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ABSTRACT PAGE

Breathing is essential for mammalian life. Although there is an emerging consensus that the 
inspiratory respiratory rhythm is generated in a lower brainstem region known as the preBotzinger 
Complex (preBotC), the mechanism of rhythmogenesis is still unclear. Additionally, the 
modulation of intrinsic currents within preBotC neurons has yet to be fully elucidated. This 
dissertation addresses both of these issues and relies on imaging, electrophysiological, and 
modeling techniques. The first chapter examines the size and composition of the preBotC. 
Previously, it has been shown that preBotC neurons expressing substance P (SP)-sensitive 
neurokinin receptors (NKR) are essential for normal breathing in vivo. Combined with an in vitro 
study that indicated that nearly all inspiratory neurons respond to SP, these data suggested that 
the critical rhythmogenic population of neurons are NKR+. We show that ~40% of the putatively 
rhythmogenic population of neurons could be identified as NKR+ in vitro whereas most of the 
neurons responded to SP. We also show how this disparity may be attributed to gap junctions 
between inspiratory neurons that transmit the response of SP to neighboring neurons. This may 
resolve much of the conflict between the previous in vitro and in vivo studies that reached widely 
disparate conclusions about the number of rhythmogenic neurons that express NKRs. Using 
additional data, we also offer a rough estimate of the size of the rhythmogenic population of 
neurons. The chapter also decribes the means by which SP excites the vast majority of preBOtC 
neurons by illustrating the characteristics of the SP-activated current (/Sp) in these neurons. In the 
subsequent chapter, we characterize a voltage-dependent potassium current that is involved in 
maintaining stable rhythms during normal fictive breathing. This study shows that the majority of 
putatively rhythmogenic neurons exhibit a low-threshold, slowly-inactivating transient potassium 
current (/a ) and that blockade of /A in the context of normal network activity has deleterious effects 
on the frequency and discharge pattern of inspiratory activity. Therefore, specific intrinsic currents 
like /A play a key role in ensuring stable rhythmogenesis by keeping network activity synchronous 
and coherent. The third chapter presents a mathematical model of heterogeneous and 
rhythmogenic neurons that initiate network bursts. We show how this behavior relies on feedback 
synaptic connections within the network that reinforces activity, i.e., recurrent-excitation. We also 
compare model results to experimental data and make testable predictions. The experimental 
data includes applications of riluzole, which blocks the persistent Na+ current while not preventing 
rhythmogenesis, and the aforementioned experiments that showed that destruction of NKR+ 
neurons prevents normal breathing. The final chapter elaborates on the discussion of /sp from the 
first chapter and presents evidence suggesting that a cyclic adenosine monophosphate (cAMP)- 
modulated non-specific cation channel may account for the depolarizing response in preBotC 
neurons from several neuromodulators. These channels may be a primary target of convergent 
mechanisms that alter the respiratory rhythm from different afferent projections. Altogether, this 
dissertation advances the field’s understanding on several fronts. We have distinguished possible 
functional roles of neurons from electrophysiological characteristics, estimated the number of 
neurons necessary for rhythmogenesis, characterized /SP, and clarified the distribution of NKRs in 
inspiratory neurons. We have identified and characterized a voltage-dependent potassium 
currrent important for inspiratory activity and analyzed its role. We have also described in detail 
how rhythmic bursts form from recurrent excitation and how this relates to experimental data. 
Finally, we have identified and begun characterizing a potentially important and novel mechanism 
for the modulation of membrane potentials in critical inspiratory neurons.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS
Page

Acknowledgements iii

List of Figures iv

Introduction 1

CHAPTER 1: Neurokinin receptor-expressing preBotzinger Complex neurons in
neonatal mice studied in vitro

1.1. Introduction 19
1.2. Methods 21
1.3. Results 29
1.4. Discussion 40
1.5. References 47

CHAPTER 2: 4-aminopyridine-sensitive outward currents promote regular burst
discharges within the preBotzinger Complex

2.1. Introduction 54
2.2. Methods 56
2.3. Results 58
2.4. Discussion 67
2.5. References 70

CHAPTER 3: Network-mediated burst initiation and its role in respiratory rhythm
generation

3.1. Introduction 80
3.2. Methods 83
3.3. Results and Discussion 87
3.4. Appendix 1: Group-Pacemaker Model Equations and Configuration 103
3.5. Appendix 2: Implementation and Operation of neuronetsim 109
3.6. References 122

CHAPTER 4: Modulation of a voltage-insensitive, mixed cation current by cyclic AMP

4.1. Introduction 130
4.2. Methods 132
4.3. Results and Discussion 132
4.6. References 140

Conclusions 147

Vita 151

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This dissertation is dedicated to my parents and brother

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

I sincerely thank my advisor, Christopher Del Negro, for all his immeasurable and 
tireless support: in training, in writing, in data analysis and interpretation -  among many 
other things. We started this research with a very specific objective in mind, and I thank 
him for allowing me to diverge from that a bit in order to explore new avenues and put 
the original goal into context. I also thank him for the corner of the lab to put my paper in, 
occasional coffee, and the encouraging words.

I thank Gregory Smith for the helpful advice on how to correctly incorporate noise 
into our model, which is essential for the functioning of the network. I also thank him for 
advising me on my Master’s research. I would also like to thank him for the things I 
learned in his courses that drove my interest in both the modeling and experimental 
aspects of biological research.

I thank Maciek Sasinowski, Heather Sasinowska, and the rest of the people at 
INCOGEN, for getting me to Williamsburg and giving me the opportunity to work at the 
College of William and Mary.

I thank Margaret Saha for the helpful discussions that influenced how this 
dissertation was written. Hopefully, her comments were successfully reflected in the final 
text.

I thank Patrice Guyenet for his helpful comments on this dissertation and for 
suggesting we perform a very useful control experiment in Chapter 4.

I particularly thank Rex Kincaid and Michael Holroyd for the extensive help 
providing equations, analysis, and advice for Chapter 3 when we were studying network 
properties and burst initiation.

I thank my fellow lab member Ryland Pace, for his willingness to talk about his 
experimental results, and talk about our collective work more generally.

I also thank Jeffrey Mendenhall for suggestions regarding the model and making 
key contributions to neuronetsim. Jeff also had many helpful comments regarding 
Chapter 3.

I thank our department chair, Eric Bradley, the rest of the members of the 
Department of Applied Science, the College of William and Mary, and our vice provost, 
Dennis Manos, for all the indirect support that was necessary to achieve the results of 
this research.

Finally, I thank our funding sources who make this research possible: the Suzzan 
Wilson Matthews Faculty Research Award, the Jeffress Memorial Trust, and NSF IOB- 
0616099.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure Page

1.1. The 'breathing slice’ preparation 4

1.1. TMR-SP labeling of neurons 24
1.2. Control experiment examining nucleus ambiguus TMR-SP labeling 25
1.3. Intrinsic properties of inspiratory neurons in the preBotC 30
1.4. TMR-SP labeling in preBotC neurons with different phenotypic 

properties
32

1.5. A TMR-SP* non-rhythmic neuron near the preBbtC 33
1.6. Effects of SP on inspiratory neurons 33
1.7. Effects of SP on inspiratory neurons blocking K+ channels 34
1.8. Effects of SP on inspiratory neurons blocking K+ channels and gap 

junctions
36

1.9. Simultaneous measurements of inspiratory neurons and TMR-SP* 
neurons

38

1.10. Analysis of NKR+ preBotC neuron distribution 40
1.11. Estimates of the composition of the preBotC inspiratory network 45

2.1. Phenotypic behaviors of inspiratory neurons located in the preBotC 59
2.2. Phenotypic behaviors of expiratory neurons located in the preBotC 60
2.3. Biophysics of /A in inspiratory neurons 61
2.4. /A attenuation from 2 mM 4-AP 62
2.5. Effects of 4-AP on the preBotC network 64
2.6. Characteristics of phasic synaptic input to inspiratory neurons 64
2.7. Whole-cell effects of 4-AP on inspiratory neurons 65
2.8. Effects of 4-AP on burst frequency in inspiratory neurons 66
2.9. Effects of 4-AP on general burst characteristics 67

3.1. The group-pacemaker is made up of neurons with heterogeneous 
parameters

87

3.2. The general topology of the model preBotC network 88
3.3. A variety of phenotypic patterns are exhibited by model inspiratory 

neurons
89

3.4. A raster plot of the population of neurons illustrating network bursts 91
3.5. Comparison of experimental and simulated burst initiation 95
3.6. Dynamics of active component assembly 97
3.7. Blockade of persistent Na+ current does not prevent rhythmogenesis 99
3.8. Simulated SP-saporin lesioning of NKR+ neurons 101

4.1. Forskolin activates a mixed cation current in preBotC neurons by up- 
regulating adenylyl cyclase

133

4.2. Forskolin occludes the effect of SP in preBotC neurons 134
4.3. Verapamil blocks Wskoiin 135
4.4. Verapamil prevents the network-level response to SP 136
4.5. cAMP-gated channels are present in preBotC neurons 138

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction

Rhythmic breathing movements in mammals begin in utero and the rhythm-generating 

neural circuits that drive breathing movements must be fully formed and properly 

configured at birth in order to sustain newborn life. These same circuits then operate 

continuously for up to, and sometimes more than, 100 years in humans. The body of an 

average 70 kg adult human male contains a reservoir of about 1000 ml of 0 2. At rest, 

250 ml of 0 2 are consumed every minute and this rate more than triples to 800 ml 0 2 per 

minute during mild exercise. Moreover, low levels of blood 0 2 for more than a few 

minutes can cause irreversible brain damage. To sustain life the brain is relentless in its 

drive to breathe and regulate respiration. Consequently, the mammalian brain has 

evolved neural mechanisms to ensure that the respiratory rhythm remains robust and 

reliable.

These neural mechanisms can go awry, and the resulting diseases afflict both 

the very young and the aged, and include: congenital central hypoventilation syndrome 

(CCHS) and sudden infant death syndrome (SIDS) in newborns, sleep apnea in adults, 

and sudden respiratory failure in Amyotrophic Lateral Sclerosis (ALS) and Multiple 

Systems Atrophy (MSA) patients (Amir et al. 1999; Arnulf et al. 2000; Barthlen and 

Lange 2000; Chen and Keens 2004; Gozal 2004; Maria et al. 2003; Munschauer et al. 

1990; Stocchi et al. 1998; Vetrugno et al. 2004; Weese-Mayer et al. 2003). Despite its

1
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importance for human health, critical aspects of breathing’s neural origins remain 

unknown.

Breathing behavior consists of pumping movements in the diaphragm and thorax, 

coordinated with movements in the airways and tongue that affect air flow. Respiratory 

muscles are controlled by cranial and upper spinal motor nerves that receive motor 

commands from respiratory networks in the medulla oblongata. Expiration is mainly 

passive in mammals (Janczewski and Feldman 2006), so at the core of breathing is the 

rhythm for inspiration. This is advantageous from an experimental perspective because 

inspiratory motor rhythms can be preserved in vitro (Smith and Feldman 1987; Smith et 

al. 1990; Suzue 1984).

The rhythm and pattern for breathing are generated by networks in the brainstem 

and spinal cord (Bianchi et al. 1995; Feldman and McCrimmon 2002; Feldman et al. 

1986; Feldman et al. 2003; Onimaru et al. 1997; Rekling and Feldman 1998; Richter and 

Spyer 2001). These networks include the neurons of the dorsal respiratory group (DRG) 

that participate in afferent feedback and autonomic regulation, and the ventral 

respiratory group (VRG), which is a bilaterally distributed column of neurons beginning at 

the level of the facial (VII) nucleus and retrotrapezoid nucleus (Smith and Feldman 

1987), which extends caudally to the upper cervical spinal cord. On the caudal end, the 

VRG contains bulbospinal premotoneurons that project to cranial and spinal respiratory 

motoneurons to carry out breathing movements (Blessing 1997). More importantly, the 

rostral VRG contains propriomedullary intemeurons, neurons that form local synaptic 

connections and do not project to spinal motor nuclei or higher brain centers, which are 

thought to be specialized for rhythm generation (Connelly et al. 1992; Dobbins and 

Feldman 1994; Ellenberger and Feldman 1990; Johnson et al. 1994; Schwarzacher et 

al. 1995; Smith et al. 1991). Although the full set of DRG and VRG neurons are required

2
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to generate the complete motor pattern for breathing, and respond to physiological 

demands (Feldman et al. 2003), this project aims to describe fundamental interactions of 

the rhythm-generating circuitry.

To further delineate the brainstem region containing the critical rhythm- 

generating circuitry, a series of transection experiments were performed in rodents in the 

early nineties. These seminal experiments functionally identified the region that was 

necessary and sufficient for inspiratory rhythm generation in vitro, subsequently named 

the preBotzinger Complex (preBotC) (Smith et al. 1991).

The preBotC can be retained in slice preparations and contains a subset of the 

previously mentioned putatively rhythmogenic propriomedullary interneurons. 

Consequently, slices remain rhythmically active and inspiratory motor activity is 

measurable via hypoglossal (Xlln) nerve output (Fig. 1). During fictive inspiration, 

neurons in the preBOtC generate robust bursts correlated with XII motor output (Fig. 1B). 

Slices have inherent limitations such as requiring an ionic or pharmacologic ‘boost’ in 

excitability, typically accomplished by elevating the extracellular K+. Also, slices do not 

retain the expiratory rhythm-generating circuits located in the Botzinger complex (Bianchi 

et al. 1995; Feldman and McCrimmon 1999) and the retrotrapezoid/parafacial respiratory 

group (RTN/pFRG) (Feldman and Del Negro 2006; Janczewski et al. 2002; Mellen et al. 

2003; Onimaru and Homma 2003; Vasilakos et al. 2004). Nevertheless, since slices 

preserve the preBotC and lack peripheral sensory inputs, the XII motor-output pattern 

primarily reflects the inspiratory rhythm (Lieske et al. 2000; Ramirez and Lieske 2003; 

Smith et al. 1990). Therefore slices represent a good in vitro model in which to examine 

the neural mechanisms for inspiratory rhythm generation, which we must understand to 

address mechanisms in vivo (Ramirez et al. 2002; Richter and Spyer 2001). Since their 

inception in 1991 (Smith et al. 1991), slice experiments have motivated critical tests of

3
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hypotheses in vivo (Gray et al. 2001; Janczewski and Feldman 2006; Janczewski et al. 

2002; Manzke et al. 2003; McKay et al. 2005).

Dorsal

XII

,0 NA

preBotC
VentralXlln XII

Figure 1.1. The ‘breathing slice’ preparation isolates brainstem respiratory circuits and 
spontaneously generates inspiratory motor rhythm. A, Transverse view of the slice 
containing the preBotC, nucleus ambiguous (NA), hypoglossal motor nucleus (XII) 
and its nerve rootlets (Xlln). B, Electrical recordings in vitro from preBotC inspiratory 
neurons (VM) and inspiratory motor output (XII).

One significant outcome of slice experiments was the discovery that substance P 

(SP), an endogenous neuropeptide long known to increase inspiratory activity (Chen et 

al. 1991; Chen et al. 1990; Murakoshi et al. 1985), directly excited most inspiratory 

neurons in the preBOtC (Gray et al. 1999; Pena and Ramirez 2004). This led to an 

anatomical delineation of the boundaries of the preBdtC using the neurokinin-1 receptor 

(NK1R), the principal ligand receptor for SP, as a marker of preBotC neurons (Gray et al. 

1999). Further studies, showed that lesioning NK1 R-expressing neurons via the 

ribosomal toxin saporin in intact and behaving adult rats (Gray et al. 2001; McKay et al. 

2005) irreversibly resulted in ataxic breathing. This corroborated the results of the earlier 

transection experiments and showed that the preBotC was necessary for breathing in 

intact mammals.

NK1 R-expressing preBotC neurons are predominantly glutamatergic and 

propriomedullary (Stornetta et al. 2003; Wang et al. 2001) and glutamate receptors are 

required to generate inspiratory bursts in vitro (Funk et al. 1993; Ge and Feldman 1998; 

Greer et al. 1991; Lieske and Ramirez 2006; Pace et al. 2007a). Dual intracellular

4
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recordings have provided physiological evidence that putatively rhythmogenic preBotC 

neurons are coupled with excitatory synaptic connections (Rekling et al. 2000). This 

suggests that interneuronal glutamatergic preBotC neurons may form excitatory 

networks that facilitate rhythmic burst generation.

Questions remain with regard to what neurons make up the population of 

neurons sufficient for rhythm generation. This is because most inspiratory neurons 

recorded in vitro respond to bath-applied SP suggesting they express NK1 Rs (Gray et 

al. 1999; Pena and Ramirez 2004), while the majority of inspiratory neurons recorded in 

vivo do not express detectable NK1 R-labeling with immunohistochemistry techniques 

(Guyenet and Wang 2001). Therefore, there is a discrepancy between the physiological 

and anatomical means of counting NKR-expressing neurons of the preBdtC, which must 

be resolved. This has important implications in interpreting how lesioning experiments, 

that exploit NK1R endocytosis, adversely affects preBotC functioning. Specifically, it is 

currently unclear if the neurons being destroyed are the only ones necessary for 

rhythmic behavior and raises the question: is there another set of rhythmogenic neurons 

that are not destroyed?

Interpreting graded neuronal destruction experiments will provide us with clues 

regarding the importance of synaptic connections that may impart robustness on the 

respiratory rhythm in the face of neuronal death.

In addition to synaptic interactions between neurons, the properties and intrinsic 

roles of currents in rhythm-generating neurons must be considered to gain a full 

understanding of the mechanism of respiratory rhythmogenesis. Inward currents have 

been the focus of many studies particularly with respect to two widely expressed inward 

currents with burst-promoting qualities: persistent Na+ current (/Nap) and Ca2+-activated 

non-specific cationic current (/can ) (Butera et al. 1999a; b; Del Negro et al. 2001; Del

5
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Negro et al. 2002a; Del Negro et al. 2005; Johnson et al. 1994; Pace et al. 2007a; b; 

Pena et al. 2004; Ptak et al. 2005; Rybak et al. 2003). However, the roles of outward 

currents in normal inspiratory activity has largely been neglected. The transient K+ 

current (/A) was suggested to be present in inspiratory neurons more than 10 years ago 

(Rekling et al. 1996), and it has recently been observed under synaptically-isolated 

conditions (Inyushkin 2005). /A is important in determining the frequency of other 

rhythmically-active networks (Byrne 1980; Getting 1983; Tierney and Harris-Warrick 

1992), so we speculate that /A may be important in rhythmic-behavior of /A-expressing 

preBotC neurons. We will examine this issue in more detail in Chapter 2.

The properties of intrinsic currents have been used to construct mathematical 

models of how neurons that make up the respiratory rhythm generator behave. The most 

influential model has been the Butera preBotC neuron model (1999a; 1999b; Del Negro 

et al. 2001) which illustrated how heterogeneity was important for flexible rhythmic 

behaviors (Purvis et al. 2007). This model also set forth predictions that have in some 

cases been substantiated (Del Negro et al. 2001; Del Negro et al. 2002a), and other 

cases refuted (Del Negro et al. 2002b; Pace et al. 2007b; Paton et al. 2006). Thus, the 

development of the model and following experimental developments have had an 

important influence on the field by illustrating how an iterative approach, alternating 

between model simulations and experimental tests, can aid our understanding of how 

basic respiratory rhythmic behavior is generated.

More recently, the limitations of the model have become increasingly apparent 

and the Butera model is in need of updating. Such limitations include the fact that only 

50 neurons made up the rhythm-generating network, every neuron was coupled to every 

other neuron (i.e., it had very strong positive feedback), and its main utility was in 

studying the role of /Nap- To properly model the system, which we now know much more

6
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about, will require realistic coupling strategies and population sizes that represent the 

heterogeneity observed in the real system, and additional intrinsic and synaptic currents 

that were not considered in the Butera model.

Our framework for analyzing respiratory rhythmogenesis is the group-pacemaker 

hypothesis (Feldman and Del Negro 2006; Rekling and Feldman 1998) which posits that 

an intrinsic inward current (e.g., /can ) enhances inspiratory bursts through an activation 

mechanism coupled to glutamatergic synapses. The synergy of an intrinsic current that 

amplifies synaptic excitation allows for the creation of robust inspiratory bursts via a 

positive feedback process dubbed ‘recurrent excitation’. Inspiratory bursts are thought to 

end once all of the preBotC neurons have become fully excited; this activates outward 

currents extinguishing recurrent excitation which results in burst termination. A small 

fraction of preBotC neurons spike tonically at low rates and subsequently restarts the 

cycle, which leads to network rhythmic activity.

This dissertation aims to advance our understanding of the cellular, synaptic, and 

network mechanisms for breathing behavior in mammals. To this end, we explore the 

degree of overlap between neurons that have the expected phenotypic behavior of 

rhythmogenic neurons and those neurons that express NKIRs (Chapter 1). This was 

achieved by using the fluorophore, tetramethylrhodamine (TMR), conjugated to SP 

(Pagliardini et al. 2005). The TMR-SP conjugate is thought to bind to NK1 R-expressing 

neurons and be drawn into them through endocytosis. This allowed us to visually identify 

which neurons were SP-sensitive after electrophysiologically recording from them. The 

motivation for this chapter was to gather data needed to develop a realistic model of the 

rhythm-generating circuitry and later test it. The experimental data incorporated into the 

model constituted the fraction of rhythmogenic neurons that would be expected to be 

SP-sensitive. In this study, we also characterized the SP-evoked current in preBotC

7
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neurons as primarily mediated by a voltage-insensitive, mixed cation current and offered 

a rough estimate of the number of critical neurons necessary for normal inspiratory 

activity.

In the subsequent analysis, we characterized /A in inspiratory neurons of the 

preBotC (Chapter 2). /A’s characteristics and role in inspiratory activity have remained 

elusive since it was first suggested to be present in these neurons (Rekling et al. 1996). 

We used somatic outside-out patch recordings to reliably describe the voltage- 

dependence and kinetics of the current. We also explored how blockade of /A affects 

network rhythm and neuronal behaviors. /A appears to strongly shape the ascending 

(“step-like”) pattern preceding inspiratory activity as well as providing coincidence 

detection so that neurons expressing this current only drive postsynaptic neurons if the 

neuron receives massive convergent input. These data will be important for realistic 

mathematical models of preBotC neurons and networks but has largely been overlooked 

thus far in attempts to model respiratory rhythm generation (Butera et al. 1999a; b; Del 

Negro et al. 2001).

In the third chapter, we present a framework for the composition of the rhythm- 

generating preBotC population and investigate the collective behavior of these neurons 

when assembled into a preBbtC-like respiratory network model; this is the first explicit 

model of the group-pacemaker hypothesis. The mathematical model comprises distinct 

phenotypes of respiratory neurons (which we characterized in Chapter 1), is synaptically 

coupled in a manner that is consistent with the available data (Pace et al. 2007a; Rekling 

et al. 2000), and provides for motor output, again according to known data about 

premotoneurons (Chapter 1). The aim of this chapter was to investigate how a 

heterogeneous population of neurons can undergo recurrent excitation, and then to 

investigate how recurrent excitation can drive rhythmic inspiratory-like bursts in a system

8
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like the preBotC. We benchmarked and test the model by trying to replicate key 

experiments performed in our lab, and by our colleagues, in recent years. For example, 

we sought to determine whether the model would accurately reproduce in vitro and in 

vivo tests of the necessity of W p  for rhythmic behavior. And in a more ambitious test, 

we used the model to test how graded neuronal destruction in the preBotC can abruptly 

result in loss of rhythmic motor output, which was based on the NKR-cell lesion 

experiments mentioned above. Here we gain new insights into the mechanisms of cell- 

death leading to arrhythmic conditions and the origins of apneas following lesions.

The fourth chapter examines evidence suggesting the presence of a potentially 

important convergent mechanism for modulating the excitability of inspiratory neurons. 

This objective resulted from the discovery in the first chapter that a particular intrinsic 

current mediates the response to the agonist for NK1 Rs. The aim of this chapter is to 

further describe the means of activation of this current as well as to discover the sub- 

cellular molecular mechanisms for this current. Furthermore, we explore the idea that 

this current may potentially be evoked by multiple neuromessengers that can modulate 

respiratory activity under different physiological conditions. We begin to analyze the 

intracellular second messenger systems that affect the recruitment and regulation of 

these channels and suggest the areas of convergence with other modulatory systems.

We hope that the data and tests contained in this dissertation, which have been 

designed to bridge in vivo as well as in vitro and anatomical studies, will be the basis for 

new tests in vivo and in freely behaving adult mammals, rodents especially, to advance 

our understanding of breathing’s neural origins. Furthermore, the new knowledge we 

provide, may in some small part, enable new approaches for the treatment of breathing 

disorders with a central nervous system-related etiology.

9
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CHAPTER 1. Neurokinin receptor-expressing 
preBotzinger Complex neurons in neonatal mice studied 

in vitro

1.1. Introduction

Breathing behavior in mammals is generated by respiratory neurons in the medullary

brain stem (Ballanyi et al. 1999; Bianchi et al. 1995; Blessing 1997). A critical issue is

the role of neurons that both express neurokinin-1 receptors (N K IR s) and reside in the

critical site for inspiratory breathing behavior, the preBotC (Gray et al. 2001; Gray et al.

1999; Guyenet and Wang 2001; Janczewski and Feldman 2006; Smith et al. 1991;

Stornetta et al. 2003a; Wang et al. 2001).

Substance P (SP) is an endogenous agonist for NKRs, which is most potent at

NK IR s (Medhurst and Hay 2002), but may also activate other tachykinin receptors. SP

accelerates respiratory rhythm in vitro and has been shown to depolarize every preBotC

neuron recorded intracellularly after pharmacologically silencing network activity (Gray et

al. 1999; Murakoshi et al. 1985; Pena and Ramirez 2004). Neurons with early inspiratory

activity discharge with an ascending ramp-like voltage trajectory, prior to the inspiratory

motor output phase of the respiratory cycle, and are widely considered important for

rhythmogenesis (Bianchi et al. 1995; Feldman and Del Negro 2006; Onimaru et al. 1989;

Onimaru and Homma 1992; Ramirez et al. 2002; Richter and Spyer 2001; Smith et al.
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1991). Neurons with early inspiratory activity in vivo, which were dubbed pre-inspiratory 

(Guyenet and Wang 2001), express NK IR s detectable with immunohistochemistry, 

whereas non-inspiratory neurons that may have other respiratory-related functions are 

NK1R' (Guyenet and Wang 2001). A large number of bulbospinal premotor neurons in 

the preBotC, which discharge later in the respiratory cycle compared to early inspiratory 

neurons, also express NKRs (Guyenet et al. 2002; Stornetta et al. 2003b).

The ribosomal toxin saporin (SAP) conjugated to SP, i.e., SP-SAP, leads to the 

abolition of normal breathing in otherwise intact and awake rats when injected into the 

preBotC (Gray et al. 2001; McKay et al. 2005). These observations are consistent with 

the hypothesis that the preBotC contains NKR+ interneurons that respond vigorously to 

SP and share phenotypic inspiratory discharge properties specialized for rhythm 

generation (Feldman and Del Negro 2006; Gray et al. 1999). However, the relative 

number of NKR+ and NKR' preBotC neurons that serve rhythmogenic and/or premotor 

functions remains unknown, and the mechanism underlying the widespread excitatory 

effects of SP are not well understood.

W e examined these issues in vitro using fluorescent labeling to identify SP- 

sensitive neurons that presumably express NKRs, as assessed by their ability to 

internalize the fluorescent marker tetramethylrhodamine (TMR) conjugated to SP, i.e., 

TMR-SP (Pagliardini et al. 2005). We recorded TMR-SP+ and TMR-SP' neurons and 

characterized their membrane properties and inspiratory discharge patterns. We 

examined the ionic mechanism for SP-evoked excitation and may now be able to explain 

how SP ubiquitously depolarizes preBotC neurons even though only a limited subset 

appear to express NKRs.
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1.2 Methods

The Institutional Animal Care and Use Committee at the College of William and Mary 

approved all protocols. Transverse slices (550 pm thick) from neonatal (PO-7) C57BL/6 

mice were dissected as described previously (Del Negro et al. 2005; Pace et al. 2007). 

With the neuraxis pinned to a paraffin-coated block, oriented rostral side up with its 

ventral surface facing forward, we cut into the preBotC at the rostral surface to expose 

the putatively rhythmogenic neuron population. Based on objective criteria now verified 

by the ‘online histology’ atlas published by the Ballanyi group (Ruangkittisakul et al. 

2006), we make the first cut above the rostral-most XII nerve roots at the level of the 

dorsomedial cell column and principal lateral loop of the Inferior Olivary nucleus, thus the 

preBdtC is located at or near the rostral surface (Ruangkittisakul et al. 2006). The caudal 

cut always captures the obex. Therefore, we record from the rostral side of the slice 

where the preBdtC neurons are exposed and never from the caudal side.

Slices were perfused at 26-28°C with an artificial cerebrospinal fluid (ACSF) 

containing (in mM): 124 NaCI, 9 KCI, 0.5 NaH2P 0 4, 25 NaHC03, 30 D-glucose, 1.5 

CaCI2*H20, and 1 M gS 04. We used 21 slices for the epifluorescence 

electrophysiology/imaging data (Figs. 1.1, 1.2, 1.3, 1.4, 1.5, 1.10), and report data from 

29 slices for the two-photon/confocal imaging experiments (Figs. 1.9, 1.10), and 33 

slices for the voltage-clamp experiments (Figs. 1.6-1.8, 1.10). To avoid tachyphylaxis 

and other consequences of multiple drug applications, each slice was used for one type 

of experiment: electrophysiological recordings of preBotC neurons following TMR-SP  

labeling, voltage-clamp experiments to characterize SP-evoked membrane current, or 

acquisition from a two-photon/confocal imaging experiment.
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Electrophysiology

Voltage-clamp and current-clamp experiments were performed with a HEKA EPC-10  

patch-clamp amplifier (Lambrecht, Germany). Network activity was monitored from XII 

nerves with extracellular suction electrodes and a high-gain differential amplifier with 

band-pass filtering (0.3-1 kHz). The root-mean-square (RMS) of voltage input to the 

differential amplifier (Dagan Instruments, Minneapolis, MN) was conditioned using a true 

RMS-to-DC converter (Analog Devices, One Technology Way, Norwood, MA) to provide 

a full-wave rectified and smoothed XII waveform. Data were acquired digitally and 

analyzed using Igor Pro 5 (WaveMetrics, OR), Chart 5 (AD Instruments, Colorado 

Springs, CO), Excel (Microsoft, Redmond, WA) and custom software. An 8 mV liquid 

junction potential was corrected offline in current-clamp recordings and online in voltage- 

clamp recordings.

Whole-cell capacitance (Cm) was measured using 50-ms voltage steps from -6 0  

mV to command potentials from -7 5  mV to -6 5  mV in a 10-step sequence. Charge (Q) 

was computed by integrating leak-subtracted capacitative current (AQ = J/c) and CM was 

calculated from CM = AQ/AV. Series (access) resistance (Rs) was monitored throughout 

voltage-clamp recordings according to the Thevenin equivalent circuit, which allows Rs 

to be calculated from the decay time constant ( tm) in response to small voltage steps 

with Rs = W C m as long as Rs «  Rn- We monitored input resistance (RN) via P/N online 

leak protocols. To avoid voltage-clamp errors we discarded experiments in which 

RS>0.1*RN. We compensated for Rs as much as possible without loss of stability. We 

also rechecked Rs and Rn before each IV protocol to assess voltage-clamp viability. The 

average uncompensated Rs was 20.2±2.0 MQ with an average of 37±3% Rs 

compensation, and the average RN was 355.3±84.2 MQ (n=24). Firing patterns of
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recorded neurons were consistent in on-cell and whole-cell and remained constant for 

the duration of the experiments, which in current clamp could last 40-60 min.

Current-clamp protocols (Figs. 1.4 and 1.5) and some voltage-clamp recordings 

(Fig. 1.6) used the following patch solution containing (in mM): 140 K-gluconate, 5 NaCI, 

0.1 EGTA, 10 HEPES, 2 Mg-ATP, and 0.3 Na(3)-GTP. KOH was used to equilibrate pH 

at 7.2.

Voltage-clamp experiments in Figs. 1.7 and 1.8 used ACSF containing (in mM): 

84 NaCI, 3 KCI, 20-40 TEA-CI, 25 N aH C 03, 5 4-AP, 30 D-glucose, 0.5 CaCI2, 2 M g S 04, 

2 CsCI, 0.2 CdCI2, 20-40 sucrose (for equimolar balancing with TEA-CI), and 0.001 TTX. 

Patch electrodes (4-6 MO) contained the following solution (in mM): 140 D-gluconic acid, 

140 CsOH monohydrate, 10 TEA-CI, 10 NaCI, 10 HEPES, 2.5 EGTA, 1.2 CaCI2 

dihydrate, 2 Mg-ATP, and 0.3 Na(3)-GTP, with pH adjusted to 7.2 via HCI.

Epifluorescence microscopy

Slices were incubated in 1 pM TMR-SP (Invitrogen, Carlsbad, CA) for 8-12 minutes at 

32°C, and then moved to the perfusion chamber for intracellular recording. We visualized 

preBotC neurons with Koehler illumination and differential interference contrast (DIC) 

videomicroscopy, which facilitated patch-clamp recordings, and then switched to 

epifluorescence (X-cite-120, EXFO, Mississauga, Ontario, Canada) and a rhodamine 

filter to capture TMR-SP. Positively labeled neurons (TMR-SP+) were distinguished by 

labeling around the somatic border, in a perinuclear area, and occasionally along 

dendrites (e.g., Figs. 1.1 and 1.5). TMR-SP labeling became more diffuse overtime (>1- 

2 hrs) (Grady et al. 1995).
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Figure 1.1. A, TMR-SP labeling 
with epifluorescence illustrating the 
punctate labeling of cells in the 
preBotC region. B, A higher 
magnification picture of the cell 
from A to emphasize punctate 
features of the labeling. C, TMR-SP 
labeling observed with TPLSM in 
the absence of fluo-4. Nucleus 
ambiguus is oriented in the bottom- 
left and the preBotC with TMR-SP+ 
cells shown in the top-right region. 
The arrow-head shows labeling in 
vesicles around the nucleus of the 
neuron, while the arrow shows 
labeling on the surface of another 
neuron.

Control experiments 

were performed (Fig. 1.2) by

*

t

pre-incubating a slice in 10 pM 

unconjugated SP for 5 minutes 

at 32 °C, and then applying 1 

pM TMR-SP following the 

protocol described above. After 

exposure to both forms of SP,

only sparse 

could be

that the the

extent the was

dramatically less than when TMR-SP was applied without prior exposure to un

conjugated SP. This is most apparent in the nucleus ambiguus (NA, Bieger and Hopkins 

1987), which is heavily populated by NK1R+ neurons and is adjacent to the preBotC 

dorsally (Gray et al. 1999; Pagliardini et al. 2005). In the control experiments, the NA
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showed substantially less TMR-SP labeling (Fig. 1.2A) than using the standard TMR-SP  

loading protocol (Fig. 1.2B).

Figure 1.2. A, IR-DIC (left) and TMR-SP (right) images of the NA in tissue that was pre
incubated for 5 min with 10 pM SP before applying 1 pM TMR-SP. Top row shows NA on the 
left side of the slice, and bottom row shows NA on the right. B, NA from a separate slice that 
was just incubated in 1 pM TMR-SP.

Epifluorescence images were acquired with a 12-bit charge-coupled device 

(CCD) monochromatic camera, the Qlmaging Retiga 1300i (Surrey, British Columbia, 

Canada) using a long-working distance water immersion 40x objective with a 0.80 

numerical aperture. Before image acquisition the pipette tip or somatic border was 

focused with IR-DIC videomicroscopy; IR-DIC images were typically exposed for 150- 

250 ms with 1x1 binning. Epifluorescence images were exposed for 10 s with 1x1 

binning at maximum fluorescence intensity. The images were pseudocolored with a 

black-to-red look-up table in iVision software (Biovision Technologies, Exton, PA). 

Background subtraction was performed by plotting a histogram of pixel intensities and 

then truncating all values less than the lowest peak. For publication figures, we copied
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images to Photoshop (Adobe Systems Inc., San Jose, CA) and enhanced contrast and 

applied a 1 pixel radius Gaussian blur.

Confocal and two-photon microscopy

Fifty pg of fluo-4 acetoxymethyl ester (fluo-4 AM) (Invitrogen, Carlsbad, CA) was 

dissolved in 50 pL of pluronic (20%) + DMSO (Invitrogen, Carlsbad, CA) and vortexed 

for 10 min. After that, 750 pL of 30 °C 9 mM [K+] ACSF was added to the dye solution 

and vortexed until the dye was evenly distributed. Then, the solution was divided into 

two tubes (~375 pL each) and an additional 375 pL of 30 °C 9 mM [K+] ACSF was added 

to each tube for a final concentration of 29.4 pM fluo-4-AM. Slices were incubated 40-50  

minutes in 29.4 pM fluo-4 AM at 32°C, and then incubated in a separate chamber of 1 

pM TMR-SP at 32°C for 10-14 min. W e imaged cellular Ca2+ fluctuations using an 

inverted Nikon Radiance microscope (Nikon USA, Melville, NY) and a Mai-Tai 

Ti:sapphire femtosecond laser (Spectraphysics, Mountain View, CA) tuned to 800-nm  

excitation wavelength. Data were acquired digitally and saved to disk on a PC running 

Windows NT and LaserSharp software by Zeiss Microimaging (Thornwood, NY).

TMR-SP labeling was measured at the same workstation (without moving the 

slice) using a 543-nm Green HeNe laser at full intensity (1.5 mW), a pinhole size of 2.2 

Airy units, at 512x512 pixels scanned with 25 lines per second (Ips) using an accumulate 

feature to optimize the signal-to-noise ratio. This involved 30 scans per image where the 

pixel intensities of each scan were divided by two and added to the previous scans (~10 

min acquisition time). We used a Nikon 40x Plan Fluor objective with a numerical 

aperture of 0.75 which resulted in a 5 pm depth of field. We acquired one green (500- 

530 nm) and one red (600-650 nm) channel for TMR-SP images. For each image, 

background correction was accomplished by subtracting the RMS of the pixel intensity
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across the image from every pixel value. Then we renormalized each image and 

subtracted 8% of the green signal (the fluo-4 channel) from the red channel to correct for 

the overlap of the emission spectra, i.e., the portion of fluo-4 emission expected in the 

600-650 nm band. Images were analyzed using iVision and ImageJ (NIH, Bethesda, 

MD). Like the epifluorescence data, for publication figures we copied images to 

Photoshop and enhanced contrast and applied a 1 pixel radius Gaussian blur.

Peak acquisitions (i.e., Fig. 1.9A fluo-4) were achieved by scanning the focal 

plane repeatedly at 25 Ips (1024x1024 pixels) until at least one pixel saturated. Time- 

series recordings of Ca2+ activity (Fig. 1,9B) were scanned at 256x256 pixels and 500 

Ips (~2 Hz) for ~125 frames. Summed Ca2+ activity of time-series two-photon 

experiments (i.e., small inset panels in Fig. 1.9C) was plotted by taking the minimum 

pixel value for the whole time course of the acquisition bout and then subtracted this 

baseline from the entire time series. Then, we summed all the fluorescence 

measurements for the whole time series collapsed on to one aggregate image. This 

produces an image that convolves expiratory and inspiratory neurons (and other 

transiently active cells), highlighted in warm colors.

W e scanned one plane per slice preparation for experiments that contained both 

TMR-SP and fluo-4; the imaging plane was <5 pm in thickness. Using the two-photon 

(Ti:Sapphire) laser to detect Ca2+ transients via fluo-4 fluorescence changes, we first 

probed for inspiratory neurons. If we detected inspiratory neurons in a given plane, then 

we applied a long-duration confocal scan to detect TMR-SP labeling using the 543 nm 

laser (HeNe). This long-lasting exposure at high intensity bleached TMR-SP thus we 

terminated the experiment after acquiring these data in the selected plane. If in a given 

plane we failed to detect inspiratory neurons, then we did not apply the long-duration
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confocal scan but instead we incremented our z-axis by 5 (jm (up to 30-40 pm into the 

tissue) to probe for inspiratory neurons in the adjacent tissue layer.

Some pilot experiments with just TMR-SP were performed using the Ti.Sapphire 

laser to investigate the viability of the labeling technique (Fig. 1.1C).

Statistics

W e compared neurons on the basis of drive potential latency (see Fig. 1.4B), CM, and 

TMR-SP labeling. We tested for normality and then applied Student’s t-test or Wilcoxon 

signed ranks tests as appropriate to detect statistically significant differences. Mean 

values are reported with standard error (mean±SE).

W e compared NKR expression in six different experimental approaches using a 

resampling method (Manley 1996). We used the fraction of NKR+ neurons detected in a 

given experiment as our benchmark, and then counted the number of times a uniformly 

distributed randomly generated number in the interval [0,1] fell below that fraction when 

drawing the same number of samples. W e repeated this algorithm in 10,000 simulated 

experiments and tallied the outcomes to generate a histogram that reports the likelihood 

of each experimental sample drawn by chance. Removing the highest and lowest 250  

counts yields the 95% credible interval for the experiment.

W e tested whether the fraction of SP-sensitive neurons detected in voltage 

clamp (Fig. 1.7, 86.7%) was significantly higher than the TMR-SP+ fraction detected with 

other techniques. This was performed by comparing the SP-sensitive fraction detected in 

voltage-clamp (control) to the fraction of TMR-SP+ neurons found using epifluorescence 

imaging (Fig. 1.5) and confocal imaging (Fig. 1.9), SP-sensitive fraction in voltage-clamp 

with carbenoxolone (CBX, obtained from Sigma-Aldrich, St. Louis, MO) (Fig. 1.8), and 

we meta-analyzed the NK1R immunoreactive (NK1R-ir) data set taken from adult rats
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(Guyenet and Wang 2001) and single-cell RT-PCR evidence for N K IR s in inspiratory 

neurons of neonatal rats (Manzke et al. 2003). Altogether, the pooled fraction of neurons 

that show evidence of NKR/NK1R expression was 40% (Fig. 1.10). To calculate the 

likelihood of the voltage clamp experiment being different from the other experiments by 

chance, we used the above resampling technique and calculated a p-value by dividing 

the number of samples drawn that equaled or exceeded 86.7% (the SP-sensitive fraction 

in this experiment) by 10,000 simulated experiments.

1.3. Results

Electrical properties and TMR-SP labeling in inspiratory neurons

Inspiratory neurons were separable on the basis of multiple phenotypic properties (Figs.

1.3, 1.4). We measured Cm in preBotC neurons satisfying reliable voltage-clamp 

conditions (see Methods). We also characterized inspiratory drive latency in all neurons 

with reliable current-clamp recordings, defined as the difference between the onset of 

inspiratory EPSPs and the beginning of the XII motor output (Rekling et al. 1996). Figure 

1.3A plots inspiratory drive latency versus Cm in neurons that had both reliable voltage- 

and current-clamp recordings. We found a subset of early inspiratory neurons with 

significantly longer latency (241.2±8.4 ms, n=8) and lower Cm (45.6±1.5 pF, n=8) 

compared to a subset of late inspiratory neurons that had significantly larger CM 

(85.9±6.5 pF, n=5) (t-test: p<0.01) and shorter latency (103.7±8.2 ms, n=5) (Wilcoxon: 

p<0.01). Early inspiratory neurons showed an incremental discharge pattern (Fig. 1.3B 

left, note arrow) whereas late inspiratory neurons exhibited a rapid onset with 

decrementing discharge pattern (Fig. 1,3B right, note arrow).
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A C„(PF)
40 60 80 100 Figure 1.3. Intrinsic properties of inspiratory neurons in 

the preBotC. A, Inspiratory drive latency plotted versus 
CM. Each symbol shows drive latency in a preBotC 
neuron for several consecutive cycles. B, A 
representative early inspiratory neuron is shown in the 
left with broken lines illustrating the measured latency. 
Arrow shows ascending voltage trajectory. A 
representative late inspiratory neuron is shown in the 
right, also with illustrated drive latency and an arrow 
showing decrementing voltage trajectory.

j ____________ i____________t---------------------1

x

I
o -1

X

/ Y divided preBotC neurons into the two classes: (1)

between CM and inspiratory drive latency we

Once we recognized the correlation

drive latency early inspiratory neurons had an average drive

latency of 201.5±8.1 ms (n=22, with a total of 256 latency measurements) and (2) late 

inspiratory neurons had an average drive latency of 88.9±6.5 ms (n=6, with a total of 66 

latency measurements). Inspiratory drive latency was significantly different between 

these two classes (t-test: p < 0.05).

Nine early inspiratory neurons showed a low baseline membrane potential and 

thus a silent interburst phase (Fig. 1.4A), whereas 13 spiked at low rates during the 

inter-inspiratory burst interval (Fig. 1.4B). One neuron exhibited ectopic bursts at 

depolarized baseline membrane potentials (Fig. 1.4C), suggesting voltage-dependent 

pacemaker properties (Del Negro et al. 2002; Del Negro et al. 2005; Ramirez et al. 2004; 

Smith et al. 1991; Thoby-Brisson and Ramirez 2001). These factors in early inspiratory 

neurons did not correlate with CM so we did not further subdivide the early inspiratory 

data set.

After patch-recording we tested for TMR-SP labeling. TMR-SP labeled 8 of 22 

(36.4%) early inspiratory neurons. Figure 1.4 shows one TMR-SP' inspiratory neuron (A)
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and two TMR-SP+ inspiratory neurons (B,C) with discharge properties described above. 

Four out of 6 late inspiratory neurons exhibited TMR-SP labeling (66.6%) as shown in 

Fig. 1.4D. For the combined sample of 28 early and late inspiratory neurons, 42.8%  

were TMR-SP+.

W e also recorded TMR-SP+ expiratory neurons, which discharge at high rates 

throughout the interburst interval but are actively inhibited during the inspiratory phase 

(Fig. 1.4E, n=18). These data were surprising since adult rat expiratory neurons showed 

no NK1R immunoreactivity (Guyenet and Wang 2001). Finally, non-rhythmic TM R-SP+ 

cells were detected within the preBotC region but were not counted because their 

identity could not be verified in vitro (Fig. 1.5).
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TMR-SP* early inspiratory neuron

TMR-SP

B  TMR-SP'1’ early inspiratory neuron

C TMR-SP+ early inspiratory neuron

D  TMR-SP+ late inspiratory neuron

B TMR-SP4, expiratory neuron
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Figure 1.4. TMR-SP labeling in preBotC neurons with different phenotypic properties. IR- 
DIC and epifluorescence images are shown in left columns, with corresponding intracellular 
traces to the right. A, A TMR-SP- early inspiratory neuron with silent interburst intervals. B, A 
TMR-SP+ early inspiratory neuron with tonic low-frequency spiking properties. C, A TMR-SP+ 
early inspiratory neuron with voltage-dependent pacemaker properties. D, A TMR-SP+ late 
inspiratory neuron. E, A TMR-SP+ expiratory neuron. Scale bar (25 pm) applies to all images in A-
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TMR-SP* non-rhythmic neuron

Figure 1.5. A TMR-SP+ non-rhythmic neuron near the preBotC.

Excitation of inspiratory neurons by substance P

SP has been hypothesized to excite preBotC inspiratory neurons by evoking a low- 

threshold, voltage-dependent, and TTX-insensitive Na+ current (Pena and Ramirez 

2004). Since we were interested in SP-evoked excitation we did not pre-label neurons 

with TMR-SP to avoid NKR desensitization. We measured the steady-state current- 

voltage (IV) relationship with a K-gluconate patch solution and standard ACSF while 

blocking TTX-sensitive Na+ currents and Cd2+-sensitive voltage-gated Ca2+ currents (Fig. 

1.6). The slope of the IV curve increased in 0.5-1 pM SP and crossed the control IV  

curve at approximately -2 0  mV, which suggests the opening of a mixed cation channel 

(n=4).

1200 - control 
- e -  1 pM SP1000-

800-

<  600-

200-

0-
- 200-

-100 -80 -60 -40 -20 0

Figure 1.6. Effects of 1 pM SP on inspiratory neurons. 
The steady-state IV relationship is shown for a typical 
experiment using K-gluconate patch solution and standard
ACSF with 200 pM Cd2+ and 1 pM TTX.

Vm (mV)
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Figure 1.7. Effects of 1 pM SP 
on inspiratory neurons with 
additional blockade of K+ 
channels. 200 pM Cd2+ and 1 
pM TTX were present in the 
bath (as in Fig. 3) but the patch 
solution was based on Cs- 
gluconate and the ACSF 
contained a cocktail of K+ 
channel antagonists (see 
Methods). A, On-cell and 
whole-cell recordings of a 
typical inspiratory neuron. B, 
Steady-state IV protocols 
showing the reversibility of the 
SP-evoked response. C, The 
steady-state IV curve and 
effects of SP. The inset shows 
/Sp obtained by subtraction (SP 
-  control). D, Tail current 
analysis, protocol shown below 
the IV curve. /SP obtained by 
subtraction using the tail 
protocol is also plotted in the 
inset of panel C.

To isolate the SP- 

induced current (/sp) we used 

patch solution containing Cs+ 

and TEA, with Cs+, TEA, and 4- 

AP in the ACSF to block K+ 

currents and hyperpolarization-

activated cation current (/h). We identified inspiratory neurons in the on-cell configuration 

(Fig. 1.7A) by observing the onset latency of inspiratory discharge. It was impossible to 

determine early vs. late inspiratory phenotypes because Cs+-patch solution elevates 

input resistance and depolarizes the reversal potential for chloride. Nevertheless, Cm 

ranged from 23.3-78.9 pF, (the mean CM was 49.2±7.0 pF, n=9), which suggests both
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early and late inspiratory phenotypes were sampled (see Fig. 1.3). We measured the IV  

relationship in control and 1 pM SP, and then obtained /Sp by subtraction (Fig. 1.7B.C). 

/s p  was linear (n=13) and reversed at E s p  = -19.4±0.02 mV (n=9), similar to the / Sp 

reversal potential measurement with the K-gluconate patch solution (Fig. 1.7).

Next, we examined whether /SP expressed any voltage-dependent properties. 

Since the IV protocol could cause voltage-dependent inactivation of /SP during 500-m s- 

long voltage steps, we analyzed tail currents from -6 0  to +10 mV following a prepulse 

to +10 mV for 100 ms (Fig. 1.7D). /SP was computed by subtraction. We compared /SP 

tail currents to steady-state /SP in the range -6 0  to 0 mV. In both cases /SP was identical 

throughout the voltage range (Fig. 1.7C inset) suggesting no voltage-dependent 

inactivation of /SP.

W e detected /Sp in 13/15 neurons (87%). These data are consistent with current 

clamp studies showing that SP depolarizes every inspiratory neuron tested in vitro (Gray 

et al. 1999; Pena and Ramirez 2004). However, TMR-SP labeling was only present in 

42.8% of inspiratory neurons in our previous experiments. This disparity could reflect a 

failure to detect TMR-SP labeling in some NKR+ neurons, or that SP-sensitive glial cells 

play some role in exciting inspiratory preBotC neurons that are otherwise SP-insensitive 

and NKR".
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An alternative explanation for the disparity between the large number of preBotC 

neurons with measurable /sp and the smaller TMR-SP+ subset is that gap junctions 

(Rekling et al. 2000) might confer the effects of SP to NKR' neurons. To test whether 

gap junctions were required to evoke / s p , we repeated the voltage-clamp protocols from 

Fig, 1.7 after >15 min exposure to 100 pM CBX to block gap junctions. Our intra- and 

extracellular solutions minimized undesired effects of CBX on intrinsic membrane 

properties such as leak currents (Rekling et al. 2000; Rouach et al. 2003). We evoked 

/ sp  in 7 of 14 inspiratory neurons with CBX present, whereas 7 inspiratory neurons did

not respond to SP either in IV or tail-

1 MM SP600-

400-

200

% OH 
_E

-200-

-400-

-600

-80 mV

control

PH

washout current protocols (Fig. 1.8).

0 mV

266 ms
400-I

200-200-

- 200-

-50 Vm (mV) 0 

+10 mV

control 
-e-1 pM SP 
-e- washout

- 200 -

-400- mV

100 ms

Figure 1.8. Effects of 1 pM SP on preBotC neurons 
with blockade of K+ channels and gap junctions.
100 pM CBX was added in control to attenuate gap 
junction-mediated transmission. A, Steady-state IV 
protocols. B, Steady-state IV curves. C, Tail-current 
analysis. SP had no effect on membrane properties 
in 100 pM CBX.

TMR-SP labels respiratory phasic 

and non-rhythmic neurons in the 

mouse preBotC

We measured the rhythmic Ca2+ 

activity of inspiratory neurons using 

two-photon laser-scanning

microscopy (TPLSM), which 

enabled us to scan 5-pm-thick focal 

planes in a defined 293x293 pm 

area within the preBOtC. In 49 

planes from 29 slices, we observed 

344 inspiratory neurons and 

detected a maximum of 11 and a
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minimum of 1 inspiratory neuron per plane (average 6) which is commensurate with 

inspiratory neuron counts recently reported using TPLSM in neonatal rats 

(Ruangkittisakul et al. 2006). Fluorescence changes could not differentiate early versus 

late inspiratory phenotypes; with drive latencies typically less than 500 ms (see Fig. 1.3) 

our maximum 4 Hz sampling rate was too low to make reliable distinctions.

Figure 1.9A (top) illustrates the peak acquisition of Ca2+ emission over several 

respiratory cycles in a typical experiment. Figure 1.9A (bottom) illustrates TMR-SP  

emission in the same region detected with confocal laser-scanning microscopy (CLSM). 

Cycle-to-cycle activity from neurons in Fig. 1.9A are plotted with XII activity in panel B: 1- 

7 were inspiratory, whereas neuron 8 was expiratory. Neurons 4, 7, and 8 are shown at 

higher magnification in Fig. 1.9C. We detected 13/31 (41.9%) TMR-SP+ inspiratory 

neurons with TPLSM/CLSM and 3/3 (100%) TMR-SP+ expiratory neurons in a total of 4 

imaging planes acquired in 4 slices. Several non-rhythmic cells were situated among the 

inspiratory neurons (such as 9-11, Fig. 1.9C) that appeared TMR-SP+. They may have 

been damaged and saturated with cytosolic Ca2+ which may have led to fluo-4 

bleedthrough into the TMR-SP channel.
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A B C
TMR-SP* Inspiratory ceil

TMR-SP expiratory cell

TMR-SP non-rhythmie cells

Figure 1.9. Simultaneous measurements of inspiratory activity and TMR-SP labeling in preBotC 
neurons. A, The fluo-4 image shows a peak acquisition of the Ca2+-labeling that illustrates where 
the regions of interest (ROIs) were selected (the numbers are immediately above the ROIs); the 
TMR-SP image shows TMR-SP+ cells in the same region. Scale bar is 50 pm. B, Changes in 
fluorescence intensity from ROIs indicated by numerals in A, plotted with synchronized XII 
activity. The maximum AF/F range for each ROI was used for illustrative purposes (1: 50%, 2: 
26%, 3: 39%, 4: 49%, 5: 50%, 6: 32%, 7: 54%, 8: 57%). C, Magnified images shows background 
subtracted and summed Ca2+ activity of a TMR-SP+ inspiratory neuron (#7), a TMR-SP' 
inspiratory neuron (#4), an TMR-SP+ expiratory neuron (#8), and the peak acquired view of 3 
TMR-SP+ non-rhythmic neurons (#9, #10, #11).

Comparing the relative fraction of preBotC neurons with evidence for NKR 

expression in several experimental conditions

Altogether we used three methods to quantify the fraction of NKR+ inspiratory neurons in 

the preBotC: epifluorescence yielded 12/28 (42.9%) TMR-SP+, TPLSM/CLSM yielded 

13/31 (41.9%) TMR-SP+, and /Sp was measured in voltage clamp in 7/14 (50%) 

inspiratory neurons in the presence of 100 pM CBX. These measurements in the 

neonatal mouse preBotC are comparable to the fraction of early inspiratory neurons, 

dubbed pre-inspiratory (pre-l) by the authors, which were recorded in adult rats in vivo
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and subsequently found to be NK1R+ by immunohistochemistry: 11/32 (34.4%) (Guyenet 

and Wang 2001). Additionally, our results are consistent with the fraction of inspiratory 

neurons (4/13, 30.7%) with NK1R expression measured via single-cell reverse 

transcriptase-polymerase chain reaction (RT-PCR) methods (Manzke et al. 2003) and 

qualitatively similar to the conclusion by Manzke et al. that there is a large presence of 

non-inspiratory NK1R-ir neurons in the preBotC.

We tested the null hypothesis that these independent measurements reflect the 

same underlying fraction of NKR+/NK1R+ neurons in the preBotC. A virtual preBotC in 

silico containing 40% NKR+/NK1R+ neurons (the pooled fraction of NKR+/NK1R+ neurons 

detected using all methods excluding the control /Sp experiment) and 60% NKR7NK1R' 

neurons was used to randomly sample 14, 28, 31, 32, and 13 neurons (with 

replacement) corresponding to the experiments above. Each sample was repeated 

10,000 times. We tallied the results in a frequency histogram and found that for a 

population containing 40% NKR+/NK1R+ neurons, drawing empirical samples of 42.9%, 

41.9%, 50%, 34.4%, and 30.7% were statistically indistinguishable ( p » 0.05). Finally, we 

considered the possibility that the early inspiratory neurons we found in the neonatal 

mouse preBotC are phenotypically the same as the pre-l neurons recorded in adult rats 

in vivo (Guyenet and Wang 2001); again, the fraction of NKR7NK1R+ neurons were 

statistically indistinguishable (8/22, 36.4% vs. 11/32 (34.4%), p » 0 .5 ) .

In contrast, we evoked /Sp in 13/15 (86.7%) inspiratory neurons with gap

junctions intact (Fig. 1.7). In resampling simulations, this outcome (i.e., drawing a

sample fraction of 86.7% NKR+ neurons) occurred by chance less than 1% of the time,

so we reject the null hypothesis at p<0.01. Figure 1.10 plots the sample mean fraction of

NKR+ neurons with 95% credible intervals to illustrate the consistency between the

fraction of NKR+ neurons detected with imaging experiments, immunohistochemistry,
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RT-PCR, and voltage-clamp

experiments in the presence of CBX,

compared to the much larger number 

of NKR+ neurons with measurable /sp

1 with gap junctions unblockedepifluor. confocal vclamp vclamp adult RT-PCR
LSM control + CBX in vivo

Figure 1.10. Analysis of NKR+ preBotC neuron distribution. Box plot shows: the fraction of TMR- 
SP'1' neurons measured with conventional epifluorescence (epifluor.) displayed for the early 
inspiratory neurons (early) and for the entire sample of all inspiratory neurons (a//); the fraction of 
TMR-SP+ inspiratory neurons measured with confocal laser-scanning microscopy (confocal LSM)] 
the fraction of neurons with measurable /SP in control (vclamp control) and in the presence of 100 
pM CBX (vclamp + CBX). The fraction of NK1R-ir neurons detected in adult rats are also shown 
(adult in vivo) meta-analyzed from (Guyenet and Wang 2001). Meta-analyzed data from (Manzke 
et al. 2003) using single-cell RT-PCR (RT-PCR) to determine NK1R+ inspiratory neurons is also 
included. Bold horizontal lines in each category show the mean and thin lines show the 95% 
credible intervals. Overlapping regions of epifluor., confocal LSM, vclamp + CBX, adult in vivo, 
and RT-PCR data are bounded by the gray rectangle. Statistical significance at p < 0.01 is shown 
with double asterisks.

1.4. Discussion

Our data suggest that the preBotC comprises approximately 40% NKR+ inspiratory 

neurons in rodents. Nonetheless, SP may exert widespread excitatory effects due to gap 

junctions that activate lSp in both NKR+ and NKR' neurons. The functional roles of NKR+ 

and NKR' neurons may overlap because both subsets showed early and late inspiratory 

phenotypes, and both respond to SP-mediated modulation (Gray et al. 1999) in the 

absence of gap junction blockers. Therefore, the NKR expression per se may not be a 

reliable means to classify preBdtC neurons functionally. Destruction of NKR+ neurons 

disrupts normal respiratory physiology (Gray et al. 2001; McKay et al. 2005). Since 

NKR+ neurons exhibit both early inspiratory and late inspiratory phenotypic properties, 

as well as expiratory and non-respiratory phenotypes, the loss of all of these neuron 

types must be considered when interpreting the functional consequences of lesion or 

natural NKR+ cell death.
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The biophysics of Isp in inspiratory neurons

lSp is measurable in early and late inspiratory neurons using doses of SP that have clear 

respiratory effects in previous studies (Gray et al. 1999; Pagliardini et al. 2005; Pena and 

Ramirez 2004). /SP does not depend on extracellular Ca2+, is TTX-insensitive, and Na+ is 

the dominant inward charge carrier (Pena and Ramirez 2004). Its reversal potential (Esp) 

is -1 9  mV so we conclude that K+ is also a charge carrier. ESP was the same with K- 

gluconate patch solution and Cs+-based patch solution that substantially raised the Cl' 

reversal potential, so Cl' is not a charge carrier for /SP. We observed /SP in the presence 

of combined Na+, Ca2+, and K+-blockers, which suggests that /SP arises from a single 

type of mixed cation channel.

Tail current analysis would enable detection of any component of Isp that slowly 

inactivates during the steady-state IV protocol. Since /SP tail currents and the steady- 

state Isp were identical (Fig. 1.7C inset), we conclude that there was no significant 

voltage-dependent component of /SP that inactivates on the time scale of 100-500 ms. 

This contradicts the hypothesis that Isp is a TTX-insensitive voltage-activated Na+ current 

(Pena and Ramirez 2004) that can give rise to negative slope resistance and bursting 

properties (Delmas et al. 1997).

SP increases excitability via the closure of K+ channels in hypoglossal 

motoneurons (Yasuda et al. 2001) and C1 neurons that are situated at the ventral border 

of the preBdtC (Blessing 1997; Li and Guyenet 1997). Our data set did not contain C1 

neurons because Isp never reversed at Ex and was unaffected by intracellular and 

extracellular K+ channel blockers.

SP has widespread excitatory effects on inspiratory neurons in vitro (Gray et al.

1999; Pena and Ramirez 2004; Yamamoto et al. 1992) and we evoked Isp in 86.7% of

inspiratory neurons in the absence of CBX. However, NKR expression appears to be
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much less prevalent: approximately 42% of both early and late inspiratory neurons in 

neonatal mice were TMR-SP+, 34% of pre-l neurons identified in adult rats in vivo were 

NK1R-ir (Guyenet and Wang 2001), and 31% of preBotC inspiratory neurons were 

NK1R+ as identified with single-cell RT-PCR (Manzke et al. 2003). The latter 

measurements are consistent with our ability to evoke /SP in only 50% of inspiratory 

neurons after blocking gap junctions, suggesting that gap junctions are involved in 

evoking /SP in NKR' neurons. It is conceivable that the slightly higher (but not statistically 

significant) difference between our TMR-SP+ fraction and the meta-analyzed NK1R- 

expression data can be attributed to other tachykinin receptors that can bind TMR-SP  

but do not show NK1R immunoreactivity. However, this is unlikely since respiratory- 

related neurons in NK1R'/_ mice do not respond to SP (Ptak et al. 2000).

A cationic current that reverses at -11  mV (in ACSF with 9 mM external [K+]) is 

coupled to muscarinic receptor activation in preBotC inspiratory neurons (Shao and 

Feldman 2000). This current is very similar to IsP: it is TTX-insensitive, its activation is 

voltage- and Ca2+-independent, and Na+ and K+ are the principal charge carriers. This 

suggests that muscarinic and neurokinin receptors may open the same underlying class 

of cation channels (Pena and Ramirez 2004; Shao and Feldman 2000), but this remains 

to be tested.

The putative roles of NKR¥ and NKR inspiratory neurons in respiratory 

rhythmogenesis

The majority of our neurons showed early inspiratory activity patterns and small CM. The 

early latency, small size, and incremental discharge trajectory are characteristic of 

propriomedullary glutamatergic interneurons that putatively serve in a rhythmogenic 

capacity (Guyenet and Wang 2001; Stornetta et al. 2003a; Wallen-Mackenzie et al.
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2006). 36% of these early inspiratory neurons were NKR+. Given their discharge pattern 

and NKR expression, these neurons are probably glutamatergic and are unlikely to be 

GABA- or glycinergic (Stornetta et al. 2003a; Stornetta et al. 2003b; Wang et al. 2001), 

although we cannot rule out some of these NKR+ neurons belonging to a class of 

GABAergic neurons involved in sympathetic control of blood pressure (Wang et al. 

2002). NKR+ early inspiratory neurons are unlikely to contain cardiovagal preganglionic 

motoneurons in the external division of the nucleus ambiguus because choline acetyl- 

transferase was never co-detected with NK1R expression in adult rat preBotC neurons 

(Wang et al. 2001). The fraction of NK1R-ir early inspiratory-like neurons (called ‘pre-l’ 

by the authors) in adult rats in vivo is also near 36% (Guyenet and Wang 2001), so we 

conclude that the fraction of NKR+ rhythmogenic neurons in the preBotC is consistent in 

neonates and adults.

Large Cm and late inspiratory discharge pattern are characteristics consistent 

with glutamatergic bulbospinal neurons that putatively serve in a premotor capacity 

(Guyenet et al. 2002; Rekling et al. 1996; Stornetta et al. 2003b). Since 67% of late 

inspiratory neurons were NKR+, SP-SAP lesions may ablate a larger percentage of late 

inspiratory (putative premotoneurons) compared to early inspiratory neurons. However, 

because early inspiratory neurons are more numerous and show membrane properties 

consistent with a role in rhythmogenesis, NKR-targeted lesions will probably cause a 

greater total reduction in NKR+ rhythmogenic-like neurons. However, the destruction of a 

large fraction of NKR+ respiratory premotoneurons must be considered as a factor in 

explaining apneas resulting from SP-SAP lesions (Gray et al. 2001; McKay et al. 2005).

NKR' neurons with early and late inspiratory discharge properties probably

incorporate some cardiovagal preganglionic and pharyngeal motoneurons (Bieger and

Hopkins 1987; Rekling et al. 1996; Rekling and Feldman 1997), as well as respiratory
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premotoneurons (Guyenet et al. 2002). Inspiratory neurons within the preBotC may also 

be GABAergic (Kuwana et al. 2006) or glycinergic (Shao and Feldman 1997). Therefore, 

some NKR' neurons are either inhibitory or motor-related neurons that presumably do 

not directly contribute to rhythmogenesis.

Nevertheless, because of their discharge phenotype and sensitivity to SP (with 

gap junctions intact), we propose that many early inspiratory NKR' neurons are also 

rhythmogenic interneurons analogous to NKR+ glutamatergic early inspiratory 

interneurons (Guyenet et al. 2002; Stornetta et al. 2003a). However, we cannot be 

certain of the transmitter type in NKR' early inspiratory neurons and thus cannot exclude 

the possibility that some of these neurons have non-rhythmogenic functions.

Furthermore, it is difficult to ascertain how our early and late inspiratory 

phenotypes map to respiratory phenotypes in larger brainstem preparations or in vivo, 

which is problematic from the standpoint of nomenclature, since the pattern of activity 

may change with further levels of embedded neural circuitry. However, we provide 

simple names for distinct phenotypes in slices and our dichotomy may be useful to 

distinguish putatively rhythmogenic and premotor neurons in this context.

Estimating the size and composition of the neonatal preBotC

The preBdtC in rats is remarkably constant in size during early neonatal development 

and extends for approximately 200 pm in the rostral-caudal axis of rats (Ruangkittisakul 

et al. 2006; Smith et al. 1991). Given somatic diameter of approximately 10 pm for 

preBdtC neurons (Stornetta et al. 2003a; Wang et al. 2001), we can offer a rough 

estimate of the population size of inspiratory neurons in the preBdtC. If we assume 1 

neuron-layer per 10 pm of tissue in the sagittal plane, account for a bilaterally distributed 

preBdtC, and employ our measured average of 6 inspiratory neurons per plane, then the
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neonatal rodent preBdtC contains approximately 240 inspiratory neurons. This assumes 

that the rostro-caudal extent of the neonatal mouse preBdtC matches that of the rat.

W e counted 22/28 (78.6%) neurons with early inspiratory discharge pattern and 

small Cm, in which 8/22 (36.3%) were TMR-SP+. W e found 6/28 (21.4%) neurons with 

late inspiratory pattern and large CM in which 4/6 (66.7%) were TM R-SP+. We thus 

estimate that the preBdtC contains approximately 189 early inspiratory neurons of which 

69 are NKR+ and 120 are NKR', and 51 late inspiratory neurons of which 34 are NKR+ 

and 17 are NKR'(Fig. 1.11).

NKR" early 
n = 120NKR" inspiratory neurons 

n = 137 n = 17 
NKR" late

N K R ' 
n = 6

NKR inspiratory neurons
n = 103

Figure 1.11. Estimates of the composition of the preBotC inspiratory network. Left, The 
estimated number of NKR+ and NKR- inspiratory neurons. Right, The same fraction of 
NKR+/NKR- inspiratory neurons separated by the estimated number of early and late inspiratory 
phenotypes.

Physiological significance: a prediction for recovering respiratory function after 

NKR+ neuron loss

In neonatal mice (our results) and adult rats (Guyenet and Wang 2001), ~36% of

rhythmogenic-like neurons showed evidence of NKR expression. We postulate that

~64% of putative rhythmogenic inspiratory neurons, and ~33% of premotor-like neurons,

may survive SP-SAP lesions or diseases that ablate NKR+ neurons and impair breathing

(Gray et al. 2001; McKay et al. 2005). Our estimates for population sizes (above) will
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facilitate graded cell-destruction simulations in mathematical models of the preBotC that 

reflect the approximate numbers of NKR+ and NKR' neurons with respective 

rhythmogenic-like and premotor-like phenotypes. Models of this type may elucidate the 

mechanism by which graded neuron destruction perturbs rhythmogenesis and may help 

clarify the different effects of destroying rhythmogenic versus premotor neurons.

Stable breathing behavior is impaired by NKR+ neuron loss in the preBotC and 

may be a result of a breakdown in fundamental rhythmogenic mechanisms. However, 

strengthening the excitatory synaptic transmission between NKR' preBdtC neurons may 

restore respiratory function, assuming that NKR' preBdtC neurons are glutamatergic and 

interconnected (Guyenet et al. 2002; Rekling et al. 2000; Stornetta et al. 2003a; 

Stornetta et al. 2003b). Augmenting excitatory synaptic strength could be accomplished 

using cyclothiazide (Funk et al. 1995) or ampakines (Ren et al. 2006) that enhance 

ionotropic glutamate receptors, or by enhancing the role of metabotropic glutamate 

receptors by targeting specific intracellular signaling cascades coupled to their 

activation. This prediction arises from the hypothesis that a limited number of 

synaptically interconnected constituent neurons in the preBdtC can maintain rhythmic 

function by periodically evoking burst-generating intrinsic membrane properties that are 

only available in the context of behavior via ionotropic and metabotropic glutamate 

receptors (Feldman and Del Negro 2006; Rekling et al. 1996; Rekling and Feldman 

1998; Wallen-Mackenzie et al. 2006).
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CHAPTER 2. 4-aminopyridine-sensitive outward 
currents in inspiratory neurons promote regular burst 

discharges within the preBotzinger Complex

2.1. Introduction

Rhythmic motor behaviors originate from central pattern generator (CPG) networks in

the brain stem and spinal cord (Marder 2001). A key issue is to what degree proper

network function (i.e., rhythmogenesis) depends on specific ion channels and intrinsic

properties in constituent rhythm-generating neurons (Stein 1997). The respiratory CPG

is an excellent model for examining this question because its constituent rhythmogenic

neurons are contained within the preBotzinger Complex (preBdtC) (Feldman and Del

Negro 2006; Gray et al. 2001; Gray et al. 1999; Rekling and Feldman 1998; Smith et al.

1991) and the network output is measurable in vitro. Transverse medullary slices

containing the preBdtC spontaneously generate behaviorally relevant rhythmic motor

activity that can be monitored via the hypoglossal nerve (XII) in vitro.

Most studies of respiratory rhythm generation have focused on the role of

voltage-dependent inward currents (Del Negro et al. 2001; Del Negro et al. 2002a; Del

Negro et al. 2002b; Del Negro et al. 2005; Mironov et al. 2000; Mironov and Richter

1998; Onimaru et al. 2003; Pace et al. 2007c; Pena et al. 2004; Pierrefiche et al. 1999;
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Ptak et al. 2005; Thoby-Brisson et al. 2000), neuromodulation (Johnson et al. 1996; 

Onimaru et al. 1998; Pena and Ramirez 2002; 2004; Rekling et al. 1996b; 

Ruangkittisakul et al. 2006; Shao and Feldman 2000), as well as excitatory and 

inhibitory synaptic currents (Brockhaus and Ballanyi 1998; Funk et al. 1993; 1995; Greer 

et al. 1991; Paarmann et al. 2005; Pace et al. 2007a; Pierrefiche et al. 1998; Shao et al. 

2003). Apart from an ATP-inhibited K+ current primarily activated during hypoxia (Haller 

et al. 2001a; Haller et al. 2001b; Mironov et al. 1998; Mironov et al. 1999; Mironov and 

Richter 2000; 2001; Pierrefiche et al. 1996), outward currents have not been well- 

characterized in the preBotC of neonatal rodents, nor have their contributions to 

rhythmogenesis been analyzed.

Rekling et al. (1996a) described a subset of inspiratory neurons that depolarized 

with a ramp-like trajectory and started spiking ~400 ms prior to XII output, dubbed type 1 

neurons, which are putatively rhythmogenic (Gray et al. 1999; Rekling and Feldman 

1998). In addition to their ramp-like trajectory prior to XII output, type 1 neurons exhibited 

delayed excitation in response to 400-ms step pulses of depolarizing current from 

hyperpolarized membrane potentials (Rekling and Feldman 1998). Delayed excitation is 

often attributed to transient outward currents (i.e., A-currents, /A) (Dekin and Getting 

1987; Dekin et al. 1987; Getting 1983; Hagiwara et al. 1961; Nisenbaum et al. 1994), 

thus Rekling and colleagues proposed that rhythmogenic preBotC neurons expressed /A 

(Rekling et al. 1996a; Rekling and Feldman 1998). This was recently confirmed by 

Inyushkin (2005) who recorded /A in whole-cell voltage clamp and blocked it with 4- 

aminopyridine (4-AP) in the preBOtC, but did not analyze its contributions to 

rhythmogenesis. Therefore, we sought to measure the biophysical properties of /A in 

more detail in order to and test its specific role(s) in respiratory rhythm generation.
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2.2. Methods

The Institutional Animal Care and Use Committee at the College of William and Mary 

approved all protocols. Transverse slices (550 pm thick) from neonatal (PO-7) C57BL/6 

mice were dissected as described previously (Chapter 1, Hayes and Del Negro 2007).

Slices were perfused at 26-28°C with an artificial cerebrospinal fluid (ACSF) 

containing (in mM): 124 NaCI, 9 KCI, 0.5 NaH2P 0 4, 25 NaHC03, 30 D-glucose, 1.5 

CaCI2*H20, and 1 M gS04. We used 45 slices for the electrophysiology data.

Voltage- and current-clamp experiments were performed with a HEKA EPC-10  

patch-clamp amplifier and Patchmaster software (Lambrecht, Germany). Respiratory- 

related motor output was monitored from XII nerves with extracellular suction electrodes 

and a high-gain differential amplifier with band-pass filtering (0.3-1 kHz) (Dagan 

Instruments, Minneapolis, MN). Raw XII activity was conditioned using a true RMS-to- 

DC converter (Analog Devices, One Technology Way, Norwood, MA) to provide a full- 

wave rectified and smoothed XII waveform. Data were acquired digitally and analyzed 

using Igor Pro 5 (WaveMetrics, OR), Chart 5 (AD Instruments, Colorado Springs, CO), 

Excel (Microsoft, Redmond, WA) and custom software. An 8 mV liquid junction potential 

was corrected online in both current- and voltage clamp.

Whole-cell capacitance (CM) was measured using 50-ms voltage steps from -6 0  

mV to command potentials from -7 5  mV to -6 5  mV in a 10-step sequence. Charge (Q) 

was computed by integrating leak-subtracted capacitative current (AQ = J/c) and CM was 

calculated from Cm = AQ/AV. Series (access) resistance (Rs) was monitored throughout 

voltage-clamp recordings according to the Thevenin equivalent circuit, which allows Rs 

to be calculated from the decay time constant (Tm) in response to small voltage steps 

with Rs = W C m as long as Rs «  Rn- W e monitored input resistance (RN) via P/N online
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leak protocols. To avoid voltage-clamp errors we discarded experiments in which 

Rs>0.1*Rn. We compensated for Rs using analog feedback circuitry within the EPC-10 

as much as possible without causing clamp oscillations that jeopardize stable recording. 

W e rechecked Rs and RN before bouts of episodic voltage-clamp protocols to assess 

voltage-clamp viability, ensuring the reliability of the acquired data.

W e used the following standard patch solution containing (in mM): 140 K- 

gluconate, 5 NaCI, 0.1 EGTA, 10 HEPES, 2 Mg-ATP, and 0.3 Na(3)-GTP. KOH was 

used to equilibrate pH at 7.2. To isolate /A in voltage clamp (Figs. 1B-C.1E-F, 2, 3) we 

used a low Ca2+/high Mg2+ extracellular ACSF with contents (in mM): 124 NaCI, 9 KCI, 

25 NaHC03, 30 D-glucose, 0.5 CaCI2*H20, and 2 M gS04.

We measured the voltage dependence and kinetics of /A using Fitmaster 

software by HEKA (Lambrecht, Germany) and Igor Pro (v. 5.02, Wavemetrics, Lake 

Oswego, OR). Activation and inactivation functions took the form:

where x„ is the steady-state activation (m„) or inactivation (hx) function, 6X is the 

membrane potential of half-activation (0m) or half-inactivation (0h), and o* is the slope 

factor.

Characteristic features of inspiratory drive potentials were measured during 

rhythmic activity in vitro using the Peak Parameters extension in Chart software (v. 5, 

ADInstruments, Colorado Springs, CO). Regarding the role of /A, leading and trailing 

slopes of drive potentials were particularly relevant (Fig. 7,9). Leading and trailing slopes 

were calculated from digitally smoothed traces (Fig. 8) to minimize spikes but preserve 

the underlying drive potential characteristics (Pace et al. 2007b). Peak amplitude and
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baseline were automatically detected and the leading slope was computed from 20% of 

peak amplitude to 80% peak amplitude and trailing slope is calculated from 80% to 20%.

2.3. Results

Inspiratory preBdtC neurons express lA

Rhythmogenic inspiratory neurons in the preBotC characteristically discharge several 

hundred milliseconds prior to XII motor activity with an incremental pattern of 

depolarization (Fig. 2.1 A) (Bianchi et al. 1995; Richter and Spyer 2001). We frequently 

observed /A in these neurons. We isolated K+ currents in whole-cell voltage-clamp using 

low Ca2+ ACSF containing 3 mM extracellular [K+], 1 pM TTX, and 200 pM Cd2+. Step 

commands from -1 0 0  mV to higher voltages (up to +10 mV) evoked sustained K+ 

currents in addition to /A (Fig. 2.1 B). /A could also be evoked by depolarizing step 

commands from a -6 0  mV holding potential (Fig. 2.1 B, inset), suggesting that /A does 

not completely inactivate at baseline membrane potentials observed during normal 

inspiratory activity in vitro (e.g., Fig. 2.1A). In current clamp, depolarizing current steps 

from a holding potential of -7 0  mV evoked a ramping depolarization (AV/At = 3.6 

mV/200 ms), whereas steps from -4 0  mV resulted in largely passive responses that 

quickly achieved steady-state (Fig. 2.1 C), which is indicative of /A that is de-inactivated 

at hyperpolarized potentials, but steady-state inactivated at voltages above spike 

threshold.

Expiratory neurons in the preBotC are inhibited during XII motor activity but

otherwise spike tonically (Fig. 2.2A). Outward currents were typically smaller overall, and

none expressed /A (compare Fig. 2.1 B to 2.2B, note scale bars are the same, n=4). In

current clamp, depolarizing step commands did not evoke a ramping depolarization from

any holding potential (Fig. 2.2C), which is consistent with the lack of /A.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40 mV

W jw'-oo
1Y__________ f\___

1 s

- 20 -

- 70 -

.6 mV j

0.2 s 0.2 s

Figure 2.1. Phenotypic behaviors of inspiratory neurons located in the preBotC. A, A current- 
clamp recording of an inspiratory neuron that activates before the integrated XII nerve 
recording (JXII). B, A voltage-clamp recording from a holding potential of -100 mV illustrating 
the transient outward current evoked at high membrane potentials. Inset, a different neuron’s 
voltage-clamp recording from a holding potential o f-60  mV. C, The same neuron as in A and 
B illustrating voltage-dependent delayed excitation where Alapp was 95 pA. Recordings in B 
and C were in the presence of 1 pM TTX, 200 pM Cd2+, and 3 mM extracellular [K+],

Biophysical properties of I a

W e separated /a from non-inactivating K+ currents by subtraction. Using the same

conditions as Fig. 2.1B and 2.2B, we applied a sequence of 1-s step commands from

-8 0  to +10 mV from a holding potential o f-1 0 0  mV and then repeated these steps from

-4 0  mV (Fig. 2.3A [lower traces] superimposes the protocol from both -1 0 0  and -4 0  mV

holding potentials). The difference current was defined as /a (Fig. 2.3A, upper traces), /a

activated at -6 0  mV and its maximum amplitude exceeded 1 nA at voltages greater than

0 mV. A detailed analysis of voltage dependence was precluded in the whole-cell
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configuration, however, due to inherent space-clamp limitations and series resistance 

errors attributable to large magnitude membrane currents (Armstrong et al. 1992).

Figure 2.2. Phenotypic behaviors of expiratory neurons located in the preBotC. A, A current- 
clamp recording of an expiratory neuron that is inhibited during /XII activity. B, The 
corresponding voltage-clamp recording of the expiratory neuron showing only minimal transient 
outward currents. C, Likewise, prominent delayed excitation is not exhibited by the expiratory 
neuron where Alapp was 379 pA. Recordings in B and C were in the presence of 1 pM TTX, 200 
pM Cd2+, and 3 mM extracellular [K*].

To accurately measure voltage dependence and kinetics, we isolated somatic 

outside-out patches and repeated the subtraction protocol described above with step 

commands that reached +30 mV (Fig. 2.3B). The /A activation function was fit with the 

parameters 0m = -1 6 .3  mV and om = 14.9 mV. Even in patches /A generally exceeded 

200 pA with a mean conductance of 1.14+0.36 nS (n=6). In 3/3 patches, 2 mM 4-AP  

substantially attenuated /A (Fig. 2.4); 4-AP similarly attenuates /A in whole-cell recordings 

(n=5) as previously shown (Inyushkin 2005).

W e measured the steady-state inactivation of /A at +10 mV for 500 ms following 

1-s conditioning prepulses from -1 0 0  to +10 mV. The inactivation function reached its
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minimum above -4 0  mV and had the parameters 0h = -8 5 .6  mV and oh = -13.8 mV. 

These data explain why /A can be evoked from a holding potential of -6 0  mV (e.g., Fig. 

2.1B, inset). /A is not fully inactivated at that potential, h„(-60) = 0.135, (Fig. 2.3B).

500 pA

r -  1 .0

m.

o.o- - 0.0

-100 0mV
500 -

r° g mV £
-I—100 0 -

f + i - H

0.2 s
]— i 1 1— | 1 1— i 1

30 0 30
mV

Figure 2.3. Biophysics of /A in inspiratory neurons. A, The voltage-dependency of activation 
was measured by subtracting currents at holding potentials o f-100 mV from evoked currents 
at -40  mV. B, Steady-state activation curve (m„) and inactivation curve (h.) from outside-out 
patches. C, The time constant of inactivation (xh) as a function of voltage.

/A exhibits a small window current extending from -6 0  to -3 0  mV that peaks at 

-5 2 .2  mV with only 0.6% of the current active. These data suggest that /A does not 

substantially influence the baseline membrane potential during the majority of the 

quiescent (i.e., expiratory) phase of network activity but resides in a de-inactivated state 

and can be evoked by depolarization.
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Over the range -3 0  to +30 mV, the 

time constant of inactivation was 200-300 

ms and could be empirically fit with a line in 

the form, xh(V) = 201.95 -  0.42V (Fig. 2.3B, 

bottom), which is consistent with weak 

voltage dependence for the slow 

inactivation time constant of approximately 

200 ms in mouse spinal cord and rat 

hippocampus (among others), as well as in 

Kv4.1, Kv4.2, and Kv4.3 channels

expressed in oocytes. (Koch 1999; Segal et al. 1984; Serodio et al. 1994; Serodio et al. 

1996). Interestingly, Th(V) of ~200 ms is commensurate with both the ramping 

depolarization responses observed in current clamp from baseline voltages of -7 0  mV 

(e.g., Fig. 2.1C) and the transient ramp-like depolarization seen during endogenous 

network activity (e.g., Fig. 2.1 A), suggesting the involvement of /A in these membrane 

behaviors.

The prevalence of lA in rhythmogenic preBotC neurons

As one way to classify inspiratory neurons as rhythmogenic, Rekling et al. (1996a) 

measured the difference between the onset of inspiratory-related EPSPs and the 

upstroke of XII activity, i.e., the drive latency, and proposed that the earliest neurons to 

activate during the respiratory cycle are important for rhythmogenesis. Furthermore we 

recently showed that membrane capacitance (C m) of ~30-65 pF is correlated with early 

drive latency in rhythmogenic preBotC neurons (Chapter 1, Hayes and Del Negro 2007). 

Using these criteria we quantified /A expression in the preBotC. Eighteen of 28 (64.3%)
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Figure 2.4. /A attenuation from 2 mM 4-AP.
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inspiratory neurons expressed measurable /A. The average CM was 54.0±7.4 pF (n=15) 

and the average drive latency was 304.5±14.9 ms, consistent with a role in 

rhythmogenesis. The average whole-cell conductance for /A (gA) normalized to CM was 

0.289±0.047 nS/pF (n=11). Thus for a typical preBotC neuron with a whole-cell 

capacitance of 50 pF, the whole-cell gA would be about 15 nS and /A would be expected 

to generate 0.5-1.5 nA of outward current during standard rhythmic activity in vitro.

The 10 of 28 (35.7%) preBotC neurons without measurable /A exhibited drive 

latencies of 312.4±15.7 ms and Cm of 42.9±3.7pF (n=10), which were indistinguishable 

from /A-expressing neurons (t-test: p > 0.35 and t-test: p > 0.19). These data suggest 

that rhythmogenic neurons do not uniformly express /A as originally suggested (Rekling 

et al. 1996a).

Nevertheless, /A is expressed in more than half of the preBotC neurons classified 

as rhythmogenic, in which it is available at typical baseline membrane potentials and 

generates large magnitude outward currents lasting several hundred milliseconds (Figs. 

1,3,4). These data suggest that /A might have an important role in influencing respiratory 

rhythmogenesis.

4-AP affects rhythmic activity in the preBotC

In the context of respiratory network activity we found that 4-AP caused XII output to 

become erratic and essentially uninterpretable. Therefore, we sought to determine 

whether the disorganized XII output reflected a breakdown in rhythmogenesis by 

performing field recordings within the preBotC (JpreBotC) while recording the 

contralateral XII activity (Fig. 2.5A). The JpreBotC and JXII activity patterns were well 

correlated and rhythmic in control and washout, whereas 4-AP caused noisy JpreBotC 

activity that fluctuated in amplitude and period (Fig. 2.5B). 4-AP (as stated above)
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induced irregular/XII activity. These data suggest that pharmacological attenuation of /A 

affected rhythmogenic preBdtC neurons directly or indirectly.

A  exP*a 'n the r° le ° f  we examined the

transformation of network activity from the 

perspective of single preBotC neurons in the 

presence of 4-AP. The respiratory rhythm 

generating network is active before the XII burst. 

During on-cell recordings accelerating spike 

discharge in the 400-600 ms prior to XII output 

suggested temporal summation of network drive 

(Fig. 2.6A). We obtained direct evidence for such 

drive in whole-cell current clamp by comparing 

zero bias conditions (Fig. 2.6B) to 

hyperpolarized membrane potentials below spike 

threshold (Fig. 2.6C), and in voltage clamp (Fig. 

2.6D). All of these records illustrate spiking
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j X||  (I k\  A A._ A |\ t, H A__
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Figure 2.5. Effects of 4-AP on the 
preBotC network. A, A cartoon 
showing the configuration of the 
preBdtC field-recording pipette 
(JpreBotC) and /XII. B, JpreBotC (top 
traces) and /XII (bottom traces) under 
control conditions, in the presence of 2 
mM 4-AP, and washout.
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-62
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-74
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Figure 2.6. Characteristics of phasic synaptic input to inspiratory neurons. A, On-cell unit 
recordings of an inspiratory neuron that activates early relative to the JXII. B, A current-clamp 
recording at 0 pA holding current illustrating similar activity as in A. C, A current-clamp recording 
at -40 pA holding current. D, Voltage-clamp recording at a holding potential o f-6 0  mV. Traces 
in A, C, D, and E were all recorded in the same neuron.
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and/or temporal summation of EPSPs/EPSCs for several hundred milliseconds 

preceding inspiratory bursts, which did not change as a function of membrane voltage.

We applied 2 mM 4-AP to examine cellular 

changes induced by /A attenuation. Delayed 

excitation was eliminated in 4-AP and recovered in 

washout (Fig. 2.7A). 4-AP modified the inspiratory 

burst pattern, which reversibly changed from 

incrementing in control to decrementing in the 

presence of 4-AP (Fig. 2.7C). We quantified this 

change by measuring the leading slope of the 

burst, which changed significantly in 4-AP from 

53.1 ±7.4 mV/s to 80.2±5.3 mV/s (p < 0.05, n=8,

Fig. 9). However, the trailing slope did not change 

significantly: -52 .7±2 .5  mV/s in control versus 

-65 .5±6 .0  mV/s in 4-AP (p > 0.05, n=8, Fig. 2.9).

These data suggest that orderly recruitment of

4-AP

i

b.ss

washout

40 mV

^-63
_ / V

o T s

Figure 2.7. Whole-cell effects of 4- 
AP on inspiratory neurons. A , The 
presence of voltage-dependent 
delayed excitation was tested 
between bursts of activity and was 
abolished in 4-AP and recovered in

inspiratory activity prior to XII output depends on “ h a ^ ^ r p t d S a T
incremental (left) to decremental

fo- (middle) and back to incremental in
washout (right). Dashed lines at the 

To analyze the network-level bursting bottom indicate the change in drive
latency of these specific bursts,

pattern from the perspective of a single constituent Recordings were at 0 pA bias
current.

neuron we applied a 5 Hz low-pass filter, which

facilitates measurements of synaptic drive activity while filtering out spikes (Fig. 2.8).

The average period of drive potentials did not change significantly between control and

4-AP application (Figs. 2.8 and 2.9) while the coefficient of variation (CV) of the period

approximately doubled, which is a very significant change (p < 0.001, n=8, Fig. 2.9). The
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average amplitude of the drive potential did not significantly change (Figs. 2.8 and 2.9) 

but the CV for amplitude changed significantly (p < 0.05, n=8, Fig. 2.9).

4-AP did not change the baseline membrane (bias current is 0 pA in Figs. 2.7B 

and 2.8), which is consistent with the lack of significant window current measured in 

voltage clamp (see Fig. 2.3B).
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Figure 2.8. Effects of 
4-AP on burst 
frequency in 
inspiratory neurons. All 
recordings were at 0 
pA bias current. 
Vertical arrowheads 
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bursts analyzed in Fig. 
2.9.
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Figure 2.9. Effects of 4-AP on general burst 
characteristics expressed as fraction of control. Peak 
amplitude of bursts are indicated by “amp.” Statistical 
significance at p < 0.05 is shown with * and p < 0.01 
is shown with **.

2.4. Discussion

/A in preBotC neurons resembles the canonical /a found throughout the brain of 

mammals and other organisms (Birnbaum et al. 2004; Connor and Stevens 1971; 

Gustafsson et al. 1982; Hagiwara et al. 1961; Neher 1971). With regard to respiration, /A 

has been observed in synaptically isolated preBotC neurons (Inyushkin 2005), and its 

role has been studied in mathematical models of the ventral respiratory group in the 

medulla (Rybak et al. 1997). However, this is the first detailed characterization of /a from 

putatively rhythmogenic preBotC neurons. More importantly, we offer the first analysis of 

the role of /A during endogenous respiratory network activity in vitro.

Role of IA in vitro

W e characterized the voltage-dependence and kinetics of /A in somatic outside-out

patches, which allowed us to minimize space-clamp limitations and series-resistance

errors, /a activates below -6 0  mV and is not fully inactivated until approximately -3 0  mV.

These activation and inactivation functions encompass the range of membrane

potentials visited during the interval between inspiratory bursts. This implies that /A

resides in a de-in activated state at baseline membrane potentials and can be quickly

recruited by synaptic depolarization during the respiratory cycle.

/A has a small window current, but does this affect baseline membrane potential?

In 9 mM extracellular [K+], /A attenuation via 4-AP application did not depolarize preBdtC
67
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neurons, suggesting that the window current was small and perhaps irrelevant. 

However, Rekling et al. (1996a) used a lower extracellular [K+] solution (6.2 mM) that 

would enhance the driving force for /A. The window current may be large enough to 

account for their observation that neurons with evidence of /A expression (i.e., type 1 

neurons) had lower baseline membrane potentials than respiratory neurons without 

evidence for /A.

A membrane behavior widely associated with /A can be described as ‘delayed 

excitation’, wherein depolarization evoked by current pulses gets delayed for several 

hundred milliseconds (or longer) by the transient influence of /A (Dekin and Getting 1987; 

Gabel and Nisenbaum 1998; Getting 1989; 1983; Hagiwara et al. 1961). This behavior 

can affect synaptic integration as demonstrated in hippocampal and neocortical 

pyramidal neurons (Gulledge et al. 2005; Hoffman et al. 1997; Storm 1988). Synaptic 

excitation builds up over several hundred milliseconds preceding XII output in 

rhythmogenic preBotC neurons (Hayes and Del Negro 2007; Rekling et al. 1996a; 

Rekling and Feldman 1998, also see Figs. 2.1 A, 2.6 and 2.7B). Since /A gives rise to 

delayed excitation in preBotC neurons in dedicated current-clamp protocols, is de

inactivated at baseline membrane potentials (Fig. 2.1 B inset and 2.3B), and has a 200- 

ms inactivation time constant, we conclude that /A plays a major role in shaping the 

ramp-like incremental discharge pattern characteristic of rhythmogenic neurons. 

Supporting evidence for this role is the dramatic increase in the leading slope of 

inspiratory activity following 4-AP application (Fig. 2.7B and 2.9).

In invertebrate CPGs, /A regulates the order in which rhythmogenic neurons

discharge (Byrne 1980; Getting 1983; Tierney and Harris-Warrick 1992). With regard to

respiration, in spite of the fact that 4-AP caused uninterpretable XII discharge, network

rhythms continued within the preBotC and could be detected and measured in whole-cell
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and field recordings. 4-AP did not affect the mean period or amplitude of inspiratory 

burst-like discharges, but it did significantly increase period and amplitude variability 

(Fig. 2.9). Since the increase in variability was correlated with the diminished ramp-like 

incremental discharge pattern in 4-AP, this suggests that /A influences the orderly 

recruitment of rhythm-generating neurons in the build-up to the inspiratory burst, which 

promotes regularity in respiratory network behavior.

Role of I a in vivo

In the context of endogenous network activity, the EK in our system is calculated to be 

approximately -71  mV, while in vivo this is probably closer to -9 8  mV (assuming ~3 mM 

[K+] in the cerebrospinal fluid, c.f. (Richter et al. 1978)). Under in vivo conditions we 

expect the driving force of /A to be much higher, and thus the window current would have 

a larger hyperpolarizing influence on baseline membrane potential. This may bring /A to 

an even more de-inactivated state between inspiratory bursts than our in vitro conditions. 

In this environment, where inspiratory neurons are expected to be under intensive 

bombardment of excitatory and inhibitory input, /A may play an even more substantial 

role in the orderly recruitment of respiratory rhythmic activity through its ability to rapidly 

activate with a large outward current and quench spurious depolarizations.
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CHAPTER 3. Network-mediated burst initiation and its 
role in respiratory rhythm generation

3.1. Introduction

Attempts to understand rhythmogenesis in vitro have focused on canonical mechanisms 

including reciprocal inhibition or pacemaker neurons (Grillner 2003; Marder 2001; 

Marder and Calabrese 1996; Orlovsky et al. 1999; Stein 1997). Early models of 

respiration based on reciprocal inhibition (Feldman 1986) were ruled out by the 

demonstration that a respiratory-like rhythmic output persists after blocking synaptic 

inhibition in vitro (Brockhaus and Ballanyi 1998; Feldman and Smith 1989). This 

bolstered the idea, originally speculative (Feldman and Cleland 1982), that voltage- 

dependent pacemaker neurons drive rhythmogenesis, i.e., the pacemaker hypothesis.

The putative pacemaker neurons in neonates (ages PO-15) depend on persistent 

Na+ current (/Nap) (Butera et al. 1999a; Del Negro et al. 2002a; Del Negro et al. 2002b; 

Del Negro et al. 2005; Thoby-Brisson and Ramirez 2001). However, riluzole (RIL) and 

tetrodotoxin (TTX), applied at dosages that selectively block /Nap (Doble 1996; Urbani 

and Belluzzi 2000), do not prevent rhythmogenesis in vitro (Del Negro et al. 2002b; Del
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Negro et al. 2005; Pace et al. 2007b; Pena et al. 2004), which contradicts an essential 

role for pacemaker neurons in rhythmogenesis.

In older neonates (P7-15) another form of bursting utilizes calcium- and calcium- 

activated cationic currents and is RIL-insensitive (Pena et al. 2004). Neurons with this 

property are not present, or comprise a minuscule fraction, of the preBotC in neonates 

PO-6, and thus are unlikely to be rhythmogenic, especially in newborns. Therefore, we 

have argued that neurons with pacemaker properties probably do not drive 

rhythmogenesis.

Our favored hypothesis for the mechanism of rhythmogenesis is based on 

emergent network properties. The group pacemaker hypothesis proposed by Rekling 

and Feldman (1996a; 1998) posits that recurrent synaptic excitation convolved with 

intrinsic cellular properties gives rise to periodic network-wide bursts. It is predicated on 

a functional hierarchy of electrophysiological phenotypes and their synaptic connectivity 

(Rekling et al. 1996a; Rekling and Feldman 1998), not subpopulations of pacemaker 

neurons. Pacemaker properties, to the extent that they utilize intrinsic currents such as 

/ N a p  and / c a n ,  participate in rhythm generation but are not obligatory.

Under Rekling et al.’s original classification (1996a), the neurons that initiate 

large amplitude inspiratory bursts earliest in the respiratory cycle (i.e., similar to Fig. 

1.4A, Fig. 2.1 A) were referred to as 'type 1 neurons'. Bursts terminate with an after

hyperpolarization that recovers during the first half of the inter-inspiratory interval. 

Because of their early drive latency (see Chapter 1 and 2) and sensitivity to SP, type 1 

neurons were hypothesized to be the crucial population of NK1R+ neurons that comprise 

the rhythmogenic kernel (Gray et al. 1999; Rekling et al. 1996a; b).

Rekling et al.’s (1996a) 'type 2' neurons have high input resistance and 

discharge tonically at a low frequency during the inter-inspiratory interval (i.e., similar to

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. 1.4B). Notwithstanding their high excitability, type 2 neurons initiate inspiratory 

bursts later in the cycle compared to type 1 neurons and therefore were classified as 

downstream targets that receive inspiratory synaptic drive from the rhythmogenic type 1 

population (Rekling et al. 1996a). This synaptic coupling arrangement is logical except 

that type 2 neurons selectively express the hyperpolarization-activated cationic current /h 

(Rekling et al. 1996a; Thoby-Brisson et al. 2000). Pharmacological attenuation of A, has 

no effect on type 1 neurons yet accelerates respiratory frequency, which suggests that 

type 2 neurons have feedback interactions with the type 1 population and play some role 

in rhythm generation, or are themselves part of the rhythmogenic core.

Finally, Rekling et al.’s (1996a) 'type 3' neurons have relatively low input 

resistance and depolarize latest in the respiratory cycle (i.e. similar to Fig. 1.4D). These 

neurons were proposed to be respiratory premotoneurons or motoneurons in the 

nucleus ambiguus (Biegerand Hopkins 1987; Rekling et al. 1996a).

In the previous two chapters we discussed early inspiratory neurons (Fig. 1.3) 

which seem to share many of the aforementioned properties of type 1 (Fig. 1,4A) and 

type 2 neurons (Fig. 1,4B) including the A-current that can give rise to delayed excitation 

(Chapter 2). Likewise, our description of late inspiratory neurons (Figure 1.3, 1.4D) 

appear to be generally consistent with the type 3 phenotype. Our data suggest that early 

inspiratory neurons are a heterogeneous population made up of some neurons similar to 

type 1 neurons and others similar to type 2 neurons, but there is no discrete separation 

based on drive latency or NKR-expression. Therefore, throughout the remainder of this 

chapter we will continue to use the terminology early and late inspiratory populations 

unless specifically discussing Rekling’s earlier nomenclature.

As the group pacemaker hypothesis predicts, anatomical evidence shows that 

rhythmogenic neurons are predominantly glutamatergic and form locally interconnected
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networks within the preBotC (Guyenet et al. 2002; Guyenet and Wang 2001; Rekling et 

al. 2000; Stornetta et al. 2003; Wang et al. 2001) although how many average synaptic 

connections between the neurons is still speculative.

In this manuscript we evaluate the group pacemaker hypothesis of respiratory 

rhythm generation. Our approach was to construct a mathematical model that unifies the 

pacemaker/non-pacemaker, type 1-3, and early/late-inspiratory classification schemes, 

incorporates realistic numbers of neurons that are synaptically interconnected in a 

manner that may accurately reflect the general composition and function of the mouse 

preBOtC. To this end, voltage-dependent pacemaker neurons with /Nap are randomly 

dispersed throughout the early-inspiratory population, and calcium-activated non-specific 

cationic current ( /Can) is expressed within all phenotypes. We show how excitatory 

synaptic coupling among early inspiratory neurons plays a crucial role in burst 

generation through recurrent excitation (Ballanyi et al. 1999; Bianchi et al. 1995; Rekling 

et al. 2000; Smith et al. 2000) and make testable predictions that rely on this recurrent 

excitation.

3.2. Methods

Differential equations were integrated using the 4th order Runge-Kutta method in custom 

C/C++ software run on Apple Macintosh G5 computers under OS 10.4 (See Appendices

3.4,3.5). Model experiments were performed for 2-3 simulated minutes. Integration step 

size was 0.1 ms.

Running-time histograms of late inspiratory neurons, believed to be 

premotoneurons, were plotted in lieu of, and to mimic, XII output in experiments (bin 

size=25 ms). Burst duration and cycle period were computed from the running-time 

histogram using the threshold 10 spikes/bin as the beginning and end point of model 

network bursts.
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Several standard currents were included in the preBotC cellular model such as 

fast sodium current (/Na.f) ,  delayed-rectifier potassium current ( / K-d r ) ,  potassium leakage 

current ( / k-leak) ,  persistent sodium current (/Nap), AMPAR-mediated synaptic current 

( /a m p a ), and a tonic excitatory current (Aonic-e)- These currents are very similar to the ones 

in the preBotC neuron model developed by Butera and colleagues (Butera et al. 1999a; 

b; Del Negro et al. 2001). Other currents included:

Electrogenic Na+/lC-A TPase (lNa/K-APTase)- /Na/K-APTase may contribute to burst 

termination in the preBotC, consistent with similar contributions in other rhythmic 

networks (Ballerini et al. 1997; Darbon et al. 2003; Del Negro et al. 1999; Johnson et al. 

1992; Li et al. 1996; Seutin et al. 1996).

Hyperpolarization-activated mixed cation current (lh). Ih causes ‘sag’ potentials in 

respiratory neurons (Mironov et al. 2000; Rekling et al. 1996a; Thoby-Brisson et al. 

2000). In the model, /h also contributes to WK-AP^se activation by fluxing Na+ inward.

A-current ( I a ) .  /a  causes ‘delayed excitation’ in more than half of inspiratory 

neurons (see Chapter 2). /A also provides a slight hyperpolarizing window current, limits 

spike frequency, and will shunt incoming EPSPs during the onset of inspiratory bursts 

(Chapter 2).

SK-type calcium-dependent potassium current ( I s k -cb) -  The /SK-ca underlies spike- 

frequency adaptation (Stocker 2004). This current mimics the role of the hypothetical 

ensemble of activity-dependent outward currents that terminate inspiratory bursts.

Calcium-activated non-specific cation current (Ic a n ) -  We incorporated /Can> which 

was simulated with an intracellular [Ca2+]i half-activation of 0.5 pM. This value is 

approximately half the value for the probable channel that gives rise to this current, 

TRPM4b or TRPM5 (Crowder et al. 2007; Ullrich et al. 2005). W e coupled lcan in an ad  

hoc fashion to a mean synaptic gating variable, which approximately models the
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synaptically generated sources of calcium entry that are not explicitly contained in the 

single-compartment formulation (Koch and Segev 1998). Ongoing studies suggest that 

/ c a n  activates predominantly in dendritic sites and boosts excitatory synaptic input 

(Feldman and Del Negro 2006; Pace et al. 2007a). A full and complete description of 

/ c a n  will require multi-compartment modeling at the cellular level, which is beyond the 

scope of the present project but is being pursued (Mendenhall et al. 2006). In this model, 

/ c a n  fluxes Na+ and K+ and has a reversal potential ( E c a n )  of 0 mV which, due to the 

relation to synaptic activity, boosts burst drive potentials, / c a n  also moderately 

contributes to /Na/K-APTase activation by fluxing Na+ inward.

Calcium current (7ca). A generic high threshold calcium current with an effective 

inactivation time constant estimated at 15 ms (Elsen and Ramirez 1998) was 

incorporated that provided intracellular Ca2+ to activate the /can and /s«-ca and provide a 

depolarizing current during bursts.

NMD A receptor-mediated synaptic current ( In m d a ) -  An / N m d a  was implemented to 

capture the voltage-dependent Mg2+-block (Jahr and Stevens 1990a; b). The decay time 

constant was estimated from data to be approximately 30 ms. In addition to enhancing 

EPSPs, In m d a  also contributes a small Ca2+ current to activate I Ca n  and Is K -ca -

Electrical synaptic current ('/electrical)- Electrical coupling via gap junctions was 

incorporated according to experimental measurements in preBotC neurons (Rekling et 

al. 2000). /electrical promotes homogenous baseline potentials among neurons with 

otherwise disparate leakage conductances (Koch and Segev 1998).

Noise current ( ln0ise)- /noise is a random low amplitude current input that is not 

captured by /t0nic-e (Fal1 2002).

The network is composed of the two phenotypes we have described and 

encapsulate many characteristic membrane properties described by Rekling et. al.
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(1996a). Some of these neurons express low amounts of k, but express large /A (similar 

to type 1 neurons) or high amounts of /h, and low /A (similar to type 2 neurons). Some 

neurons also experience a significant after-hyperpolarization at the end of the inspiratory 

phase, and thus recover from refractoriness with ramp-like trajectories during the 

expiratory phase (Chapter 2, Rekling et al. 1996a; Thoby-Brisson and Ramirez 2001). 

W e also have neurons with large /Nap that lead to voltage-dependent pacemakers in the 

early inspiratory population that represent up to 25% of that population. Finally, some of 

these neurons spike at low frequency during the interburst interval.

Late inspiratory neurons were assigned significantly lower input resistance (R n) 

and are typically larger cells, reflected by their larger capacitance (Chapter 1). In the 

model, the late inspiratory neurons act as a threshold detector because they are the 

least excitable and the last to discharge prior to XII output. We use the late inspiratory 

spiking activity as an analogue to the XII output in simulations, since they may makeup a 

portion of respiratory premotoneurons, but otherwise have the same currents as early 

inspiratory neurons.

Model Size and Topology. We simulated the bilaterally distributed preBotC as a 

single network with 1125 neurons and the following coupling topology: 975 early 

inspiratory neurons are sparsely coupled with feedback chemical and electrical 

connections among the rest of the early inspiratory population and then are also 

chemically connected to 150 late inspiratory neurons. Late inspiratory cells do not feed 

back into the early inspiratory population because we presume they project to 

motoneurons not explicitly modeled here and do not directly contribute to 

rhythmogenesis. All model equations and the details of the coupling topology are 

described in section 3.4 (Appendix 1).
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3.3. Results and Discussion

Our previous data (Chapter 1 and 2) suggests that the population of preBotC inspiratory 

neurons are made up of heterogeneous subpopulations of putatively rhythmogenic (early 

inspiratory neurons) and premotoneurons (late inspiratory neurons). We were interested 

in testing the hypothesis that a heterogeneous population of model preBOtC neurons 

could generate rhythmic activity through recurrent excitation by simulating the proposed 

group-pacemaker as realistically as possible*.

A B C

20 40 60 80 100 0 400 800 1200 0 1 2 3 4 5
Cm(pF) Rn (MQ) 9 n .-p  ("S )

Figure 3.1. The group-pacemaker is made up of neurons with heterogeneous parameters. A, 
The distribution of membrane capacitances for early and late inspiratory neurons. B, The 
distribution of input resistances for all inspiratory neurons. C, The distribution of maximum 
persistent sodium conductance in all inspiratory neurons.

W e first started out with varying the membrane capacitance (C m) of model 

neurons to replicate experimental results where early inspiratory neurons had a mean 

CM of 45 pF and late inspiratory neurons had a mean CM of 86 pF. Since membrane 

capacitance is related to neuron size (Hille 2001), we related all our neurons’ 

conductances to the magnitude of the capacitance by a factor that also varied (see 

section 3.4, Appendix 1). Figure 3.1 illustrates how the cellular capacitance (Fig. 3.1 A), 

input resistance (RN, Fig. 3.1 B), and maximum persistent sodium conductance (gNa-p, 

Fig. 3.1C) are distributed among the neurons. Figure 3.2 then illustrates how the two

* Note that the work in this chapter was performed before most of the experimental results in 
Chapters 1 and 2 was completed and motivated us to perform that work. Therefore, the network 
size, fraction of NKR+ neurons, and characteristics of /A used here are not consistent with that 
data.
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groups of inspiratory neurons were arranged into a network (see section 3.4., Appendix

Figure 3.2. The general topology 
of the model preBOtC network. Red 
circles represent early inspiratory 
neurons with relatively low C M, 
while blue circles represent the late 
inspiratory neurons with relatively 
large CM. Early neurons project 
with excitatory AM PAR- and 
NMDAR-mediated synapses to late 
neurons and also to other early 
neurons (solid lines). Early 
neurons are also coupled by 
electrical synapses mediated by 
gap junctions (dotted lines). The 
late neurons are hypothesized to 
project to XII neurons, so they 
represent the model XII output. 
See Section 3.4, Appendix 1, for 
details on how the network 
topology was generated.

Dynamics of rhythm generation

When the neurons are connected through excitatory synapses, the model generates 

respiratory-like oscillations resembling neonatal rodent in vitro preparations (Fig. 3.3)

Some inspiratory neurons are silent during the interburst interval and have 

monotonic current-voltage (IV) curves (Fig. 3.3A), while other early inspiratory neurons 

recover rapidly from inspiration and approach a steady state where they spontaneously 

discharge action potentials at a low rate that depends on the resting potassium 

conductance (Rn'1) and noise (Fig. 3.3B). Collective tonic spiking of these neurons 

produces a steady stream of excitatory synaptic potentials that are ‘broadcast’ to the 

other early inspiratory neurons and these neurons also typically have a monotonic IV 

curve. A subset of the early inspiratory neurons have an IV curve with a negative-slope 

region (Fig. 3.3C) that leads to voltage-dependent pacemaker properties. Finally, late
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inspiratory neurons (Fig. 3.3D) that have a substantially larger cellular capacitance (Fig. 

3.1 A) and low resting membrane potential are only activated when they receive massive 

convergent input from early inspiratory neurons.
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Figure 3.3. A variety of phenotypic patterns are exhibited by model inspiratory neurons. To 
the right of each voltage trace is a simulated IV curve for that neuron. A, A  silent early 
inspiratory neuron similar to Fig. 1.4A and Fig. 2.1A. B, A tonically active early inspiratory 
neuron similar to Fig. 1.4B. C, An early inspiratory neuron with voltage-dependent pacemaker 
properties indicated by the negative slope region in the right IV curve. D, A  silent late 
inspiratory neuron similar to the one in Fig. 1,4D.

To understand the cellular and synaptic mechanisms of rhythmogenesis, we 

begin by analyzing the respiratory cycle shortly after an inspiratory burst. Neurons such 

as the ones in Fig. 3.3B recover quickly from the inspiratory phase and spike at low 

frequency during the interburst interval. At first this synaptic broadcast fails to register in
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the other neurons that remain hyperpolarized in a refractory state where even spatial 

and temporal summation of coincident EPSPs cannot cause these neurons to cross 

spike threshold. But as neurons recover from refractoriness they approach baseline 

potentials that we define as susceptible since a single EPSP can cause suprathreshold 

depolarization. Susceptible neurons become active when they commence spiking.

Neurons recover from refractoriness and relax toward the susceptible state. 

Then, spontaneous spiking from the broadcaster neurons promotes susceptible silent 

neurons into the active state. The highly interconnected nature of the early inspiratory 

neurons begins to dominate the dynamic evolution of network activity soon after in a 

cycle of recurrent excitation.

Figure 3.4A illustrates that burst onset is extremely sudden and cascade-like, 

overwhelmingly dependent on positive feedback. Burst onset is much faster than the 

slow recovery from refractoriness that dominates the majority of the expiratory phase. 

Recurrent excitation can only take place once a critical fraction of early inspiratory 

neurons attain the susceptible state. Otherwise, positive feedback cannot spread and 

will shortly be extinguished from lack of susceptible cells. The tipping point where a 

cascade is inevitable depends entirely on the number of active and synaptically 

interconnected early inspiratory neurons, but is very difficult to determine analytically. 

Neurons are high-dimensional dynamical systems and their trajectories are determined 

by a complement of ionic currents. Moreover, the state of connectivity in the network 

changes constantly as neurons evolve independently and flow into and out of the 

discrete classes we dub active and susceptible.
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For the moment, we continue with a qualitative description focusing on the 

neurophysiology of the burst. Burst initiation depends on recurrent excitation. Thereafter, 

recurrent loops of positive feedback assist in sustaining the burst. Early inspiratory 

neurons project to other early inspiratory neurons, reinforcing their mutual excitation. 

Intrinsic inward currents, such as /Nap and /can . activate within constituent neurons due to

76 81 B
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Figure 3.4. A raster plot of the population of neurons illustrating network bursts. Each dot 
represents an individual neuron’s spike. Red dots indicate spikes from the early 
inspiratory neuron indicated on the ordinate. Blue dots represent late inspiratory neurons. 
The blue histogram represents the number of spikes in a 25 ms bin from late inspiratory 
neurons. A, Five simulated network bursts. B, A detail of one burst represented by the 
grey bar in A showing a network-mediated ectopic burst.

depolarization and calcium influx. /NaP causes greater numbers of spikes per burst and 

/can amplifies the magnitude of the inspiratory drive potential (Pace et al. 2007a; b). 

These intrinsic mechanisms further enhance the positive feedback, allowing the 

inspiratory burst to last up to several hundred milliseconds. During this time the early 

inspiratory neurons deliver massive synaptic drive to the late inspiratory neurons, which 

would otherwise remain silent. The late inspiratory neurons have high input conductance
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and large capacitance and thus tend to remain in a state of very low excitability. 

However, there are fewer of them so when the rhythmogenic kernel of early inspiratory 

neurons becomes fully active during inspiration, the input to the late inspiratory neurons 

is massively convergent (975 rhythmogenic neurons projecting to 150 motor relays), 

which evokes robust bursts in the late inspiratory population. One can envision the late 

inspiratory cells as a threshold element.

The burst terminates because high frequency spiking recruits activity-dependent 

outward currents that gradually hyperpolarize early inspiratory neurons. The activity- 

dependent outward currents in this model include calcium-dependent potassium currents 

(/sK-ca) and Na+/K+ ATPase pump current (/Na/x-ATPase). In the real system this effect may 

occur because of the activation of other important outward currents which have not yet 

been fully elucidated. In this model, /sx-ca and /Na/x-ATPase currents cause spiking cessation 

in early inspiratory neurons and the consequent breakup of feedback loops, which very 

rapidly disassembles the network activity. Since neither calcium nor sodium clearance 

exceeds the rate of breakup of the feedback loops, the early inspiratory neurons 

continue to be influenced by /Sx-ca and /Na/x-ATPase for several hundred milliseconds after 

synaptic inputs stop and the inspiratory burst terminates, which is the ionic explanation 

for the post-inspiratory after-hyperpolarization, i.e., what causes the early inspiratory 

neurons to enter a hyperpolarized refractory state.

The broadcasting early inspiratory neurons also enter a transient refractory state 

after feedback loops are broken because they also express /sx-ca and /Na/x-ATPase (Fig. 

3.3B). These neurons recover relatively fast and begin spiking with their characteristic 

low frequency rate, which then returns us to the point in the cycle where our analysis 

began.
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Since the recovery process in silent early inspiratory neurons is the limiting factor 

in generating a subsequent burst they function as refractors. That is, in the context of 

network rhythmogenesis their primary role is to control the duration of the inter- 

inspiratory interval via their rate of recovery to the susceptible state. The dominant role 

of early inspiratory neurons with low frequency interburst spiking is to seed the network 

with a steady stream of excitatory synaptic potentials that can activate susceptible 

neurons, so we refer to them as broadcasters, which cannot and do not alone control 

when their stream of excitation will cause the refractors to coalesce and initiate the next 

burst. This illustrates one possible reason heterogeneous properties are important in the 

network.

Burst initiation

Recurrent excitation begins in the early inspiratory population, so this fraction of the full 

inspiratory population encapsulates the dynamics of burst initiation.

First we examine ‘ectopic’ bursts where the kernel partially assembles but fails to 

evoke motor output (Fig. 3.5). This phenomenon is frequently observed in the preBotC 

and illustrated in a field recording of the preBotC in Fig. 3.5A. Figure 3.5B plots an 

analogous behavior in simulated data by plotting snapshots of active early inspiratory 

neurons and the susceptible neurons. The point at which the peak number of active 

neurons in the ectopic burst (a) corresponds to the peak number of active neurons in the 

full burst (b). These two points differ only insofar as many more susceptible neurons are 

available prior to the full burst (b). The ectopic burst fails because positive feedback 

cannot occur; a sufficient number of early inspiratory population have not recovered from 

refractoriness. Also, note that the slope of both the preBotC field-recording (indicated by 

dashed lines) and simulated data is rather shallow in the ectopic bursts while
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substantially steeper in the full burst. This suggests that additional neurons are more 

easily recruited when the full burst occurs in both the model and the experimental data.

We now define an active component as a contiguous set of active neurons that 

share either inbound or outbound synaptic connections. At any time, the network can 

contain refractory or susceptible neurons (which are inactive) as well as isolated active 

neurons, and finally active components comprising several synaptically interconnected 

active neurons. A giant component exists when all the active neurons in the network are 

contained within one active component. The giant component can grow or contract as 

neurons become active and join the giant component or become inactive and leave the 

component, respectively.

The presence of a giant component can be analytically determined using the 

Molloy-Reed criterion (Molloy and Reed 1995). If we treat the network as a graph, by 

analyzing its state in snapshots of time, we can consider the fraction of active neurons 

and their respective connectivity at every time point using the following equation:

^ k(k - 2 ) p k, where k is the number of output connections between active neurons
k

(mathematicians refer to this number as the degree of a node in the graph) and pk is the 

fraction of neurons with a given k. A giant component has formed when the Molloy-Reed 

criterion crosses zero (indicated with vertical dashed lines in Fig. 3.5B-D).

The giant component is formed from an agglomeration of smaller active 

components. Figure 3.5D shows the size of all the active component sizes at each 

snapshot of the network (black dots). At each time step there can be 0, 1 or more active 

components. As the Molloy-Reed criterion progresses toward crossing zero (Fig. 3.5C), 

the active components converge to form one giant component and the burst is spread 

throughout the population.
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Figure 3.5. Comparison of 
experimental and simulated burst 
initiation. A, Field recording (see Fig.
2.5) of the preBdtC with XII activity. 
Dashed lines highlight the change in 
slope between the ectopic and 
inspiratory bursts. B, The fraction of 
simulated neurons plotted during an 
ectopic burst (a) and the beginning of 
an inspiratory burst (b). C, The Molloy- 
Reed criterion calculated at each 
snapshot. The time it crosses zero is 
indicated by a vertical dashed line 
through B-D indicating when a giant 
active component has formed. D, The 
size of every active component at each 
snapshot illustrating that as they cross 
the vertical dashed line they merge into 
one component (the giant component).

Figure 3.6 illustrates self-organization in the network using two illustrative sets of 

snapshots of the early inspiratory population from the same data plotted in Fig. 3.4B, 

3.5. Each early inspiratory neuron is denoted by a square where black squares are 

refractory or susceptible neurons, white are active neurons with no synaptic connections 

to any other active neurons (i.e., these are active components of size 1), and the other 

colors represent active neurons within connected active components. Active
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components exceeding size 1 have been laid out below the grid to illustrate just the 

active components and their size and shape.

Fig. 3.6A shows the assembly and disassembly of components of neurons during 

the ectopic burst. The neurons assemble several small components, but none of the 

other early inspiratory neurons are active. On the left (t=79.1), there are nine active 

components (n=2,2,2,4,5,7,9,10,11) and fifteen active components of size 1. At the next 

time increment (t=79.2), many neurons have joined the blue component to become a 

larger active component (n=72). In the next time step (t=79.3), the large component 

breaks apart and becomes a smaller component (n=39) with additional new active 

neurons but a net decrease. The active component disintegrates as intrinsic cellular 

properties bring on refractoriness (e.g., /Nap inactivation, or /SK-ca and /Na/K-ATPase 

activation), which is not counter balanced by positive feedback to maintain activity in the 

active neurons. This illustrates that active components are fluid and evolve dynamically. 

This also shows that positive feedback can be prevented by intrinsic currents.

Figure 3.6B shows the rapid assembly of a giant component during the onset of 

the full burst. Here we can see that many small active components have been subsumed 

into the giant component, which includes all early inspiratory neurons since by this time 

the vast majority have relaxed back to their intrinsic susceptible states. The giant 

component grows as more neurons evolve toward the susceptible state and get 

recruited by active cells already contained in the giant component. This is because more 

refractors have become susceptible to activation.
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A. An active component assembles and breaks down

t=79.1s 79.2 s 79.3 s

B. Giant active component required for a burst (1=80.3)
t=80.1 s 80.2 s 80.3 s

n=2

n*2

n*2 i 

n *2 <

Figure 3.6. Dynamics of active 
component assembly. Each early 
inspiratory neuron is indicated by a 
square in the grid with black squares 
indicating inactive neurons, and the 
colors indicate active neurons in 
contact with other active neurons 
(part of an active component). 
Compare each snapshot’s time to 
Figure 3.4. A, Three snapshots 
illustrating the evolution of active 
components during the assembly 
and disassembly during an ectopic 
burst. B, Three other snapshots 
showing the assembly of a giant 
component.

The role of persistent sodium current

The role of /Nap and pacemaker neurons has been experimentally tested using riluzole, 

which blocks /Nap with half-maximal doses (EC50) of 3 pM (Del Negro et al. 2002a; Doble 

1996; Paton et al. 2006; Ptak et al. 2005; Urbani and Belluzzi 2000). This is a critical test 

of any viable model simulating how the respiratory rhythm is generated. We simulated 

the experiment and found that fully blocking /Nap did not prevent network-wide rhythmicity 

(Fig. 3.7), in agreement with experiments (Del Negro et al. 2002b; Del Negro et al. 2005; 

Pace et al. 2007b; Paton et al. 2006; Pena et al. 2004). Removal of /Nap reduced the
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number of spikes per burst, consistent with its important role in promoting high spike 

frequency (Lee and Heckman 2001; Pace et al. 2007b).

After the elimination of /Nap, the fundamental assembly of the giant component is 

the same (Fig. 3.7B) as when /Nap was present (Fig. 3.5B). Therefore, /Nap and voltage- 

dependent pacemaker neurons are not necessary for rhythmic network activity. 

However, /Nap is not irrelevant because it promotes the high frequency spiking that drives 

robust output and the temporal summation of EPSPs among interconnected early 

inspiratory neurons during positive feedback. Also due to its subthreshold voltage 

dependence, /n3p promotes spontaneous spiking in neurons, which means that neurons 

that contain high amounts of this current can serve a similar purpose as broadcaster 

neurons by spontaneously exciting neighboring neurons that can serve to initiate a 

network-wide inspiratory burst if the susceptibility conditions are satisfied.

Lesions of rhythm-generating neurons in the preBotC

In the first chapter, we discussed how the ribosomal toxin, saporin, has been used to 

lesion NKR+ neurons in vivo as an SP-saporin conjugate. The SP-saporin lesioning of 

NKR+ cells in the preBotC first disrupts breathing during sleep (McKay et al. 2005) and 

then progresses to respiratory ataxia and severe pathophysiology (Gray et al. 2001).

We were interested in determining if simulations of this experiment would offer 

insights into how robust the inspiratory network is to destruction of its members since 

little is known about the degree of interconnections between preBotC neurons. We 

simulated these experiments by progressively removing portions of the NKR+ early 

inspiratory population and assuming that we have a successful inspiratory effort when 

the spike density across the whole late inspiratory population crosses a motor threshold 

of 50 spikes/bin. This motor threshold has arbitrary magnitude that represents the ability

of premotoneurons to sufficiently excite motoneurons.
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Figure 3.7. Blockade of persistent Na+ current does not prevent rhythmogenesis. The 
simulated extracellular K+ concentration ([K+]0) was decreased and the gt0nic-e conductance 
was increased to simulate in vivo conditions. A, A raster plot showing the population activity 
as the persistent Na+ current is attenuated over time to simulate an application of riluzole. 
Compare to Fig. 3.3. B, Blockade of persistent Na+ current does not affect the ability to 
generate ectopic or inspiratory bursts. Compare to Fig. 3.4.

We randomly selected 580 of 975 (60%) early inspiratory neurons and classified 

them as NKR+. Figure 3.8A shows how the respiratory period changes as the number of 

early inspiratory neurons destroyed increases, which depends on sufficient spiking in the 

late inspiratory population to cross motor threshold. Lesioning of just the NKR+ 

subpopulation results in a minimal decrease in period until lesioned cells reach 80%, at
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which time we observe some longer-lasting silent intervals because rhythmic activity in 

the early inspiratory neurons fails to generate enough activity to cause late inspiratory 

neurons to cross the motor threshold. At 90% lesioned, the synaptic drive from the 

rhythm generator is rarely sufficient to cause motor output, which we interpret as the 

model exhibiting central apneas (a failure to inspire).

The inspiratory rhythm is robust to the 80% lesion because of the abundance of 

synaptic connections. Even as neurons are removed from the early inspiratory 

population, giant components can be formed. As we illustrated in Fig. 3.7 the giant 

component can grow or contract in size as active cells come and go, but the presence of 

the giant component ensures that all the active early inspiratory neurons are 

synchronized, and so the total number of cells driving the late inspiratory neurons is still 

quite high, even when 80% of the NKR+ early inspiratory neurons are gone that may also 

participate in the drive to the late inspiratory neurons.

However, these data raise the interesting possibility of recovering in vivo 

breathing even in the case of severe loss of NKR+ neurons (Gray et al. 2001; McKay et 

al. 2005). In simulations it is possible to cross the motor threshold even up to nearly 90%  

lesioning by enhancing the maximum synaptic conductance by 15% and the time 

constant of AMPAR de-sensitization by 50% which is analogous to an application of 

cyclothiazide (Funk et al. 1995). These modifications cannot increase the number of 

connections, but do effectively increase the time window for active neurons to recruit 

susceptible and refractory cells, thereby boosting the burst-sustaining effects of 

feedback loops. This makes the existing synaptic connections more effective at exerting 

a postsynaptic response. The net result is an enhancement of the ability of active 

neurons to collectively organize into active components, and then agglomerate into a
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giant component. As long as a giant component can form (and the network is not 

fractured) then inspiratory motor output can occur and breathing is not lost.

0% NKR cells lesioned

50

B

50% NKR cells lesioned

50

80% NKR+ cells lesioned

• a*U> Lilli Jj.

90% NKR+ cells lesioned 

 .........................- I ....................................a..I 50

90% NKR cells lesioned + synaptic enhancement

.J.w..Jl...l..lM...Jw....... JJl.Jj,.j.l...l......J.l...u.lj.JiU .....L...IJ....50

5 s

Figure 3.8. Simulated SP-saporin 
lesioning of NKR+ neurons. A, 
Progressive lesioning reduces the 
drive to premotoneurons which 
eventually results in periods of 
simulated apnea (>90%  lesioned). 
B, Simulated cyclothiazide, which 
enhances AMPAR-mediated 
phasic excitation, recovers much of 
the drive back to the 
premotoneurons.

Both the simulated fraction of NKR+ inspiratory neurons and total number of 

neurons in the network are much higher than what we recently estimated the actual 

values to be (see Fig. 1.10 and Chapter 1’s Discussion). For this modeling study, these 

values were roughly estimated based on the limited information available at the time. 

The motor threshold was imposed because even at 100% NKR+ lesioning with this 

topology and network size, there were synchronous rhythmic bursts in the network (not 

shown). Since the actual percentage of NKR+ neurons is apparently less than what we 

simulate here, the analysis may still be valid depending on the degree of connectivity 

between inspiratory neurons.

The in vivo system contains many additional layers of complexity, including the 

embedding of the preBotC in an extensive respiratory pattern formation network and
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sensory feedback. Nevertheless, insights from our analyses make several testable 

predictions about the breathing system in whole animals. First, in order for functional 

breathing rhythms, a finite fraction of NKR+ neurons (on the order of 15-20%) must exist 

and must be highly synaptically interconnected and thus able to form feedback loops, (2) 

sporadic periods of apnea due to NKR+ neuron destruction can result from a failure to 

drive motoneurons, not necessarily the loss of central rhythmogenesis, (3) that the 

enhancement of synaptic strength within the preBotC may be able to recover breathing 

over some finite range of lesioning that was previously causing periods of apnea.
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3.4. Appendix 1: Group-Pacemaker Model Equations and Configuration

Units
I a  pA 
gmnS 
V = mV 
C m pF

Initial Values
Vo = -55 mV
[Ca+]0 = 0.3 pM
[Na+]0 = 4.5 mM
(m/Oo = 0.12
(h A)o = 0.24
(Sampa) o = 0.002
(nrica)o = 0.017
(hca)o = 0.43
(mH)0 = 0.8
(msK-Ca)o = 0.01
(nK-DFt)o = 0.002
(hNap)o = 0.61
(S nmda) o = 0.002
( m Na)o = 0.01
(hNa)o = 0.981

Network Topology

A neuron may never connect to itself and may not have duplicate synapses to another 
neuron. Target neurons for synaptic connections are picked from a uniform distribution 
of the target population.

Chemical Connections:

Every early inspiratory neuron, with membrane capacitance Cm, is connected to (pChemCm 
other neurons, where cpchern =  < N j„ > /< C m>  and the number of inbound synapses of the 
target neuron cannot exceed cpChemCm. Late inspiratory neurons do not have any 
outbound synapses because they represent the output of the preBOtC.

Electrical Connections:
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Every early inspiratory neuron is electrically connected to <pe/ecCm other early inspiratory 
neurons, where <peieC = < N eiec> /<C m>  and the neuron may not connect both chemically 
and electrically to the same target neuron.

975 Early Inspiratory (where 580 random neurons are NK1R+) 
150 Late Inspiratory

Parameters

Cm-earty =
Cm-late = 8 6  ± 1 3  pF  
<Nout> = <Nin> = 10 
< Nelec'> “ 13

[r]f = 140mM 

[Na+]; -  5 mM 

[Na+]c = 150 mM 

[Ca2+]0 =1.5 mM 

[Mg2+]a = 1 mM 
ECa = 40 mV

&CAN = 0
Eh = -40  mV 
ENa = 80 mV

A.
pF

Vol(L) = 1 x 103 Vol(m3) 

Vol(oL) = 1 x 109Vol(L) 

Vol(pL) = 1 x 1012Vol(L)

F = 96500 C/mol

—  = 25.9 mV 
F

E = 0 mVsyn-e

kC A N  ~  H -M

InlK-ATPnxe ~ ^'Na lK-ATPase -1 0  mM

^ SK-Ca  “  ® *3
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^ h - A  =  “ 60 mV 

e h _ C a = -52.4 mV 

=  - 4 4 - 1  mV 
d k - N a - p  = -48 mV 

& m - A  = “ 37 mV
-27.82 mV 

= -78 mV 
U - f -3 6 m V
® m -N a -P  =  “ 4 0  m V

-  -30 mV
® s- a m p a  = -10 mV

ŝ-NMDA = -10 mV

a *-A = 8 mV 
° h - c a  = 5.23 mV 
° k - N a - F  = 7 mV

° h - N a - P  =  0  m V

a m-A = - 7  mV 
° m - C a  = -5 .69  mV 
ff^ = 7 m V

= -8 .5  mV

a m -N a -P  =  “ 6  m V  

a n -K -D R  ~  -5  m V  

a s-AMPA =  “ 5  mV
a s-NMDA “  -5  mV

TAMPA= 5 rns 

r Ca = 1600 ms 

r h_A = 500 ms 

T*-c« = 15 ms 
T*-* -8 m s  
*h-Na-p = 10000 ms 

Tm-A = l mS
T m -C a  =  5  mS 

T n -K -D R  ~  15 mS

t nmda = 30 ms

T S K-C a  =  1 °  mS
Y = 100 pA

If any conductance/current is less than zero the value is recalculated from the given 
distributions (mean ± standard deviation):
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gA = 500000 ± 500000 • Am nS 

~8ampa = 1125 ± 1875 *A„,nS  

gCa = 1125 ± 1875 *A mnS 

gCAN = 300000 ± 30000 •A mnS 

gjle c  = 3 0 0 ± 3 0 *A mnS 

gh = 25000 ± 50000 *A„, nS 

gNa_F = 7500000 *A mnS 

gNa_P = 25000 ± 25000 *A m nS 

8k-dr = 0-4 • gNa-K nS 

gSK-ca= 50000 ± 45000 «AmnS 

gL_K = 87500 ± 35000 • Am nS 

Snmda = 3000 ± 250 *A m nS 

i  NalK -ATPase  = 0.9e7 ±  1.8e3 • A„ nS

For in vitro slice simulations
Ek = -71 mV

~8,„,«c - e  = !-5 nS

For in vivo simulations
Ek = -99  mV

8 , „ me- e  = 7 -5 nS

NalK-ATPase tonic-e AMP A NMDA

4 C a 2 i  ~ d c n +  e i N M D A )  I C a 2 ' ] ,

0(1.5) = 0.114

fN a - F  +  1 N a -P  + ® N a / k ( E C AN  ̂ ) ^ C A N  +  a  N a ! syn_ e , 5 ) ( J A M p A  + I N M QA ) + a Nq IK  ( E  h ’^)A  + 37,NalK-ATPase

a N a l K ^ C A N ' ^ )  ~  0.938 
aNalAEVn-"5)- 0-938
«M,/x(£A’5) = 0-167
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I c a n  -  S c a n  <  s a m p a  > in ^ c a n )
( LCa2+]

[C a2+] + kCAN

^S SAMPAh
<  SAMPA >  in - AL

^ N a -F  ~  S N a -F ^ m N a - F ^ y y )  ^ N a -F

dmN 
dt

—  = mNâ ( V ) - m Na

1
mNa-* (V )  j + e(v-e_„, )/a„_M 

d h N a  _  h N a _„,(VQ —

d t  1 1,  _ \ r „

V - O O -
1

1N a -P  ~  8 N a - r ( m N a -P -™ (y ) )h .N a^ p ( V  E N a )

mNâ (V) = - 1N° °° g(V~&m-Na-pyam-Na-P

' h’Na-P  _  n N a -P -d h j jn  _p h fl/a -P -o o iV ')  ^N a-P

dt T;

V - 0 0 -

h -N a -P  

1
1+*' A fo -f ) / c tA -Na-P

I/C -D R  =  S k -D R ^ K - D R  ( y  E k )

dnK_n„ n 
dt
K -D R  _  "K - D R - ° °  0 0  n K -D R

n K -D R -°°(V ) '

X n -K -D R  ( ^ 0  =  '

Tn-K-DR̂ y)
1

cosh V - 0 .
2a,n -K -D R

^Ca ~  S ea  m Ca ̂  Ca ( V  ^ C a  )

mCa_ J V )-  1J ~®m-Ca y^ m -C a

dmCa mCa_ ,J V )-m Ca

d t  T m-Ca

hca-™(V) = j + e(V-eM VaM
dhca hCn_ J V ) - h Ca 
dt c
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h=gA>nAhA( y - E K) 
1

mA.x(V ) =
l  + e'Xv-e„-A V°,-A

dmA mA_x -  mA

d t

V » 0 0  =
1

dhA hA_r,_ - h A

d t

h  = 8hmh(V ~ E h)

1

r m_A(V) = 1255.8e°

dm h _ m h_x - m h

dt rm_„(y)

^S K-C a ~  8 s K -C a m SK-Ca 0 ^  ^ K )

1mSK-Ca-oc(\-Ca l|) !
1 +

\4

[Ca ]j

dmSK_ca mSK-C a-°° m SK-Ca  

d t  t  SK-Ca

1 NalK -ATPase =  I  Na lK -ATPase -

[Afa j( + (kNa/K_ATpase)

I a MPA ~  S a m p a  ( SAMPA ) : ( V  E s y n -e  ) 
i

d^A M P A  _  (1 ~  SAMPa ) SA M P A - ° ° (V )  s a m p a

d t t AMPA

1
S A M P A - J V ) :

l  + e1,(y~&s-AMPA )/cr.•AMPA >l i J s-AMPA
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SnMDA (SNMDA ),<y- ̂syn-e')
INMDA r , ^ „ 2 + i

" e1 + lMglo_r-0.062V
3.57

d SNMDA _  0  ~  SNMDA ) SNMDA-<* 0 0  ~  SNMDA 

d t  T NMDA

SN M D A - J V )  =  i + e W -e ,_ m M )lo ,_ ialDA

Ielec=8elec'2(V - Vi)
i

t to n ic -e  ~  8 t o n ic - e i^  ^ s y n ^  

t L - K  =  8 l - k ( V  ~  E K )

(1(0) = o

1 (0  = gauss(0,-y/y/A?)

3.5. Appendix 2: Implementation and Operation of neuronetsim

This appendix describes how the software program, neuronetsim, may be used to 

simulate large networks of a variety of neurons. These neurons are described in the 

Hodgkin-Huxley style and use ordinary differential equations (ODEs) coded in a style 

similar to XPPaut. The main advantage of neuronetsim over similar programs such as 

XPPaut is that separate .ode files that describe different neuron types may be easily 

compiled together into a binary file that is optimized for speed. Emphasis was placed on 

modularity of both the source code, to make core modifications easier, as well as the 

modularity of use, to make development of large networks of diverse neuron types 

easier.
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Model definitions of Neuron Types

The set of ODEs that describe neuron types may be different for each neuron type. The 

model author has extensive control over how the equations are calculated by potentially 

defining snippets of C code that can optimize the execution of specific operations.

Once the definitions of each neuron have been constructed, a script can be 

executed that compiles binaries, associating neuron types into “experiments”, that may 

be used to simulate the neurons. As long as the model equations for the experiment do 

not change, a new binary does not need to be created.

Listing 3.1. illustrates the model definition of an early inspiratory neuron as 

described in the preceding text and defined in the previous appendix. Comments appear 

with '#’ preceding each line which describe what the subsection of the model defines. 

Initial conditions and neuron parameters for the ODEs will be defined in the network files 

(described in the next subsection of this appendix).

Listing 3.1. Earlyl_Neuron.ode

# Model of Group-Pacemaker neurons within the preBotC

# Current Equations
INaF(m_NaF, h_NaF,V) =g_Na_F*m__NaF*m_NaF*m_NaF*h_NaF*(V-E_Na)
Iampa(V) = g_ampa*sum_s_ampa()*(V-E_syn_e)
Inmda(V) = g_nmda*sum_s_nmda()*(V-E_syn_e)/ (1+MgConc*(exp(- 

0.062 *V))/3.5 7)
I_NaK(Nai, V)=calcINaK(Nai, V)
INaP(h_NaP,V) =g_Na_P*x_inf(theta_m_Na_P,sigma_m_Na_P,V)*h_NaP*(V-E_Na) 
IK(n_KDR,V) = g_K*n_KDR*n_KDR*n_KDR*n_KDR*(V-E_K)
ICa(m_Ca, h_Ca, V) = g_Ca*m_Ca*(h_Ca+h_inf) * (V-E_Ca)
IKCa(m_KCa, V) = g_KCa*(m_KCa*m_KCa)*(V-E_K)
IL(V) = g_L_K*(V-E_K)+g_L_Na*(V-E_Na)
I_A(m_A, h_A, V) = g_A*m_A*h_A* (V-E_K)
IH(m_H, V) = g_H*m_H*(V-E_H)
ICAN{Cai, V) = g_CAN*avg_s_ampa()* (V-E_CAN)* (Cai/(Cai+kCAN))
I_nz() = gauss(0.Of, sqrt(gamma/dt))
I(m_NaF, h_NaF, h_NaP, m_H, m_A, h_A, m_Ca, h_Ca, n_KDR, m_KCa, Nai, 

Cai, V, nzVar) = ((INaF(m_NaF, h_NaF, V) + INaP(h_NaP,V)+IH(m_H, V)
+ I_A(m_A,h_A, V) + IK(n_KDR,V)+IL(V) + Itonic(V) + ICa(m_Ca, h_Ca, 
V)+ I_NaK(Nai, V) + ICAN(Cai, V) + Ielec(V) + IKCa(m_KCa, V) + Iapp 
+ nzVar)) + (Iampa(V) + Inmda(V))

Ielec(V)=g_e*Velec()
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Itonic(V)=g_tonic_e*(V-E_syn_e)

# Differential Equations
dV/dt = -I(m_NaF, h_NaF, h_NaP, m_H, m_A, h_A, m_Ca, h_Ca, n_KDR, 

m_KCa, Nai, Cai, V, nzVar)/C

dCai/dt=-(ICa(m_Ca, h_Ca, V)+0.114f*Inmda(V))/(2.Of*Vol_nL*F)- 
(Cai/1600.Of) 

dm_A/dt=dxdt(x_inf(-37.Of,-7.Of,V),m_A,tau_m_A) 
dh_A/dt=dxdt(x_inf(-60.Of,8.Of,V),h_A,tau_h_A)
ds_AMPA/dt=dxdt((l-s_AMPA)*x_inf(theta_s_ampa, sigma_s_ampa, V ) ,k_r 

s_AMPA,tau_s_ampa) 
dm_Ca/dt=dxdt(x_inf(theta_Cam,-5.69,V),m_Ca,tau_Cam) 
dh_Ca/dt=dxdt(x_inf(theta_Cah,5.23,V)*(1.0f-h_inf),h_Ca,tau_Cah) 
dm_H/dt=dxdt(x_inf(-78.0,7.0,

V),m_H,gaussian(1735.0,41.56f,5500.Of,V,18.54f)) 
dm_KCa/dt=dxdt(hilleqnngl(kKCa,Cai,4.0),m_KCa,tau_KCa) 
dn_KDR/dt=dxdt(tau_n, theta_n,sigma_n,n_KDR,V) 
dh_NaP/dt=dxdt(tau_h_Na_P, theta_h_Na_P,sigma_h_Na_P,h_NaP,V) 
ds_NMDA/dt=((l-s_NMDA)*x_inf(theta_s_nmda, sigma_s_nmda, V) - k_r * 

s_NMDA)/tau_s_nmda 
dNai/dt=-(INaF(m_NaF, h_NaF, V) + INaP(h_NaP, V) + 0.938f*(ICAN(Cai 

V)+Inmda(V)tlampa(V)) + 0.167f*IH(m_H, V)+g_L_Na*(V-E_Na) + 3.Of 
I_NaK(Nai, V ) )/(Vol_pL*F) 

dm_NaF/dt=dxdt(x_inf(theta_m_Na_F, sigma_m_Na_F, V),m_NaF,1.Of) 
dh_NaF/dt=dxdt(x_inf(theta_h_Na_F, sigma_h_Na_F, V),h_NaF,8.Of)

# Auxiliary Functions

inline float EarlyI_Neuron::calcINaK(float Nai, float V) const 
{

return i_NaK*hilleqnngl(kNaK, Nai, 3.0);
}

inline void EarlyI_Neuron::initializeUnconnectedDelay()
{

dVariables[EarlyI_Neuron_s_AMPA_INDEX] = O.Of; 
dVariables[EarlyI_Neuron_s_NMDA_INDEX] = O.Of;

}

inline float EarlyI_Neuron::sum_s_ampa() const 
{

float s_ampa = O.Of;
for (int j = 0; j < excitedFromLength; j++) {

Neuron* fromNeuron = (excitatoryConnectionFrom[j ]); 
s_ampa += fromNeuron->get_s_AMPA();

}

return s_ampa;
}

inline float EarlyI_Neuron: : avg__s_ampa () const 
{

float s_ampa = sum_s_ampa(); 
if (excitedFromLength > 0 )  {

s_ampa /= (float)excitedFromLength;
}
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else {
s_ampa = O.Of;

}
return s_ampa;

inline float EarlyI_Neuron::sum_s_nmda() const 
{

float s_nmda = O . O f ;
for (int j = 0 ;  j < excitedFromLength; j++) {

Neuron* fromNeuron = (excitatoryConnectionFrom[j ]); 
s_nmda += fromNeuron->get_s_NMDA();

}
return s nmda;

inline float EarlyI_Neuron::Velec() const 
{

float V_elec = O.Of;
for (int j = 0; j < electricalLength; j++) {

Neuron* fromNeuron = (electricalConnection[j ]);
V_elec += (getV() - fromNeuron->getV());

}
return V_elec;

}

Network and neuron parameter definitions

We have separated the definition of neuronal models from the particular parameters of 

each neuron within the network. Along with network structure, this data is contained in 

network definition files (.net files). Network files keep track of this information by listing a 

definition of each neuron in series within a text file. Each neuron definition maintains 

parameter values, such as maximum conductance values of whole-cell currents, as well 

as which other neurons it is connected to by excitatory connections (AMPA-, NMDA- 

mediated), inhibitory connections (glycinergic-mediated), or electrical coupling through 

gap junctions. Listing 3.2 illustrates a simple example of a two-neuron network of early 

inspiratory neurons arranged in a feedback cycle. These files may be modified in 

standard text editors, although due to the large size and complexity of these files, non

trivial changes are best accomplished with simple scripts as described in the next sub

section.
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Listing 3.2. default.net

network: default.net

Network Name: SimpleNetwork 
# Neurons: 2
Network Type: None

Neuron(s) Info:

Neuron ID: 1
Neuron Name: EarlyI_Neuron

# of inbound excitatory connections: 1
# of outbound excitatory connections: 1
# of inbound inhibitory connections: 0
# of outbound inhibitory connections: 0
# of electrical connections: 8 
Excitatory Connections To:

2
Inhibitory Connections To:
Electrical Connections:

Initial Conditions:
0
1
2
3
4
5
6 
7

-55
0.3
0.12
0.24
0 . 0 0 2
0.017
0.43
0.8

8 0.01 
0 . 0 0 2  
0.61 
0 . 0 0 2  
4.5 
0.01 
0. 981

9
10 
11 
12
13
14

Associated Variable Values:
39.7457743716
0 . 0

C
E_CAN
E_Ca
E_H
E_K
E_Na
E_syn_e
F
lapp
MgConc
Vol_L
Vol_nL
Vol_pL
area

-40.0
-71.0
80.0
0 . 0
96500.0 
0 . 0
1.0
2.35618972351e-ll 
0.0235618972351 
23.5618972351 
3.97457743716e-05 
25.0201050273

40.0

g_A
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g_CAN 12.4157990903
g Ca 1.10413365284
g H 0.440410463875
g_K 32.7902638565
g KCa 1.91808335607
g_L_ K 4.393743858
g_L_Na 0.0
g Na F 81. 9756596414
g Na P 1.37523460191
g_ampa 0.46756593312
g_e 0.0112708454119
g_nmda 0.111974304452
g_tonic_e 1.5
gamma 100.0
h_inf 0.0
i NaK 357.635074337
id 1
kCAN 0.5
kKCa 0.3
kNaK 10.0
k r 1.0
name Earlyl Neuron
radius 0.00177844545295
sigma h Na F 7.0
sigma_h Na P 6.0
sigma m Na F -8.5
sigma m Na P -6.0
sigma n -5.0
sigma s ampa -5.0
s i gma s nmda -5.0
tau_Cah 15.0
tau Cam 5.0
tau_KCa 10.0
tau h A 500.0
tau h Na P 10000.0
tau m A 1.0
tau_n 15. 0
tau s ampa 5.0
tau s nmda 30.0
theta Cah -52.4
theta Cam -27.82
theta h Na_F -44.1
theta h Na P -48.0
theta_m_Na_F -36.0
theta m Na P -40.0
theta n -30.0
theta_s ampa oo \—1 1

theta s nmda oo \—1 1

Neuron ID: 2
Neuron Name: EarlyI_Neuron

# of inbound excitatory connections: 1
# of outbound excitatory connections:: 1
# of inbound inhibitory connections: 0
# of outbound inhibitory connections:: 0
# of electrical connections: 0
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Excitatory
1

Connections To:

Inhibitory Connections To:
Electrical Connections:

Initial Conditions:
0 -55
1 0.3
2 0.12
3 0.24
4 0.002
5 0.017
6 0.43
7 0.8
8 0.01
9 0.002
10 0. 61
11 0.002
12 4.5
13 0.01
14 0. 981

Associated Variable Values:
C 38.0098781943
E CAN 0.0
E Ca 40.0
E_H -40.0
E_K -71.0
E_Na 80.0
E syn_e 0.0
F 96500.0
Iapp 0.0
MgConc 1.0
Vol L 2.20352778012e-
Vol_nL 0.0220352778012
Vol pL 22.0352778012
area 3.80098781943e-
g_A 9.00131009937
g_CAN 11.2976380619
g Ca 1.10912734388
g H 0.495979939012
g K 31.3581495103
g_KCa 0.877335100107
g_L_K 4.5930265925
g_L_Na 0.0
g Na F 78.3953737757
g Na P 1.51199993795
g_ampa 0.419593761236
g_e 0.0108231241714
g nmda 0.12333005872
g tonic (3 1.5
gamma 100.0
h_inf 0.0
i NaK 342.189979423
id 2
kCAN 0.5

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



kKCa 0.3
kNaK 10.0
k_r 1.0
name Earlyl Neuron
radius 0.00173917509195
sigma h Na_F 7.0
sigma h Na_P 6.0
sigma m Na F -8.5
sigma_m Na_P -6.0
sigma_n -5.0
sigma s ampa -5.0
s i gma s nmda -5.0
tau Cah 15.0
tau_Cam 5.0
tau KCa 10.0
tau h A 500.0
tau_h_Na_P 10000.0
tau m A 1.0
tau_n 15. 0
tau s ampa 5.0
tau s nmda 30.0
theta_Cah -52.4
theta Cam -27.82
theta h Na F -44 .1
theta h Na_P oCO1
theta m Na F -36.0
theta_m_Na_P -40.0
theta_n -30.0
theta s ampa oo

 
\—1 1

theta_s_nmda oo
 

\—1 1

Manipulation of network structure and neuron parameters

When large networks of neurons are simulated it is essential to make the data easily 

accessible and usable for manipulation. This is primarily accomplished by the 

development and execution of Python scripts.

When the experiment is compiled into a binary, as described earlier, Python code 

similar to Listing 3.3 is automatically generated. The model author has to fill in the details 

of how neuronal parameters are defined. This can entail simply setting constant 

parameter values, or more complex operations that the Python programming language 

makes available. In this example, a random cellular capacitance is generated (“self.C”) 

from a normal distribution and the volume and surface area of the neuron is calculated
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as if it were a sphere. Then, using the surface area, the script sets each cellular 

conductance by a random conductance density multiplied by the surface area. In this 

manner, as shown in Listing 3.4, we can easily create a network of early inspiratory 

neurons with heterogeneous parameters.

Listing 3.3. Earlyl_Neuron.py

#!/usr/bin/env python

from Connection import * 
from math import * 
from random import * 
from Neuron import * 
import sys

class EarlyI_Neuron(Neuron):
'''Represents a glutamatergic and rhythmogenic inspiratory neuron'''

def  init (self):
'''Initializes the neuron with default parameters.'''
Neuron. init (self)

self.id = 1
self.name = "EarlyI_Neuron"

# cellular parmameters 
self.C = gauss(45.0, 8.5)

# reversal potentials 
self.E_CAN = 0 . 0  
self.E_Ca = 40.0 
self.E_H = -40.0 
self.E_K = -71.0 
self.E_Na = 80.0 
self.E_syn_e = 0.0

# bias current (units in pA) 
self.Iapp = 0.0

# This calculates the area(cmA2), radius (cm), and volume of
# the cell based on capacitance
self.calculateGeometry()

self.F = 96500.0 # C/mol 
self.MgConc = 1.0 # mM

# cellular conductances (units in nS) 
self.g_A = -1.0
while self.g_A < 0.0:

self.g_A = gauss(500000.0, 500000.0)*self.area
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self.g_Ca = gauss(30000.0, 2500.0)*self.area 
self.g_CAN = gauss(300000.0, 30000.0)*self.area 
self.g_H = -1.0 
while self.g_H < 0.0:

self.g_H = gauss(25000.0, 50000.0)*self.area

self.g_KCa = -1.0 
while self.g_KCa < 0.0:

self.g_KCa = gauss(50000.0, 45000.0)*self.area

self.g_L_K = -1.0 
while self.g_L_K < 0.0:

self.g_L_K = gauss(87500.0, 35000.0)*self.area

self.g_Na_P = -1.0 
while self.g_Na_P < 0.0:

self.g_Na_P = gauss(25000.0, 25000.0)*self.area 
self.i_NaK = gauss(0.9e7, 1.8e3)*self.area 
self.g_L_Na = 0.0
self.g_Na_F = 7500000.0*self.area 
self.g_K = 0.4*self.g_Na_F

self.g_ampa = gauss(11250.0, 250.0)*self.area 
self.g_e = gauss(300.0, 30.0)*self.area 
self.g_nmda = gauss(3000.0, 250.0)*self.area 
self.g_tonic_e = 1.5

# noise
self.gamma = 100.0

# activation/inactivation parameters 
self.h_inf = 0.0
self.kCAN = 0.5 
self.kKCa = 0.3 
self.kNaK = 10.0 
self.k_r = 1.0 
self.sigma_h_Na_F = 7.0 
self.sigma_h_Na_P = 6.0 
self.sigma_m_Na_F = -8.5 
self.sigma_m_Na_P = -6.0 
s e1f .s i gma_n = -5.0 
self.sigma_s_ampa = -5.0 
self.sigma_s_nmda = -5.0 
self.tau_Cah = 15.0 
self.tau_Cam = 5.0 
self.tau_KCa = 10.0 
self.tau_h_A = 500.0 
self.tau_m_A = 1.0 
self.tau_h_Na_P = 10000.0 
self.tau_n = 15.0 
self.tau_s_ampa = 5.0 
self.tau_s_nmda = 30.0 
self.theta_Cah = -52.4 
self.theta_Cam = -27.82 
self.theta_h_Na_F = -44.1 
self.theta_h_Na_P = -48.0
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self.theta_m_Na_F = -36.0 
self.theta_m_Na_P = -40.0 
self.theta_n = -30.0 
self.theta_s_ampa = -10.0 
self.theta s nmda = -10.0

# simulation initial conditions 
dVariables = []
dVariables.append(-55) # Earlyl_
dVariables.append(0.3) # Earlyl_
dVariables.append(0.12) # Earlyl
dVariables.append(0.24) # Earlyl_
dVariables.append(0.002) # Earlyl_
dVariables.append(0.017) # Earlyl
dVariables.append(0.43) # Earlyl_
dVariables.append(0.8) # Earlyl_
dVariables.append(0.01) # Earlyl
dVariables.append(0.002) # Earlyl
dVariables.append(0.61) # Earlyl_
dVariables.append(0.002) # Earlyl_
dVariables.append(4.5) # Earlyl
dVariables.append(0.01) # Earlyl
dVariables.append(0.981) # Earlyl_
self.setStateVariables(dVariables)

Neuron_V_INDEX 0 
Neuron_Cai_INDEX 1 
Neuron_m_A_INDEX 2 
Neuron_h_A_INDEX 3 
Neuron_s_AMPA_INDEX 4 
Neuron_m_Ca_INDEX 5 
Neuron_h_Ca_INDEX 6 
Neuron_m_H_INDEX 7 
Neuron_m_KCa_INDEX 8 
Neuron_n_KDR_INDEX 9 
Neuron_h_NaP_INDEX 10 
Neuron_s_NMDA__INDEX 11 
Neuron_Nai_INDEX 12 
Neuron_m_NaF_INDEX 13 
Neuron h NaF INDEX 14

Listing 3.4. buildSimpleAIIToAIINetwork.py

#!/usr/bin/env python 
from Network import *

numberOfNeurons = 50 
neuronType = "EarlyI_Neuron"

# Create an empty network 
network = Network()

# Generate 50 early inspiratory neurons with default parameters 
network.addNewNeurons(neuronType, numberOfNeurons)

# get a reference to the list of neurons 
neurons = network.getNeuronsByType(neuronType)

# iterate over the neurons and assign random excitatory connections
# the other neurons within the list of neurons
for neuron in neurons:

neuron.assignRandomConnections(neurons, 49, Connection.EXCITATORY)

# save the network to a file 
network.save("default.net")
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Model execution

The network model may be executed from the command-line or shell scripts, such as 

Listing 3.5. The available arguments to the program are given in Listing 3.6. Data for 

individual neurons are output into files named “neuron_[ID].dat” in the current directory 

with a separate row for every timestamp. Columns indicate different data that the user 

can specify from the command-line with the default being the membrane potential. The 

“ID” is the unique “Neuron ID” number indicated in the “networkFilename.” The 

corresponding timestamp for each row of neuronal data is output in the “time.dat” file 

with a matching row number.

These data can be manipulated in any program that can read in row and tab- 

delimited text or by other scripts.

Listing 3.5. execute.sh

#!/bin/sh
../../bin/control -1 default.net -d 0.1 -M 20000 -m rk4wc -p 5 -c 10000

Listing 3.6. neuronetsim/bin/controi help output

Executed Command: ./control

usage: executeNetwork 
version: 3.0

-1 [networkFilename]
-d [step-size ]

-M [maximum time]

-m [euler, rk4, rk4wc, rk4adap]

-p [number]

-c [cache_frequency]

-u [unconnected delay]

-- Executes the given network
The step-size for the

integration (required)
The maximum time for the 

integration (required)
-- The integration method to use 
(default = rk4)
-- The number of data points to
skip when printing out data
(default = 10)
-- The number of points to store 
before flushing to the file
system
-- The time in ms to wait before 
connecting the network (default 
=  0 )
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-i [neuron ID]

-v [command voltage]
-s [start ID printout]

-q [junk]

-o [output variable]

-t [neuron type to apply -o to] 

-w [input filepath]

-x [input type]

The neuron ID to voltage 
clamp
-- The command voltage
-- Start with this ID to print
out data
-- Quiet Mode, neuron and time 
traces are not output 
-- A parameter or state variable 
or function to be stored at each 
timestep
-- -o options are paired up, in 
the order they are received, 
with -t opts
-- A filename whose 1st entry is 
the #of input vars in that file, 
second row is a space or tab 
delimited list of the names of 
each variable to be input All 
subsequent lines should be the 
values of each of the variables 
for that timestep in order 
-- Type of neuron to apply -w to 
(note, max of one file per 
neuron)

note: to have a -o applied to all neurons, use -t all

With these tools and the other associated scripts, a model developer can explore the 

behavior of complex neuronal models with arbitrary network arrangements and relative 

ease.
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CHAPTER 4. Modulation of a voltage-insensitive, mixed 
cation current by cyclic AMP

4.1. Introduction

We characterized a SP-evoked current (/SP) in an attempt to determine whether or not

inspiratory neurons expressed neurokinin receptors (NKRs) in Chapter 1. SP excites

preBStC neurons and thus can reverse the effects of p-opioid agonists, somatostatin,

and other drugs that depress the respiratory rhythm (Ballanyi et al. 1999; Chen et al.

1990a; 1996; Chen et al. 1991; Johnson et al. 1996; Murakoshi et al. 1985). NK1R

expression begins at the same embryonic stage as the respiratory rhythm (Pagliardini et

al. 2003; Thoby-Brisson et al. 2005). Moreover, NK IRs provide a convenient (albeit

imperfect) marker for the preBotC, and are essential for maintaining breathing during

short bouts of hypoxia in adult mice (Ptak et al. 2002). Therefore, the biophysical basis

for this receptor’s action may yield important clues about respiratory rhythm generation,

development, and regulation. This chapter begins to examine the intracellular signaling

mechanism that activates /Sp in preBotC neurons.

In Chapter 1, we highlighted the shared properties of a current activated by

cholinergic agonists (i.e. acetylcholine, carbachol, muscarine, lCcn) (Shao and Feldman

2000) and /sp. Both whole-cell currents are TTX-insensitive, voltage-independent, mixed
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cation currents. Furthermore, Shao and Feldman found /Ccn in 88% of sampled neurons 

and we found /sp in 87% of inspiratory neurons (in the absence of carbenoxolone). 

Muscarine and SP have been shown to act via convergent ionic mechanisms in other 

systems. For example, pontine locus coeruleus neurons express a cation current that 

responds to both muscarine and SP (Shen and North 1992a; b). /Sp and /cch are widely 

expressed in inspiratory neurons and they may reflect the same underlying class of 

cation channels, which suggests that their activation mechanism may be the same too.

Molecular (Lai et al. 2001) and electrophysiological (Shao and Feldman 2000) 

evidence suggests that the muscarinic response in preBotC neurons is mediated by M3 

muscarine receptors (M3Rs). M3Rs and NKIRs usually interact with the membrane- 

bound a  subunits of the Gq/n family (Caulfield and Birdsall 1998; Kwatra et al. 1993; 

Macdonald et al. 1996; McConalogue et al. 1998), which is coupled to intracellular 

signaling cascades via phospholipase C.

However, the excitatory effects of muscarine and SP in respiratory neurons are 

thought to involve cyclic adenosine monophosphate (cAMP) because muscarine and SP  

reverse the effects of drugs like DAMGO that down-regulate adenylyl cyclase activity via 

a Gj/o-mediated mechanism (Ballanyi 2004; Ballanyi et al. 1999; Yamamoto et al. 1992).

Previous studies have examined the effects of cAMP on preBotC neurons and 

respiratory activity in vitro. In general, increasing cytosolic cAMP within inspiratory 

neurons by forskolin (Arata et al. 1993; Ballanyi et al. 1997; Mironov et al. 1999; Mironov 

and Richter 1998; Shao et al. 2003) or serotonin (Manzke et al. 2003) tend to increase 

network activity. Conversely, lowering cAMP via p- or 3-opioid agonists (Ballanyi et al. 

1997; Ballanyi et al. 1999; Johnson et al. 1996; Manzke et al. 2003; Suzue 1984), 

norepinephrine (Errchidi et al. 1991; Johnson et al. 1996), adenosine (Mironov et al.
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1999) and somatostatin (Chen et al. 1991; Chen et al. 1990b; Kalia et al. 1984) 

decreases the frequency of respiratory rhythm.

Since cAMP signaling has profound effects on respiratory frequency in vitro 

through a wide array of metabotropic receptor-coupled systems, the mechanism by 

which cAMP influences rhythmogenic neurons is a critical issue. We hypothesized that 

cAMP directly evokes inward currents that can depolarize preBStC neurons and affect 

rhythm generation.

4.2. Methods

The in vitro slice preparation used in this chapter is the same as Chapter 1 and Chapter 

2. Voltage-clamp recordings that isolated the forskolin-evoked current (/forskoiin) replicated 

conditions of Fig. 1.7. Inside-out patches were formed after achieving high-impedance 

seals (~>5 GQ), which also allowed us to identify neurons as inspiratory based on 

extracellular unit spiking detectable in on-cell mode. Then, the patch pipette was slowly 

withdrawn until the tip was well above the slice surface to establish the inside-out 

configuration. Adenosine 3',5'-monophosphate (cAMP) and forskoiin were obtained from 

Sigma-Aldrich (St. Louis, MO) while 1,9-dideoxyforskolin was obtained from BIOMOL 

International, LP (Plymouth Meeting, PA).

4.3. Results and Discussion

Increasing cytosolic cAMP evokes a whole-cell current that resembles lSP

W e examined the effects of cAMP on membrane properties in inspiratory neurons.

W e first tested whether forskoiin could evoke a membrane current similar to /sp. 

Forskoiin stimulates cAMP production via adenylyl cyclase, which increases the 

frequency of the respiratory rhythm (Mironov et al. 1999; Mironov and Richter 1998;
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Muller et al. 2005; Shao et al. 2003). However, forskoiin can also directly modulate 

voltage-gated K+ channels (Heuschneider and Schwartz 1989; Hoshi et al. 1988). 

Therefore, we applied an analog of forskoiin, 1,9-dideoxyforskolin, that cannot activate 

adenylyl cyclase but retains the ability to modulate channels, before applying forskoiin. 

This analog is a good negative control to confirm that forskoiin is activating channels by 

increasing cAMP (Shao et al. 2003).

Using a holding potential of -8 0  mV, we stepped from -1 0 0  to +5 mV in 1-s 

pulses and measured the steady-state current response at each potential (Fig. 4.1). We  

blocked Na+, Ca2+, K+, and hyperpolarization-activated currents using a cocktail of 

antagonists including extracellular TTX, Cd2+, TEA, Cs+, and a Cs+-based patch solution 

containing and TEA (see Chapter 1 methods). This is similar to the experimental 

conditions in Fig. 1.7 where we first isolated kp. While 1,9-dideoxyforskolin did not affect 

the steady-state current-voltage (IV) relationship, we did observe a response to forskoiin 

that was consistent with the opening of a mixed cation current like lSp (see Chapter 1).

In inspiratory neurons, forskoiin is known to increase the open probability of L- 

type Ca2+ channels (Mironov and Richter 1998) as well as to enhance the magnitude of 

AMPA-mediated EPSPs (Shao et al. 2003). Since our ACSF contained 200 pM Cd2+, L-

150 - j  ♦  control
+20 pM 1,9-dideoxyforskolin 
+20 pM forskoiin /

Figure 4.1. Forskoiin activates a mixed 
cation current (/forskoiin) in preBotC neurons 
by up-regulating adenylyl cyclase.

-100 - V I

-80 -60 -40 -20 0
mV
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type Ca2+ channels should have been blocked. Also, since these experiments were in 1 

pM TTX, most AMPA-mediated EPSPs should have been suppressed. Since the data in 

both Fig. 4 .1  and 1 .7  indicate the opening of a mixed cation current (/forskoim), our data are 

consistent with cAMP modulating a current with properties similar to Isp and /cch-

Since we hypothesized that forskoiin and SP were both activating the same 

mixed cation current, we tested whether forskoiin could occlude the effects of SP. Using 

the same conditions and voltage-clamp protocol as Fig. 4 .1 , we applied forskoiin and 

then SP (Fig. 4 .2 ) . /forskoiin was enhanced only slightly by SP while the reversal potential 

(where the traces converge) was very nearly the same. This suggests that forskoiin and 

SP were both acting on the same channels, although it is unclear from this experiment 

whether activation of the channels occurred through the same pathway (i.e., a cAMP- 

mediated pathway).

200 -  control
+ 4 pM forskoiin 
+ 1 |jM SP1 5 0 -

1 0 0 -

5 0 -
1

0 -

- 5 0 -

- 100 -

-150 —i

-80 -60 -40 -20 0

Figure 4.2. Forskoiin occludes the 
effect of SP in preBotC neurons.

mV

Potential candidates for channels that mediate the effects of Isp

Transient receptor potential (TRP) channels are implicated in a wide range of cellular

behaviors and are considered good candidates for metabotropic receptor-mediated

currents, specifically the 'canonical TRP' (TRPC) subtype (Clapham 2003; Moran et al.

2004). However, TRPCs are voltage-dependent and are generally associated with
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activation via the PLC pathway (Montell 2005; Ramsey et al. 2006). Therefore, they are 

almost certainly not candidates for mediating /forskoiin, and we infer from the occlusion 

experiment that they are not likely contenders for /sp.

Two alternative candidates for the A
control +forskolin +verapamil

I s p  channels are a recently discovered 

Na+ leak channel (NaLCN) characterized 

in hippocampal neurons or a cyclic 

nucleotide-gated channel (CNGC) similar 

to channels found in olfactory neurons q  

(Kaupp and Seifert 2002; Kleene 2000). 

Both NaLCNs and CNGCs appear to be 

widely expressed in the central nervous <
Q .

system (Bradley et al. 1997; Kingston et 

al. 1999; L u e ta l. 2007).

Both NaLCN and CNGCs are 

also blocked by the L-type Ca2+ channel 

blocker verapamil (Lang et al. 2000; Lu 

et al. 2007). To test whether lSp was 

attributable to either channel type we 

attempted to block /forskoiin with this drug.

-80  pA

-80
0.5 s

50

-50

100

•  control
+20 pM forskoiin

•  +500 pM verapamil

1 1 1 ' 1 1 1
-80 -60 -40 -20

mV
Figure 4.3. Verapamil blocks /forskoiin- 
A, Representative current traces 
showing current responses to 
voltage steps in control, forskoiin, 
and verapamil. B, The corresponding 
steady-state IV relation under the 
same conditions.

In the same neuron illustrated in Fig. 4.1, we added 500 pM verapamil after forskoiin, 

which reversed /forskoiin and is apparent in both the raw traces (Fig. 4.3A) and IV curve 

(Fig. 4.3B). This experiment confirmed that we have a means to block the neuronal 

response to forskoiin and perhaps SP.
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Therefore, we predicted that verapamil would also block the respiratory response 

to SP in the context of network rhythm. Under control conditions, SP increases 

respiratory activity (Fig. 4.4A). In contrast, applying a high concentration of verapamil 

causes the amplitude of the network activity to decrease and SP cannot reverse the 

effects. This is particularly interesting because SP is frequently used to recover 

respiratory activity due to a loss in excitability of preBotC neurons (Del Negro et al. 2005; 

Pace et al. 2007; Pena and Aguileta 2007; Tryba et al. 2006) as well as reversing the 

effects of other neuromodulators that depress respiratory activity (Ballanyi et al. 1999; 

Chen et al. 1990a; 1996; Chen et al. 1991; Johnson et al. 1996; Murakoshi et al. 1985). 

Therefore, this response is consistent with verapamil blocking the channels that give rise 

to SP.

NaLCN and CNGC channels share strong structural similarities to Nav and Cav 

channels, which influences their sensitivity to pharmacological tools. One potential way 

to further
A  +1 mM s p

B +500 pM verapamil

IX II

+1 pM SP

2 min

Figure 4.4. Verapamil prevents the network-level response to SP. A, 
SP causes an increase in network activity. B, Verapamil attenuates 
the amplitude of network activity and SP does not have any apparent 
effects.
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distinguish between NaLCN and CNGCs is that CNGCs are expected to exhibit discrete 

open and close gating transitions in the presence of cAMP, while cAMP would simply 

increase the unitary conductance of NaLCN channels.

Therefore, we tested the hypothesis that cAMP-gated channels are present in 

inspiratory preBotC neurons. We first identified inspiratory neurons in the on-cell 

configuration (Fig. 4.5A). In one of 3 inside-out patches with symmetric intra- and 

extracellular solutions, we observed discrete channel openings with ~30 pS unitary 

conductance in the presence of bath-applied 200 pM cAMP and the effect was reversible 

(Fig. 4.5B). This is comparable to the unitary conductance of CNGCs (Hatt and Ache 

1994; Zufall et al. 1991) but since the solutions were symmetric we cannot compare the 

reversal potential of this channel to /spor /forskoiin measured under our previous conditions. 

Hyperpolarization-activated mixed cation channels that give rise to /h currents are 

phylogenetically related to CNGCs and can be directly activated by cAMP (Hille 2001) 

and are present in some inspiratory neurons (Mironov et al. 2000; Thoby-Brisson et al.

2000). However, the unitary conductance of these currents are less than 10 pS (Kole et 

al. 2006; Simeone et al. 2005) suggesting that the channels we were recording were 

indeed CNGCs.
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'M

Vm -6 0  mV
2 s

B
control

| t f # W - 16pA
------------------ -6 0  mV

+200 pM cAMP

washout

-1 8  pA 

-6 0  mV

P ffP W W  -1 3  pA

-6 0  mV

Figure 4.5. cAMP- 
gated channels are 
present in preBOtC 
neurons. A, 
Inspiratory neurons 
were identified from 
their on-cell activity. 
B, In inside-patches, 
bath-applied cAMP  
caused discrete 
open and close 
events of a channel 
and the response 
was reversible.

200 ms

Possible roles for a cAMP-modulated mixed cation current

In respiratory neurons, an inward-rectifying potassium current ( / K- i r )  has been implicated 

in mediating the effects of p-opioid agonists (Gray et al. 1999; Johnson et al. 1996) and 

GABAb agonists through a convergent signaling pathway utilizing Gj/0 activation 

(Johnson et al. 1996). However, / K- i r  may not completely account for the results from 

experiments using these agonists. This is because Ba+ only partly reverses the effects 

of these agonists on the frequency of respiratory rhythm and pertussis toxin, a blocker of 

Gi/o proteins, would nearly completely reverse the effects of these agonists. Since Ba+ 

only partly reversed the effects on frequency of the p-opioid agonist, those authors
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suggested that a Ba+-insensitive current may also be involved in depressing respiratory 

activity. A constitutively activated mixed cation channel, that is depressed by a decline in 

cAMP, could be this hypothesized Ba+-insensitive current. This hypothesis is supported 

by our data that shows verapamil depressed respiratory activity in the network.

Extending this further, Manzke et al. (2003) postulated that p-opioid receptors 

and 5-HT4 receptors were also convergently acting to modulate respiratory frequency by 

decreasing and increasing production of cAMP through adenylyl cyclase. However, the 

specific mechanism by which cAMP modulates neuronal excitability has remained 

unclear.

A voltage-insensitive inward current, modulated or gated by cAMP, could be very 

significant in maintaining and modulating neuronal excitability, and their presence in 

rhythmogenic neurons could have profound effects on the respiratory activity if 

conflicting drugs compete to up- or downregulate cytosolic cAMP.
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Conclusions

The research in this dissertation has advanced our understanding of how respiratory 

behavior arises by examining how intrinsic currents influence phenotypic neuronal 

properties, such as discharge pattern, and by examining how those properties influence 

interactions of neurons involved in the generation of mammalian breathing.

The first chapter identifies putatively rhythmogenic preBotC neurons based on 

electrophysiological properties in vitro which may allow us to distinguish rhythmogenic 

neurons from premotoneurons found in the preBotC. An interesting future set of 

experiments could entail determining if our electrophysiological distinction is really 

reliable. Evidence for NKRs was present in both subpopulations, however, NKR+ 

neurons did not have an apparently distinct electrophysiological phenotype from their 

NKR' counterparts. This raises the question: how are NKR+ neurons functionally different 

from NKR' neurons? The most likely explanation is that they make up a population of 

inspiratory neurons that inhibit expiratory neurons (as opposed to NKR+ neurons which 

are predominantly glutamatergic). However, if NKR' inspiratory neurons are also 

glutamatergic they may directly participate in rhythm-generation and NKR+ neurons may 

not be sufficient for rhythmic activity in the preBotC.

A related prediction is discussed in both Chapter 1 and Chapter 3 where we 

suggested that NKR' neurons may be able to generate respiratory activity alone. This
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could be tested with in vitro lesioning experiments, possibly by ablating individual 

preBotC NKR+ neurons using a laser, and monitoring the network activity. If our 

estimate for the population size of NKR+ rhythmogenic neurons is realistic, then we 

expect network activity would diminish rapidly with the eventual cessation of motor 

output. Then, as we showed in simulations from Chapter 3, it may be possible to recover 

motor output by applying drugs that increase phasic excitatory synaptic input among the 

remaining, and predominantly NKR', preBotC neurons.

In this dissertation, we have also shown how SP can raise the excitability of the 

inspiratory population of neurons via the opening of a voltage-independent mixed cation 

current (Chapter 1). This response was similar to the response observed when we 

increased cAMP (Chapter 4), and we have shown that this current may arise from the 

activation of an intrinsic cAMP-gated mixed cation current. Full characterization of these 

channels remains under investigation, but the presence of cAMP-modulated mixed 

cation channels, that are the target of multiple neuromodulators, may provide a novel 

means by which different types of afferent activity could modulate the speed of 

respiratory rhythm.

W e also developed a model that relies on recurrent excitation through positive 

feedback synaptic connections to generate periodic respiratory-like rhythms. This 

represents the first attempt at simulating a network of respiratory group-pacemaker 

neurons. This model motivated us to perform experiments to determine what was a 

realistic size of the critical rhythm-generating population (i.e., Chapter 1), what degree 

rhythmogenic neurons express NKR+ so we could investigate how neuron lesioning 

affects rhythmogenesis (Chapter 1), and examine the, heretofore unknown, biophysical 

properties of /a (Chapter 2). This work has profoundly influenced the work of three 

additional separate projects that examine how recurrent excitation can generate
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respiratory rhythm-like behavior. One of the projects also relies on the software 

developed as part of this dissertation (Chapter 3, Appendix 2) to simulate high

dimensional, realistic neuronal models of inspiratory neurons and will provide a means to 

easily combine these neurons into realistic networks in the future.

A major question in trying to develop realistic models of the preBotC network is: 

what is the connection topology of the rhythm-generating network? Initially, this will 

probably be inferred from experimental data that examines the pattern in network 

connectivity originating from an individual inspiratory neuron. We know that some 

glutamatergic inspiratory neurons are connected to other glutamatergic inspiratory 

neurons monosynaptically. However, no one has yet demonstrated how many synapses, 

on average, are needed to make a full positive feedback cycle. The recurrent excitation 

described in the modeling work emphasizes why the answer to this question is 

important: positive feedback loops are essential within the rhythm-generating population 

for a group-pacemaker to function!

This issue may also be important in fully understanding how /A impacts 

respiratory rhythmogenesis. In Chapter 2, we showed that /A plays a role in maintaining 

coherent rhythmic activity within the preBotC. We found that this intrinsic current makes 

important contributions in shaping the incremental discharge pattern (i.e., a phenotypic 

property) associated with early inspiratory neurons (see Chapter 1) and suggested this 

behavior was related to /A’s characteristic role in synaptic integration. Our experiments 

and modeling insights suggest an additional novel role for the neurons that express /A. 

When /A is widely expressed in neurons arranged with positive feedback connections, 

these neurons may act as logical AND gates by primarily passing high-frequency output 

to postsynaptic neurons only in the presence of massive convergent presynaptic activity. 

W e expect this would prevent spurious network assembly from transforming into full
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inspiratory bursts (i.e., a giant component of activity, see Chapter 3) until the vast 

majority of rhythmogenic neurons have recovered from refractoriness. This could more 

completely account for how /A plays an important role in regulating the period of 

synchronized respiratory activity.

Altogether, this dissertation has made important contributions in our 

understanding of how preBotC neurons behave individually and interact, but also raises 

new questions. The answers to all these questions will potentially help us understand 

what qualities are necessary for maintaining inspiratory activity and potentially aid 

researchers develop therapies for central respiratory failure.
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