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ABSTRACT PAGE 

Advances in computational power and expanded access to computing clusters has made 
mathematical modeling of complex wave effects possible. We have used multi-core and 
cluster computing to implement analytical and numerical models of ultrasonic wave 
scattering in fluid and solid media (acoustic and elastic waves). We begin by implementing 
complicated analytical equations that describe the force upon spheres immersed in inviscid 
and viscous fluids due to an incident plane wave. Two real-world applications of acoustic 
force upon spheres are investigated using the mathematical formulations: emboli removal 
from cardiopulmonary bypass circuits using traveling waves and the micromanipulation of 
algal cells with standing waves to aid in biomass processing for algae biofuels. We then 
move on to consider wave scattering situations where analytical models do not exist: 
scattering of acoustic waves from multiple scatterers in fluids and Lamb wave scattering in 
solids. We use a numerical method called finite integration technique (FIT) to simulate 
wave behavior in three dimensions. The 3D simulations provide insight into experimental 
results for situations where 20 simulations would not be sufficient. The diverse set of 
scattering situations explored in this work show the broad applicability of the underlying 
principles and the computational tools that we have developed. Overall, our work shows 
that the movement towards better availability of large computational resources is opening 
up new ways to investigate complicated physics phenomena. 
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Chapter 1 

Introduction 

Advances in computational power and expanded access to computing clusters has 

made mathematical modeling of complex 3-dimensional wave effects possible. In this 

work we use multi-core and cluster computing to implement analytical and numerical 

models of wave scattering. The scattering cases that we explore involve ultrasonic 

waves, which are sound waves with frequencies above 20 kHz. We investigate the 

scattering behavior of waves in fluid and solid media (acoustic and elastic waves). 

Acoustic waves are traditionally modeled as longitudinal waves, however, viscous 

fluids can support both longitudinal and shear wave motion, with the latter being 

strongly damped. Elastic media support the independent propagation of both longi

tudinal and shear waves, although scattering converts energy between them. 

The first step in a mathematical description of scattering is to write the appro

priate equations describing wave propagation. An educated decision must be made 

about the level of complexity that needs to be included in the equations. The partial 

differential equations that describe wave motion are usually linearized by dropping 

higher order terms. However, for some cases linearization is not appropriate. For 

example, in order to describe the acoustic force on a scatterer due to an incident 
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ultrasonic wave, nonlinear terms must be included since acoustic force is a nonlinear 

effect. Beyond the decision of what order of terms can be neglected, one must choose 

how much of the relevant physics should be included. For example, in some situa

tions thermal effects may be small enough to be considered negligible. As we show 

in the first few chapters, the decision to include additional physics phenomena, such 

as viscosity, can greatly increase the complexity of the formulation. It does not take 

much to get to the point where the resulting equations become so complicated that 

they are not usable. 

For acoustic waves in a fluid the basic equations are the Navier-Stokes equations 

and an equation of state: 

(1.1) 

(1.2) 

(1.3) 

where Ot = gt, Oj = 8~1 , p is density, O"ij is the stress tensor, vi is velocity, and fi is 

a source term, p is pressure, and c is the speed of sound. In these equations i, j = 

1, 2, 3 and summation over repeated indices is assumed. Various assumptions are 

generally made to make these equations easier to solve for specific applications. Since 

sound waves are small fluctuations in the variables of the N avier-Stokes equations, 

velocity, pressure and density are usually linearized to first-order. This means that 

if we expand velocity as v = v0 + v(l) + v(2) + ... , all terms above v(l) are dropped 

(v0 = 0 unless there is mean fluid flow). The assumption of negligible higher-order 

terms also usually results in dropping the nonlinear term on the left side of equation 

(1.2) [1]. The linearized version of the Navier-Stokes equations can be solved via a 

Helmholtz decomposition and separation of variables. If the fluid is assumed to be 

inviscid then the linear equations are simplified further since there will be no support 
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of transverse waves, resulting in velocity being defined in terms of only a scalar 

potential. For a small number of cases separation of variables and boundary /initial 

conditions can lead to a fairly straight-forward analytical solution which can be used to 

find scattering information such as reflection and transmission coefficients, scattering 

cross-section, etc. As mentioned above, in order to describe acoustic force nonlinear 

terms and higher order descriptions of variables in the Navier-Stokes equations cannot 

be ignored. 

A further potential complication of the fluid equations shows up in the stress 

tensor in equation (1.2). In its full form the stress tensor includes terms that depend 

on shear and bulk viscosity (rJ and~) [2]: 

(1.4) 

Viscosity is usually neglected under the assumption that the particle diameter is 

much smaller than the wavelength and much larger than the viscous boundary layer, 

o = J2rJ/(pw) [3]. If viscous terms are included, as in chapter 2, the resulting 

analytical equations for describing the acoustic force on a sphere due to an incident 

plane wave (first published in the literature 15 years ago) become so complicated 

that until now they have not been implemented numerically. Thermal effects are 

also usually neglected. If heat conduction in the fluid is taken into account then 

additional equations must be included to account for energy dissipated as heat [4], [5]. 

Furthermore, including thermal effects leads to compressional and thermal waves that 

are coupled [6]. Complicated analytical solutions, as we show in the first few chapters 

of this dissertation, are only useful if they can be implemented to yield relevant 

information. It is crucial to use good scientific judgment when choosing/ deriving the 

appropriate analytical model for a specific application. 
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For elastic waves in a solid the basic equations are: 

(1.5) 

(1.6) 

(1.7) 

where uJ is displacement, ~J is the stress tensor, ft is a source term, Ekl is the 

strain tensor, and CtJkl is the stiffness tensor [7]. First, it is important to point 

out that the elastic equations are inherently more complicated than the acoustic 

equations. In the acoustic case shear waves are only supported in a viscous fluid 

and are strongly damped. In elastodynamics there is no sensible basic assumption to 

remove the presence of shear wave propagation since it is the ability to resist shear that 

distinguishes a solid from a fluid. As with the acoustic equations, higher order terms 

can be dropped in the appropriate situations. The strain tensor is usually linearized 

by dropping the last term on the right side of equation (1.7). Our implementation of 

the elastodynamic equations in chapter 6 uses the linearized elastodynamic equations. 

The elastodynamic equations can also get complicated when considering what level 

of physics needs to be included in the stress tensor for a specific application. For an 

isotropic media the stress tensor reduces to a simple expression, TtJ = AEkk5tJ + 2J-LctJ, 

where longitudinal and transverse wave speeds are related to the Lame parameters 

by 

C£ = V().. + 2J-L)/ p, 

CT = v;;p. 
(1.8) 

As the level of physics included in the formulation increases, the equations quickly 
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become much more unwieldy. For anisotropic media the stiffness tensor is directional 

(wave speeds depend on direction), which leads to a far more complicated expres

sion for the stress tensor. If viscoelastic effects are included in the formulation then 

attenuation is introduced through complex wavenumbers [8]. Another phenomenon 

that can be included in elastodynamic equations, if required by an application, is 

plasticity. Plasticity is a non-reversible deformation of a material that could, for ex

ample, be caused by the propagation of high amplitude waves due to an impact [9]. 

In this case the relationship between stress and strain is often strongly nonlinear and 

can depend on the rate of strain for a viscoplastic situation [10]. Even in isotropic 

media the interaction of shear and longitudinal waves with boundaries can lead to 

situations where an analytical solution cannot be derived. These examples reiterate 

the importance of making an educated choice of what physics to include in a model. 

This work begins by considering analytical equations that describe the force upon 

spheres immersed in fluids due to an incident plane wave. We implement both inviscid 

and viscous fluid models that have appeared in the literature. Due to the complexity of 

the viscous equations we are the first, that we are aware of, to numerically implement 

them in order to explore their behavior. Two real-world applications of acoustic force 

upon spheres in a fluid are investigated using the formulations: emboli removal from 

cardiopulmonary bypass circuits using traveling waves and the micromanipulation of 

algal cells with standing waves to aid in biomass processing for algae biofuels. In 

the first application we find ultimately that a complicated viscous formulation is not 

necessary to describe the acoustic force. In the second application the models predict 

that viscosity has a significant practical effect on algal cell manipulation. 

The extremely complicated analytical equations in chapter 2 are for the case of 

scattering from a sphere. Since a sphere is the simplest 3D shape, one can imagine 

how much more complicated the resulting analytical equations are for non-spherical 
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shapes. In fact, basic analytical scattering solutions for an incident plane wave via 

separation of variables is only possible in a few coordinate systems (spherical, cylin

drical, prolate and oblate spheroidal, ellipsoidal, etc) [ 11]. Still, scattering from these 

basic shapes can lead to very complicated equations involving special functions that 

may be difficult to implement numerically. For example, scattering from a single 

spheroid requires computation of various spheroidal wave functions (analogous to 

spherical Bessel functions) [12], [13]. Furthermore, the orientation of a non-spherical 

scatterer relative to the incident wave must be accounted for in the formulation [12]. 

Describing multiple scattering adds more layers of complication. In fact, account

ing for multiple scattering with analytical equations requires assumptions that are 

unrealistic for most applications. Common assumptions are that all scatterers are 

identical and are either a basic geometric shape (such as a sphere or infinitely long 

cylinder) or are much smaller than the sound wavelength so that geometric details can 

be ignored [14]. Furthermore, for random distributions of scatterers the assumption 

of very dilute concentration is usually made in order to calculate the total scattering 

as the summation of fields due to single scatterers [15]. If the constraints on shape, 

number, and distribution are relaxed it is necessary to use numerical methods to 

explore scattering behavior. 

As stated above, in cases where an analytical solution cannot be found, numerical 

methods can be used to explore scattering behavior. Like the analytical methods, 

numerical methods also tend to make simplifications which drop higher order terms. 

Solutions to the (often linearized) partial differential equations are approximated over 

a small discrete volume (a single grid space), which can allow for the equations to 

be expressed as simple algebraic equations with boundary /initial conditions taken 

into account. The wave field throughout the entire larger volume (the entire grid) 

is calculated for every step in time. This method clearly requires a computer when 
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there are more than a few time and spatial steps. 

The benefit of numerical methods is that they provide almost complete flexibility 

m the choice of scatterer shape, number, and distribution. Additionally, as long 

as boundaries are incorporated correctly, numerical methods can handle situations 

where the interaction of waves with boundaries would prevent an analytical solution. 

Another benefit of numerical methods is that no assumptions have to be made about 

the incident wave field. Essentially any source function can be incorporated into 

the models and can be applied over any section of the grid. Yet, care must be 

taken when discretizing the scatterer(s) and surrounding media. Numerical wave 

propagation models are often implemented in time domain and stability conditions 

must be met for both the spatial and time step sizes in order to correctly capture 

the behavior of the highest frequency waves (smallest wavelength). Furthermore, 

numerical methods can be extremely costly computationally, requiring large amounts 

of time to complete a single simulation on a multi-core computer or computing cluster. 

Current computing power can handle 3-dimensional scattering simulations, but the 

need for large simulation spaces in order to simulate waves in real materials/structures 

brings us up against the limits of available computational resources. 

In later chapters of this work we consider wave scattering situations where exact 

analytical models do not exist: scattering of acoustic waves from multiple scatterers 

in fluids and Lamb wave scattering in solids. We use a numerical method, finite in

tegration technique (FIT), to investigate these cases in three dimensions. We chose 

FIT over other numerical techniques such as Finite Difference Time Domain (FDTD) 

and Finite Element Methods (FEM) for several reasons. FIT differs from traditional 

FDTD approaches by naturally requiring staggered spatial and temporal grids which 

lead to better stability [16]. Boundary conditions are also easily incorporated into 

FIT [17]. Another important reason for choosing FIT is that the mathematical anal-
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ysis is straight-forward and leads to equations that are easy to implement in any 

programming language (we have chosen C++). By developing our own code, as op

posed to using commercial FEM or other software, we are able to maintain complete 

control over the equations and solving steps in the simulation. If, for example, we 

decide to add in viscoelastic effects we are able to make direct changes to the EFIT 

equations to incorporate the additional physics. Furthermore, we can use Message 

Passing Interface (MPI) to parallelize the code in an optimized fashion for efficient 

computation of scattering in large simulation spaces. Even with the use of customized 

parallel code, the three dimensional simulations are computationally expensive. 

FIT multiple scattering simulations are applied as a continuation of investigations 

into algal cell manipulation using standing waves, and allow us to investigate scat

tering from numerous non-spherical algal cells. We find that the material properties 

and distribution of scatterers affect the standing wave field. Additionally, our results 

show that large increases in the number of scatterers can lead to significant changes 

in the standing wave field. 

The elastic wave modeling focuses on Lamb wave propagation in thin plates. We 

use elastodynamic finite integration simulations to investigate frequency-thickness 

regimes where the dispersive behavior of Lamb wave modes leads to the existence 

of multiple modes that are closely grouped in phase and/or group velocity. Using 

3-dimensional simulations we can investigate Lamb wave scattering in ways that are 

not possible analytically, experimentally, or with 2D models. We find that 2D model

ing for flaw shapes such as the one explored in this work (a rounded rectangle) is not 

sufficient for describing Lamb wave behavior. The EFIT simulations expand our com

prehension of complicated scattering situations and help us understand experimental 

data. 

The topics explored m this work deliberately fall into a wide range of areas 
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(medicine, alternative energy, aerospace) and are connected by the same basic un

derlying principles which transcend any particular application. The specific physical 

situations were chosen as a diverse set of cases where modeling and simulation were 

needed to understand the complicated scattering physics involved. Modern computa

tional resources have allowed us to push the envelope of modeling and simulation to 

gain insight into this complex wave behavior. We have purposefully constructed the 

computational tools so that as computer power improves they can become even more 

broadly applicable through the straight-forward addition of further physical phenom

ena. Overall, our work shows that the movement towards better availability of large 

computational resources is opening up new ways to investigate complicated physics. 
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Chapter 2 

Acoustic Radiation Force: Incident 

Plane Progressive Wave 

2.1 Background 

Acoustic radiation force is the force exerted upon an object by an incident sound wave. 

Over the past century numerous authors have modeled acoustic radiation force. In 

this work we will analyze calculations for acoustic radiation force exerted by incident 

plane progressive and standing waves upon freely suspended compressible spheres 

immersed in fluids. We will discuss the derivation of the force of an incident wave on 

a sphere of radius a in a viscous fluid, as well as the simplified case of a sphere in an 

inviscid fluid. 

In the literature there are two primary formulations for the acoustic radiation 

force upon spheres. One is an inviscid model that appeared in the literature as early 

as the 1930s in a paper by L.V. King [18]. King's work is focused on calculating the 

force of plane progressive and plane stationary waves upon a rigid sphere immersed 

in an inviscid fluid. Yosioka and Kawasima extended King's derivation to account for 
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sphere compressibility [19]. The inviscid formulation for incident plane progressive 

waves has been studied extensively by Takahi Hasegawa [20], [21]. The second model 

was developed by Alexander A. Doinikov in the 1990s and includes the effects of 

viscosity. Doinikov derived an equation for the force of plane progressive and standing 

waves upon a rigid or compressible sphere immersed in a viscous fluid. In this work 

we will outline Doinikov's derivation for a wave incident upon a compressible sphere. 

When the compressible-inviscid case is expanded to include viscosity, the complexity 

of the derivation increases in a number of ways: 1) a shear wavenumber must be 

included both outside and inside the sphere, 2) longitudinal and shear wavenumbers 

are now complex and depend on density, speed of sound, frequency, and viscosity, 3) 

viscous terms must be included in the stress tensor. 

We will first outline the approach used by Doinikov to derive the radiation force 

from an incident progressive wave upon a freely suspended compressible sphere in 

a viscous fluid (with thermal effects neglected) [22]. Following Doinikov, we in

clude terms up to second order and will not include thermal effects, which are small 

compared to the effects of viscosity [23]. There are no published plots made using 

Doinikov's equations for acoustic radiation force, that we are aware of, possibly due to 

the lack of computing power available at the time. We will then show how the viscous 

case reduces to the familiar inviscid case as described by Takahi Hasegawa [20], [21]. 

In a later chapter we will discuss stationary wave models. 

We will discuss various applications of acoustic radiation force. In Chapter 3 we 

investigate the removal of emboli from extracorporeal circuits during cardiac surgery 

using plane progressive sound waves. During surgeries that require the use of car

diopulmonary bypass circuits, air bubbles and lipid emboli can enter the blood stream. 

If the emboli travel to the brain they can cause ischemia which may lead to brain 

damage. We investigate the possibility of removing these small emboli using acoustic 
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radiation force to push emobli out of the blood flow path [24]. 

In Chapter 5 we will discuss the use of acoustic radiation force from standing waves 

to sort microalgae based on its content. Microalgae is an environmentally friendly 

alternative source for biofuels. New harvesting methods and algal sorting could make 

the production of algae based biofuels more economical. 
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2.2 Radiation Force Derivation- Compressible sphere 

in a viscous fluid 

Table 2.1: Notation for Acoustic Force Equations 

a radius of the spherical scatterer 

c1 longitudinal speed of sound in the surrounding medium 

c2 longitudinal speed of sound in the sphere medium 

C1 transverse speed of sound in the surrounding medium 

C2 transverse speed of sound in the sphere medium 

o skin depth 

r scalar velocity potential of the second order velocity 

A vector velocity potential of the second order velocity 

hn ( ) spherical Hankel function of the first kind 

Jn( ) spherical Bessel function of the first kind 

k1 longitudinal wavenumber in the surrounding medium 

k2 longitudinal wavenumber in the sphere medium 

K 1 transverse wavenumber in the surrounding medium 

K 2 transverse wavenumber in the sphere medium 

171 shear viscosity in the surrounding medium 

172 shear viscosity in the sphere medium 

Yn( ) spherical Bessel function of the second kind (spherical Neumann) 

¢> scalar velocity potential of the first order velocity 

1/J vector velocity potential of the first order velocity 

p1 density in the surrounding medium 

P2 density of the sphere medium 

g stress tensor 

a sr surface tension 

v fluid velocity 

w angular velocity 

~1 bulk viscosity in the surrounding medium 

6 bulk viscosity in the sphere medium 
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The general equation for the force of a sound wave upon on an object in a fluid is 

(2.1) 

where u is the stress tensor and the integral is taken over the surface area of the 

object, which we assume to be spherical. In its general form the stress tensor can be 

written as [11] 

(2.2) 

where p is pressure, vis fluid velocity, "1 is shear viscosity, ~ is bulk viscosity, and L 
is the identity matrix. 

In order to find expressions for velocity and pressure we will begin with the Navier

Stokes equations (the same equations listed in section 1), 

OtP + \7 · (pv) = 0 , 

Btv + (v. \7)v = ~\7. u 
p -

The divergence of the stress tensor can be written as 

Using the identity 
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(2.3) 

(2.4) 

(2.5) 

(2.6) 



we can rewrite equation (2.5) as: 

(2.7) 

We will now begin following Doinikov's derivation of force [22]. We expand p, if, p, 

and u up to second order, 

if = i]{l) + i](2) , 
(2.8) 

in which p(O) is equilibrium density, and where the equilibrium fluid velocity and stress 

tensor are d 0l = 0 and u(o) = 0. Furthermore, we let the equilibrium gauge pressure 

equal zero, p(o) = 0. The equation of state for the first order pressure is: 

(2.9) 

where c is the speed of sound. Plugging (2.8) into equations (2.3) and (2.4) and 

neglecting higher order terms, we get a set of linearized first order equations and a 

set of second order equations. 

BtP~l) = -p~O)\l. i](l) , 

P(O) 8 iJ{l) = \J . U(l) 
1 t = , 

p~o)\l. (i]{2)) = _ \l. (pil)i](ll) , 

\J. (u(2)) =Pia) ((i]{l). \J)i]{l) + i](ll(\J. i]{ll)) , 

15 

(2.10) 

(2.11) 

(2.12) 

(2.13) 



where ( ) denotes the time average of the quantity enclosed over one cycle. In these 

equations we have taken the time average of all second order terms. Additionally, the 

time average over one cycle of the change in time of any second order term equals 

zero because we are assuming negligible oscillations at second order. We will later 

use equations (2.10) - (2.13) to find velocity. 

Returning to equation (2.1), we write the time averaged acoustic radiation force 

up to second order as 

(2.14) 

where S(t) is the sphere surface at time, t, and S0 is the unperturbed sphere surface. 

The second order stress integral is taken over the unperturbed sphere surface because 

second order sphere oscillations are assumed to be negligible. Enclose the sphere 

surface, S(t) by a stationary surface, S, and label the volume between the two surfaces 

as r(t) (refer to Figure 2.1). Using the divergence theorem, the following relation for 

the first order force, p(l), is then valid: 

( f u(ll. ndS) = ( f uC1l. ndS) - ( f V'. u(lldr) 
Js(t) Js lr(t) 

(2.15) 

The relationship above simply says that the divergence over the volume T is equal to 

the difference in flux through the surfaces enclosing T. 
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Figure 2.1: Diagram showing surfaces and volume related to equation (2.15). 

The average stress over a sound cycle on the stationary surface, S, is equal to zero 

because the stress over the first half of the sound cycle is opposite in sign from the 

stress over the second half of the cycle. Therefore, the first term on the right side of 

(2.15) disappears, and 

(2.16) 

Using (2.11) and the definition of the convective derivative, 

!!_=~+v·'\l 
dt 8t , (2.17) 
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we can write the term on the right side of (2.16) as [11] 

(2.18) 

Equation (2.18) can be written as a surface integral over the unperturbed sphere 

surface. Using the divergence theorem, equation (2.3), and the relations [25] 

p(v. \7)v = \7. (pvv)- V'V. (pv) , 

a(pv) av _ap 
----at = P at + v at ' 

we can write the equation 

(2.19) 

(2.20) 

(2.21) 

The left side of (2.21) and the second term on the right hand side equal to zero since 

each term for the first half of the sound cycle is opposite in sign from that term for 

the second half of the cycle. In addition, 

(2.22) 

because the average over one sound cycle of the time harmonic changes over the 

surface disappear, leaving us with the average of the argument integrated over the 

unperturbed sphere surface. Therefore, we are left with the relation 

(2.23) 
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Plugging this result into (2.11) and (2.16), the force can then be expressed as 

(2.24) 

To find a complete expression for force we will use equations (2.10) - (2.13) to solve 

for the second order stress and first order velocity in equation (2.24). The second 

order velocity that will appear in the second order stress tensor can be written as a 

second order velocity in the absence of the sphere plus a streaming velocity due to 

the sphere boundary 

i](2) = v62) + ~2) . (2.25) 

Acoustic streaming effects are created due to the presence of the viscous boundary 

layer of the sphere, which absorbs sound. Acoustic streaming will be discussed in 

more detail in section 5.1.4. 

Via Clebsch's theorem we can write the first order velocity and streaming velocity 

in terms of scalar and vector potentials 

(2.26) 

v'2l = \7r + \7 x A s , (2.27) 

where ¢ is the first order scalar velocity potential, ;f is the first order vector velocity 

potential, r is the second order scalar velocity potential and A is the second order 

vector velocity potential. Throughout this paper we will assume that ¢, 1/J, r, and 

A have harmonic time dependence described by 

explicitly. 

-iwt e , which will not be written 

First we will solve for the first order velocity. Using (2.26), the first order equations 
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(2.10) and (2.11) can be reduced to the form 

(\72 + ki)¢> = 0 ' 

(\72 + Ki)~ = 0 

The longitudinal and transverse wavenumbers are 

(2.28) 

(2.29) 

A plane progressive wave solution satisfies (2.28). Using Bauer's formula we can write 

an expression for a plane progressive wave as [26] 

¢> =eikz = eikrcos() 

00 (2.30) 
= L in(2n + l)jn(kr)Pn(cosB) , 

n=O 

where jn(kr) is the spherical Bessel function of the 1st kind and Pn(cos B) is a Legendre 
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polynomial of order n. The scalar and vector potentials can therefore be written as 

00 

n=O 
00 

n=O 
00 

(2.31) 
n=O 

00 

n=l 
00 

'1/Jtrans = L in(2n + 1);3n}n(K2r)P~1l(cos e) , 
n=l 

in which hn ( kr) is the spherical Hankel function of the first kind, P~1 ) (cos e) is an 

Associated Legendre function with m = 1, an, &n, !3n and !3n are coefficients that can 

determined using boundary conditions. Only an and f3n are needed to find radiation 

force because the force integral is over the outer surface of the sphere and only incident 

and scattered fields exist in the exterior region. Nate that we are assuming the incident 

amplitude equals 1. In equation (2.31) the spherical Hankel function, hn(kr), is used 

outside the sphere because it satisfies Sommerfeld's radiation conditions. Note that 

inside the sphere Jn(kr) is used instead of hn(kr) because the spherical Neumann 

function, Yn(kr), is singular at the origin (where hn(kr) = Jn(kr) + i Yn(kr)). 

Note that, we can now use equation (2.10) to write (2.9) as 

. (0) 2k2 
p(I) = zpl c I¢. 

w 
(2.32) 

As mention above, only an and f3n are needed to find force, and aside from finding 

these, we now have a complete expression for the first order force. an and f3n are 

listed in the appendix and can be found using the following boundary conditions: 

21 



1) continuity of normal stress across the boundary 

2) continuity of shear stress across the boundary 

3) continuity of normal displacement across the boundary 

4) continuity of tangential displacement across the boundary 

Next we must solve for the second order stress tensor using the nonlinear equations 

(2.12) - (2.13). This time we cannot simply show that the equations are satisfied by 

a plane wave solution. Plugging equation (2.27) into equation (2.12), and using the 

fact that the divergence of a curl is always zero, (2.12) can be written as 

V'2r = __ 1_V'. (p(1),g(1)) 
(0) 1 . 

P1 
(2.33) 

In addition, plugging equations (2.27) and (2.7) into (2.13) and taking the curl of 

both sides, we get 

(2.34) 

We will solve for r and A using equations (2.33) and (2.34). First we will find r. 

Any function, f(x) on the interval -1 to 1 can be expanded using a Fourier-Legendre 

series [11], [27]: 

00 

f(x) = L AnPn(x) (2.35) 
n=O 

In which 

2n + 111 

An= J(x)Pn(x)dx . 
2 -1 

(2.36) 
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Thus, following Doinikov, we can write the right hand side of equation (2.33) in terms 

of Legendre functions as [22} 

1 (1);;'(1) _ ~ (2n + 1) (r) 
('0) \7 · (p1 V ) - ~ aZ 1-ln ~ Pn (COS 0) , 
P1 n=O 

(2.37) 

where 

J.ln (~) = a~o) 111' \7 · (p~l)iJ(ll)Pn(cos 0) sinOdO . 
a 2p1 o 

(2.38) 

Based on (2.37), we will look for solutions for r that are in the form 

00 

r = L rn (~) Pn(cosO) 
n=O 

(2.39) 

Plugging equations (2.39) and (2.37) into (2.33), and evaluating the Laplacian in 

polar coordinates, the following differential equation involving r can be found 

r" (~) + 2ar, (~) - n(n + 1)a2 r n = (2n + 1)!-ln (~) 
n a r n a r2 a 

(2.40) 

This equation is in the familiar form of Euler's equation [28}, 

Q~(q) + ~Q~(q) _ n(n; 1) Qn(q) = O. 
q q 

(2.41) 

The solution to Euler's equation is 

(2.42) 

where coefficients f and g are found using boundary conditions. In our case the right 

hand side of (2.40) is not equal to zero. The specific solution to equation (2.40) is of 
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the form 

(r) (r)-(n+l) (!~ ) r n -;: = -;: 
1 

zn+2f.-ln(z)dz- C1n 

- (~f (t z-(n-l)l'n(z)dz- C,n) , 

(2.43) 

where C1n is found using boundary conditions and C2n is found using the relation 

V¢ ----t 0 as r ----too (22]. C1n and C2n are shown by Doinikov. 

A can be found using a method similar to the one used above. The right side of 

equation (2.34) can be expanded in terms of Legendre polynomials and Associated 

Legendre polynomials. Using (2.34), an equation in the form of Euler's equation can 

also be derived for A. Again, as with equation (2.40), this equation does not equal 

zero. A specific solution for A can be found and is shown in detail by Doinikov. ·Once 

expressions for rand A are found the second order velocity, (d2
)), can be found. The 

resulting ( d 2)) at r = a 

(2.44) 

where 

(2.45) 

and for a plane progressive wave, Doinikov's result for (-ui2)) 1s 

(2.46) 

Now we only lack an expression for p(2). Using equations (2.7), (2.13), and (2.27) 

we can write an expression for the gradient of the second order pressure in terms of 
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rand A as 

'\1 (p(2)) = ( ~7] + ~) ('\J'\/2r) - 7] ('\/ X '\1 X ('\/ X A)) 

_ Plo)(iJ(l)('\1. ,g(l)) + (i](l). '\J)i}(l)) 

=- p~O) ( ~7] + ~) '\/('\/. (Pl
1
),g(l))) + 7]'\12 ('\1 X A) 

_ Plo)(i](l)('\1. ,g(l)) + (i](l). '\J)i}(l)) . 

(2.47) 

Second order pressure can be found using equation (2.47) and the full expressions for 

r and A (as shown by Doinikov). Once the second order velocity and pressure are 

known, we have a complete expression for the second order stress tensor. We can then 

plug the expressions for the first order velocity and the second order stress tensor into 

equation (2.24), leading to an integral of the form 

F =61r7]a2m(h + 2gl) + 31r ~0) m 100 11r '\1. (Pll),g(l)) cos e sin OdOd(r fa) 
Pl 1 o 

- 37rpl0)m 100 1n [1- (~) - 2
] [(v~1)v~1 ) cosO- v~1)v~1 ) sinO) (2.48) 

+~re. (v'1l('\J. i](1l) + (v'1l. '\J)v'1l) sine] a2 sin0d0d(rja) , 

where unit vector m is in the direction of wave propagation [22]. Evaluating the 

integrals leads to a complicated expression for acoustic radiation force. For a plane 

progressive incident wave the final expression for acoustic radiation force is [22] 

(2.49) 
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where force is in the direction of wave propagation, D~ is the complex conjugate of 

(2.50) 

The functions Smn are given in the appendix. Note the correction to Doinikov's 

expression for JA~ that is listed in the appendix. 

2.3 Reduction to lnviscid Equations- Compressible 

sphere in an inviscid fluid 

In the case of a freely suspended fluid or solid elastic sphere in an inviscid fluid we will 

begin the analysis by letting viscosity and bulk viscosity equal zero in equation (2.2). 

The integral over first order stress, the second term on the right side of equation 

(2.24), does not depend on viscosity, and therefore does not change. The second 

order stress, however, is now simplified to iJ(2l = -p(2ln. We then get the following 

equation for the time averaged radiation force: 

(2.51) 

We let viscosity go to zero in equation (2.47) and integrate both sides to get an 

expression for the second order pressure in the inviscid case as: 

(2.52) 

In this case there is no vector potential, and therefore velocity is simply described 
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by 

v= \1¢ . (2.53) 

Using equations (2.10) and (2.32) and integration by parts, the first term in (2.52) 

can be written as 

(2.54) 

Additionally, using the definition for expanding \l(a · b) [11], the second term in 

equation (2.52) can be written as 

(2.55) 

We have now reduced the viscous expressions for pressure to inviscid expressions 

matching those given by King and others [18], [19]: 

(2.56) 

Note that Yosioka and Kawasima show in detail how the first term in (2.56) is equal 

to the following expression which is the common form given by other authors [19], 

(2.57) 

in which JPl and JPl are time derivatives of the first and second order velocity 

potentials. Acoustic radiation force for a compressible sphere in an inviscid fluid is 
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therefore described by [21] 

(2.58) 

Only the incident and scattered longitudinal velocity potentials listed in (2.31) 

are needed to calculate radiation force for this case. The coefficient an can be found 

using the boundary conditions listed below [21], [29]. 

For a fluid sphere in an inviscid fluid the boundary conditions are: 

1) continuity of pressure across the boundary 

2) continuity of normal displacement across the boundary 

For a solid elastic sphere in an inviscid fluid the boundary conditions are: 

1) the sum of the pressure in the fluid and the normal stress of the sphere at the 

boundary equals zero 

2) continuity of normal displacement across the boundary 

3) tangential shear stress is zero 

The velocity components in spherical coordinates are 

Vr = (~¢) , 
r r=a 

(2.59) 

vo = (~ ~:) . 
r r=a 

(2.60) 

Plugging velocity into equation (2.58) yields the following components for force (in 
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spherical coordinates) 

r (8<P)
2 

Fr = -1ra
2 p~O) Jo 

8
r r=a sin() cos ()d() 

r (8<P)
2 

Fe = 1rp~0) Jo 
8

() r=a sin() cos ()d() 

(0) r (8<P) (8<P) . 2 
Fro = 27rapl Jo 8r r=a 8() r=a sm ()d() 

(2.61) 

7ra2p(O) 11r (8¢)2 
Ft = -

2
1 

-
8 

sin2 ()cos ()d() . 
C 0 t r=a 

Substituting in for <P and evaluating the integrals, as shown in detail by Hasegawa, 

yields the following equation for radiation force [20]: 

00 

n=O 
00 

+ 21rpk1a .2.:fn(n + l)(Un V~+l 
n=O (2.62) 

00 

- 21rpk1a2 .2.:(n + l)(UnVn+l- VnUn+d 
n=O 

where force is in the direction of wave propagation and 

29 



In these the compressional wavenumber in the surrounding fi uid is k1 = w / c1, Yn ( x) 

is the spherical Bessel function of the 2nd kind, and (n and Xn are the real and 

imaginary components of the coefficient an. 

-G2 
(n = Q2 + ~2 ' 

n n 
(2.67) 

(2.68) 

(2.69) 

(2.70) 

Ln is shown below for a fluid sphere: 

(2.71) 

where p~o) is the equilibrium density of the sphere material and k2 is the compressional 

wavenumber in the sphere. For the case of a solid elastic sphere shear waves are 

created inside the sphere, and the function Ln is equal to 

(2.72) 

in which 

T _ njn(k2a)- (k2a)jn+l(k2a) ( ) 
n- (n- l)jn(k2a)- (k2a)jn+l(k2a) ' 

2
·
73 

U = 2n(n + l)jn(K2a) ( ) 
n [2n2 - (K2a)2- 2]jn(K2a) + 2(K2a)jn+l(K2a) ' 

2
·
74 
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V: _ [(K2a)2/2- n(n -1)]jn(k2a)- 2(k2a)jn+l(k2a) 
n- (n- 1)jn(k2a)- (k2a)jn+l(k2a) ' 

(2. 75) 

W: = 2n(n + 1)[(1- n)jn(K2a) + (K2a)jn+l(K2a)] 
n [2n2 - (K2a)2- 2]jn(K2a) + 2(K2a)jn+l(K2a) · 

(2. 76) 

In these equations the longitudinal and transverse wavenumbers in the sphere can be 

written as 

(2. 77) 

where c2 is the compressional wave speed in the sphere and C2 is the shear wave speed 

in the sphere. 

Numerical implementation of the inviscid equations was checked by direct com-

parison with plots published by Hasegawa [20], [21], [29]. We found that our plots 

of the radiation pressure function, Yp, versus ka (where k is wavenumber in the sur-

rounding fluid) match Hasegawa's plots very well. Figure 2.2 shows examples of these 

comparisons for a polyethylene (PE) sphere in water and for a fused silica sphere in 

water. It should be noted that the function YP is related to acoustic radiation force 

by the simple expression [20]: 

(2.78) 

where the mean energy density is 

(2.79) 

where ¢0 is the amplitude of the incident wave (which we have set equal to 1). 
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Figure 2.2: Comparison between our results and Hasegawa's results, Y p versus ka. 
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Table 2.2: Material Properties Used for Inviscid Model Comparison 

Material Density Longitudinal Speed Transverse Speed 
(gjcm3 ) (cm/s) (cmjs) 

Fused Silica 2.214 595,000 375,000 
Water 1.0 150,000 -

[30]' [31] 

2.4 Viscous Model Code Verification and Conver-

gence 

As mentioned above, our code for plotting the inviscid model was checked against 

published plots that have been well verified in the literature. This comparison helped 

us establish confidence in our implementation of the inviscid model. However, there 

are currently no published plots, that we are aware of, using the viscous model. 

Radiation force versus ka was plotted using both models. In Figure 2.3, shear viscosity 

and bulk viscosity is decreased by one order of magnitude and then by two orders of 

magnitude. Figure 2.3 clearly shows that as viscosity goes to zero, the viscous model 

result yields the inviscid result. Furthermore, it was observed that certain material 

properties create resonance peaks in the radiation force plots. Resonant peaks are 

created because scattering resonances occur at eiqenfrequencies of vibration of the 

scatterer [32]. Therefore, we expect that resonant positions will be similar for both 

models. When we plotted radiation force versus ka for the test case of a blood 

droplet in air we found that while the background behavior of radiation force differed 

for models 1 and 2, the resonance peaks occur at the same ka values, see Figure 

(2.4). Plotting the resonance peak positions of the inviscid model versus those of the 
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viscous model results in a correlation coefficient of R2 = 0.99996. Additionally, as we 

incrementally changed the material properties we observed that the resonance peaks 

shifted the same amount in both models. Thus, by looking at the limiting case of 

letting viscosity go to zero and by comparing resonance peaks in the two models, we 

were able to establish confidence in our implementation of the viscous model. 

Ul 
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> :s 
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u 
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LL 
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Figure 2.3: Radiation force versus ka (where k is longitudinal wavenumber of the 

surrounding media) for an air bubble in glycerol. As viscosity decreases, the viscous 

models tends toward the inviscid model result. 
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Figure 2.4: Blood droplet in air resonance peak positions for the inviscid model versus 
the viscous model. The dashed blue line is radiation force from the inviscid model 
and the solid magenta line is the result from the viscous model. 

Implementation of the viscous model takes a significant amount of computational 

power. Numerical models were implemented with Matlab using the Typhoon cluster, 

part of the Sciclone computing cluster at the College of William and Mary. The 

cluster has 72 dual-processor, dual-core Dell SC1435 servers running at 2.6GH z. The 

viscous model required over 3000 CPU hours in order to calculate radiation force for 

one material combination. The computation was accomplished in less wall-clock time 

by breaking the code into pieces and running up to 65 jobs at once. Due to the time 

required by the viscous model, the infinite summation in equations (2.62) and (2.49) 

was computed only to n = 30. The inviscid model can be numerically implemented 
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very quickly and takes only minutes to compute force for n 

infinite sum rule from general scattering theory [33], 

nend = ka + 4(ka)(1
/
3

) + 10 

0 30. Using the 

(2.80) 

a summation of only n = 0 : 30 is only accurate to ka values of approximately ka = 10. 

We checked convergence of the inviscid model by extending the summation in the 

calculation of radiation force to larger n values. The viscous model, however requires 

large amounts of computing time as the summation over n is increased. Therefore, we 

checked convergence of the viscous model by calculating the n-dependent contribution 

to radiation force for larger n values, see Tables 2.3-2.4 for examples. We found that 

calculating the summation to n = 30 is indeed adequate for ka values up to 10. 

Table 2.3: n Dependent Contribution to Acoustic Radiation Force, Progressive Wave: 
for n values of 40 to 48 at ka - 10 -

Glycerol in Air Air in Glycerol 
Ftotal = 0.142 dyn Ftotal = -15.1 dyn 

n value n dependent force n dependent force 
contribution ( dyn) contribution ( dyn) 

40 1.97 X 10 -l;J 2.26 X 10 -IS 

41 -1.80 x w-12 -5.88 x w-8 

42 1.02 x w- 11 7.71 x w-8 

43 -5.70 X 10-13 -4.68 X 10-8 

44 -9.58 X 10-12 7.78 X 10-8 

45 4.39 X 10-12 -4.09 X 10-8 

46 2.36 X 10-12 2.02 X 10-7 

47 3.35 X 10-12 1.43 X 10-7 

48 -1.74 X 10-11 -4.22 X 10-8 
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Table 2.4: n Dependent Contribution to Acoustic Radiation Force, Standing Wave: 
for n values of 40 to 48 at ka = 10 and d = (1/8).\ 

Glycerol in Air Air in Glycerol 
Ftotal = -7.80 X 10-5 dyn Ftotal = 0.46 dyn 

n value n dependent force n dependent force 
contribution ( dyn) contribution (dyn) 

40 -1.98 X 10 -l2 -3.06 X 10 8 

41 -2.48 x 10-12 5.32 x 10-8 

42 -7.18 x 10-13 -4.40 x 10-8 

43 2.68 x 10-12 -3.04 x 10-8 

44 -1.26 x 10-12 -5.74 x 10-8 

45 -2.96 x 10-12 7.46 x w-8 

46 1.21 x w- 12 5.96 x 10-8 

47 7.50 x 10-12 2.14 x 10-7 

48 -5.34 x 10-12 2.62 x 10-7 

2. 5 Viscous Model Results 

Figures 2.5 - 2.6 show radiation force for six cases: a gas bubble in a highly viscous 

fluid (air in glycerol), a gas bubble in a low viscosity fluid (air in water), a high 

viscosity liquid drop in a gas (glycerol in air), a low viscosity liquid drop in a gas (water 

in air), a high viscosity liquid drop in a low viscosity liquid (glycerol in water), a low 

viscosity liquid drop in a high viscosity liquid (ethanol in glycerol). These materials 

were chosen to show a variety of viscosity combinations between the surrounding 

fluid and the scatterer. The material combinations of air in glycerol, glycerol in air, 

and ethanol in glycerol are discussed briefly by Doinikov as limiting cases [22]. As 

predicted by Doinikov, our plots for these three cases show that force goes to zero as 

ka goes to zero. Furthermore, our results for all material combinations agree with the 

expected result that when a < < A (very small ka), the viscous and in viscid models 

yield the same result. The material properties used in these plots are shown in Table 

2.5 and the surface tension values are listed in the appendix. 
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The plots show that the two models do indeed yield differing results when viscosity 

of the scatterer and/or surrounding fluid is large. Figure 2.5 (b) shows that for a low 

viscosity scatterer in a low viscosity liquid the two models produce almost exactly the 

same result. In addition, Figure 2.5 (a) and Figure 2.6 show a negative force for some 

values of ka. This result supports Doinikov's statement that in a viscous fluid the 

acoustic force on the scatterer due to a plane progressive wave can cause movement 

in a direction opposite from the incident sound wave. 

It should be noted that Figure 2.5 (c) and Figures 2.6 (a) - (c) are plotted to a 

smaller ka value because for these material combinations the numerical model yields 

non-numerical results (NaN) for larger ka values. This behavior is caused when 

spherical Bessel and spherical Hankel functions are calculated (in Matlab) for large 

imaginary arguments. The spherical Bessel functions go to + or -oo (depending 

on order, n) and the spherical Hankel functions go to zero. For some of the mate

rial combinations shown below the transverse wavenumber reaches such values more 

quickly and causes the numerical results to "blow up". As shown in equation (2.29), 

real and imaginary components for the transverse wavenumber are on the same or

der. This behavior shows a possible limitation to current numerical implementations 

of the viscous radiation force equations. Recent publications, such as (34] and (35], 

show that the behavior and numerical computation of Bessel functions with complex 

arguments is still an area of research. Furthermore, the result punctuates the need 

for experimental verification of the viscous acoustic force equations. 
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Figure 2.5: The solid line is radiation force from the inviscid model and the dashed 
line is the result from the viscous model. 
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Figure 2.6: The solid line is radiation force from the inviscid model and the dashed 
line is the result from the viscous model. 
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Table 2.5: Material Properties 
Material Density Speed of Sound Viscosity Bulk Viscosity 

(g/cm3
) (cm/s) (g/cms) (g/cms) 

Air 0.0011745 34,800 0.000186 0.000180 
Ethanol 0.789 114,400 0.012 0.010 
Glycerol 1.261 190,400 15.0 10.0 
Water 0.998 148,000 0.0101 0.02 

[30], [31] 
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Chapter 3 

Emboli Removal from Extracorporeal 

Circuits 

3.1 Emboli in Cardiac Surgery 

Emboli in the form of air bubbles and artery wall plaque can enter the blood stream 

during cardiac surgery. The relationship between increased embolic load to the brain 

and postoperative neurocognitive decline have been a concern for the past few decades 

[36]. During the past fifteen years numerous studies have been published linking 

neurocognitive decline to emboli [37], [38], [39], [40]. Reports have shown long-term 

postoperative neurocognitive impairment as high as 30% in coronary artery bypass 

graft surgery (CABG) patients [41]. Although recent reports clearly show that the 

direct relation between embolic load and cognitive impairment is still unresolved, 

removal of emboli from cardiopulmonary bypass (CPB) circuits appears at the present 

to be a valid precaution [36], [42], [43]. Arterial line filters are currently used to stop 

emboli in CPB circuits from passing back into the body during surgery. However, the 

pores of arterial line filters are only 25 to 40{.lm in diameter [36], [44]. Emboli smaller 
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than the pore diameter can pass through the filters and make their way towards the 

brain. In addition, if the embolic load is high, larger emboli can pass through the 

filters [44]. It is important to monitor emboli load pre-filter because a warning of 

an increased load allows the medical team to eliminate emboli sources. Broadband 

ultrasound pulses can be used to detect and track emboli as well as to estimate the 

size of emboli using backscatter echoes [45], [46]. 

Via acoustic radiation force, ultrasound may also be used for thorough, real-time 

removal of gas and lipid emboli from extracorporeal circuits, including emboli smaller 

than 25f.Lm. Typical flow rates in CPB are around 30cm/ s, so emboli removal must 

be quick [45]. Gas bubble removal from CPB circuits using acoustic radiation force 

was proposed as early as 1992, but has yet to be implemented [47]. A lipid embolus 

is a good approximation of artery plaque composition which generally has a high

lipid content unless extreme calcification has occurred [48]. Removing emboli from 

the bloodstream will greatly decrease the risk of microemboli traveling to the brain. 

It is necessary to precisely know the behavior of radiation force as a function of 

ultrasound frequency in order to optimize the removal process. Acoustic radiation 

force is directly related to the material properties of the scatterer and the surrounding 

fluid. During cardiac surgery the material properties of blood will vary from patient 

to patient (as described in the next section). In this situation it is clearly not feasible 

to experimentally determine acoustic radiation force curves for each patient. An 

accurate mathematical model of acoustic radiation force is necessary to predict a 

reasonable range of potential values for the acoustic force upon emboli. 
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3.2 Results for Emboli in Blood 

Figures 3.1 - 3.2 show radiation force versus ka for the two material combinations that 

are relevant to emboli removal from CPB circuits: 1) an air bubble in blood, 2) a lipid 

embolus in blood. The properties associated with blood depend on temperature and 

blood thickness. Typically during bypass surgery the body is cooled to approximately 

25°C- 32°C and the blood is thinned, with a target haematocrit (HCT) level around 

27%, to prevent clotting [49]. A target haematocrit level is determined for each 

patient and blood thickness is monitored during surgery to maintain target levels. 

Bulk viscosity values are overall unavailable in the literature. This lack of avail

ability may be due to the fact that bulk viscosity is not required by the more simple 

and common models of scattering. Additionally, approximations for bulk viscosity in 

relation to shear viscosity are sometimes used when bulk viscosity is included. After 

extensive searching we were able to find approximate values for the materials pre

sented in this chapter. A bulk viscosity value for lipid was the most difficult material 

property to find. The viscosity and bulk viscosity for lipid used in this work is from 

Disalvo and Simon [50]. The value for bulk viscosity that we found is surprisingly 

larger than the shear viscosity (when compared to the bulk/shear ratios of the other 

fluids listed). However, recent research has found that bulk viscosity can be larger 

than dynamic viscosity [23]. In fact, Dukhin concluded that there is no strong corre

lation between bulk viscosity values and other parameters such as dynamic viscosity. 

Clearly, more evidence of the precise material property values would increase the 

real-world accuracy of our modeling results. Since we must work with the material 

properties reported in the literature, we investigated the results of changes in material 

properties. We found that changes in bulk viscosity values of an order of magnitude 

and larger have little effect on the predicted radiation force. A longer discussion on 
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bulk viscosity can be found in section 3.3. Changes in the density of blood and in the 

shear viscosity of the lipid had the largest effect on radiation force. The lower and 

upper lines in Figures 3.1 and 3.2 represent the maximum range in radiation force 

due to the uncertainty in material properties. The material property ranges used for 

Figures 3.1 - 3.2 are shown in Table 3.1. The surface tension values are listed in the 

appendix. The viscosity of blood was calculated using TJ = 0.015*(1+2.5*HCT) [51]. 
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Figure 3.1: Radiation force versus ka for an air bubble in blood. The solid lines show 
the range of radiation force found using the inviscid model for the range of material 
properties listed in Table 3.1. The dashed lines show radiation force found using the 
viscous model for the range of material properties. 
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Figure 3.2: Radiation force versus ka for a lipid sphere in blood. The solid lines show 
the range of radiation force found using the inviscid model for the range of material 
properties listed in Table 3.1. The dashed lines show radiation force found using the 
viscous model for the range of material properties. 

Table 3.1: CPB Material Properties Range 
Material Density Speed of Sound Viscosity Bulk Viscosity 

(gjcm3) (cmjs) (gjcms) (gjcms) 
Air 0.001174- 0.0013 32, 100- 35,000 0.00018482 - 0.00018673 0.00012 - 0.00019 

Blood 1.060 - 1.2508 154,000- 160.000 0.0225 - 0.0319 0.024 - 0.034 
Lipid 0.89-0.924 143,000- 147,000 1- 16 2.5. 106 - 40 . 106 

[52], [53], [54], [50], [55], [56] 
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3.2.1 Discussion of Results 

Acoustic radiation force was plotted for air and lipid emboli in blood using the inviscid 

and viscous models. For an air bubble in blood the two models predict nearly the 

exact same behavior for force as a function of ka. For the case of a lipid embolus, the 

two models predict slightly different behavior, especially for large ka values. As shown 

in Figure 3.2, the viscous model predicts a smooth increase in force as ka increases 

while the inviscid model predicts maximas and minimas in force as a function of 

ka. Yet, the inviscid model predicts that force increases overall at an average rate 

similar to the viscous model. Both models yield the same order of magnitude for 

acoustic radiation force as a function of ka. For transducer frequencies in the low 

M Hz range, small emboli (tens of microns) correspond to the low ka region ( ka < 1) 

where the two models agree very well. Furthermore, when we take into account the 

inherent difficulties in finding precise material properties for individual patients and 

the computational time required by the viscous model, we conclude that the inviscid 

model is adequate for this application. As processing speeds increase and material 

properties become well known, the viscous model may become the preferred model. 

Additionally, the results presented in section 3.2 show that there is no resonant 

peak behavior to take advantage of when choosing a transducer frequency for this 

application. The model results confirm that as emboli size decreases, higher frequen

cies are required to impart the same magnitude of force. The optimal transducer for 

emboli removal in extracorporeal circuits depends directly on the removal chamber 

setup, see Figure 3.3 for an example. If only a single transducer is used the opti

mal transducer will be broadbanded with a central frequency shifted towards that 

required to move small emboli. If an array of transducers is used, it would be best 

if each transducer has a different frequency that is intended for removal of a specific 

emboli size-range. Another option is to use a system like the EDAC(R) Quantifier 
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(Emboli Detection and Classification, Luna Innovations, Roanoke VA) to predict what 

size emboli will be flowing through the removal chamber at a specific instant in time, 

and use a transducer that can be driven at various frequencies to adjust for the exact 

emboli sizes encountered. Note that another consideration in the removal chamber 

setup is the need for minimal heating. If a transducer is driven at high powers, heat

ing can occur. In a medical application such as this, heating of the blood must be 

prevented. A cooling water bath between the transducer and the removal chamber 

could help decrease the possibility of heating. 

Emboli 
Outflow 

-Blood 
Outflow 

Air 

lRadiation 
Force 

Cooling Wa'rer bath 

Transducer(s) 

Blood and emboli 

Figure 3.3: Example of a removal chamber setup - Blood and emboli flow into the 

removal chamber. Acoustic radiation force pushes air and lipid emboli towards the 

top of the removal chamber. Air bubbles either rise to the air pocket at the top or flow 

out of the emboli outflow tubing. Lipid emboli flow out through the emboli outflow 

tube. 
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3.3 Bulk Viscosity 

As discussed above, very few experimental bulk viscosity values have been published. 

For an incompressible fluid, the second term in equation (2. 7) goes to zero (definition 

of isochoric flow) [2]. Therefore, bulk viscosity is only important for compressible flu

ids. As described by Dukhin in a recent paper, bulk viscosity can be found experimen-

tally through measurements of attenuation. At ultrasonic frequencies attenuation, a, 

is related to bulk viscosity, ~' by [23]: 

(3.1) 

where w is radial frequency, c is the speed of sound, and rJ is shear viscosity. Bulk 

viscosity, as described by Temkin, is related to the rotational and vibrational motion 

of the molecules in a fluid, while shear viscosity is related to translational motion [57]. 

Bulk viscosity enters the viscous equations through the longitudinal wavenumber, 

as shown in equation (2.29). The complicated nature of the viscous acoustic radiation 

force equations does not lead to a straightforward conclusion on how changes in bulk 

viscosity will affect the final value for acoustic force. Though, we can see from equation 

(2.29) that a very large bulk viscosity value leads to a small value for the corresponding 

longitudinal wavenumber. To further explore the effects of bulk viscosity on the value 

for force, we implemented the traveling wave viscous model for five points along the 

force versus ka curve (up to ka = 10). The model was not implemented for all ka 

values due to the large computational time required. The bulk viscosity for each 

material was varied between the maximum and minimum values shown in Table 3.1 

(repeated in Table 3.2), while other material properties were held constant. For 

example, for the case of an air bubble in blood force was calculated for maximum and 

minimum bulk viscosity values for blood, thus affecting the longitudinal wavenumber 
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in the surrounding medium, while the material properties of air were held constant. 

The maximum percent difference in the acoustic radiation force due to changes in 

bulk viscosity for each material are shown in Table 3.2. 

Table 3.2: Percent Difference in Force due to Changes in Bulk Viscosity 
Air Bubble in Blood 

Material Minumum Bulk Viscosity Maximum Bulk Viscosity Maximum Percent Difference 
(g/cms) (g/cms) % 

Blood 0.024 0.034 0.34 
Air 0.00012 0.00019 0.14 

Lipid in Blood 
Material Minumum Bulk Viscosity Maximum Bulk Viscosity Maximum Percent Difference 

(g/cms) (g/cms) % 
Blood 0.024 0.034 0.34 
Lipid 2.5 X 106 4.0 X 107 0.0028 

As shown in the above table, changes in bulk viscosity had very little effect on 

the acoustic force. The largest change in acoustic radiation force due to changes in 

bulk viscosity was created by changing the bulk viscosity of blood. The bulk viscosity 

value found for lipid material is the most uncertain value in the table, yet changes of 

over an order of magnitude led to only small changes in acoustic force. However, it 

must be pointed out that a significantly smaller value for bulk viscosity of lipid would 

lead to more significant changes in acoustic force. As stated earlier, more certainty 

in the bulk viscosity would lead to more confidence for real-world modeling results. 
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Chapter 4 

Acoustic Radiation Force: Plane 

Stationary Wave 

4.1 Compressible Sphere in a Viscous Fluid 

We will now discuss the equations that describe acoustic radiation force from inci

dent standing waves. In 1962 L.P. Gor'kov derived the same result as Yosioka and 

Kawasima for standing wave acoustic radiation force. L. Crum, K. Higashitani and 

others have verified Yosioka and Kawasima's equations for acoustic radiation force on 

small spheres (where radius < < wavelength) due to stationary waves [58], [59]. A.A. 

Doinikov later derived a standing wave expression for radiation force upon viscous 

compressible spheres in a viscous fluid. His derivation makes no restrictions on the 

scatterer size [22]. Results for acoustic radiation force upon a compressible sphere 

by an incident stationary wave is discussed below. For the inviscid case we follow 

the result of Yosioka and Kawasima. For the viscous fluid case we once again follow 

Doinikov. 

For an incident standing wave, the force on a particle is directly related to its 
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distance from a nodal plane. A particle in a standing wave field will be pushed 

towards the nearest pressure node and away from pressure antinodes [60]. Thus, the 

force on a particle will change directions (and change signs) in both the in viscid and 

viscous models depending on the distance from a node, see Figure 4.1. 
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Figure 4.1: Radiation force in a standing wave field. Arrows show the direction of 

force on particles, pushing them to pressure nodes. 

Equations (2.1) - (2.29) used in Chapter 2 still hold for the case of an incident 

standing wave. The wave solution, ¢,however, is now a stationary wave and therefore 

must account for waves moving both to the left and right: 

00 (4.1) 
= L zn(2n + 1)Jn(kr)Pn(cos (}) [etkd + ( -1te-tkd] , 

n=O 

where d is the distance from the center of the sphere to the nearest pressure node, 

see Figure 4.2. 
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Figure 4.2: Distance, d, from the scatterer center to the nearest pressure node. 

Accordingly, the scattered and transmitted wave functions are now described by 

00 

¢inc= L in(2n + l)jn(klr)Pn(cos e) [eikld + ( -l)ne-ik1d] ' 
n=O 

00 

n=O 
00 

n=O 
00 

n=l 
00 

'1/Jtrans = L in(2n + l)t3nJn(K2r )P~1 )( cos 8) [ eiK2 d + ( -lte-iK2 d] 
n=l 

The second order streaming velocity is still expressed by equation (2.45), and (iJ62l) 

is given by Doinikov as 

2 ilkll 2 
[ ~ ~* ~ ~* ] (iJ6 )) = ~ (k1 - k1 ) sin [(k1 + k~)(z +d)] - (k1 + k1 ) sin [(k1- k~)(z +d)] 

(4.3) 
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The acoustic radiation force exerted by a plane standing wave is 

Equation ( 4.4) differs only slightly from (2.49), containing additional expressions that 

depend on the distance to a nodal plane. Calculating acoustic force due to a standing 

wave requires only simple changes to the Matlab code that was developed and tested 

for the plane progressive wave case. 

4.2 Compressible Sphere in an lnviscid Fluid 

Again, in the inviscid case we only need incident and scattered scalar potential veloc-

ities. As shown in equation ( 4.2), the standing wave case differs from the progressive 

wave case by a factor of [ eik1d + ( -1 )ne-ik1d]. Plugging velocity potential into equa

tion (2.61), we get the following equation for the radiation force of an incident plane 
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standing wave in an inviscid fluid [61] 

00 

F = -41rpk1a2 2) -1)(n+ll(n + 1)(U~U~+1 + V~V~+1 ) sin(2kd) 
n=O 

00 

n=O 
00 

+ 47rpk1a 2) -1)(n+ll(n + 1)[n(UnU~+1 + Vn V~+1 ) 
n=O (4.5) 

- (n + 2)(U~Un+l + V~Vn+l)] sin(2kd) 
00 

- 41rpk1a2 :~::::.) -1)(n+l)(n + 1)(UnUn+l + Vn Vn+l) sin(2kd) , 
n=O 

where Un, U~, Vn and V~ are defined as shown in section 2.3. 

The inviscid standing wave code was verified by comparing results using our Mat-

lab code with those published by Hasegawa. Figure 4.3 shows a comparison of results 

for a Polymethylmethacrylate sphere in water [61]. 
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Figure 4.3: Inviscid results for a polymethylmethacrylate sphere in water, showing 

the radiation force function, Yst, versus ka. 

4.3 Standing Wave Results 

Figures 4.4-4.6 show radiation force results for various material combinations. As 

mentioned above, in the standing wave case acoustic radiation force upon an object 

depends on the distance between that object and the nearest node. This distance 

corresponds to the variable d that appears in standing wave force equations. The 

plots shown below in 4.4-4.7 are for d = A/8. Figures 4.8-4.15 are 3D surface plots 

showing the dependence of radiation force on both ka and d. The y-axis is d in units 

of wavelength, i.e. a value of 0.5 is equal to d = A/2. Note that the viscous and 

inviscid code results are plotted with the same axes limits and shading in order to aid 
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comparison. In seven of the eight cases the force falls to zero at pressure nodes and 

antinodes as expected (see the following paragraphs for discussion about the case of 

air in glycerol). For most of the cases the shape of the curve predicted by the viscous 

model mimics the behavior predicted by the inviscid model. In all cases the viscous 

model predicts force of a smaller amplitude than predicted by the inviscid model. 

The large decrease in amplitude is likely due to viscous attenuation. In section 2.5 

we showed that for a plane progressive incident wave the viscous and inviscid models 

predict nearly the exact same result for some material combinations. This trend is 

no longer true in the standing wave case where viscosity had a significant effect on 

the force for all eight combinations. 

The sharp peaks that show up in the inviscid model for an air bubble in water 

and an air bubble in glycerol are not caused by numerical issues (such as too course 

of a step size in ka), but are physical resonances. Plotting the force with a finer step 

size in ka reveals the structure of the resonance peaks. Although it is difficult to see 

in the plots, due to the scale of the y-axis, these resonance peaks show up at the same 

ka positions for both the inviscid and viscous models, as expected. 

One final result that must be discussed is the non-physical behavior shown in 

the surface plot for an air bubble in glycerol as ka increases. The force should drop 

to zero at pressure nodes and anti-nodes. The specific behavior is not caused by 

lack of convergence. Table 2.4 shows that for the case of an air bubble in glycerol 

the n-dependent force contribution for n-values larger than n = 30 is still six orders 

of magnitude smaller than the total force. Furthermore, we implemented the full 

case for this material combination out to n = 40 (which took 3250 CPU hours) and 

observed no change in results from those shown in Figure 4.4. The non-physical 

behavior for air in glycerol was investigated and is not caused by calculations of large 

complex arguments in the Bessel functions as discussed in section 2.5 (though that 
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issue also still affects the standing wave case). Yet, in a similar fashion, the behavior 

was created when the sine of a large complex number was calculated, resulting in 

+/- oo. The first point where we can be sure that non-physical results show up in 

the surface plot is when the force does not fall to zero for all ka values as it should 

at ~,\. The plot at d = .A/8 shows non-physical behavior as early as ka = 5 when 

resonance peaks disappear and the force begins steadily increasing. Note that the 

standing wave equation implementation also suffers from the issues created by large 

complex arguments in Bessel functions. As with the progressive wave models, we 

hope to see future work in the field that could provide experimental verification of 

the viscous model equations. 
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Figure 4.4: The solid line is radiation force from the inviscid model and the dashed 
line is the result from the viscous model. All plots correspond to a nodal distance of 
d= A./8. 
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Figure 4.5: The solid line is radiation force from the inviscid model and the dashed 
line is the result from the viscous model. All plots correspond to a nodal distance of 
d= A./8. 
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(b) Glycerol in water 

Figure 4.6: The solid line is radiation force from the inviscid model and the dashed 
line is the result from the viscous model. All plots correspond to a nodal distance of 
d= )..j8. 
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Figure 4.7: The solid line is radiation force from the inviscid model and the dashed 
line is the result from the viscous model. All plots correspond to a nodal distance of 
d = A/8. 
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Figure 4.8: Acoustic force result for an air bubble in glycerol. 
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001 

10 

(b) Inviscid result. 

Figure 4.9: Acoustic force result for a glycerol droplet in air. 
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(a) Viscous code result. 

(b) Inviscid result. 

Figure 4.10: Acoustic force result for an air bubble in water. 
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(b) Inviscid result. 

Figure 4.11: Acoustic force result for a water droplet in air. 
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(a) Viscous code result. 

(b) Inviscid result 

Figure 4.12: Acoustic force result for a water droplet in glycerol. 
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(b) lnviscid result. 

Figure 4.13: Acoustic force result for a glycerol droplet in water. 
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(a) Viscous code result. 

(b) Inviscid result. 

Figure 4.14: Acoustic force result for an ethanol droplet in glycerol. 
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(b) Inviscid result. 

Figure 4.15: Acoustic force result for a glycerol droplet in ethanol. 
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Chapter 5 

Acoustic Particle Separation for 

Microalgae Biofuels 

5.1 Background 

Particle separation via acoustic radiation force is an active field of study with nu

merous applications, such as ultrasound assisted sedimentation, enhanced biosensor 

sensitivity, and particle sorting [62], [63], [64]. Acoustic standing waves have also 

been used to manipulate liquid drops via acoustic levitation for microgravity mate

rial processing [65], [66]. Particles in a standing wave field are pushed towards nodes 

or anti-nodes depending on their acoustic properties. One method of acoustic parti

cle separation uses standing waves to push particles to specific positions in the field 

where they can be sorted when particle columns are transported by wave envelopes 

or laminar flow to outlet channels [64], [67], [68]. The most common techniques re

quire precise alignment of a transducer and reflector on either side of a channel of 

width w = in,\ where, n is an integer and ,\ is wavelength, see Figure 5.1. There are 

less common techniques that do not require this precise alignment which rely on the 
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excitation of bending modes in a capillary containing the microparticles [69], [70]. 

Acoustic separation has benefits over traditional separation methods such as fil

tration and centrifugation because acoustic separation devices do not have the prob

lems of filter clogging, mechanical issues with moving parts, or large space require

ments [71], [62]. However, efficient particle separation via standing waves requires a 

precise knowledge of both acoustic radiation force and fluid dynamics. A transducer 

frequency must be chosen that results in adequate particle column separation dis

tances (which affects processing times), while avoiding acoustic cavitation and acous

tic streaming. Lower frequency transducers will result in larger distances between 

particle bands. Greater distances between bands will make particle collection easier. 

However, cavitation occurs more easily at lower frequencies. Cavitation is the creation 

of gas bubbles that can rapidly collapse, leading to large local pressure and temper

ature gradients, and is an unwanted event in acoustic particle separation because it 

breaks up particle banding. As frequency increases larger pressure amplitudes are 

required to induce cavitation, therefore, cavitation is less likely to occur during sep

aration. Yet, a further complication is that at higher transducer frequencies acoustic 

streaming (discussed in section 5.1.4) occurs, which also disturbs particle bands [67]. 

Acoustic streaming can be prevented through sufficient transducer cooling, the use of 

tone bursts, and by maintaining a small free path length [72]. 

The use of stationary waves to collect particles at nodes or anti-nodes was experi

mentally investigated as early as 187 4 by Kundt and Lehmann and in 1936 by Sollner 

and Bondy [73], [74]. Sollner and Bondy studied the use of acoustic radiation force 

to drive particles into groups at nodal positions, where increased particle coagulation 

then occurs due to inter-particle forces. Since these early experiments many authors 

have investigated the effects of acoustic stationary waves on particles immersed fluids. 

In the past three decades numerous authors in the field have focused on the use of 1-3 
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MHz frequency transducers to manipulate 1 - 50pm sized particles such as animal 

cells, erythrocytes, algal cells, polystyrene and latex spheres [62], [75], [76]. For very 

small particles where ka < < 1 an acoustic force as small as 10-15 N (lo-10 dyn) has 

been reported as adequate for particle concentration [77]. Acoustic particle manipu

lation techniques are discussed in detail in the sections 5.1.1 - 5.1.3. 

Pressure 
Anti-Node 

Pressure 
Node 

:::0 
CD 
::::!! 
CD 
~ 
0 ...., 

Pressure 
Anti-Node 

Figure 5.1: Acoustic particle separation via standing waves: particles move to pressure 
nodes or anti-nodes in a standing wave field depending on their acoustic properties 
(adapted from [78]). 

5.1.1 Acoustic Sorting 

In the early 1990s Feke and collaborators investigated the combination of acoustic 

standing wave particle banding and laminar flow based separators in order to collect 

particles based on their acoustic properties and size [79], [80]. Mandralis and Feke 

demonstrated that the acoustic contrast factor and size of a particle determines its 

response to acoustic radiation force. For a small compressible sphere in a standing 

wave (in an inviscid fluid) the acoustic contrast factor, Cp, is found by dropping 

higher order terms in equation (4.5), as described by Yosioka and Kawasima in their 
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derivation of acoustic radiation force in an inviscid fluid [19]. 

(5.1) 

where pp is the density of the particle, PJ is the density of the fluid, /3p is compress

ibility of the particle, and (31 is compressibility of the fluid. When a standing wave is 

applied to particles in a fluid some particles will move more quickly to nodal positions 

than others. Furthermore, particles with a negative acoustic contrast factor will move 

towards pressure antinodes while particles with a positive contrast factor will move 

towards nodes [81], [80]. This phenomenon can be used in combination with fluid 

flow to sort particles of a variety of sizes and contrast factors into different outgoing 

streams, see Figure 5.2, which is based on the flow path diagram by Mandralis and 

Feke [79]. Mandralis and Feke used a 722 kHz transducer at power levels up to 10 W 

to insonify 106 particles/mL in an acoustic chamber at acoustic intensities up to 

76.5 1/m3 to successfully separate particles based on size. 
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Figure 5.2: Flow path diagram showing two particles that move at different rates 
towards pressure nodal/antinodal positions due to standing waves. Introducing lateral 
movement, via laminar flow for example, can transport the particles into different 
outlet channels based on their acoustic properties (adapted from [79]). 

Johnson and Feke also studied particle separation using standing waves. They ere-

ated a half-wavelength wide flow-through chamber inside which they set up standing 

waves using a 250 kHz transducer at power levels of 4.8 to 20 mW. They success

fully separated 100ji,m from 170JLm polystyrene beads immersed in a fluid using three 

flow outlets: one for the carrier fluid, one for the small beads and one for the larger 

beads. The experiment yielded separation efficiencies up to 99.14% at flow rates of 

approximately 0.34 L/hr. 

In recent years Nilsson, Petersson, and collaborators have used separation channels 

(350J1m wide channels) and standing waves to separate lipids from blood with the 

intention of removing lipid emboli during cardiac surgery [64], [81], [82]. Flow rates 

were chosen such that particles could fully make their way to nodal positions before 

sorting at outlet channels (see Figure 5.3). Suction was applied to the outlet channels 

to enhance outflow. The small separation channels were observed to operate most 

efficiently at flow rates around 0.012 1/hr [81]. 
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Figure 5.3: Particle separation combining acoustic standing waves and fluid flow 
through a separation chip. This figure shows the design used by Petersson and others 
[81], [83]. Other chip designs have been studied [84]. 

Similar methods of combining standing waves with flow separation devices have 

been studied by various authors [85], [71], [86]. The experimental setup from a selec

tion of publications can be found in Table 5.1. 

Other experimental techniques reported in the literature involve other methods 

for creating a standing wave field. Kozuka and colleagues set up standing wave 

micromanipulation experiments using a concave focused transducer [68]. Their results 

showed that a focused transducer allowed for precise manipulation of particles trapped 

at the focal point. Additionally, particles at the focal point could be transported 

laterally through frequency changes in the field. Another technique was investigated 

by Goddard and Kaduchak and does not rely on precise transducer-reflector alignment 

as required in the experiments discussed thus far [87]. Instead of using the type of 

setup shown in Figure 5.1, a cylindrical tube was driven at resonance at frequencies 

around 420 kHz. The acoustic excitation of the cylinder created a standing wave field 

inside the chamber. 10 J..lm polystyrene spheres were successfully concentrated in the 

center of the cylindrical chamber. Goddard and Kaduchak noted that this technique 
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allows for lower energy density in the chamber, decreasing the probability of acoustic 

cavitation. 

A recent article reports further on the work performed by Greg Goddard and 

colleagues at Los Alamos National Laboratory [88]. LANL is part of the National Al

liance for Advanced Biofuels and Bioproducts consortium and is continuing research 

in acoustic methods for processing algae for biofuels. They report that acoustic con

centration via standing waves is an efficient way of separating biomass from water 

using "hundreds of times less power than centrifuges" [89]. The group is also investi

gating the use of acoustic cell lysing followed by acoustic oil fractionation (a method 

discussed in section 5.1.3). 

5.1.2 Separation Via Acoustically Enhanced Sedimentation 

Coakley, Whitworth, Gould and collaborators have studied the collection of micron 

sized particles at half wavelength intervals. They experimentally investigated the 

threshold pressure amplitudes for particle banding, the transport of particle groups 

via acoustic field modulation, and particle sedimentation [90], [91]. In ultrasound

assisted sedimentation particles are pushed into groups at nodes or anti-nodes. At 

nodal positions the particles that are a short distance from each other, approximately 

one particle diameter or less, may experience attractive interparticle forces. Interpar

ticle forces can arise due to acoustic field scattering from neighboring scatterers [92]. 

Additionally, Bernoulli interactions due to pressure differences in the fluid can cause 

further agglomeration [93]. Furthermore, frequency modulation can be used to cause 

lateral particle movement which can assist particle clumping and transport [94]. Once 

the particles are grouped the acoustic field is turned off and particle clumps, which 

have a higher density than individual particles, sink to the bottom of the acoustic 

chamber where they can be collected. Gould and Coakley also studied the stability 
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of particle bands in the presence of acoustic streaming and cavitation [67]. Acoustic 

streaming is briefly discussed in section 5.1.4. 

Studies in this field have primarily focused on small lab-scale experiments, with 

standing wave chambers that are typically around 100 mL in volume. The largest 

scale experiments to date, that we are aware of, were performed by Spengler and Jekel 

over 10 years ago. They set up both lab-scale and pilot-plant scale acoustic particle 

separators to remove particles from a suspension [72]. They used a 16-transducer 

array and a 20 em x 24 em x 24 em acoustic chamber in the pilot-plant scale experi

ment to create standing waves. Spengler and Jekel found that dividing the free path 

length in the chamber with acoustically transparent films greatly decreased streaming 

effects, allowing them to achieve suspended solids separation efficiencies up to 94% 

(for 2 - 50 J-lm particles) at flow rates up to 150 1/hr yielding around 0.564 gj L 

of separated solids. Additionally, in the lab-scale experiment the team found that 

separation efficiency directly related to particle size, ranging from less than 50% for 

2 J-lm particles to 98% for 50 J-lm particles. 
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Figure 5.4: Experimental setup used by Spengler and Jekel. Acoustically transparent 
films (ATF) divide the acoustic chamber to reduce streaming. The 'sludge hoppers' 
collect sedimented particles. The CCD camera and YAG laser are used to view the 
particle behavior. Image from [72]. 

F. Trampler and colleagues also worked on developing larger acoustic particle 

separators. Their work focused on acoustic filtering and sedimentation for enhanced 

cell perfusion [95]. A commercially available acoustic separation device, the BioSep(R) 

(Applikon Biotechnology, Schiedam, Netherlands), has been developed based on the 

work of Trampler et al. The largest BioSep(R) devices work at flow rates around 41.6 

1/hr [96]. 
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(a) BioSep(R) (b) Ultrasound off. (c) Ultrasound on. 

Figure 5.5: BioSep(R) device used for enhanced sedimentation (Applikon Biotech
nology, Schiedam, Netherlands). When the ultrasound is turned on the particles 
form groups and sink to the base of the container where they are removed from the 
suspension. Images from [96]. 

R. Bosma and collaborators recently demonstrated that methods of acoustic ag-

gregation and enhanced sedimentation can be applied to harvest microalgae from 

water [62]. Bosma used a 2.1 M Hz transducer at power levels up to 8 W to drive 

algae particles into clumps at nodal positions. The acoustic field was switched on for 

60 to 300 seconds and then turned off for 3 seconds to allow particle settling. The 

acoustic chamber was a 4.5 em x 1.25 em x 1.25 em BioSep(R) chamber and con

tained algal cell densities ranging from 0.49 x 107 cellslmL to 43 x 107 cellslmL. At 

a cell density of 3 x 108 cells I mL with ingoing flow rates up to 6 L I day the group ob-

served separation efficiencies above 90%. In addition, they found that efficiency levels 

dropped as the flow rate increased above 6.2 Llday. The biomass density was also 

observed to directly relate to separation efficiency. At low densities the small particle 

clumps did not lead to high efficiencies. Additionally, very high concentrations led to 

drops in efficiency because some cells could not be captured. Thus, a balance in cell 
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density and flow rate is required for high separation efficiencies. A cell concentration 

of 1 x 108 cellsjmL is reported to correspond to 0.4 to 0.5 gj L dry weight. Thus, a 

separation efficiency of 90% presumably corresponds to approximately 0.45 g / L dry 

weight of separated biomass. 

According to a recent report, two to five grams per liter (by dry weight) would be 

required for cost-effective biofuel production [88]. These numbers may be reached by 

further optimizing acoustic techniques. 

It should be noted that in particle separation experiments a microscope or high 

resolution CCD camera combined with a light source is commonly used to observe 

particle behavior [85], [83], [97]. Additionally, commercially available particle coun

ters such as a Coulter counter, can be used to monitor particle concentration and 

separation efficiencies [62]. 

Potential difficulties in acoustic particle manipulation, separation, and sorting 

techniques are acoustic streaming effects and sample and transducer heating. As 

mentioned above, acoustic streaming can be prevented through sufficient transducer 

cooling, using tone bursts, and by maintaining a small free path length [72]. Sam

ple heating can be avoided through cooling techniques. In fact, with flow-through 

systems, the water flow itself through the acoustic chamber will help reduce heating. 

5.1.3 Acoustic Separation of Liquid-Liquid Mixtures 

The acoustic particle separation methods described above may also be used for sepa

rating immiscible liquid components. Acoustic standing waves can be used to collect 

liquid droplets of certain physical properties at a location in the acoustic chamber, 

separating the differing components of a liquid mixture [98], [99]. Peterson describes 

the use of 1 - 5 M Hz pseudo-standing waves to concentrate components of immisci

ble fluids [98]. A specific example presented by Peterson uses a 2.2 M Hz transducer 
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at an output power of 5 Wjcm2 to separate two immiscible fluids at a flow rate of 

6 mL/min. The initial fluid content was water with an oil content of 22%. After 

the separation process less than 1 % of the oil remained in the water. Note that in 

this experimental setup the pseudo-standing wave moves through space at a non-zero 

group velocity, and therefore the separated droplets are carried through the chamber 

by the wave. 

A similar liquid-liquid separation technique is described by Srinivas for a two 

phase system consisting of polyethylene glycol and potassium phosphate [100]. In this 

experiment, standing waves were not created. Acoustic waves were simply applied to 

increase droplet interaction and cause amalgamation of liquid droplets. The larger 

drops of one liquid then separate from the second liquid due to the buoyancy force. 

Srinivas used a transducer with a frequency of 1.2 M Hz at a power level of 1.2 Wjcm2 

to apply acoustic energy to the sample. A diagram of Srinivas' experimental setup 

is shown in Figure 5.6. When the experimental results were compared to simple 

demixing under gravity Srinivas concluded that the demixing times were cut in half, 

or more, by using acoustics to assist in separation. Srinivas and colleagues also 

investigated the effects of adding yeast cells to the two phase system. The group 

found that the addition of the microbial cells to the two phase system led to increases 

in demixing time. Therefore, particulate matter such as contaminants or cell debris 

could affect the efficiency of this method. 
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Figure 5.6: Srinivas experimental setup. Image from [100]. 

A third example of acoustic liquid-liquid separation is given by Varadaraj, who 

describes a method in which a water-in-oil emulsion is demulsified using ultrasound, 

without creating acoustic standing waves [99]. The emulsion is sonicated for approxi-

mately two minutes in a continuous pulse mode at frequencies between 15 to 20 M Hz 

at 25 to 500 W j cm2
, causing a separation of oil and water phases. The phase separa-

tion occurs when sonication "breaks the interfacial film in the emulsion" and the lower 

density liquid (oil in this case) rises to the surface. Varadaraj specifically describes 

the use of this method for crude oil emulsions and suggests that chemical demulsifiers 

can be added to the emulsion to aid in separation. 

The acoustic specifications used in the experiments discussed in sections 5.1.1 -

5.1.3, as well as additional examples, are listed in Tables 5.1-5.2. Note that reported 

power levels may correspond to acoustic power or applied electrical power because in 

many cases in the literature the type of power is not specified, but only reported. 
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T bl 51 S a e ummary o fE t 1 s xpenmen a pec1 ca wns m th 1·t t e 1 era ure 
Standing Wave Acoustic Partie e Separation and MampulatJon: !<;xperimental SpecilicatJons 

Source Sample Type Parttcle Stze Transducer Frequency Power Chamber Volume Particle Concentrat10n MaXImum Flow Rate Separat10n Effictency 
Mandrahs 1993 [80[ Polystyrene spheres 2to 30J.Lm 722kHz up to 10 W 0 035mL 10" spheresfmL 20 mL/mzn 95% 

m water (1 2 L/hr ) 
Doblhoff-Dter 1994 [76] Hybndoma cells Not Spectfied (NS) 22 MHz up to 50 W up to 100 mL 8 x 10' cellsfrnL 13 Lfhr 85% (13 L/hr) 

m an RPMI medmm 
Johnson 1995 [80] Polystyrene spheres 100 and 170 ~-'"' 250 kif z upto20m111 8 59 mL NS 56 rnLfuun 99% 

m water ( 034 Lfhr) 
Yasuda 1995 [85] Polystryrene spheres 1 to 10 wn 500kHz NS (180V) 0 045 rnL up to 3 x 106 •pheresfmL 5mmfs 90% 

m water 
Htll 2000 [101] Sand particles separated 60J.Lm 1MHz 50 w 94 rnL NS 20 Lfhr 97% 

from water 
Hawkes 2001 [83] Yeast cells and polystyrene 5 to 25J.Lrn J Mlfz 0 05 rnL 4 5 x 107 part.desfrnL 0 72 L/hr NS 

spheres m water 
Araz 2004 [69] Polystryrene spheres 3 and 10 J.Lrll up to 2 MHz NS (10V) 0 00012 mL NS NA NS 

m water 
Petersson 2004 [81] Polyamtde spheres {blood phantom) 5J.Lm 2M Hz NS 72mL NS 0 3 rnL/mm 85% 

and hptd parttcles m blood (0 018 Lfhr) 
Godd.trd 2005 [87] Polystyrene spheres 10 11m tube dnven at tube dnven 11m/, 2 6 x 108 •phere</m /, 25 mmf• NA 

m water 417kHz to 462kHz at l W 



Table 5.2: Summary of Experimental Specifications in the Literature 
Pseudo-Standing Wave Acoustic Particle Separation and Manipulation· Experimental Specifications 

Source Sample Type Parttele Size Transducer Frequency Power Chamber Volume Particle ConcentratiOn Particle Transport Rate SeparatiOn Efficiency 
Whitworth 1991 [91[ Polystyrene spheres 9Jtm 3 10- 324M Hz NS (80 V) 46mf, NS 24 mmf' 93% 

m water 
Kozuka 2000 [68[ Alummum particles 16Jl-m 45-7A!Hz NS (40 V) NS NS NS NS 

Saito 2002 [94[ Euglena l0>.50Jtm 21-39MHz up to 20 mWfmrn' 0 1m£ NS NS 80% 
( 2 W whole chamber) (tiappillg efficiency) 

Standmg Wave Acoustic Particle SedimentatiOn· Experimental SpecificatiOns 
Source Sample Type Particle Size Transducer Frequency Power Chamber Volume Particle Concentration Flow Rate SeparatiOn Efficiency 

Trampler 1994 [95[ Hybndoma cells NS 25A!Hz NS 32m£ 10" cellsfmL 1 0 Lfhr 90% 
Pm 1995 [102[ Hybndoma cells NS 245-25MHz upto180W/L 75mL up to 9 1 x 105 cellsfmL 0 7 Lfhr 90% 
Spengler 2000 O>.Idized uon 2- 50Jtm 33 MHz 200W up to 10 {, up to 600 mqf {, 150 T,fhr 94% 

(plant scale) [72[ and manganese ( 107 to 109 parhdesf L) 
Spengler 2000 Oxtdtzed tron 2-50 wn 33 MHz 45 w up to 375 mL up to 600 mgf L 12 Lfhr 98% 
(lab scale) [72[ and manganese ( 107 to 109 part,desfL) 

Bosma 2003 [62[ Mteroalgae 4JL11t 21 MHz up to 8 W 7mL 107 cdl;fmL up to 18 L/day 90% at 6 Lfday 
(Monodus subterraneus) (0 75 L/hr) 

Liqmd-Liqmd SeparatiOn· Experimental Specifications 
Source EmulsiOn Transducer Frequency Power Chamber Volume Flow Rate 

Peterson 1991 [98[ Oil ill water - 22 MHz 5 Wfcm' 156 mL - 6 mlfrmn -

Snmvas 2000 [100[ Polyethylene glycol/ - 12Mllz 12 W/cm2 lOOm£ - Not Applicable (NA) -

potasswm phosphate 
VaradaraJ 2004 [99[ Oil ill watei - 20kHz 50 to 350 Wjcm2 NS - NA -



5.1.4 Acoustic Streaming 

Acoustic streaming is a fluid flow effect that can occur in real fluids with or with

out the presence of a boundary and can be created in progressive and standing wave 

fields [103]. Acoustic streaming often takes the form of circular flow patterns. The 

circulatory stirring behavior of acoustic streaming can have a disruptive effect on 

standing wave fields. In the context of particle separation, using stationary waves, 

streaming is an unwanted event; it is a desirable phenomenon when utilized for acous

tic mixing of microparticles [104]. We will briefly discuss three types of acoustic 

streaming, Schlichting, Rayleigh and Eckart (or 'quartz wind') streaming. 

Both Rayleigh and Schlichting streaming occur due to the presence of a boundary, 

such as container walls or a scatterer. Acoustic energy is attenuated in the viscous 

boundary layer. Energy dissipation creates changes in momentum flux, leading to 

circulatory streaming patterns near the boundary, see Figure 5.7 (a) [105]. Rayleigh 

streaming is on the scale ka ~ 1, while Schlichting streaming is a smaller scale 

phenomenon associated with ka < < 1 [106]. 

Eckart streaming occurs when acoustic energy is dissipated in the fluid itself due 

to viscosity. Acoustic energy attenuation creates differences in stress on each side of 

a fluid element see, Figure 5.7 [107]. The change in stress causes physical movement 

of the fluid particles. Eckart streaming is a macro-scale phenomenon (on a scale 

much larger than wavelength, ka > > 1) that can pull particles from standing wave 

particle bands. Short fluid flow path lengths can help to prevent Eckart streaming, 

as discussed in section 5.1.2 [93]. 
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Figure 5.7: Examples of streaming patterns with direction of source wave propagation 
shown by the solid black arrow,(a) Boundary streaming [105], (b) Eckart streaming 
inside fluid-filled container [93]. 

5.2 Microalgae Biofuels 

The global demand for energy has risen dramatically in recent years as the world 

population grows and as standards of living around the world increase [108]. These 

developments have led to a global realization that petroleum based fuel sources, which 

are being depleted, are unsustainable. At the same time, increased environmental 

awareness has led to a societal desire for both sustainable and environmentally friendly 

fuel sources. Biofuels, including corn-based and soybean-based ethanol and biodiesel, 

are presently used in order to slow down growth of petroleum demand. However, use 

of these biofuels impacts global food supplies. Furthermore, these crops require the 

use of large amounts of crop land for growth, which has led to ecological destruction 

around the world, such as the deforestation of the Amazon rain forest in Brazil to 

make room for soybean crops [109]. Recent reports have shown that the crop land 
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conversion required by these traditional biofuel sources actually means that overall, 

the use of these biofuels results in higher green house gas emissions than the use of 

petroleum [110]. Crop land is created by methods such as burning forests, plowing 

open fields, and draining wetlands. Not only do these methods release green house 

gases into the atmosphere, but this environmental degradation also removes vital C02 

absorbers. Microalgae is an environmentally friendly alternative source for biofuels. 

Microalgae is a term that commonly refers to diatoms, green algae, golden algae, 

(all eukaryotic microganisms) and is occasionally used to refer to cyanobacteria (blue

green algae, prokaryotic) [111]. There are many environmental and social benefits 

to using microalgae as a biofuels source. Microalgae are not currently in demand 

as a world food source and can be used to make ethanol, biodiesel, biomethane, 

and biohydrogen. Additionally, microalgae have a much higher oil yield per square 

mile than other biodiesel sources, and therefore require much less land to produce 

significant fuel yields. For example, microalgae with 30% oil (by weight) in biomass 

produces approximately 340 times more oil per square mile than corn [112], and 

15 times more oil per square mile than the current bio-oil producing leader, palm 

oil [113]. Futhermore, microalgae can be grown on non-arable land as well as in fresh 

and salt water. Since only approximately 13% of the Earth is arable land, decreasing 

the competition between biofuel and food crops is crucial. Microalgae grow quickly 

and have short harvesting cycles, and while traditional biofuel crops can be harvested 

only one to two times a year, microalgae can be harvested almost continuously [113]. 

Microalgae convert solar energy to chemical energy via photosynthesis. They re

quire water, sunlight, carbon dioxide, and nutrients such as nitrogen and phosphorus 

for growth [112]. The nutrients and C02 needed to grow microalgae can be acquired 

from sources such as industrial plants, waste water, fresh water, and sea water. Mi

croalgae are efficient C02 absorbers. Therefore, the growth of microalgae for biofuels 
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would have the added benefit of C02 sequestration without the output of greenhouse 

gases from crop land. As suggested by P.M. Schenk et al., the biomass that is not 

converted to fuel can be processed into agrichar /biochar chips - high carbon content 

chips that can be used to increase soil fertility [113]. 

Microalgae are commonly grown in raceways, man-made open ponds or in pho-

tobioreactors. Each growth method has pros and cons. Raceways and open ponds 

require large amounts of space and have high harvesting costs due to the unenclosed 

(less controllable) growth setup. Photobioreactors can be made in a way that re

quires much less space (for example, by a vertical tube alignment setup) and have 

low harvesting costs due to increased containment and species control. Raceways and 

ponds, however, have lower operating costs than photobioreactors which are a more 

complex system. Both systems may benefit from an improved harvesting system, 

which contributes up to 30% of the cost of dried algal biomass [114]. 

Figure 5.8: Raceway ponds used to grow microalgae at Earthrise Farms, CA, USA 
(aerial view). Image from www.ieagreen.org.uk. 
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Figure 5.9: Photobioreactor used to grow microalgae (vertical tube alignment setup). 
Image from www.brae.calpoly.edu. 

Microalgae grow naturally in waters all around the globe. Humans are leading to 

increases in the algal blooms that are caused by water eutrophication (an increase in 

nutrients). Eutrophication is caused by agricultural waste that contains fertilizers, 

water from sewage treatment plants, urban water runoff, and other human activities 

[115]. Although live microalgae absorb carbon dioxide and emit oxygen, oxygen is 

depleted when dead algae decompose. Thus, an increase in algal blooms also leads 

directly to hypoxic waters and dead zones where aquatic life cannot survive. Dead 

zones are expanding around the world, including in the Chesapeake Bay and the Gulf 

of Mexico. The spread of dead zones has an enormous impact on aquatic species and 

the fishing industry. 
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Figure 5.10: White circles represent ocean dead zones. Image from [116]. 

Microalgae biofuels can be made from wild growing algae that would be collected 

before decomposition leads to hypoxia. The concentration of free-floating algae in 

wild blooms is likely not high enough to conceive of efficient harvest size for eco

nomic biofuels. Currently researchers (such as collaborators in the Chesapeake Algae 

Project, ChAP [117]) are researching the possibility of growing wild algae in greater 

concentrations on man-made materials deployed into bay, river, or open seawaters. 

However, open water microalgae blooms can contain a single native species, closely 

related species, or very rarely, mixed class algae [118]. These blooms may include 

non-desirable alga, such as low lipid content algae. Therefore, it would be beneficial 

to sort the microalgae based on its content in order to successfully create fuels from 

wild microalgae. Farmed algae processes would also benefit from the ability to sort 

algae based on its content. Microalgae are primarily made up of lipids, carbohydrates, 

and proteins. Microalgae with high starch content are desirable for alcohol production 

(such as butanol), while algae with high lipid content can be used to make biodiesel. 

Algal sorting before chemical processing would have three important benefits: 1) high 

starch content algae can be sorted out to make ethanol, 2) low lipid content biomass 

leads to low quality biofuels, therefore, sorting out low lipid algae will increase the 
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quality of the produced biofuels [114], 3) processing costs can be reduced by convert

ing only high oil content algae to diesel. Related work shows that high-lipid content 

algal cell isolation with wild algal strains is a current topic of interest in the algae 

biofuels field [119]. We will investigate the use of acoustic separation to harvest mi

croalgae from water and the potential of sorting the algae based on its composition. 

The potential of acoustically dewatering the algae may lead to increased processing 

efficiency and lower costs [89]. 

5.3 Modeling Results 

We implemented the viscous and inviscid acoustic radiation force models for the cases 

of an algal cell in seawater and in freshwater. The results (Figures 5.11-5.14) show 

that the inviscid and viscous models yield very different results for force versus ka, 

as discussed further below. The material properties used for both cases are shown in 

Table 5.3. Salt and fresh water have similar material properties, leading to acoustic 

force results that are very close for the two cases. However, for the case of freshwater 

the viscous case yields NaN earlier, due to the reasons discussed in section 4.3. Note 

that the speed of sound and bulk viscosity values used for algae are based on material 

properties in the literature corresponding to lipids and oils. This approximation was 

necessary because acoustic properties of algae are largely unavailable in the literature. 

The density value used for the algal cell is based on a high lipid content algae as 

discussed by Barsanti and Gualtieri [120]. As with the emboli removal application, 

our modeling results would be even more appropriate for comparisons to experiment 

if the required material properties for algae were known more precisely. 
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Table 5.3: Material Properties 

Material Density Speed of Sound Viscosity Bulk Viscosity 

(g/cm3
) (cm/s) (g/cms) (g/cms) 

Seawater 1.0268 153,300 0.012 0.03 

Fresh water 0.998 148,000 0.0101 0.02 

Algae 0.86 147,400 4.0 2 X 106 

[120], [121] 
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Figure 5.11: Acoustic force result for an algal cell in seawater. 
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Figure 5.12: The plot shows the inviscid (solid line) and viscous (dotted line) results 
for an algal cell in seawater at a particle location of d = >..j8. 
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Figure 5.13: Acoustic force result for an algal cell in freshwater. 
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Figure 5.14: The plot shows the inviscid (solid line) and viscous (dotted line) results 
for an algal cell in freshwater at a particle location of d = A./8. 

5.3.1 Discussion of Algae Modeling Results 

The results of the previous section show that the viscous model predicts a smaller 

magnitude of force upon the scatterer. This result means that in a real fluid it would 

take particles longer to move to nodal positions than in an ideal inviscid fluid. Very 

small algal cells (tens of microns) paired with low M Hz range transducers correspond 

to the low ka region. The most important result from 5.11-5.14 is that the viscous 

model actually predicts force in a different direction from the inviscid model, even at 

low ka values. Most researchers in the field of acoustic micromanipulation reference 

the acoustic contrast factor given in equation (5.1) that is based on the inviscid fluid 

model. However, according to our results, for some material combinations viscosity 
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may cause the particles to move much differently than equation (5.1) predicts. Indeed, 

as suspected by Doinikov, these results help explain the strange movement of particles 

in a standing wave observed by Avetisyan [3], [122]. He observed the movement of 

steel particles in a standing wave field in glycerin and found that the particles moved 

to antinodes rather than nodes as predicted by the inviscid model. 

The acoustic force models for a compressible sphere are a start towards under-

standing the force felt by algal cells in a standing wave field. The results clearly 

show the importance of viscosity for this material combination. However, the acous-

tic force model for a single compressible sphere immersed in a fluid is not sufficient 

for optimizing algal acoustic separation experiments. In order to optimize acoustic 

sorting methods, knowledge about multiple scattering from non-spherical algal cells 

in a standing wave field is needed, see Figure 5.15. The effect of increased biomass 

concentration on the standing wave field is of particular interest for optimizing experi-

mental techniques. Authors such as Bosma have reported that separation efficiency is 

directly related to biomass concentration in the acoustic chamber [62]. In the follow-

ing section we will use 3D acoustic standing wave simulations to investigate changes 

to the standing wave field as particle concentration increases. 

Berkeley a Chamydomonas 

I 
I L __ -

/ 

Zygnema 

Figure 5.15: Algal cells of various shapes. Berkeleya is a common algal species in the 

York River, VA. 
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5.4 3D Acoustic Finite Integration Simulations 

There are numerous numerical methods for approximating the solutions to partial 

differential equations. Finite difference time domain (FDTD) is one common tech

nique that has become familiar to many scientists since it was introduced in the 

1960s for the purpose of numerically solving Maxwell's equations [123]. FDTD is a 

technique that turns differential equations into algebraic equations by approximat

ing derivatives as differences [124]. Finite integration technique (FIT) differs slightly 

from FDTD in that the differential equations are integrated over a control volume 

(such as a cube in the case of Cartesian coordinates) and then the integrals are ap

proximated [125], [126]. FIT has benefits over the more common FDTD techniques 

in that it naturally leads to a staggered grid with better stability [16]. Staggered grid 

FDTD techniques exist, but the staggered grid must be purposefully introduced [17]. 

FIT also leads to simpler implementation of boundary conditions [17], [126], [125]. 

Two other common numerical method techniques are Finite Element Method (FEM), 

which is available in various off-the-shelf software, and Boundary Element Method 

(BEM). FEM is a technique that approximates the exact solution to a differential 

equation over elements (subdomains) within the total space [127]. One benefit to 

FEM is that off-the-shelf software uses sophisticated meshers to break the simulation 

space into elements that can be non-rectangular, such as tetrahedra. Additionally 

the spatial step size of the mesh can be varied within a simulation space so that areas 

needing more detail have smaller elements. The meshers and solvers used in FEM 

software, however, are complicated and are not nearly as straightforward as FIT. The 

simplicity of FIT allows it to be implemented in various computer coding languages 

on any computer and provides full control over the equations involved. 

In this chapter we have implemented three dimensional acoustic finite integration 
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technique (AFIT) simulations to simulate scattering from algal cells in a standing 

wave field. The AFIT simulation code was written and validated in our lab through 

comparisons to analytical solutions and experimental results [126]. We set up a 

standing wave with the AFIT code by specifying a simulation space length that is a 

multiple of the wavelength of the sinusoidal drive function. The AFIT equations are 

outlined in detail below. Note that the equations described below and the numerical 

AFIT simulations that we have performed do not take viscosity into account. The 

simulations are intended as a start to understanding multiple scattering in a standing 

wave field. Future work could include viscosity in the 3D AFIT simulations. 

We begin by returning to the linearized Navier-Stokes equations in fluid, with 

pressure (M) and velocity (F) source functions added to the right hand side [126], 

[128]: 

8tp = -Po '\l · v + M , 

Po8tv = -'\lp + F , 

(5.2) 

(5.3) 

(5.4) 

where we set the viscous terms in the stress tensor equal to zero, so that term one of 

the right hand side only depends on pressure. Using the equation of state 

(5.5) 

we can rewrite equation (5.2) in terms of pressure 

(5.6) 

Next we integrate equations (5.6) and (5.3) over a control volume (a cube in this 
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case). 

(5.7) 

The first term on the right hand side can be turned into a surface integral using the 

divergence theorem, resulting in the following equation: 

(5.8) 

where S is the boundary of volume V. We can treat equation (5.3) in a similar way, 

again using the divergence theorem, 

(5.9) 

We take the final step of approximating the integrals in (5.8) and (5.9) over a cubic 

control volume that is ~x x ~x x ~x, corresponding to a single grid cell in Figure 5.16, 

with the pressure and velocity components positioned on the grid as shown in the 

figure. A discussion of the importance of choosing an appropriate variable placement 

on the discrete grid can be found in [129]. We'll start with equation (5.8): 

where v =VI+ v2 + V3. As shown in Figure 5.16, we follow the notation used in [126]: 

vi- corresponds to velocity in the negative XI direction from the center of the cell, 

and v}+ corresponds to velocity in the positive XI direction from the center of the 

cell. Similarly we get three equations for the velocity (expanded in three spatial 
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dimensions) 

Po8tv1b..x3 = -(pl+ - p1-)b..x2 + F1b..x3 , 

Po8tv2b..x3 = -(p2+ - p2-)b..x2 + F2b..x3 , 

Po8tv3b..x3 = -(p3+ - p3-)b..x2 + F3b..x3 
(5.11) 

Finally, we must solve equations (5.10) and (5.11) for pressure and velocity and 

approximate the time derivatives on the right hand side of each equation. In both 

cases we will use a difference to approximate the derivative. For BtP use a central-time 

difference to get 

p(t+6.t/2) = p(t-6-t/2) + p(t) b..t . (5.12) 

Similarly, to approximate the velocity derivative we used an integer central-time dif-

ference, 

v(t) = v(t-6-t) + i)t-6-t/2) b..t . (5.13) 

Thus, we arrive at a discrete set of equations for pressure and velocity that are 

staggered in space and time: 

b..t b..t 
vt = vt-6-t- --- (pl+- p1-) + F1- ' 1 1 pob..x Po 

t t-6-t b..t ( 2+ 2-) D b._t v = v - --- p - p + q- ' 2 2 Pob..x Po 
(5.15) 

b..t b..t vt = vt-6-t- --- (p3+- p3-) + F3-
3 

3 pob..x Po 
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Figure 5.16: Velocity and pressure are staggered in the discrete spatial AFIT grid. 

The number of grid cells in the simulation space is determined by assigning a 

minimum number of grid points to the shortest wavelength in the simulation. The 

required number of points per wavelength reported in the literature varies, ranging 

from >../8 to .X/15 [130], [125]. The Courant condition is used to determine the time 

step size [125], [126]. The stability criteria for the discretization of the simulation are: 

C£ 
D.x::::: -bf ' 

max 

D.x 
Dot :::::: ;;:; ) 

cLv3 
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where C£ and !max are the longitudinal speed of sound and maximum frequency in 

the surrounding fluid, and b is a constant with the criteria that b 2:: 8. 

The finite integration code was run in parallel on multiple CPUs on the SciClone 

computing cluster at William and Mary. Parallelization was accomplished by breaking 

up the simulation space onto a one-dimensional virtual topology, as shown in Figure 

5.17. The virtual topology allows for the passing of required information between 

CPU processors (nodes) using Message Passing Interface (MPI). In the acoustic finite 

integration case, pressure must be sent to the neighboring node on the left side: left 

= rank-1 in the 1D virtual topology. Additionally, the velocity in the x1 direction, 

v1 , must be passed to the neighboring node to the right: right=rank+ 1. As discussed 

later in the Elastic Finite Integration section, passing of information can be more 

complicated than in the AFIT case. A 1D virtual topology is much more simple than 

creating a 2D virtual topology, but can be more limited in efficiency since values for 

the entire width of the simulation space must be passed to neighboring nodes. For 

very large simulation spaces a 2D virtual topology would be preferred [131]. Figure 

5.18 is an example of the output created by the AFIT simulation for the case of a 

traveling wave scattering from a cylinder. The images represent the pressure output 

at a single point in time for two slices (horizontal and vertical) through the 3D 

simulation space. More complicated geometries of scatterers can easily be included 

in the AFIT simulation through direct changes to the C++ code. 
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Figure 5.18: Example of AFIT results for a traveling wave scattering from a cylinder. 
Two spatial slices through the '3D simulation space are shown, a top view and a side 
view. 
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This type of 3D acoustic scattering code is useful for a variety of applications 

beyond the focus of this chapter. Acoustic security screening is one example applica

tion that requires knowledge of scattering from complex geometries. If a sound beam 

traveling through air interacts with an object, the resulting scattered signal can be 

analyzed to determine the geometries and materials that were encountered by the 

wave. In order for the beam to propagate long distances through air a parametric 

array can be used. The parametric array creates beam mixing that turns multiple 

higher frequency beams into a single lower frequency ( ~ 10 kHz) beam that is fo

cused down to a small spot size at the target [132]. The beam can pass through 

clothing material to interact with weapons or other scatterers that may be hidden 

beneath. An incident beam of this type can be incorporated into AFIT. Figures 5.19-

5.21 show AFIT scattering snapshots for the type of complex geometries required for 

security screening. The scattering images demonstrate that AFIT is well-suited for 

such applications. 
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a) Human torso model and AFIT snapshots 
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Figure 5.20: AFIT results for a series of snapshots in time showing scattering from a 
human torso. 
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a) Geometric model of torso and legs with C4 
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Figure 5.21: AFIT results for a series of snapshots in time showing from C4 block 
located at the groin (modeled after the failed Northwest Airlines "underwear bomber"). 

Running the code in parallel speeds up computational time significantly, and al-
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lows the possibility of a smaller step size. In the algae scattering simulations we 

used up to 500 grid points per wavelength, leading to a spatial step size as small as 

3 J.-tm. Such a small spatial step size was both necessary and feasible because we were 

investigating scattering from 30 J.-tm algal cells within a total simulation space on the 

order of only 0.0002 mL. It should be noted that output files from the 3D simulation 

space in the algae application were up to 30 G B per simulation. 

5.5 AFIT Simulation Results 

Based on the published experiments in acoustic micromanipulation (discussed in the 

previous section), we chose an incident wave frequency of 1 M Hz for the AFIT 

multiple scattering simulations. Since AFIT does not account for viscosity, there is 

no attenuation of the incident wave. Therefore, we can set up and maintain a standing 

wave field by sending in a sine wave for n cycles in time (where n is a finite integer, 

n = 2 for the results shown below). The total length of the simulation space is set 

equal to one wavelength, which is 1.497 mm in the case of fresh water. The total 

simulation space volume was set to 0.0002mL. Figure 5.22 shows twelve plots of the 

wave amplitude for a 1D slice through the 3D simulation space for times h = 0.808}-ts 

through t 12 = 2.84J.-ts. The time increment between each plot is t3.t = 0.185J.-ts. It 

takes approximately 1.99}-ts to set up the standing wave in the simulation space (by 

t8 ). The figure is intended to show the standing wave as it is created in the AFIT 

simulation space. 
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Figure 5.22: Snapshots in time of an incident wave propagating into the AFIT simu
lation space and creating a standing wave (1D slices through the 3D space). 

Numerical rounding results in a small ripple that propagates back and forth along 

the standing wave, see Figures 5.23 and 5.24. The size of the ripple is less than 

+/- 0.5 percent of the maximum peak pressure amplitude. Experimental standing 

wave fields face similar issues due to the finite spread in frequency of real transducers 

(bandwidth), as well as other factors such as changes due to heating. In fact, the 

presence of a small wave propagating back and forth in an experimental standing 

wave field was reported in 1995 in a publication by H.M. Hertz. Hertz describes 

small propagating waves within the standing wave field that are on the order of 5 
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percent of the wave amplitude and observes that in a real fluid (with viscosity) these 

small fluctuations within the standing wave field can create acoustic streaming [133]. 

Acoustic streaming effects can be minimized experimentally through limited path 

lengths as discussed in section 5.1.4. More recently, Wiklund, Hertz, and Nilsson 

report acoustic intensity variations within an experimental standing wave field of 

+I- 1.2 percent over the wave field cross-section [134]. For a standing wave acoustic 

intensity is related to pressure by 

p2 
Ia=-

2pc ' 
(5.17) 

where P is pressure, p is density, and c is longitudinal speed of sound. Thus, intensity 

is proportional to the square of the pressure amplitude. A variation of +I - 1.2 

percent in intensity is approximately equivalent to a pressure amplitude variation of 

+I- 1.1 percent. The precision of an experimental standing wave field clearly depends 

on the technique used to create the field. Publications such as [135] and [77] discuss 

the complexity of creating precise standing wave fields for particle manipulation. 

With these reported experimental results in mind, we conclude that the precision of 

our simulated standing wave field is adequate for yielding information which may be 

useful for experimental procedures. 
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Figure 5.24: Standing wave ripple with the background subtracted. 

The AFIT code allows us to place any number of scatterers of any shape into the 

simulation space. For investigations of scattering from algal cells we will use finite-

length cylindrical scatterers, which are similar in shape to many types of algae, see 

section 5.3.1. In an early simulation 800 rigid cylindrical scatterers of diameter of 

12pm and length of 30pm (a size similar to algal cells) were evenly dispersed in a 

single plane of the simulation space with fresh water as the surrounding fluid. This 

number of scatterers is equivalent to 2.2 x 103 particles per mm2 since the scatterers 

were placed in a single plane. Note that we started with rigid scatterers because their 

positions can clearly be seen in the simulation output. The material properties used 

for algal cells in the simulation space are fairly similar to water, thus the positions 

of algal cells are not clearly visible in the images. The simulation was intended as a 

check that numerous scatterers could be correctly included in the simulation space. 

The result of this simulation not only verified the inclusion of numerous scatterers, 

but also yielded an interesting result. The small ripple is amplified by the presence 
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of the scatterers, as shown in Figures 5.25 and 5.26. Figure 5.26 is a color plot of 

the x-y plane, and corresponds to a 2D slice at a specified vertical position in the 

simulation space. The region between 50 and 100 ~x shows how the small ripple in 

the standing wave is amplified by the scatterers. Figure 5.25 shows an "A-line" plot 

corresponding to a single y position (y = 72). The change in amplitude of the ripple 

in the wave field is similar when the scatterers are evenly or randomly dispersed. Yet, 

the amplitude of the enhanced ripple for the random distribution case varies across 

the wave (y direction), as expected. 
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light green and viewed from above. 
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Figure 5.26: A-line plot at a single point in time (t=3.8 /-LS ): standing wave with zero 
scatterers in the simulation space (solid black line), 800 evenly dispersed cylindrical 
rigid scatterers (red dotted line), and 800 randomly dispersed rigid scatterers (blue 
dashed line). 

We increased the number of scatterers to 107 particles per mL and ran simulations 

with even and random dispersion throughout the simulation space (not just in a single 

plane). Figures 5.27 - 5.29 show results for rigid scatterers evenly distributed. The 

increase of scatterers leads to further changes in the standing wave field, however, 

the wave field is not significantly disrupted. Keeping in mind experimental reports 

of successful particle sorting at these particle concentration level, we would not have 

expected significant changes to the wave field due to 107 scatterers. 
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F1gure 5.27: 2 2 x 107 particles per mL: a) Distribution of scatterers, b) A-line plot at 
a single point in time ( t=3 8 J.lS): standing wave with zero scatterers in the simulation 
space (solid black hne), 4464 evenly dispersed rigid cylindrical scatterers (red dotted 
line), equivalent to 2 2 x 107 particles per mL. 
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Figure 5.28: 2.2 x 107 particles per mL: a) Three 2D slices through the simulation 
space at the specified vertical positions, showing scatterers as viewed from above at 
timet= 3.8ps, b) 2D slices that do not show the scatterers. 
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Figure 5.29: 2.2 x 107 particles per mL: 2D slices through they-plane at time t = 3.8p,s 
showing the length of the cylindrical scatterers. 

Pressure is defined as force per unit area. Therefore, the force upon a scatterer can 

be approximated by multiplying the stress over a surface by the surface area, F = a A. 

Since the finite integration simulations discussed above do not include viscous terms, 

the stress tensor is simply a = p. We can use the change in pressure amplitude across 

a scatterer to approximate the force felt by a scatterer. Because the simulation space 

is a discrete space, we have pressure outputs corresponding to all grid points in the 

space for each time step. In order to approximate the total force upon a scatterer 

at a single point in time we sum the total pressure over the scatterer surface in each 

direction and calculate the change in pressure across the scatterer. 

Many of the experiments listed in Table 5.1 report a particle concentration of 

around 106 to 107 cells/mL. Figure 5.31 shows the approximate force upon a single 

algal cell for the particle location described in figure 5.30j due to a standing wave 

field for particle concentrations of 8 x 105 algal cells per mL, 16 x 105 cells per mL, 

and 2.2 x 107 cells per mL. Interparticle forces and drag forces that exist in real 
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fluids (due to viscosity) are not taken into account in 5.31. The simulation space 

length for Figures 5.30 and 5.31 is one wavelength (1.497 mm), with a total volume 

of 0.0002 mL. The force was approximated from the AFIT simulation results as 

described above, and corresponds to the force upon an algal cell located as shown 

in Figure 5.30. Scatterer movement is not taken into account in Figure 5.31, so the 

figure represents force versus time felt by a fixed algal cell in the standing wave field. 

The material properties used in this simulation for the algal cell are a density of 

0.86 g/cm3 and a longitudinal speed of sound of C£ = 1474 m/ s (as given in Table 

5.3). Each scatterer is cylindrical with a width of 12J.tm and a length of 30J.tm. 

The AFIT simulation predicts force upon the algal cell in the+/ -x direction, with 

negligible force in the y and z directions, as expected based on experimental work in 

the literature, such as [62]. A negative force value in Figure 5.31 creates movement in 

the -x direction. The plots in Figure 5.31 show that as the concentration of scatterers 

increases, the changes to the standing wave field lead to changes in the force upon 

the scatterers. However, the change is relatively small. The largest change in force 

for a particle concentration increase from 8.0 x 105 cells/mL to 2.2 x 107 cells/mL 

leads to a percent difference in force of only 12%. It is also clear from the zoomed 

in plot in Figure 5.31 that as time progresses the changes to the standing wave field 

due to the scatterers increases. 
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Figure 5.30: a)-c) show the arrangement of algal cell scatterers (represented here as 
blue spheres, though they were cylindrical in shape in the simulation) in the standing 
wave field for particle concentrations of 8 x 105 algal cells per mL, 16 x 105 cells per 
mL, and 2.2 x 107 cells per mL. The red dot represents the scatterer about which 
the force was calculated for Figure 5.31. d) shows the position of the red dot in the 
standing wave (near a pressure nodal position). 
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Figure 5.31: Approximate acoustic force (arbitrary units) upon evenly dispersed algal 
cells due to a standing wave field for various particle concentrations in the acoustic 
chamber (as shown in the legend). The plot does not account for scatterer movement, 
but rather shows the variation of force at a single location in the simulation space 
as time progresses. The standing wave field has been established by approximately 
i = 2 J-lS. 

Figures 5.32 and 5.33 show results for rigid scatterers and for algal cells randomly 

dispersed in the space. The algal cells, which here have material properties fairly close 

to water (since viscosity is not included) have a much smaller effect on the stand-
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ing wave field compared to the rigid scatterers, which allow no wave transmission. 

The results thus far show that although the scatterers are much smaller than the 

wavelength, particle distribution and the material properties of the scatterers are key 

factors leading to varied alterations in the standing wave field. 
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Figure 5.32: A-line plot at a single point in time (t=3 8 J.Ls): a) No scatterers (black 
solid line), 107 rigid particles per mL randomly dispersed (red dotted line), 107 algal 
cells randomly dispersed(dashed blue line), b) Zoomed in view showing the slight 
difference between the field with no scatterers and with 107 algal cells. 
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Figure 5.33: Standing wave field with 107 scatterers distributed randomly. a) Top 
view of rigid scatterers and algal cells, b) Side view of rigid scatterers and algal cells. 

We further increased algal cell concentration incrementally from 5 x 107 to 5 x 109 

particles per mL (randomly dispersed). Computational time for the highest particle 

concentration was approximately 155 CPU hours (9.7 hours of real-time running on 

16 CPUs). Recall that the maximum particle concentration used in experiments 

reported in the literature (shown in Table 5.1) is 109 particles per mL. The AFIT 

results are shown in Figures 5.34 and 5.35. The increase in particle concentration 

from 5 x 107 to 5 x 109 particles per mL, created a change in pressure amplitude 

equivalent to a 23.5% difference (for the largest change). As shown in Figure 5.36, 

the change is large enough to significantly alter the force felt by the algal cells. The 

disturbance to the standing wave field increases as time progresses. 
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Figure 5.34: 2D color plots showing the wavefield at a single point in time ( t= 3.8 ps) 
for a slice at a single vertical position. while the number of algal cells per mL was 
increased. 
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Figure 5.35: A-line result for three algal cell concentrations: 5 x 107 cells per mL 
(pink dotted line), 5 x 108 cells per mL (red dashed line), 5 x 109 cells per mL (blue 
dash-dotted line). 
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Figure 5.36: Approximate acoustic force (arbitrary units) upon randomly dispersed 
algal cells due to a standing wave field for various particle concentrations in the 
acoustic chamber (as shown in the legend). The plot does not account for scatterer 
movement, but rather shows the variation of force at a single location in the sim
ulation space as time progresses. The standing wave field has been established by 
approximately t = 2 ps. 

5.6 Discussion of AFIT Results 

We have shown that AFIT simulation is a useful tool for investigating various multi-

ple scattering effects in a standing wave field. Our results showed that the material 

properties of the scatterers are significant in determining the changes to the standing 

wave field. Our simulated standing wave field had a small propagating numerical 

ripple, comparable to experimental standing wave fields, which was amplified by the 

presence of scatterers. Increases in biomass concentration led to significant changes 

in force upon the algal cells. 3D standing wave simulations are a good start towards 

acoustic modeling that would help optimize the setup used in experimental manipu

lation of algal cells. However, as concluded from the modeling results in section 5.3, 
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viscosity should to be taken into account to capture the true behavior of the scatter

ers. In future work particle movement and drag forces could also be incorporated into 

simulations and force calculations for a more thorough investigation of the changes 

in force due to increases in particle concentration. These topics are discussed further 

in chapter 8. 
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Chapter 6 

Ultrasonic Waves in Solid Media 

The detection of flaws in metals, such as corrosion thinning, gouges, and cracks, is 

an important area of research in the field of nondestructive evaluation. Methods for 

efficient and accurate detection of flaws in aging aircraft, as well as in pipe/tank 

shaped structures, are particularly relevant for aeronautical and space vehicles where 

detection of flaws before failure is critical. Many publications have shown that guided 

ultrasonic waves are well suited for detecting flaws in plate-like structures. Guided 

Lamb waves can propagate long distances, up to tens of meters, potentially allowing 

large areas of a structure to be inspected quickly [136], [137]. Recent work in this 

field has shown that corrosion and thinning in aircraft structures can be detected 

through changes in Lamb wave mode arrival times due to the flaws [138]. Bingham 

showed that received guided wave signals are often very complex and can require 

sophisticated signal processing methods for automated interpretation. Furthermore, 

Bingham showed that numerical wave simulations can be critical in fully understand

ing experimental results. 

We are interested in using numerical techniques to investigate detailed wave scat

tering behavior that is far too complicated for analytical models and that makes 
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experimental data difficult to interpret. Our work will focus on Lamb wave scatter

ing from a void-type flaw in an aircraft-grade aluminum plate. We are specifically 

interested in flaws that not only cause changes in Lamb wave mode arrivals, but which 

create significant scattering of the modes. 

6.1 3D Elastodynamic Wave Simulations 

As computational power and availability continues to increase, the use of numerical 

techniques for modeling waves in acoustics, elastodynamics, and electromagnetics are 

becoming a common tool. Many numerical techniques are in use today, such as Finite 

Difference Time Domain (FDTD), Finite Element Methods (FEM), Boundary Ele

ment Methods (BEM), Finite Volume Time Domain (FVTD), and Finite Integration 

Technique (FIT) [16]. We will use FIT to model elastic wave scattering in materials. 

FIT was developed by Weiland in 1977 for electromagnetic modeling [139]. A 

decade later Fellinger applied the technique to elastodynamics, creating the Elastody

namic Finite Integration Technique (EFIT) [140]. A thorough overview and history of 

FIT can be found in [16]. Marklein not only discusses acoustics, elastodynamics, and 

electromagnetics, but also describes coupled cases such as electromagnetic-ultrasonic 

FIT (EMUSFIT). Over the past decade EFIT has become a useful tool that has been 

used in a variety of applications. Schubert has reported a long line of work using 

EFIT to investigate nondestructive evaluation applications such as scattering from 

delaminations, cracks, and inclusions [141]. Early work by Schubert showed that 

EFIT can be used in conjunction with a thermoelastic source to model laser gener

ated ultrasound [ 17]. EFIT has been used to simulate elastic wave propagation in an 

anisotropic heterogeneous media for applications ranging from wave scattering from 

surface breaking cracks in steel welds to wave propagation in concrete [142], [143]. 
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Marklein and collaborators have used EFIT to investigate scattering from planar 

cracks in solids, such as the wheel shaft of a passenger train [144], [145]. Rudd et al 

developed a 3D cylindrical EFIT code that can properly model pipes with bends [146]. 

In 2010 Calvo and colleagues used a perfectly matching layer in EFIT simulations to 

study scattering from cylinders buried beneath sand at the ocean floor [147]. These 

are just a few examples of the applicability of EFIT in the field of nondestructive 

evaluation. Much of the work in the field, however, has been limited to 2D simula

tions. We will use the equations discussed below to create full 3-dimensional EFIT 

simulations. 

EFIT is a numerical implementation of the elastodynamic equations that describe 

the propagation of elastic waves in solid isotropic media. In order to describe elastic 

wave propagation we begin by writing Cauchy's equation for momentum and Hooke's 

Law the isotropic form of the equations listed in section 1) [148]: 

(6.1) 

(6.2) 

where Uj is displacement, Tij is the stress tensor, fi is a source term, .X is Lame's first 

parameter, J-L is the shear modulus, p is density, and strain is defined by 

(6.3) 

The Lame parameters are directly related to the longitudinal ( cL) and transverse ( cT) 
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speeds of sound: 

C£ = J(>,+2J.L)/p 

CT = v;rp. 
(6.4) 

Equations ( 6.1) and ( 6. 2) are the linear equations of motions for elastic waves in solids 

(and can also be applied to viscous fluids [149]). Taking the time derivative of (6.2) 

and writing equations (6.1) and (6.2) in cartesian coordinates leads to nine equations 

of motion for elastic wave propagation. As with AFIT the equations are integrated 

over a control volume, and the integrals are approximated in a discrete form. To 

correctly transfer those equations into a discretized space, we place the stress and 

velocity components onto a discrete grid in the manner described by Fellinger and 

shown in Figure 6.1. Additionally, the material parameters J.L, .A, and pare discretized 

to account for an inhomogeneous isotropic media, leading to equations (6.5) and 

(6.6) [150]. 
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Using this component placement, we can write nine equations describing wave 

propagation in a discrete form [151], [16]. 

v(n)(t) =-1 2 ~ [CT(n+±Il(t)- T(n)(t)) + (T(n)(t)- T(n-x2)(t)) 
1 .6.x p(n) + p(n+x1 ) 11 11 12 12 

+(T1c;l(t)- r~;-x3 l(t))] , 

v(n) (t) =-1 2 ~ [CT(n) (t) - T(n-xl) (t)) + (T.(n+X2) (t) - T.(n) (t)) 
2 .6.x p(n) + p(n+x2) 12 12 22 22 

+(TJ;\t)- rJ;-x3l(t)) J , (6.5) 

v(n) (t) =-1 2 ~ [CT(n) (t) - T(n-xl) (t)) + (T.(n) (t) - T.(n-x2) (t)) 
3 .6.x p(n) + p(n+x3 ) 13 13 23 23 

+(rJ;+X3l(t)- rJ;l(t))] , 
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T1~)(t) =;X [(A(n) + 2jL(n))(v~n)(t)- V~n-:h)(t)) + A(n)(v~n)(t)- v~n-x2 )(t) 

+v~n)(t)- v~n-x3)(t))J ' 

tJ;l(t) =;X [(A(n) + 2jL(n))(v~n)(t)- v~n-x2 )(t)) + A(n)(v~n)(t)- v~n-x1 )(t) 

+v~n)(t)- v~n-x3)(t))J ' 

tJ;l(t) =;X [(A(n) + 2JL(n))(v~n)(t)- v~n-x3)(t)) + A(n)(v~n)(t)- v~n-x1 )(t) 

+v~n)(t)- v~n-x2)(t)) J ' 

"(n) _ 1 4 
T12 (t) -- 1 1 1 1 

.6.x 11-(n) + IJ.(n+X1l + IJ.(n+X2l + IJ.(n+X1 +X2l 

[( (n+X2) _ (n)) 
v1 v1 

+( (n+X2) _ (n))] 
v3 v3 ' 

(6.6) 

The equations are discretized in time using central differences, which results in 

the velocity and stress components being staggered in time by .6.t/2 [152]. 

(t) - (t-tJ.t) + . (t-tJ.t/2) "t vt - vt vt u ' (6.7) 

y(t+tJ.t/2) = T(t-tJ.t/2) + t_(t) .6.t 
t] t] t] ' (6.8) 

where t and t + / - .6.~ are full and half time steps. For each time step equations 

(6.5) and (6.6) are solved at all points in the simulation space. Using equations (6.5) 

through (6.8) the simulation proceeds forward in time in a 'leap fragging' manner as 
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described in detail below [153]. At each time step the velocity values for the entire 

grid volume are updated, then the stress values for the entire grid are updated. 

Time step t=1: 

1) Initial condition at time step t = 1 means that y(l/2) is 

known 

2) Using T(1/ 2l and (6.5), v(112l can be found 

3) v(112) can be used with ( 6. 7) to find v(l) (where for the 

initial time step, t = 1, v(t-l) = 0) 

4) With v(ll, (6.6) can be used to find f(l) 

5) f(ll is used with (6.8) to find T(l+l/2) 

Time step t=2: 

1) At t = 2, y(l+l/2) is known from the previous time step 

2) Find iJ( 2 - 112 ) using (6.5) 

etc. as in time step 1. 

Stability conditions require minimum time and spatial step sizes. We will use 

the same size spatial step in all directions since our discretized space is broken up 

into cubes. The reported number of points per wavelength in the literature varies, 

ranging from >../8 to >../15 [17], [125]. The Courant-Friedrichs-Levy condition is used 

to determine the time step size [125], [152]. The stability criteria for the discretization 

of the simulation are (assuming box1 = box2 = boxg = box): 

A Cmin 
L.l.X ~ -- ' 

bfmax 

box 
bot~ M , 

Cmaxv3 
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where Cmax and Cmin are the maximum and minimum wavespeed, !max is the maximum 

frequency, and b is a constant with the criteria that b ;:::: 8. The minimum wavespeed 

will correspond to a transverse wave and the maximum wavespeed will correspond to 

a longitudinal wave, since Ctransverse ~ ~Ctongitudinal· 

6.2 Stress-free Boundary Conditions 

For a material specimen in air (solid-air interface), we will apply stress-free boundary 

conditions on the surface of material so that the boundaries are traction free. Stress 

free boundary conditions are implemented by setting the shear stresses and normal 

stress components equal to zero at the boundaries. The shear components are on the 

surface so we simply set them equal to zero [151]. To make the normal stresses equal 

to zero we set Ti~n) = - Ti~n+:i,) on lower boundaries and ~~n+:i;) = - Ti~n) on upper 

boundaries [17], [154]. Applying the boundary conditions at an upper boundary we 

get 

(6.10) 

and at a lower boundary 

(6.11) 

6.3 Parallel Processing 

As with the acoustic finite integration simulations discussed in section 5.4, we ran the 

code in parallel on multiple CPUs. We used the simple 1D virtual topology described 

earlier, but the passing of required components is slightly more complicated than 

the AFIT case. We are breaking up the simulation space in the x1 direction, and 

therefore all equations that require stress or velocity values in the + / - .i1 direction 
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must have those values passed across node boundaries (from one computer processor 

to its neighbors), see Figure 6.2. For the 1D virtual topology the EFIT equations 

require that T13 , T12 , and v1 be passed to the right (rank+1), and that T11 , v2 , and v3 

be passed to the left (rank-1) across processor boundaries. For example, since ri;-x1
) 

is required by v~n), it must be passed to the right neighboring processor in order to 

calculate v~n) 0 

Variable: Required by: Send direction: 

B •I T13,T12 ,v1 1 A 
e ·I Tu,v, ,v,l A 

Figure 6.2: Direction of variable passing required by EFIT with a 1D virtual topology. 

6.4 EFIT Code Verification 

In section 5.4 it was not necessary to verify the AFIT code because it was previously 

verified through comparisons to experimental results [126]. For the algae application 

we· did not need to change the velocity and stress equations or the parallelization 

(message passing) part of the code. The EFIT code, however, has been significantly 

changed from the cylindrical elastodynamic finite integration (CEFIT) code on which 

it is based. Therefore, we must benchmark the code by comparing simulation results 

to basic scattering cases. EFIT simulations for this work were run on one of three 

available computing resources: the typhoon sub-cluster of the SciClone Computing 
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Cluster at the College of William and Mary (72 dual-processor, dual-core Dell SC1435 

CPUs at 2.6 GHz), a new HP DL785 multicore machine (8 6-core cpus at 2.4 GHz) 

in the NESB Branch at NASA Langley Research Center, or the K-Cluster at NASA 

Langley (252 8-core Intel Xeon 5355 CPUS. at 2.66 GHz). 

The first step we took to benchmark the EFIT code was to run simulations of wave 

scattering from boundaries at various angles in order to verify the overall large-scale 

(geometrical/ray scattering scale) behavior of the EFIT code. These simple cases 

allowed us to check for the presence of mode conversion and to check reflection and 

transmission angles. Figure 6.4 shows one example result for an incident longitudinal 

elastic wave created by a circular transducer on the top a steel block containing an 

angled stress-free boundary. The transducer drive function and frequency content 

of the incident beam are shown in Figure 6.3. Note that the x and y axes labels 

correspond to the number of simulation steps, where step size multiplied by the 

number of steps equals distance. The total simulation space in this case is equal 

to 5.54 m3
, and the 2D slice represents 3.13 m2 since the step size in Figure 6.4 is 

~x = 0.0118 m. The angle of wave incidence in this case is Binc = 20 degrees. The 

material parameters used for steel are a density of p = 7820 kgjm3 and longitudinal 

and shear wave speeds of C£ = 5900 m/ s and CT = 3200 m/ s. 

The images clearly show mode conversion as a result of scattering from the angled 

boundary. Using Snell's Law we can calculate the expected angle of reflection for the 

scattered longitudinal and shear waves ( e~catt and e~catt), 

sin( Bfnc) sin( B~cau) sin( B~catt) 
C£ C£ CT 

(6.12) 

For an angle of incidence of 20°, the reflected angles should be e~catt = 20° and 

e~catt = 10.7°. Black lines in images f) and g) have been placed at the expected 
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scattering angles for the longitudinal and shear waves. The reflected angles in the 

EFIT simulation match those calculated by Snell's Law. Additionally, we see that 

the incident longitudinal wave has traveled approximately 1.36 m ( Llx · 115 steps) 

in 231 p,s, which is what we expect based on the wave speed. Figures 6.5 and 6.6 

show 2D and 3D images of EFIT simulation results for elastic waves created by a 

circular transducer on top of a steel block containing a wedge of brass at an angle of 

30°. The drive function for this simulation is the same as shown in Figure 6.3. The 

expected angle of the transmitted longitudinal wave -(shown in the Figure 6.5) was 

calculated using a longitudinal wave speed in brass of C£ = 4687 m/ s. The expected 

angle matches well with the transmitted wave from the EFIT simulation. Note that 

the shear wave appears later in time (as in Figure 6.4), but was difficult to distinguish 

from edge reflections of the longitudinal wave. 
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Figure 6.3: Drive function used for Figures 6.4 - 6.6. 
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a) t=87 llS b) t=23lllS c) t=289 llS 

d) 1=375 llS e) f) 

g) 

Figure 6.4: Elastic wave in a steel block scattering from an angled free surface at 20°. 
Both axes represent the number of spatial steps. The circular transducer is on the top 
surface of the block. Image a) shows a 2D vertical slice through the 3D simulation 
space of the wave at time t = 87f..Ls, b) - d) show additional snapshots of wave 
propagation, e) longitudinal and shear waves after reflection and mode conversion, f) 
calculated angle of reflection for longitudinal wave, g) calculated angle of reflection 
for the shear wave. 
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Figure 6.5: Elastic wave in a steel block incident upon brass wedge angled at 30°. A 
dotted black line shows the location of the steel-brass boundary. The left image shows 
a 2D vertical slice through the 3D simulation space of the wave at timet= 127 J.-LS, the 
image on the right shows the behavior of the scattered and transmitted longitudinal 
waves at t = 282 J.-LS. The white lines in the right image show the surface normal at 
the steel-brass boundary. The calculated longitudinal transmitted angle is shown . 
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Figme 6.6: Elastic wave in a steel block incident upon brass wedge angled at 30°. 
The axes represent distance in arbitrary units. The images show wave propagation 
in the 3D block at two snapshots in time, left: t = 127)-ls and right: t = 346)-ls. The 
black dashed line represents the steel-brass boundary. 

In order to verify the detailed behavior in the EFIT simulations we compared sim-
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ulation output to the analytical result for the canonical case of elastic wave scattering 

from an elastic sphere. We compared simulation results with the equations derived 

by Hinders that describe the behavior of a longitudinal plane wave incident upon an 

immovable elastic sphere embedded in an elastic medium [155]. In section 6.1 we 

jumped straight from equations 6.1 - 6.3 to discretized equations of motion. If we 

were instead to plug equations 6.2 and 6.3 into equation 6.1 with no source term, we 

would get the time harmonic equation of motion for an isotropic medium: 

(6.13) 

We can use a Helmholtz decomposition to separate displacement into scalar and vector 

potentials (longitudinal and transverse parts) 

i1= u£ + u"T , 
1 ~ 

=--'VA.+ V' x r"'' k2 ~ ~ ' 

(6.14) 

where we are following the notation used by Hinders. We assume harmonic variation 

in time. For the linear case where transverse and longitudinal waves are not coupled, 

plug (6.14) into (6.13) to get transverse and longitudinal wave equations 

( 
2 ) ( 2 ) 

2 w ~ 2 w ~ 
\7 + -2- U£ = 0 , \7 + -2-- Ur = 0 , 

clang ctrans 
(6.15) 

which are satisfied by a plane wave solution. The incident, scattered, and transmitted 

potentials for shear horizontal and longitudinal waves due to an incident longitudinal 

wave are listed below [155]. For an incident longitudinal wave there is no shear 
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horizontal wave. 

00 

r¢f:c = L in+1(2n + 1)1/Jn(klr)Pn(cosB) 
n=O 

r¢icat = t, in+1(2n + 1) (~~) (n(klr)Pn(cosB) 

r¢t;_ans = t, in+1 (2n + 1) (~~) 1/Jn(kzr)Pn(cosB) 

r1/J'Svt = t,in+1(2n+ 1) (~:) (n(Klr)P~1>(cosB) 

r1/Jt;{:;ns = t, in+1(2n + 1) (~:) 1/Jn(Kzr)P~1)(cosB). 

(6.16) 

where r is the distance from the center of the sphere, and the Riccati-Bessel and 

-Hankel functions are defined as 

(6.17) 

in which Jn+ 1; 2 (x) and Hn+ 1; 2 (x) are half-order Bessel and Hankel functions and 

jn(x) and hn(x) are spherical Bessel and Hankel functions. Subscript 1 refers to 

material properties of the surrounding fluid and subscript 2 refers to the material 

of the scatterer. The modal coefficients .60 - .64 are determined from boundary 

conditions. The boundary conditions require that shear and normal displacement and 

stress are continuous across the boundary. Only the scattered longitudinal potential 

was required for the comparison to simulations results since no shear wave is created 

for () = 1r (backscattering), therefore only .60 and .61 are listed in appendix 8.2.2. 

Longitudinal displacement and velocity in the f direction are 

(6.18) 
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ih = -iwitd , (6.19) 

where k is the longitudinal wavenumber. The full form of the equations derived by 

Hinders are so complicated that it was necessary to check results of the Matlab code 

implementing the analytic equations against plots available in the literature. Figure 

6. 7 shows a comparison between our Matlab code and results of far-field backscat

tering amplitude published by Brill and Gaunaurd for an epoxy sphere in steel [156]. 

The material parameters for the sphere are Pepaxy = 1.18g/cm3
, CL = 2.54 · 105cm/ s, 

CT = 1.16 · 105cm/ s and for the surrounding media are Psteel = 7.54g / cm3, CL = 

5.80 · 105cm/ s, CT = 3.10 · 105cm/ s. 

The differences between the Matlab code results and the plots published by Brill 

are due to differences in the step size of ka and the computational precision available 

today versus in 1987 (for example, our code displays more resonance peak behavior). 

Furthermore, the equations derived by Hinders makes no approximations that the 

backscattered amplitude is in the far-field. The comparison shown in Figure 6.7 gives 

us confidence in our implementation of the complicated analytic scattering equations 

since our code yields results that match well with published plots. For comparisons 

to EFIT simulations the infinite summation in 6.16 was calculated to n = 50, which 

guarantees convergence up to frequencies of 1 M Hz [17]. The highest frequency used 

for our analytical comparisons was only approximately 30 kHz 
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Figure 6.7: Backscattered amplitude for an epoxy sphere in steel for n values ofO to 5. 
Comparison of Brill's results (left column) to our Matlab result(right column) [156]. 

6.4.1 Analytical Solution Comparison 

Before comparing EFIT results to the analytical solution we first isolate the backseat-

tering behavior in the simulation by subtracting EFIT results with the sphere present 

from EFIT results with no sphere. This step is necessary because the incident wave 

is extended in time and the backscattering is not easily separated from incident wave 

propagation. In order to compare EFIT time domain results to the frequency do

main analytical model we take the Fourier transform (FFT in Matlab) of the EFIT 
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backscattering result. Next the Fourier transform of the incident wave used in the 

EFIT simulation is multiplied by the analytical frequency domain result (equivalent 

to convolution in time domain). In all cases we have normalized the amplitudes to 

fall within the interval [0,1]. 

It is important to note that we are dealing with ~iscrete signals, which requires 

that we choose appropriate sampling rates to avoid aliasing. We made sure that our 

sampling rate (samples per unit time) for the EFIT backscattered signal satisfies the 

Nyquist-Shannon sampling theorem, which states that for proper sampling of a signal 

the sampling frequency must be greater than twice the bandwidth [157]: 

fs > 2B (6.20) 

where B is the bandwidth and Is is samples per unit time. Furthermore, in order 

to obtain sufficient sampling for the Fourier transformed signal of the EFIT result 

we used zero-padding to increase the length of the time signal, which increases the 

resolution of its FFT. Zero-padding does not add any frequency content to a time 

signal, it simply consists of adding zeros to the beginning or end of the signal and is 

an accepted technique in digital signal processing for gaining resolution in the FFT 

of a signal [157]. 

The discrete nature of the simulations can inherently create differences between 

the EFIT simulations and the analytical model. The finite grid spacing leads to nu

merical dispersion, which is non-physical and does not occur in the analytical model. 

Numerical issues are decreased by using a smaller step size. Yet, a smaller step size 

leads to a larger simulation space which means more computational time and large 

data output. Furthermore, the smoothness of the discretized sphere depends on the 

step size and affects the scattering results. Another issue that appears in the simu-
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lations is the necessity of time gating (recording the backscattered signal only up to 

a certain point in time). In our EFIT code the scattered waves from the sphere will 

eventually reflect off of the walls of the simulation space (corresponding to the edge of 

the material in which the sphere is embedded). We must, therefore gate out the wall 

reflections in time domain since the analytical model we are comparing to does not 

include such reflections. Gating can lead to a loss of information since it inevitably 

removes part of the scattered wave from our simulation results. 

Figures 6.8 and 6.9 show an example of the results of different time gatings of the 

EFIT result for an aluminum sphere of radius a = 21 em embedded in brass for a 

spatial step size of 8.3 mm. The spatial step size in this case has not been optimized 

and corresponds to approximately Asmallest/5, which does not satisfy equation (6.9). 

Figure 6.10 shows the poor spatial discretization. The density and longitudinal and 

transverse velocities used for aluminum are p = 2761 kg/m3 , C£ = 6363 m/ s, cr = 

3161 m/s and for brass are p = 8400 kg/m3
, C£ = 4400 m/s, cr = 2200 m/s. The 

wavenumber is k = w / c, where w is radial frequency ( w = 271" f). The incident waves 

used for our comparisons were created using a sine wave filtered by a Tukey window 

(tapered cosine window) in Matlab. The simulation space size can be increased to 

reduce the effects of gating; however, we also need to use small spatial step sizes to 

avoid a poor sphere approximation, aliasing, and numerical dispersion. Therefore, 

in order to run the simulation in a reasonable amount of time, we must come to a 

compromise between step size and the total simulation space size. 
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Figure 6.8: Incident wave and backscattering. 
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Figure 6.9: Gating results. 
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(a) Three 2D snapshots in time (earliest on the far left) of EFIT simulation results for 
scattering from an aluminum sphere in brass. The wave enters the sphere and speeds up, 
as expected. Part of the wave is scattered from the back side of the sphere and part is 
transmitted through. 
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(b) Zoomed in view of the image on the far left showing 
poor discretization of the sphere (spatial step size .6-s = 
8.3 mm). 

Figure 6.10: Scattering from an aluminum sphere in brass. 

It is clear that the step size leads to a rough discretization of the sphere and scat

tering effects, which leads to the differences in EFIT backscattering results compared 

to the analytical solution. Figure 6.11 shows backscattering results for a smaller step 
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sizes of .\/14 = 3.1 mm and .\/20 = 2.2 mm. Although we are only comparing 

backscattering (which does not require 3D code), we are testing the code in full 3D 

form to make sure that not only are the 3D governing equations implemented cor

rectly, but that the message passing and output parts of the code are also working 

correctly. The smallest step size corresponded to a simulation space 800 X 800 X 800 

steps (512 million matrix elements for each time step totaling around 0.8T B of data) 

and took approximately 50 hours of runtime on 32 processors (1600 CPU hours). 

Unfortunately, the simulation space size was not large enough for the step size (and 

resulting sphere radius), and resulted in gating issues. The first plot in 6.11 with a 

.\/15 step size and longer gating shows the first peak shifting towards the analytical 

result. The later peaks also shift slightly towards the analytical result. The plot for 

step size .\/20 shows a better match for peak and null positions, though gating has 

resulted in larger amplitude differences and peak shifting for larger ka values. We 

are confident that with better gating EFIT results would match even better with the 

analytical solution. However, the computing cluster is a shared resource, so we did 

not push the simulation size any further. 
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Figure 6.11: EFIT backscattering result (dotted line) compared to analytical result 
(solid line) for two step sizes. Both EFIT results suffer from gating issues. 
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6.4.2 Discussion of Results 

In 1998 Schubert and colleagues published the first comparisons between heteroge

neous EFIT results and analytical models [17]. They compared 2-dimensional cylin

drical elastodynamic finite integration ( CEFIT) simulation results to the Ying model 

for scattering from a sphere [158]. The Ying and Truell model is a special case of 

the general equations derived· by Hinders that we discussed above. Schubert found 

that a step size of .X/13 led to nearly perfect agreement for scattering from an elastic 

sphere in an elastic solid. Our analytical comparison results show that the Cartesian 

version of EFIT requires very small step sizes to be well-suited for spherical/curved 

shapes. Other researchers in the field have noted the difficulty in implementing cir

cular shapes using cartesian EFIT [159]. Verifying the EFIT code using the case of 

backscattering from a sphere was chosen for the simplicity of the analytical solution. 

Cylindrical elastodynamic finite integration technique ( CEFIT) appears to be better 

suited for accurately modeling scattering from a single sphere. However, from the 

results presented in section 6.4.1 we are confident in our implementation of the 3D 

EFIT equations. 
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Chapter 7 

Lamb Wave Scattering 

7.1 Guided Waves 

Guided waves occur when waves propagate at stress-free boundaries or at boundaries 

between two differing media. Guided waves and bulk waves are described using the 

same partial differential equations, but guided waves behave differently from waves 

in a bulk material. Mode conversion and wave interference due to the boundaries can 

lead to an infinite number of guided wave modes (wavepackets) [8]. This means that 

not only do longitudinal and shear (vertical and horizontal) waves propagate in the 

plate, but any number of other modes as well. Surface (Rayleigh) waves and plate 

(Lamb) waves are two examples of commonly used guided waves that occur due to 

stress-free boundaries, see Figure 7.1. 
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(a) Rayleigh wave [160]. 

Symmetrtc Lamb wave mode 

Ant1symmetnc lamb wave mode 

(b) Lamb wave. 

Figure 7.1: Examples of guided waves. 

More extensive information about guided waves can be found in [8], [10]. This 

chapter focuses on guided Lamb waves which are created in a plate with stress-free 

boundaries on upper and lower surfaces. As shown in Figure 7.1, antisymmetric and 

symmetric lamb wave modes can be created in a plate made of isotropic material (as is 

the case in our application), and correspond to either a flexing or bulging of the plate 

material. Lamb wave modes have group and phase velocities that are determined 

by a frequency-thickness product: the frequency of the driving wave multiplied by 

the thickness of the plate. When phase and group velocities are not equal, frequency 

dependent wave speed behavior arises and is referred to as dispersion. An example 

EFIT simulation result that clearly shows Lamb wave mode propagation in a plate 

is shown in Figure 7.2. Dispersion curves corresponding to an aluminum plate are 

shown in section 7.2. 
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Figure 7.2: 2D slice from an EFIT simulation with a circular transducer on an alu
minum plate (70 cmX 70 cmX 0.35cm) of frequency-thickness of 1.56 mm · M Hz 
(see Figure 7.5 for C:ispersi.on cmves). SCl and A8 Lamb wave modes are indicated5 

propagating in the plate at their expected group velocities. Waves reflected off of 
plate boundaries can also be seen in the image (unlabeled). 

7.2 EFIT Simulation Results 

We will look at scattering from a void cut into a 305 mm x 305 mm x 3.154 mm alu-

minum 2024 alloy plate as the void depth increases. Previous work in the field showed 
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that for frequency-thickness values where modes are spread apart, mode arrival times 

can be extracted from experimental data and correlated with flaw thickness using 

group velocity dispersion curves [138]. If modes can be identified in experimental 

signals using signal processing techniques, then changes in mode arrival times should 

allow a determination of void depth. Also, even when flaw depth cannot be deter

mined based on mode arrivals, the flaw shape and position can often be determined 

based on experimental data with tomographic reconstruction methods [161]. We will 

use EFIT simulations to investigate complicated scattering situations for the specific 

experimental setup discussed below. 

Al 2024 contains approximately 4% copper and 1.5% magnesium and is a com

mon material used in aircraft structures. The void shape considered here is a rounded 

rectangle, as shown in Figures 7.3 and 7.4. A 1/4" end mill bit was used to machine 

the void into the plate, leading to a rounded rectangle 76 mm in length and 30 mm 

in width with rounded corners corresponding to a circle of radius 3.18 mm. Experi

mental data was taken with a circular 6.35 mm (0.25inch) diameter transducer with 

a center frequency of about 2.15 M Hz. The transducer frequency is sufficient for 

detecting changes in thickness due to the flaw since the wavelength (approximately 

3 mm) is on the same order as the plate thickness. An 11.5 mm long cylindrical 

acrylic delay line of diameter 7 mm was attached to the transducer. Glycerin was 

used as a couplant between the delay line and the plate surface. The transducers 

stepped through 100 locations spaced by 2 mm increments. Figure 7.3 (b) shows an 

example of transmitter and receiver locations and the ray paths between transducers. 

Dispersion curves for the group and phase velocities of lamb wave modes for 

Al 2024 are shown in Figures 7.5 and 7.6, with the frequency-thickness for the full 

thickness of the aluminum plate specified by the orange line. As the phase velocity of 

a mode goes towards +oo (an asymptote), the group velocity goes to zero due to of 
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the creation of standing waves across the plate thickness [8]. In an isotropic plate the 

waves separate into symmetric and antisymmetric modes, as shown in the figure [8]. 

35.0mm 1980mm 

Plate size 

Scan area 

55.0mm : 760mm 

----------r Flaw 
----------. 

' 

' ' 

E~·Omm 
' ' : 50.0mm 

720mm 

+------1.-----i..------f--------------

77.0mm 

1980mm 

30.0mm 

(a) Flaw placement on the plate. The dark black square outlines the transducer 
placement on the plate. 

a) Horizontal projection b) Vertical projection 

(b) Example of transmitter and receiver placement and movement for collecting 
experimental data. The ray paths of the waves are shown between transmitter 
and receiver positions. 

Figure 7.3: Experimental setup. 
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Figure 7.4: Experimental setup m William and Mary NBE lab (scanning in the 
vertical projection). 

6r-----~r-----~~----~~~--~------~------~ 

Frequenc:yThic:kness (MHz'mm) 

Figure 7.5: Group velocity dispersion curves for Al 2024: The frequency-thickness 
corresponding to 2.15 M Hz and 3.154 mm is specified by the orange line. Symmetric 
modes are shown in red and antisymmetric modes are blue. 
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Figure 7.6: Phase velocity dispersion curves for Al 2024: The frequency-thickness 
corresponding to 2.15 MHz and 3.154 mm is specified by the orange line. Symmetric 
modes are shown in red and antisymmetric modes are blue. 

Experimental data was taken for all transducer locations as the flaw was incremen-

tally milled deeper. Table 7.1 shows the experimental flaw depths. The transducer 

was excited using a Matec TB1000 tone-burst plug-in card with a voltage range of 

200- 300 V. The generated incident wave in the experiment was a 5-cycle sine wave 

tone burst with a center frequency of 2.15 M Hz. The transmitting transducer con-

verts electrical energy into mechanical energy, creating sound waves which propagate 

through the material. The waves are then detected at another position on the plate 

using a second transducer, which now converts the mechanical sound wave energy 

back into electrical energy. This transmitter/receiver setup is known as a pitch-catch 

method. The signal is sampled using an analog to digital (A/D) converter at a spec

ified sampling frequency. 
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Table 7.1: Void Depth 
Remaining Material Percent Thickness 

Thickness ( mm) Loss (%) 
3.154 0 
3.147 0.7 
3.039 3.6 
2.995 5.4 
2.922 7.3 
2.818 10.7 
2.584 18.1 
2.490 21.3 
2.215 29.9 
2.008 36.3 
1.811 42.6 
1.556 50.6 
1.289 59.1 
0.983 68.8 
0.681 78.4 
0.456 85.5 
0.000 100 

As shown in equations (6.5) and (6.6) the EFIT simulation tracks nine variables 

at each position and time. From these simulations we output v3 for comparisons to 

experiment. This choice was made because the transducers used in the experiment 

receive longitudinal waves and are normal to the plate surface (corresponding to the 

x3 direction). We used the delay line diameter when sending the transducer drive 

function into the simulation. The EFIT drive function was a 5 cycle sine wave at a 

2.15 MHz (thus lasting 2.33 J-Ls), as used in the experiment. The properties used 

in the simulation for the aluminum plate were a density of p = 2780 kg/m3 and 

longitudinal and transverse wavespeeds of C£ = 6235 m/ s and cT = 3139 m/ s. A 

step size of 0.097 mm (Amm/15) was used in the EFIT simulations. 

The void-type flaw is incorporated into the simulation by creating stress-free 

boundary conditions at the flaw location. We can vary the thickness of the void by 
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changing the depth where the stress-free boundary conditions begin. We were able to 

incorporate a void of the same shape as the experimental flaw, although discretization 

leads to an approximation of the rounded corner curves. Each EFIT simulation of 

the experimental plate for a single transmitter location and void depth took around 

1400 CPU hours. The simulations were completed in less wall-clock time (45 hours) 

by running the parallel code on 32 processors. We anticipate that at some point the 

void will be so deep that the wave packets will be significantly scattered, and Lamb 

wave modes will not propagate strongly through the thinned region. For such a void 

depth, and beyond, it is likely that flaw depth cannot be determined based on mode 

arrival times. 

From the group velocity dispersion curves shown in Figure 7.5 we see that most 

of the Lamb wave modes at the frequency-thickness of the flawless plate ( 6. 78 mm · 

M Hz) have group velocities that are very close together. EFIT simulations may be 

particularly helpful for cases such as this, where the existence and overlap of multiple 

modes will make experimental data much more difficult to analyze. One symmetric 

mode, the S2 mode, has a higher velocity than the other modes. Therefore, based 

simply on the dispersion curves we would expect to be able to distinguish that mode 

propagating out front of the rest in the simulation and in experimental data. However, 

as shown in Figures 7.7 and 7.8, the amplitude of the S2 mode is very low. The 

colormap in both figures had to be altered to show the S2 mode. The simulation 

result confirms why the S2 mode was not detected experimentally. At the expected 

arrival time for the S2 mode no waves were detected above the amplitude of noise in 

the raw experimental data, see Figure 7.9. The figure indicates approximate expected 

mode arrival times and shows the raw experimental data, denoised experimental data, 

and the EFIT result. The delay lines introduce a shift around 8 f-LS to the right (later 

in time) in the experimental data. The EFIT result shown in the figure has been 
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shifted by 8 p,s for comparison to experimental data. The marked arrival times for 

the experimental results are only an approximation because instrumentation delays 

can introduce further shifting of an unknown amount. 

The filtered raw data was denoised using the Matlab 'cmddenoise' function, which 

is a wavelet decomposition of the signal. A 'coif3' mother wavelet was used with 5 

levels of decomposition. All denoised experimental waveforms in this chapter were 

filtered using this function. Although the figure shows experimental data and the 

EFIT result, a direct comparison is not intended for EFIT simulation verification. 

That type of comparison would be misleading because the experimental waveforms 

are affected not only by shifting in time, but also by the frequency response of the 

transmitting and receiving transducers. For example, the transmitter is not sending 

only a 2.15 M Hz wave, but has a finite bandwidth. The figure is rather intended to 

point out the low amplitude of the 82 mode in both experiment and simulation. 
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Figure 7.7: 2D image (top view) of EFIT wave propagation in the Al 2024 plate with 
no flaw for a single snapshot in time. The colormap has been chosen to show the 
presence of the S2 mode, which has a very low amplitude. 
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Figure 7.9: Top: Raw experimental data for the plate with no flaw and the transmitter and receiver directly across from 
each other in the horizontal projection (shortest possible path). The approximate mode arrival times are marked. As 
early as 84 J-LS low amplitude reflections from the right plate edge enter the signal. After 105 J-LS very large peaks are 
created due to higher amplitude reflections from the plate edge (gated out above). Middle: Denoised experimental signal 
after a wavelet filter was applied. Bottom: EFIT result (with 8 J-LS shift for comparison with raw data). 



Because the 3D EFIT simulations are computati~mally demanding, we will limit 

simulations to four transmitter positions that have been chosen to explore a vari

ety of different scattering situations. As waves enter the thinned region the modes 

are expected to behave according to the phase and group velocity dispersion curves. 

Phase velocity changes with thickness make it more difficult to see group velocity 

mode changes in the EFIT simulation images. A helpful way of viewing the mode 

propagation is to take the short time Fourier transform in the spatial domain for a 

single A-line slice through the space (single depth and y-position). This technique is 

performed easily via the "spectrogram" function in Matlab with one over the spatial 

step size (1/ ~s) used as the sampling frequency. For the remainder of this chapter 

we will simply use the term spectrogram when referring to the "spatial spectrogram". 

The result of taking the spectrogram in spatial domain is a plot of position versus 

wavenumber (here defined without the 27r, k = f /cphase, in Matlab's FFT computa

tion), with amplitude represented by the colormap (Matlab's caxis). All spectrograms 

shown in this chapter are plotted using the same amplitude colormap. Note that the 

position axis of the spectrogram result is altered slightly due to window overlap. In 

our case the overlap leads to a position axis of length 0.29 m instead of the original 

0.305 m. This type of analysis on experimental data is not possible with the pitch

catch experimental setup where the displacement at each point in time is known only 

at the receiver location in the x-y plane at the top surface of the plate. 

Since the Lamb wave modes change speed and phase corresponding to thickness, 

plotting the wavenumber versus position helps separate out mode behavior as the 

waves propagate. As expected, for the case of no flaw we see wavepackets propagating 

at the same wavenumbers as time progresses, see Figure 7.10. By this we mean that 

there are no new or missing modes as the waves propagate. The colormap used 

in Figure 7.10 will be used for all spectrograms in this chapter and is provided as 
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a comparison of relative amplitude within each plot. Notice that the spectrogram 

figures clearly show wave modes separating out as they propagate, due to differences 

in group velocity. Waves propagating in the plate that do not create Lamb wave modes 

also show up in the spectrogram. The high amplitude wave packets at the bottom of 

the spectrogram plots represent very low wavenumbers (high phase velocities), and 

are at least partly made up of S3 and A3 modes. 
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Figure 7.10: Top: EFIT images (2D slice along the top of the plate), Bottom: spectrogram results for the plate with no 
flaw corresponding to an A-line at y = 0.095 m, for times a) t = 27.0p, s, b) t = 36.1 p,s, c) t = 45.1 p,s. The colormap 
represents amplitude. 



We introduce a void of depth of approximately 0.33 mm (corresponding to 10% 

material loss) and place the transducer in a position directly in line with the center 

of the void (shown in Figure 7.11). The frequency-thickness product for this material 

loss level is 6.06 mm · M Hz and leads only to small changes in the phase and group 

velocities. Figure 7.12 shows the EFIT result (2D slice taken directly beneath the 

void) and spectrograms at two points in time. In this chapter the same colormap is 

used for all EFIT gray scale slices showing the x-y plane, except Figures 7.10 and 7.13. 

The spectrogram shows the 82 mode group velocity decreasing slightly as it enters 

the thinned region, as expected. Later modes are difficult to distinguish individually. 

The figure corresponding to time t = 32.5 p,s shows a wave packet moving to the left 

as it scatters from the location of the flaw edge, yet from the figures it is clear that 

the modes still propagate into the thinned region. 
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T.aosmOtec ~~~~~~~~I Flaw 
----------. 

I 
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I 
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Figure 7.11: Transducer location 1 is represented by the black circle. 
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Figure 7.12: Top left: EFIT result for 10% material loss at time t = 27.0 J-LS for a 
2D slice taken directly beneath the void, top right: corresponding spectrogram for an 
A-line at y = 0.095 m, bottom left: EFIT result at time t = 32.5 J-LS, bottom right: 
corresponding spectrogram for an A-line at y = 0.095 m. The thinned region extends 
from approximately 0.09 m to 0.16 m. 

We increase the void depth to 1.85 mm (corresponding to 59.1% material loss) 

where the frequency-thickness product is 2. 77 mm· M Hz. At this frequency-thickness 

the only existing modes are SO, AO, A1, and perhaps 81 (which is on the verge 

of nonexistence and has a larger phase velocity). Figure 7.13 shows the 82 mode 

entering the flaw region. The colormap has been enhanced to display the 82 mode 
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clearly (which saturates following modes). Unlike Figure 7.12, modes can no longer 

be tracked visually as they enter the thinned area due to larger changes in phase 

velocity. Mode conversion leads to complicated wave behavior. Figure 7.14 shows 

2D slices of the EFIT result at four later points in time with the colormap chosen to 

show scattering effects within the thinned region. 

Figure 7.15 shows spectrogram plots for this void depth. Looking at the simulation 

results in this way allows us to see the Lamb wave modes that exist inside the thinned 

region. The plots show SO, AO, and A1 modes appearing as the waves propagate 

beneath the void and spreading out in time due to differing group velocities. We 

also see what is most likely the 81 mode propagating in the thinned region, though 

the labeled wave packet seems to have a group velocity that would be higher than 

expected for Sl. As the modes leave the thinned region we see the reappearance of 

the modes that exist at 6.78 mm · MHz. 

From the spectrogram plots we expect to see all eight Lamb wave modes in the 

experimental signal. The receiver position is around 0.233 m in the spectrogram plots. 

Figure 7.16 shows experimental data for this void depth and ray path compared to the 

same ray path for the clean plate (plate with no flaw). Expected arrival times of Lamb 

wave modes are indicated in the figure, and are based on the time of re-emergence 

in the spectrogram plots and the mode group velocities. Most arrival times fall too 

close to each other to distinguish individual modes. The expected times appear 

to match well with the experimental signal. Therefore, for this void depth it may 

still be possible to determine flaw depth experimentally based on mode arrival time 

shifts, though the calculation would be slightly more complicated to account for mode 

conversion. 
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Figure 7.13: Plate with 1.85 mm void (59% material loss): 2D sHces ditrecdy beneath 
the flaw. The S2 mode is indicated outside the flaw. 
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Figure 7.14: Plate with 1.85 mm void (59% material loss): 2D slices directly beneath 
the flaw. The colormap is chosen to show scattering inside the thinned region. 
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Figure 7.15: Spectrogram plots for 59% material loss for an A-line directly beneath 
the void at y = 0.095 m: a) time t = 27.0 p,s, b) t = 36.1 p,s, c) 45.1 p,s, d) 
t = 54.1 fLS, e) 71.9 fLS. The thinned region extends from approximately 0.09 m to 
0.16 m. The colormap shows amplitude (red=highest, blue=lowest). 
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Figure 7.16: Experimental waveforms for the clean plate and 59% material loss for transducer position 1: a) A-line data 
for the clean plate for the ray path specified in 7.11, b) denoised clean plate waveform, c) raw experimental data for the 
flawed plate and the ray path specified in 7.11, d) denoised experimental waveform for the flawed plate. Lamb wave mode 
arrival times based on spectrograms are indicated. 



By 85% material loss the EFIT output shows much more significant scattering due 

to the flaw, see Figure 7.17. Compared to Figure 7.14, we see that for 85% material 

loss the circular waves traveling into the flaw are more distorted due to scattered 

waves traveling to the left from the void edge. In the thinned region the wave fronts 

are extremely fractionated due to diffraction at the void corners and wave interference 

effects. Such a result can only be observed using three dimensional simulations. The 

frequency-thickness product for this material loss is around 0.98 mm· M Hz. From the 

dispersion curves we expect to see two Lamb wave modes, AO and SO, in spectrogram 

plots around k = 925 m-1 and k = 402 m-1 . Inside the thinned region we see what 

is likely the AO mode (indicated in the figure), though it has a low amplitude and 

seems to be disrupted as it propagates beneath the void. We also see what may be 

an extremely low amplitude SO mode at time t = 27 p,s. However, if this is the 

SO mode it has been significantly affected by scattering due to flaw depth, and/ or 

deconstructive interference due to the flaw shape and dimensions. 

The spectrogram plots show the creation of high amplitude waves at much slower 

phase velocities (around k = 1200m-1
) that reflect back and forth within the thinned 

region. At time t = 54.1 p,s these slow phase velocity waves extend over the full length 

of the thinned region, making the extent of the region easy to see. As the waves leave 

the thinned region we see the reappearance of six of the eight expected modes. A1 

and S3 modes are missing after the thinned region. What we identify in the figure 

as SO and AO modes after the flaw are shifted to slightly higher wavenumbers than 

expected and are extended spatially. Later parts of the SO/ AO wave packet have higher 

amplitude than other re-emerged modes. In fact, these post-flaw SO and AO modes 

have a higher amplitude than they did at 59% material loss. The exact dimensions 

of the thinned region seems to have created constructive interference that affected 

the SO and AO modes in this manner. Interestingly, after the thinned region we can 
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clearly see the S3 mode, which was indistinguishable prior to the flaw, emerge with a 

large amplitude. The spectrogram plots show the creation of high amplitude waves 

at much slower phase velocities (around k = 1200m -l) that reflect back and forth 

within the thinned region. At timet = 54.1 p,s these slow phase velocity waves extend 

over the full length of the thinned region, making the extent of the region easy to 

see. As the waves leave the thinned region we see the reappearance of six of the 

eight expected modes. A1 and S3 modes are missing after the thinned region. What 

we identify in the figure as SO and AO modes after the flaw are shifted to slightly 

higher wavenumbers than expected and are extended spatially. Later parts of the 

SO/ AO wave packet have higher amplitude than other re-emerged modes. In fact, these 

post-flaw SO and AO modes have a higher amplitude than they did at 59% material 

loss. The exact dimensions of the thinned region seems to have created constructive 

interference that affected the SO and AO modes in this manner. Interestingly, after 

the thinned region we can clearly see the S3 mode, which was indistinguishable prior 

to the flaw, emerge with a large amplitude. 

The emergence of high amplitude wavepackets is quite surprising. Figure 7.19 

shows experimental signals for this void depth and ray path compared the clean plate 

signal for this ray path. We indeed see very high amplitude wavepackets before large 

edge reflections enter the signal. Without the EFIT simulations these features in the 

experimental signal would be very difficult to explain since it is rather unexpected. 

The figure also indicates expected arrival times for the Lamb wave modes based on 

the spectrogram plots. Most arrival times fall too close to distinguish individual 

modes. The receiver position is around 0.233 m in the spectrogram plots. The S2 

mode (a low amplitude mode) should be the first detected mode, occurring around 

71 p,s when the experimental delay is included. S2 is detected at nearly the same 

time as the leading lower amplitude AO and SO modes. Later modes are indicated in 
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the figure, along with the higher amplitude SO/ AO modes that emerge from the flaw. 
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Figure 7.17: Plate with 2.69 mm void (85% material loss): 2D slices directly beneath 
the flaw. 
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Figure 7.18: Spectrogram plots for 85% material loss for an A-line directly beneath the 
void at y = 0.095 m: a) timet= 27.0 p,s, b) t = 36.1 p,s, c) 45.1 p,s, d) t = 54.1 p,s, e) 
t = 63.1 p,s, f) t = 71.2 p,s . The thinned region extends from approximately 0.09 m 
to 0.16 m. The colormap shows amplitude (red=highest, blue=lowest). 
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Figure 7.19: Experimental waveforms for the clean plate and 85% material loss for transducer position 1: a) A-line data 
for the clean plate for the ray path specified in 7.11, b) denoised clean plate waveform, c) raw experimental data for the 
flawed plate at the ray path specified in 7.11, d) denoised flawed plate experimental waveform. Lamb wave mode arrival 
times based on spectrograms are indicated. Note the larger y-axis compared to all other experimental signal plots in this 
chapter. 



If more severe scattering from the left edge of the flaw is the primary cause of the 

near (perhaps total) disappearance of SO we should be able to see significant changes 

in the reflected field in 2D EFIT slices taken through the plate thickness. However, 

Figures 7.20 and 7.21 show only small changes due to waves reflected to the left as 

void depth increases from 59% to 85% material loss. By t = 36 f-LS we do see reflected 

waves affecting the incoming waves at both flaw thicknesses. The scattered waves 

moving to the left disturb incoming wavepackets making them appear as close groups 

of small circles instead of the solid pancake shapes seen at 27 f-LS. Since we still see 

the emergence of all eight expected Lamb wave modes for 59% material loss, these 

disturbances must not be significant enough to disrupt/destroy the modes. Because 

the flaw region is too thin to examine scattering via thickness slices, we must rely on 

the 2D x-y plane images to examine interference effects there. Therefore, based on 

the small changes in thickness plots and the strong interference patterns in Figure 

7.17, we conclude that the most likely cause of such significant changes to modes in 

the thinned region is due to wave interference created by the void shape and size. 

The results discussed above show that by 85% material loss the Lamb wave modes 

inside the thinned region are considerably affected by scattering. Most of the Lamb 

wave modes that are re-created outside thinned region are more disrupted than they 

are at smaller void depths, and one mode fails to reappear at all. Identification of 

void depth based on arrival times would be much more difficult for this material loss 

level, and perhaps impossible for greater void depths. 
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Figure 7.20: 2D slices of EFIT results showing the full thickness of the left half of the plate for y = 0.083 m. (along to the 
bottom edge of the flaw) for 59% and 85% material loss at two points in time (indicated above figures). The amplitude 
colormap is the same for all images. The void region is shown in solid black. 
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Figure 7.21: 2D slices of EFIT results showing the full thickness of the left half of the plate for y = 0.095 m (through the 
center of the flaw) for 59% and 85% material loss at two points in time (indicated above figures). The amplitude colormap 
is the same for all images. The void region is shown in solid black. 



Next we consider Lamb wave behavior for a second transmitter position, shown 

in Figure 7.22. This transducer position will lead to different scattering from the 

flaw, especially from the void corner. For spectrogram plots we will assume the ray 

path associated with the receiver location shown in the figure. Figure 7.23 shows 

the chosen ray path overlayed upon the x-y plane of EFIT output. The starting and 

ending position of the ray path represents transmitter and receiver locations. The 

thinned region will fall between 0.06 m and 0.13 min spectrogram plots. As expected, 

the spectrogram corresponding to this ray path for the case of no flaw in the plate 

yields the same result as shown earlier in Figure 7.10, and is not repeated here. 
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Figure 7.22: Transmitter location 2 is represented by the black circle. Receiver loca
tion used for spatial spectrogram plots is indicated. 
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Figure 7.23: The spectrogram ray path used for transducer position 2 is shown in 
red, with flaw position represented by the green rectangle. 

At this transmitter position the EFIT simulation results for various depths show 

significant scattering from the flaw corner. In fact, the EFIT simulation images show 

that waves along ray paths which do not go through the flaw are affected by the 

flaw presence. At 59% material loss the AO mode was difficult to identify in the 

spectrogram thinned region, but appeared with the other expected modes. By 68% 

material loss (2.11 mm · MHz) the AO mode (k = 790 m-1) briefly appears in the 

thinned region but disappears by t = 36.1 p,s (see 7.24 and 7.25). Additionally, what 

we have identified as potentially the A1 mode is disrupted by time t = 72 p,s. Again, 

the spectrogram plots show the creation of high wavenumber waves within the thinned 

region. Also notice that the spectrograms show no strong reflection of waves from the 

void corner, like we saw at the void edge for the previous transducer location. 

Once the waves have propagated through the thinned region we only see the 

re-emergence of a low amplitude wave packet at the wavenumber corresponding to 

SO and AO modes, which are grouped closely both in phase and group velocities. 

Thus, along this specific ray path the Lamb wave modes are significantly disrupted 
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and/ or destroyed. Figure 7.26 shows experimental data corresponding to this ray 

path compared to data for the clean plate. Low amplitude waves reflected from the 

right plate edge would enter experimental signal by approximately t = 88 f1S (when 

the experimental delay lines are included). Additionally, in the EFIT images we see 

reflections from the bottom plate edge approaching the receiver position at 72 f1S. 

Edge reflections at higher amplitudes will enter the signal at a later time, as is clearly 

seen in the clean plate signal. 

Based on the spectrograms, the re-emerged SO and AO modes should reach the 

receiver around 8811s (::::::: 96f1s with delay lines). The receiver is located around 0.2 m 

in the spectrogram plots. The re-emerged SO and AO modes would be somewhat 

mixed in with reflected waves from the right and bottom edges of the plate. In the 

experimental data we do see a peak occurring around 96 f1S, which may be the detec

tion of SO and AO modes. An earlier peak around 90f1S is most likely edge reflections. 

Later peaks in the signal are likely to be edge reflections as well. In the figure we see 

that nearly all peaks prior to reflection from the plate edge have disappeared in the 

experimental signal corresponding to this ray path. This result matches well with the 

EFIT simulations results. As before we expect that the disappearance of Lamb wave 

modes is caused by the interference of waves in the thinned region due to the shape 

and size of the flaw region. The 2D slice showing the x-y plane EFIT result certainly 

shows extreme wave interference in the thinned region. 
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Figure 7.24: Plate with 2.171 mm void (68% material loss): 2D slices directly beneath the flaw. 
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Figure 7.25: Spectrogram for 68% material loss and transducer position 2: a) time t = 27.0 f.lS, b) t = 36.1 f.1S, c) 45.1 f.ls, 
d) t = 54.1 f.1S, e) t = 72.1 f.1S, f) t = 81.1 f.lS. The thinned region is outlined by the white lines. 
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Figure 7.26: Experimental waveforms for 68% material loss for transducer position 2: a) A-line data for the clean plate 
for the ray path specified in 7.22, b) denoised clean plate waveform, c) raw experimental data for the flawed plate, d) 
denoised flawed plate experimental waveform with the earliest reflections from the plate edge indicated in orange and the 
potential detection of the re-emerged SO and AO modes around t = 96J.Ls indicated in purple. 



In Figure 7.27 we compare the scattering from the void edge (a corner in this 

case) to a void depth where expected modes clearly appeared in the thinned region, 

29% material loss. The thickness plots are taken along the same ray path used for 

the spectrograms. We see increased scattering in the thickness plots at 68% material 

loss. The scattering is what leads to the changes circled in white. This scattering 

appears to slightly disrupt incoming wavepackets. However, in Figure 7.20 we saw 

this type of mode disturbance, but still observed the creation of expected Lamb wave 

modes in the thinned region. Note that the region circled in red shows disturbances 

due to reflections from the left edge of the plate. There are no significant changes in 

amplitude due to interactions of scattered waves with incoming waves. Therefore, in 

this case we also conclude that the largest effect on the Lamb wave modes is due to 

interference created by the void shape and size. 
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Figure 7.27: 2D slices of EFIT results showing the full thickness of the plate for the ray path shown in 7.23 for 29% and 
68% material loss at two points in time (indicated above figures). The amplitude colormap is the same for all images. The 
void region is shown in solid black. The white dotted circles indicate a region affected by scattering at greater material 
loss. The red dashed region shows a region affected by scattering from the left edge of the plate. 



A third transmitter position that is of particular interest is with the transducer in 

line with a corner and edge of the void, see Figure 7.28. The ray path corresponding 

to the indicated receiver location will be taken immediately above the flaw region. 

This path will be used to investigate the effects of waves scattered from the void on 

modes that do not pass through the flaw. Figure 7.29 shows 2D slices of EFIT results 

for 59% material loss. Note that by 72.1 JLS scattering from the bottom and left edges 

of the plate enters into the images. Figure 7.30 shows thickness slices taken along 

y = 0.111 m at six points in time. The thinned region extends to y = 0.11 m. By 

t = 36 JLS scattering from the void region has started affecting wavepackets traveling 

to the right. As seen in earlier figures, the scattering disrupts the solid pancake shape 

of the waves. By 54 J-tS reflections from the left plate edge also disrupt wavepackets. 

The corresponding spectrogram plots, 7.31 and 7.32, show reflections from the 

void edge. The spectrograms in Figure 7.31 were created using an A-line at a depth 

directly beneath the flaw and the spectrograms in Figure 7.32 were created using an 

A-line along the top surface of the plate. The plots at both depths lack Lamb wave 

modes that would correspond to the full plate thickness. When compared to 7.10, it 

is clear that ray paths which do not pass through the thinned region are still affected 

by the void. 
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Figure 7.28: Transmitter location 3 is represented by the black circle. Receiver loca
tion used for spatial spectrogram plots is indicated. 
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Figure 7.29: Plate with 1.85 mm void (59% material loss): 2D slices directly beneath the flaw. 
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Figure 7.31: Spectrogram for 59% material loss and transducer position 3 taken along y = 0.111 m at a depth directly 
beneath the void: a) time t = 18.0 JLS, b) t = 27.0 JLS, c) 36.1 JLS, d) t = 45.1 JLS, e) t = 54.1 JLS, f) t = 72.1 JLS. The 
region from approximately 0.09 m to 0.16 m is parallel to the thinned region. 
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Figure 7.32: Spectrogram for 59% material loss and transducer position 3 taken along y = 0.111 m on the top surface of 
the plate: a) time t = 18.0 f.LS, b) L = 27.0 f.LS, c) 36.1 f.LS, d) t = 45.1 f.LS, e) t = 54.1 f.LS, f) t = 72.1 f.LS. The region from 
approximately 0.09 m to 0.16 m is parallel to the thinned region. 



Figure 7.33 shows experimental waveforms corresponding to the transmitter and 

receiver locations for this ray path compared the experimental waveform clean plate 

along this ray path. The experimental results clearly show that although this ray 

path does not pass through the thinned region it is significantly affected by the 

presence of the void. Peaks that show up above noise level in the data for the clean 

plate disappear in experimental data this ray path. In fact, the experimental signal 

shows no waves with significant amplitude detected until edge reflections enter the 

signal. As mentioned earlier, tomographic reconstructions of flaws using straight ray 

path methods are sometimes used with experimental data to find flaw locations and 

size [161]. These results explain why straight ray reconstruction methods can predict 

flaws larger than the actual size. Figure 7.34 shows predicted flaw enlargement in a 

tomographic ray path reconstruction of the rounded rectangle void with 59% material 

loss created using experimental data. The predicted thinned region is the bright 

white area in the image. The image was created assuming straight ray paths and 

is a slowness plot. Overlapping ray paths with slower speeds create the white area 

representing the flaw. 
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Figure 7.33: Experimental waveforms for the clean plate and 59% material loss for transducer position 3: a) A-line data 
for the plate with no flaw for the ray path specified in 7.28, b) denoised clean plate waveform, c) raw experimental data 
for the ray path specified in 7.28, d) denoised experimental waveform. Edge reflections enter the signal around t = 105J.Ls. 



Figure 7.34: Tomographic flaw reconstruction created with experimental data for 
59% material loss. The actual flaw size is indicated with the red box. The predicted 
flaw region is the bright white area and is enlarged due to scattering interactions on 
ray paths that do not pass through the thinned region. [Provided by W &M student 
Corey Miller] 

By plotting spectrograms at increasing y values we can find the limit of scattering 

effects on ray paths above the flaw. We will plot spectrograms along straight lines 

parallel to the top edge of the flaw, as in Figure 7.31. Figures 7.36 and 7.37 show 

spectrograms and thickness plots for the ray paths shown in Figure 7.35 at time 

t =54 p,s. Reflections at the void location show up in the spectrograms and reflected 

wave effects can be seen in the thickness plots. By y = 0.1363 m scattering from the 

flaw has little effect on the modes. 
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Figure 7.35: EFIT 2D slice on the top of the plate at time t = 54 ps with red lines 

showing the A-line positions used for Figure 7.36. 
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Figure 7.36: 59% material loss: spectrograms at time t = 54 f-LS for A-lines at the 
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thinned region. 
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016 018 02 



The final transmitter position that we will explore in this chapter is shown in 

Figure 7.38. At this location the transducer is again in line with a straight edge of 

the flaw, however, the distance between the transmitter and void region is double 

that for transducer position 1 (Figure 7.11). Therefore, we expect the Lamb wave 

modes to have more time to separate out spatially before reaching the thinned region. 

Additionally, the flaw length in the direction of wave propagation is only 0.03 m 

instead of 0.076 m which will lead to different wave interference effects in the thinned 

region. 
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Figure 7.38: Transmitter location 4 is represented by the black circle. Receiver loca
tion used for spatial spectrogram plots is indicated. 

Figures 7.39 - 7.41 show EFIT results at 59% material loss. At 18 ps we see 

all expected modes in the unthinned plate. By time t = 26 ps S2 should enter the 

flawed region (based on its group velocity). In the spectrograms S2 is barely visible, 
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with a very low amplitude at the depth directly beneath the flaw. By approximately 

t = 58 J-tS nearly all initial Lamb wave modes have passed into the flaw region. The 

S3 mode is the slowest mode, entering the thinned region around 67 J-tS. But, we 

expect the S3 mode to be low amplitude since it is reaching its asymptotic limits in 

phase and group velocity. Note that what appear to be low wavenumber A3 and S3 

modes in the spectrograms have not been identified as such because the packets move 

at group velocities too fast to be A3 and S3. At t = 54 J-tS we only see two expected 

Lamb wave modes in the thinned region, AO and SO. Lamb wave modes that should 

exist at 2.77 mm · M Hz are AO (k = 769 m-1 
), SO (k = 615 m-1

), A1 (k = 337 m-1
) 

and perhaps S1 (k = 180 m-1
). As time progresses, however, we see the emergence of 

A1, S1 and SO. When the spectrograms are compared to the EFIT 20 x-y plane slices 

we see that A1 and S1 emerge as higher amplitude waves enter the thinned region, at 

a time after all Lamb wave modes have passed through the region. We expect that 

these later waves are not Lamb wave modes, but simply other waves traveling in the 

plate. We do not see the re-emergence of the AO mode in the thinned region at these 

later times, but we do see higher wavenumber modes inside the thinned region as in 

the other cases. After 81 J-tS we see Lamb wave modes emerge beyond the flaw as 

these later waves leave the thinned region. 
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Figu.re 7.39: 59% material loss: 2D EFIT slices at specified times with transducer 
position 4. 
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Figure 7.40: 59% material loss: 2D EFIT slices at specified times with transducer 
position 4. 
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Figure 7.41: 59% material loss: spectrograms at specified times with transducer position 4. The thinned region extends 
from approximately 0.2 m to 0.226 m. 



Figure 7.42 shows experimental signals for this ray path for the clean plate and 

for a void depth corresponding to 59% material loss. Based on the EFIT simulation 

results we would expect that the first waveforms of significant amplitude would be 

detected between 80 and 90 J-LS. This is indeed what we see in the experimental 

signal. The receiver position falls around 0.275 m in the spectrogram plots shown 

above. Low amplitude reflections from the bottom plate edge enter the signal around 

t = 90 J-LS. Higher amplitude reflections enter around 105 J-LS. The figure indicates 

the potential detection of the re-emerged Lamb wave modes. Although SO, AO and 

A1 have a slower group velocity than A2, we expect to detect these modes earlier 

because they reappear at an earlier time from the thinned region in the spectrogram 

plots. A2 and S1 modes re-emerge slightly later from the thinned region. The faster 

A2 mode would be detected first followed by the slower S1 mode, as indicated in the 

figure. 
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Figure 7.42: Experimental waveforms for the clean plate and 59% material loss for transducer position 4: a) A-line data 
for the clean plate for the ray path specified in 7.38, b) denoised clean plate waveform, c) raw experimental data for the 
flawed plate, d) denoised flawed plate experimental waveform. Lamb wave mode arrival times based on spectrograms are 
indicated. 



7.2.1 Discussion of Results 

We have used 3D EFIT simulations to investigate scattering situations corresponding 

to a well-controlled experimental case. The frequency-thickness of the clean plate 

leads to the creation of eight Lamb wave modes which propagate and interact with 

the rounded rectangle flaw. The EFIT simulation output was used in a way which 

provided insight into mode behavior before, during, and after the thinned region. We 

found that the flaw shape and size led to significant scattering and wave interference 

effects in the thinned region. In some cases the scattering led to the disappearance 

expected of Lamb modes. The transmitter position was found to have a large effect on 

scattering behavior, as we would expect. The same void depths for some transducer 

positions led to more scattering than for other locations. Additionally, ray paths that 

pass near but not through the flaw were significantly affected by the void. 

We saw some unexpected behavior due to the flaw, such as the creation of high 

wavenumber waves inside the thinned region for all transducer locations and void 

depths that were investigated. We also observed unexpected effects of constructive 

interference. In all cases we found features in the experimental waveforms that seem 

to correspond to those predicted by the EFIT simulations. Finally, our results show 

that 2D simulations would not be sufficient to gain an understanding of the complex 

scattering behavior of Lamb wave modes. The 3D EFIT simulations helped us to 

gain an understanding of Lamb wave scattering behavior on a level that would not 

be available otherwise. 

216 



Chapter 8 

Conclusions and Future Work 

8.1 Acoustic Force Models 

We have investigated wave scattering using methods that, when implemented for 

real-world problems, bring us up against the limits of available cluster computing 

resources. Our studies have found that the numerical implementation of complicated 

analytic solutions is made more practical using computing clusters. The specific 

analytic formulations that we implemented for acoustic force on spheres in a viscous 

fluid were applied to two real-world applications of current interest. The lack of 

availability of viscous material properties and massive computational demands of the 

viscous model means that the in viscid model is today more useful. However, it would 

be necessary to use the viscous formulation in situations where viscous effects are 

large enough to have a significant impact on the specific application. These chapters 

illustrated that for any application, the level of detail chosen for an analytic solution 

must be weighed against the complexity of the resulting equations and the availability 

of required material properties. 

Experimental verification of the viscous model would be an important area of 
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future work on this topic. An experiment that creates air bubbles in a readily available 

and well-characterized high viscosity liquid such as glycerol would be ideal for such a 

measurement. A clear acoustic chamber containing the liquid could be created with a 

micropipette tube inserted at the bottom to allow for the input of air bubbles. As the 

air bubbles rise in the solution due to their buoyancy, a transducer on the container 

face, normal to the upward air bubble path, could be switched on to impart lateral 

acoustic force. Very precise optical tracking of horizontal bubble motion could be 

used to find the acoustic force upon the bubbles. Stokes drag forces would of course 

need to be taken into account. 

The standing wave models for acoustic micromanipulation can be applied to micro

gravity containerless material processing. Acoustic manipulation has been of interest 

to NASA since the 1970's [162], [65]. This early work suggested the use of acoustic 

standing waves to levitate solid or fluid materials for containerless crystal growth, the 

measurement of surface tension, and containerless melting. At that time, it was ex

pected that industrial scale low gravity material processing would someday take place 

on an orbital space station like the ISS. In a low gravity situation low field strengths 

could avoid unwanted heating or other effects caused by acoustic cavitation. Addi

tionally, acoustic levitation experiments in microgravity that were performed aboard 

the NASA operated KC-135 aircraft show that particle disbanding is less likely to oc

cur in low gravity situations [163]. Furthermore, the research aboard KC-135 shows 

that smaller particles can be manipulated in microgravity than at 1 g due to decreased 

convection. Generally frequencies on the order of 20 - 100 kHz (-\ on the order of 

1 em) are used in acoustic levitation studies where the ~ mm (or smaller) size sample 

is levitated in air [162], [164]. 

Various high viscosity experiments have been performed in ground-based acoustic 

levitation experiments. Containerless melting and solidification experiments have 
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been performed using materials such as tin and indium, which, in liquid form, have 

viscosities slightly above ethanol [65], [165]. Surface tension measurements of high 

viscosity drops require knowledge of the acoustic pressure and equilibrium drop shape 

[65]. More recent work in the field suggests that containerless processing of chemical 

and biochemical materials would be ideal for avoiding contamination from container 

walls [164]. 

In approximately the past year an acoustic levitation device named "SpaceD RUMS" 

(Space Dynamically Responding Ultrasonic Matrix Systems) has been a new addi

tion to scientific devices aboard the International Space Station [166]. The device 

uses 20 acoustic beams to position base-ball sized samples. The current goal for 

SpaceDRUMS, as reported by NASA, is the creation of exotic advanced materials 

such as metal-ceramic composites, bioceramics, and intermetallics [167], [168]. The 

viscous acoustic force model could be useful for providing insight into cases involving 

high viscosity materials. For example, a measurement of certain material properties 

of newly created materials could require precise knowledge of the acoustic force upon 

the material. In fact, the more complex model derived by Doinikov which includes 

thermal effects could be implemented if needed; although based on the work men

tioned above, we expect that in microgravity thermal effects would be negligible in 

most cases [4]. 

8.2 Numerical Scattering Simulations 

8.2.1 AFIT 

We also investigated wave scattering using a numerical method called Finite Integra

tion Technique. Since a model of a single spherical scatterer in a standing wave field 

is merely a very basic start to understanding algal cell manipulation via standing 
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waves, we used 3D AFIT code to investigate multiple scattering. We found that an 

increase in particle concentration in an acoustic chamber can significantly disrupt 

the standing wave field and change the force felt by algal cells. Additionally, the 

material properties of scatterers changed the effects on the field. Future work on 

multiple scattering in standing wave fields should incorporate viscosity, the motion of 

the scatterers due to the field, drag forces, and interparticle forces. 

A model of viscosity could be introduced by including the full stress term in the 

first order Navier-Stokes equations. This would lead to 

OtP = -Po \J · v + M , 

poBtv = - \Jp + ~17\J(\J · v) + ~V(V · v) + 17V
2v + ff 

(8.1) 

Reducing this equation to its finite integration form is more complicated than its 

inviscid form due to the second order derivatives. Via the divergence theorem and a 

vector identity it is nevertheless straightforward to write 

J BtpdV = - J p0v · dS + J M dV , 

J po8t vdV = - j pdS + ~ J 17 \J v · dS + J ~\J v · dS + j 17 \J v · dS 

+ j 11\J x (V x v)dV + j FdV . 

(8.2) 

(8.3) 

Correctly discretizing these equations presents a challenge because of the gradient 

and curl terms that are involved. 

A more direct method for including viscosity in the finite integration simulations 

may be to use the EFIT code with a few changes. In 1991 Hinders described how 

220 



to apply the elastodynamic wave formulation to scattering from spheres in viscous 

fluids [149). Both elastic media and viscous fluids support shear and longitudinal 

waves, so it is natural to look for a link between the formulations. Hinders describes 

frequency domain equations for scattering in a viscous fluid by first defining the 

transverse and longitudinal wavenumbers and speeds according to the Kelvin-Voight 

model: 

K = w/cr , k = w/cL , 

2 ( 1 . ) 
C L = - - 2ZWTJ , 

"' 

(8.4) 
2 . I CT = -ZWTJ p , 

where "' is fluid compressibility and TJ is shear viscosity. The complex wavenumbers 

account for attenuation due to viscosity. The result differs from the elastodynamic 

equations only by the material properties that are included. This implies that a 

simple change of variables in the EFIT equations may be a reasonable approach for 

approximating scattering in a viscous fluid. 

The inclusion of particle movement could also be introduced into the simulations. 

Once the force upon a scatterer is calculated at a specific point in time, the accel-

eration, velocity, and new position of the scatterer in the simulation space could be 

found using the following simple kinematic equations: 

F2 
ai = pV ' 

Vi = vo + aj).t (8.5) 

where ai is acceleration in the i direction (and is considered constant for a single time 

step), V is scatterer volume, p is density, vi is velocity, xi is the new position of the 

scatterer due to the force, x 0 is initial position, v0 is initial velocity, and b..t is the 
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change in time. Computationally this process would be accomplished by running the 

AFIT simulation for a single time step, calculating the force, acceleration, velocity 

and new position from the AFIT output, then inputing the new initial position into 

the AFIT simulation. 

Stokes drag forces for a spherical scatterer would be included in force calculations 

using [2]: 

F = 6n'f}Rv (8.6) 

where rJ is the viscosity of the surrounding fluid, R is the scatterer radius, and v is 

the scatterer velocity. Additionally, in a real-world experiment an increased particle 

concentration would lead to particle agglomeration due to inter-particle forces [87]. 

For spherical particles in a standing wave field in the limit that ka < < 1, the attrac-

tive/repulsive forces between neighboring spheres, due to variations in the pressure 

field from the presence of the spheres, is described by [77]: 

F( ) = 4 6 ((Po- p)
2
(3cos

2
8 -1) 2 ( ) _ w

2
p(f30 - (3)

2 
2 ( )) 

X 1ra d4 V X d2 p X , 
6p 9 

(8.7) 

where, as stated by Groschl, d is the distance between sphere centers, (30 is com-

pressibility of the particle, (3 is compressibility of the surrounding fluid, e is the angle 

between the two particles' centerline and the incident wave propagation direction, 

p(x) and v(x) are pressure and velocity at the particle position for the unperturbed 

field. 

These types of advanced models could be beneficial to NASA since it is currently 

involved in algae biofuels research through the development of off-shore algae nurs

eries [169]. The OMEGA (Offshore Membrane Enclosure for Growing Algae) project 

plans to grow specific algal strains inside plastic bags floating in the ocean. Partial 

dewatering is accomplished through the bag material via forward-osmosis, but an 
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acoustic dewatering method may help in further reducing the water content of the 

harvest. Furthermore, future research may involve wild algal cell strains and growth 

methods that could benefit from acoustic algal cell sorting. 

8.2.2 EFIT 

In the final sections of this work we applied FIT to scattering in solids. An impor

tant step in using numerical models with confidence is verfication of the code. We 

benchmarked our 3D EFIT code through comparisons to the simplest 3D geometry 

for which the exact analytical solution is known. The parallel EFIT code is computa

tionally demanding, requiring cluster computing resources to simulate 3D scattering 

problems. We found that the 3-dimensional wave modeling provides an understand

ing of scattering that is not available with 2D models, although the EFIT simulations 

create very large amounts of data which must be dealt with in a way that allows the 

extraction of useful information. For complicated scattering applications, the diffi

culties of working with parallel EFIT code are outweighed by the insight that can be 

provided to experimental techniques. 

One area of immediate future work is to apply EFIT simulations to crack-type 

flaws for investigating aircraft related damage. As mentioned earlier, one benefit of the 

EFIT code is that it easily allows for the incorporation of nearly any 3-dimensional 

flaw shape. Therefore, placing a realistic crack shape into the simulation space is 

straightforward. Formulations of waves scattering from cracks generally come in two 

forms: analytic solutions that make assumptions about the crack shape and angle 

of incidence, and numerical approximations. Analytic solutions are often based on 

Kirchhoff theory which assumes a single scatterer and is usually applied to planar 

cracks in a half-space. In general the Kirchhoff approximation says that the scat

tered field for an arbitrary scatterer is described by the summation of scattering due 
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to planar waves upon planar scatterers (that together approximate the actual scat

terer). The scattered field for an arbitrary incident wave can then be described by the 

convolution of the actual incident field with the impulse response function (Green's 

function) for the approximated scatterer. The Kirchhoff method also assumes small 

wavelengths (compared to the scale of the flaw), which served the radar scatter

ing community well but is not necessarily appropriate for non-destructive evaluation 

applications. The analytic approach leads to complicated integral equations and ac

curately describes scattering for only certain scatterer shapes [170], [171], [1], [172]. 

Numerical methods that can be applied to cracks include those mentioned earlier in 

this work, FEM, BEM, FIT. In fact, EFIT has been applied to cracks in 2 dimensions 

in both isotropic and anisotropic media [142], [145]. 3D EFIT simulations could be 

very useful in finding experimental setups where cracks at various angles with respect 

to transmitter/receiver locations can be detected and for optimizing aircraft struc

tural health monitoring systems where the number of sensors must be minimized. 

EFIT can also be applied to complicated situations such as wave propagation in 

porous media. Porous ceramic materials are of particular interest to NASA because 

they can operate at higher temperatures than metals. Aircraft engines are more 

efficient when they can operate at high temperature, thus, heat tolerant materials are 

very important. Additionally, the use of ultra-high temperature ceramics (melting 

at > 3000°C) are ideal for hypersonic air-breathing or reentry vehicles which fly at 

speeds above Mach 5 and must deal with high temperature flow [173]. In order for 

these high temperature materials to gain wide use, questions such as how best to 

detect and quantitatively characterize flaws must be answered. 

3D EFIT analysis has recently been applied to porous concrete materials and 

compared to experimental results by Algernon and Schubert [143], [17 4]. Algernon 

and colleagues were investigating scattering from large objects over long distances, 
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and therefore used frequencies less than 100kHz (wavelength~ 2 em). Furthermore, 

since they were not interested in scattering from small features they did not include 

porosity in the 3D EFIT simulations. For this case the group found good agreement 

between EFIT and experimental results. Schubert accounted for the heterogeneity of 

concrete by directly including porosity in 2D EFIT simulations. However, the pore 

sizes were on the order of 0.3 to 2 mm. Ceramic materials often contain pores of 

various sizes and shapes, although methods do exist to create uniform porosity in a 

ceramic [175]. In Tang's work pore sizes on the order of 1 J-Lm were created. 

EFIT could be implemented with small voids representing pores in ceramic mate

rial. However, this type of approach would allow for only small simulation sizes due 

to the small step size required to create micron sized pores. This approach may be 

ideal for simulating small flaws over a small area, however, the detection of flaws in 

larger sample sizes would be very useful for this application. On a larger scale, porous 

material will lead to an overall wave attenuation. One analytic approach to account 

for elastic wave attenuation is the Kelvin-Voight viscoelastic model, which defines 

stress with a "viscous" damping term [8]. This model creates complex longitudinal 

and transverse wavenumbers, 

k = !::!._ + ZTJ£W 

C£ 271" ' 

K = !::!.... + ZTJTW 

CT 271" ' 

(8.8) 

where 'r/L and 'r/T are damping terms. Viscoelastic EFIT simulations is one approach to 

numerically modeling elastic waves with attenuation in ceramic material. In fact, vis-

coelastic EFIT simulations have been applied to concrete by Marklein [176]. Follow

ing the analytic method, adding viscoelastic effects into the isotropic EFIT equations 
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requires changing the definition of the stress tensor to include a damping term: 

(8.9) 

The effects of porosity on acoustic waves in larger ceramic samples could be achieved 

by finding the attenuation terms versus frequency for specified pore sizes and mate

rials. Attenuation directly depends on frequency, so this relationship must be found. 

This task could be accomplished by running a series of EFIT simulations on smaller 

scale samples where porosity is directly included, and observing the average wave 

attenuation by the end of the propagation path. By incorporating this attenuation 

directly into the viscoelastic EFIT equations, fairly accurate simulations over larger 

porous samples with realistic flaws could be achieved. 
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Appendices 

Appendix A: Surface Tension Values 

Table 8 1· Surface Tension .. 

Scatterer Surface tension 
(dyn/cm) 

Ethanol 22 
Glycerol 64 

Lipid 33 
Water 72 

[53]' [177]' [178] 

Table 8 2· Surface Tension .. 
Material Surface tension 

Combination (dyn/cm) 
Air in blood 57 

Air in glycerol 64 
Air in water 72 

[53], [177], [178] 
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Appendix B: Viscous Fluid Equations 

O:'n and f3n for equation (2.50) are: 

For n = 0 

where asT is the surface tension. For n 2: 1 
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The Sn functions in equation (2.50) are: 

S1n =~((n + 2)(k1a)2 - n(kia)2 )(H~~+1 (k1a, k1a)- H~~+1 (k1a, k1a)) 

k* (H(O) (k ) (2) (k k )) - k1a 1 a n+1n 1a, k1a - Hn+1n 1a, 1a 

+ ((k1a)2- (kia)2) [nk* H(1)(k k a) 
(K1a)2 1a nn 1a, 1 

+ (n + 2)k1aH~~1n+l (k1a, k1a)- k1akiaH~~1n(k1a, k1a)] 

+ (k1akia/(K1a)2)G~2)(k1a) 

S3n =(n + 2) [~(n(Kia)2 - (n + l)(k1a) 2 )(H~~+1 (k1a, K1a)- H~~+1 (k1a, K1a)) 

* (O) (2) (k1a) 2 Kia (-I) 
-k1aK1 a(Hn+1n(k1a, K1a)- Hn+1n(k1a, K1a)) + 

2 
(Hnn (k1a, K1a) 

(1) k1a(K1a) 2 
(-1) (1) 

-Hnn (k1a, K1a)) + 
2 

(Hn+ 1n+1 (k1a, K1a)- Hn+1n+1 (k1a, K1a)) 

(k1a)
2 

( * (1)( ) ( ) (1) (k )) (1)( )] + (K
1
a) 2 nK1 aHnn k1a, K1a - n + 1 k1aHn+1n+1 1a, K1a - Ln k1a, K1a 
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S4n =n [~((n + 2)(Kia)2 - (n + l)(kia) 2 )(H~~+l (K1a, k1a)- H~~+l (K1a, k1a)) 

+kiaK1a(H~~ln(K1a, k1a)- H~~ln(K1a, k1a)) 

kia(K1a)
2 

( l) ) (1) (1) -
2 

(Hn-;;, (K1a, k1a - Hnn (K1a, k1a))- Hnn (K1a, k1a)) 

(kia)2 K1a (-1) (1) + 
2 

(Hn+ln+l (K1a, k1a) - Hn+ln+l (K1a, k1a)) 

-(~I~): ((n + l)kiaHA~(Kla, k1a)- (n + 2)K1aH~~ln+l(K1a, k1a)) 

+KA2)(k1a, K1a)] 

Ssn =~((n + 2)(kla)2 - n(kia)2 )(J~~+l (k1a, k1a)- J~~+l (k1a, k1a)) 

- k1akia(J~~ln(k1a, k1a)- J~~ln(k1a, k1a)) 

+ ((kla)2- (kia)2) [nk*aJ(l)(k a k a) 
(Kla)2 1 nn 1 ' 1 

+ (n + 2)klaJ~~ln+l (k1a, k1a)- k1akiaJ~~ln(k1a, k1a)] 

+ (klakiaf(Kla)2 )(G~1)(kla) + G~2)(k1a)) 

S6n =~((n + 2)(kla)2 - n(kia)2 )(J~~ln(kla, k1a)- J~~ln(k1a, k1a))* 

- k1akia(J~~+l (k1a, k1a)- J~~+l (k1a, k1a))* 

+ ((kla)2- (kia)2) [nk*aJ(l)(k k a) 
(Kla)2 1 nn la, 1 

+ (n + 2)klaJ~~ln+l (k1a, k1a)- k1akiaJ~~+l (k1a, k1a)]* 
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S7n =n [~((n + 2)(K1a)2
- (n + l)(kia) 2 )(J~~+l(K1a, k1a)- J~~+ 1 (K1a, k1a)) 

+k;aK1a(J~~1n(K1a, k1a)- J~~ln(K1a, k1a)) 

- kia(K1a)2 (J(-1)(K a k a)- J(1)(K a k a)) 
2 nn 1 ' 1 nn 1 ' 1 

(kia)2 K1a (-1) (1) + 2 (Jn+1n+1 (K1a, k1a)- Jn+1~+1 (K1a, k1a)) 

- (~1~): ((n + l)kiaJ~~(K1a, k1a) - (n + 2)K1aJ~~1n+1 (K1a, k1a)) 

+~(K~1)(k1a, K1a) + K~2)(k1a, K1a))] 

Ssn =(n + 2) [~(n(K;a)2 - (n + l)(k1a) 2)(J~~ln(K1a, k1a)- J~~ln(K1a, k1a))* 

* ( (O) ( ) (2) ( k ))* (kta)
2
Kia ( (-1)( ) -k1aK1 a Jnn+l Kta, k1a - Jnn+l K1a, 1a + 

2 
Jnn K1a, k1a 

(1) * k1a(K1a)
2 

(-1) (1) * 
-Jnn (K1a, kta)) + 

2 
(Jn+ln+l (K1a, k1a)- Jn+ 1n+1 (Kta, k1a)) 

(k1a)
2 

( (1)( ) ( )k* J(1) ( ))* +(Kia) 2 nK1aJnn K1a,k1a- n+l 1a n+1n+l K1a,k1a 

-~(L~1)(kta, K1a) + L~2)(k1a, Kta))] 

Where 

232 



n m 
- ~ ~ B -(k+1)( *)-(q+1)E (. * . ) - W W kqX 1 x 2 M tx2 - tX1 

k=Oq=O 

=~ t f BkqX~(k+1)(x2)-(q+l)(EM(ix2- ix1) 
k=Oq=O 

in which EM(z) is the exponential integral of order M. The correction to Doinikov's Jnm is 

the change of ( -l)m+l as listed in [22] to ( -1)m+q, as shown above. 

im-n( -1)k(n + k)!(m + q)! 
(2i)k+qk!(n- k)!q!(m- q)! 

M=2+k+q+j; j=-1,0,1,2 

(n + 1)(kia)
2 

(h(1)(k*a))'h(1)(K a)- k*a(h(l) (k*a))'(h(1 )(K a))' (K
1
a)2 n 1 n 1 1 n+1 1 n+1 1 
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l =1,2 

dh~) (k1a) 
(h~)(k1a))' 

d(k1a) 

Appendix C: Elastic Scattering from a Sphere: Matrix 

Equations 

The matrix equation used to find the/:::,. coefficients is shown below, followed by 6o and 6 1 . 
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-1 (K1)
2 
+ [l(l + 1) + 2] _ ~ J.L2 (2_ (K2)

2 
_ [l(l + 1) + 2] + ~) 

2T k1 krT3 (k1T)2 J.ll 2T k2 k~T3 (k2T)2 

__ 4_ + 20r 
k2 3 -IT (kiT)2 

J.l2 ( 4 2or ) 
J.ll k~T3 - (k2T)2 

1 
- (kiT)2 (1- TOr) 

1 
(k2T)2 (1- TOr) 

1 1 
(k1T)2 (k2T)2 

t...:l 
_ l ( l + 1) (Or _ ~) JL2 l (l + 1) (Or _ ~) 2_ (K1r _ [l(l+1)+2] +~ C;j 

(T7ri) CJl 
K1T2 T J.ll K2T2 T 2T k1 . krT3 (k1T)2 

2l(l + 1) 20r K1 J.l2 (2l(l+1) _ 20r _ K2) (T7r}J 
4 20r 

--+--+-
krT3 - (k1T)2 K1T3 K1T2 T J.ll K2T3 K2T2 T I (T7ri) = -

l(l + 1) l(l + 1) (T1fsv) 1 

K1T2 K2T2 (k1T)2 (1- TOr) 

Or Or (T1f~v) 1 
-

(k1T)2 K1T K 2T 



~0 



f:l.L 
1 
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