3

% WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2011

Analysis and Approximation of Optimal Co-Scheduling on CMP

Yunlian Jiang
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

6‘ Part of the Computer Sciences Commons

Recommended Citation

Jiang, Yunlian, "Analysis and Approximation of Optimal Co-Scheduling on CMP" (2011). Dissertations,
Theses, and Masters Projects. Paper 1539623351.

https://dx.doi.org/doi:10.21220/s2-tjmj-8k82

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-tjmj-8k82
mailto:scholarworks@wm.edu

Analysis and Approximation of Optimal Co-Scheduling on CMP

Yunlian Jiang

Tongnan, Chongging, China

Bachelor of Science, University of Science and Technology of China, 2003
Master of Engineering, University of Science and Technology of China, 2006

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of
Doctor of Philosophy

Department of Computer Science

The College of William and Mary
August 2011

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Y for J

Yunlian Jiang

Approved by the Committee, July 2011

oo

Committee Chair
Assistant Professor Xipeng Shen, Computer Science
The College of William and Mary

e uf{u/w /e

Associate Professor Weizhen Mao, Computer Science
The College of William and Mary

Assistant Professor Denys Ppsfyvdnyk, Computer Science
The College of William and Mary

=

Associate Professor Haining Wang, Computer Science
The College of William and Mary

- N

’/W,,w— '\

C ~ -

GSenior Software Engineer Yaoging Gao
IBM Canada Lab

ABSTRACT PAGE

In recent years, the increasing design complexity and the problems of power and heat
dissipation have caused a shift in processor technology to favor Chip Multiprocessors In
Chip Multiprocessors (CMP) architecture, it 1s common that multiple cores share some on-
chip cache The sharing may cause cache thrashing and contention among co-running
Jobs Job co-scheduling 1s an approach to tackling the problem by assigning jobs to cores
appropriately so that the contention and consequent performance degradations are
minimized This dissertation aims to tackle two of the most prominent challengesin job co-
scheduling

The first challenge 1s In the computational complexity for determining optimal job co-
schedules This dissertation presents one of the first systematic analyses on the
complexity of job co-scheduling Besides proving the NP completeness of job co-
scheduling, 1t introduces a set of algornthms, based on graph theory and Integer/Linear
Programming, for computing optimal co-schedules or therr lower bounds in scenarios with
or without job migrations For complex cases, it empirically demonstrates the feasibility for
approximating the optimal schedules effectively by proposing several heurnstics-based
algorithms These discoveries facilitate the assessment of job co-schedulers by providing
necessary baselines, and shed insights to the development of practical co-scheduling
systems

The second challenge resides in the prediction of the performance of processes co-running
on a shared cache This dissertation explores the influence on co-run performance
prediction imposed by co-runners, program inputs, and cache configurations Through a
sequence of formal analysis, we derive an analytical co-run locality model, uncovering the
inherent statistical connections between the data references of programs single-runs and
therr co-run locality The model offers theoretical insights on co-run locality analysis and
leads to a lightweight approach for fast prediction of shared cache performance We
demonstrate the effectiveness of the model 1n enabling proactive job co-scheduling

Together, the two-dimensional findings open up many new opportuniies for cache
management on modern CMP by laying the foundation for job co-scheduling, and
enhancing the understanding to data locality and cache sharing significantly

To my parents, my wife Zhen and my son Ruiyang.

Table of Contents

Acknowledgments v
List of Tables vi
List of Figures viii

1 Introduction 2
1.1 Definition of Problems o o o 4
1.1.1 Job Co-Scheduling Algorithm Design 4

1.1.2 Co-Run Performance Prediction, .. 7

1.2 Contributions L e 8
1.2.1 Algorithm Design o 8

1.2.2 Performance Predictive Models 9

1.2.3 Cache-Contention-Aware Proactive Scheduler 10

1.3 Dissertation Organization 11

2 Complexity Analysis and Algorithm Design 12
2.1 Imtroduction. 12
2.2 Definition of the Basic Min-Cost Co-Scheduling Problem 16
2.3 Optimal Co-Scheduling in Dual-Core Systems (v =2) 18
2.4 Optimal Co-Scheduling in u-Core Systems (v >3) 20

2.4.1 Proof of the NP-Completeness 20

2.6

2.7

2.4.2 Integer/Linear Programming for Optimal Co-Scheduling
2.4.2.1 Imteger Programming Model
2.4.2.2 Computing Lower Bounds in Polynomial Time
2.4.3 Heuristics-Based Approximation
2.4.3.1 Hierarchical Perfect Matching Algorithm
2.4.3.2 Greedy Algorithm oL
2.4.3.3 Local Optimization
Optimal Co-Scheduling with Migrations
2.5.1 Co-Schedule Space
2.5.2 Finding the Optimal through A*-Search and Linear Programming
2.5.2.1 A*-Search Algorithm,
2.5.2.2 A*Search-Based Job Co-Scheduling
2.5.3 Heuristics-Based Estimation
2.5.3.1 A*Cluster Algorithm
2.5.3.2 Local-Matching Algorithm
Makespan Minimizationo Lo L oo
2.6.1 NP-Completeness (u > 3, With or Without Job Migration)
2.6.2 Polynomial-Time Solution (u = 2, No Job Migration)
Evaluation o
2.7.1 Methodology
2.7.2 Basic Optimal Co-Scheduling
2.7.2.1 Optimal Co-Scheduling by Perfect Matching
2.7.2.2 Lower Bounds by Linear Programming
2.7.2.3 Estimation by Heuristics-Based Algorithms
2.7.3 Optimal Co-Scheduling with Migrations
2.7.3.1 Optimal Co-Scheduling by A*-Search
2.7.3.2 Estimation by Heuristics-Based Algorithms

2.7.4 Makespan Results o .

ii

2.8 Insights for the Development of Practical Co-Scheduling Systems 63

2.9 Related Work L 64
2.10 Summary L e e 65
Co-Run Performance Prediction 67
3.1 Introduction. e 67
3.2 Inclusive Reuse Distanceo 69
3.2.1 Inclusive Reuse Distance and Cache Sharing 69
3.2.2 Connections to Single Runs 71
3.2.3 Data Sharing Case e 76

3.3 Lightweight Model for Locality Prediction 78
3.3.1 Lightweight Model 79
3.3.2 Analysis L 80

3.4 Handling Program Inputs for Co-Scheduling 82
3.4.1 Influence of Program Inputs on Co-Run Performance 82
3.4.2 Predictive Input-Behavior Models 83

3.5 Ewaluation e 87
3.5.1 Inclusive Reuse Signatures without Data Sharing 88
3.5.2 Inclusive Reuse Signatures with Data Sharing 90
3.5.2.1 Synthetic Traces 90

3.5.2.2 Traces from Real Programs 92

3.5.3 Predicting Co-Run Performance 93

3.6 Related Work L 94
3.7 SUIMMATY . - . o o o o e e e e e e e e e e 96
Cache-Contention-Aware Proactive Scheduling 97
4.1 Introduction e 97
4.2 CAPS for Batch Processingo 99
4.3 CAPS for Runtime Scheduling 99

iii

4.3.1 Cache-Contention Sensitivity and Competitiveness 100

4.3.1.1 Sensitivity 100

4.3.1.2 Competitiveness oL 101

4.3.2 Runtime Scheduling Policy 103

4.4 Evaluation L e 104
4.4.1 Methodologyo 105
4.42 CAPS for Batch Processing, 105
4.4.3 CAPS for Runtime Scheduling 109
4.4.4 Influence of Prediction Errors on Co-Scheduling 114

4.5 Related Work oL 114
4.6 SUMMATY .+« o o v v e e e e e e e e e e e e e e 116
Other Work 117
5.1 Correlation-Based Program Behavior Analysis 117
5.2 Adaptive Speculationo o 121
5.3 SUMMATY o e e e e e e 123
Conclusion 124
Bibliography 127
133

Vita

ACKNOWLEDGMENTS

This dissertation would not have been possible without the support of many people.
First and foremost I would like to thank my adviser Dr. Xipeng Shen. It has been my
great honor and pleasure to be his Ph.D. student for the past five years. I sincerely thank
him for the invaluable guidance, encouragement, and inspiration that he has given me over
the course of my studies. I have always been encouraged by his passion and inspired by his
keen wit.

Poshyvanyk, Denys

I would also like to thank my committee members, Dr. Yaoqing Gao, Dr. Wenzhen
Mao, Dr. Denys Poshyvanyk and Dr. Haining Wang. I really appreciate their valuable
time and efforts. They have given lots of feedback and suggestions that helped me improve
the quality of this dissertation.

I am especially grateful to Dr. Yaoqing Gao, my mentor at IBM Toronto Lab. His
patience as well as rich experience and knowledge have made my internships truly productive
and memorable.

It is a pleasure to thank my colleagues and friends in William and Mary for their
tremendous academic and personal support throughout past years. I enjoyed the pleasant
research life with my collaborators, Eddy Zheng Zhang, Kai Tian, Feng Mao, Ziyu Guo.
Thanks also go to Zhen Ren, Chuan Yue, Ningfang Mi. Bo Sheng, and many others, who
have added tremendous enjoyment to my graduate life.

In addition, I am grateful to the staff in the Computer Science department for their
assistance over the years. My Ph.D. journey would not have been this smooth without
their help.

Finally, I would express my deepest gratitude to my family for their greatest love and
support, all these years. I am indebted to my parents for their love and belief. Above all, I
would thank my wife Zhen for all the love and support through this journey.

List of Tables

2.1
2.2

2.3
24

2.5
2.6

2.7

2.8
2.9

2.10

Performance degradation ranges on AMD Opteron without job migrations .
Co-Run degradations and scheduling times on synthetic problems, with three
instances for each problem size (no migrations).
Schedule results from different algorithms.
Assessment of the greedy algorithm by comparing with the random schedul-
ing results and the lower bound from the LP algorithm (no migrations). . .
Benchmarks
Comparison of co-scheduling algorithms on 8 jobs on quad-core Intel Xeon
5150 PIOCESSOTS . . . v . v v o i i e e
Co-scheduling 16 jobs on quad-core Intel Xeon 5150 processors
Co-scheduling 16 jobs on hyperthreads of Intel Xeon 5080 processors
Co-schedule makespan on eight jobs without job migration. The numbers in
the table are the makespan achieved with the respective schedule, relative to
the makespan when each job runs in isolation
Co-schedule makespan on eight jobs with job migration. The numbers in the
table are the makespan achieved with the respective schedule, relative to the

makespan when each job runs in isolation

44

46
47

ol
54

56

57
o8

60

3.1 Prediction accuracies of linear (LMS) and non-linear (NN and Hybrid) models. 86

3.2

3.3

Accuracy of inclusive reuse signature prediction

Accuracy of the Prediction of Concurrent Reuse Distance Histograms

vi

90
91

4.1
4.2
4.3
44

Performance Ranges of Benchmarks on Intel Xeon 5150 105

Detailed Coupling of Programs under Different Schedules 107
Whole-Program Speedup Brought by CAPS 112
Overall Performance Degradation Factors and Unfairness Factors 113

vii

List of Figures

2.1

2.2

2.3
24

2.6

2.7

2.8

2.9
2.10

An example of a degradation graph for 6 jobs on 3 dual-cores. Each partition
contains a job group sharing the same cache. Bold edges compose a perfect
matching.
The hierarchical view of a CMP system used in the hierarchical perfect match-
ing algorithm. Each box represents a virtual chip except the chips on the
last level, which are real chips. Each circle represents a core. (u: the number
of cores per real chip; m: the total number of real chips in the system.)

Hierarchical minimum-weight perfect matching.
Greedy Algorithm oo
Local Optimization
The search tree of optimal job co-scheduling with rescheduling allowed at the
end of a job. Each node in the tree, except the starting node, represents a
sub-schedule of the remaining jobs. Each edge represents one schedule of the
unfinished jobs. Lo
Integer Linear Programming for computing 7.4, the lower bound of degra-
dation. L
Integration of clustering into A* search algorithm for approximation of opti-
mal co-scheduling.
Algorithm for minimum-bound perfect matching.
Performance degradations (top graph) and L2 cache miss rates (bottom

graph) in different co-schedules in Intel Xeon 5150 (no migrations).

viii

19

26
27
28
29

30

34

37
42

2.11
2.12
2.13
2.14
2.15

2.16

2.17

2.18
2.19

2.20

3.1
3.2

3.3
3.4

4.1

Performance degradation under different schedules.
Performance degradation under different schedules.
Unfairness factors of different schedules.
Scalability of different scheduling algorithms (no migrations).
Performance degradation rates of 8 jobs co-running on quad-core Intel Xeon
5150 ProCessors. . .« v v v i i e e e e e e e e
Performance degradation rates of 16 jobs co-running on quad-core Intel Xeou
BIBO PrOCESSOTS. . v v v v v v v e e e e e e e e e e e e e e e e
Performance degradation rates of 16 jobs co-running on the hyperthreads of
Intel Xeon 5080 processors. o . o Lo e
Scalability of the approximation algorithms.
Co-schedule makespan on 16 jobs with job migration. The bars in the
graph are the makespan achieved with the respective schedule, relative to

the makespan when each job runs in isolation. The first two groups are the

results on real jos. The rest groups are the schedule results of synthetic jobs.

Optimal schedules for cost minimization and makespan minimization on Xeon

5080 (2-smt) with no rescheduling. L L.

An example of cache-block reuse signature
The boxplot showing the distribution of the performance degradation of each

program when it co-runs with the other 11 programs. The three boxplots in

55

57

58
59

62

63

70

a group respectively correspond to the executions on test, train, and ref inputs. 83

The real and predicted inclusive reuse signatures.

The distribution of the errors in the prediction of L2 cache misses and IPC.

89
93

The key components of the cache-contention-aware proactive scheduler (CAPS). 99

ix

4.2

4.4
4.5
4.6

FEach program has 11 pair-wise co-runs, respectively with each of the other
11 programs. The points on the solid curve show the degradations of this
program in those co-runs; the points on the broken curve are of its co-runners.
(The points are connected for legibility.) The similarity between the two
kinds of curves shows the strong correlations between the degradations of a
program and those of its co-runners. oL L
Performance degradation on dual-core (top graph) and quad-core (bottom
graph) systems by different schedulings.

Overhead of job co-scheduling

102

Performance degradation and normalized L2 miss rates by different scheduling111

The average performance degradation under different schedules. The “a pos-
teriori” schedule is the best schedule obtained on all co-run information;
“CAPS-real” is the schedule by CAPS on real single-run behaviors; “CAPS-
pred” is the schedule by CAPS on single-run behaviors predicted by the
models described in Chapter 3; “random” reflects the default schedule in the

CMP system. oo i e

Analysis and Approximation of Optimal Co-Scheduling on CMP

Chapter 1

Introduction

In a Chip Multiprocessors (CMP) system, multiple cores on a single chip typically share
certain resource, including the last-level cache, off-chip pin bandwidth, and memory bus.
The sharing, although shortening the communication among cores, causes resource con-
tention among co-running jobs. Many studies have reported considerable, and sometimes
significant, effects of the contention on program performance and system fairness [23, 50, 66,
10, 28, 78]. The urgency for alleviating the contention keeps growing as the processor-level
parallelism increases continuously.

Recent years have seen many interests in using job co-scheduling to alleviate the con-
tention [59, 23]. The basic strategy of job co-scheduling is to assign jobs to cores in a way
that the overall influence from resource contention is reduced. Consider four jobs to run on
a machine with two dual-core chips. As resource sharing between sibling cores is more in-
tense than sharing across chips, different assignments of jobs to the four cores typically lead
to different performance. Job co-scheduling helps find the appropriate job-core assignments
to minimize the negative influence of resource contention.

Job co-scheduling consists of two tasks. The first is to estimate the influence of cache
sharing on the performance of a job when it co-runs with other jobs. The second is to
determine the suitable co-schedules based on the estimation.

For the first task, there are some studies that have tried to characterize the influence

of cache sharing on program performance, most of them are either based on certain heuris-

2

tics (e.g., average access frequencies of cache sharers' [10]) or some hardware extensions
(e.g., [49, 53]). Current treatments to cache sharing arc primarily through runtime moni-
toring of low-level program behaviors (e.g., instructions per cycle (IPC), cache miss rates),
no matter the goal is a better cache partition [63, 29, 28, 50] or an enhanced job sched-
uler [59, 60, 53, 23, 74, 20].

Unfortunately, the low-level behaviors, although easily obtainable, are often insufficient
for those techniques to exert their full power. First, the observed behaviors are time-
dependent and co-runner—dependent: They reflect the execution of the past, not the future,
and they are for the co-run of a specific group of programs. As a result, one period of
sampling is typically insufficient for predicting a program’s cache requirement or co-run
performance. Most existing cache management schemes address this issue by requiring
many periodic samplings and reshufflings of co-run groups [23, 59]. This strategy leads
to the second limitation: As a sampling phase only prepares for but does not really do
cache-usage adjustment, the cache performance during those periods is often inferior, hence
hurting the benefits from the optimizations considerably. Finally and perhaps most impor-
tantly, the reactive scheme is hard to scale up for many cases in shared-cache management,
including job co-scheduling: The number of possible thread-to-core assignments increases
exponentially in the problem size (e.g., 2 million different assignments for 16 jobs on 8 dual-
cores), making it infeasible to determine the optimal schedule by sampling every possible
co-run for a problem of reasonable size.

For the second task, most existing studies [10, 3, 59, 14, 23] rely on some simple tech-
niques (for instance, trying a number of different co-schedules during runtime and choosing
the best one.) The use of these techniques, although having shown interesting results, has
left a comprehensive understanding of the determination of optimal co-schedules yet to
achieve. This lack impairs the assessment of a co-scheduler—it is hard to tell how far the
co-scheduling results depart from the optimum and whether further improvement would

enhance the co-scheduler significantly—and hinders the development of job co-scheduling

YCache sharers refer to the processes that run concurrently on a shared cache.

algorithms. Moreover, finding optimal co-schedules is critical for understanding how the
various factors of CMP resource sharing affect program executions, as shown in a recent
study [78].

The goal of this dissertation is to solve the two fundamental problems. First, we reveal
the influence of cache sharing on program cache performance by uncovering the inherent
connections between the locality of program single-runs (i.e. runs with no cache sharers) and
that of their co-runs. Second, we explore the challenges on optimal co-scheduling of inde-
pendent jobs (i.e., jobs with no data sharing among one another), we aim at answering three
questions under different scenarios : 1) How difficult is it to find optimal co-schedules? 2)
What algorithms can determine optimal co-schedules or reasonable lower bounds efficiently?
3)When the optimal are too hard to find, can heuristics-based algorithms approximate them

effectively?

1.1 Definition of Problems

This section gives some basic definitions of the problem to be solved. First we describe the
problem of the algorithm design and analysis for job co-scheduling. We then present the

challenge on co-run performance prediction.

1.1.1 Job Co-Scheduling Algorithm Design

Roughly speaking, the optimal job co-scheduling tackled in this work is to decide the place-
ment of a set of jobs on a number of cores so that the makespan of the schedule is minimized.
Finding optimal co-schedules in a general setting is extremelydifficult: A program’s
fine-grained behaviors may change constantly, a program may migrate to any cores, and
programs may start, terminate, or go through context switch at any time. It is necessary
to first define the scope and settings of the co-scheduling problem that this work tackles.
To make the problem tractable and meanwhile keep the analysis useful, we specify

the following settings. Some of these settings may differ from certain practical scenarios.

However, as we will show (after presenting the settings) they do not prevent the use of the
computed co-schedules from serving for its main goal facilitating the evaluation of practical
co-schedulers

Machines The computing system assumed 1n this exploration contains m uniform
chips, and each chip has u uniform cores? Theie 1s a certain amount of cache on each chip
that 1s shared by the u cores on the chip Only one job can run on a cole at each time
pomt The execution speed of a job running on a chip depends on what jobs are placed on
the same chip, but has neghgible dependence on how the rest of the job set are placed on
other chips The architecture 1s a generalized form of CMP architectures on the market,
including the modern chips from Intel IBM, and so on

Jobs The number and starting time of jobs are set to be as follows The number of
jobs (denoted as n) 1s equal to the number of cores n =mx*u This sctting 1s to help focus
on the placement of jobs on cores When n < m * u, the problem can be converted to the
defined setting 1f we consider that there are (m * u — n) extra dummy jobs that consume
no resources If n > m % u, the problem 1s more complex, requiring the consideration
of temporal complexity (e g context switch) besides the spatial placement of jobs The
temporal complexity 1s out of the scope of this dissertation But we note that this work
will be still useful for that setting, as spatial placement still exists as a sub problem 1n 1t
All the jobs must start at the same time This 1s a typical assumption n traditional job
scheduling [38]

Job Migrations A job can mugrate from one core to another, but the migration only
happens when any of the jobs terminates This setting comes from the following 1eason As
well known, keeping a process on a processol 1s good for locality As a result, in practical
systems like Linux, occuriences of job migrations are mostly triggered by load imbalance [2]
In our setting, as the number ot jobs equals the total number of cores, load changes only
when some job finishes Therefore, allowing job migration only at those times does not

cause large departure from real scenarios

2We use the term cores for sumpheity of discussion The techmiques can also be apphed to thread
scheduling in SMT systems

This work focuses on job co-scheduling inside a multicore machine, which is the primary
component of the scheduling in any large multicore-based systems. So it assumes that all
processor chips are in the same machine and the migrations of a job among different chips
have similar overhead. (With certain extensions, the developed algorithms may be applica-
ble to clusters consisting of multiple nodes. The extensions are mainly on the consideration
of the different overhcad of migration within and across cluster nodes.)

Criteria There are two criteria to evaluate the quality of a schedule, namely co-run

cost and makespan.

e Co-run Cost Cost refers to the total running times of all the jobs to be scheduled.
Minimizing the co-run cost means the computing efficiency of the CMP system is
maximized. This criterion is critical when the throughput is the key requirement of &

system.

o Makespan refers to the time between the start of a job set and the finish of the last job
in the set. Minimizing makespan is important in situations where a simultaneously
received batch of jobs is required to be completed as soon as possible. For example, a
multi-item order submitted by a single customer needs to be delivered in the minimal
time. This kind of situation is especially common in server farms, data centers, and
compute cloud (e.g., the Amazon Elastic Compute Cloud). With the rapid rise of
these modern computing forms and their wide adoption of CMP, a good understand-
ing to makespan minimization in multicore job co-scheduling becomes increasingly

important.

Performance Data. The performance degradation of a job when it co-runs with other
k (0 < k < u) jobs is a piece of critical information for job co-scheduling. We devote half
of this dissertation (Chapter 3) to prediction of co-run degradations.

In our discussion of the complexity and algorithms for optimal co-scheduling (Chapter 2),
however, we assume that the co-run degradation is known beforehand. This assumption

helps us concentrate on the algorithm design.

Because a program execution may vary constantly, the performance degradation of a
program in a co-run may vary across intervals. In our setting, we use the average degrada-
tion through the entire co-run. A future enhancement is to combine with program phase
analysis [56, 57]. As previous studies do [59], we currently ignore phase changes to concen-
trate on co-scheduling itself.

In our setting, jobs may relate with one another, but all degradations are greater than
one. As co-runs are typically slower than single-runs because of cache and bus contention,

this setting holds in most cases.

1.1.2 Co-Run Performance Prediction

In a CMP system, the shared resource (e.g., last level cache, off-chip bandwidth) contention
can offen cause performance degradation. A program typically runs slower when it co-runs
other programs in a CMP system than it runs alone. The co-run performance of a program
is the running speed when it co-runs with some other programs in a given CMP system. In
this work, we explore the techniques to predict the co-run performance before the programs
actually run in the CMP system. The co-run performance prediction is fundamental to
job co-scheduling because only if the scheduler obtains the co-run performance of all the
programs can it make the appropriate schedule.

Co-Run performance prediction is a challenge because it involves many factors. Gener-
ally speaking, the performance of a program is decided by the following factors: program
code, program inputs, system configurations, runtime environment, underlying architec-
tures and so on. In our work, we assume that the underlying architecture is known, we only
consider the influence of program inputs and its co-runners.

Currently a program’s performance is heavily affected by its memory behaviors. In our
work, we focus on the memory behaviors of a program in a CMP system such as last level

cache miss rate and so on.

1.2 Contributions

The contributions of this dissertation are summarized as follows.

- Algorithms. We analyze the computational complexities of job co-scheduling, and

create a set of co-scheduling algorithms, both optimal ones and heuristic ones.

- Performance prediction. By combining program behavior analysis with cache manage-
ment, we propose a locality-based model for program co-run performance prediction

on CMP.

- Scheduler construction. We design and evaluate a number of job co-schedulers for

minimization of both co-run cost and makespan.

1.2.1 Algorithm Design

To get the optimal job co-scheduling is important for both theoretical analysis and practical
co-scheduling policy. Getting the optimal schedule can help evaluate current schedulers.
By comparing the performance different between optimal and current schedule, one can
decides whether further improvement would enhance the co-scheduler significantly, and
hinder the development of co-scheduling algorithms. Moreover, finding optimal co-schedules
is critical for understanding how the various factors of CMP resource sharing affect program
executions, as shown in a recent study [78]. In this dissertation, we propose algorithms to

schedule jobs on CMP system under different scenarios.

e Complexity Analysis. We analyze the computational complexities of job co-scheduling
under different scenarios (e.g. number of cores in one chip, different criteria, job
migration allowed or not). We have proved that if job migration is not allowed and
there are only two cores in one chip, the problem is polynomial solvable. If the
number of cores in one chip is greater than 2, the problem is NP-Complete no matter

job migration is allowed or not.

o Algorithms for Dual-Core Systems We have adopted the classic Blossom [19] algo-
nthm on degradation graphs for finding optimal schedules tor multi-socket dual-core
sysstems for the mimimization of both makespan and co-run cost We further reduce

the complexity of makespan minimization problem trom O(n?) to O(n?% logn)

o Approawmation Algorithms Because of the computational complexities, we have pro-
posed heuristic algorithms for the cases wheie the optimal solution 1s hard to obtain
The different optimization objectives stimulate different designs in the approximation
algorithms for both makespan minimization and cost mimmization Our designed
algorithms include seaich based algorithms (e g , A*-cluster), graph based algonthms
(e g, herarchical perfect matching), and local-optimal algorithms (e g, greedy algo-

rithin, local optimizations)

1.2.2 Performance Predictive Models

There have been some prior studies on predicting co-run performance of processes on CMP
Some of them propose architecture extensions to facilitate runtime cache performance mon-
oring [63, 29, 28 50] Some rely on periodical process reshuffling by OS to sample perfor-
mance of a process under various co-run settings [59, 60, 53, 23, 74, 20] These techmiques
are primarily based on low-level program behaviors (e g , mstructions per cycle (IPC), cache
miss rates) obtained through runtime monitorng Unfortunately, the low-level behaviors,
although easily obtainable, are often insufficient for accurate, scalable, and large-scope pei-
formance prediction (elaborated i Section 3)

In this dissertation, we address co-run peiformance prediction by exploiting data locality
analysis at the program level QOur approach centers on the development of two locality

models

o Inclusiwve Reuse Signatures We mtroduce the concept of wnclusive reuse signature,
which 15 a summary of LRU stack distances on a shared cache with all cache shar-

ers’ data 1eferences considered The model, through rigorous analysis, uncovers the

10

statistical connections between co-run locality and the locality of single runs, thus lay-
ing the foundation for approximating co-run cache miss rates from program locality

analysis.

o Sensitivity and Competitiveness In light of inclusive reuse signatures, we develop a
lightweight model for efficiently predicting co-run data locality (or cache usage) from
the memory reference patterns of the programs’ single runs. This model offers a
simple, efficient way to characterize the statistical expectation of the influence that a
process may impose on and receive from random co-runners. The high efficiency of
the model is the key to practical uses in shared-cache management. It achieves the

efficiency mainly by capitalizing the connection between time and locality.

1.2.3 Cache-Contention-Aware Proactive Scheduler

Designing an effective shared-cache-aware scheduler is challenging. It requires the ability
to understand a program’s demand and sensitivity to the shared cache. Moreover, the
online system requires extremely low runtime overhead. In this dissertation, we propose a

proactive online scheduler to schedule jobs onto CMP system online.

o Offline Scheduler We integrate the techniques proposed in Chapter 2 and Section 3
into a batch scheduler. Given a set of jobs, it first predicts the co-run performance
degradations based on program behavior analysis and then uses algorithms proposed

in Chapter 2 to find the best schedule.

e Online Scheduler To satisfy the time constraint of online scheduling, we, based on
inclusive reuse distances, propose a model to predict a program’s requirement to the
shared cache. The model provides an efficient way to characterize the sensitivity of a
process on cache contention and its potential influence on its co-runners. The predic-
tive model is lightweight enough for online uses. Based on the sensitivity of programs,

online schedulers partition programs into a sensitive group and an insensitive group.

11

It pairs sensitive jobs with insensitive jobs to improve the thoughput of the whole

system.

1.3 Dissertation Organization

The dissertation is organized as follows. Chapter 2 describes our findings in the compu-
tational complexity and algorithms of optimal co-scheduling on CMP. Chapter 3 presents
co-run performance predictive models. Chapter 4 concentrates on the construction of batch
and online co-schedulers. Chapter 5 briefly summarizes some of our other efforts for enhanc-

ing the computational efficiency on CMP. And finally, Chapter 6 concludes this dissertation.

Chapter 2

Complexity Analysis and
Algorithm Design

2.1 Introduction

In modern Chip Multiprocessors (CMP) architecture, it is common that multiple cores share
certain levels of on-chip cache and off-chip bandwidth. As many studies have shown [23, 22,
50, 66, 10, 28], the sharing causes resource contention among co-running jobs, resulting in
considerable and sometimes significant degradations to program performance and system
fairness. Job co-scheduling is one of the approaches to addressing the contention problem.
Its strategy is to assign jobs to computing units in a way that the overall influence from
resource contention is minimized.

Unlike approaches proposed in architecture design (e.g., cache partition [49, 50, 28]},
job co-scheduling can typically be implemented without hardware extensions. It has drawn
many research interests in recent years, with a number of co-scheduling schemes devel-
oped [59, 23. 14]. Most of the techniques use reactive co-scheduling. The runtime system
periodically changes the co-runners (i.e., the jobs sharing a cache) of a job to estimate
its cache requirement (e.g., [23]) or co-run performance (e.g., [59]). The scheduler then

changes the assignment of the jobs accordingly to group compatible jobs to the same chip

12

13

to reduce cache contention. Besides reactive scheduling, some research tries to predict co-
run performance of programs (e.g., [37, 34]), which opens the opportunities for proactively
co-scheduling jobs without the need for runtime trials.

Even though those schemes have shown effectiveness in alleviating co-run contention
caused by cache sharing, efficiently finding optimal co-schedules or a good lower bound
remains an open question. Answering this question is important in two aspects. First, it
facilitates the evaluation of various co-scheduling systems. Without knowing optimal co-
schedules, it is hard to precisely determine how good a co-scheduling system is—how far the
co-scheduling results are from optimal co-schedules and whether further improvement would
enhance system performance significantly. Second, optimal co-scheduling algorithms pro-
duced in answering that question can directly benefit the development of some co-scheduling
schemes, especially proactive co-scheduling schemes [37, 30, 32]. These schemes co-schedule
jobs based on the prediction of co-run performance, rather than through dynamically trying
and measuring various co-schedules and picking the best as most other (reactive) schemes
do. Therefore for proactive schemes, efficient optimal co-scheduling algorithms may simply
serve as their co-scheduling algorithms, or as the base for the development of lightweight
co-scheduling algorithms.

This chapter presents a systematic exploration towards optimal job co-scheduling on

CMP. It aims at answering the following three questions:
o How difficult is it to find optimal co-schedules?

e What algorithms can determine optimal co-schedules or reasonable lower bounds ef-

ficiently?

o When the optimal are too hard to find, can heuristics-based algorithms approximate

them effectively?

There are two different criteria in Job co-scheduling, namely co-run cost and makespan.
The different optimization goals lead to different solutions. We first tackle the problem on

cost minimization.

14

Our exploration on co-run cost minimization consists of two components. The first
component is focused on the complexity of co-scheduling in a basic setting where no job
length variance or job migrations are considered. The discoveries fall in four aspects. The
first is a polynomial-time algorithm for finding optimal co-schedules on dual-core CMPs.
The algorithm constructs a degradation graph, models the optimal scheduling problem as a
minimum-weight perfect matching problem, and solves it using the Blossom algorithm [19].
The second is a proof that optimal co-scheduling on u-core processors is an NP-complete
problem when w is greater than 2, with or without job migrations allowed.! The third
is an Integer Programming (IP) formulation of the optimal co-scheduling problem for wu-
core systems (u > 2). The formulation offers a clean way for formal analysis; its Linear
Programming (LP) form offers an efficient approach to computing lower bounds for job co-
scheduling. The final is a series of heuristics-based algorithms for approximating the optimal
schedules in u-core CMP systems (u > 2). The first algorithm, named the hierarchical
matching algorithm, generalizes the dual-core algorithm to partition jobs in a hierarchical
way. The second algorithm, named the greedy algorithm, schedules jobs in order of their
sensitivities to cache contention. To further enhance the scheduling quality, we develop an
efficient local optimization scheme that is applicable to the schedules produced by both
algorithms.

The second component expands the scope of the study with explorations on the com-
plexities brought by job migrations that are incurred by job length variance. It shows the
exponential increase of the search space and investigates the use of A*-search for accel-
erating the search for optimal schedules. For large problems, it offers two approximation
algorithms, A*-cluster and local-matching algorithms, to effectively approximate optimal
schedules with good accuracy and scalability.

Makespan minimization differs from cost minimization. The optimal schedules for the
two criteria are typically different. In traditional job scheduling literature, the two criteria

have led to drastically different algorithms and complexity analyses [38]. As to be shown

1For ease of explanation, the following description assumes a platform that contains multiple w-core
single-threaded processors, with all cores on a chip sharing a cache.

15

later, for multicore job co-scheduling, the implication of their differences is pronounced as
well. The differences exist in every major aspect, from complexity analysis to algorithmn
design to the ultimate scheduling results.

Motivated by the contrast of the increasing importance and the preliminary understand-
ing of makespan minimization in multicore job co-scheduling, we initiate explorations in two

dimensions.

o First, we prove that makespan minimization in job co-scheduling is NP-complete on
systems with more than 2 cores per chip. The proof is based on a reduction from the
problem of Exact Cover by 3-Sets. We are not aware of any previous analysis of the

computational complexity.

e Second, by offering an O(n?® - logn) algorithm (n is the number of jobs), we prove
that on dual-core systems with no job migrations, the problem is polynomial-time
solvable. To the best of our knowledge, this algorithm is the first polynomial-time

solution for this optimal co-scheduling problem.

Finally, we evaluate the algorithms on both real and synthetic problems, verifying the
optimality of the solutions produced by the co-scheduling algorithms (under certain con-
ditions). Results of the heuristic algorithms demonstrate their capability to achieve near
optimal solutions with reasonable scalability in different scenarios: Compared to sharing-
oblivious scheduling, they reduce co-run degradation by 5-20% on average, 1.4% away from
the optimum.

There has been a large body of research on optimal job scheduling. But to our surprise,
despite an extensive survey [38, 12], we have found no previous work that tackles an optimal
co-scheduling problem containing performance interplay among jobs as what the current co-
scheduling problem involves. This work, although uncovering some interesting facts, is by
no means to answer all questions on optimal job co-scheduling. Instead, it hopefully may
serve as a trigger to stimulate further studies towards a comprehensive understanding to

this intricate problem.

16

The rest of this chapter is organized as follows. Sections 2.2, Section 2.4 and Section 2.4
present the complexity analysis and algorithm design of the cost minimization problem
without job migration. Section 2.5 describes our exploration on job co-scheduling with
migrations. Section 2.6 reports our solutions for the makespan minimization problem.
Section 2.7 evaluates our proposed algorithms on both real schedule problems and a set
of synthetic problems. Section 2.9 1eviews some related and Section 2.10 summarizes this

chapter.

2.2 Definition of the Basic Min-Cost Co-Scheduling Problem

This section defines the basic min-cost co-scheduling problem, which concentrates on the
primary challenges in assigning jobs to cores without the considerations of the complexities
caused by job migrations. Section 2.5 will describe treatment of those complexities.

The problems discussed in this chapter concentrates on independent jobs—no jobs have
data shared with each other. Cache contention and the associated contention on memory
controllers and bus are the only effects of shared cache on the performance of co-running
programs. Hence, co-running programs typically run slower than their single runs (i.e. the
runs with no co-runners) due to resource contention. This kind of performance degradation
is called co-run degradation. Formally, the co-run degradation of a job : when it co-runs

with all the jobs in set S is defined as

cCPI, s —sCPI,
sCPI,

d'L,S =

where ¢cCPI, g and sCPI, are the average numbers of cycles per instruction (CPI) respec-
tively when the job 2 co-runs with the job set S or when it runs alone 2. (“c” for “co-run”;
“s” for “single run”.) The definition uses CPI because it is a commonly used metric for
computing efficiency. Immediately following the definition, d, ¢ must be non-negative, and

dyg < dy s if S C 8s.

2Jobs are allowed to have different lengths If a job finishes after 1ts sharers do 1n a co-run, the cCPI of
the job 1s computed as the total cycles it takes to fimsh divided by its total number of instructions

17

The basic optimal co-scheduling problem is as follows:

Given a set of n independent jobs, Jy, Jo, ..., Jp, and m identical chips with each
equipped with u identical computing units that share certain on-chip resource
uniformly, the goal is to find a schedule that maps each job to a computing unit
so that the total co-run degradation,) " ; d, s, is minimized, where, S is the

set of jobs that are mapped to the chip that J, is mapped to under the schedule.

We use the sum of co-run degradations as the goal function for the following reasons. A
key object of co-scheduling is to maximize the computing efficiency of a CMP system, which
suggests the use of the sum of CPIs of all jobs. However, the simple sum may cause an
unfair schedule that favors high-CPI jobs to appear as effective. For instance, suppose two
schedules for two jobs A and B produce (CPI4=2, CPIg=1) and (CPI4’=1.4, CPIp’=1.5)
respectively. The second schedule appears to produce a smaller sum of CPIs than the first,
but it degrades job B performance by 50% while improving job A performance by only 43%.
Replacing the absolute CPI values with co-run degradations in the sum helps avoid the bias
as degradation reflects the normalized computing efficiency.

The problem of co-scheduling includes two parts. The first is to predict the degrada-
tion of every possible co-run. The second is to find the optimal schedules so that the total
degradation is minimized given the predicted co-run degradations. Much research has ex-
plored the first part of the problem (e.g., [23, 37, 59]). This work specially focuses on the
second part, in which, we assume that the degradations of all possible co-runs are known
beforehand (although some algorithms to be presented do not require the full knowledge).

This assumption does not prevent practical uses of the co-scheduling algorithms pro-
duced in this work. The first main use is to remove the obstacles for the evaluation of
various co-scheduling algorithms. Most current evaluations of a co-scheduling system com-
pares only to random schedulers. But in practical design of a co-scheduler, it is important to
know the room for improvement—that is, the distance from the optimum—for determining
the efforts needed for further enhancement and the tradeoff between scheduling efficiency

and quality. That is exactly what the algorithms in this work provide or approximate. For

18

such assessment, it is usually acceptable to collect the co-run performance of some jobs
offline even if that takes some amount of time.

The second use of the algorithms is for proactive co-scheduling. Proactive co-scheduling
decides the schedule of jobs before the jobs start running. They typically use predicted
co-run performance of jobs [10, 3]. The co-scheduling algorithms proposed in this work
may help to determine the suitable schedules based on the predicted performance. We note
that errors in performance prediction, although possibly hurting the quality of the resulting
schedules, are tolerable to a certain degree in co-scheduling—even if the errors mislead a
co-scheduling algorithm to consider an optimal schedule to be 10% (rather than 20% in
truth) better (in terms of performance degradations) than other schedules, they do not
prevent the algorithm from picking the optimal one.

In this basic co-scheduling problem, the co-schedule to be found is static, meaning that
there are no job migrations during the execution of a job.

In the following description, we use an assignment to refer to a group of u jobs that
are to run on the same chip. (The influence on the performance of a job imposed by the
assignments of jobs on other chips is typically small and neglected in job co-scheduling. We
use a schedule to refer to a set of assignments that cover all the jobs and have no overlap

with each other—that is, a schedule is a solution to a co-scheduling problem.

2.3 Optimal Co-Scheduling in Dual-Core Systems (u = 2)

In this section, we present an efficient algorithm for finding optimal schedules in a special
case where the target systems have dual cores on each chip. It prepares for the explorations
on more complex cases.

We model optimal co-scheduling problems in this case as a graph problem. The graph
is a fully connected graph, named degradation graph. As illustrated in Figure 2.1, every
vertex in the graph represents a job, and the weight on each edge equals the sum of the

degradations of the jobs represented by the two vertices when they run on the same chip.

19

With this modeling, the optimal co-scheduling problem becomes a manimum-weght perfect
matching problem. A perfect matching in a graph is a subset of edges that cover all vertices,
but no two edges share a common vertex. A minimum-weight perfect matching problem is

to find a perfect matching that has the minimum sum of edge weights in a graph.

performance degradation

. by cache contention
J “ Wlk"’//-\\ J
1 Yk

Figure 2.1: An example of a degradation graph for 6 jobs on 3 dual-cores. Fach partition contains
a job group sharing the same cache. Bold edges compose a perfect matching

It is easy to prove that a minimum-weight perfect matching in a degradation graph
corresponds to an optimal co-schedule of the job set represented by the graph vertices. First,
a valid job schedule must be a perfect matching in the graph. Each resulting job group
corresponds to an edge in the graph, and the groups should cover all jobs and no two groups
can share the same job, which exactly match the conditions of a perfect matching. On the
other hand, a minimum-weight perfect matching minimizes the sum of edge weights, which
is equivalent to minimizing the objective function of the co-schedule defined in Section 2.2.

One of the fundamental discoveries in combinational optimization is the polynomial-
time blossom algorithm for finding minimum-weight perfect matchings proposed by Ed-
monds [19]. It offers the polynomial-time solution to optimal co-scheduling on dual-cores.
The time complexity of the algorithm is O(n?m), where n and m are respectively the num-
bers of nodes and the number of edges in the graph. Later, Gabow and Tarjan develop an
O(nm +n?logn) algorithm [24]. Cook and Rohe provide an efficient implementation of the

blossom algorithm [11], which is used in this work.

20

2.4 Optimal Co-Scheduling in u-Core Systems (u > 3)

When u > 3, the optimal co-scheduling problem becomes substantially more complex than
on dual-core systems. This section first analyzes the complexity of the problem, and then

describes an IP/LP formulation of the problem for efficient lower-bound computation.

2.4.1 Proof of the NP-Completeness

This section proves that when u > 3, optimal co-scheduling becomes NP-complete. The
proof is via a reduction of Multidimensional Assignment Problem (MAP) [25], a known
NP-complete problem, to the co-scheduling problem.

First, we formulate the co-scheduling problem as follows. There is a set S containing
n clements. (Each element corresponds to a job in the co-scheduling problem.) Let S,
represent the set of all w-cardinality subsets of S. Each of those u-cardinality subsets,
represented by Gj, has a weight w;, where i = 1,2,---, (7). (G, corresponds to a group of
jobs scheduled to the same chip, and its weight corresponds to the sum of the degradation
of all the jobs in the group.) The objective is to find n/u such subsets, Gy,, Gp,, -+, Gy, ,

to form a partition of S that satisfies the following conditions:

e UM¥G,, = S. (Every job belongs to a subset.)
. Z:':/ | wp, is minimized. (Total weight is minimum.)

The first condition ensures that every job belongs to a single subset and no job can
belong to two subsets (as all the subsets together contain only (n/u) * v = n jobs). The
second condition ensures that the total weight of the subsets is minimum.

We prove that this problem is NP-hard via a reduction from the MAP problem. The
objective of the MAP problem is to match tuples of objects in more than 2 sets with

minimum total cost. The formal definition of MAD is as follows:

o Input: u (u > 3) sets Q1,Q2, - ,Qu, each containing m elements, a cost function C:

Q1 %X Q2 X -+ x @y — R, and a given value O.

21

o Output: An assignment A that consists of m subsets, each of which contains exactly
one element of every set Qg, 1 < k < u. Every member «, = (a,1, s, ...,ay) of A

has a cost ¢, = C(w,), where 1 < ¢ < m and a, is the element chosen from the set

Qk-

e Constraints: Every element of Qf, 1 < k < u, belongs to exactly one subset of

assignment A and) -, ¢, is equal to the given value O.

MAP has been proven to be NP-complete by reduction from the three-dimensional
matching problem [25], a well-known problem first shown to be NP-complete by R. Karp [36].
We now reduce MAP to the co-scheduling problem. Given an instance of MAP, we

construct a co-scheduling problem as follows:

o Let S=J;_, Qv and n =m*u.

¢ Build all the u-cardinality subsets of S, represented as G,, 1 < i < (7). If a subset
(G, contains exactly one element from every set Q, 1 < k < u, its weight is set as
Clay, a2, -+ ,ay), where C is the cost function in the MAP instance, and ay is an

element chosen from Q. Otherwise the weight is set to positive infinity.

For a given value of u. the time complexity of the construction is O(n%). It is clear that
a solution to this co-scheduling problem is also a solution to the MAP instance and vice
versa. This proves that the co-scheduling problem is NP-hard. Obviously. the co-scheduling
problem is an NP problem. Hence. the co-scheduling problem is an NP-complete problem

when u > 3.

2.4.2 Integer/Linear Programming for Optimal Co-Scheduling

The NP-completeness suggests that it is difficult if not impossible to generalize the algorithm
described in Section 2.3 into a polynomial-time algorithm for the cases when u is greater
than two. This section shows that optimal co-scheduling can be formulated as an IP problem

in general, and therefore many standard IP solvers may be used to compute the optimal

22

co-schedules directly. Furthermore. the LP relaxed form offers an efficient way to compute

the lower bounds of the co-scheduling for an arbitrary u value.

2.4.2.1 Integer Programming Model

The IP formulation comes from the observation that optimal job co-scheduling defined in
Section 2.2 is essentially a partition problem: To find a way to partition the n jobs into
m = 2 sets (corresponding to the m chips), with each job falling into one sct and each set
containing exactly u jobs, so that the total co-run degradation of all the jobs is ininimized.
We formulate it as the following IP problem.

The variables of the IP are:

zs,, where 1 <4 < () and S, C {1,2,...,n} with |S,| = u, and S, = S, if and

onlyifi=7 (1<4,j<(7).)
Bach zg, is a binary variable, indicating whether the job set S, is one of the sets

in the final partition result.
The objective function is:
min Zf;)l a(s,) - zs,

where, d(S,) is the sum of the co-run degradations of all the jobs contained in S, when

they co-run on a single chip. that is, d(S,) = ZJGSL d;).5,~1)}

23

The basic form of the constraints is:

k:leSg
Z zs, = L
k:2eS5),
.3
Z s, = L.
kneS,

The first constraint says that 2g, can only be ecither 0 or 1 (1 means that 5, is one of the
sets in the final partition result; 0 means otherwise.) The first of the other n constraints
means that there must be one and only one set in the final partition result that contains
job Jy. The other constraints have the same meaning but on other jobs.

The basic form is intuitive but not amenable for efficient implementation. A refined form
converts the last n constraints in the basic form into a matrix-vector multiplication form.
In the form, A is an n X (Z) matrix, with each element equaling either 0 or 1: The element
of A at position (¢, 7) is 1 if and only if 4+ € S;—that is, job J, is in the job set denoted by
S,. Apparently, the matrix-vector equation is equivalent to the final n constraints in the
basic IP form. We call the matrix A the membership matriz as it indicates which sets a job

belongs to.

gy 1

o 1

A ~ =
“s(y) 1

24

2.4.2.2 Computing Lower Bounds in Polynomial Time

The IP problem is not polynomial-time solvable. But its lower bound can be efficiently
computed through its LP form. The LP form is the same as the IP form except that the

first constraint becomes

0<as <1, 1§i§(n>.
U

It is easy to see that a feasible solution of the IP problem must be a feasible solution
of the LP problem as well. The optimal value of the objective function in the LP, hence,
must be no greater than the value in the IP. As LP problems can be solved cfficiently, this
relaxed form offers a fast way to compute lower bounds for optimal co-scheduling.

In our experiment, we employ the LP and IP solver in MATLAB to compute optimal co-
schedules and the lower bounds. The LP solver, function linprog, is based on LIPSOL [75],
which is a variant of Mehrotra’s predictor-corrector algorithm [47], a primal-dual interior-
point method. The IP solver, bintprog, uses a LP-based branch-and-bound algorithm to

solve binary integer programming problems.

2.4.3 Heuristics-Based Approximation

Even though the IP model in the previous section formulates the optimal co-scheduling
problem in a clean manner, solving the model may still be infeasible for a large problem
given the NP-completeness of the job co-scheduling problem.

We design a set of heuristics-based algorithms to efficiently approximate the optimal
schedules. The first algorithm is a hierarchical extension to the polynomial-time algorithm
used when u = 2; the second is a greedy algorithm, which selects the local minimum in every
step. In addition, we introduce a local optimization algorithm to enhance the scheduling
results. We acknowledge that the theoretical accuracies of these algorithms are ideal to
have, but yet to develop. Our discussion instead concentrates on the intuitions of their

design and empirical evaluations.

25

2.4.3.1 Hierarchical Perfect Matching Algorithm

The hierarchical perfect matching algorithm is inspired by the solution on dual-core systems.
For the purpose of clarity, we first describe the way this algorithm works on quad-core CMPs,
and then present the general algorithm.

Finding the optimal co-schedule on quad-core CMPs is to partition the n jobs into n/4
4-member groups. In this algorithm, we first treat a quad-core chip with a shared cache of
size L as two virtual chips, with each containing a dual-core processor and a shared cache of
size L/2. On the virtual dual-core system, we can apply the perfect matching algorithm to
find the optimal schedule, in which, the job set is partitioned into n/2 pairs of jobs. Next,
we create a new degradation graph, with each vertex representing one of the job pairs. After
applying the minimum-weight perfect matching algorithm to the new graph, we will obtain
n/4 pairs of job pairs, or in another word, n/4 4-member job groups. These groups form
an approximation to the optimal co-schedule on the quad-core system.

Using this hierarchical algorithm, we can approximate the optimal solution of u-core
co-scheduling problem by applying the minimum perfect matching algorithm log(u) times,
as shown in Figure 2.2. At each level, say level-k, the system is viewed as a composition of
2k_core processors. At each step, the algorithm finds the optimal coupling of the job groups
that are generated in the last step. Figure 2.3 shows the pseudo-code of this algorithm.
Notice that, even though this hierarchical matching algorithm invokes the minimum-weight
perfect matching algorithm log(u) times, its time complexity is the same as that of the
basic minimum perfect matching algorithm, O(n?), because the number of vertices in the

degradation graphs decreases exponentially.

2.4.3.2 Greedy Algorithm

The second heuristics-based algorithm is a greedy algorithm. Our initial design is as follows.
We first sort all of the u-cardinality sets of jobs in the ascending order of the total degra-
dation of the jobs in a set when they co-run together. Let S represent the final schedule,

whose initial content is empty. We repeatedly pick the top set from the sorted order, none

26

level 1 oo oo

—
m*u/2

4
2 00 0o 00 00

Y
- m*u/d
0O 0 0 0 0 0 0
log(u) | o560l " |obdo
S
m

Figure 2.2: The hierarchical view of a CMP system used in the hierarchical perfect matching
algorithm. Each box represents a virtual chip except the chips on the last level, which are real chips.
Each circle represents a core. (u: the number of cores per real chip: m: the total number of real
chips in the system.)

of whose members is covered by S yet, and put it into S until S covers all the jobs. This
design is intuitive—every time, the co-run group with minimum degradation is selected.
However, the result is surprisingly inferior—the produced schedules are among the worst
possible schedules. We call this algorithm the naive greedy algorithm.

After revisiting the algorithm, we recognize the problem. Compared to other jobs, a
job that uses little shared cache tends to be both “polite”----causing less degradation to its
co-runners, and “robust” —suffering less from its co-runners. We call such a job a “friendly”
job. Because of this property, the top sets in the sorted order are likely to contaiu only those
“friendly” jobs. After picking the first several sets, the naive greedy algorithm runs out of
friendly jobs, and has to pick those sets whose members are, unfortunately, all “unfriendly”
jobs, causing the large degradation in the final schedule.

We observe that if we assign “unfriendly” jobs with “friendly” ones, the “friendly”
jobs won’t degrade much more than they do in the naive greedy schedule, whereas, the
“unfriendly” programs will degrade much less.

This observation leads to the following improved algorithm. We first compute the po-
liteness of a job, which is defined as the reciprocal of the sum of the degradations of all

co-run groups that include that job. During the construction of the schedule S, each time,

27

/* n jobs; u cores per chip; L: cache size #*/
/* 70bGroups contains the final schedule x/
70bGroups < {J1, 72, s In}
ke1
wvhile (k < u) {
cachePerVairtualChip <+ kx2x L/u;
BuldGraph(yobGroups, cachePerVairtualChip, V, E);
/* compute min-weight perfect matching and */
/* store the matching pairs %/
R « MinWeightPer f Matching(V, E);
/+ update jobGroups +/
reset jobGroups;
1403
for each node pair (vg,v) 1n R {
8 4+ vg.j0bs U vy.j0bs;
JobGroupsfe + +] < s;}
b« kx2;}
/* Procedure to build a degradation graph x/
BwildGraph(j0bGroups, cachePerVirtualChip, V, E) {
reset V and F;
for each element g in JobGroups; {
node «- NewNode(g);
V .insert(node) ; }
for each pair of nodes (v,,v,) 1n V {
5 < v,.jobs U v,.jobs;
w + GetCo— RunDegradation (s, cachePerVwrtualChp) ;
InsertEdgeWerght(E, v,, v,, w); }
}

Figure 2.3 Hierarchical minimum-weight perfect matching.

we add a co-run group that satisfies the following two conditions: 1) It contains the job
whose politeness is the smallest in the unassigned job list; 2) its total degradation is min-
imum. Figure 2.4 shows the pseudo-code of this algorithm. This politeness-based greedy
algorithm manages to assign “unfriendly” jobs with “friendly” ones and proves to be much
better than the naive greedy algorithm.

The major overhead in this greedy algorithm includes the calculation of politeness and
the construction of the final schedule. Both have O(n(?}) time complexity, so the greedy

algorithm’s time complexity 1s O(n(7))

28

/x J job set, G co-run groups */

/% S schedule to compute */

CalPoliteness (J, G),

I « politenessSort (J),

S+ 0,

for 1+ 1 to |J| {

1f job J[I[:]] not 1n § {
$ < the group in GG with the least degr and
containing J[I[z]] but not any jobs in §
S+ SuUs,

}
}

/* Procedure to compute politeness %/
CalPoliteness (J, G){
for 1 ¢ 1 to |J| {
w <+ 0,
for each g in G that contains J[7] {
w w + g degradation, }
J[1] polateness < 1/w,

Figure 2.4 Greedy Algorithm

2.4.3.3 Local Optimization

Local optimization is a post-processing step for refining the schedules generated by both
heuristics-based algorithms For a given schedule, the algorithm optumzes each pan of
assignments 11 the schedule For each pair, the algorithm enumerates all possible ways to
evenly partition the jobs contaned in them into two parts Each partition corresponds to
one assignment for those jobs, and the one that minimizes the sum of co-run degradations
of those jobs 1s taken as the final schedule for that pan Figure 2 5 shows the pseudo-code

The optimization on two assignments needs to check (Zuu) /2 assignments The algo-
rithm 1n Figure 2 5 requires (%)2 /2 1terations Therefore, the time complexity for this local
optimization 15 O((2)2(>*))

U

2.5 Optimal Co-Scheduling with Migrations

With the understanding of the basic optimal co-scheduling problem, this section expands

the scope of the problem to include job migrations into account In this case, jobs may finish

29

/% S: a given schedule x*/
LocalOpt (8) {
m <+ |S|;
for i+ 1 to m—1 {
a) = S[’L],
for j« i+1 tom {
ag + S{jl;
(a},a})« Opt2Assignments(a,, as);
ay =al;
S[j] = a5}
Sli} = ai}

Figure 2.5: Local Optimization

at different times, and rescheduling of the unfinished jobs may be necessary when some job
terminates and vacates a core. We call each scheduling or rescheduling a scheduling stage.
This work concentrates on the settings where rescheduling happens only when a job finishes;
there are at most n scheduling stages for n jobs.

Some terminology needs to be redefined in this setting. An assignment still refers to a
group of K jobs that are to run on the same chip. We use o sub-schedule to refer to a set
of assignments that cover all the unfinished jobs and have no overlap with one another. A
schedule still refers to a solution to the co-scheduling problem. However, a schedule becomes
a set of sub-schedules that have been used from the start of the jobs to the finish of the
final job. Considering job length variances, we redefine the goal of the co-scheduling as to

find a schedule that minimizes the total execution time of all jobs 2, expressed as

n
; § (5
argmsm lcTZ ,
1=

where, ¢T,(%) is the time job ¢ takes to finish in a co-schedule S. Other settings of the
problem remain the same as those described in Section 2.2.

Next, we first examine the increased co-schedule space of the extended problem, and
then present the use of A*-search- based approaches for pruning the space to help find or

estimate optimal co-schedules efficiently.

31t is assumed that the clock starts at time 0 for all jobs no matter whether they are actually running.

30

2.5.1 Co-Schedule Space

We model the optimal co-scheduling problem as a tree-search problem as shown in Fig-
ure 2.6. For n jobs, there are at most n scheduling stages; each corresponds to a time point
when one job finishes since the previous stage. Every node in the tree, except the starting
node, represents a sub-schedule of the remaining jobs. The nodes at a stage, say stage
1, correspond to all possible sub-schedules for n — ¢ + 1 remaining jobs. There is a cost
associated with each edge, equal to the total execution time spent by all jobs between the
two stages connected by the edge. Let nodes represent a child of the node node;. Given
the state at node;, we assign the unfinished jobs to cores according to the sub-schedule
contained in nodes; let ¢t be the time required for the first remaining job to finish; the cost
on the edge from node; to nodey is t * m, where m is the number of jobs that are alive
during that period of time.

The goal of the optimal co-scheduling is to find a path from the starting node to any
leaf node (called a goal node) so that the sum of the costs of all the edges on the path is
minimum. The search space in this extended problem involves O(n™) nodes. In contrast,
the scheduling space in the basic problem tackled in previous sections contains only the
starting node and the first stage in the tree (without rescheduling); the total number of

nodes is exponentially smaller than that in this extended problem.

start
stage 1: co-sched. n jobs
stage 2: co-sched. n-1 jobs
stage n: co-sched. 7 job Ey Fy gy

Figure 2.6: The search tree of optimal job co-scheduling with rescheduling allowed at the end of
a job. Each node in the tree, except the starting node, represents a sub-schedule of the remaming
jobs. Each edge represents one schedule of the unfinished jobs.

31

2.5.2 Finding the Optimal through A*-Search and Linear Programming

To address the increased complexity, we investigate the use of A*-search, along with a linear

programming model for cost estimation.

2.5.2.1 A*-Search Algorithm

A*-gearch is an algorithm stemming from artificial intelligence [51] for fast graph search.
It has been used for many search problems, but not for job co-scheduling. This section
presents the basic algorithm of A*-search, and the next section will describe the special
challenges in applying A*-search to job co-scheduling.

A*_gearch is appealing in several aspects. It guarantees the optimality of its search
results, and meanwhile, effectively avoids visiting certain portion of the search space that
contain no optimal solutions. In fact, it has been proved that A*-search is optimally efficient
for any given heuristic function. That is, for a given heuristic function, no other optimal
algorithm is guaranteed to expand fewer nodes than A*-search [51]. Its completeness,
optimality, and optimal efficiency trigger our exploration of using it for job co-scheduling.

We use Figure 2.6 to explain the basic algorithm of A*-search. In the graph, there is a
cost associated with every edge. The objective is to find the cheapest route in terms of the
total cost from the starting node to a goal node. In A*-gearch, each node, say node d, has
two functions, denoted as g(d) and h(d). Function g{d) is the cost to reach node d from the
starting node. Function h(d) is the estimated cost of the cheapest path from d to a goal
node. So, the sum of g(d) and h(d), denoted as f(d), is the estimated cost of the cheapest
route that goes from the start to the goal and passes through node d.

Often, the graph to be searched through is conceptual and does not exist at the beginning
of the search. During the search process, the A*-search algorithm incrementally creates the
portion of the graph that possibly contains optimal paths. Specifically, A*-search uses a
priority list to decide the next node to expand (i.e., to create its children nodes). Initially,
the priority list contains only the starting node. Each time, A*-search removes the node

with the highest priority from the top of the priority list and expands that node. After an

32

expansion, it computes the f(d) values of all the newly generated nodes, and inserts them
into the priority list according to their priority values, which are computed as 1/f(d). Such
expansions continue until the top of the priority list is a goal node, a sign indicating that
an optimal path has been found. The algorithm terminates. The use of the f(d)-based
priority list is the key for A*-search to avoid unnecessary expansions without sacrificing the
optimality of the search result.

Recall that f(d) is the sum of g(d) and A(d). The function g(d) is trivial to define-~just
the cost from the starting node to node d. The definition of h(d) is problem-specific and

critical. The following two properties of A*-search reflect the importance of i(d):

o The result of A*-search is optimal if h(d) is an admissible heuristic—that is, h{(d)

must never overestimate the cost to reach the goal?.

o The closer h(d) is from the real lowest cost, the more effective A*-search is in pruning

the search space.

Determining a good definition of h(d) is the core of applying A*-search.

2.5.2.2 A*-Search-Based Job Co-Scheduling

Using A*-search for job co-scheduling is simply to apply the search algorithm in the co-
scheduling space. The main complexity exists in the definition of the function h(d).

Recall that h(d) is the estimated cost of the cheapest path from the node d to a goal
node. When all co-run degradations are non-negative, a simple definition is the sum of the
single-run times of all the unfinished parts of the remaining jobs. This definition is legal—
h(d) does not exceed the actual costs—but may lead to large departure between the values
of h(d) and the actual costs because it does not consider co-run degradations.

In this work, we resort to Linear Programming for defining h(d). Suppose at node d

there are U unfinished jobs. We define h(d) = T +Tye,, where T}, is the time the U jobs need

4We assume that the search is a tree search. There are some subtle complexities for other types of
search [51].

33

to finish their remaining parts if they each run alone, and Ty, is the estimated minimum
of the total degradation of the U jobs during their execution from the node d to any child
of d.

We concentrate on the common case when all degradation rates are non-negative. In
this case, when U is not greater than the number of chips I, Ty, is clearly 0 as there is
at most one job on each chip. Our following discussion is focused on the scenario where
U>1I.

Consider a sub-schedule represented by one of the children nodes of n. The total degra-
dation of all U jobs in the sub-schedule equals the sum of the degradations on all chips.
The niinimum degradation on one chip with b jobs can be estimated as follows. Let Tyn(a)
represent the minimum of the single-run times of the unfinished part of all the remaining U/
jobs. Notice that the time lasting from d to any of its children must be no less than T;,,,,)
because of co-run degradations. Let rp . be the minimum of the degradation rates of all
jobs when a job co-runs with b — 1 other jobs. It is clear that the degradation on the chip
must be no less than by, * Tinin(q), which is taken as the estimation of the minimum
degradation of the chip. Therefore, the lower bound of the degradation of a sub-schedule j
isd, = Zle by %o, % Tin(a), where, b, is the number of jobs assigned to chip 2 in the
sub-schedule.

The value of Tyey should be the minimum of d, of all sub-schedules of the node d. To
determine the sub-schedule that has the smallest d;, we need to find the values of b, so that
Zle bo*¥ 7, *Tpun() is minimized under the constraint 3" b, = U. This analysis leads to
an Integer Linear Programming problem shown in Figure 2.7. By relaxing the constraint
on z, to 0 < z, < 1, the problem becomes a Linear Programming problem. which can be
solved cfficiently using existing tools [1].

As a special case, when K = 2. the solution to the Integer Linear Programming is

equivalent to the following simple formula:

Tdeg =2% (U - I) * T2 * Tmzn(d)- (21)

34

Definitions:
U number of unfinished jobs,
I number of chips,
K cores per chap, I<U<IxK,
rz. ., minimum degradation rate,
Trman(gy ~ minimum single run time
, :{ 1 the ith core has a job assigned
0 otherwise
The number of jobs on the (-th chip
cxhA
m(c) = Z Ly
1=(c—~1)+K+1
Objective function:
I
mmZm(c) *Trfe), , * Trnm(d)
=1
Linear constraint:

n
§ X, = U,
1=1

Figure 2.7 Integer Linear Programming for computing Tyoq the lower bound of degradation

The intuition for the formula 1s that in any sub-schedule of this scenario there must be
at least (U — I) chips that have a pair of the unfinished jobs assigned Otherwise, some
chips must have more than two jobs assigned, which 1s not allowed 1n the problem setting
(Section 22) The apphcation of the definition of T, 4 to such a sub-schedule leads to

Equation 21

2.5.3 Heuristics-Based Estimation

A limitation of A*-search based algorithms 1s 1ts high requirement for memory space It
keeps all open nodes in the priority list, while the number of open nodes grows 1n exponential
to the problem size 1n job co-scheduling

In this section, we describe two heuristics-based algorithms for solving the optimal
co-scheduling problem 1n a scalable manner One algorithm the A*-cluster algornthm,
integrates clustering mto the A*-search-based algorithm, the other algonthm, the local-
matching algonithm, 1s a generalized version of the graph-matching-based co-scheduling

algorithms mentioned 1in Section 24 3 1

35

2.5.3.1 A*.Cluster Algorithm

A*-cluster combines A*-search with clustering techniques Through clustering, the algo-
rithm controls the number of rescheduling stages by rescheduling only when a cluster of
jobs fimsh Also through clustering, the algorithm avoids the generation of sub-schedules
that are similar to one another Together the two features reduce the time complexity of
the problem signmificantly
An option for job clustering 1s to group them based on their single-run tumes Howevet

10bs with similar single-run times may need very different times to finish in co-run scenarios
QOur solution 1s an online adaptive strategy At the beginning, jobs are clustered based on
their single-run times During the expansion of the search tiee at each node, the algorithm
computes the state of the job set when the first cluster of the unfinished jobs complete
under the current sub-schedule (to reduce the number of scheduling stages), and
then regroups the other jobs into certain clusters based on the time needed for each of
them to fimish under the current sub-schedule Based on the clustering results, during the
generation of childien nodes, the algorithm selects the sub-schedules that are substantially
different from the already generated sub-schedules (to reduce the number of nodes at
a stage) A sub-schedule 1s substantially different from another if they are not equivalent
when we consider all jobs 1 a cluster equivalent For example four jobs fall into two
clusters as {{1 2}, {3 4}} The sub-schedule (1 3) (2 4) 15 considered equivalent to (1 4) (2
3), but different from (1 2} (3 4) (each parenthesis pan contain a co-run group) Finding
those novel sub-schedules only needs to solve a first-order linear equation system, in which,
each unknown 1s the number of the instances of a cluster mixture pattern® included m a
sub-schedule Each equation corresponds to one job cluster Oun the left side 1s the sum of
the number of the jobs falling into that cluster in a sub-schedule, and on the right side 15
the total number of jobs belonging to that cluster Every solution to the equation system

corresponds to a novel sub-schedule

5An example of cluster mixture patterns for quad-coie chips 1s an assignment that contains one job from
cluster 1 two jobs from cluster 2 and one job from cluster 3

36

The integration of clustering into A*-search is implemented inside procedure nextSub-
Schedule() (invoked in the middle of procedure Astar()) as shown in Figure 2.8. The A*
algorithm uses this procedure to generate a child of the current node in the search tree.
Suppose the current node is not the starting node. At the first invocation of procedure
nextSubSchedule() by this node, the procedure computes the state of the job set when the
first cluster of the unfinished jobs complete under the current sub-schedule (to reduce the
number of scheduling stages), and then regroups the other jobs into certain clusters.
Based on the clustering results, during the generation of children nodes, each time the pro-
cedure nextVeryNewSubSchedule returns a sub-schedule that is substantially different from
the already generated sub-schedules (to reduce the number of nodes at a stage.) A
sub-schedule is substantially different from another one if they are not equivalent when we
regard all jobs in a cluster as the same. As an example, suppose 4 jobs fall into 2 clusters
as {{1 2}, {3 4}}. The sub-schedule (1 3) (2 4} is regarded as equivalent to (1 4) (2 3), but
different from (1 2) (3 4) (each pair of the parentheses contains a co-run group.) Finding
those novel sub-schedules only needs to solve a first-order linear equation system. The un-
knowns are the numbers of instances of different mixing patterns of clusters; they must be
non-negative. Each equation corresponds to one job cluster: on the left side is the sum of
the number of the jobs falling into that cluster in each mixing pattern, on the right side is
the total number of jobs belonging to that cluster. Each solution of the equation system
corresponds to one novel sub-schedule. Details are skipped for lack of space.

In the algorithm, the starting node needs a special treatment: The procedure nextSub-
Schedule() skips the state update step as there are no sub-schedules yet.

The first strategy reduces the height of the search tree, while the second reduces the
width. Together, they reduce the number of nodes at a stage significantly. from factorial,

igl (V5 71), to polynomial, O(nY) (y = C + (CK — C)/K?), for given a given C' and
K C is the number of clusters).
Although there are many clustering methods (e.g., K-means, hierarchical clustering [26]),

we use a simple distance-based clustering approach because the data to be clustered—the

37

/% Jobs contains unfinished jobs, =/
/* 1sFirstInvoke 1s 1 initially =/
Procedure nextSubSchedule() {
if (1sFirstInvoke) {
foreach job in jobs
estimate_timeToFinish(job),
if (thas! = start) {
C1 = getEarliestCluster(Jobs),

/* update to the state when C1 finishes #/
Jobs = Jobs - C1,
update_timeToFinish(Jobs),
}
(s = ReCluster(Jobs),
1sFirstInvoke=0,
}
/* get a substantrolly new sub-schedule x/
nextVeryNewSubSchedule (Jobs, Cs),

}

Figure 2.8 Integration of clustering into A* search algorithm for approximation of optimal co-
scheduling

Job lengths—are one-dimensional and the number of clusters 1s unknown beforehand Given
a sequence of data, the distance-based clustering first sorts the data in ascending order It
then computes the differences between every two adjacent data items 1n the sorted sequence
Large differences indicate cluster boundaries A difference 1s considered large enough if its
value 1s greater than m + §, where, m 15 the mean value of the differences 1in the sequence

and 4 1s the standard deviation of the differences An example 1s as follows

times to fimsh 10 15 18 32 35 51 53 56
differences 5 3 14 3 16 2 3

jobclusters X X X X X X X X

mean difterence =6 5, std =59

The time complexity of the clustering algorithm 1s O(J), where J 1s the number of remaining
Jobs
2.5.3.2 Local-Matching Algorithm

For even higher efficiency, we design a second approximation algorithm, which explores only

one path from the root to the goal in Figure 26 At each scheduling pomnt 1t selects the

38

schedule that minimizes the total running time of the remaining part of the unfinished jobs
under the assumption that no reschedules would happen. The assumption leads to local
optimum at each scheduling stage.

The key component of the algorithm is the procedure to compute the local optimum.
This step is the same as the basic job co-scheduling problem discussed in Section 2.2, except
that the number of jobs may be smaller than the number of cores as some jobs may have
terminated. We take a simple strategy to handle this case: treating the jobs that have
finished as pseudo-jobs, which exist but consume no computing resource. Therefore, if the
co-runners of a job are all pseudo-jobs, that job has no performance degradation at all. As
the pseudo-jobs have to be scheduled every time, this strategy introduces some redundant
computation. However, it provides an easy way to generalize the perfect matching algorithm
described in Section 2.3 and 2.4. Apparaently, the time complexity of the local-matching
algorithm is O(n®): The co-scheduling algorithm on a stage has complexity of O(n*), and

there are n stages.

2.6 Makespan Minimization

But besides cost, there is another important criterion in job scheduling, makespan. Makespan
refers to the time between the start of a job set and the finish of the last job in the set. Min-
imizing makespan is important in situations where a simultaneously received batch of jobs
is required to be completed as soon as possible. For example, a multi-item order submitted
by a single customer needs to be delivered in the minimal time. This kind of situation
is especially common in server farms, data centers, and compute cloud (e.g., the Amazon
Elastic Compute Cloud). With the rapid rise of these modern computing forms and their
wide adoption of CMP, a good understanding to makespan minimization in multicore job
co-scheduling becomes increasingly important.

Makespan minimization differs from cost minimization. The optimal schedules for the

two criteria are typically different. for multicore job co-scheduling, the implication of their

39

differences is pronounced as well. The differences exist in every major aspect, from com-
plexity analysis to algorithm design to the ultimate scheduling results.

In this section, we analyze the inherent complexity of the makespan minimization in job
co-scheduling. We classify the problem instances into four cases: u > 3 with or without job
migration allowed, or u = 2 with or without job migration allowed. Here, u is the number of
cores per chip. We prove that the first two cases are NP-complete problems, but the fourth
is polynomial solvable by a perfect-matching-based algorithm. The complexity of the third

case is to be studied in the future. In addition, we present A*-search-based algorithms for

all the four cases.

2.6.1 NP-Completeness (u > 3, With or Without Job Migration)

When more than two cores share a cache on a chip (u > 3), the makespan minimization is
an NP-complete problem. We prove this result by reducing a known NP-complete problem,
Ezact Cover by 3-Sets (X3C) [27], to our problem.

First, we formulate our co-scheduling problem as a decision problem. Given a system
with m chips, each with u > 3 cores, there is a set J containing n = m - u jobs that are to
be scheduled on the cores. Consider all possible subsets of J with cardinality v, denoted by
Jyyeoe ,J(:). For each J,, which represents a group of u jobs that may be co-scheduled on
the same chip, let w, be the maximum co-run time of all the u jobs in J;. The question in the
decision problem is whether there are m disjoint subsets Jy,, -+ , Jp,, that form a partition
of J such that max™ {w,, } < B for any given bound B (where, p1,--- ,pp € {1,--+, (1) }).

Note that the partition of J into m subsets of cardinality u is actually the construction
of a schedule of n jobs on m - u cores and that max]>, {wp, } is in fact the makespan of the
schedule.

The problem is clearly in NP. We prove that it is NP-complete via a reduction from
X3C, in which given a set X with |X| = 3m and a set C' = {C;|C, C X and |C,| = 3}, the
question to ask is whether C' contains an exact cover for X, i.e., m disjoint members of C,

say Cp,,- -, Cp,,, that makes a partition of C.

40

The reduction from X3C to our co-scheduling problem is straightforward. Given any
instance of X3C, namely X and C, we define an instance for co-scheduling, where (1) J = X
with n = 3m and v = 3, (2) for any J, C J with |J;| = 3, if J, € C then let w; = 1, and if
J, & C then let w, =2, and (3) B = 1.

The construction of the instance for co-scheduling can be done in O(n®) time. Fur-
thermore, it is easy to show that C' contains an exact cover for X if and only if there is
a schedule of jobs in J to the 3m cores with a makespan no more than 1. Therefore, the
co-scheduling problem with u = 3 is NP-complete.

The above proof holds regardless of whether job migration is allowed or not, because in
both settings, finding a schedule with makespan no more than one is equivalent to finding
an exact cover.

In the proof, it is assumed that «, the number of cores on cach chip, is an input parameter
of the co-scheduling problem. When u is a treated as a constant, i.e., fixed once the hardware
is chosen, an extra step is necessary to prove the NP-completeness when u is greater than
3. In that scenario, the known NP-complete problem, Exact Cover by k-Set, can be used

in the reduction to the co-scheduling problem with any fixed u.

2.6.2 Polynomial-Time Solution (u =2, No Job Migration)

We prove that, when v = 2 and no job migrations arc allowed, the optimal co-schedules can
be found in polynomial time. We describe an O(n?® - logn) algorithm as follows.

The algorithm uses a fully-connected graph, namely a co-run makespan graph, to model
the optimal co-scheduling problem. In this graph, each vertex represents a job; the weight
on an edge is the longer running time of the two jobs (represented by the two vertices
connected by the edge) when they co-run together.

Before describing the algorithm, we introduce the concept of a perfect matching. A
perfect matching in a graph is a subset of edges that cover all vertices of the graph, but
no two edges share a common vertex. We define the bound of a perfect matching as the

largest weight of all the edges it covers. It is easy to see that the perfect matching of a co-

41

run makespan graph with the minimum bound corresponds to a solution to the makespan
minimization problem: Each edge corresponds to an assignment (i.e., co-run group) and
the makespan equals to the bound of the perfect matching.

There are some algorithms for finding the minimum-weight perfect matching on a
weighted graph [19, 27]. However, they cannot apply to our problem directly because
their objective functions are typically the sumn of edge weights, rather than the maximum
of edge weights in our problem.

We develop an algorithm to determine a minimum-bound perfect matching as shown in
Figure 2.9. We first construct a sorted list containing all the edges of a co-run makespan
graph in an ascending order of their weights; thie edge with the smallest weight resides on
the top of the list. We then use a binary search to determine the smallest top portion of
the sorted edge list that contains a perfect matching (regardless of weights) covering all
vertices. The binary search starts with the top half of the edge list and checks whether a
perfect matching can be found in those edges. A negative answer would suggest that more
edges are needed, so the algorithm would try the top three quarters of the edge list. A
positive answer would suggest that a smaller portion of the list may be enough to contain a
perfect matching, so the algorithm would try the top quarter of the edge list. This binary
search continues until it finds the smallest top portion of the edge list that contains a perfect
matching. The perfect matching found by this algorithm indicates the best schedule of the
jobs.

We claim that the resulted perfect matching is an optimal perfect matching on the orig-
inal co-run makespan graph—that is, no perfect matchings on the original co-run makespan
graph have bounds smaller than the bound of the resulted perfect matching. The proof is
as follows.

Let M be the perfect matching produced by the algorithm, T be the makespan of the
corresponding schedule. and S be the smallest top portion of the edge list that contains M.
According to the algorithm, S is the smallest among all top portions that contains a perfect

matching.

42

Assume that there is a perfect matching M’ whose makespan T" is smaller than T'. Let
F’ be the set of edges included in M’. Let S’ be a set containing all the edges in the sorted
edge list from the top to the heaviest edge in E’. Because the edge list is sorted in the
ascending order of edge weights, E' C §’. So, S’ contains a perfect matching. Because
T' < T, the weights of all the edges in E’ and thus in $’ must be smaller than 7. While T
is the weight of some edge in S, hence S’ C S. This contradicts with the assumption that S
is the simallest top portion of the edge list that contains a perfect matching, thus the proof
completes.

The time complexity of the perfect matching detection subroutine, findPerfMatch(G),
is O(y/n - m) [27], where n and m are the numbers of vertices and edges in the graph. In
the algorithm, the binary search process contains O(log n) invocations of perfect matching
detection. The value of m can be no greater than n2. The time complexity of the algorithm
is O(n* - logn).

/% Vi vertex set; E: edge set x/
/+* S : generated perfect matching */
L + sortEdges(E);

lbound + 1; ubound « |L]|;
G.vertices + V; § « 0;

while (1) {
curPos « | (ubound+lbound)/2 |;
if (curPos == ubound) return §;

(.edges ¢ L[1:curPos];
S « findPerfMatch(G);
if (S# NULL)

ubound ¢« curPos;
else

lbound ¢ curPos;}

Figure 2.9: Algorithm for minimum-bound perfect matching.

2.7 Evaluation

In this section, we concentrate on the verification of the optimality of the results produced
by the optimal co-scheduling algorithms, the departure of the results by the heuristics-based

algorithms from the optimal, along with the efficiency and scalability of those algorithms.

43

2.7.1 Methodology

The machines we use include both dual core and u-core (u > 2) svstems For dual-core
cases, we use a quad-core Dell PowerEdge 1850 server, which although named quad-core,
includes two Intel Xeon 5150 2 66 GHz dual-core processors, each having a 4MB shared L2
cache Every core has a 32KB dedicated L1 data cache For the cases of u > 3, we use
machines each equipped with two quad-core AMD Opteron processors running at 1 9 GHz
Each core has 512KB dedicated L2 cache and shares a 2MB L3 cache with the other three
cores

Table 2 1 lists the 16 programs used in the experiments, along with the ranges of their
performance degradations when they co-run on the AMD machine The programs are chosen
to cover both integer and floating-point benchmarks and span a wide range of the application
areas Their executions exhibit various patterns in memory and cache accesses—{rom having
few data reuses (e g, gzip) to having many (e g, swmim) All programs come fiom SPEC
CPU2000 except stream coming from a streaming benchmark [46]® Most of them have no
degiadation n their best co-runs, whereas 1n the worst co-runs, all the progiams show more
than 50% slowdown The large degradation ranges suggest the potential for co-scheduling
In addition, we employ some synthetic problems for large coverage and the test of extreme
scenarios In those problems, the job lengths and co-run degradation rates are some random
values

In the collection of co-run degradations, we follow Tuck and Tullsen’s practice [71],
wrapping each progiam to make 1t run 10 times consecutively and only collecting the
behavior of co-runs, which are the runs overlapping with other programs The hieraichical
perfect matching algorithm requires the co-run performance on smaller virtual chips In
this experiment, we collect such information by runmng 2 instances of 2 programs (totally
4 jobs) on a quad-core processor The degradation 15 used as the estimation of that on a

virtual dual-core chip for some algorithms applied to quad-core machines

®To focus on cache performance evaluation we increased the size of a data element to the width of a
cache line

44

Table 2.1: Performance degradation ranges on AMD Opteron without job migrations
| Programs | min % | max % | mean % [median %]

ammp 0 79.97 5.12 2.93
applu 0 165.76 | 10.30 7.07
art 0 174.65 | 19.44 15.09
bzip 0 55.90 15.17 13.35
crafty 0 149.90 | 5.11 3.18
equake 0.32 191.77 | 27.08 18.35
facerec 0 192.20 | 23.30 17.98
gap 0 198.41 | 11.31 7.40
gzip 0 57.76 0.79 0.00
mef 0 191.49 | 60.41 56.83
mesa 0 51.77 0.22 0.00
parser 0 87.14 8.46 5.88
stream 0 93.23 28.55 24.43
swim 0.84 176.32 | 18.85 15.23
twolf 0 182.89 | 57.05 54.44
vpr 0 83.42 24.78 21.66
average 0.07 133.29 | 19.75 16.49

2.7.2 Basic Optimal Co-Scheduling

In this section, we examine the capability of the perfect matching-based algorithm for
finding optimal co-schedules in dual-core systems, the lower bounds computed by the Linear
Programming model for u-core (u > 2) systems, and the quality of the co-schedules produced

by the heuristics-based algorithms.

2.7.2.1 Optimal Co-Scheduling by Perfect Matching

On the Intel machine, we conduct an exhaustive search for the best schedule among all
possible ones; the resulting schedule is the same as the schedule found by the minimum-
weight perfect matching algorithm, confirming the optimality of the scheduling results.
(Twelve of the 16 programs are used because of the high cost of the exhaustive search.)
Figure 2.10 shows the comparison among 3 different scheduling results. We use optimal
to represent the schedule found by the minimum-weight perfect matching algorithm. The

random bars show the average scheduling results produced by 1000 random schedules, cor-

responding to most current CMP scheduling systems, which are oblivious to shared cache.
The worst bars are the results from the worst among all schedules, demonstrating the pos-
sible consequence of careless scheduling. The co-run groups in the optimal co-schedule are
{ammp+parser, art+crafty, bzip+gap, equake+mesa, gzip+mcf, twolf+upr}.

The results show that the optimal schedule may reduce performance degradations sig-
nificantly, from over 15% of random scheduling to 7% on average. For some programs, the
cut is up to a factor of 5. The performance results match with the L2 miss rates shown
in the bottom graph, although not proportionally due to the different sensitivity of the
programs to L2 miss rates. On average, the optimal schedule reduces 20% L2 cache miss
rates relative to the random schedule and 28% relative to the worst schedule.

Oworst O random M optimal
67 73 50

w w b
o un o

N
wn

|
f

Perf. Degradation (%)
wn o n o
J
|
]
i
|
|

Normalized L2 Miss Rate

Figure 2.10: Performance degradations (top graph) and L2 cache miss rates (bottom graph) in
different co-schedules in Intel Xeon 5150 (no migrations).

46

It is worth noting that random scheduling may group some programs in the way the worst
scheduling does; the consequence is severe: 67% degradation for art, 73% for mcf, and 22.8%
on average. The optimal co-scheduling avoids those traps, making co-runs significantly
faster than the worst schedule on average. (Note that our goal is to minimize the overall
rather than each individual program’s degradation. So, it is normal for certain programs

to run worse in the optimal schedule than in other schedules.)

2.7.2.2 Lower Bounds by Linear Programming

Table 2.2: Co-Run degradations and scheduling times on synthetic problems, with three instances
for each problem size (no migrations).

Num of Jobs | average degradation scheduling time (s)
brute-force/IP | LP | brute-force Ir| LP
8 0.35 | 0.32 0.01 | 0.09 | 0.03
8 0.29 | 0.29 0.01| 0.04 | 0.05
8 0.26 | 0.26 0.01 | 0.04 | 0.03
12 0.28 | 0.27 0.31 2.07 | 0.05
12 0.28 | 0.27 0.84 | 1.28 |0.06
12 0.27 | 0.26 0.56 | 2.06 | 0.05
16 0.26 | 0.26 14.07 | 12.11 | 0.16
16 0.26 | 0.26 11.77 1 8.25 1 0.15
16 0.26 | 0.25 11.72 | 16.48 | 0.12
20 0.26 | 0.25 13095 | 82.6 | 0.41
20 0.25] 0.25 12728 | 48.82 | 04
20 0.25 | 0.25 12768 | 33.37 | 04

This section reports the results for validating the optimality of the solution produced by
the IP model, and assessing the lower bounds by the LP relaxation. We use a sequence of
synthetic problems (u is 4) to cover various cases. Table 2.2 reports the degradations of the
resulting co-schedules, along with the time the scheduling algorithms take. The co-schedules
produced by the IP algorithm always have the same degradations as the co-schedules found
by the brute-force search. The IP algorithm takes much less times than the brute-force
search does. The LP algorithm exhibits even better appeal: The degradations from it show
minor difference (less than 10%) from the optimal, but can be obtained in less than 1% of

the IP time for large problems.

47

More experiments show that the LP model can be solved in less than 200 seconds
for problems with less than 80 jobs, exhibiting good scalability. In the next section, the
LP model shows the usefulness in the assessment of the quality of the scheduling results

produced by heuristics-based algorithms.

2.7.2.3 Estimation by Heuristics-Based Algorithms

Using the collected degradations, we measure the effectiveness of the scheduling algorithms
by a comparison of four types of schedules: the optimal, the random, the hierarchical perfect
matching, and the greedy schedules, along with the enhanced version of the latter two when
local optimization is applied. The metric we use is the average performance degradation of
all programs.

We obtain the optimal schedule by solving the corresponding IP model; the result
matches with the exhaustive search result. To schedule 16 jobs on four quad-core chips,
the total number of possible schedules is 2,627,625. The search time increases exponen-
tially as the numbers of jobs and cores increase. We obtain the random scheduling result
by applying 1000 random schedules to the jobs and getting the average performance. The
random scheduling result corresponds to the performance of current CMP schedulers, which

are oblivious to cache contention.

Table 2.3: Schedule results from different algorithms.

| Algorithms I Programs on the same chip |
optimal ammp | applu | crafty | equake
art parser | mcf gap
bzip swim mesa gzip
facerec | vpr stream | twolf
hierarchical | ammp | art applu | gzip
perfect crafty | bzip mesa mef
matching equake | facerec | parser | stream
gap vpr swim twolf
greedy ammp | art applu | equake
gzip bzip craft gap
mesa. facerec | mcf parser
stream | vpr swim twolf

48

70 m

60 I

Perf. Degradation(%)

Figure 2.11: Performance degradation under different schedules.

To concentrate on the effectiveness of the two approximation algorithms, this section
reports their results when local optimization is not applied. Table 2.3 presents an optimal
schedule and the schedules generated by two approximation algorithms. (Random schedules
are not listed since we used 1000 of them.) The 4 programs in each table cell compose a co-
run group. Figure 2.11 shows the co-run degradation of each program in different schedules
(some bars have 0 height and are thus invisible). The random schedules degrade the overall
average performance by 19.81%. The hierarchical perfect matching algorithm reduces the
degradation to 8.91%, whereas the greedy algorithm reduces it to 6.52%. The schedules
produced by the two approximation algorithms have 5.08% and 2.40% more degradation
than the optimal schedule.

The two approximation algorithms have similar effects on 5 programs, art, bzip, fac-
erec, parser, and vpr. The greedy algorithm outperforms the hierarchical perfect matching
algorithm on all the other programs except ammp and swim. On the program stream,

the greedy algorithm outperforms the optimal schedule, which is not abnormal because

49

70 ;
B Optimal 0 Greedy-opt & Hierarchical-opt L Random '

60 | o ey S

50

40— -

30

20

Perf. Degradation(%)

10 |

1 =1

¥ & KGR S L L

NI @7 &
X @ NS

Figure 2.12: Performance degradation under different schedules.

our objective function is to minimize the overall performance. The better schedules assign
jobs more balanced (as shown in Figure 2.13), which is the key to achieving better overall
performance.

Although the two approximation algorithms cut performance degradation of the random
schedules by 55.0% and 67.1% respectively, they still have considerable distances from the
optimal schedule. The local optimization brings them closer to the optimal.

Figure 2.12 presents the performance of the schedules generated by the two approxi-
mation algorithms with local optimization. Local optimization boosts the performance in
both schedules. For the hierarchical perfect matching algorithm, the average degradation is
reduced by 41.2%, from 8.92% to 5.21%; for the greedy algorithm, the reduction is 30.7%,
from 6.52% to 4.51%. Their average performance degradations become only 1.4% and 0.7%
away from the optimal, respectively.

A detailed analysis shows that the local optimization improves the performz;nce of 7

programs, including the drastic improvement on equake, gap, and mef. For example, the

degradation of mcf is reduced from 29% to less than 0.38% when the local optimization is
applied to the two approximation algorithms. Meanwhile, the local optimization slightly
worsens the performance of art, applu, bzip, facerec, and swim, but the negative effects
are remarkably smaller than the enhancements. This result again shows the importance of
balance in co-scheduling.

Overall, the greedy algorithm slightly outperforms the hierarchical perfect matching
algorithm in terms of the reduction of the average performance degradation. But with local
optimization, both approximation algorithms produce close-to-optimal results, reducing
average co-run degradation by over 74%.

Given that the local optimization enhances the approximation algorithms so much, we
start to wonder whether local optimization alone is good enough for co-scheduling. To
get the answer, we apply local optimization to 1000 random schedules. The results show
that although sometimes the schedules are close to the optimal schedule, at many times,
the produced schedules are much more inferior than the optimal schedules. The worst
schedule result has up to 9.77% degradation. The average performance degradation is
6.27%, considerably larger than what we get from the greedy and hierarchical algorithms
with local optimization.

We use a set of synthetic problems to evaluate the quality of the heuristics-based al-
gorithms more comprehensively. Given that the greedy algorithm shows the better perfor-
mance than other approximation algorithms, we concentrate on this algorithm for further
evaluation. We use the LP model to compute the lower bounds. Table 2.4 shows the eval-
uation results. The co-schedules produced by the greedy algorithm exhibit less than 11%
distance from the lower bound, indicating the high quality of the co-scheduler.

Co-Scheduling Fairnes

Fairness is another important factor in measuring the quality of scheduling. Following
the previous work [74], we measure the fairness of a schedule by unfairness factor, defined
as the coefficient of variation (standard deviation divided by the mecan) of the normalized

performance (IPC,,/IPC\,) of all jobs. A smaller unfairness factor means that the pro-

ol

Table 2.4: Assessment of the greedy algorithm by comparing with the random scheduling results
and the lower bound from the LP algorithm (no migrations).

Num of Jobs 16 32 48 64 80
Deg of random sch. 0.62 | 063 | 062 {063 | 0.63
Deg of LP sch. 0.26 | 025 |0.25 |0.25 |0.25
Deg of Greedy sch. 029 | 027 026 |0.25 |0.26
Reduct. over random (%) | 117.5 | 128.2 | 139.9 | 145.9 | 142.3
Distance from LP (%) 109 | 85 3.9 1.6 3.1

grams are subject to more similar influence from cache sharing; thus. the system is more
fair.

Figure 2.13 shows that the optimal schedule has the best fairness, the random schedule
has the worst, and the local optimization improves fairness by about 30%. The consistency
between unfairness factor and overall performance degradation confirms the intuition that
in order to reduce the overall performance degradation, we need to balance the degradation

among different programs.

0.2 7= == m s e e e e e s e
™
2 0.15 —
[8)
(4]
w
?
8 01
<
F
o I I l
0 . , | K
o & S & & s
3 @ > & N
& O © P ?
& o) & <&
[©) {5\ &
\é\\?)

Figure 2.13: Unfairness factors of different schedules.

Co-Scheduling Scalability
As mentioned in previous sections, the time complexities of the heuristics-based algo-

rithms are as follows: O(nz(7))+(2)?(%*)) for the greedy algorithm, and O(n?)+(2)?(%%))

U w

52

for the hierarchical perfect matching (the (2)2(%*)) part is for the local optimization step),
where, n for job numbers, u for the number of cores per chip, and 2 for the number of
chips.

The greedy algorithm has the same complexity as the hierarchical perfect matching algo-
rithm when v is 4. However, as u increases, the overhead of the greedy algorithm increases
much faster than the hierarchical method, which shows that the hierarchical method is more
scalable. Given that n is typically much larger than u, the overhead of local optimization
is often a small portion of the total time.

We use synthetic problems including 16 to 144 jobs to measure the running times of the
two approximation algorithms with and without local optimization. Figure 2.14 depicts the
running times of the four algorithms when u is 4. The greedy algorithms consume more time
than hierarchical methods do. The result is consistent with the time complexity analysis

presented earlier in this section.

!W Greedy ¢ Greedy-opt = Hierarchical ~*- Hierarchical-optj

Running Time(Seconds)

o N B O o

16 32 48 64 80 96 112 128 144
Number of Jobs

Figure 2.14: Scalability of different scheduling algorithms (no migrations).

53

2.7.3 Optimal Co-Scheduling with Migrations

This section evaluates the use of A*-search and the heuristics-based algorithms for co-
scheduling jobs when job migrations are allowed. we first present the evaluation of the
scheduling algorithms on a mix of 14 parallel and sequential programs, and then show a
study of their scalability. We use two kinds of architecture. For CMP co-scheduling, the
machines are equipped with quad-core Intel Xeon 5150 processors running at 2.66 GHz.
Each chip has two 4MDB L2 cache, each shared by two cores. Every core has a 32KB
dedicated L1 data cache. For SMT co-scheduling, the machines contain Intel Xeon 5080
processors (two 2MB L2 cache per chip) clocked at 3.73 GHz with Hyper-Threading enabled
(two hyperthreads per computing unit.)

The 14 test programs consist of 2 parallel programs from SPLASH-2 [62] and 12 pro-
grams randomly selected from SPEC CPU2000. As we use two threads for each of the two
parallel programs, we have 16 jobs in total. We did not use the programs from the entire
benchmark suites because the large problem size would make it infeasible to compare the
scheduling algorithms, especially with the brute-force search algorithm. We use the two par-
allel programs (two threads per program) to examine the applicability of the co-scheduling
algorithms for parallel (in addition to sequential) applications. Table 2.5 lists the programs
with their co-run degradation ranges on the Intel Xeon 5150 processors. The big ranges of
degradations suggest the potential for co-scheduling.

The exponentially growing co-scheduling space makes it infeasible to determine the
optimal schedule for even 16 jobs through exhaustive search. So, we first use 8 jobs to reveal
the detailed comparisons among the co-scheduling algorithms, verifying the optimality of
the solution provided by the A*-search-based algorithm. We then use all the 16 jobs to

examine the performance and scalability of the two approximation algorithms.

2.7.3.1 Optimal Co-Scheduling by A*-Search

This experiment runs on Intel Xeon 5150 processors. We use the top 6 programs (8 jobs

as fmm and ocean have two threads each) in Table 2.5 to compare the performance of 6

Table 2.5: Benchmarks

Benchmark | single-run co-run degrad rate
time (s) | min % | max % | mean %
fmm* 5.63 0.77 11.28 3.67
ocean® 13.52 2.13 58.81 19.73
ammp 21.10 1.66 30.24 12.62
art 2.22 2.31 75.42 27.78
bzip 10.90 0.00 38.95 3.31
crafty 6.75 0.07 12.33 4.95
equake 11.05 6.42 78.00 26.46
gap 2.90 2.09 34.34 11.02
gzip 14.10 0.00 13.06 2.19
mcf 7.86 8.23 | 125.36 42.37
mesa 15.33 0.65 15.15 5.18
parser 3.74 1.74 37.75 13.51
twolf 5.42 0.00 15.73 5.21
vpr 4.58 3.31 42.52 18.30

* : from SPLASH-2. Others from SPEC CPU2000.

different scheduling algorithms: brute-force, A*, A*-cluster, local-matching, no-resch, and
random schedulers. The brute-force scheduler conducts an exhaustive search of the entire
schedule space to find the best schedules. The no-resch scheduler implements the optimal
co-scheduler proposed in the previous work [31], which considers no job-length differences or
possibilities of job rescheduling. The random scheduler schedules jobs in a random manner,
corresponding to the default schedulers in most existing systems, which are oblivious to
on-chip resource sharing. We obtain the random scheduling results by conducting random
scheduling for 100 times and picking the one with median performance.

The results verify the optimality of the scheduling results from the A* scheduler. It
produces the same schedule as the brute-force search scheduler does. Figure 2.15 shows the
co-run degradation rates of the 8 jobs in different schedules. The “optimal” bars represent
the results of the brute-force search and the A* scheduler. The random scheduler causes
8.4% degradation to the total running time. The schedule by the no-resch scheduler is
2.9% worse than the optimal, confirming that the scheduling algorithm, although able to
produce optimal schedules for the previously explored special setting, cannot guarantee the

optimality in this more general scenario. The two approximation algorithms, A*-cluster

Ooptimal RIA*-cluster @ local-matching Ono-resch Mrandom

—
o]
I
1
i
;

t
|
i
i
:

N
[ew]

o))

=
IS

Corun Deg. Rate (%)

frm-1 fmm-2 ocean- ocean- ammp art bzip crafty Total-
1 2 time

‘ Jobs __t

Figure 2.15: Performance degradation rates of 8 jobs co-running on quad-core Intel Xeon 5150
processors.

and local-matching algorithms, both achieve close-to-optimal results, only 0.4-0.5% away
from the optimal performance.

It is important to notice that the optimal schedule is a schedule that minimizes the total
running time, but not the running time of each individual program. Therefore, it is normal
to see that the optimal schedule causes larger degradation to some programs (e.g., crafty)
than other schedulers do in Figure 2.15. By degrading the performance of some programs
a little more, the optimal scheduler succeeds in decreasing the degradations of other more
significant programs, and hence achieves the overall optimum.

Table 2.6 compares the schedulers in other aspects. The A* scheduler finds the optimal
schedule by visiting only 0.05% of the nodes that brute-force search visits. It cuts the search
time from 470 seconds to 0.3 seconds. The significant reduction demonstrates its effective-

ness in space pruning. The two approximation algorithms use even less time for scheduling.

56

The right-most two columns report the total 1tunmng times and co-tun degradation rates of
the 8 jobs under those schedules The random scheduling 1esults include both the median
and the worst performance of 100 random schedules to show the potential risks of current

sharing-oblivious scheduling

Table 2.6 Comparison of co-scheduling algorithms on 8 jobs on quad-core Intel Xeon 5150 proces-
SO01S

algorithm visited | scheduling | total exec deg

nodes time (s) time (s) | rate (%)
brute-force 16 M 470 803 13
A% 7760 03 80 3 13
A*-cluster 11 0 008 80 6 17
local-matching 4 006 80 7 18
no-resch 1 002 815 29
random - -] 89-802) 84-125

2.7.3.2 Estimation by Heuristics-Based Algorithms

To get he optimal solution for 16 jobs, the brute-force algorithm would take yeais Our
implementation of the A*-search algorithm (in Java) 1s subject to memory shortage when
scheduling more than 12 jobs (A memory-bounded version [51] may help) In this section,
we concentrate on the evaluation of the two heuristics-based approximation algorithms on
scheduling 16 jobs

Co-Scheduling Performance on CMP

Figure 2 16 depicts the performance degradation rates on quad-core Intel Xcon 5150
processors, Table 2 7 reports the coriesponding summary data The random schedules
cause 9 9% (up to 19 2%) degradation to the total runmng time The non reschedule
algorithm reduces the degradation to 3 7% while the A*-cluster and the local-matching
algorithms further reduce the degradation to 3 2% and 2 2%, respectively It 15 remarkable
that the local-matching algorithm achieves the better 1esult by taking less than 0 6% time of
what the A*-cluster algorithm takes This result indicates that even though the A*-cluster
algorithm visits more nodes 1n the schedule space, the maccuracy due to the clustering has

caused considerable eriors to the scheduling results

o7

i o
[NA*-cluster tlocal-matching Ono-resch Mrandom

|

Corun Deg. Rate (%)
tIIIIlI III[IIIIIII

VI T G IITIITIIELIFY

Jobs

Figure 2.16: Performance degradation rates of 16 jobs co-running on quad-core Intel Xeon 5150
Processors.

Table 2.7: Co-scheduling 16 jobs on quad-core Intel Xeon 5150 processors

algorithm visited sched. | total exec deg.

nodes | time (s) | time (s) | rate (%)
A*-cluster 721 109 149 3.2
local-matching 8 0.63 147 2.2
no-resch 1 0.03 150 3.7
random - - 159-172 | 9.9-19.2

Co-Scheduling Performance on Hyper-Threads

Figure 2.17 and Table 2.8 shows the experimental results when the 16 jobs run on
the Intel Xeon 5080 processors with hyperthreads enabled. The schedule from A*-cluster
reduces the median degradation rates of random schedules from 31.7% to 25.9%. The local-
matching algorithm reduces the degradations to 22%, outperforming the no-resch algorithm
by 2.8%.

Compared to the results in the multi-core experiments in Table 2.7, the degradation
rates are clearly higher in this hyperthreading experiments because of the more extensive

sharing of on-chip resource among jobs. The A*-cluster algorithm takes more time than in

o8

834

IZIZI77TN

Corun Deg. Rate (%)

[PP II I TOTITIIEII LI ITT 7T IIT7]

ARAAARARLUNRARRANAL

V22 Z2ZZE2 2L L2 22222 2T T T I
N Ry

AARRIALIIRARARRANARNNAGSGYS

PO EOTOLITIETEEI LI EELL L,

' T T 7 T 7
: A & £ X &£
R & PP <
[¢ & S N
: < &
. <9
. Jobs
L S

Figure 2.17: Performance degradation rates of 16 jobs co-running on the hyperthreads of Intel
Xeon 5080 processors.

the multicore experiments, even though it visits fewer nodes; this is because of the difference

in cluster sizes.

Table 2.8: Co-scheduling 16 jobs on hyperthreads of Intel Xeon 5080 processors

algorithm visited sched. | total exec deg.

nodes | time (s) | time (s) | rate (%)
A*-cluster 315 198 325 26
local-matching 8 0.24 315 22
no-resch 1 0.03 322 25
random - - 340-382 32-48

Co-Scheduling Scalability

We use 32 to 128 jobs to measure the running times of the two approximation algorithms
(K = 2). The jobs are artificial jobs with random values as their single-run times and co-
run degradations. Figure 2.18 depicts the running times of the algorithms on the Intel
Xeon 5150 processors. The local-matching algorithm shows much better scalability than
the A*-cluster algorithm does: It takes only about 10 seconds to schedule 128 jobs, whereas,
the A*-cluster algorithm needs more than 2000 seconds. The reason for the difference is

that the number of paths A*-cluster needs to explore in the schedule tree increases as the

59

number of jobs increases, while the local-matching algorithm always explore a single path.
The time increase of local-matching algorithm is merely due to the increased computation

for obtaining the best sub-schedule at each scheduling stage.

1 T T T
0o ! local-matchin
90- A*—cluster

80r VA
70’» Vs 4
60 / 1
501 Va i

40+ / ~ 4
30" S]

20f) , |

Scheduling time (s)

10 - |

%2 48 64 80 96 112 128
Jobs

Figure 2.18: Scalability of the approximation algonthms

Short Summary

We draw the following conclusions from all the experimental results:

e The A*-search-based algorithm effectively prunes search space. When the problem

size is small, it can produce optimal schedules efficiently.

e The local-matching algorithm show consistently better results than other approxima-
tion algorithms. Together with its good scalability, this algorithm is a desirable choice

for large co-scheduling problems.

e The previously proposed optimal co-scheduling algorithm loses the guarantee of the
optimality of its scheduling results when job lengths are different and rescheduling is
allowed. Even though it still produces good results, it is consistently outperformed

by the local-matching algorithm.

e The combination of clustering with A*-search shows good scheduling 1esults, but is

not as scalable as the local-matching algorithm.

60

2.7.4 Makespan Results

This section presents the experimental results of our algorithms on job co-scheduling for
minimizing the makespan.

We use two kinds of architecture for evaluating the co-scheduling algorithms. The
CMP co-scheduling experiments are on machines equipped with quad-core Intel Xeon 5150
processors clocked at 2.66 GHz. Every chip has two 4MB L2 caches, each shared by two
cores. Every core has a 32KB dedicated L1 data cache. For co-scheduling on Simultaneous
Multithreading (SMT) machines, we use a system with Intel Xeon 5080 processors (two
2MB L2 cache per chip) running at 3.73 GHz. There are two hyper-threads on each core.

We use the same job suite listed in Table 2.5. In addition, we generate some sets of jobs
whose single-run time and co-run degradations are set randomly. The use of these synthetic
problems helps overcome the limitations imposed by the particular benchmark set.

For each set of jobs, we test the scheduling in cases both with and without job migrations
(denoted as no rescheduling and rescheduling respectively.) The difference reflects the
benefits of rescheduling.

Table 2.9: Co-schedule makespan on eight jobs without job migration. The numbers in the table

are the makespan achieved with the respective schedule, relative to the makespan when each job
runs in isolation

jobs real synthetic

arch. 2-cmp | 2-smt 2-core 4-core

trial 1 2 3 1 2 3
brute-force | 1.005 | 1.023 [1.49 | 1.49 | 1.58 | 2.11 | 2.16 | 1.65
A* 1.005 | 1.023 | 1.49 | 1.49 | 1.58 | 2.11 | 2.16 | 1.65

matching 1.005 | 1.023 | 1.49 | 1.49 | 1.58 - - -

A*-cluster | 1.005 | 1.167 | 1.55 | 1.75 | 1.58 | 2.38 | 2.3 | 1.65
greedy 1.005 | 1.17 1149 1.9 | 1.8 | 2.77 | 2.34 | 1.85
rand-min 1.005 | 1.023 | 1.55 | 1.49 | 1.69 | 2.24 | 2.16 | 1.65
rand-med 1.016 | 1.255 | 1.81 | 2.7 } 2.22 | 2.55 | 2.34 | 1.88
rand-max 1.161 | 1.329 | 2.72 | 3.3 | 2.66 | 3.13 | 2.91 | 2.68

The data in Table 2.9 and Table 2.10 shows the schedule result for eight jobs on different
architectures without and with job migration respectively. For the 8 real jobs on Xeon 5150

(2-cmp), for instance, the optimal schedule found by the algorithm A* and matching are

61

Table 2.10: Co-schedule makespan on eight jobs with job migration. The numbers in the table are
the makespan achieved with the respective schedule, relative to the makespan when each job runs
in isolation

jobs real synthetic

arch. 2-cmp | 2-smt 2-core 4-core

trial 1 2 3 1 2 3
A* 1.002 | 1.013 {1.33 | 1.21 { 1.19 | 1.99 | 1.93 | 1.56

matching 1.002 | 1.023 | 1.37 | 1.43 | 1.52 - - -
A*-cluster | 1.012 | 1.023 | 1.55 | 1.48 | 1.29 | 2.19 | 2.12 | 1.63
greedy 1.005 | 1.17 | 143 | 1.9 | 1.8 {232 | 2.08 | 1.87
rand-min 1.005 | 1.023 | 1.49 | 1.49 | 1.58 | 2.11 | 2.16 | 1.65
rand-med | 1.016 | 1.196 | 1.81 | 2.7 | 1.92 | 2.54 | 2.33 | 1.87
rand-max | 1.161 | 1.329 | 2.72 | 3.3 | 2.66 | 3.13 | 2.91 | 2.68

all as follows: (fmm-1,0cean-1), (ammp,cafty), (art,bzip), (fmm-2,0cean-2), where fmm-n
and ocean-n are their nth threads, and each pair of parentheses include a co-running group.
The makespan is 0.5% larger than the makespan when the programs run in isolation.

The bottom 3 rows in the two tables reveal the minimum, median, and maximum of
the makespans of 100 randomly generated schedules, corresponding to the scheduling in
many existing systems, which work in a cache-sharing-oblivious manner. The minimum
makespans are close to the optimal in the “no rescheduling” cases, but are mostly over
10% larger than the optimal in the “rescheduling” cases. The median and maximum are
significantly larger than the optimal. For the eight real jobs, although random scheduling
is likely to produce near optimal makespan in the Xeon 5150 system, it causes over 20%
makespan increase on the SMT systems. These results indicate the risks of neglecting cache
sharing in job scheduling.

Besides the optimal co-scheduling results, Table 2.9 and Table 2.10 also list the perfor-
mance of the approximated schedules. On real jobs, the matching-based approximation pro-
duces near optimal results, the A*-cluster algorithm works similarly well except in the case
of “no rescheduling” on “2-smt” architecture where the makespan is about 14% larger than
the minimum. Because of the imprecision caused by clustering, both heuristic algorithms
significantly outperform the greedy and random scheduling in most real and synthetic cases.

On the other hand, their distances from the optimal reflect the room for improvement.

62

@ matching = A*-cluster % greedy ®rand-min #irand-med rand-max

e

2-smp 2-cmp 2s-1 2s-2 2s-3 4s-1 4s-2 4s-3

Figure 2.19- Co-schedule makespan on 16 jobs with job migration. The bars in the graph aie the
makespan achteved with the respective schedule, relative to the makespan when each job runs in
isolation. The first two groups are the results on real jos. The rest groups are the schedule results
of synthetic jobs.

Figure 2.19 presents the results on 16 jobs when migration is allowed. It does not include
the brute-force and A* results because the former takes too much time (up to years with
job migrations) to finish and the latter requires too much memory to run. The results
of the heuristic algorithms are consistent with the 8-job results. Although the minimum
makespans from the random schedules occasionally get close to the results of the heuristic
algorithms, most random scheduling results are significantly worse than the matching-based
and A*-cluster-based approximations. The greedy algorithm, although performing not as
well as the other two heuristic algorithms, outperforms the median results from random
scheduling considerably.

The comparison between the “no rescheduling” and “rescheduling” results shows that
when the “no rescheduling” algorithms cause non-negligible makespan increase, rescheduling
is usually able to reduce the makespan considerably.

Comparison with Cost Minimization

As mentioned earlier, the two scheduling criteria, makespan and total cost, typically lead

to different results. It is confirined by the experimental results. For example, Figuie 2.20

63

shows the optimal schedules (without rescheduling) for both criteria on the Xeon 5080 (2-
smt) machine The schedule with minimum total cost turns out to have 33% larger makespan
than the schedule fiom the makespan mmimization algorithmms On the other hand, the
schedule with minimum makespan causes extia cost as well This difference confirms the
need for studies on each of the criteria and the application of the corresponding algorithms

in different scenaiios

cost mimemazation

schedule (fmm-1, crafty), (fmm-2, ocean-1), (occean-2, art), (ammp, bzip)
cost (1e , total degradation) 12 13

makespan 58 02 sec

makespan minymazation

schedule (fmm-1, baip), (fmm-2, art), (ocean-1, ammp), (ocean-2, crafty)
cost (1e , total degradation) 12 88

makespan 43 56 sec

Figure 2.20 Optimal schedules for cost munimization and makespan mimmization on Xeon 5080
(2-smt) with no rescheduling

2.8 Insights for the Development of Practical Co-Scheduling

Systems

The algorithms proposed in this work have two main uses The first 1s to help determine
the potential for co-scheduling a set of jobs and to facilitate the assessment of practical
co-scheduling systems, as exemplified by some recent work [78] The second 1s to nspire
the development of co-scheduling mechanisms that are ready to be deployed in realistic
settings This section presents some lessons and insights for the second use

Our first observation 1s that sunple algorithms are capable of producing close-to-optimal
results, as shown by the comparison between the simple greedy algorithm and the sophisti-
cated hierarchical perfect matching algorithm (Section 2 7 2 3), and the comparison between

the simple local matching algorithm and the A* algorithms (Section 2 7 3 2)

64

Second, in the design of greedy algorithms, it is important to distinguish “friendly”
jobs from “unfriendly” ones, and couple them together (Section 2.4.3.2) in the produced
schedule.

Third, large potential (e.g., 73% for mcf) exists for using co-scheduling to improve
the performance of some applications running on CMP systems. Co-scheduling for those
applications is critical. On the other hand, some applications are less sensitive to co-
scheduling than others. A mixture of them often means opportunities for effective co-
scheduling results.

Finally, the local optimization is a cheap but effective way to refine co-scheduling re-
sults. The results in Section 2.7.2.3 are obtained after local optimizations cut degradations
by 41.2% and 30.7% for the hierarchical perfect matching algorithm and the greedy al-
gorithm respectively. Local optimizations may serve as a post-processing step for various

co-scheduling algorithms.

2.9 Related Work

At the beginning of this project, we conduct an extensive survey, trying to find some
existing explorations on similar problems in the large body of scheduling research. However,
surprisingly, no previous work in traditional scheduling has been found tackling an optimal
co-scheduling problem that contains performance interplay among jobs as what the current
co-scheduling problem involves. As Leung summarizes in the Handbook of Scheduling [38],
previous studies on optimal job scheduling have covered 4 types of machine environments:
dedicated, identical parallel, uniform parallel, and unrelated parallel machines. On all of
them, the running time of a job is fixed on a machine, independent of how other jobs are
assigned, a clear contrast to the performance interplay in the co-scheduling problem tackled
in this current work. Even though traditional Symmetric Multiprocessing (SMP) systems
or NUMA platforms have certain off-chip resource sharing (e.g., on the main memory), the

influence of the sharing on program performance has been inconsiderable for scheduling

65

and has not been the primary concern in previous scheduling studies. Some scheduling
work [38] does have considered dependencies among jobs. But the dependencies differ from
the performance interplay in co-scheduling in that the dependencies affect the order rather
than performance of the execution of the jobs.

Recent studies on multi-core job co-scheduling fall into two categories. The first class of
research aims at constructing practical on-line job scheduling systems. As the main effect
of cache sharing is the contention among co-running jobs, many studies try to schedule jobs
in a balanced way. They employ different program features, including estimated cache miss
ratios, hardware performance counters, and so on [23, 59, 32]. All these studies aim at
directly improving current runtime schedulers, rather than uncovering the complexity and
solutions of optimal co-scheduling.

The second class of research is more relevant to optimal co-scheduling. A number of
studies [10, 3] have proposed statistical models for the prediction of co-run performance.
The models may ease the process for getting the data needed for optimal scheduling.

Beside co-scheduling, researchers have explored some other approaches to exploiting
shared resource in multi-core architectures. In a recent study, Zhang and others [73] have
found that the effects of thread co-scheduling become prominent for many multithreading
applications only after some cache-sharing-aware transformations are applied. Several other
studies [33, 52] have explored the effects of program-level transformations for enhancing
the usage of shared cache. In addition, some other studies have tried to alleviate cache

contention through cache partitioning [49, 17}, cache quota management [50], and so forth.

2.10 Summary

This chapter describes a study on the analysis of the complexity and the design of efficient
algorithms for determining the optimal co-schedules for jobs running on CMP. It presents a
set of discoveries, including the polynomial-time optimal co-scheduling algorithm for dual-

core systems, the proof of the NP-completeness of the co-scheduling problem for systems

66

with more than two cores per chip, the IP/LP formulation of the optimal co-scheduling
problem, and a spectrum of heuristics-based algorithms for complex problems. Experiments
on both real and synthetic problems validate the optimum of the results by the optimal co-
scheduling algorithms, and demonstrate the effectiveness of the heuristics-based algorithms

in producing near-optimal schedules with good efficiency and scalability.

Chapter 3

Co-Run Performance Prediction

3.1 Introduction

Starting with the adoption of Simultaneous Multithreading (SMT), cache sharing among
computing units has become increasingly common, especially as processor designs enter
the era of Chip Multiprocessors (CMP). The sharing is important for reducing inter-thread
latency, but also brings cache contention between co-running processes. Many studies have
shown considerable and sometimes significant cffects of the contention on program perfor-
mance and system fairness [23, 22, 50, 66, 20, 10, 28]. The urgency for alleviating the
contention keeps growing as the processor-level parallelism rapidly increases.

Data locality (or data reuse) is a critical factor in both language design and imple-
mentation. Since 1960s, locality modeling—that is, analyses of data reuses patterns and
the influence on cache or memory performance —has drawn decades of research interests,
especially on the management of virtual memory and cache {13, 45]. The explorations have
produced fundamental understanding to program locality and the behavior of dedicated
cache. However, for shared-cache behavior, the current understanding remains preliminary.

The major change caused by cache sharing for locality analysis is on cache-level interac-
tions among computing units. In dedicated cache systems, the interactions mainly occur at
context switch time; while with shared cache, the interactions happen at almost every cache

access. The significantly complicated interactions pose many new challenges to the locality

67

68

models that have been developed before—new explorations are necessary for an enhanced
understanding of the implications of shared cache to program performance.

Even though some studies have tried to characterize the influence of cache sharing on
program performance, most of them are either based on certain heuristics (e.g., average
access frequencies of cache sharers! [10]) or some hardware extensions (e.g., [49, 53].) What
is missing is a rigorous formulation of the interactions on shared cache and an in-depth
understanding on how cache sharing influences program cache performance. As a result,
current treatments to cache sharing are primarily through runtime monitoring of low-level
program behaviors (e.g., instructions per cycle (IPC), cache miss rates), no matter the goal is
a better cache partition [63, 29, 28, 50] or an enhanced job scheduler [59, 60, 53, 23, 74, 20].

In this chapter, we present some techniques to reveal the influence of cache sharing on
program cache performance by uncovering the inherent connections between the locality of
program single-runs (i.e. runs with no cache sharers) and that of their co-runs.

This work includes three components. First, we formulate the problem of predicting co-
run cache contention as a problem of the prediction of program inclusive reuse signatures—
which is a summary of LRU stack distances [45] on a shared cache with all cache sharers’ data
references considered—-and conduct a theoretical analysis to expose the inherent statistical
connections between single-run memory behavior and co-run inclusive reuse signatures. The
theoretical analysis sheds insights on the prediction of co-run performance from single-run
data locality. In light of that, we develop a lightweight model for efficiently predicting co-run
data locality (or cache usage) from the memory reference patterns of the programs’ single-
runs. The high efficiency of the model is the key to its uses in shared-cache management. It
achieves the efficiency mainly by capitalizing on the connection between time and locality.
Finally, We analyze the influence of program inputs on the predictive models. Based on the
analysis, we conduct an exploration in addressing the influence by constructing cross-input
predictive models for some memory behaviors that are critical for the co-run performance

prediction.

LCache sharers refer to the processes that run concurrently on a shared cache.

69

On AMD Opteron quad-core machines, the scheduling derived from out model achieves
close-to-optimal results, cutting cache-contention caused performance degradation by as
much as 63% on average, improving program performance by 9% on average (up to 50% for
individual applications.)

This work builds on decades of research in locality modeling. Enlightened by many
seminal cache studies [13, 45, 58], it takes a statistical view at the relation between data
references and cache behavior, and uncovers some inherent properties of co-run locality on
shared cache systems. It resides in the area of program locality analysis but opens oppor-
tunities for proactive cache management on various levels of computing (e.g., scheduling on
operating systems, cache partition in architecture design.)

In the rest of the chapter, Section 3.2 introduces the concept of co-run inclusive reuse
signature and reveals its inherent connections with single-run locality through a statistical
model. Section 3.3 describes a lightweight approach for co-run performance prediction.
Section 3.4.1 presents our exploration on the impact from program inputs. Section 3.5
reports experimental results. Section 3.6 reviews the related work, followed by a short

summary.

3.2 Inclusive Reuse Distance

This section first introduces the model of inclusive reuse signature and the relation with
shared-cache performance. It then uncovers the statistical connection between inclusive
reuse signatures and the single runs’ memory behavior, laying the foundation for the

lightweight inclusive locality model developed in the next section.

3.2.1 Inclusive Reuse Distance and Cache Sharing

On architectures without cache sharing, a widely used locality model is LRU stack distance,
or reuse distance, which is defined as the number of distinct data elements accessed between

the current and the previous reference to the same element [45]. Treating a cache block

70

as a data element leads to cache-block reuse distance. Researchers have used cache-block
reuse distance histograms, also called reuse signatures [16], to predict the performance of
a program when cache is not shared. Figure 3.1 illustrates the basic idea: Every memory
reference to the right of the cache-size line is considered a cache miss because too many other
data have been brought into cache since its previous reference. Although the prediction
assumes fully-associative cache, experiments have shown high accuracy for set-associative

cache as well [43, 76].

g 20%|

§ - :Cache size

“E 15% [|

Uz |

5 ! _

gaow| ||| N

T

5% f]

i [
1

Reuse distance (cache blocks)

Figure 3.1: An example of cache-block reuse signature

Inclusive reuse distance is a straightforward extension of reuse distance for shared cache.
It is defined as the number of distinct data elements of all cache sharers that are accessed
between the current and the previous references to the same data element. Its histogram
is called inclusive reuse signature. For clarity, we call traditional reuse distance exclusive
reuse distance, and name the corresponding histogram as exclusive reuse signature.

Three features of inclusive reuse signature make it desirable for characterizing data
locality on shared cache. First, it strongly correlates with cache performance. It can be
used to predict shared-cache miss rates in the same way as illustrated in Figure 3.1. Second,
it is independent to cache configurations; an inclusive reuse signature can be used to predict
the miss rates of shared caches of different sizes. This feature is important for reconfigurable

caches and cache partition. Finally, as we will show, inclusive reuse signatures can be derived

71

from single runs’ memory behavior. This feature removes the need for direct collection of
inclusive reuse signatures of (often a large number of) co-runs, a key to the lightweight
model presented in the next section.

Like exclusive reuse signature, inclusive reuse signature cannot capture fine-grained
cache conflicts. However, both the previous experiments on exclusive reuse signature [43,
21, 76], and the evaluation in Section 3.5 show that this limitation does not prevent effective
uses of reuse signatures. Hardware extensions (e.g., [53]) allow the monitoring of fine-
grained cache activities. Inclusive reuse signature on the other hand offers the overall cache
requirement of a program without the need for hardware modifications. The two different

techniques are complementary to each other.

3.2.2 Connections to Single Runs

This section presents the connection between single runs’ memory behaviors and inclu-
sive reuse signatures. This connection is critical for efficient attainment of inclusive reuse
signatures. We capture the connection through a series of probability and mathematical
inferences, expressed below. The intuition of the connection is that if we can compute the
number of distinct data elements accessed by each cache sharer in an arbitrary time inter-
val, we can easily derive the inclusive reuse signature. We prove that this number can be
inferred from a special kind of reference histogram, namely time distance histogram, of the
single-run of each process.

Time distance is defined as the number of memory references in a reuse interval®. In
the reference sequence “a b b ¢ a”, the time distance of the final access is 4 (while the reuse
distance is 2.) Time distance histogram is similar to reuse signature shown in Figure 3.1
except that the X-axis is replaced by time distance. Time distance histogram can be on
different levels: An entire data trace may have one overall time distance histogram, while
each data object in the trace may have its own time distance histogram with the time

distances of only the references to that ohject contained.

2We use logical time—that is, the number of data referenccs—for the length of an interval.

72

Let MU)(A) represent the statistical expectation of the number of distinct data ac-
cessed by process j in an arbitrary time interval that has length of A. There are three steps
in computing MW (A) from its time distance histogram. Step 1: From the time distance
histogram of each data object, we calculate the probability for a data object, say (O,), of
process j to appear in the interval, denoted by P,(A). Step 2: From P,(A) (i =0,1,--- ,N;
N is the total number of distinct data objects accessed by process 7), we obtain the proba-
bility for that interval to contain k (k= 0,1,--- , N} distinct objects of process j, denoted
by P(k,A). Step 3: From P(k,A), we compute the expected number of distinct objects
that process j accesses in the interval, which is the value of MU)(A).

Compute P,(A)

For the object O, to be accessed in a A-long interval, it can be either accessed in the
first A-1 time points. or, not until the end of the interval. With ¢,(A) representing the
probability for the data to be not accessed until the end of the interval, P,(A) can be

expressed as

P(A) = B(A = 1) + q(A).

Hence the following equations:

PA-1) = P(A-2)+q(A-1)

P(A—-2) = P(A-3)+aq(A—2)

I

P,(1) P(0) + ¢,(1).

Apparently P,(0) is 0 (no objects can be accessed in a 0-long interval.) Deduction from

these equations produces the following formula:

73

P(A) =" (7). (3.1)

Notice that q,(7) equals the probability for O, to 1) be the final data reference in an
interval of length 7, and meanwhile, 2) have a time distance larger than 7 at that data

reference {otherwise, it would be also accessed at other points in that interval.) With pﬁl)
@

.~/ respectively denoting the probabilities for the two conditions to hold. ¢, () can be

pp®.

and p

computed as ¢,(7) =
(2)

, -’ comes directly from the time distance histogram (denoted as H,)

The probability p

13

of object O, as Z?=T+1 H,(8). With p(l) =n,/T (n, is the total references to O, in all the

T data references in the execution). ¢,(7) can be computed as

T
qZ(T):-?Fi S (). (3.2)
S=7-+1

Together, Equations 3.1 and 3.2 lead to the following computation of P,(A) from the

time distance histogram:

Compute P(k,A) and MU (A)
With B(A) (+ =0,1,--- ,N), we can compute the probability for an interval to contain

k distinct data, denoted as P(k,A) as follows:

P(k,A) = 3 ¢ (the probability for the interval to contain and only contain all

the members of).

where, S is a k-member subset of A = {01,0,,--- ,0On}. Using P,(A), P(k,A) can be

computed as follows®:

*This computation, as most trace-based locality analyses (e g, [13, 58, 55]), assumes data distribute
independently from one another Results of those previous studics have shown minor influence of the
assumption on locality characterization when the program contains a large number of data

74

Pk, A)= > ((]R@) (] a-p@an). (3.4)

$:|S|=k:SCA €S JEA-S
Recall that M) (A) is the statistical expectation of the number of distinct data accessed
by process j in an arbitrary time interval of length A. According to the definition of
statistical expectation, we can compute MU)(A) from P(k,A) as follows:
min{A—1,N)

MO(A)y= > k-P(kA) (3.5)
k=0

Equations (3.3,3.4,3.5) together form a model for computing the co-run inclusive reuse
signatures from the single-runs’ time distance histograms and the numbers of data references
to each data element.

This probabilistic model uncovers the connections between the locality of single-runs and
co-runs. Although the high cost of the model prevents its direct uses (the time complexity

is O(N2™V)), it lays the theoretical foundation for the prediction of co-run locality.

A Special Version on Cache-Line Level

Although the description of the model is on data object level, it applies to cache block
level as well by regarding one cache block of data as a single object.

Moreover, under a common assumption on cache lines, the model can have a much
simpler form. The assumption is that all cache lines are independent and identically dis-
tributed in the data reference trace. This is a typical assumption in previous cache behavior
modeling, ranging from the early seminal work [13, 45, 58, 68] to recent exploratious [10, 55].

Under this assumption, all data objects have the same P(A)—that is, F(A) = P,(A)
(i,j =1,2,---,N). Recall that P(A} is the probability for a given object to appear in an
interval of length A. So, the assumption leads to that the probability for an interval to
coutain k distinct data—that is, P(k, A)—obeys a binomial distribution. It’s like having &
heads in the toss of N coins, with P{A) probability of showing heads for a coin. According

to binomial distribution, we have

75

P(k,A) = (Z)P(A)k(l — P(A)NE, (3.6)

Furthermore, the assumption also significantly simplifies the computation of P(A). Con-
sider Equation 3.3. Because of the assumption of the same distribution of all data objects,
n, = T/N, and the time distance histograms of all objects would be the same as the time
distance histograms of the entire reference trace, denoted as H,(8) = H(4) (i = 1,2,--- ,N.)

Therefore, Equation 3.3 becomes

1 A T
P(A):NZ > H©). (3.7)

r=18=7+1

Equations 3.7 and 3.6 are much simpler than their original version, Equations 3.3 and 3.4.
Together with Equation 3.5, they compose a model for inclusive cache-line-level reuse signa-
ture prediction under the given assumption. (The results in Section 3.5.1 reflect the errors
brought by the assumption.) The time complexity becomes O(T? * S) (assuming N < T),
where S is the number of sharers of a cache.

When there are no data sharing among cache sharers, a combination of their M (J)(é)s
(7 = 1,2,...,# of sharers) is enough to approximate their concurrent reuse distance his-
tograms. Let d be the time distance of a data reuse by process j. Suppose d, is the
number of memory references by one of its cache sharers, process i, during the same
(physical) time period. The concurrent reuse distance of process j can be computed as
MO (d) + 2 iey's co—runners M®(d,). (Note, the values of d and d,s may be different, de-
pending on the relative speeds of cache sharers.)

This combination, however, is not sufficient for co-running threads in multithreading
applications because of the effects of inter-thread data sharing. Next, we will analyze the

case when there is data sharing among jobs.

76

3.2.3 Data Sharing Case

In this section, we use the following example for explanation the cases where data sharing
exists among jobs. There are two co-running threads 77 and 7T5. Suppose in a certain time

period, the memory reference sequence is
abXXbXcdXa

where, an X represents some reference conducted by 75, and the other letters represent the
references by Ty. Clearly, this time period corresponds to a reuse interval of reference to
“a” in the standalone execution of Ty with standalone reuse distance of 3 (for accesses to
b, ¢, and d). We now examine its corresponding concurrent reuse distance for element “a”

in three scenarios.

e Scenario 1: All Xs are something different from the data accessed by T3. Let the four
Xs be “p q p q". Apparently, the concurrent reuse distance of the reuse interval is
just the sum of the numbers of distinct data in each of the two standalone reference

sequences: 3+ 2 = 5.

e Scenario 2: The four Xs are “p a p q”. This scenario illustrates the first effect of data
sharing. The reference to “a” breaks the reuse interval into two: “a b p a” and “a b
p cd qa”. The consequence is that the original reuse interval becomes meaningless.
The approximation of the ultimate concurrent reuse distances of 77 has to include a

reuse distance of 2 (for “a b p a”) and a reuse distance of 5 (for “abp cd qa”).

e Sceunario 3: The four Xs are “p ¢ p ¢”. This scenario illustrates the second effect of
data sharing. Because “c” is referenced by T in that interval, the references to it by
T5 should not be counted in the concurrent reuse distance. So the resulting concurrent

reuse distance is 34+ 1 = 4 (rather than 5 as in Scenario 1).

The last two scenarios show the two effects of data sharing on concurrent reuse distance

approximation.

7

To approximate the concurrent reuse distance of co-running threads, we first assume
no data shared across the threads. and apply the model described in Part I to compute a
concurrent reuse distance histogram, R’ for each thread. We then revise R’ by considering
the two effects of data sharing. The revision tries to find the statistical expectation of the
correct concurrent reuse distance for each reuse interval contained in R'.

To explain the revision step, we first introduce some notations. For simplicity, we
assume there are only two co-running threads. Let Nj and Ng represent the total numbers
of distinct data accessed by thread 1 and thread 2 (in their entire execution), S represent
the set of data shared by the two threads. Suppose that there is a reuse interval V with
ending elements as ¢ accessed by thread 1 and its reuse distance in R’ is d’ (which needs
to be revised in this revision process). Let n; and ng be the numbers of distinct data
among the data accessed respectively by the two threads in V; both can be computed by
Equation 3.5.

Treating the First Effect

The revision step first treats the interval-breaking effect that data sharing may impose
to the concurrent reuse distance (the second effect is temporarily ignored). It computes
the probability for the reuse interval V to be broken. That event happens only when the
following two events both occur. The first is that e is a shared data element; clearly the

probability is

S|/Ni. The second is that e ever appears in the references by thread 2 in
the interval V; as any of the ny data elements could be e, the probability is na/Na. So the
probability for the reuse interval to be broken is (]S|/N1) * (ng/N2). Because e may appear
anywhere in V', we assume the broken effect distributes to all sub-intervals of V' uniformly.
The probability for the resulting reuse intervals to have reuse distance of o« (« =0, 1,...,d")
is the same, which is (|S]/N1) * (n2/N2)/(d’ + 1). Hence the number of reusc intervals of
distance « in R’ should increase by (|S|/N1) * (no/N3)/(d + 1). Meanwlile, because the
original reusc interval is broken, the number of reuse intervals of distance d’ in R’ should
decrease by (|S|/Ny) * (ng/Na). We use R” to denote the resulting histogram after this

treatment.

78

Treating the Second Effect

In the treatment to the second effect of data sharing on concurrent reuse distance, cach
interval is not breakable as the interval-breaking effect has already been considered. For a
reuse interval V in R”, let $1 denote the set of distinct data among all references conducted
by thread 1 in that interval, and Ss for thread 2. In R”, the reuse distance of that interval
would be n; 4+ n2. In this step, we want to correct this distance value by considering that
there may be some overlap between S; and S5. Let C represent the overlap set. Apparently,

C C 5. The probability for |[C] =c is

1 % IS\ (N7 — IS\ (d\ Nz —d
(Nl * (NZ) d ny—d e/ \ng—c)’
ni ng/ d=c

where, (2’11) * (g;) is the possible ways to have a rcuse interval like V, (|(Sl|) (]\T’Lll'jg) is the

Ny—d

n2_c) is the number of ways for

number of ways for d shared data to appear in S;, and (‘i)(
thread 2 to access ¢ data in the d shared data accessed by thread 1.

Those probabilities are enough to compute the statistical expectation of the concurrent
reuse distance for every reuse distance in R’. Although our explanation uses two threads as
the example, the model supports an arbitrary number of co-running threads.

Recall that the time complexity to predict the co-run reuse distance is O(T2?S) (assum-
ing N < T), where S is the number of sharers of a cache. As the number of data references
(T') is usually large, even with this simplified version, we need a still more lightweight model

for making co-run locality prediction feasible for real applications.

3.3 Lightweight Model for Locality Prediction

Based on the connection uncovered in the previous section, we propose a lightweight model

to predict inclusive reuse signatures efficiently enough for the uses in cache management.

79

3.3.1 Lightweight Model

The lightweight model is based on distinct blocks per cycle (DPC), a concept offering
lightweight connection between data reuses and time. Roughly speaking, DPC is the aver-
age footprint in a cycle. Formally, it is defined as the average number of distinct memory
blocks that are accessed in a CPU cycle. For cache analysis, it is natural to use the width of
a cache line as the size of a memory block. In that case, DPC equals the average frequency
of new cache lines being accessed. As an example, suppose a program accesses the following
memory blocks in 100 cycles: b1 bl b3 b5 b3 bl b4 b2. The corresponding DPC
is 5/100 = 0.05 (footprint is 5). For cache sharers, their DPCs reflect their aggressiveness
in competing for cache resources. The following theorem more precisely characterizes the

connection between DPC and cache contention.*

Theorem 1 Suppose, with a set of processes P, process p shares a fully-associative cache of
swize L but shares no data. For an access by p whose exclusiwe reuse distance 15 d (d < L),
let ¢ and o' be the average DPC of p and P wn the reuse wnterval. Then, of and only 1f

ﬁ < Z, the access remawns a cache hat.

The proof of the theorem is straightforward. According to the definition of DPC, the
total number of distinct data elements accessed by processes P in the reuse interval is
(¢'d/c). Therefore, the inclusive reuse distance of the current access by process p equals
(d+o’'d/c). Tt is clear that the necessary and sufficient condition for the access to be a hit
in the fully-associative cache is that its inclusive reuse distance is less than the cache size,
that is, d + o’d/o < L, which leads to the conclusion in the theorem.

The theorem suggests that along with exclusive reuse signatures, knowing the DPC of
every reuse interval is enough for computing the miss rates on a fully-associative shared
cache. Qur experiments (reported in Section 3.5) demonstrate that the results from the
theorem can serve for estimation of the miss rates on set-associative cache as well, an

observation consistent with prior studies on exclusive reuse signatures [43, 76].

4By default, the discussion 1n this chapter excludes the memory accesses that are hits 1n dedicated caches
as they do not reference the shared cache

80

For the uses in cache management, it is necessary to use DPC at a larger granularity to
trade accuracy for efficiency. Experiments on the tradeoff lead us to the use of o (the average
DPC of p in Theorem 1) at the granularity of reuse distance bars. At that granularity, each
bar, say bar b, in the exclusive reuse signature of p has an average oy, equal to)_ - 0o /7,
where, o, is the DPC of the reuse interval of memory reference a, and r is the number of
memory references covered by bar b. For o’ (the average DPC of P in Theorem 1,) we use
an even larger granularity. For a process in set P, denoted as p;, we take the average DPC

of all bars in the exclusive reuse signature of p;, expressed as

B,

/ ! /

1= rhon, (3.8)
b=1

/

Zb is the number of

where, B, is the number of bars in the exclusive reuse signature of p/, r
memory references covered in bar b, and a{b is the average DPC of the bar. The ¢’ of P is
Zp;eP o,

At this large granularity, according to Theorem 1, the data references in bar ¢ in the
exclusive reuse signature of p are cache misses if d,o’/((L — d,)o,) > 1, where, d, is the
average exclusive reuse distance of bar ¢ in the signature of p. Therefore, the increase of

cache miss rate of p caused by co-running with P can be estimated as follows:

AN

azan((—Lff‘;—;)az) Ulz) ={ 5 21 (3.9)

€A
where, A is the set of bars in the exclusive reusc signature of process p that contain distances

smaller than cache size L.

3.3.2 Analysis

The lightweight model essentially effects the following mapping:

(Elyo'laEQ,O"Za"' 7EK90K) | (771137712)“' 777LK)

81

where E, and o; are the exclusive reuse signature and DPCs of process 4, and m, is the
cache miss rate of the process when it co-runs with the other K — 1 processes.

In contrast to the O(T? * S) complexity of the inclusive reuse signature model, this
lightweight model reduces the complexity to O(B * S), where B is the number of bars in
the longest exclusive reuse signature and S is the number of cache sharers. The value of B
is limited by the data size and is usually small: It is less than 256 in our experiment, where
each bar in reuse signatures is 1K-wide and a cache line is 64B wide.

The use of DPC is essential to the efficiency of the lightweight model, but as a tradeoff,
it causes approximation inaccuracy. Besides the errors due to the large granularity, a
second source of inaccuracy is that the DPCs we use are measured (or predicted) from
the single-runs rather than co-runs of the processes. But it is important to notice that
many schemes of cache management make qualitative rather than quantitative decisions,
such as decisions on whether two programs should be scheduled together. This property
grants cache management some degrees of tolerance to the performance prediction errors.
Section 3.5 shows that with all the inaccuracy, the lightweight model still effectively keeps
the relative difference among processes’ co-run performance degradations, and thus strikes
a reasonable tradeoff between accuracy and efficiency.

Efficient attainment of single-run locality information is a topic that has been studied
intensively in previous research. Previous approaches include static analysis [9], offline
profiling [45, 55|, cross-run prediction [16] and so forth. In our experiments, we employ the
simplest approach, using binary instrumentation to measure the exclusive reusc distance
and DPC® at every memory reference in a profiling run of each program. The studies on
this topic are orthogonal to this work: No matter how single run behaviors are obtained,
this work shows that they can lead to the estimation of co-run performance through the

proposed co-run locality models.

SInstrumentation affects running time So, for DPC, we measure the number of distinct blocks per
instruction instead, and then multiply that number by the average IPC of the non-instrumented run of the
programi.

82

3.4 Handling Program Inputs for Co-Scheduling

On a given CMP architecture, cache contention depends on two factors: the programs that
run together, and their inputs. The first factor has been the main focus of previous studies.
This section concentrates on the second factor. The goal is to uncover the effects of program

inputs on CMP co-scheduling and to explore the solutions.

3.4.1 Influence of Program Inputs on Co-Run Performance

To explore the influence of program inputs on co-scheduling, we measure the co-runs of a
dozen SPEC CPU2000 programs on their test, train, and ref inputs. The machine we use
is a Dell PowerEdge 1850 server with two Intel Xeon 5150 2.66 GHz dual-core processors,
each equipped with a 4MB shared L2 cache. We measure the performance degradation of
a program when it co-runs with the other programs with the same types of input.

The boxplots in Figure 3.2 show the results. The differences among the boxplots inside
a group reveal the strong influence of program inputs on co-run performance. Among the
12 benchmarks, twolf and vpr are the two that have the largest performance variation across
inputs. The test runs of both of them have no performance degradation, no matter which
program is their co-runner. Whereas, their ¢rain runs show up to 15% and 36% degradations,
and their ref runs show up to 76% and 64% degradations. For the other programs, the train
and ref runs are 15% to 564% worse than those of their respective test runs (in terms of
median values). The results demonstrate that program inputs affect co-run performance
significantly.

The results also show a second phenomenon. Although the working sets of the pro-
grams usually increase as input size increases, the co-run performance degradation doesn’t
necessarily increase. For ingtance, the ref runs of equake, mcf, and parser clearly have less
degradation than their train runs. This phenomenon shows that co-run degradation does
not necessarily increase when the single-run cache miss rate increases. An extreme case

may convey the intuition behind: A program whose single run has no cache hits clearly

83

won’t have any more cache misses when it co-runs with other programs; hence, its co-run
performance degradation must be negligible. This observation suggests that in the design

of co-scheduler, cache miss rate may not provide the sufficient information.

16 4 max

test train ref 75%
1a \ | /’ median
12 25%

min

4

Corun Degradation
o
o

06 o
H) y T]

Figure 3.2: The boxplot showing the distribution of the performance degradation of each program
when it co-runs with the other 11 programs. The three boxplots in a group respectively correspond
to the executions on test, train, and ref inputs.

3.4.2 Predictive Input-Behavior Models

Our approach to addressing the influence of program inputs is to build predictive input-
behavior models, which can predict program memory behavior from a given input. Because
some co-schedulers can estimate co-run performance from single-run memory behavior and
then derive the best schedules, we need only the mechanism to accurately predict the mem-
ory behavior of a program’s single-runs (on arbitrary inputs). The performance predictive
model is based on the following three memory behaviors: Reuse Signature, Accesses per
Instruction and Distinct Blocks per Cycle. We focus on the construction of the pre-
dictive models for each of the three kinds of memory behaviors through statistical learning
techniques.

The memory behavior of a single-run of a program, denoted by B, depends on the
running environment E, the program code P, and the input I. In this work, F and P
are given, and the goal is to find the function f() mapping from I to B. With such a
function, plugging any input into f{) will generate the predicted behavior of the program’s

corresponding single-run execution. We formalize the task as a statistical learning problem.

34

By feeding a program with different inputs, Iy, ls,..., Iy, we observe the corresponding
behavior of the program’s executions, represented by By, By, ..., By. The input-behavior
pairs, < I, B; > (i = 1,2,...,N), compose a training set, from which we use regression
techniques to approximate function f.

Linear and Non-Linear Regression

Regression techniques are designed to discover the relation between a set of input at-
tributes and a set of outputs. Linear regression assumes that the relation can be expressed
by a linear function; non-linear regression permits more sophisticated functions.

Least Mean Squares (LMS) is a commonly used linear regression technique. Suppose f
is a linear function mapping input 7 to a behavior B for a given program. Given training
data set < T:, B, > (i=1,2,...,N}, the goal of LMS is to find the approximation of function
f, represented by £, such that the mean error squares, % ZZJL(Bz —f (Z)))Z, is minimized.

LMS is simple and efficient, but applies to only linear functions. For non-linear regres-
sion, we choose the k-Nearest-Neighbor method. This method is an instance-based learning
technique. For a new query instance, it retrieves a set of similar instances from memory
and uses them to estimate the new output value. When k = 1, the method is named the
Nearest-Neighbor method, or NN in short. The approximated function f () has an implicit
and usually non-linear form [26]. The model building is simple, just recording the training
instances into a data structure that can be efficiently searched. There are many other sta-
tistical learning techniques, such as Regression Trees and Support Vector Machines; they
arc more complex and costly. We restrain ourselves to a small number of training runs in
order to limit the overhead of the offline profiling. Those more complex learning techniques
often require a larger training data set.

Besides LMS and NN, we also use a hybrid method. For a given program, it chooses
the better one between LMS and NN in terms of training errors. (The training error of
a model is the prediction error of the model when being applied to the training data.)
For each program showed in Figure 3.2, besides its test, train, and ref inputs included in

the SPEC suite, we obtained another input from the collection of additional representative

inputs attained by Berube and Amaral [4]. For programs not included in the collection
{ammp, art, equake, mesa, and twolf), we created an input by modifying the corresponding
ref input. We use train inputs for model testing, and the others for training.

Next, we show the effectiveness of the three regression techniques on each of the three
kinds of memory behavior that are used in the predictive model.

Prediction of Accesses per Instruction

The first question for building a model between program inputs and accesses per instruc-
tion is the representation of program inputs. Given the close relation between program data
size (i.e., the number of distinct data items) and memory behavior, we adopt the approach
proposed by Ding and Zhong, characterizing a program input by the estimated data size
that can be obtained through distance-based sampling. Distance-based sampling observes
data reuses at the beginning of an execution and estimates data size based on long reuse dis-
tances [16]. So, in this and the rest experiments, data size is the I, in the input-behavior pair
< I,, By >, whereas the B, is specific to each experiment; it is the accesses per instruction
in this experiment.

The left half of Table 3.1 reports the accuracy in predicting accesses per instruction.
The three methods produce similar accuracies: 86.43% by LMS, 88.27% by NN, and 88.69%
by the hybrid method. Program equake shows the lowest accuracy (54.58%) mainly because
of its more complex relations between inputs and accesses per instruction. More training
inputs and more sophisticated models may be helpful.

Prediction of Distinct Blocks per Cycle

The statistic, distinct blocks per cycle, reflects the average cache requirement of a pro-

cess. It can be regarded as a product of two factors:

DPC = DPI xIPC

where, DPI is the average number of distinct blocks accessed per instruction, and IPC is the

instructions per cycle. DPI is an attribute solely determined by the program; whereas IPC

86

Table 3.1: Prediction accuracies of linear (LMS) and non-linear (NN and Hybrid) models.

Programs | Accesses per instruction DPI
LMS | NN Hybrid | LMS | NN Hybrid

ammp 89.58 | 98.76 | 98.76 39.83 | 86.72 | 86.72
art 98.86 | 94.25 | 98.86 98.96 | 94.25 | 98.96
bzip 75.79 | 78.62 | 78.62 67.69 | 64.05 | 67.69
crafty 99.54 | 99.24 | 99.54 76.31 | 72.50 | 76.31
equake 54.58 | 54.42 | 54.58 82.27 | 82.13 | 82.27
gap 74.75 | 79.35 | 79.35 79.87 | 78.08 | 79.87
gzip 82.76 | 86.98 | 86.98 77.85 | 66.47 | 77.85
mef 90.25 | 9245 | 92.45 89.73 | 88.11 | 89.73
mesa 96.39 | 96.98 | 96.98 89.43 | 93.33 | 93.33
parser 96.02 | 98.61 | 98.61 89.49 | 70.42 | 89.49
twolf 97.11 | 98.10 | 98.10 52.12 | 86.75 | 86.75
vpr 81.50 | 81.50 | 81.50 96.30 | 95.28 | 96.30
Average | 86.43 | 88.27 | 88.69 78.32 | 81.51 | 85.44

is a runtime behavior, attainable from hardware performance counters. The prediction of
DPC therefore can be conducted in two steps. Given a new input, an offline-trained model
predicts the DPIT of the new execution. During the new execution, the DPC can be obtained
by multiplying the predicted DPI with the runtime IPC. Therefore, building a predictive
model for DPI is the key to the prediction of distinct blocks per cycle.

Because DPI is an average value for an interval, it is determined by the interval length.
For an interval containing nothing except one memory access instruction, the DPI is 1,
which is the upper bound of DPI under the assumption that one instruction may conduct at
most one memory access. As the interval becomes larger, DPI changes non-monotonically,
determined by the ratio of non-memory-access instructions and the frequency in which
memory-access instructions access a new object. When the interval length becomes large
enough to cover at least one access to all the blocks in the program, DPI decreases as the
interval length increases.

The DPI used in CAPS is the average DPI of all the reuse intervals®, computed in the

following formula:

SThe reuse interval of a data reuse is the interval between the previous and the current access to the
same data item.

87

Zf__l 7,0,
Z;le T

where, B is the number of bars in the reuse signature of the execution, r, is the number of

w =

memory references in bar ¢, and @, is the average of all the DPIs of the reuse intervals in
bar 1.

The right half of Table 3.1 shows that NN is slightly more accurate than LMS, 81.51%
versus 78.3%. The hybrid model yields an accuracy of 85.4%.

Reuse Signatures Previous work has explored the cross-input predictability of reuse
signatures. For example, Ding and Zhong have shown an accuracy of over 94% for the
prediction of the reuse signatures of 15 complex programs [16]. Their technique is based on
a desirable property of reuse signatures: No reuse distance of an execution can be larger
than the data size of the execution. (This property comes from the definition of reuse
distance.) They therefore test a set of sub-linear functions in training runs and choose
the best one as the model for the prediction of reuse signatures. This work adopts their

established technique.

3.5 Evaluation

In this chapter, we present an analytical model (including the variation on cache line level)
and a lightweight model for co-run locality prediction. Although the analytical model offers
insights on the underlying properties of the problem, the lightweight model is more suitable
for real uses. In light of that, this section concentrates on the evaluation of the lightweight
model. We first report the results when no data sharing is allowed. After that, we evaluate
our model which consider the data sharing on both synthetic traces and traces from real
programs.

In order to test the model on traces with various data reuse patterns, we develop a trace
generator with the capability to produce data reference traces according to users’ specifica-

tions, such as the number of distinct data, the frequency of memory accesses conducted by

88

each cache sharer and data reuse distributions. The parameters that control the generated

trace include the following:

® nj, Na, ..., Ng: the number of unique data blocks (in the unit of cache lines) in the

co-running programs.
e s: the data sharing rate. It is the total number of shared data blocks divided by n;.

o distribution: the distribution of standalone reuse distances. We test the following
typical distributions: the random, the exponential (A = —0.97), the Normal { mean =
100, std. = 33). Choosing thesc distributions is because they have been widely used
as the primitive distributions in statistical mixture models [26]; the reuse patterns in

many real traces can be regarded as the combination of those distributions [55].

The underlying scheme of the trace generator is a stochastic process similar to the one

used in standalone reuse distance studies [54].

3.5.1 Inclusive Reuse Signatures without Data Sharing

A direct evaluation of the basic analytical model is difficult because of the very high time
complexity of the model (On the other hand, a short trace cannot capture the necessary
statistical properties.) In this section, we instead evaluate the prediction accuracy produced
by the simplified cache-line-level model (i.e. Equations 3.5, 3.6 and 3.7.) As it is a special
case of the basic analytical model, its evaluation results show some indirect evidence to the
validity of the basic model.

To completely expose prediction errors, we use the finest granularity: The width of
each bar in the histograms is 1. Figure 3.3 shows the real and predicted inclusive reuse
signatures for a trace containing 200000 references from two co-runners. Let n; and ng
stand for the number of unique data blocks (in the unit of cache lines) in the two programs,
r for the data references ratio—that is,the total number of references conducted by the

second program divided by that of the first program. In the case shown in the graph,

89

0014 . : . :
=
po12 - < pred

0.01

g
o
=3
@

(=]
o
Q
=2

Fraction of references

e
=]
S
=

0.002r

0 50 100 150 200 250
inclusive reuse distance

Figure 3.3: The real and predicted inclusive reuse signatures.

ny = 200, ny = 100, » = 0.5 and the data reuse distances in both programs obey a Normal
distribution (mean = 100, std. = 33). The differences in the numbers of data and references
in the two programs result in the drastic fluctuations in the middle part of the graph. Even
with those fluctuations, the predicted signature matches the real one well. The accuracy
is 95.5%. (Following previous work [16]. we define accuracy as (1 — E/2), where E is the
sum of the absolute differences between the predicted and the real signatures at every reuse
distance. Division by 2 is to normalize the accuracy to [0,1].)

Table 3.2 presents the accuracies on more traces whose reuse distances are of some
typical distributions (the exponential distribution’s exponent is A = —0.97. the Normal
distribution has mean = 100, std. = 33.) The reason for choosing these patterns is that
they are some of the distributions that have been widely used as the primitive distributions
in statistical mixture models [26]; the reuse patterns in many real traces can be regarded as
the combination of those distributions [55]. The bottom 3 groups above the average row are
the results when there are 4 co-runners, among which, the first pair both have nl unique
data items, and the second pair both have n2, and r is the reference ratio between the two
pairs.

The overall average accuracy is 91.4%. For larger-grained histograms (e.g., 1K-wide bars
in many real uses), the accuracy would be higher as errors inside a bar would be smoothed

out. For instance, the average accuracy for the 4-co-runner cases in our experiment increases

90

Table 3.2: Accuracy of inclusive reuse signature prediction

distr. r=0.5 r=1 avg.
n1=200 | n7=200 | n;=200 | n1=200
n2=100 7122200 n2:100 TLQZQOO

random 93.8 93.3 94.9 93.3 93.8

expor. 89.4 90.7 93.2 92.3 914

normal 95.5 94.3 95.9 94.6 95.1

random+-

expon. 95.0 93.3 94.0 93.3 93.9

random-+

normal 94.2 93.0 93.9 93.5 93.7

expon.+

normal 94.9 93.2 93.6 94.2 94.0

2random-+

expon.+

normal 89.4 86.4 88.2 88.5 88.1

random-+

2expon.+

normal 86.3 85.5 89.0 84.8 86.4

random-+

expon.—+

2normal 82.9 90.1 85.0 85.9 86.0

avg. 91.3 91.1 92.0 91.2 914

r: the ratio of the number of references conducted by the two (pairs of) programs.
n1,mn2: the number of distinct data of the two (pairs of) programs.

from 86.0% to 91.3% when a bar spans a distance range of 20. The results also show that
the effectiveness of the prediction approach is insensitive to reuse patterns, indicated by the

similar accuracy across distributions.

3.5.2 Inclusive Reuse Signatures with Data Sharing
3.5.2.1 Synthetic Traces

Table 3.3 presents the accuracies on a set of traces. The bottom three groups above the
average row are the results when there are four co-runners, among which, the first pair both
have n1 unique data items, and the second pair both have ns.

Following previous work [16], we define accuracy as (1 — E/2), where E is the sum

of the absolute differences between the predicted and the real reuse histograms at every

91

reuse distance. Division by 2 normalizes the accuracy to [0,100%)]. To completely expose
prediction errors, we use the finest granularity: The width of each bar in all the histograms
used in this experiment is 1.

The overall average accuracy is 87.9%. For larger-grained histograms (e.g., 1K-wide bars
in many real uses), the accuracy would be higher as errors inside a bar would be smoothed
out. The results also show that the effectiveness of the prediction approach is not signif-
icantly sensitive to reuse patterns, indicated by the similar accuracy across distributions.
The presence of data sharing reduces the prediction accuracy by 5-7%, reflecting the extra
complications caused by the sharing to concurrent reuse distance approximation. For most
cases, the prediction accuracy is above 80%, verifying the existence of the statistical connec-
tions between concurrent reuse distance and the memory behaviors of individual threads,

and demonstrating the capability of the probabilistic model in capturing such connections.

Table 3.3: Accuracy of the Prediction of Concurrent Reuse Distance Histograms

distr. s=0 s=10% s=20% average
n =200 n1:200 n1=200 TL1:200 711:‘—200 n1=200
19=100 || n2=200 || no=100 || ne=200 || no=100 || ne==200

random 94.9 93.3 91.3 90.0 89.7 79.8 89.8

expon. 93.2 92.3 91.1 92.2 93.4 90.1 92.1

normal 95.9 94.6 94.4 80.8 93.4 91.6 91.8

random+

expon. 94.0 93.3 88.5 87.2 84.0 79.0 87.7

random-+

normal 93.9 93.5 87.4 90.9 91.6 89.1 91.1

expon.+

normal 93.6 94.2 92.5 79.9 92.2 89.9 90.4

2random-+

expon.+

normal 88.2 88.5 83.3 82.0 82.5 81.6 84.4

random-+

2expon.+

normal 89.0 84.8 70.1 72.8 85.3 83.5 80.9

random-+

expon.+

2normal 85.0 85.9 84.1 80.0 81.2 81.2 82.9

average 92.0 91.2 87.0 84.0 88.1 85.1 87.9

s: the sharing ratio. n1,mn2: the number of distinct data of the co-running programs.

92

3.5.2.2 Traces from Real Programs

Because instrumentation changes the relative speeds of cache sharers, the real memory
traces of co-running threads are difficult to collect on real machines. For our evaluation
purpose, we employ a simulator to record the traces. The simulator is constructed based
on SIMICS [41] with GEMS [44], a cycle-accurate multiprocessor simulator. The simulated
systein is a dual-core UltraSPARC architecture with 1MB shared L2 cache.

We simulate three representative PARSEC programs [6]. For each program, we use the
fast mode of the simulator to move into the region of interest (the labels to those regions
come with the original benchmarks) and then collect memory references in one-million-
cycle-long detailed simulation.

Program swaptions is an Intel RMS workload which uses the Heath-Jarrow-Morton
(HIM) framework to price a portfolio of swaptions. The program uses few (23) locks.
There are 27% data that are shared between two threads in the collected memory reference
trace. The prediction accuracy by the probabilistic model is 74%. The accuracy is relatively
lower than those on synthetic traces. The reason is that this program accesses distinct data
elements more frequently than the synthetic traces. The reuse distance tends to span a
broader range.

Program wvips is based on the VASARI Image Processing System (VIPS). It includes
fundamental image operations such as an affine transformation and a convolution. The
program uses locks intensively. There are totally over 33,000 locks. But there are negligible
portion of data that are shared between threads. The probabilistic model is able to predict
the concurrent reuse distance by 76% accuracy.

The last program is sireamcluster. It is an RMS kernel developed by Princeton Uni-
versity that solves the online clustering problem. It is a data-level parallel program. This
program uses modest number of locks, but many barriers (129,600). There are 3% data
shared between two threads in the generated memory reference trace. The approximated
concurrent reuse distance histogram has the highest error, 28%. It is mainly due to its

irregular data references.

93

3.5.3 Predicting Co-Run Performance

100

80 b

60 4

40 1

Number of Runs

20 b

o [O s B

0.2 0.4 0.6 0.8 1
Error of the Prediction of the Increase Rate of L2 Miss Rate

| —

100

80 b

60 1

40 1

Number of Runs

20

.
0.8 1

0 0.2 0.4 0.6 .
Error of the Prediction of IPC Degradation Rate

0

Figure 3.4: The distribution of the errors in the prediction of L2 cache misses and IPC.

We apply Equation 3.9 to all the 78 pair-wise co-runs of 12 programs (including the
co-runs of two copies of the same program). Figure 3.4 shows the prediction error of the
increase rate of L2 cache miss rate on the Intel Xeon machines, calculated as |(8/75)—(6/75)|,
where 7, (s for single-run) is the real L2 miss rate of the single-run of a program, ¢ is its
increase because of co-run contention, 7y and & are their predicted values respectively from
exclusive reuse signature and Equation 3.9. The average error is 16%. The runs having
error larger than 20%, except for one program mcf, all have a very small (< 0.6%) ratio
between their L2 misses and total memory references. The small ratios make the relative
errors look large, but the small absolute errors have only minor influence on the prediction

of performance degradations, as shown in the IPC graph of Figure 3.4.

94

In the IPC graph, the prediction error of IPC increase rate is calculated as |(IPC, —
IPC)/IPC, —~ (ﬁi’a - ﬁa)/ﬁ’a], where, IPCs and IPC, are the real IPCs of the
single-run and co-run of a program, while ﬁDFS and f]/:’a are their predicted values. The
average error is 9%.

The IPC prediction is through a regression model obtained by offfine training, in a way
similar to previous explorations [23, 61]. We apply Ridge regression, a regression technique
that tolerates feature correlations [26], to a training set consisting of the memory behaviors

and IPCs of randomly picked 200 runs. The generated performance model is

IPC =1.9894 — 1.7071hy — 4.7019hy — 8.8863h3

where, hq, ho, and hs are the numbers of L1 cache hits, L2 cache hits, and other memory
references, divided by the total number of instructions. They are derived from the measured

single-run locality and the predicted miss rate increase.

3.6 Related Work

Since the early days in computing, the problem of how to model data reuse patterns and their
connections to cache performance {13, 45] has continuously drawn great research interests.
The decades of efforts have contributed a solid foundation for understanding the behavior
of dedicated cache systems. The single-run reuse distance model used in this work is one
example technique from prior dedicated cache research. It is initially proposed as LRU stack
distance by Mattson et al. [45], and has later been widely used in locality analysis (e.g., some
recent work on program optimizations [5, 77|, cross-architecture program performance[43].
and memory disambiguation(21].)

But the current understanding to shared cache behavior is much less mature. There
has been some work on analyzing the interactions among different threads on the cache

in a time-sharing environment. For example, in 1980s, Triebaut and Stone [68] develop a

95

footprint-based analytical model for cache-reload transients. More recently, Suh et al. [65]
design an analytical cache model for estimating the effect of context switching. Their studies
mainly focus on predicting the footprint size of a thread as the interactions on cache mainly
occur at context switch time: while with shared cache, the interactions happen at almost
every cache access. The prediction of footprint size becomes insufficient to address the
significantly complicated interactions.

For shared cache on either SMT or CMP architectures, although some studies have tried
to characterize the influence of cache sharing on program performance, most of them are
either based on certain heuristics or some hardware extensions (e.g., [49, 53].) Chandra et
al. [10] propose three models to predict shared cache performance from single-run cyclic
stack distances. The models show good prediction accuracy on CMP simulators, but are
based on coarse-grained heuristics and approximations and leave the inherent connections
between co-run and single-run locality unexposed. It also remains unclear how the models
would fit the requirements of proactive cache management in terms of accuracy and effi-
ciency. Berg et al. use sampling techniques to estimate the behavior of CMP cache for a
parallel application [3]. Many of recent studies on either SMT or CMP have tried to opti-
mize shared cache performance through either hardware extensions[28, 50, 53], or operating
system scheduling [23, 59]. They commonly use reactive schemes by relying on runtime
profiling to estimate the co-run performance or cache requirement of programs.

This work is unique in two aspects. Through a rigorous model, it uncovers the underlying
connections between single-run and co-run locality, and it initiates proactive management
for shared cache through the support of a lightweight predictive model. It is complemen-
tary to many previous explorations. The prediction from the shared-cache locality models
may provide guidance to many previous cache management techniques. On the other hand,
the combination with sampling may further speedup single-run data collection, and cer-
tain runtime monitoring and a combination with reactive management may prevent poor

predictions from causing inferior decisions.

96

3.7 Summary

This chapter has describled an analytical model to uncover the inherent statistical connec-
tions between program single-run memory behaviors and co-run locality. The model offers
theoretical insights on the prediction of shared cache performance, laying the foundation for
proactive cache management. With those insights, we develop a lightweight model to enable
the uses of co-run locality models in proactive cache management. Moreover, we explore
the influence of program inputs on job co-scheduling. We also construct a set cross-input
predictive models for a set of memory behaviors that are used in the performance predic-
tive model. The results exhibit the potential of combining program behavior analysis by
programming systems and global resource management by operating systems. The shared
cache behavior analysis may open new opportunities for various execution layers in CMP

systems to exploit the shared cache resource more effectively than before.

Chapter 4

Cache-Contention-Aware Proactive

Scheduling

4.1 Introduction

The previous two chapters have described the prediction of co-run performance and the
design of co-scheduling algorithms. This chapter concentrates on how to integrate these
techniques into practical job co-schedulers for both batch and online job scheduling.

In operating systems (OS) research, the recent attempts in alleviating cache contention
mainly focus on reactive process scheduling [59, 14, 48, 20, 22, 23, 8]. These techniques
typically sample job executions periodically. During the sampling, they track hardware
performance counters to estimate the cache requirement of each process and derive a better
schedule. (For a system containing multiple CMP chips, a better schedule usually means
a different assignment of jobs to processors or a different allocation of CPU timeslices to
processes.)

Although these techniques work well under certain conditions, the strong reliance on
runtime sampling imposes some limitations on their effectiveness and applicability. The
main obstacle is that the sampled behavior only reflects the behavior of a process during

a certain time period when it co-runs with a certain subset of processes. Whereas, good

97

98

scheduling needs to recognize the inherent cache requirement of a process and its influence
on and from all possible co-runners.

As a result, most prior techniques require both periodic re-sampling and frequent reshuf-
fles of processes among different co-run groups [23, 59].

These requirements not only cause more sampling overhead (cache performance is often
inferior during sampling periods) but also limit the applicability of previous scheduling
techniques. For instance, cache-fair scheduling needs the sampling of 10 different co-runs
(i.e., runs with different co-runners) per process in every sampling phase, and requires the
system to contain a mix of cache-fair and best-effort processes [23]; symbiotic scheduling [59,
14], which samples prograimn performance under various schedules and estimates the best
schedule, is difficult to be applied to large problems—the number of possible schedules
increases exponentially with the numbers of jobs and processors (e.g., there are 2 million
ways to co-schedule 16 jobs on 8 dual-cores).

This chapter attempts to free prior techniques from those constraints by integrating
the knowledge of programming systems. Our exploration combines program behavior anal-
ysis with operating systems’ control of underlying resources. It presents the design of
cache-contention-aware proactive scheduling(CAPS). For batch processing, we adopt the
performance prediction model in Chapter 3 to predict the co-run performance degradations
and then use algorithms proposed in Chapter 2 to find the schedule.

Runtime scheduling has even higher requirement for efficiency. Our solution is cache-
contention Competitiveness and Sensitivity models statistically derived to characterize the
expected influence that a process may impose to and receive from other processes. We
design a dual-queue scheduling system, which evenly separates processes into sensitive and
insensitive queues and schedule them accordingly. The scheduling system adapts to the
dynamic entries and exits of processes by periodically adjusting the threshold used for

process separating.

99

4.2 CAPS for Batch Processing

This section describes the scheduler for a batch of jobs. In batch processing, the job set
and the corresponding inputs are known beforehand. The particular problem to address for
CMPs is how to partition the job set into co-schedule groups in order to achieve the best

performance. CAPS consists of three components.

Prog-1 single Corun-1

run behavior behavior

Prog-2 single Corun-2

run behavior behavior e1g Optimal
: - Perfe schedule

Prog-N single Corun-M

run behavior behavior

Figure 4.1: The key components of the cache-contention-aware proactive scheduler (CAPS).

As depicted in Figure 4.1, at the heart of CAPS are two components. The first com-
ponent predicts the performance degradation of each possible co-run using the memory
behavior of single-runs of each program. In this framework, we use the techniques pro-
posed in Chapter 3 to predict the cross-input co-run performance. The second component
maps the co-run performance to a fully connected graph, with each vertex representing a
program, and each edge having a weight equal to the total performance degradation of the
co-run of the two vertices. It then applies the minimum-weight perfect matching algorithm
to efficiently determine the schedule that minimizes the total of the co-run degradation of

all the programs. The detailed algorithm is presented in Chapter 2.

4.3 CAPS for Runtime Scheduling

Unlike in batch processing, the job set in a general computing system usually changes dy-
namically and thus requires continuous and frequent scheduling. More efficient and adaptive

models are imperative. In this section, we propose a scheme for online job scheduling.

100

4.3.1 Cache-Contention Sensitivity and Competitiveness

To avoid dealing with every possible co-runs, we characterize the statistically expected
influence that a process may impose to and receive from random processes through a
competitiveness-sensitivity model. Competitiveness and sensitivity respectively character-
ize the statistical expectation of the influence that a process may impose on and receive
from random co-runners. This model is important for making runtime proactive scheduling
scalable. As we will see in Section 4.4, CAPS capitalizes on the model to make sensitive

processes co-run with uncompetitive ones to achicve better performance.

4.3.1.1 Sensitivity

The definition of cache-contention sensitivity is as follows:

CPIl,, - CPI,

CPL, (4.1)

Sensitivity =

where, CPI; is the cycles per instruction (CPI) of a process’s single run, and CPI,, is the
statistical expectation of the CPI of that process when it co-runs with random processes.

The estimation of CPI,, is straightforward: As explained in Chapter 3, we can predict
the cache miss rate of a process’s single run from its standalone reuse signatures; the
corresponding CPI (given the cache miss rate) can be estimated using existing techniques
(e.g. [61]).

To estimate CPI,, in the same way, we have to obtain the statistical expectation of
the cache miss rates of the process’s co-runs. The number of co-run misses equals the sum
of single-run misses and the extra misses caused by co-run contention. Since single-run
misses are obtainable as mentioned in the previous paragraph, the problem becomes the
computation of the statistical expectation of the number of extra misses. The following

corollary of Theorem 1 offers the solution.

Corollary 1 Let F() be the cumulative distribution function of the DPCs of all programs,

and L be the shared cache size. Suppose a process p has H memory references whose

101

standalone reuse distances, d,, are smaller than L (i=1, 2, ---, H). Let g, represent the
DPC of the corresponding reuse interval. When process p co-runs with some randomly-
picked programs that share no data with p, the expectation of the cache mass rate of the H

memory references is
H

f=1-% > F(o(L - d,)/d,). (4.2)

1=1

Proof: Let ¢’ represent the average DPC of the co-runners of p in the reuse interval
corresponding to o,. Theorem 1 tells us that if and only if ¢/ < ¢,(L - d,)/d,, reference 4
remains a hit. Since the probability for that condition to happen is F(o,(L — d,)/d,), the
expectation of the number of cache hits among the H references is Zfi (Flo (L —d,)/d,).
The conclusion follows.]

With this corollary, we can compute the sensitivity of a process from its DPC and
standalone reuse signature. Since references are grouped in bars in reuse signatures, the
computation uses a bar as a unit; H thus equals the number of bars whose reuse distances
are smaller than L. For computing the F() items efficiently, we build a lookup table for F
by using 3.9 billion data reuses from a dozen randomly chosen SPEC CPU2000 programs
(included in Figure 4.2). The table contains 200 items corresponding to 200 evenly-spaced

points between 0 and 0.237.

4.3.1.2 Competitiveness

We initially intended to use a process’s average DPC as competitiveness. But our experi-
ments reveal the strong correlation between the influence a process imposes on and receives
from its co-runners. This observation leads to a unified competitiveness and sensitivity
model.

Figure 4.2 plots the performance degradation of all the 66 pair-wise co-runs of a dozen
SPEC CPU2000 programs (tran runs) on an Intel Xeon 5150 processor (specified in Sec-

tion 4.4). In the graph. points on solid curves show the program’s own degradation and

102

points on broken curves show the degradation of its co-runner. For legibility, each program’s
data are sorted in ascending order of self degradation and then connected into curves. The
two curves corresponding to every program show similar trends. The correlation coefficient
between all the self and co-runner degradations is 0.75. (As an extra evidence, the coefficient

is 0.73 for the 13 SPEC programs shown in Figure 4.5.)

e e e i e Ll

—self
05 co-runner
0.4+
0.3t 4

IPC Degradation

i s
5
)

apblu ' lucas ' af)si ‘ mérid - sv;i_ml g'cc
fma3d omnetpp galgel sixtrack facerec wupwise

0.2}

-01

Figure 4.2: Each program has 11 pair-wise co-runs, respectively with each of the other 11 programs.
The points on the solid curve show the degradations of this program in those co-runs; the points
on the broken curve are of its co-runners. (The points are connected for legibility.) The similarity
between the two kinds of curves shows the strong correlations between the degradations of a program
and those of its co-runners.

The intuition behind the strong correlation is that, a program that is sensitive to cache
contention tends to fetch data from a large portion of the shared cache frequently. Hence,
it tends to impose strong influence on its co-runners, that is, it tends to be competitive.
As an exception, stream programs are competitive but insensitive. Although they access
cache intensively, those programs have few data reuses and thus rely on no cache for perfor-
mance. Fortunately in offline training. it is easy to detect stream programs thanks to their
distinctive data access patterns. The scheduling process, CAPS, treats those programs
as competitive programs and pair them with other insensitive programs (detailed next).
For other programs, CAPS simply uses sensitivity for competitiveness. This unified model

simplifies the design of runtime scheduler.

103

4.3.2 Runtime Scheduling Policy

The principle of CAPS is to couple sensitive processes with insensitive (thus likely uncom-
petitive) processes. This section uses Linux as an example to explain how CAPS can be
integrated in runtime schedulers.

In default Linux SMP scheduling (e.g., Linux 2.6.23), when a program is launched, one
of the CPUs will receive that signal and assign the process to the best available CPU for
execution. Each CPU has a scheduler managing the jobs assigned to it.

For CAPS, CPUs are classified evenly into two groups, G and G,, dedicated to sensitive
and insensitive processes respectively. For the CPUs sharing a cache, half of them belong
to G5 and the others belong to G,. The scheduler on each CPU maintains a sensitivity
threshold h, which is equal to the decayed average of the sensitivities of all the processes
that the scheduler has assigned (may or may not to this CPU). Formally, % is computed as

follows when the scheduler assigns the nth process:

b, = ahyy + (1 -)8, (4.3)

where, « is a decay factor (0 to 1), and S, is the sensitivity of the newly launched process.
The use of the decay factor makes the scheduler adaptive to workload changes. Similar to
other factors in OS, its appropriate value should be determined empirically.

When a program is launched, the CPU that receives the launching signal computes the
sensitivity of the process, Sy,. It then updates h using equation 4.3. If S, > h, it schedules
the process to a CPU in G, otherwise, to a CPU in G,. The way to select a CPU inside
a group is the same as in the default Linux scheme. (Stream programs are assigned to
G directly.) For processes without locality models, the scheduler falls back to the Linux
default scheduling.

Equation 4.3 attempts to obtain load balance by dynamically adjusting threshold h. If

unbalance still occurs due to certain patterns in the sensitivities of subsequent jobs, the

104

existing load balancer in Linux, which is invoked periodically, can rebalance the workload
automatically.

We note on two facts. First, the scheduler makes no change to the default management
of run-queues and timeslice allocation in Linux. This is essential for maintaining the proper
treatment to priorities. Second, although it is possible for different CPUs to get different
h values, some degrees of difference is tolerable for CAPS. Furthermore, during rebalance,
the rebalancer can obtain the average of all CPUs’ h values and update the h values for
every CPU accordingly.

The sensitivity of a program is obtained from its predicted reuse signature and DPC,
both of which have shown to be cross-input predictable [16, 30]. But predictive models have
to be constructed for each program through an offline profiling and learning process. This
step, although being automatic, may still seem to be a burden to scheduling. There are two
ways to make it transparent to the users of CAPS. First, the learning step can occur during
the typical performance tuning or correctness testing stage in the development of a software.
The program developers only need to run the program on several of the inputs they have;
whereas, the outcome is beneficial: Besides for scheduling, the predictive locality model can
also benefit data reorganization [16], cache resizing [56], and cache partition [37]. In this
case, the scheduler can use the model for free. The second solution is to make the learning
occur implicitly in the real runs of an application through incremental learning techniques.
Through multiple runs, online learner learns the relation between memory behavior and

program inputs, and builds the predictive model for co-run locality prediction.

4.4 Evaluation

This section first presents the accuracy of the performance prediction model for shared
cache CMPs. It then reports the effectiveness of CAPS for batch processing and runtime

scheduling, with overhead analysis at the end.

105

4.4.1 Methodology

For evaluation, we employ 12 randomly chosen SPEC CPU2000 programs, as shown in
Table 4.1, and a sequential stream program (derived from [46] with each data element
covering one cache line) on a Dell PowerEdge 1850 server. The machine is equipped with
Intel Xeon 5150 2.66 GHz quad-core processors; every two cores have a 4MB shared L2 cache
(64B line, 4-way). Each core has a 32KB dedicated L1 data cache. The information shown
in Table 4.1 are collected on the ref runs of the benchmarks on the Xeon machine. We use
PIN as the instrumentation tool [40] for locality measurement, and use the PAPI [7] library
for hardware performance monitoring. In the collection of co-run behavior, in order to avoid
the distraction from program lengths, we follow Tuck and Tullsen’s practice [71], wrapping
each program to make it run 10 times consecutively, and only collecting the behavior of

co-runs—that is, the runs overlapping with another program’s run.

Table 4.1: Performance Ranges of Benchmarks on Intel Xeon 5150

Program cycles per instruction L2 misses per mem. acc.(%)
single-run | co-run-min | co-run-max || single-run | co-run-min | co-run-max
ammp 1.01 1.03 1.31 0.51 0.60 1.6
art 0.93 0.96 1.55 0.0028 0.095 3.8
bzip 0.49 0.49 0.66 0.11 0.18 0.76
crafty 0.72 0.73 0.80 0.00010 0.0028 0.21
equake 1.28 1.38 2.13 3.8 3.9 4.5
gap 0.91 0.91 1.16 1.3 1.5 1.6
gzip 0.72 0.72 0.77 0.078 0.079 0.14
mcf 2.47 2.70 4.84 4.4 5.0 8.6
mesa 0.51 0.52 0.56 0.23 0.26 0.38
parser 1.15 1.18 1.50 0.31 0.44 1.2
twolf 1.06 1.07 1.24 0.0014 0.0015 0.40
vpr 1.06 1.09 1.44 0.0053 0.0067 0.015

4.4.2 CAPS for Batch Processing

To evaluate the effectiveness , we measure 4 types of schedules: the optimal, worst, CAPS,
and random schedules. We obtain the optimal and the worst schedule by a brute-force

search among all possible schedules. We obtain the random schedule results by randomly

106

choosing 100 schedules and taking their average performance, which correspond to the

default scheduling in the current CMP systems that are oblivious to cache contention.

- Optimal

Perf. Degradation {%)

Perf. Degradation(%)

ammp L ;
N

equake £
mesa !

Figure 4.3: Performance degradation on dual-core (top graph) and quad-core (bottom graph)
systems by different schedulings.

Table 4.2 shows the detailed coupling of the 12 programs in the worst, CAPS, and
optimal schedules.

In the dual-core case (Intel Xeon 5150), except the two italic groups, the CAPS schedule
matches the optimal schedule well. The two mismatches are mainly due to the performance
prediction errors of some co-runs with the program ammp. The top graph in the figure
contains the performance degradation of the co-runs in each schedule, measured by the CPI

increase divided by the corresponding single-run’s CPI.

107

Table 4.2: Detailed Coupling of Programs under Different Schedules

Optimal schedule CAPS schedule Worst schedule
ammp-+parser art-+crafty ammp+gzip art-crafty ammp-+bzip art+mcf
bzip-+gap equake+mesa | bzip+gap equake+mesa | crafty+mesa equake+vpr
gzip+mecf twolf+vpr mef+parser twolf+vpr gap+parser twolf+gzip

On average, the mismatch causes the co-runs in CAPS schedule 1.6% more performance
degradation than the optimal schedule. Compared to the random schedule result, CAPS
schedule improves 9 programs’ performance by 1.2% to 23.68%. As a tradeoff, it meanwhile
worsens 3 programs’ performance by 3.4%, 4.6%, and 7.6%. On average, the co-runs in
CAPS schedule degrade performance by 9.7%, and outperform the random schedule result
by 6.2%. It is worth to note that random scheduling may group some programs in the way
the worst scheduling does; the consequence is severe: 67% degradation for art, 73% for mcf,
and 22.8% on average. CAPS avoids those traps, making co-runs 13.1% faster than the
worst schedule on average. (Note that our goal is to minimize the overall rather than each
individual program’s degradation. So, it is normal for certain prograims to run better in the
worst schedule than in other schedules.)

In the quad-core case (AMD Opteron), although there are more mismatches between
the optimal schedule and the CAPS schedule, their average degradations are still similar.
The CAPS schedule reduces the average performance degradation of the random schedule
by 60%. Among the 12 programs, 7 of them have degradation reduction of more than 63%;
4 of them have slightly more degradations.

Comparison to Reactive Co-scheduling Reactive co-scheduling usually tries dif-
ferent schedules in a sampling phase and chooses the best onc for the following execution
phase. Because of the possibility of behavior changes after a sampling phase, reactive co-
scheduling conducts resampling periodically. Previous reactive co-scheduling studies [59, 23]
typically use 1 billion instructions as the length of a period, maintain a 1 to 10 ratio be-
tween the length of a profiling phase and the following execution phase in a period, and
run each schedule for 10 million instructions in the sampling phase. In the dual-core case

of the 12-program experiment, there are totally 20790 possible schedules; the probability

108

for a sample phase to cover the optimal schedule is 0.05%, and the probability is 4.7% for
covering one of the top 100 schedules.

Unfortunately, it is difficult to conduct a direct comparison of the proactive co-scheduling
performance with the performance obtained by previous reactive co-scheduling techniques,
mainly because most of them have been implemented on hardware simulators with modifi-
cations to operating systems and hardware. To gain some insights on the comparison, we
instead estimate the results of reactive co-scheduling in an ideal case, by assuming no be-
havior changes through the entire executions of the programs—that is, the schedule selected
in the sampling phase would work the same in the following execution phase—and there is
no process migration overhead. We can then compute the statistical expectation of the total
degradation in the execution phase as Zf‘zl p(s,)d(s;), where p(s;) is the probability for a
schedule s, to be chosen as the best schedule in a sampling phase, d(s,) is the total co-run
degradation of all programs under schedule s,, and K is the total number of possible sched-
ules, equaling 20790 in our experimental setting. During the sampling phase, the statistical
expectation of the degradation is just the statistical expectation of the degradations of all
possible schedules, because the schedules to try in sampling phases are chosen randomly.
On the data collected on the 12 programs used in the proactive co-scheduling experiment,
the statistical expectation of the average degradation is 12.1%, 26% more than the proactive
co-scheduling results. For a larger problem, the probability to cover top schedules would
become even smaller.

We acknowledge that if the sampling ratio increases, the probability of choosing the
optimal schedule would increase. But as the problem size increases, the probability increase
would diminish quickly. Furthermore, the benefits from the chosen schedule would decrease
as the execution phase becomes smaller.

Overhead of CAPS The overhead consists of two sections: the prediction of cache
contention between every group of programs, and the computation of the scheduling algo-
rithm. Let N represent the number of programs. The worst-case time complexity of the

three segments are respectively O(N?), and O(N*) for a given shared-cache size. We mea-

109

sure the overhead of each part of CAPS on dual-cores with program numbers ranging from
4 to 1024. Figure 4.4 shows the data in the logarithmic scale. When the number of jobs is
small, the scheduling time dominates the overhead. But as the number of jobs increases,
the weight of co-run performance prediction increases and reaches 93% in the case of 1024
programs. The results suggest that even though the scheduling algorithm has higher worst-
case time complexity, it weights less than the co-run prediction overhead for problems of
reasonable size, thanks to the scalable implementation of the blossom algorithm [11]. The

total overhead for 1024 programs is 0.21 seconds.

([Hcontention pred & scheduling

Time {(ms)

32 64 128 256 512 1024
Num of Programs

Figure 4.4: Overhead of job co-scheduling

4.4.3 CAPS for Runtime Scheduling

The focus of our evaluation is the examination of the effectiveness of the unified sensitivity
model in serving as a locality model for shared-cache-aware scheduling. To avoid distractions
from the many random factors (e.g., job arriving time, load balance) in online schedulers,
we use offfine measurement to uncover the full potential.

We compute the sensitivities of the programs from their reuse signatures and DPCs,
based on which, we separate the 12 SPEC programs into two equal-size classes shown as
the two sequences of caps-pred below. For comparison, we report the ideal separation as
caps-real. We obtain them by first running all possible pairs of the 12 programs, and then
taking the average co-run degradation of each program as its real sensitivity. In both

separation results, we list the programs in descending order of sensitivity.

110

caps-pred:
Sensitive: mcf art equake vpr parser bzip

Insensitive: twolf ammp crafty gap mesa gzip

caps-real:

Sensitive: mcf equake art vpr bzip ammp

Insensitive: parser gap crafty mesa twolf gzip

The sequences, although differing in the relative positions of the benchmarks, only
mismatch on two programs, parser and ammp. Two reasons cause the differences: locality
prediction errors and the difference between statistical expectation and a particular problem
instance. We note that CAPS has good tolerance to ordering difference: As long as programs
are put into the right sequences, the order inside a sequence has no effects on CAPS. This
property is essential for making the lightweight locality prediction applicable for CAPS.

We compare the performance result of CAPS on predicted sensitivities (denoted as caps-
pred) with the results of the default Linux scheduler (default) and CAPS on real sensitivities
(caps-real). We measure the performance of a program by degradation factor, defined as
(CPI.,—CPI,)/CPlI,, where, CPI,, and CPI,, are the respective CPIs of the program’s
co-run and single run. Following prior work [74], we measurc the fairness of a schedule by
unfairness factor, defined as the coeflicient of variation (standard deviation divided by
the mean) of the normalized performance ({1 PC.,/IPCs,) of all applications.

To prevent randomness from obscuring the comparison, we obtain a program’s perfor-
mance in a schedule by averaging the performance of all the program’s co-runs that are
allowed by the schedule. The default scheduler, for example, allows all 12 possible co-
runs per program, whereas caps-pred and caps-real allow a program to run with only the
programs in a different class.

Figure 4.5 shows the performance of the three schedulers, with sensitive programs
(judged by caps-pred) on the left and insensitive programs on the right. For sensitive
programs, caps-pred reduces performance degradation by 4% to 30.2% (15.7% on average);

as a tradeoff, insensitive programs have 1.4% to 8.1% more degradation (4.1% on aver-

111

Ddefault Ecaps-pred. Mcaps-real

n
3
0
=1

>
8
5
&
|
|
|

w
=
w
&

N
>
~
S

-
o

3
Performance Degrad. (%)

Performance Degrad. (%)

°©
S

o
>
x

ammp

crafty £
Qqap
gzip
twolf

ES

16

|
|
|

»

"
~
~

s

o
@
o
o

Norm. L2 Miss Rate (%)
°
»

©
>

©
a
Norm. L2 Miss Rate (%)
°
o

o

~
o
~

a
o

(c) L2 miss rates of sensitive programs (d) L2 miss rates of insensitive programs

Figure 4.5: Performance degradation and normalized L2 miss rates by different scheduling

age). In comparison, caps-real shows 2.5% less reduction for sensitive programs and 3.3%
more for insensitive programs than caps-pred. It is important to note that the goal of job
co-scheduling is to increase the overall computing efficiency of the system rather than max-
imize the performance of each individual program. So it is normal that some programs (e.g.
parser) perform better in caps-pred than in caps-real.

Table 4.3 reports the performance, normalized to the default performance, of each pro-
gram when they run in caps-real and caps-pred. The sensitive programs show 12% and
14% speedup on average. All of them have speedup over 11% except parser and stream.
In caps-real, parser has 6% slowdown because it is classified as insensitive programs and
co-runs with sensitive programs. The small speedup of stream is consistent with our intu-

ition conveyed in Section 4.3.1.2—such programs are competitive but insensitive for their

112

special memory access patterns. It is remarkable that the significant speedup for sensitive
programs comes with almost no slowdown of insensitive programs. The average slowdown
is 1% in caps-real and 3% in caps-pred. The small slowdown is no surprise given that those
program are insensitive to cache sharing. The program ammp shows 10% speedup in caps-
real because the scheduler labels the program as a sensitive program and lets it co-run with
insensitive programs.

The intuition behind the effectiveness of CAPS is that it successfully recognizes the
programs to which cache contention matters significantly. By giving an favorable schedule
to those programs, CAPS accelerates them without hurting the programs that are not

sensitive to cache contention.

Table 4.3: Whole-Program Speedup Brought by CAPS

Sensitive Programs Insensitive Programs
Programs | caps-real | caps-pred || Programs | caps-real | caps-pred
art 1.24 1.24 ammp 1.10 0.94
bzip 1.12 1.12 crafty 0.98 0.98
equake 1.13 1.13 gap 0.94 0.94
mef 1.24 1.24 gzip 0.99 0.99
parser 0.94 1.09 mesa 0.98 0.98
vpr 1.11 1.11 twolf 0.97 0.97
stream 1.03 1.02 - - -
Average | 1.12 1.14 Average | 0.99 0.97

Table 4.4 contains the overall performance degradation factors and unfairness factors of
the schedules. The two reduction columns report the relative reduction ratios of caps-pred
and caps-real compared to default. Schedule caps-pred reduces degradation factor by 32.6%
and unfairness factor by 46.9%, respectively 1.3% and 2.4% less than caps-real.

Figure 4.5 (c) and (d) show the normalized 1.2 miss rates (L2 misses per memory ref-
erence) collected using PAPI library [7]. Although they roughly match the performance
results, the L2 miss rates impose different influence on the programs. For example, the
52% more L2 miss rates of twolf only cause 3.2% performance difference, while 3.3% less
miss rates of equake reduce 15% performance degradation. This difference is due to bus-

contention differences and the different significance of L2 misses. The L2 miss rates of twolf

113

are hundreds of times smaller than those of equake. This agrees with the fact that both

caps-pred and caps-real label twolf insensitive and equake sensitive.

Table 4.4: Overall Performance Degradation Factors and Unfairness Factors

Performance Deg. (%) | Unfairness (%)

factor | reduction factor | reduction
default 20.0 - 11.6 -
caps-pred | 13.5 32.6 6.2 46.9
caps-real | 13.4 33.3 6.0 48.5

These results demonstrate the potential of the locality model in supporting job co-
scheduling. The performance of actual on-line schedulers depends on many other factors,
such as the job arrival time and order, system load balance and its dynamic adjustment,

job priorities, and so forth. ¢

Overhead of CAPS. The major runtime overhead of CAPS consists of the prediction of
standalone reuse signatures and the computation of sensitivities, both determined by the
granularity of standalone reuse signatures. Since reuse distances smaller than cache size
are more critical for CAPS, reuse signatures organize them in linear scale (1K distance per
bar), and use log scale for others. Because each bar in a signature corresponds to one linear
function, there are A+ log(N/L) linear functions to solve in the reuse-signature prediction,
where, A4 is the number of bars in the linear range, IV is program data size (the upper bound
of reuse distance), and L is cache line width. The computation of sensitivity relies on only
reuse distances smaller than cache size, because only those references can be the victims of
cache contention. Thus, the time complexity is O(A).

In our experiments, L = 64, A is 64 and N is from 32,606 (crafty) to 4.1 million (gap)
with average of 1.0 million. The numbers of linear functions range from 79 to 86 per

program. The computation cost of CAPS is negligible.

114

4.4.4 Influence of Prediction Errors on Co-Scheduling

We feed CAPS the predicted memory behaviors to test the influence of the prediction errors
on co-scheduling. Figure 4.6 shows the average performance degradation of the benchmarks
included in Table 4.1. The baseline is an o posteriori schedule, which is the best over all
possible schedules. We obtained it by applying the minimum-weight perfect matching to
all real co-runs. (Recall that the algorithm minimizes the total degradation.) The random
bar shows the average result of 100 random schedules. It reflects the performance of the

default scheduler in the current CMP system.

2.5
< 2 -
2
T
881.5
-
g -
g Zos
S
= o]

a posteriori CAPS-real CAPS-pred random

Figure 4.6: The average performance degradation under different schedules. The “a posteriori”
schedule is the best schedule obtained on all co-run information: “CAPS-real” is the schedule by
CAPS on real single-run behaviors; “CAPS-pred” is the schedule by CAPS on single-run behaviors
predicted by the models described in Chapter 3; “random” reflects the default schedule in the CMP
system.

4.5 Related Work

Recent years have seen a number of studies on scheduling in CMP. Some concentrate on
scheduling threads in a single application. For example, thread clustering [67] tries to
recognize patterns of data sharing using hardware performance counters and locates threads
accordingly. The technique cannot apply to the problems discussed in this chapter as no data
are shared among jobs. Some studies [39] tackle the scalability and fairness of scheduling
on CMP, but without considering interferences on shared cache in the fairness criterion.
Some studies [31, 70] conduct theoretical analysis to uncover the complexity of optimal

co-scheduling on CMP. They are useful for offline analysis but not for runtime scheduling.

115

This section concentrates on the studies that schedule independent jobs to reduce the
interferences on shared cache. Most of those studies have used simulators (e.g., [23, 20,
53, 59]), whereas, we use a real machine for all the experiments. Furthermore, CAPS has
applicability different from previous techniques (elaborated next). We hence concentrate
on qualitative comparisons.

First, the applicability of CAPS differs from prior techniques. Unlike techniques based
on cache activity vectors or other hardware extensions (e.g., [20, 53, 64]), this work is
a pure software solution applicable to existing systems. On the other hand, hardware
extensions may reveal fine-grained cache conflicts, complementary to the coarse-grained
locality information used in this work.

Previous explorations in scheduling for CMP or SMT rely on either hardware perfor-
mance counters or offline memory profiling, showing different applicability from CAPS. The
cache-fair scheduling {23] from Fedorova et al. is applicable when the processes have various
cache-access patterns and have already been labeled either cache-fair or best-effort. Its main
goal is performance isolation, accomplished by controlling CPU timeslice allocation instead
of process assignment. Zhang et al. use hardware counters to guide scheduling on SMP
machines without shared caches [74]). Snavely et al. have proposed symbiotic scheduling,
which is based on sampling of various co-runs [59, 14], suiting the problems having a small
number of jobs and processors. Some explorations use offline collected memory information
to guide scheduling [20, 10]. They use the same program inputs for training and testing,
not applicable to input-sensitive programs.

CAPS overcomes the above constraints, but requires each process of interest to be
equipped with a cross-input predictive locality model (whose construction, fortunately, can
be transparent to the users of CAPS as discussed in Section 4.3.2). The combination of
CAPS with runtime sampling-based techniques may be beneficial: The former overcomes
scalability issues, and the latter offers on-line adaptivity. In addition, the combination of

CAPS with locality phases [56] may add adaptivity to phase shifts as well.

116

4.6 Summary

This chapter, based on the concept of concurrent reuse distance, develops the design of
cache-contention aware proactive scheduling(CAPS). For batch processing, we adopt the
performance prediction model in Chapter 3 to predict the co-run performance degradations
and then use algorithms proposed in Chapter 2 to find the schedule. For online processing,
it presents a lightweight locality model for shared-cache contention prediction. The model
offers the basis for a runtime contention-aware proactive scheduling system. Experiments
on a recent CMP machine demonstrate the effectiveness of the technique in alleviating cache
contention, improving both system performance and fairness. On the high level, this work
shows the potential of combining program behavior analysis by programming systems and
global resource management by operating systems. Interactions between these two layers

may also help other issues in computing systems.

Chapter 5

Other Work

This chapter briefly describes two techniques that relate with the maximization of the com-
puting efficiency on CMP. The first one is correlation based proactive program behaviors.
As mentioned at Chapter 3, our performance prediction model is input sensitive. To ac-
curately predict the co-run performance degradation, we necd characterize program input
efficiently. The program behavior analysis offers a possible solution to tackle this problem.
The second is adaptive software speculation. This technique can dynamically reduce the in-
stances of useless speculative threads, hence increasing the system throughput and reducing

energy consumption.

5.1 Correlation-Based Program Behavior Analysis

Accurate prediction of program behaviors is the basis of various program optimizations.
Program behaviors refer to the operations of a program and the ensuing activities of the
computing system, in relation to the input and running environment. Examples include
memory references, data values, function calling frequencies, and so on. The prediction
of program behaviors critically determines how optimizers transform a program and the
resulting performance. As the complexity in modern hardware and software continuously
grows, accurate behavior prediction becomes both more important and more challenging

than before.

117

118

Besides accuracy, two other properties of behavior prediction are essential for optimiza-
tions: scope and timing. The scope of a prediction may be a small execution interval,
a loop, a procedure, or the entire program. The larger the scope is, the more likely the
optimizer is able to avoid local-optimum traps when making optimization decisions. The
third property, the timing of prediction, refers to when a prediction can occur. The earlier
the prediction occurs, the earlier an optimization can happen, and the larger the portion
of the execution that may benefit from the resulting code. We also call the earliness the
proactivity of a prediction.

In existing program optimizers, behavior predictions are based on either training runs (in
profiling-based optimizers) or runtiine sampling (in runtime optimizers). Their strategies are
essentially the same: using the behaviors of a program component (e.g., a procedure or loop)
observed previously (in either a training run or the earlier part of the current execution) to
predict the future behaviors of the same component. This strategy, although effective for
many programs, can lead to a proactivity-adaptivity dilemma: Predictions based on training
runs have good proactivity, but cannot adapt to input changes, whereas, predictions based
on runtime sampling have good adaptivity but limited scope and proactivity.

Recent studies show that prediction based on program inputs may gain the strengths
of both approaches, improving optimizations significantly. For instance, improvements of
7%—21% have been observed on a variety of Java programs [42]. However, that approach
relies on programmers’ manual specifications on program inputs. An automatic solution to
the proactivity-adaptivity dilemma remains an open question.

We attack the problem by exploiting the correlations among the behaviors of program
components. The intuition is simple. Consider the trip-counts (number of iterations) of two
loops, L1 and L2. Suppose that they strongly correlate with each other (e.g., the trip-counts
of L1 are always about double those of L2). Then, as soon as the trip-counts of one of them
become known in an execution, the trip-count of the other will be easily predicted.

In this work, we first find that strong statistical correlations exist not only among the

behaviors of different program components commonly, but also among different types of

119

program-level behaviors (e.g., loop trip-counts versus data values). Even though conditional
branches in a program sometimes weaken the correlations between loops and basic block
execution frequencies, overall, strong statistical correlations exist between loop trip-counts,
and from loop trip-counts to other types of behaviors. It suggests the possibility of using the
correlations for runtime behavior prediction. When the values of certain types of behaviors
of some program components (e.g., a set of loop trip-counts) are exposed in an execution,
we may use them as the predictors of the behaviors of other (to-be-executed) components
in the program. This kind of prediction is both proactive, occurring before the execution of
the other program components, and adaptive, being specific to the current input data set.

We then introduce a technique to exploit the correlations for program behavior predic-
tion and optimizations. The technique centers on a new concept, seminal behaviors, which
refers to a small set of behaviors that strongly correlate with most other behaviors in the
program, and meanwhile, expose their values early in typical executions.

We select two types of behaviors as the candidates for seminal behaviors. The first
is program interface behaviors, which mainly include the values directly obtained from
program inputs. Specifically, this type of behaviors include the values obtained directly
from command lines and file operations. The second type of behaviors we include are the
trip-counts of all the loops in the program. This inclusion is due to the importance of loops
and the correlations between loop trip-counts and other program behaviors.

From the definition of seminal behaviors, we know that they must be able to lead to
accurate prediction of other behaviors. For a given set of behaviors B, we define predictive
capability of a set S as the number of behaviors in the set B — S that can be predicted from
S with an accuracy above a predefined threshold (80% in this study).

For the reduction of complexity, we take a simplification as follows. We limit B to
loop trip-counts during the examination of the predictive capability of different candidate
behavior sets. The intuition is that because there are strong correlations between loops and
other types of behaviors, the sets selected in this way are likely to show good predictive

capability on other types of behaviors as well.

120

The computation of predictive capabilities in our experiments is based on the standard
10-fold cross-validation [26]. It works iteratively. Suppose we did N profiling runs of a
program, and obtained N instances of S and B. In each iteration, 9/10 of the N instances
are used to construct predictive models from S to B, and the other 1/10 are used to test
the model for prediction accuracy.

We take an incremental approach, which gradually builds a number of affinity lists. An
affinity list is a list consisting of two sets of behaviors, a header set and a body set, such
that the values of the behaviors in the header can lead to accurate prediction of the values
of those behaviors in the body.

The union of the headers of the affinity lists forms a possible seminal behavior set as
all other candidate behaviors are predictable from it. These header sets may be ranked in
a descending order of the sizes of their bodies. The exclusion of the low-rank header sets
may have little influence on the prediction of most behaviors.

We employ two standard regression techniques, namely LMS linear regression and Re-
gression Trees [26]. The former handles linear relations among behaviors, the latter for
non-linear relations. The construction process applies Regression Trees only if the linear
regression results are not good enough (automatically assessed through cross-validation).
During the construction of the first affinity list, the standard forward stepwise feature se-
lection [26] is used so that only important interface behaviors are stored in the header.

Both LMS and Regression Trees models are eflicient to build and use. The resulting
models are represented by only a small number of coefficients (for linear models) and ques-
tions (for Regression Trees). (We limit the tree size to be no greater than 10.)

In our experiment, most of performance related program behaviors can be predicted
from the seminal behaviors with over 90% accuracy. The high accuracy indicates that this

technique can be used efficiently for cross-input adaptation.

121

5.2 Adaptive Speculation

Recent years have seen a rapid shift of processor technology to favor chip multiprocessors.
Many existing programs, however, cannot fully utilize all CPUs in a system yet, even though
dynamic high-level parallelism exists in those programs. Examples include a compression
tool processing data buffer by buffer, an English parser parsing sentence by sentence, and
an interpreter interpreting expression by expression, and so on. These programs are com-
plex and may make extensive use of bit-level operations, unrestricted pointers, exception
handling, custom memory management, and third-party libraries. The unknown data ac-
cess and control flow make such applications difficult if not impossible to parallelize in a
fully automatic manner. On the other hand, manual parallelization is a daunting task for
complex programs, especially for those pre-existing ones. Moreover, the complexity and
the uncertain performance gain due to input-dependence make it difficult to justify the
investment of time and the risk of errors of the manual efforts.

Software speculation has recently shown promising results in parallelizing such pro-
grams [15, 69]. The basic idea is to dynamically create multiple speculative processes (or
threads), which each skips part of the program and speculatively executes the next part.
As those processes run simultaneously with the main process, their successes shorten the
execution time.

But speculative executions may fail because of dependence violations or being too slow
to be profitable. In systems with no need for rollback upon speculation failures—such as the
behavior-oriented parallelization (BOP) system [15], failed speculations result in the waste
of computing resources (e.g., CPU and memory) and hence inferior computing efficiency.
The waste is a serious concern especially for multi-programming or power-constrained en-
vironments (e.g., laptops, embedded systems.) For systems where rollback is necessary, an
additional consequence is the degradation of program performance.

Therefore, the avoidance of speculation failures is important for the cost efficiency of

modern machines. Previous studies-—mostly in thread-level speculation—have tried to

122

tackle this problem through profiling-based techniques (e.g., [18, 72, 35].) The main idea is
to determine the regions in a program that are most beneficial for speculation by profiling
some training runs.

The strategy, however, is often insufficient for coarse-grained software speculation, be-
cause of the input-sensitive and dynamic properties of the parallelism. In a typical ap-
plication handled by software speculation, the profitability (i.e., likelihood to succeed) of
a speculative region often differs among executions on different program inputs, or cven
among different phases of a single execution. The profiling-based region selection can help,
but unfortunately, is not enough for software speculation to adapt to the changes in program
inputs and phases.

This work proposes adaptive speculation. The goal is to make BOP avoid unprofitable
speculations but meanwhile keep profitable speculations unaffected, hence improving the
cost-efficiency without sacrificing the parallelized program performance. As a side benefit,
adaptive speculation can also make BOP easier to use by allowing users to label PPRs more
flexibly: The unprofitable PPRs will be turned off automatically.

It is however difficult to predict speculation profitability through program code analysis,
because the profitability depends on program inputs and runtime behavior. By treating the
problem as a statistical learning task, we develop two adaptive algorithms that are able
to learn the profitability patterns of a PPR during runtime. A complexity in the learning
is that the profitability of the earlier instances is not always unveiled: If a PPR instance
is not executed speculatively, BOP cannot determine its profitability. The two algorithms
manage to learn from the partial information and adapt themselves to the dynamic changes
in profitability patterns.

The first algorithm is an extension to last-value predictors and uses a dynamically
adjustable threshold for adaptation. The second algorithm exploits long-term history and
offers more flexibility in control by separating different factors apart. Both algorithms are
reconfigurable, providing some “knobs” for users to adjust the tradeoff between parallelism

exploitation and cost savings.

123

We implement both techniques in BOP [15], a recent software speculation system. Eval-
uations on a chip multiprocessor machine demonstrate that the proposed techniques are
effective in preventing unprofitable speculations without sacrificing profitable ones. The
techniques help BOP save a significant amount of cost, and meanwhile, cause little decrease

but often increase to the program performance. The cost efficiency is enhanced significantly.

5.3 Summary

This section briefly discusses two techniques related with the enhancement of computing
efficiency on CMP. The first is correlation-based program-level behavior analysis. By em-
ploying a set of statistical learning techniques, we can use the values of a small set of
seminal behaviors to predict other kinds of program behaviors. This technique can facili-
tate the cross-input adaptation in job co-scheduling. The second one is adaptive software
speculation. It can dynamically reduce the number of useless speculative threads and hence

improve the overall schedule quality on the system.

Chapter 6

Conclusion

On-chip resource sharing among sibling cores causes resource contention on CMP, consid-
erably degrading program performance and system fairness. Job co-scheduling attempts to
alleviate the problem by assigning jobs to cores appropriately. There are two challenges for
obtaining a good schedule. First, how to find the best schedules if we have the information
that how the jobs interact with other jobs on the same CMP. Second, how to predict the
interaction among jobs. This dissertation proposes several techniques for answering these
two questions.

This dissertation first concentrates on the analysis and design of algorithms based on
the assumption that we know the performance degradations of all the possible co-run cases.
We investigate the scenarios with two different goals: minimizing total cost and minimizing
the makespan.

We prove that the job co-scheduling is NP-Complete on systems with more than two
cores per chip for both cases. For dual core system without job migrations, we propose
optimal algorithms for both goals. If the goal is to minimize the total cost, the problem
can be solved by adopting a classic graph algorithm, minimal weighted perfect matching
algorithm. The optimal solution can also be obtained for minimizing the makespan by using
graph perfect matching algorithms.

If the number of cores is greater than two, the optimal solution cannot be acquired in

polynomial time unless P=NP. In this case, we present a set of heuristics to approximate

124

125

the optimal schedule. When the job migration is not allowed, we proposed a hierarchi-
cal algorithm and a greedy algorithm. If the job migration is allowed, we design a A-star
and cluster based algorithm and local matching algorithms. Experiments on both real and
synthetic problems validate the optimum of the results by the optimal co-scheduling algo-
rithms, and demonstrate the effectiveness of the heuristics-based algorithms in producing
near-optimal schedules with good cfficiency and scalability.

The second part of this dissertation aims to understanding the interaction among pro-
grams running on the same CMP. We present some techniques to reveal the influence of
cache sharing on program cache performance by uncovering the inherent connections be-
tween the locality of program single-runs and that of their co-runs.

We formulate the problem of predicting co-run cache contention as a problem of the
prediction of program inclusive reuse signatures—-which is a summary of LRU stack dis-
tances on a shared cache with all cache sharers’ data references considered—-and conduct a
theoretical analysis to expose the inherent statistical connections between single-run mem-
ory behavior and co-run inclusive reuse signatures. The theoretical analysis sheds insights
on the prediction of co-run performance from single-run data locality. In light of that, we
develop a lightweight model for efficiently predicting co-run data locality (or cache usage)
from the memory reference patterns of the programs’ single-runs. The high efficiency of the
model is the key to its uses in shared-cache management. It achieves the efficiency mainly
by capitalizing on the connection between time and locality. Finally, we implement a proac-
tive job co-scheduling system to demonstrate the potential benefits of the co-run locality
model. The scheduling achieves close-to-optimal results, cutting cache-contention caused
performance degradation by as much as 63% on average, improving program performance
by 9% on average (up to 50% for individual applications.)

To make the predictive model lightweight enough for online scheduling, we further re-
duce the overhead of the model by introducing a competitiveness and sensitivity model.
Competitiveness and sensitivity respectively characterize the statistical expectation of the

influence. This model can compute the sensitivity of a program online and then schedule

126

a sensitive program with an insensitive program onto the same dual-core system. Exper-
imental results show that this balanced job co-schedule scheme can improve the overall

performance by 7%.

Modern computing has exhibited the trends towards highly parallel, heterogeneous pro-
cessors and increasingly complicated software running on a multi-layered execution stack.
Along with the trends, effective co-run performance prediction and resource management
become more critical than ever for the maximization of computing efficiency. This disser-
tation has described our multi-dimensional efforts to tackle the challenges on multi-socket,
multi-core systems. It lays the foundation for locality analysis on systems with non-uniform
relations among cores, and offers a set of algorithms and techniques for analyzing and pre-
dicting the interactions among co-running threads or processes, hence preparing for an array

of resource management in current and future computing systems.

Bibliography

[1] Gnu linear programming kit. texttt http://www.gnu.org/software/glpk/glpk.html.
[2] The linux kernel archives. http://www.kernel.org.

[3] E. BERG, HAKAN ZEFFER, AND E. HAGERSTEN. A statistical multiprocessor cache
model. In Proceedings of IEEE International Symposwum on Performance Analysis of
Systems and Software, pages 89-99, 2006.

[4] P. BERUBE AND J. N. AMARAL. Benchmark design for robust profile-directed opti-
mization. In Standard Performance Evaluation Corporation (SPEC) Workshop, 2007,

[5] K. BEYLs AND E.H. D’HOLLANDER. Reuse distance as a metric for cache behavior.
In Proceedings of the IASTED Conference on Parallel and Distributed Computing and
Systems, pages 617-662, August 2001.

6] C. BIENIA, S. KUMAR, J. P. SinGgH, aAND K. Li. The PARSEC benchmark suite:
characterization and architectural implications. In Proceedings of International Con-
ference on Parallel Architectures and Compilation Techrmiques, pages 72-81, 2008.

[7] S. BrRownNE, C. DeEANE, G. Ho, aNnD P. Mucct. PAPI: A portable interface to
hardware performance counters. In Proceedings of Department of Defense HPCMP
Users Group Conference, 1999.

[8] JamEs R. BULPIN AND IAN A. PRATT. Hyper-threading aware process scheduling
heuristics. In 2005 USENIX Annual Technical Conference, pages 103—-106, 2005.

[9] C. CascavaL, L. DEROSE, D. A. PApuA, anD D. REED. Compile-time based per-
formance prediction. In Proc. of the 12th Intl. Workshop on Languages and Compilers
for Parallel Computing, 1999.

[10] D. CHANDRA, F. Guo, S. KiM, AND Y. SOLIHIN. Predicting inter-thread cache con-
tention on a chip multi-processor architecture. In Proceedings of the International Sym-
poswum on High Performance Computer Architecture (HPCA), pages 340-351, 2005

[11] W. Cook AND A. ROHE. Computing minimum-weight perfect matchings. INFORMS
Journal on Computing, 11:138-148, 1999.

[12] S. DANDAMUDL. Hierarchical Scheduling wn Parallel and Cluster Systems. Kluwer,
2003.

127

http://www.gnu.org/software/glpk/glpk.html
http://www.kernel.org

[13]

[14]

[15]

[19]

[20]

128

P. DENNING. Thrashing: Its causes and prevention. In Proceedings of the AFIPS 1968
Fall Jownt Computer Conference, volume 33, pages 915-922, 1968.

M. DeVuysT, R. KuMAR, AND D. M. TULLSEN. Exploiting unbalanced thread
scheduling for energy and performance on a cmp of smt processors. In Proceedings of
International Parallel and Distribute Processing Symposium (IPDPS). 2006.

C. DinG, X. SHEN, K. KELsEY, C. TICE, R. HUuaNG, AND C. ZHANG. Software
behavior-oriented parallelization. In Proceedings of ACM SIGPLAN Conference on
Programmang Languages Design and Implementation, San Diego, USA. 2007.

C. DING AND Y. ZHONG. Predicting whole-program locality with reuse distance anal-
ysis. In Proceedings of ACM SIGPLAN Conference on Programmang Language Design
and Implementation, pages 245-257, San Diego, CA, June 2003.

X. Ding, J. LIN, Q. Lu, P. SADAYAPPAN, AND Z. ZHANG. Gaining insights mto
multicore cache partitioning: bridging the gap between simulation and real systems.
In Proceedings of the International Symposium on High-Performance Computer Archa-
tecture (HPCA). pages 367-378, 2008.

Z. Du, C. Lim, X. L1, C. YANG, Q. ZHAO, AND T. NGAIL. A cost-driven compilation
framework for speculative parallelization of sequential programs. In Proceedings of
ACM SIGPLAN Conference on Programmung Languages Design and Implementation,
2004.

J. EDMONDS. Maximum matching and a polyhedron with 0,1-vertices. Journal of
Research of the Natwonal Bureau of Standards B, 69B:125-130, 1965.

Avr1l EL-MouRrsy, R. GArG, D. H. ALBONESI, AND S. DWARKADAS. Compatible
phase co-scheduling on a cmp of multi-threaded processors. In Proceedings of the
International Parallel and Diustribute Processing Symposwm (IPDPS). 2006.

C. FANG, S. CARR, S. ONDER, AND Z. WANG. Feedback-directed memoty disam-
biguation through store distance analysis. In Proceedings of the 20th ACM Internotional
Conference on Supercomputing, 2006.

A. FEDOROVA, M. SELTZER, C. SMALL, AND D. NUSSBAUM. Performance of multi-
threaded chip multiprocessors and implications for operating system design. In Pro-
ceedings of USENIX Annual Technical Conference, 2005.

A. FEDOROVA, M. SELTZER, AND M. D. SMmITH. Improving performance isolation on
chip multiprocessors via an operating system scheduler. In Proceedings of the Interna-
tional Conference on Parallel Architecture and Compilation Techniques, pages 25-38,
2007.

H.N. GaBow AND R. E. TARJAN. Faster scaling algorithms for general graph-
matching problems. Journal of ACM, 38:815-853, 1991.

M.R. GAREY AND D.S. JOHNSON. Computers and Intractability. Feeman, San Fran-
cisco, CA, 1979.

[26]

27]

28]

33]

[34]

38

129

T. HasTIE, R. TIBSHIRANI, AND J. FRIEDMAN. The elements of statistical learning
Springer, 2001.

D. S. HocuBauM. Approzmation Algorithms for NP-Hard Problems PWS Publishing
Company. 1995.

L. R. Hsu, S. K. REINHARDT, R. LYER, AND S MAKINENI. Communist, utilitarian,
and capitalist cache policies on CMPs: caches as a shared resource. In Proceedings
of the International Conference on Parallel Architecture and Compilation Techmiques,
pages 13-22, 2006.

J. Hun, C. KiMm, H. SHAFI, L. ZHANG, D. BURGER, AND S.W. KECKLER A nuca
substrate for flexible cmp cache sharing. In Proceedings of International Conference
on Supercomputing, pages 31-40, 2005.

Y. JiANG AND X. SHEN. Exploration of the influence of program inputs on cmp co-
scheduling. In European Conference on Parallel Computing (Euro-Par), August 2008.

Y. Jiang, X. SHEN, J. CHEN, AND R. TRIPATHI. Analysis and approximation of
optimal co-scheduling on chip multiprocessors. In Proceedings of the International
Conference on Parallel Architecture and Compilation Techniques (PACT), pages 220~
229, October 2008.

Y. JiaNG, K. TiaN, AND X. SHEN. Combining locality analysis with online proactive
job co-scheduling in chip multiprocessors. In Proceedings of The International Confer-
ence on High Performance Embedded Architectures and Compilation (HiPEAC). pages
201-215, 2010.

Y JianG, E. ZHANG, K. T1aN, aND X, SHEN. Is reuse distance applicable to data lo-
cality analysis on chip multiprocessors? In Proceedings of the International Conference
on Compiler Construction, 2010.

YUNLIAN JIANG AND XIPENG SHEN. Exploration of the influence of program inputs
on cmp co-scheduling. In Proceedings of the 14th international Euro-Par conference on
Parallel Processing, Euro-Par '08, pages 263-273, Berlin, Heidelberg, 2008. Springer-
Verlag.

T. A JonNHSON, R EIGENMANN, AND T. N VIJAYKUMAR. Speculative thread
decomposition through cmpirical optimization. In Proceedings of the ACM SIGPLAN
Symposium on Principles Practice of Parallel Programmang, Maich 2007.

R. KARP. Reducibility among combinatiorial problems In Complexity of Computer
Computations, R.E Miller and J W. Thatcher. editors, pages 85-103. Plenum Press,
1972

S. KiM, D. CHANDRA. AND Y. SOLIHIN. Fair cache sharing and partitioning in a chip
multiprocessor architecture. In Proceedings of the International Conference on Parallel
Architecture and Compilation Techniques, 2004.

JosepPH Y-T. LEUNG. Handbook of Scheduling. Chapman & HallCRC, 2004.

[39]

[42]

[43]

(44]

[45]

[46]

147]

[48]

[51]
[52]

130

T. L1, D. BAUMBERGER, AND S. HauN. Efficient and scalable multiprocessor fair
scheduling using distributed weighted round-robin. In Proceedings of ACM Symposium
on Principles and Practice of Parallel Programmang, pages 65-74, 2009.

C-K Luk ET AL. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the ACM SIGPLAN conference on Programmang
language design and implementation, pages 190-200, Chicago, Illinois, June 2005.

P. 8. MaGgNUSSON, M. CHRISTENSSON, J. ESKILSON, D. FORSGREN, G. HALLBERG,
J. HOGBERG, F. LARSSON, A. MOESTEDT, AND B. WERNER. Simics: A full system
simulation platform. Computer, 35:50-58, 2002.

F. Mao anp X. SHEN. Cross-input learning and discriminative prediction in evolvable
virtual machine. In Proceedings of the International Symposium on Code Generation
and Optimazation (CGO), pages 92-101, 2009.

G. MARIN AND J. MELLOR-CRUMMEY. Cross architecture performance predictions
for scientific applications using parameterized models. In Proceedings of Jownt Inter-
national Conference on Measurement and Modeling of Computer Systems, New York
City, NY, June 2004.

M. MARTIN, D. J. SOrIN, B. M. BECKMANN, M. R. MaRrTY, M. XU, A. R.
ALAMELDEEN, K. E. MOORE, M. D. HiLL, AND D. A. WoOD. Multifacet’s general
execution-driven multiprocessor simulator (GEMS) toolset. Computer Architecture
News, September 2005.

R. L. MATTSON, J. GECSEI, D. SLUTZ, AND 1. L. TRAIGER. Evaluation techniques
for storage hierarchies. IBM System Journal, 9(2):78-117, 1970.

J.D. McCALPIN. Memory bandwidth and machine balance in current high perfor-
mance computers. [EEE TCCA Newsletter, 1995. http://www.cs.virginia.edu/stream.

S. MEHROTRA. On the implementation of a primal-dual interior point method. SIAM
Journal on Optimization, 2:575-601, 1992.

S. PArEkil, S. EGCGERS, H. LEvy, AND J. Lo. Thread-sensitive scheduling for smt
processors. Technical Repoirt 2000-04-02, University of Washington, June 2000.

M. K. QURESHI AND Y. N. PaTT. Utility-based cache paititioning: A low-overhead.
high-performance, runtime mechanism to partition shared caches. In Proceedings of
the International Symposium on Microarchatecture, pages 423-432, 2006.

N. RAFIQUE, W. LiM, AND M. THOTTETHODI. Architectural support for operating
system-driven CMP cache management. In Proceedings of the International Conference
on Parallel Architecture and Compilation Techmiques, pages 2-12, 2006.

S. RUSSELL AND P. NORvIG. Artificial Intelligence. Prentice Hall. 2002.

S. SARKAR AND D. TULLSEN. Compiler techniques for reducing data cache miss rate on
a multithreaded architecture. In Proceedings of The HiPEAC International Conference
on High Performance Embedded Archatectures and Compilation, pages 353 368, 2008

http://www.cs.virginia.edu/stream

(53]

131

A. SETTLE, J. L. KiaMm, A. JANISZEWSKI, AND D. A. CONNORS. Architectural sup-
port for enhanced SMT job scheduling. In Proceedings of the International Conference
on Parallel Architecture and Compilation Techniques, pages 63-73, 2004.

X. SHEN AND J. SHAw. Scalable implementation of efficient locality approximation.
In Proceedings of the International Workshop on Languages and Compilers for Parallel
Computing, 2008.

X. SHEN, J. SHAW, B. MEEKER, AND C. DING. Locality approximation using time.
In Proceedings of the ACM SIGPLAN Conference on Principles of Programmung Lan-
guages (POPL), pages 5562, 2007.

X. SHEN, Y. ZHONG, AND C. DING. Locality phase prediction. In Proceedings of the
International Conference on Archatectural Support for Programming Languages and
Operating Systems, pages 165-176, 2004.

T. SHERWOOD, E. PERELMAN, G. HAMERLY, AND B. CALDER. Automatically char-
acterizing large scale program behavior. In Proceedings of International Conference
on Archatectural Support for Programmang Languages and Operating Systems, pages
45-57, 2002.

A. J. SMmITH. On the effectiveness of set associative page mapping and its applications
in main memory management. In Proceedmgs of the 2nd International Conference on
Software Engineering, pages 286-292, 1976.

A. SNAVELY AND D.M. TULLSEN. Symbiotic jobscheduling for a simultaneous mul-
tithreading processor. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 66-76. 2000.

A. SNaviLy, D.M. TULLSEN, AND G. VOELKER. Symbiotic jobscheduling with prior-
ities for a simultaneous multithreading processor. In Proceedings of the Jownt Interna-
tiwonal Conference on Measurement and Modeling of Computer Systems, pages 66-76,
2002,

Y. SovmN, V. LAM, AND J. TORRELLAS. Scal-tool: Pinpointing and quantifying
scalability bottlenecks in dsm multiprocessors. In Proceedings of the 1999 Conference
on Supercomputing, 1999.

SPLASH. Stanford parallel applications for shared memory (SPLASH) benchmark.
http://www-flash.stanford.edu/SPLASH/.

H.S. StONE, J. TUREK, AND J.L. WoOLF. Optimal partitioning of cache memory.
IEEE Transactions on Computers, 41(9). September 1992.

G. SuH, L. RupoLPH, AND S. DEVADAS. Dynamic partitioning of shared cache
memory. Journal of Supercomputing, 28:7-26, 2004.

G.E. SuH, S. DEvAaDAS, AND L. RUDOLPH. Analytical cache models with appli-
cations to cache partitioning. In Proceedings of the 15th wnternational conference on
Supercomputing, 2001.

http://www-flash.stanford.edu/SPLASH/

[66]

(78]

132

G.E. Sun, S. DevaDAS, AND L. RUDOLPH. A new memory monitoring scheme for
memory-aware scheduling and paititioning. In Proceedings of the 8th International
Sympostumn on High-Performance Computer Architecture, pages 117-128. 2002.

D. Tam. R. Azivi, AND M. StuMM. Thread clustering: sharing-aware scheduling on
SMP-CMP-SMT multiprocessors. SIGOPS Oper. Syst. Rev., 41(3):47-58, 2007.

D. TriEBAUT AND H.S. STONE. Footprints in the cache. ACM Transactions on
Computer Systems, 5(4), 1987.

C. TiaN, M. FENG, V. NAGARAJAN, AND R. GupTa. Copy or discard execution
model for speculative parallelization on multicores. In Proceedings of the International
Symposium on Microarchitecture, 2008.

K. T1AaN, Y. JIANG, AND X. SHEN. A study on optimally co-scheduling jobs of different
lengths on chip multiprocessors. In Proceedings of ACM Compuling Frontiers, pages
41-50, 2009.

N. Tuck AND D. M. TULLSEN. Initial observations of the simultaneous multithreading
Pentium 4 processor. In Proceedings of International Conference on Parallel Architec-
tures and Compilation Techniques, pages 2635, 2003.

T.N. VIJAYKUMAR AND G.S SoHI. Task selection for a multiscalar processor. In
Proceedings of the International Symposwum on Microarchitecture, December 1998.

E. Z. ZuanG, Y. JIANG, AND X. SHEN. Does cache sharing on modern cmp matter
to the performance of contemporary multithreaded programs? In PPoPP ’10: Pro-
ceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programmang, pages 203-212, 2010.

X. ZHANG, S. DWARKADAS, G. FOLKMANIS, AND K. SHEN. Processor hardware
counter statistics as a first-class system resource. In Proceedings of the 11th Workshop
on Hot Topics wn Operating Systems. 2007.

Y. ZHANG. Solving large-scale linear programs by interior-point methods under the
matlab environment. Technical Report 96-01, University of Maryland, July 1995.

Y. ZHONG, S. G. DroOPSHO, X. SHEN, A. STUDER, AND C. DING. Miss rate predic-
tion across program inputs and cache configurations. IEEE Transactions on Comput-
ers, 56(3):328-343, March 2007.

Y. ZHONG, M. ORLOVICH, X. SHEN, AND C. DING. Array regrouping and structure
splitting using whole-program reference affinity. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 255-266.
June 2004.

S. ZHURAVLEV, S. BLAGODUROV, AND A. FEDOROVA. Addressing shared resource
contention in multicore processors via scheduling. In Proceedings of the international
conference on Architectural support for programmang languages and operating systems,
pages 129-142, 2010.

133

VITA

Yunlian Jiang

Yunlian Jiang received his Bachelor of Engineering and Master of Engineering degrees, both
in Computer Science, from the University of Science and Technology of China in 2003 and
2006 respectively. He has been a PhD student in the Department of Computer Science at
the College of William and Mary since 2006. He has become a PhD candidate since 2008.
His research interests lie in compiler technology, program language analysis, shared cache
and memory management, program locality analysis, input-centric computing and dynamic

program optimization.

	Analysis and Approximation of Optimal Co-Scheduling on CMP
	Recommended Citation

	ProQuest Dissertations

