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ABSTRACT

Various experimental and theoretical work indicate that the local structure and
chemical ordering play a crucial role in the different physical behaviors of lead-
based complex ferroelectrics with the ABOj3 perovskite structure. First-principles
linearized augmented plane wave (LAPW) with the local orbital extension method
within local density approximation (LDA) are performed on structural models of
Pb(Zrl/zTil/z)Og (PZT), Pb(SCl/zTa1/2)03 (PST), Pb(SCz/ng/:;)Og (PSW), and
Pb(Mgi/3Nby/3)O03 (PMN) to calculate electric field gradients (EFGs). In order to
simulate these disordered alloys, various structural models were constructed with
different imposed chemical orderings and symmetries. Calculations were carried out
as a function of B-site chemical ordering, applied strain, and imposed symmetry.
Large changes in the EFGs are seen in PZT as the electric polarization rotates
between the tetragonal and rhombohedral directions. The onset of polarization
rotation in monoclinic Cm symmetry strongly correlates with the shearing of the
TiOg octahedron, and there is a sharp change in slope in plots of Ti EFGs versus
octahedral distortion index. The same changes in EFGs and the BOg shearing
corresponding to the change of off-centering direction are also seen in PST. In PSW
and PMN, the calculated B cation EFGs showed more sensitivity to the surrounding
nearest B neighboring environments. Calculated B atom EFGs in all alloys are
considerably larger than those inferred from the NMR measurements. Based on
comparisons with experiments, the calculated results are interpreted in terms of
static and dynamic structural models of these materials.
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Chapter 1

Introduction

Ferroelectric materials are of great technological importance due to their excel-
lent physical properties. The local structure and the short-range order-disorder in
these materials are directly related to their physical behavior. In the present work,
electric field gradients are calculated using a first-principles approach in a number of
structural models for a series of solid solutions in order to study the local structure
of ferroelectrics. Quadrupole nuclear magnetic resonance spectra are then generated
from the electric field gradients and compared to experimental measurements. The
comparison between simulations and experiments provides helpful information to in-
terpret the complicated experimental spectra. Furthermore, predictions of nuclear
magnetic resonance spectra for novel materials can help drive the development of

next generation ferroelectric materials.

1.1 Ferroelectrics

Perovskite-type ferroelectric materials have been the subject of intense research
in the last ten years. New classes of perovskite ferroelectrics have been discovered

with enhanced physical properties (such as piezoelectrics, dielectrics) and an ex-

2
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3
panded region of technological applications [1-3]. With advances in theoretical and
experimental techniques, it is now possible to pursue the microscopic origin of static
and dynamic properties of these ferroelectrics. In the present work, first-principles
calculations are performed on a few representative complex perovskite systems to
study their local structure at the atomic level.

The discovery as well as some applications of ferroelectrics and related materials
is discussed in detail by Lines and Glass [1], and briefly summarized here. In 1880,
Pierre and Jacques Curie demonstrated for the first time that some crystals (such
as tourmaline, quartz, topaz, cane sugar, and Rochelle salt) generate electric polar-
ization under mechanical stress. These crystals were termed piezoelectrics, where
“piezo” comes from the Greek “piezein”, meaning to squeeze or press. In 1881, the
converse piezoelectric effect was mathematically deduced by Lippmann from funda-
mental thermodynamic principles. Soon after, Pierre and Jacques Curie confirmed
this effect experimentally, showing that piezoelectric crystals can also experience
structural distortion when an external electric field is applied. In the present day,
piezoelectric materials have been widely used in industrial applications [2, 3] such
as sonar, high voltage sources, sensors, actuators, frequency standards, ultrasonic
transducers, accelerometers, high frequency devices for medical imaging, and ran-
dom access memories. They have also attracted a great deal of scientific research,
both experimental and theoretical, aimed at understanding the microscopic origin
of their properties and developing new materials.

A periodic crystal can be thought of as the same structural unit repeated in-
finitely in three dimensions. The possible configurations for all existing crystals are
categorized into various point groups. There are a total of 32 unique point groups
in nature. Eleven of them are classified as centrosymmetric types, which have a
center of symmetry. Crystals with these point groups do not possess any polarity.

The remaining twenty-one groups have no center of symmetry [4] and exhibit piezo-
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4
electric properties [5], with the exception of the point group 432. Among these
twenty groups, ten of them contain more than one crystallographically unique di-
rection axis. The other ten point groups have only one unique direction axis and
are classified as pyroelectric. Ferroelectrics are those pyroelectric crystals which
display spontaneous polarization even after the external electric field is removed.
Their spontaneous polarization direction can be reorientated by applying an exter-
nal electric field.

Many ferroelectric compounds (such as KNbO3, BaTiO3, KTaOj3, and SrTiO3)
belong to the perovskite family, named for the mineral perovskite, CaTiO3. The
perovskite family is a group of oxides with the general formula ABOj; and ideally
form a cubic structure, as shown in Fig. 1.1. The A atoms occupy the corners
of the cube (examples include Pb, Ca, Sr, Ce, Na). The B atoms reside at the
center of the cube, and normally have a small ionic radius and a high valence state
with no occupied outer d-electron orbitals (for example, Sc*, Nb®, Titt Zrit
Ta’*, WF). Oxygen atoms at the center of each face form an octahedron centered
on the B site. The size difference between A and B atoms usually distorts the
structure from perfect cubic to lower symmetries, such as rhombohedral, tetragonal
and orthorhombic.

Some ferroelectric perovskite alloys can have more than one atomic species on
the crystallographic sites. One well-known example is PbMg;/3Nby/303 (PMN),
which consists of a 2:1 mixture of Nb® and Mg?* cations on the B site, such that
the overall B-site valence is +4 . Other examples include Pb;_yLas,/3TiO3 with
A-site alloying and K /3Pby/3Zny/9Nbr/9O3 with alloying on both the A and B sites.

Above the Curie temperature T,, the crystal is in a paraelectric phase, often
displaying an average cubic structure and no spontaneous polarization. When the
temperature decreases below T, one or more ferroelectric phases appear, and the

crystal structures are slightly distorted. For example, the Curie temperature of
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FIG. 1.1: Three-dimensional ABOj3 perovskite structure.

BaTiOj3 is 393 K, where the paraelectric phase transforms to a ferroelectric tetrag-
onal phase. Between 278 K and 193 K, the stable ferroelectric phase becomes
orthorhombic. Below 193 K, BaTiOj; enters a rhombohedral phase [6]. At temper-
atures close to T,, some anomalies appear for many thermodynamic properties. For
example, the dielectric constant becomes very large near T, for BaTiOs.

Various theoretical approaches have been proposed to understand the behavior
of ferroelectrics. Phenomenological Landau theory [1, 7] provides a macroscopic pic-
ture and can interpret many physical properties of ferroelectric materials, especially
near the transition region. The soft mode concept was introduced by Cochran [8-10]
to treat displacive ferroelectric transitions, where ions have small, continuous, and
spontaneous displacements from their equilibrium positions. Later, the soft mode
theory was developed to treat many displacive ferroelectric compounds, especially

perovskite type materials. This method has been discussed in several references
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6
[1, 8-11], and can be applied to high pressure effects [12]. Both phenomenological
and soft mode theories achieved great success in many aspects understanding ferro-
electrics (as reviewed by Samara [13]), but the origin of ferroelectricity at the atomic
level was still unclear. In 1990, first-principles theory was found not only to be able
to explain ferroelectric properties at a microscopic level, but also to be used in de-
signing new materials [14]. Ever since, theory has made great progress in calculating
structural properties, polarization, and piezoelectric response of ferroelectric ABOs
compounds and solid solutions with considerable accuracy. The most widely used
first-principles methods are based on density functional theory (DFT) framework.

A more detailed introduction of DFT will be presented in the next chapter.

1.2 Lead-based complex perovskites

Among ferroelectric materials, lead based complex perovskites generally pos-
sess superior piezoelectric, ferroelectric, and dielectric properties. The piezoelectric
response of these disordered alloys depends on their composition and possibly local
ordering [13, 15, 16]. Many of these ferroelectrics with mixed valences form a spe-
cial class known as relaxors. Some characteristic behaviors of relaxor ferroelectrics
include a strong frequency dependent dielectric response, a diffusive dielectric per-
mittivity maximum [17, 18], no long-range order, as well as the persistence of the
mean polarization to temperatures well below that of the dielectric permittivity
maximum. Relaxors often have large dielectric constants, and excellent electrome-
chanical and piezoelectric properties. Consequently, relaxor ferroelectrics have at-
tracted intense interest since their first discovery [19], and developed broad indus-
trial applications, including strain actuators, sensors, capacitors, and transducers
[2, 15, 20, 21]. Local and average structures of some relaxors have been studied

by experimental techniques including x-ray and neutron diffraction [22-27], x-ray
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7
diffuse scattering [28], infrared and Raman spectroscopy [29-37], nuclear magnetic
resonance [38-45], high resolution transmission electron microscopy [46-48], and
scanning force microscopy [49]. To explain some aspects of the various experimental
results and the bulk properties of the relaxors, many theoretical models have been
introduced [50-56]. However, the physical origin of the relaxor properties remains
unclear, and the microscopic picture incomplete.

In the present work, local structures of the following solid solutions with various
B site compositions and orderings are studied using first-principles method.

Pb(Zr;_4Tix)O3 (PZT) is a well-studied ferroelectric material whose B site is
randomly occupied by either a Zr or Ti cation. Below 250°C and below 7% Ti,
PZT is antiferroelectric; however, it becomes ferroelectric as the concentration of Ti
(x) increases above 7%. As shown in the T-x phase diagram, Fig. 1.2, an almost
vertical morphotropic phase boundary (MPB) at z = 0.52 separates the Zr-rich
rhombohedral phase from the Ti-rich tetragonal phase, and large piezoelectric cou-
pling occurs for compositions near the MPB. Noheda ef al. discovered a monoclinic
phase in PZT at low temperatures in a narrow compositional range at the MPB [57].
The macroscopic electric polarization rotation has been proposed as the origin of the
large piezoelectric response in PZT and related materials. The polarization rotation
mechanism was first proposed by Park and Shrout to explain the giant piezoelectric
response in single-crystal piezoelectrics (1 — 2)Pb(Zn;/3Nby/3)O3+2PbTiO3 (PZN-
PT) and (1—2)Pb(Mg1/3Nbg/3)O3+2PbTiO3 (PMN-PT) [21]. Using first-principles
calculations, Fu and Cohen [58] found that a large strain response is induced in
BaTiO3; by polarization rotation induced by a non-collinear applied electric field,
while the strain response for collinear applied field was much smaller. They cal-
culated a strain-vs-field curve that was qualitatively similar to that observed in
PZN-8%PT [21]. The new monoclinic phase near the MPB of PZT suggested that

the new phase might serve as a bridge between the tetragonal and rhombohedral
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8

phases [57]. Subsequent effective Hamiltonian calculations by Bellaiche et al. [59]
also showed this behavior. Wu and Krakauer [60] performed direct first-principles
calculations of the piezoelectric response in PZT 50/50 and found greatly enhanced
piezoelectric coefficients due to polarization rotation as a function of applied strain
in the monoclinic phase. Similar polarization rotation has been observed in related
materials such as PZN-8%PT [61] via an orthorhombic intermediate phase, and the
existence of such intermediate phases has been established on general principles by
Vanderbilt and Cohen [62]. Dmowski et al. [63] examined the local structure for
PZT compositions near the MPB using atomic pair distribution functions (PDF's)
obtained from Fourier transform of the neutron scattering structure factor. Based
on comparisons with model PDFs, they found that the greatest change, with varying
Ti/Zr composition, was the distribution in direction of the Pb displacements. The
Ti rich local environments tending to have < 100 > pseudocubic Pb displacements,
while Zr rich environments tended to have < 110 > pseudocubic Pb displacements.
Pb(Sc1/2Ta1/2)O03 (PST) belongs to the ABO3 perovskite group, with a complex

B site occupied by Sc** and Ta’" cations with a 1:1 distribution. The degree
of B site ordering can be controlled by specific heat treatments [65, 66]. When
perfectly ordered, PST behaves as a normal ferroelectric; it becomes a relaxor when
disordered. Thus, PST provides a good contrast to PZT, which is predominantly
ferroelectric, and Pb(Mg/3Nby/3)O3 (PMN)-type relaxors which have 1:2 B site
cation stoichiometry. Various experiments have been applied to study the structure
and phase transitions of PST solid solutions. It was suggested by Chu et al. that the
ferroelectric-relaxor transition is due to Pb vacancies introduced into the material
[67]. The x-ray and neutron diffraction study of Dmowski et al. [27] revealed
not only that significant local disorder exists in the ordered PST, but also that the
local atomic [001] distortion is quite different from the average [111] crystallographic

structure.
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10
The PMN-type ferroelectrics with Pb(B’B”B”’)Os perovskite structure, such as
Pb(Mg1/3Nby/3)O03-PbTiOs and Pb(Mg;/3Nby/3)O03-PbZrOs, are high performance
relaxors of great technical importance. These solid solutions have been intensively
studied in order to understand the microscopic origin of the macroscopic relaxor
properties which remains unclear. But it is generally believed that the local structure
and the chemical ordering play an essential role in the relaxor behaviors [15, 68].
Pb(Sco/3W1/3)03 (PSW) belongs to the PMN perovskite family, whose B-site
cations have a 1:2 stoichiometric ratio. The B atoms in PSW obey the “random site”
model [69], in which the B sites completely occupied by Sc®* and those occupied by
Sc3* and W5 in a 1:2 distribution form a rocksalt structure. The B-sites in PMN
are occupied by Nb®* and Mg?* with a 1:2 distribution. In PSW and PMN, each B
cation is surrounded by an inner-most Og cage, and a more distant Bg octahedron.
It has been shown by the x-ray diffuse scattering, neutron diffraction [70], and
solid state NMR [43] experiments that the “random site” model [69] gives the best
description of the short-range B-site disordering in PMN. More NMR measurements
have been carried out to study the local structure of PMN-type alloys. For example,
high field NMR magic angle spinning (MAS) %Nb spectra were recently presented for
solid solutions of (1 —z)Pb(Mgi/3Nbg/3)O034+2Pb(Sc1/2Nb1/2)O3 [40], where distinct
peaks were assigned according to the percentages of Mg, Sc, and Nb occupying the
six nearest B-sites of the Nb atoms. The measurements [40, 43, 71, 72] suggested that
the Nb quadrupole coupling parameters in PMN and related materials are sensitive
to the number and identity of its nearest B neighbors as well as its displacement
from the ideal cubic position. B-site environments in both PSW and PMN solid
solutions have been studied using high-field NMR for *>Sc and %Nb isotopes [40,
41, 44, 45]. However, inequivalent B-sites associated with various surrounding BOg
configurations are overlapping and can not be fully distinguished from one another

by NMR. It is thus of great interest to study the local environment of the B atoms
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in PSW and PMN.

1.3 NMR quadrupole interaction

Many different experimental techniques have been used to study the local struc-
tural properties of ferroelectric materials, such as x-ray absorption fine structure
spectroscopy, x-ray/neutron scattering pair distribution functions [63], and nuclear
magnetic resonance (NMR) [40]. Recently, high field NMR measurements have
shown great promise as a probe of the local structure of ABOj3 perovskite-based
alloys. For example, NMR measurements of Ti spectra in BaTiO3; have recently
been used to argue for the coexistence of order-disorder and displacive components
in the phase transition mechanism [73].

Several textbooks provide detailed information about NMR spectroscopy [3, 74~
78], and some key features are summarized here. NMR is based on the coupling
between the external magnetic field and the spin of the atomic nucleus (I). Spin
is one of the intrinsic nuclear properties. A nucleus with odd mass number (A)
possesses half-integral spin, for example: 'H has spin 1/2, 17O has spin of 5/2. A
nucleus with both even A and charge (Z) has spin I = 0, examples of which are '°0,
12C, and 3?8. If the A of a nucleus is even, and Z is odd, the nucleus has an integral
spin; for instance, 2H and ¥N both have a spin of 1. Any nucleus with non-zero
spin can be detected by NMR. Table 1.1 lists some magnetic properties of a few
elements.

As a charged spinning particle, a nucleus would have a spin angular momentum,
J = hl, as well as a corresponding magnetic moment, 4 = fyhf , Where ~ is the
magneto-gyric ratio and is a constant for each particular nucleus. It is this magnetic
moment that is manipulated in modern NMR experiments. In quantum mechanics,

J and I are considered as operators. I? has eigenvalue I(I 4 1), and its component

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

TABLE 1.1: NMR magnetic properties for selected isotopes [42, 79].

Isotope Spin I Natural NMR Frequency
Abundance(%) in a 17.6157 T field (MHz)
'H 1/2 99.98 750.000
’H 1 0.015 115.128
SLi 1 7.42 110.367
"Li 3/2 92.58 291.474
170 5/2 0.037 101.676
%3Na 3/2 100 198.384
BMg 5/2 10.13 45.894
458c 7/2 100 182.205
47Ty 5/2 7.28 42.276
4974 7/2 5.51 42.285
%Nb 9/2 100 183.321
207Ph 1/2 22.6 156.912

I, has eigenvalue m, which is called the magnetic component quantum number with
values of -1, —-IT +1,..,1 —1,1.

When placed in an external magnetic field Bg, the magnetic moment of the
nucleus interacts with the magnetic field. This interaction is called the Zeeman

interaction, and the Hamiltonian operator can be written as:

A~

H,=—} By =—vJ Bg=—hl-Bg = —vABoL,. (1.1)

The Zeeman interaction gives rise to a splitting of a series of m energy levels:

E,, = —yhmBy. (1.2)

A schematic of the energy levels for a nucleus with I = 3/2 is shown in Fig. 1.3.
The energy difference between two adjacent energy levels is AE = vhABy. When

the nucleus placed in a magnetic field absorbs this energy AFE from radio-frequency
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f'»:*:\j"\':“-\ _ m=1/2
S m=3/2

EOZO §0>0

FIG. 1.3: Effect of Zeeman interaction on the energy level of a spin 3/2 nucleus.

irradiation, hu,, and transitions from one energy state to the next, the nucleus is
described as being in resonance. Different atoms within a molecule or a crystal
resonate at different frequencies for a given magnetic field. The frequency v, =
~vBy /27 is known as the Larmor frequency. By detecting the resonance frequencies,
the kind of atoms and those connected to them in a molecule or a crystal can be
identified, and the structure of the molecule or the crystal can thus be determined.

Since the macroscopic sample with an ensemble of N nuclei is in thermodynamic
equilibrium, the population of nuclei in each energy state is given by the Boltzmann
distribution:

N,, = Ne %8t (1.3)

where kp is the Boltzmann constant and 7T is the absolute temperature. From this,

the population difference can be obtained:

N’YhB() Nhl/L
AN =n, — Ny &= = .
mo el e, T kgT

(1.4)
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For hydrogen nuclei (I = 1/2) in a magnetic field of 9.39 Tesla, with a Larmor
frequency vy = 400 MHz, and at room temperature 300 K, hvy/kgT has a value
of about 6 x 107°, which means that for every 300,000 hydrogen nuclei, the nuclear
population difference between the two energy states is 1. It is this extremely small
quantity that is responsible for the entire NMR signal, and thus high magnetic field
and low temperature are desired.

In condensed matter, a nucleus experiences interactions with the local magnetic
field, electric field gradients, and the lattice. The main contributions to the total
Hamiltonian comes from the Zeeman interaction, quadrupole interaction, and mag-
netic shielding interaction. The origin of the electric quadrupole moment possessed
by a nucleus arises from the nonspherical nuclear charge distribution. The nucleus
thus has an electrostatic interaction with its environment when placed in an electro-
static field gradient. This interaction is dependent on the orientation of the nucleus.
The nuclear electric quadrupole moment is important in solid state and chemical
physics because many of the atoms or ions of interest have quadrupole moments.
Fortunately, it is possible to use nuclei as microscopic probes to explore the internal
electric field gradients in solids and molecules, which furthermore gives information
about the local structure at the atomic scale.

Using the relative magnitude of the nuclear quadrupole interaction, NMR ex-
periments can be roughly divided into two cases. The first is the low field case,
where the nuclear quadrupole interaction is so large that NMR experiments can be
performed only in zero or very small field. Studies of this case have been reviewed by
Das and Hahn [80]. On the other hand, in high field NMR studies, the quadrupole
interaction is much smaller than the Zeeman interaction, and can be treated as a
perturbation. The high field case is widely applied in NMR experiments since it
can improve the resolution of the spectrum and will be discussed here. A detailed

review of the quadrupole interaction in NMR is given by Cohen and Reif [81], where
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the quadrupole coupling Hamiltonian, Hq, is derived. It describes the electrostatic
interaction between a nucleus and its environment, and can be written as an integral

over the whole nuclear volume:

Hq = / p(x)V (z)d>z, (1.5)

where p is the electric charge density distributed over the nucleus and V{z) is the

electrostatic potential. The Hamiltonian can be expanded into a Taylor series:

ﬁQ:/d3xp {

Here the first term [ d®zp(z)V |x—o = ZeV|x—o is simply the electrostatic energy

3 3
1 o?V
+]§; 5; 5 gt -} (1e)

x==0

of a point nucleus, and by introducing the definition of the electric dipole moment
P; = [ d*zp(z)x;, as well as that of the electric quadrupole moment tensor @}, =

[ d*zxp(z)z x4, the quadrupole Hamiltonian can be simplified to the form:

3
oV
+ ZP (830]

J
i=1

Hq= ZeV

2 Z Qi 83:J8xk x=0 T (1.7)

J-k=1

x=0 x=0

Since all terms in this equation are either constant, or vanish due to the parity
conservation of ground state wave functions, except for the third one, the quadrupole

Hamiltonian eventually takes the form:

1
Q=75 > QiVik, (1.8)

J,k=1,3

where Qjx = 3@, — djn ZQ;,C is the traceless version of the electric quadrupole
Jik
82V

tensor Qjy, and Vjx = —z - is the electric field gradient tensor at the nuclear
2

position, which can be represented by its three eigenvalues, |V,,| > |V, > Vil
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Hg describes the interaction between the nucleus and the electric field gradient

around it, and can also be expressed as:

. hCq

Hq = m[(?’ff — %) + 912 - 12)]. (1.9)

In this expression, h is the Planck constant, I, I, fy, and I, are quantum spin
’operators, 7 is the asymmetry parameter defined as n = % (see Appendix A),
and Cg is the quadrupole coupling constant in frequency units, Cg = e——ﬁ‘{”—z— where
e is the proton charge, and @ is the nuclear electric quadrupole moment of the
nucleus, usually expressed in barns (107% m?). Both 7 and Cg can be measured by
NMR experiments.

The presence of the quadrupolar interaction results in a modification of the
Zeeman splitting, and the 27 + 1 evenly spaced Zeeman levels are shifted to 271 dis-
tinguishable lines. Many of the nuclei in various ferroelectric solid solutions have
half-integer spin larger than 1, including "0 with I = 5/2, #Sc with I = 7/2,
9Nb with I = 9/2, and many others. For such elements, their NMR spectra is
dominated by the central m = 1/2 «» —1/2 transition, surrounded by 2/ — 1 first-
order satellite transition lines. Furthermore, their central transition is independent
of the first-order perturbation [81]. In solid state NMR experiments, powder sam-
ples are normally used. Since the crystallites in powders are orientated randomly
relative to the applied magnetic field, measured NMR quadrupole spectra (powder
patterns), averaged over all possible orientations, are broadened. A characteristic
central transition lineshape of the quadrupole interaction in a non-rotating (static)
powder pattern is shown in fig. 1.4. The width and splitting of the lineshape are
determined by the Larmor frequency, spin, as well as the electric field gradient that
the nucleus experiences through Cp and 7. The width of the spectrum is propor-

tional to the square of the V., while the splitting of the peaks is controlled by the
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value of n, with large n corresponding to small peak splitting.

In NMR experiments, nuclei exhibit other effects in addition to Zeeman and
quadrupole interactions, including the screening of the applied magnetic field by the
induced electric current, resulting in the NMR chemical shielding. On each chemi-
cally inequivalent crystalline site, the nucleus has its own electric field gradient and
chemical shielding related lineshape broadening and shielding due to the anisotropy.
This makes the assignment and structural interpretation very difficult. There are
many ways and techniques in experiments to help remove part of the anisotropy and
increase the resolution of the NMR spectrum, one is to use high magnetic fields. The
Larmor frequency v1, of a nucleus is proportional to the external magnetic field it is
exposed to, and high v, provides larger frequency dispersion in the chemical shifts
as well as less anisotropic broadening from the second-order quadrupolar interac-
tion. Moreover, high magnetic field increases the signal intensity of the nucleus
and consequently the signal-to-noise ratio of the NMR spectrum. Although these
benefits from high field can improve the resolution, the magnitude of the magnetic
field available for solid state NMR in practice is very limited (typically no higher
than 20 Tesla). A common approach to increase the resolution in solid state NMR
experiments is the Magic Angle Spinning (MAS) method, where the crystalline sam-
ple is rapidly spun at a fixed “magic” angle, § = 54.74°, where cos®# = 1/3, with
respect to the applied magnetic field. By applying MAS, interactions dependent
on a geometric factor (3cos?# — 1), such as the nuclear dipole-dipole interaction
and part of the chemical shielding interaction, are averaged to zero. Hence, the
normally wide NMR lines can be significantly narrowed and higher resolution can
be achieved. However, MAS is not capable of completely removing all second-order
quadrupolar broadening. To better separate the broadened and overlapped NMR
signals of different chemical sites, multidimensional NMR techniques have been used

[63, 83, 84]. In this technique, the NMR spectrum is extended from one frequency
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FIG. 1.4: Static powder pattern for the central transition of a nucleus with half-integer
2

spin in the presence of NMR quadrupole effect. The frequencies are in units of ﬁ% [I{(I+

1) — 3/4}], where v, is the Larmor frequency of the nucleus, and vq = 2—1—5’2%9_—5 [82].
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dimension to two or more frequency axes, and more structural information can be
obtained.

Since the electric field gradient at a nucleus is very sensitive to local changes in
electronic density, its effect on NMR spectra can serve as a useful probe of the atomic
structure. But for a given nuclear isotope, each chemically inequivalent site produces
its own electric field gradient induced NMR line-shifts and broadenings. In addition,
each chemically inequivalent site will in general be subject to different chemical
shifts of the NMR spectra due to screening of the applied magnetic field by induced
electronic currents [82]. The combination of these effects can make it difficult to
assign spectra arising from inequivalent sites. It is thus of considerable interest
to provide theoretical guidance to interpret these spectra. From the calculated
electric field gradients, the NMR quadrupolar spectra of static powder patterns can
be simulated (see Appendix A), and be used to help understand the experimental

spectra.

1.4 Electric field gradient (EFG)

The electric field gradient (EFG) is a second-rank tensor, defined as the second
partial spatial derivative of the Coulomb potential V(r) at the nuclear site,

o*V

Y= Guioz;

1
- gaijv%/. (1.10)
It is a symmetric and traceless tensor, normally represented by its largest eigenvalue

and the asymmetry parameter 1. By convention, the three eigenvalues of the EFG

tensors are ordered as |V,,| > |V,,| > |V, and 7 is expressed by:

‘/mc_‘/yy

0<n= v
zZ

<1 (1.11)
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TABLE 1.2: Quadrupole moments of some nuclei [85, 86]

Nucleus Q(barn)
°H 10.002860(15)
61 -0.00083(8)
70 -0.02578
23Na +0.1006(20)
%)M +0.201(3)
53¢ -0.22(1)
BNb -0.32(2)

TABLE 1.3: Sternheimer factors for some ions both in free states and in crystals.

Nucleus 7o free[87] Yoo free[88] 7y crystal[88]
Lit 0.262 0.249 0.235
02~ 0.0892 - -13.785
Nat -5.59 -5.261 -5.452
Mg2+ -3.76 -3.503 -4.118
Sc* -13.6 -11.388 -23.104
Rb* -52.3 -47.664 -52.781
Sr?* -40.4 -38.893 -47.828
Y3t -34.8 -31.020 -51.985
Zrit -31.1 - -
Nb>+ -29.5 ; _49[42]

Since the EFG tensor is traceless, V,, and n determine all three eigenvalues.

20

One way to obtain EFG information is from observed NMR quadrupole coupling

constants, Cp:

h
Vez = CQ

e@

(1.12)

The nuclear quadrupole moment ¢} for most quadrupole isotopes can be measured

by various experimental techniques (atomic beam, Coulomb excitation reorientation,

laser resonance, and muonic x-ray hyperfine structure for example). The @ values

of most nuclei are well documented [85, 86], several of them are listed in Table 1.2.
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The EFG can also be determined theoretically. The earliest approach is through

the simple point-charge model [89]. In this model, ions are represented by point

charges at the respective lattice sites. The EFG on a nucleus is calculated from

point-ion electrostatic potential of surrounding charges. The point-charge model

significantly underestimates the magnitude of EFGs since it neglects the on-site

anisotropic charge distribution. In the Steinheimer approach, the total EFG is
obtained by:

Vi = (1 — y)VES (1.13)

2z

where VE*® is the point-charge EFG. The Steinheimer parameter + is obtained from
quantum-mechanical calculations of the isolated atom. The - values for some se-
lected nuclei are listed in Table 1.3.Nowadays, the point-charge and Steinheimer
method are rarely used. Instead, first-principles methods can obtain EFGs directly
with high accuracy.

All-electron first-principles approaches such as the linearized augmented plane
wave (LAPW) method are usually used to calculate EFGs [90-96]. In the LAPW
method, space is divided into two regions, a region close to the nucleus and a more
distant bonding region between nuclei. In the region close to the nucleus, correct
atomic-like solutions are found for all wave functions. These wave functions yield
accurate Coulomb potential at the nucleus, which is needed to obtain EFGs. The
difficulty with widely used pseudopotential methods is the incorrect form of the
pseudo-wave-functions near the atomic nuclei. Pseudo wave functions lack the nodal
features of the true valence wave functions. This arises from orthogonality of the
valence to the core-electron states, which are absent in a pseudopotential calculation.
This can result in sizable errors, since the EFG depends sensitively on the charge
density near the nucleus. Recently, EFGs have been successfully calculated using

the the projector augmented wave (PAW) method [97]. While the PAW method is
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sometimes regarded as a planewave pseudopotential approach, it is essentially an
all-electron method that retains the correct nodal properties of the valence wave
functions near the nucleus. First-principles methods have been applied successfully
to many materials [90-97]. First-principles all-electron methods are thus a reliable
means to determine EFGs in perovskite alloys.

This work presents first-principles all-electron density functional theory calcu-
lations of EFGs for structural models of Pb(Zr1/9Ti1/2)O3 (PZT), Pb(Sc1/2Tay/2)03
(PST), and Pb(Sce/sW1/3)03 (PSW), and Pb(Mg;/3Nbg/3)Os. Calculations were
carried out as a function of B-site chemical ordering, applied strain, and imposed
symmetry. Using the first-principles LAPW method, EFGs are obtained for the four
solid solutions. NMR quadrupole spectra are generated in order to help interpret
experiments and guide further NMR research. In Chapter 2, the LAPW method
will be discussed in some detail. In Chapter 3 and 4, detailed research results on
PZT, PST, PSW, and PMN will be presented and discussed, respectively. Chapter

5 presents a summary of this work.
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Chapter 2

Methodology

With the rapid growth of computer power in the last few decades, first-principles
quantum-mechanics calculational techniques have become an indispensable tool in
condensed matter physics, due to their ability to provide very accurate theoretical
results. In the first-principles approach, there are no adjustable parameters, thus no
experimental information is required as input. This not only allows first-principles
methods to help interpret experimental results, but also enables them to provide
guidance to experiments by predicting properties under some unachievable labora-
tory conditions [98] or of new materials which have yet to be synthesized [99]. In this
chapter, one of the most successful first-principles methods, the density functional
theory (DFT), will be briefly introduced, as well as the applications of the DFT in
3 dimensional periodic systems and the method used in the electric field gradient

calculations under the DFT framework.

2.1 Density functional theory (DFT)

In areas including chemistry [100], biochemistry [101], polymers [102], nan-

otechnology, and condensed matter physics, DFT has been very successfully applied
23
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to study properties of ground state and excited states.
In quantum mechanics, the time-independent Schrodinger equation governs

many physical properties of materials,
HU = EU. (2.1)

Here H is the Hamiltonian operator with eigenvalue E (the total energy of the
system). The eigenstate ¥ is the many-body wave function, which determines the
nature of the system. For any system with a collection of interacting nuclei and

electrons, the exact non-relativistic many-body Hamiltonian can be written as:

2§ L
r; 1.
y IR; — 1

YAV
_Z |I'g — Ty | Z R; — Ry|’ (2.2)

i#d’ i

where M; is the mass of the nucleus at position R; with charge Z;, and r’s are the
positions of electrons. The terms in Eq. (2.2) represents the kinetic energy of the
nuclei, the kinetic energy of the electrons, the Coulomb interaction between nuclei
and electrons, between different electrons, and between different nuclei, respectively.

In the Born-Oppenheimer approximation [103], the nuclear positions can be re-
garded as fixed, since the nuclei are much heavier than the electrons and move much
more slowly. The kinetic energy of the nuclei is neglected and the Coulomb interac-
tion between the nuclei is simply a constant. Furthermore, the electrons experience
an external potential, which depends parametrically on the nuclear positions. The
resulting many-body electronic Hamiltonian can be written as the sum of the kinetic
energy, the electron-electron interaction, the potential energy due to the external

potential (e.g. the nuclear-electron potential and possibly other external fields), and
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a constant which includes the nuclear-nuclear repulsion:

. PN - 1 YAV
= ex o - b 2.
H T+Vee+vt+2;lRl__Ri/| (2.3)
where
Vet = ) Vet (). (2.4)
J

The form of the first two terms are universal for any system, while the external

potential, depends on the system in question.

2.1.1 Hohenberg and Kohn theorems

Even after applying the Born-Oppenheimer approximation, the Schrodinger
equation is still a difficult problem to solve. The advantage of DFT is that it can
exactly map the complicated many-body problem onto a non-interacting system.
The foundation of DFT is the Hohenberg and Kohn (HK) theorems, which make
DFT an exact method in principle for treating many-body systems. A concise
account of the HK theorems and the Kohn Sham method is given by R. Martin
[104], which will be briefly paraphrased here.

The first HK theorem states that the external potential for any system of inter-
acting particles, Ve (r), is determined uniquely by the ground state particle density
no(r) up to a constant. Since Ve uniquely determines H in Eq. (2.3), this implies
that ng(r) determines not only the ground state Ey, but also all excited states.

The second Hohenberg and Kohn theorem further indicates that the ground
state energy for a many-particle system is the global minimum of the total energy,
and the charge density which minimizes the total energy is the exact ground state
charge density.

Consequently, all properties of the system are fully determined by the charge
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density n(r), and the values of all observables can be written as functionals of n(r).

The ground state energy Ey and the energy Egk take the form:

Eolno(v)] < Bux[n(®)] = (UTT) + (9|l ) + (U[Virs| V)
= 7)) + Eula®)] + [ drVis(6)n)

= Fu[n(r)] + / Vo (1) (), (2.5)

where the Hohenberg and Kohn functional Fuk[n(r)] = T[n(r)] + Eeln(r)] is a
universal functional since it only contains the kinetic energy of the electrons and
the electron-electron internal potential energy, and no information related to the
nuclear configuration. The ground state charge density of an interacting many-
particle system can be obtained by minimizing the total energy Exx in Eq. (2.5),

but the exact form of the universal functional Fyyk is unknown.

2.1.2 Kohn-Sham theory

Although the HK theorems prove that the density is sufficient in principle
for all ground state properties, no practical method has been specified. The Kohn-
Sham approach [105] provides a useful framework for practical approximations. The
central idea of this approach is to replace the original complicated many-body system
obeying the Hamiltonian of Eq. (2.3) by a new non-interacting auxiliary system.

In an independent-particle system with N electrons, the orbital of each electron

obeys the single-particle Schrodinger equation:

Habi(r) = [-%vg + Vs(r)} i(r) = exts(x). (2.6)
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The density of this non-interacting system is defined as:

occe

n(r) =3 ()l (2.7)

{2

where the sum is over the N lowest occupied states, and the density satisfies the

constraint:

/n(r)dr = N. (2.8)

The kinetic energy of the auxiliary system, T, takes the form:

T, = wvw 5 Z [Vl (29)

It is useful to define the Hartree energy, which describes the classical Coulomb

interaction between the charge density and itself:

Exln] = l/rn'—(?,—)—(——)d3 'dPr, (2.10)

2/ ' —rf

Thus ground state total energy of the many-body system can be written in terms of
a non-interacting system, whose charge density is the same as that of the interacting

system:
Fys =T, + / Vo (T)(r) + Bualn] + Fxln). (2.11)
where the (so far unknown) exchange correlation energy Fi. is defined as:

Eye[n] = (T[n(r)] = Ts) + (Eeo[n(r)] — Euln]). (2.12)

Here T'[n(r)] is the actual kinetic energy of the many-body system. The energy FEiy.

contains all the exchange and correlation effects in the interacting system which are
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omitted by the single-particle energy. Since it is a sum of differences, its effects are
reduced compared to Fuxk in Eq. (2.5). The ground state energy can be obtained by
following the Hohenberg and Kohn theorem, namely, minimizing the total energy
in Eq. (2.11) with respect to the density n(r). To satisfy the charge conservation

requirement (Eq. 2.8), this minimization is equivalent to:

5EHK . (STS 5EH 5Exc 57’1(1‘) -
5o~ 50 T ) o) Sorwy ~ 1)
under the orthonormalization constraint:
(7 (r)|¢(x)) = 6. (2.14)

From the definitions of T and n(r) in Eq. (2.9) and Eq. (2.7), the functional deriva-

tives in Eq. (2.13) can be obtained:

N W
én(r) _ .
Sorw) (). (2.16)

These lead to the Kohn-Sham single-particle Scrodinger-like equations:
(HKS - si)gbi(r) = 0. (217)

Here ¢;’s are the eigenvalues, v;(r)’s are the Kohn-Sham orbitals, and the effective

Hamiltonian Hykg is:

1
Hys = —5 V" + Ve, 218)

with

Vea(r) = Vexe + Vi + Vie, (2.19)
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in which Vi and Vi, are defined separately as:

Va(r) = / ) g (2.20)

r—r| "

(2.21)

The electronic charge density n(r) is determined by the single-particle orbitals as
shown in Eq. (2.7). Although the 9;(r)’s yield the same density as the real inter-
acting system, the KS orbitals generally don’t have any physical meaning. Further-
more, the total energy of the real system is not a simple sum of all single-particle

eigenvalues. Eq. (2.11) can be re-written as:

occC

Exg = ;gi — —;-/n—l(;)jl(Tﬂ,)drdr' + Ex[n(r)] — %n(r)dr. (2.22)

When the density of the system is known, the Hamiltonian in the KS equations
can be exactly determined if Ey.[n(r)] is known. It is evident that KS equations
(2.17) must be solved self-consistently. Starting with a guess of the density ng, the
KS Hamiltonian Hgg is constructed from this density ng; solving the KS equations
results in a set of KS orbitals 1;(r). An output density ney is then created from
these orbitals. If ney differs from ng (and it most likely does) a new input density ni,
is generated from n.y;. The self-consistent circle starts again with the new density
niy. This procedure continues until the difference between the output density and

the previous input density reaches a convergence limit.

2.1.3 Widely used exchange-correlation approximations

If the exchange correlation functional is known, the KS equations can be exactly
solved for the interacting system. Unfortunately, the exact form of E.[n] is not

known, and some approximation is needed. One of the most successful and the most
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natural (and also the simplest) way to approximate exchange-correlation effects is
the so-called Local Density Approximation (LDA), first proposed by Kohn and Sham
in 1965 [105]. In this approximation, the exchange-correlation energy depends only

on the density at r:

M) = [ drn)e(n(r), (2.23)

where the energy density ex.(n(r)) is of an homogeneous electron gas with density

n(r). The potential V4. then takes the form:

LDA 6hom n
V()] = S = e + ()" L (2.24)

There are many approximations for the exchange-correlation energy per elec-

hom

tron, €.,

[n], in a homogeneous gas with density n. In this work, the Hedin-Lunquist
LDA functional [106]is applied.

The LDA is surprisingly successful in describing the ground state geometries
and dynamic properties (such as phonon frequencies) for atomic and molecular sys-
tems whose density can change rapidly [107], and it has long been the standard
for first-principles calculations. Other widely used approximations include the gen-
eral gradient approximation (GGA) [108-110] in which the exchange-correlation
energy density is a function of both the density and the magnitude of its gradient
exc(n,|Vnl), the optimized effective potential (OEP) method [111-113] where the
Hartree-Fock exchange potential is replaced by a functional of the local density n,

and the hybrid method [114-116] where the exchange-correlation energy is a linear

combination of the Hartree-Fock energy and Ey. from LDA or GGA.
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2.1.4 Solving the Kohn Sham equations with basis set

There are various ways to solve the Kohn-Sham equations (2.17). Almost all
first-principles methods choose to apply the basis set expansion, in which the Kohn-
Sham orbitals are expressed by a set of basis functions ¢,’s and expansion coefficients
Cnj's:

Un(r) = njips(r). (2.25)

By inserting Eq. (2.25) into the Kohn-Sham equations (2.17), and operating ¢} from

the left of the Kohn-Sham equation, it can be rewritten as a matrix equation:

> (Hij — €20i;)cn; = 0, (2.26)
J

Here H,;’s are the Hamiltonian matrix elements Hy; = (@;|H|p;), Oy's are the
overlapping matrix elements O;; = (y;|p;), and ¢,; is a column vector. The matrix
equation (2.26) can be directly diagonalized and thus result in all the eigenvalues,
e’s, as well as all the corresponding eigenvectors, c,;’s. Eq. (2.26) is essentially the
Euler-Lagrange equation, which minimizes the ground state energy Ey in Eq. (2.11),

when the KS orbitals are expanded as in Eq. (2.25).
In general, any linearly independent set of functions can be used as a basis set;
the most common in DFT based methods are Gaussian type orbitals, plane waves,

and the linearized augmented plane wave (LAPW) functions.

2.2 DFT applications to periodic systems

The DFT-LDA approach has been widely used to determine the ground state
electronic properties of solids. In periodic systems, Bloch’s theorem simplifies the

solution of the KS orbitals. To obtain electric field gradients, all-electron wave func-
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tions are needed since EFGs are dependent on the value of the electronic potential
at the nucleus. Because of this, the all-electron linearized augmented plane wave
(LAPW) method is used in the present work to calculate the wave functions. How-
ever, it can be time-consuming to optimize the structural configuration of a given
system by using the LAPW method, especially for large unit cells. To achieve better
scaling in structural relaxation, the plane wave pseudopotential method is applied
in the present work. A detailed review of this method has been given by Pickett
[117]. The calculated residual forces on atoms in the same relaxed atomic structures
by the pseudopotential and LAPW methods usually agree well with each other.

In this section, the structural relaxation procedure and the k-point sampling
technique will be first discussed, followed by a brief introduction to the plane wave
pseudopotential method and the LAPW method. In the next section, the calculation

of the electric field gradient will be described in detail.

2.2.1 Structural relaxation

Now the total energy for a given nuclear configuration R can be calculated,
the next task is to find the structure that yields the true ground state. The use of
analytic derivatives (i.e. atomic forces) facilitates this. According to the Hellmann-

Feynman (HF) theorem [118, 119], 28 = (y,|%|¢),) (here A is some parameter

of interest, R for instance), the atomic forces are just the derivatives of the total
energy with respective to the atomic position R;:
_ 0Ft (R) 0

F, = R, = ~8R1- (Eprr(R) + Eion-ion(R))

_ ‘a%,. (To(o)] + Buln(r)] + Befo(o)]

+ / 1(1) Vs (1) dr + Eion_ion(R)>. (2.27)
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For the exact ground state, only the terms which depend explicitly on the atomic

positions contribute to the force:

B=— / d*rn(r) mf;’;@ - 6Eé°;zfi°“. (2.28)

The HF forces tend to move the ions toward their equilibrium positions, thus they
can be used to find the atomic configuration of a local energy minimum.

Structural relaxations using a plane wave basis in the present work were ob-

tained through the use of the ABINIT code [120].

2.2.2 k-point sampling

Although the Bloch’s theorem allows the calculations to be carried out within
one unit cell of a finite size instead of the whole infinite periodic solid, the number
of k inside the first Brillouin zone (BZ) (defined as the Wigner-Seitz primitive cell of
the reciprocal lattice, or as the set of points in k-space that can be reached from the
origin without crossing any Bragg plane) is still infinite in principle. Considering
that the wavefunctions at those k-points close to each other are very similar, it is
possible to discretize the sampling in a k-space. There are different methods to
specify such a set of discrete k-points so that they can appropriately sample the
BZ, for example the tetrahedron method [121-123] and the special points method
[124-126], which is applied in the present work. In the special points methods, a
weight is assigned to each k-point, and the locations and the weights of these k-
points are not dependent on the band energies. Hence, an integrated function, such

as the charge density n(r), can be expressed as a sum over the chosen k-points:

n0) =Y G [ el = 3 w0 ), (2:29)
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where the w;’s are the quadrature weighting factors. And the error introduced by

finite k-point sampling can easily be monitored by using denser k-point grids.

2.2.3 Plane wave basis functions for crystals

In a periodic crystal, the potential is also periodic:
Vir+R)=V(r), (2.30)

where R is any lattice vector. By Bloch’s theorem [127], the eigenfunctions, 1,.’s ,

of the Kohn-Sham equation in this system can be expressed as:

Pnk(T) = Unk(T)e™™. (2.31)

Here, k is the wave vector, different eigenfunctions with the same k are distinguished
by the band index n, and wu,k(r) is a periodic function. This theorem essentially
reduces the calculation of KS orbitals to a single unit cell, since the wavefunctions

outside this region can be obtained by:
Y(r +R) = e*Ry(r). (2.32)

The periodic function unk(r) in Eq. (2.31) is most easily expanded in plane

waves:

unk(r) = Z an,GeiG.r, (233)
G

where G’s are reciprocal lattice vectors. The Kohn-Sham orbitals thus take the

form:

Yni(T) = Z CrprgeETOT, (2.34)
G
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The periodic potential Vog = Vit + Vir + Vi can also be expanded as a Fourier sum

in the reciprocal space over the lattice vector G:
Vea(r) = Vae'S™. (2.35)
G

By inserting Eq. (2.34) and Eq. (2.35) into Eq. (2.17), operating from the left with
e~“GHI T and integrating over r, the Kohn-Sham equations can be rewritten as a

matrix equation:

1
Z[§|k + G%ga + Ver(G — G))cnkrar = EnCrkic (2.36)
Gl

By diagonalizing the Hamiltonian matrix, H (G, G'), whose elements are given by
the terms in brackets in Eq. (2.36), the eigenvalues, &,, and the Kohn-Sham orbitals
can be obtained, as well as other ground state properties, charge density, and total
energy, for instance.

A key advantage of the plane wave (PW) basis is its ability to exploit fast
Fourier transforms. This leads to O(NM In M) for unit cells with less than about
100 atoms, compared to O(M?) for diagonalization. A disadvantage is the incorrect
behavior of the wave function ¥pw near the nucleus.

To keep the number of plane waves tractable, the highly localized core electron
states must be removed from the spectrum of H using a pseudopotential. The
corresponding pseudo-wave-function is much smoother and nodeless for r < r, (also
known as the “core radius”), and matches the real wave function exactly beyond 7.
Both the pseudopotential and the pseudo-wave-function are shown schematically in
Fig. 2.1.

The choice of the pseudopotential that exactly reproduces the valence properties

is not unique. One of the most widely used classes is known as the norm-conserving
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FIG. 2.1: Panel (a) and (b) show the full featured all-electron (AE) potential (solid
curve) versus pseudopotential (dashed curve) and their corresponding wave functions,
respectively.

pseudopotentials, proposed by Hamann, Schliiter, and Chiang [128]. This type of

pseudopotential has the following properties:

a). For a specific reference configuration, the eigenvalues of the pseudo

valence states agree with those of the real all-electron (AE) states:
eFS = gAE (2.37)

b). The logarithmic derivatives and the first energy derivatives of the pseudo

and real wave functions match with each other beyond 7.

c). The integrated pseudo and the real charge densities are equal, leading to

the norm-conservation constraint:

| g = [ A (239
0 0

Since the pseudopotential is generated for a chosen reference state, often the

ground state of the atom, it is important that this potential can also faithfully de-
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scribe the valence properties of the atom in other chemical environments, such as in
molecules and solids. This is characterized as the transferability of the pseudopo-
tential. It can be shown that the norm-conserving pseudopotentials listed above
have optimum transferability in some sense [104, 128, 129]. Norm-conserving pseu-
dopotentials, as well as the majority of pseudopotentials in use, are also dependent
on the angular momentum [ because the potential valence electrons feel from core
electrons is not the same in different states (s, p, d, etc.). Such pseudopotentials
are also referred to as nonlocal or semi-local pseudopotentials.

Norm-conserving pseudopotentials are constructed from first-principles all-electron
atomic calculation results. The first step of the scheme is to self-consistently solve
the KS equation for each [ in a reference atomic configuration with imposed spherical

symmetry and a chosen exchange-correlation potential:
(T + VAE — g)ypAP = 0, (2.39)

where VAE is the sum of the ionic Coulomb potential, the Hartree potential and the

exchange-correlation potential:
Z
VAE — -=+ Vi [nAE (r)] 4 Vie[PAE (1)) (2.40)

From the AE wave function 9/*F determined by the first-principles procedure, the
pseudo wave function ¥f® can be created by applying the norm-conservation con-
straint. This pseudopotential must be nodeless within the cutoff radius r., while be
identical as the AE wave function outside 7., and yield the same eigenvalue ¢; as
well.

The major difference between various pseudopotential methods is the form of

the pseudo-wave-functions, and the properties of the norm-conserving pseudopoten-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38
tials permit a great deal of freedom when creating pseudo-wave functions from the
AE results. Various recipes have been proposed in the last couple of decades, such
as the Bachelet scheme [129], and the Troullier and Martins scheme [130].

The pseudopotentials used in the present work are constructed using the opti-
mized pseudopotential method devised by Rappe et al. in 1990 [131]. This type
of pseudopotentials are softer (i.e. have rapid plane wave convergence) than most
of the other norm-conserving pseudopotentials, and they perform especially well for
elements in the first row (e.g. O, F, N) and the transition metals (e.g. Mn, Fe, Cr,
Ni). In this method the pseudo orbitals are expanded in spherical Bessel functions
for r < re:

»RE(r) ifr>r,

4
> a;5i(gir.) otherwise
i=1

The coefficients are determined so that the normalization condition of the wave
function is satisfied, and the wave function is continuous at r. up to the second
derivative. The wave vectors of the Bessel functions, g;, are chosen by enforcing the
constraint:

Jilare) _ ilre) (2.41)

Jilaire)  Wilre)

All the optimized pseudopotentials used in this work were generated and tested by
OPIUM (Open-source Pseudopotential Interface and Unification Model) code [132]
to ensure the accuracy, good transferability, convergency, and efficiency of these
pseudopotentials.

After constructing the pseudo-wave-functions, the screened pseudopotential is

solved by inverting the KS equation:

A

s _(a=1) [
‘/s](;:)r = PS l
!

(2.42)
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This is well-defined, since 9 is nodeless for r < r.. After removing the valence
contribution to both the Hartree and exchange-correlation potentials, the unscreened
pseudopotential is generated:

VES = VIS — Vi[n™3(r)] — Vi [n3(x)). (2.43)

SCr

The valence charge density n"®(r) here is defined as:
Sy = 3 AP, (2.44)
1

where f; is the degeneracy of the state with angular momentum /. For instance, f;

is 2 for the s state, 6 for the p state, etc.

2.2.4 LAPW basis functions

The all-electron linearized augmented planewave method (LAPW) [133] is used
in this work to achieve the required accuracy necessary for calculating the electric
field gradients (EFGs). The LAPW method is based on the augmented planewave
method (APW), first introduced by Slater in 1937 [134]. The LAPW method is
one of the most accurate DFT methods which can be applied in real materials with
reasonable efficiency. Details about the LAPW method have been reviewed by Singh
[135], and only some of the main points are described here.

The basic idea of the LAPW method is to partition space into two regions:
non-overlapping spheres (“muffin-tin” spheres) with radius R$r centered on the
nuclei, and the interstitial region between the spheres. A schematic picture of the
space partition is shown in Fig. 2.2. All quantities (basis functions, charge density,
and potential) then have a dual representation. The LAPW basis function ¢¢ is

a single planewave in the interstitial region, matched onto a spherical harmonic
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FIG. 2.2: The space partition of the LAPW method in a unit cell: the non-overlapping
muffin-tin (MT) spheres with different radius Ryt around each atom, and the remaining
interstitial region (gray).

representation inside the muffin-tin (MT) spheres:

a7 2 el(GHor r € interstitial
G

¢c(r) =
Y [Aumuf (B, ) + B (By, 7)[Yim(F) 7 < Rfgp

im

And the wave function can be written as:

wnk(r) - Z Cn,G+k¢G(r)- (245)
G

Here €2 is the volume of the unit cell, the Y},,,’s are spherical harmonics, and typically
values of Iy, ~ 8 are used. The radial function u®(E;, ) is the regular solution of
the radial Schrodinger equation at a fixed energy level E; for atom «:

1, & I(l+1)

In this equation, V.g(r) is the spherical component of the effective potential in

Eq. (2.19) inside the MT spheres. 4®(E;,7) is the energy derivative of the radial
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function uf(Ey,r). It satisfies the inhomogeneous radial equation:

1, & I(l+1
PR

Tt T

)+ Ve (r) — Ey| rif = ruyf. (2.47)

The coefficients of the basis functions, A;,’s and By,,’s, are determined by requiring
the continuity of the wavefunction and its first derivative at the boundary of the
spheres.

Although the fixed energy parameter F; is not equal to the exact eigenvalue

Enk (as in the APW method), the following Taylor series:

ul(’f', 5nk) = ul(r, El) + (El — €nk)ﬂl(7", El) + O((El — Enk)z) (248)

motivates the use of the two linearly independent functions u and %. In practice,
the results are very insensitive to the choice of E; within the range |E; — enx| <
7 eV. E; is normally chosen near the centroid of &, corresponding to the atomic
eigenvalue with the same /.

The accuracy of such basis functions is controlled by the product of the smallest
atomic sphere radius in the unit cell, Ry, and the largest reciprocal wave vector,
Gmax- In general, the value of this product is set to be between 6 and 9, yielding
about 100 planewaves per atom in the basis set, for materials containing d and f
electrons. Comparable PW pseodopotential calculation would require more than an
order of magnitude larger basis set.

The dual representation of the LAPW basis set can describe both localized and
delocalized orbitals. However, many materials, including the rare earth elements,
the early transition metals, the alkali metals, and the actinides, also possess semi-
core states, whose energy lies between that of the valence and core states. The

Ti 3s, 3p and Nb 4s, 4p states are examples of semi-core states. Given that such
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states are not perfectly confined with the sphere region (as are the core states),
orthogonality between the radial functions of the semi-core and the valence with
the same angular momentum [ is difficult to maintain while preserving accuracy. In
order to overcome this difficulty, additional fully localized basis functions are added.
Such functions are known as the “local orbitals” [136], and are the combination of
two radial functions at different energies together with the first energy derivative of

one of them:

0 r € interstitial
ggn(r) = 1) 1)

ZZ[ U (B, 1) + Bl at (B, ) + uf (B, 1)|Yim(F) 7 < Rr

m

The wave function then takes the form:

wnk ZCn G+k¢)G Z alm alm (249)

alm

The Aj_’s and By ’s coefficients are determined by enforcing the vanishing of ¢L©
and its first derivative at the MT sphere surface. The energy parameter El(z) is
usually near the centroid of the semi-core state. To add these additional functions
to the LAPW basis can greatly improve the accuracy without largely increase the
size of the basis, take s and p semi-core states for example, only 4 local orbitals are

needed for each atom.

2.3 Computation of electric field gradients

The electric field gradient (EFG) is defined as the second derivatives of the

Coulomb potential, which includes the external nuclear potential and the Hartree
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term (electron-electron interacting potential):

n

T (_rgll dr'. (2.50)

Volt) = Vs + [
This potential can be obtained by solving the Poisson’s equation:
V3V (r) = 4mp(r). (2.51)

In the LAPW method, the charge density p, the sum of the nuclear and electronic

densities, has a dual representation:

MTspheres
p(r) = ppw (r)f(r € Interstitial) + Z pur,a(r)0(r < Ryr), (2.52)

where 6 is the unit step function enforcing the partition, ppw and payr. are the
density in the interstitial and in the MT sphere centered at atom «, respectively. The
solution of Poisson’s equation is not trivial as it is in the plane wave method, where
the Fourier coefficient of the Coulomb potential is simply given as Vo(G) = 4”&#.

Weinert proposed a method known as the pseudocharge method to solve equa-
tion (2.51) for Vo [137] in two steps. The first step is to replace the real charge

density p(r) by a pseudocharge density p(r):

MTspheres

p(r) = pr(r)0(r € Interstitial) + z Pa(r)0(r < Rypr), (2.53)

(%

where 6 is the unit step function, and g,(r)’s have the same multipole moments g,

as the real density p(r):

_ A4r i * (e g3
am = 5 / ro(r)YE (£)dr. (2.54)
MT
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A smoothly varying form is chosen for g., so it can be expressed in a rapidly con-

vergent Fourier series:

Z H(G)eCT, (2.55)

and the exact interstitial Coulomb potential can thus be obtained from this pseu-

docharge density:

Vi(r) =) Mﬁ—(zcr)e“'”. (2.56)
G20

This follows from p, having the same multipoles as ppro. However, the pseu-
docharge density can not directly provide the correct Coulomb potential inside of
the spheres. The second step of the Weinert method is to calculate the potential
inside the spheres from the V; in equation (2.56) since it yields the correct bound-
ary condition on the surface of the MT spheres. As a general solution to Poisson’s
equation with specified values of the potential on the boundary of the sphere, the

Coulomb potential inside of the spheres can be written as [138]:

1 0G(r,r’
Va(r) = /pa(r')G(r, r')d*r’ — E?(V;(r’)%ds, (2.57)
MT
where the Green’s function for the sphere is given by
_ Vi (B ! 1 rl
G(r,r") 47rZ 2l + 1 r (T T R ) (2.58)

where 75 (r<) is the larger(smaller) of r and ', and R is the radius of the MT sphere.
The normal derivative of the Green’s function for ' = R is given by

5 _ oG
on'  Or

_ Tam Z (-]%)l. (2.59)

r"=R
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Consequently, the total Coulomb potential can be expressed as

V(ir) = / p(r)G(r,)d*r
MT
+ i (%) Vi), (2.60)
where V,, is defined by V(R) = 3. VimYim(R) . The EFG can then be obtained by
directly taking the derivatives of ltnllfle Coulomb potential.

For each atom, the EFG can be separated into two contributions: 1) that
due to the charge density within the MT sphere of the given nucleus, and 2) that
due to the charge density distribution external to the MT sphere. The external
contribution is included in the second term of of Eq. (2.60), but this term also
includes a contribution from the multipole moments g;,, of the charge density within
the MT sphere. Thus the external EFG contribution is determined by the potential
given by

Ve R) =Y {v,m - %} (%)l Yim(F). (2.61)

if expanding the Coulomb potential around a nucleus in spherical harmonics, the
only terms that contribute to the EFG are the [ = 2 components, and Eq. (2.61)

can be simplified to
v R) = 3 (Vo — L) (1) Vo (e). (2.62)

Similarly, the EFG can be further analyzed by synthesizing the charge density
using only band eigenstates within certain energies, e.g. originating from electronic

orbitals associated with specific atoms. By expanding the Coulomb potential in
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spherical harmonics near the nuclear site:

A7 1/2 X
Vo(r — 0) = Z {% — J 7'®) Yo (), (2.63)

Im

only the [ = 2 terms contribute to the EFG tensor. From the asymptotic form of

Vo, elements of the EFG tensor can be expressed in a simple way [139]:

3\ 1/2
Vea = (§> (Do, —2 + Do 2) — P2,
3\ 1/2
Viw = — <§) (@g,—2 + Dg) — Do,
‘/zz = 2q)2,07

Here, @3 = @3, = lim, o [ 2] V2 Vam(r) - And under the traceless constraint of the
EFG tensor:

‘/;;z - _(-‘/q;m + ‘/;/y) - 2@2,0. (2.64)

By applying both the LAPW method and the pseudopotential method within
the frame work of the density functional theory, one is able to explore the local struc-
ture of complex ferroelectric solid solutions by studying the EFGs of the fully opti-
mized crystal structures. This procedure will be implemented for Pb(Zr; /2Ti1/2) O3,
Pb(Sc1/2Tay/2)03, Pb(Sca/3W1/3)03, and Pb(Mgy/3Nby/3)O3 as will be shown later

in this work.
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Chapter 3

Structural dependence of EFGs in
PZT

Recently, Baldwin et al. [39] presented the first NMR solid-state study of
Pb(Zr1_4Tix )O3 (PZT) solid-solution series as a function of z using 170, 4"*¥9Ti, and
7P spectra. They interpreted their results as providing evidence for an anisotropy
in the local structure of PZT solutions. In this chapter, calculated electric filed gra-
dients (EFGs) in PZT structures are presented as a function of chemical ordering
and applied strain to assess this interpretation.

This chapter is organized as follows. Section 3.1 gives technical details of the
LAPW evaluation of EFGs. Section 3.2 describes the PZT structural models and
compares the relaxed structures with experimental pair distribution measurements.
In Section 3.3, EFG results and calculated NMR EFG powder spectra are presented
as a function of chemical ordering and strain. A discussion of the results and com-
parison with recent PZT NMR measurements are given in Section 3.4. Details of

the NMR static powder spectra calculations are given in Appendix A.

47
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3.1 Simulation procedure

All calculations were performed with the local density approximation (LDA),
using the first-principles all-electron LAPW plus local orbital (LAPW+LO) method
[135]. The local orbital extension yields the most accurate treatment of atoms with
extended semi-core orbitals, allowing them to be treated variationally along with
the valence bands in a single energy window. The use of local orbitals can also pro-
vide additional variational freedom for valence states. Local orbitals were associated
with the Zr 4s, 4p, Ti 3s, 3p, and O 2s, 2p states. Core-electron states were cal-
culated with a fully relativistic atomic-like approximation using the self-consistent
crystal potential. The valence states were treated scalar-relativistically, and the
Hedin-Lundqvist exchange-correlation functional [106] was used. The LAPW basis
functions, charge density and potential are all described by a dual representation.
Within non-overlapping (“muffin-tin”) spheres that are centered on the nuclear po-
sitions these functions are represented by numerical radial functions times spherical
harmonics. In the interstitial region between the spheres, all functions are repre-
sented by plane wave expansions. Muffin tin (MT) sphere radii of 2.30, 1.65, 1.65,
and 1.55 a.u. were used for the Pb, Zr, Ti, and O ions, respectively. For all systems,
a well-converged 44 Ry plane wave energy cutoff was used, and special k points [125]
were used to sample the Brillouin zone with a 4 X 4 x 4 mesh.

In a crystal, the EFG at an atomic nucleus is induced by the nonspherical field
of the electrons and other ions. Typically, the dominant electronic contributions
come from the valence electron and shallow semi-core states. Ehmann and Fahnle
[140] have calculated EFG corrections due to the polarization of tightly bound core
electron states using a method similar to Sternheimer’s [141]. In their calculations,
the perturbation acting on the core states is due to the nonspherical effective crystal

potential near the nucleus, as determined from first-principles all-electron LAPW
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calculations using a spherical core. For a nearest neighbor site of a substitutional Ni
atom in Cu, they found that the principal core contributions to the Cu EFG came
from the Cu(3p) states, about 25% of the calculated EFG using spherical core states,
while the contributions of the 2p states was small and the s-states contributions could
be neglected. In the present calculations, the corresponding Ti(3s,3p) and Zr(4s,4p)
shells are treated variationally, and so the effects of core polarization are adequately
treated. The definition of the EFG tensor is given in Appendix A.

For each structure, all the atomic positions were allowed to relax, consistent
with the imposed symmetry, until the calculated forces were less than 0.02 eV/ A.
The resulting EFGs are estimated as accurate to less than ~5% error with respect

to the atomic positions.

3.2 Structural models and comparison with ex-
perimental pair distribution functions

PZT 50/50 was studied using Pb(Zr; /9 Ti;/2)O3 10 atom supercells. Most of the
calculations were performed for [001]1:1 B-site ordered unit cells, with the ferroelec-
tric polarization direction along the [001] axis in imposed P4mm symmetry. This
corresponds to alternating Zr and Ti atoms along the [001] direction. In this struc-
ture, the B-atom planes perpendicular to the [001] direction contain either all Zr or
all Ti. Calculations with these supercells were performed for various ¢/a values with
imposed tetragonal P4mm, monoclinic Cm, and P1 triclinic symmetry. Experimen-
tally, Noheda et al. [57] find that monoclinic PZT, near 50/50 composition, has only
a small monoclinic angular distortion, § = 90.5°. In the calculations presented here,
this angle is simply set to 90° in all of the calculations. Some calculations were also

performed for supercells with [001]1:1 B-site ordering with imposed orthorhombic
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P2mm symmetry. The P2mm orthorhombic unit cell has dimensions a’ X a X 2a,
corresponding to alternating Ti and Zr B-atom stacking along the [001] direction
with periodicity 2a, with the ferroelectric polarization along the a' [100] direction.
Thus, the P2mm “c/a” value given in Table 3.2 is actually o’'/a = 1.04. Finally, a
[111]1:1 B-site ordered supercell with imposed R3m symmetry is also studied. In
all calculations, the unit cell was set to the experimental volume [142].

The relaxed structural models can be compared to experimentally determined
pair distribution functions. Experimental 10 K PDF's from Dmowski et al. [63] (their
Fig. 4) are shown in Fig. 3.1. The experimental PDFs were obtained from Fourier
transform of neutron scattering structure factors. The average observed symmetry
is tetragonal P4dmm for 60% Ti, monoclinic Cm for 48% Ti, and rhombohedral
R3c for 40% Ti. Fig. 3.2 compares the calculated PDFs for the relaxed PZT 50/50
structures with experiment. The top panel of Fig. 3.2 compares the experimental
60% Ti PDFs with calculated PDFs for tetragonal P4mm and also with reduced or-
thorhombic P2mm imposed symmetry, the middle panel compares the experimental
48% Ti PDF with the calculated PDF for monoclinic Cm imposed symmetry, and
the bottom panel compares the experimental 40% Ti with the calculated PDF for
rhombohedral R3m imposed symmetry. The calculations used c¢/a = 1.045 (1.02)
for P4mm (Cm), respectively, as determined by the experimental Rietveld analysis
[63] for the corresponding samples. P2mm calculations were for ¢/a = 1.04. The
simulated PDFs were obtained using the calculated relaxed atomic positions as in-
put into the PDFFIT program [143], which weights pairs of atoms by the product
of their neutron scattering lengths. The simulations used Qe = 80 A—l, and an
isotropic thermal factor of 0.005 A? for all the atoms. Compared to the PZT 40/60
experimental PDF, the rms errors between 1.7 and 10 A are 0.018 and 0.011 A
for P4mm and P2mm imposed symmetries, respectively. The rms error for Cm

symmetry is 0.017 A7 and 0.022 A~° for R3m symmetry.
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FIG. 3.1: PZT experimental pair distribution functions (PDF) at T' = 10 K from Fig. 4
of Dmowski et al. [63]: 60% Ti with average P4mm symmetry (solid line), 48% Ti

with average Cm symmetry [(red) dotted line], and 40% Ti with average R3c symmetry
[dashed (blue) line].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51



PDF (r) (A7)
o O
[an VRO (B

o
—_ b

O

r (A)

FIG. 3.2: PZT experimental pair distribution functions (PDF) at T' = 10 K [dotted
(red) curves| from Dmowski et al. [63] are compared to simulated PDFs, calculated using
the relaxed atomic positions (see text). Top panel: experimental PDF for 60% Ti with
average P4mm symmetry, and calculated PZT 50/50 PDFs with symmetries Pdmm
(solid line) and P2mm [(blue) box symbols|. Middle panel: experimental PDF for 48%
Ti with average Cm symmetry, and calculated PZT 50/50 PDF with Cm symmetry
(solid line). Bottom panel: experimental PDF for 40% Ti with average R3¢ symmetry,
and calculated PZT 50/50 PDF with R3m symmetry (solid line).
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A generic feature of many lead-based perovskite alloys is the wide range of
Pb-O nearest-neighbor bond lengths. Table 3.1 shows the Pb-O nearest-neighbor
bond lengths in both tetragonal and monoclinic imposed symmetries for the re-
laxed structures. In tetragonal symmetry, there are four groupings of Pb-O bond
lengths: ~ 2.5, 2.9, 3.2, and 3.5 A. In imposed monoclinic O symmetry, the Pb-O
groupings are more spread out. The experimental and theoretical curves in the top
panel of Fig. 3.2 both show peaks at ~ 2.5, 2.9, 3.5 A and a shoulder at ~ 3.2 A,
corresponding to these Pb-O distances. These features, especially the peak near
~ 2.5 A, are also evident at the other compositions. The presence of the 2.5 A bond
length, similar to the shortest Pb-O distance in PbTiOj, is characteristic of PZT
and many other perovskite lead-based alloys, as noted by Dmowski et al. Based on
comparisons with model PDFs, Dmowski et al. concluded that the greatest changes
with varying Ti/Zr composition in PZT was the distribution in direction of the Pb
displacements, with Ti-rich local environments tended to have (100) pseudocubic
Pb displacements while Zr-rich environments tended to have (110) pseudocubic Pb
displacements. This is consistent with our monoclinic Cm calculations, which show
that the Pb atoms move toward one side of the oxygen octahedra and displace
between the (111) and (001) directions.

Very small energy differences separate the simulated [001]1:1 B-site ordered
PZT 50/50 P2mm, Cm, and P4mm relaxed structures shown in Fig. 3.2. The
P2mm and Cm structures differ by only ~ 0.02 mRy per perovskite formula unit,
while the P4mm structure is only ~ 1.2 mRy higher in energy. The [111]1:1 B-site
ordered R3m structure is the lowest energy structure considered here, being ~ 23
mRy lower than the [001]1:1 structures. Since ordered PZT does not exist at these
compositions, it is likely that the Born Oppenheimer energy landscape is described
by many local minima with small energy separations and with local atomic structure

similar to the present [001]1:1 and [111]1:1 models. The system is thus kinetically
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TABLE 3.1: Calculated PZT 50/50 Pb-O nearest-neighbor distances (A) for Cm mon-
oclinic and P4mm tetragonal imposed symmetries. ¢/a values correspond to Fig. 3.2,
and m refers to the number of bonds of the given length.

Cm ¢/a=1.02 P4dmm ¢/a=1.045
Pbi-O m Pby-O m Pb;-O m Pby-O m
2437 2 2384 2 2533 4 2484 4
2515 1 2496 1 2.871 4 2.877 4
2.816 2 2,757 2 3.170 4 3.535 4
2901 2 2.906 2 - - - -
2920 2 3.2565 2 - - - -
3.242 1 3.266 1 - - - -
3.248 2 3.533 2 - - - -

trapped in a disordered state. However, the good agreement of the calculated PDF's
with experiment indicates that the nearest neighbor atomic structure is reasonably

well reproduced in the relaxed PZT structural models.

3.3 EFG results and simulated NMR spectra

Calculated values of V,, for [001]1:1 ordered PZT, with imposed monoclinic
C'm and tetragonal P4mm symmetries are displayed in Figure 3.3, as a function of
¢/a. For Cm symmetry, the corresponding EFG asymmetry parameter 7 is shown
in Fig. 3.4 (see Appendix A for definitions of V,, and 7). The labeling of the atoms
is as follows. The Pb; and Pb,; atoms have the shortest A-B bond length with the
Zr (Ti) atoms, respectively. For example, at ¢/a = 1.035 and with Cm symmetry,
the Pb;-B distances are 6.34 a.u. (6.64 a.u.) for Zr (Ti), respectively, and Pb,-B
distances are 6.82 a.u. (6.17 a.u.) for Zr (Ti), respectively. The ideal A-B bond-
length at this c¢/a is 6.66 a.u. Apex (c-axis) oxygen atoms O; and Oz have their
shortest B-O bond length with the Zr (Ti) atoms, respectively. The Op and Oy

atoms are roughly coplanar with the [001]-layers of Zr (T1i), respectively.
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FIG. 3.3: Calculated V;, vs ¢/a for PZT (50/50). Panels (a)-(c) are for imposed mon-
oclinic Cm symmetry, and panels (d)-(f) are for tetragonal P4mm symmetry. In (a)
and (d), open (filled) circles represent Pb; (Pbg), respectively (see text). In (b) and (e),
squares (diamonds) represent Zr (Ti), respectively. In (¢) and (f), triangles pointing up,
down, left, and right represent oxygen atoms O1, O3, Oz, and Oy, respectively (see text).
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FIG. 3.4: Calculated EFG asymmetry for PZT (50/50) with imposed monoclinic Cm
symmetry. Panels (a)-(c) show 1 vs ¢/a. Symbols are the same as in Fig. 3.3
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The rotation of the polarization away from the [001] direction with decreasing
¢/a is responsible for the abrupt sign change of V,, for the apex oxygen atoms in
Fig. 3.3 for C'm symmetry. Polarization rotation also accounts for the increasing Pb
V... Neither of these features are seen in P4mm symmetry, where the polarization
is constrained to lie along the [001] direction. The polarization rotation coincides
with a rotation and shearing of the BOg octrahedra, as discussed further below and
in Section 3.4.

Numerical results for selected c¢/a are given in Table 3.2. Also shown in the
Table 3.2 are results for [001]1:1 orthorhombic P2mm symmetry and triclinic P1
symmetry. For comparison, EFGs for ground state tetragonal PbTiO; are shown
in Table 3.3, which also shows differences in the calculated EFGs due to differences
between calculated and experimental geometries. The large n’s of the coplanar O,
and Q4 atoms seen in the tables can be understood by considering the simpler case
of P4mm symmetry. In both PZT and PbTiOs3, the EFG tensor of the coplanar O
atoms have their principal axes oriented as follows. One is along the the ¢ direction
(the ferroelectric distortion direction), one is approximately along the B-O bond
direction, and the third is perpendicular to these two. The electric field gradients
along the ¢ and B-O bond directions are larger than that perpendicular to the bond,
due to the B atom off-centering, and this results in large values of 7.

Several features are worth noting in the calculated EFGs. As shown by Wu and
Krakauer [60] for [001]1:1 ordered PZT with imposed Cm symmetry, the electric
polarization is nearly parallel to the [001] (c-axis) for ¢/a 2 1.04, and it begins to
rotate away from the c-axis at c¢/a ~ 1.035. As seen in Figs. 3.3 and 3.4, however,
even above ¢/a = 1.04, the EFGs are sensitive to the onset of the polarization
rotation. As the electric polarization begins to rotate away from the [001] direction
into the C'm mirror plane near ¢/a ~ 1.035, there are large changes in the calculated

n’s. The n’s for Pb and Ti do not vanish even for large ¢/a values (as they would for
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TABLE 3.2: Calculated EFGs (V;, in units of 10?2 V/m?) for PZT 50/50 with imposed
monoclinic C'm, triclinic P1, tetragonal P4mm, orthorhombic P2mm, and rhombohedral
R3m symmetries. Note that in P1 and P2mm symmetries, the two O5 and two O4 atoms
are not equivalent, while in R3m symmetry, atoms labeled O; and O», are equivalent
(and similarly for oxygen atoms labeled O3 and Oy).

58

Cm P1 P4mm P2mm R3m

¢/a=1.0 ¢/a = 1.035 ¢/a = 1.055 ¢/a = 1.055 c/a = 1.055 c¢/a = 1.04 ¢/a=1.0

Vez n Vaz n Vez n Vez n Vez n Vez n Vez n

Pby 2.102 0.065 1.515 0.455 0.846 0.475 1.043 0.508 0.347 0 0.806 0.338 1.937 0

Pby 2450 0.157 2.001 0.527 1.280 0.542 1.469 0.542 0.470 0 0.806 0.338  2.403 0

Zr -0.972 0.159 -0.847 0.008 -0.750 0.017 -0.809 0.022 -0.685 0 -0.948 0.220 -0.393 0

Ti 0.507 0.866 0.462 0.445 0.372 0.173 0.373 0.247 0.376 0 0.422 0.545 -0.229 0
O1 -0.126  0.077 0.121 0.666 0.146 0.157 0.137 0.255 0.152 0 -0.173  0.419 -0.125 0.088
O2 0.220 0.954 0.163 0.966 0.149 0.922 0.147 0.967 0.149 0.944 -0.173 0.419 -0.125 0.088
O3 0.220 0.954 0.163 0.966 0.149 0.922 0.147 0.959 0.149 0.944 -0.385 0.450 -0.125 0.088
O3 -0.108 0.266 0.134 0506 0.179 0.100 0.168 0.166 0.192 0 0.302 0.611 -0.144 0.434
Oy 0.170 0.758 0.238 0.488 0.256 0.405 0.248 0.419 0.270 0.380 -0.129 0.557 -0.144 0.434
Oy 0.170 0.758 0.238 0.488 0.256 0.405 0.247 0.426 0.270 0.380 -0.146 0.669 -0.144 0434

TABLE 3.3: Calculated EFGs (V;, in units of 1022 V/m?) for tetragonal PbTiO3. All
calculations are at the experimental volume. “Exp.” indicates that both the experimental
[144] ¢/a = 1.0636 and atomic positions (reduced coordinates u;) were used. The other
EFG results are obtained using the fully relaxed atomic positions at the indicated c¢/a.

Exp. ¢/a = 1.0636 ¢/a = 1.065
Pb 00 0361 0.0 0.0 0.472 0.0
Ti 0549 -0.172 0.0 0.546 -0.097 0.0
O; 0.117 0.061 0.0 0.122 0.111 0.0
O, 0.620 0.109 0.697 0.626 0.125 0.638
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imposed P4mm symmetry). As c/a decreases n(Pb) decreases while 7(T1) increases.
At the same time, the apex oxygen’s 1(0O;) and 7n(Oj) first sharply increase and
then decrease as c¢/a is further reduced. The 7(Q,), which is coplanar with the Ti,
increases monotonically with n(Ti), while n(Zr) and the coplanar n(Os) both stay
nearly constant. The n(Zr) is very small, while n(Os) ~ 0.95 is large and about
the same as in P4mm symmetry (not shown in the figure, but see Table 3.2). The
structural dependences of the Ti and apex O EFGs are related to the shearing of
the TiOg octahedra, which is further discussed in Section 3.4.

The calculated Pb EFGs show large sensitivity to the structure. For example,
near ¢/a ~ 1.035 in Fig. 3.3, V_,(Pb) is much larger in Cm than in imposed P4mm
symmetry, even though the C'm electric polarization is still nearly parallel to the
c-axis. This is also seen in Table 3.2, comparing V., (Pb) for different imposed sym-
metries. Upon relaxing the imposed symmetry from monoclinic Cm to triclinic P1,
the Pb-O distances change by less than 0.04 A, although V,,(Pb) changes by about
20%. These indicate that the EFGs are a very sensitive probe of local structural
changes, this will be discussed further in Section 3.4.1. The large changes in Pb
EFGs seen here are consistent with the large changes observed in recent NMR 2°Ph
spectra [39] as the Zr composition of PZT is varied, and the resulting Pb chemical
shieldings change.

The EFGs of Pb, Ti, and Zr in the P2mm and P1 structures are similar to
those in the monoclinic symmetry with the same ¢/a value, as indicated in Table 3.2.
V..(Zr) in thombohedral R3m PZT is much smaller than in all other [001] chemically
stacked structures, but this EFG is in very good agreement with the V,.(Zr) value of
-0.356 (in units of 1022 V/m?) in the antiferroelectric PbZrQOj3 calculated by Johannes
and Singh [96]. This indicates that the Zr EFG is sensitive only to the B-site ordering
and less sensitive to the polarization and the strain. Compared to the EFG values

for PbTiO3 shown in Table 3.3, V,.(Ti) is significantly larger in PZT. There is also
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FIG. 3.5: Pb “projected” EFG eigenvalues (see text) vs ¢/a: circles label V, the EFG
eigenvalue for the eigenvector that is perpendicular to the C'm mirror plane; diamonds
label V., the EFG eigenvalue for the eigenvector that is approximately parallel to the
c-axis; squares label V};, the EFG eigenvalue for the remaining eigenvector. The large
up-triangles and left-triangles at ¢/a = 1.055, which are identified by arrows for clarity
in some cases, represent the conventional EFG eigenvalues calculated in imposed P4mm

symmetry: Vpp=Vy, (left-triangles) and V,, (up-triangles). All open symbols are for
Pby, and filled symbols are for Pba.

a sign change for both V,,(Pb) and V,,(Ti) in PZT compared to PbTiO3, with the
exception of rhombohedral PZT.

To help understand the structural dependence of the calculated EFGs, it is
helpful to examine the orientation of the EFG principal axes eigenvectors. Note that,
by symmetry, one of the eigenvectors of the EFG tensors must be perpendicular to
the C'm mirror plane. The corresponding eigenvalue is labeled as V). The other
two eigenvectors necessarily lie in the mirror plane. Of these two eigenvectors, the

one with the larger dot product with the [001] unit vector (c axis) has its eigenvalue
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FIG. 3.6: Same as Fig. 3.5, but for Zr and Ti “projected” EFG eigenvalues (see text).

All open symbols are for Ti, and filled symbols are for Zr.
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FIG. 3.7: Same as Fig. 3.5, but for the apex-O “projected” EFG eigenvalues (see text).
All filled symbols are for Oy (shortest B-O bond with Zr), and open symbols are for Og
(shortest B-O bond with Ti).
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labeled V., and the other is labeled Vj. In the following, V., V), and V. are referred

to as “projected” EFG eigenvalues. The projected eigenvalues (rather than the
conventionally defined parameters V., and 7) are plotted in Figs. 3.5-3.7 for the
cations and apex oxygen atoms. The projected eigenvalues are seen to approach the
tetragonal P4mm values V,, =V, and V,, as c¢/a increases. For Pb, Zr, and Ti
the projected eigenvalue V, always equals V,,, the conventional (largest magnitude)
principal axes EFG eigenvalue. However, for the apex oxygens, V| = V., for c¢/a
less than about 1.03, while for larger ¢/a values, V., = V,,. This abrupt change in
direction of the apex oxygens’ V,, eigenvector is due to polarization rotation. Asc/a
decreases from the largest values shown, the projected V, eigenvalue for the apex
O atoms decreases as the BOg octahedra begin to rotate and shear from tetragonal
symmetry. Similarly, for large ¢/a, while the system is nearly tetragonal, V. ~ V],
both being nearly equal to V,, = V,,, in P4mm symmetry. With decreasing c¢/a, V.
becomes less negative, changing sign near ¢/a ~ 1.03. At this point, the asymmetry
parameter reaches it’s maximum 7 = 1, and the eigenvector associated with V)
becomes the largest eigenvalue V| = V., as c/a further decreases. In Section 3.4.2
below (see especially Fig. 3.17), the shearing of the TiOg octahedron is shown to be
a very sensitive indicator of the onset of polarization rotation.

Direct experimental measurement of the sign of the EFG eigenvalues is difficult
to achieve and almost never available. However, it could be indirectly observed from
measured NMR spectra. This is illustrated in the simulated NMR EFG powder spec-
tra shown in Figs. 3.8-3.11 for monoclinic Cm. For each atom, the corresponding
spectrum of tetragonal P4mm PZT (for ¢/a = 1.055) is also shown for compari-
son. (NMR spectra for Pb are not shown, since the naturally occurring isotopes
have no quadrupolar interaction.) The spectra are powder patterns of the central
(m=1/2< —1/2) Vf% transition, calculated using perturbation theory to treat the

EFG quadrupolar interaction and checked by exact diagonalization of the Hamilto-
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FIG. 3.8: 9'7Zr calculated static central peak NMR powder spectrum in monoclinic Cm
PZT. For comparison, the dotted curve shows the spectrum in tetragonal P4mm PZT

with ¢/a = 1.055. Numbers labeling the curves show the corresponding ¢/a and 7 values,
as indicated.
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Fig. 3.8.
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nian in the (2m + 1)-dimensional I-subspace [145]. The width of the spectrum is
proportional to the square of the V,,, while the splitting of the peaks is controlled
by the value of 7, with large n corresponding to small peak splitting.

In simulating these spectra, the values used for the quadrupole moments () were
—~17.6, 30.2, and —2.558 fm? for ?*Zr, *"Ti, and 7O, respectively [146]. All these
nuclear isotopes have spin I = 5/2, and the powder patterns were calculated for an
applied (high) field of B = 17.6 T, which corresponds to Larmor frequencies of 70.0,
42.3, and 101.7 MHz for **Zr, 4" Ti, and 17O, respectively. NMR experimental spectra
are normally observed for the above isotopes, except for Ti, where both 4"Ti (I =
5/2) and *Ti (I = 7/2) have nearly overlapping spectra. These two isotopes have
very similar magnetic moments, so the difference between their resonance frequencies
is small: for example it is only 9 kHz in a 14.1 T applied field. The Ti central
transition thus shows overlapping spectra in the experiments [147], and the relative
EFG broadenings of 4’Ti and “°Ti are Av*"/Av*¥~3.44. In our simulations, the
spectra of the two Ti isotopes are, of course, completely separable, and only the
spectra for 4’Ti are shown in Fig. 3.9.

The calculated NMR spectra of Ti, apex O; and O3, and Ti coplanar O4 atoms
show the largest sensitivity to ¢/a. The spectra of the ferroelectrically inactive
Zr and its equatorial O, atom show the least sensitivity. All spectra are seen to
approach the P4mm spectra at the largest ¢/a values. The Ti spectra show a large
decrease in width and an increase in peak splitting as ¢/a increases from 1.0 to 1.055.
The spectra of the O4 atom, which is coplanar with Ti, have splittings that follow
a similar trend as for Ti, but the width displays an opposite trend to Ti, increasing
as ¢/a increases. The apex oxygen spectra are also seen to be much narrower than
the coplanar oxygens.

The apex-O simulation spectra seen in Figs. 3.12 and 3.13 reflect the abrupt

switch in direction of the V,, eigenvector, which occurs when V| = 0 near ¢/a = 1.03
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FIG. 3.10: 17O static NMR powder spectrum for the Oz atom (equatorial O approxi-
mately in the Zr plane). Dotted curve as in Fig. 3.8.
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FIG. 3.11: 70 static NMR powder spectrum for the Q4 atom (equatorial O approxi-
mately in the Ti plane). Dotted curve as in Fig. 3.8.
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FIG. 3.12: 170 static NMR powder spectrum for the apex O; atom (apex O nearest to
Zr). Note the change in the frequency scale. Dotted curve as in Fig. 3.8.
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FIG. 3.13: 170 static NMR powder spectrum for the apex O3 atom (apex O nearest to
Ti). Dotted curve as in Fig. 3.8.
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in Fig. 3.7. As mentioned, the asymmetry parameter reaches its maximum n = 1 at
this point, and this is evident in the near degeneracy of the two peaks at ¢/a = 1.03
in Figs. 3.12 and 3.13. At this value of ¢/a the polarization is beginning to rotate
away from the [001] direction as ¢/a decreases. The apex O EFG spectra are thus
seen to be a very sensitive probe of structural changes associated with the onset of

polarization rotation in PZT.

3.4 Discussion

Since the lead ions give a large contribution to the electric polarization, and
since the lead EFGs show considerable sensitivity to B-site ordering, strain, and
imposed symmetry, the first subsection below presents a detailed analysis and dis-
cussion of the calculated lead EFGs and compares these to a very limited number
of non-NMR experimental measurements.

The second subsection discusses the structural dependence of the calculated
EFGs of the Ti and O atoms, and their sensitivity to the onset of polarization
rotation. The recent suggestion by Baldwin et al. [39] of an anisotropy in the
local structure of PZT solutions is also considered, based on their Ti and O NMR

measurements.

3.4.1 Lead off-centering and lone-pair contributions to the

EFG
First, the limited experimental data available for Pb EFGs are discussed. Pro-
nounced changes in the EFGs of the Pb and O atoms are seen in Section 3.3, as a

function of polarization rotation and imposed symmetry. While the electric polar-

ization lies essentially along [001] for ¢/a 2 1.04 [60], the C'm monoclinic distortions
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(see Table 3.1) result in n(Pb) ~ 0.5 near ¢/a = 1.04 (shown in Figs. 3.3 and 3.4),
rather than zero as required by P4mm symmetry. Moreover, there is about an
order of magnitude difference in V,,(Pb) between P4mm and C'm imposed sym-
metries near ¢/a = 1.04. NMR measurements cannot be used to determine Pb
EFGs, since the naturally occurring isotopes have no quadrupole moment (nuclear
spin I < 1/2). However, perturbed angular v — 7 correlation measurements, using
metastable Pb isomers, can yield information about the Pb EFGs [148-150], and
they are a promising tool for investigating the striking structural sensitivity of Pb
EFGs, as predicted here.

Herzog et al. [148] reported measurements in ferroelectric PbTiO3 using metastable
204mPpY  which has a half-life of about an hour. ?°”Pb implantation energies of 70
keV were used. Troger et al. [149] implanted 60 keV 2%4mPb or 209mBj (half-life
decay = 11.2 h to ?**™Pb) in Cd metal, with subsequent annealing times of 0-10
min. Both 24"Pb and 2°™Bi probes have the same intermediate 2%™Pb state with
a half-life of 265 ns [149, 151]. Herzog et al. [148] reports @ = 0.68 (15) barn for
the intermediate state, while the table of isotopes reports @ = 0.44 (2) barn [151].
In an unpublished report, Dietrich [152] also presented similar measurements using
204mPh implanted in PbTiO3 and PZT 40/60.

In PbTiO3, the experimentally measured Cg = eQV,,/h = 64.2 (6) and 65.6 (2)
MHz, in Refs. [148] and [152], respectively, are in good agreement with each other. A
comparison between theory and experiment depends on the value of the quadrupole
moment @ of the 22™Pb intermediate state. Using Herzog’s @ = 0.68 (15) barn and
the calculated V,,(Pb) for the experimental structure in Table 3.3, Cg = 70 (15)
MHz is obtained. Using @ = 0.44(2) barn, Cy = 45(2) MHz is obtained. Al-
ternatively, using our calculated V,,(Pb) and Herzog’s experimentally measured
Cg = 64.2 (6) MHz, our LDA calculations would yield @ = 0.62 (1) barn. However,

first principles LAPW calculations for PbO were within 4% of the experimentally
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measured Cp, using @ = 0.44(2) barn [150]. Herzog’s [148] 1974 measurement of
Co = 64.2(6) MHz is the only published value for PbTiO3 of which we are aware.
Structural damage and incomplete annealing are certainly possible at the large 70
keV 204mPh implantation energies used by Herzog et al. [148] and also by Dietrich
[152].

In PZT 40/60, Co(Pb) = 128 (5) MHz was measured, with n(Pb) = 0.04 (9)
[152]. The calculated values presented here (only @ = 0.44 (2) barn is reported
here, since results for other values of @ are related by a trivial scale factor) are
Co(Pb) = 36 —49 MHz for Pb; - Pbs in tetragonal P4mm. These are characteristic
for P4mm imposed symmetry for the entire range of ¢/a, as seen in Fig. 3.3. For
monoclinic Cm symmetry with ¢/a = 1.045, Co(Pb) = 123 — 177 MHz is obtained.
The calculated values for C'm symmetry are larger for smaller ¢/a, as seen in Fig. 3.3.
For P2mm symmetry, both Pb atoms are equivalent in our simulations, and for
c/a = 1.04, Co(Pb) = 86 (4) MHz is obtained. All symmetries except tetragonal
P4mm symmetry and C'm symmetry with ¢/a = 1.0 have sizable values of 7, as seen
in Table 3.2 and Fig. 3.3. Our calculations, which show large changes of V,,(Pb)
between PbTiOs and PZT 50/50 and between different imposed symmetries, are
consistent with the limited available experimental data. Further experimental work
to assess these predictions is desirable.

The large variations of Pb EFGs arise from the strong Pb-O covalency and
differences in the Pb off-centerings with respect to their nearest neighbor O atoms.
These differences are evident in Fig. 3.2 and Table 3.1. Before discussing covalency
effects, it is first pointed out that the EFGs of the Pb atoms as well as those of the
other cations are dominated by the contributions to the Coulomb potential arising
from the charge distribution near the nucleus. This is shown in Table 3.4, which
presents the EFGs calculated 1) using only the charge density inside the muffin-tin

(MT) sphere and ii) using only the charge density outside the MT. For example the
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TABLE 3.4: Electric field gradient contributions arising from the charge density inside
and outside the muffin-tin (MT') spheres for monoclinic Cm PZT 50/50 with ¢/a = 1.035.
V. in units of 10?2 V/m?.

inside MT charges only outside MT charges only
Vs n Vez n
Pb; 1.515 0.455 -0.0014 0.500
Pby,  2.000 0.526 -0.003 0.367
Zr  -0.845 0.008 -0.0027 0.519
Ti 0.455 0.442 0.007 0.671
0, 0.217 0.327 -0.097 0.093
Oy  0.265 0.525 -0.102 0.196
O;  0.242 0.248 -0.109 0.064
Oy -0.206 0.777 -0.084 0.333

internal EFG tensor component V,, is given by [139]

/2 sRymrT
V.= {4—71 R (3.1)

3
S 0 r

where Rjysr is the MT sphere radius and peo(r) is the (L = 2, M = 0) radial
coefficient in the (real) spherical harmonic decomposition of the MT charge density
in the EFG principal axis frame. For the cations, Table 3.4 shows that external
contributions to the EFGs are negligible compared to the internal ones, which are
essentially equal to the total cation EFG (see Cm ¢/a = 1.035 in Table 3.2). For
the O atoms in PZT, however, Table 3.4 shows that the external contributions are
much larger. The predominance of charge distributions near the nucleus was also
noted by Wei and Zunger [139] in ordered GalnP,. They found that 95% of the
EFG in Eq. (3.1) arises from the electron charge distribution inside a small sphere
with radius of R = 0.2 A. The cation EFGs in the present calculation also show
predominant contributions coming from the charge distribution very close to the
nuclei. As mentioned, this underscores the importance of an all-electron treatment

of the electronic states near the nucleus.
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TABLE 3.5: Orbital decomposition of calculated Pb EFGs for monoclinic PZT with
¢/a = 1.035. Contributions from bands with predominant Pb(5d), Pb(6s), O(2s), O(2p),
Ti(3s), Ti(3p), Zr(4s) and Zr(4p) are shown. V;, is in units of 1022 V/m?.

Pb 5d Pb 6s
Ve n Ve n
Pb; -2.167 0.494 0.103 0.131
Pb, -2.232  0.300 0.111 0.114
0O 2s 0O 2p
Ve n Ve n
Pb; 2185  0.506 1.430 0.494
Pb, 2273  0.325 1.909 0.554
Ti 3s Ti 3p
Ve n Ve n
Pb, 0 0.039 0 0.190
Pb, 0 0.019 0 0.411
Zr 4s Zr 4p
Ve n Ve n
Pb, 0 0.298 0.005  0.438
Pb, 0 0.536 -0.001 0.984

To examine the effects of covalency on the Pb EFGs, Table 3.5 shows the calcu-
lated orbital-decomposition of V,,(Pb) and n(Pb) in PZT with imposed monoclinic
Cm symmetry. The results were obtained by synthesizing the charge density, using
only the energy bands corresponding to the Pb(5d,6s), O(2s,2p) valence states and
to the Ti(3s,3p) and Zr(4s,4p) semi-core contributions. Since V., and 7 refer to
the eigenvalues of the EFG tensor, the contributions in the table cannot be directly
summed and compared to the total EFG. (However, the contributions from different
states to each component of the EFG tensor can be summed, and the sum yields the
total EFG tensor.) Nevertheless, the eigenvalues in Table 3.5 are indicative of the
relative magnitude of the contributions. Thus, for example, the contributions from
the Ti(3s,3p) and Zr(4s,4p) semi-core states are seen to be negligible. The Pb-O
interaction dominates the Pb EFGs: both O 2s and 2p bands have large positive

contributions to the EFGs in the monoclinic PZT, while the Pb 5d band gives large
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negative contributions. Moreover, the O 2s and Pb 5d contributions to V,.(Pb) and
n(Pb) are seen to nearly cancel. This is verified by adding the O 2s and Pb 5d EFG
tensors and then obtaining the eigenvalues. Since the Pb 6s contribution is small
(Table 3.5), the dominant contribution to the Pb EFGs is seen to come from the O
2p states.

This can be understood in the context of the lone-pair picture of the Pb 6s
orbital. In an on-site atomic orbital picture, the lone pair can be viewed as arising
from the hybridization of the Pb 6s and unoccupied 6p orbital. A recent study by
Payne et al. [153] instead attributes it to the hybridization of the Pb 6s lone pair
and the O 2p electrons. The two pictures are not necessarily incompatible, since the
states that are identified as predominantly O 2p can have Pb 6p character near the
Pb nucleus. The calculated Pb 5d and O 2s states are more than 10 eV lower than
the Fermi energy, and, as noted above, give a combined contribution to the to the
Pb EFG, which is negligible. The closed-shell Pb 6s is also seen to give a negligible
contribution. Significant Pb 6s - O 2p hybridization, however, leads to mixing in of
some Pb 6p character, within an on-site atomic orbital decomposition, resulting in
the familiar lone-pair picture. This shows up as the large O 2p contribution to the

EFG as seen in Table 3.5.

3.4.2 Ti and O calculated EFGs and possible structural

anisotropy in PZT

Recently, Baldwin et al. [39] presented the first NMR solid-state study of
PbZr;_,Ti,Os solid-solution series as a function of z. In PbTiOs (z = 1), they
observed two distinct 7O peaks, which were unambiguously identified with the ax-
ial (650 ppm) and equatorial (450 ppm) O atoms. The evolution of these two peaks

with increasing Zr concentration was quite different. While the coplanar-O peak
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FIG. 3.14: Calculated NMR quadrupole powder spectra of Ti: pure PbTiO3 calculated
at the experimental structure (black); PZT [001]1:1 tetragonal ¢/a = 1.045 (red); PZT
[001]1:1 monoclinic ¢/a = 1.02 (green); PZT [111]1:1 rhombohedral (blue); PZT [001]1:1

orthorhombic P2mm ¢/a = 1.04 (orange).
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persisted down to x = 0.25 with little change in frequency, the apex-O peak dis-

appeared for x < 0.75. They interpreted their measurements as indicating that
Ti-O-Ti chains involving the Ti coplanar-O atoms (i.e., chains along the z and y
directions, perpendicular to the c-axis) were preserved down to z = 0.25, while Ti-
O-Ti chains involving the apex-O atoms (i.e., chains along the c-axis) were absent
for x < 0.75. Their Ti NMR spectra, however, showed little variation over this
concentration range, and this is discussed further below. Based on the above ob-
servations, they concluded that there is a local structural anisotropy in PZT. Our
simulation model, based on [001]1:1 B-site ordering for z = 1/2, retains Ti-O-Ti
chains in the [100] and [010] directions, but not along [001], where only Zr-O-Ti
chains exist. Thus the interpretation of Baldwin et al. can be examined using our
calculated EFGs for this structure. Before doing this, the calculated Ti EFGs is
first discussed in some detail.

For PbTiOs3, the present Ti calculated EFGs are in good agreement with exper-
iment and with other calculations [144]. Our calculated V,.(Ti), using the PbTiO;
structure given in the paper of Padro et al. [144], is in excellent agreement with their
WIEN97 LAPW calculation as well as their NMR measurements. Note, however,
that the calculated Ti EFGs are very sensitive to small variations in the internal
structural coordinates. For example, the PbTiO3 experimental structures given by
Shirane and Pepinsky [154] and Glazer and Mabud [155] differ by only 0.023 A
in the Ti-O(apex) distance. The corresponding calculated V,,(Ti) are -0.184 and
-0.115 (1022 V/m?), respectively. This difference amounts to a factor of ~ 2.5 in
the corresponding linewidth of the NMR central peak quadrupolar powder pattern.
In this regard, we note that the reported experimental structure of the “O-doped
PbTiOs sample used by Baldwin et al. [39] appears to be anomalous, yielding a
Ti-O(apex) distance of 2.112(5) A, which is much larger than the distance of 1.78
A reported by Shirane and Pepinsky [154] and Glazer and Mabud [155]. It is not
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FIG. 3.15: Volume dependence of the calculated PZT 50/50 V,,(Ti). Circles indicate
rhombohedral R3m imposed symmetry. Triangles indicate imposed tetragonal Pdmm
symmetry with ¢/a = 1.035 PZT. The lattice parameter ag corresponds to the experi-
mental volume.

clear which structure was used in their LAPW calculations.

For PbZr;_,TizOg, the measured Ti spectra reported by Baldwin et al. [39]
show very similar powder spectra for x = 1 (pure PbTiO;), 2 = 0.75 and z = 0.5
(see their Fig. 5). These results indicate that the Ti EFGs are similar in all their
samples over this concentration range: this is not consistent with our calculated
results. Our calculated z = 1/2 Ti quadrupole central peak static powder spectra
for monoclinic, tetragonal, orthorhombic P2mm, rhombohedral PZT and tetragonal
PbTiO3 are shown in Fig. 3.14. All, but the rhombohedral structure, have [001]1:1
B site ordering. The spectra are all seen to be much broader than that of PbTiOs.

To assess this discrepancy in PZT Ti EFGs between experiment and theory,
the structural sensitivity of the calculated Ti EFGs is examined in more detail.
Fig. 3.15 shows, for PZT 50/50, the volume dependence of the calculated V,,(Ti)
for imposed tetragonal (with fixed ¢/a = 1.035) and for rhombohedral symmetries.

The tetragonal [001]1:1 B-site ordered structure shows little sensitivity, while the
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rhombohedral [111]1:1 B-site ordered structure shows greater variation. Sensitivity
to longitudinal and shear distortions of the TiOg octahedra is examined next.

The longitudinal strain |a| of the TiOg octahedron [144, 156] is defined as

o] = illn () (32)

where [; is the Ti-O bondlength of the distorted TiOg octahedron, and I, is the
undistorted bondlength corresponding to the ideal perovskite structure. Figure 3.16
shows the calculated PZT Ti V,, as a function of |«| in imposed monoclinic Cm and
tetragonal P4mm symmetries. At the largest ¢/a values, the Ti V,, have similar
values in both monoclinic C'm and tetragonal P4mm imposed symmetries, though
the longitudinal strains || differ by about 25% at the largest ¢/a = 1.055 shown.
Both symmetries show a nearly linear variation, but relaxing the P4mm symmetry
greatly reduces the slope. Although the onset of polarization rotation in monoclinic
Cm symmetry starts at ¢/a ~ 1.035 as ¢/a reduced [60], there is no indication of
this in Fig. 3.16.

By contrast, the onset of polarization rotation in C'm symmetry strongly cor-
relates with the shearing of the TiOg octahedra. One measure of the shear strain is

the distortion index (DI) [144, 156],

12
> 16— 90°]
i=1

DI = , (3.3)

12
5" 900
i=1

where there are twelve O-Ti-O angles of 90° in the unsheared TiOg octahedra, while
the 0; are the angles in the distorted octahedron. Figure 3.17 shows the dependence
of V,,(Ti) on DI. Note that DI is non-zero in tetragonal PZT, due to the off-centering

of the Ti atoms. As ¢/a increases in tetragonal PZT, the Ti off-centering increases.
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FIG. 3.17: Shear strain (distortion index DI, see text) dependence of the calculated PZT
50/50 V,,(Ti) for different imposed symmetries. Same legends as in Fig. 3.16.

For imposed C'm symmetry, there is a sharp break in the slope at ¢/a = 1.03. This
is caused by the abruptly larger shearing of the octahedron when the polarization
rotates away from the [001] direction with decreasing c¢/a. For ¢/a values larger than
1.03, the variation of V,,(Ti) with DI is similar to that in tetragonal symmetry. For
smaller values of ¢/a, DI in Cm symmetry rapidly increases, although V,, shows
little change.

The discrepancy between the experimentally measured PZT 50/50 Ti spectra
and the calculated spectra in Fig. 3.14 is now discussed. While the experimental
spectra indicate similar n(Ti) ~ 0 and similar values of V,,(Ti) for 0-75% Zr com-
positions [39], this is not the case for the calculated spectra. The calculated EFGs
(shown in Table 3.2 and Figs. 3.16 and 3.17) show that V,(Ti) in PZT 50/50 are
all much larger than in PbTiOj3. If taking the C'm [001]1:1 B-site ordered calculated
V..’s in the range ¢/a < 1.03 (Figs. 3.16 and 3.17) as representative of PZT 50/50,

these values are about 2.3 times larger than that for PbTiO3, corresponding to a
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factor of about 5 times greater powder linewidths. Moreover, in Cm symmetry, the
EFG asymmetry n(Ti) increases with decreasing c¢/a, which also tends to increase
the linewidth, as is evident from Fig. 3.14.

One explanation is that the discrepancy results from the limitations of the
present simulation cells used in the calculations (all based on two perovskite for-
mula units) to model the disordered structure of PZT 50/50. However, the good
agreement of the calculated pair distribution functions (PDF) with the experimental
PDFs in Fig. 3.2 indicates that the nearest neighbor atomic structure is reasonably
well reproduced. Moreover, the experimental NMR Ti spectra themselves suggest
that only the nearest neighbor structure near the Ti atoms is important and that
the local Ti environment changes little over the 0-75% Zr composition range. Specif-
ically this would indicate that 1) the Ti EFG is relatively insensitive to the chemical
species occupying the nearest neighbor B-site’s and 2) that the TiOg octahedra are
only slightly modified compared to PbTiOj3. If that is the case, however, at least
one of our PZT 50/50 simulations (both [001]1:1 and [111]1:1 B-site ordering) for
various ¢/a values and symmetries, might be expected to closely represent the Ti
local atomistic structure. However, only the PZT 50/50 [111]1:1 B-site ordered R3m
rhombohedral model has 7(Ti) = 0 while at the same time having a V,,(T1i) at least
close in magnitude to that of PbTiOs, R3m V,,(Ti) being only 33% larger. The
experimental PDFs for rhombohedral R3¢ 40% Ti are quite similar to the experi-
mental PDF of monoclinic Cm 48% Ti as seen in Fig. 3.1, while both of these show
somewhat larger differences compared to the experimental PDF of P4mm 60% Ti.
This is also evident in the calculated PDFs for PZT 50/50 in Fig. 3.2. However, in
the R3m structure, which has a rock-salt like B-site ordering, there are no intact
Ti-O-Ti chains.

Another possible explanation for the experimentally observed lack of structural

sensitivity of the NMR Ti spectra is that the PZT spectra are motionally narrowed.
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Evidence of motional narrowing in NMR quadrupole Ti spectra was recently re-
ported in single-crystal cubic phases of the related perovskites BaTiO3 and SrTiO;
[157]. These were interpreted as showing the mixed order-disorder and displacive
character of the ferroelectric transition. The motional narrowing was interpreted as
arising from a fast motion between eight nearly degenerate [111] off-centerings, with
a slight bias, on a slower time scale, toward a local tetragonal polarization along a
cubic direction. In PZT, motional narrowing would be possible if there were several
local structures which were energetically nearly degenerate. The relative ease of po-
larization rotation, which is responsible for the high piezoelectric constants in PZT
and PMN-PT, reflects just such a soft energy landscape. For example, the energies
of the PZT Cm c¢/a = 1.02 and the P4mm c/a = 1.045 structures differ only by
about 1 mRy/perovskite-unit.
The suggestion by Baldwin et al. [39] of an anisotropy in the local structure
of PZT solid solutions can now be evaluated. Their interpretation is based on 1)
very similar Ti NMR spectra for 0-75% Zr concentration and 2) the disappearance
of one of the two 17O peaks (observed in pure PbTiO3) for Zr compositions as small
as =~ 25%. Due to the small YO quadrupole moment and relatively small EFGs,
the observed 17O lines are very narrow. (This is also evident in the small widths
of the simulated O spectra in Figs. 3.10-3.13 compared to that of the other atoms.)
These peaks are located at about 650 and 450 ppm (referenced to liquid water).
Since the intensity of the 450 ppm peak is twice that of the 650 ppm peak, the
450 ppm peak was assigned to the O equatorial site, and the 650 ppm peak was
assigned to the O apex site. The ~ 200 ppm difference is due to different chemical
shieldings at the apex and equatorial sites (EFG central peak centroid shifts are
negligible due to the small magnitudes of O EFGs). The disappearance of the 650
ppm peak with the addition of small concentrations of Zr atoms was interpreted as

being due to the elimination of Ti-O-Ti chains along the z-axis (polar axis), while the
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persistence of the 450 ppm peak up to about 756% Zr was interpreted as reflecting the
presence of Ti-O-Ti chains along the x and y axes. While the calculation of chemical
shielding is beyond the scope of the present work, the structural sensitivity of V,.(O)
and n(0) can be examined to infer information about changes in the O-site local
environments. The V,,(0) for the Oz and O4 equatorial atoms show little change
with ¢/a in imposed C'm symmetry, as shown in Figs. 3.3, 3.4, 3.7, and 3.10-3.13.
The n(O) for the O4 equatorial atom (roughly coplanar with Ti) decreases with
increasing ¢/a, while the Oy atom (roughly coplanar with Zr) shows little change.
By contrast, the apex O; and Oz atoms show much larger changes in V,(O) and
n(O). This is most clearly seen in Figs. 3.7, 3.12, and 3.13. Thus, the calculated
EFGs for the apex O atom show considerable sensitivity to their local environment.
Assuming that significant chemical shielding variations accompany the large EFG
changes, this suggests that the introduction of Zr is likely to more strongly affect
the apex O, which is consistent with the measurements of Baldwin et al. [39] This
interpretation would favor a structure similar to our PZT 50/50 [001]1:1 model.
However, the calculated Ti EFGs yield central peak NMR static powder patterns
(in Fig. 3.14) much wider than observed, unless motional narrowing is invoked.

The persistence of the 450 ppm peak may not require, however, the persistence
of Ti-O-Ti chains in the « and y directions. In PbTiO3, the Ti-O-Ti z and y chains
have equal B-O bondlengths, while the z chains have alternating short and long B-O
bondlengths. In PZT 50/50, with either [001]1:1 or [111]1:1 order, there are still Ti-O
bondlengths roughly equal to those in the Ti-O-Ti x and y chains. The 450 ppm peak
could be associated with these. The disappearance of the 650 ppm peak could be
accounted for if large changes in chemical shielding accompany the large structural
dependence of the apex O EFGs found in the present calculations. To explain
the observed insensitivity of the Ti NMR spectra over the large PZT composition

range, it is possible that, for Zr concentrations greater than about 40%, the local Ti
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structure is similar, on average, to that of our [111]1:1 ordering model. Indeed, this
structure has the lowest energy of all the structures examined here. Moreover, the
experimental and calculated PDF curves suggest that the rhombohedral R3m and
C'm nearest neighbor arrangements are quite similar (Figs. 3.1 and 3.2). V,,(Ti)
in local R3m symmetry is reasonably close to that in PbTiOj for both and with
n(Ti) = 0. A reduction in the effective volume of the TiOg octahedra in local R3m
symmetry (see Fig. 3.15) or some motional narrowing could reduce the V,,(Ti) to
that of PbTiO3. In this scenario, there are no Ti-O-Ti chains, and there is no
structural anisotropy in PZT.

There are thus several possible interpretations of the NMR measurements of
Baldwin et al. [39] Their interpretation of a structural anisotropy in PZT would
seem to rule out local R3m [111]1:1 B-site ordering, since no Ti-O chains are present
in the R3m structure. This is inconsistent with the present Ti EFG calculations,
which yield too large Ti EFGs and non-zero n’s for all Ti local structures in a static
structural model. If motional narrowing of the Ti EFGs were present, however,
this could resolve the discrepancy with the present calculations. Alternatively, an
average local R3m [111]1:1 B-site ordering, perhaps accompanied by less pronounced
motional narrowing, would also be consistent with the present calculations, without
invoking any static structural anisotropy in PZT. In this case, as mentioned, the
persistence of the 450 ppm NMR peak could be accounted for by the presence of Ti-O
bond lengths similar to that of the coplanar O atoms in PbTiOj3 at all compositions
of the solid solution. The disappearance of the 650 ppm peak could be due to
large structural dependence of the apex O chemical shielding, paralleling the large

structural dependence of the calculated apex O EFGs.
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Chapter 4

EFG calculations in PST, PSW,
and PMN

The last chapter showed electric field gradient (EFG) calculations on 1:1 B-site
ordered PZT (50/50), containing homovalent Zr** and Ti** cations. In this chapter,
calculations are focused on Pb(Scy/2Taq/2)O3 (PST), Pb(Scy/sW1/3)03 (PSW) and
Pb(Mg1/3Nby/3)O03 (PMN). The B-sites of PST are occupied by heterovalent Sc**
and Ta®* cations with 1:1 distribution, thus PST can provide a contrast to PSW
and PMN, which both have heterovalent B-sites with 2:1 stoichiometry.

In the beginning of this chapter, various structural models with different chem-
ical orderings and symmetries are presented for PST, PSW and PMN as well as
the technical details of the evaluation of EFGs (Section 4.1). The structures of
these models are then compared to the neutron scattering experimental measure-
ments in Section 4.2. Section 4.3 shows the EFG results of PST, PSW and PMN,
which are compared to those of PZT in order to examine the effect of different B
environments. In the previous calculations of PZT, the off-centerings of Ti showed

some sensitivity to the local structures and electric polarization rotation. Since Pb

87
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FIG. 4.1: PST 10-atom supercell with [001]1:1 B-site ordering. The open and solid circles
indicate Sc and Ta atoms, respectively. Triangles indicate [111] planes.

off-centering correlates strongly with the electric polarization, Pb off-centerings in
PST and the off-centering of B atoms in PST, PSW and PMN are presented in
Section 4.4. The simulated NMR quadrupole spectra based on the calculated EFGs
are shown in Section 4.5. The Sc spectra in PST and PSW and the Nb spectra in

PMN are compared with NMR measurements.

4.1 Simulation procedure

The 10-atom PST unit cells were constructed by arranging the layers occupied
purely by Sc or Ta alternatively along the [001] direction, which is also the ferroelec-
tric polarization direction. For these supercells, various strain ¢/a’s were applied, as
tetragonal P4mm and monoclinic Cm symmetries were imposed. The PST super-
cell with [111] B-site ordering and rhombohedral R3m symmetry was also studied.

In this model, Sc and Ta atoms formed a rocksalt structure and the ferroelectric
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FIG. 4.2: PST 10-atom supercell with [111]1:1 B-site ordering. The open and solid circles
indicate Sc and Ta atoms, respectively. Triangles indicate [111] planes.

polarization is oriented along [111] direction. The PST structures with different
B-site chemical orderings are shown in Figs. 4.1 and 4.2.

As for ordered PSW supercells, the B-site 2:1 stoichiometry requires at least
15 atoms in each supercell. In the present calculations, two 15-atom supercells
and two 30-atom supercells were considered. In the 15-atom unit cells, two pure
layers of Sc and one pure layer of W alternate along the [111] direction, as shown in
Fig. 4.3. Calculations with both Pm and P1 imposed symmetries were carried out.
The 30-atom supercells are consistent with the “random site” model [69], where one
B-layer is completely occupied by Sc atoms and the other is occupied by Sc and
W atoms in a 1:2 ratio, as indicated in Fig. 4.4. With different arrangements of
the Sc and W atoms in the mixed layer, two base structures are possible in the
30-atom PSW cells, having either Immm or I4/mmm symmetry when all atoms
are at their ideal perovskite positions. The two 30-atom PSW unit cells considered

here were generated from the ideal Immm and I4/mmm structures by allowing the
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FIG. 4.3: PSW 15-atom supercell with [111]2:1 B-site ordering. The open and solid
circles indicate Sc and W atoms, respectively. Triangles indicate [111] planes.

FIG. 4.4: PSW 30-atom supercell with “random site” B-site ordering. The open circles
indicate pure Sc sites and half-filled circles represent B sites occupied by Sc and W atoms
in a 1:2 distribution, respectively. Triangles indicate [111] planes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90



91

FIG. 4.5: PMN 60-atom supercell [158]. Black, blue, and red represent Pb, Nb and Mg
atoms, respectively.

atom positions to relax in P1 symmetry. To avoid confusion, they are never the less
referred to as Immm and I4/mmm in the following.

A 3x2x2 60-atom unit cell (shown in Fig. 4.5) was constructed by Rappe et.
al. [158] for PMN with atoms arranged consistent with the “random-site” model.

In order to achieve better scaling than the LAPW method, the atomic positions
in all the PST and PSW supercells have been optimized using the first-principles
pseudopotential method. The structural relaxations were obtained keeping experi-
mental volumes for PST [27] and PSW [27]. All the atomic forces were minimized
to less than 0.04 eV/A through the use of the open-source ABINIT code. The
pseudopotentials implemented in the ABINIT f)rogram [120] were the optimized
pseudopotentials [131] generated by the open-source OPIUM code [132]. The PMN
unit cell was relaxed by Rappe et al. [158] at its experimental volume [159).

The LAPW plus local orbital (LAPW+LO) method [135] is used to calculate
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the EFGs for PST, PSW and PMN at the experimental volumes. Local orbitals
were included with the s, p, d orbitals for all cations and only s and p states for O.
The Hedin-Lundqvist exchange-correlation functional [106] was used for the local
density approximation. The muffin-tin radii for Pb, Sc, Ta, W, Mg, Nb and O were
2.3, 1.65, 1.70, 1.70, 1.55, 1.65 and 1.55 a. u. , respectively. A well-converged energy
cutoff of 49 Ry was applied for the plane waves. To sample the Brillouin zone, a
special 6x6x4 k point grid [125] was used for PST, PSW, and a 2 x 2 x 2 grid for
PMN.

4.2 Structural pair distribution function results

4.2.1 PST

The simulated pair distribution functions (PDF) obtained using our calculated
relaxed atomic positions of PST as input into the PDFFIT program [143] are dis-
played in Fig. 4.6. The simulations used Q.. = 80 A_l, and a thermal factor of
0.005 A” for Pb and O atoms, 0.001 A? for Sc and Ta atoms. The relaxed structural
models can be compared to experimentally determined PDFs. The experimental
PDF's were obtained from Fourier transform of neutron scattering structure factors
from a nominally ordered PST (87% B site ordering) at 300 K by Dmowski et al.
[27]. The average symmetry observed from the experiment is cubic Fm3m with a
macroscopic polarization along [111] axis. The PST supercells with imposed mon-
oclinic C'm, tetragonal P4mm and rhombohedral R3m symmetries with ¢/a = 1.0
all agree very well with the neutron scattering PDF results. The first peak centered
at ~2.0 A reflects the B-O distances. The peak centered at ~2.9 A reflects the
ideal perovskite Pb-O bondlength in PST. In all three of the simulated PDFs, the

Pb-O peaks split into three, around 2.4, 2.9, and 3.4 A, respectively. The splitting
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FIG. 4.6: PST experimental pair distribution functions (PDF) at T = 300 K [black open
circles] from Dmowski et al. [27] are compared to simulated PDFs, calculated using the
ideal perovskite structure [solid (black) curve] as well as the relaxed atomic positions
(see text) with imposed monoclinic Cm [red line] tetragonal P4mm [green line] and

rhombohedral R3m [blue line] symmetries at ¢/a = 1.0.
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TABLE 4.1: PST Pb-O nearest-neighbor distances (A) for Cm monoclinic and P4mm
tetragonal imposed symmetries. ¢/a values correspond to Fig. 4.6, and m refers to the
number of bonds of the given length.

Cm ¢/a=1.0 P4mm ¢/a=1.0
Pbl—O m Pbg—o m Pbl—O m PbQ—O m
2307 1 23714 1 2.744 4 2.501 4
2.452 2 2.449 2 2.882 4 2.948 4
2.858 2 2.866 2 3.024 4 3.309 4
2949 2 2.950 2 - - - -
3.071 2 3.067 2 - - - -
3.262 2 3.268 2 - - - -
3.432 1 3.430 1 - - - -

of the Pb-O peak indicates the displacement of Pb atoms from its ideal perovskite
positions. The Pb-B peak, ideally at 3.52 A, in the simulated and measured PDFs
split into two, corresponding to different Pb-Sc/Ta distances. The shortest Pb-Sc
and Pb-Ta lengths differ by about 0.34 A in Cm PST with ¢/a=1.0, which agrees
with the experimental result of 0.4 A, while in P4mm and R3m PST the separations
are 0.2 A and 0.15 A, respectively. This splitting of the Pb-B peak was not seen in
either the PZT neutron scattering experiment or our previous first-principles PZT
calculations.

A generic feature of many lead-based perovskite alloys is the wide range of
Pb-O nearest-neighbor bond lengths. The Pb-O nearest-neighbor bond lengths in
both tetragonal and monoclinic imposed symmetries for the relaxed structures are
shown in Table 4.1. In tetragonal symmetry, there are four groupings of Pb-O bond
lengths: ~ 2.5, 2.7, 2.9, and 3.3 A. In imposed monoclinic Cm symmetry, the Pb-O
groupings are more spread out. The experimental and theoretical curves in Fig. 4.6
both show peaks at ~ 2.5, 2.9, 3.2 A and a shoulder at ~ 2.7 A, corresponding to
these Pb-O distances. These features, especially the peak near ~ 2.5 A, are also

evident at the other compositions. The presence of the 2.5 A bond length, similar
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to the shortest Pb-O distance in PbTiOs, is characteristic of PZT and many other

perovskite lead-based alloys, as noted by Dmowski et al. [27]

Based on comparisons with model PDFs, Dmowski et al. [27] concluded that
over short distances Pb atoms tend to have (100) pseudocubic displacements though
the overall Pb polarization is along (111) direction. This is consistent with our
tetragonal P4mm calculations where Pb atoms move along (001) direction only, and
our monoclinic Cm calculations, which show that the Pb atoms move toward one

side of the oxygen octahedra and displace between the (111) and (001) directions.

4.2.2 PSW

The simulated PDFs obtained using the calculated relaxed atomic positions
of PSW unit cells are displayed in Fig. 4.7 and fig. 4.8. The simulations used
Qmaz = 80 A7 for all the structures. Thermal factors of 0.0125, 0.00125, and 0.0075
A? were used for Pb, Sc/W, and O atoms separately in 15-atom PSW, while 0.0025,
0.0002, and 0.0015 A? were used respectively for these atoms in 30-atom PSW. The
simulated PDFs of the 15-atom PSW supercells show very poor agreement with
the experimental neutron scattering PDF results [158], as seen in Fig. 4.7. The
measured B-O peak at 2.1 A and the Pb-O peaks between 2.3 to 3.3 A are barely
reproduced by the calculated PDFs. On the other hand, the PDFs of PSW unit
cells with 30 atoms and P1 symmetry agree much better with the experiment [158]
(Fig. 4.8). This supports the “random site” structure in disordered PSW.

The first peak in the measured PDF figure at 2.1 A reflects the B-O distance
in PSW, and the B-O peaks in the PDFs of the 30-atom PSW supercells agree
well with the experiment in both height and width (Fig. 4.8). The B atoms in both
I4/mmm and Immm supercells have very small displacement from their ideal cubic

positions. All Sc atoms move less than 0.13 A away from their average positions,
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FIG. 4.7: PSW experimental pair distribution functions (PDF) at T = 20 K and 290 K
[solid (black) curves] from Juhas et al. [158] are compared to simulated PDFs, calculated

using the relaxed atomic positions (see text) of 15-atom monoclinic Pm (dashed green)
and P1 (dashed red) PSW.
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FIG. 4.8: PSW experimental pair distribution functions (PDF) at T = 20 K and 290 K
[solid (black) curves] from Juhas et al. [158] are compared to simulated PDFs, calculated

using the relaxed atomic positions (see text) of 30-atom I4/mmm (dashed blue) and
Immm (dashed red) PSW.
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W atoms move less than 0.08 A. These small off-center distortions agree with the
experimental observations. On the other hand, the ideal Pb-O distance around 3.0
A splits into at least three peaks in both Irnmm and I 4/mmm supercells, which is
caused by the largely dispersive Pb-O bondlength from 2.3 A to 3.3 A. The shortest
2.3 A Pb-O bond-length is also seen in C'm PST. Pb atoms also experience large off-
centerings, ~0.5 A, against the O-cage around them, while the B atom off-centerings
against their surrounding oxygen octahedra are ~0.2 A. These off-centerings are

compatible to those in PST supercells.

4.2.3 PMN

The comparison between the PDFs obtained from the 60-atom PMN super
cell and that from neutron scattering experiment [160] is shown in Fig. 4.9. The
simulation used Qe = 80 A_l, and an isotropic thermal factor of 0.0025 A? for all
the atoms. In Fig. 4.9, the structure near 2.85 A corresponds to the Pb-O distances,
ideally 2.88 A, which splits into three peaks at ~ 2.5, 2.85, and 3.3 A. The Pb-B
peak ideally at around 3.5 A also splits into two, at 3.3 and 3.6 A separately. These
splittings show that all ions displace strongly from their ideal cubic positions.

The good agreement of the calculated PDFs with experiments for PST, PSW
and PMN indicates that the nearest neighbor atomic structure is reasonably well
reproduced in all the relaxed simulation cells, except for the 15-atom PSW super-

cells.
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FIG. 4.9: Simulated PDF from relaxed PMN supercell [solid black curve] is compared to
PDF from neutron scattering experiment [red dashed curve] [160].
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4.3 EFG results

4.3.1 PST

Calculated EFGs for all atoms in [001]1:1 ordered PST supercells with imposed
monoclinic Cm and tetragonal P4mm symmetries are shown as a function of the
strain ¢/a in Figs. 4.10 and 4.11. The atoms were labeled as following: In monoclinic
C'm symmetry, both Pb; and Pby are closer to Sc than to Ta, but the Pb; atom has
a smaller Pb-Ta bond length than Pby atom. For example, at ¢/a = 1.04 and with
Cm symmetry, the Pb;-Ta distance is 3.34 A, and the Pb,-Ta bondlength is 3.74 A.
In tetragonal P4mm symmetry, Pb; is closer to Ta and Pb, to Sc. In both Cm and
P4mm symmetries, apex (c-axis) oxygen atoms O; and Oz have the shortest B-O
distance with the Ta and Sc atoms, respectively. The O, and O4 atoms are roughly
coplanar with the [001)-layers of Sc (Ta), respectively. In Cm symmetry with ¢/a
less than 1.02, Pb; and Pbs; move closer to Sc and have very similar distances to
every B atom, corresponding to very similar V,,(Pb) and n(Pb) values. As c/a
increases from 1.02, Pb; reorients to a position with almost equal distance to Sc
and Ta (slightly favors Sc), while Pbs moves closer to Sc and away from Ta. The
different Pb-B displacements result in the split of V,,(Pb) and n(Pb) values at ¢/a >
1.02, as can be seen in Figs. 4.10 and 4.11. It is also reflected in the Pb off-centering
against its Oqo cage, which will be discussed in section 4.4.2. By contrast, as c¢/a
changes in P4mm symmetry, Pb; stays close to Ta and Pb, close to Sc, unlike in
Cm symmetry. Consequently, the EFG of Pby atom in Cm PST approaches its
value in P4mm structure as ¢/a increases to 1.135, while sz(Pbl) and 7(Pb;) are
still rather different from their P4mm values even at the largest ¢/a = 1.135. In
the previous calculations of PZT(50/50) (Chapter 3), V,.’s and 7’s of all B cations

and O atoms in C'm supercells approached their P4mm values at ¢/a as large as
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FIG. 4.10: Calculated V,, vs ¢/a for PST. Panels (a)-(c) are for imposed monoclinic
Cm symmetry, and panels (d)-(f) are for tetragonal P4mm symmetry. In (a) and (d),
open (filled) circles represent Pby (Pbsg), respectively (see text). In (b) and (e), squares
(diamonds) represent Sc (Ta), respectively. In (c¢) and (f), triangles pointing up, down,
left, and right represent oxygen atoms O1, Os, Og, and Oy, respectively (see text). Note
the change of scale for the O atoms.

1.055. In C'm PST, only the V,,’s and n’s of Sc, O1, and O, approach their P4mm
at c/a at 1.055, the EFGs of Ta and other oxygens are still very different from their
P4mm values at much larger ¢/a = 1.135. For ¢/a less than 1.02 in Cm PST, the
two axial oxygens, O; and O3 have very similar V,, and n values, consistent with
Pb; and Pb, having very similar EFGs.

Numerical results of EFGs for all atoms in PST at selected c/a values are
displayed in Table 4.2. V,,(Pb;) in Cm PST has large values, over 2.2 (1022 V/m?),
for all strains, while V,,(Pb,) decreases to about 1.5 (10%* V/m?) as c¢/a over 1.05.

While n(Pby) decreases to nearly 0 with increasing c¢/a, n(Pb;) remains as large as
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FIG. 4.11: Calculated EFG asymmetry for PST with imposed monoclinic Cm symmetry.
Panels (a)-(c) show 1 vs ¢/a for monoclinic Cm PST. Symbols are the same as in Fig. 4.10.

0.3 at ¢/a=1.135. Such difference in the Pb EFGs are consistent with the differences

in Pb-B displacements mentioned above.

To help understand the structural dependence of the calculated EFGs, it is

helpful to examine the orientation of the EFG principal axes eigenvectors. Note

that, by symmetry, one of the eigenvectors of the EFG tensors must be perpendicular

to the C'm mirror plane; we label the corresponding eigenvalue V). The other two

TABLE 4.2: Calculated EFGs (V;,) in units of 1022 V/m? for monoclinic Cm, tetragonal
P4mm, and rhombohedral R3m PST.

Cm P4dmm R3m

c/a=1.0 c/a = 1.04 c/a = 1.135 c/a=1.00 ¢/a=1.135 c/a=1.0

Viz n Vaz n Vaz n Vaz n Vez Ui Vzz n

Pb; 2666 0.244 3.159 0.181 2.296 0.324 -0.005 0 -0.787 0 2.880 0

Pb2 2.668 0.217 2.599 0.607 1.373 0.079 0.653 0 1.267 0 1.937 0

Sc -0.598 0.303 -0.733 0.088 -0.663 0.003 -0.403 0 -0.603 0 -0.159 0

Ta 2.276 0.628 1.935 0.588 -0.375 0.661 4.371 0 0.573 0 -0.934 0
0Oy -0.118 0.523 0.196 0.350 0.348 0.043 0.320 0 0.381 0 -0.123 0.261
O3 0.416 0.587 0.435 0.113 0.367 0.232 0.459 0.402 0.373 0.141 -0.123 0.261
O3 -0.115 0.681 -0.161 0.168 0.158 0.999 0.239 0 0.178 0 -0.160 0.990
Oy -0.124  0.049 0.206 0.829 0.216 0.581 0.319 0.358 0.222 0.318 -0.160 0.990
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FIG. 4.12: Pb “projected” EFG eigenvalues (see text) vs ¢/a: circles label V,, the EFG
eigenvalue for the eigenvector that is perpendicular to the C'm mirror plane; diamonds
label V., the EFG eigenvalue for the eigenvector that is approximately parallel to the
c-axis; squares label V), the EFG eigenvalue for the remaining eigenvector. The large
up-triangles and left-triangles at ¢/a = 1.135, which are identified by arrows for clarity
in some cases, represent the conventional EFG eigenvalues calculated in imposed P4dmm
symmetry: Vz,=V,, (left-triangles) and V,, (up-triangles). All open symbols are for
Pby, and filled symbols are for Pbs.

eigenvectors necessarily lie in the mirror plane. Of these two eigenvectors, the one
with the larger dot product with the [001] unit vector (¢ axis) has its eigenvalue
labeled V., and the other is labeled Vj. In the following we refer to V,, V|, and V.
as “projected” EFG eigenvalues.

The projected eigenvalues for the Pb cations are plotted in Fig. 4.12. The
largest EFG component of Pb, is V) for all ¢/a values, while that of Pb, changes its
orientation from parallel to the Cm plane at ¢/a < 1.02 to the ¢ direction at larger
c/a’s. As in Cm PZT, the directions of V,, for both Pb atoms are along the ¢ axis
for all c/a’s.

The projected B-atom EFG eigenvalues are plotted in Fig. 4.13. The largest

EFG components of both Sc and Ta are along the ¢ direction for all ¢/a’s in [001] or-
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FIG. 4.13: Same as Fig. 4.12, but for Sc and Ta “projected” EFG eigenvalues (see text).
All open symbols are for Sc, and filled symbols are for Ta.

dered Cm PST, and the same behavior was found for Zr and Ti in Cm PZT(50/50)
supercells. The V,,(Sc)’s and 7n(Sc)’s are similar to those of the Ti in PZT(50/50)
with the same symmetry, while Ta has enormous V,, values in all supercells com-
pared to the Sc, especially at small ¢/a’s. In PZT (50/50), Zr has larger EFGs than
Ti atoms, but the Zr EFGs, no larger than 1.0 (1022 V/m?), are still much smaller
than Ta EFGs in PST. Ta atoms in [001] ordered Cm PST also have larger 1 values
than Zr atoms in PZT. While V,,(Sc) and 7(Sc) approach their P4mm values at
the largest ¢/a = 1.135, n(Ta) = 0.661 is still much larger than 0. By contrast, the
calculations of PZT 50/50 showed that the EFGs of both Zr and Ti in Cm supercell
nearly reached their P4mm values at ¢/a = 1.055 (Chapter 3).

The projected eigenvalues for the oxygen atoms are plotted in Fig. 4.14. The two
apex oxygen atoms O; and O3 have almost identical EFG components at ¢/a < 1.02.
When ¢/a > 1.02, the largest EFG component of Oy, which is closer to Ta than to

Sc, changes its direction from parallel to the Cm mirror plane to ¢ direction, as
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FIG. 4.14: Same as Fig. 4.12, but for the apex-O “projected” EFG eigenvalues (see text).
All open symbols are for O; (shortest B-O bond with Ta), and filled symbols are for O3
(shortest B-O bond with Sc).

happened to the apex oxygens in [001] 1:1 ordered Cm PZT. However, the other
apex oxygen which is closer to Sc does not experience the same direction change of
its largest EFG component. The EFG values in Table 4.2 show that V,,(0) (Oa is
roughly coplanar with Ta) is larger than the V,,’s of other oxygens in PST for both
Cm and P4mm symmetries. By contrast, all the O atoms in PZT (50/50) have
similar V,, values, all of which are smaller than O, in PST. Unlike in PZT, O5 does

not have large n =~ 1, but has instead n < 0.5 which is similar to that of the apex

OXygens.

The effects of the above EFG trends on NMR spectra are examined and shown

in section 4.5.

4.3.2 PSW

The numerical EFGs for all metal atoms in the four PSW unit cells are shown in

Table 4.3. The metal EFGs in the 15-atom supercell with imposed monoclinic Pm
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TABLE 4.3: Calculated EFGs (Vs in units of 1022 V/m?) for 15-atom PSW supercells
with monoclinic Pm and P1 symmetries, and 30-atom PSW supercells constructed from
Immm and I4/mmm ideal positions. NN is the number of the nearest B neighbors.

15-Pm 15-P1
Atom NN(Sc¢/W) V,, n NN(Sc/W) V., n
Pb; 5/3 1.359 0.519 5/3 3.614 0.286
Pb, 6/2 2.449 0.395 6/2 2.447 0.379
Pb; 5/3 3.606 0.281 5/3 1.383 0.519
Se; 3/3  -0.205 0.365 3/3 0.135 0.714
Scy 3/3 0.138 0.688 3/3 -0.205 0.376
W, 6/0 -0.365 0.539 6/0 -0.357 0.481
30-Immm 30-14/mmm
Atom NN(Sc¢/W) V,, n NN(Sc¢/W) V,, n
Pb; 6/2 3.305 0.090 6/2 -2.366  0.965
Pb, 5/3 3.133  0.256 6/2 -2.048 0.850
Pbs 5/3 2.784 0.478 4/4 0.769 0.586
Pby 6/2 2.992 0.217 6/2 3.131 0.894
Pbs 5/3 -1.477 0.868 4/4 1.851 0.261
Pbg 5/3 1.448 0.248 6/2 1.624 0.929
Scy 6/0 -0.244 0.329 6/0 -0.238 0.758
Scs 2/4 -0.307 0.372 4/2 -0.805 0.100
Scs 2/4 0312 0.587 1/5 0.479  0.428
Scy 2/4 0.619 0.319 1/5 0.459 0.385
W, 6/0 0.726 0.724 6/0  -0.725 0.609
W, 6/0 0.618 0.817 6/0 1.1561  0.789
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symmetry are very similar to those in the 15-atom PSW unit cell with P1 symmetry,
while the metal EFGs in the 30-atom Immm supercell are different from those in the
30-atom I4/mmm PSW simulation cell. Both the V,,’s and the n’s of these cations
are very diverse with different B-cation local orderings. The largest V,,(Pb) value
in every structure is greater than those in all PST unit cells (showed in Table 4.3),
except in the I4/mmm structure. In I4/mmm PSW, all Pb atoms surrounded by
a nearest B neighbor (nBn) shell containing six Sc’s and 2 W’s (6Sc/2W) have very
large asymmetry parameter with n’s &~ 1, while the 7’s of the Pb atoms in the Immm
PSW with the same nBn configuration are much smaller, no larger than 0.217.

The V,,(Sc)’s in the two 15-atom supercells are smaller than all the V;,(Sc)’s in
Immm and I4/mmm supercells (Table 4.3). Some correlation between the V,,(Sc)’s
and the nBn environment of Sc atoms is observed in the 30-atom PSW unit cells.
The Sc atoms with an isotropic Sc nBn cage have the smallest V,, values compared
to the Sc’s with anisotropic nBn environments. In the I4/mmm unit cell, the Sc
with a 6Sc/OW nBn configuration has an 1 = 0.758, which is much larger than the
n(Sc) = 0.329 of the Sc in Immm PSW with an isotropic Sc nBn shell. The Sc
with a Sc-rich nBn surrounding in 74/mmm PSW has the largest |V,,| = 0.805 and
smallest 7 = 0.100 than Sc cations with W-rich nBn’s (2Sc/4W and 1Sc/5W).

It is also shown in Table 4.3 that in 74/mmm PSW, the Sc surrounded by a
Sc-rich nBn shell (4Sc/2W) has the smallest = 0.1 among all Sc’s, as well as a V,,
twice as large as the Sc cations centered in W-rich nBn shell (1Sc/5W). Note that
the six-coordinated ionic radii of Sc®* and W are 0.745 A and 0.60 A, respectively.
The Sc cations in a configuration with W-rich nBn have more “free volume” in the
oxygen octahedron, which leads to larger off-centering as well as easier re-orientation
of the polarization. This is consistent with the fact that the V,,’s of the Sc atoms
with an isotropic Sc nBn shell in Immm and I4/mmm PSW are both about -0.24

(1022 V/m?), which is ~30% larger compared to the V,,= -0.16 (10*2 V/m?) for the
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Sc in PST with imposed R3m symmetry (note that the Sc in this supercell has an
isotropic Ta nBn shell, and the ionic radius of Ta, 0.64 A, is smaller than that of
the Sc). As for the Sc cations in a Sc-rich nBn configuration, there is less space
available for distortion, resulting in larger V,,’s. On the other hand, the V,,(Sc)’s
in Immm PSW further show their dependence on the off-centering against the Og
octahedron (Table 4.3). Sca, Scs, and Scy all have a 2S¢/4W nBn configuration,
the off-centering of Scy is 0.25 A, which differs from the Scy and Scz off-centerings
by more than 25%. This difference corresponds to the [V,.|(Scs) nearly twice as
large as those of Scy and Sc;. By examining the structure of the nBn octahedral
around Scg, Scz and Scy, we found that in the nBn cage around Sc, and Scs, two
Sc neighbors are both in the equatorial positions, while the two Sc neighbors of Scy
are both in the axial positions which allows more distortion.
In all PSW supercells, W atoms are always surrounded by a pure Sc nearest
B shell, but they experience very different EFGs. The W’s in the 15-atom unit
cells both have V,, ~ 0.36 102V /m? and n ~ 0.5, while the ones in the 30-atom
simulation cells all have V,,’s larger than 0.6 10°?V/m? and 7 larger than 0.6. In
Immm PSW, both the V,,’s and the n’s of the two W cations are very similar with

each other; and in I4/mmm PSW, the V,,’s of the W atoms are of 50% difference.

4.3.3 PMN

Since many NMR measurements [40, 43, 71, 72] of the Nb spectra in PMN have
suggested that the Nb quadrupole coupling parameters are sensitive to the number
and identity of its nearest B neighbors as well as its displacement from the ideal
cubic position, the following study of PMN is focused on Nb atoms.

The EFGs and the nBn configurations of the Nb cations in the PMN supercell

are displayed in Table 4.4. The asymmetry parameter 7 as well as the V, of the Nb’s
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TABLE 4.4: Calculated EFGs for Nb cations and the surrounding nBn configurations in
the PMN simulation cell. NN is the number of the nearest B neighbors.

Atom V,, (10?2 V/m*) n NN(Mg/Nb)
Nb; 0.483 0.458 1/5
Nby 0.421 0.561 1/5
Nbg -1.089 0.872 3/3
Nb, -1.001 0.847 3/3
Nbsg -0.825 0.742 3/3
Nbg -0.814 0.527 3/3
Nb, -0.861 0.132 5/1
Nbg -0.790 0.181 5/1

are very sensitive to the nBn environment. In the PMN simulation cell, there are
three types of nBn environments around the Nb cations, 1Mg/5Nb, 3Mg/3Nb, and
5Mg/1Nb. The Nb’s centered in an nBn cage with 1:1 Nb/Mg (3Mg/3Nb nBn) all
have n’s larger than 0.5. The two Nb’s with a Mg-rich nBn octahedron (5Mg/1Nb)
have small n’s both less than 0.2, while the 7’s of those Nb’s surrounded by a Nb-
rich nBn shell (1Mg/5Nb) are both around 0.5. The Nb’s with a 1Mg/5Nb nBn
configuration also have the smallest V,, around 0.45, which is about 50% smaller
than the V,,’s of the Nb cations surrounded by more Mg atoms. Such effects of the
nBn configuration on the centered B cation EFGs were also observed in the previous

PSW calculations (shown in section 4.3.2).

4.4 Structural sensitivity of calculated EFGs

It has been shown that the off-centering of Ti atom in PZT correlates with
strain and the polarization rotation. In this section, the effects of local structures
on B-atom EFGs in PST, PSW and PMN are discussed. Previous PZT calculations
(in Chapter 3) also showed strong sensitivity of the O EFGs to the local structure.

Oxygen EFGs are strongly affected by the off-centering of Pb atoms, which correlates
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FIG. 4.15: Shear strain (distortion index DI, see Eq. (3.3)) dependence of the calculated
PST V,,(Sc) for different imposed symmetries: tetragonal P4dmm (circles), monoclinic
Cm (triangles), and rhombohedral R3m (star).

with the polarization. Hence, in this section, Pb off-centerings in C'm PST and their

effects on surrounding O EFGs are examined.

4.4.1 EFGs and off-centerings of B atoms

“One measure of the B-atom off-centering, the distortion index (DI) (Eq. (3.3)),
showed very strong correlation with the polarization rotation in Cm PZT 50/50.
Figs. 4.15 and 4.16 show the dependence of V,, on DI for Sc and Ta in PST with
imposed Cm, P4dmm, and R3m symmetries. In P4mm PST, both Sc and Ta show
nearly linear variations, but Ta has much larger slope than Sc. In Cm PST, for
c/a < 1.02, DI(Sc) shows little variation as V,,(Sc) changes by about 25%. For
¢/a > 1.04, DI(Sc) shows about a 25% variation as V,,(Sc) remains nearly constant.
By contrast with the linear variation of DI in P4mm PST, both DI(Sc) and DI(Ta)
show an abrupt change in slope near ¢/a = 1.02. Another measure of the B-atom

off-centering is the longitudinal strain |«|, defined in Eq. (3.2). The longitudinal
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FIG. 4.16: Shear strain (distortion index DI, see Eq. (3.3)) dependence of the calculated

PST V,,(Ta) for different imposed symmetries. Same legends as in Fig. 4.15.
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FIG. 4.18: Longitudinal strain |a| (see Eq. (3.2)) dependence of the calculated PST
V2(Ta) for different imposed symmetries. Same legends as in Fig. 4.15.

strain |a| of both Sc and Ta also show this abrupt break in slope in Cm PST, as
displayed in Figs. 4.17 and 4.18. This is in contrast to Cm PZT 50/50, where |a|(T1)
varied linearly as shown in Fig. 3.16.

NMR experiments have been carried out to measure the *3Sc spectra in PSW
[41], and %Nb spectra in PMN [40, 44, 45] in order to study the local structures in
these solid solutions. Unfortunately, it is very difficult to identify various chemical
B sites with different nBn structures because their spectra often overlap with one
another and form a broad peak. Hence, it is of great importance to examine the
nBn influence on the centered Sc and Nb EFGs in PSW and PMN.

The dependence of V,, on DI and |a| for Sc in PSW and Nb in PMN simulation
cells are shown in Fig. 4.19 — Fig. 4.22. |«a|(Nb)’s separate to form three groups
according to the three types of the Nb nBn configurations in Fig. 4.21. The lon-
gitudinal strain of the Nb cations with a Mg-rich nBn shell (5Mg/1Nb) are more
than 25% smaller than those of the Nb’s with less Mg’s in the nBn cage. Since
Mg?* has an ionic radius of 0.72 A, larger than Rioni.(Nb%+) = 0.64 A, Mg-rich nBn
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FIG. 4.19: Longitudinal strain || (see Eq. (3.2)) dependence of the calculated PSW
V.2(Sc). Black circles are for Sc atoms in Immm PSW supercell, and red circles are for

Sc atoms in 74/mmm supercell.
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FIG. 4.20: Shear strain (distortion index DI, see Eq. (3.3)) dependence of the calculated
PSW V. (Sc) for Immm and I4/mmm supercells. Symbols are the same as in Fig. 4.19.
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configurations yield less free space in the Og cage for the surrounded Nb to displace
from the high symmetry cubic position. The Nb’s with 3 Mg’s or 1 Mg in the nBn
configuration experience «’s within 15% difference, but their |V,,|’s are separated by
about 200%. However, DI(Nb)’s showed less correlation with the nBn environments
(Fig. 4.22). DI’s of the two Nb’s with 5Mg/1Nb nBn cage as well as two Nb’s with
3Mg/3Nb nBn cage are all between 0.052 and 0.055, while DI's of the other two
Nb’s with 3Mg/3Nb nBn shell are larger than 0.075.

By contrast with the strong correlation between a(Nb) and surrounding nBn
configuration in 60-atom PMN simulation cell, both |a|(Sc) and DI(Sc) in 30-atom
PSW supercells show little sensitivity to the nBn configuration (Figs. 4.19 and 4.20).
The two Sc’s centered in an isotropic Sc nBn cage have similar longitudinal strain
around 0.2, and two out of three Sc’s with 25¢/4W nBn configuration have |a| ~
0.27. The lack of sensitivity of the Sc off-centerings to the local structure may be
caused by the limitations of the present 30-atom PSW simulation cells, which are
half the size of the PMN supercell, in modeling the disordered structure of PSW.
However, the good agreement of the calculated pair distribution functions (PDFs)
with the experimental PDF's in Fig. 4.8 indicates that the nearest neighbor atomic

structure is reasonably well reproduced.

4.4.2 Pb off-centering and O EFGs in PST

The Pb off-centerings with respect to the surrounding oxygen cage are examined
in this section to understand the EFG changes of Pb and O atoms shown in Figs. 4.10
and 4.11. Note in these figures, V,,’s of Pb; and Pb, in monoclinic Cm PST are
almost identical at ¢/a < 1.02. At ¢/a > 1.04, V,,(Pb,)’s increased as V,,(Pbs)’s
decreased. The difference between 7 values of the two Pb atoms also largely increased

at ¢/a > 1.04. In P4mm symmetry, the V,,(Pb;)’s are more than 3 times larger
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FIG. 4.23: Longitudinal strain |a| (see Eq. (3.2)) dependence of the calculated PST
Vzz(Sc) for different imposed symmetries: tetragonal P4mm (circles), monoclinic Cm
(triangles), and rhombohedral R3m (diamonds). All open symbols are for Pb;, and filled
symbols are for Pbs.

than V,,(Pbs)’s. The large difference of Pb; and Pby, EFGs in PST with both Cm
and P4mm symmetries were not observed in PZT 50/50. The V,,’s and the ’s of
the oxygens in PST showed similar changes of behavior at c¢/a’s above 1.02 as Pb
atoms. To facilitate comparison of heterovalent PST 50/50 with homovalent PZT
50/50, Pb off-centerings in PST in the range 0 < ¢/a < 1.06 are focused on, since
the structures of PZT and PST are similar in P4mm and C'm symmetries.

One measure of the Pb off-centering is the longitudinal strain |«|. Fig. 4.23
shows the calculated PST Pb V,, as a function of |« in imposed monoclinic Cm,
tetragonal P4mm, and rhombohedral R3m symmetries. In Cm PST with ¢/a <
1.02, Pb; and Pb, have the same value of |a|’s, as well as V,,’s. At larger ¢/a, Pb;
has smaller longitudinal strains and larger V,,’s compared to Pby. This is consistent
with the Pb EFG changes shown in Figs. 4.10 and 4.11. At the largest ¢/a values,

the Pby V,, in Cm symmetry is 8 times as large as the V,, in P4mm symmetry,
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while |a|(Pb;) in monoclinic PST is 30% larger than that in tetragonal PST. On the
other hand, the V,, and |a| of Pby differ by only 100% and 5% in Cm and P4dmm
symmetries, respectively. V.’s in P4mm symmetry show a nearly linear variation
for both Pb’s, but the slopes are of opposite sign. And all |a|’s and V,,’s of Pb, are
more than 2 times larger than those of Pb; in P4mm PST. In R3m symmetry, the
two Pb atoms are less different than in P4mim symmetry, the V,,’s and |a|’s of the
Pb’s differ by 40% and 10% separately from each other.

Another measure of Pb off-centering, 5, is the displacement of the Pb from its
surrounding O-cage center of mass. Numerical results are listed in Table 4.5. In Cm
symmetry, there is little difference in 6(Pb,) and 6(Pbs) at c/a less than 1.04. For
¢/a > 1.04, Pb &’s differ by about 30%. The corresponding |c|’s also differ by about
30% in Fig. 4.23. More importantly, unlike in Cm PZT, g(Pb)’s in Cm PST are not
orientated and rotated along the same directions as ¢/a changes. For ¢/a < 1.02,
Pb, lies in the (110) mirror plane pointing close to the [111] direction, while Pb, lies
in the same plane pointing close to another body diagonal direction [111]. As c/a
increases, Y (Pb;) rotates in the C'm plane away from the ¢ direction and toward the
[111] direction, while §(Pb,) rotates toward [001] ¢ direction. The difference between
the Pb rotation directions in Cm symmetry is consistent with the different behaviors
of Pb EFG components seen in Fig. 4.12: 1)the Pb; EFG component parallel to the
Cm plane, Vjj(Pb;), remains the largest in magnitude compared to the other two
components as ¢/a changes, 2)both of the Pby EFG components parallel to the Cm
mirror and along ¢ direction change sign at ¢/a > 1.04, and all EFG components are
close to their P4mm values at the largest ¢/a = 1.055. However, in C'm PZT 50/50
, all EFG components of both Pb’s persist their signs. The differences in V,,(Pb)
and 7(Pb) between the two Pb’s in Cm PZT are much smaller than in Cm PST at
large ¢/a = 1.055. In P4mm PST, both Pb atoms can only move along the c axis,

but §(Pb,) is more than 3 times as large §(Pb;) for all ¢/a’s. As in Pdmm PZT
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TABLE 4.5: Pb off-centerings in monoclinic Cm, tetragonal P4mm and rhombohedral

R3m PST along z, y, z directions as well as the total magnitude all in the unit of A.

118

Pb; Pb,
c/a 00y 02 |Bogy] 0 0y 0: |0yl
Cm 1.0 0.340 0.340 0.250 0.542 0.339 0.339 -0.258 0.544
1.005 0.338 0.338 0.264 0.545 0.340 0.340 -0.252 0.543
1.01 0345 0345 0258 0.551 0.343 0.343 -0.257 0.549
1.02 0338 0.338 0.258 0.543 0.341 0.341 -0.268 0.551
1.04 0.333 0.333 -0.079 0.478 0.156 0.156 -0.591 0.631
1.06 0.305 0.305 -0.160 0.460 0.090 0.090 -0.670 0.682
Pimm 1.0 0 0 -0.138 0.138 0 0 -0.600 0.600
1.0105 0 0 -0.151 0.151 0 0  -0.624 0.624
1.015 0 0 -0.168 0.168 0 0 -0.640 0.640
1.035 0 0 -0.215 0.215 0 0 -0.689 0.689
1.055 0 0 -0.234 0.234 0 0 -0.718 0.718
R3m 1.0 0.318 0.318 0.318 0.550 0.300 0.300 0.300 0.519

-

50/50, 6(Pb) of the two Pb atoms differ by no more than 50%. Given that PZT
50/50 has isovalent B-site cations, Zr'** and Ti**, while PST has heterovalent B-site
cations, Sc®>* and Ta™>, the hetero-charged B-site in [001]1:1 ordered PST gives rise
to largely different Pb displacements as well as their EFGs.

As mentioned, the large Pb off-centerings about 0.5 A in Cm, P4mm and
R3m PST (Table 4.5) are also seen in the PDFs (Fig. 4.6). In the ideal perovskite
structure, the 12 Pb-O bonds are all of the same length. As a result of the strong
Pb off-centering in PST with imposed Cm symmetry, the nearest Pb-O distance
is greatly reduced to 2.3 A as shown in Table 4.1. In [001]1:1 ordered Cm PZT
50/50, the simulated static quadrupole NMR spectra of the axial oxygens, O; and
O3, showed great sensitivity to the electric polarization direction. As will be shown
in the next section, in Cm PST, not only the quadrupole NMR spectra of the axial
oxygens O; and O3, but those of the equatorial oxygens Os and Oy all show similar

sensitivity to local structures. The width, the splitting and the lineshape of the
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TABLE 4.6: Pb off-centerings in [001]1:1 ordered monoclinic Cm, tetragonal P4mm and
[111]1:1 ordered rhombohedral R3m PZT 50/50 along z, y, z directions as well as the
total magnitude all in the unit of A.

Pb, Pb,

¢c/a Os Oy 9 |00y Oc Oy 9z |00

Cm 10 -0.294 -0.294 0.257 0.489 -0.289 -0.289 0.411 0.579
1.01 -0.273 -0.273 0.290 0.483 -0.266 -0.266 0.456 0.591

1.02  -0.241 -0.241 0.328 0.473 -0.237 -0.237 0.502 0.603

1.03 -0.199 -0.199 0.368 0.463 -0.198 -0.198 0.549 0.616

1.035 -0.167 -0.167 0.389 0.455 -0.172 -0.172 0.572 0.621

1.04 -0.134 -0.134 0.411 0.453 -0.145 -0.145 0.599 0.633

1.045 -0.117 -0.117 0.424 0.455 -0.131 -0.131 0.611 0.638

1.05 -0.104 -0.104 0.439 0.463 -0.109 -0.109 0.623 0.642

1.0565 -0.082 -0.082 0.447 0.462 -0.085 -0.085 0.641 0.652

Pimm 1.0 0 0 0.401 0.401 0 0 0.589 0.589
1.01 0 0 0.408 0.408 0 0 0.589 0.589

1.02 0 0 0.427 0.427 0 0 0.616 0.616

1.03 0 0 0.434 0.434 0 0 0.623 0.623

1.035 0 0 0.440 0.440 0 0 0.629 0.629

1.04 0 0 0.442 0.442 0 0 0.632 0.632

1.045 0 0 0.452 0.452 0 0 0.643 0.643

1.05 0 0 0.456 0.456 0 0 0.652 0.652

1.055 0 0 0.459 0.459 0 0 0.658 0.658

R3m 1.0 -0.284 -0.284 -0.284 0.491 -0.305 -0.305 -0.305 0.528
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oxygen spectra showed large difference at ¢/a < 1.02 and ¢/a > 1.04, as can be seen
in Fig. 4.26 — Fig. 4.29. Also shown in Table 4.2, at the largest ¢/a = 1.135, the
EFGs of all oxygens are close to their P4mm values at the same c¢/a, except for the
axial O3. Note that O, and O4 are in the PbO5 cage of both Pb; and Pby, but O;
and Oj are only in the PbOq, cage of Pby and Pby, respectively. Given that 5 (Pby)
is along body-diagonal direction instead of the ¢ direction at large ¢/a beyond 1.04,

the local environment around O3 is not close to its P4mm structure.

4.5 Simulated NMR spectra

NMR experiment [39] and previous calculations in PZT 50/50 showed that oxy-
gen NMR spectra are very sensitive to the local structure. EFGs of B-atoms and
O atoms in PST also vary as strain and imposed symmetry changes. In PSW and
PMN, the sensitivity of Sc (in PSW) and Nb (in PMN) EFGs to the number and
identity of their nBn environment as well as to distortions from exact cubic sym-
metry seen in previous discussion have also been deduced from NMR, measurements
[40, 43, 71, 72]. Hence, the first part of this section will present the simulated EFG
NMR spectra in PST, PSW and PMN. In the second part of this section, compar-
isons between the simulated B-atom EFG spectra and NMR measurements in PST,

PSW and PMN will be presented and discussed.

4.5.1 Manifestation of EFGs on measured NMR spectra

From the calculated PST EFGs, static NMR powder patterns were generated
and shown in Fig. 4.24 — Fig. 4.29 for monoclinic Cm PST as a function of ¢/a
for all atoms except Pb, which has no quadrupolar interaction. The spectrum of
tetragonal P4mm PST (for ¢/a = 1.055) is also shown in the figures for comparison.

The spectra are powder patterns of the central (m = 1/2 < —1/2) 1/92 transition,
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FIG. 4.24: %3Sc static NMR powder spectrum in monoclinic C'm PST. For comparison,
the dotted curve shows the spectrum in tetragonal P4mm PST with ¢/a=1.135. Numbers
labeling the curves show the corresponding c¢/a and 7 values, as indicated.
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FIG. 4.25: '®1Ta static NMR, powder spectrum in monoclinic Cm PST. The spectrum in
tetragonal Pdmm PST with ¢/a=1.135, which is much narrower than the Cm spectra,

is not shown here.
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FIG. 4.26: 170 static NMR powder spectrum for the apex O; atom (apex O nearest to

Ta) in monoclinic Cm PST. Note the change in the frequency scale. Dotted curve as in
Fig. 4.24.
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FIG. 4.27: Y70 static NMR powder spectrum for the apex O3 atom (apex O nearest to
Sc) in monoclinic Cm PST. Dotted curve as in Fig. 4.24.
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FIG. 4.28: 170 static NMR powder spectrum for the Oy atom (equatorial O approxi-
mately in the Sc plane) in monoclinic Cm PST. Dotted curve as in Fig. 4.24.
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FIG. 4.29: 170 static NMR powder spectrum for the O4 atom (equatorial O approxi-
mately in the Ta plane) in monoclinic Cm PST. Dotted curve as in Fig. 4.24.
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as described in Appendix A. In simulating these spectra, the values used for the
quadrupole moments Q were -22.0, 317.0, and -2.558 fm? for #*Sc, ¥1Ta, and 70,
respectively [146]. Both Sc and Ta isotopes have spin I = 7/2, and 17O has spin
I =5/2. The powder patterns were calculated for an applied (high) field of B =
17.6 T, which corresponds to Larmor frequencies of 182.205, 89.775, and 101.676
MHz for 43Sc, 81 Ta, and 170, respectively. The simulated spectra of Sc and Ta in
Cm PST show the smallest change in both the width and the splitting compared
to the oxygen atoms. All the O simulation spectra experience abrupt change of
splitting or/and width at ¢/a = 1.02, where Pb; and Pb, start to have different B
environments. These changes in the O spectra are consistent with the abrupt break
of slope of DI(Sc,Ta) and |a|(Sc,Ta) seen in Fig. 4.15 — Fig. 4.18. The O spectra in
Cm PST are all approaching their P4mm results at the largest ¢/a = 1.135 except
for axial O3 which locates almost in the same (001) plane as Pby. Since Pby is far
from its P4mm position at ¢/a = 1.135, the coplanar O3 can not achieve its P4dmm
environment, as shown in Fig. 4.10 and Table 4.2. The width of the simulated Oj
spectrum increases more smoothly than the other oxygen spectra, and the splitting
at ¢/a = 1.135 is very different from its P4mm spectrum. The apex O EFG spectra
are thus seen to be a very sensitive probe of structural changes associated with the
Pb displacements in PST. It is also seen that the simulated NMR spectra of Oy and
Oy, coplanar with Sc and Ta respectively, have very different behavior. O4 spectrum
experiences an abrupt increase of the line width at ¢/a=1.02 while the splitting has
little change. The line width of Oy decreases as c¢/a above 1.02, and the splitting
sharply increases. This opposite change of trends in the equatorial oxygen spectra
linewidth was also seen in our previous calculations for PZT 50/50 which has a
heterovalent B site, and the changes in PZT O spectra were monotonic with no
reflection of the polarization rotation. Also note that the line width of Oy is more

than twice as large as that of O4, while the width difference of two equatorial O
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FIG. 4.30: Panel (a) and (b) show %5Sc static powder spectrum in 15-atom and 30-atom
PSW supercells separately. In panel (a), the solid curves are for monoclinic Pm PSW,
and the dashed ones for P1 PSW. In panel (b), the curves with solid line are for Immm
PSW, and the ones with dashed line are for I4/mmm PSW. Note the change of the
frequency scale between the two panels.

spectra in PZT are very small. The sensitivity of the equatorial O EFG spectra can
thus help to identify the B ordering related structure changes.

In the NMR measured spectrum of *Sc in PSW [41], a narrow peak and a broad
peak were observed, where the narrow peak was assigned to the Sc site with a pure
Sc nBn shell and the bxoad peak include the contributions from all other Sc sites
surrounded by both Sc and W cations. Two Gaussians were used to simulate the
broad peak in experiméﬁlt, but no specific nBn configurations were assigned to the
Gaussians. To help intérpret the measured Sc NMR spectra, simulated static 4*Sc
(I= 17/2) quadrupolaerMR spectra were generated from the calculated V,,(Sc)’s
and 7(Sc)’s, shown in Fig. 4.30. The quadrupole moment @ and the Larmor fre-
quency used in these simulations are the same as those used to generate PST %5Sc
spectra. The Sc spectra show some sensitivity to the nBn environment. In I'mmm

PSW, the Sc with an isbtropic Sc nBn has the narrowest line width compared with
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FIG. 4.31: ®Nb static powder spectrum in the PMN supercell.

spectra of the other three Sc atoms surrounded by a 2S¢/4W nBn. In I4/mmm
PSW, the Sc centered at a pure Scg shell has not only the narrowest spectrum line
width, but also the smallest splitting. The Sc with a Sc-rich 4Sc/2W nBn cage has
the broadest spectrum line width as well as the largest splitting.

In the PMN supercell, the difference in the Nb EFGs can result in different
lineshapes as well as broadenings of the EFG-induced NMR quadrupole static spec-
tra. Using the calculated EFGs, static NMR powder patterns for isotope **Nb with
spin I = 9/2 are shown in Fig. 4.31. In simulating the ®Nb spectra, the quadrupole
moment ¢ = -32.0 fm? [146] was used. The powder patterns were calculated for
an applied (high) field of B = 17.6 T, which corresponds to a Larmor frequency of
183.321 MHz for %Nb.

As seen in Fig. 4.31, the calculated *Nb spectra show large sensitivity to the
nBn configuration. The spectra of the Nb’s with a 1Mg/5Nb nBn configuration have
the narrowest line width, and the Nb’s with a 5Mg/1Nb nBn cage have the largest

splitting between the peaks.
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TABLE 4.7: Nb quadrupole coupling constant C¢g from the LAPW calculation and from
NMR measurement [45] for broad lineshapes D1 and D2 in units of MHz. The calculated
Cg for D1 is an average over the two Nb’s with 1 Mg in the nBn configuration, while
Cq(LAPW) for D2 is an average over all other Nb’s. The sign of the C is not determined
from the NMR measurement.

Co(LAPW) Co(NMR)
DI -34.97 28
D2 70.54 24

4.5.2 B atom NMR spectra comparison between simula-

tions and experiments

In both PST and PSW simulation cells, the Sc with an isotropic nBn shell has
the smallest V,, than other Sc cations with both types of B cations in their nBn
surrounding, as seen in Tables 4.2 and 4.3. In NMR experiments, a narrow peak is
usually associated with B sites centered at an isotropic nBn environment [40, 41, 44].
Fig. 4.32 shows the calculated Sc quadrupole central peak static powder spectra for
monoclinic, tetragonal, rhombohedral PST and the simulated spectrum from NMR
measured Cg = 3.8 MHz and n = 0.9 [41] for an ordered PST sample [27]. All of
the simulated Sc spectra are seen to be much wider than that of the experiment,
even the narrowest simulated spectrum of R3m PST is about twice wider than the
experiment. On the other hand, NMR Sc spectrum in a disordered PST single
crystal yields a Cg = 12 MHz [161], which corresponds to |V,|(Sc) = 0.225 (102
V/m?). This measurement is close to the calculated |V,,|(Sc) ~ 0.159 in R3m PST
and |V,,|(Sc) = 0.403 in P4mm PST with ¢/a = 1.00.

Calculated quadrupole central peak static powder spectra for the 6Sc nBn sur-
rounded Sc in I4/mmm and I'mmm PSW as well as the simulated spectrum from
NMR measured Cg = 4.4 MHz and n = 0.9 [41] for PSW are shown in Fig. 4.33. The

simulated Sc spectra are seen to be about 4 times wider than that of the experiment.
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FIG. 4.32: Calculated NMR quadrupole powder spectra of °Sc in PST: calculated from
the experimental Cg = 3.8 MHz and n = 0.9 (black) [41]; PST [001]1:1 monoclinic
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FIG. 4.33: Calculated NMR quadrupole powder spectra of 4>Sc in PSW: calculated from
the experimental Cg=4.4 MHz and 1 = 0.9 (black) [41]; I4/mmm PST (red); Immm

PST (green).
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High resolution NMR measured **Nb spectrum shows three peaks, a sharp peak
assigned to Nb sites with 6 Mg?* nBn sites, and two broad lineshapes, D1 and D2,
associated with various nBn configurations containing up to 1 Mg?** cation and
configurations including 2 to 5 Mg?" cations, respectively. In the 60-atom PMN
simulation cell, there is no Nb atom with an isotropic Mg nBn shell. The measured
quadrupole coupling constants Cg corresponding to the two broad lineshapes are
listed in Table 4.7, in comparison with the simulation results.

The average Cg of Nb’s with 1 Mg?*" in the nBn cage from the LAPW calcula-
tion is about 25% larger than the measured Cyg for lineshape D1, while the average
Cq of Nb’s with 3Mg/3Nb and 5Mg/1Nb configurations is 3 times as large as the
measured Cg for lineshape D2 (Table 4.7).

In PST, PSW and PMN, the simulated B spectra are generally larger than
the NMR measurements. Similar discrepancy was seen in Chapter 3 between the
calculated and experimental Ti spectra in PZT. One possible explanation for this
discrepancy is that the experimental spectra are motionally narrowed. Evidence of
motional narrowing was recently reported in NMR quadrupole Ti spectra in single-
crystal cubic phases of the related perovskites BaTiO3 and SrTiOj3 [157]. These were
interpreted as showing the mixed order-disorder and displacive character of the fer-
roelectric transition. The motional narrowing was interpreted as arising from a fast
motion between eight nearly degenerate [111] off-centerings, with a slight bias, on
a slower time scale, toward a local tetragonal polarization along a cubic direction.
In PST and PSW, motional narrowing would be possible if there were several local
structures which were energetically nearly degenerate. Like in PZT, a soft energy
landscape was also seen in both PST and PSW. For example, the energies of the
PST Cm c¢/a = 1.0 and the R3m structures differ by about 6 mRy/perovskite-
unit, and the energy difference between Immm PSW and I4/mmm PSW is only

0.3 mRy/perovskite-unit. The existence of these structures with small energy dif-
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ference are consistent with possible motional narrowing in PST and PSW. A soft
Born-Oppenheimer energy landscape, which is characteristic of ferroelectrics with
high piezoelectric constants, also exists in PMN. This is conducive to the motional
narrowing. Another possible reason for the discrepancy between the simulation and
the NMR measurements in PMN is that the PMN simulation cell includes only
three different nBn configurations, 1Mg/5Nb, 3mg/3Nb and 5Mg/1Nb, around Nb
cations, as the NMR broad lineshapes contain the contributions from 5 different

nBn configurations with 1 to 5 Mg cations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Conclusion

Electric field gradients (EFGs) were calculated for solid solutions Pb(Zr; /5 Ti1/2)Os
(PZT), Pb(Sci/2Tai/2)03 (PST), Pb(Sce/sW1/3)03 (PSW) and Pb(Mgi/3Nbg/3)O3
(PMN) using a first-principles LAPW method to study their local structures. To
simulate 1:1 ordered PZT with homovalent Zr*t, Ti*t cations and 1:1 ordered
PST with heterovalent Sc3t, Ta®t cations, a number of 10-atom supercells were
used: [001] ordered with imposed monoclinic Cm symmetry, [001] ordered with im-
posed tetragonal P4mm symmetry, and [111] ordered with imposed R3m symmetry.
Strains were applied to the [001] ordered unit cells. For PSW with 2:1 heterova-
lent Sc** and W%t cations, 15-atom [111] ordered unit cells and 30-atom unit cells
obeying the “random-site” model were used. The simulation cell for PMN with
2:1 heterovalent Nb5" and Mg2* cations contains 60 atoms arranged following the
“random-site” model. All these relaxed structural models yielded pair distribution
functions in good agreement with experiments, except for 15-atom PSW supercells.
This indicated that all the PZT, PST unit cells and the PSW, PMN random-site
supercells represent the atomic structure in these perovskite alloys well.

It has been shown by Wu and Krakauer [60] that for [001]1:1 ordered PZT

134
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with imposed monoclinic Cm symmetry, the electric polarization is nearly parallel
to the [001] (c-axis) for ¢/a 2 1.04, and it begins to rotate away from the c-axis at
¢/a ~ 1.035. The present calculations in PZT showed large changes of the EFGs
as the electric polarization rotates between tetragonal and monoclinic symmetries.
The onset of polarization rotation in C'm symmetry showed strong correlation with
the shearing of the TiOg octahedra, and there was a sharp change in slope in the
plot of Ti EFGs versus octahedral distortion index (DI). However, the plot of Ti
EFGs versus longitudinal strain |«|, another measure of the TiOg distortion, varied
linearly. Results for the PZT oxygen EFGs were consistent with a greater sensi-
tivity of the apex oxygen chemical shifts to the local environment compared to the
equatorial oxygen atoms. This is in qualitative agreement with recent 7O nuclear
magnetic resonance (NMR) measurements of Baldwin et al. [39] In this 17O NMR
measurement, two oxygen peaks were assigned to apex and equatorial O sites ac-
cording to their intensities. The apex O peak disappeared as the Zr concentration
increased to 25%, while the equatorial O peak persisted up to 75% Zr in PZT. Fur-
thermore, the Ti spectrum was insensitive to the Zr concentration. Baldwin et al.
thus associated the existence of O peak with the existence of the Ti-O-Ti chain,
and further suggested anisotropy in PZT local structure. However, our calculated
Ti EFGs showed great sensitivity to local structure. Furthermore, examination of
Pb-O bonds in our PZT structural models showed that instead of the anisotropy,
the similar Ti-O bondlengths in all the PZT models could be used to explain the
persistence of the “equatorial” O peak.

In 1:1 ordered heterovalent PST, large changes of calculated EFGs were also
seen at ¢/a = 1.02. At the same c/a value, the Pb off-centerings with respect
to the surrounding oxygen cage, which is related to the total polarization, started
to rotate toward different directions as c¢/a increases. In PZT, the onset of polar-

ization rotation in Cm symmetry showed strong correlation with the shearing of
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the TiOg octahedra, and a sharp change in slope appeared in the plot of Ti EFGs
versus octahedral distortion index (DI). In PST, an abrupt change in slope was also
seen in plots of EFGs versus DI for both Sc and Ta atoms. By contrast with the
monotonic change of |a|(Ti) as a function of EFG in PZT, EFGs versus |a| for both
Sc and Ta plots showed abrupt break of slope. Furthermore, both the axial and
equatorial oxygen simulated NMR spectra were very sensitive to the change of the
local environment.

The calculations of heterovalent PSW and PMN showed that Sc and Nb EFGs
were strongly correlated to the number, identity and arrangement of its nBn cations,
as deduced from experimental NMR spectra. Isotropic an configuration corre-
sponded to the smallest V,, of Sc and Nb atoms. When surrounded by anisotropic
nBn configurations dominated by B cations with larger ionic radius (Sc and Mg),
the centered B atoms tended to have larger V,,’s. In the plot of Nb EFGs versus
|| in PMN, three well distinguished groups of data points were formed according
to three different nBn configurations. In the plot of Nb EFGs versus DI in PMN,
the data points separated into two groups only: the ones with one Mg in the nBn
cage and the ones with more than one Mg in the nBn cage. By contrast, in the
plots of Sc EFGs versus DI and Sc EFGs versus |a| in PSW, data points correlated
weakly with the nBn environments. This may be explained by the limitation of the
30-atom PSW unit cells.

NMR experiments have been performed to measure the spectra of 4"Ti, #°Sc,
and %Nb isotopes in PZT, PST, PSW and PMN solid solutions, respectively. Com-
pared to the EFG values of these atoms inferred from NMR measurements, the
calculated B-atom EFGs in all four alloys are generally up to 3 times as large. One
possible explanation for this discrepancy is the limitation of the simulation cells,
even though these supercells are good representations of the local structure. Con-

sidering these ferroelectrics all have almost degenerate energy states, the discrepancy
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can also be explained by the motional narrowing in NMR measurements, which is
discussed in terms of static and dynamic structural models of these alloys.

After the EFGs were obtained, the next step to fully simulate the NMR exper-
imental spectra is to calculate the chemical shielding on each inequivalent chemical
site. In Professor Krakauer’s research group, chemical shielding calculations are

currently underway for many of the oxides discussed in this thesis.
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Appendix A

Nuclear quadrupole central peak

powder patterns

The method used to calculate the NMR EFG powder spectra is described in
this Appendix. The Hamiltonian describing the nuclear quadrupole coupling of a
nucleus with spin I is [81]

Q@

/
I =
< Im'|H|Im > 61021 — 1)

D Vi< Im’\g(fjlk + L D) — 6P Im > (A1)
jk

where @) is the nuclear electric quadrupole moment and the I; are the components
of the nuclear spin operator. The nuclear quadrupolar coupling interaction is absent

for nuclei with I < 1, since Q = 0 in this case [81]. V;; is the symmetric traceless
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electric field gradient (EFG) tensor at the nucleus and is defined by

2
Vo= lm @rz/a(g — %@jvw) , (A.2)
where V(r) is the Coulomb potential. The three eigenvalues of the EFG tensor
are its principal components with respect to its principal axis z y z reference frame
defined by the corresponding eigenvectors. In conventional notation, the principal
axes coordinates are labeled such that the eigenvalues of the EFG tensor are ordered
as |V..| > |Vjy| > |Vie|. Since the EFG tensor is traceless, these can be expressed
in terms of two independent variables, V,, and the asymmetry parameter 5, which

is defined as

(A.3)

and where 0 <n < 1.

In the presence of large magnetic fields, the nuclear quadrupole interaction
can be accurately treated as a perturbation of the Zeeman Hamiltonian, shifting
the (21 + 1) equally spaced Zeeman levels so that 27 distinct lines are observed
in an NMR measurement. For half-integral I, the central transition (m = 1/2 <
—1/2) Vﬁ)z is shifted only in second-order and is surrounded by 2/ — 1 first-order
satellite lines. The frequencies of the observed lines depend on the orientation of
the quadrupolar principal axis frame with respect to the applied magnetic field.
Measurements on powder samples are dominated by the 1/5)2 resonance, since the

orientation dependence of the first-order satellite lines makes them very broad and
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difficult to observe. The explicit orientation dependence of the central resonance

v is given by [81, 82, 162]:

2
/

2 R
’/i/é(ﬁwﬁ) = VL—<EV—L>

x  [A(p)u' + B(o)u® +C(9)] (A4)

27 9
Alg) = g g 3
50 + 21 cos(2¢) + 1772 cos?(2¢)
B(¢) = 5 % + 2ncos(2¢) + inz cos”(29)
2 3
Cld) = —g + % + 2cos(2q§) — §n2 cos?(2¢)
9 3
_ eQV.

Here the Euler angles 8 and ¢ describe the orientation of the applied magnetic field
with respect to the EFG principal axis frame. A variety of conventions are used in
the literature to describe the the quadrupolar coupling constant wg in Eq. (A.4),
such as Cg = eQV,,/h or vg = eQV,./h.

In a powder sample, the variables p and ¢ are randomly distributed, so the

powder patterns shown in Figs. 3.8 - 3.11 are obtained, up to a normalization, by
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averaging over these angles, yielding the spectral density

o) = [ 1 i | a6 8 (v o2 4)). (A.6)

To calculate p(v) in Eq. (A.6), the delta function is replaced by a Lorentzian of
finite width for each frequency v and summed over the discretized angular integrals.

Chemically inequivalent sites for a given nuclear isotope will each produce their
own characteristic EFG shifts and broadening of the observed NMR lines. In addi-
tion, each chemically inequivalent site will in general be subject to an anisotropic
chemical shift of the NMR lines due to different screening of the applied magnetic
field by induced electronic currents [82]. The combination of these effects can make
it difficult to discriminate spectra arising from inequivalent sites. The width of the
EFG powder pattern is inversely proportional to the magnetic field strength, as
seen from Eq. (A.4), so high-magnetic fields help to improve the resolution of the
spectra. Magic angle spinning (MAS) NMR techniques can also reduce the EFG
broadening by effectively averaging to zero the second-order tensor part of the pow-
der pattern in Eq. (A.4) and the broadening due to the anisotropic chemical shift.
The calculated “static” powder patterns in this paper do not include this effect. We
have not calculated the chemical shifts in the present work, as solid-state methods
to accurately determine these in crystals for light to heavy atoms have only recently
been developed using specialized computer codes [163, 164]. We have also calcu-
lated the powder patterns using exact diagonalization in the (2m + 1)-dimensional

I-subspace instead of perturbation theory, but the spectra obtained in these two
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ways are virtually identical at the high magnetic fields now typically used in NMR

experiments.
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