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ABSTRACT PAGE 

Considerable insight into intracellular calcium (Ca) responses has been obtained through 
the development of whole cell models that are based on molecular mechanisms, e.g., the 
kinetics of intracellular Ca channels and the feedback of Ca upon these channels. 
However, a limitation of most deterministic whole cell models to date is the assumption that 
channels are globally coupled by a single [Ca], when in fact channels experience localized 
"domain" Ca concentrations. More realistic stochastic Monte Carlo simulations are capable 
of representing individual domain Ca concentrations but suffer from increased 
computational demand. This dissertation introduces a novel probability approach which 
captures important aspects of local Ca signaling while improving computational efficiency. 

In many cell types calcium release is mediated by diffusely distributed 1 ,4,5-trisphosphate 
receptors (IP3Rs). In Chapter 2 a Monte Carlo whole cell model is presented where each 
IP3R has a local cytosolic and luminal domain [Ca]. The Monte Carlo model is used to 
validate a probability density approach where local cytosolic and luminal domains Ca 
concentrations are represented as bivariate probability densities jointly distributed with 
IP3R state. Using this probability density approach, analysis shows that the time scale of 
Ca domain formation and collapse (both cytosolic and luminal) influences global Ca 
oscillations. Additionally, two reduced models of Ca signaling are derived that are valid 
when there is a separation of time scales between the stochastic gating of IP3Rs and the 
dynamics of domain Ca. These reduced whole cell models account for the influence of 
local Ca signaling on global Ca dynamics and are therefore more realistic than other 
conventional deterministic whole cell models. 

In cardiac myocytes, Ca influx through voltage gated channels causes the release of 
intracellular Ca, a process known as Ca -induced Ca release (CICR). In Chapter 3 a 
probability density approach to CICR is derived from advection-reaction equations relating 
the time-dependent probability density of subsarcolemmal subspace and junctional 
sarcoplasmic reticulum [Ca] conditioned on "Ca release unit" state. When these 
equations are coupled to ordinary differential equations for the bulk myoplasmic and 
sarcoplasmic reticulum [Ca], a realistic but minimal whole cell model is produced. 
Modeling Ca release unit activity using this probability density approach avoids the 
computationally demanding task of resolving spatial aspects of global Ca signaling, while 
accurately representing heterogeneous local Ca signals in a population of diadic 
subspaces and junctional sarcoplasmic reticulum domains. The probability density 
approach is validated and benchmarked for computational efficiency by comparison to 
traditional Monte Carlo simulations. However, a probability density calculation can be 
significantly faster than the corresponding Monte Carlo simulation, especially when cellular 
parameters are such that univariate rather than multivariate probability densities may be 
employed. 

Expanding upon the computational advantages of the probability density approach, a 
moment closure technique is introduced in Chapter 4 which facilitates whole cell modeling 
of cardiac myocytes when the dynamics of subspace [Ca] are much faster than those of 
junctional SR [Ca]. The method begins with the derivation of a system of ODEs describing 
the time-evolution of the moments of the univariate probability density functions for 
junctional SR [Ca] jointly distributed with CaRU state. This open system of ODEs is then 
closed using an algebraic relationship that expresses the third moment of junctional SR 
[Ca] in terms of the first and second moments. Benchmark simulations indicate that the 
moment closure approach is nearly 1 0,000-times more computationally efficient than 
corresponding Monte Carlo simulations while leading to nearly identical results. 
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Chapter 1 

Introduction 

Calcium (Ca2+) is a divalent cation essential to living organisms. In vertebrates, 

Ca2+ plays an important role in the formation and maintenance of bones and teeth. 

Calcium is also a ubiquitous second messenger responsible for such vital tasks as 

adhesion, fertilization, cell differentiation, and muscle contraction [Berridge, 1998, 

Berridge, 1993]. One reason that calcium is such a versatile second messenger is that 

cells are able to decode information from the spatial and temporal dimensions, and 

amplitude of Ca2+ signals in multiple dimensions (e.g., space, time, and amplitude) 

[Berridge, 1998, Berridge et al., 2000]. Cells have evolved the ability to mix and tune 

these Ca2+ signals to suit their physiology using a "toolkit" comprised of various 

signaling, regulatory, and sensory mechanisms [Berridge et al., 2000, Berridge et al., 

2003]. 

The fertilization of mammalian oocytes involves Ca2+ waves crossing the egg fol­

lowing sperm entry [Whitaker, 2006]. Following fertilization, when the one-cell em­

bryo is ready to divide, a single Ca2+ transient triggers the division into two daughter 

cells. During development and throughout life, both gene activation and transcription 

are known to be sensitive to the amplitude and duration of Ca2+ signals [Berridge, 

1998, Dolmetsch et al., 1997]. In neurons, Ca2+ is responsible for triggering the re-
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lease of neurotransmitters by binding with the synaptic vesicle protein Synaptotagmin 

I [Fernandez-Chac6n et al., 2001, Burgoyne and Morgan, 1998]. Cellular metabolism 

is influenced by Ca2+ since mitochondria rely on cytosolic Ca2+ signals to tune their 

metabolic activity [Hajn6czky et al., 1995]. 

In muscle cells, Ca2+ governs the cycle of contraction and relaxation [Bers, 2002, 

Wier, 1990]. Action potentials trigger the cell-wide release of intracellular Ca2+ which 

then binds to troponin C to produce a conformational change in the greater troponin 

complex. This conformational change allows the myosin motor protein to bind to 

actin and initiate muscle contraction. Localized Ca2+ signals can however produce 

completely different results. For example, in smooth muscle cells, Ca2+ sparks located 

just under the plasma membrane cause the cell to relax by activating potassium 

(K+) channels [Berridge, 1998]. Temporal aspects of Ca2+ release are also important 

for muscle cells. In cardiac myocytes, dys-synchronous release of Ca2+ can cause 

pathological phenomena such as alternans and arrhythmias [Wilson et al., 2006, Dibb 

et al., 2007, Jiang et al., 2007, Chelu and Wehrens, 2007]. 

Just as Ca2+ is essential for cell life, it can also be a signal for cell death. In 

addition to being toxic to the cell at high levels for long periods, Ca2+ can also initiate 

the process of programmed cell death (apoptosis). Apoptosis aids in the formation of 

various tissue patterns during normal development and also plays a role in diseased 

conditions such as cancer, AIDS, and Alzheimer's [Berridge, 1998]. Calcium's exact 

function in apoptosis is complex, however, calcium is known to initiate cell death in 

response to various pathological conditions (for more information see [Berridge et al., 

2000]). 
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1.1 Calci urn homeostasis 

Ca2+ homeostasis ~ the regulation of a stable intracellular [Ca2+] ~ would be im­

possible without the presence of semipermeable lipid bilayers that constitute the 

cell's outer and inner membranes. This barrier contains a wide variety of biological 

molecules but primarily consists of proteins and lipids. Phospholipids (typically the 

most common constituent of cell membranes) consist of a hydrophilic, polar head and 

a non-polar, hydrophobic tail. It is the polar head group which makes the membrane 

impermeable to charged molecules and ions such as Ca2+. Since Ca2+ cannot freely 

pass across membranes the cell can use them to create [Ca2+] gradients. For exam­

ple, the endoplasmic reticulum (ER), a continuous membrane-delimited intracellular 

compartment, contains levels of Ca2+ several fold greater than the cytosol. 

The Ca 2+ concentrations found inside the cell are regulated by numerous processes, 

usually consisting of a membrane bound protein actively or passively moving Ca2+ 

ions. There are three main types of proteins involved in the transport of Ca2+: 

channels, pumps, and exchangers. Ca2+ channels are typically an assembly of several 

sub-unit proteins which combine to form a "pore" through the plane of the membrane. 

Often passage of ions through these pores is regulated by a "gate" which may be 

opened or closed by chemical or electrical signals, temperature, or mechanical force, 

depending on the type of channel. For example, the ryanodine receptor calcium 

channel (RyR) is activated by a chemical signal (Ca2+) while the dihydropyridine 

receptor calcium channel (DHPR) is activated by a depolarization of the plasma 

membrane. 

Pumps and exchangers act to balance the passive transport of ion channels. Pumps 

act by using energy from a variety of sources, including adenosine 5'-triphosphate 

(ATP), to drive the flow of ions against their concentration gradient. For example, the 

plasma membrane Ca2+-ATPase (PMCA) which resides on the cell's outer membrane 

acts to move Ca2+ ions from cytosol to the extracellular space. Another important 
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Ca2+ pump is the sarco-endoplasmic reticulum Ca2+ -ATPase (SERCA) which resides 

on the ER/SR membrane and transfers Ca2+ from the cytosol to the space contained 

within the ER/SR membrane known as the lumen. 

Similar to pumps, exchangers also act to drive ions against their concentration 

gradient. However, instead of using an energy source such as ATP, an exchanger 

uses the energy from the electrochemical gradient of another ion. For example, 

the sodium-calcium exchanger (NCX) located on the plasma membrane allows three 

sodi urn (N a+) ions to flow down their electrochemical gradient into cell in exchange 

for the extrusion a single Ca2+ ion from the cell. 

Because prolonged exposure to elevated Ca2+ concentrations can be toxic or even 

fatal to cells, the previously mentioned pumps, channels and exchangers are tuned to 

maintain the proper Ca2+ homeostasis. Typically, cytosolic [Ca2+] is between 10- 100 

nM, noticeably lower than the 1- 2 mM [Ca2+] outside the cell and the 10- 1000 J.LM 

[Ca2+] within intracellular Ca2+ reservoirs, such as the endoplasmic reticulum (ER) 

or in muscle cells the sarcoplasmic reticulum (SR) [Hille, 2001]. Figure 1.1 shows the 

typical cellular compartments and various components of the Ca2+ signaling "toolkit" 

discussed above. 
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Figure 1.1: Diagram of typical intracellular Ca2+ signaling components. Entry of 
Ca2+ into the cell is through store operated or voltage gated Ca2+ channels such 
as the dihydropyridine receptor (DHPR). Ca2+ entry into the cell is balanced by the 
removal of Ca2+ via the plasma membrane Ca2+ -ATPase (PMCA) pump and sodium­
calcium exchanger (NCX). Intracellular release is typically mediated by inositol1,4,5-
trisphosphate receptors (IP3R) and ryanodine receptors (RyR). Ca2+ is resequestered 
to the ER/SR by the sarco-endoplasmic reticulum Ca2+ -ATPase (SERCA) pump. 
Ca2+ entry into the mitochondria is mediated by the mitochondrial Ca2+ uniporter 
(MCU) which is currently thought to be a highly selective ion channel [Kirichok et al., 
2004]. 
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1. 2 Calci urn induced calci urn release 

As a common second messenger, Ca2+ regulates many different types of ion channels 

in both excitable and non-excitable cells. The release of calcium from intracellular 

stores is regulated primarily by two types of Ca2+ -activated Ca2+ channels; inositol 

1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RyR) [Fill and Copello, 

2002, Bezprozvanny, 2005, Foskett et al., 2007b]. IP3R's name is derived from its 

ability to bind with the co-agonist, inositol1,4,5-trisphosphate (IP3 ). IP3 is generated 

from phosphatidylinositol 4,5-bisphosphate (PIP2 ) by the action of the membrane 

bound enzyme phospholipase C (PLC) [Berridge, 1998]. IP3Rs can be activated by 

either IP3 , Ca2+, or both. RyRs are so named due to their affinity for the poisonous 

plant alkaloid ryanodine which was the first agonist used in the purification of RyR 

ion channel. Unlike IP3 , ryanodine is not naturally found in vertebrate cells and 

therefore does not play an important role in normal Ca2+ signaling. The process of 

Ca2+ activating IP3Rs or RyRs to release intracellular Ca2+ is commonly referred to 

as calcium-induced calcium release (CICR). 

Both the IP 3R and the RyR families contain three major isoforms differing only 

slightly in their genetic makeup. The RyR family is slightly larger at 560 kDa versus 

IP3R's 310 kDa [Lai et al., 1989, Foskett et al., 2007a]. IP3Rs are expressed in a wide 

range of cell types but are most abundant in neurons located in the cerebellum, a 

region of the brain responsible for the integration of sensory perception and motor 

control. Ry Rs are predominantly found in muscle cells and in the brain [Berridge, 

1998, Murayama and Ogawa, 1996]. 

Both IP3Rs and RyRs are known to co-localize at Ca2+ release sites on the ER and 

SR membranes. For example, in the cortical regions (approximately 6 p,m below the 

plasma membrane) of immature Xenopus laevis oocytes, IP3Rs occur in clusters of 5-

50 with inter-cluster spacing on the order of a few microns [Sun et al., 1998]. Similarly, 

intracellular Ca2+ release in skeletal and cardiac myocytes is mediated by clusters 
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of RyRs that are assembled into clusters of 10-100 cooperatively gating channels 

[Franzini-Armstrong et al., 1999, Bers, 2002, Wang et al., 2004, Chen-Izu et al., 2006]. 

The spatial organization of IP3Rs and RyRs is the basis of three distinct modes of 

Ca2+ mobilization that have been observed via confocal microfiuorimetry in oocytes, 

cardiomyocytes, and many other cell types: 1) localized Ca 2+ elevations due to the 

activation of single channels that are referred to as Ca2+ blips or quarks depending 

on whether the event is mediated by IP3Rs or RyRs [Niggli, 1999, Bootman et al., 

1997], 2) Ca2+ puffs and sparks that arise from the activation of multiple channels 

associated with a single Ca2+ release site [Cheng et al., 1993a,Cannell et al., 1995a,Yao 

et al., 1995, Parker et al., 1996], and 3) global responses such as oscillations and 

waves that involve multiple release sites [Dupont et al., 1991a,Dupont and Goldbeter, 

1992a, Dupont and Goldbeter, 1994, Cheng et al., 1996]. These three modes of Ca2+ 

release have been dubbed fundamental, elementary, and global responses, respectively 

[Berridge, 1997a]. 

Global Ca2+signals involve the coordinated activation of many elementary release 

events. These global responses such as oscillations and waves are important for gov­

erning cellular processes [Berridge et al., 2003]. For this reason, accurately capturing 

the influence of local Ca2+ signaling on global Ca2+ dynamics is an important aspect 

to any whole cell model of Ca2+ signaling. 

1.3 Mathematical modeling of calcium signaling 

There is a long history of modeling the activity of ion channels as continuous time 

discrete state Markov chains [Colquhoun, 1995]. While these channel models can be 

relatively simple (as few as two states) or complex (hundreds of states), most include 

only two calcium conductance levels (closed or open). For example, consider the 

simplest possible single chann~l model, that is, a two-state model with one closed (C) 
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and one open ( 0) state 

(closed) C 0 (open) (1.1) 

where k+ccyt and k- are transition rates with units of reciprocal time, k+ is an asso­

ciation rate constant with units of conc- 1 time-1
, and Ccyt is the [Ca2+] experienced 

by the channel. 

If a large number of these two-state Ca2+ channels are coupled only via the bulk 

cytosolic [Ca2+] the fraction of open channels would solve 

(1.2) 

where conservation of probability would dictate that nc = 1 - n 0 . By coupling this 

ordinary differential equation (ODE) for the fraction of open channels to balance 

equations for the cytosolic and ER calcium concentrations, we may write a simple 

two-compartment whole cell model as 

dccyt dt = lrel - Jpump (1.3) 

deer 1 [ ] dt = Aer - lrel + Jpump (1.4) 

where Aer is the ER to cytosolic volume ratio, lrel = no(cer- Ccyt) represents the 

release of calcium through the intracellular Ca2+ channels (IP3R or RyR), and the 

restorative pump flux (such as the SERCA pump) may be represented by 

2 
VpumpCcyt 

Jpump = 2 k2 
Ccyt + pump 

(1.5) 

Deterministic models of calcium signaling (such as the simple one presented above) 
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neglect the stochastic gating of Ca2+ channels as well as the important aspects of 

local Ca2+ signaling upon these channels. As the importance of the stochastic gating 

of ion channels was realized Monte Carlo simulation techniques were implemented 

to capture local Ca 2+ signaling phenomena (for review see [Swillens et al., 1998, Stern 

et al., 1999b,Rice et al., 1999a,Sobie et al., 2002b]). Unfortunately these more realistic 

Monte Carlo simulations are computationally intensive and impractical, especially 

when the spatial location of intracellular channels is explicitly represented. 

This dissertation focuses on presenting new classes of whole cell models of Ca2+ 

signaling which incorporate the important aspects of localized Ca2+ domains and 

stochastic gating of individual channels. We begin by introducing probability density 

approaches to modeling Ca2+ dynamics in cells with stochastically gating intracellular 

Ca2+ channels. We utilize coupled advection-reaction equations for the time-evolution 

of the probability density of the [Ca2+] in localized Ca2+ domains associated with each 

channel and conditioned on the channel state. When these equations are coupled to 

ODEs for the bulk Ca2+ concentrations, a realistic but minimal model of whole cell 

Ca2+ dynamics is produced that accurately captures the influence of localized [Ca2+] 

elevations on channel gating. In Chapter 2 the probability density approach is shown 

to yield insights into local and global Ca2+ signaling in cells with diffusely distributed 

IP3Rs. In Chapter 3 we show an application of the probability density approach for 

cardiac myocytes where calcium-induced calcium release (an important step in cell 

contraction) is known to occur in restricted spaces located just beneath the plasma 

membrane. 

In Chapter 4 we expand upon the computational advantages of the probability 

density approaches by introducing a moment closure technique for simulating whole 

cell models of cardiac myocytes when the dynamics of subspace [Ca2+] are much 

faster than those of junctional SR [Ca2+]. The method begins with the derivation 

of a system of ODEs describing the time-evolution of the moments of the univariate 
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probability density functions for junctional SR [Ca2+] jointly distributed with CaRU 

state. This open system of ODEs is then closed using an algebraic relationship that 

expresses the third moment of junctional SR [Ca2+] in terms of the first and second 

moments. Finally, Chapter 5 reviews the scientific contributions of this dissertation 

and suggests areas of future work. 
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Chapter 2 

Modeling local and global 

intracellular calcium responses 

mediated by diffusely distributed 

inositol 1,4,5-trisphosphate 

receptors 

2.1 Summary 

Considerable insight into intracellular Ca2+ responses has been obtained through the 

development of whole cell models that are based on molecular mechanisms, e.g., sin­

gle channel kinetics of the inositol 1,4,5-trisphosphate (IP3 ) receptor Ca2+ channel. 

However, a limitation of most whole cell models to date is the assumption that IP3 

receptor Ca2+ channels (IP3Rs) are globally coupled by a "continuously stirred" bulk 

cytosolic [Ca2+], when in fact open IP3Rs experience elevated "domain" Ca2+ concen­

trations. Here we present a 2N +2-compartment whole cell model of local and global 
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Ca2+ responses mediated by N=100,000 diffusely distributed IP3Rs, each represented 

by a four-state Markov chain. Two of these compartments correspond to bulk cytoso­

lic and luminal Ca2+ concentrations, and the remaining 2N compartments represent 

time-dependent cytosolic and luminal Ca2+ domains associated with each IP3R. Us­

ing this Monte Carlo model as a starting point, we present an alternative formulation 

that solves a system of advection-reaction equations for the probability density of 

cytosolic and luminal domain [Ca2+] jointly distributed with IP3R state. When these 

equations are coupled to ODEs for the bulk cytosolic and luminal [Ca2+], a realistic 

but minimal model of whole cell Ca2+ dynamics is produced that accounts for the 

influence of local Ca2+ signaling on channel gating and global Ca2+ responses. The 

probability density approach is benchmarked and validated by comparison to Monte 

Carlo simulations, and the two methods are shown to agree when the number of 

Ca2+ channels is large (i.e., physiologically realistic). Using the probability density 

approach, we show that the time scale of Ca 2+ domain formation and collapse (both 

cytosolic and luminal) may influence global Ca2+ oscillations, and we derive two re­

duced models of global Ca2+ dynamics that account for the influence of local Ca2+ 

signaling on global Ca2+ dynamics when there is a separation of time scales between 

the stochastic gating of IP3Rs and the dynamics of domain Ca2+. 

The contents of this chapter were accepted as "Modeling local and global intracel­

lular calcium responses mediated by diffusely distributed inositol 1,4,5-trisphosphate 

receptors" to the Journal of Theoretical Biology [GeorgeS. B. Williams, Evan J. Mo­

linelli, and Gregory D. Smith, in press 2008]. The author gratefully acknowledges 

Evan Molinelli's work on Appendix 2.6. 7. Some of these results have also appeared 

in poster form at the 2007 Biophysical Society Annual Meeting in Baltimore, MD. 
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2.2 Introduction 

Regenerative Ca2+ release from the endoplasmic reticulum (ER) or sarcoplasmic retic­

ulum (SR) is muscle cells is a continuous membrane-delimited intracellular compart­

ment, plays an important role in Ca2+ signaling [Berridge, 1993, Berridge, 1997b]. In 

most cell types, the ER has integrative and regenerative properties analogous to the 

excitable membranes of neurons [Berridge, 1998, Li et al., 1995, Keizer et al., 1995]. 

For example, agonist-induced Ca2+ signaling in pituitary gonadotrophs is initiated 

by metabotropic receptors of the plasma membrane that stimulate the production of 

the intracellular messenger, inositol 1,4,5-trisphosphate (IP3 ) [Li and Rinzel, 1994]. 

IP3 in turn promotes Ca2+ release from intracellular stores by binding and activating 

IP3 receptor Ca2+ channels (IP3Rs) located on the ER membrane. In rat basophilic 

leukemia (RBL) cells, an experimental model for mucosal mast cells, cross-linking 

the high-affinity immunoglobulin E receptor (FcER1) with multivalent antigen leads 

to tyrosine kinase-dependent activation of PLC,.,, production of IP3 , release of intra­

cellular Ca2+ stores, and a sustained phase of Ca2+ influx-events that culminate in 

the secretion of histamine, serotonin, and other mediators of inflammation [Wilson 

et al., 1998, Smith, 1996]. In cardiac myocyte excitation-contraction (EC) coupling, 

membrane depolarization associated with the cardiac action potential causes 1-type 

Ca2+ channels to open, and Ca2+ influx through these channels activates ryanodine 

receptors (RyRs) located on the sarcoplasmic reticulum (SR) membrane, a process 

known as Ca2+-induced Ca2+ release (CICR). 

Whole cell models of intracellular Ca2+ signaling are usually Hodgkin-Huxley­

like systems of nonlinear ordinary differential equations ( 0 DEs). Such models have 

played a role in understanding ER Ca2+ excitability and oscillations in gonadotrophs, 

RBL cells, cardiac myocytes, and other cell types [Dupont et al., 1991b, Dupont and 

Goldbeter, 1992b, Li et al., 1995, Keizer et al., 1995, Winslow et al., 2000] (see [Smith 

et al., 2002] for review). For example, two-compartment whole cell models often take 
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the form 

(2.1) 

dw W 00 - W 

dt Tw 
(2.2) 

deer 1 [ ] 
-;{t = - Aer lrel + lzeak - lpump (2.3) 

where Aer is the ER-to-cytosolic effective volume ratio that accounts for the binding 

capacity of Ca2+ buffers. The three fluxes influencing the [Ca2+] in the cytosol (ccyt) 

and ER ( Cer) include: Ca 2+ release via IP 3Rs, 

(2.4) 

a passive leak from the ER to cytosol, 

lzeak = Vzeak ( Cer - Ccyt) , (2.5) 

and Ca2+ reuptake via SERCA-type Ca2+ -ATPases, 

(2.6) 

In this traditional whole cell model, w is a Hodgkin-Huxley-like gating variable satis­

fying a first order kinetic equation (Eq. 2.2). For example, in the Li-Rinzel reduction 

of the De Young-Keizer IP3R model [Young and Keizer, 1992, Li and Rinzel, 1994], 

the variable w represents the fraction of IP3Rs that are not inactivated, w00 ( Ccyt) and 

Tw(ccyt) are both functions of the cytosolic [Ca2+], and !open( w, Ccyt) is the fraction 

of open IP3Rs. By numerically integrating conventional whole cell models such as 

Eqs. 2.1-2.6, one may simulate Ca2+ release and reuptake by IP3-sensitive intracel­

lular Ca 2+ stores. 

While considerable insight has been obtained through the analogy of plasma mem-
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brane electrical excitability and ER Ca2+ excitability, the disparity between electrical 

length scales (100-200 J.lm) and the range of action of intracellular Ca2+ (i.e., a chemi­

callength scale of 1-2 J.lm) suggests that some aspects of the analogy are strained [Ne­

her, 1986, Allbritton et al., 1992, Zador and Koch, 1994, Smith, 1996, Smith et al., 

1996, Smith et al., 1998, Neher, 1998b, Neher, 1998a, Naraghi and Neher, 1997, Smith 

et al., 2001]. In particular, the ODE for the gating variable representing IP3R in­

activation (Eq. 2.2) is an "average rate equation" [Smith, 2002b] that is derived by 

assuming a large number of intracellular Ca2+ channels are globally coupled via bulk 

cytosolic Ca2+ (ccyt)· While it is true that plasma membrane ion channels in a small 

cell experience essentially the same time-course of membrane voltage, intracellular 

Ca2+ channels experience radically different local [Ca2+], even during global Ca2+ 

responses, and clusters of IP3Rs are in fact only locally coupled via the buffered dif­

fusion of intracellular Ca2+. For this reason, the Hodgkin-Huxley-style average rate 

equation (Eq. 2.2) is not always appropriate. 

Indeed, mathematical and computational investigations of excitation-contraction 

coupling in cardiac myocytes have suggested that whole cell models such as Eqs. 2.1-

2.6 are not suitable for simulating CICR release during EC coupling because the 

release flux is a collection of discrete "Ca2+ sparks" evoked by local, rather than 

global, increases in [Ca2+] [Cheng et al., 1993c]. That is, different groups of RyRs ex­

perience different local Ca2+ concentrations and stochastically gate in a manner that 

depends on whether nearby sarcolemmal Ca2+ channels have recently been open or 

closed. One consequence of this "local control" [Stern, 1992b] mechanism of cardiac 

CICR is that deterministic "common pool" models-whole cell models in which all 

RyRs in a myocyte experience the same bulk [Ca2+]-fail to reproduce several im­

portant experimental observations. In particular, the high gain and positive feedback 

of common pool models ensures that Ca2+ is released in an all-or-none fashion [Jafri 

et al., 1998b,Glukhovsky et al., 1998b,Snyder et al., 2000b,Nordin, 1993b,Tang and 
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Othmer, 1994b] as opposed to being graded with the amount of Ca2+ influx, as ob­

served in numerous experiments [Fabiato, 1985b, Wier et al., 1994b, Cannell et al., 

1995c]. More complex and realistic models of EC coupling are able to simulate graded 

Ca2+ release mechanistically by treating 1-type Ca2+ channels and Ca2+ release sites 

as stochastic "Ca2+ release units" (CaRUs), each of which is associated with its own 

diadic subspace [Ca2+]. When activated spontaneously or through membrane depo­

larization these CaRUs may deplete Ca2+ stored in localized regions of junctional SR 

and, on a slower time scale, interact with one another via diffusion of Ca2+ within 

the network SR and bulk myoplasm [Stern, 1992b, Rice et al., 1999b, Sobie et al., 

2002b, Greenstein and Winslow, 2002b, Williams et al., 2007]. 

Even in cells where intracellular Ca2+ channels are not clustered, but rather dif­

fusely distributed, the range of action of intracellular Ca 2+ may invalidate the con­

ventional whole cell modeling approach (Eqs. 2.1~2.6). Because high concentrations 

of intraluminal Ca2+ can reduce IP3R activity as measured in planar lipid bilayer 

experiments [Bezprozvanny and Ehrlich, 1994], it has been suggested that the Ca2+ 

inactivation of open IP 3Rs may be mediated by elevated domain Ca2+, similar to 

Ca2+ -mediated inactivation of voltage-gated plasma membrane Ca2+ channels [Sher­

man et al., 1990a, Smith, 2002b]. In a study of agonist-induced Ca2+ oscillations in 

pituitary gonadotrophs [Li and Rinzel, 1994, Li et al., 1995], investigators were forced 

to modify Eq. 2.2 in a post hoc fashion to account for enhanced IP3R inactivation 

(mediated by elevated domain Ca2+) that was required for the persistence of Ca2+ 

oscillations in gonadotrophs at low ER [Ca2+]. Theoretical studies suggest that the 

dynamics of cytosolic Ca2+ domains and luminal depletion domains may significantly 

affect the stochastic gating of Ca2+ -regulated intracellular Ca2+ channels [Mazzag 

et al., 2005b, Huertas and Smith, 2007 a]. However, to date there has been little ex­

ploration of feasible whole cell modeling approaches that account for the influence 

of local Ca2+ signaling on the stochastic gating of diffusely distributed channels and 
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resulting global Ca2+ responses. 

Following prior work on local control of excitation-contraction coupling in cardiac 

myocytes [Williams et al., 2007], we here present a 2N +2-compartment whole cell 

model of local and global Ca2+ responses mediated by N =100,000 diffusely distributed 

IP3Rs, each represented by a four-state Markov chain. Two of these compartments 

correspond to bulk cytosolic and luminal [Ca2+], and the remaining 2N compart­

ments represent time-dependent cytosolic and luminal Ca2+ domains associated with 

each IP3 R. Using this Monte Carlo model as a starting point, we present an alterna­

tive formulation that solves coupled advection-reaction equations for the probability 

density of cytosolic and luminal domain [Ca2+] jointly distributed with IP3 R state. 

When these equations are coupled to ODEs for the bulk cytosolic and luminal [Ca2+], 

a realistic but minimal model of whole cell Ca2+ dynamics is produced that accounts 

for the influence of local Ca2+ signaling on channel gating and global Ca2+ responses. 

The remainder of this paper is organized as follows. In Section 2.3 we describe the 

formulation of the Monte Carlo and probability density whole cell models that account 

for the effect of local Ca2+ signals on diffusely distributed IP3 Rs on global Ca2+ 

dynamics. In Sections 2.4.1-2.4.3 the probability density approach is benchmarked 

and validated by comparison to traditional Monte Carlo simulations of whole cell Ca2+ 

oscillations, and the two approaches are shown to agree when the number of Ca2+ 

channels is large (i.e., physiologically realistic). Section 2.4.4 uses the probability 

density approach to show how the time scale of Ca2+ domain formation and collapse 

(both cytosolic and luminal) may influence global Ca2+ oscillations. We conclude 

with a derivation of two reduced models of global Ca2+ dynamics that account for the 

influence of local Ca2+ signaling on global Ca2+ dynamics when there is a separation 

of time scales between the stochastic gating of IP3Rs and the dynamics of domain 

Ca2+ (Section 2.4.5). 
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2.3 Model Formulation 

A whole cell model of local and global Ca2+ dynamics with luminal and cytosolic 

Ca2+ domains associated with each IP3 R can be simulated using a traditional Monte 

Carlo approach where the domains and bulk Ca2+ concentrations solve a large number 

of ODEs coupled to a Markov chain representing the stochastically gating channels 

(see Section 2.3.1). An alternative method is to solve a system of partial differential 

equations for probability density functions representing the distribution of cytosolic 

and luminal domain Ca2+ concentrations jointly distributed with the state of each 

channel (see Section 2.3.2). Since many of the equations and parameters are similar for 

the two formulations, we begin by presenting the traditional Monte Carlo approach. 

2.3.1 Whole cell model of local and global calcium signaling 

- Monte Carlo formulation 

Fig. 2.1 shows a diagram of the model with 2N +2 compartments: the bulk cytosolic 

compartment, the bulk ER compartment, and 2N domains ( cytosolic and luminal) 

associated with each IP3 R. The bulk cytosolic and ER Ca2+ concentrations are 

denoted by Ccyt and Cer, respectively. Each IP3R has a corresponding cytosolic Ca2+ 

domain (c~~~) and luminal Ca2+ domain (c~~n), where the superscript n is an index 

over all N IP3Rs. 
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Figure 2.1: Diagram of the 2N + 2-compartment Monte Carlo model. A) Local Ca 2+ 
signaling near an individual IP3R includes the diffusion fluxes (J;:,_ and J~t) and 
the release flux ( l:."ez) that are functions of the cytosolic and luminal domain [Ca2+] 
denoted by c~~~ and c~~n. B) Section of ER membrane with diffusely distributed IP3Rs. 
The restorative flux from SERCA pumps ( lpump) and the passive leak from the ER 
to the cytosol (Jzeak) are functions of the bulk cytosolic and bulk ER [Ca2+] ( Ccyt and 
Cer ). 
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2.3.1.1 A four-state I P3 R model 

We use a minimal four-state Markov chain model for the stochastically gating IP3Rs 

given by [Colquhoun and Hawkes, 1995, Smith, 2002a, Nguyen and Jafri, 2005], 

kt ( c~ytY'' 

(open) 0 R1 (refractory) 

k-
b 

kd ( c~yt)"' 1l k-a k-
c H k: ( C~ytY'' (2.7) 

k-
d 

(closed) c "---- 7?2 (refractory) ---,. 

k1(c~ytf1 

where upward transitions represent Ca2+ -mediated activation and rightward transi­

tions represent Ca2+ -mediated inactivation (the cooperativity of Ca2+ binding is rJ = 

2). The dynamics of fast Ca2+ activation and slower Ca2+ inactivation in this model 

is similar to the well-known DeYoung-Keizer IP3R model, although for simplicity we 

do not explicitly model IPs binding or the subunit structure of the tetrameric channel 

as in [Young and Keizer, 1992]. We denote the state of the nth IP3 R at time t by 

Sn(t) E {C, 0, R 1 , 7?2} and the number of channels in state i at timet as Ni(t) where 

2.3.1.2 Ca2+ concentration balance equations 

The time evolution of [Ca2+] in each compartment and domain are modeled by a set 

of 2N + 2 ordinary differential equations, 

dccyt T 
----;{t = Jcyt + ]zeak - lpump (2.8) 

deer 1 ( T ) dJ: = \ - Jer - ]zeak + Jpump 
Aer 

(2.9) 
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d d,n 
1 Ccyt ( n n ) dt = _Ad Jrel- Jcyt 
cyt 

(2. 10) 

(2.11) 

where 1 ::::; n ::::; N, N is the number of IP 3Rs (each with an associated cytosolic 

and luminal domain), J'fut = 2:::=1 J~Yt' and J'{; = 2:::=1 J~r· The effective volume 

ratios Aen A~Yt' and .A~r in Eqs. 2.9-2.11 are defined with respect to the bulk cytosolic 

volume (Vmyo), that is, Aer = Ver/Vmyo and 

.Ad _ ~tt 
cyt- V: 

myo 
and 

where Ven Vc~t and~~ are the effective volumes of the bulk ER, an individual cytosolic 

domain, and an individual luminal domain, respectively. Note that when the total 

volumes of the cytosolic (~~f) and luminal (~~·T) domains are held constant, for any 

choice of N we can write A~yt = A~yt/ N and A~r = A~r/ N where 

vd,r 
Ad = __91_1:__ 

cyt V: 
myo 

and 
vd,r 

Ad=~ 
er V: 

myo 
(2.12) 

Thus, Aen A~yn and A~r are the three effective volume ratios required for the model 

formulation (see Table 2.1). 

2.3.1.3 Description of Ca2 + fluxes 

The fluxes in Eqs. 2.8-2.11 include the leak from the ER to the bulk cytosol (Jzeak) 

and the restorative flux of SR Ca2+-ATPases (Jpump) given by 

Jzeak = Vzeak ( Cer - Ccyt) (2.13) 

(2.14) 
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The release of Ca2+ through IP3Rs (J~el) is given by 

Jn _ n ( d,n d,n) 
rel - I Vrel Cer - Ccyt (2.15) 

where In indicates whether the nth channel is open (In = 1 when sn E { 0}) or 

closed (rn = 0 when sn E { c' Rl' R2})' the rate Vrel is proportional to the IP 3R 

conductance, and the driving force is given by the difference between the luminal 

(c~~n) and cytosolic (c~~~) domain Ca2+ concentrations. The domains are coupled to 

the bulk compartments via the fluxes J;:yt and J:r in Eqs. 2.10-2.11 given by 

Jn ( d,n ) cyt = Vcyt Ccyt - Ccyt (2.16) 

(2.17) 

where Vcyt/ )..~yt is the rate of cytosolic domain collapse and Ver / )..~r is the rate of 

luminal domain recovery [Huertas and Smith, 2007a]. Note that when Eqs. 2.15-2.17 

are substituted into Eqs. 2.10-2.11 one obtains 

d d,n 1 
Ccyt _ [ n ( d,n d,n) ( d,n )] dt - )..d I Vrel cer - Ccyt - Vcyt ccyt - Ccyt 

cyt 

If we multiply and divide the right hand sides of these equations by N we can write 

d d,n 1 
Ccyt _ [ n T ( d,n d,n) T ( d,n ) ] dt - Ad I vrel cer - Ccyt - vcyt ccyt - Ccyt 

cyt ; 
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where we use the previously defined aggregate effective volume ratios (Eq. 2.12) as 

well as the aggregate rates v'f.'ez = Nvrez, v'{yt = Nvcyt, and vrr = Nver· Thus, we 

see that concentration balance equations for the Ca2+ domains (c~;;; and c~~n) do not 

depend on the number of IP3Rs (N) when fixed aggregate rate constants ( v?:ez, v'{yt? 

and v?:e) and volume ratios (A~Yt' and A~r) are employed. Nevertheless, the choice of 

N in simulations of the Monte Carlo model (Eqs. 2.8-2.11) has profound consequences 

on the dynamics of the bulk Ca2+ concentrations Ccyt and Cer (see below). 

2.3.2 Whole cell model of local and global calcium signaling 

-probability density formulation 

The probability density approach is an alternative to Monte Carlo simulation that 

is valid when the number of IP3Rs (N) is large. We begin by defining continuous 

multivariate probability density functions for the cytosolic domain [Ca2+] (c~yt) and 

luminal domain [Ca2+] (c~r) jointly distributed with IP3R state, S(t) [Mazzag et al., 

2005b, Huertas and Smith, 2007a] as 

i ( d d ) d d d d P{ d -d d d d p Ccyt' Cer' t Ccyt Cer = Ccyt < Ccyt < Ccyt + Ccyt 

and S(t) = i} (2.18) 

where the index i E {C, 0, R 1 , R 2 } runs over the four states of the channel (see 

Eq. 2.7) and in this section the tildes on c~yt(t), c~r(t), and S(t) indicate random 

quantities. If the meaning of Eq. 2.18 is not obvious, it may be helpful to imagine 

performing a Monte Carlo simulation as described in the previous section with a very 

large number of IP3Rs. At any time t one could randomly sample an IP3R from 

this population to produce an instance of the jointly distributed random variables 

S(t), c~yt(t), and c~r(t), corresponding to the current state of the sampled IP3R and 
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the cytosolic and luminal domain Ca2+ concentrations associated with this channel. 

The quantity pi(c~Yt' c~n t) dc~yt dc~r defined in Eq. 2.18 represents the probability of 

finding this sampled channel in state i with cytosolic domain [Ca2+] in the range 

[c~yt' c~yt + dc~yt] and luminal domain [Ca2+] in the range [c~n c~r + dc~r], provided the 

total number of IP3Rs in the Monte Carlo simulation is very large. 

As discussed in 2.6.1, for the multivariate probability densities of Eq. 2.18 to 

be consistent with the dynamics of the Monte Carlo model in the previous section, 

they must satisfy the following system of advection-reaction equations [Mazzag et al., 

2005b, Huertas and Smith, 2007a, Gardiner, 2004, Kepler and Elston, 2001] 

ape a [ c cJ a [ c cJ 
O::Jt = -~ fcytP - 7Jd ferP 
tJ t!Ccyt t!Cer 

(2.19) 

k+ ( d )"~ c k+ ( d )"~ c + k- o + k- n2 - a ccyt p - d ccyt p a p d p 

op
0 a [ o oJ a [ o oJ !::lt = -~ fcytP - o:J d ferP 

tJ t!Ccyt t!Cer 
(2.20) 

+ k+ ( d )"~ c k- o k+ ( d )"~ o + k- n1 a ccyt p - a p - b ccyt p b p 

opnl - a [fnl nlJ a [fnl RIJ 
~t - -~ cytP -7Jd er P 

tJ t!Ccyt t!Cer 
(2.21) 

(2.22) 

where the advection rates f~yt' f~t' · · ·, f'!2 are functions of c~yt and c~r that can be 

read off from the ordinary differential equations for the cytosolic and luminal domain 

[Ca2+]. Consistent with Eqs. 2.10 and 2.11 these advection rates are 

i 1 ( T T ) 
fcyt = Ad Jrel - Jcyt 

cyt 
(2.23) 
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i 1 (T T) fer= Ad Jer- Jrel 
er 

(2.24) 

where i E {C, 0, R 1 , R 2}. Equations 2.23 and 2.24 include three fluxes that may 

influence the cytosolic and luminal [Ca2+] and, consistent with Eqs. 2.15-2.17, these 

are given by 

JT iT[d d] rel = 'Y vrel cer - ccyt (2.25) 

(2.26) 

J'!r = V~ [ Cer ( t) - C~r] , (2.27) 

where 'Yi indicates whether the Ca2+ channel is closed (rc = 'Yn1 = 'Yn2 = 0) or 

open (r0 = 1). Note that the rate constants v'!'e1, v'[yt, and v~ in Eqs. 2.25-2.27 are 

aggregate quantities and the parameter N representing the number of IP3Rs does 

not occur in the probability density formulation. As discussed above, in Monte Carlo 

simulations with finite N we always choose Vrel = v'!'ezl N, Vcyt = v'{yt/ N, Ver = v~j N 

so that the Monte Carlo simulation converges to the probability density result as N 

increases (see Section 2.4.2) 

The advection terms in Eqs. 2.19-2.22 involving partial derivatives with respect 

to c~yt and c~r correspond to the deterministic dynamics of the cytosolic and luminal 

domain Ca2+ that depend on IP3R state via 'Yi (Eq. 2.15). Conversely, the reaction 

terms in Eqs. 2.19-2.22 correspond to the stochastic gating of the four-state IP3R 

model whose transition rates are presented above (Eq. 2.7). That is, IP3R gating 

moves probability from one joint probability density to another in a manner that 

may [k;t(c~yt)TJ, k:(c~yt)TJ, etc.] or may not [k~, k{;, etc.] depend on the cytosolic 

domain [Ca2+]. 

It is important to note that the functional form of the fluxes J'{yt and J'{; occurring 

m Eqs. 2.23 and 2.24 involve the bulk cytosolic and luminal Ca2+ concentrations 

denoted by Ccyt(t) and Cer(t) in Eqs. 2.26 and 2.27. These bulk Ca2+ concentrations 
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satisfy ODEs that are similar in form to the concentration balance equations used in 

the Monte Carlo approach (Eqs. 2.8 and 2.9), 

dccyt * dt = J cyt + lzeak - lpump (2.28) 

deer 1 ( * ) dt = Aer -Jer- lzeak + lpump (2.29) 

where lzeak and lpump are as in Eqs. 2.13 and 2.14, but here 1;yt and 1;r are functionals 

of the probability densities [pi(c~Yt' c~r' t)] governed by Eqs. 2.19-2.22, that is, 

00 00 

1;yt = J J l'{yt ( c~yt, t) pT ( c~ytl c~r, t) dc~ytdc~r 
0 0 

00 00 

1;r = j j J'fr ( c~r, t) pT ( c~ytl c~r, t) dc~ytdc~r 
0 0 

(2.30) 

(2.31) 

where pT ( c~yt' c~r' t) = pc+p0 +pn1 +pn2 is the probability distribution of the cytosolic 

and luminal [Ca2+] irrespective of IP3R state, and the double integrals account for 

all possible values of domain Ca2+. 

2.3.3 Summary of model formulation 

The Monte Carlo and probability density formulations of a whole cell model of lo­

cal and global Ca2+ signaling are similar; for example, the equations governing the 

dynamics of the bulk cytosol and bulk ER are closely related (compare Eqs. 2.8-

2.9 to Eqs. 2.28-2.29). However, these two approaches differ greatly in how they 

represent the cytosolic and luminal Ca2+ domains associated with each IP3 R. For 

the traditional Monte Carlo approach each domain is modeled via one ODE result-

ing in a total of 2N ODEs (Eqs. 2.10-2.11), while the probability density approach 

uses four time-dependent mulitvariate probability densities for the cytosolic and lu-
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minal domain [Ca2+] jointly distributed with IP3R state (Eq. 2.18). A set of coupled 

advection-reaction equations~one for each state of the IP3R~govern the evolution 

of these densities (Eqs. 2.19-2.22). These advection-reaction equations are solved via 

a numerical scheme described in Appendix 2.6.6. The probability density approach 

is, of course, not limited to the four-state channel model (Eq. 2. 7) utilized in this pa­

per, but can be generalized to Markov chain models of intracellular Ca2+ channels of 

arbitrary complexity that include cytosolic Ca2+ regulation, luminal Ca2+ regulation, 

or both (see Appendix 2.6.5). 
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Parameter Definition Value 
Aer bulk ER effective volume fraction 1/6 
A~r total luminal domain effective volume fraction 1/30 
A~ut total cytosolic domain effective volume fraction 1/30 

k-::' kt IP3 R association rate constants 500 J.JM 1s 1 

k:, kt IP3 R association rate constants 4 J.JM- 1s-1 

k;;' k; IP3 R dissociation rate constants 1000 s-1 

kt;, k;; IP3 R dissociation rate constants 0.1 s-1 

T 
vrel release flux rate 10 s-1 

T 
Vcyt cytosolic domain collapse rate 100 s-1 

T ver luminal domain recovery rate 100 s-1 

Vzeak ER leak rate 0.01 s-1 

Vpump maximum pump rate 0.9 J.JMs- 1 

kpump dissociation constant of pump 0.2 J.JM 

Table 2.1: Standard parameters for the Monte Carlo and probability density models 
described in Sections 2.3.1 and 2.3.2. 
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2.4 Results 

2.4.1 Representative probability density and Monte Carlo 

simulations 

Figure 2.2 shows representative results from the Monte Carlo (Section 2.3.1) and 

probability density (Section 2.3.2) approaches to the many-compartment whole cell 

model that is the focus of this paper. The Monte Carlo calculation (open circles) 

uses a large but finite number of IP3Rs (N = 100,000) and is nearly identical to the 

probability density result (solid line). This agreement validates the formulation of the 

probability density approach and our implementation of both methods. Parameters 

are chosen so that whole cell Ca2+ oscillations are observed in the range of Ccyt = 0.1 

to 1 MM (top panel). Oscillations in the fraction of non-inactivated IP3Rs (nc + n°) 

are also observed, reflecting cycles of fast Ca2+ -mediated activation and slower Ca2+­

dependent inactivation of IP3Rs. 

Note that while the Ca2+ oscillations shown in Fig. 2.2 are qualitatively sim­

ilar to those exhibited by conventional ODE models of whole cell Ca2+ dynamics 

(Eqs. 2.1-2.6), both the Monte Carlo and probability density simulations include a 

representation of the influence of local Ca2+ signaling on IP3R gating that is lacking 

in conventional whole cell models. Figure 2.3 shows the distribution of cytosolic and 

luminal domain [Ca2+] for the simulation shown in Fig. 2.2 at t = 3 s. Note the agree­

ment between the histograms and gray circles that correspond to the Monte Carlo 

simulation, and the solid lines and contour plots that show the probability density 

result. The four central panels of Fig. 2.3 correspond to the four IP3R states and are 

arranged in manner consistent with the state-transition diagram (Eq. 2. 7). Only a 

small fraction of the IP3Rs are open at t = 3 s (n° = 0.0013). This value is calculated 
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Figure 2.2: Agreement of the Monte Carlo (open circles) and the probability density 
(solid line) approaches to a whole cell model of local and global Ca2+ dynamics 
that includes luminal and cytosolic Ca2+ domains associated with each IP3R (see 
Section 2.3). Oscillations of bulk cytoslic [Ca2+] (ccyt, top panel) and the bulk luminal 
[Ca2+] (cen bottom panel) are observed with both approaches. In the middle panel, 
the fraction of non-inactivated channels in the Monte Carlo simulation given by (Nc + 
No)/ N agrees with the corresponding quantity in the probability density calculation 
(1rc + 1r0 ). The Monte Carlo simulation uses N = 100,000 IP3Rs. Other parameters 
as in Table 2.1. 
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by integrating over all possible domain Ca2+ concentrations, that is, 

i JJ i d d d d 7r (t) = p (ccyt' cer' t) dccyt deer (2.32) 

where i is the IP3R state of interest. In the Monte Carlo calculations the fraction 

of open IP3Rs at this time is also low (No/N = 0.0014). But more importantly, 

in both the Monte Carlo and probability density calculations the few IP3Rs that 

are open experience elevated cytosolic and depleted luminal domain Ca2+, that is, 

(c~yt)o ~ Eo[c~yt] = 0.76 JLM and (c~r)o ~ E[c~rl = 8.84 JLM. Here (c~yt)o denotes the 

average cytosolic domain [Ca2+] in the Monte Carlo simulation conditioned on the 

sampled IP3R being in the open state, that is, 

(c~yt)o(t) = ~0 L c~~~ 
nEno 

(2.33) 

where N0 (t) is the number of open IP3Rs and n0 (t) = {n: §n = 0} is the set of in-

dices for IP 3Rs in the open state, while Eo[c~yt] is the corresponding joint expectation 

of the cytosolic domain [Ca2+] in the probability density calculation, 

(2.34) 

with (c~r)o and Eo[c~rl similarly defined. Figure 2.3 shows that at t = 3 s those 

channels that are closed (1rc = 0.24) or refractory (1rn1 + 1rn2 = 0.75) experience 

cytosolic and luminal domain Ca2+ concentrations near the bulk values of Ccyt 

0.1 JIM and Cer = 9.5 JLM; for example, (c~yt)i ~ Ei[c~yt] ~ 0.1 JLM where i E 

{ C, R 1 , R 2}. The dashed lines in the central four panels of Fig. 2.3 are the nullclines 

for domain Ca2+ (Eqs. 2.10-2.11) that take different positions depending on IP3R 

state and the current value of the bulk Ca2+ concentrations (ccyt and Cer)· 

The solid lines of Fig. 2.3 also show the marginal distributions of cytosolic domain 
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Figure 2.3: Snapshot of the distribution of cytosolic and luminal domain [Ca2+] jointly 
distributed with IP3R state at t = 3 sin Fig. 2.2 (just before the first Ca2+ spike) when 
the bulk cytosolic and luminal Ca2+ concentrations are 0.10 and 9.5 j.tM, respectively. 
The four central panels are arranged in a manner consistent with the IP3R state­
transition diagram (Eq. 2. 7) and show the relationship between cytosolic domain 
[Ca2+] (c~yt' horizontal axis) and luminal domain [Ca2+] (c~r' vertical axis). Note 
agreement between the Monte Carlo (gray dots) and probability density (solid contour 
lines) results. Contours are drawn such that 25, 50, and 75% of the density in each 
panel lies below each line. The uppermost and lowermost panels show the marginal 
distribution of c~yt (Eq. 2.35), while the leftmost and rightmost panels show the 
marginal distribution of c~r (Eq. 2.36), and here also there is agreement between the 
Monte Carlo (gray histograms) and probability density (solid lines) calculations. 
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[Ca2+] (horizontal) and luminal domain [Ca2+] (vertical) jointly distributed with IP3R 

state as calculated from the probability density approach, that is, 

(2.35) 

(2.36) 

where pi(c~yt' c~r' t) is one of the four bivariate densities (contours of central panels). 

For comparison, the corresponding marginal distributions of the Monte Carlo sim-

ulation are also shown. These marginal distributions indicate the range of elevated 

cytosolic domain [Ca2+] and depleted luminal domain [Ca2+] experienced by the N 

= 100,000 IP3 Rs. As the first oscillation in Fig. 2.2 begins (t = 3 s), the fraction of 

open IP3Rs is quite small (1r0 = 0.0013, N0 = 130) but the range of cytosolic luminal 

domain Ca2+ concentrations is broad compared to closed IP3 Rs (C, R 1, R 2 ). 

Figure 2.4 is identical to Fig. 2.3 except that the snapshot is taken at the peak of 

the first Ca2+ oscillation (see Fig. 2.2, t = 6 s). Here the fraction of open channels 

has increased from 1r0 = 0.0013 to 0.037 (No = 137 to 3,733). However, many more 

channels are now refractory as the [Ca2+] oscillation terminates. In the probability 

density calculation, the fraction of refractory IP3Rs (1rn1 + 7fR2 ) has increased from 

0.75 to 0.87, while in the Monte Carlo calculation the number of refractory channels 

(Nn 1 + Nn2 ) has increased from 75,257 to 87,627 (both consistent with 7fc + 1r
0 

in Fig. 2.2). When IP3Rs are refractory, the distribution of cytosolic and luminal 

domain [Ca2+] is focused near the bulk cytosolic and luminal Ca2+ concentrations. 

While this is similar to Fig. 2.3, the bulk cytosolic and luminal Ca2+ concentrations 

have changed significantly (ccyt = 0.88 JLM and Cer = 5.5 JLM, note shift of axes). The 

domain Ca2+ concentrations for closed IP3 Rs are more broadly distributed in Fig. 2.4 

than in Fig. 2.3, reflecting the fact that the C ----. 0 and 0 ----> C probability fluxes 

given by k""!;(c~ytf'pc and k;;p0 are much larger in Fig. 2.4. 
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Figure 2.4: Snapshot of the distribution of cytosolic and luminal domain [Ca2+] jointly 
distributed with IP3R state at t = 6 s in Fig. 2.2 (at the peak of the first Ca2+ 
oscillation) when the bulk cytosolic and luminal Ca2+ concentrations are 0.88 and 5.5 
f--LM, respectively. See legend of Fig. 2.3. 
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2.4.2 Monte Carlo simulations converge to the probability 

density result 

Figure 2.5 shows Monte Carlo simulations converging to the probability density result 

as the number of IP 3Rs increases. In each panel, three Monte Carlo results (dotted, 

dashed, and dot-dashed lines) are shown alongside the probability density calculation 

(solid line, replotted in each panel). When the Monte Carlo calculation includes rela­

tively few IP3Rs (N = 100), the stochastic gating of the channels leads to fluctuations 

in the oscillatory dynamics of bulk cytosolic [Ca2+] that decrease when N is increased 

to 1,000. In the Monte Carlo simulation with N = 10,000 channels, the dynamics 

of the bulk cytosolic [Ca2+] is very similar to the probability density result (com­

pare broken and solid lines). Small quantitative differences in the dynamics of bulk 

cytosolic [Ca2+] are observed in Monte Carlo simulations even when N = 100,000 

(not shown). These fluctuations are responsible for the minor disparities between the 

marginal probability distributions and histograms in Fig. 2.4 that are most apparent 

when IP3Rs are in long-lived refractory states with c~yt ~ Ccyt and c~r ~ Cer· That is, 

when the calculations shown in Figs. 2.3 and 2.4 are repeated, the marginal distribu­

tions of the probability density result are unchanged, while the histograms obtained 

from the Monte Carlo simulation vary because the average domain Ca2+ concentra­

tions ( (c~yt)i and (c~r)i) are strongly influenced by the bulk Ca2+ concentrations (ccyt 

and Cer) that are slightly different for each trial. 

2.4.3 Computational efficiency 

While Figs. 2.2-2.4 demonstrate the validity of the probability density approach to 

whole cell modeling of local and global Ca2+ dynamics, this section benchmarks the 

method's computational efficiency. The solid line of Fig. 2.6 shows the 85 minute run 

time required for the 25 second simulation of Fig. 2.2, using the numerical scheme 
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Figure 2.5: Oscillations of bulk cytosolic [Ca2+] ( Ccyt) for simulations with increasing 
numbers of IP3Rs (N=100; 1,000; 10,000). The dotted, dashed, and dot-dashed lines 
correspond to three distinct Monte Carlo simulations. The solid line is the probability 
density result (replotted in each panel). 
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presented in Appendix 2.6.6 with an 30 x 30 mesh for the four probability densities 

jointly distributed with IP3R state. For comparison, the dotted line of Fig. 2.6 shows 

the run time required for a corresponding Monte Carlo simulation using N = 10 to 

100,000 IP3Rs. As expected, the run time of the Monte Carlo calculations are ap­

proximately proportional to the number of IP3Rs used (N). Note that the probability 

density approach becomes computationally more efficient than the Monte Carlo sim­

ulation when N ~ 1,000, long before a physiologically realistic number of IP3Rs are 

included. 

In Fig. 2.6 the time step used is as large as possible for each method; the average 

time step of the probability density calculation is 3 ms (constrained by numerical 

stability of the advection-reaction equations), while in the Monte Carlo calculation 

tlt = 0.01 ms (chosen so that the maximum IP3R transition probability per time step 

is less than 0.05). Of course, the computational advantage of the probability density 

approach is diminished when this method is arbitrarily forced to use the time step 

required by the Monte Carlo simulation (not shown). While refining the mesh used in 

the probability density calculation increases the run time due to a greater number of 

mesh points and stricter requirements on the time step for numerical stability, meshes 

25 x 25 or larger lead to bulk cytosolic [Ca2+] dynamics that are indistinguishable 

from Fig. 2.2 where a 100 x 100 mesh is used. 

2.4.4 Influences of domain calcium 

Having validated and benchmarked the probability density approach as an alternative 

to Monte Carlo simulation of the whole cell model that is the focus of this paper, 

Fig. 2. 7 uses this method to highlight the influence of local Ca 2+ signaling on bulk 

cytosolic Ca2+ oscillations. The solid lines in Fig. 2.7 reproduce the oscillation in 

bulk cytosolic [Ca2+] of Figs. 2.2-2.5 where the rate of cytosolic domain collapse is 

Vcyt = 100 s-1 , the rate of luminal domain recovery is Ver = 100 s-1 , and the release 
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Figure 2.6: Dashed line with filled squares shows the run time of a 25 second Monte 
Carlo simulation of the whole cell model of local and global Ca2+ dynamics presented 
in Figs. 2.2-2.4 as the number of IP3Rs is increased from N = 10 to 100,000 (!:lt = 
0.01 ms). Solid line shows the run time of the corresponding mulitvariate probability 
density simulation (average !:lt = 3 ms). Benchmark calculations computed using a 
2.3GHz dual processor Xserve G5 running Mac OS X Server 10.4.9. 
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rate through open IP3Rs is Vrel = 10 s-1
. 

The broken lines in the upper panel of Fig. 2. 7 repeat this probability density 

calculation using slower cytosolic domain collapse rates. When Vcyt = 50 s-1 (dashed 

line), the amplitude of the [Ca2+] oscillations decreases and their frequency increases. 

When Vcyt = 25 s- 1 (dot-dashed line), the oscillations are no longer observed. Note 

that decreasing Vcyt not only slows domain collapse but also increases the steady-state 

cytosolic domain [Ca2+] associated with open IP3Rs (see Eq. 2.39). Decreased Vcyt 

may also increase the open probability of non-refractory channels (n° /(n° + nc)) 

as 'residual' [Ca2+] from previous channel openings increases the rate of the Ca2+­

mediated C ---t 0 transition [Mazzag et al., 2005b]. 

The broken lines in the lower panel of Fig. 2.7 show how Ca2+ oscillations are 

modified when the rate of luminal domain recovery is decreased from the standard 

value of 100 s- 1 (solid line). When Ver = 10 and 1 s- 1 (dashed and dot-dashed lines), 

both the amplitude and frequency of the [Ca2+] oscillations decreases. When Vcyt = 

0.1 s- 1 (dotted line), the oscillations are no longer observed. Decreasing Ver slows 

domain recovery, decreases the steady-state cytosolic domain [Ca2+] associated with 

open IP3Rs (see Eq. 2.39), and decreases the release flux via open IP3Rs [Huertas 

and Smith, 2007a]. 

Taken together, the upper and lower panels of Fig. 2.7 demonstrate that the time 

constants for cytosolic domain collapse and luminal domain refilling can dramati­

cally influence the stochastic gating of IP3Rs and, consequently, the dynamics of bulk 

cytosolic and luminal [Ca2+]. Figure 2. 7 also suggests that whole cell modeling ap­

proaches that do not account for the influence of local Ca2+ signals on the stochastic 

gating of intracellular channels may produce inaccurate global Ca2+ responses. 
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Figure 2. 7: Influence of local Ca2+ signaling on bulk cytosolic [Ca2+J ( Ccyt) dynamics 
as calculated using the probability density approach. The top panel shows the effect 
of decreasing the cytosolic domain collapse rate ( Vcyt) from 100 s-1 (solid line) to 
50 s-1 (dashed line) and 25 s-1 (dot-dashed line). The bottom panel illustrates the 
influence of decreasing the luminal domain recovery rate ( Ver) from 100 s-1 (solid 
line) to 10 s-1 (dashed line), 1 s-1 (dot-dashed line), and 0.1 s-1 (dashed line). Other 
parameters as in Fig. 2.2 and Table 2.1. 
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2.4.5 Model reduction based on separation of time scales 

While the probability density approach to modeling local and global Ca2+ dynam­

ics can be more efficient than traditional Monte Carlo simulation (Section 2.4.3), 

under certain conditions the advection-reaction equations of the probability density 

approach (one PDE for each state of the IP3R) can be reduced to an equivalent num­

ber of ODEs, greatly facilitating simulation. As shown schematically in the upper 

right panels of Fig. 2.8, when the stochastic gating of intracellular Ca2+ channels is 

slow compared to the dynamics of cytosolic and luminal domain Ca2+, the values 

of c~~~ and c~~n associated with closed channels are well-approximated by the bulk 

Ca2+ concentrations Ccyt and Cer· On the other hand, the values associated with open 

channels are well-approximated by the steady-state quantities c~~~s and c~~ss found 

by setting the left hand sides of Eqs. 2.10 and 2.11 to zero with "'n = 1 in Eq. 2.15 

(see Section 2.4.5.1 and Appendix 2.6.2). Conversely, when the stochastic gating of 

intracellular Ca2+ channels is fast compared to the dynamics of domain Ca2+ as in 

the lower right panels of Fig. 2.8, c~~~ and c~~n are well-approximated by c~~~ and 

c~~*, algebraic functions of Ccyt and Cer that do not depend on channel state (see Sec­

tion 2.4.5.2 and Appendix 2.6.3). Note that both of these reductions lead to a system 

of ODEs that includes a representation of the dynamics of local Ca2+ signals and, 

consequently, these reduced models are more realistic than conventional whole cell 

models. 
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Figure 2.8: Schematic representation of the 2N +2-compartment Monte Carlo model 
of local Ca2+ signaling where the ellipsis indicate a large number (N) of IP3Rs with 
associated cytosolic and luminal Ca2+ domains (Section 2.3.1). In the limit of a 
large number of IP 3Rs ( N --+ oo), an alternative probability density approach (Sec­
tion 2.3.2) can be used in which cytosolic and luminal domain Ca2+ concentrations 
are represented by multivariate probability density functions (here the ellipsis indi­
cate the number of IP3R states). When the time scales of channel gating and domain 
formation are adequately separated, the probability density approach can be reduced 
to a system of ODEs that account for the influence of local Ca2+ signaling on global 
Ca2+ dynamics, i.e., the "fast domain/slow channel" (Section 2.4.5.1) and "slow do­
main/fast channel" (Section 2.4.5.2) approximations. 
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2.4.5.1. Fast domain/slow channel approximation 

Figure 2.8 (upper right) shows a schematic representation of the probability densities 

associated with closed and open IP3Rs when the domain Ca2+ concentrations are 

fast compared to channel kinetics. The dashed lines in Fig. 2.8 are the nullclines for 

domain Ca2+ (Eqs. 2.10-2.11) that take different positions depending on IP3R state 

and the current value of the bulk Ca2+ concentrations. When this separation of time 

scales applies and the IP3R is closed (i.e., in state i E {C, R 1 , R 2 } ), the multivariate 

joint probability densities are well-approximated by 

i d d i d d p (ccyt' Cer' t) = 7r (t)6(ccyt- Ccyt)6(cer- Cer), (2.37) 

where 6 ( ·) is the Dirac delta function, Ccyt and Cer are the bulk Ca 2+ concentrations, 

and ni(t) = Pr{S(t) = i}. When the IP3R is open, the multivariate joint probability 

density is well-approximated by 

0( d d t)- o(t)"( d d,ss)"( d d,ss) p Ccyt' Cer' - 7r u Ccyt - Ccyt u Cer - Cer (2.38) 

where the elevated cytosolic ( c~~~s) and a depleted luminal ( c~~ss) domain Ca2+ con­

centrations are found by setting the left hand sides of Eqs. 2.10 and 2.11 to zero with 

In = 1, that is, 
I 

d,ss Vcyt Ver 
Ccyt - I Ccyt + I Cer 

Vcyt + Ver Vcyt + Ver 
(2.39) 

I 

d Vcyt Ver 
C ,ss = c + c er 1 cyt 1 er 

Vcyt + Ver Vcyt + Ver 
(2.40) 

where 

1 VrelVcyt 
vcyt = 

Vrel + Vcyt 
and 

When these assumed forms of the probability densities (Eqs. 2.37-2.38) are sub-

stituted into the advection-reaction equations for the probability density approach 
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(Eqs. 2.19-2.22), the resulting equations can be integrated with respect to cytoso­

lic and luminal domain Ca2+ (see Appendix 2.6.4) to obtain a system of ordinary 

differential equations for the fraction of IP3Rs in each state, 

dnc 
_ k+ ( )"l c k+ ( )TJ c + k- o + k- n2 dt - - a Ccyt 7r - d Ccyt 7r a 7r d 7r (2.41) 

dn° _ k+( )"l C k- 0 k+( d,ss)TJ 0 + k- R 1 dt - a Ccyt 7r - a 7r - b Ccyt 7r b 7r (2.42) 

(2.43) 

(2.44) 

where the cytosolic domain Ca2+ concentrations associated with Ca2+ -mediated tran­

sitions out of closed and open states are Ccyt and c~~~s, respectively. 

To complete the reduced model, we require concentration balance equations that 

allow us to solve for the bulk concentrations Ccyt and Cer· When Eqs. 2.28-2.29 

are used for this purpose, substitution of Eqs. 2.37-2.38 into Eqs. 2.30-2.31 leads 

to J;yt = n°v'[yt ( c~~~s - Ccyt) for the flux out of the cytosolic domains and J;r = 

n° v~ ( Cer - c~~ss) for the flux into the 1 uminal domains. However, the reduced model 

given by these fluxes, Eqs. 2.28-2.29, and Eqs. 2.41-2.44 does not conserve the total 

cell Ca 2+ defined by 

where A~yt and A~r (Eq. 2.12) are the relative effective volume of the aggregated 

cytosolic and luminal domains; and c~yt and c:r are the average cytosolic and lu­

minal domain concentrations. Note that in the probability density approach these 
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concentrations are given by 

(2.45) 

and similarly for cir· In the fast domain/slow channel limit where the probability 

densities take the form indicated in Eqs. 2.37 and 2.38, the average cytosolic and 

luminal domain concentrations are given by 

-d 0 d,ss ( 1 (')) 
Ccyt = 7r Ccyt + - 7r Ccyt (2.46) 

(2.47) 

In order to derive a reduced model that conserves total calcium, we have found it 

necessary to use balance equations for the following auxilary concentrations, 

A +Ad -d 
Ccyt = Ccyt cytccyt 

A A~r -d 
Cer = Cer + ~Cer' 

Aer 

(2.48) 

(2.49) 

that are obtained by lumping the bulk compartments with their associated domains. 

To derive concentration balance equations for Ccyt and Cen consider the Monte Carlo 

model with finite N, where the average domain concentrations are given by, 

1 N 
-d ~ d,n 
ccyt = N ~ Ccyt 

n=l 

By differentiating these equations, 

and 

and 

45 

N 
-d 1 ~ dn 
cer = N ~ce~. 

n=l 

d-d 1 N d dn 
cer- ~ ce~ 

dt- N~ili' 
n=l 

(2.50) 

(2.51) 



and substituting into Eqs. 2.8-2.11, it can be shown without approximation that Ccyt 

and Cer- solve 

dccyt r & = Jrel + ]leak - Jpump (2.52) 

deer 1 ( r ) dt = ~ - Jrel - ]leak + I pump 
er 

(2.53) 

where ]leak and ]pump are given by Eqs. 2.13 and 2.14 and J'f'e1 = 2:::=l "·tvrel(c~~n­
c~~~) (Eq. 2.15). However, in the fast domain/slow channel limit where the probability 

densities take the form Eqs. 2.37-2.38, the total release flux is, 

J T _ 0 T ( d,ss d,ss) 
rel - 1f Vrel Cer - Ccyt (2.54) 

because c~~~ ~ c~~~s and c~~n ~ c~~ss for open IP3Rs. Note that when Eqs. 2.52-2.54 

are numerically integrated, the fluxes Jleakl ]pump, and J'f'e1 (all functions of Ccyt and 

Cer using Eqs. 2.39-2.40) must be evaluated using the current values of Ccyt and Cer 

using Eqs. 2.46-2.49 (see 2.6.2). 

The six ODEs (Eqs. 2.41-2.44 and Eqs. 2.52-2.53) and various algebraic relations 

(Eqs. 2.39-2.40 and Eqs. 2.46-2.47) and fluxes (Eqs. 2.5, 2:6, and 2.54) constitute 

a whole cell model that represents both local and global Ca2+ handling under the 

assumption of fast Ca2+ domains and slow IP3R gating. We will refer to this model 

below as the "fast domain/slow channel approximation." 

2.4.5.2 Slow domain/fast channel approximation 

Figure 2.8 (lower right) shows a schematic representation of the probability densities 

associated with closed and open IP3Rs when the domain Ca2+ concentrations are slow 

compared to channel kinetics. In this case, the multivariate joint probability density 

functions are well-approximated by 

i( d d t) - i(t) s:( d d,*) s:( d d,*) P Ccyt' Cer' - 1f u Ccyt - Ccyt u Cer - Cer (2.55) 
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Figure 2.9: A) Snapshot of the distribution of cytosolic and luminal domain [Ca2+] 
jointly distributed with IP3R state at t = 380 s when IP3R kinetics are decreased 
by a factor of 100 (cf. Table 2.1). The four central panels are arranged in a manner 
consistent with the IP3R state-transition diagram (Eq. 2. 7) and show the relationship 
between cytosolic (c~Yt' horizontal axis) and luminal (c~r' vertical axis) domain Ca2+. 
Note location of probability mass in agreement with schematic of the fast channel/ slow 
domain approximation shown in Fig. 2.8. B) The probability density calcuation 
during a 500 s simulation (solid line), the fast domain/slow channel approximation 
(dashed lines), and the slow domain/fast channel approximation (dotted lines). 
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where i E { C, 0, R 1 , R 2}, that is, the probability mass is focused at approximately 

the same location regardless of IP3R state. In this expression, the quantities c~;;~ and 

c~~* are functions of n°, Ccyt, and Cer that can be found by setting the left hand side of 

Eqs. 2.10 and 2.11 to zero after replacing ···t by n° (the open probability of a rapidly 

gating IP3R), that is, 

(2.56) 

* d Vcyt Ver 
c •* = c + c er * cyt * er 

Vcyt + Ver Vcyt + Ver 
(2.57) 

where 

(2.58) 

d * - 0 an Vrel - 7r Vrel· 

When this assumed form of the probability densities (Eq. 2.55) is substituted into 

the advection-reaction equations for the probability density approach (Eqs. 2.19-

2.22), the fraction of IP3 Rs in each state are found to solve (see 2.4.5.2), 

dnc _ k+( d,*)TJ c k+( d,*)"' c k- o k- nz dt - - a Ccyt 1f - d Ccyt 1f + a 1f + d 1f (2.59) 

(2.60) 

(2.61) 

(2.62) 

Note that in the slow domain/fast channel ODEs (Eqs. 2.59-2.62) the cytosolic do­

main [Ca2+] associated with Ca2+ -mediated transitions is given by c~Y~ regardless of 

IP3R state, while in the fast domain/slow channel ODEs (Eqs. 2.41-2.44), the cy­

tosolic Ca 2+-mediated transitions out of closed and open states involve Ccyt and c~;;~s, 
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respectively. 

The slow domain/fast channel approximation is completed using the balance equa­

tions for the auxilary concentrations Ccyt and Cer derived above (Eqs. 2.48-2.49), but 

in this case the cytosolic and luminal domain Ca2+ concentrations are approximated 

by c~~~ ~ c~~~ and c~~n ~ c~~*, so the average domain concentrations (Eq. 2.50) are 

given by 

and (2.63) 

while 

JT _ 0 T ( d,* d,*) 
rel - 7f Vrel Cer - Ccyt · (2.64) 

The six ODEs (Eqs. 2.59-2.62 and Eqs. 2.52-2.53) and various algebraic relations 

(Eqs. 2.56-2.57 and Eq. 2.63) and fluxes (Eqs. 2.5, 2.6, 2.64) constitute a whole cell 

model that represents both local and global Ca2+ handling under the assumption of 

slow Ca2+ domains and fast IP3R gating. We will refer to this model below as the 

"slow domain/fast channel approximation." 

2.4.6 Validation of reduced whole cell models of local and 

glo hal calci urn dynamics 

To validate the fast domain/slow channel approximation of Section 2.4.5.1, the sim­

ulation of Figs. 2.2-2.4 was repeated after decreasing the channel rate constants by 

two orders of magnitude (k;, kt, etc. in Eq. 2.7). Fig. 2.9A shows the multivari­

ate probability densities at the peak of the first Ca2+ oscillation that now occurs at 

t = 380 s. Notice that the probability density for cytosolic and luminal domain Ca2+ 

is focused at ( Ccyt,Cer) and ( c~~~s ,c~~ss) when IP3Rs are closed and open, respectively, 

consistent with the schematic in Fig. 2.8 (upper right), although this was not the 

case for l and p0 when the IP3R had faster kinetics (Fig. 2.4). As expected, slowing 

the IP3R rate constants places the probability density calculation securely in the fast 
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domain/slow channel limit (Section 2.4.5.1). Fig. 2.9B shows the fast domain/slow 

channel approximation (dashed line) agreeing with the probability density calcuation 

during a 500 s simulation (the long oscillation period is due to the slow IP3R kinet­

ics). Because the IP3R kinetics are slow compared to the Ca2+ domains, the slow 

domain/fast channel approximation (dotted lines) does not work well. 

Conversely, Fig. 2.10A shows the multivariate probability densities at t = 5 s 

when the IP3 R rate constants are increased by two orders of magnitude compared 

to the standard parameters used in Figs. 2.2-2.4. In this case, the cytosolic and 

luminal domain Ca 2+ concentrations are positioned at ( c~Y~ ,c~/) regardless of IP 3R 

state, consistent with Fig. 2.8 (lower right). Although increasing the IP3R kinetics 

to this degree eliminates the Ca2+ oscillations, what is more important is that now 

the slow domain/fast channel approximation (dotted line in Fig. 2.10B) agrees with 

the probability density calculation (solid line), while the fast domain/slow channel 

approximation (dashed line) does not work well. 

Taken together, Figs. 2.9 and 2.10 validate the two reduced models of global 

Ca2+ dynamics derived in Section 2.4.5 that account for the influence of local Ca2+ 

signaling on global Ca2+ dynamics when there is a separation of time scales between 

the stochastic gating of IP3Rs and the dynamics of domain Ca2+. 

2.5 Discussion 

While several groups have presented simulations of one or more Ca2+ channels stochas­

tically gating under the influence of a time-dependent or time-independent Ca2+ do­

main [Sherman et al., 1990b, Mazzanti et al., 1991, Swillens et al., 1994, Bertram 

et al., 1999, Rios and Stern, 1997, Swillens and Champeil, 1998, Swillens and Dupont, 

1999,Stern et al., 1999a,Shuai and Jung, 2003,Falcke, 2003a,Falcke, 2003b], the whole 

cell model of local and global Ca2+ responses that is the focus of this paper includes 
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2N+2 compartments and N=100,000 diffusely distributed IP3Rs, each represented by 

a four-state Markov chain. Two of these compartments correspond to bulk cytosolic 

and luminal [Ca2+], and the remaining 2N compartments represent time-dependent 

cytosolic and luminal Ca2+ domains associated with each IP 3R. This formulation is 

significantly more complex and realistic than traditional whole cell models such as 

Eqs. 2.1-2.6 that assume IP3Rs are globally coupled by a continuously stirred bulk 

cytosolic [Ca2+], and thereby neglect the influence of local Ca2+ signaling on channel 

dynamics. On the other hand, the Monte Carlo model presented in Section 2.3.1 

is simple and convenient compared to a full three dimensional simulations of Ca2+ 

handling [Means et al., 2006]. 

Using this 2N +2-compartment Monte Carlo model as a starting point, we present 

an alternative "probability density" formulation that solves a system of advection­

reaction equations for the distribution of cytosolic and luminal domain Ca2+ concen­

trations jointly distributed with IP3R state (Section 2.3.2). When these equations are 

coupled to ODEs for the bulk cytosolic and luminal [Ca2+], we obtain a realistic but 

minimal model of whole cell Ca2+ dynamics that accounts for the influence of local 

Ca2+ signaling on channel gating and global Ca2+ responses. In Sections 2.4.1-2.4.3 

this probability density approach was validated through agreement with the Monte 

Carlo simulation when the number of IP3Rs is large (Fig. 2.5), and for N > 1000 we 

find the probability density calculation is computationally more efficient than Monte 

Carlo (Fig. 2.6). 

In Section 2.4.4 the probability density approach was used to demonstrate how the 

time scale of Ca2+ domain formation and collapse (both cytosolic and luminal) may in­

fluence the amplitude, frequency, and existence of global Ca2+ oscillations. While our 

prior work has investigated how residual Ca2+ from previous channel openings [Maz­

zag et al., 2005b] and luminal depletion [Huertas and Smith, 2007a] can influence 

the stochastic gating of Ca2+ -regulated channels, Fig. 2. 7 demonstrates that the time 
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constants for cytosolic domain collapse ( Vcyt) and luminal domain refilling ( Ver) can 

influence the stochastic gating of IP3Rs and have dramatic consequences on the dy­

namics of bulk cytosolic and luminal [Ca2+]. 

So long as the average rate equations such as Eq. 2.2 are interpreted as phe­

nomenological descriptions of the dynamics of Ca2+ activation and inactivation of 

intracellular channels, traditional whole cell models of Ca2+ handling such as Eqs. 2.1-

2.6 are an appropriately minimal description of global Ca2+ responses [Keizer et al., 

1995, Li et al., 1995]. But to the extent that whole cell models are modular con­

structs in which the stochastic gating of Ca 2+-regulated channels is constrained by 

single channel data, the use of an average rate equation that assumes a large number 

of intracellular Ca2+ channels are globally coupled via the bulk cytosolic [Ca2+] ( Ccyt) 

is a severe limitation. In the alternative whole cell modeling approach explored here, 

the advection-reaction equations of the probability density approach represent the 

dynamics of intracellular channels in a manner that accounts the influence of local 

Ca2+ signaling on the stochastic gating of diffusely distributed channels and result­

ing global Ca2+ responses. As in the traditional formulation, the probability density 

approach assumes a large number of intracellular channels. However, the probability 

density approach considers this large N limit while maintaining a description of the 

cytosolic and luminal Ca2+ domains associated with individual IP3Rs. In the trade-off 

between model complexity and realism in simulations of global Ca2+ responses, the 

probability density approach is an interesting compromise; it is more realistic than 

traditional whole cell models that neglect the effect of local Ca2+ signaling on channel 

dynamics, but less computationally intensive than explicitly spatial simulations. 

The Monte Carlo model of local and global Ca2+ signaling that is the starting point 

for the probability density approach was suggested by our prior work modeling the 

local control of excitation-contraction coupling in cardiac myocytes. While traditional 

whole cell models of cardiac myocytes based on realistic Markov chain models of 
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RyR gating are unable to reproduce Ca2+ release that is graded with the amount 

of Ca2+ influx [Stern, 1992b], more complex and realistic models of EC coupling are 

able to simulate graded Ca2+ release by treating 1-type Ca2+ channels and RyR 

clusters as stochastic Ca2+ release units (CaRUs), each of which is associated with 

its own diadic subspace and junctional SR [Ca2+]. An analogous approach is taken 

in the Monte Carlo model that is the focus of this paper (Section 2.3.1), that is, each 

individual IP3 Ris associated with a restricted cytosolic and luminal compartment 

and the dynamics of [Ca2+] in these compartments are interpreted as time-dependent 

Ca2+ domains (Eqs. 2.10-2.11). Admittedly, one limitation of this formulation is 

that there is little evidence for restricted cytosolic and luminal spaces associated with 

diffusely distributed IP3Rs. On the other hand, it is not upreasonable to use first 

order kinetic equations for domain Ca2+ as a starting point for the investigation of 

the impact of local Ca2+ signals on global Ca2+ oscillations. When the details of 

the spatia-temporal dynamics of buffered diffusion of intracellular Ca2+ near single 

channels are important, numerical and analytical methods based on the equations for 

the buffered diffusion of intracellular Ca2+ should be employed [Neher, 1986, Smith, 

1996, Smith et al., 1996, Smith et al., 1998, Neher, 1998b, Neher, 1998a, Naraghi and 

Neher, 1997, Smith et al., 2001]. In our opinion, simulation methods that combine 

the probability density approach to modeling local and global Ca2+ responses with 

more realistic representations of local Ca2+ signaling is an important topic for further 

research. 

In Section 2.4.5 the probability density formulation was used to derive two re­

duced models of global Ca2+ dynamics that account for the influence of local Ca2+ 

signaling on global Ca2+ dynamics when there is a separation of time scales between 

the stochastic gating of IP3Rs and the dynamics of domain Ca2+. These derivations 

begin by assuming a particular form for the probability densities: Eqs. 2.37-2.38 in 

the case of the fast domain/slow channel approximation, and Eq. 2.55 in the case 
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of the slow domain/fast channel approximation. It is important to note that reduc­

ing the probability density formulation in this manner is not particularly rigorous, 

and the discrepancies between the full and reduced models observed in Figs. 2.9 

and 2.10 are likely due to the fact that the limiting probability distributions are 

not delta functions. A more rigorous analysis of the consequences of separation of 

time scales between channel kinetics and the dynamics of domain Ca2+ would involve 

nondimensionalization, assumptions about the relative size of model parameters, and 

perturbation methods. 

While the probability density approach to modeling local and global Ca2+ re­

sponses accurately accounts for the dynamics of cytosolic and luminal Ca2+ domains 

associated with a large number of IP3Rs, it nevertheless assumes continuously stirred 

bulk cytosolic and ER compartments. In order to investigate the significance of this 

limitation, the Monte Carlo calculations were extended to include spatially explicit 

bulk concentrations in a one-dimensional cell (see Fig. 2.11 and Appendix 2.6.7). 

When the effective diffusion coefficient for Ca2+ within the bulk cytosol and ER is in 

the range 10-100 11m2
/ s, we found that the dynamics of global Ca2+ oscillations were 

very similar to probability density calculations that assume continuously stirred bulk 

cytosolic and ER compartments (Figs. 2.12-2.15). Thus, it appears that the prob­

ability density methodology that is the focus of this paper (Section 2.3.2) need not 

resolve spatial aspects of global Ca2+ signaling in order to accurately represent the 

effect of heterogeneous local Ca2+ on the stochastic dynamics of intracellular Ca2+ 

channels during global Ca2+ responses. 

A natural question for further research is whether whole cell models based on the 

probability density approach-with its realistic and compact representation of the 

dynamics of domain Ca2+ -exhibit the same bifurcation structure as conventional 

whole cell models. Because the answer to this question will depend on the single 

channel model used, it is important to note that the probability density approach 
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can be applied to single channel models of arbitrary complexity that include cytosolic 

Ca2+ regulation, luminal regulation, or both (see Appendix 2.6.5). Because it will 

be significantly more challenging to perform such analysis on whole cell models that 

utilize advection-reaction equations rather than ODEs to represent the dynamics of 

intracellular channels, a good starting point for this future work would be a com­

parison of the bifurcation structure of traditional whole cell models to the reduced 

models that are applicable when Ca2+ domains are either fast or slow compared to 

channel kinetics (Section 2.4.5) [Smith, 2002a]. 

Finally, we note that this presentation of the probability density approach to 

modeling whole cell Ca2+ dynamics while accounting for the influence of local Ca2+ 

signaling on channel gating has assumed that IP3Rs are "diffusely distributed," that 

is, each of of N cytosolic compartments representing cytosolic domains is associated 

with a Markov chain representing one channel (similarly for the N luminal compart­

ments). There is evidence that IP3Rs are diffusely distributed in some cell types. 

While canine pulmonary arterial smooth muscle cells exhibit IP3-induced intracellu­

lar Ca2+ transients, discrete events expected due to the coordinated opening of IP3R 

clusters (i.e., Ca2+ puffs) are not observed, suggesting that IP3Rs are diffusely dis­

tributed within the ER membrane [Wilson et al., 2002]. In several cell types IP3Rs 

are diffusely distributed at rest, but redistribute into clusters after stimulation (e.g., 

rat basophilic leukemia, rat pancreatoma, and hamster lung broblast cells). [Wilson 

et al., 1998]. In other cell types, IP3-dependent Ca2+ release occurs via Ca2+ re­

lease sites composed of clusters of IP3Rs (e.g., Xenopus oocytes and oligodendrocyte 

progenitors) [Mak and Foskett, 1997, Haak et al., 2001]. 

The functional consequences of IP3R clustering for whole cell responses could 

be studied using the new class of whole cell models that is the focus of this paper 

by assuming that the cytosolic Ca2+ binding sites of each channel at a release site 

experience the same local [Ca2+]. For example, if M denotes the number of channel 
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states, S denotes the number of channels per release site, the expanded Markov chain 

model for the Ca2+ release site has M+S-1-choose-S distinguishable states [Nguyen 

et al., 2005]. The resulting model would include one advection-reaction equation for 

each distinguishable state of the Ca2+ release site as well as two ODEs for the bulk 

cytosolic and ER Ca2+ concentrations. Such a model (or the corresponding fast/slow 

reductions) could be employed to study the effect of clustering of intracellular channels 

on the dynamics of global Ca2+ responses. 

2.6 Appendices 

2.6.1 Advection-reaction equations for the joint probability 

densities 

Eqs. 2.19-2.22 are a differential Chapman-Kolmogorov equation [Gardiner, 2004] that 

the multivariate probability densities of Eq. 2.18 must solve in order to be consistent 

with the dynamics of the Monte Carlo model (Section 2.3.1) in the limit of a large 

number of IP3Rs (N---+ oo). Because the cytosolic and luminal domain Ca2+ concen­

trations evolve deterministically according to Eqs. 2.10-2.11, the only stochasticity is 

due to the gating of the IP3Rs, and the resulting master equation is given by Eqs. 2.19-

2.22. To see this, consider the simpler situation where a continuous random variable 

X evolves according to 

dX 
dt = fc;o when S(t) = C/0 (2.1) 

where S(t) E {C, 0} is a two-state continous-time telegraph process with transition 

rates kco and k0 c. In this case the time-dependent joint probability densities pc(x, t) 
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and Po ( x, t) defined by [Mazzag et al., 2005b] 

Pc;o(x, t)dx = Pr{x <X< x + dx and S(t) = C/0} (2.2) 

solve 

ope a 
ot = -ox [fcPc] - kcoPc + kocPo (2.3) 

opo 8 
7ft=- ox [foPo] + kcoPc- kocPo· (2.4) 

Eqs. 2.3 and 2.4 represent a conservation law indicating that the probability density 

can only change due to the impact of the distinct deterministic dynamics of X (the 

advection terms) or the stochastic dynamics of S (the reaction terms). Advection­

reaction equations for the joint probability densities (Eqs. 2.19-2.22) are a generaliza-

tion of this result to include the deterministic dynamics of two domain concentrations 

(resulting in advection terms with partial derivatives with respect to both c~yt and 

c~r) and the stochastic dynamics of an IP 3R with four states and Ca 2+ -dependent 

transition rates (resulting in four equations with more complicated reaction terms). 

Note that if Ca2+ fluxes were modeled in a discrete and stochastic fashion (i.e., move­

ment of individual ions), in an appropriate limit a master equation can be obtained 

that is similar to Eqs. 2.19-2.22 but includes a diffusion term in each equation [Kepler 

and Elston, 2001]. 

2.6.2 Fast domain/slow channel approximation 

In the fast domain/slow channel approximation the assumed form of the probability 

densities (Eqs. 2.37 and 2.38) are substituted into the advection-reaction equations 

for the probability density approach (Eqs. 2.19-2.22) to obtain a system of ordinary 

differential equations for the fraction of IP3 Rs in each state (Eqs. 2.41-2.44). Here we 

show that substituting Eq. 2.38 into Eq. 2.20 and integrating the resulting equations 
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with respect to cytosolic and luminal domain [Ca2+]leads term by term to Eq. 2.42. 

The left hand side of Eq. 2.20 becomes 

Joojoo fJpO d d 

Bt decyt deer = 
0 0 
00 00 

J J fJ [ 0 -'( d d,ss) -'( d d,ss)] fJt 7r u ecyt - ecyt u eer - eer 

0 0 
00 00 

d1r
0 J J "( d d,ss)"( d d,ss) d d d d dt u ecyt - ecyt u eer - eer ecyt eer 

0 0 

which due to the properties of the Dirac delta function is equal to d1r0 / dt, the left 

hand side of Eq. 2.42. The first term on the right hand side of Eq. 2.20 involving 

the partial derivative with respect to e~yt disappears after integrating with respect to 

cytosolic and luminal domain Ca2+, because 

1
00 

fJ [ 0 OJ - """"!)d fcytP 
0 ecyt 

d 0 01 00 

decyt = - fcytP 0 = 0, 

a consequence of the fact that the probability density p0 (e~yt• e~r' t) evaluates to zero 

at the minimum and maximum physical values for the domain [Ca2+]. Similarly, the 

second term on the right hand side of Eq. 2.20 involving the partial derivative with 

respect to e~r disappears, 

1
00 

fJ [ 0 OJ - ~ ferP 
0 ueer 

d 0 01 00 

deer = - ferP o = 0. 

Finally, each reaction term in Eq. 2.20 also reduces to the corresponding term in 

Eq. 2.42. For example, 
00 00 

kt J J (e~yt)'7p0 de~ytde~r = 

0 0 
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00 00 

k+ J J [( d )'I) 0 -'( d d,ss) -'( d d,ss)] d d d d _ b Ccyt 7r u Ccyt - Ccyt u Cer - Cer Ccyt Cer -

0 0 

00 

k+ ( d,ss)ry 0 J -'( d d,ss) d d _ k+ ( d,ss)ry 0 
b Ccyt 7r u Cer - Cer Cer - b Ccyt 7r · 

0 

Note that due to the sifting property of the Dirac delta function, c~yt becomes c~~~s 

for Ca2+ -mediated transitions out of open states ( 0), while c~yt becomes Ccyt for 

Ca2+-mediated transitions out of closed states (C, R 1 , R 2 ; not shown). 

As mentioned in Section 2.4.5.1, the fluxes ]leak, lpump' and ff'e1 that occur in 

Eqs. 2.52-2.53 are functions of Ccyt and Cer that must be evaluated using the values 

of Ccyt and Cer found by integrating Eqs. 2.48 and 2.49. From Eqs. 2.39-2.40 we see 

that c~~~s and c~~ss are both functions of Ccyt and Cer that take the form 

where X~yt = Vcyt/ (vcyt + v~r), etc. Using these expressions and the values of the 

average domain Ca2+ concentrations (c~yt and c:r) given by Eqs. 2.46-2.47, we must 

solve 

simultaneously for Ccyt and Cer. Rearranging terms gives 
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where 

Ad 0 1 
a12 = cytn Xer 

From Cramer's rule we find 

(2.1) 

where D = aua22 - a 12a 21 . During numerical integration of Eqs. 2.52-2.53 these 

values of Ccyt and Cer back-calculated from Ccyt and Cer can be used to evaluate the 

fluxes ]zeak, lpump' and J'fe1. 

2.6.3 Slow domain/fast channel approximation 

The derivation of the ODEs for the slow domain/fast channel approximation (Eqs. 2.59-

2.62) begins with substitution of Eq. 2.55 into the advection-reaction equations of the 

multivariate probability density formulation (Eqs. 2.19-2.22), a procedure similar to 

that employed in the fast domain/slow channel case (Appendix 2.6.2). However, in 

the case of the slow domain/fast channel approximation, the reaction terms of the 

advection-reaction equations involving Ca2+ lead to terms in the ODE model that 

involve c~~: regardless of IP3R state. For example, after substitution of Eq. 2.55 and 

integration, the first term on the right hand side of Eq. 2.19 given by -k"); ( c~ytf' pc 

becomes - k"); ( c~~:Y'nc, as opposed to - k"); Ccyt'Trc in the fast domain/ slow channel case. 

In the slow domain/fast channel approximation, evaluating the fluxes ]zeak, ]pump' 

and J'fe1 that occur in Eqs. 2.52-2.53 is similar to the fast domain/slow channel case. 
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From Eqs. 2.56-2.57 we see that c~~~s and c~~ss take the form 

where x;yt = Vcyt/(vcyt + v;r), etc. Using these expressions and average domain Ca2+ 

concentrations given by Eq. 2.63, we see that in order to evaluate ]zeakl lpump' and 

J'fe1, we must solve 

simultaneously for Ccyt and Cer· Ultimately we find an expression of the form of 

E 2 1 b t . th' 1 + Ad 1 - Ad 1 - Ad 2 I\ d q. . , u 1n 1s case an = cytXcyt' a12 - cytXer' a21 - erXcyt /\en an 

a22 = 1 + A~rX~r/ Aer· 

2.6.4 Fast/slow reduction of the advection-reaction equations 

for the joint probability densities 

While the reduced models presented in Section 2.4.5 are applicable when Ca2+ do-

mains are either fast or slow compared to channel kinetics, it is interesting to note that 

the advection-reaction equations for the joint probability densities (Eqs. 2.19-2.22) 

can be reduced when some (but not necessarily all) transition rates in the single chan­

nel model are fast compared to the dynamics of Ca2+ domains. For example, consider 

the case of a four-state IP3R model (Eq. 2.7) in which the process of Ca2+activation 

(but not necessarily Ca2+ inactivation) is faster than Ca2+ domain formation and col-

lapse. In this case, a Li-Rinzel-type reduction of the IP3R model can be performed by 

assuming quasi-static equilibrium of the subset of channel transitions that are fast [Li 

and Rinzel, 1994]. To see this, define pw = pc + p0 and sum Eqs. 2.19 and 2.20 to 
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obtain, 

apw a [ c c o oJ a [ c c o oJ ~t = -~ fcytP + fcytP - ~ ferP + ferP 
u uccyt ucer 

k+ ( d )rt c k+ ( d )rt o k- n2 k- n1 
- d Ccyt P - b Ccyt P + d P + b P · 

Similarly, define pv = pn1 + pn2 and sum Eqs. 2.21 and 2.22 to obtain, 

+ k+ ( d )rt c + k+ ( d )rt o k- n2 k- n1 d ccyt p b ccyt p - d p - b p . 

(2.1) 

Now under the assumption that C +-+ 0 and R 1 +-+ R 2 transitions are much faster 

than the domain dynamics, we have 

c KJ w 
P = Krt + ( d )rtp 

a Ccyt 

n2 _ KJ v 
P - Krt + ( d )rtp 

c Ccyt 

where K{ = ki / kt for i E {a, c} . Upon substitution into Eqs. 2.1 and 2.2 these 

relations yield 

(2.4) 

where the reaction terms are 

(2.5) 
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Thus, the original four advection-reaction equations (Eqs. 2.19-2.22) can be replaced 

by two (Eqs. 2.3-2.5). Note that the fraction of channels in the lumped states Wand 

V sum to one (i.e., nw +nv = 1, where these quantities are found by integrating over 

the probability densities as in Eq. 2.32), but this fact cannot be used to eliminate 

Eq. 2.4 as occurs when the Li-Rinzel reduction applied to a conventional whole cell 

model to yield Eq. 2.2. 

2.6.5 Generalization of the probability density approach 

The probability density approach can be applied to single channel models of arbitrary 

complexity that include cytosolic Ca 2+ regulation, luminal regulation, or both. Let 

S(t) = i E {1, ... , M} be the state of the single channel model and let the M x 

M matrix Q ( c~yt, c~r) denote its infinitesimal generator matrix whose elements are 

transition rates that may be constant or functions of the cytosolic and luminal domain 

Ca2+ concentrations so that l:i% = 0 and % ~ 0 for i -=I j. Let us also rewrite 

the multivariate probability density functions defined in Eq. 2.18 using slightly more 

compact notation, 

pi(e, t) de= P{e < c(t) < e +de and S(t) = i}, 

where e = (c~yt' c~r) is a vector including both the cytosolic and luminal domain Ca2+ 

concentrations and the probability of finding the randomly sampled IP3R in state i 

is 

where de = dc~yt dc~r. 

Using this notation, the advection-reaction equations (Eqs. 2.19-2.22) for the 

probability density of cytosolic and luminal domain [Ca2+] jointly distributed with 
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the state of the IP3R can be written compactly as 

(2.1) 

where p is the row vector p = (p1 , p2 , ... , pM) in which each element pi is a function 

of c~yt and c~r; and [pQ]i is the ith element of the row vector resulting from a vector-

matrix product of p and Q. 

2.6.6 Numerical scheme for the multivariate probability den-

sity approach 

The probability density approach is implemented by numerically solving the time-

dependent system of advection-reaction equations given by Eq. 3.49, 

(2.1) 

where the probability fluxes ¢~yt = J:ytPk and ¢~yt = I:rPk are made explicit. We 

solve Eq. 2.1 on a uniform two-dimensional mesh with I x J points located at the 

domain concentrations 

[( d ) ( d ) ] _ [ d,min ·A d d,min ·A d ] 
Ccyt i ' Cer j - Ccyt + Zw.Ccyt' Cer + J w.Cer 

where 1 ::;_ i ::;_ I, 1 ::;_ j ::;_ J and 6c~yt and 6c~r are chosen so that c~~7ax = 

cd,min + I 6cd and cd,max = cd,min + J 6cd We use upwinded first order accurate cyt cyt er er er · 

finite difference approximations to the spatial derivatives in Eq. 2.1, 

( c/Jcyt)i+l,j - ( c/Jcyt)i,j 
for ( c/Jcyt)i,j < 0 

8¢,,, I - { 6c~yt 
8c~yt .. ~ ( c/Jcyt)i,j - ( c/Jcyt)i-l,j 

for ( c/Jcyt)i,j ~ 0 l,J 

6c~yt 
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~~;: I •. j '" { 

( rPer )i,j+l - ( rPer )i,j 
for ( rPer )i,j < 0 

/:1c~r 
( rPer )i,j - ( rPer )i,j -1 

for ( rPer )i,j 2 0 
!:1c~r 

where we have dropped the index k (channel state) for clarity. Because the Pi,j 

are non-negative, we can define g;:j = min [0, Ucyt)i,j], gtj = max [0, (fcyt)i,j], h;:j = 

min [0, Uer)i.j], htj =max [0, Uer)i.j], and rewrite the previous equations as 

arPcyt I 1 [ _ 
acd ~!:led gi+I,jPi+l,j 

cyt i,j cyt 

Combining these finite difference approximations with a backwards Euler time step 

a p I ~ pn+l _ pn 

at n !::lt 
(2.2) 

and substituting these expressions into Eq. 2.1, leads to the following numerical 

scheme 

(2.3) 

- h+ . . J k,n+l - Rk,n+l 
i,j-IPz,J-1 - i,j 
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where we reintroduce the index k. In this expression, the reaction terms R~jn+l are a 

f t . f th d •t• l,n+l 2,n+l M,n+l . b unc 1on o e ens1 1es pi,j , Pi,j , · · · , Pi,j g1ven y 

M 

Rk,n+l = ~ k,n+lQk,k 
t,J L.......t Pt,J t,J (2.4) 

k=l 
M M 

_ ~ K- k,n+l + ( d )TI ~ K+ k,n+l 
- L.......t k,kPi,j ccyt i L.......t k,kPi,j 

where Q~,jk is the k-----+ k transition rate in the IP3R model that may (or may not) de­

pend on cytosolic domain Ca2+ through (c~yt)i, and Q = K- + (c~yt)TIK+. Combining 

Eq. 2.3 and 2.4 leads to the following sparse linear system 

{1 -+ -- + -h+ h-_ K-- K-+ } k,n+l +g. ·-g. · · ·- · ·- k k- k k P· · t,J t,) t,) t,] , ' t,J 

-+ k,n+l + -- k,n+l 
-gi-l,j Pi-l,j gi+l,j Pi+l,j 

fi+ k,n+l h,- k,n+l 
- i,j-1 Pi,J-1 + i,j+l Pi,j+l (2.5) 

~ K-- k,n+l ( d )TI ~ K-+ k,n+l _ k,n 
- L.......t k kPi,j - Ccyt i L.......t k kPi,j - Pi,j 

' ' 
kik kik 

where the g-± = g± f:.tjf:.cd and fi± = h± f:.tjf:.cd and J(± = f:.tK± In each time cyt er' · 

step, this equation was solved to find P7,jn+l from P~jn given the current value of ?Jtj, 

!Ji:J' htj, and li;:j, each of which depends on the current cytosolic and luminal bulk 

[Ca2+] (ccyt and Cer)· Euler's method was then used to update Ccyt and Cer according 

to Eqs. 2.28 and 2.29 where the functionals defining J;yt and J;r (Eqs. 2.30 and 2.31) 

are numerically evaluated at each time step. 

Note that Eq. 2.5 can be used as written on the interior of the two-dimensional 

mesh (1 < i < I, 1 < j < J), but when the indices i and j are at extreme values, 

the coefficients with indexes that are out of bounds are defined as zero, that is, !Jt,j = 

!JT+l,j = 0 for all j and lito = htJ+l = 0 for all i. Initial conditions for the discretized 

densities (l,jn for n = 0) were chosen so that the sum over indexes i, j, and k was 
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unity. We initially set P7,j0 = 0 for any mesh point outside of the quadrilateral defined 

by superimposing the (four distinct) null clines associated with domain Ca 2+ dynamics 

(two for closed IP3Rs, two for open IP3Rs). It is also important to ensure there is 

always at least one mesh point between the outermost extent of the quadrilateral 

defined by these moving nullclines and the domain Ca2+ concentrations that bound 

th · l t' ( d,min d,max dmin dmax) f 1 'f dmin 0 th J d e s1mu a IOn ccyt , ccyt , ce~ , ce~ , or examp e, 1 cc~t = en an 

c~~r;ax must be chosen so that D.c~yt < Ccyt· 

2.6. 7 Spatial influences on global calcium dynamics 

While the probability density approach to modeling local and global Ca2+ responses 

accurately accounts for the dynamics of cytosolic and luminal Ca 2+ domains asso-

ciated with a large number of IP3Rs, it nevertheless assumes a continuously stirred 

bulk cytosolic and ER compartments. In order to investigate the significance of this 

limitation, the compartmental structure of the original Monte Carlo model presented 

in Section 2.3.1 that includes N IP3Rs, 2N domains, and two bulk concentrations 

(shown schematically in Fig. 2.11A) is replicated at L mesh points located along the 

length of a one dimensional cell (Fig. 2.11B). That is, the concentration balance equa­

tions for bulk cytosolic and luminal Ca2+ originally given by Eqs. 2.8-2.11 are now 

explicitly spatial and include lateral diffusion with diffusion coefficient Der and Dcyt), 

respectively, 

(2.6) 

(2.7) 

where 1 ::; £::; L. Associated with each mesh point are 2N time-dependent domains, 

d( C~yt) R,n 1 (1 R,n 1 R,n) 
dt = ,\d rel - cyt 

cyt 
(2.8) 
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(2.9) 

where 1 :::; n :::; N, for a total of N L channels in the spatial model. The total effiux 

and refill fluxes from all the relevant Ca2+ domains are given by J~f = 2:.::=1 Jc~~ and 

f{/ = L.::=l Je~n and the fluxes (Jc~~' Je~n, lz~ak' Jpeump) and effective volume ratios 

( .\, )..~yt and )..~r) are as defined in Eqs. 2.15~2.17 and Eqs. 2.13~2.14. For example, 

the release of Ca 2+ through the channel n at the Rth mesh point is given by 

1 e,n = rve,nv [(cd ) e,n _ (cd ) e,n] rel 1 rel cyt er (2.10) 

where ,e,n = 0 or 1. Simulations of the spatial model were performed by numerically 

solving Eqs. 2.6~2.9 using an explicit method with a forward first difference in time 

and a centered second difference in space. 
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(A) (B) 
Length (J.tm) 

Figure 2.11: A) Schematic diagram of the original Monte Carlo model of Section 2.3.1. 
B) Diagram of spatially extended Monte Carlo model of Appendix E in which com­
partmental structure of panel A is replicated at L mesh points located along the 
length of a one dimensional cell with lateral diffusion between bulk cytosolic and 
luminal compartments (dashed lines). 
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Figure 2.12 shows the one-dimensional Monte Carlo results converging to the non-

spatial probability density result as the diffusion coefficient for bulk cytosolic and ER 

Ca 2+ is increased ( D = D cyt = D er). In each panel the solid line is the bulk [ Ca 2+] 

(ccyt) as calculated using the non-spatial probability density approach (Section 2.3.2), 

while the broken lines show the spatially averaged bulk [Ca2+] defined by 

for three Monte Carlo trials. When D = 0.1 11m2 js (upper panel of Fig. 2.12), 

the spatially averaged bulk Ca 2+ concentrations in the one-dimensional Monte Carlo 

simulations are significantly different than the non-spatial probability density result. 

When D is in the more physiological range of 10~ 100 11m2
/ s (middle and bottom 

panels), the spatial and non-spatial calculations are very similar. 
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D = 10 J-Lm2 Is 

D = 100 J-Lm2 Is 

0 5 10 15 20 25 

time(s) 

Figure 2.12: The average bulk Ca2+ concentration (ccyt) as a function of time in 
the spatially extended Monte Carlo model. In each panel, the solid line is the non­
spatial probability density calculation, while the dotted, dashed and dot-dashed lines 
show three Monte Carlo trials. In the top, middle, and bottom panels, the diffusion 
coefficient for bulk cytosolic and luminal Ca2+ (D = Dcyt = Der) is increased from 
0.1 to 100 ~Jom2 Is. Asterisk indicates the time at which (ccyt) = reaches 0.4 MM for 
one of the Monte Carlo trials. 
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Figure 2.13: A) Concentration profiles at t = 4.9 s for spatial Monte Carlo simulation 
using D = 0.1 J-Lm2 / s (corresponding to asterisk in upper panel of Fig. 2.12). The top 
and bottom panels show the bulk cytosolic and luminal Ca2+ concentrations (solid 
lines) as well as the cytosolic and luminal domain Ca2+ concentrations (dotted lines). 
The middle panel shows the fraction of theN IP3Rs channels at each mesh point that 
are open (! 0 ). Insets show results on different scales. 
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Figure 2.14: B) Concentration profiles at t = 5.40 s for spatial Monte Carlo simulation 
using D = 10 J-Lm2/s (middle panel of Fig. 2.12). See legend of Fig. 2.13. 
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Figures 2.13 - 2.15 show the spatial profiles of the one dimensional Monte Carlo 

calculation for D = 0.1, 10 and 100 J.Lm2 Is at the times indicated by the asterisks 

in Fig. 2.12 when (ccyt)=0.4 J.LM. These concentration profiles show how the bulk 

and domain [Ca2+] (both cytosolic and luminal) vary with spatial position. During 

these cell-wide global Ca2+ oscillations, the cytosolic and luminal bulk [Ca2+] become 

more spatially uniform as D is increased. On the other hand, the insets in Figs. 2.13-

2.15 show that domain [Ca2+] in the spatial model does not become less variable or 

equivalent to the bulk Ca2+ concentrations as D is increased. Rather, the cytosolic 

domain [ Ca 2+] (dotted lines) is always greater than or equal to the cytosolic bulk 

[Ca2+] (solid lines), and bulk Ca2+ is more likely to be in equilibrium with domain 

Ca2+ when the bulk Ca2+ diffusion coefficient (D) is small. 

As physiologically realistic values for the diffusion coefficients are in the range 

10-100 J.Lm2 Is [Allbritton et al., 1992, Hille, 2001], Figs. 2.12-2.15 together indicate 

that the assumption of continuously stirred bulk cytosolic and ER compartments is 

not a major limitation of the probability density approach to modeling the effect of 

local Ca2+ signals on global Ca2+ responses such as oscillations. 
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Figure 2.15: C) Concentration profiles at t = 5.57 s for spatial Monte Carlo simulation 
using D = 100 p,m2 

/ s (bottom panel of Fig. 2.12). See legend of Fig. 2.13. 
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Chapter 3 

A probability density approach to 

modeling local control of 

calcium-induced calcium release in 

cardiac myocytes 

3.1 Summary 

We present a probability density approach to modeling localized Ca2+ influx via 

1-type Ca2+ channels and Ca2+ -induced Ca2+ release mediated by clusters of ryan­

odine receptors during excitation-contraction coupling in cardiac myocytes. Coupled 

advection-reaction equations are derived relating the time-dependent probability den­

sity of subsarcolemmal subspace and junctional sarcoplasmic reticulum [Ca2+] con­

ditioned on "Ca2+ release unit" state. When these equations are solved numerically 

using a high-resolution finite difference scheme and the resulting probability densities 

are coupled to ordinary differential equations for the bulk myoplasmic and sarcoplas­

mic reticulum [Ca2+], a realistic but minimal model of cardiac excitation-contraction 
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coupling is produced. Modeling Ca2+ release unit activity using this probability 

density approach avoids the computationally demanding task of resolving spatial as­

pects of global Ca2+ signaling, while accurately representing heterogeneous local Ca2+ 

signals in a population of diadic subspaces and junctional sarcoplasmic reticulum de­

pletion domains. The probability density approach is validated for a physiologically 

realistic number of Ca2+ release units and benchmarked for computational efficiency 

by comparison to traditional Monte Carlo simulations. In simulated voltage-clamp 

protocols, both the probability density and Monte Carlo approaches to modeling lo­

cal control of excitation-contraction coupling produce high-gain Ca2+ release that 

is graded with changes in membrane potential, a phenomenon not exhibited by so­

called "common pool" models. However, a probability density calculation can be 

significantly faster than the corresponding Monte Carlo simulation, especially when 

cellular parameters are such that diadic subspace [Ca2+] is in quasi-static equilibrium 

with junctional sarcoplasmic reticulum [Ca2+] and, consequently, univariate rather 

than multivariate probability densities may be employed. 

The contents of this chapter were presented as "A probability density approach 

to modeling local control of calcium-induced calcium release in cardiac myocytes" 

in Biophysical Journal [George S. B. Williams, Marco A. Huertas, Eric A. Sobie, 

M. Saleet Jafri, and Gregory D. Smith, 92(7):2311-28, 2007]. The author gratefully 

acknowledges numerous discussions with Eric Sobie and Saleet Jafri who contributed 

significantly to the design and parameters of the Monte Carlo model. Some of these 

results have also appeared in poster form at the 2006 Biophysical Society Annual 

Meeting in Salt Lake City, UT. 
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3.2 Introduction 

The mechanical function of the heart depends on complex bi-directional interactions 

between electrical and calcium (Ca2+) signaling systems. Each time the heart beats, 

current flowing through the ion channels in the plasma membrane (sarcolemma) 

causes a characteristic change in membrane voltage known as an action potential 

(AP). Membrane depolarization during the AP causes 1-type Ca2+ channels to open, 

and Ca2+ current through these channels causes the release of a larger amount of 

Ca2+ from the sarcoplasmic reticulum, a process known as Ca2+ -induced Ca2+ re­

lease (CICR). This leads to a large, transient increase in [Ca2+] in each heart cell, and 

contraction occurs when these Ca2+ ions bind to myofilaments, a sequence of events 

known as excitation-contraction (EC) coupling. In addition, intracellular [Ca2+] feeds 

back upon and changes the cell's membrane potential through the Ca 2+ -dependence 

of several ion channels and membrane transporters. 

Mathematical and computational modeling has proved to be an important tool 

for understanding cardiac electrophysiology and EC coupling. Computer simulations 

have been used to test hypotheses about heart cell function and predict underlying 

mechanisms [DiFrancesco and Noble, 1985,Nordin, 1993a,Jafri et al., 1998a,Luo and Rudy, 

1994]. Most investigations have employed deterministic models that ignore molecular 

fluctuations and assume an isopotential cell, an approach that is valid for simulat­

ing current flowing through a large population of voltage-gated ion channels. Even 

though the individual channels open and close stochastically, each channel experi­

ences the same voltage, so identical rate constants apply to each channel and only 

average behavior needs to be considered. However, this approach is not suitable for 

simulating CICR release during EC coupling because the overall release flux repre­

sents a collection of discrete events, known as Ca2+ sparks, evoked by local-rather 

than global-increases in Ca2+ concentration [Cheng et al., 1993b]. That is, each 

spark reflects Ca2+ release from a cluster of Ca2+ -regulated intracellular Ca2+ chan-
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nels known as ryanodine receptors (RyRs) that is triggered by entry of Ca2+ through 

nearby 1-type Ca2+ channels [Cannell et al., 1995b]. Thus, different groups of RyRs 

experience different local Ca2+ concentrations and stochastically gate in a manner 

that depends on whether nearby sarcolemmal Ca2+ channels have recently been open 

or closed. One consequence of this "local control" [Stern, 1992a] mechanism of cardiac 

CICR is that deterministic "common pool" models-whole cell models in which all 

RyR clusters in a myocyte experience the same [Ca2+]-fail to reproduce several im­

portant experimental observations. In particular, the high gain and positive feedback 

of common pool models ensures that Ca2+ is released in an all-or-none fashion [Jafri 

et al., 1998a, Glukhovsky et al., 1998a, Snyder et al., 2000a, Nordin, 1993a, Tang and 

Othmer, 1994a] as opposed to being graded with the amount of Ca2+ influx, as ob­

served in numerous experiments [Fabiato, 1985a, Wier et al., 1994a, Cannell et al., 

1995b]. Deterministic common pool models of cardiac CICR during EC coupling that 

have been able to reproduced graded release have done so in an ad hoc fashion [Bon­

darenko et al., 2004, 1uo and Rudy, 1994, Wong et al., 1992, Hilgemann and Noble, 

1987, Shiferaw et al., 2003]. 

Models of EC coupling are able to simulate graded Ca2+ release mechanistically by 

treating 1-type Ca2+ channels and juxtaposed Ca2+ release sites as stochastic "Ca2+ 

release units" ( CaRU s), each of which is associated with its own diadic subspace Ca 2+ 

concentration. When activated spontaneously or through membrane depolarization 

these CaRUs may deplete Ca2+ stored in localized regions of junctional SR and, on a 

slower time scale, interact with one another via diffusion of Ca2+ within the network 

SR and bulk myoplasm. This approach, however, requires relatively large computa­

tional resources to perform Monte-Carlo simulations of stochastic Ca2+ release from 

a large population of CaRUs. Indeed, the number of simulated CaRUs is often re­

duced to unphysiological values in such models to obtain shorter run times [Stern, 

1992a, Rice et al., 1999a, Sobie et al., 2002a, Greenstein and Winslow, 2002a]. 

80 



Two recent deterministic models have used a minimal Ca2+ release unit formu­

lation of interactions between L-type channels and RyR clusters to produce graded 

release [Hinch, 2004, Greenstein et al., 2006]. In these models ordinary differential 

equations for the fraction of Ca2+ release units in each of a small number of states 

are solved under the assumption that subspace [Ca2+] is an algebraic function of the 

bulk myoplasmic and network SR [Ca2+]. This function depends on Ca2+ release unit 

state and is determined by balancing the Ca2+ fluxes into and out of the diadic sub­

space. While the large number of Ca 2+ release units in cardiac myocytes-estimated 

in the range of 10,000-20,000 via both structural [Chen-Izu et al., 2006] and func­

tional [Cleemann et al., 1998] observations-does indeed suggest that it should be 

possible to produce deterministic local control models of EC coupling, the assump­

tion that diadic subspace [Ca2+] is in quasi-static equilibrium with bulk myoplasmic 

and network SR Ca2+ may be overly restrictive. Indeed, this modeling approach is 

only valid when the dynamics of subspace [Ca2+] are very fast compared to stochas­

tic Ca2+ release unit transition rates. Moreover, [Ca2+] in a particular subspace is 

likely to depend on the local "junctional" SR [Ca2+] rather than the bulk or network 

SR [Ca2+], especially if junctional SR depletion influences RyR gating, as suggested 

by both simulations [Sobie et al., 2002a] and recent experiments [Terentyev et al., 

2002a, Brochet et al., 2005]. 

Here we present an alternative deterministic formalism for modeling local control 

of CICR during cardiac EC coupling that captures the collective behavior of a large 

population of Ca2+ release units without this restrictive assumption. We utilize the 

fact that the number of Ca2+ release units is large (similar to references [Hinch, 2004] 

and [Greenstein et al., 2006]), but we do not assume a simple algebraic relation­

ship between the local diadic subspace [Ca2+] associated with each Ca2+ release unit 

and the bulk Ca2+ concentrations. Instead, we define a set of multivariate contin­

uous probability density functions for the diadic subspace and junctional SR [Ca2+] 
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conditioned on CaRU state [Mazzag et al., 2005a,Huertas and Smith, 2006a]. As de­

scribed below, these probability density functions solve a system of advection-reaction 

equations that are derived from the stochastic ordinary differential equations used in 

Monte Carlo simulations of local control. These equations are solved numerically 

using a high-resolution finite difference scheme while coupled to ordinary differential 

equations for the bulk myoplasmic and network SR [Ca2+]. This produces a min­

imal model of cardiac EC coupling that avoids computationally demanding Monte 

Carlo simulation while accurately representing heterogeneous local Ca2+ signals; in 

particular, the statistical recruitment of CaRUs and the dynamics of junctional SR 

depletion, spark termination, and junctional SR refilling. 

3.3 Model Formulation 

The minimal whole cell model of cardiac EC coupling that is the focus of this paper 

can be formulated as a traditional Monte Carlo calculation in which heterogeneous 

local Ca2+ signals associated with a large number of Ca2+ release units (CaRUs) are 

simulated. In this Monte Carlo formulation, a diadic subspace and junctional SR 

compartment is associated with each CaRU and the [Ca2+] in these compartments is 

found by solving a large number of ordinary differential equations. Alternatively, these 

heterogeneous local Ca2+ signals can be simulated using a novel probability density 

approach that represents the distribution of diadic subspace and junctional SR Ca2+ 

concentrations with a system of partial differential equations (see below). Because 

many of the equations and parameters of the whole cell model of EC coupling are 

identical in the two formulations, we begin by presenting the Monte Carlo formulation. 
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3.3.1 Whole cell model of EC coupling- Monte Carlo for­

mulation 

Figure 4.1 shows a diagram of the components and fluxes of the model of local Ca2+ 

signaling and CaRU activity during cardiac EC coupling that is the focus of this 

paper. As illustrated in Fig. 4.1A, each Ca2+ release unit includes two restricted 

compartments (the diadic subspace and junctional SR) with [Ca2+] denoted by <is 

and c}sr' respectively, where the superscripted n is an index over a total number of 

Ca2+ release units (denoted by N). Each Ca2+ release unit includes an L-type Ca2+ 

channel (DHPR) and a minimal representation of a cluster of RyRs that is either fully 

closed or fully open. The fluxes Jdhpr and J!;'yr indicate Ca2+ entry into a subspace 

via the DHPR or RyR cluster, respectively. Diffusion of Ca2+ between the nth diadic 

subspace and bulk myoplasm ( Cmyo) is indicated by J:f flux. Similarly, J::efill indicates 

diffusion between the network SR ( Cnsr) and junctional SR compartment associated 

with the nth Ca2+ release unit. 

Figure 4.1B illustrates how the bulk myoplasm and network SR Ca2+ concentra­

tions in the model are coupled via the diffusion fluxes ( J~ flux and J!;'efill) to a large 

number of Ca2+ release units (for clarity only four are shown). Importantly, each of 

the N Ca2+ release units may have a different diadic subspace ( cds) and junctional 

SR ( c}sr) Ca2+ concentration. Four additional fluxes directly influence the bulk my­

oplasm: a background Ca2+ influx denoted by Jin, extrusion of Ca2+ via the Na+ -Ca2+ 

exchanger (Jncx), SR Ca2+ -ATPase (SERCA) pumps ( lserca) that resequester Ca2+ 

into the network SR, and a passive leak out of the network SR to the bulk myoplasm 

( ]zeak)· 

A complete description of CICR would include stochastic gating of roughly N 

20,000 CaRUs, each of which would contain multiple L-type Ca2+ channels (1-

10) [Bers and Stiffel, 1993] and RyRs (30-300) [Franzini-Armstrong, 1999], with each 

individual channel described by a Markov chain that consists of two to several tens of 
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Figure 3.1: Diagrams of model components and fluxes. A: Each Ca2+ release unit 
consists of two restricted compartments (the diadic subspace and junctional SR 
with [Ca2+] denoted by cds and Cjsn respectively), a two-state L-type Ca2+ chan­
nel (DHPR), and a two-state Ca2+ release site (a RyR "megachannel" [Sobie et al., 
2002a]). The t-tubular [Ca2+] is denoted by Cext and the fluxes Jdhpr' 1'!/yr' J;:fflux' 
J;!'efill' lin, lncx 1 lserca 1 and lzeak are described in the text. B: The bulk myoplasm 
(cmyo) and network SR (cnsr) Ca2+ concentrations in the model are coupled via J;:fflux 
and J;:efill to a large number of Ca2+ release units (for clarity only four are shown), 
each with different diadic subspace (<is) and junctional SR ( c''Jsr) Ca 2+ concentration. 
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states. However, previous Monte Carlo simulations of EC coupling focusing on local 

control have often used Markov models of reduced complexity [Stern, 1992a, Sobie 

et al., 2002a, Hinch, 2004]. Because such minimal models capture the essential char­

acteristics of EC coupling gain and gradedness in simulated whole cell voltage clamp 

protocols, this level of resolution will suffice for our main purpose, which is to intro-

duce the probability density approach as an alternative to Monte Carlo simulation. 

3.3.1.1 A minimal four-state calcium release unit model 

Previous modeling studies indicate that the gating of the cluster of RyRs associated 

with each CaRU is all-or-none [Stern, 1992a, Rice et al., 1999a, Sobie et al., 2002a] 

and this suggests the following minimal two-state model of an RyR "megachannel," 

[closed] C 0 [open] (3.1) 

where the Ca2+ activation of the cluster of RyRs is a sigmoidal function of the diadic 

subspace [Ca2+] [Sobie et al., 2002a], 

k+ J(;+ (cdJ4 
ryr - ryr (K )4 + ( n )4' 

ryr cds 

and the influence of junctional SR [Ca2+] on RyR gating is included by making the 

half-maximal activation of the RyR megachannel (Kryr) a decreasing function of c''Jsr' 

K K max n 
ryr = ryr - CXryr Cjsr' 

so that depletion of the junctional SR will render CaRUs refractory to activation after 

release terminates [Sobie et al., 2002a]. 

Similarly, to illustrate and validate the probability density approach it is sufficient 
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to consider a two-state model of the 1-type Ca2+ channel (DHPR), 

[closed] C 0 [open] (3.2) 

with a voltage-dependent activation rate kdhpr given by [1uo and Rudy, 1994] 

_ e(V-VJhpr)/o-dhpr 
k+ - k+ 

dhpr - dhpr 
1 

(V- ve )/o-dh + e dhpr pr 

and constant de-activation rate kdhpr that sets the mean open time (0.2 ms) and 

maximum open probability (0.1) of the channel. Although this two-state DHPR 

model ignores voltage- and Ca2+ -dependent inactivation of 1-type Ca2+ channels, 

these processes do not significantly influence the triggering of CICR during the whole-

cell voltage clamp protocols that are the focus of this paper ( cf. [Hinch, 2004]). 

When the kinetic schemes of the RyR megachannel and DHPR (Eq. 3.1 and 

Eq. 3.2) are combined we obtain the following minimal four-state model of a Ca2+ 

release unit, 

[both closed] CC CO [RyRs open] 

(3.3) 

[DHPR open] OC 00 [both open] 

where the horizontal transitions represent RyR opening and closing while vertical 

transitions represent DHPR gating. 
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3.3.1.2 Concentration balance equations 

In the Monte Carlo formulation of the minimal whole cell model of EC coupling there 

are 2 + 2N ordinary differential equations representing Ca2+ concentration balance 

for the bulk myoplasm, network SR, N diadic subspaces, and N junctional SRs. 

Consistent with Fig. 4.1 these equations are 

dcmyo 

dt 
dc"J8 

dt 
dc}sr 

dt 

dt 

]leak + J~ flux - lncx - Jserca + Jin 

1 ( n n Jn ) 
\ Jdhpr + Jryr - efflux 
Ads 

1 ( n n ) ~ ]refill - Jryr 
JST 

~ ( lserca - f:efill - ]leak) 
/\nsr 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

where 1 ::::; n ::::; N in Eqs. 3.5 and 3.6 and the total efflux and refill fluxes occurring 

in Eqs. 3.4 and 3. 7 include a contribution from each CaRU and thus are given by 

f,!efill = L~=l J~efill and J'{fflux = L~=l ]~!flux· Similarly, the total (trigger) flux 

via dihydropiridine receptor (DHPR) channels and the total release flux via RyR 

megachannels throughout the whole cell model are given by 

N N 

J~pr = 2::: Jdhpr and J'{yr = 2::: 1~yr. (3.8) 
n=l n=l 

The effective volume ratios Ansn Ads, and Ajsr in Eqs. 3.7-3.6 are defined with 

respect to the physical volume (Vmya) and include a constant-fraction Ca2+ buffer 

capacity for the myoplasm ({Jmya)· For example, the effective volume ratio associated 

with the network SR is 

Vnsr Vnsr / f3nsr 
Ansr = -A- = -::-:---'-.,.--,--

Vmyo Vmyo/ fJmyo 

with effective volumes defined by Vnsr = Vnsr/ f3nsr and Vmyo = Vmyo/ f3myo· Because 

each individual diadic subspace is assumed to have the same physical volume (Vds) 
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and buffering capacity (f3ds), the effective volume ratio that occurs in Eq. 3.5 is 

(3.9) 

where the second expression defines Ads in terms of the total physical volume of all 

the diadic subspaces in aggregate (VZ = NVds)· Similar assumptions and equations 

apply for the junctional SR so that the definition of Ajsr follows Eq. 3.9. 

We also define an overall myoplasmic [Ca2+] that includes contributions from the 

bulk myoplasm and each of the N diadic spaces (scaled by their effective volumes), 

(3.10) 

where the second equality uses natural definitions for the total effective diadic sub­

space volume, VZ = NVds, and the average diadic subspace [Ca2+], 

N 
avg _ 1 ~ n 

cds - N 6cds· 
n=l 

Similarly, the overall SR [Ca2+J involves both the junctional and network SR, 

(3.11) 

(3.12) 

where 17jsr =~sri f3jsn ~~r = N17jm and the average junctional SR [Ca2+] is defined 

avg _ N-1 '\'N n 
as Cjsr - L-.m=l Cjsr· 

3.3.1.3 Description of fluxes 

The trigger Ca?+ flux into each of the N diadic spaces through D HPR channels ( Jdhpr 

in Eq. 3.5) is given by 

Jn Amr 
dhpr = - zF dhpr (3.13) 
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where Am = Cm/3mya/Vmyo· The inward Ca2+ current (Idhpr ::; 0) is given by 

In _ n p~pr (zFV) (<zseV/Ve - Cext) 
dhpr - Tdhpr N Vo eV/Ve - 1 (3.14) 

where Vo = RT / zF, P~pr is the total (whole cell) permeability of the L-type Ca 2+ 

channels, and Tdhpr is a random variable that is 0 when the L-type Ca2+ channel 

associated with the nth CaRU is closed and 1 when this channel is open (Eqs. 3.2 

and 3.3). 

Similarly, the flux through the RyR megachannel associated with the nth CaRU 

( J;!yr) is given by 

(3.15) 

where r~yr = 0 or 1 when the release site is closed or open, respectively (Eqs. 3.1 and 

3.3). Diffusion from each subspace into the bulk myoplasm is given by 

VT 
Jn efflux ( n ) 

efflux = N cds- Cmyo (3.16) 

and, similarly, diffusion from the network SR to each junctional SR compartment is 

given by 
VT 

J n refill ( n ) 
refill=~ Cnsr- Cjsr · (3.17) 

The remaining four fluxes that appear in Eqs. 3.4-3.6 include lin (background Ca2+ 

influx), lncx (Na+-Ca2+ exchange), lserca (SR Ca2+-ATPases), and ]leak (the network 

SR leak). The functional form of these four fluxes that directly influence the bulk 

myoplasmic [Ca2+] follows previous work [Jafri et al., 1998a,Rice et al., 2000,Shannon 

et al., 2000] (see Appendix 3.6.1). 
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3.3.2 Whole cell model of EC coupling- probability density 

formulation 

The probability density approach to modeling local Ca2+ signaling and CaRU activity 

during cardiac EC coupling is an alternative to Monte Carlo simulation that is valid 

when the number of Ca 2+ release units is large. We begin by defining continuous 

multivariate probability density functions for the diadic subspace (cds) and junctional 

SR (cjs1·) Ca2+ concentrations jointly distributed with the state of the Ca2+ release 

unit (S) [Bertram and Sherman, 1998, Nykamp and Tranchina, 2000, Mazzag ,et al., 

2005a], that is, 

Pr{ Cds < Cds(t) < Cds + dcds and 

Cjsr < Cjsr(t) < Cjsr + dcjsr and S(t) = i} (3.18) 

where the index i E { CC, CO, VC, VV} runs over the four Ca2+ release unit states 

(see Eq. 3.3) and the tildes on cds(t), Cjsr(t), and S(t) indicate random quantities. 

If the meaning of Eq. 3.18 is not obvious, it may be helpful to imagine performing 

a Monte Carlo simulation as described in the previous section with a very large 

number of CaRUs. At any time t one could randomly sample one CaRU from this 

population to produce an instance of the random variables S(t), cds(t), and Cjsr(t), 

corresponding to the current state of the sampled L-type channel and RyR cluster 

and the diadic subspace and junctional SR [Ca2+] associated with this CaRU. The 

quantity pi(cds, Cjsn t) defined in Eq. 3.18 simply indicates the probability with which 

you would find this sampled CaRU in state i with diadic subspace [Ca2+] in the range 

[cd8 , Cds + dcds] and junctional SR [Ca2+] in the range [cjsr, Cjsr + dcjsr] provided the 

total number of CaRUs is very large. 

For the multivariate probability densities defined by Eq. 3.18 to be consistent 

with the dynamics of the Monte Carlo model of cardiac EC coupling described in 
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the previous section, they must satisfy the following system of advection-reaction 

equations [Mazzag et al., 2005a, Huertas and Smith, 2006a], 

apcc a [fCC CCJ a [fCC CCJ (k+ k+ ) CC k- CO k- OC 
-at =--a ds p --a . jsrP - TYT + dhpr p + ryrP + dhprP 

Cds c)ST 

(3.19) 

apco _ a [fCO CO] a [fCO CO] (k- k+ ) CO k+ CC k- 00 
-at ---a ds p --a . jsrP - TYT + dhpr p + ryrP + dhprP 

Cds c)ST 
(3.20) 

apoc a [fOC OC] a [JOC OC] (k+ k- ) OC k- 00 k+ CC 
-at =--a ds p --a . jsrP - TYT + dhpr p + ryrP + dhprP 

Cds CJST 
(3.21) 

ap
00 

a [foo 00 ] a [foo 00] (k- k- ) oo k+ oc k+ co -at =--a ds P --a . jsr P - ryr + dhpr P + ryrP + dhprP 
Cds c)ST 

(3.22) 

where the advection rates 122, f2s0 , · · · , J1~f are functions of Cds and Cjsr that can be 

read off the ordinary differential equations for the evolution the diadic subspace and 

junctional SR [Ca2+]. Consistent with Eqs. 3.5 and 3.6 we have 

(3.23) 

(3.24) 

where ~~hpr indicates whether or not the L-type Ca2+ channel is open (r~Rpr = ~~~r = 

0, ~~~r = ~~~r = 1) and, similarly, r~yr indicates whether or not the RyR channel 

cluster is open (r~~r = /.~:;, = 0, ~~~ = ~~~ = 1). Eqs. 3.23 and 3.24 include four 

fluxes that may influence the diadic subspace and junctional SR [Ca2+] and consistent 
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with Eqs. 3.13-4.5 these are given by 

J'{yr v'{yr (cjsr- Cds) (3.25) 

]~flux V~fflux [cds - Cmyo(t)] (3.26) 

]~fill V~fill [cnsr(t)- Cjsr] (3.27) 

J~pr -A pT - cdse - Cext V ( n V/Ve ) 

m dhpr Ve eV/Ve - 1 . (3.28) 

The advection terms in Eqs. 3.19-3.22 involving partial derivatives with respect to cds 

and Cjsr correspond to the deterministic dynamics of diadic subspace and junctional 

SR Ca2+ that depend on Ca2+ release unit state via ~~hpr and r~yr (Eqs. 3.5-3.6). 

Conversely, the reaction terms in Eqs. 3.19 and 3.22 correspond to the stochastic 

gating of the four-state Ca2+ release unit model whose transition rates are presented 

above (Eqs. 3.1-3.3). That is, Ca2+ release unit state changes move probability from 

one joint probability density to another in a manner that may [k~r (cds, Cjsr)] or may 

not [kdhpr (V), kdhpr' and k;yr] depend on the diadic subspace and junctional SR 

[Ca2+]. 

It is important to note that the functional form of the fluxes J~flux and J'fefill 

occurring in Eqs. 3.23 and 3.24 involve the bulk myoplasmic and network SR Ca2+ 

concentrations [cmyo(t) and Cnsr(t) in Eqs. 3.26 and 3.27]. These bulk Ca2+ concen-

trations satisfy ODEs that are similar in form to the concentration balance equations 

used in the Monte Carlo approach (Eqs. 3.4 and 3.7), 

dt 

Jleak + J;f flux - lncx - lserca + Jin 

~ ( lserca - J;efill - ]leak) 
-"nsr 

(3.29) 

(3.30) 

where ]leak, lncx, lserca, and Jin are defined as in the Monte Carlo approach (see Ap-

pendix A), but J;fflux and J;efill are functionals of the probability densities [pi(cd8 , Cjsn t)] 
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governed by Eqs. 3.19-3.22, that is, 

100 100 

V~fflux [cds- Cmyo(t)] PT (cds, Cjsr, t)dcdsdCjsr 

100 100 

v'f'efill [cnsr(t)- Cjsr] PT(cds, Cjsr, t)dcdsdCjsr 

(3.31) 

(3.32) 

where pT(cds, Cjsr, t) = lc + l 0 + p0c + p00 is the total probability distribution of 

the diadic subspace and junctional SR [Ca2+] irrespective of the state of a randomly 

sampled CaRU, and the double integrals account for all possible values of diadic and 

junctional SR [Ca2+]. 

3.3.3 Summary of model formulation 

The probability density and Monte Carlo formulations of the minimal model of EC 

coupling presented above have much in common. For example, the dynamics of the 

bulk myoplasmic and network SR [Ca2+] take similar forms (compare Eqs. 3.29-

3.30 to Eqs. 3.4 and 3.7). However, the two approaches differ fundamentally in how 

the heterogeneous localized Ca2+ concentrations associated with a large number of 

Ca 2+ release units are represented. In the traditional Monte Carlo simulation, 2N 

ordinary differential equations are solved to determine the dynamics of [Ca2+] in the 

diadic subspace and junctional SR compartments associated with N Ca2+ release 

units (Eqs. 3.5 and 3.6). In the probability density formulation, time-dependent 

multivariate probability densities for the diadic subspace and junctional SR [Ca2+] 

jointly distributed with CaRU state are updated by solving four coupled advection­

reaction equations (Eqs. 3.19-3.22), one for each state of the chosen CaRU model 

(Eq. 3.3). Further details of the probability density approach presented in Appendices 

3.6.2 - 3.6.4. 
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Parameter Definition Value 
N number of diadic subspaces 50-20000 

Vnsr network SR volume 3.15 X 10-7 ~-tL 

Vmyo myoplasmic volume 2.15 X 10-5 ~-tL 

Vd~ = NVds total diadic subspace volume 2 X 10-8 ~-tL 

VJ~r = N~sr total junctional SR volume 3.5 X 10-8 ~-tL 

Cm capacative membrane area 1.534 X 10-4 ~-tF 

f3ds subspace buffering factor 0.5 
f3jsr junctional SR buffering factor 0.05 
f3nsr network SR buffering factor 1.0 
f3myo myoplasmic buffering factor 0.05 

v'!etill = >...'fsr I 'Trefill junctional SR refilling rate 0.018 s-1 

v~fflux = >..Is! 7 ef flux diadic subspace efflux rate 5.2 s- 1 

F Faraday's constant 96480 coul mol-1 

R gas constant 8314 mJ mol-1 K- 1 

T absolute temperature 310K 

Cext extracellular Ca concentration 1.8 mM 
[Na+]ext extracellular N a+ concentration 140mM 
[Na+]myo intracellular N a+ concentration 10.2 mM 

Table 3.1: Model parameters: volume fractions, Ca2+ buffering, and exchange be­
tween restricted domains and the bulk, physical constants, and fixed ion concentra­
tions. 
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Parameter Definition Value 

v:{yr = Nvryr total RyR cluster release rate 0.9 s 1 

PJ;,pr = N Pdhpr total DHPR permeability 3.5 x 10-5 em s-1 

v:hpr DHPR activation threshold -10 mV 

!Jdhpr DHPR activation parameter 6.24 mV 
-+ 
kdhpr maximum rate of DHPR opening 556 s-1 

kdhpr rate of DHPR closing 5000 s-1 

k1;;r maximum rate of Ry R opening 2000 s-1 

k~r rate of RyR closing 100 s-1 

Kmax 
ryr maximum binding constant for Ry R 7.4 J-LM 

O:ryr coefficient of RyR luminal regulation 0.0024 

Table 3.2: Ca2+ release unit parameters (L-type Ca2+ channel and RyR cluster). 
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Parameter Definition Value 
Kfs forward half-saturation constant for SERCA pump 0.17 !'LM 
Krs reverse half-saturation constant 1702 I'LM 

'r/js forward cooperativity constant 0.75 

'r/rs reverse cooperativity constant 0.75 
Vserca maximum SERCA pump rate 8.6 !'LM s-1 

J~cx magnitude of Na+-caH exchange current 150 !'LA I'LF-1 

K ncx,n Na+ half saturation constant 87.5 X 103 I'LM 
Kncx,c Ca2+ half saturation constant 1.38 X 103 I'LM 
ksat 

ncx saturation factor 0.1 
'r/ncx voltage dependence of Na+-Ca2+ exchange 0.35 

Vzeak SR Ca~-r- leak rate constant 2.4 X 10 6 S 1 

9in maximum conductance of background CaH influx 1.5 x 10-4 mS I'LF- 1 

Table 3.3: Model parameters: Na+-Ca2+ exchange current, SERCA pumps, and back­
ground Ca2+ influx. 
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3.4 Results 

In the following sections, traditional Monte Carlo simulations of voltage-clamp pro­

tocols using the minimal whole cell model of EC coupling presented above are shown 

to produce high-gain Ca2+ release that is graded with changes in membrane poten­

tial, a phenomenon not exhibited by so-called "common pool" models of excitation­

contraction coupling. Analysis of these Monte Carlo results suggests a simplification 

of the advection-reaction equations that form the basis of the probability density 

approach. This reduced probability density formulation is subsequently validated 

against, and benchmarked for computational efficiency by comparison to, traditional 

Monte Carlo simulations. 

3.4.1 Representative Monte Carlo simulations 

Figures 3.2A shows representative Monte Carlo simulations of the minimal whole cell 

model of EC coupling presented above (Eqs. 3.1-4.5 and Appendix 3.6.1). In this 

simulated voltage-clamp protocol, the holding potential of -80 m V is followed by a 

20 ms duration test potential to -30, -20, and -10 mV (dotted, dot-dashed, and 

solid lines, respectively). Because these simulations involve a large but finite number 

of Ca2+ release units (N = 5000), the resulting Ca2+ influx through L-type Ca2+ 

channels ( J~pr), elevation in the average diadic subspace concentration ( c~~9 ), and 

the induced Ca2+ release flux (f{yr) are erratic functions of time. As expected, the 

test potential of -10 m V leads to greater Ca2+ influx, higher diadic subspace [Ca2+], 

and more Ca2+ release than the test potentials of -30 and -20 m V. When the test 

potential is -10 m V a 30X "gain" is observed, here defined here as the ratio J'{yr/ J~pr 

where the overbar indicates an average over the duration of the pulse. Importantly, 

Ca2+ release exhibited by this Monte Carlo model is graded with changes in membrane 

potential (compare traces) and depolarization duration (not shown), phenomena that 
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Figure 3.2: A: Monte Carlo simulation of the whole cell model exhibits graded release 
during step depolarization from a holding potential of -80 mV to -30, -20 and -10 
m V (dotted, dot-dashed, and solid lines, respectively). From top to bottom: command 
voltage, average diadic subspace [Ca2+] (c~~9 , Eq. 3.11), total Ca2+ flux viaL-type 
PM Ca2+ channels (J~pr' Eqs. 3.8, 3.13, 3.14), and total Ca2+-induced Ca2+ release 

flux (J'{yr, Eqs. 3.8 and 3.15). The simulation used N = 5000 Ca2+ release units. 
B: Monte Carlo simulations similar to panel A except that the step potential is -10 
(solid lines) and +10 mV (dotted lines), respectively. Here and below parameters are 
as in Tables 3.1- 3.3. 
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are not exhibited by common pool models of excitation-contraction coupling. 

Figures 3.2B shows a direct comparison between test potentials of -10 and 10m V. 

These test potentials result in nearly identical whole cell Ca2+ currents (averaged over 

the duration of the pulse, J~pr = 1.6 and 1.4 p,M/ s, respectively). In spite of this, the 

induced Ca2+ release flux is significantly greater when the test potential is -10 m V 

(J'[yr = 47 p,M/s) as opposed to 10 mV (21p,M/s). This phenomenon occurs because 

the L-type channel open probability is greater at 10 mV than -10 mV (Eq. 3.2), while 

the driving force for Ca2+ ions is reduced (Eqs. 3.14 and 3.14). Although the overall 

trigger Ca2+ flux is nearly the same at these two test potentials, Ca2+ release is more 

effectively induced when the trigger Ca2+ is apportioned in larger quantities among a 

smaller number of diadic subspaces, because the influx that does occur is then more 

likely to trigger Ca2+ sparks. This physiologically realistic aspect of local control 

during EC coupling is observed in Monte Carlo simulations (see also [Greenstein and 

Winslow, 2002a, Greenstein et al., 2006]), but can not be reproduced by common 

pool models [Stern, 1992a], nor is it seen in models in which SR Ca2+ release depends 

explicitly on whole-cell Ca 2+ current (e.g., [Shiferaw et al., 2003]). 

The solid lines of Fig. 3.3 show [Ca2+] in the bulk myoplasm (cmyo) and network 

SR (cnsr) during and after the -10 mV voltage pulse (note change in time scale). Ap­

proximately 400 ms is required for the bulk myoplasm and network SR concentrations 

to return to resting levels. Nate that although the voltage pulse ends at t = 30 ms, 

the bulk myoplasmic [Ca2+] continues to increase for approximately 20 ms. Similarly, 

the network SR [Ca2+] concentration continues to decrease until t = 80 ms. 

The dashed line of Figure 3.3 shows that the total SR [Ca2+] including both 

network and junctional SR (Eq. 3.12) is transiently less than the network SR [Ca2+] 

( Cnsr&jsr < Cnsr), reflecting the fact that for several hundred milliseconds after the 

voltage pulse junctional SR Ca2+ is depleted. While the ratio between the total 

junctional SR effective volume and the network SR effective volume is ~~r/Vnsr ~ 2, 
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Figure 3.3: Solid lines show the dynamics of bulk myoplasmic ( Cmya) and network SR 
(cnsr) [Ca2+] in the whole cell voltage clamp protocol of Fig. 3.2 with step potential of 
-10 mV (note longer time scale). Dashed lines show the overall myoplasmic (cmya&ds, 

Eq. 3.10) and network SR (cnsr&jsn Eq. 3.12) [Ca2+] that include contributions from 
diadic subspaces and junctional SR, respectively. Note that Cmyo&ds is only slightly 
greater than Cmyo and the two traces are not distinguishable. 
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the corresponding ratio between the total diadic subspace volume and the myoplasmic 

volume is much smaller CVZ /Vmya :::::: 10-4
). Consequently, the elevated average diadic 

subspace [Ca2+] during the depolarizing voltage step ( c~~9 :::::: 10 J-LM as shown in 

Fig. 3.2) does not significantly increase the overall myoplasmic [Ca2+] (cmyo&ds :::::: Cmyo 

and the two traces overlap in Fig. 3.3). On the other hand, depleted junctional SR 

Ca2+ during and after the voltage pulse (cj~; :::::: 500 J-LM, not shown) represents a 

significant depletion of the overall SR Ca2+ content (cnsr&jsr < Cnsr in Fig. 3.3). 

While junctional SR depletion develops rapidly after the initiation of the voltage 

pulse, refilling of these compartments via diffusion of Ca2+ from the network SR 

( J::efill in Eq. 3.6) is not complete until approximately 400 ms after the termination 

of the voltage pulse (compare solid and dashed lines). 

Dynamics of a representative calcium release unit 

Figure 3.4 shows the dynamics of an individual Ca2+ release unit from the Monte Carlo 

simulations above (test potential of -10 mV, solid line of Fig. 3.2). Figure 3.4A shows 

the state of this representative Ca2+ release unit and the associated diadic subspace 

and junctional SR Ca2+ concentrations. When the DHPR initially opens (transition 

from state CC to OC in Eq. 3.3) an influx of trigger Ca2+ leads to rv7 J-LM increase in 

diadic subspace [Ca2+] and causes the RyR cluster to open (OC --+ 00 transition). 

The resulting Ca2+ -induced Ca2+ release quickly drives the diadic subspace [Ca2+] 

to rv150 J-LM but over the next 10 ms the resulting decrease in junctional SR [Ca2+] 

leads to decreasing diadic subspace [Ca2+]. Note that junctional SR depletion is 

nearly complete in Fig. 3.4 before the CO to CC transition that ends Ca2+ release; 

however, this example is not representative in this regard as most sparks terminate 

via stochastic attrition while depletion is only partial. Superimposed on the gradual 

decrease in diadic subspace [Ca2+] are square pulses of increased [Ca2+] (±7 J-LM) due 

to the stochastic openings of the L-type Ca2+ channel associated with this CaRU 
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(CO '=7 00 transitions). 

The observation that diadic subspace [Ca2+] decreases during the voltage-pulse 

suggests that its dynamics are fast compared to the time-evolution of junctional SR 

[Ca2+]. In fact, for the physiologically realistic parameters used in Figs. 3.2-3.4, the 

diadic subspace [Ca2+] ( c'd
8

) is well-approximated by assuming quasi-static equilibrium 

with the junctional SR (c}sr), bulk myoplasmic (cmya), and network SR (cnsr) Ca2+ 

concentrations. Setting the dc'dsf dt = 0 in Eq. 3.5 and solving for c'ds we find that 

(3.33) 

where ~~hpr and r;yr depend on Ca2+ release unit state and J~hpr and Jdhpr are func­

tions of plasma membrane voltage defined by J;&pr = J~hpr + Cds Jdhpr with J;&pr as in 

Eq. 4.4. 

Figure 3.4B replots the dynamics of the diadic subspace and junctional SR [Ca2+] 

shown in Fig. 3.4A in the (cds, Cjsr)-plane. The black arrows indicate the direction of 

the trajectories and color of the solid lines indicates CaRU state ( CC black, OC green, 

00 red, CO blue). The diagonal trajectory is one consequence of diadic subspace 

[Ca2+] being "slaved" to junctional SR [Ca2+] as the junctional SR depletes. The four 

colored dotted lines correspond to the four functional relationships between c'ds and 

c}sr given by Eq. 3.33 (one for each CaRU state). The dynamics of diadic subspace 

[ Ca2+] (solid lines) are well-approximated by these dotted lines (save for short time 

intervals immediately following CaRU state transitions), demonstrating the validity 

of the quasi-static approximation leading to Eq. 3.33. 

3.4.2 Dynamics of the population of calcium release units 

Figure 3.4 shows the dynamics of the diadic subspace and junctional SR [Ca2+] asso­

ciated with a single Ca2+ release unit during a voltage clamp step (Figs. 3.2 and 3.3). 
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Figure 3.4: A: Dynamics of the diadic subspace (cds) and junctional SR (cjsr) Ca2+ 
concentrations associated with a single Ca2+ release unit during the voltage clamp 
protocol of Figs. 3.2 and 3.3. B: The dynamics of these local Ca2+ concentrations in 
the (cds,Cjsr)-plane. Trajectory color indicates CaRU state: both the L-type channel 
and the RyR cluster closed (CC, black); L-type channel open and RyR cluster closed 
( OC, green); L-type channel closed and Ry R cluster open ( C 0, blue); both the L-type 
channel and the RyR cluster open (00, red). Colored dashed lines correspond to 
estimates of diadic subspace [Ca2+] given by Eq. 3.33. 
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Figure 3.5: The open circles are a snapshot at t = 30 ms of the diadic subspace 
(cd'J and junctional SR (c]sr) Ca2+ concentrations in the Monte Carlo simulation of 
Fig. 3.2. Each of the four central panels corresponds to a particular Ca2+ release 
unit state and size of each subpopulation at this moment is indicated by Nee through 
N°0 . The horizontally (vertically) oriented histograms give the marginal distribution 
of diadic subspace (junctional SR) [Ca2+] conditioned on CaRU state. Histograms 
are scaled for clarity and in some cases also truncated (asterisks). 
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Conversely, Fig. 3.5 presents the state of each of the 5000 CaRUs at a particular mo­

ment in time (t = 30 ms, halfway through the test potential of -10 mV). To interpret 

this figure, it is important to understand that the four central panels of Fig. 3.5 cor­

respond to the four CaRU states and are arranged in a manner corresponding to the 

transition state diagram of Eq. 3.3. At this moment during the simulation, approxi­

mately 5% of the Ca2+ release units have open L-type channels (N°c + N°0 = 244) 

while approximately 30% have an open RyR cluster (Nco+ N° 0 = 1459). Note that 

for each of the four subpopulations of CaRUs there is a linear relationship between 

cds and Cjsn that is, the open circles tend to be arranged in lines, the position of 

which depends on CaRU state (and the slope of which depends on whether or not the 

RyR cluster is open). Thus, Fig. 3.5 demonstrates that across the entire population 

of Ca2+ release units, the observed diadic subspace [Ca2+] is well approximated by 

the quasi-static approximation given by Eq. 3.33. 

Figure 3.5 also shows histograms of the observed distribution of diadic subspace 

[Ca2+] (horizontal) and junctional SR [Ca2+] (vertical). The histograms associated 

with CaRU state CC clearly indicate that most of these 3387 CaRUs have replete 

junctional SR ( c"Jsr ~ 1000 p,M), something that is not obvious from the open circles 

in the (cds, Cjsr)-plane. Similarly, most of the 154 CaRUs in state OC are associated 

with replete junctional SR. Conversely, the junctional SR [Ca2+] for the 1369 CaRUs 

in state CO is broadly distributed with the "average" junctional SR severely depleted 

(rv100 p,M). At t = 30 ms only 90 CaRUs are in state 00 and the distributions 

of junctional SR [Ca2+] and diadic subspace [Ca2+] associated with this state are 

bimodal. 
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3.4.3 A univariate probability density formulation for june-

tional SR calcium concentration 

It is important to note that the Monte Carlo simulations presented in Fig. 3.5 are 

only a snapshot of the population of 5000 Ca2+ release units. As the simulation 

progresses, imagine the open circles moving around in these four ( cds, Cjsr )-planes 

consistent with Eqs. 3.5 and 3.6 with occasional jumps from one plane to another 

when a CaRU changes state. These four planes are analogous to the four time-

dependent joint probability densities that form the basis of the probability density 

approach presented above (Eq. 3.18). 

The observation that the diadic subspace [Ca2+] is well approximated by Eq. 3.33 

across the entire population of Ca2+ release units (Fig. 3.5) suggests that the mul­

tivariate joint probability density functions defined in Eq. 3.18 will be well approxi-

mated by 

(3.34) 

where cj
8 

is a function of CaRU state and the junctional SR, bulk myoplasmic, and 

network SR [Ca2+] analogous to Eq. 3.33, 

(3.35) 

where ~~hpr' !~yr' J~hpr and JJhpr are as defined in the previous section. The univariate 

probability density PJsr(Cjsn t) that appears in Eq. 3.34 is the marginal density of the 

junctional SR [Ca2+] jointly distributed with CaRU state defined by 

(3.36) 

That is, when the observed form of the joint multivariate probability densities (Eq. 3.34) 
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is integrated with respect to diadic subspace [Ca2+] we obtain 

1= pi(cds, Cjsn t)dcds = 1= P;sr(Cjsr, t)6(cds- cjs)dcds 

P~sr(Cjsr, t) 1= b(cds- cjJdcds = P~sr(Cjsr, t) (3.37) 

where the last equality uses the unit mass of the delta function, J
0
= 5(cds-cj

8
)dcds = 1. 

As shown in Appendix 3.6.3, the observed form of the multivariate probability den­

sities (Eq. 3.34) and the definition of the marginal density (first equality in Eq. 3.37) 

can be used to reduce Eqs. 3.19-3.22 into a univariate version of the probability 

density formulation that focuses on the dynamics of the marginal densities for the 

junctional SR [Ca2+] jointly distributed with CaRU state [P;sr(cjsr, t)]. The resulting 

advection-reaction equations are [Mazzag et al., 2005a, Huertas and Smith, 2006a], 

opJ~r - [j [f-cc cc J (k+ k+ ) cc k- co k- oc ~t - -~ jsrPjsr - ryr + dhpr Pjsr + ryrPjsr + dhprPjsr u uc3sr 
(3.38) 

opJ~ _ [j [f-co CO] (k- k+ ) CO k+ CC k- 00 
~t - -~ jsrPjsr - ryr + dhpr Pjsr + ryrPjsr + dhprPjsr 

u UCJST . 

(3.39) 

opfs~ [j [f-oe OCJ (k+ k- ) OC k- 00 k+ CC 
~t = -~ jsrPjsr - ryr + dhpr Pjsr + ryrPjsr + dhprPjsr u uc3sr 

(3.40) 

8pfs~ 8 [f-oo oo] (k- k- ) oo k+ oc k+ co --;:;-t = -~ jsr Pjsr - ryr + dhpr Pjsr + ryrPjsr + dhprPjsr u uc3sr 
(3.41) 

· -cc -co -oc -oo where the advectiOn rates fjsr' fjsr, fjsr, and fjsr are given by Eq. 3.24 with the 

substitution of cjs for cds, that is, 

f}sr (3.42) 

(3.43) 

where cj
8
(t) is the function of Cmya(t), Cjsn and CaRU state (i) given by Eq. 3.35. 
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In this univariate probability density formulation, the bulk myoplasmic and net­

work SR [Ca2+] are still given by Eqs. 3.29 and 3.30, but J;fflux and J;efill are now 

functionals of the joint marginal probability densities [P;sr(cjsn t)], 

(3.44) 

(3.45) 

3.4.4 Comparison of probability density and Monte Carlo 

results 

The four histograms presented in Fig. 3.6A-D show the marginal distributions of 

junctional SR [Ca2+] observed in Fig. 3.5 on identical scales. When presented in 

this fashion it becomes apparent that at t = 30 ms only a small fraction ( rv5%) of 

the Ca2+ release units have open 1-type Ca2+ channels (states OC and 00), while 

approximately 30% contain open RyR clusters (CO and 00). Note that the asterisk 

in Fig. 3.6A indicates that the histogram bin representing Ca2+ release units with 

closed 1-type Ca2+ channel, closed RyR cluster and replete junctional SR is truncated; 

in fact, rv80% of CaRDs in state cc have c''Jsr ::::::: Cnsr· With this understanding, a 

comparison of Fig. 3.6A and B shows that CaRDs with open RyR clusters are more 

likely to be depleted than CaRDs with closed RyR clusters, but CaRDs with closed 

RyR clusters are not necessarily replete, because recovery of junctional SR [Ca2+] is 

not complete until approximately 400 ms after RyR closure (cf. Fig. 3.3). 

The solid lines of Fig. 3.6A-D show snapshots of the four joint probability densities 

P1~r(cjsr, t), P1;;,(cjsr, t), /Js~(cjsn t), and lJs~(Cjsr, t) as calculated using the probabil­

ity density approach (t = 30 ms). These results were obtained by numerically solving 

Eqs. 3.29, 3.30, and 3.38-3.45 using the numerical scheme presented in Appendix 3.6.4 

(parameters as in Figs. 3.2-3.5). Importantly, the entire distribution of junctional SR 
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Figure 3.6: Histograms of the junctional SR Ca2+ concentrations ( c''Jsr) at t = 30 
ms in the Monte Carlo simulation of Figs. 3.2-3.5 jointly distributed with CaRU 
state. These histograms are plotted on the same scale, but one is truncated for 
clarity (asterisk). For comparison, the solid lines show the four joint probability 
densities p5Cjr(Cjsn t), P5~(Cj8r, t), l]s~(cjsn t), and l/s~(Cjsn t) for junctional SR [Ca2+] 
(Eq. 3.34) calculated via numerical solution of Eqs. 3.29, 3.30, and 3.38-3.45. The 
probability density calculation of the fraction of subunits in each of the four states is 
denoted by 1ri (Eq. 3.46). 
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Ca2+ concentrations observed for each CaRD state in the probability density calcu­

lation (solid lines) agrees with the corresponding Monte Carlo result (histograms), 

thereby validating the probability density methodology and our implementation of 

both approaches. In particular, notice that the fraction of CaRDs in each state given 

by 

(3.46) 

in the probability density calculation is consistent with the Monte Carlo simulation 

Fig. 3.5, for example, in Fig. 3.6A JTcc = 0.67 and this corresponds to Nee/ N = 

3387/5000 in Fig. 3.5A. 

While Fig. 3.6 shows the four marginal probability densities [P;sr(Cjsn t)] for the 

junctional SR [Ca2+] jointly distributed with CaRD state at a particular moment in 

time, Fig. 3. 7 shows the total probability density 

T ( ) CC CO OC 00 
Pjsr Cjsn t = Pjsr + Pjsr + Pjsr + Pjsr (3.47) 

evolving over time. Initially the mass of this probability density is concentrated at 

Cjsr ;::::j 1000 JLM (label "a" in Fig. 3. 7). During the 20 ms voltage pulse, a significant 

fraction of the probability density (about 65%) moves to junctional SR Ca2+ con­

centrations that are more that half depleted (label "b"), while approximately 35% 

remains above 500 JLM. Interestingly, the probability density remains bimodal for ap­

proximately 200 ms after the voltage pulse ends ( "c" and "d"). During this time, the 

probability mass that corresponds to depleted junctional SR ( "c") gradually moves 

to higher values of Cjsr as these junctional SR compartments are refilled via Ca2+ 

transport from the network SR. At the same time, the probability mass that corre­

sponds to replete junctional SR compartments ("d") follows the network SR [Ca2+] 

that decreases from t = 30-100 ms and increases again when t > 100 ms (recall the 

solid line in Fig. 3.3). Perhaps most importantly, Fig. 3. 7 shows that the shape and 
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temporal evolution of the distributions that form the basis of the probability density 

approach can be quite complicated. 

3.4.5 Monte Carlo simulations converge to the probability 

density result 

The coupled system of advection-reaction equations used in the univariate proba­

bility density approach (Eqs. 3.38-3.41) are the master equations for the marginal 

probability densities for junctional SR [Ca2+] jointly distributed with the Ca2+ re­

lease unit state (Eq. 3.36). Solving these partial differential equations is equivalent to 

performing Monte Carlo simulation of diadic subspace [Ca2+], junctional SR [Ca2+], 

and CaRU state provided that 1) diadic subspace [Ca2+] is a fast dynamic variable in 

quasi-static equilibrium with junctional SR [Ca2+J and 2) the number of Ca2+ release 

units (N) is large enough. Figure 3.6 demonstrates agreement between probability 

density simulations of a minimal whole cell model of EC coupling and corresponding 

Monte Carlo simulations using N = 5000 CaRUs. Because this agreement will only 

improve when the number of CaRUs is increased to physiologically realistic values (N 

= 20,000), the probability density approach is clearly a viable method of modeling 

heterogeneous diadic subspace and junctional SR [Ca2+J during EC coupling. 

Figure 3.8 clarifies this point by showing how the total release flux (J'[yr, open 

squares) observed in Monte Carlo simulation converges to the probability density 

result (solid lines) as the number of Ca2+ release units is increased from N = 50 

to 20,000. Each panel shows a representative Monte Carlo simulation with voltage 

step to -10 m V (solid grey line) as well as the mean and standard deviation of 

10 trials (open squares and error bars). As expected, the fluctuations in the total 

release flux decrease in magnitude as the number of CaRU s used in the Monte Carlo 

calculation increases. Similarly, Fig. 3.9 shows histograms of the junctional SR [Ca2+] 

(irrespective of CaRU state) at t = 30 ms in Monte Carlo simulations performed with 
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Figure 3.7: Waterfall plot (A) and snapshots (B) of the time-evolution of the total 
probability density for the junctional SR [Ca2+] [pT(cjsn t) given by Eq. 3.47] calcu­
lated via numerical solution of Eqs. 3.29, 3.30, and 3.38-3.45. The solid black lines 
show the 20 ms voltage step to -10 mV. See text for description of labels "a"-"d". 
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Figure 3.8: Total Ca2+ release flux (J'[yr) in Monte Carlo simulations utilizing in­
creasing numbers of Ca2+ release units (N = 50, 500, 5000, and 20000, respectively). 
Each panel shows a representative Monte Carlo simulation (solid grey line) and the 
mean and standard deviation of 10 trials (open squares and error bars). The solid 
lines show the corresponding probability density result (same in each panel). 
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a greater or lesser number of CaRUs. Notice that the probability density function 

pT(cJsn t) (Eq. 3.47) accurately represents the distribution of junctional SR [Ca2+] so 

long as the number of CaRUs is 5000 or more. Indeed, in both Figs. 3.8 and 3.9 the 

Monte Carlo simulations are converging to the probability density result well before 

the Monte Carlo calculations include a physiological number of Ca2+ release units 

(N = 20, 000). This indicates that the probability density approach to modeling 

local Ca2+ signaling and Ca2+ release unit activity in cardiac myocytes is a viable 

alternative to Monte Carlo simulation. 

3.4.6 The probability density calculation exhibits gain and 

gradedness 

To further compare of the probability density and Monte Carlo approaches, Fig. 3.10A 

summarizes a large number of simulated whole cell voltage clamp protocols such as 

those presented in Fig. 3.2. The open circles and error bars of Fig. 3.10A show the 

trigger Ca2+ influx viaL-type Ca2+ channels integrated over the 20 ms voltage step to 

test potentials in the range -40 to 40 m V (mean± SD for 10 Monte Carlo simulations 

using 10,000 CaRUs). For comparison, the solid lines of Fig. 3.10A show that the 

trigger Ca2+ influx in the probability density calculation agrees with the Monte Carlo 

simulations. Similarly, the open squares of Fig. 3.10A show the voltage-dependence of 

the Ca2+ release flux plotted in a manner that illustrates the pronounced EC coupling 

gain in the Monte Carlo calculations, while the dashed lines of Fig. 3.10A show that 

the Ca2+ release flux observed in the corresponding probability density calculations 

also exhibits high gain. When these trigger and release fluxes are normalized and 

replotted in Fig. 3.10B, the gradedness of Ca2+ release with respect to membrane 

potential and Ca2+ influx is highlighted. In particular, we note that both the Monte 

Carlo and probability density calculations exhibit graded Ca2+ release and that the 

voltage-dependence of the EC coupling gain is nearly identical in the two formulations 
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Figure 3.9: Histograms of junctional SR [Ca2+] (c}sr) at t = 30 ms in the Monte Carlo 
simulations similar to Fig. 3.5 but with increasing numbers of Ca2+ release units (N 
= 50, 500, 5000, and 20000, respectively) One bin representing rv57% probability of 
a replete junctional SR is truncated for clarity (asterisk). The solid lines show the 
probability density calculation of pT(cjsr, t) (Eq. 3.47), the distribution of the total 
probability density for the junctional SR [Ca2+] (same in each panel). 
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(see Fig. 3.10C). 

3.4. 7 Computational efficiency of the probability density ap­

proach 

The convergence between the Monte Carlo and probability density calculations pre­

sented above indicates that the probability density approach is a viable alternative to 

Monte Carlo simulations of heterogeneous local [Ca2+] and Ca2+ release unit activity 

in cardiac myocytes. In fact, as shown in Fig. 3.10, the probability density approach 

leads to EC coupling dynamics that are nearly identical to Monte Carlo calculations 

so long as these Monte Carlo simulations involve a realistic number of Ca2+ release 

units (N > 5000). 

Because the probability density and Monte Carlo calculations are essentially equiv­

alent in terms of the cellular responses they predict, it is of interest to explore the 

computational efficiency of the two approaches. The filled squares of Fig. 3.11 show 

the run time required to perform a simulated whole cell voltage clamp protocol such 

as those presented in Fig. 3.2 using traditional Monte Carlo simulation methods. As 

expected, the run time increases with the number of Ca 2+ release units used and this 

run time scales linearly with the number of CaRUs when N is large. For comparison, 

the thick dashed line of Fig. 3.11 shows the 2.1 minute run time required for the 

univariate probability density approach, that is, numerical solution of Eqs. 3.29, 3.30, 

and 3.38-3.45 (see Appendix 3.6.4). Notice that the intersection of the filled squares 

and the thick dashed line in Fig. 3.11 shows that a Monte Carlo simulation using 

about 500 CaRUs leads to the same run time as the probability density approach. 

Not only is this smaller than the true number of CaRUs in a ventricular myocyte, but 

in practice multiple Monte Carlo runs would have to be performed and averaged to 

obtain a definitive result. For example, if 10 trials are to be averaged as in Fig. 3.8, 

then the appropriate comparison is given by the open squares and the thick dashed 
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Figure 3.10: Summary of simulated whole cell voltage clamp protocols such as those 
presented in Fig. 3.2 using both the Monte Carlo and probability density formulations. 
A: Open circles and error bars show trigger Ca2+ influx via 1-type Ca2+ channels 
integrated over the 20 ms voltage step to test potentials in the range -40 to 40 m V 
(mean ± SD for 10 Monte Carlo simulations using 10,000 CaRUs). Open squares 
and error bars show the voltage-dependence of the resulting Ca 2+ release. The solid 
and dashed lines of Fig. 3.10A show that the trigger and release fluxes as calculated 
using the probability density approach agrees with these Monte Carlo simulations. 
B: Results from panel A normalized and replotted to emphasize gradedness of Ca2+ 
release with respect to membrane potential and Ca2+ influx. C: EC coupling gain as 
a function of membrane potential for Monte Carlo (open squares and error bars) and 
probability density (solid line) calculations. 
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Figure 3.11: Filled squares show the run time required to perform a simulated whole 
cell voltage clamp protocol such as those presented in Fig. 3.2 using traditional Monte 
Carlo simulation methods when the number of Ca2+ release units is increased from 
N = 50 to 20000. Open squares show 10 times the Monte Carlo run time to account 
for averaging multiple trials as in Fig. 3.8. The thick dashed line and thin dot-dashed 
lines show the run time required for the univariate probability density approach using 
mesh sizes of L = 50, 100, and 200 and a time step of 1 f-1S. The thin dotted line 
shows the univariate probability density approach run time using mesh sizes of L = 
100 and a time step of 0.02 ms (see Discussion and Appendix 3.6.4). Total simulation 
time is 60 ms. 
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line and these show that the probability density approach requires less run time than 

ten Monte Carlo simulations with 50 CaRUs. Intriguingly, and perhaps most impor­

tantly, when the traditional Monte Carlo simulations use a physiologically realistic 

number of CaRUs, the probability density approach is approximately 35 times faster 

than Monte Carlo (73 vs. 2.1 minutes). While the computational efficiency of the 

probability density approach as compared to Monte Carlo simulation may be model 

dependent, in the context of this whole cell model an additional 20X acceleration is 

easily obtained (see thin dotted line in Fig. 3.8 and Discussion). For this reason we 

suggests that the probability density approach be further investigated and developed 

as a computationally efficient alternative to Monte Carlo simulations of the local 

control of EC coupling in cardiac myocytes. 

3.5 Discussion 

In this paper we have introduced, validated and benchmarked a novel probability den­

sity approach to modeling localized Ca2+ influx viaL-type Ca2+ channels and Ca2+­

induced Ca2+ release mediated by clusters of RyRs during excitation-contraction 

coupling in cardiac myocytes. To illustrate the approach we "have focused on a mini­

mal whole cell model of cardiac EC coupling that includes a four-state Ca2+ release 

unit representing voltage-dependent activation of an L-type Ca2+ channels as well as 

Ca2+ -induced Ca2+ release mediated by a two-state RyR cluster that includes regu­

lation by both diadic subspace and junctional SR Ca2+. However, it is important to 

note that the probability density formulation does not require a minimal Ca2+ release 

unit model; in fact, the approach is fully generalizable to CaRUs with an arbitrary 

number of states (see Appendix 3.6.4). 

As illustrated by leftmost schematic in Fig. 3.12, the Monte Carlo formulation of 

the minimal whole cell model of EC coupling that is the focus of this paper includes 2+ 
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2N ordinary differential equations representing [Ca2+] balance for the bulk myoplasm, 

network SR, N diadic subspaces, and N junctional SRs. Alternatively, the probability 

density formulation represents the dynamics ofthese heterogeneous local Ca2+ signals 

using a system of advection-reaction equations for the time-dependent probability 

density of diadic subspace and junctional SR [Ca2+] conditioned on Ca2+ release 

unit state. In this formulation, the number of equations ( M) is equal the number of 

unique states that define the gating behavior of the CaRU. As originally derived, these 

joint probability densities are two-dimensional, that is, at a specified time they are 

functions of both cds and Cjsr· The system of advection-reaction equations satisfied by 

these multivariate probability densities is the "master equation" for diadic subspace 

and junctional SR [Ca2+] jointly distributed with the Ca2+ release unit state. The 

only approximation used in the derivation of these equations is that the number of 

CaRU s units is very large ( N ----+ oo). 

In the Monte Carlo simulations of the whole cell model of cardiac EC coupling we 

observed that diadic subspace [Ca2+] was in quasi-static equilibrium with junctional 

SR [Ca2+]. Figure 3.12 illustrates this feature of the simulations with two thick gray 

lines in two ( cds;Cjsr )-planes labeled slaved diadic subspace (the lines have different 

slopes as in Fig. 3.5). In this situation the multivariate probability density functions 

defined in Eq. 3.18 are well approximated by univariate (marginal) probability den­

sities representing the time-dependent probability density of junctional sarcoplasmic 

reticulum [Ca2+] jointly distributed with CaRU state. These marginal probability 

densities are one-dimensional, that is, at a specified time they are functions of Cjsr 

(illustrated by narrow rectangles in Fig. 3.12). When the system of advection-reaction 

equations satisfied by these marginal probability densities was solved numerically us­

ing a high-resolution finite difference scheme (see Appendix 3.6.4), a realistic but 

minimal model of cardiac excitation-contraction coupling is produced that includes a 

novel representation of heterogeneous junctional SR [Ca2+]. 
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Importantly, we have validated this novel probability density approach to model­

ing local control of Ca2+ release against traditional Monte Carlo simulations with a 

physiologically realistic number of CaRUs. In simulated voltage-clamp protocols, the 

univariate probability density formulation of our whole cell model of cardiac EC cou­

pling produced high-gain Ca2+ release that was graded with changes in membrane 

potential. Indeed, the voltage-dependence of trigger Ca2+ influx via L-type Ca2+ 

channels, the resulting Ca2+ release via RyR clusters, and the observed EC coupling 

gain obtained using the univariate probability density formulation are nearly identi­

cal to that seen in corresponding Monte Carlo calculations. This agreement validates 

the conceptually novel aspects of the probability density formulation as well as our 

implementation of both approaches. 
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slaved diadic subspace 

fast domain limit 

Figure 3.12: From left to right: Schematic representation of the (2N +2)-compartment 
M ante Carlo model of the local control of EC coupling that is the starting point of this 
paper. Schematic representation of the multivariate Probability Density formulation 
that can be reduced to the univariate probability density formulation when diadic 
subspace Ca2+ is in quasi-static equilibrium with junctional SR Ca2+ (slaved diadic 
subspace). An alternative reduction is possible if diadic subspace and junctional SR 
Ca 2+ are both fast dynamic variables (fast domain limit). The large open squares 
represent the ( cds,Cjsr )-plane of the probability density approach and the dotted lines 
represent the cds and Cjsr nullclines. Values in brackets show how run times of each 
method scale with increasing number of Ca2+ release units (N), number of Ca2+ 
release unit states (M), and the number of mesh points used in the probability density 
approach ( L). 
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3.5.1 Relationship to other simplified models of EC coupling 

It is instructive to compare and contrast the probability density approach introduced 

in this paper to models of the local control of EC coupling that have previously ap­

peared. As shown diagrammatically in Fig. 3.12, the Monte Carlo local control model 

of EC coupling that is our starting point includes 2N + 2 compartments, similar to 

the functional organization of some previously published Monte Carlo models of local 

control [Greenstein and Winslow, 2002a], but distinct from two recently published 

simplified models [Hinch, 2004, Greenstein et al., 2006] that do not make a distinction 

between junctional and network SR. 

The one requirement for the validity of the multivariate probability density ap­

proach is that the number of CaRUs units is very large (denoted by N --+ oo in 

Fig. 3.12). While previously published models of local control also assume that the 

number of CaRUs is very large [Hinch, 2004,Greenstein et al., 2006], the multivariate 

probability density approach represents this "large system size" limit in a manner 

that accounts for the heterogeneous diadic subspace and junctional SR Ca2+ concen­

trations. 

Similar to previously published simplified models of local control [Hinch, 2004, 

Greenstein et al., 2006], we make use of the fact that diadic subspace Ca2+ is a fast 

dynamic variable. Because references [Hinch, 2004] and [Greenstein et al., 2006] do 

not distinguish junctional and network SR, the assumption of fast diadic subspace 

Ca2+ immediately leads to a simplified local control model involving M ODEs (one 

for each CaRU state). Conversely, in this paper the observation that diadic subspace 

Ca2+ is in quasi-static equilibrium with junctional SR Ca2+ allows us to reduce the 

multivariate probability density formulation to a univariate form that still accounts 

for the dynamics of junctional SR depletion. This reduction from the multivariate to 

univariate probability density approach is denoted by the arrow labeled fast ds/ slow 

jsr in Fig. 3.12. 
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Note that if diadic subspace and junctional SR [Ca2+] changes were both fast 

compared to the stochastic gating of Ca2+ release units, the Monte Carlo simulations 

of Fig. 3.2 would have revealed delta function-like probability densities. That is, 

rather than observing the linear relationship between diadic subspace and junctional 

SR [Ca2+] in each (cds,Cjsr)-plane that suggested Eq. 3.34, we would instead have 

observed that the probability density in each plane was well approximated by 

where 1 :::; i :::; M is the index over CaRU states and ~s and cjsr are functions of 

Cmyo and Cnsr found by simultaneously solving Eqs. 3.5 and 3.6 with the left hand 

sides equal to zero. Although this fast domain limit was not observed in our Monte 

Carlo simulations, for completeness it is denoted in Fig. 3.12 by the arrow labeled 

fast ds/ fast jsr. If the simplified models of local control that have prevously ap­

peared [Hinch, 2004, Greenstein et al., 2006] were generalized to account for hetero­

geneous junctional SR [Ca2+], they would correspond to the fast domain limit of the 

multivariate probability density approach presented here. 

3.5.2 Computational efficiency of the probability density ap­

proach 

While the probability density and Monte Carlo calculations are essentially equivalent 

in terms of the dynamics cellular responses they predict, the probability density 

approach can be significantly faster than Monte Carlo simulation (Fig. 3.11). Indeed, 

when both methods are applied using the same (non-adaptive) time step, our current 

implementation of the univariate probability density approach is approximately 35 

times faster than Monte Carlo simulations that employ a physiologically realistic 

number of CaRUs. Intriguingly, when this comparison is made using time steps that 
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are distinct and as large as possible while ensuring numerical stability and accuracy 

of each calculation, we find that the univariate probability density approach can be 

up to 650 times faster than the corresponding Monte Carlo simulations. For example, 

the thin dotted line of Fig. 3.11 indicates a 6.6 second run time for the probability 

density approach with a time step of 0.02 ms. This suggests that the probability 

density approach could be further investigated and developed as a computationally 

efficient alternative to Monte Carlo simulations of the local control of EC coupling in 

cardiac myocytes. 

Although the computational efficiency of the probability density approach is in­

triguing, it is important to note that the relative merits of Monte Carlo and probability 

density simulation methods are in general model dependent. For example, the time 

required for the Monte Carlo simulation of the whole cell voltage clamp protocols such 

as those presented in Fig. 3.2 is, at least ultimately, a linear function of the number of 

CaRDs (i.e., the limiting slope of the filled squares of Fig. 3.10 is one). Similarly, we 

have observed that the computational efficiency of the univariate probability density 

calculation presented in Figs. 3.6 and 3. 7 scales linearly with the number of Ca2+ re­

lease unit states (M) and the number of mesh points used to discretize the junctional 

SR [Ca2+] (L) (not shown). Indeed, the thin dotted lines of Fig. 3.11 show the run 

time of the probability density approach decreasing or increasing by a factor of two 

when the standard number of mesh points (L = 100) is decreased or increased to 50 

or 200, respectively. Of course, the standard value of L = 100 was chosen because 

further refinement resulted in a negligible change in the probability density result. 

However, we expect that the number of mesh points required for an accurate prob­

ability density calculation will generally depend on the details of the chosen Ca2+ 

release unit model. In the same way, increasing the number M of CaRU states will 

lead to a less efficient probability density calculation. 

Indeed, the relative merits of the probability density and Monte Carlo simulation 
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methods can be clarified if we assume that the computational effort involved in up­

dating one mesh point of the probability density calculation is equivalent to Monte 

Carlo simulation of one Ca2+ release unit. If we let N denote number of Ca2+ release 

units, M the number of states of the CaRU model, and L the number of mesh points 

used in the probability density calculation, then in a traditional Monte Carlo calcula­

tion, there are 2N ODEs to integrate for the local Ca2+ concentrations as well as N 

Markov chains to update at each time step, for a (very roughly calculated) computa­

tional effort of 3N. Conversely, in the univariate probability density approach, there 

are M PDEs to solve with L mesh points each, for a computational effort of M L. 

Given the fact that the physiologically realistic number of CaRUs is N = 20,000 and 

the observed number of mesh points required in our probability density calculations 

is L = 100, we might have expected the univariate probability density approach to 

be approximately 150 times computationally more efficient than Monte Carlo for the 

minimal M = 4 state CaRU model used here (consistent with the observed values 

of 35-700 in Fig. 3.11). Continuing this reasoning, we might expect the univariate 

probability density approach to outperform Monte Carlo calculations for any CaRU 

model with fewer than 600 states ( M :::; 3N / L). 

On the other hand, if model parameters were such that it was not a good approxi­

mation to assume that in each CaRU diadic subspace [Ca2+] is in quasi-static equilib­

rium with junctional SR [Ca2+], then the appropriate probability density alternative 

to Monte Carlo simulation would be multivariate. In this case each of the M joint 

probability densities would require a two-dimensional L x L mesh that discretizes both 

the diadic subspace and junctional SR [Ca2+]. If we presume that the computational 

effort of the multivariate probability density approach scales as M L2
, then we would 

expect it to be superior to Monte Carlo calculations involving N = 20,000 CaRUs 

when the chosen CaRU model has fewer than 6 states (M :::; 3N/ L2
). Consistent 

with this back-of-the-envelope estimate, when we do not assume fast diadic subspace 
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[Ca2+] but instead numerically solve the 2D system of advection-reaction equations 

given by Eqs. 3.19-3.22, we find the multivariate probability density approach is only 

marginally faster than Monte Carlo simulation (not shown). However, these estimates 

and preliminary benchmarks fail to account for accelerations of the multivariate prob-

ability density approach that could be obtained by using more sophisticated numerical 

schemes (e.g., a nonuniform or adaptive mesh) and model reduction techniques ap-

plicable to the probability density but not the Monte Carlo formulation. For this 

reason we recommend the probability density approach for further development as a 

computationally efficient alternative to Monte Carlo simulations of the local control 

of EC coupling in cardiac myocytes. 

3.6 Appendices 

3.6.1 Description of fluxes influencing bulk myoplasmic and 

network SR calcium concentration 

The whole cell model of EC coupling that is the focus of this paper includes several 

fluxes that directly influence the dynamics of the bulk myoplasmic and network SR 

[Ca2+]. For example, the Na+ -Ca2+ exchanger current that appears in Eq. 3.29 takes 

the form [Luo and Rudy, 1994, Jafri et al., 1998a, Rice et al., 2000], 

where 

[Na+]3 c erJncxFV/RT- [Na+]3 c e(rJncx-l)FV/RT J = JO myo ext ext myo 

ncx ncx (K3 + [Na+J3 ) (K + C ) (1 + ksat e(rJncx-l)FV/RT)' ncx,n ext ncx,c ext ncx 
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Am = Cmf3myo/Vmyo, Cext is the extracellular Ca2+ concentration, and [Na+]myo and 

[Na+]ext are the intracellular and extracellular sodium concentrations, respectively 

(for parameters see Tables 3.1 - 3.3). 

The SERCA-type Ca-ATPase flux that appears in Eqs. 3.29 and 3.30 includes 

both forward and reverse modes [Shannon et al., 2000] and is given by 

lserca = Vserca (C ) T/Js (C ) T/rs 

1 + myo + nsr 
Kfs Krs 

(3.48) 

with parameters as in Table 3.3. In addition, Eqs. 3.29 and 3.30 include a leakage 

Ca2+ flux given by 

Jleak = Vzeak ( Cnsr - Cmyo) · 

Following [Rice et al., 2000], Eq. 3.29 includes a constant background Ca2+ influx 

that takes the form, 

where lin= 9in(V- Eca) and Eca = (RT/2F)ln(cext/Cmy0 ). 

3.6.2 Generalization of the probability density approach 

The probability density approach is completely general and in principle the method­

ology can be applied to Ca2+ release unit models of arbitrary complexity. Let 

S(t) = i E {1, ... , M} be the state of a continuous time discrete state Markov Chain 

model of an individual Ca 2+ release unit and let the M x M matrix Q be the in-

finitesimal generator matrix for this stochastic process composed of rates that may 

be constant or, alternatively, arbitrary functions of voltage, diadic subspace [Ca2+], 

or junctional SR [Ca2+]. Let us also rewrite the multivariate probability density 
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functions defined in Eq. 3.18 using slightly more compact notation, 

pi(e, t) de= Pr{ e < c(t) < e +de and S(t) = i}, 

where e is a vector including both the diadic subspace and junctional SR Ca2+ con-

centrations. Using Bayes' formula these joint probability densities can be related to 

the probability densities for diadic subspace and junctional SR [Ca2+] conditioned on 

the the state of the channel, 

P { -( ) d I S-( ) "} Pr{ e < c(t) < e +de and S(t) = i} 
r e<et <e+ e t =z = {- } . 

Pr S(t) = i 

That is, if the probability density pi( e, t) is integrated over all possible diadic subspace 

and junctional SR Ca2+ concentrations, the probability 1ri of finding the randomly 

sampled Ca2+ release unit in state i is obtained, 

1ri = Pr { S(t) = i} = j pi(e, t)de 

where de= dcas dcjsr· 

Using this notation, the advection-reaction equations (Eqs. 3.19-3.22) for the 

probability density of diadic subspace and junctional SR [Ca2+] jointly distributed 

with the state of the Ca 2+ release unit become, 

(3.49) 

where p is a row vector given by p = (p1 , p2 , ... , pM) in which each element pi is a 

function of Cas and Cjsr; and [pQ]i is the ith element of the row vector resulting from 

a vector-matrix product of p and Q. 
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3.6.3 Derivation of the univariate probability density approach 

Using Eqs. 3.34-3.37 the advection-reaction equations of the multivariate probabil­

ity density formulation (Eqs. 3.19-3.22) can be reduced to the univariate version 

(Eqs. 3.38-3.41). For example, here we show that making the substitution given by 

Eq. 3.34 in Eq. 3.22 and integrating the resulting equations with respect to diadic 

subspace [Ca2+]leads term by term to Eq. 3.41. The first term of the left hand side 

of Eq. 3.22 involving the partial derivative with respect to time becomes 

i.e., the first term of Eq. 3.41. The first term on the right hand side of Eq. 3.22 

involving the partial derivative with respect to cds is disappears, that is, 

1
00 

8 [foo oo] d 1oo oo 1 oo 0 - ~ ds P Cds = - ds P 0 = ' 
0 UCds 

because the probability density p00 (cd8 , Cjsr, t) evaluates to zero at the minimum and 

maximum physical values for diadic subspace [Ca2+]. The second term on the right 

hand side of Eq. 3.22 involving the partial derivative with respect to Cjsr becomes 

where ~~;? = fj~;? ( c£0 , Cjsr) due to the sifting property of the delta function, in 

agreement with Eqs. 3.41 and 3.43. Finally, the three reaction terms in Eq. 3.22 
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reduce as required because 

3.6.4 Numerical scheme for the univariate probability den-

sity approach 

In the notation of Appendix 3.6.2, the advection-reaction equations (Eqs. 3.38-3.41) 

used in the univariate probability density approach take the form, 

(3.50) 

Numerical solution of these equations was performed using a total variation dimin-

ishing scheme following [Casti et al., 2002, Huertas and Smith, 2006b]. Briefly, we 

discretize junctional SR [Ca2+] according to Cjsr,£ = £tlcjsr+cj;i:;' where£= 0, 1, · · · , L 

and tlcjsr = ( cj;~x - cj;~n) / L. With these preliminaries, the numerical scheme can be 

written as 
. M 

dp£ 1 [ i i J """' m mi dt = -~ 9£- 9£-1 + L....t P£ qg 
CJsr m=l 

where q£i is the transition rate in the mth row and ith column of Q evaluated at a 

junctional SR [Ca2+] of Cjsr,£· In this expression, 9} and 9L1 are given by 

(3.51) 
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where we have dropped the superscripted i, ¢e = fepe, and ¢;+! is the first-order Roe 
2 

flux defined by [Casti et al., 2002, Hundsdorfer and Verwer, 2003] 

where fe = J/sr,e is the discretized advection rate appearing in Eq. 3.50. The quantities 

1jJ+ and 7/J- occurring in Eq. 3.51 are flux limiters given by 

where 

7/J[r] =max [0, min(2r, 1), min(r, 2)]. 

The ordinary differential equations in the univariate model (Eqs. 3.29-3.30) were 

intregrated using Euler's method with a time step of 1 J.-LS. The effiux and refill fluxes 

of Eqs. 3.31 and 3.32 were approximated by 

M L 

vrfflux6.Cjsr LLP~ [cJs,e- Cmyo(t)] 
i=l £=0 

M L 

T "'"'i Vrefill6.Cjsr ~ ~ Pe [cnsr(t) - Cjsr,e] 
i=l £=0 

where cjs,c is given by Eq. 3.35 with the junctional SR [Ca2+] evaluated at Cjsr,C· 
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Chapter 4 

Moment closure for local control 

models of calcium-induced calcium 

release in cardiac myocytes 

4.1 Summary 

In prior work we introduced a probability density approach to modeling local con­

trol of Ca 2+-induced Ca 2+ release in cardiac myocytes [Williams et al., Biophys. J. 

92(7):2311-28, 2007] where we derived coupled advection-reaction equations for the 

time-dependent bivariate probability density of subsarcolemmal subspace and junc­

tional sarcoplasmic reticulum (SR) [Ca2+] conditioned on Ca2+ release unit (CaRU) 

state. When coupled to ODEs for the bulk myoplasmic and network SR [Ca2+], a 

realistic but minimal model of cardiac excitation-contraction coupling was produced 

that avoids the computationally demanding task of resolving spatial aspects of global 

Ca2+ signaling, while accurately representing heterogeneous local Ca2+ signals in a 

population of diadic subspaces and junctional SR depletion domains. Here we in­

troduce a computationally efficient method for simulating such whole cell models 
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when the dynamics of subspace [Ca2+] are much faster than those of junctional SR 

[Ca2+]. The method begins with the derivation of a system of ODEs describing 

the time-evolution of the moments of the univariate probability density functions 

for junctional SR [Ca2+] jointly distributed with CaRU state. This open system of 

ODEs is then closed using an algebraic relationship that expresses the third moment 

of junctional SR [Ca2+] in terms of the first and second moments. In simulated 

voltage-clamp protocols using 12-state CaRUs that respond to the dynamics of both 

subspace and junctional SR [Ca2+], this moment closure approach to simulating lo­

cal control of excitation-contraction coupling produces high-gain Ca2+ release that is 

graded with changes in membrane potential, a phenomenon not exhibited by common 

pool models. Benchmark simulations indicate that the moment closure approach is 

nearly 10,000-times more computationally efficient than corresponding Monte Carlo 

simulations while leading to nearly identical results. We conclude by applying the mo­

ment closure approach to study the restitution of Ca2+ -induced Ca2+ release during 

simulated two-pulse voltage-clamp protocols. 

The contents of this chapter are under review as "Moment closure for local control 

models of calcium-induced calcium release in cardiac myocytes" in Biophysical Jour­

nal [George S. B. Williams, Marco A. Huertas, Eric A. Sobie, M. Saleet Jafri, and 

Gregory D. Smith]. The author gratefully acknowledges Marco Huertas' contribution 

to the development of the moment closure technique. Some of these results have also 

appeared in poster form at the 2008 Biophysical Society Annual Meeting in Long 

Beach, CA. 

4.2 Introduction 

The key step linking electrical excitation to contraction in cardiac myocytes is Ca2+­

induced Ca2+ release (CICR), in which Ca2+ current flowing across the cell mem-
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brane triggers the release of additional Ca2+ from the sarcoplasmic reticulum (SR). 

In ventricular cells, CICR occurs as a set of discrete microscopic events known as 

Ca2+ sparks [Cheng et al., 1993b], with each spark triggered by local, rather than 

cell-wide, increases in myoplasmic [Ca2+]. As a consequence of this "local control" 

mechanism of CICR, the cellular SR Ca2+ release flux is not a function of a sin­

gle quantity, such as spatially-averaged intr,acellular [Ca2+], but instead depends on 

thousands of different local Ca2+ concentrations, each of which can fluctuate with 

stochastic openings and closings of nearby Ca2+ channels in the sarcolemmal and SR 

membranes. The picture is further complicated by the fact that dynamic changes in 

local SR [Ca2+], which are also spatially heterogeneous, are thought to influence the 

gating of SR Ca2+ release channels known as ryanodine receptors (RyRs). 

Computational models have been developed in which SR Ca2+ release depends 

directly on the average myoplasmic [Ca2+] [Jafri et al., 1998a, Glukhovsky et al., 

1998a, Snyder et al., 2000a]. These so-called "common pool" models [Stern, 1992a] 

display SR Ca2+ release that occurs in an "all-or-none" fashion, contrary to experi­

ments showing that release is smoothly graded with changes in Ca2+ influx [Fabiato, 

1985a, Wier et al., l994a, Cannell et al., 1995b]. On the other hand, several pub­

lished models achieve graded Ca 2+ release using non-mechanistic formulations, such 

as having SR Ca2+ release depend explicitly on Ca2+ currents rather than on local 

[Ca2+] [Bondarenko et al., 2004, Luo and Rudy, 1994, Wong et al., 1992, Hilgemann 

and Noble, 1987, Shiferaw et al., 2003]. 

Models of EC coupling are able to reproduce graded Ca2+ release mechanistically 

by simulating the stochastic gating of channels in Ca2+ release sites using Monte 

Carlo methods. In these approaches, one or moreL-type Ca2+ channels interact with 

a cluster of RyRs through changes in [Ca2+] in a small "diadic subspace" between the 

sarcolemmal and SR membranes. These models also generally consider local changes 

in junctional SR [Ca2+], because these changes are thought to be important for Ca2+ 
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spark termination and refractoriness [Stern et al., 1999c, Rice et al., 1999a, Sobie 

et al., 2002a]. Realistic cellular SR Ca2+ release can be simulated by computing 

the stochastic triggering of sparks from hundreds to thousands of such "Ca2+ release 

units" (CaRUs) [Stern, 1992a, Rice et al., 1999a, Sobie et al., 2002a, Greenstein and 

Winslow, 2002a]. However, Monte Carlo simulations of local control of EC coupling 

can be computationally demanding, making it difficult to augment these models with 

representations of the ionic currents responsible for action potentials, and impractical 

to use this approach for simulations of phenomena occurring over the course of many 

heartbeats. 

We recently demonstrated that an alternative "probability density approach" 

can be used to simulate graded, locally controlled SR Ca2+ release mechanistically 

[Williams et al., 2007]. In this prior work, coupled advection-reaction equations were 

derived relating the time-dependent probability density of subsarcolemmal subspace 

and junctional SR [Ca2+] conditioned on CaRU state. By numerically solving these 

equations using a high-resolution finite difference scheme and coupling the resulting 

probability densities to ordinary differential equations (ODEs) for the bulk myoplas­

mic and sarcoplasmic reticulum [Ca2+], a realistic but minimal model of cardiac 

excitation-contraction coupling was produced. This new approach to modeling local 

control of EC coupling is often computationally more efficient than Monte Carlo sim­

ulation, particularly if the dynamics of subspace [Ca2+] are much faster that those 

of junctional SR [Ca2+], allowing the bivariate probability density functions for sub­

space and junctional SR [Ca2+] to be replaced with univariate densities for junctional 

SR [Ca2+]. However, the probability density approach can lose its computational 

advantage when the number of states in the CaRU model is large or the dynamics of 

local [Ca2+] are such that numerical stability requires a refined mesh for solving the 

advection-reaction equations. 

We therefore aimed to develop methods for improving upon the probability den-
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sity approach, and in this study we describe for the first time a "moment closure" 

technique that leads to significant computational advantages. After briefly review­

ing the Monte Carlo and probability density approaches to modeling local control 

of EC coupling in cardiac myocytes, the new methodology begins with a derivation 

of a system of ODEs describing the time-evolution of the moments of the univariate 

probability density functions for junctional SR [Ca2+] jointly distributed with CaRU 

state. This open system of ODEs is then closed using an algebraic relationship that 

expresses the third moment of junctional SR [Ca2+] in terms of the first and second 

moments. In this manner, the partial differential equations describing the univariate 

probability densities of junctional SR [Ca2+] jointly distributed with CaRU state are 

replaced with ODEs describing the time-evolution of the moments of these distribu­

tions. In simulated voltage-clamp protocols using 12-state CaRDs that respond to the 

dynamics of both subspace and junctional SR [Ca2+], this moment closure approach to 

simulating local control of EC coupling produces high-gain Ca 2+ release that is graded 

with changes in membrane potential, a phenomenon not exhibited by common pool 

models. Benchmark simulations indicate that this moment closure technique for local 

control models of CICR in cardiac myocytes is nearly 10,000-times more computa­

tionally efficient than corresponding Monte Carlo simulations, while leading to nearly 

identical results. We conclude by applying the moment closure approach to study the 

restitution of Ca2+ -induced Ca2+ release during simulated two-pulse voltage-clamp 

protocols. 

4.3 Model Formulation 

The focus of this manuscript is a novel moment closure technique to modeling local 

control of CICR in cardiac myocytes. The whole cell model of EC coupling that 

will be used to demonstrate the method closely follows our prior work in which we 
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presented traditional Monte Carlo simulations of graded, locally controlled SR Ca2+ 

release to validate a novel probability density approach that represents the distri­

bution of diadic subspace and junctional SR Ca2+ concentrations with a system of 

partial differential equations [Williams et al., 2007]. Below we briefly review the 

Monte Carlo and probability density formulations, emphasizing minor adjustments 

that were required to implement the moment closure technique. The Results section 

begins with the derivation of the moment closure equations and follows with the val­

idation and benchmarking of the moment closure technique for local control models 

of CICR in cardiac myocytes by comparison to Monte Carlo simulation. 

4.3.1 Monte Carlo formulation 

The Monte Carlo model of local control of CICR in cardiac myocytes describes 

the dynamics of bulk myoplasmic [Ca2+], network SR [Ca2+], N diadic subspace 

Ca2+concentrations and N junctional SR domain Ca2+concentrations through a sys­

tem of ODEs that are coupled to N Markov chains representing the stochastic gat­

ing of each CaRU that consists of one 1-type Ca2+ channel (DHPR) and one RyR 

"megachannel" coupled through the local diadic subspace (cds) [Ca2+]. While a com­

plete description of CICR would include stochastic gating of roughly N = 10,000 

CaRUs, each containing multiple 1-type Ca2+ channels (1-10) [Bers and Stiffel, 1993] 

and RyRs (30-300) [Franzini-Armstrong, 1999], Monte Carlo simulations of EC cou­

pling focusing on local control have often used Markov models of reduced complex­

ity [Stern, 1992a, Sobie et al., 2002a, Hinch, 2004], and this level of resolution will 

suffice to introduce the moment closure technique. 

4.3.1.1 Concentration balance equations 

The Monte Carlo model consists of N +2 ODEs representing the time-evolution of 

[Ca2+] in the bulk myoplasm (cmya), network SR (cnsr), and N junctional SRs (cjsr) 
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c 
ext 

J n 
-~---~~ efflux 

c 
myo 

n 
c. 

JSr 

+ J n I refill 

Figure 4.1: Diagram of model components and fluxes. Each Ca 2+ release unit consists 
of two restricted compartments (the diadic subspace and junctional SR with [Ca2+] 
denoted by Cds and Cjsr, respectively), a two-state 1-type Ca2+ channel (DHPR), and 
a 6-state Ca2+ release site. The t-tubular [Ca2+] is denoted by Cext and the fluxes 
Jdhpr' l;!'yr' ]~!flux' l;!efill' lin, lncx, lserca, and lzeak are described in the text and 
Appendix A. 
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compartments. Consistent with Fig. 4.1, the concentration balance equations for 

these compartments are 

dcmyo T 
~ =]leak + Jef flux - lncx - lserca + lin ( 4.1) 

dcnsr 1 ( T ) 
~ = Ansr lserca - ]refill - ]leak (4.2) 

dc''Jsr 1 ( n n ) dt = ~ ]refill - Jryr 
)Sr 

( 4.3) 

where 1 :::; n:::; Nand Ansr and Ajsr are volume fractions (see Appendix 4.6.1). The 

flux through the RyR megachannel associated with the nth CaRU (J;!'yr) is given by 

(4.4) 

where r;:yr is a stochastic variable that takes the value 1 or 0 depending on whether 

the nth RyR megachannel is open or closed, and c:Js is the associated diadic subspace 

concentration defined below (Eq. 4.9). Similarly, diffusion from the network SR to 

each junctional SR compartment is given by 

VT 
Jn refill ( n ) 
refill= ~ Cnsr- Cjsr · (4.5) 

The total refill flux occurring in Eq. 4.2 includes the contribution from each CaRU 

and is given by 
N 

J'fefill = L J;efill (4.6) 
n=l 

while the total flux out of the N diadic subspaces is given by 

N N T 
JT "'""Jn "'""Vefflux (-n ) 
efflux=~ efflux=~ N cds- Cmyo . (4.7) 

n=l n=l 
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The remaining four fluxes that appear in Eqs. 4.1-4.3 and Fig. 4.1 include Jdhpr (influx 

into the diadic subspaces via L-type Ca2+ channels that is a function of the random 

variable fdhpr), lin (background Ca2+ influx), lncx (Na+-Ca2+ exchange), lserca (SR 

Ca2+-ATPases), and ]zeak (the network SR leak). The functional form of these four 

fluxes can be found in Appendix 4.6.1. 

4.3.1.2 Diadic subspace calcium concentration 

Note that a concentration balance equation is not included for diadic subspace [Ca2+], 

because in our previous study we observed that model parameters lead to rapid equi-

librium of the diadic subspace [Ca2+] with the [Ca2+] in the juctional SR and bulk 

myoplasm [Williams et al., 2007]. Thus, in each diadic subspace we assume a [Ca2+] 

(c:J:s) that balances the fluxes in and out of that compartment, 

0 = / ( Jdhpr + J~yr - J~fflux) ' 
ds 

(4.8) 

that is, 

-n -n + -n 
Cds = Cds,O Cds,l Cjsr (4.9) 

where 1 ::::; n ::::; N and 

(4.10) 

n 
-n rryrVryr 
cds,l = 

/;!'yr Vryr + Vef flux - fdhpr JJhpr . 
( 4.11) 

In these expressions, the quanties ~~hpr and r~yr indicate whether the channel is open 

or closed,vryr = v'{yr/N, Vefflux = v~flux/N, and J~hpr and JJhpr are functions of 

plasma membrane voltage defined by 

( 4.12) 
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where the 1-type Ca2+ channel flux, Jdhpr is given by Eq. 4.2 (see Appendix 4.6.1). 

4.3.1.3 Twelve-state CaRU model 

The RyR model used here is similar to the two-state minimal model of an RyR 

"megachannel" used in prior work [Williams et al., 2007]. Consistent with several 

studies indicating that the gating of the RyR cluster associated with each CaRU is 

essentially all-or-none [Stern, 1992a, Rice et al., 1999a, Sobie et al., 2002a], the two­

state RyR megachannel model used in [Williams et al., 2007] included transition rates 

that were nonlinear functions of diadic subspace ( cds) and junctional SR ( Cjsr) [Ca2+], 

thereby allowing for Ca2+ -dependent activation of RyR gating as well as spark termi­

nation facilitated by localized depletion of junctional SR [Ca2+]. Because the moment 

closure approach is most easily presented when all Ca2+ -mediated transitions in the 

CaRU model are bimolecular association reactions, the six-state RyR megachannel 

model used here employs sequential binding of diadic subspace Ca2+ ions to achieve 

highly cooperative Ca2+-dependent opening of the RyR megachannel. Similarly, an 

explicit junctional SR Ca2+ -dependent transition is included so that depletion of lu­

minal Ca2+ decreases the open probability of the megachannel, 

4k:/"yrcds 3ak:/"yrcds 2a2 k:/"yrcds 3k+ a ryrCds k:/;;r,*Cjsr 

c1 ___,_ c2 ----' c3 ___,_ c4 ___,_ c5 ___,_ o. .,.-- r- .,.-- .,.-- .,.--

{33 k:;yr 2jJ2k:;yr 3{3k;;r 4k:;yr k:;yr,* 
(4.13) 

Parameters were chosen (see Table 4.2) so that the behavior of this minimal six-state 

RyR megachannel model approximated the above-mentioned two-state model. 

As in prior work [Williams et al., 2007], we use a two-state model of the 1-type 
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Ca2+ channel (DHPR), 

c 0, (4.14) 

where C and 0 represent closed and open states, kdhpr is the voltage-dependent acti­

vation rate [1uo and Rudy, 1994] given by 

e(V -VJhpr)/O"dhpr 
+ -+ 

kdhpr = kdhpr 
1 

(V-V8 )/O"dh ' + e dhpr pr 
( 4.15) 

and kdhpr is the constant de-activation rate that sets the mean open time (0.2 ms) 

and maximum open probability (0.1) of the channel. Although this two-state DHPR 

model ignores voltage- and Ca2+ -dependent inactivation of 1-type Ca2+ channels, 

these processes do not significantly influence the triggering of CICR during the whole-

cell voltage clamp protocols that are used in this paper to validate the moment closure 

technique. 

Combining the six-state RyR megachannel model with the two-state 1-type chan­

nel model yields a twelve-state CaRU model that takes the form, 

CCs co 

1l 1l 1l 1l ( 4.16) 

where horizontal and vertical transitions are governed by Eqs. 4.13 and 4.14, respec-

tively, and the first character (C or 0) indicates the state of the DHPR while the 

second character (C1 , C2 , C3 , C4 , C5 , or 0) refers to the state of the RyR megachannel. 

Note that the 12-by-12 infinitesimal generator matrix (sometimes called the Q­

matrix) that collects the rate constants of the CaRU model (Eq. 4.16) can be written 
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compactly in the form,· 

Q = Kq,(V) + Cds Kds + Cjsr Kjsr ( 4.17) 

where the elements of Kq,(V) are the Ca2+ -independent transitions (both voltage­

dependent and voltage-independent with units of time- 1 ), and the elements of Kds 

and Kjsr are the association rate constants for the transitions mediated by diadic sub­

space ( cds) and junctional SR ( Cjsr) [Ca2+], respectively (with units of concentration-! 

time-1 ). Although non-cooperative binding of Ca2+ is not a formal requirement for 

the application of the moment closure technique, for simplicity we will assume the 

CaRU model is written in the form of Eq. 4.17. 

4.3.1.4 Univariate probability density model 

The moment closure technique begins with the equations for a univariate proba­

bility density model of local control of Ca2+ -induced Ca2+ release in cardiac my­

ocytes [Williams et al., 2007]. We write pi(Cjsr, t) to denote probability density func­

tions for the distribution of [Ca2+] in a large number of junctional SR compartments 

jointly distributed with CaRU state, that is, 

Pr{ Cjsr < Cjsr ( t) < Cjsr + dCjsr 

and S(t) = i} (4.18) 

where i is an index over CaRU state, and the tilde in Cjsr and S indicate random 

quantities. For these densities to be consistent with the dynamics of the Monte Carlo 

model of cardiac EC coupling as N -+ oo, they must satisfy a system of advection­

reaction equations of the form [Williams et al., 2007, Mazzag et al., 2005a, Huertas 
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and Smith, 2007b], 

( 4.19) 

where 1::; i::; M, M=12 is the number of states in the CaRU model, Q is theM x M 

generator matrix (Eq. 4.17), the row-vector p( Cjsn t) = (pl, p2
, · • • , pM) collects the 

time-dependent probability densities for the junctional SR [Ca2+] jointly distributed 

with CaRU state (Eq. 4.18), and [pQ]i is the ith element of the vector-matrix product 

pQ. 

Note that the factor f}sr(cjsr) in Eq. 4.19 describes the deterministic aspect of the 

time-evolution of Cjsr when the CaRU is in state i. That is, consistent with Eq. 4.3 

we have 

i 1 (T iT) 
fjsr = >,.T ]refill - Tryr]ryr 

JSr 

( 4.20) 

where 1 ::; i ::; M and cj
8 

is a function of CaRU state, the local junctional SR [Ca2+], 

and the bulk myoplasmic [Ca2+] analogous to Eqs. 4.9-4.11, 

(4.21) 

where 

( 4.22) 

i T 
-i TryrVryr 
cds,l = i T + T i JT,l . 

rryrvryr vefflux- Tdhpr dhpr 

( 4.23) 

In these expressions, the quanties ~~hpr and r~yr take values of 0 or 1 depending on 

whether the respective component of the CaRU model is closed or open, and fJh~r 
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and J:fh~r are functions of plasma membrane voltage defined by 

M 

JT _ ~ i (JT,O + -i JT,l ) 
dhpr - L......J fdhpr dhpr cds dhpr (4.24) 

i=l 

where J~pr is the total flux through the L-type Ca2+ channels (Eq. 4.4). 

Conversely, the reaction terms ([pQ]i) on the right hand side ofEq. 4.19 correspond 

to the stochastic aspect of the CaRU dynamics (i.e., changes in probability due to the 

stochastic gating of the RyR megachannel and DHPRs). This term involves processes 

that may depend on the junctional SR [Ca2+] directly (as in the transition CC5 ----+CO) 

or indirectly (as in the transition CC4 ----+ CC5), as well as terms dependent on the 

membrane voltage (such as the transition CC 1 ----+ OC I). Using the decomposition of 

Q given by Eq. 4.17, one can see that [pQ]i is a function of V and Cjsr given by 

M 

[pQ]i = L {i [ K~,i + c~s K~~i + Cjsr KJ~~] 
j=1 

M 

~ ,-J [KJ,i + -J KJ,i + = L......J fJ ¢ Cds,O ds Cjsr 

j=1 

(-J KJ,i + KJ,i )] 
cds,1 ds jsr 

( 4.25) 

where Kq;(V) provides the voltage-dependence, the superscripts of Kf, K~~i, and 

KJ~~ indicate row and column indices of these matrices, r) ( Cjsn t) is the probability 

density for state j, and c~s 0 and c~s 1 are given by Eqs. 4.21-4.23. , , 

The concentration balance equations governing the bulk myoplasmic (cmyo) and 

network SR (cnsr) [Ca2+] in the probability density formulation are identical to those 

used in the Monte Carlo approach (Eqs. 4.1-4.2), except that the fluxes J{efill and 
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J'{j flux are dependent on the densities (Pjsr), that is, 

(4.26) 

( 4.27) 

where cjs is a function of Cjsr (Eq. 4.21). 
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Parameter Definition Value 
N number of diadic subspaces 50-20000 
Vnsr network SR volume 3.15 X 10-7 p,L 

Vmyo myoplasmic volume 2.15 X 10-5 p,L 

VJs = NVds total diadic subspace volume 2 X 10-8 p,L 

VJ~r = Nl0sr total junctional SR volume 2.45 X 10-8 p,L 

Cm capacative membrane area 1.534 X 10-4 p,F 

f3ds subspace buffering factor 0.5 
f3jsr junctional SR buffering factor 0.065 
f3nsr network SR buffering factor 1.0 
/3m yo myoplasmic buffering factor 0.05 

v',!efill = >..]srI Trefill junctional SR refilling rate 0.018 s- 1 

v~fflux = >..Is! 7 ef flux diadic subspace efflux rate 5.2 s-1 

F Faraday's constant 96480 coul mol- 1 

R gas constant 8314 mJ mol-1 K- 1 

T absolute temperature 310K 

Cext extracellular Ca:.H concentration 1.8 mM 
[Na+]ext extracellular Na + concentration 140mM 
[Na+]myo intracellular N a+ concentration 10.2 mM 

Table 4.1: Model parameters: volume fractions, Ca2+ buffering, and exchange be­
tween restricted domains and the bulk, physical constants, and fixed ion concentra­
tions. 
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Parameter Definition Value 

v;yr = Nvryr total RyR cluster release rate 0.9 s-1 

p~pr = N Pdhpr total DHPR permeability 3.5 x 10-5 em s- 1 

VJhpr D HPR activation threshold -10 mV 
(Jdhpr DHPR activation parameter 6.24 mV 
-+ 
kdhpr maximum rate of D HPR opening 556 s-1 

kdhpr closing rate of DHPR opening 5000 s-1 

kdhpr rate of DHPR closing 5000 s- 1 

k~r rate of RyR activation 2000 JLM- 1s- 1 

k:;yr rate of RyR deactivation 1600 s- 1 

k~T,* rate of RyR opening 40 JLM-1s-1 

k:;yr,* rate of Ry R closing 500 s-1 

a cooperativity factor 2 

f3 cooperativity factor 2 

Table 4.2: Ca2+ release unit parameters (L-type Ca2+ channel and RyR cluster). 
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Parameter Definition Value 

Kjs forward half-saturation constant for SERCA pump 0.17 J-LM 
Krs reverse half-saturation constant 1702 J-LM 
T/fs forward cooperativity constant 0.75 

'Tlrs reverse cooperativity constant 0.75 
Vserca maximum SERCA pump rate 8.6 J-LM s-1 

J~cx magnitude of Na+-ca:.t+ exchange current 150 J-LA J-LF- 1 

Kncx,n Na+ half saturation constant 87.5 X 103J-LM 

Kncx,c Ca2+ half saturation constant 1.38 X 103J-LM 
ksat 

ncx saturation factor 0.1 

'Tlncx voltage dependence of Na+-Ca2+ exchange 0.35 

Vzeak SR Ca:H leak rate constant 2.4 x 10-6 s- 1 

9in maximum conductance of background Ca:.t+ influx 9.6 x 10-5 mS J-LF- 1 

Table 4.3: Model parameters: Na+-Ca2+ exchange current, SERCA pumps, and back­
ground Ca2+ influx. 
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4.4 Results 

4.4.1 Moments of junctional SR calcium concentration 

The application of the moment closure technique to the local control model of Ca 2+­

induced Ca2+ release (CICR) in cardiac myocytes presented above begins by writing 

the q-th moment of the univariate probability density function, pi(Cjsn t), as 

(4.28) 

where the non-negative integer q indicates the moment degree in p,~ and is an exponent 

in (cjsr)q. As defined in Eq. 4.18, pi(cjsr, t) is the distribution of [Ca2+] in a large 

number of junctional SR compartments jointly distributed with CaRU state. Thus, 

the zeroth moment Mb corresponds to the probability-denoted as ni(t) in [Williams 

et al., 2007]-that a randomly sampled CaRU is in state i, that is, 

where conservation of probability implies L:i ni = 1. Because the joint probability 

densities do not individually integrate to unity, the first moment, 

is related to the expected value of the junctional SR [Ca2+] conditioned on CaRD 

state through 
i 

Ei[- ] M1 Cjsr = -., 
Mb 

(4.29) 

while the conditional variance of the junctional SR [Ca2+] is 

i ( i) 2 i - M2 M1 Var [cjsr] = -. - -. 
Mb Mo 

(4.30) 
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4.4.2 Expressing fluxes in terms of moments 

Considering Eqs. 4.1 and 4.2 and Eqs. 4.26-4.27, one sees that the fluxes f{jflux and 

J'fefill mediate the influence of the distribution of diadic subspace and junctional SR 

[Ca2+] on the dynamics of the bulk myoplasmic [Ca2+] (cmya) and the network SR 

[Ca2+] (cnsr ). Using the definition of the moments of junctional SR [Ca2+] (Eq. 4.28), 

these fluxes become functions of the zeroth and first moments, 

M 

T '"' T ( i i) ]refill = ~ vrefill CnsriLo - ILl 

i=l 

M 

JT '"' T (-i ) i + T -i i 
efflux = ~ Vefflux Cds,O- Cmyo ILo VeffluxCds,liLl· ( 4.31) 

i=l 

Similarly, the total flux through all the L-type Ca2+ channels U:&pr' Eq. 4.24) and 

the RyR Ca2+ channels (f/'yr) become, 

M 

J:&pr = ~ ~~hpr [ J~hpriLb + JJhpr ( c~s,oiLb + c~s,11LD] (4.32) 
i=l 

and 
M 

J~r = ~ l;yr (ILt - C~s,l ILt - ~s,O ILb) · (4.33) 
i=l 

Note that the average diadic subspace and junctional SR Ca2+ concentrations can 

also be written in terms of the moments, 

M M 
avg _ E[- ]-'"' iEi[-A -i - ]- '"'(-i i -i i) 

cds - Cds - ~ 1f cds,O + cds,l Cjsr - ~ cds,O ILo + cds,l ILl (4.34) 
i=l i=l 

M M 
avg _ E[- J _ '"' iEi[- J _'"' i cjsr - Cjsr - ~ 1f Cjsr - ~ILl) ( 4.35) 

i=l i=l 

d J T T [ avg ] d JT T [ avg] h d · an efflux = Vefflux Cds - Cmyo an refill = Vrefill Cnsr - Cjsr W en expresse 1n 

terms using these quantities. 
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4.4.3 Derivation of moment equations 

Differentiating Eq. 4.28 with respect to time and using the equations of the univariate 

probability density approach (Eqs. 4.19-4.25), we obtain a system of ODEs that 

describe the time-evolution of these moments defined in Eq. 4.28, 

dJ-L~ qJ-L~-1 ( T i -i ) 
dt =~ Vrefill Cnsr + lryr Cds,O 

JSr 

i 
qJ-Lq ( i T -i T i T ) + ).,T lryr Vryr Cds,l - Vrefill - lryr Vryr 

JSr 

M 

+""" j (Kj,i + -j Kj,i) 
~ J-lq ¢> Cds,O ds 
j=l 

M 

+ L f-L~+l (c~s,l K~~i + Kj~~) 
j=l 

( 4.36) 

where M = 12, 1 :::; i :::; M, q = 0, 1, 2, ... , ct 0 and cJs 1 are given by Eqs. 4.22 and , , 

4.23. In this expression the CaRU model is specified by theM x M matrices Kcp, Kds, 

and Kjsr defined in Eq. 4.17, and the superscripts in K~,i, K~~i, and KJ~~ indicate the 

transition rate or bimolecular rate constant in the jth row and ith column of these 

matrices. Note that in the M equations for the zeroth moments (J-Lb) the first two 

terms evaluate to zero because q = 0. When q 2: 1 the first term depends on both 

the network SR [Ca2+] (cnsr) and the bulk myoplasmic [Ca2+] (cmyo) through c;L,o· 

The terms in the first summation have a similar dependence on Cmyo and this can 

affect transitions mediated by diadic subspace Ca2+ (K~~i), and the magnitude of 

these terms depends also on voltage through K~'i(V). Perhaps most importantly, the 

presence of diadic subspace and junction SR Ca2+mediated transitions in the CaRU 

model implies that dJ-L~/dt is a function of f-L~+l' f-L~+ll · · · , J-L~ 1 whenever K~~i or KJ~ir 
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is nonzero. That is, Eq. 4.36 is an open system of the form 

( 4.37) 

q=1,2,3,··· (4.38) 

where we write {J-L~} as a shorthand for J-L~, J-L~, · · · , J-L~. Consequently, Eq. 4.36 is 

unusable in its current form, because in order to determine the time-evolution of the 

q-th moments one needs to know the value of the (q+1)-th moments. 

4.4.4 Moment closure 

To utilize Eq. 4.36, we truncate the open system at the second moment (q = 2) and 

close the system of ODEs by assuming that the third moment can be expressed as an 

algebraic function cp of the lower moments (J-Lb, J-LL J-L~), that is, 

( 4.39) 

( 4.40) 

(4.41) 

The remainder of this section derives the required expression of the form J-L~ 

cp(J-Lb, J-LL J-L~) (Eqs. 4.48-4.53). This is accomplished by specifying the function cp 

in a manner that would be strictly correct if the probability density functions were 

scaled Beta distributions. Note that choosing this form of cp to perform the moment 

closure given by Eqs. 4.39-4.41 is not equivalent to assuming that the probability 

density functions are well approximated by Beta distributions. What we are assum­

ing is that the relationship between J-L~ and the lower moments (J-Lb, J-LL J-L~) is similar 

to the relationship observed in the Beta distribution. This assumption is validated 

a posteriori by evaluating the accuracy of results obtained using this approach (see 
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Figs. 4.2-4.6). 

The derivation begins by considering a random variable 0 ::; i; ::; 1 that is func­

tionally dependent on Cjsr through 

- min 
Cjsr - Cjsr 

X = ------"-
Jcjsr 

where J max min 
Cjsr = Cjsr - Cjsr · ( 4.42) 

In this expression, the minimum and maximum values of junctional SR [Ca2+] are 

given by cTs~n = mini c]sr and cTs~x = maxi c}sr where c]sr are the steady-state values 

of Cjsr found by setting f}sr = 0 in Eq. 4.20, 

where ~s 0 and ~s 1 are given by Eqs. 4.22 and 4.23. In this way, the maximum and 
' ' 

minimum junctional SR Ca2+ concentrations are determined to be 

max 
cjsr = Cnsr ( 4.43) 

( 4.44) 

where v; = v'fyr vrffluxl ( v'[yr + vrfflux). If the probability density for i; conditioned 

on CaRU state i were Beta distributed, then 

- xai-l (1 - x )(Ji-l dx 
Pr{x < i < x + dxiS = i} = B(ai, (Ji) ( 4.45) 

where the beta function B(ai, (Ji) appears as a normalization constant and i(t), S(t), 

ai(t), and (Ji(t) are all functions of time. Under this assumption, the first several 
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conditional moments of x would be 

( 4.46) 

( 4.47) 

and inverting these expressions gives 

( 4.48) 

( 4.49) 

Note that Eq. 4.42 implies the following relationship between the conditional moments 

( 4.50) 

( 4.51) 

where we have used JL~ = JLtEi[(cjsr )q] for q = 0, 1, and 2; consequently, ai and {3i can 

be found as a function of JLb, JLL and JL~. These parameters allow us to approximate 

the third conditional moment of x, 

i -3 ai (ai + 1) (ai + 2) 
E [x l = (ai + j3i) (ai + j3i + 1) (ai + j3i + 2)' ( 4.52) 

which in turn allows us to approximate the third conditional moment of junctional 

SR [Ca2+] given by JL1 = JLbEi[(cjsr )3
] where 

Ei[(- )3] Ei [(s: - min)3] Cjsr = UCjsrX + Cjsr 

( s: )3Ei[-3] + 3(s: )2 minEi[-2] 3s: ( min)2 Ei[-] + ( min)3 = UCjsr X UCjsr Cjsr X - UCjsr Cjsr X Cjsr . 
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After some simplification one obtains 

11i = 11i(6c· )3Ei[x3] + 3cmin 11i _ 3 (cmin)2 11i + 11i(cmin)3 
1'""'3 1'""'0 )ST JST 1'""'2 JST 1'""'1 1'""'0 JST ) (4.53) 

which is an expression that takes the form 111 = ¢(f1b, 11L 11~) as required by Eq. 4.41, 

because Ei[x3] is a function of 11b, 11L and 11~ given by Eqs. 4.48~4.52. 

Note that the expression 111 = ¢(f1b, 11L 11~) derived above is one of several possi-

bilities that we tested, but the only one that could be validated. For example, when ¢ 

was chosen in a manner that would be strictly correct if the probability densities were 

scaled normal or log-normal distributions, the resulting moment closure did not per­

form well (not shown). Using the Beta distribution to derive ¢makes sense because 

it is a continuous distribution defined on a finite interval. In addition, for particular 

values of ai and {Ji the Beta distribution (while remaining integrable) diverges at 

the boundaries (x = 0 or 1). Similarly, prior work has established that the densities 

pi(cjsn t) can accumulate probability at the minimum and maximum junctional SR 

Ca2+ concentrations (Eqs. 4.43 and 4.44) and diverge as Cjsr ---> c)s~n or c''J'!~x [Mazzag 

et al., 2005a, Williams et al., 2007]. As mentioned above, the use of the Beta distribu-

tion to derive ¢ is ultimately validated by evaluating the accuracy of results obtained 

using this approach (see Figs. 4.2-4.6). 

4.4.5 Representative Monte Carlo and moment closure re-

suits 

Figure 4.2 shows representative results from the minimal whole cell model of EC cou-

pling described above. In this simulated voltage-clamp protocol, the holding potential 

of -80 m V is followed by a 20 ms duration test potential to -10 m V. The Monte 

Carlo result (grey line) which involves a large but finite number of Ca2+ release units 

(N = 1000) can be easily spotted by the fluctuations due to the stochastic gating 
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Figure 4.2: The response of the whole cell model during a 20 ms step depolarization 
from a holding potential of -80 m V to -10 m V (bar) with the Monte Carlo and 
moment closure results indicated as a grey line and black line, respectively. From top 
to bottom: average diadic subspace [Ca2+] (c~:g), total Ca2+ flux via the DHPR Ca2+ 
channels (J~pr), total Ca2+-induced Ca2+ release flux (J'[yr), and average junctional 
SR [Ca2+] (c~:;). The Monte Carlo simulation used N = 1000 Ca2+ release units and 
parameters as in Tables 4.1-4.3. 
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of the CaR Us. The moment closure result (black line) that assumes N ----t oo lacks 

these fluctuations. The top and bottom panels of Fig. 4.2 show the average diadic 

b ( avg N-1 "\'N n ) d · t' 1 SR ( avg N-1 "\'N n ) C 2+ su space cds = L....n= 1 cds an Junc wna cjsr = L....n= 1 cjsr a con-

centrations in the Monte Carlo calculation (grey lines) as well as the corresponding 

quantities from the moment closure calculation (black lines, Eqs. 4.34 and 4.35). The 

middle two panels of Fig. 4.2 show the total Ca2+ influx through L-type Ca2+ chan­

nels (fJhpr = 2::=1 Jdhpr) and the total Ca2+ release from the RyR Ca2+ channels 

( J'{yr = 2::=1 J;!yr) for the Monte Carlo calculation (grey lines) as well as the corre­

sponding quantities for the moment closure result (black lines, Eqs. 4.32 and 4.33). In 

both the Monte Carlo and moment closure calculations, the test potential of -10 m V 

leads to 16X "gain," here defined as the ratio Jr~r/ J~pr where the overbar indicates 

an average over the duration of the pulse. 

Fig. 4.3 shows [Ca2+] in the bulk myoplasm (cmyo) and network SR (cnsr) before, 

during, and after the -10 mV voltage pulse (note change in time scale). In both 

cases the moment closure result is shown as a solid black line while the Monte Carlo 

is displayed as a dashed grey line (note agreement). While junctional SR depletion 

develops rapidly after the initiation of the voltage pulse (not shown), refilling the junc­

tional SR compartments via diffusion of Ca2+ from the network SR (J;!efill in Eq. 4.2) 

depletes this compartment ( Cnsr), which does not fully recover until approximately 

300 ms after the termination of the voltage pulse. 

Taken together, Figs. 4.2 and 4.3 validate our implementation of both the Monte 

Carlo and moment closure approaches. Also note that the similarity of these results to 

Figs. 2 and 3 in [Williams et al., 2007] indicates that the six-state RyR megachannel 

model (Eq. 4.13)-used here because it takes the form of Eq. 4.17-has behavior 

similar to the two-state model of [Williams et al., 2007]. 
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Figure 4.3: Solid lines show the dynamics of bulk myoplasmic (cmya) and network SR 
(cnsr) [Ca2+] in the whole cell voltage clamp protocol of Fig. 4.2 with step potential 
of -10 mV (note longer time scale). The dashed and solid lines are the Monte Carlo 
and moment closure results, respectively. 
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4.4.6 Dynamics of the moments of junctional SR calcium 

concentration 

The top row of Fig. 4.4 shows the time evolution of the probability of three selected 

CaRU states during the simulated voltage-clamp protocol of Figs. 4.2 and 4.3, as 

calculated using both the Monte Carlo (grey lines) and moment closure (black lines) 

methods. Before the voltage pulse, the probability of state CC1 (DHPR in state C and 

RyR in state C1 , see Eqs. 4.13-4.16) is approximately 1, but during the voltage pulse 

to -10 mV this probability drops to approximately 0.78 (20-40 ms). Conversely, 

the probability of CaRU state 00 (DHPR open and RyR open) and CO (DHPR 

closed and RyR open) both increase during the voltage pulse. The dynamics of 

voltage-dependent activation of DHPRs and subsequent triggering the opening of 

RyR megachannels is similar in both the Monte Carlo (grey lines) and moment closure 

(black lines) calculations. 

The second row of Fig. 4.4 shows the mean junctional SR [Ca2+] conditioned on 

CaRU state for the Monte Carlo (grey line) and the moment closure (black line) 

techniques. In the Monte Carlo calculation this conditional mean is given by 

(cjsr)i(t) = ~i L. c}sr ( 4.54) 
nEn' 

where Ni(t) is the number of CaR Us in state i at timet and ni(t) = { n : §n = i} so 

that the sum includes only those CaRUs in state i. The corresponding quantity in the 

moment closure technique is the conditional expectation Ei[cjsr] = 1A/ 11b (Eq. 4.29). 

Note that before the voltage pulse the expectation of SR [Ca2+] is approximately 1000 

11M when conditioning on CaRU state CC1 , 851 11M when conditioning on CaRU state 

00, and 306 11M when conditioning on CaRU state CO. That is, at the holding po­

tential of -80 m V, the stochastic gating of CaRUs leads to depletion of junctional SR 

[Ca2+] associated with release sites with open RyR megachannels (more pronounced 
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Figure 4.4: Comparison between results obtained from Monte Carlo (grey line) sim­
ulations and moment closure approach (black line) for the probability (1ri), the con­
ditional expectation of Cjsr (Ei [cjsrD and the conditional variance of Cjsr (Vari [cjsr] 
), for three selected CaRU states, CC1 (left column), CO (middle column) and 00 
(right column). The Monte Carlo simulation used N = 2000 Ca2+ release units. 
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in CO than 00 because the former state is longer lived). However, the probability of 

CaRU states 00 and CO is very low at -80 m V and, consequently, the expectation 

of junctional SR [Ca2+] irrespective of CaRU state given by the weighted average 

in the Monte Carlo model and 

M M 

E[cjsr] = L 7riEi[cjsr] = L 1-li 
i=l i=l 

in the moment closure calculation is approximately 1000 f-LM, consistent with Fig. 4.2. 

Also note that during the voltage pulse the conditional expectation of junctional SR 

[Ca2+] decreases for CaRU states CC1 and 00, but first increases and then decreases 

for CaRU state CO, presumably because the increasing probability of state CO during 

the pulse is due to CaRU transitions into this state from others (such as CC 1 ) that 

have higher resting junctional SR [Ca2+]. 

The third row of Fig. 4.4 shows the variance of the junctional SR [Ca2+] condi­

tioned upon the CaRU state for the Monte Carlo (grey line) and the moment closure 

(black line) techniques. For the Monte Carlo calculation 

((cjsr- (cjsrr)
2
)i = ~i L (cjsr- (cjsr)i)

2 

nEn' 

where Ni and ni(t) are defined as in Eq. 4.54, while the corresponding conditional 

variance of the junctional SR [Ca2+] in the moment closure calculation is Vari[cjsr] = 

f-l~/ f-lb- (1-li/ f-lt) 2 
(Eq. 4.30). Note that during the voltage pulse the conditional vari-

ance of Cjsr increases, as the dynamics of EC coupling lead to increased heterogeneity 

of junctional SR [Ca2+], and that the moment closure technique accurately accounts 

for this heterogeneity (compare grey and black lines). 
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4.4. 7 The distribution of junctional SR calcium concentra­

tion conditioned on CaRD state 

Figure 4.5 shows a snapshot of the distdbution of junctional SR [Ca2+] ( Cjsr) con­

ditioned upon the state of the Ca2+ release unit at t = 30 ms, midway through the 

voltage pulse protocol of Figs. 4.2-4.4. For clarity, the five closed states of the RyR 

megachannel (C1 ,C2 , · · · ,C5 in Eq. 4.13) have been lumped resulting in a contracted 

presentation with four CaRU states: CC, CO, OC, and 00, where CC = CC1 · • ·CC5 

and OC = OC 1 · · · OC5 (Eq. 4.16). Thus, the two histograms on the bottom of Fig. 4.5 

indicate the distribution of JSR [Ca2+) when the DHPR is open (n°c + n°0 = 0.05), 

while the two histograms on the right of Fig. 4.5 indicate the distribution of JSR 

[Ca2+] when the RyR megachannel is open (nco+ n°0 = 0.16). 

Figure 4.5 shows a broad range of junctional SR [Ca2+] regardless of CaRU state, 

consistent with the high variances at t = 30 ms in Fig. 4.4. For example, when the 

RyR megachannel is closed (CC and OC, left panels), a randomly sampled junctional 

SR is likely to be replete, as indicated by the large vertical bar at Cjsr ~ 1000 J-LM. 

However, one can also find depleted junctional SR [Ca2+) associated with closed RyR 

megachannels, where RyRs have recently opened and the junctional SR has not had 

time to refilL Conversely, when the RyR is open (CO and 00, right panels), the 

probability mass has shifted to lower junctional SR [Ca2+]. 

The diamonds of Fig. 4.5 show Beta distributions with the same mean and variance 

as the histograms obtained from Monte Carlo simulation. While the agreement is 

noteworthy, this correspondence is not required for the moment closure technique 

to work well. What is required is that the relationship between the third (J-L1) and 

lower (J-Lb, J-LL J-Lb) moments in the histograms is similar to that observed in the Beta 

distribution. For example, the histogram junctional SR [Ca2+) for CaRU state CO at 

t = 30 ms has moments of J-Lgo = 0.14, J-Lr0 = 35.3 J-LM, J-L~o = 1.59 x 104 J-LM2
, and 

J-L~o = 9.17 x 106 J-LM3 . When moments zero through two are used to estimate the 
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Figure 4.5: Histograms of junctional SR [Ca2+] conditioned on CaRU state obtained 
by Monte Carlo simulation (t = 30 ms in Fig. 4.2). Filled diamonds show Beta 
distributions with same mean and variance. Each panel corresponds to one of four 
agglomerated states ofthe CaRU: CC, DHPR and RyR megachannel both closed; OC, 
DHPR open and RyR megachannel closed; CO, DHPR closed and RyR megachannel 
open; 00, DHPR and RyR megachannel both open. 
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third moment using Eq. 4.53 with cj;~n = 22 and cj;~x = 981 (Eqs. 4.43 and 4.44), one 

obtains p,~0 = 9.18 x 106 p,M3 , for a relative error of only 0.1%. It is this low error 

that is responsible for the excellent agreement between the moment closure result and 

the Monte Carlo calculation observed in Figs. 4.2-4.4. 

4.4.8 The model displays gain and gradedness 

To further validate the moment closure approach by comparison to Monte Carlo 

simulation, Fig. 4.6 summarizes a large number of simulated whole cell voltage clamp 

protocols such as those presented in Figs. 4.2-4.4. The open circles of Fig. 4.6 show 

the trigger Ca2+ influx via L-type Ca2+ channels integrated over the 20 ms voltage 

step to test potentials in the range -40 to 40 mV using 1,000 CaRDs (the plot is 

normalized to maximum value of Jl;lpr = 0.038 p,M). The dotted line of Fig. 4.6 shows 

that the trigger Ca2+ influx in the moment closure calculation agrees with the Monte 

Carlo simulations. Similarly, the open squares of Fig. 4.6 show the voltage-dependence 

of the Ca2+ release flux (normalized to maximum value of J?;Jr = 0.678 p,M), while 

the dashed lines of Fig. 4.6 show that the Ca2+ release flux observed in the moment 

closure calculation agrees with the Monte Carlo simulations. Note that the Monte 

Carlo and moment closure calculations exhibit graded Ca2+ release. Furthermore, 

the EC coupling gain ( Jr;r / lJpr) is a decreasing function of voltage, is in the range 

of 32 to 15X for test potentials between -40 and 0 m V. Most importantly, the Monte 

Carlo and moment closure calculations are nearly identical (compare open diamonds 

and solid line). 
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Figure 4.6: Summary of whole cell voltage clamp simulations such as those presented 
in Figs. 4.2-4.4 normalized to emphasize gradedness of Ca2+ release with respect to 
membrane potential and Ca2+ influx. Moment closure results (solid and broken lines) 
agree with Monte Carlo calculations (open symbols) for a range of test potentials. Inte­
grated Ca2+ influx via L-type channels ( Jl;ipr) is shown as open cirlces (Monte Carlo) 
and dotted line (moment closure). Integrated RyR flux (J?;r) is shown as open squares 
(Monte Carlo) and dashed line (moment closure). EC coupling gain (Jr;r! lJpr' right 
axis) is shown as open diamonds (Monte Carlo) and solid line (moment closure). 
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4.4.9 Computational efficiency of the moment closure ap­

proach 

While the previous sections have shown that the moment closure and Monte Carlo 

calculations are essentially equivalent in terms of the dynamic cellular responses they 

predict, it is important to note that the moment closure approach is significantly 

faster than Monte Carlo simulation. The Monte Carlo simulations presented above 

are performed using D..t = 0.01 f-LS a value chosen so the probability of transition 

occurring in each CaRU is less than 5% per time step. Table 4.4 shows that the run 

time for these 60 ms simulations increases approximately linearly with the number 

of CaRU units, for example, an N = 10,000 simulation takes about 11 times longer 

than a N = 1000 simulation. When our current implementation of the moment 

closure method is employed using a non-adaptive time step of D..t = 0.01 f-LS, the run 

time is 95 min, which is about 100 times faster than Monte Carlo simualations with 

a physiologically realistic number of CaRDs (e.g., N = 10,000). However, a time 

step of 0.01 f-LS is much smaller than required for integrating the moment closure 

ODEs. When this artificial constraint is removed and the moment closure approach 

is benchmarked using a non-adaptive time step as large as numerical stability will 

allow, the calculations are 8755/0.9 = 9728 times faster than Monte Carlo simulations 

containing N = 10,000 CaRUs. That is, the computational efficiency of the moment 

closure approach is nearly four orders of magnitude superior to physiologically realistic 

Monte Carlo simulations, while leading to nearly identical results (see Figs. 4.2-

4.4, and 4.6). Furthermore, integration methods that utilize adaptive time-steping 

are likely to further enhance the computational advantage of the moment closure 

approach to modeling local control of EC coupling. 

168 



6t (JJs) N Time (min) 
0.01 100 50 

Monte Carlo 0.01 1,000 794 
0.01 10,000 8755 

Moment closure 
0.01 - 95 

1 - 0.9 

Table 4.4: Run times required for a 60 ms simulation such as that presented in Fig. 4.2 
using both Monte Carlo and moment closure approaches. 
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4.4.10 Restitution of CICR studied using moment closure 

approach 

To show how the computational efficiency of the momen:t closure approach facilitates 

studies that can provide biophysical insight, we present a study of the restitution 

of Ca2+-induced Ca2+ release during simulated two-pulse voltage-clamp protocols 

(cf. [Szentesi et al., 2004]). As diagrammed in the inset, Fig. 4.7A plots the ratio 

of the integrated release during the two pulses (Jr~~2) / 1r~~1)) as a function of time 

between the end of the first pulse and beginning of the second (denoted by T). Using 

the standard value for the maximum reuptake flux (vferca = 8.6 j'LM-ls- 1
), the time 

constant for recovery of CICR is approximately 93 ms. Increasing or decreasing vferca 

by 20% (dashed and dotted lines) leads to a time constant for CI CR recovery of 80 

ms and 120 ms, respectively. This result is qualitatively consistent with the results 

of [Szentesi et al., 2004], and the hypothesis that restitution of calcium release depends 

primarily on refilling of local SR calcium stores [Szentesi et al., 2004, Terentyev et al., 

2002b, Sobie et al., 2005]. 

The filled symbols in the four panels of Fig. 4. 7B show that in each of these 

three cases the expected value of the junctional SR [Ca2+] at the beginning of the 

second pulse is an increasing function of the inter-pulse interval T. Also shown are 

the distributions of junctional SR [Ca2+] consistent with the conditional expecta­

tions and variances observed in the moment closure model at the time of the second 

pulse begins when T = 0.02, 0.06, 0.1, and 0.2 s. Note that the rightmost extent of 

these distributions indicates the network SR [Ca2+] in the corresponding simulation 

( Cjsr ::; Cnsr), and the fully recovered distribution (dotted lines) has an expectation 

of approximately 1000 t-LM (open triangle). Note that the variance of the junctional 

SR [Ca2+] decreases as a function of the inter-pulse interval T (compare widths of 

distributions). 

Fig. 4.8 shows the recovery of the network SR [Ca2+] (dotted line), the junctional 
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Figure 4. 7: CICR restitution study using a simulated two-pulse voltage clamp pro­
tocol and different values of the maximum reuptake flux v'f'erca. A: Ratio of the 

integrated release during the two pulses ( J?~~2 ) 1 x;~1 l) as a function of time between 
the end of the second pulse and beginning of the first ( T). Parameters: v'f'erca = 

6.88 (dotted line), 8.60 (solid line), and 10.32 J-LM- 1s-1 (dashed line) and as in Ta­
bles 4.1-4.3. Inset: timing of voltage pulses from -80 to -10 mV. B: Distributions 
of junctional SR [Ca2+] consistent with the conditional expectations and variances 
observed in the moment closure model at the beginning of the second pulse when T 

= 0.02, 0.06, 0.1, and 0.2 s. Dotted, solid, and dashed lines indicate value of v'f'erca as 
in panel A. Filled symbols indicate the expected value of junctional SR [Ca2+] given 
by E[cjsr] = l:i niEi[cjsr] and Eq. 4.29. The solid line and open triangles correspond 
to the initial (and fully recovered) distribution. 
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Figure 4.8: Recovery of the network SR [Ca2+] (cjsn dotted line), the junctional SR 
[Ca2+] (cnsn solid line), and the average concentration when the two compartments 
are aggregated according to their effective volumes ( Cnsr&jsr, dashed line). Inset: 
timing of voltage pulses from -80 to -10 m V and representative Cjsr trace. Filled 
circles show CICR restitution observed in Fig. 4. 7 A. Standard value of v'ferca = 8.60 
J..LM- 1 s-1 used. 
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SR [Ca2+] (solid line), and the average concentration when the two compartments 

are aggregated according to their effective volumes (dashed line). This last measure 

represents the total SR content as would be assessed experimentally via the rapid 

application of caffeine. Importantly, the restitution of CICR as probed by the ratio 

of the integrated release ( lr~~2) / lr~~1 ), filled circles) is consistent with the recovery of 

the junctional SR [Ca2+], but not consistent with recovery of the network SR [Ca2+] 

or the aggregate concentration. 

Fig. 4. 9A is similar to Fig. 4. 7 A except that in this case the rate of calcium 

diffusion from network SR to junctional SR ( v'f.'efill) is modified from the standard 

value of v'f.'efill = 0.018 tLM- 1 s-1 . In spite of the fact that the restitution of CICR 

follows the recovery of junctional SR [Ca2+] (see Fig. 4.8), the time constant of CICR 

restitution is less sensitive to the junctional SR refill rate ( v'f.'e1ill) than the maximum 

SERCA pump rate ( vferca). For example, increasing or decreasing v'f.'efill by a factor of 

2 (dashed and dotted lines) leads to a time constant for CICR recovery of 91 and 105 

ms (similar to the standard value of 93 ms). Conversely, the extent of junctional SR 

depletion at the end of the first pulse ranges from 51-65% in Fig. 4.9A and 58-59% 

in Fig. 4. 7 and thus appears to be more sensitive to the value of v'f.'efill than vferca (a 

range proportional to the parameter variation in Fig. 4.9A the former range would 

span 2.5 rather than 14%). 

Consistent with these observations, Fig. 4.9B shows that the expected value of 

junctional SR [Ca2+] increases with increasing inter-pulse interval T and that de­

creased values of v'f.'efill lead to increased depletion (compare filled triangles). Com­

parison of the reconstructed distributions indicates that decreased v'f.'efill slows the 

recovery of junctional SR [Ca2+] and leads to increased heterogeneity, i.e., higher 

variance in junctional SR [Ca2+] (compare dotted and solid lines). 
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Figure 4.9: Summary of CICR restitution study using a simulated two-pulse voltage 
clamp protocol and different values of the junctional SR refill rate given by v'f.'efill = 
0.009 (dotted line), 0.018 (solid line), and 0.036 pM-1s-1 (dashed line). Standard 
value of v'Jerca = 8.60 pM-1 s-1 used. See legend to Fig. 4. 7. 
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4.5 Discussion 

In previous work [Williams et al., 2007] we showed that the probability density ap­

proach to modeling local control of Ca 2+ release in cardiac myocytes can be 30-650 

times faster than traditional Monte Carlo simulations when the probability densities 

are univariate (i.e., functions of the junctional SR [Ca2+] but not explicitly functions 

of diadic subspace [Ca2+]). The derivation of the moment closure technique presented 

in this manuscript begins with a univariate probability density formulation, but the 

resulting simulations are nearly 10,000 times faster than Monte Carlo (see Table 4.4). 

For the whole cell model that is the focus of this manuscript, the moment closure 

technique is thus significantly more efficient that our previously presented univariate 

probability density method [Williams et al., 2007]. 

Although the computational efficiency of the moment closure technique in this 

local control context is exciting, it is important to note that the relative merits of 

Monte Carlo, probability density, and moment closure methods are in general model 

dependent. For example, the run time required for the Monte Carlo simulations 

such as Fig. 4.2 is, at least ultimately, an almost linear function of the number of 

CaRUs (see Table 4.4). Similarly, we have observed that the computational efficiency 

of the univariate probability density calculation presented in [Williams et al., 2007] 

scales linearly with the number of Ca2+ release unit states (M) and the number of 

mesh points used to discretize the junctional SR [Ca2+]. Because the moment closure 

approach results in 2 +3M ODEs (bulk myoplasmic [Ca2+J, network SR [Ca2+], and 

J.Lb, J.LL and J.L~ for each CaRU state), the computational demand of the moment 

closure approach is expected to scale linearly with M. That is, increasing the number 

of CaRU states could reduce the computational advantage of the moment closure 

approach relative to Monte Carlo. 

While the CaRU model used here to introduce and validate the moment clo­

sure approach includes a two-state DHPR model and a six-state RyR megachannel 
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(Eq. 4.16), the success ofthe moment equations (Eq. 4.36 and Eqs. 4.39-4.41) and mo­

ment closure using 1A = ¢(Mb, Ml, 11&) given by Eqs. 4.48-4.53 does not depend on the 

CaRD model; rather, any CaRD that takes the form of Eq. 4.17 could be employed. 

For example, a more realistic DHPR model that includes voltage and Ca2+ -dependent 

inactivation would allow integration of the moment closure approach to modeling local 

control of CICR and action potentials modeled using Hodgkin-Huxley-style membrane 

currents. Similarly, a more realistic CaRD model could be constructed as the compo­

sition of multiple RyR single channel models. This approach will therefore allow for 

the development of mechanistic, local control models that can examine phenomena 

such as stochastic SR calcium leak and bidirectional interactions between calcium 

transients and action potential morphology. However, to maintain the computational 

advantage of the moment closure approach relative to Monte Carlo, the state-space 

explosion that inevitably occurs in compositional models is an important practical 

consideration. For example, one 12-state 1-type channel and twelve 4-state RyRs 

leads to a CaRD model with M = 5460 distinguishable states and thus over sixteen 

thousand ODEs, a value approaching the 20,000 ODEs required in a 10,000 CaRD 

Monte Carlo simulation. 

The moment closure approach presented here begins with a univariate probability 

density approach to modeling heterogeneous junctional SR [Ca2+]. This was moti­

vated by our previous work in which we observed that model parameters lead to rapid 

equilibrium of the diadic subspace [Ca2+J with the [Ca2+] in the juctional SR and bulk 

myoplasm [Williams et al., 2007]. When junctional SR [Ca2+] was also assumed to be 

rapidly equilibrated with the bulk myoplasmic and network SR Ca2+ concentrations 

so that these local Ca2+ concentrations could be expressed as algebraic functions of 

Cmyo, Cnsn and CaRD state [Hinch, 2004, Greenstein et al., 2006], the resulting model 

did not exhibit high gain Ca2+ release that is graded with membrane potential (not 

shown). That is, the assumption that both diadic subspace [Ca2+] and junctional SR 
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[Ca2+] are in quasi-static equilibrium with bulk myoplasmic and network SR Ca2+ 

leads to unacceptable errors and cannot be employed to accelerate this particular 

whole cell model. This approximation has, however, been successfully employed in 

previous studies of cardiac CICR [Hinch, 2004, Greenstein et al., 2006). It therefore 

seems likely that the model simplifications that can be employed depend on the de­

tails of both Ry R gating and local concentration changes, issues that are currently 

being extensively studied. 

In situations where rapid equilibration of diadic subspace [Ca2+] does not occur, 

the appropriate starting point for the moment closure approach is a bivariate proba­

bility density model [Williams et al., 2007]. While it is straight forward to derive the 

open system of ODEs analogous to Eq. 4.36 for the time-evolution of the moments of 

a bivariate probability densities pi(cd8 , Cjsn t) defined by, 

we have yet to find a moment closure method that works well in the bivariate case. 

This would be an important further development of the moment closure approach as 

a computationally efficient alternative to Monte Carlo simulations of the local control 

of EC coupling in cardiac myocytes. 

4.6 Appendices 

4.6.1 Whole cell model of EC coupling: fluxes and volume 

ratios 

The whole cell model of EC coupling that is the focus of this paper includes several 

fluxes that directly influence the dynamics of the bulk myoplasmic and network SR 

[Ca2+]. For example, the Na+-Ca2+ exchanger current that appears in Eqs. 4.1 and 4.2 
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identical in the Monte Carlo, probability density, and moment closure formulations 

and takes the form lncx = -Amlncx/ F where [Jafri et al., 1998a, Luo and Rudy, 

1994, Rice et al., 2000] 

[Na+]3 c e17ncxFV/RT- [Na+]3 c e('r/ncx-l)FV/RT 
J = Jo myo ext ext myo 

ncx ncx (K3 + [Na+J3 ) (K + C ) (1 + ksat e(17ncx-l)FV/RT)' ncx,n ext ncx,c ext ncx 

Am = Cmf3myo/Vmyo 1 Cext is the extracellular Ca2+ concentration, and [Na+]myo and 

[Na+]ext are the intracellular and extracellular sodium concentrations, respectively 

(for parameters see [Williams et al., 2007]). The SERCA-type Ca-ATPase flux that 

appears in Eqs. 4.1 and 4.2 includes both forward and reverse modes [Shannon et al., 

2000] and is given by 

(cmyo/ Kts)'r/Js- (cnsr/ Krs)'r/rs 

lserca = Vserca 1 + ( j T{ )'r/fs + ( jK )17rs 
Cmyo r fs Cnsr rs 

with parameters as in [Williams et al., 2007]. In addition, Eqs. 4.1 and 4.2 include a 

leakage Ca2+ flux given by 

lzeak = Vzeak ( Cnsr - Cmyo) · 

Following [Rice et al., 2000], Eq. 4.1 includes a constant background Ca2+ influx 

that takes the form lin = -Amlin/ zF where lin = 9in (V - Eca) and Eca = 

(RTj2F) ln(cext/Cmyo)· 

The effective volume ratios Ansr and Ajsr that appear in Eqs. 4.2 and 4.3 are 

defined with respect to the physical volume (Vmyo) and include a constant-fraction 

Ca2+ buffer capacity for the myoplasm ((Jmyo)· For example, the effective volume 

ratio associated with the network SR is 

, _ Vnsr 
Ansr - A 

Vmyo 
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with effective volumes defined by Vnsr = Vnsr/ f3nsr and Vmyo = Vmyo/ f3myo· Because 

each individual junctional SR compartments is assumed to have the same physical 

volume (VJsr) and buffering capacity (f3jsr), the effective volume ratio that occurs in 

Eq. 4.3 is 

(4.1) 

where the second expression defines \sr in terms of the total physical volume of all the 

junctional SR compartments in aggregate (Vj~r = NV}sr). Similar assumptions and 

equations apply for the diadic subspaces so that the definition of Ads follows Eq. 4.1. 

However, when rapid equilibration of diadic subspace [Ca2+] is assumed, the volume 

ratio Ads no longer influences the steady state (see Eqs. 4.8-4.11 and Eqs. 4.21-4.23). 

In the Monte Carlo model the trigger Ca2+ flux into each of the N diadic spaces 

through DHPR channels ( Jdhpr in Eq. 4.8) is given by 

Jn Amr 
dhpr = - zF dhpr (4.2) 

where Am = Cmf3myo/Vmyo· The inward Ca2+ current (Idhpr :S 0) is given by 

( 4.3) 

where Ve = RT / zF, P:E,pr is the total (whole cell) permeability of the 1-type Ca 2+ 

channels, and fdhpr is a random variable that is 0 when the 1-type Ca2+ channel 

associated with the nth CaRU is closed and 1 when this channel is open. Thus, the 

quantities J~hpr = ifh~r/ N and lJhpr = iJh~r/ N required to evaluate Cds,o (Eq. 4.10) 

and Cds,l (Eq. 4.11) are defined through 
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consistent with Eq. 4.12. In the univariate probability density approach and moment 

closure method the total flux through L-type Ca2+ channels is given by 

(4.4) 

and the quantities ifh~r and JJ,;~r are used to evaluate ~s,o (Eq. 4.22) and ~s,l 

(Eq. 4.23). 
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Chapter 5 

Summary of results 

Considerable insight into intracellular Ca2+ responses has been obtained through the 

development of whole cell models that are based on molecular mechanisms, e.g., the 

kinetics of intracellular Ca2+ channels and the feedback of Ca2+ upon these channels. 

However, a limitation of most deterministic whole cell models to date is the as­

sumption that channels are globally coupled by a single [Ca2+], when in fact channels 

experience individual "domain" Ca2+ concentrations. More realistic stochastic Monte 

Carlo simulations are capable of representing individual domain Ca2+ concentrations 

but suffer from increased computational demand. This dissertation introduced an 

alternative approach where local Ca2+ concentrations are represented by either uni­

variate or bivariate probability densities. The probability density approach was shown 

to capture important aspects of local Ca2+ signaling while improving computational 

efficiency. 

In Chapter 2 we validated and benchmarked a probability density model for mod­

eling calcium release in cells with diffusely distributed IP3Rs. While others have 

presented simulations of one or more Ca2+ channels stochastically gating under the 

influence of a time-dependent or time-independent Ca2+ domain [Sherman et al., 

1990b, Mazzanti et al., 1991], the whole cell model of local and global Ca2+ responses 
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presented here includes 2N+2 compartments and N=100,000 diffusely distributed 

IP3Rs, each represented by a four-state Markov chain. Two of these compartments 

correspond to bulk cytosolic and luminal [Ca2+], and the remaining 2N compartments 

represent time-dependent cytosolic and luminal Ca2+ domains associated with each 

IP3R. This formulation is significantly more complex and realistic than traditional 

whole cell models that assume IP3 Rs are globally coupled by a continuously stirred 

bulk cytosolic [Ca2+], and thereby neglect the influence of local Ca2+ signaling on 

channel dynamics. 

Using this 2N+2-compartment Monte Carlo model as a starting point, we created 

a probability density formulation that solves a system of advection-reaction equations 

for the distribution of cytosolic and luminal domain Ca2+ concentrations jointly dis­

tributed with IP3R state. These advection-reaction equations were coupled to ODEs 

for the bulk cytosolic and luminal [Ca2+] to create a realistic but minimal model of 

whole cell Ca2+ dynamics that accounts for the influence of local Ca2+ signaling on 

channel gating and global Ca2+ responses. This probability density approach was 

then validated by comparison with Monte Carlo simulations when the number of 

channels was large. The probability density calculation was more computationally 

efficient than the corresponding Monte Carlo simulation when N > 1000. 

In Section 2.4.4 the probability density approach was used to demonstrate how the 

time scale of Ca2+ domain formation and collapse (both cytosolic and luminal) may 

influence the amplitude, frequency, and existence of global Ca2+ oscillations. While 

prior work has investigated how residual Ca2+ from previous channel openings [Maz­

zag et al., 2005b] and luminal depletion [Huertas and Smith, 2007a] can influence 

the stochastic gating of Ca2+ -regulated channels, Fig. 2. 7 demonstrates that the time 

constants for cytosolic domain collapse ( Vcyt) and luminal domain refilling ( Ver) can 

influence the stochastic gating of IP3 Rs and have dramatic consequences on the dy­

namics of bulk cytosolic and luminal [Ca2+]. 
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In cardiac myocytes, localized Ca2+ influx via L-type Ca2+ channels triggers the 

release of large amounts of intracellular Ca2+ mediated by clusters of RyRs, a process 

known as Ca2+ -induced Ca2+ release (CICR). In Chapter 3 we validated and bench­

marked a novel probability density approach to modeling CICR in cardiac myocytes. 

To illustrate the approach we have focused on a minimal whole cell model of cardiac 

EC coupling that includes a four-state CaRU including voltage-dependent activation 

of an L-type Ca2+ channel and calcium-dependent activation of an RyR cluster that 

includes influence from both diadic subspace and junctional SR Ca2+. However, it is 

important to note that the probability density formulation does not require a minimal 

Ca2+ release unit model; in fact, the approach is fully generalizable to CaRDs with 

an arbitrary number of states. 

The probability density approach to modeling local control of Ca2+ release was 

validated against traditional Monte Carlo simulations with a physiologically realistic 

number of CaRUs. In simulated voltage-clamp protocols, the univariate probability 

density formulation of our whole cell model of cardiac EC coupling produced high­

gain Ca2+ release that was graded to the Ca2+influx. Indeed, the voltage-dependence 

of trigger Ca2+ influx via L-type Ca2+ channels, the resulting Ca2+ release via RyR 

clusters, and the observed EC coupling gain obtained using the univariate proba­

bility density formulation are nearly identical to that seen in corresponding Monte 

Carlo calculations. This agreement validates the conceptually novel aspects of the 

probability density formulation as well as our implementation of both approaches. 

While the probability density and Monte Carlo calculations are essentially equiv­

alent in terms of the dynamic cellular responses they predict, the probability density 

approach can be significantly faster than Monte Carlo simulation. When both meth­

ods are applied using the same time step, our current implementation of the univariate 

probability density approach is approximately 35 times faster than Monte Carlo sim­

ulations that employ a physiologically realistic number of CaRUs. Intriguingly, when 
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this comparison is made using time steps that are distinct and as large as possi­

ble while ensuring numerical stability and accuracy of each calculation, we find that 

the univariate probability density approach can be up to 650 times faster than the 

corresponding Monte Carlo simulations. This suggests that the probability density 

approach could be further investigated and developed as a computationally efficient 

alternative to Monte Carlo simulations of the local control of EC coupling in cardiac 

myocytes. 

Expanding upon the computational advantages of the probability density ap­

proaches presented in Chapters 2 and 3 we introduced a moment closure technique in 

Chapter 4 for simulating whole cell models of cardiac myocytes when the dynamics 

of subspace [Ca2+] are much faster than those of junctional SR [Ca2+]. The moment 

closure technique presented in this manuscript most notably resulted in simulations 

that were nearly 10,000 times faster than Monte Carlo while leading to nearly identi­

cal results. While the CaRU model used here to introduce and validate the moment 

closure approach includes a two-state DHPR model and a six-state RyR megachan­

nel, the success of the moment closure technique does not depend on the CaRU 

model; rather, any CaRU that takes the form of Eq. 4.17 could be employed. Fu­

ture work could involve using a more realistic DHPR model that includes voltage and 

Ca2+ -dependent inactivation allowing the addition of action potentials modeled using 

Hodgkin-Huxley-style membrane currents. Similarly, a more realistic CaRU model 

could be constructed as the composition of multiple RyR single channel models. This 

approach will therefore allow for the development of mechanistic local control models 

that can examine phenomena such as stochastic SR calcium leak and bidirectional 

interactions between calcium transients and action potential morphology. 

However, to maintain the computational advantage of the moment closure ap­

proach it is important to consider the state-space explosion that inevitably occurs 

in compositional models. For example, using one 12-state 1-type channel and ten 
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4-state RyRs leads to a CaRU model with M = 3432 distinguishable states. In gen­

eral, however, the computational demands of the Monte Carlo, probability density 

and moment closure approaches can be "roughly" estimated in advance. Recall that 

N represents the number of CaRUs, M indicates the number of CaRU states, and L 

is the length of mesh required to resolve the Ca2+ densities. Using this notation the 

Monte Carlo, probability density, and moment closure approaches require 2N, M L 

or M L2 (univariate vs bivariate densities), and 3M worth of computational effort, re­

spectively. From this estimation one can see that using a CaRU with a large number 

of states (more that 1,000) would diminish the advantages of the moment closure or 

probability density techniques over the traditional Monte Carlo approach. For this 

reason, future work could also involve investigations into different methods to reduce 

the state space of CaRUs created from multiple RyR single channel models. 
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Afterword 

Much of the material in this dissertation has been submitted for publication in peer 

reviewed journals. Chapter 2 entitled "Modeling local and global intracellular calcium 

responses mediated by diffusely distributed inositol1,4,5-trisphosphate receptors" was 

accepted for publication in the Journal of Theoretical Biology. Chapter 3 entitled "A 

probability density approach to modeling local control of calcium-induced calcium 

release in cardiac myocytes" was accepted for publication in Biophysical Journal. Fi­

nally, Chapter 4 entitled "Moment closure for local control models of calcium-induced 

calcium release in cardiac myocytes" has been submitted to Biophysical Journal and 

is currently under review. 
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