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Abstract

The importance of resource limitation to controlling bacterial growth in high 
nutrient-low chlorophyll (HNLC) regions of the Southern Ocean was experimentally 
determined. Organic and inorganic nutrient enrichment experiments were performed 
along 141°E between 42°S and 55°S. Bacterial abundance, mean cell volume, and 3H- 
thymidine and leucine incorporation rates were measured throughout the course of 4-5 
day incubations. Bacterial biomass, production and growth rates were calculated 
based on changes in cell abundance, cell volume and rates of incorporation. 
Differences between treatments were statistically differentiated and used to make 
general conclusions about possible limitation to bacterial growth in HNLC oceans.

Bacterial biomass, production and rates of growth all responded to organic 
enrichments in three of the four experiments. These results indicate that bacterial 
growth was primarily constrained by the availability of dissolved organic matter. 
Bacterial growth in the Subtropical Convergence, Subantarctic Zone and Subantarctic 
Front responded most favorably to additions of dissolved free amino acids or glucose 
+ ammonium. Bacterial growth in these regions appears limited by input of both 
organic matter and reduced nitrogen. Bacterial growth was relatively unchanged by 
additions of iron alone; however, additions of glucose + iron resulted in substantial 
increases in rates of bacterial growth and biomass accumulation relative to a glucose- 
alone treatments. These results imply that bacterial growth efficiency may be partly 
constrained by iron availability in the HNLC Southern Ocean. A temperature 
manipulation experiment in the Antarctic Convergence revealed an interaction 
between dissolved organic matter and temperature in this region of the Southern 
Ocean.
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Introduction

Bacterial Growth Limitation

Determining the factors that regulate growth of heterotrophic bacteria in

marine ecosystems is ecologically and biogeochemically important. Bacterioplankton 

are often the most numerous members of the planktonic food web and their role in 

nutrient and energy cycling is crucial to the organization of marine ecosystems (Azam 

and Hodson 1977, Hobbie et al. 1977, Fuhrman and Azam 1980, 1982, Fuhrman et al. 

1989, Cho and Azam 1990). Defining the factors that regulate rates of bacterial 

biomass production and control biomass accumulation provides insights into the 

dynamics of microbial food webs. Furthermore, identification of the factors that limit 

the amount of bacterial biomass produced in an ecosystem aids understanding on how 

energy and material flow within the system.

Efforts to determine the constraints on rates and stocks of bacterioplankton in 

different ecosystems suggest that growth limitation is not consistent across marine 

environments. Factors that potentially limit bacterial growth include quality of 

dissolved organic matter (DOM) (Kirchman 1990, Carlson and Ducklow 1996,

Cherrier et al. 1996), inorganic nutrients (Rivkin and Anderson, 1997, Thingstad et al. 

1997), temperature (Pomeroy and Deibel 1986, Shiah and Ducklow 1994), viral 

infection (Proctor and Fuhrman 1990) and grazing (Wright and Coffin 1984, Ducklow 

and Hill 1985). The importance of each of these factors must be assessed with respect 

to temporal and spatial scales upon which these potential limitations act (Ducklow 

1992).



Bacterial growth and production of biomass can be tightly controlled by 

resource limitation in some ecosystems. Trophic levels that are controlled principally 

by resources (food supply) are termed “bottom-up” limited, in contrast to “top-down” 

limitation where predation controls growth (McQueen et al. 1986, Weisse 1991). In 

systems where resources limit bacterial biomass production and growth rates, positive 

relationships between the rate of substrate supply and the rate of bacterial production 

and growth may be observed (Cole et al. 1988, Billen et al. 1990). Alternatively, 

bacterial growth can be more strictly determined by the quality of the available 

resources, rather than by the rate at which organic matter is added to the system 

(Carlson and Ducklow 1996, Vallino et al. 1996).

The seasonal accumulation of dissolved organic material (DOM) in the 

euphotic zone of various marine environments indicates bacterial utilization of DOM 

is limited by some factor other than the rate that substrate is added to these systems 

(Carlson et al. 1994, Copin-Montegut and Avril 1993, Williams 1995). Dissolved 

organic matter constitutes a potentially large, exportable pool of reduced carbon and 

quantification of DOM fluxes are essential to balancing global carbon budgets 

(Carlson et al. 1994). Bacteria are the principal consumers of DOM, and the 

persistence of DOM in marine ecosystems suggests that DOM production and 

bacterial consumption processes are uncoupled in space and time. In such systems, 

the rate of organic matter input may not strictly define the rates or stocks of bacterial 

biomass production.

Experimental manipulations may be used to test the specific processes that 

control bacterial growth. Such manipulations are often a useful means of
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understanding how bacteria respond to the presence or absence of growth limiting 

factors. Enrichment experiments are one way to examine the nature of DOM 

limitation on bacterial growth in marine ecosystems. In these experiments model 

DOM substrates are added to natural seawater batch cultures and bacterial growth 

properties (cell abundance, cell volume, and production) are measured over time. 

Williams (submitted) synthesized the results of a number of “dosing” experiments 

conducted by a variety of investigators in different marine environments and 

concluded that bacterial growth in the open ocean is frequently limited by input of 

labile DOM.

Bacterial growth requires carbon, nitrogen and phosphorus for synthesis of 

macromolecules such as proteins and nucleic acids. Studies from both open ocean and 

coastal environments suggest that most marine bacterial nitrogen requirements can be 

met by dissolved free amino acids (DFAA) or ammonium (NEU+) (Kirchman 1994.

Keil and Kirchman 1991, Keil and Kirchman 1993). The specific carbon sources that 

fulfill oceanic bacterial carbon demands are not as well defined, but small 

monosaccharides like glucose appear to support a large fraction of bacterial carbon 

requirements (Rich et al. 1997). Measurements of primary amines and 

monosaccharides in the open ocean suggest that these organic substrates play an 

important biochemical role in DOM cycling in the oceans (Rich et al. 1997, Benner et 

al. 1992, Amon and Benner 1996).

Substrate Quality

Several investigations have evaluated how substrate quality affects bacterial 

growth efficiency and bacterial growth rates in marine systems. Bacterial growth 

efficiency (BGE) is a measure of the amount of bacterial biomass produced relative to
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the amount of substrate utilized for total cellular metabolism. BGE depends in part 

on the quality of substrates that sustain bacterial growth (Goldman et al. 1987, 

Goldman and Dennett 1991, Kirchman 1990, Moran and Hodson 1990, del Giorgio 

and Cole 1998). Organic matter quality is generally defined by the elemental ratio 

(C: N: P) of the food or energy source. It may also be operationally defined on a 

temporal scale, where “high quality” (labile) organic material is processed by 

heterotrophic bacteria on time scales of minutes to days, while moderate or poor 

quality substrates (semi-refractory or refractory) may take months to years to degrade 

(Carlson and Duklow 1996, Cherrier et al. 1996).

Goldman et al. (1987) and Goldman and Dennett (1991) estimated bacterial 

growth rates and growth efficiencies in laboratory bacterial cultures on various sources 

of carbon and nitrogen. They found that bacterial growth rates and efficiencies were 

more strongly related to the stoichiometric C : N ratio of the substrate than to specific 

organic substrates. Bacteria grew just as well on glucose + NH4+ as on DFAA when 

the C: N ratios of the substrates were similar. Bacterial nitrogen and phosphorus 

requirements are large because they have high cellular nucleic acid and protein 

contents that require them to sustain low intracellular C: N: P ratios (Goldman et al. 

1987, Goldman and Dennett 1991). Kirchman (1990) found bacterial growth rates in 

the subarctic Pacific were considerably larger in DFAA treatments relative to glucose 

+ NH4+ treatments when both treatments were added at similar C: N molar ratios. He 

argued that bacterial preference for DFAA in the subarctic Pacific indicated that direct 

assimilation of DFAA is energetically more advantageous than construction of amino 

acids from simple carbon, nitrogen and phosphorus building blocks (Kirchman 1990).
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Bacterial growth on organic nitrogen may be more energetically favorable than 

growth on simple sugars such as glucose. Although glucose catabolism provides a 

larger energy yield relative to nitrogen rich substrates like DFAA (as estimated by free 

energy changes), utilization of DFAA provides the bacterial cell with carbon, nitrogen 

and energy. Nitrogen rich substrates such as DFAA can be directly assimilated or 

catabolized depending on the net energy yield from each process. Direct assimilation 

of amino acids provides an energy saving step towards protein synthesis (Payne and 

Wiebe 1978, Goldman and Dennett 1991). Amino acid assimilation requires that the 

total energy expenditure from transporting the amino acid across the cell membrane is 

less than the energy required synthesizing the amino acid from individual precursor 

elements (Payne and Wiebe 1978).

Glucose may provide bacteria with an energy-rich substrate to fuel growth 

processes. Glucose catabolism generates energy by dissimilatory oxidation reactions 

which yield ATP and reaction by-products. The energy gained from glucose 

catabolism must be transferred to sites within the cell where cellular synthesis occurs. 

Additionally, bacterial growth on glucose requires acquisition of mineral nutrients 

before construction of nucleic acids and proteins may occur. Bacterial growth on 

glucose may be relatively inefficient because acquisition and transport of mineral 

nutrients can consume a large fraction of the cell’s energy (Gottschalk 1979, Fenchel 

and Blackburn 1979).

Kirchman (1990) and Cherrier et al. (1996) hypothesized the bacterial 

preference for amino acids relative to glucose + NH4+ in the subarctic and northeast 

Pacific resulted because the bacteria were constrained by energy limitation. They



argued that the specific types of substrates utilized for bacterial growth dictated 

growth rates and growth efficiencies (Kirchman 1990, Cherrier et al. 1996). Bacterial 

preference for DFAA over glucose + N H /  in the subarctic Pacific indicated that 

DFAA substrates provided the necessary constituents the cells required for growth. 

Bacterial growth on DFAA may sustain higher rates of bacterial growth because 

DFAA catabolism or assimilation releases cells from multiple growth limiting factors 

including carbon, nitrogen and energy (del Giorgio and Cole 1998).

Carlson and Ducklow (1996) performed a series of organic amendment 

experiments in the Sargasso Sea and assessed the bacterial responses to different types 

of organic and inorganic treatments. They observed significant increases in bacterial 

growth rates and growth efficiencies by additions of glucose, glucose + NFC* and 

DFAA. Additions of glucose and glucose + NFC* resulted in greater increases in 

growth rates and biomass production than DFAA treatments, indicating that bacterial 

growth in the Sargasso Sea was controlled by input of labile organic carbon. In 

contrast, Rivkin and Anderson (1997) found that glucose additions in the Sargasso Sea 

resulted in only slight increases in bacterial growth rates. They found that additions of 

PO43' or glucose + P 0 4 3"+ NH4+ resulted in large increases in bacterial growth rates, 

leading them to hypothesize that PO4 ‘ availability limited bacterial utilization of DOC 

in some ecosystems (Rivkin and Anderson 1997).

N utrient Limitation o f  Bacterial Growth

Although bacterial growth in the open ocean may often be controlled by DOM

quality, inorganic nutrient limitation could lead to the inability of bacterioplankton to 

fully utilize DOM in some ecosystems. Several studies indicate that bacterial growth 

rates are stimulated by additions of inorganic nutrients (Zweifel et al. 1993, Pomeroy
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et al. 1995, Rivkin and Anderson 1997). Bacteria have been shown to be effective 

competitors with phytoplankton for ammonium and phosphate (Kirchman 1994,

Currie and Klaff 1984) and in some systems bacterial uptake of mineral nutrients 

dominates nutrient fluxes (Wheeler and Kirchman 1986. Cotner and Wetzel 1992). 

Inorganic nutrient control over bacterial growth could have profound influence on 

fluxes of organic materials through ocean systems, particularly carbon fluxes into and 

out of the microbial loop (Thingstad et al. 1997). Nutrient limitation may block 

complete utilization of labile or semi-labile DOM, resulting in accumulation and 

eventual export of DOM from the surface oceans (Thingstad and Rassoulzadegan 

1995, Thingstad et al. 1997).

Trace nutrients may also control bacterial growth rates. Large areas of the 

world’s oceans are characterized as having subnanomolar concentrations of dissolved 

iron. Such low concentrations of dissolved iron can limit phytoplankton growth. 

Bacteria are widely regarded as more efficient competitors for limiting nutrients than 

phytoplankton because of their high abundance and high surface to volume ratios. 

However, the few investigations into bacterial growth in iron deplete oceans indicate 

that iron may restrict bacterial growth in HNLC oceans (Pakulski et al. 1996, Tortell 

et al. 1996). Pakulski et al. (1996) found that additions of iron to bacterial batch 

cultures in the Southern Ocean enhanced biomass production rates. Tortell et al. 

(1996) measured bacterial cellular Fe concentrations and found them to be relatively 

high compared to phytoplankton. Iron is an essential component of cytochrome c in 

the respiratory system of heterotrophic bacteria. Iron deficient cells may have 

considerably lower growth efficiencies if their respiratory system operates at sub-
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maximal capacity (Tortell et al. 1996). Hutchins et al. (1998) observed increases in 

bacterial growth rates in response to an iron enriched phytoplankton bloom. They 

suggest that the bacterial response may have been due to input of DOM from the iron 

induced phytoplankton bloom rather than to iron directly. Their observations point to 

the importance of considering the effect of a resource limitation across entire food 

webs. A cascade of limitations may result from iron deficiencies at the primary 

producer level, including low fluxes of organic material for sustaining bacterial 

growth (Hutchins et al. 1998).

Temperature Constraints on Bacterial Growth

An additional consideration when evaluating possible limitation to bacterial

growth is the role of temperature. In some ecosystems temperature can be an 

important limitation to bacterial growth rates (Kirchman et al. 1993, Wiebe et al. 1993. 

Shiah and Ducklow 1994, Kirchman and Rich 1997). Bacterial cells exhibit a 

temperature range where optimal growth occurs. Outside this temperature range, 

growth proceeds sub-optimally or not at all. Some of the cellular processes exhibiting 

temperature dependence include the active transport system, cytoplasm structural 

conformation, and protein synthesis pathways (Farrell and Rose 1967). Temperature 

induced changes in any of these processes could influence bacterial growth rates.

Pomeroy et al. (1991) and Wiebe et al. (1993) demonstrated that bacterial 

growth at cold temperatures required higher substrate concentrations. They observed 

that lower temperatures required longer bacterial response times to DOM input. 

Kirchman and Rich (1997) supported these observations finding that temperature and 

DOM interacted to control bacterial growth rates in the equatorial Pacific. They found 

bacteria responded more slowly to input of labile DOM at lower temperatures.



10

Additionally, incubations performed at in situ temperatures in the equatorial Pacific 

resulted in lower biomass yields than incubations at warmer temperatures (Kirchman 

and Rich 1997). They hypothesized that lower temperatures depressed bacterial 

affinity for DOM requiring higher labile substrate concentrations to sustain bacterial 

production in cold waters.

Bacterial Growth in HNLC Oceans

The motivation behind my study was to decipher the limitations to bacterial

growth in the pelagic Southern Ocean. The pelagic regions of the Southern Ocean 

have been characterized as persistently HNLC waters. The equatorial Pacific, the 

subarctic Pacific and the Southern Ocean are the major HNLC regions of the world 

oceans. While many world’s oceans undergo seasonal or continuous depletion of 

major nutrients, the defining characteristic of an HNLC oceans is the annual 

persistence of high concentrations of NOT, P O / ’ and often Si0 4  in surface waters 

(Banse 1996). Many hypotheses have been proposed to explain the existence of 

HNLC regions, but all of them have one common principle: some factor or 

combination of factors (iron, light, temperature, and/or grazing) limit the accumulation 

of phytoplankton biomass and restrict carbon export and new production (Walsh 1976, 

Martin and Fitzwater 1988, and see Limnology and Oceanography volume 36, 1991 

especially reviews by Cullen, Miller et al., and Frost).

In an effort to synthesize various studies of food web dynamics in HNLC 

oceans, Landry et al. (1997) developed a conceptual model directed at evaluating 

possible constraints on phytoplankton growth in the equatorial Pacific. They 

concluded that both iron and grazing are complementary mechanisms that control rates 

of growth and biomass in HNLC systems. Studies from both the equatorial Pacific



and the subarctic Pacific indicate that phytoplankton cell division rates are relatively 

high while phytoplankton biomass is noticeably low. Landry et al. (1997) concluded 

that the importance of grazing to these systems may be more than just control of 

standing phytoplankton biomass. Grazing contributes to regenerated production by 

recycling nutrients (including iron) that support phytoplankton growth. The view that 

food webs in HNLC oceans might be constrained by either top-down or bottom-up 

pressures is probably too simplistic. An array of both types of control likely limits 

primary production, trickling up and down the food web to control the flux of energy 

through the microbial loop.

An examination of the factors that limit phytoplankton biomass and therefore 

rates of primary production in HNLC oceans will likely yield information on what 

limits other components of the food web. Primary producers are the principal source 

of fresh, labile DOM to marine systems. Intense grazing pressure observed in these 

systems could result in larger fluxes of DOM to the microbial loop through release of 

dissolved organic matter by sloppy feeding (Ducklow et al. 1995). Studies in the 

equatorial and subarctic Pacific indicate that the processes of production and 

consumption of DOM may be tightly coupled (Kirchman et al. 1993, Carlson and 

Ducklow 1995, Ducklow et al. 1995, Kirchman et al. 1995). Surface waters in the 

equatorial Pacific and the subarctic Pacific were hypothesized to have an active and 

efficient microbial loop resulting in a retentive euphotic zone that exported little DOM 

(Carlson and Ducklow 1995, Ducklow et al. 1995, Kirchman et al. 1995).

In support of these observations, several investigations found that DOM 

quality controlled bacterial growth and biomass production rates in the equatorial and



subarctic Pacific (Kirchman 1990, Kirchman and Rich 1997). Despite increases in 

growth rates, these DOM “dosing” experiments resulted in no significant increases in 

bacterial cell abundance. Bacterial growth rates were a function of DOM additions 

but grazing pressure apparently restricted bacterial biomass accumulation (Kirchman 

1990, Kirchman et al. 1993, Kirchman and Rich 1997).

Despite tight couplings in DOM-bacterial interactions in HNLC oceans, the 

magnitude of fluxes of organic matter through bacteria in these systems may be more 

restricted than other ocean systems. Low phytoplankton biomass in HNLC oceans 

might translate to restricted input of DOM to the microbial community. Studies in 

both the equatorial and the subarctic Pacific indicated that the ratio of bacterial 

production: primary production may be considerably lower than other oceanic systems 

(<0.2) (Ducklow and Carlson 1992, Ducklow et al. 1995, Kirchman et al. 1995, 

Kirchman et al. 1993). All of these factors make HNLC oceans particularly 

interesting systems to examine how DOM limitation affects patterns of utilization by 

bacterioplankton.

The purpose of the present study was to determine whether resources (bottom- 

up controls) limited bacterial growth in the pelagic Southern Ocean. Specifically, I 

sought to test whether additions of labile organic material (glucose and amino acids) 

or inorganic nutrients (ammonium, phosphate, and dissolved iron) would stimulate 

rates of bacterial growth. By assessing how rates of bacterial production change 

relative to changes in standing biomass, I address the relative importance of dissolved 

organic matter and iron in controlling rates of bacterial growth in the Southern Ocean.
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Materials and Methods

Study Site

Sampling for these experiments took place aboard the Australian vessel R/V  

Aurora Australis between February 28-April 3, 1998. The cruise followed a southerly 

transect along 141°E between 42°S and 55°S (Fig. 1). The cruise track intersected 

several water-mass frontal systems including the Subtropical Convergence (STC) 

(42°S), the Subantarctic Polar Front (SPF) (5 1°S) and the Antarctic Polar Front (APF) 

(54°S). The Southern Ocean is a spatially heterogeneous environment partly as a result 

of these frontal systems. Experiments were performed in each o f  these fronts and at 

one location inside the Subantarctic Zone (SAZ) at 47°S. These convergent zones 

export large volumes of the oceans surface water, making them particularly important 

to the biogeochemistry of the region. Although variable in their location, each frontal 

system has a characteristic chemical and physical hydrographic signature (Belkin and 

Gordon 1996, Rintoul et al. 1997).

The STC marks the zone of convergence where the Southern Hemisphere’s 

anti-cyclonic subtropical gyres intersect with the Antarctic Circumpolar Current 

(ACC). The convergent zone identifies the northern extent of the Southern Ocean’s 

Pacific basin and it is operationally defined by the latitudinal position of the 11° C 

isotherm at a depth of 150 m (Rintoul et al. 1997). Although the boundary shifts 

seasonally and displays spatial variability, it is generally located between 44° S and 

47° S (Fig. 2; Belkin and Gordon 1996, Rintoul et al. 1997). Immediately north of 

this front is the Subtropical Zone (STZ) and to the south lies the Subantarctic Zone 

(SAZ). Typically, water masses to the north and south of the STC are vertically 

structured through the summer and deeply mixed throughout the winter. Mean annual
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Figure 1. Study site and cruise track of R/V Aurora Australis Voyage 6, 
February 28- April 3, 1998. Stars represent experiment stations (42°S, 47°S, 
51°S, 54°S).
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sea surface temperatures just north of the STC are typically near 15° C, while surface 

water temperatures just south of the STC (in the ACC) drop to near 11°C. Nutrients 

also vary across the front. Nitrate concentrations are generally <0.5 pM to the north 

of the STC, increasing to 8-10 j u M  in the subantarctic water south of the front 

(Longhurst 1998). Dissolved iron decreases across the STC, remaining <1.0 nM 

throughout the SAZ and APF (Sedwick et al. 1997).

South of the STC (within the SAZ) lies the northern edge of the ACC. The 

ACC has the largest volume flux of any major world ocean current (180 Sv) (Pond and 

Pickard 1978). Driven primarily by circumpolar westerly winds, the current circulates 

unrestricted by landmasses from west to east. The southern boundary of the SAZ is 

marked by the SAF. The SAF is technically defined by the region of temperature 

transition from 3-8° C at 300 m depth (Rintoul et al. 1997). Convergence at this 

frontal interface forms Antarctic Mode Waters. These relatively light water masses 

form through winter convective cooling of subtropical waters. Mode waters flow 

north from the SAF, below subtropical surface waters and above Antarctic 

intermediate waters. Waters within the SAF undergo strong seasonality with vertical 

stratification in the summer months due to solar warming followed by deep convective 

mixing in early autumn. Despite the seasonal variability of the water column, 

chemically and biologically the water column remains remarkably consistent..

Surface nitrate concentrations range between 10-15 pM, while chlorophyll remains 

low, averaging 0.25 mg chi n r  (Longhurst 1995).

The APF separates the warmer SAZ water from colder polar water. The front 

is defined as the northernmost extent of the 2° C isotherm (Rintoul et al. 1997. Park
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and Gamberoni 1997). Sea surface temperature south of this isotherm rapidly drops 

to temperatures characteristic of the cold Antarctic waters, while north of the front 

temperatures rise towards those of the subtropical gyres. The polar front is a site of 

convergence where southward flowing subtropical waters force subduction of cold 

Antarctic surface water. This is the process that forms the Antarctic Intermediate 

Waters (Fig. 2). The northern edge of the polar front meanders between 50° and 52° 

S, with surface temperatures ranging between 2° and 4° C. Nitrate increases from 

-15  to near 30 jlM poleward of the APF. Also noteworthy is the rise in surface water 

silicate concentrations south of the APF (Longhurst 1995).

Experim ental Design and Sample Collection

The overall design of these experiments was to add various amendments (both organic 

and inorganic) to whole seawater, incubate the water at in situ temperatures and 

monitor changes in bacterial growth, abundance, and biomass over a 4-5 day 

incubation period. All samples were incubated in the dark to separate heterotrophic 

and autotrophic processes. The decision to use unfiltered rather than size fractionated 

seawater (ie. grazer reduced treatments) was made to minimize risks of potential 

contamination of samples with metals or dissolved organic material as an artifact of 

filtration (Carlson and Ducklow 1996).

Water for the experiments was collected before sunrise and supplemented with 

amendments then immediately placed in darkened incubators for the duration of the 

experiment. Water for all experiments was collected from between 15 and 20 m 

depth with an all-Teflon trace-metai clean pump system (Hutchins et al., 1998).

Whole seawater was pumped directly into a trace-metal clean incubation van, where
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Figure 2. Characterization of large-scale circulation and frontal systems in the 
Southern Ocean, dark arrows indicate location of stations sampled for 
experiments (modified from Lutjeharms et al. 1985).
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water was dispensed directly from the pump tubing into 2 -liter polycarbonate bottles 

(Fig. 3). All incubation bottles were soaked for 48 hours in 10% HC1, then rinsed 

three times with sample water. The two-liter polycarbonate bottles were filled, capped 

and carried to a positive pressure hood, where water was dispensed into 175 ml 

polyethylene bottles for each experiment treatment. Prior to the addition of sample 

water, various amendments (Table 1) had been added to the 175 ml polyethylene 

bottles. Duplicate treatments were prepared and sampled for all experiments. Sample 

handling and set up was designed to reduce possible metal contamination, although no 

possible contamination was not directly measured. Such steps included pipette tips 

were rinsed with HC1 and MilliQ- water and the time time necessary to transfer water 

and amendments to open sample bottles was minimized.

Substrates were prepared from commercially available reagents. Glucose, 

ammonium and phosphate additions were made from dry stocks dissolved in MilliQ- 

water. Initial iron stocks were made in 0.01 % N HC1. Stocks were made in 1 liter 

polycarbonate bottles and frozen until use. Small volumes of the stock were sterilized 

by filtering through 0.2 pm Acrodiscs (HT Tuffryn® membrane) prior to dispensing 

into 175ml polyethylene bottles. To minimize possible organic contamination 

Acrodiscs were flushed several times with MilliQ- water prior to sample filtration

The control treatment consisted of untreated, whole seawater. Combined 

nutrient and substrate additions contained the same concentrations of glucose, 

ammonium, phosphate, and iron as treatments where these amendments were added 

individually (Table 1). Concentrations of glucose amendments differed in each 

experiment, while all other treatment concentrations were constant among
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Figure 3. Diagram of design and setup of enrichment experiments.
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experiments. Glucose and nutrient treatments were added at roughly the molar ratio 

of bacterial biomass (C : N : P of 45 : 9 : 1; Goldman et al. 1987). Iron was added at 

16000 : 1 C : Fe ratios to insure that iron concentrations in those treatments would be 

high enough to overcome potential growth limitation (C: Fe of iron deficient bacteria 

may be as high as 130000:1; Tortell et al. 1996). Amino acid additions were from a 

commercially available mixture of 20 amino acids (Pierce Chemical). Amino acid 

solution was obtained from Prof. David Hutchins (University of Delaware) and had 

been treated on a Chelex resin column to remove metals.

Samples for initial time points were collected in separate bottles and 

measurements were made by the techniques described below. Upon addition of 

amendments to various treatments, 175 ml incubation bottles were immediately 

transferred to a temperature controlled, darkened incubator. In all experiments except 

at the STC, bottles were sampled daily for bacterial abundance, biovolume and rates of 

incorporation of H-thymdine (TdR) and ' H-leucine (Leu). For the experiment in the 

STC, bottles were sampled only at days 0, 2 and 4. All sampling was done in a 

positive pressure, trace metal clean incubation van. Daily samples of approximately 

30 ml were poured from polyethylene incubation bottles into acid cleaned, MilliQ- 

water rinsed 50ml polycarbonate Oak Ridge tubes. Tubes were then transferred to 

aseparate radiation van for preparation of incubations measuring H-thymidine and 

leucine incorporation rates.

A temperature manipulation experiment was conducted on water collected in 

the AC. Four treatments were incubated for the experiment, two at in situ 

temperature (4.4°C) and two at the surface water temperatures of the SAF (7.5°C).



Treatment 1 consisted of unamended seawater incubated at in situ temperature (4.4°C). 

Treatment 2 received a 10 pM addition of glucose incubated at 4.4°C, treatment 3 was 

unamended seawater incubated at 7.5UC, and treatment 4 was seawater that received a 

10 pM  addition of glucose and was incubated at 7.5 °C. Bacterial abundance, cell 

volume and rates of H-leucine incorporation were measured daily for four days.

M easurements 

TdR and Leu Incorporation

Incubations for measurements of H-thymidine and leucine were carried out in 

on-deck, flow through incubators or in shipboard refrigerated incubators. On-deck 

incubators were maintained at surface water temperatures by use of the ship’s pump 

system which circulated surface seawater through the incubators. Incorporation of 

TdR and Leu was measured following the microcentrifugation procedure described by 

Smith and Azam (1992). Incubations were performed in 2.0 ml microcentrifuge 

tubes. High specific activity tritiated thymidine and leucine (79 Ci mmol’1 TdR and 

179 Ci mmol’1 Leu, New England Nuclear) were added to each tube, followed by the 

addition of 1.5 ml of sample water to start the incubations. Final concentrations of 

both TdR and Leu were 20 nM. These concentrations were determined to achieve 

rate saturation for two locations in the sampling site (Fig. 4). Triplicate samples of 

both TdR and Leu were incubated for each treatment bottle and each time point. To 

correct for abiotic incorporation, time zero blanks for both TdR and Leu were 

determined for each sample. The blank consisted of 20 nM of TdR or Leu in 1.5 ml 

sample killed with 5% final concentration of trichloroacetic acid (TCA). 

Microcentrifuge tubes for TdR and Leu incorporation were placed in floating racks 

covered with dark tape in shaded incubators. Samples for uptake assays were
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Figure 4. Curves indicating rate-saturating concentrations of 3H-thymidine and 
3H-Ieucine. Concentration of both isotopes used in all experiments and station 
sampling was 20 nM.
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incubated for 4-16 hours depending on the expected activity of the samples and the 

temperature of the water.

Incubations were terminated by the addition of 100 pi of 100% TCA (final 

concentration 5 %). Samples were immediately frozen for subsequent radioassay 

following the cruise (Hollibaugh 1988). Upon return to VIMS, sample tubes were 

placed in a refrigerated microcentrifuge at 2°C and spun at 14,000 rpm for 7 minutes, 

removed from the centrifuge and placed on ice. The supernatant liquid was then 

aspirated from each sample, leaving behind the centrifuged pellet containing DNA, 

RNA, and proteins precipitated by the TCA. After an additional 5% TCA rinse, spin, 

and removal of the supernate, a final rinse with 80% ethanol was used to remove lipids 

left in the centrifuged pellet. After removal of the ethanol, the DNA/RNA/protein 

pellets were dissolved in Packard Ultima Gold scintillation cocktail, and the 

radioactivity of each sample was counted with a scintillation counter. Rates of isotope 

incorporation for each sample were calculated as the average of three replicates minus 

the value of the blank.

Cellular Abundance and Volumes

Samples for bacterial abundance and cell volume were collected in 50 ml 

polyethylene tubes. Samples were preserved in 1 % 0.2 pm filtered gluteraldehyde 

and filtered immediately. Samples were filtered onto blackened 0.2 pm 

polycarbonate membrane filters (Poretics Corp.). The volume filtered varied 

depended on cell density, with the objective of evenly distributing 100-300 cells per 

microscope field. A 0.005% solution of acridine orange was added to the last 2 ml of 

water on the filter (Hobbie et al. 1977). Filters were removed from filter towers and
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immediately placed on microscope slides and affixed with a small drop of Resolve® 

immersion oil and mounted with a cover slide. Filters were frozen until return to 

VIMS for image analysis.

Cell volumes were determined using a video image analysis system. A Zeiss 

Axiophot epifluoresence microscope was used to visualize cells (at 1000 X 

magnification) and video images of the 24 x 24 pm microscope field were captured 

and stored by computer driven image analysis software (VIDAS VIDEOPLAN). 

Fluorescence was achieved using blue excitation (450-490 nm) and a 520 nm emission 

filter from a 200 watt mercury lamp. Sufficient video images were captured from 

each filter to yield between 300-1000 measurements of individual cells. Cell images 

were digitized and digital images were used for cell size measurements. Volumes 

were estimated by measuring the length, width, area and perimeter of each cell, and 

applying algorithms that derive cell volumes from estimates of perimeter and area 

(Ducklow et al. 1992). Cell abundance was determined by visual cell counts where 

at least 300 cells per filter were counted.

Conversion Factors

Conversion factors were used to translate incorporation and biovolume 

(abundance x mean cell volume) into carbon-based estimates of production and 

biomass. Use of H-thymidine incorporation to estimate bacterial production requires 

the use of two conversion factors, one that derives the number of cells produced per 

mole of thymidine incorporated, and another to derive the amount of carbon per cell. 

For this study, I used 2 x l0 18 cell mole ' 1 TdR and 120 pg C p m '\  a commonly used 

factor for open ocean studies (Fuhrman and Azam 1982, Lee and Fuhrman 1987,



26

Ducklow and Carlson 1992). Leucine based estimates require the use of only one 

conversion factor: 3.1 kg C mole ' 1 Leu incorporated (Simon and Azam 1989). 

However, leucine incorporation could not be measured in the DFAA and DFAA + Fe 

additions because the amino acid mixture contained unlabeled leucine and 

extracellular isotope dilution prevented signal detection. Thus, estimates of bacterial

I i ^
production (pgC L' d' ) were derived exclusively from H-thymidine incorporation 

rates. Leucine incorporation was employed as an extra index of growth limitation in 

all other treatments. All production estimates result from the combination of 

thymidine incorporation rates multiplied by mean cell volumes. These estimates were 

then converted to carbon using the two conversion factors described. Biomass was 

determined from cell biovolume (cell abundance x mean cell volume) multiplied by 

120 fgC pm '3.

Data Analysis

Duplicate incubation samples were analyzed for each treatment. Data were 

analyzed statistically using two-way ANOVA with both treatment and incubation time 

as factors. Homogeneity of variance was tested using Levene’s test and data were 

transformed if necessary to achieve heterogeneity. Statistically significant results 

were analyzed using a posteriori Student-Newman-Kuels (SNK) multiple comparison 

tests, with statistical significance determined at p<0.05 (Underwood 1997). SNK 

multiple comparison tests are similar to sequential t-tests. Sample means are ranked, a 

pooled standard error of the means is calculated, and means are compared against each 

other by use of a test statistic (Q). For these experiments, SNK tests were used to 

distinguish differences between treatments and significant differences over time for
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the variables cell abundance, cell volume, rates of leucine and thymidine 

incorporation, rates of incorporation of TdR and Leu per cell, and total bio volume.

The rates of change of various properties were estimated using regression 

coefficients from Model I least-squares fits on the natural logarithm of the individual 

data versus incubation time. Growth rates were estimated by several methods. 

Production rates divided by standing biomass (P/B) for given time points yielded 

estimates of the instantaneous specific growth rates in the presence of bacterivores and 

took into effect changes in abundance and biovolume. Net accumulation rates were 

determined from the rate of increase of cell abundance over time, providing an 

indication of population growth based on cell division. Growth rates computed for 

the total bio volume used the rate of increase in the natural logarithm of cell abundance 

x mean cell volume, which accounts for increases in cell size and cell division. 

Regressions were performed over appropriate intervals following inspection of the 

experimental time course plots.

Results

Bacterial Production and Distribution

A strong zonal gradient in surface water temperatures was observed along the

cruise transect. The northern most station had warm surface waters ( 14°C) 

characteristic o f  the subtropical gyres, while surface water temperatures at the 

southern stations fell to ~ 4°C (Table 2). The prominent biological and chemical 

properties for each of the experimental stations are listed in Table 2. Major nutrient 

concentrations increased from north to south. Surface nitrate and phosphate in the
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Subtropical convergence were 7pM  and 0.6 pM respectively, while concentrations in 

the Antarctic Polar Front were 26pM and 1,2pM respectively.

To estimate rates of bacterial production and distributions of bacterial biomass 

in this region of the Southern Ocean, samples for incorporation of H-thymidine and 

leucine, bacterial abundance, and cell volume were collected at the four main stations 

located inside the frontal zones. Depth profiles for these properties are shown for the 

upper water column at the four main stations (Figs. 5-8). Contour plots of bacterial 

cell abundance, cell volumes and rates of thymidine and leucine incorporation in the 

upper 150 m of the water column are shown in Fig. 9. Bacterial abundance in the 

upper 150 m of the water column generally decreased with depth. Surface water 

bacterial cell density displayed a north-south gradient in surface waters with higher 

cell numbers at the northern end of the transect decreasing to the south. Zonal north- 

south gradients in surface production were observed with rates in the APF are nearly 

an order of magnitude lower than rates in the SAF or SAZ.

Responses to Potential Growth Limiting Substances
Organic and inorganic compounds were added to unfiltered, whole seawater to

examine the effects of various treatments on bacterial growth. The specific goal of 

the project was to determine whether inorganic nitrogen, iron and or labile forms of 

dissolved organic carbon and nitrogen limit bacterial growth in the Southern Ocean. 

The results from each of the experimental locations varied, so evaluations of the 

prominent trends from each experiment are presented and discussed in turn.

The major result of the four addition experiments performed in this study was 

that labile DOM  stimulated rates of bacterial growth and enhanced biomass production 

(Table 3). Bacterial growth responded favorably to both glucose and
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Figure 5. Bacterial properties in the surface water of the Subtropical
Convergence (42°S 141°E). a.) Cell abundance, b.) Mean cell volume, c.) Total
bacterial biovolume, d.) 3H-thymidine and leucine incorporation.
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Figure 6. Bacterial properties in the surface water of the Subantarctic Zone
(47°S 141°E). a.) Cell abundance, b.) Mean cell volume, c.) Total bacterial
biovolume, d.) 3H-thymidine and leucine incorporation.
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Figure 7. Bacterial properties in the surface water of the Subantarctic Front
(47°S 141°E). a.) Cell abundance, b.) Mean cell volume, c.) Total bacterial
biovolume, d.) H-thymidine and leucine incorporation.
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Figure 8. Bacterial properties in the surface water of the Antarctic Convergence
(51°S 141°E). a.) Cell abundance, b.) Mean cell volume, c.) Total bacterial
biovolume, d.) 3H- thymidine and leucine incorporation.
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Figure 9. Contour plots of bacterial cell properties in surface water along 141°E 
Aurora Australis Voyage 6 transect. X-axis are °S latitude, Y-axis are depth in 
meters. Dark dots indicate discrete sampling depths and locations, a.) cell 
abundance (cells liter' 1 x 108), b.) Mean cell volume (pm3 cell'1), c.) 3H-thymidine 
incorporation (pmol liter' 1 d'1), d.) 3H-leucine incorporation (pmol liter' 1 d'1).
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Table 3. Net Accumulation Rates, Specific Growth 
Rates and Biomass Yields

Experiment Treatment

Net
Accumulation
(Abundance)

(d-1)

Net
Accumulation
(Biovolume)

(d-1)

Maximal 
Specific Growth 

Rates 
(P/B)
(d'1)

Biomass 
Yield 

(|igC Liter'1)
Station i

4 2°S  141°E Control 0 .1 3 0 .0 2 0 .2 7 0 .3 8
Glucose 0 .2 8 0 .5 0  "s 0.51 2 4 .5 0

Fe 0.21 0 .2 2 0 .23 4 .1 4
Glucose+Fe 0.31 0 .5 6  ,,f' 0 .4 4 3 1.56

NH4+PO 4 0 .2 2 0 .1 0  ,1S 0 .25 1.90
Glucose + 0 .4 4 0 .7 3  ns 0.91 6 7 .6 6
NH4 +PO 4

Gluocse+NU, 0 .4 2 0 .6 2  "s 0 .78 3 8 .8 7
+ P O 4 + F C

Station 2
47°S 141°E Control 0 .0 4 0 .1 0  "s 0 .1 9 0 .5 7

Glucose 0 .1 3 0 .1 7 0 .15 1.69
Fe 0 .0 5  "s 0 .1 0  1,s 0 .1 8 3 .8 6

Glucose+Fe 0 .1 3 0 .1 6 0 .33 4 .4 0
DFAA 0 .3 6 0.71 2 .0 2 5 1.28

DFAA+Fe 0 .3 3 0 .7 9 1.97 4 6 .61
Station 3 

51°S 142°E Control 0 .0 4  I1S 0 .0 7  as
0 .0 6

1.08
Glucose 0 .1 4  ns 0 .35 0 .5 2 10.28

Fe 0 .0 9  ns 0.1 1 m 0 .0 6 2 .3 9
Glucose+Fe 0 .1 6 0 .53 0 .7 0 2 1 .3 6

DFAA 0 .3 2 0 .6 4  ns 0 .7 9 4 0 .9 6
DFAA+Fe 0 .3 3 0 .6 9 1.13 3 8 .41

Station 4
54°S  141UE Control 0.11 0 .23 0 .0 5 2 .9 8

Glucose 0 .0 6  m 0 .0 6  m 0.05 0 .9 4
Fe 0 .1 0  l,s 0 .1 4  "s 0 .05 2 .3 4

Glucose+Fe 0 .1 2 0 .15 0 .03 3 .29
DFAA 0.1 1 0 .1 5  "* 0 .0 3 2 .8 2

DFAA+Fe 0 .0 7 0 .0 7 0 .0 4 4 .3 2

Notes: Net accumulation rates derived from linear regression of 
natural log of cell abundance or biovolume through day 4 in all 
treatments. Conversion factors for P/B ratio cited in text. Biomass 
yield calculated from (biomass at final time point -biomass at t=0), 
ns=regression coefficient (slope) not significantly different from 
zero (p>0.05)
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amino acids, indicating that bacterial growth may be constrained by both organic 

carbon and nitrogen. Additions of dissolved iron or ammonium and phosphate alone 

had no significant impact on rates of bacterial growth or biomass production. The 

two experiments in the SAZ and SAF indicated that combined additions of glucose 

+Fe resulted in higher growth rates and biomass yields. With the exception of the 

experiment in the AC, the experiments showed dependence on the type of DOM 

substrate (glucose versus DFAA) used to support bacterial growth (Tables 4-7). 

General conclusions for each group of experiments will be provided in the Discussion.

Experiment in the Subtropical Convergence (42°S)

Cellular Abundance, volume and biomass

The addition of glucose and combinations of glucose and ammonium, 

phosphate and iron all significantly stimulated bacterial growth rates and the 

production of bacterial biomass in seawater collected from the STC (Fig. 10).

Bacterial abundance increased in all treatments, including the control. No significant 

differences in bacterial cell abundance between any of the treatments were observed 

until day 4 (Table 4). At day 4, all glucose treatments displayed elevated cell 

abundance relative to the control treatments. Treatments receiving combinations of 

glucose and NFL^+PCV" resulted in significantly greater cell abundance than all other 

treatments. Cell abundance in the glucose + NFC+ + PO43' and glucose + NFU+ +

PO4 ’+ Fe additions increased by roughly three times the control and yielded cell 

abundance five times greater than measured at day 0 (Fig. 10a, Table 4). Significant 

differences in cell abundance between the
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Figure 10. Responses of various bacterial properties to enrichment treatments in 
the Subtropical Convergence (42°S 141°E).
a.) Cell abundance, b.) Mean cell volume, c.) 3H-thymidine incorporation, d.) 
3H-leucine incorporation, e.) 3H-thymidine incorporation per cell, f.) 3H-leucine 
incorporation per cell. Error bars are standard error of duplicate samples.
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Figure 11. Bacterial biomass response to treatments in the Subtropical 
Convergence (42°S 141°E). Shown are days 2 and 4 of the incubation. Colors 
indicate statistically significant (p<0.05) similarities and differences among 
responses to treatments, colors do not apply to statistical differences between 
days. Error bars are standard error of duplicate samples.
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Figure 12. Bacterial production (3H-TdR) response to treatments in the 
Subtropical Convergence (42°S 141°E). Shown are days 2 and 4 of the 
incubation. Colors are the same as for Figure 11. Error bars are standard error 
of duplicate samples.
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Figure 13. Instantaneous bacterial specific growth rate calculated from  
thymidine incorporation rates and bacterial biomass (P/B) in the Subtropical 
Convergence (42°S 141°E). Shown are days 2 and 4 of the incubation. Colors 
are the same as for Figure 11. Error bars are standard error of duplicate 
samples.
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glucose + NH4++ P 0 43~ and glucose + NH4++ P 0 43~+Fe treatments were not observed, 

nor were differences between the glucose and glucose + Fe treatments (Table 4). 

Additions of NH4+ + P 0 43" and Fe alone resulted in insignificant differences in cell 

abundance by day 4 relative to control treatments.

All treatments receiving glucose showed significant increases in bacterial cell 

volume. Glucose amended treatments showed increases in cell size by ~ 300% 

relative to the control (Fig. 10b). Biovolume increases were greatest in the two 

treatments that contained glucose + NH4++ P 0 43 . Mean biovolume increases in the 

glucose additions were by day 4 more than seven times larger than the control, NH4++ 

P 0 4 and iron treatments (Table 4). There were no significant differences in total 

biovolume between the glucose and the glucose +Fe treatments. After four days, 

increases in bacterial biomass were greatest in the glucose + NH4++ P 0 4 v treatments 

(Fig. 11).

Bacterial Production

Rates of bacterial production in glucose treatments were significantly greater 

than other treatments (Fig. 12). The addition of glucose + NH4++ P 0 43' resulted in 

the largest overall increase in 'H-thymidine incorporation (Fig. lOe). The temporal 

response of production rates to the various glucose treatments is striking. Both the 

glucose + NH4++ P 0 43’ and glucose + NH4++ P 0 43 + Fe increased significantly by 

day 2 relative to the other treatments. By day 4, there were no significant differences 

in rates o f thymidine incorporation in the glucose + NF[4++ P 0 43 , glucose + Fe and 

glucose treatments (Fig. 12, Table 4). Rates of Fl-leucine incorporation in the 

glucose + NH4++ P 0 43- treatment increased more than 25 times the control by day 4
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(Fig. lOd), while the other glucose treatments increased at roughly 10 times the 

control. There were no significant differences in rates of 3H-leucine incorporation 

between the glucose, glucose + Fe, and glucose + NH4++ P 0 43'+Fe additions by day 4.

Growth rates

Additions of glucose + NH4++ P 0 43" and glucose + NH4++ P 0 43"+Fe 

dramatically increased rates of H-TdR incorporation per cell after two days relative to 

the control (Fig. lOe, Table 4). Two days later, bacterial cell abundance increased in 

both treatments resulting in ~ 75% decrease in thymidine per cell. Overall, glucose + 

NH4++ P 0 43' resulted in greater enhancement of cell growth rates than the glucose and 

glucose + Fe treatments (Fig. 13). Calculated specific growth rates (P/B) are 

consistent with trends in cell specific thymidine incorporation. Control, Fe and 

NH4++ P 0 43' growth rates were statistically indistinguishable after four days and 

ranged from 0.07-0.19 d~\ At day 2, cell growth rates (P/B) in glucose and glucose + 

Fe treatments were 0.45 and 0.36 d’1, while glucose + NH4++ P 0 43 and glucose + 

NH4++ P 0 43'+Fe were 0.95 and 0.77 d '1. Glucose, glucose + Fe, and glucose + NH4++ 

P 0 43' treatments showed no significant differences at day 4, ranging between 0.35- 

0.55 d ' 1 (Fig. 13). Overall, additions of glucose + NH4++ P 0 43' and glucose + NH4++ 

P 0 4 V+Fe resulted in the largest increases in growth rates and biomass production than 

any of the other treatments.

Combined additions of glucose and NH4++ P 0 43" resulted in more rapid (i.e. by 

day 2 ) increases in bacterial growth rates and production than any other treatments. 

Rates of thymidine incorporation in additions containing both glucose and NH4++

P 0 43' increased about four-fold by day 2, and roughly twice as large as treatments
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receiving glucose without a nitrogen or phosphorous source. Thymidine 

incorporation per cell followed similar patterns, significantly increasing by day 2 , 

while glucose and glucose + Fe treatments remain statistically indistinguishable from 

the control. This temporal response to glucose + NFF++ PO43" treatments was not 

observed in cell abundance, cell volume, total biovolume or biomass (Fig. 11, Table 

4).

Experiment in the Subantarctic Zone (47°S 141°E)

Cellular Abundance, volume and biomass

Dissolved free amino acid (DFAA) additions significantly stimulated rates of 

bacterial growth and enhanced bacterial biomass in amendment experiments 

performed in the Subantarctic zone. No significant changes in cell abundance were 

observed in the glucose, Fe and control treatments (Table 5). In contrast, the addition 

o f DFAA and DFAA + Fe resulted in exponential increases in cell abundance over the 

course of the incubation (Fig. 14a). By day 5, DFAA and DFAA + Fe treatments 

produced roughly five times more cells than all other treatments. There were no 

statistical differences in cell abundance between the DFAA and DFAA + Fe 

treatments.

No significant differences in mean cell volumes were observed for glucose, 

iron or control treatments over the 5 days of incubation. The addition of DFAA and 

DFAA + Fe resulted in significantly larger cell volumes than with any other treatment 

by day 3, at which time cell volumes in the DFAA treatments had grown to
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Figure 14. Responses of various bacterial properties to enrichment treatments in 
the Subantarctic Zone (47°S 141°E)
a.) Cell abundance, b.) Mean cell volume, c.) 3H-thymidine incorporation, d.) 
3H-leucine incorporation, e.) 3H-thymidine incorporation per cell, f.) 3H-leucine 
incorporation per cell. Error bars are standard error of duplicate samples.
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Figure 15. Bacterial biomass response to treatments in the Subantarctic Zone 
(47°S 141°E). Shown are days 3, 4 and 5 of the incubation, there were no 
statistical differences within treatments after days 1 and 2. Colors indicate 
statistically significant (p<0.05) similarities and differences among responses to 
treatments, colors do not apply to statistical differences between days. Error bars 
are standard error of duplicate samples.
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Figure 16. Bacterial production (3H-TdR) response to treatments in the 
Subantarctic Zone (47°S 141°E). Shown are days 3, 4 and 5 of the incubation, 
there were no statistical differences within treatments after days 1 and 2. Colors 
are the same as for Figure 15. Error bars are standard error of duplicate 
samples.
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Figure 17. Instantaneous bacterial specific growth rate calculated from 
thymidine incorporation rates and bacterial biomass (P/B) in the Subantarctic 
Zone (47°S 141°E). Shown are days 3, 4 and 5 of the incubation, there were no 
statistical differences within treatments after days 1 and 2. Colors are the same 
as for Figure 15. Error bars are standard error of duplicate samples.
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about eight times the size as all other treatments (Table 5). The large increases in cell 

volume in the DFAA treatments diminished by day 5, when were no significant 

differences between any treatments were observed. Changes in total bio volume 

closely resembled changes in mean cell volume. Largest increases in total biovolume 

were seen in DFAA treatments after day 3, dropping by -50%  by day 4 (Table 5). 

There were no significant differences between DFAA and DFAA + Fe treatments 

throughout the experiment. Bacterial biomass in both DFAA treatments increased 

more than an order of magnitude through the experiment and was significantly larger 

than all other treatments for the remainder of the experiment (Fig. 15). These 

changes in biomass were driven primarily by the dramatic increases in cell volume 

observed between throughout the incubation.

Bacterial Production

The additions of DFAA and DFAA + Fe resulted in large increases in rates of 

3H-thymidine incorporation by day 3 of the experiment (Fig. 14c, Table 5). Peak 

rates were ~ 45 times higher than rates at day 0 and were more than twenty times 

greater than rates measured in the control treatment. Following the sharp rise in 

production rates at day 3, rates of incorporation dropped considerably by day 4 (Fig. 

14c, Table 5). Rates of isotope incorporation (pm of1 L"1 d '1) in the glucose and 

glucose + Fe additions did increase significantly by day 4 and 5, but never reached the 

magnitude of the DFAA additions. By day 4, bacterial production in the glucose + Fe 

treatment was not significantly different from the DFAA treatments (Fig. 16). The 

addition of glucose alone never resulted in substantial increases in rates of production 

relative to the control.
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Bacterial Growth Rates

DFAA treatments resulted in substantial increases in bacterial growth rates. 

Thymidine incorporation per cell increased by a factor of 10 between day 2 and day 3 

in both DFAA and DFAA + Fe treatments (Fig. 14e). By day 4 incorporation per 

cell declined substantially, dropping to rates similar to those measured in the control 

treatments. No statistical differences in rates of isotope incorporation per cell were 

observed between DFAA and DFAA + Fe treatments. The addition of glucose alone 

had no significant effect on thymidine incorporation per cell over the 5 days of the 

experiment. By day 4 and 5 the addition of glucose + Fe resulted in more than a 

doubling in rates of thymidine incorporation per cell relative to the control and 

additions of glucose alone. Similar trends are seen in leucine incorporation per cell, 

where glucose + Fe treatments nearly doubled all other treatments by day 4 (Fig. 14f).

Organic matter-iron interactions

No significant differences in the DFAA and DFAA + Fe treatments were 

observed for any of the measured or calculated growth properties (Table 5). 

Treatments receiving glucose + Fe showed significantly greater rates of H-leucine 

incorporation and leucine incorporation per cell than glucose-alone treatments (Fig. 

14e,f). No significant differences in cell volume, cell abundance or total biovolume 

were observed between glucose and glucose + Fe treatments (Table 5). Overall, 

DFAA treatments resulted in considerably larger growth rates than glucose treatments 

(Table 3). However, the combined addition of Fe and glucose did result in larger 

increases in growth rates than additions of glucose alone (Fig. 17, Table 3).
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The addition of Fe to DFAA treatments had no measurable effect on growth rates 

relative to additions of DFAA alone (Fig. 17).

Experiment in the Subantarctic Front (51WS 142°E)

Cellular Abundance, volume and biomass

Bacterial growth in the Subantarctic Front increased in response to 

amendments of amino acids and glucose (Figs. 18-21). Bacterial cell abundance 

increased in both glucose treatments and both amino acid treatments, but cell 

abundance in amino acid treatments was roughly twice those of the glucose treatments 

(Fig. 18a, Table 6). No significant differences in cell abundance between Fe and 

control treatments were observed. Similarly, no significant differences in cell 

abundance were observed between DFAA and DFAA + Fe or glucose and glucose +

Fe treatments.

Mean cell volume increased significantly in the all treatments receiving DOM 

by day 4. DFAA, DFAA + Fe and glucose + Fe treatments resulted in nearly three 

times greater cell volumes by day four relative to the control and roughly a five fold 

increase in cell volume from day 0. Total biovolumes in the DFAA and DFAA + Fe 

treatments were significantly greater than all other treatments by day 4 (Table 6).

Total bio volumes in the glucose and glucose + Fe treatments were significantly 

different from one another. The glucose + Fe treatment resulted in about twice as 

large an increase in biovolume than the glucose treatment. DFAA additions resulted 

in significantly greater biomass than all other treatments by day 4. DFAA and DFAA 

+ Fe treatments produced three times more biomass than the glucose treatment and 

about twice the biomass of the glucose + Fe treatment (Fig. 19).
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Figure 18. Responses of various bacterial properties to enrichment treatments in 
the Subantarctic Front (51°S 141°E).
a.) Cell abundance, b.) Mean cell volume, c.) 3H-thymidine incorporation, d.) 
3H-leucine incorporation, e.) 3H-thymidine incorporation per cell, f.) 3H-Ieucine 
incorporation per cell. Error bars are standard error of duplicate samples.
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Figure 19. Bacterial biomass response to treatments in the Subantarctic Front 
(51°S 141°E). Shown are days 3 and 4 of the incubation, there were no statistical 
differences within treatments after days 2. Colors indicate statistically significant 
(p<0.05) similarities and differences among responses to treatments, colors do not 
apply to statistical differences between days. Error bars are standard error of 
duplicate samples.
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Figure 20. Bacterial production (3H-TdR) response to treatments in the 
Subantarctic Front (51°S 141°E). Shown are days 3 and 4. Colors are the same 
as for Figure 19. Error bars are standard error of duplicate samples.
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Figure 21. Instantaneous bacterial specific growth rate calculated from  
thymidine incorporation rates and bacterial biomass (P/B) in the Subantarctic 
Front (51°S 141°E). Shown are days 3 and 4 of the incubation. Colors are the 
same as for Figure 19. Error bars are standard error of duplicate samples.
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glucose additions increased biomass relative to the control, but biomass increases were 

still about half the as large as the DFAA treatments at day 4.

Bacterial Production

Rates of thymidine and leucine incorporation (pm of1 L’1 d '1) varied in time, 

but overall, the additions of glucose and amino acids stimulated rates of bacterial 

production (Fig. 18 c,d, Fig. 20). DFAA and DFAA + Fe treatments resulted in a 

seventeen-fold increase in thymidine incorporation relative to the Control and Fe-only 

additions by day 3. By day 4, however, glucose and glucose + Fe treatments 

enhanced thymidine incorporation to a greater extent than either DFAA treatment.

The glucose + Fe increased rates of thymidine incorporation more than 150% above 

the glucose treatment, and ~ 2 15% higher than both DFAA treatments. Leucine 

incorporation in both glucose treatments increased relative to Control and Fe 

treatments after day 3 and day 4 (Fig. 18d). Rates of leucine incorporation increased 

most dramatically in the glucose + Fe addition.

Bacterial Growth rates

Thymidine incorporation per cell was substantially higher in the DFAA + Fe 

treatment after day 3 than in any other treatment. DFAA + Fe resulted in 1700% 

increases in thymidine per cell relative to control and Fe treatments. DFAA alone 

stimulated rates of thymidine incorporation per cell more than 1 1 0 0 % times greater 

than control and Fe-only treatments. Glucose additions did stimulate isotope 

incorporation per cell, but these changes were most pronounced at day 4. Isotope 

incorporation per cell in both glucose treatments roughly doubled between day 3 and 

day 4. Maximal thymidine incorporation rates in DFAA and glucose treatments were
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comparable over the duration of the experiment, but increases in these rates were 

temporally out of phase.

The temporal response of bacterial growth was variable in both the treatment 

type and the measured cell property. For example, DFAA additions provoked 

exponential increases in rates of thymidine incorporation through the first three days 

of the incubation. Glucose treatments resulted in exponential increases in thymidine 

incorporation through the entire incubation. In contrast, cell abundance and cell sizes 

in both glucose and DFAA treatments did not increase substantially until day 4. Cell 

specific incorporation rates in both DFAA and DFAA + Fe treatments jumped 

-2000%  between day two and day three. By day four rates of incorporation per cell 

dropped by a factor of five, a result of nearly a 500% increase in cell abundance 

between the two days (Fig. 18e? a).

Organic matter-iron interactions

The experiment conducted in the Subantarctic Front provided additional 

indications that dissolved iron may play some role in constraining bacterial production 

in glucose amended experiments. Rates of thymidine and leucine incorporation in 

glucose + Fe treatments were significantly greater than rates measured in the glucose- 

alone addition. No statistical differences in cell abundance were observed for either 

glucose treatment at any of the time points; however, cell volume in the glucose + Fe 

addition was significantly greater than the glucose addition after day 4. The net result 

of increased cell size in the glucose + Fe addition was the accumulation of nearly 

twice as much as biomass as the glucose-alone addition by the end of the experiment 

(Fig. 19).



Experiment in the Antarctic Polar Front (54°S 141°E)

The most striking feature of the experiment conducted in the Antarctic Polar 

Front (54°S) is the lack of bacterial response to any of the treatments. Bacterial 

abundance, cell volume and rates of isotope incorporation all showed slight increases 

in every treatment with time, but none of the measured cell properties changed 

significantly relative to one another (Fig. 22, Table 7). Initial biomass at day 0 was 

lower than at any other station by a factor of three, while rates of thymidine and 

leucine incorporation at time zero were nearly the same as observed at the SAF (Figs. 

5-8). Thymidine incorporation per cell ranged between 0.01 and 0.03 x 106 pmol cell 

1 d ’1 for all treatments, over all time points.

Role o f  Temperature in Growth Limitation

Bacterial growth in the Antarctic Polar Front did not appear limited by amino 

acids, glucose, iron or combinations of these treatments over the time scale of my 

observations. In an effort to determine the factors contributing to the relatively low 

rates of production and standing biomass measured at the Antarctic Polar Front, I 

performed an additional manipulation experiment to test the hypothesis that bacterial 

growth might be constrained by temperature or a combination of temperature and 

organic substrate (Fig. 23).

As in the previous experiment, cell abundance changed very little over the 

entire experiment. Changes in cell volume were not apparent until day four when 

cells in the glucose (7.5°C) treatment were significantly larger than the other
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Figure 22. Responses of various bacterial properties to enrichment treatments in 
the Antarctic Convergence (54°S 141°E).
a.) Cell abundance, b.) Mean cell volume, c.) 3H-thymidine incorporation, d.) 
3H-leucine incorporation, e.) 3H-thymidine incorporation per cell, f.) 3H-leucine 
incorporation per cell. Error bars are standard error of duplicate samples.
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Figure 23. Responses of various bacterial properties to temperature and 
substrate manipulation in the Antarctic Convergence (55°S 142°E). 
a.) Cell abundance, b.) 3H-leucine incorporation, c.) Mean cell volume, d.) 
leucine incorporation per cell. Error bars are standard error of duplicate 
samples.
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treatments (Fig. 23c). Leu incorporation increased dramatically in the glucose 

(7.5°C) treatment for the first three days of the experiment, while other treatments 

remained statistically indistinguishable. After four days of incubation, rates of 'H- 

leucine incorporation in the glucose (7.5°C) treatment were more than thirty times 

greater than the control at the same temperature and more than twenty times greater 

than the glucose treatment at 4.4°C (Fig. 23b). 3H-leucine incorporation per cell 

increased more than fifty times the initial rate and was -3500% higher than the control 

at the same temperature (7.5°C). Calculated growth rates (P/B) increased from 0.01 d'

1 at day 0 to 0.5 d"1 in the glucose (7.5°C) treatment, while the glucose (4.4°C) and 

control (7.5°C) treatments remained statistically unchanged from day 0 over the course 

of the experiment. The effects of the glucose (7.5°C) treatment at the Antarctic 

Convergence were similar to the effects of glucose additions in SAF where water 

temperatures were similar. Cell abundance, cell volume, rates of leucine 

incorporation, and leucine incorporation per cell in the glucose (7.5°C) treatment at 

day 4 were nearly equivalent to those measured in the glucose treatments in the SAF at 

day 4. Growth responses in this experiment appeared to be severely limited by 

temperature below 7.5°C in the Antarctic Polar Front.

Discussion

Predom inance o f  DO M  Stimulation o f  Bacterial Growth

Based on these experiments, bacterial production, biomass, and growth rates in

the Southern Ocean appeared to be controlled primarily by glucose or DFAA 

availability. Interactive factors including dissolved iron and temperature may have 

been important in constraining complete utilization of labile dissolved organic matter,
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but the primary limitation to bacterial growth was availability of labile organic 

substrates. These experiments indicate bacterial growth rates were constrained by 

inputs of both glucose and DFAA, while bacterial biomass production was more 

tightly coupled to the input of DFAA or glucose + NH4++ P 0 43'.

The most pronounced trend in three of the four studies was that the addition of 

dissolved organic matter, either as glucose or amino acids, enhanced rates of bacterial 

growth and resulted in net increases in bacterial abundance, production and biomass. 

Additions of glucose and amino acids consistently resulted in increased production 

and accumulation of larger cells than control treatments (Table 3, Tables 4-6). Ten 

out of the sixteen treatments receiving DOM additions showed significant increases in 

bacterial abundance and biomass yields. Eleven out of the sixteen treatments 

receiving either glucose or DFAA had significant increases in net accumulation rates 

(abundance) relative to the control and Fe treatments (Table 3). Mean rates of 

thymidine incorporation per cell in glucose and DFAA treatments were -300%  higher 

than control treatments in three of the four experiments. Twelve of the sixteen 

treatments receiving glucose or DFAA showed enhanced thymidine incorporation 

relative to the control treatments (Tables 4-6). Finally, large increases in specific 

growth rates (P/B) were seen in nearly all the DOM additions.

Patterns o f  D O M  Utilization

Patterns of bacterial growth changed in response to the types of organic

substrates provided in these treatments. Enrichments of dissolved organic nitrogen 

(DFAA) or glucose + NH4++ P 0 43 stimulated rates of bacterial growth and production 

of biomass to a greater extent than additions of glucose alone. Six of the eight 

treatments receiving either DFAA or glucose + NH4++ P 0 43‘ resulted in larger
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maximal specific growth rates (P/B) and produced between 2 and 25 times more 

biomass than glucose and glucose + Fe treatments (Table 3, Figs. 11, 13, 15, 17, 19, 

21). Rates of bacterial production in DFAA treatments were larger than treatments 

receiving glucose alone (Fig. 24). Mean bacterial biomass, production and growth 

rates were larger in those treatments receiving DFAA or glucose + N H /+  PO4 1 than 

those treatments receiving glucose alone (Fig. 24). In two of the four experiments, 

maximal rates of thymidine incorporation occurred on either DFAA or glucose + 

NH4++ P 0 43\  DFAA treatments in the SAF yielded rates of production that were 

-400%  higher than all other treatments in any of the experiments.

These results can be interpreted several different ways. First, bacterial 

growth rates in the Southern Ocean may simply be limited by the availability of 

reduced organic nitrogen. Alternatively, DFAA or glucose + NH4++ P 0 43' substrates 

may increase the efficiency of bacterial growth to a greater extent than growth on 

glucose alone. Finally, bacterial growth in the Southern Ocean may be constrained by 

energy rather than by one particular element. The energy limitation hypothesis 

assumes that amino acids are directly assimilated as ready-made cellular building 

blocks, resulting in cellular energy conservation by circumventing the cell’s need to 

expend energy in construction of amino acids from simple carbon, nitrogen and 

phosphorus substrates (Cherrier et al. 1996, Kirchman 1990, Kirchman et al. 1990).

Clearly it would be an oversimplification to state that bacterial growth in the 

Southern Ocean is limited simply by carbon or by nitrogen. Similar to Cherrier et al. 

(1996) in the Eastern North Pacific and Kirchman (1990) in the Subarctic Pacific, we 

observed that combined additions of organic carbon and reduced nitrogen stimulated
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Figure 24. Bacterial response to various enrichment treatments. 
Calculated cell properties averaged by treatment type and over time. Mean 
values of a.) biomass, b.) bacterial production (3H-TdR), and c.) growth rates 
taken from all time points where significant responses between treatments were 
observed. Mean values for all control treatments, all treatments receiving 
glucose only, and those treatments receiving either glucose+NH^+PO/' or 
DFAA.
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bacterial growth rates. However, the results of this study are more 

complicated than Kirchm an’s (1990) and Cherrier et al. (1996). Additions of DFAA 

or glucose + N H /+  PO43 in this study generally resulted in the largest increases in 

bacterial growth rates and production. However, additions of glucose and glucose +

Fe also frequently resulted in increases in bacterial growth rates and increased biomass 

production. Labile organic matter primarily controlled bacterial growth in the 

Southern Ocean, however, specific limitation by the combination of reduced nitrogen 

and DOM was important in three of the four experiments.

Reduced nitrogen treatments may have increased bacterial growth efficiency, 

providing a possible explanation for the increased responses of bacterial growth to 

DFAA and glucose + N H /+  PO43’ treatments. The efficiency at which bacteria 

convert DOM into biomass may be dependent on the nutritional quality of the 

substrate. Goldman et al. (1987) and Goldman and Dennett (1991) found no 

differences in BGE using laboratory enrichment cultures grown on DFAA or glucose 

+ NH4+ as substrates provided the substrates were added in equimolar C : N ratios. 

They estimated growth efficiency on various organic carbon and nitrogen substrates 

and found a range between ~ 40-95%, with lower conversion efficiency on higher C :

N substrates. Carlson and Ducklow (1996) estimated BGE in their amendment 

experiments in the Sargasso Sea and found a range of 4-30% for both DFAA and 

glucose treatments. Cherrier et al. (1996) found that DFAA treatments yielded 

considerably higher assimilation efficiencies (-9% ) than other substrates (0.5-4.2%). 

Kirchman (1990) estimated BGE of -34%  for bacteria grown on DFAA in the 

Subarctic Pacific.
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Bacterial utilization of reduced nitrogen substrates may increase BGE and 

result in larger growth rates and subsequently increase bacterial production relative to 

growth on simple carbon substrates. In my study four of the six treatments enriched in 

reduced nitrogen resulted in higher rates of bacterial production than glucose additions 

(disregarding the results of the experiment in the Antarctic Polar Front). Mean 

biomass yields and growth rates in the DFAA and glucose + NFF+ additions were 

consistently larger than glucose additions alone (Fig. 24). These results hint that 

bacteria grew less efficiently on glucose than on organic amendments containing 

reduced nitrogen, resulting in lower production of biomass. When available substrates 

offer poor nutritional value (such as glucose) bacterial catabolism may proceed at near 

maximal rates, but cellular synthesis rates may be low. Cells continue to catabolize 

substrates to provide basic maintenance energy for active transport systems and cell 

membrane upkeep (del Giorgio and Cole 1998), however, inefficient growth results in 

consumption and respiration of DOM (glucose), but no measurable increases in cell 

production or growth. Additions of reduced nitrogen (either as DFAA or NFU+) may 

have alleviated reduced nitrogen limitation and increased bacterial growth efficiency.

One reason bacterial growth in the Southern Ocean may be limited by reduced 

nitrogen is that the available DOM  pool may be of poor nutritional quality (e.g. high 

C:N). Phytoplankton production is the predominant source of DOM to the surface 

waters in the open ocean. Phytoplankton growth in the Southern Ocean is at least 

partially constrained by low iron concentrations (Martin et al. 1990, Martin et al.

1991). One o f the consequences of iron limitation to phytoplankton growth is a 

decrease in the nitrate uptake capacity of phytoplankton (Martin and Fitzwater 1988.
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Martin et al. 1990, Dugdale and Wilkerson 1991). Phytoplankton stressed by their 

inability to assimilate nitrate might produce particulate and dissolved organic material 

rich in carbon and poor in nitrogen (Goldman et al. 1992, Smith et al. 1998). Thus, 

the bacterial response to glucose + N H L or DFAA in the Southern Ocean may be 

indirectly linked to iron limitation of the phytoplankton community, which results in 

production of high C : N DOM.

The major difference between my study in the HNLC region of the Southern 

Ocean and similar studies in the HNLC subarctic Pacific (Kirchman 1990, Kirchman 

et al. 1993) and equatorial Pacific (Kirchman and Rich 1997) was the large increase 

in cell abundance and biomass in response to DFAA and glucose + NHL additions. 

Kirchman (1990) found that additions of DFAA and glucose + N H L resulted in large 

increases in bacterial production but only small increases in bacterial abundance 

(Kirchman et al. 1990, Figs. 1 and 2 c). Amendment experiments in the equatorial 

Pacific indicated DFAA and glucose + N H L treatments limited rates of production, 

but had no substantial effect on bacterial abundance (Kirchman and Rich 1997). 

Removal processes (predation, viral lysis) apparently had sufficient capability to 

respond to increases in bacterial production.

The addition of model DOM substrates to bacterial incubations in the Southern 

Ocean frequently resulted in significant increases in bacterial abundance and biomass. 

In particular, three of the four experiments had large increases in bacterial abundance 

and biomass in response to DFAA and glucose + NHL+ PO43 treatments. In two of 

the four experiments, glucose and glucose + Fe treatments significantly increased cell 

abundance over the control treatment but the response was lower than treatments



receiving reduced nitrogen. Furthermore, DFAA and glucose + N F 1 /+  PO43' 

treatments frequently led to production of larger cells. These large changes in cell 

abundance and mean cell volume produced significant increases in bacterial biomass. 

Bacterial production, rates of growth, and biomass all responded to input of labile 

DOM.

D F A A  and glucose + NFU+ + PO43" treatments also resulted in significantly 

larger maximal growth rates (P/B) than all other treatments despite the large increases 

in cell abundance and biomass (Fig. 24). Increases in the rates of bacterial 

production in D F A A  and glucose + NH4++ PO43" treatments were coupled with 

increases in bacterial biomass. This indicates biomass production and growth rates 

were a function of the type of substrate that supported bacterial growth. Studies in 

other HNLC regions have found bacterial growth rates and rates of production are a 

function of DOM while biomass is tightly constrained by removal processes. In my 

experiments, additions of D F A A  or glucose + NFLi++ PO43' increased bacterial growth 

rates enough to escape control by grazers and viruses.

The function  o f the m icrobial loop in HNLC oceans

Differences in the apparent coupling between DOM and bacterial biomass in

the Southern Ocean versus other HNLC oceans may be a reflection of fundamental

differences in the structure of the microbial food webs among the different HNLC

systems. Table 8 lists bacterial biomass, production and growth rates from various

ocean and estuarine systems around the world. Clear differences exist in all o f these

properties between these different systems. This indicates the mechanisms that

control bacterial stocks and rates differ between the different HNLC regions. Results
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of this study indicate bacterial biomass and production are not unlike those measured 

in the Ross Sea, Antarctica. Surprisingly, bacterial biomass in this study was 

considerably lower than biomass measured in the other two HNLC oceans. Rates of 

production and growth in this study appear roughly similar to those measure in the 

equatorial Pacific, where water temperatures are considerably higher.

The microbial loop may function differently in the Southern Ocean than it 

does in the other HNLC oceans. Kirchman (1990) and Kirchman and Rich (1997) 

observed a close coupling between bacterial growth and removal in the equatorial 

Pacific and subarctic Pacific despite additions of labile DOM. In the Southern 

Ocean my experiments indicated that increased fluxes of DOM could result in 

increased production of bacterial biomass, indicative of a temporal uncoupling 

between growth and removal. Unlike the equatorial and subarctic Pacific, bacterial 

consumption of DOM in the Southern Ocean appears to act as a net sink for organic 

carbon. On the time scale o f these observations, bacterial growth and grazer removal 

rates in the DFAA additions were temporally uncoupled, potentially resulting in 

inefficient recycling of bacterial biomass through the microbial food web.

The temporal response of bacterial growth properties provides further 

indications that DFAA and glucose + NH4+ treatments increased growth rates enough 

to exceed grazer removal. Cell growth rates and thymidine incorporation per cell 

increased one or two days prior to significant increases in cell abundance. The 

temporary “shift-up” in growth rates in response to DFAA treatments was large 

enough to overcome removal rates. Treatments containing glucose only resulted in
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substantially lower maximal growth rates, often too low to overcome removal rates, 

resulting in considerably lower bacterial abundance and biomass yields.

Figures 25 and 26 show a schematic representation of the dependence of the 

microbial loop on the type of DOM available to bacterioplankton. In Figure 25, 

bacteria respond to additions of high C : N ratio substrates (such as glucose) with 

moderate increases in cell growth rates, but small increases in total biomass. 

Presumably, bacterial growth on the poor quality DOM (high C : N ratio) proceeds 

with low efficiency, and biomass accumulation is restricted as a result of the close 

coupling between growth and removal processes. Figure 26 depicts a scenario where 

low C : N ratio substrate (DFAA) becomes available to bacteria and bacterial growth 

efficiency is high. The result is a large increase in bacterial growth rates and 

significant increases in cell size and abundance. Over the time scales of these 

observations (4-5 days) large increases in bacterial biomass occurred as a function of 

the substrate type and the relative efficiency that bacteria converted DOM into 

biomass.

Co-limitations: DOM , Iron and Temperature
Additions of iron alone did not significantly increase bacterial growth rates

above the control in any experiment (Table III). However, combined additions o f 

glucose and iron frequently resulted in significantly larger maximal growth rates, rates 

of production and biomass (see Figs. 15, 16, 18, 19, 20). In three of the four 

experiments, glucose alleviated primary growth limitations, while in two of the four
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Figure 25. Schematic of the Southern Ocean microbial loop where DOM inputs 
are restricted to high C : N ratio material (glucose enrichments). Bacterial 
growth and removal terms are roughly balanced. Bacterial cell volumes often 
increased; however, cell abundance and biomass remained relatively unchanged 
over the course of the incubation.
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Figure 26. Schematic of the Southern Ocean microbial loop where DOM inputs 
are in the form of low C : N ratio material (DFAA or glucose + NHU* 
enrichments). Bacterial growth rates increase and growth exceeds removal. Cell 
volumes and cell abundance often increased resulting in substantial increases in 
bacterial biomass. Over the time scales of these experiments, additions of low C : 
N DOM resulted in an uncoupling of bacterial growth and removal.
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experiments the combined additions of dissolved iron and glucose resulted in a greater 

proportion of the glucose addition appearing as bacterial biomass. No increases in 

growth rates, rates of production or total biomass were seen in any o f the DFAA + Fe 

versus DFAA treatments.

Although I did not measure BGE directly, based on growth yields and 

estimates of bacterial growth rates, it appears that combined additions of iron and 

glucose increased BGE relative to treatments receiving glucose alone. Iron appeared 

to have no significant effect on bacterial growth in DFAA treatments. Bacterial 

growth responses to DFAA + Fe and glucose + Fe treatments suggests that BGE in the 

DFAA treatments were already near maximal levels, while bacterial growth 

efficiencies in the treatments where glucose-alone was added may have been 

substantially lower. Iron additions did not alleviate primary growth limitations 

caused by poor quality DOM.

These results are consistent with Tortell et al. (1996), who found that bacterial 

growth efficiency could be limited by the availability o f iron. Reduced iron is a vital 

component o f the electron transport chain in the respiratory system o f heterotrophic 

bacteria. The bacterial electron transport chain transfers electrons generated by 

oxidation of organic substrates (Gottschalk 1979). In iron limited systems such as the 

HNLC Southern Ocean, bacterial cells may lack iron required by the electron transport 

chain, thereby reducing the potential energy yield produced by electron chain 

phosphorylation. Iron limitation may decrease cell efficiency and result in ineffective 

utilization of energy produced through metabolism. Additions of iron to glucose



78

treatments may have increased bacterial conversion efficiency of glucose derived 

energy, allowing the cells opportunity to increase biomass production rates.

Temperature and DOM interacted to limit bacterial growth in the APF.

Bacterial growth in the APF showed no enhancement due to organic enrichments, 

implying that some factor other than DOM exerted specific control over rates of 

bacterial biomass production. Over the course of a four-day incubation no significant 

change in bacterial growth in the glucose-enriched treatment occurred at in situ 

temperatures. Growth rates increased substantially in response to glucose at the 

elevated temperature. Furthermore, cell sizes increased in the glucose treatment at 

elevated temperatures.

There are several possible scenarios to account for the dependence of bacterial 

growth on both temperature and DOM. First, bacterial growth on substrates at lower 

temperatures may be less efficient than growth on the same substrates at higher 

temperatures. Cells at lower temperatures continue to metabolize available substrates, 

but the ATP derived from metabolism may be applied to basic cell maintenance such 

as active transport systems rather than growth (Farrell and Rose 1967). Alternatively, 

cellular metabolism may simply work at slower rates in cold waters. This implies that 

the bacterial community is not adequately adapted to maximize growth in the colder 

waters. Finally, lower temperatures may affect rates of substrate acquisition and 

uptake. Permease proteins and the cytoplasmic membrane undergo conformational 

changes at sub-optimal temperatures (Farrell and Rose 1967), resulting in strong 

temperature dependence of the substrate transport systems.
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The Antarctic Polar Front marks the confluence of warm Subantarctic water 

and cold polar water. Bacterioplankton sampled in the Front may have adapted to the 

higher water temperatures characteristic of the subantarctic waters. Bacteria adapted 

to warmer water would show optimal rates of growth at temperatures greater than in 

situ temperatures found in the APF. Further South, bacteria may be adapted to the 

perennially cold waters and bacterial response to glucose amendments might be 

expected to occur more rapidly. Whatever the case, bacterial growth in the APF was 

limited by some combined interaction between DOM and temperature.

Conclusions

The results of these experiments suggest that bacterial growth in the Southern 

Ocean may be limited by organic matter quality (i.e. C : N). Moreover, these results 

indicate that both glucose and DFAA may contribute to fluxes o f organic material 

through bacterioplankton in the Southern Ocean. Bacterial growth responded to 

enrichments of glucose and DFAA at the STC and the SAF. Experiments in the SAZ 

and SAF indicated that combined additions of dissolved iron and glucose resulted in 

larger growth rates and biomass production than treatments receiving glucose alone.

I hypothesize that no single factor limited rates of bacterial growth in the 

Southern Ocean. Rather a myriad o f factors that include carbon, nitrogen, 

temperature and iron combined to restrict the growth of heterotrophic bacteria.

Growth limiting factors may stem from an array of resource limitation across several 

trophic levels whose combined effect is to reduce in situ bacterial growth rates. 

Bacterial growth in the HNLC Southern Ocean appeared limited by inputs of 

dissolved organic nitrogen and carbon. However, in the APF the combination o f 

DOM and temperature may interact to limit in situ growth. In the SAF and SAZ,
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additions of carbon, nitrogen and iron may all interact to control bacteria] stocks and 

rates of bacterial growth. Additions of ammonium and DFAA typically enhanced 

bacterial growth rates and biomass yields, implying that bacterial growth is at least in 

part controlled by the availability of reduced nitrogen.

Perhaps the most distinguishing feature of my study relative to other studies on 

bacterial growth in HNLC oceans was my observation that bacterial biomass 

accumulated in response to additions of DFAA and glucose + NH4++ P O / \

Additions of reduced nitrogen stimulated bacterial growth rates more so than additions 

of glucose. Nitrogen limitation of bacterial growth may result from the input of 

carbon-rich organic material by iron limited phytoplankton. The release of 

bacterioplankton from reduced nitrogen limitation in my experiments resulted in large 

increases in bacterial growth rates and concurrent uncoupling o f growth and removal 

processes. Bacterial growth in the Southern Ocean appears to be constrained 

predominantly by organic matter and the availability of reduced nitrogen. These 

results indicate top-down pressure on bacterial growth in the Southern Ocean may be 

fundamentally different than other HNLC oceans. Future investigations need to 

explore the linkages between growth and grazing and how these processes respond to 

nutrient and organic material fluxes. Additionally, direct quantification of bacterial 

growth efficiencies are required to evaluate how bacterial cells in the Southern Ocean 

respond to carbon and nitrogen rich substrates. Finally, an evaluation o f the linkages 

between bacterial growth efficiencies, dissolved iron and temperature would help 

constrain microbial food web processes in the Southern Ocean.
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