, among which, the first pair both have n1 unique

data items, and the second pair both have n2, and T is the reference ratio between the two

pairs.

The overall average accuracy is 91.4%. For larger-grained histograms (e.g., 1K-wide bars

in many real uses), the accuracy would be higher as errors inside a bar would be smoothed

out. For instance, the average accuracy for the 4-co-runner cases in our experiment increases

Table 3 2· Accuracy of inclusive reuse signature prediction .. ' ' '·

distr. r=0.5 r=l
n1=200 n1 =200 n1=200 n1=200
n2=lOO 112=200 n2=lOO n2=200

random 93.8 93.3 94.9 93.3
expon. 89.4 90.7 93.2 92.3
normal 95.5 94.3 95.9 94.6
random+
expon. 95.0 93.3 94.0 93.3
random+
normal 94.2 93.0 93.9 93.5
expon.+
normal 94.9 93.2 93.6 94.2
2random+
expon.+
normal 89.4 86.4 88.2 88.5
random+
2expon.+
normal 86.3 85.5 89.0 84.8
random+
expon.+
2normal 82.9 90.1 85.0 85.9
avg. 91.3 91.1 92.0 91.2

r: the ratio of the number of references conducted by the two (pairs of) programs.
n1, nz: the number of distinct data of the two (pairs of) programs.

avg.

93.8
91.4
95.1

93.9

93.7

94.0

88.1

86.4

86.0
91.4

90

from 86.0% to 91.3% when a bar spans a distance range of 20. The results also show that

the effectiveness of the prediction approach is insensitive to reuse patterns, indicated by the

similar accuracy across distributions.

3.5.2 Inclusive Reuse Signatures with Data Sharing

3.5.2.1 Synthetic Traces

Table 3.3 presents the accuracies on a set of traces. The bottom three groups above the

average row are the results when there are four co-nmners, among which, the first pair both

have n1 unique data items, and the second pair both have n2.

Following previous work [16], we define accuracy as (1 - E/2), where E is the sum

of the absolute differences between the predicted and the real reuse histograms at every

91

reuse distance. Division by 2 normalizes the accuracy to [0, 100%]. To completely expose

prediction errors, we use the finest granularity: The width of each bar in all the histograms

used in this experiment is 1.

The overall average accuracy is 87.9%. For larger-grained histograms (e.g., 1K-wide bars

in many real uses), the accuracy would be higher as errors inside a bar would be smoothed

out. The results also show that the effectiveness of the prediction approach is not signif-

icantly sensitive to reuse patterns, indicated by the similar accuracy across distributions.

The presence of data sharing reduces the prediction accuracy by 5-7%, reflecting the extra

complications caused by the sharing to concurrent reuse distance approximation. For most

cases, the prediction accuracy is above 80%, verifying the existence of the statistical connec-

tions between concurrent reuse distance and the memory behaviors of individual threads,

and demonstrating the capability of the probabilistic model in capturing such connections.

Table 3.3: Accuracy of the Prediction of Concurrent Reuse Distance Histograms
distr. s=O s=10% s=20% average

n1=200 n1=200 n1=200 n1=200 n1=200 n1=200
n2=100 n2=200 n2=100 n2=200 n2=100 n2=200

random 94.9 93.3 91.3 90.0 89.7 79.8 89.8
expon. 93.2 92.3 91.1 92.2 93.4 90.1 92.1
normal 95.9 94.6 94.4 80.8 93.4 91.6 91.8
random+
expon. 94.0 93.3 88.5 87.2 84.0 79.0 87.7
random+
normal 93.9 93.5 87.4 90.9 91.6 89.1 91.1
expon.+
normal 93.6 94.2 92.5 79.9 92.2 89.9 90.4
2random+
expon.+
normal 88.2 88.5 83.3 82.0 82.5 81.6 84.4
random+
2expon.+
normal 89.0 84.8 70.1 72.8 85.3 83.5 80.9
random+
expon.+
2normal 85.0 85.9 84.1 80.0 81.2 81.2 82.9
average 92.0 91.2 87.0 84.0 88.1 85.1 87.9

.s: the sharing ratio. n1, n2: the number of distinct data oft he co-running programs.

92

3.5.2.2 Traces from Real Programs

Because instrumentation changes the relative speeds of cache sharers, the real memory

traces of co-running threads are difficult to collect on real machines. For our evaluation

purpose, we employ a simulator to record the traces. The simulator is constructed based

on SIMICS [41] with GEMS [44], a cycle-accurate multiprocessor simulator. The simulated

system is a dual-core UltraSPARC architecture with 1MB shared L2 cache.

We simulate three representative PARSEC programs [6]. For each program, we use the

fast mode of the simulator to move into the region of interest (the labels to those regions

come with the original benchmarks) and then collect memory references in one-million

cycle-long detailed simulation.

Program swaptions is an Intel RMS workload which uses the Heath-Jarrow-Morton

(HJM) framework to price a portfolio of swaptions. The program uses few (23) locks.

There are 27% data that are shared between two threads in the collected memory reference

trace. The prediction accuracy by the probabilistic model is 74%. The accuracy is relatively

lower than those on synthetic traces. The reason is that this program accesses distinct data

elements more frequently than the synthetic traces. The reuse distance tends to span a

broader range.

Program vzps is based on the VASARI Image Processing System (VIPS). It includes

fundamental image operations such as an affine transformation and a convolution. The

program uses locks intensively. There are totally over 33,000 locks. But there are negligible

portion of data that are shared between threads. The probabilistic model is able to predict

the concurrent reuse distance by 76% accuracy.

The last program is streamcluster. It is an RMS kernel developed by Princeton Uni

versity that solves the online clustering problem. It is a data-level parallel program. This

program uses modest number of locks, but many barriers (129,600). There are 3% data

shared between two threads in the generated memory reference trace. The approximated

concurrent reuse distance histogram has the highest error, 28%. It is mainly due to its

irregular data references.

93

3.5.3 Predicting Co-Run Performance

100

80 r--

en
c::
:::>
a: 60
0
a>

..0 40 E
:::>

:z: f-

20

o 1 r 1----1 -=
0 0.2 0.4 0.6 0.8 1

Error of the Prediction of the Increase Rate of L2 Miss Rate

100

80
en c::
:::>
a: 60
0
a>

..0 40 E
:::>

:z:
20

00 0.2 0.4 0.6 0.8
Error of the Prediction of IPC Degradation Rate

Figure 3.4: The distribution of the errors in the prediction of L2 cache misses and IPC.

We apply Equation 3.9 to all the 78 pair-wise co-runs of 12 programs (including the

co-runs of two copies of the same program). Figure 3.4 shows the prediction error of the

increase rate ofL2 cache miss rate on the Intel Xeon machines, calculated as 1(5/7'8)-(S/r~,)l,

where r8 (s for single-run) is the real L2 miss rate of the single-run of a program, o is its

increase because of co-run contention, r8 and 8 are their predicted values respectively from

exclusive reuse signature and Equation 3.9. The average error is 16%. The runs having

error larger than 20%, except for one program mcj, all have a very small (< 0.6%) ratio

between their L2 misses and total memory references. The small ratios make the relative

errors look large, but the small absolute errors have only minor influence on the prediction

of performance degradations, as shown in the IPC graph of Figure 3.4.

94

In the IPC graph, the prediction error of IPC increase rate is calculated as I (I PCc -

IPC8)/IPC8 - (fPC~- Ji>Cf;)/fPC;I, where, IPC8 and IPCc are the real IPCs of the

single-run and co-run of a program, while fiJCf; and~ are their predicterl values. The

average error iH 9%.

The IPC prediction is through a regression model obtained by offline training, in a way

similar to previous explorations [23, 61]. We apply Ridge regression, a regression technique

that tolerates feature correlationH [26], to a training Het consisting of the memory behaviors

and IPCs of randomly picked 200 runs. The generated performance model is

I PC = 1.9894 - 1. 7071hl - 4. 7019h2 - 8.8863h3

where, h1 , h2 , and h3 are the numberH of L1 cache hitH, L2 cache hitH, and other memory

references, divided by the total number of instructions. They are derived from the measured

single-run locality and the predicted miss rate increase.

3.6 Related Work

Since the early days in computing, the problem of how to model data reuse patterns and their

connections to cache performance [13, 45] has continuously drawn great research interests.

The decades of efforts have contributed a solid foundation for understanding the behavior

of dedicated cache Hystems. The single-run reuse distance model uHed in this work is one

example technique from prior rledicated cache research. It is initially proposed as LRU stack

distance by Mattson et al. [45], and has later been widely used in locality analyHis (e.g., some

recent work on program optimizations [5, 77], cross-architecture program performance[43].

and memory disambiguation[21].)

But the current understanding to shared cache behavior is much leHs mature. There

has been some work on analyzing the interactions among different threads on the cache

in a time-sharing environment. For example, in 1980s, Triebaut and Stone [68] develop a

95

footprint-based analytical model for cache-reload transients. More recently, Suh et al. [65]

design an analytical cache model for estimating the effect of context switching. Their studies

mainly focus on predicting the footprint size of a thread as the interactions on cache mainly

occur at context switch time: while with shared cache, the interactions happen at almost

every cache access. The prediction of footprint size becomes insufficient to address the

significantly complicated interactions.

For shared cache on either SMT or CMP architectures, although some studies have tried

to characterize the influence of cache sharing on program performance, most of them are

either based on certain heuristics or some hardware extensions (e.g., [49, 53].) Chandra et

al. [10] propose three models to predict shared cache performance from single-run cyclic

stack distances. The models show good prediction accuracy on CMP simulators, but are

based on coarse-grained heuristics and approximations and leave the inherent connections

between co-run and single-run locality unexposed. It also remains unclear how the models

would fit the requirements of proactive cache management in terms of accuracy and effi

ciency. Berg et al. use sampling techniques to estimate the behavior of CMP cache for a

parallel application [3]. Many of recent studies on either SMT or CMP have tried to opti

mize shared cache performance through either hardware extensions[28, 50, 53], or operating

system scheduling [23, 59]. They commonly use reactive schemes by relying on runtime

profiling to estimate the co-run performance or cache requirement of programs.

This work is unique in two aspects. Through a rigorous model, it uncovers the underlying

connections between single-run and co-run locality, and it initiates proactive management

for shared cache through the support of a lightweight predictive model. It is complemen

tary to many previous explorations. The prediction from the shared-cache locality models

may provide guidance to many previous cache management techniques. On the other hand,

the combination with sampling may further speedup single-run data collection, and cer

tain runtime monitoring and a combination with reactive management may prevent poor

predictions from causing inferior decisions.

96

3.7 Summary

This chapter has describled an analytical model to uncover the inherent statistical connec

tions between program single-run memory behaviors and co-run locality. The model offers

theoretical in:sights on the prediction of shared cache performance, laying the foundation for

proactive cache management. With those insights, we develop a lightweight model to enable

the uses of co-run locality models in proactive cache management. Moreover, we explore

the influence of program inputs on job co-scheduling. vVe also construct a set cross-input

predictive models for a set of memory behaviors that are used in the performance predic

tive model. The results exhibit the potential of combining program behavior analysis by

programming systems and global resource management by operating systems. The shared

cache behavior analysis may open new opportunities for various execution layers in CMP

systems to exploit the shared cache resource more effectively than before.

Chapter 4

Cache-Contention-Aware Proactive

Scheduling

4.1 Introduction

The previous two chapters have described the prediction of co-run performance and the

design of co-scheduling algorithms. This chapter concentrates on how to integrate these

techniques into practical job co-schedulers for both batch and online job scheduling.

In operating systems (OS) research, the recent attempts in alleviating cache contention

mainly focus on reactive process scheduling [59, 14, 48, 20, 22, 23, 8]. These techniques

typically sample job executions periodically. During the sampling, they track hardware

performance counters to estimate the cache requirement of each process and derive a better

schedule. (For a system containing multiple CMP chips, a better schedule usually means

a different assignment of jobs to processors or a differeut allocation of CPU timesliees to

processes.)

Although these techniques work well under certain conditions, the strong reliance on

runtime sampling imposes some limitations on their effectiveness and applicability. The

main obstacle is that the sampled behavior only reflects the behavior of a process during

a certain time period when it eo-runs with a certain subset of processes. Whereas, good

97

98

scheduling needs to recognize the inherent cache requirement of a process and its influence

on and from all possible co-runners.

As a result, most prior techniques require both periodic re-sampling and frequent reshuf

fles of processes among different co-run groups [23, 59].

These requirements not only cause more sampling overhead (cache performance is often

inferior during sampling periods) but also limit the applicability of previous scheduling

techniques. For instance, cache-fair scheduling needs the sampling of 10 different co-runs

(i.e., runs with different co-runners) per process in every sampling phase, and requires the

system to contain a mix of cache-fair and best-effort processes [23]; symbiotic scheduling [59,

14], which samples program performance under various schedules and estimates the best

schedule, is difficult to be applied to large problems-the number of possible schedules

increases exponentially with the numbers of jobs and processors (e.g., there are 2 million

ways to co-schedule 16 jobs on 8 dual-cores).

This chapter attempts to free prior techniques from those constraints by integrating

the knowledge of programming systems. Our exploration combines program behavior anal

ysis with operating systems' control of underlying resources. It presents the design of

cache-contention-aware proactive scheduling(CAPS). For batch processing, we adopt the

performance prediction model in Chapter 3 to predict the co-run performance degradations

and then use algorithms proposed in Chapter 2 to find the schedule.

Runtime scheduling has even higher requirement for efficiency. Our solution is cache

contention Competitiveness and Sensitivity models statistically derived to characterize the

expected influence that a process may impose to and receive from other processes. We

design a dual-queue scheduling system, which evenly separates processes into sensitive and

insensitive queues and schedule them accordingly. The scheduling system adapts to the

dynamic entries and exits of processes by periodically adjusting the threshold used for

process separating.

99

4.2 CAPS for Batch Processing

This section describes the scheduler for a batch of jobs. In batch processing, the job set

and the corresponding inputs are known beforehand. The particular problem to address for

CMPs is how to partition the job set into co-schedule groups in order to achieve the best

performance. CAPS consists of three components.

Prog-1 single
run behavior

Prog-2 single
run behavior

Prog-N single
run behavior

Figure 4.1: The key components of the cache-contention-aware proactive scheduler (CAPS).

As depicted in Figure 4.1, at the heart of CAPS are two components. The first com-

ponent predicts the performance degradation of each possible co-run using the memory

behavior of single-runs of each program. In this framework, we use the techniques pro

posed in Chapter 3 to predict the cross-input co-run performance. The second component

maps the co-run performance to a fully connected graph, with each vertex representing a

program, and each edge having a weight equal to the total performance degradation of the

co-run of the two vertices. It then applies the minimum-weight perfect matching algorithm

to efficiently determine the schedule that minimizes the total of the co-run degradation of

all the programs. The detailed algorithm is presented in Chapter 2.

4.3 CAPS for Runtime Scheduling

Unlike in batch processing, the job set in a general computing system usually changes ely-

namically and thus requires continuous and frequent scheduling. More efficient and adaptive

models are imperative. In this section, we propose a scheme for online job scheduling.

100

4.3.1 Cache-Contention Sensitivity and Competitiveness

To avoid dealing with every possible co-runs, we characterize the statistically expected

influence that a process may impose to and receive from random processes through a

competitiveness-sensitivity model. Competitiveness and sensitivity respectively character-

ize the statistical expectation of the influence that a process may impose on and receive

from random co-runners. This model is important for making runtime proactive scheduling

scalable. As we will see in Section 4.4, CAPS capitalizes on the model to make sensitive

processes co-run with uncompetitive ones to achieve better performance.

4.3.1.1 Sensitivity

The definition of cache-contention sensitivity is as follows:

. . . CPfco- CPI8 ,

Senszhmty = CP lsi (4.1)

where, CPisi is the cycles per instruction (CPI) of a process's single run, and CPico is the

statistical expectation of the CPI of that process when it co-runs with random processes.

The estimation of CP ! 8 , is straightforward: As explained in Chapter 3, we can predict

the cache miss rate of a process's single run from its standalone reuse signatures; the

corresponding CPI (given the cache miss rate) can be estimated using existing techniques

(e.g. [61]).

To estimate C P leo in the same way, we have to obtain the statistical expectation of

the cache miss rates of the process's co-runs. The number of co-run misses equals the sum

of single-run misses and the extra misses caused by co-run contention. Since single-run

misses are obtainable as mentioned in the previous paragraph, the problem becomes the

computation of the statistical expectation of the number of extra miRseR. The following

corollary of Theorem 1 offers the solution.

Corollary 1 Let F() be the cumulative distribution function of the DPCs of all programs,

and L be the shared cache size. Suppose a process p has H memory references whose

101

standalone reuse dzstances, d,, are smaller than L (i=l, 2, · · ·, H). Let O"z represent the

DPC of the correspondzng reuse interval. When process p co-r·uns with some r-andomly-

picked progmms that share no data with p, the expectation of the cache mzss mte of the H

memory references is
1 H

0 = 1- H L F(O"~(L- d~)fd,). (4.2)
z=l

Proof: Let 0"
1 represent the average DPC of the co-runners of p in the reuse interval

corresponding to O",. Theorem 1 tells us that if and only if 0"
1 < O",(L- d~)fd,, reference i

remains a hit. Since the probability for that condition to happen is F(O",(L- d,)jd,), the

expectation of the number of cache hits among the H references is I:;;~ 1 F(O",(L- d,)jd,) .

The conclusion follows. •
With this corollary, we can compute the sensitivity of a process from its DPC and

standalone reuse signature. Since references are grouped in bars in reuse signatures, the

computation uses a bar as a unit; H thus equals the number of bars whose reuse distances

are smaller than L. For computing the F() items efficiently, we build a lookup table for F

by using 3.9 billion data reuses from a dozen randomly chosen SPEC CPU2000 programs

(included in Figure 4.2). The table contains 200 items corresponding to 200 evenly-::;paced

points between 0 and 0.237.

4.3.1.2 Competitiveness

We initially intended to u::;e a process's average DPC a::; competitivene::;s. But our experi-

ments reveal the strong correlation between the influence a process imposes on and receives

from its co-runners. This observation leads to a unified competitiveness and sensitivity

model.

Figure 4.2 plots the performance degradation of all the 66 pair-wise co-runs of a dozen

SPEC CPU2000 programs (trmn runs) on an Intel Xeon 5150 processor (specified in Sec-

tion 4.4). In the graph. points on solid curves show the program's own degradation and

102

points on broken curves show the degradation of its co-runner. For legibility, each program's

data are sorted in ascending order of self degradation and then connected into curves. The

two curves corresponding to every program show similar trends. The correlation coefficient

between all the self and co-runner degradations is 0. 75. (As an extra evidence, the coefficient

is 0.73 for the 13 SPEC programs shown in Figure 4.5.)

,--.~-,- -r--~~- •r======;]
-self

05 co-runner

-O 1applu lucas apsi mgrid swim gee
fma3d omnetpp galgel sixtrack facerec wupwise

Figure 4.2: Each program has 11 pair-wise co-runs, respectively with each of the other 11 programs.
The points on the solid curve show thE' degradations of this program in those co-runs; the points
on the broken curve are of its co-runners. (The points are connected for legibility.) The similfiiity
between the two kinds of curves shows the strong correlations between the degradations of a program
and those of its co-runners.

The intuition behind the strong correlation is that, a program that is sensitive to cache

contention tends to fetch data from a large portion of the shared cache frequently. Hence,

it tends to impose strong influence on its co-runners, that is, it tends to be competitive.

As an exception, stream programs are competitive but insensitive. Although they access

cache intensively, those programt> have few data reuses and thus rely on no cache for perfor-

mance. Fortunately in offline training. it is easy to detect stream programs thanks to their

distinctive data access patterns. The scheduling process, CAPS, treats those programs

as competitive programs and pair them with other insensitive programs (detailed next).

For other programs, CAPS simply uses sensitivity for competitiveness. This unified model

simplifies the design of runtime scheduler.

103

4.3.2 Runtime Scheduling Policy

The principle of CAPS is to couple sensitive processes with insensitive (thus likely uncom

petitive) processes. This section uses Linux as an example to explain how CAPS can be

integrated in runtime schedulers.

In default Linux SMP scheduling (e.g., Linux 2.6.23), when a program is launched, one

of the CPUs will receive that signal and assign the process to the best available CPU for

execution. Each CPU has a scheduler managing the jobs assigned to it.

For CAPS, CPUs are classified evenly into two groups, G8 and G1 , dedicated to sensitive

and insensitive processes respectively. For the CPUs sharing a cache, half of them belong

to G8 and the others belong to Gz. The scheduler on each CPU maintains a sensitivity

threshold h, which is equal to the decayed average of the sensitivities of all the processes

that the scheduler has assigned (may or may not to this CPU). Formally, his computed as

follows when the scheduler assigns the nth process:

(4.3)

where, o: is a decay factor (0 to 1), and Sn is the sensitivity of the newly launched process.

The use of the decay factor makes the scheduler adaptive to workload changes. Similar to

other factors in OS, its appropriate value should be determined empirically.

Vvhcn a program is launched, the CPU that receives the launching signal computes the

sensitivity of the process, Sn. It then updates h using equation 4.:{. If Sn > h, it schedules

the process to a CPU in G8 , otherwise, to a CPU in G~. The way to select a CPU inside

a group is the same as in the default Linux scheme. (Stream programs are assigned to

G8 directly.) For processes without locality models, the scheduler falls back to the Linux

default scheduling.

Equation 4.3 attempts to obtain load balance by dynamically adjusting threshold h. If

unbalance still occurs due to certain patterns in the sensitivities of subsequent jobs, the

104

existing load balancer in Linux, which is invoked periodically, can rebalance the workload

automatically.

We note on two facts. First, the scheduler makes no change to the default management

of run-queues and timeslice allocation in Linux. This is essential for maintaining the proper

treatment to priorities. Second, although it is possible for different CPUs to get different

h values, some degrees of difference is tolerable for CAPS. Furthermore, during rebalance,

the rebalancer can obtain the average of all CPUs' h values and update the h values for

every CPU accordingly.

The sensitivity of a program is obtained from its predicted reuse signature and DPC,

both of which have shown to be cross-input predictable [16, 30]. But predictive models have

to be constructed for each program through an offline profiling and learning process. This

step, although being automatic, may still seem to be a burden to scheduling. There arc two

ways to make it transparent to the users of CAPS. First, the learning step can occur during

the typical performance tuning or correctness testing stage in the development of a software.

The program developers only need to run the program on several of the inputs they have;

whereas, the outcome is beneficial: Besides for scheduling, the predictive locality model can

also benefit data reorganization [16], cache resizing [56], and cache partition [37]. In this

case, the scheduler can usc the model for free. The second solution is to make the learning

occur implicitly in the real runs of an application through incremental learning techniques.

Through multiple runs, online learner learns the relation between memory behavior and

program inputs, and builds the predictive model for co-run locality prediction.

4.4 Evaluation

This section first presents the accuracy of the performance prediction model for shared

cache CMPs. It then reports the effectiveness of CAPS for batch processing and runtime

scheduling, with overhead analysis at the end.

105

4.4.1 Methodology

For evaluation, we employ 12 randomly cho::;en SPEC CPU2000 programs, as shown in

Table 4.1, and a sequential stream program (derived from [46] with each data element

covering one cache line) on a Dell PowerEdge 1850 server. The machine is equipped with

Intel Xeon 5150 2.66 GHz quad-core proces::;ors; every two cores have a 4MB shared L2 cache

(64B line, 4-way). Each core has a 32KB dedicated L1 data cache. The information shown

in Table 4.1 are collected on the ref runs of the benchmarks on the Xeon machine. We use

PIN as the instrumentation tool [40] for locality measurement, and use the PAPI [7]library

for hardware performance monitoring. In the collection of co-run behavior, in order to avoid

the distraction from program lengths, we follow Tuck and Tullsen's practice [71], wrapping

each program to make it run 10 times consecutively, and only collecting the behavior of

co-runs-that is, the runs overlapping with another program's run.

Table 4.1: Performance Ranges of Benchmarks on Intel Xeon 5150
Program cycles per instruction L2 misses per morn. ace.(%)

single-run co-run-min co-run-max single-run co-run-min co-run-max
arnrnp 1.01 1.03 1.31 0.51 0.60 1.6
art 0.93 0.96 1.55 0.0028 0.095 3.8
bzip 0.49 0.49 0.66 0.11 0.18 0.76
crafty 0.72 0.73 0.80 0.00010 0.0028 0.21
equake 1.28 1.38 2.13 3.8 3.9 4.5
gap 0.91 0.91 1.16 1.3 1.5 1.6
gzip 0.72 0.72 0.77 0.078 0.079 0.14
mcf 2.47 2.70 4.84 4.4 5.0 8.6
mesa 0.51 0.52 0.56 0.23 0.26 0.38
parser 1.15 1.18 1.50 0.31 0.44 1.2
twolf 1.06 1.07 1.24 0.0014 0.0015 0.40
vpr 1.06 1.09 1.44 0.0053 0.0067 0.015

4.4.2 CAPS for Batch Processing

To evaluate the effectiveness , we measure 4 types of schedules: the optimal, worst, CAPS,

and random schedules. We obtain the optimal and the worst schedule by a brute-force

search among all possible schedules. We obtain the random schedule results by randomly

106

choosing 100 schedules and taking their average performance, which correspond to the

default scheduling in the current CMP ::;ystem::; that are oblivious to cache contention.

c:::J Worst

40

35

30

,-;j g 25

~
~ 20

E
I ~ 1~

10

5

0

70
96

60

c 50
'c:: 1.9

I
~ 40 ··----
e
I~ 30 c
't
'~ 20

10 . ------

0
c.
E
E
co

I'·· :-:1 Random

192 114

c.
co =

CAPS -Optimal

ITII- ---
1 1- •

Figure 4.3: Performance degradation on dual-core (top graph) and quad-core (bottom graph)
systems by different schedulings.

Table 4.2 shows the detailed coupling of the 12 programs in the worst, CAPS, and

optimal schedules.

In the dual-core case (Intel Xeon 5150), except the two italic groups, the CAPS schedule

matches the optimal ::;chedule well. The two mismatches are mainly due to the performance

prediction errors of some co-runs with the program ammp. The top graph in the figure

contains the performance degradation of the co-runs in each schedule, measured by the CPI

increase divided by the corresponding single-run's CPl.

107

Table 4.2· Detailed Couplinrr of Programs under Different Schedules b

Optimal schedule CAPS schedule Worst schedule
ammp+parser art+crafty ammp+gz'ip art+crafty ammp+bzip art+mcf
bzip+gap equake+mesa bzip+gap equake+mesa crafty+rnesa equake+vpr
gzip+rncf twolf+vpr mcf+pa·rser twolf+vpr gap+ parser twolf+gzip

On average, the mismatch causes the co-runs in CAPS schedule L6% more performance

degradation than the optimal schedule. Compared to the random schedule result, CAPS

schedule improves 9 programs' performance by L2% to 23.68%. As a tradeoff, it meanwhile

worsens 3 programs' performance by 3.4%, 4.6%, and 7.6%. On average, the co-runs in

CAPS schedule degrade performance by 9.7%, and outperform the random schedule result

by 6.2%. It is worth to note that random scheduling may group some programs in the way

the worst scheduling does; the consequence is severe: 67% degradation for art, 73% for me/,

and 22.8% on average. CAPS avoids those traps, making co-runs 13.1% faster than the

worst schedule on average. (Note that our goal is to minimize the overall rather than each

individual program's degradation. So, it is normal for certain programs to run better in the

worst schedule than in other schedules.)

In the quad-core case (AMD Opteron), although there are more mismatches between

the optimal schedule and the CAPS schedule, their average degradations are still similar.

The CAPS schedule reduces the average performance degradation of the random schedule

by 60%. Among the 12 programs, 7 of them have degradation reduction of more than 63%;

4 of them have slightly more degradations.

Comparison to Reactive Co-scheduling Reactive co-scheduling usually tries dif-

ferent schedules in a sampling phase and chooses the best one for tho following execution

phase. Because of the possibility of behavior changes after a sampling phase, reactive co-

scheduling conducts resampling periodically. Previous reactive co-scheduling studies [59, 23]

typically usc 1 billion instructions as the length of a period, maintain a 1 to 10 ratio be

tween the length of a profiling phase and the following execution phase in a period, and

run each schedule for 10 million instructions in the sampling phase. In the dual-core case

of the 12-program experiment, there are totally 20790 possible schedules; the probability

108

for a sample phase to cover the optimal schedule is 0.05%, and the probability is 4.7% for

covering one of the top 100 schedules.

Unfortunately, it is difficult to conduct a direct comparison of the proactive co-scheduling

performance with the performance obtained by previous reactive co-scheduling techniques,

mainly because most of them have been implemented on hardware simulators with modifi

cations to operating systems and hardware. To gain some insights on the comparison, we

instead estimate the results of reactive eo-scheduling in an ideal case, by assuming no be

havior changes through the entire executions of the programs-that is, the schedule selected

in the sampling phase would work the same in the following execution phase-and there is

no process migration overhead. vVe can then compute the statistical expectation of the total

degradation in the execution phase as ~~1 p(s1)d(s;), where p(si) is the probability for a

schedule s1 to be chosen as the best schedule in a sampling phase, d(s1) is the total co-run

degradation of all programs under schedule s1 , and J(is the total number of possible sched

ules, equaling 20790 in our experimental setting. During the sampling phase, the statistical

expectation of the degradation is just the statistical expectation of the degradations of all

possible schedules, because the schedules to try in sampling phases are chosen randomly.

On the data collected on the 12 programs used in the proactive co-scheduling experiment,

the statistical expectation of the average degradation is 12.1 %, 26% more than the proactive

co-scheduling results. For a larger problem, the probability to cover top schedules would

become even smaller.

We acknowledge that if the sampling ratio increases, the probability of choosing the

optimal schedule would increase. But as the problem size increases, the probability increase

would diminish quickly. Furthermore, the benefits from the chosen schedule would decrease

as the execution phase becomes smaller.

Overhead of CAPS The overhead consists of two sections: the prediction of cache

contention between every group of programs, and the computation of the scheduling algo

rithm. Let N represent the number of programs. The worst-case time complexity of the

three segments are respectively O(N2), and O(N4) for a given shared-cache size. We mea-

109

sure the overhead of each part of CAPS on dual-cores with program numbers ranging from

4 to 1024. Figure 4.4 shows the data in the logarithmic scale. When the number of jobs is

small, the scheduling time dominates the overhead. But as the number of jobs increases,

the weight of co-run performance prediction increases and reaches 93% in the case of 1024

programs. The results suggest that even though the scheduling algorithm has higher worst-

case time complexity, it weights less than the co-run prediction overhead for problems of

reasonable size, thanks to the scalable implementation of the blossom algorithm [11]. The

total overhead for 1024 programs is 0.21 seconds.

JlSQQ!~ntlon pred-~~S!:'_~d~
1000 -- ---------

4 8 16 32 64 128 256 512 1024

Num of Programs

Figure 4.4: Overhead of job co-scheduling

4.4.3 CAPS for Runtime Scheduling

The focus of our evaluation is the examination of the effectiveness of the unified sensitivity

model in serving as a locality model for shared-cache-aware scheduling. To avoid distractions

from the many random factors (e.g., job arriving time, load balance) in online schedulers,

we use offiine measurement to uncover the full potential.

We compute the sensitivities of the programs from their reuse signatures and DPCs,

based on which, we separate the 12 SPEC programs into two equal-size classes shown as

the two sequences of caps-pred below. For comparison, we report the ideal separation as

caps-real. We obtain them by first running all possible pairs of the 12 programs, and then

taking the average co-run degradation of each program as its real sensitivity. In both

separation results. we list the programs in descending order of sensitivity.

110

caps-pred:

Sensitive: mcf art equake vpr parser bzip

Insensitive: twolf ammp crafty gap mesa gzip

caps-r-eal:

Sensitive: mcf equake art vpr bzip ammp

Insensitive: parser gap crafty mesa twolf gzip

The sequences, although differing in the relative positions of the benchmarks, only

mismatch on two programs, par-ser- and arnmp. Two reasons cause the differences: locality

prediction errors and the difference between statistical expectation and a particular problem

instance. We note that CAPS has good tolerance to ordering difference: As long as programs

are put into the right sequences, the order inside a sequence has no effects on CAPS. This

property is essential for making the lightweight locality prediction applicable for CAPS.

We compare the performance result of CAPS on predicted sensitivities (denoted as caps

pred) with the results of the default Linux scheduler (default) and CAPS on real sensitivities

(caps-r-eal). We measure the performance of a program by degradation factor, defined as

(CP leo- CP I8 ,)/CPI8 ,, where, CPico and CPI82 are the respective CPis of the program's

co-run and single run. Following prior work [74], we measure the fairness of a schedule by

unfairness factor, defined as the coefficient of variation (standard deviation divided by

the mean) of the normalized performance (IPCco/IPC8 ,) of all applications.

To prevent randomness from obscuring the comparison, we obtain a program's perfor

mance in a schedule by averaging the performance of all the program's co-nms that are

allowed by the schedule. The default scheduler, for example, allows all 12 possible co

runs per program, whereas caps-pr-ed and caps-r-eal allow a program to run with only the

programs in a different class.

Figure 4.5 shows the performance of the three schedulers, with sensitive programs

(judged by caps-pr-ed) on the left and insensitive programs on the right. For sensitive

programs, caps-pr-ed reduces performance degradation by 4% to 30.2% (15.7% on average);

as a tradeoff, insensitive programs have 1.4% to 8.1% more degradation (4.1% on aver-

D default

,-
I ,,
I i 40

I

(a) Perf. degrad. of sensitive programs

(c) L2 miss rates of sensitive programs

111

llil caps- pred. •caps-real

(b) Perf. degrad. of insensitive programs

l 5 '

I, 14

I 'I
I '-"12
I !
: ~ 1
I •
l !!! 0 8
':t

I

' ~ 0 6 -

: ~ 0 4
' 0
1 z 0 2

I

(d) L2 miss rates of insensitive programs

Figure 4.5: Performance degradation and normalized L2 miss rates by different scheduling

age). In comparison, cap.s-real shows 2.5% less reduction for sensitive programs and 3.3%

more for insensitive programs than cap.s-pred. It is important to note that the goal of job

co-scheduling is to increase the overall computing efficiency of the system rather than max

imize the performance of each individual program. So it is normal that some programs (e.g.

par.ser) perform better in cap.s-pred than in cap.s-real.

Table 4.3 reports the performance, normalized to the default performance, of each pro-

gram when they run in cap.s-real and cap.s-pred. The sensitive programs show 12% and

14% speedup on average. All of them have speedup over 11% except par·.ser and .stream.

In cap.s-real, par.ser has 6% slowdown because it is classified as insensitive programs and

co-runs with sensitive programs. The small speedup of .stream is consistent with our intu-

ition conveyed in Section 4.3.1.2-such programs are competitive but insensitive for their

112

special memory access patterns. It is remarkable that the significant speedup for sensitive

programs comes with almost no slowdown of insensitive programs. The average slowdown

is 1% in caps-real and 3% in caps-pred. The small slowdown is no surprise given that those

program are insensitive to cache sharing. The program ammp shows 10% speedup in caps-

real because the scheduler labels the program as a sensitive program and lets it co-run with

insensitive programs.

The intuition behind the effectiveness of CAPS is that it successfully recognizes the

programs to which cache contention matters significantly. By giving an favorable schedule

to those programs, CAPS accelerates them without hurting the programs that are not

sensitive to cache contention.

Table 4.3· Whole-Program Speedup Brought by CAPS
Sensitive Programs Insensitive Programs

Programs caps-real caps-pred Programs caps-real caps-pred

art 1.24 1.24 ammp 1.10 0.94
bzip 1.12 1.12 crafty 0.98 0.98
equake 1.13 1.13 gap 0.94 0.94
mcf 1.24 1.24 gzip 0.99 0.99
parser 0.94 1.09 mesa 0.98 0.98
vpr 1.11 1.11 twolf 0.97 0.97
stream 1.03 1.02 - - -

Average 1.12 1.14 Average 0.99 0.97

Table 4.4 contains the overall performance degradation factors and unfairness factors of

the schedules. The two r-ed'uction columns report the relative reduction ratios of caps-pr-ed

and caps-real compared to default. Schedule caps-pr-ed reduces degradation factor by 32.6%

and unfairness factor by 46.9%, respectively 1.3% and 2.4% less than caps-Teal.

Figure 4.5 (c) and (d) show the normalized 12 miss rates (12 misses per memory ref

erence) collected using PAPI library [7]. Although they roughly match the performance

results, the 12 miss rates impose different influence on the programs. For example, the

52% more 12 miss rates of twolf only cause 3.2% performance difference, while 3.3% less

miss rates of eq·uake reduce 15% performance degradation. This difference is due to bus-

contentiou differences and the different significance of 12 misses. The 12 miss rates of twolf

113

are hundreds of times smaller than those of equake. This agrees with the fact that both

caps-pred and caps-real label t'Wolf insensitive and equake sensitive.

Table 4.4· Overall Performance Degradation Factors and Unfairnest-> Factors
Performance Deg. (%) Unfairness (%)
factor reduction factor reduction

default 20.0 - 11.6 --

caps-pred 13.5 32.6 6.2 46.9
caps-real 13.4 33.3 6.0 48.5

These results demonstrate the potential of the locality model in supporting job co-

scheduling. The performance of actual on-line schedulers depends on many other factors,

such as the job arrival time and order, system load balance and its dynamic adjustment,

job priorities, and so forth. c

Overhead of CAPS. The major runtime overhead of CAPS consists of the prediction of

standalone reuse signatures and the computation of sensitivities, both determined by the

granularity of standalone reuse signatures. Since reuse distances smaller than cache size

are more critical for CAPS, reuse signatures organize them in linear scale (1K distance per

bar), and use log scale for others. Because each bar in a signature corresponds to one linear

function, there are A+ log(N / L) linear functions to solve in the reuse-signature prediction,

where, A is the number of bars in the linear range, N is program data size (the upper bound

of reuse distance), and Lis cache line width. The computation of sensitivity relies on only

reuse distances smaller than cache size, because only those references can be the victims of

cache contention. Thus, the time complexity is O(A).

In our experiments, L = 64, A is 64 and N is from 32,606 (crafty) to 4.1 million (gap)

with average of 1.0 million. The numbers of linear functions range from 79 to 86 per

program. The computation cost of CAPS is negligible.

114

4.4.4 Influence of Prediction Errors on Co-Scheduling

'vVe feed CAPS the predicted memory behaviors to test the influence of the prediction errors

on co-scheduling. Figure 4.6 shows the average performance degradation of the benchmarks

included in Table 4.1. The baseline is an a posteriori schedule, which is the best over all

possible ,;chedules. We obtained it by applying the minimum-weight perfect matching to

all real co-runs. (Recall that the algorithm minimizes the total degradation.) The random

bar shows the average result of 100 random schedules. It reflects the performance of the

default scheduler in the current CMP system.

2.5

c 2

I
:::>

6 s 1.5

I
U+:: ..., "' 1 I
cu-e

I
N fU = "' "" E ~ o.s
0 z 0

a posteriori CAPS-real CAPS-pred random

Figure 4.6: The average performance degradation under different schedules. The "a posteriori"
schedule is the best schedule obtained on all co-run information: "CAPS-real" is the schedule by
CAPS on real single-run behaviors; "CAPS-pred" is the schedule by CAPS on single-run behaviors
predicted by the models described in Chapter 3; "random" reflects the default schedule in the CMP
system.

4.5 Related Work

Recent years have seen a number of studies on scheduling in CMP. Some concentrate on

scheduling threads in a single application. For example, thread clustering [67] tries to

recognize patterns of data sharing using hardware performance counters and locates threads

accordingly. The technique cannot apply to the problems discussed in this chapter as no data

are shared among jobs. Some studies [39] tackle the scalability and fairness of scheduling

on CMP, but without considering interferences on shared cache in the fairness criterion.

Some studies [31, 70] conduct theoretical analysis to uncover the complexity of optimal

co-scheduling on CMP. They are useful for offiine analysis but not for runtime scheduling.

115

This section concentrates on the studies that schedule independent jobs to reduce the

interferences on shared cache. Most of those studies have used simulators (e.g., [23, 20,

53, 59]), whereas, we use a real machine for all the experiments. Furthermore, CAPS has

applicability different from previous techniques (elaborated next). \Ve hence concentrate

on qualitative comparisons.

First, the applicability of CAPS differs from prior techniques. Unlike techniques based

on cache activity vectors or other hardware extensions (e.g., [20, 53, 64]), this work is

a pure software solution applicable to existing systems. On the other hand, hardware

extensions may reveal fine-grained cache conflicts, complementary to the coarse-grained

locality information used in this work.

Previous explorations in scheduling for CMP or SMT rely on either hardware perfor

mance counters or offline memory profiling, showing different applicability from CAPS. The

cache-fair scheduling [23] from Fedorova et. al. is applicable when the processes have various

cache-access patterns and have already been labeled either cache-fair or best-effort. Its main

goal is performance isolation, accomplished by controlling CPU timeslice allocation instead

of process assignment. Zhang et al. use hardware counters to guide scheduling on SMP

machines without shared caches [74]. Snavely et al. have proposed symbiotic scheduling,

which is based on sampling of various co-runs [59, 14], suiting the problems having a small

number of jobs and processors. Some explorations use offline collected memory information

to guide scheduling [20, 10]. They use the same program inputs for training and testing,

not applicable to input-sensitive programs.

CAPS overcomes the above constraints, but requires each process of interest to be

equipped with a cross-input predictive locality model (whose construction, fortunately, can

be transparent to the users of CAPS as discussed in Section 4.3.2). The combination of

CAPS with runtime sampling-based techniques may be beneficial: The former overcomes

scalability issues, and the latter offers on-line adaptivity. In addition, the combination of

CAPS with locality phases [56] may add adaptivity to phase shifts as well.

116

4.6 Summary

This chapter, based on the concept of concurrent reuse distance, develops the design of

cache-contention aware proactive scheduling(CAPS). For batch processing, we adopt the

performance prediction model in Chapter 3 to predict the co-run performance degradations

and then use algorithms proposed in Chapter 2 to find the schedule. For online processing,

it presents a lightweight locality model for shared-cache contention prediction. The model

offers the basis for a runtime contention-aware proactive scheduling system. Experiments

on a recent CMP machine demonstrate the effectiveness of the technique in alleviating cache

contention, improving both system performance and fairness. On the high level, this work

shows the potential of combining program behavior analysis by programming systems and

global resource management by operating systems. Interactions between these two layers

may also help other issues in computing systems.

Chapter 5

Other Work

This chapter briefly describes two techniques that relate with the maximization of the com

puting efficiency on CMP. The first one is correlation based proactive program behaviors.

As mentioned at Chapter 3, our performance prediction model is input sensitive. To ac

curately predict the co-run performance degradation, we need characterize program input

efficiently. The program behavior analysis offers a possible solution to tackle this problem.

The second is adaptive software speculation. This technique can dynamically reduce the in

stances of useless speculative threads, hence increasing the system throughput and reducing

energy consumption.

5.1 Correlation-Based Program Behavior Analysis

Accurate prediction of program behaviors is the basis of various program optimizations.

Program behaviors refer to the operations of a program and the ensuing activities of the

computing system, in relation to the input and running environment. Examples include

memory references, data values, function calling frequencies, and so on. The prediction

of program behaviors critically determines how optimizers transform a program and the

resulting performance. As the complexity in modern hardware and software continuously

grows, accurate behavior prediction becomes both more important and more challenging

than before.

117

118

Besides accuracy, two other properties of behavior prediction are essential for optimiza

tions: scope and timing. The scope of a prediction may be a small execution interval,

a loop, a procedure, or the entire program. The larger the scope is, the more likely the

optimizer is able to avoid local-optimum traps when making optimization decisions. The

third property, the timing of prediction, refers to when a prediction can occur. The earlier

the prediction occurs, the earlier an optimization can happen, and the larger the portion

of the execution that may benefit from the resulting code. We also call the earliness the

proactivity of a prediction.

In existing program optimizers, behavior predictions are based on either training runs (in

profiling-based optimizers) or runtime sampling (in runtime optimizers). Their strategies are

essentially the same: using the behaviors of a program component (e.g., a procedure or loop)

observed previously (in either a training run or the earlier part of the current execution) to

predict the future behaviors of the same component. This strategy, although effective for

many programs, can lead to a proactivity-adaptivity dilemma: Predictions based on training

runs have good proactivity, but cannot adapt to input changes, whereas, predictions based

on runtime sampling have good adaptivity but limited scope and proactivity.

Recent studies show that prediction based on program inputs may gain the strengths

of both approaches, improving optimizations significantly. For instance, improvements of

7%-21% have been observed on a variety of .Java programs [42]. However, that approach

relies on programmers' manual specifications on program inputs. An automatic solution to

the proactivity-adaptivity dilemma remains an open question.

We attack the problem by exploiting the correlations among the behaviors of program

components. The intuition is simple. Consider the trip-counts (number of iterations) of two

loops, Ll and L2. Suppose that they strongly correlate with each other (e.g., the trip-counts

of Ll are always about double those of L2). Then, as soon as the trip-counts of one of them

become known in an execution, the trip-count of the other will be easily predicted.

In this work, we first find that strong statistical correlations exist not only among the

behaviors of different program components commonly, but also among different types of

119

program-level behaviors (e.g., loop trip-counts versus data values). Even though conditional

branches in a program sometimes weaken the correlations between loops and basic block

execution frequencies, overall, strong statistical correlations exist between loop trip-counts,

and from loop trip-counts to other types of behaviors. It suggests the possibility of using the

correlations for runtime behavior prediction. When the values of certain types of behaviors

of some program components (e.g., a set of loop trip-counts) are exposed in an execution,

we may use them as the predictors of the behaviors of other (to-be-executed) components

in the program. This kind of prediction is both proactive, occurring before the execution of

the other program components, and adaptive, being specific to the current input data set.

We then introduce a technique to exploit the correlations for program behavior predic

tion and optimizations. The technique centers on a new concept, seminal behaviors, which

refers to a small set of behaviors that strongly correlate with most other behaviors in the

program, and meanwhile, expose their values early in typical executions.

We select two types of behaviors as the candidates for seminal behaviors. The first

is program interface behavior-s, which mainly include the values directly obtained from

program inputs. Specifically, this type of behaviors include the values obtained directly

from command lines and file operations. The second type of behaviors we include are the

trip-counts of all the loops in the program. This inclusion is due to the importance of loops

and the correlations between loop trip-counts and other program behaviors.

From the definition of seminal behaviors, we know that they must be able to lead to

accurate prediction of other behaviors. For a given set of behaviors B, we define pr-edictive

capability of a set S as the number of behaviors in the set B - S that can be predicted from

S with an accuracy above a predefined threshold (80% in this study).

For the reduction of complexity, we take a simplification as follows. We limit B to

loop trip-counts during the examination of the predictive capability of different candidate

behavior sets. The intuition is that because there are strong correlations between loops and

other types of behaviors, the sets selected in this way are likely to show good predictive

capability on other types of behaviors as well.

120

The computation of predictive capabilities in our experiments is based on the standard

10-fold cross-validation [26]. It works iteratively. Suppose we did N profiling runs of a

program, and obtained N instances of Sand B. In each iteration, 9/10 of theN instances

are used to construct predictive models from S to B, and the other 1/10 are used to test

the model for prediction accuracy.

We take an incremental approach, which gradually builds a number of affinity lists. An

affinity list is a list consisting of two sets of behaviors, a header set and a body set, such

that the values of the behaviors in the header can lead to accurate prediction of the values

of those behaviors in the body.

The union of the headers of the affinity lists forms a possible seminal behavior set as

all other candidate behaviors are predictable from it. These header sets may be ranked in

a descending order of the sizes of their bodies. The exclusion of the low-rank header sets

may have little influence on the prediction of most behaviors.

We employ two standard regression techniques, namely LMS linear regression and Re

gression Trees [26]. The former handles linear relations among behaviors, the latter for

non-linear relations. The construction process applies Regression Trees only if the linear

regression results are not good enough (automatically assessed through cross-validation).

During the construction of the first affinity list, the standard forward stepwi:se feature se

lection [26] is used so that only important interface behaviors are stored in the header.

Both LMS and Regression Trees models are efficient to build and use. The resulting

models are represented by only a small number of coefficients (for linear models) and ques

tions (for Regression Trees). (We limit the tree size to be no greater than 10.)

In our experiment, most of performance related program behaviors can be predicted

from the seminal behaviors with over 90% accuracy. The high accuracy indicates that this

technique can be used efficiently for cross-input adaptation.

121

5.2 Adaptive Speculation

Recent years have seen a rapid shift of processor technology to favor chip multiprocessors.

Many existing programs, however, cannot fully utilize all CPUs in a system yet, even though

dynamic high-level parallelism exists in those programs. Examples include a compression

tool processing data buffer by buffer, an English parser parsing sentence by sentence, and

an interpreter interpreting expression by expression, and so on. These programs are com

plex and may make extensive use of bit-level operations, unrestricted pointers, exception

handling, custom memory management, and third-party libraries. The unknown data ac

cess and control flow make such applications difficult if not impossible to parallelize in a

fully automatic manner. On the other hand, manual parallelization is a daunting task for

complex programs, especially for those pre-existing ones. Moreover, the complexity and

the uncertain performance gain due to input-dependence make it difficult to justi{y the

investment of time and the risk of errors of the manual efforts.

Software speculation has recently shown promising results in parallelizing such pro

grams [15, 69]. The basic idea is to dynamically create multiple speculative processes (or

threads), which each skips part of the program and speculatively executes the next part.

As those processes run simultaneously with the main process, their successes shorten the

execution time.

But speculative executions may fail because of dependence violations or being too slow

to be profitable. In systems with no need for rollback upon speculation failures-such as the

behavior-oriented parallelization (BOP) system [15], failed speculations result in the waste

of computing resources (e.g., CPU and memory) and hence inferior computing efficiency.

The waste is a serious concern especially for multi-programming or power-constrained en

vironments (e.g., laptops, embedded systems.) For systems where rollback is necessary, an

additional consequence is the degradation of program performance.

Therefore, the avoidance of speculation failures is important for the cost efficiency of

modern machines. Previous studies----mostly in thread-level speculation-have tried to

122

tackle this problem through profiling-based techniques (e.g., [18, 72, 35].) The main idea is

to determine the regions in a program that are most beneficial for speculation by profiling

some training runs.

The strategy, however, is often insufficient for coarse-grained software speculation, be

cause of the input-sensitive and dynamic properties of the parallelism. In a typical ap

plication handled by software speculation, the profitability (i.e., likelihood to succeed) of

a speculative region often differs among executions on different program inputs, or even

among different phases of a single execution. The profiling-based region selection can help,

but unfortunately, is not enough for software speculation to adapt to the changes in program

inputs and phases.

This work proposes adaptive speculation. The goal is to make BOP avoid unprofitable

speculations but meanwhile keep profitable speculations unaffected, hence improving the

cost-efficiency without sacrificing the parallelized program performance. As a side benefit,

adaptive speculation can also make BOP easier to use by allowing users to label PPRs more

flexibly: The unprofitable PPRs will be turned off automatically.

It is however difficult to predict speculation profitability through program code analysis,

because the profitability depends on program inputs and runtime behavior. By treating the

problem as a statistical learning task, we develop two adaptive algorithms that are able

to learn the profitability patterns of a PPR during runtime. A complexity in the learning

is that the profitability of the earlier instances is not always unveiled: If a PPR instance

is not executed speculatively, BOP cannot determine its profitability. The two algorithms

manage to learn from the partial information and adapt themselves to the clynamic changes

in profitability patterns.

The first algorithm is an extension to last-value predictors and uses a dynamically

adjustable threshold for adaptation. The second algorithm exploits long-term history and

offers more flexibility in control by separating different factors apart. Both algorithms are

reconfigurable, providing some "knobs" for users to adjust the tradeoff between parallelism

exploitation and cost savings.

123

We implement both techniques in BOP [15], a recent software speculation system. Eval

uations on a chip multiprocessor machine demonstrate that the proposed techniques are

effective in preventing unprofitable speculations without sacrificing profitable ones. The

techniques help BOP save a significant amount of cost, and meanwhile, cause little decrease

but often increase to the program performance. The cost efficiency is enhanced significantly.

5.3 Summary

This section briefly discusses two techniques related with the enhancement of computing

efficiency on CMP. The first is correlation-based program-level behavior analysis. By em

ploying a set of statistical learning techniques, we can use the values of a small set of

seminal behaviors to predict other kinds of program behaviors. This technique can facili

tate the cross-input adaptation in job co-scheduling. The second one is adaptive software

speculation. It can dynamically reduce the number of useless speculative threads and hence

improve the overall schedule quality on the system.

Chapter 6

Conclusion

On-chip resource sharing among sibling cores causes resource contention on CMP, consid

erably degrading program performance and system fairness. Job co-scheduling attempts to

alleviate the problem by assigning jobs to cores appropriately. There are two challenges for

obtaining a good schedule. First, how to find the best schedules if we have the information

that how the jobs interact with other jobs on the samf' CMP. Second, how to predict the

interaction among jobs. This dissertation proposes several techniques for answering these

two questions.

This dissertation first concentrates on the analysis and design of algorithms based on

the assumption that we know the performance degradations of all the possible co-run cases.

We investigate the scenarios with two different goals: minimizing total cost and minimizing

the makespan.

We prove that the job co-scheduling is NP-Complete on systems with more than two

cores per chip for both cases. For dual core system without job migrations, we propose

optimal algorithms for both goals. If the goal is to minimize the total cost, the problem

can be solved by adopting a classic graph algorithm, minimal weighted perfect matching

algorithm. The optimal solution can also be obtained for minimizing the rnakespan by using

graph perfect matching algorithms.

If the number of cores is greater than two, the optimal solution cannot be acquired in

polynomial time unless P=NP. In this case, we present a set of heuristics to approximate

124

125

the optimal schedule. When the job migration is not allowed, we proposed a hierarchi

cal algorithm and a greedy algorithm. If the job migration is allowed, we design a A-star

and cluster based algorithm and local matching algorithms. Experiments on both real and

synthetic problems validate the optimum of the results by the optimal co-scheduling algo

rithms, and demonstrate the effectiveness of the heuristics-based algorithms in producing

near-optimal schedules with good efficiency and scalability.

The second part of this dissertation aims to understanding the interaction among pro

grams running on the same CMP. We present some techniques to reveal the influence of

cache sharing on program cache performance by uncovering the inherent connections be

tween the locality of program single-runs and that of their co-runs.

We formulate the problem of predicting co-run cache contention as a problem of the

prediction of program inclusive reuse signatures-which is a summary of LRU stack dis

tances on a shared cache with all cache sharers' data references considered--and conduct a

theoretical analysis to expose the inherent statistical connections between single-run mem

ory behavior and co-run inclusive reuse signatures. The theoretical analysis sheds insights

on the prediction of co-run performance from single-run data locality. In light of that, we

develop a lightweight model for efficiently predicting co-run data locality (or cache usage)

from the memory reference patterns of the programs' single-runs. The high efficiency of the

model is the key to its uses in shared-cache management. It achieves the efficiency mainly

by capitalizing on the connection between time and locality. Finally, we implement a proac

tive job co-scheduling system to demonstrate the potential benefits of the co-run locality

model. The scheduling achieves close-to-optimal results, cutting cache-contention caused

performance degradation by as much as 63% on average, improving program performance

by 9% on average (up to 50% for individual applications.)

To make the predictive model lightweight enough for online scheduling, we further re

duce the overhead of the model by introducing a competitiveness and sensitivity model.

Competitiveness and sensitivity respectively characterize the statistical expectation of the

influence. This model can compute the sensitivity of a program online and then schedule

126

a sensitive program with an insensitive program onto the same dual-core system. Exper

imental results show that this balanced job co-schedule scheme can improve the overall

performance by 7%.

Modern computing has exhibited the trends towards highly parallel, heterogeneous pro

cessors and increasingly complicated software running on a multi-layered execution stack.

Along with the trends, effective co-run performance prediction and resource management

become more critical than ever for the maximization of computing efficiency. This disser

tation has described our multi-dimensional efforts to tackle the challenges on multi-socket,

multi-core systems. It lays the foundation for locality analysis on systems with non-uniform

relations among cores, and offers a set of algorithms and techniques for analyzing and pre

dicting the interactions among co-running threads or processes, hence preparing for an array

of resource management in current and future computing systems.

Bibliography

[1] Gnu linear programming kit. texttt http:/ /www.gnu.org/software/glpk/glpk.html.

[2] The linux kernel archives. http: I /www. kernel. org.

[3] E. BERG, HAKAN ZEFFER, AND E. HAGERSTEN. A statif>tical multiproce5sor cache
model. In Procecdmg.s of IEEE Internatzonal Symposzum on Performance Analys2.s of
Systems and Software, pages 89-99, 2006.

[4] P. BERUBE AND J. N. AMARAL. Benchmark design for robust profile-directed opti
mization. In Standard Performance Evaluatzon Corporatwn (SPEC) Workshop, 2007.

[5] K. BEYLS AND E.H. D'HOLLANDER. Reuse distance as a metric for cache behavior.
In Proceedmgs of the lASTED Conference on Parallel and D1stnbvted Compvtmg and
Systems, pages 617-662, August 2001.

[6] C. BIENIA, S. KUMAR, J. P. SINGH, AND K. LI. The PARSEC benchmark suite:
characterization and architectural implications. In Proceedmgs of InfPrnatzonal Con
ference on Parallel Archztectures and Compzlatzon Technzques, pages 72-81, 2008.

[7] S. BROWNE, C. DEANE, G. Ho, AND P. Mucci. PAPI: A portable interface to
hardware performance counters. In Proceed2ngs of Department of Defense HPCMP
Users Group Conference, 1999.

[8] JAMES R. BULPIN AND IAN A. PRATT. Hyper-threading aware process 5cheduling
heuri8tics. In 2005 USENIX Annual Techrucal Conference, pages 103-106, 2005.

[9] C. CASCAVAL, L. DEROSE, D. A. PADUA, AND D. REED. Compile-time based per
formance prediction. In Proc. of the 12th Intl. Workshop on Languages and Comp2lers
for Parallel Comp1dmg, 1999.

[10] D. CHANDRA, F. Guo, S. KIM, ANDY. SOLIHIN. Predicting inter-thread cache con
tention on a chip multi-processor architecture. In Proceedmg.s of the Internatzonal Sym
poswm on H2gh Performance Computer Arch2tecture (HPCA), pages 340-351, 2005

[11] W. COOK AND A. ROHE. Computing minimum-weight perfect matchings. INFORMS
Journal on Computzng, 11:138--148, 1999.

[12] S. DANDAMUDI. Hzerarchzcal Schedulmg zn Parallel and Cluster Systems. Kluwer,
2003.

127

http://www.gnu.org/software/glpk/glpk.html
http://www.kernel.org

128

[13] P. DENNING. Thrashing: Its causes and prevention. In Proceedmgs of the AFIPS 1968
Fall Jmnt Computer Conference, volume 33, page;, 915-922, 1968.

[14] M. DEVUYST, R. KUMAR, AND D. M. TULLSEN. Exploiting unbalanced thread
scheduling for energy and performance on a cmp of smt processors. In Proceedzngs of
Internatwnal Parallel and Dzstrzbute Processmg Symposzum (IPDPS). 2006.

[15] C. DING, X. SHEN, K. KELSEY, C. TreE, R. HUANG, AND C. ZHANG. Software
behavior-oriented parallelization. In Proceedmgs of ACM SIGPLAN Confer·ence on
Programmmg Languages Deszgn and Implementatwn, San Diego, USA. 2007.

[16] C. DING AND Y. ZHONG. Predicting whole-program locality with reuse distance anal
ysis. In Proceedzngs of ACM SIGPLAN Conference on Programmzng Language Deszgn
and Implemcntatwn, pages 245-257, San Diego, CA, June 2003.

[17] X. DING, J. LIN, Q. Lu, P. SADAYAPPAN, AND Z. ZHANG. Gaining insightb mto
multicore cache partitioning: bridging the gap between simulation and real systems.
In Proceedzngs of the Internatwnal Sympostum on Hzgh-Performance Computer Archz
tecture (HPCA). pages 367-378, 2008.

[18] Z. Du, C. LIM, X. Lr, C. YANG, Q. ZHAO, AND T. NGAI. A cost-driven compilation
framework for ;,peculative parallelization of sequential programs. In Proceedzngs of
ACM SIGPLAN Conference on Programmmg LanguagPs De.szgn and Irnplementatwn,
2004.

[19] J. EDMONDS. Maximum matching and a polyhedron with 0,1-vertices. Jmtrnal of
Research of the Natzonal Bureau of Standards B, 69B:125-130, 1965.

[20] ALI EL-MOURSY, R. GARG, D. H. ALBONESI, AND S. DWARKADAS. Compatible
phase co-scheduling on a cmp of multi-threaded processors. In Proceedzngs of the
Internatwnal Parallel and Dzstrzbute Processmg Symposzum (IPDPS). 2006.

[21] C. FANG, S. CARR, S. ONDER, AND Z. WANG. Feedback-directed mommy disam
biguation through store distance analysis. In Pmceedmgs of the 20th A CM Intcrnatwnal
Conference on Supercomputmg, 2006.

[22] A. FEDOROVA, M. SELTZER, C. SMALL, AND D. NuSSBAUM. Performance of multi
threaded chip multiprocessors and implications for operating system design. In Pm
CPedmgs of USENIX Annual Techmcal Conference, 2005.

[23] A. FEDOROVA, M. SELTZER, AND M. D. SMITH. Improving performance bolation on
chip multiprocessors via an operating system ;,cheduler. In Proceedzngs of the Interna
twnal Confer·ence on Parallel Archztecture and Compzlatwn Technzques, pages 25-38,
2007.

[24] R.N. GABOW AND R. E. TARJAN. Faster ;,caling algorithms for general graph
matching problems. Journal of ACM, 38:815-853, 1991.

[25] M.R. GAREY AND D.S. JOHNSON. Computers and Intractabzlzty. Feeman, San Fran
cisco, CA. 1979.

129

[26] T. HASTIE, R. TIBSHIRANI, AND J. FRIEDMAN. The element5 of statzstzcallearnzng
Springer, 2001.

[27] D. S. HOCHI3AUM. Approxzmatzon Algorzthms for NP-Hard Problems PWS Publishing
Company. 1995.

[28] L. R. Hsu, S. K. REINHARDT, R. LYER, AND S MAKINENI. Communist, utilitarian,
and capitalist cache policies on CMPs: cacheo, a~:o a ~:ohared resource. In Proceedzngs
of the Intcrnatzonal Conference on Parallel Archztecture and Compzlatwn Tcchmques,
pages 13~22, 2006.

[29] J. HuH, C. KIM, H. SHAFI, L. ZHANG, D. BuRGER, AND S.W. KECKLER A nuca
o,ubstrate for flexible cmp cache sharing. In Proceedzngs of Internatzonal Conference
on Supcrcomputzng, pages 31~40, 2005.

[30] Y. JIANG AND X. SHEN. Exploration of the influence of program inputs on cmp co
schedulmg. Iu European Conference on Parallel Computmg (Euro-Par), Augur,t 2008.

[31] Y. JIANG, X. SHEN, J. CHEN, AND R. TRIPATHI. Analyo,is and approximatwn of
optimal co-scheduling on chip multiprocessors. In Proceedzngs of the Internatzonal
Conference on Parallel Architecture and Compzlatwn Techmquec, (PACT), pagef:> 220~
229, October 2008.

[32] Y. JIANG, K. TIAN, AND X. SHEN. Combining locality analysis with online proactive
job co-t>cheduling in chip multiprocessor&. In Proceedzngs of The Internatwnal Confer
ence on Hzgh Performance Embedded Archztectures and Compzlatzon (HzPEAC). pages
201~215, 2010.

[33] Y JIANG, E. ZHANG, K. TIAN, A.!'<D X. SHEN. Is reuse distance applicable to data lo
cality analysis on chip multiprocessors? In Proceedzngs of the Internatzonal Conference
on Compzler Constructzon, 2010.

[34] YUNLIAN JIANG AND XIPENG SHEN. Exploration of the influence of program inputs
on cmp co-&cheduling. In Proceedzngs of the 14th znternabonal Euro-Par conference on
Parallel Proce88zng, Euro-Par '08, pages 263~273, Berlin, Heidelberg, 2008. Springer
Verlag.

[35] T. A JoNI-ISON, R EIGENMANN, AND T. N VIJAYKUMAR. Speculative thread
decompo&ition through empirical optimization. In Proceedzng8 of the ACM SIGPLAN
Symposzum on Prznczples Practtce of Parallel Programmzng, March 2007.

[36] R. KARP. Reducibility among combinatiorial problems In Complex?ty of Computer
Computatzon8, R.E Miller and J.W. Thatcher. editors, pages 85~ 103. Plenum Press,
1972

[37] S. KIM, D. CHANDRA. ANDY. SOLIHIN. Fair cache sharing and partitiomng in a ch1p
multiprocessor architecture. In Proceedzng8 of the Internatzonal Conference on Parallel
Arclutecture and Compzlatzon Techmque8, 2004.

[38] JosePH Y-T. LEUNG. Handbook of Schedulzng. Chapman & HallCRC, 2004.

130

[39] T. LI, D. BAUMBERGER, AND S. HAHN. Efficient and scalable multiprocessor fair
scheduling using distributed weighted round-robin. In Pmceedmqs of ACM Symposwm
on Pnnczples and Practzce of Parallel Programmzng, pages 65-74, 2009.

[40] C-K LUK ET AL. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedzngs of the ACM SIGPLAN conferpnce on Programmzng
language deszgn and zmplementatwn, pages 190-200, Chicago, Illinois, June 2005.

[41] P. 8. MAGNUSSON, M. CHRISTENSSON, J. ESKILSON, D. FORSGREN, G. HALLBERG,
J. HOGBERG, F. LARSSON, A. MOESTEDT, AND B. WERNER. Simic~o: A full :;ystem
simulation platform. Computer, 35:50-58, 2002.

[42] F. MAO AND X. SHEN. Cross-input learning and discriminative prediction in evolvable
virtual machine. In Proceedzngs of the Intematwnal Sympo5zum on Code Generatwn
and Opt?mzzatwn (CGO}, pages 92-101, 2009.

[43] G. MARIN AND J. MELLOR-CRUIVIMEY. Cross architecture performance prediction~:>
for scientific applications u~oing parameterized model:;,. In Pmceedzngs of Joznt Inter
natwnal Conference on Meas·urement and Modelzng of Computer Sysfpms, New York
City, NY, June 2004.

[44] M. MARTIN, D. J. SORIN, B. M. BECKMANN, M. R. MARTY, M. Xu, A. R.
ALAMELDEEN. K. E. MOORE, M. D. HILL, AND D. A. WOOD. Multifacet's general
execution-driven multiprocessor simulator (GEMS) toolset. Computer· Archztecture
News, September 2005.

[45] R. L. MATTSON, J. GECSEI, D. SLUTZ, AND I. L. TRAIGER. Evaluation techniques
for storage hierarchies. IBM System Joumal, 9(2):78-117, 1970.

[46] J.D. McCALPIN. Memory bandwidth and machine balance in current high perfor
mance computers. IEEE TCCA New.~letter, 1995. http:/ jwww.cs.virginia.edu/stream.

[47] S. MEHROTRA. On the implementation of a primal-dual interior point method. SIAM
Joumal on Optzmzzatwn, 2:575-601, 1992.

[48] 8. PAREKH, 8. EGGERS, H. LEVY, AND J. LO. Thread-sensitive scheduling for :;mt
proce::,~oors. Technical Report 2000-04-02, University of Wa:;hington, June 2000.

[49] M. K. QuRESHI ANDY. N. PATT. Utility-ba::,ed cache pmtitioning: A low-overhead.
high-performance, runtime mechanism to partition ::,hared caches. In Proceedzngs of
the Internatwnal Symposzum on Mzcroarchztecture, page::; 423-432, 2006.

[50] N. RAFIQUE, vV. LIM, AND M. THOTTETIIODI. Architectural support for operating
system-driven CMP cache management. In Proceedzngs of the Intematwnal Conference
on Parallel Archztecture and Compzlatwn Techmques, pages 2-12, 2006.

[51] 8. RUSSELL AND P. N ORVIG. Artzficwl Intellzgence. Prentice Hall. 2002.

[52] S. SARKAR AND D. TULLSEN. Compiler technique~:> for reducing data cache mis:; rate on
a multithreaded architecture. In Proceedzngs of The HzPEAC Internatwnal Conference
on Hzgh Performance Embedded Archztectures and Compzlatwn, pages 353 368, 2008

http://www.cs.virginia.edu/stream

131

[53] A. SETTLE, J. L. KIHM, A. JANISZEWSKI, AND D. A. CONNORS. Architectural sup
port for enhanced SMT job scheduling. In Proceedzngs of the Internatzonal ConfeTence
on Pamllel ArchztecfuTe and Compzlatzon Technzques, pages 63-73, 2004.

[54] X. SHEN AND J. SHAW. Scalable implementation of efficient locality approximation.
In Pmceedzngs of the Internatzonal WoTkshop on Languages and CompzleTs joT Pamllel
Computzng, 2008.

[55] X. SHEN, .J. SHAW, B. MEEKER, AND C. DING. Locality approximation using time.
In Proceedmgs of the ACM SIGPLAN Conference on Prmczples of Programmzng Lan
guages (POPL), pages 55-62, 2007.

[56] X. SHEN, Y. ZHONG, AND C. DING. Locality phase prediction. In Pmceedzngs of the
Internatzonal Con{eTence on ATchztectural SuppoTt .faT Programmzng Languages and
Opemtznq Systems, pages 165-176, 2004.

[57] T. SHERWOOD, E. PERELMAN, G. HAMERLY, AND B. CALDER. Automatically char
acterizing large scale program behavior. In Pmceedzngs of Internatzonal ConfeTence
on ATchztectuml SuppoTt joT Pmgmmmzng Languages and Opemtzng Systems, pages
45-57, 2002.

[58] A. J. SMITH. On the effectiveness of set aso,ociative page mapping and its applications
in main memory management. In Pmceedmgs of the 2nd InteTnatzonal Con.feTence on
SoftwaTe Engzneerzng, pages 286-292, 1976.

[59] A. SNAVELY AND D.M. TULLSEN. Symbiotic jobscheduling for a simultaneous mul
tithreading processor. In PToceedzngs of the Internatzonal Conference on ATchztect'Uml
Suppor-t joT Pmgmmmzng Languages and Opemtzng Systems, pages 66-76. 2000.

[60] A. SNAVELY, D.M. TULLSEN, AND G. VOELKER. Symbiotic jobscheduling with prior
ities for a simultaneous multithreading processor. In Proceedzngs of the Joznt Intema
tzonal ConfeTence on Measurement and Modelzng of ComputeT Sy,.,tern,.,, pages 66-76,
2002.

[61] Y. SOLIHIN, V. LAM, AND J. TORRELLAS. Seal-tool: Pinpointing and quantifying
scalability bottlenecks in dsm multiprocessors. In Pmceedzng8 of the 1999 ConfeTence
on SupeTcomputzng, 1999.

[62] SPLASH. Stanford parallel applicationo, for o,hared memory (SPLASH) benchmark.
http://www-flash.stanford.edu/SPLASH/.

[63] H.S. STONE, .J. TUREK, AND .J.L. WOLF. Optimal partitioning of cache memory.
IEEE Tmnsactzon8 on ComputeTs, 41(9). September 1992.

[64] G. SuH, L. RuDOLPH, AND S. DEVADAS. Dynamic partitioning of shared cache
memory . .lo'Urnal of SupeTcornputzng, 28:7-26, 2004.

[65] G.E. SuH, S. DEVADAS, AND L. RuDOLPH. Analytical cache models with appli
cations to cache partitioning. In Proceedzngs of the 15th znternatwnal confeTence on
S'UpeTcomputzng, 2001.

http://www-flash.stanford.edu/SPLASH/

132

[66] G.E. Sun, S. DEVADAS, AND L. RUDOLPH. A new memory monitoring scheme for
memory-aware scheduling and pmtitioning. In Proceedzngs of the 8th Internatwnal
Symposzum on Hzgh-Performance Compvter Archztectvre, pages 117-128. 2002.

[67] D. TAM. R. AZIMI, AND M. STUMM. Thread clustering: sharing-aware scheduling on
SMP-CMP-SMT multiprocessors. SIGOPS Oper. Syst. Rev., 41(3):47-58, 2007.

[68] D. THIEBAUT AND H.S. STONE. Footprints in the cache. ACM Tranwctwns on
Computer Systems, 5(4), 1987.

[69] C. TIAN, M. FENG, V. NAGARA.JAN, AND R. GUPTA. Copy or discard execution
model for speculative parallelization on multicores. In Proceedmgs of the Internatwnal
Symposwm on Mzcroar-chztecture, 2008.

[70] K. TIAN, Y. JIANG, AND X. SHEN. Astudyonoptimallyco-schedulingjobsofdifferent
lengths on chip multiprocessors. In Procecdmgs of ACM Computmg Fmntzer-s, pages
41-50, 2009.

[71] N. TUCI< AND D. M. TULLSEN. Initial observations of the simultaneous multithreading
Pentium 4 processor. In Proceedmgs of Internatwnal Conference on Parallel Ar-chztec
tures and Compzlatwn Techmques, pages 26-35, 2003.

[72] T.N. VIJAYI<UMAR AND G.S Som. Task selection for a multiscalar processor. In
Pmceedzngs of the Internatwnal Symposzum on Mzcmar-chztecture, December 1998.

[73] E. Z. ZHANG, Y. JIANG, AND X. SHEN. Does cache sharing on modern cmp matter
to the performance of contemporary multithreaded programs? In PPoPP '10: Pro
ceedmgs of the 15th ACM SIGPLAN Symposzum on Pnnczples and Pmctzce of Pamllel
Pmgmmmmg, pages 203-212, 2010.

[74] X. ZHANG, S. DWARI<ADAS, G. FOLI<MANIS, AND K. SHEN. ProceHsor hardware
counter statistics as a first-cla!>s system resource. In Pmceedmgs of the 11th Workshop
on Hot Topzcs m Operatmg Systems. 2007.

[75] Y. ZHANG. Solving large-scale linear programs by interior-point methods under the
matlab environment. Technical Report 96-01, University of Maryland, July 1995.

[76] Y. ZHONG, S. G. DROPSHO, X. SHEN, A. STUDER, AND C. DING. Miss rate predic
tion across program inputs and cache configurations. IEEE Tramactwns on Comput
ers, 56(3):328-343, March 2007.

[77] Y. ZHONG, M. ORLOVICH, X. SHEN, AND C. DING. Array regrouping ami structure
splitting usmg whole-program reference affinity. In Proceedmgs of ACM SIGPLAN
Conference on Pmgrammzng Language Deszgn and Implementatzon, pages 255-266.
June 2004.

[78] S. ZIIURAVLEV, S. BLAGODUROV, AND A. FEDOROVA. Addressing shared resource
contention in multicore processors via scheduling. In Pmceedmgs of the mternatwnal
conference on Ar-chztectural support for programmmg languages and operatzng systems,
pages 129-142, 2010.

133

VITA

Yunlian Jiang

Yunlian Jiang received his Bachelor of Engineering and Master of Engineering degrees, both

in Computer Science, from the University of Science and Technology of China in 2003 and

2006 respectively. He has been a PhD student in the Department of Computer Science at

the College of William and Mary since 2006. He has become a PhD candidate since 2008.

His research interests lie in compiler technology, program language analysis, shared cache

and memory management, program locality analysis, input-centric computing and dynamic

program optimization.

	Analysis and Approximation of Optimal Co-Scheduling on CMP
	Recommended Citation

	ProQuest Dissertations

