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ABSTRACT

The seasonal hydrodynamics of a flatwoods ecosystem containing winter-wet woods, 
ridges and sinkholes was investigated to evaluate net groundwater flow from or between 
winter-wet woods and adjacent land features. Short-term, steady-state climatic water 
balances were generated from water table elevations recorded during the winter recharge 
season and into mid-summer. Net precipitation (Pn) input to the water balance was 
estimated by published equations applied to measurements of gross precipitation (Pg), and 
evapotranspiration (ET) was calculated by the equilibrium model from climatic 
measurements taken on site. Total cumulative Pg for the study period of October 17,
1994 to June 21, 1995. was 694 ± 42 mm, and total ET was 480 ± 96 mm. The winter 
and spring were drier than normal, resulting in negligible surface water outflow from the 
study area. Daily ET went from a seasonal low in December and January of 
approximately 0.6 mm/day to a high of approximately 4 to 5 mm/day in June. Based on 
these climatic measurements, forty-five balances with an average duration of 42 days 
were calculated using the water level data from 17 wells located in wet flatwoods, ridges, 
and sinkholes. Six balances between October 1994 and mid-March 1995 had a mean 
ratio of ET:Pn of 43%, thus leaving an average of 57% of Pn for groundwater recharge. In 
this time period, all features showed net groundwater outflow in excess of the pooled 
standard error. Water balances that included a dry period from mid-March to mid-April 
or subsequent balances in June had ET:Pn ratios >100%, indicating an additional water 
input to the climatic balance besides precipitation. Since significant regional, 
groundwater inflow is unlikely from both preliminary observations of nested piezometers 
and landscape setting of the study area, the excess water may have resulted from an 
overestimation of ET losses or unmeasured changes in soil moisture storage. A balance 
between Pn and ET existed from late April through May when ET:Pn ratios were closer to 
100%. The steady-state, climatic water balances show that: 1) soil moisture excesses and 
deficits due to seasonal inequalities in rates of P and ET are not represented simply by 
changes in soil water volume as vertical fluctuations in water table level in the study area. 
Net groundwater flow exits the study area in winter and spring; and, 2) vegetation of the 
flatwoods ecosystem may not be transpiring at a potential rate due to soil moisture 
limitation. The residuals of the climatic balances and their associated standard errors did 
not show significant differences between landscape features. This information could be 
obtained by performing water balances where direction and magnitude of groundwater 
flow are measured as well as on-site estimates of canopy interception.



WINTER/SPRING STEADY-STATE WATER BALANCES 

FOR A PALUSTRINE FORESTED WETLAND 

LOCATED IN SOUTHEASTERN VIRGINIA



1.0 INTRODUCTION AND STUDY OBJECTIVES

The world climate can be subdivided into regional patterns characterized by a 

unique seasonal distribution and annual balance of precipitation (P) and 

evapotranspiration (ET). The processes of P and ET are a function of climate, such as 

radiation, atmospheric circulation and topography; vegetation, such as plant physiology 

and root morphology; and geology, such as soil genesis and aquifer permeability. To 

provide a rational framework for the definition of climatic regions, Thomthwaite (1948) 

introduced a moisture index based on a soil moisture budget of P and potential ET (PET). 

He defined PET as the rate of ET expected from dense, short vegetation with non-limiting 

soil moisture. Non-climatic surface controls on ET such as variation in the type of soil or 

vegetation can influence the rate of ET significantly. A standardized surface (e.g., the 

combination of soil surface, exterior plant surfaces, and plant mesophyll tissue that act as 

the source of water vapor) like the one suggested by Thomthwaite serves to isolate the 

influence of the regional meteorology on climatic patterns. As a result, Thomthwaite’s 

functional classification of climate coupled an index of moisture availability with the 

standard statistical indices of meteorological elements, helping to explain patterns in 

landscape hydrology, and the distribution and growth of vegetation.

The humid subtropical climate of southeastern Virginia exhibits a near balance 

between annual P and PET. Approximately 75% of the annual precipitation of this region 

can be lost in ecosystems where ET equals PET (Thomthwaite 1948). Precipitation has a 

fairly uniform seasonal distribution with a slight peak in July and August whereas PET 

follows a sinusoidal distribution (Figure 1). Seasonal PET rates are dictated largely by
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Figure 1. Normal monthly gross precipitation (Gross P), and potential evapotranspiration 
(PET) by the Thomthwaite method. Normals calculated for Norfolk, Virginia for the 
period of record 1961 to 1990.
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climate and biota and therefore peak in summer and decline in winter. Taken together, 

the difference between these vertical water fluxes decreases soil moisture storage during 

the summer when ET > P. In early summer, while soil moisture is adequate, the rate of 

ET may equal or approach potential conditions. If soil moisture decreases enough to 

cause moisture stress in the vegetation, an increase in stomatal resistance reduces 

transpiration to some "actual" ET rate (AET) that is less than potential. In fall, a decrease 

in atmospheric and radiative moisture demand and biological activity reduces ET below 

P, resulting in recharge of soil moisture to a maximum in early spring.

The spatial and temporal balance of P and ET (i.e., the net vertical water flux) has 

a significant effect on distribution and magnitude of surface runoff and groundwater flow 

(i.e., the “lateral” water flux, for the purpose of this discussion). When P/ET > 1, 

increased soil moisture decreases the available pore space for infiltrating water and 

increases the likelihood of ponding and surface runoff generation. Higher water table 

position when coupled with steeper gradients in water table slope increases groundwater 

flow and streambank discharge. In turn, the rates of surface and subsurface water flows 

influence the rate and distribution of ET and, on a regional scale, of P as well. Reduced 

lateral flows increase the residence time of precipitated water in an ecosystem, increasing 

soil water availability and consequently the rate of ET. Many wetlands are called "water 

pumps" because they lose over two-thirds of their annual water inputs to ET (Richardson 

and McCarthy 1994). On a larger areal scale, landscapes with high soil moisture content 

affect the atmospheric transfers of sensible and latent heat, and in turn regional 

precipitation patterns.
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A summary of vertical and lateral water flows for an ecosystem is useful in 

determining the function of that ecosystem within a landscape. Studies in ecosystem 

hydrodynamics explore the processes by which various ecosystems partition water 

inflows into different types of storage and outflows. In Figure 2, a conceptual hydrologic 

model of an ecosystem depicts typical water inflows and outflows along with areas of 

water storage. The presence and movement of water both transforms and transports the 

abiotic and biotic components of the ecosystem. Therefore, it is not surprising that 

variation in the sources and sinks of water for an ecosystem strongly influences its 

structure and function. Wetlands are of particular interest in landscape hydrology due to 

the greater interaction between subsurface, surface and atmospheric waters. In the 

Chesapeake Bay watershed, as is typical of the eastern United States, palustrine forested 

wetlands comprise more than half the total wetland acreage (Tiner et al. 1994). On the 

coastal plain of southeast Virginia, a large subset of palustrine forested wetlands are 

referred to as “flatwoods” or “winter-wet woods”, and are characterized by low 

permeability soils and level topography. The range of hydroperiods for flatwoods varies 

from a seasonally flooded/saturated regime, which qualifies as a federal jurisdictional 

forested wetland, to a non-jurisdictional, mesic forest that is temporarily saturated. As a 

result of their borderline, jurisdictional wetland hydrology, and, in addition, their large 

areal extent and often high development potential, flatwoods have undergone 

considerable modification and destruction. The future of the current federal protection of 

the more mesic flatwoods is being debated as economic pressures to modify these 

wetlands intensifies. Investigations into the hydrology of flatwoods will yield 

information with which to assess the function and value of these areas, with respect to 

surface runoff generation, groundwater recharge and discharge, and biological diversity. 

A better scientific understanding of flatwood ecosystems will contribute to a more 

informed and effective management of these natural resources.

5



Figure 2. Conceptual hydrologic model of a vegetated ecosystem (modified from Duever, 
1988).
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The purpose of this research was to assess the potential for groundwater exchange 

between the flatwood and its adjacent landscape features. The degree of hydrologic 

connectivity between the flatwood and surrounding landscape was thought to be minimal 

after large fluctuations in seasonal water table levels were observed in flatwoods. In that, 

the seasonal change in storage of the water table aquifer could account for the annual 

water surplus between P and ET. Groundwater inflows are likely to be small for most 

flatwoods, because many of these flatwoods exist on broad, interstream terraces. Thus, P 

is probably the dominant water influx, and the major source of seasonal recharge to the 

water table aquifer. I hypothesized that the amount of water partitioned to lateral flows 

would be a small proportion of P on the basis that: 1) non-limiting soil moisture of a 

forested wetland causes ET to approach PET; and, 2) annual P and PET are similar in a 

humid subtropical climate. The relatively flat topography of the land surface combined 

with low permeability soils would reduce the rate of groundwater flow, and increase the 

residence time of soil moisture. Given no change in storage and an absence of surface 

water flows, a climatic water balance where P minus ET equals a residual representing 

net groundwater flow provides a method to examine the seasonal variation of P, ET and 

net groundwater flows. The primary objective was to determine whether water fluxes in 

wet flatwoods are dominated by vertical pathways with little groundwater flow to 

surrounding land features, and that seasonal inequalities in inflows and outflows result in 

a change in storage predominantly. However, on a seasonal basis, the P:ET ratio 

fluctuates. Currently, it is unclear the extent to which seasonal inequalities in P and ET 

are partitioned to groundwater flow or change in water storage. A high ratio of P:ET 

during the winter and early spring would provide an opportunity for storage increases and 

possibly higher groundwater flows. A low ratio of P:ET through the spring and summer 

would have an opposite effect. If seasonal water surplus and deficit is exchanged within 

aquifer storage, then the residual of a climatic balance with a steady-state storage variable 

should not be significantly different from zero.
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Application of short-term, steady-state water balances to seasonal water table 

fluctuations provides a way to differentiate between changes in soil water volume and 

groundwater flow. Steady-state analysis involves setting one variable constant while 

varying others. This variable may be selected because it is difficult to measure, has a 

large uncertainty, or for the purpose of observing how remaining variables correlate given 

the constant variable. Depending on the site, change in volume over time for the storage 

component of the water balance can be difficult and error prone. The volume of water 

held in a given depth of the surficial, unconfined aquifer and overlying capillary zone is 

found by the measurement of aquifer specific yield as well as soil moisture distribution 

with depth. If two points in time are selected when the water table is at the same 

elevation, a water balance for the intervening time period may be modeled as steady state, 

thus avoiding the measurement and accompanying error of specific yield and soil 

moisture. However, this model requires the assumption that equal volumes of soil 

moisture exist above the water table at both times. Since soil moisture distribution with 

depth can vary given identical water table levels, this assumption represents a potential 

source of error in steady-state water balance calculations. Although this error is 

mentioned in water balance literature, the use of equal water table levels to define steady 

state is common practice, and this source of error is either unrecognized or considered 

negligible.

Having defined steady-state water balances, it is now easier to comprehend how 

dividing the hydroperiod of a wetland, or its annual hydrograph of phreatic water level, 

into short time periods can provide insight into the pathways and rates of wetland water 

flows. Certain types of wetlands exhibit little variation in the quantities or directions of 

flow for different seasons or climatic events. A short-term balance conducted at different 

times in the year would yield similar results for sources and sinks for water flow and 

associated rates and volumes. Other wetlands have seasonal hydrodynamics whereby



flows of different origin (e.g., atmospheric, riverine, wind-driven tides, groundwater) may 

vary both in quantity and spatial distribution. In this instance, short-term balances can 

serve to isolate time periods and quantify the relative importance of the budget 

components. For instance, the hydroperiod of a riverine wetland may be dominated by 

groundwater flows during the winter and surface flow in the spring and summer. An 

annual balance may show that the groundwater and surface water components are equal 

quantities, but the timing and duration of the different flows would not be known. Yet 

this information is essential when questions are raised concerning the effect of various 

water flows on the physiochemical environment of the wetland and ecology of the area or 

region.

The hydroperiod of winter-wet woods shows a considerable change in storage 

volume of soil moisture during the year and a strong influence by P and ET fluxes. The 

extent of surface and groundwater flows are less predictable since they are dependent on 

site specific characteristics such as geology, soil development, and geomorphology of the 

surrounding landscape. This study focused on quantifying net groundwater flow during 

the winter 1994/spring 1995 water table recharge period when almost no surface flows 

occurred. Under these conditions, short-term, steady-state balances of P and ET on a 

monthly or seasonal basis with no surface flows yielded net groundwater flow for the 

study area.

The secondary objective of this study was to compare the water balance residuals, 

or net groundwater flow, between the different land features (i.e., flatwoods, sinkholes, 

and upland ridges). A large difference in residuals may indicate local groundwater flow 

between these land features or to surrounding areas, or spatial variation in the loss of 

water to deeper regional groundwater flow. In a homogeneous media, the water table 

would be a subdued expression of the topography. The ridges and possibly the flatwoods
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would have higher hydraulic heads than surrounding areas, resulting in flow downward 

and away from these features. Sinkholes would serve as a focus for groundwater flow 

due to their lower hydraulic head. In this case, the ridges and flatwoods would be 

groundwater recharge areas, and the sinkholes would be discharge areas. However, the 

land features in the study area have different soil types and permeability’s, and, therefore, 

seasonal water table configuration may differ considerably from surface topography.

10



2.0 BACKGROUND

2.1 Water B alance Review

A water balance where the storage volume is at steady state calculates inflows and 

outflows of water from a soil volume over a period of time that begins and ends at the 

same water table level. The duration of a balance may be hours (e.g., the daily fluctuation 

of the water table in response to ET and groundwater recharge), months (e.g., a seasonal 

or annual hydroperiod), or years (e.g., the evaluation of a water balance model against 

long-term measurements). The components of the steady-state water balance can be 

expressed as the symbolic equation:

0 = AV = Pn + Si + Gi - ET - S0 - Go (1)

where:

AV = change in volume of water storage, equals 0 at steady state
Pn = net precipitation
Si = surface water inflow
Gi = groundwater inflow
ET = evapotranspiration
S0 = surface water outflow
G0 = groundwater outflow

Investigations using short time periods in which inflows must balance outflows 

offer several advantages for research of ecosystem hydrodynamics. Short duration permits 

greater resolution of temporal variations in hydrologic flows. Information on seasonal

11



and event-based dynamics in water flows and storage is lost within an annual water 

balance. Second, data correlating the hydrologic response of the ecosystem to specific 

meteorological conditions, when gathered at different phases of the ecosystem’s 

hydroperiod is useful in calibrating process-oriented hydrologic simulation models.

Third, an investigator limited by time and materials need not measure the specific yield of 

the water table aquifer for estimation of the change in storage owing to the steady-state 

condition.

Yin and Brook (1992) used short-term, steady-state water balances of the 

Okefenokee Swamp watershed to evaluate four methods for estimating PET. Instead of 

the full water balance equation, the authors estimated AET from the difference in P and 

S0. By definition of a watershed, natural surface water inputs do not occur. It was 

assumed that groundwater flow did not cross the surface boundaries of the watershed. In 

addition, G0 was eliminated from consideration after previous studies into the 

groundwater hydrology of the swamp had shown a total water loss of only 0 to 6%.

Using historical records of precipitation, SD and water table level, Yin and Brook 

calculated watershed AET for 56 time periods lasting an average of 10.6 months that 

satisfied steady-state conditions. Under the assumption that watershed AET 

approximates PET due to shallow groundwater levels and abundant surface water 

ponding, watershed AET was compared to the PET estimates of four popular 

temperature-based methods, Thomthwaite, Holdridge, Blaney and Criddle, and pan 

evaporation. The results of the study showed that all methods were in close agreement in 

estimating PET. The Thomthwaite method offered the highest R2 value while the 

Blaney-Criddle method gave the lowest root mean square error and therefore had the 

highest overall accuracy.

12



Monthly climatic water balances (i.e., B = P - PET - AV, where B is net 

groundwater flow plus the sum of the errors of the components) of Thunder Bay, a 

Carolina bay located on the Upper Coastal Plain of western South Carolina, demonstrated 

significant groundwater flows between the bay and surrounding land which contradicted 

the popular belief that the bays were perched systems (Lide et al. 1995). In their research, 

a steady-state model was not necessary due to the availability of pond stage data for the 

calculation of AV. Precipitation was measured on site, and surface flows did not occur. 

ET was assumed to equal PET and was calculated by the Thomthwaite method. 

Groundwater flow was estimated by the residual (B). Given knowledge of the water table 

configuration around the Bay and a large residual, preliminary findings on the degree and 

direction of net groundwater flow were possible. The results suggest that the bay is 

predominantly a source of net groundwater outflow with episodes of net groundwater 

inflow during periods of above average rainfall and higher than normal water table levels.

Estimating a component of the water balance, especially groundwater flow or ET, 

as a residual is a common practice in studies of ecosystem hydrology (LaBaugh 1986). 

However, this method may have a large uncertainty, which, in some cases, may exceed 

net groundwater flow, Gn, thus making the direction of flow uncertain. As the sum of the 

other balance components, the residual produces an estimate of the unmeasured 

component subject to errors of measurement related to other components (Winter 1981). 

Therefore, a relatively small percent error in the measurement of a large flow becomes 

significant when used to estimate a smaller residual. For example, the average annual 

rainfall for York Co., Virginia is 1118 mm. If the measurement of P has a standard error 

of 112 mm (i.e., a relative error of 10%) and ET, if assumed to be 75% of annual P or 839 

mm, has a standard error of 168 mm (i.e., a relative error of 20%), then the difference of 

these two amounts is 279 mm with a standard error of 202 mm, resulting in a large

13



relative error of 72%. From this example, it is easy to see that additional error in 

components of the budget can lead to a standard error that is greater than the residual.

In addition to the propagation of error, a second limitation to calculating a balance 

component by a residual applies to throughflow systems where both inflow and outflow 

of either surface water or groundwater are not measured. In these situations, the residual 

represents the net flow only (Winter 1981). The limitations of this method can be 

illustrated by the following examples. First, a floodplain area where P, ET, and 

groundwater inflow and outflow are measured but a flood event responsible for surface 

water inflow and outflow is not measured. Second, a bog where P, ET, and surface flows 

are measured but groundwater inflows and outflows are not. In both of these hypothetical 

studies, the net flow calculated by the residual will have an uncertainty from the errors of 

the other components. Since the magnitude of the net flow will be less than the 

magnitudes of either inflow or outflow, the resulting estimate will have a greater relative 

error for a given uncertainty. The study by Lide et al. on Thunder Bay did not measure 

groundwater flows to or from the bay. However, the investigators did measure the water 

table slope, and therefore could associate the residual of the climatic balance with a 

direction of flow.

A water balance that uses the residual as an estimate of a hydrologic component 

should be subjected to an error analysis. Otherwise, as demonstrated above, it is unclear 

how measurement errors may have affected confidence in the estimate. Errors associated 

with various water flows may add to, subtract from, or compensate for each other. This 

study measured P and ET and calculated net groundwater flow by difference. A review of 

the errors associated with the measurement of P and ET was conducted in order to 

quantify confidence in the groundwater flow estimate. Errors in measurement and 

estimation of P and ET can be separated into two categories: measurement and

14



regionalization (Winter 1981). Measurement errors exist due to faulty instrumentation, 

sampling design, or data collection whereas errors by regionalization occur when point 

measurements are extrapolated over a time-space continuum (Winter 1981).

2.2 Precipitation Measurement and Error Analysis

Measurement accuracy for point precipitation is commonly affected by 

evaporation, adhesion, color, inclination of orifice, splash, wind, technique of catch 

measurement, gage damage, and height of orifice above ground (Corbett 1967, Winter 

1981). Significant evaporation of rainfall catch can occur in gages exposed to higher 

wind speeds, radiation or aridity, or located in remote stations where servicing occurs 

infrequently. Sample errors from adhesion are proportional to the surface area of the 

collector and the interior of the receiving tank if appropriate. Precipitation is most 

accurately measured when the gage orifice is oriented parallel to the slope of the ground 

surface.

Wind exposure is considered the largest potential source of error (Corbett 1967). 

The turbulence created by wind flowing over and around the gage decreases rainfall 

catch. As wind speed generally increases with height above ground, error from 

turbulence is augmented by raising the height of the gage above the soil surface. A more 

accurate catch results from the construction of a windshield that channels air flow around 

the gage to prevent updrafts next to the orifice (Corbett 1967). Alternatively, surrounding 

vegetation can provide a uniform obstruction to wind exposure. If the gage is located 

within a forest clearing, the U.S. Weather Bureau advises that the height of the trees 

above the gage should not exceed about twice their distance from the gage (i.e. about a 60 

degree angle from the orifice to the top of the tree) (Corbett 1967). Other studies suggest

15



placing a gage no closer to an object than the object’s height which translates into a 45- 

degree cone of projection from the gage orifice (Corbett 1967).

Extending point measurements of precipitation into an areal average results in 

errors of regionalization. Confidence in an areal estimate is a function of spatial 

variability of rainfall, amount and duration of storm events, density of gage network and 

size of area. As a rule, error increases with shorter sampling periods and decreases with 

higher gage density, longer duration storms, and larger area (Winter 1981). With 

increasing areal mean precipitation (i.e., storm size), absolute error increases while the 

coefficient of variation decreases (Corbett 1967, W inter 1981).

Storm type, or the mechanism by which precipitation is formed, greatly affects 

spatial and temporal variability of precipitation (Corbett 1967, Winter 1981). The two 

basic mechanisms of storm generation are convection and stratiform, which differ in the 

rapidity with which precipitation particles develop and the magnitudes of vertical air 

motion associated with the precipitating cloud (Smith 1993). Orographic lifting can be 

considered a third precipitation mechanism, although it exhibits both convective and 

stratiform properties.

Convective precipitation is identified with vertical air motions that are locally 

strong, precipitation particles that form at the cloud base, and rapid development of 

precipitation (Smith 1993). As might be expected, this precipitation mechanism is 

associated with the highest rainfall variability (Corbett 1967). Stratiform precipitation 

differs from convective by having weak, vertical air motion, precipitation particles that 

form at the top of the cloud system, and longer development time for precipitation (Smith 

1993). A more uniform rainfall pattern emerges from these large scale frontal storms that 

are often associated with extratropical cyclones (Corbett 1967, Smith 1993).
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Corbett (1967) cites a number of studies of convective rainfall conducted on the 

relatively flat terrain of central Illinois. One study found rainfall gradients of 0.8 inches 

per mile for convective storms. A second study investigating variability of gage catch as 

a function of distance between gages demonstrated average differences of about 1.5% for 

gages 6 ft apart increasing to about 2.5% for gages 600 ft apart. A third study relates 

deviation between areal mean rainfall and a point observation at the areal center to the 

average storm size. Based on their results, the average deviation (X, in inches) between 

areal mean rainfall for an,area (A, in mi2) and point measurement (P, in inches) at areal 

center can be found by the equation:

X = -2 .0 1 1 + 0 .5 4  P0 5 + 0.29 Log A (2)

Using a common storm size of 15 mm (0.60 in), this relation predicts a deviation of 0.80 

mm (5.2%) for an estimate of mean areal rainfall from a point measurement located at the 

center of a 5.3-km2 area (2.0 mi2). The area used in the previous example corresponds to 

the area of a circle that encompasses the present research area and is centered on the rain 

gage used for this study.

Gross precipitation (Pg) incident upon a forested ecosystem is intercepted by the 

canopy and redistributed as throughfall (T), stemflow (Sf), plant water uptake, and 

evaporation (E). Throughfall is both rain that has fallen unimpeded to the forest floor and 

intercepted rain that subsequently drips from the vegetative canopy. Water reaching the 

soil by flowing down the stems of vegetation is called stemflow. Water adhering to the 

foliage can be taken up by the plant or evaporated back to the atmosphere. The 

interception of rainfall by the vegetative canopy can represent significant losses to the 

water balance of an ecosystem. A 10% to 30% reduction of gross rainfall by interception 

is common, with some old growth canopies intercepting as much as 57% (Zinke 1967).
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Helvey and Patric (1965) compared independent studies of interception in the 

hardwoods of the eastern United States, and found that predicted values for throughfall 

and stemflow were remarkably consistent over different sampling locations and canopy 

species. An average relation of T to Pg was calculated for mature, mixed hardwood 

stands by averaging equations from the literature and weighting them by the respective 

number of gages used. Using an approximate 95% confidence interval, Helvey and Patric 

concluded that 12 of 14 growing season equations and 7 of 9 dormant season equations 

were not significantly different. In the absence of detailed local throughfall studies, T 

(mm) could be estimated from measurements of Pg per storm (mm) by the equations:

In addition, their review of the literature found that net precipitation (Pn), the portion of Pg 

entering the soil column, can be reasonably estimated by the measurement of T alone 

because litter interception and stemflow appear to compensate each other.

The interception loss from needle-leaved trees is greater than for broad-leaved 

trees (Zinke 1967). Needle-leaved trees have a greater leaf area index (LAI), the ratio of 

projected leaf area per unit ground surface area, and therefore greater interception storage 

and opportunity for evaporation during rain (Waring and Schlesinger 1985, Zinke 1967). 

Roth and Chang (1981) studied throughfall in four major southern pine species, loblolly 

(Pinus taeda L.), longleaf (P. palustris Mill), shortleaf (P. echinata Mill) and slash (P. 

elliottii Engelm). Loblolly pine allowed the least amount of throughfall, longleaf the 

greatest, and shortleaf and slash pines were not significantly different. Their resultant 

equation for predicting T (mm) from Pg (mm) in loblolly pine stands was:

Growing Season: T = 0.901 Pg - 0.79 (3)

Dormant Season: T = 0.914 Pg - 0.38 (4)
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T = 0.790 Pg+ 1.397 (5)

which provides estimates of T that correspond closely with the results of previous studies, 

including Helvey (1971). Similar in method to the weighted equations produced by 

Helvey and Patric (1965) for hardwoods of eastern United States, Helvey calculated a 

weighted average equation from separate observations under loblolly canopy that predicts 

T (mm) from Pg (mm):

T = 0.80 Pg - 0.25 (6)

In a summary of measurement error for precipitation, Winter (1981) estimates 

errors from the gage itself to be from 1% to 5%. Errors due to placement or exposure 

range from 5% to 15% for long-term data and potentially 75% for individual storms. 

Calculating T from Pg using equations from the literature introduces two additional 

sources of uncertainty in estimating Pn, the standard error of the equation and its 

extrapolation to a new setting. First, the accuracy of the weighted throughfall equations 

from Helvey and Patric (1965) and Helvey (1971) are unknown, but, due to the summary 

nature of the equations, the standard errors are likely to be higher than those of the 

equations derived by Roth and Chang (1981) for example. The linear equations found for 

longleaf, shortleaf, loblolly and slash pine canopies have standard errors of 10.1%, 9.1%,

11.4%, and 8.4%, respectively, for an average of 9.8%. Second, the application of the 

literature equations to a site other than those used to generate the relationship introduces 

an unknown degree of uncertainty. Without a calibration of the equation through site- 

specific measurements, the estimate is likely to have greater uncertainty than was found 

in the source studies, although a conclusion of Helvey and Patric (1965) was that 

additional error may not be very large. With these considerations in mind, the throughfall
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estimate, which is equivalent to Pn for the purposes of this study, was assigned an error of 

15% for use in the short-term, steady-state water balances.

2.3 Evapotranspiration Measurement and Error Analysis

Selection of a model for calculating ET is guided in part by availability of 

meteorological measurements. For this study, a weather tower was erected within the 

study area, and equipped with instruments to monitor net radiation, air temperature and 

relative humidity, wind speed and direction. This is a commonly used instrument array, 

because several ET models can be used and evaluated based on data from a minimum 

amount of instruments and thus investment. During the time period of this study, a 

malfunctioning relative humidity sensor prevented the application of a more sophisticated 

model such as the Penman-Monteith equation, and narrowed the selection to a model that 

correlates either air temperature or solar radiation with the rate of ET. Temperature-based 

methods such as those developed by Thomthwaite (1948), Hargreaves (1975), and Blaney 

and Criddle (1950) are commonly used to estimate PET. The high popularity of these 

methods is due to the widespread availability of the required meteorological parameters.

In general, they use monthly temperature statistics as a basis on which to apply 

modifications for vegetation type, regional and monthly means of solar radiation, percent 

cloudiness, relative humidity, and wind speed. Recent and historical monthly 

temperature and other weather indices are readily available from most weather stations.

The success of temperature-based models in estimating ET is due to the 

correlation between temperature and radiation, the primary forcing function in the rate of 

evaporation (Slatyer and Mcllroy 1961, Shuttleworth 1991). Relatively accurate seasonal 

and annual estimates of PET have been obtained by Rykiel (1984), Yin and Brook (1992), 

and Richardson and McCarthy (1994). A higher accuracy in these empirical models is
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obtained by either calibrating against a more robust and accurate ET model, or by 

partitioning an accurate annual estimate into monthly values weighted by local, more site 

specific meteorological parameters (e.g., biotemperature, pan evaporation). The 

empiricism of the temperature-based models limits their accuracy when applied to new 

systems with differing general climates, soil types, surrounding landscapes, and 

vegetation. If calibration for local conditions cannot be performed, the temperature-based 

methods are not recommended and should be used only when temperature is the only 

measurement available (Slatyer and Mcllroy 1961, Shuttleworth 1991).

Radiation-based ET models are simplifications of the Penman-Monteith model 

which can be expressed as:

E T _ Q, i a Qa + a , c „ & / ' ; ,  (
p„X /v l  & + r(l  + r,/r„)

where:
Qe = latent heat flux, in MJ m"2 day'1
pw = density of water, in kg m‘
X  =  latent heat of vaporization, in MJ kg '1
A = slope of the saturation vapor pressure curve (defined at ambient air

temperature), in kPa C '1 
Qa = available energy, in MJ m'2 day'1
pa = density of air, in kg m'3
cp = specific heat of moist air at constant pressure, in kJ kg'1 C '1 
5e = vapor pressure deficit in the air, in kPa
y = psychrometric constant, in kPa C '1
ra = aerodynamic resistance, in s m’1
rs = surface resistance, in s m '1

Essentially, the Penman-Monteith model combines factors influencing the climatic 

evaporative demand (i.e., available energy and vapor pressure deficit) with the biologic 

and aerodynamic resistances to this demand. In this way, the model can estimate actual
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ET for ecosystems with different plant species and soil moisture regimes given the 

appropriate values for the resistances. The most significant term of the Penman-Monteith 

model is Qa, the energy available for partitioning into latent or sensible heat, which can 

be expressed as the result of an energy budget for a unit volume of an ecosystem with an 

extensive vegetative canopy:

Qa = Qn - Qg - Qs - Qp - Qc (8)

where:
Q n = net incoming radiant energy
Q g = outgoing heat conduction into the soil
Qs = energy stored within the volume (e.g., vegetation)
Qp = energy absorbed by biochemical processes 
Qc = energy loss by horizontal air movement

The last two terms of (8), Qp and Qc, are usually not included in water balance work.

First, Qp is approximately 2% of Qn (Shuttleworth 1993). Second, net energy losses by 

horizontal advection, Qc, are minimized or eliminated by locating study sites within 

large, homogeneous landscapes. For instance, the forested area used in this study lies 

within a large forested tract consisting of both municipal water reservoir watershed and 

national park. The fetch, which is defined by Monteith and Unsworth (1990, pp.233) as 

the distance of traverse across a uniformly rough surface, for the study site was 

approximately 1.83 km (1.14 mi) where the tract was broken by either the reservoir or 

housing developments. The recommended fetch is expressed as a ratio of fetch distance 

to boundary layer depth, and, depending on the roughness elements of the transpiring 

surface, generally increases for increasing roughness. Fluctuations in the energy storage 

term, Qs, occur through changes in the temperature and vapor pressure of the atmospheric 

volume, temperature of vegetation, and temperature of a shallow soil layer. Significant 

fluctuations of Qs occur diumally, seasonally, and between weather systems. This term is
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neglected in long-term studies since the net change in energy storage approaches zero. 

Two factors remove soil heat conduction (Q g) from the energy balance of a forested 

swamp. First, the canopy allows little radiant energy to reach the soil surface, and 

second, the high soil moisture creates a strong sink for the conversion of remaining 

incident energy to latent heat rather than sensible soil heat flux (Slatyer and Mcllroy 

1961).

An empirical relation exists between QA, the radiation term, and 8e, the vapor 

pressure deficit or atmospheric term, such that the Penman-Monteith model can be 

rewritten as the radiation term alone multiplied by a coefficient, a:

^   ̂
p w x  p w x  A + r

where a  has been experimentally determined to equal 1.26 for conditions of potential 

evaporation over water and PET over saturated soils and short crops in the absence of 

advection (Priestley and Taylor 1972). Both bare soils and short vegetation when 

supplied with abundant water exert little surface control over evaporation (Munro 1979) 

and therefore show a strong coupling between short-term fluctuations in radiation and 

latent heat flux (McNaughton and Black 1973). However, tall vegetation is more 

aerodynamically rough than shorter crops and therefore supports stronger turbulent 

mixing between the evaporating surface and the atmosphere. A high atmospheric 

exchange coefficient will bring the vapor pressure deficits of the surface and atmosphere 

into equilibrium, reducing the gradient driving diffusion of water vapor. As the 

difference between deficits approaches zero, the atmospheric term of the Penman- 

Monteith equation loses significance, and ET occurs at a rate proportional to the supply of 

radiant energy (Slatyer and Mcllroy 1961, Munro 1979). Investigations of ET rates from
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forest ecosystems have supported this theory, referred to as equilibrium ET (ETeq), by 

obtaining values for a  that are close to unity (McNaughton and Black 1973, Munro 1979, 

Woo and Valverde 1981). As a result, ETeq is calculated by:

(10)
/ M  A+ r

The accuracy of simplifications to the Penman-Monteith ET equation, such as the 

Priestley-Taylor and equilibrium approaches, have been assessed by using the energy 

balance method of estimating ET as a comparison. The energy balance model combines 

measurement of the Bowen ratio (p) and available energy to solve for latent heat flux. 

This model is attributed a high degree of accuracy in the general literature. According to 

Monteith and Unsworth (1990), the Bowen ratio is the ratio of sensible heat flux to latent 

heat flux, C / X E .  If the transfer coefficients of heat and water vapor are assumed equal, 

the relation can be estimated by:

which can be substituted in the energy balance equation:

Rn - G = C + X E ( 12)

and rewritten as:

(13)
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McNaughton and Black (1973) used the energy balance approach to examine 

diurnal fluctuations in hourly increments of heat fluxes within a Douglas fir forest. After 

examining sources of possible error, they estimated a 20% uncertainty for hourly ET 

values, although the consistency of their data indicated less error. The overall accuracy of 

24-hour totals of ET was expected to be 15%. A high correlation was found between 

daily ET measured by the energy balance method and net radiation. A value fo ra  of 1.05 

was found when measured daily ET was plotted against daily ETeq which suggests an 

additional 5% error in the ETeq estimate.

Munro (1979) and Woo and Valverde (1981) verified the equilibrium model 

against energy balance and water balance calculations for a mid-latitude forested swamp. 

Munro regressed hourly values of Qseq on energy balance estimates of Qe and found Qgeq 

to be a fair approximation of Qe for any time period which includes small and large ET 

amounts. He suggested that the equilibrium model offered a simple method to obtain 

long-term ET estimates based on 24-hour totals. In a 5-month study within the same 

swamp, Woo and Valverde found that ETeq (572 mm) was about 3% greater than ET 

estimated by the residual of a water balance (554 mm).
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3.0 METHODS

3.1 Site Selection

An underlying goal of this research was to characterize the hydrology of a wetland 

ecosystem that is well represented in the watersheds of southeastern Virginia. Baseline 

data and the climatic model gained from this study will be extrapolated to other similar 

wetlands. The value of long-term, intensive, hydrologic studies on "type localities" was 

emphasized by the Wetland Hydrology Panel of the Wetlands Value Assessment 

Workshop (Carter 1986). Towards this end, the selected site includes a common type of 

poorly drained, seasonally saturated forested wetland with a mixture of deciduous and 

coniferous tree species found in the coastal plain of Virginia. On a National Wetlands 

Inventory (NWI) map, the site constitutes a mix of PFOIC and PFOIE wetlands 

[Palustrine Forested Broad-leaved Deciduous Seasonally Flooded (C) and Seasonally 

Flooded/Saturated (E)], and uplands. In general, the landscape is made up of flatwoods 

of varying hydroperiod that are punctuated by sinkholes and upland ridges. The 15- 

hectare (37 ac) study area is located within the east-central region of the Coastal Plain of 

Virginia on the York-James Peninsula at 37 12’ 0"N and 76 32’ 45” W. Yorktown, 

Virginia is approximately five kilometers to the southeast. The site elevation ranges from 

15 m (50 ft) to 18 m (60 ft) above mean sea level (amsl).

Both hydrophytic and upland vegetation exist in seasonally flooded forested 

wetlands. Shorter periods of soil anoxia per annum and variation in the degree of 

flooding between years confers less advantage to the adaptations of hydrophytes and
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therefore prevents their domination. In the study area, facultative upland (FACU) tree 

species such as tulip poplar ( L i r i o d e n d r o n  t u l i p i f e r a ) ,  beech (F a g u s  g r a n d i f o l i a ), white 

oak (Q u e r c u s  a l b a ) ,  pignut hickory (C a r y a  g l a b r a ), and american holly ( I l e x  o p a c a ) are 

found alongside facultative (FAC) and facultative wetland (FACW) species like sweet 

gum ( L i q u i d a m b a r  s t y r a c i f l u a ) ,  loblolly pine ( P i n u s  t a e d a ) ,  sycamore ( P l a t a n u s  

o c c i d e n t a l i s ), and various oaks such as water (Q . n i g r a ) ,  laurel (Q . l a u r i f o l i a ) and willow 

( Q .  p h e l l o s ) .

The soils of the study area formed in fluviomarine deposits, and belong to the 

Bethera-Izagora-Slagle mapping unit. These soils are deep, and nearly level to gently 

sloping, and exist on flats and in depressions on uplands. They are clayey or loamy, and 

are poorly drained and moderately well drained (SCS 1985). Both Bethera silt loam, a 

clayey, mixed, thermic Typic Paleaquult, and Slagle fine sandy loam, 2% to 6% slopes, a 

fine-loamy, siliceous, thermic Aquic Hapludult, are mapped by the county soil survey on 

the study site. The Bethera silt loam consists of a 0.18 m surface layer of dark grayish 

brown and light brownish gray silt loam, and a subsoil of mottled gray clay loam, silty 

clay loam, and clay. This Bethera unit has slow permeability and an expected seasonal 

high water table of 0.3 m above to 0.46 m below the soil surface. The sinkholes and low 

areas of the study site have this type of soil. The Slagle fine sandy loam consists of a 0.10 

m surface layer of dark grayish brown fine sandy loam, a 0.13 m layer of light yellowish 

brown fine sandy loam, and a subsoil of mottled yellowish brown clay loam grading into 

a mottled clay loam and sandy clay loam. This Slagle unit has moderate permeability in 

the upper part of the subsoil and moderately slow or slow in the lower part. In the study 

area, the flatwoods and ridges are characterized by Slagle soils.

The geology of the Yorktown quadrangle has been described by Johnson (1972). 

The study area lies on the Grafton plain adjacent to the western extent of the Lee Hall
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Scarp. The Grafton plain is a level, poorly drained area sloping eastward at 0.2 m per 

kilometer (1 ft/mi) in the western part and relatively flat at 16.75 m (55 ft) towards the 

eastern part. The surficial stratigraphic unit is the Windsor Formation with an 

approximate thickness of 7.6 m (25 ft) in the study area. The Formation has been divided 

into two informal members, a "lower cross-bedded sand and bedded silt member and an 

upper silty-clay, sandy-silt, and clayey sand member" with "major vertical and lateral 

variations in lithology" (Johnson 1972). The lower Windsor grades upward from medium 

to coarse sand and gravel to fine sand and clayey silt. The upper Windsor is a mixture of 

sand, silt, and clay. Deposits of iron oxide appear surrounding decayed roots, and along 

fracture planes in more clayey sediments.

The Windsor Formation is underlain by the Yorktown Formation which Johnson 

(1972) subdivided into six facies based on texture, composition, and bedding features. In 

the study area, the Yorktown Formation is reported to be composed of an upper 

weathered zone, a possible middle coquina facies, and a lower facies of sandy silt. The 

composition and structure of the weathered zone varies with the characteristics of the 

specific site and in general is a clayey sand. The coquina facies is composed of shell 

material infilled with a fine to coarse-grained biofragmental sand, and exhibits a 

carbonate composition of 47 to 89 percent by weight (Johnson 1972). A ferricrete zone 

may exist above the coquina facies where soluble iron in groundwater is precipitated due 

to the increase of pH from the carbonate shells. Leaching of carbonate from the 

Yorktown Formation has caused localized subsidence of Windsor sediments, forming 

depressions, called “sinkholes,” that contain standing water for part of the year. The 

sandy silt facies consists of medium bluish-gray sandy silt with narrow layers of shell and 

fine to medium quartz sand.
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3.2 Hvdrologic Measurements

A comprehensive water balance requires the measurement or estimation of all 

water flows to and from the study volume: precipitation, evapotranspiration, inflow and 

outflow of surface and groundwater, and changes in water storage. Under steady-state 

conditions and in the absence of surface flows or of net surface flow (i.e., Si - SQ = 0), the 

water balance equation reduces to:

0 = Pn - ET + Gn ± b (14)

where:

Gn = net groundwater flow 

b = errors of measurement

The climatic water balance requires the measurement of water table level, Pn, and 

ET. The water table was monitored by a grid of water table observation wells at

approximately 100 m intervals with additional wells located to monitor topographic

features. A total of 17 wells were used for this study. Well depths range from 0.71 m to 

3.10 m with the majority being 1 m to 2 m in depth. The depth of each well and length of 

screen were determined during installation based on different soil profiles and expected 

depth to water table.

Wells were constructed from schedule 40 PVC pipe with an inner diameter of 5.1 

cm (2.0 in) and a screen slot of 0.25 mm (0.010 in). Boreholes were advanced by bucket 

auger with a diameter of 8.26 cm (3.25 in). The screen was packed with #2 well gravel, a 

filter sand with predominantly 1.5 mm to 2 mm grain size. Most wells were screened the
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length of the borehole to within 11 cm to 29 cm of the soil surface and completed with a 

bentonite plug. Four wells were constructed differently, because, due to difficulties in 

well installation, the gravel pack extended further above the screen than intended. Well 6 

was screened from 1.59 m to 2.38 m in a sinkhole, but the well gravel backfill came to 

0.80 m depth. Well 7 was screened from 1.85 m to 3.05 m on a ridge where a deeper 

water table level was expected. The borehole was filled to 1.00 m with well gravel. Well 

9 was screened from 1.12 m to 1.75 m in a sinkhole and had the borehole filled to 0.59 m 

with gravel. Well 11 was screened from 1.29 m to 2.04 m in wet flatwoods with gravel 

placed up to 1.05 m depth.

Water table levels were measured with a Solinst flat tape meter graduated in 3 mm 

(0.01 ft) intervals. Water table levels were almost exclusively measured in late afternoon 

between the times of 1430 to 1700 EST with the most frequent sampling occurring 

around 1600 EST. To maintain the integrity of the time series data, sampling at a 

consistent time of day ensured that the short-term signal of daily water table fluctuations 

was not incorporated into the longer term signal for the balance periods. Daytime latent 

heat exchange of forests follows the distribution of net radiation. After an approximate 

one hour time lag in the morning, ET increases rapidly with the flux of net radiation, 

peaks shortly after solar noon, and then declines evenly with the magnitude of net 

radiation. In the evening, latent heat flux remains for a short period of time at a level 

greater than that supported by the energy flux due to net radiation (McNaughton and 

Black 1973). Given this daily fluctuation in latent heat flux, the water table level of late 

afternoon was assumed to reflect the water loss from ET that day. Sampling began June 

1994 at weekly intervals in some wells with other wells included as they were 

constructed. Daily sampling occurred during higher water table levels from March to 

May 1995. Since many wells were almost dry in the summer and showed little response

30



to storm infiltration, water levels were read weekly unless a significant storm raised the 

water table.

Gross precipitation (Pg) was measured by a recording, tipping bucket rain gage

located approximately one kilometer from the center of the site. A radius of 1.3 km (0.81
2 2mi) from the gage outlines a circle of 5.3 km (2.0 mi ) area, and encompasses the 

research area. The gage is located in a square, 4 ha field which is mowed periodically and 

surrounded by trees that function to minimize measurement errors due to wind. The field 

is maintained for the operation of two commercial radio towers, and thus the gage had to 

be positioned away from guy wires and towers. The towers were presumed to have no 

effect on the measurement of rainfall. The tipping bucket gage reduces or eliminates 

errors from evaporation, the use of dip stick or volumetric container, and splash.

However, this gage is susceptible to errors from lost catch as the bucket tips, unmeasured 

catch when the bucket partially fills, and adhesion. The errors due to partial fill of bucket 

and adhesion will be compensated for by adding 0.25 mm (0.01 in) (i.e., the precipitation 

depth that fills one bucket), which is the sum of 0.13 mm (0.005 in), for adhesion to the 

funnel surface and 0.13 mm (0.005 in) for the mean amount of water remaining in an 

untipped bucket and lost to evaporation, to each 24-hour period in which rainfall occurred 

and that was preceded by two days of no rainfall.

For this study, the total error in the measurement of Pg was estimated to be 6%, 

the sum of 1% for gage error and 5% for areal averaging. The minimum gage error was 

used since the tipping bucket rain gage is one of the most accurate methods of rainfall 

measurement, and, when calibrated, is accurate to 0.5% at a rainfall rate of 13 mm/hr 

(Model 6010 Manual, WEATHERtronics Division, Qualimetrics, Inc.). Error due to 

exposure was assumed to be negligible due to optimum conditions for the location of the 

gage. The error due to areal averaging was calculated from equation (2) given the area of
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a circle centered upon the gage and encompassing the study area. It was recognized that 

the regression coefficients for equation (2) were calculated for a geographic area that may 

differ from southeast Virginia in climatic characteristics, such as the spatial and temporal 

variability of rainfall. The short-term water balances vary in duration from weeks to 

months, and include single to many storm events. Without a well-defined relation 

between longer sampling times and increased accuracy in estimating Pg, a measurement 

error of 6% was used for the purposes of this study.

Net precipitation (Pn) inputs to the water balance models were equated with 

throughfall and calculated from the literature equations for predicting T from 

measurements of Pg. The canopy type within a 50-meter radius of the well site was 

categorized as either pine or hardwood if either type had greater than 75% cover 

otherwise the canopy was designated as mixed pine and hardwood. Based on these 

canopy assessments, three equations were used to predict Pn (mm) from the sum of daily 

Pg (mm) for each balance period with the number of days of rainfall (N):

1) pine canopy Pn = 0.80 Pg - 0.25N (15)

2) mixed canopy Pn = 0.85 Pg - 0.52N (16)

3) hardwood canopy Pn = 0.901 Pg - 0.787N (17)

The equation for the pine canopy was obtained from a review of studies on interception

by loblolly pine (Pinus taeda L.) by Helvey (1971). Loblolly pine is the predominant pine 

species of the study area. Both growing and dormant season equations for the prediction 

of T in hardwood forests were available from Helvey and Patric (1965). Since the 

difference between these equations was small relative to the errors contained in other 

components of the water balance, the growing season equation was used for all balances.

For mixed canopy, Pn was modeled as an average of the linear regressions for pine and
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hardwood canopies. The uncertainty in predicting Pn, the actual precipitation input for 

the water balances, is estimated at 15%, considering: 1) the standard errors associated 

with source studies of interception; 2) the greater uncertainty in the weighted average 

equations used in this study; and, 3) an additional error from applying these empirical 

equations to a different location.

Net radiation (Qn), air temperature, and wind speed and direction were measured 

every 20 seconds, and stored as 15-minute averages by a Campbell CR10 datalogger.

The sensors were located within the perimeter of the forested wetland, and were 27 m 

above the soil surface and approximately 5 m above the nearest treetops. Qn was 

measured by a REBS Q6 net radiometer placed to the south of the tower to avoid shadow 

error. The study used a non-guyed, telescoping tower designed by Tri-Ex Tower Corp., 

which required a minimum of disturbance to the radiation signature of the ecosystem. Air 

temperature was provided by a shielded Vaisala HMP35C. Wind speed and direction 

sensors were located at the opposite ends of a horizontal mast oriented perpendicular to 

the other sensors to reduce interference between the sensors. This study assumes the 

greater uncertainty of the equilibrium model compared to the energy balance model is 

offset by integration over longer time periods as suggested by Munro (1979). Therefore, 

a total measurement error of 20% is used in calculation of ET for this study.

Net radiation measurements at the research site were not available on two dates 

during the study period. The weather tower was serviced on 2/21/95 between the hours of 

1145 and 1500 EST and on 4/9/95 between 1330 and 1715. At a distance of 6.4 km (4 

mi) from the site, the Virginia Institute of Marine Science (VIMS) monitors several 

instruments which provide local weather data. An Eppley pyranometer measures global 

solar radiation and records the observations in 6 minute averages. The VIMS 

pyranometer and the net radiometer at the site measure different quantities of radiant
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energy flux (Figure 3). The pyranometer measures the short-wave radiation (i.e., less 

than 4.0 pm) received on a horizontal surface from sun and sky while the net radiometer 

measures total (short-wave and long-wave) net radiative flux through a horizontal plane 

(Rassmusson et al. 1993). A strong correlation between these two quantities would be 

expected since global solar radiation is a principal component of net radiation.

Linear regression relationships between site net radiation and VIMS global solar 

radiation were used to estimate the missing on-site radiation measurements for 

calculating ET. The correlation used data for periods of positive net radiation that was 

recorded simultaneously by the two dataloggers in the form of a 6-minute average for 

VIMS and a 15-minute average for the site. For example, a noon-time reading at VIMS 

represents an average radiation flux from 1154 to 1200 while the simultaneous reading at 

the site is an average for 1145 to 1200. This disparity in time averaging would weaken a 

correlation between the two radiometers on days of large short-term fluctuations in 

radiation flux. Given the seasonal variation in forest albedo and fluctuations in 

atmospheric attenuation of solar radiation, two 1-week periods centered on each date with 

missing data were used to find a relation for each respective afternoon of site inactivity.

When site net radiation (SITE) was plotted against VIMS global solar radiation (VIMS) 

for the period 2/18/95 to 2/24/95 (Figure 4), linear regression analysis showed that SITE 

was related to VIMS by the equation:

SITE = -2.598 + 0.7223 VIMS, r2 = 0.91 (18)

Upon examination of a plot of the residuals in Figure 5, the linear model provided a 

satisfactory description of the data. Likewise for the period of 4/6/95 to 4/12/95 (Figure 

6), SITE can be estimated by the equation:

34



Figure 3. Comparison of global solar radiation measured at the Virginia Institute of 
Marine Science and net radiation measured above tree canopy on site on February 22, 
1995.
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Figure 4. Linear regression of site net radiation versus VIMS global solar radiation for
time periods of positive net radiation between February 18, 1995 and February 24, 1995.
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Figure 5. Plot of residuals from regression of site net radiation for the period of February
18, 1995 to February 24, 1995.
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SITE = -10.33 + 0.7382 VIMS, r2 = 0.94 (19)

As earlier, a plot of the residuals shows the linear relation is adequate (Figure 7). Daily

estimates of ET for 2/21/95 and 4/9/95 used the VIMS data adjusted by the respective

regression equation and substituted for the missing site data. On 11/10/94 and 1/15/95, 

negative net radiation was recorded on site, resulting in daily ET values of -0.18 mm/day 

and -0.02 mm/day, respectively. Both occasions involved days of rainfall during the 

winter season. It is likely that these were instances where a very small value for daily net 

radiation was influenced by the measurement error of the instrument. For the purpose of 

this study, these days were assumed to have zero ET based on the use of the equilibrium 

ET model which is driven by net radiation.

3.3 Error Analysis for Water Balance Residual

To summarize the importance of error analysis with respect to the water balances 

for this study, the relative error associated with each measured component of the climatic 

water balance is 15% for throughfall which is the net precipitation (Pn) input for the water 

balance, and 20% for ET which is modeled using the equilibrium approach discussed 

earlier. If the standard errors of estimate of Pn and ET are assumed to be independent and 

are symbolized by a  and P, respectively, then the standard error of the difference (y) 

between Pn and ET is given by:

Y = V « 2+ P 2 (20)

The short-term balances for this study varied in duration, and Pn and ET did not 

always maintain their normal proportions based on 30-year averages. As a result, it is not 

possible to predict an exact residual that would be significant. However, the following

38



Figure 6. Linear regression of site net radiation versus VIMS global solar radiation for 
time periods of positive net radiation between April 6, 1995 and April 12, 1995.
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Figure 7. Plot of residuals from regression of site net radiation for the period of April 6, 
1995 and April 12, 1995.

40



Pl
ot

 o
f 

Re
sid

ua
ls 

fro
m 

Re
gr

es
sio

n 
of 

Sit
e 

Ne
t 

R
ad

ia
tio

n

*

t o
c \
r J

o
VO
c \
\ o

* * * * 
*

* *
*

* *
* * * ** * *

*
** : * *

%A

* %
*

* * 
* *

e** *

** *
*** * * > *
*

* **

ooON

oo
00

ool>

ooNO

oown

oo

oocn

oo(N

oo

-- o

ooCN
o
* n

oo

(Z 'v tu /A .) s ie n p isa -a

VI
M

S 
G

lo
ba

l 
So

la
r 

Ra
di

at
io

n 
(W

m
A-

2)



examples provide some insight of the interplay between the relative magnitudes of Pn and 

ET and the pooled standard error of the resulting difference. The relative magnitude of 

the pooled standard error of the residual with respect to its value can be shown for 

different months of the year. A typical monthly rainfall during the season of soil moisture 

recharge is 94 mm (3.7 in) of which approximately 20% may be intercepted, resulting in a 

Pn of 75 mm (3.0 in). One of the higher monthly estimates of ET for the recharge season 

as found during this study is approximately 50 mm (2.0 in). The standard errors for Pn 

and ET are 11 mm (0.44 in) and 10 mm (0.40 in), respectively. Therefore, the difference 

in Pn and ET is 25 mm (1.0 in) with standard error of the residual equal to 15 mm (0.58 

in) or a relative error equal to 60%. At this time of year, the pooled standard error of the 

residual is not larger than the residual itself, and Pn is significantly greater than ET which 

corresponds to the expected recharge for this season. For the month of July, the normal 

rainfall is 129 mm (5.06 in) and Pn would be 103 mm (4.05 in) with a standard error of 15 

mm (0.61 in). Monthly ET is approximately 120 mm (4.72 in) with a standard error of 24 

mm (0.94 in). Therefore, the residual is -17 ± 28 mm. At this time, the standard error of 

the residual is larger than the residual itself and it is uncertain whether the month has a 

positive or negative vertical balance given the measurement errors associated with Pn and 

ET. It is known from observation that this is a season of soil moisture loss and water 

table decline. However, the uncertainty in the P and ET balance prevents drawing 

conclusions on the potential role of groundwater flow in the ecosystem and on adjacent 

land features. It is for this reason that this study and other ongoing and future research on 

ecosystem hydrodynamics where new hypotheses are being formed regarding intra-feature 

and inter-feature interaction must explicitly account for sources and magnitudes of error 

in the results.
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4.0 RESULTS AND DISCUSSION

4.1 Precipitation

Hourly gross precipitation (Pg ) totals were stored in dBase IV (Ashton-Tate,

1990) which was used to summarize hourly data into 24-hour totals by Julian day (Figure 

8). For the 248-day period from 10/17/94 to 6/21/95, 694 ± 42 mm of rainfall occurred 

over 80 days with no incidence of snowfall. Of the days when rainfall occurred, mean 

daily Pg was 8.68 mm (s.d. = 10.79 mm, n = 80) with a minimum of 0.51 mm and a 

maximum of 63.25 mm. A frequency distribution of daily Pg data grouped into 2.5 mm 

(0.1 in) intervals shows values skewed towards the smallest two size classes (Figure 9). 

The cumulative distribution of Pg by size class shows 55% of the daily values were less 

than 5 mm (0.2 in) and 6.25% were greater than 25 mm (1 in)(Figure 10).

The size and frequency of rainfall events has a significant effect on canopy 

interception processes. The proportion of Pg intercepted by the canopy varies with the 

magnitude of daily Pg according to the linear equations for predicting Pn. Figure 11 

shows the increasing effect of the line intercept of the throughfall equations at low daily 

Pg values. At higher daily Pg values, the ratio of gross to net rainfall dominates the 

relationship. Figure 12 shows the sum of daily Pg values within each respective size 

class. The largest share of total Pg fell at rates of 15 to 20 mm/day (0.6 to 0.8 in/day), and 

no Pg occurred at a rate of 42.5 to 62.5 mm/day (1.7 to 2.5 in/day). Interception was 

calculated as the difference between Pg and Pn where Pg was measured and Pn was 

predicted for three canopy types by equations (14), (15), and (16). Figure 13 shows the
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Figure 8. Gross precipitation for the study period: October 17, 1994 to June 21, 1995.
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Figure 9. Frequency distribution of gross precipitation where Pg in 24-hour totals is 
distributed in 2.5 mm size classes.
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Figure 10. Cumulative frequency distribution of gross precipitation by 2.5 mm size class.

45



Cu
m

ul
at

iv
e 

Di
st

rib
ut

io
n 

of 
Gr

os
s 

P
10

/1
7/

94
 

to 
6/

21
/9

5

O

O
CO

o

00

o
CM

o

o
ounh-

o
A o u e n b e jj  eA ^Biniuno

24
-h

ou
r 

To
ta

ls 
in 

2.5
 

mm
 

Si
ze

 
C

la
ss

es



Figure 11. Interception by hardwood, mixed, and pine canopies by 2.5-mm size class of 
Pg and expressed as a percent of Pg.
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Figure 12. Total Pg for the study period distributed by size class.
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size class totals partitioned into I and Pn based on mixed canopy conditions. The 

proportion of interception losses increases at lower size classes, and, conversely, larger 

daily Pg events contribute a greater proportion of their rainfall to the water balance. A 

comparison of the magnitude of I for the three canopy types, hardwood, mixed and pine 

shows the hardwood canopy intercepting the least and pine the greatest for size classes 

greater than 5 mm (Figure 14). For daily Pg events less than 5 mm, the order of 

interception by species is reversed such that the hardwood canopy intercepts the greater 

proportion and the pine canopy the least. It is uncertain whether the throughfall model 

accurately predicts canopy interception at low rainfall or whether the reversal in relative 

magnitude is an artifact of using a linear, least squares regression to generate the 

relationship. Given a conceptual model where throughfall is inversely proportional to a 

parameter expressing the amount of leaf area in a canopy (e.g., leaf area index), then the 

pine canopy would be expected to have the highest capacity for interception. Thus, the x- 

axis intercept of the throughfall equations should reflect the initial storage capacity of the 

canopy with pine canopies having the greater value. Instead, the solutions of the 

throughfall equations used in this study for Pn = 0 are 0.87 mm for hardwood, 0.61 mm 

for mixed, and 0.31 mm for pine. This discrepancy from the conceptual throughfall 

model may have been caused by the use of a generalized or summary equation for 

hardwood canopy versus an observed relation between Pg and throughfall in a pine 

canopy. However, without onsite measurements of throughfall, it was decided to keep 

the throughfall equations in their original form and examine the magnitude of potential 

error that may result from the use of the original equations.

If the reversal in the magnitude of interception at low Pg for hardwood and pine 

canopy types is inaccurate, then the effect of the throughfall model on the uncertainty of 

the water balance residual needs to be considered. For daily Pg events less than 

approximately 7.5 mm, Pn would be overestimated for balances involving a pine canopy

48



Figure 13. Interception of Pg by size class under mixed canopy conditions.
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Figure 14. Comparison of interception between hardwood, mixed, and pine canopies by 
size class.
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and underestimated for hardwood site balances. About 18% (122 mm) of the total Pg for 

the study period fell at rates less than 7.5 mm/day (Figure 15). The hardwood and pine 

canopies intercepted 40% and 30% of this category, respectively. As an approximate 

estimate of the error, we may assume that these proportions are reversed (i.e., hardwood 

interception is 30% and pine interception is 40%), thus the difference in interception of 

10% which equals 12 mm (i.e., 10% of the total 122 mm for size classes less than 7.5 

mm) for the 248-day study period is an estimate of the error. The short-term water 

balances calculated in this study extended an average of 42 days and ranged between 8 

days and 103 days. If we assume that Pg and frequency of storm size are equally 

distributed over the study period, then the duration of the average water balance, 42 days 

(17%) of the 248-day study period, can be used to calculate the average expected total Pg 

and amount of daily Pg less than 7.5 mm for an average balance. By this method, a 42- 

day balance would be expected to have 14 days of rainfall for a total Pg of 118 mm of 

which 21 mm (18% of Pg) would be expected at a rate less than 7.5 mm/day. If there is a 

10% error in I for daily Pg less than 7.5 mm, then the average additional error in the Pn 

estimate is 2 mm. The expected Pn for pine and hardwood canopies according to 

equations (14) and (16) are 91 mm and 95 mm, respectively. Therefore, if the reversal in 

relative interception between pine and hardwood canopies is incorrect, then on average 

this inaccuracy would add a relative error of 2.2% and 2.1%, respectively, to the residual 

of any water balances for these canopy types. There would not be a significant 

contribution to the error of the residual for balances of mixed canopy type since the 

equation for Pn is an average of the other equations and the errors would cancel.

Total cumulative Pg for the study period was 694 ± 42 mm, using the selected 6% 

measurement error, and was close to the expected 714 mm for Norfolk, VA (ORF) 

according to average monthly precipitation for the 1961 to 1990 period of record (NO A A 

1994). The winter and spring months of 1995 were drier than normal as shown in Figure

51



Figure 15. Cumulative percent of total Pg for the study period by size class.
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16 where the observed cumulative Pg remains less than expected from January 1995 

through mid-June 1995. Expected cumulative Pg was generated by distributing average 

monthly precipitation equally over the days of each respective month and calculating a 

running total for each day of the study period. On March 8, 1995, the dry period was 

punctuated by one large rainfall of 63.25 mm, the maximum daily Pg for the study, which 

ended the precipitation deficit, only to be followed by more than a month of little rainfall. 

Slow surface water flow through the leaf litter was observed at well 27 located beside a 

shallow (approximately 7 cm) drainage feature that serves the study area. This flow went
3 3unmeasured, but was on the order of 1500 cm /sec for one day, or approximately 130 m . 

The additional error in the water balance residual resulting from this surface flow is a 

function of the dimensions of the source area. For example, for one well site representing 

100m2, this volume of water represents 13.6 mm, a large error compared to the residual of 

the water balance. In reality, it is estimated that the surface flow drained from a larger 

area of approximately 12 well sites which reduces depth per unit surface area to 1.1 mm. 

Even this outflow was offset by unmeasured water inflow from a smaller, intermittent 

drainage feature that enters the well field from higher elevations to the northwest, and 

accounts for a portion of the questioned surface outflow. Therefore, if this is a close 

approximation of the temporary surface outflow, then the unit area loss of water is on the 

order of a few millimeters. The error associated with the surface outflow on the residual 

of a balance is related to the magnitude of the residual. Other than this single event, the 

dry period prevented surface water flows during the study period and therefore allowed 

that flow to be excluded from steady-state water balances.

E v a p o t r a n s p i r a t i o n

The daily equilibrium ET time series for the period of 10/18/94 to 6/21/95 is 

shown in Figure 17. Analysis of ET values began on the second day of the study period 

following the convention of measuring well water levels in the late afternoon. Daily ET

53



Figure 16. Observed cumulative Pg versus expected cumulative Pg for Norfolk, Virginia 
for the study period.
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Figure 17. Daily equilibrium ET along with weekly averages for the study period.
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values ranged from 0 mm/day to 5.8 mm/day on 6/17/95. The seasonal low of the annual 

ET cycle occurred in December and January when daily ET averaged 0.6 mm/day and 

rarely exceeded 1 mm/day. Beginning in February, the daily ET rate increased by 

approximately 1 mm for each month, such that daily ET fluctuated around 4 to 5 mm/day 

by June when this study was concluded. As ET rates increased in the spring, daily 

variability increased as well. By separating the different terms of the equilibrium ET 

equation and plotting their relative values together, it is obvious that seasonal variability 

in the magnitude of fluctuations in daily ET was predominantly due to the net radiation 

term (Figure 18). The weighting factor containing A and y exhibited a relatively constant 

seasonal variance over the study period. Although, a longer period of monitoring might 

show that the variance of the weighting factor is slightly greater in the winter than the 

summer. This pattern can be discerned in Figure 18, but comparisons are needed with 

additional years to test its validity. In general, the seasonal fluctuation of the weighting 

factor was between approximately 0.40 in January and February and 0.70 in May and 

June. The annual low of the weighting factor occurs about a month after the net radiation 

annual low. In Figure 18, daily net radiation is expressed as its water equivalent derived 

from the energy flux in MJ d ay 1 m '2 divided by the latent heat of vaporization ( k  ~ 2.5 

MJ kg’1) and the density of water ( pw ~ 1000 kg m’3). The pronounced daily fluctuations 

result primarily from the scattering of solar radiation by cloud cover. By this model, the 

magnitude of the daily net radiation term represents the meteorological upper limit to the 

rate of daily ET if all energy flux was dedicated to latent heat exchange. Under certain 

site conditions, latent heat flux leaving the site can be in excess of net radiation influx as 

a result of additional energy supplied by advected sensible heat influx. Commonly, this 

added energy for ET is supplied by air masses of higher temperature and lower relative 

humidity than exist in the microclimate of the site, resulting in an “oasis effect” where the 

observed ET rate is higher than expected by measurements of net radiation. This 

phenomena underlies the importance of selecting a site with adequate fetch. The greater
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Figure 18. Separation of daily equilibrium ET values into component terms of daily net 
radiation and weighting factor.

57



(ss0 |i|un) joiobj BujiLiBjayw

CO
E
O)

H
I—
LU

E
3

LOO)

5
CD
O

Hi
**—o
c
0
1
CO
Q.
a>

CO

oo

in in
CM

mh- in
o

m
CM
o

in
05
oJo
cno

in
05
CM
O

o

in
05

CO

T3
T3

0
as
Q

05

O

0 0  CO -M" CM O

(Aep/wuj) uojieipBy j©n A|n2Q
CM

05

> ,0;a
1=

ci
DC
> *

0
Q

o
0

Li_

O)C

05
'0



the fetch surrounding the site the more likely the wind profile has equilibrated between 

the site microclimate and the overlying air mass.

Total ET was 480 ± 96 mm for the study period according to the equilibrium ET 

model, accounting for 69 ± 14% of Pg and 87 ± 17% of Pn for the mixed canopy type 

(Figure 19). This result agrees closely with the 75% of Pg,, or 520 mm, predicted by the 

Thomthwaite method. However, the Thornthwaite estimate is an annual proportion, and 

the results of this study do not include the summer season when the P:ET ratio is low. 

Extrapolating through the remainder of the year, I would expect the annual proportion of 

Pg lost by equilibrium ET to be greater than 69%. It is difficult to speculate how much of 

an increase in percentage would occur, because the higher ET rate of the summer is 

partially accommodated by a small peak in the rate of Pg. Although the results of past 

investigations do not agree consistently, there is evidence that well-watered forests 

transpire at 80 ± 10% the rate of crop PET (Shuttleworth 1993). In this regard, forested 

wetlands on the study site would be expected to evapotranspire 416 ± 52 mm (i.e., 80 ± 

10% of 520 mm) or from 52.5% to 67.5% of Pg for this study period according to the crop 

PET predicted by the Thomthwaite method.

The change of slope in the cumulative P and ET plots in Figure 19 signifies 

seasonal variations in the rates of P and ET. The initial low ET rate is followed by a 

steepening, and thereby increasing, ET rate as expected for the October to June period of 

study. At the same time, seasonal deviations from the normal rate of P were observed, 

although total P for the study was close to normal. The period of less than normal rate of 

P in the two months beginning in early January was compensated for by a greater than 

normal rate of P during the two month period beginning in mid-April. According to the 

Norfolk records of normal monthly P, these two time periods usually accumulate similar 

amounts of P (NOAA 1994, see Figure 1). These deviations from seasonal normal rates
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Figure 19. Cumulative Pg, Pn for hardwood, mixed and pine canopies, and ET for the 
study period.
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of P are reflected in Figure 16 where cumulative Pg decreases below expected amounts in 

January 1995 and recovers in May and June 1995.

The divergence and convergence of the P and ET plots in Figure 19 are the basis 

for the unique hydrodynamics of wet flatwoods, and are the reason for conducting short

term steady-state water balances of these ecosystems. An annual water budget can not 

present data in a way that reveals the seasonal dynamics of climate and soil moisture. A 

divergence of the Pg or Pn plot from the plot of ET occurs when the rate of P is greater 

than the rate of ET. If this surplus is greater than the rate of net groundwater loss, then 

soil moisture recharge will occur and water table levels will rise. A convergence of the P 

and ET plots indicates a more rapid loss to ET than can be replaced through P, resulting 

in decreased soil moisture and decreasing water table levels. It is this fluctuation of the 

two dominant vertical fluxes with respect to each other that affects the amount of water 

available for changes in soil storage, as well as the amount and direction of groundwater 

flow. Unlike wetlands whose hydroperiod is buffered by a constant surface or 

groundwater inflow, wet flatwoods can possess unique, oscillating, groundwater flow 

regimes due to significant vertical fluctuations in water table level over a year. The 

complexity of these flow regimes is strongly influenced by vertical and lateral variability 

in hydraulic conductivity (K) of soil layers, and specific yield (Sy) of the surficial aquifer. 

Unless water balances are performed on a shorter time scale, these opposing groundwater 

flows will yield a lesser sum over the time period of the balance.

As found by Crownover et al. (1995) in a cypress swamp and pine flatwood 

landscape in Florida, the topography of the water table and the resultant groundwater flow 

directions in landscapes with soils of relatively homogeneous K distribution are closely 

related to the topography of the land surface. Under these conditions, large fluctuations 

in water table elevation are likely to affect rates of groundwater flow more than direction
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of flow. As the water table increases in elevation, the water table topography mimics the 

surface topography to a greater degree, thus increasing gradients in hydraulic head and 

rate of flow. With decreasing water table elevation, water table topography flattens with 

respect to the land surface topography, and differences in hydraulic gradients, and 

therefore rate of groundwater flow, decrease. On the other hand, landscapes where areas 

of higher and lower K are juxtaposed can experience significant reversals in groundwater 

flow direction. Phillips and Shedlock (1993) studied relations between ground water and 

surface water in a landscape of small seasonal ponds and broad upland ridges on a 

forested Coastal Plain drainage basin. They found that the low K soils beneath the ponds 

were the location of higher water table elevations than adjacent, high K sandy ridges 

during summer and fall, and, subsequently, this gradient was reversed in winter and 

spring.

The seasonal pattern of water availability is illustrated by a graph of the difference 

in the cumulative distributions of Pg versus ET, and mixed canopy Pn versus ET (Figure 

20). If we ignore the short-term perturbations of large rainfall events and dry periods, the 

residuals of both climatic balances increase through the fall, winter and spring. The 

residual of Pg - ET increases to a high of approximately 250 mm in mid-May whereas the 

residual of Pn - ET approaches an approximate high of 150 mm in mid-March. The dry 

period in March and April obscures the trend of the Pn - ET residual. The peak in the 

seasonal pattern of the residuals occurs when P and ET rates are equal. When 

interception loss is considered, a reduction in net input by P shifts the peak of the residual 

of the climatic balance earlier in the year. A discussion of the residual must be qualified 

by a consideration of the accumulation of measurement errors. The measurement errors I 

have adopted for Pg, Pn and ET are 6%, 15% and 20%, respectively. At the time of the 

peak in the residual of Pg - ET, approximate estimates for total Pg and ET are 585 mm and 

335 mm, respectively. Assuming the errors are independent, the residual of the Pg - ET
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Figure 20. Cumulative daily residual plots of Pg - ET and Pn - ET for the study period.
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balance has a standard error of (352 + 672)0'5 or 76 mm, and equals 250 ± 76 mm. The 

peak in the Pn - ET balance occurred when Pn was about 300 mm, and ET was 150 mm. 

The residual of the Pn - ET balance has a standard error of (452 + 302) = 54 mm, and 

therefore equals 150 ± 54 mm.

The climatic balance between P and ET is clearly reflected in both the seasonal 

and total variation in water table levels observed for this study. Seasonally, the time 

period of positive slope in the residual plot is concurrent with rising water table levels in 

the well hydrographs of all three land features, flatwoods, sinkhole and ridge, in the study 

area (Appendix 1). The ensuing dry period between mid-March and mid-April results in 

a water table drawdown. From mid-April to mid-May, the water table levels fluctuate 

greatly as a result of the increasing ET rate which rapidly depletes soil water storage in 

between storm events. The water table levels of the flatwoods and the sinkhole tend to 

fluctuate about a constant or slightly decreasing depth. After mid-May, the flatwoods and 

sinkhole water table levels show a general decline. The ridge water table levels fluctuate 

less in response to storms, and, in general, decline from a high after the storm of March 8.

The total range of the residual of the climatic balance is useful for checking the 

hypothesis concerning the availability of water for groundwater outflow. In that, if there 

is little groundwater outflow from this site and water surplus from the climatic balance is 

being sequestered for the most part as soil water storage, then the rise in water table level 

during the recharge season should be a function of the specific yield of the soils and the 

balance residual. For example, the residual of Pn - ET was zero at the start of the study 

period and peaked at approximately 150 mm in mid-March. The specific yield (Sy) of the 

silt loam, fine sandy loam, and silty clay soils present on the study site may range 

between 0.125 and 0.25, but this property can vary significantly (M. Focazio, personal 

comm.). S y of the water table aquifer can be estimated from the ratio of climatic balance
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residual to change in water table level. Sinkhole well #3 experienced a 680 mm increase 

in water table level between the start of the study on October 17, 1994 and February 22, 

1995 before ponding occurred after the high rainfall of mid-March. In this same period of 

time, Pn for a mixed canopy was 248 ± 37 mm, and ET was 117 ± 23 mm, resulting in 

131 ± 4 4  mm of free water depth. Therefore, an estimate of Sy at well #3 is 0.19 ± 0.06. 

Significant losses to net groundwater outflow would force the Sy estimate to a higher than 

expected value, and significant gains would have the opposite effect. Since the Sy 

estimate is within the expected range, it is probable that large net groundwater gains or 

losses did not occur in the vicinity of the well in this sinkhole. In the wet flatwood, Well 

#16 experienced a 1090 mm rise in water table level between 1/18/95 and 3/1/95 in 

response to a surplus of 50 ± 20 mm of Pn over ET, resulting in an estimated Sy of 0.05 ± 

0.02. Well #7 located on a ridge increased its water table level by 960 mm between 

1/25/95 and 3/8/95. During this time period, Pn - ET equaled 37 ± 19 mm, resulting in an 

estimate of Sy of 0.04 ± 0.02. Lower values for estimated Sy indicate the possibility of net 

groundwater inflow to these areas. Preliminary results of work succeeding this study 

indicate seasonal reversals in water table gradients and therefore groundwater flow 

between sinkholes and flatwoods, similar to earlier discussion of research by Phillips and 

Shedlock (1993). The water table level in the flatwoods decreases below that of the 

sinkholes during the summer and into the fall. During the winter, the flatwoods water 

table rises above the level in the sinkhole. In this way, a significant amount of ground 

water may have flowed from sinkhole to flatwood during the late winter and early spring 

period used to estimate Sy. However, this phenomena would not explain the low Sy of the 

ridge since groundwater outflow from a higher water table elevation in the ridge would 

cause an overestimation of Sy. Further study is planned where the well network will be 

registered to a common datum, making analysis of spatial and temporal groundwater flow 

possible.
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Steady-state Water Balances

A total of 45 balances were calculated using the water level data from 17 wells 

located in 3 different landscape features: wet flatwood, ridge, and sinkhole. Table 1 

presents the results of the water balances organized by the three landscape features and 

sorted within landscape feature by ascending balance beginning date. Each individual 

water balance has a unique balance number (#1 to #45) which is used in the following 

discussion to facilitate identification. The balance periods do not necessarily correspond 

in time between features since the end points of the balance rely on recurring water levels 

and date of well completion. In general, the earliest flatwood balances began on 1/25/95, 

ridge balances on 2/1/95, and sinkhole balances on 10/17/94, with all landscape features 

having balances extending through 6/21/95. Balance durations varied from 8 days to 103 

days, with an average length of 42 days (s.d. = 23). Components of the climatic water 

balance, Pn, ET, and Gn, are given in units of depth per unit area (mm) and proportion of 

Pn (%). For the purpose of comparison, discussion of results uses components expressed 

as a percentage of Pn. In this way, seasonal variation in the fate of precipitation inputs as 

ET or Gn outputs can be compared easily.

Pn was a relatively constant proportion of Pg with an average of 80% for all 

balances. Despite differences in duration, number and intensity of rain events, and 

canopy types, the throughfall model estimated similar amounts of interception within a 

few percentage points for all balances. Pn averaged 77%, 80% and 82% of Pg for steady- 

state balances for wells with pine, mixed and hardwood canopy, respectively. For all 

balances, the results show percentage of Pn lost to ET varied from 30% to 500%. In 

general, the lowest ET losses occurred in balances that included or were within the first 

five months of the study period. Six balances for the wet flatwood (1 ,2 , 4), ridge (27), 

and sinkhole (35, 36) occurred between October 1994 and mid-March 1995 for which
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Table 1. Short-term, steady-state water balances (#1 to #45) by landscape feature.
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ratios of ET:Pn expressed as a percent are 38%, 43%, 52%, 41%, 52%, and 30%, 

respectively. There are no obvious differences in these ratios that correspond to different 

land features. The mean ratio of ET:Pn for these six balances is 43%, thus leaving an 

average of 57% of Pn for groundwater recharge. In fact, all features showed net 

groundwater outflow, which is expressed as a positive residual (+Gn) in Table 1, in excess 

of the pooled standard error of the residual. These results demonstrate that the residual of 

the climatic balances for fall and winter can not be accounted for by the change in storage 

alone (i.e., a rise in water table level), and that more than half of Pn exited the site as 

groundwater outflow.

The expected cumulative Pn for a mixed canopy forest between mid-October and 

mid-March is approximately 340 ±51  mm based on normal monthly Pg and degree of 

interception. Based on the net recharge rate of 57% found in this study, approximately 

194 ± 59 mm of free water depth on a unit area basis would be expected to recharge 

ground water during this October to March time period for an average of 39 ± 12 mm per 

month. This is a general estimate based on expected rainfall for Norfolk and the average 

seasonal net recharge for late fall to early spring found in this study. However, the 

1994/1995 period of winter recharge was characterized by a unique distribution of storm 

sizes and rates of rainfall, and relative amount of actual to normal P over time. Given 

typical climatic variation in seasonal water availability between years, seasonal soil 

moisture dynamics and by extension wetland hydrodynamics can differ significantly. In 

this way, if an early dry period in October and November did not occur as in the 

1994/1995 recharge period or if more large storm events occurred, it is likely that some 

proportion of Pn would be lost to surface outflows due to saturation to soil surface.

A dry period occurred from mid-March to mid-April when only 14 ± 1 mm of an 

expected 89 mm of rainfall occurred. Balances that are dominated by this dry period
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showed ET losses greater than Pn inputs, yielding ET:Pn ratios of 127%, 118%, and 129% 

for the flatwoods (9, 10, 11), 146%, 116% for ridges (28, 29), and 112% for the sinkholes 

(40). These values indicate some form of water input to the steady-state, climatic balance 

either as water flow into the system or as an overestimation of outflow from the system. 

Although the ridge balance (28) with an ET:Pn ratio of 146% is the only balance where Gn 

is significantly greater than zero when the standard error of the residual is considered. 

Preliminary findings from nested piezometers do not support groundwater inputs from 

deeper, regional groundwater flows. It is not likely that net subsurface exchanges 

between land features provided the surplus water since the residuals (Gn) for all land 

features are positive. A possible explanation for the source of the water input is an 

overestimation of losses to ET. During the dry period, plant transpiration may have been 

reduced by water stress, as a result of an inadequate supply of soil moisture to maintain 

PET rates. In addition, equilibrium ET will likely overestimate the rate of ET from 

hardwood or mixed species forests during winter dormancy. Although evaporation from 

the vegetative structure and transpiration from the evergreen species still proceeds, the 

equilibrium ET model does not account for changes in surface resistance to vapor 

transfer. A large reduction in transpiring surfaces may cause an increase in the surface 

resistance to aerodynamic transfer. If ET was overestimated during the dormant season, 

then a larger proportion of Pn may have contributed to net groundwater outflow in the 

balances before mid-March. The balances encompassing both the winter months and dry 

period of March and April have ET:Pn ratios of intermediate value compared to the ratios 

of either period.

From late April through May, more normal rainfall patterns resumed and ET 

increased, resulting in a close parity between Pn and ET. A partial list of the ET:Pn ratios 

for balances of this time period are 104%, 105%, 121%, 99%, 90%, 93%, and 82% for 

flatwoods (12 and 13, 14, 15, 17, 19, 20,21), 113%, 68%, and 93% for ridges (31,33,
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34), and 99% for sinkholes (41 and 42). The well hydrographs show the water table level 

fluctuating in response to storm events and an increasing ET rate (see Appendix). If a 

period of time is selected where steady-state conditions are met, short-term surpluses and 

deficits of water compensate for each other, leaving no water for groundwater outflow.

The rate of ET increased above Pn to a maximum for the study period during the 

third week in June 1995. The balances that include June are characterized by ET:Pn ratios 

above 100%. The ratios for the flatwood balances (22, 23, 24) are 119%, 173%, and 

500%; the ridge balance (32) was 121%; and, the sinkhole balances (43, 44, 45) are 

134%, 222%, and 171%. As before during the dry period in March and April, the steady- 

state water balances predict an additional source of water to account for the water lost to 

ET. Since the water table levels were similar between the two time periods for most 

wells, plant water stress and reduced ET relative to predicted equilibrium ET may have 

caused ET to be overestimated. Another explanation may be that steady-state conditions 

were violated by changes in the volume of soil moisture storage. As seen by the rapid 

rate of water level decline in the flatwood and sinkhole wells, ET removed a significant 

portion of water in the root zone. If deeper portions of the soil profile had a large part of 

the plant-available soil moisture removed by ET, the entire profile may not have saturated 

again completely in response to a storm event. In this way, a higher water table level 

would have been recorded than actually existed, and the volume of water in storage 

would have been less.

The results of the steady-state water balances show seasonal variation in net 

groundwater flows as calculated by the residual of the difference between Pn and ET. The 

study area, which included wet flatwoods, sinkholes and ridges, experienced net 

groundwater outflow on the order of 57% of Pn for a forest of mixed, hardwood and 

evergreen canopy between October 1994 and March 1995. Therefore, the wet flatwoods
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of the study area were not “hydrologically neutral” land features as hypothesized. The 

marked water table fluctuations in wet flatwoods over a year did not represent a balance 

between changes in volume of soil moisture storage and seasonal water surplus or deficit. 

Several balances exhibited ET:Pn ratios greater than 100%, indicating an additional water 

source beside rainfall. Preliminary results from nested piezometers show no discharge of 

regional groundwater flow in the study area, and no significant surface inflows or 

outflows occurred. Possible explanations for the apparent source of water are: 1) a dry 

period from mid-March to mid-April may have caused plant water stress and a reduction 

in ET rate; 2) equilibrium ET may overestimate for deciduous forests during winter 

dormancy; and, 3) well water levels may not have reflected deeper, unsaturated layers in 

the soil profile after storm events, thus overestimating the volume of storage.

The residual of the climatic balance exhibited a fairly uniform response between 

the land features of the site for the different seasons of the study period. If significant 

differences in the partitionment of Pn into vertical and lateral flows exist between the wet 

flatwoods, sinkholes and ridges or if measurable exchanges occur between these features, 

the model used in this study did not detect them. This information could be obtained by 

performing water balances where direction and magnitude of groundwater flow are 

measured as well as on site estimates of canopy interception.
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APPENDIX Water Level Hydrographs
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