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ABSTRACT

Increasing environmental stressors in rapidly changing marine environments are 
expected to favor more stress tolerant species. Changes in the abundance or distribution of 
foundation species may have particularly important consequences for the communities they 
support. Thus it is increasingly vital to determine how habitat-forming species differ in their 
abilities to provide structure and mediate important interactions. Seagrasses act as 
foundation species, modifying the environment and providing habitat for trophically 
important prey. In the Chesapeake Bay, increasing water temperatures are associated with 
declines in the seagrass Zostera marina, and may benefit the temperature-tolerant seagrass 
Ruppia maritima. I used manipulative experiments to compare predator-prey interactions, 
recruiting species, and the effect of food chain length between these two seagrasses.

To test for differences in predator-prey interactions between foundation species, I 
observed a common seagrass predator, pipefish Syngnathus fuscus, preying on several 
crustacean prey species in the two seagrasses in controlled laboratory trials. Predators 
foraged more effectively in Ruppia, with significantly higher rates of encounter with prey, 
attacks on prey, and captures of prey than in Zostera at equivalent biomass. This pattern was 
driven primarily by a greater probability of amphipod prey detection in Ruppia, apparently 
due to its thin leaf structure and lower canopy. These results suggest that these seagrasses 
can have distinct effects in mediating predator-prey interactions.

I addressed the effects of food chain length and recruiting assemblage on the 
communities associated with the two seagrass species in an eight-week, factorial mesocosm 
experiment, which manipulated seagrass species and number of trophic levels at each of six 
seagrass densities. Trophic levels included no consumers, and small crustacean mesograzers 
alone or with fish and shrimp predators. I examined the algal and invertebrate assemblages 
that recruited to the mesocosm tanks. Consumers decreased diversity of recruiting taxa, 
likely due to consumption by or competition with mesograzers. Predators decreased grazing 
on algae through an apparent trophic cascade. Individual prey characteristics seemed to 
determine predation levels, rather than the relative refuge value of the seagrasses. All but 
one of the most abundant recruiting species were more abundant in Zostera.

The laboratory experiment suggests that trophic transfer of mesograzer prey to a 
small fish predator is greater in Ruppia, however such differences were not observed in the 
mesocosm experiment, perhaps due to the effects of two predators and additional structure of 
the tanks and macroalgae. Differences in recruiting assemblages between seagrasses could 
affect higher trophic levels that rely on these epibionts in seagrass beds. Changes in the 
composition or relative abundances of these seagrass species will likely have important 
consequences for associated fauna, as these seagrasses may differ in mediating predator-prey 
interactions and providing habitat for epifauna. Additionally, established differences in the 
morphology, distribution, and phenology of Ruppia and Zostera would also be likely to 
affect important functions in the Chesapeake Bay if species loss or changes in abundance 
occur.
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ABSTRACT

Increasing environmental stressors in rapidly changing marine environments are expected to 
favor more stress tolerant or opportunistic species. Changes in the abundance or distribution 
of habitat-forming foundation species may have particularly important consequences for the 
communities they support. Thus it is increasingly vital to determine specifically how such 
foundation species differ in their abilities to provide habitat and mediate important 
interactions. Seagrasses are important foundation species, modifying the environment and 
providing habitat for trophically important prey species. In the Chesapeake Bay, increasing 
water temperatures have been associated with declines in the seagrass Zostera marina, and 
may benefit the temperature-tolerant seagrass Ruppia maritima. To test for differences in 
predator-prey interactions between morphologically distinct foundation species, I used 
controlled experiments to observe a common seagrass predator, pipefish Syngnathus fuscus, 
preying on several epifaunal crustacean prey species in Ruppia maritima and Zostera marina. 
Predators foraged more effectively in Ruppia, with significantly higher rates of encounter 
with prey, attacks on prey, and captures of prey than in Zostera at equivalent biomass. This 
pattern was driven primarily by a greater probability of amphipod prey detection in Ruppia, 
apparently due to its thin leaf structure and lower canopy. One thin-bodied isopod prey 
species, Erichsonella attenuata, was not vulnerable to predator detection in either seagrass 
species, suggesting a possible mechanism for its high field densities during times of greatest 
small predator abundance. These results suggest that these foundation species can have 
distinct effects in mediating predator-prey interactions. Alterations in the composition or 
relative abundances of foundation species will likely have important consequences for 
associated fauna, and caution should be exercised in assuming equivalency of foundation 
species in mediating predator-prey interactions.
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INTRODUCTION

Anthropogenic stressors, including the effects of climate change, have the potential to 

alter communities by creating environmental conditions that favor more stress-tolerant or 

opportunistic species. Species near the limits of their physiological tolerances are expected 

to contract their ranges (Parmesan, 2006), while more stress-tolerant or opportunistic species 

may either increase in abundance or in their relative importance, as sensitive species decline 

(Chapin et al., 1998). Thus it is increasingly vital to determine whether similar species are 

equivalent in their ecological roles, and whether more stress-tolerant species will be able to 

provide some degree of functional redundancy for the species they may replace.

In particular, changes in the relative abundance of habitat-forming, ‘foundation’ 

species (sensu Dayton, 1972) can alter important processes. Foundation species can provide 

refuge from predation and ameliorate stressful environmental conditions, having important 

and cascading impacts on the communities they form (Bruno & Bertness, 2001; Ellison et al., 

2005). Changing abundances of key taxa in altered systems can cause cascading effects on 

species composition and interactions, ultimately helping to determine the effects of 

environmental change on community structure (Walther et al., 2002; Schiel, 2004; Micheli et 

al., 2008). Species redundancy in important ecological roles may determine the reliability of 

ecological functions as species composition changes (Walker, 1992; Walker, 1995; Naeem, 

1998).
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Seagrasses are a unique group of marine angiosperms which act as foundation 

species, creating a refuge and modifying the environment by affecting water flow, nutrient 

cycling, and community structure (Heminga & Duarte, 2000). Seagrass beds also provide 

numerous valuable ecosystem services to humans. Seagrass contributions to nutrient cycling 

alone have considerable value economically (Costanza, 1997). Seagrasses also provide 

coastal protection (Koch et al., 2006), carbon storage (Duarte & Chiscano, 1999), and 

fisheries production (Gillanders, 2006), thus playing an important role in coastal ecosystems. 

Seagrass beds are also some of the most threatened coastal habitats, with stressors, such as 

nutrient and sediment run-off, physical disturbance, and temperature stress, causing large- 

scale declines (Duarte, 2002; Orth et al., 2006; Waycott et al., 2009) and changes in species 

composition (Johnson et al., 2003; Micheli et al., 2008). More stress tolerant species are 

expected to increase relative to more sensitive species, if stressful conditions are intensified. 

To the extent that seagrasses differ functionally, species loss or alteration in the composition 

of foundation species would likely have important consequences for the ecosystem services 

provided by these communities. Thus, it is important to determine specifically how 

foundation species differ in their abilities to provide habitat and mediate important 

interactions.

Seagrasses provide structural complexity and food resources for the highly abundant 

fauna that utilize these important habitats, and are thought to contribute considerably to the 

production of coastal fisheries through refuge and trophic support (Kikuchi, 1974; Heck & 

Orth, 1980; Orth & Heck, 1980; Heck et al., 2003; Gillanders, 2006). Epiphytic algae 

growing on the seagrass provides an accessible source of primary production, which is 

utilized by a host of small epifaunal grazers inhabiting seagrass beds, including crustacean
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mesograzers such as isopods and amphipods. Thus, the primary production in seagrass beds 

is transferred to small grazers, creating biomass available for transfer to higher trophic levels 

(Williams & Heck, 2001). Indeed, crustacean grazers are an important trophic link, with the 

majority of seagrass fish feeding primarily on small crustaceans, including copepods, 

amphipods and decapods (Klumpp et al., 1989; Edgar & Shaw, 1995). Adams (1979) 

estimated that food produced in seagrass beds accounted for approximately 56% by weight of 

the diet of seagrass fishes.

Seagrass habitats apparently attract and maintain high abundances of fauna by 

providing physical structure, which creates habitat and serves as a visual and tactile barrier 

between potentially interacting predators and prey (Main, 1985; Main, 1987). Many studies 

have supported the hypothesis that increasing the density of refuge structure or habitat 

complexity leads to lower predation rates. When the density or biomass of seagrass (or an 

artificial analogue) is increased experimentally with predator and prey densities held 

constant, predation rates tend to decrease (Nelson, 1979; Stoner, 1982; Heck & Thoman, 

1981; Nelson & Bonsdorf, 1990 and studies listed therein; reviewed in Heck & Orth, 2006).

It is less clear whether the specific type or morphology of structure in a community greatly 

affects interactions. A meta-analysis by Heck et al. (2003) found no significant average 

differences across studies in important functions, such as the provision of structural refuge 

and trophic support for juvenile fishes, between seagrass beds and other structured habitats 

such as macroalgal mats. However, other studies have indicated that the specific 

morphology of vegetation can have a significant impact on small-scale predator-prey 

interactions. Experimental manipulations of aquatic macrophytes showed that while 

vegetation density had no effect on refuge, predation was significantly reduced in the most
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structurally complex vegetation, which possessed whorls of highly dissected leaves (Warfe & 

Barmuta, 2004). The size of a structural refuge relative to predator and prey sizes can also be 

important for refuge and foraging efficiency (Ryer, 1988; Bartholomew, 2002).

To test for differences in predator-prey interactions between morphologically distinct 

foundation species, I used controlled experiments to observe a common seagrass predator, 

pipefish Syngnathus fuscus, preying on three epifaunal crustacean grazers, in two species of 

seagrass, Ruppia maritima and Zostera marina. These seagrasses will hereafter be referred 

to by their genus names. During timed trials, I recorded the number of encounters between 

predators and prey, attacks on prey, and captures of prey in each of the two seagrasses. Thus 

I was able to determine whether seagrass species affected predation, and whether differences 

were due to greater detection of prey (indicated by the encounter rate), or an increased 

probability of attack or capture by predators. I expected that plant morphology would affect 

predator-prey interactions, with thinner-leaved plants providing less effective refuge for 

epifaunal prey. However, I also hypothesized that the influence of plant species on predator- 

prey interactions might differ by prey species, depending on the prey’s morphology and 

behavior.
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METHODS

Study system

The Chesapeake Bay is an estuary with historically abundant seagrass beds, which 

have declined greatly over a period of decades, reaching an all-time low in the early 1980s 

(Orth & Moore, 1983; Orth & Moore, 1984) and recovering to some extent in subsequent 

years (Moore et al., 2000) with abundance patterns correlated with water quality throughout 

the Bay (Orth et al., 2010). In addition to the stress of poor water quality, increasingly high 

summer water temperatures in the Chesapeake Bay have the potential to change the relative 

abundance of seagrass species in this system (Moore & Jarvis, 2008; Johnson et al., 2003). 

Of the two species of seagrasses found in polyhaline waters of the Chesapeake Bay, Zostera 

marina seems likely to decrease relative to Ruppia maritima, due to Zostera’s more narrow 

range of physiological tolerances. The Chesapeake Bay is near the southern limit of Zostera 

in the northern hemisphere (Moore & Short, 2006). High water temperatures during the 

summer of 2005 (approximately 1-2°C above normal) apparently contributed to a severe 

dieback of Zostera, suggesting that Zostera is close to its physiological limits in this region 

and may be significantly impacted by climate change (Moore & Jarvis, 2008). While some 

marine species may adapt to warming by to deeper water depths (Fields et al., 1993), species 

such as seagrasses, which are restricted in their vertical distribution by light requirements, 

may be more susceptible to range contraction near their limits (Harley et al., 2006; Micheli et 

al., 2008). Ruppia, in contrast to Zostera, has broad physiological tolerances, which allow it
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to survive in stressful environments, contributing to its nearly cosmopolitan distribution 

(Setchell, 1924; Kantrud, 1991). Zostera has historically been more abundant than Ruppia in 

the Chesapeake Bay, reaching double its biomass during peak growing season (Moore et al., 

2000), and may be able to competitively exclude Ruppia through shading (Orth, 1977). 

Ruppia may be able to increase opportunistically if Zostera declines with higher water 

temperatures. Ruppia would also be expected to increase relative to Zostera with declining 

water quality (Dennison et al., 1993; Burkholder et al. 1992; Burkholder et al., 1994) or 

decreases in salinity (Moore et al., 2000; Kahn & Durako, 2005) due to Ruppia’s greater 

tolerance of shading, excess nutrients, and low salinities.

Ruppia and Zostera also differ morphologically. Because seagrasses are an important 

source of structure in marine environments, the morphological differences between Ruppia 

and Zostera may result in differing abilities to provide habitat and mediate predator-prey 

interactions. In the Chesapeake Bay Zostera has flat, strap-like blades with rounded tips, 

typically about 80 cm long and 3-12 mm wide, though morphology can vary greatly with 

environmental conditions (Moore & Short, 2006). Ruppia has much shorter and thinner 

leaves than Zostera. The leaves of Ruppia extend from rounded sheaths and are typically 

about 1 mm wide by 5-20 cm long, with pointed tips (Kantrud, 1991). Ruppia also has a four 

fold greater surface area to biomass ratio, than Zostera (Parker et al., 2001). I expected that 

the distinct leaf structures of Ruppia and Zostera would cause predator-prey interactions to 

differ between these species, due to differences in protection they provide to crustacean prey.
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Study animals

I selected predator and prey species common in seagrass meadows throughout the 

Chesapeake Bay for use in this experiment. The northern pipefish, Syngnathus fuscus, is an 

abundant predator in seagrass habitats (Orth & Heck, 1980) that primarily feeds on small 

crustaceans, including copepods, amphipods and isopods (Adams, 1976; Ryer & Orth, 1987). 

Small crustacean mesograzers are both important sources of food for fishes (Klumpp et al., 

1989; Edgar & Shaw, 1995) and highly abundant, at times accounting for over half the total 

secondary production in Chesapeake Bay seagrass beds (Fredette & Diaz, 1990). Thus 

crsuteacean mesograzers are important vectors for transfer of primary production to higher 

trophic levels.

Syngnathus fuscus possesses a long snout with a small mouth and is gape limited in 

its prey consumption (Nelson, 1979; Ryer & Orth, 1987; Ryer, 1988). Pipefish are visual 

predators, foraging actively by searching for prey through continuous movement (Ryer, 

1988). My qualitative field observations of Syngnathus foraging behavior were consistent 

with this description. Syngnathus generally moves slowly through the vegetation, resting a 

portion of its body or prehensile tail against seagrass leaves as it moves. Its eyes move 

constantly, in a circular motion. When a potential prey is encountered, the fish moves within 

striking distance, and attempts to capture it in a sudden forward movement. Pipefish and 

other syngnathids are ‘pipette’ or ‘pivot’ feeders, using a dorsal rotation (lifting) of the head 

to rapidly approach and draw prey into the mouth using suction (Bergert & Wainwright,

1997; de Lussanet & Muller, 2007).

The three crustacean mesograzers included as prey species in the experiment were 

abundant in the field as seagrass epifauna at the time of experimentation, and are distinct in
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their morphology and behavior. Cymadusa compta and Gammarus mucronatus are 

amphipods, with similar rounded, laterally flattened body shapes, whereas the isopod 

Erichsonella attenuata is ventrally flattened, with an elongated body. Erichsonella is the 

most sedentary of the three species, while Gammarus is the most active (personal 

observation; Duffy & Hay, 1994). Cymadusa builds small tube-like nests that it uses for 

refuge, while the other species do not (Nelson, 1979). I included multiple prey species to 

create the most realistic assemblage feasible, and to determine whether predator-prey 

interactions differ between seagrass species for the numerous prey species that utilize this 

vegetation as habitat.

Experimental design and procedures

To evaluate differences in predator-prey interactions between foundation species, I 

observed Syngnathus in controlled experiments, preying on the three crustacean grazers 

during timed trials in Ruppia and Zostera vegetation. Experiments were conducted between 

August 24th and September 15th, 2009, at the Virginia Institute of Marine Science, Seawater 

Research Laboratory. Experimental plants and animals were collected from seagrass beds 

within Mobjack Bay on the western shore of the Chesapeake Bay. Seagrasses were 

defaunated through a series of freshwater rinses before being planted in experimental tanks 

(Duffy & Harvilicz 2001; Duffy et al., 2001). The two seagrass species were standardized to 

approximately the same above-ground biomass per tank, based on known ratios of average 

above- to below-ground biomass for Ruppia and Zostera (Kantrud, 1991; J.E. Duffy, 

unpublished data). Seagrass was planted at the wet equivalent of 25 g dry weight per m . 

This density is below the lowest mean field density of Zostera in the Chesapeake Bay (which
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falls between 50-225 g dry weight per m2), and is equal to the lowest mean field density of 

Ruppia in the Chesapeake Bay, which is observed though the winter and early summer 

(Moore et al., 2000).

Experimental animals were kept in 0.28 m2 outdoor, flow-though tank arrays until 

their use in the experiment. Syngnathus fuscus individuals were between 11-15 cm in length. 

The mean size of fish used in the trials did not differ between Ruppia and Zostera treatments 

(t-test, t = -0.80, df = 13, P = 0.43). Crustacean prey individuals were identified to species in 

a laboratory using light microscopy. A natural size distribution of prey was used in the 

experiment, except for the exclusion of individuals (usually Erichsonella) estimated to be 

greater than 1 cm in length, which may not be consumed by Syngnathus fuscus (Ryer & Orth, 

1987; Ryer, 1988).

The experiment was conducted in 18.93 1 (5-gallon) clear, glass tanks with either 

Ruppia or Zostera vegetation planted at the wet weight equivalent density of 25 g dry wt./m 

in equal amounts of sand sufficient to cover the seagrass roots and rhizomes completely. 

Experimental tanks were filled with water pumped from the York River estuary 

(approximately 20 ppt salinity), filtered at 100 pm. Aquarium circulator pumps were used to 

ensure adequate aeration. One predator was added to each tank. Syngnathus fuscus 

individuals were allowed to acclimate in experimental tanks for 24 hours prior to each trial, 

during which time they were also starved, allowing for complete gastric evacuation at room 

temperature (Ryer & Boehlert, 1983). Each tank was stocked with 10 individuals of each of 

the three crustacean prey species. Prey animals were added to tanks with pipefish 12 hours 

prior to experimentation. Tanks were covered immediately with black, opaque covers, which 

blocked light completely from the tanks. This allowed acclimation of the prey without the
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possibility of being visually detected by predators (Ryer, 1988). Treatments were randomly 

assigned to tank locations within the laboratory, to account for any differences in ambient 

conditions.

Trials were run individually and sequentially, so that predators and prey could be 

observed during each 50-minute trial. All trials were run between 0800 and 1500, Eastern 

Standard Time, with a maximum of four trials per day. Trials were conducted in a dimly lit 

laboratory with ambient light from a window, and a small LED light positioned between the 

observer and tank, facing the tank under observation. The fish did not appear to respond to 

the presence of the observer. During the trials I recorded the occurrence of specific 

interactions between predators and prey species, including encounters between predators and 

prey, attacks on prey, and successful captures of prey. To determine whether predators or 

prey were using vegetation differently in the two seagrasses, I recorded the location within an 

experimental tank where interactions occurred, which I defined as microhabitat. I grouped 

these locations as being above the sediment surface in the canopy, at the sediment surface, at 

an amphipod nest, or outside of the vegetation. An encounter between pipefish and prey was 

defined by fixation of both eyes on the prey individual by the pipefish. I considered that an 

attack had occurred when the pipefish attempted to capture the prey through a forward 

thrusting of the head and concurrent inward sucking with the mouth. A capture was defined 

as successful consumption of the prey individual. These behavioral descriptions follow those 

of Ryer (1988).
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Statistical analyses

Eight trials in which fish did not forage or displayed abnormal behavior, such as rapid 

swimming against tank walls throughout a trial, were excluded from analysis. Differences in 

response variables between seagrass species were analyzed using generalized linear models. 

Poisson regressions were used for counts, including the effects of seagrass species on 

summed encounters, attacks and captures per trial. Logistic regression was used to test for 

the effect of seagrass species on binomial responses, including the probability of attack 

(given an encounter) and the probability of capture (given an attack). Over-dispersion was 

corrected by the use of a quasi-Poisson regression when testing for the effects of seagrass on 

summed encounters per trial.

Log-likelihood (G) tests were used to determine whether the proportions of 

interactions differed by prey, seagrass species, or microhabitat location. I addressed whether 

some prey are more vulnerable than others in one seagrass compared to the other, based on 

whether the proportion of predator-prey interactions with each prey species differed by 

seagrass species. I also determined whether predators and prey were more likely to interact 

in certain microhabitats in one seagrass species compared to the other, based on the 

proportion of interactions occurring in certain microhabitat locations in each seagrass 

species. Additionally I asked whether a given prey species was more likely to interact with a 

predator in some microhabitat locations compared to others, based on the proportion of 

interactions occurring in various microhabitat locations for each prey species. As Cymadusa 

was the only nest-building species used in the experiment, this microhabitat could not be 

analyzed for all prey species. As the nests observed in the experiment were all located at 

sediment interface, the microhabitat location “nest” was combined with “sediment surface”
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in statistical tests in order to compare interactions among prey species. Interactions with 

prey individuals that could not be positively identified were excluded from analyses of 

differences between prey species (excluded encounters n= 14, attacks n=8, captures n=2). 

Statistical analyses were conducted using R version 2.10.1 (Copyright 2009, The R 

Foundation for Statistical Computing, www.r-proiect.org).
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RESULTS

Pipefish predators foraged more effectively on small crustacean mesograzers in 

Ruppia maritima than in Zostera marina. There were significantly higher rates of encounters 

with prey, attacks on prey, and captures of prey in Ruppia maritima (Fig. 1, Table 1). The 

higher rate of attack and capture in Ruppia appears to be driven primarily by the greater 

probability of detection in terms of encounter rate in this seagrass. Syngnathus was not 

significantly more likely to attack encountered prey or successfully capture attacked prey in 

Ruppia, as there was no significant difference between the two seagrasses in the probability 

of attack given an encounter, or the probability of capture given an attack (Fig. 2, Table 1). It 

is worth noting however, that there was a trend toward higher attack probability in Ruppia, 

which may also contribute to predator success in this seagrass.

Pipefish encountered amphipods Cymadusa and Gammarus more often than the 

isopod Erichsonella in both seagrass species, with approximately twice as many encounters 

in Ruppia as in Zostera with each prey species. Thus the proportion of total encounters 

occurring with each of the three prey species was essentially identical between seagrass 

species (Fig. 3 A, Log-likelihood ratio statistic (G) = 0.08, Chi-square df = 2, P = 0.96). The 

same pattern was evident for the rate of attacks on and captures of amphipods (Fig. 3B, 3C). 

Both amphipods were more vulnerable to attack and capture in Ruppia, and in both cases 

Cymadusa was more vulnerable than Gammarus, as there was no significant difference in the
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proportion of attacks (Fig. 3B, Log-likelihood ratio statistic (G) = 0, Chi-square df = 1, P = 

1.0) or captures (Fig. 3C, Log-likelihood ratio statistic (G) = 0.17, Chi-square df = 1, P =

0.68) that occurred with each amphipod between the two seagrass species. The isopod 

Erichsonella was never attacked or captured in either seagrass species. Erichsonella was 

encountered very rarely (twice in Ruppia and once in Zostera), which accounts for the lack of 

attacks and captures. Interactions with prey individuals that could not be positively identified 

were excluded from analysis of differences between prey species. However, the pattern of an 

approximately two-fold higher interaction rate in Ruppia compared to Zostera held true for 

excluded observations as well, which was evident when interactions were pooled across 

species (Fig. 4).

I examined whether the proportion of predator-prey interactions occurring in each 

microhabitat location (canopy, sediment surface, amphipod nest, not in vegetation) differed 

between the two seagrass species. There was no difference between seagrass species in the 

proportion of encounters between predators and prey occurring in the various microhabitat 

locations (Fig. 5A, Log-likelihood ratio statistic (G) = 0.99, Chi-square df = 3, P = 0.80). In 

the case of attacks on prey, however, there was a significant difference between Ruppia and 

Zostera, with a higher proportion of attacks occurring at the sediment surface in Ruppia (Fig. 

5B, Log-likelihood ratio statistic (G) = 9.75, Chi-square df = 3, P = 0.02). There was no 

significant difference between the two seagrasses in the proportion of captures occurring in 

different locations (Fig. 5C, Log-likelihood ratio statistic (G) = 2.74, Chi-square df = 3, P = 

0.43).

I also compared the proportions of predator-prey interactions occurring in each 

microhabitat location between each of the prey species, to determine whether some prey were
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more likely to interact with predators in certain microhabitats. As Cymadusa was the only 

nest-building species used in the experiment, the microhabitat location “nest” was combined 

with “sediment surface” in statistical tests to compare interactions among prey species. The 

proportion of total encounters occurring in each microhabitat location did not differ 

significantly among the three prey species (Fig. 6A, Log-likelihood ratio statistic (G) = 

8.3739, Chi-square df = 4, P = 0.079). However, there was a trend toward Cymadusa being 

encountered more often in the vegetation and rarely outside of it, whereas interactions with 

Gammarus were more evenly distributed between the two locations within the vegetation 

(“sediment surface” and “canopy”) and the area outside of the vegetation. The few 

encounters with Erichsonella all occurred in the canopy. As Erichsonella was never attacked 

or captured, it was excluded from analyses of these responses. The proportion of attacks 

occurring in different microhabitat locations was significantly different between the two 

amphipods that were attacked, with Cymadusa being attacked more frequently within the 

vegetation than Gammarus (Fig. 6B, Log-likelihood ratio statistic (G) = 7.8074, Chi-square 

df = 2, P = 0.020). The proportion of captures occurring in different locations did not differ 

for the two amphipod species that were captured (Fig. 6C, Log-likelihood ratio statistic (G) = 

6.7659, Chi-square df = 4, P = 0.149). Prey individuals were never captured in nests when 

attacks occurred in this location. However, the number of captures occurring in this 

experiment were very low, so tests of this response variable have relatively low power to 

detect differences.
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DISCUSSION

The higher rates of encounters, attacks and captures in Ruppia compared to Zostera 

indicates that there is indeed a difference in the ability of these two seagrasses to mediate 

predator-prey interactions between these predator and prey species (Figure 1, Table 1). The 

data suggest that the higher rates of attacks and captures were driven primarily by the higher 

encounter rate in Ruppia, though the probability of attack and capture may have had some 

influence as well (Figure 2, Table 1).

A central question of this experiment was whether these seagrass species could be 

considered equivalent in providing refuge when standardized to biomass, or whether their 

distinct leaf morphology would affect interactions. I found that prey individuals were more 

visible in Ruppia, which has greater surface area per biomass than Zostera, but thinner, 

shorter leaves. Vegetation surface area has been posited to affect predator-prey interactions 

and their outcome, to the extent that it provides usable refuge for prey species (Heck & Orth, 

1980b). However, greater surface area itself does not necessarily indicate an effective barrier 

between predators and prey. For example, Stoner (1982) compared fish predation on 

amphipods in three seagrass species and found that at a given biomass, Halodule wrightii, the 

species with the narrowest blades and highest surface area per biomass, provided the poorest 

refuge from predation. The two other seagrasses Thalassia testudinum and Syringodium 

filiforme which have wider, strap-like blades, were more effective in reducing predation.
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Similarly, an experiment manipulating leaf width of artificial seagrass vegetation 

demonstrated that amphipod prey were only protected from predation by Syngnathus fuscus 

when they were able to fit into the refuge spaces between leaves, and wider artificial leaves 

afforded better refuge for amphipods than thin leaves, although interactions depended on the 

relative size of the structure, predator, and prey (Ryer, 1988). Thus, the greater encounter 

rates in Ruppia may be due to its thinner blades, which provide less structural refuge from 

detection for small crustacean prey.

The lower canopy height of Ruppia may also have influenced the predator-prey 

interactions observed in this experiment. Both fish and prey tended to stay within the 

seagrass vegetation during the trials (personal observation). Syngnathus fuscus seemed to 

spend more time closer to the sediment surface in Ruppia and utilized more vertical space in 

Zostera. This may explain why I observed a trend toward more interactions near the 

sediment surface in Ruppia, with a significantly higher proportion of attacks occurring in this 

location compared to Zostera (Fig. 6). Alternately, prey may be utilizing vegetation 

differently in Ruppia and Zostera. Small shrimp can avoid predation in seagrass using 

behaviors that obscure them from the view of visual predators, such as moving behind 

seagrass blades and choosing microhabitats in the canopy that make them less accessible to 

predators (Main, 1987; Main, 1987). Since I did not observe the locations of predators or 

prey in the absence of one another, patterns in the location of interactions may be due to 

either the foraging behavior of the predator, or the habitat preference or vulnerability of prey 

species in various locations. This difference in attack location suggests a difference in 

habitat use or foraging of Syngnathus fuscus in the two habitats, as there was no significant 

difference in the number of encounters occurring in these environments. Because Ruppia has
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a shorter canopy, the three-dimensional space in which predators and prey were interacting 

may be reduced, potentially increasing the probability of interactions in this vegetation.

I intentionally tested similar densities of Zostera and Ruppia in this experiment. 

However, the seagrass density used is slightly lower than even the lowest mean field density 

of Zostera, and approximately equal to the lowest mean field density of Ruppia in the 

Chesapeake Bay (Moore et al., 2000). Because seagrass density can influence predation rates 

(Nelson, 1979; Stoner, 1982; Heck & Thoman, 1981; Nelson & Bonsdorf, 1990 and studies 

listed therein; reviewed in Heck & Orth, 2006), this experiment may underestimate the 

natural refuge provided by Zostera, as its field densities will rarely be as low as those used in 

the experiment. Likewise, the prey densities I used experimentally are considerably lower 

than field densities per unit of vegetation (Douglass et al., 2010). Thus I might expect 

encounter and predation rates to be higher in the field than those I observed experimentally. 

However at least one experiment has found no significant difference between vegetation 

density treatments when the ratio of predator to prey to vegetative surface area was kept 

constant (Matilla et al., 2008), which may be explained by higher rates of encounter at higher 

faunal densities.

The abundance or distribution of epifaunal assemblages in the field can provide 

indirect evidence that a particular vegetation type provides superior food resources, habitat or 

refuge. Seagrass epifauna are highly mobile (Vimstein & Curran, 1986) and may select 

substrates based on either abundance or morphology, as it affects important aspects of their 

survival (Bell & Westoby, 1986; Schneider & Mann, 1991b). Predation by pipefish and 

other small predators appears to have a large effect on the field abundance of seagrass 

epifauna (Vimstein & Howard 1987a; Vimstein & Howard, 1987b; Ryer & Orth, 1987;
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Schneider & Mann, 1991). Higher predation rates in Ruppia or habitat selection would not 

necessarily translate to differences in mesograzer composition or abundance in the field. 

Previous field surveys found no overall differences in abundance and species composition of 

crustacean mesograzers in Ruppia and Zostera although species abundances did differ at 

certain points in time (Parker et al., 2001). These small crustacean prey species likely move 

between contiguous areas of Ruppia and Zostera vegetation responding to complex, 

interacting factors, including predation, habitat selection, and competition for living space 

and refuge.

While amphipods Cymadusa and Gammarus were encountered much more often than 

the isopod Erichsonella, the proportion of total encounters, attacks and captures that occurred 

with each prey species was essentially identical between grass species. Thus it appears that 

the increased vulnerability of prey in Ruppia is not due to a disproportionate effect on any 

one species, but rather that Ruppia has a similar effect on multiple prey species. Because 

amphipods are laterally flattened with a rounded body shape it may be more difficult for 

these prey to obscure their entire bodies behind a Ruppia blade, whereas this is likely to be 

easier in Zostera. The fact that Cymadusa was never captured in nests corroborates previous 

findings that tube-building amphipods are well protected in these structures (Nelson, 1979). 

Cymadusa may have been better protected in this experiment if given a longer acclimation 

period in which to build these protective structures. The amphipods also moved by 

swimming at times during the experiment, and did not necessarily remain attached to 

seagrass blades (personal observation), behaviors that may have made them more vulnerable 

to detection, compared with Erichsonella. Thus, the distinct morphology and behavior of the 

prey may account for differences in their detection in this experiment.
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Erichsonella was rarely encountered and never attacked or captured in either 

seagrass. This prey species may be less detectable by predators due to its elongated and 

dorso-ventrally flattened body shape and tendency to remain attached to seagrass leaves, 

while moving relatively little and generally in parallel with the leaf surface (personal 

observation). Ryer (1987) also observed that Syngnathus fuscus had difficulty consuming 

even small Erichsonella individuals, likely due to the isopod’s enlongated body and clinging 

behavior. Syngnathus fuscus does consume Erichsonella in the field, but this isopod is an 

important part of its diet only during the fall months, when other more desirable prey species 

are less abundant (Ryer, 1987). Additionally, Douglass et al. (2010) found that Erichsonella 

dominated the seagrass epifaunal assemblage in the western Chesapeake Bay during the late 

summer when small predators are most abundant. The low encounter rate with Erichsonella 

in my study suggests that difficulty in detection may also decrease the consumption of this 

isopod when more easily encountered prey species are available, suggesting a mechanism for 

its seasonal patterns of field abundance.

The fact that seagrasses did not differ greatly in the probability of attack given an 

encounter may indicate that predators are not altering their attack behavior between the two 

seagrasses. The relative size of prey and available refuge can influence the attack probability 

for Syngnathus fuscus, possibly due to size refuge of prey, or ability of the fish to position its 

snout close to the prey (Ryer, 1988). The small difference in attack probability between 

grasses here indicates that fish are not much more likely to encounter larger, less attackable 

prey in Ruppia. However, it is possible that the non-significant trend toward increased attack 

probability in Ruppia may represent a biologically important pattern that would be 

statistically significant with greater replication to increase statistical power. The smaller
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difference between the two seagrasses in the capture probability given an attack also 

indicates that predators may encounter prey too large to be consumed at equal rates in the 

two grasses. This result also suggests that prey are equally capable of utilizing escape 

strategies once attacked in the two seagrass species. The low overall capture rate may be due 

in part to the gape limitation of Syngnathus fuscus, which usually selects small prey (Nelson, 

1979; Ryer & Orth, 1987; Ryer, 1988). As I used a natural size distribution of prey, some 

were likely too large to be successfully consumed by the predator. While Syngnathus fuscus 

will sometimes attempt to consume large prey, these individuals often escape (Ryer & Orth, 

1987).

If greater detection rate in Ruppia is due to greater visibility of prey against the thin 

leaf, then this effect may hold true for a whole assemblage of small crustacean mesograzers 

in these systems. This generality could lead to higher trophic transfer in Ruppia compared to 

Zostera, particularly at times of year when gammarid amphipods are most abundant. Small 

crustacean mesograzers including isopods and amphipods can account for over half the total 

secondary production in Chesapeake Bay seagrass beds (Fredette & Diaz, 1990) and provide 

an important trophic link, with the majority of seagrass fish feeding primarily on small 

crustaceans (Klumpp et al., 1989; Edgar & Shaw, 1995). The interactions between 

crustacean mesograzers and small predators may be an important mechanism of energy 

transfer from the primary production of epiphytic algae to higher trophic levels, including 

resident and transient tertiary predators. In the Chesapeake Bay for example, Syngnathus 

fuscus appears to be a large component of the diet of summer flounder (Paralichthys 

dentatus) at certain life stages (Lascara, 1981). As an intermediate predator, Syngnathus 

fuscus is presumably seeking refuge from predation as well. Although it is difficult to say
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whether the seagrasses are equal in this respect, I would expect pipefish to find more 

effective refuge from predation in Zostera, as they are very cryptic in this environment 

(personal observation). If Syngnathus is able to forage more effectively in Ruppia, there may 

be a trade-off between food and protection in utilizing these two environments (Werner & 

Hall, 1988). However, if the greater rate of predator-prey interactions I observed translates 

to higher predation rates in Ruppia, this may result in more rapid transfer of secondary 

production to higher trophic levels in these seagrass communities.

My results suggest that similar foundation species may have distinct effects in 

mediating predator-prey interactions. Increasing environmental stressors in rapidly changing 

marine environments are expected to cause changes in the abundance and distribution of 

seagrasses, favoring stress tolerant species over competitive dominants. In the Chesapeake 

Bay, it seems likely that the abundance of Ruppia maritima may increase and Zostera marina 

may decline, particularly if water temperatures increase during the summer, surpassing the 

temperature tolerance of Zostera. The timing and severity of such changes in seagrass 

abundance and distribution are difficult to predict. Thus, it is vital to determine how such 

changes may affect seagrass communities, to predict the impacts and provide insight for 

future management decisions. Species loss or alteration in the composition of foundation 

species will likely have important consequences for associated fauna, and caution should be 

exercised in assuming equivalency of foundation species in mediating predator-prey 

interactions.
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TABLE 1. Results from generalized linear models of differences between Ruppia maritima 
and Zostera marina treatments on the number of encounters, attacks and captures per trial, 
analyzed with Poisson regression, and attack probability (given an encounter) and success 
probability (given an attack) analyzed with logistic regression models. The quasi-Poisson 
distribution was used for encounters per trial to account for over-dispersion of the data. Bold 
indicates a significant effect at P<0.05.

: Response Residual d.f. Residual deviance Std. Error Z value P value

; Encounters per trial 13 46.708 0.4363 -2.115 0.0543
Attacks per trial 13 38.841 0.3005 -4.048 0.0001

: Captures per trial 13 15.276 0.7905 -2.267 0.0234
Aattack probability 13 13.744 0.4684 -1.593 0.1111
Capture probability 10 2.9027 0.4443 -0.265 0.7910
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Figure 1. Mean (±SE) number of encounters (a), attacks (b), and captures (c) per trial in 
Ruppia maritima (dark grey bars) and Zostera marina (light grey bars).
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Figure 2. Mean (±SE) attack probability, as attacks per encounter (a), and capture 
probability, as captures per attack (b) in Ruppia maritima (dark grey bars) and Zostera 
marina (light grey bars).
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Figure 3. Mean (±SE) number of encounters (a), attacks (b), and captures (c) per trial in 
Ruppia maritima (dark grey bars) and Zostera marina (light grey bars) on each prey species.
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A.

Prey species

Figure 4. Mean (±SE) attack probability, as attacks per encounter (a), and capture 
probability, as captures per attack (b) in Ruppia maritima (dark grey bars) and Zostera 
marina (light grey bars) for each prey species.

36



■  Ruppia m aritima  
EH Zostera marina

2  -

B.

I I
cL 4

c.
■ ■

m

Prey location

Figure 5. Mean (±SE) number of encounters (a), attacks (b), and captures (c) per trial in 
Ruppia maritima (dark grey bars) and Zostera marina (light grey bars) in each microhabitat 
location.
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Figure 6. Mean (±SE) number of encounters (a), attacks (b), and captures (c) per trial in 
Ruppia maritima (dark grey bars) and Zostera marina (light grey bars) in each microhabitat 
location for amphipods Cymadusa compta (upper panel) and Gammarus mucronatus (lower 
panel). The isopod Erichsonella Attenuata is not included here, as it was encountered only 
rarely and was never attacked or captured.
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CHAPTER 2. THE EFFECTS OF TROPHIC LEVEL AND FOUNDATION SPECIES IN 
EXPERIMENTAL SEAGRASS COMMUNITIES
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ABSTRACT

Increasing summer water temperatures in the Chesapeake Bay have the potential to 
change the relative abundance of seagrass species in this system, favoring the more heat and 
stress tolerant Ruppia maritima over Zostera marina. Because of the key role of seagrasses 
in providing habitat and trophic support, it is important to determine whether the more stress 
tolerant seagrass may be able to provide similar ecological functions for the more sensitive 
species it may replace. In particular, trophic interactions in seagrass ecosystems can be 
important, as grazing of epiphytic algae can release seagrass from competition for light, and 
predation on crustacean mesograzers by small fish predators is an important link for higher 
trophic levels. I addressed the effects of food chain length on the communities associated 
with two Chesapeake Bay seagrass species in an eight-week, factorial mesocosm experiment, 
which manipulated seagrass species and number of trophic levels at each of six seagrass 
densities. Trophic levels included no added consumers, and small crustacean mesograzers 
alone and with fish predators. I examined the communities that developed, as algae and 
invertebrates recruited to the mesocosm tanks through the flow-through water system. The 
number of trophic levels had a greater overall effect on community development than did 
seagrass species. Consumers tended to decrease diversity of recruiting algae and 
invertebrates, likely due to direct consumption by or competition with mesograzers. Grazing 
controlled algal abundance, but predators decreased this effect through an apparent trophic 
cascade. For the most part, the effects of grazing did not vary by seagrass species, though 
Ruppia leaves appeared to be more susceptible to direct grazing than Zostera. Predators 
decreased the abundance of grazers across seagrass species, but some mesograzer species 
were more vulnerable to predation than others. Thus, the individual prey characteristics 
seemed to determine predation levels, rather than the relative refuge value of the seagrasses. 
The composition of recruiting invertebrate species differed by seagrass species, with all but 
one of the most abundant recruiting species having greater abundance in Zostera. These 
idiosyncratic differences in community development between seagrass species could have 
consequences for higher trophic levels that rely on sessile fouling species or infauna in 
seagrass beds. Established differences in the morphology, distribution, and phenology of 
Ruppia and Zostera would also be likely to affect important functions in the Chesapeake Bay 
if species loss or changes in relative abundance occur.
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INTRODUCTION

Climate change and anthropogenic stressors have the potential to alter the abundance 

or distribution of key species by creating environmental conditions that favor more stress- 

tolerant or opportunistic species. Species near the limits of their physiological tolerances are 

expected to contract their ranges (Parmesan, 2006), while more stress-tolerant or 

opportunistic species may either increase in abundance or in their relative importance, as 

sensitive species decline (Chapin et al., 1998). While some marine species may adapt to 

warming by shifting to deeper water depths (Fields et al., 1993), species such as seagrasses, 

which are restricted in their vertical distribution by light requirements, may be more 

susceptible to range contraction near their limits (Harley et al., 2006; Micheli et al., 2008). 

Because of the key role of foundation species in many systems, it is increasingly important to 

determine whether more stress-tolerant foundation species may be able to provide similar 

ecological functions to those they may replace.

The composition and abundance of habitat-forming, ‘foundation’ species (sensu 

Dayton, 1972) such as seagrasses, can alter important processes. Foundation species can 

provide refuge from predation and ameliorate stressful environmental conditions, having 

important and cascading impacts on the communities they form (Bruno & Bertness, 2001; 

Ellison et al., 2005). Seagrasses create refuge and modify the environment by affecting 

water flow, nutrient cycling, and community structure (Heminga & Duarte, 2000). Seagrass 

beds also provide numerous valuable ecosystem services to humans. Seagrass contributions
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to nutrient cycling alone have considerable value economically (Costanza, 1997). Seagrasses 

also provide coastal protection (Koch et al., 2006), carbon storage (Duarte & Chiscano,

1999), and fisheries production (Gillanders, 2006), thus playing an important role in coastal 

ecosystems.

Trophic interactions in seagrass ecosystems can be important for seagrasses and the 

ecosystem services they provide. Seagrasses provide structural complexity and food 

resources for the highly abundant fauna that utilize these important habitats, and are thought 

to contribute considerably to the production of coastal fisheries through refuge and trophic 

support (Kikuchi, 1974; Heck & Orth, 1980; Orth & Heck, 1980; Heck et al., 2003; 

Gillanders, 2006). Epiphytic algae growing on the seagrass provide an accessible source of 

primary production, which is utilized by a host of small epifaunal grazers inhabiting seagrass 

beds, including crustacean mesograzers such as isopods and amphipods. Consumption of 

algal primary production in seagrass beds by small grazers also produces biomass available 

for transfer to higher trophic levels (Williams & Heck, 2001). Indeed, crustacean grazers are 

an important trophic link, with the majority of seagrass fishes feeding primarily on small 

crustaceans, including copepods, amphipods and decapods (Klumpp et al., 1989; Edgar and 

Shaw, 1995; Adams, 1979). Trophic interactions can also have important effects on seagrass 

beds themselves. The grazing of epiphytic algae and sessile fouling epifauna can prevent 

shading of seagrass due to overgrowth of these epibionts on seagrass leaves (Neckles et al., 

1993; Short et al., 1995; Williams & Ruckelshaus, 1993).

Seagrass beds are also some of the most threatened coastal habitats, with stressors, 

such as nutrient and sediment run-off, physical disturbance, and temperature stress, causing 

large-scale declines (Duarte, 2002; Orth et al., 2006; Waycott et al., 2009) and changes in
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species composition (Johnson et al., 2003, Micheli et al., 2008). More stress tolerant species 

are expected to increase relative to more sensitive species, if stressful conditions are 

intensified. Changing abundances of key taxa in altered systems can cause cascading effects 

on species composition and interactions, ultimately helping to determine the effects of 

environmental change on community structure (Walther et al. 2002; Schiel, 2004; Micheli et 

al., 2008). Species redundancy, or the ability to perform similar ecological roles, may 

determine the reliability of ecological functions as species composition changes (Walker 

1992; Walker 1995; Naeem 1998). However, even superficially similar foundation species 

can differ in important characteristics that affect associated communities. For example, the 

physical structure of invasive foundation species in wetland systems can influence faunal 

density (Brusati & Grosholz, 2006) and cause shifts in associated food webs (Levin et al.,

2006), as they replace native foundation species. To the extent that seagrasses differ 

functionally, species loss or alteration in the composition of foundation species would likely 

have important consequences for the ecosystem services provided by these communities. 

Thus, it is important to determine specifically how foundation species differ in their abilities 

to provide habitat and mediate important interactions.

The Chesapeake Bay is an estuary with historically abundant seagrass beds, which 

have declined greatly over a period of decades, reaching an all-time low in the early 1980s 

(Orth & Moore, 1983; Orth & Moore, 1984) and recovering to some extent in subsequent 

years (Moore et al., 2000) with abundance patterns correlated with water quality throughout 

the bay (Orth et al., 2010). In addition to the stress of poor water quality, increasingly high 

summer water temperatures in the Chesapeake Bay may have the potential to change the 

relative abundance of seagrass species in this system (Moore & Jarvis, 2008; Johnson et al.,

43



2003). Of the two species of seagrasses found in higher-salinity waters of the Chesapeake 

Bay, Zostera marina seems likely to decrease relative to Ruppia maritima, due to Zostera 

marina’s more narrow range of physiological tolerances. I will hereafter refer to these 

species by their genus names. The Chesapeake Bay is near the southern limit of Zostera in 

the northern hemisphere (Moore & Short, 2006). High water temperatures during the 

summer of 2005 (approximately 1-2 °C above normal) apparently contributed to a severe 

dieback of Zostera, suggesting that Zostera is close to its physiological limits in this area and 

may be significantly impacted by climate change (Moore & Jarvis, 2008). Ruppia, in 

contrast to Zostera, has broad physiological tolerances, which allow it to survive in stressful 

environments, contributing to its nearly cosmopolitan distribution (Setchell, 1924; Kantrud, 

1991). Zostera is more abundant than Ruppia in the Chesapeake Bay, reaching double 

Ruppia ’s biomass during peak growing season (Moore et al., 2000), and may be able to 

competitively exclude Ruppia through shading (Orth, 1977). Ruppia may be able to increase 

opportunistically if Zostera declines with higher water temperatures. Ruppia would also be 

expected to increase relative to Zostera with declining water quality (Dennison et al., 1993; 

Burkholder et al. 1992; Burkholder et al., 1994) or decreases in salinity (Moore et al., 2000; 

Kahn & Durako, 2005) due to Ruppia’s greater tolerance to shading, excess nutrients, and 

low salinities.

Ruppia and Zostera also differ morphologically. Because seagrasses are an important 

source of structure in marine environments, the morphological differences between Ruppia 

and Zostera may result in differing abilities to provide habitat and support higher trophic 

levels. In the Chesapeake Bay Zostera has flat, strap-like blades with rounded tips, about 80 

cm long on average and 3-12 mm wide, though morphology can vary greatly with
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environmental conditions (Moore & Short, 2006). Ruppia has much shorter and thinner 

leaves than Zostera. The leaves of Ruppia extend from rounded sheaths and are typically 

about 1 mm wide by 5-20 cm long, with pointed tips (Kantrud, 1991). Ruppia also has an 

approximately four times greater surface area to biomass ratio, compared to Zostera (Parker 

et al., 2001). Zostera also has a more extensive below ground structure, with thicker 

rhizomes that extend deeper into the sediment than those of Ruppia (Kantrud, 1991; Moore 

& Short, 2006). I expected that structural differences between these two species might result 

in the development of differences in community development, grazing, and predation effects 

in these vegetation types.

I addressed the effects of varying trophic structure on the communities associated 

with two Chesapeake Bay seagrass species in an eight-week, factorial mesocosm experiment, 

which manipulated seagrass species and number of trophic levels. Specifically, I sought to 

address whether the potentially interactive effects of seagrass density, grazing, and predation 

would differ between Ruppia and Zostera. I also asked whether the effects of number of 

trophic levels and seagrass species would affect the structure of the recruiting assemblage of 

algae and invertebrates, in terms of diversity, abundance, and species composition.
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METHODS

I addressed the effects of varying trophic structure on the communities associated 

with two Chesapeake Bay seagrass species in an eight-week, factorial mesocosm experiment, 

which manipulated seagrass species and number of trophic levels. The experiment was 

conducted using 0.28 m cylindrical mesocosms, arranged in larger tanks with up to eight 

mesocosms per tank. Treatments were randomly assigned to mesocosms within the larger 

tanks. Each tank received constant flow-through of sand-filtered water from the York River 

estuary that was further filtered through 500 pm mesh bags at each tank inflow. This 

filtering generally prevented unwanted mesograzers from colonizing the experimental 

treatments, but it allowed recruitment of other invertebrates and algae. Mesocosms were 

filled with a mixture of sand and mud, which was sieved with 2 mm mesh and allowed to 

become anoxic before being added to tanks, to eliminate live infaunal invertebrates. Seagrass 

was defaunated through a series of freshwater rinses before being added to vegetated 

treatments (Duffy & Harvilicz 2001; Duffy et al., 2001). Monospecific treatments of the two 

seagrasses planted at each of six densities were crossed with three trophic level treatments 

(no added fauna, crustacean mesograzers, and crustacean mesograzers + predators). All 

treatments were represented at each density, but there was no replication of treatments within 

a given seagrass density. I also tested each of the trophic level treatments in unvegetated 

mesocosms.
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Plants and animals used in experimental treatments were collected from seagrass beds 

in the York River estuary on the western shore of the Chesapeake Bay. I included a range of 

seagrass densities to determine whether the two seagrasses had different effects across this 

range. Each density treatment was planted with equivalent above ground biomass across the 

two seagrass species treatments. The two seagrass species were standardized to 

approximately the same above ground biomass per tank, based on known ratios of average 

above- to below-ground biomass for Ruppia and Zostera (Kantrud, 1991; J. E. Duffy, 

unpublished data). Seagrass treatments were planted at the wet equivalent of 17-100 g m'2 

dry above ground biomass (Table 1), which represents the upper range of Ruppia field 

density and is near the lower range o f Zostera density in the Chesapeake Bay (Moore et al.,

2000). The three most abundant crustacean mesograzers in the field at the time of the 

experiment, the amphipods Cymadusa compta and Gammarus mucronatus, and the isopod 

Erichsonella attenuata, were added in a ratio (1:1:2) representative of their relative field 

abundances at that time. Total mesograzer abundance was kept in proportion with seagrass 

biomass, at a density of approximately four individuals per wet equivalent of 1 g dry weight 

above ground mass seagrass, and ranged from 20-120 individuals per tank (Table 1). This 

pattern of increasing faunal density with increasing seagrass biomass is consistent with 

natural seagrass communities (Heck & Wetstone, 1977; Stoner, 1980; Orth et al., 1984), and 

is more likely to reflect realistic predator-prey dynamics (Matilla et al., 2008; and references 

therein). The unvegetated treatment received the same number of mesograzers as the lowest 

seagrass density treatment. The mesograzers were allowed to acclimate to the tanks for one 

week before predators were added. I used two abundant and common seagrass predators, the 

pipefish Syngnathus fuscus, which commonly feeds on crustacean mesograzers in the field
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(Adams, 1976; Ryer & Orth, 1987), and the grass shrimp Palaemonetes vulgaris, which is 

also abundant in Chesapeake Bay seagrass beds (Heck & Orth, 1980). Although grass 

shrimp are omnivorous, sometimes considered facultative grazers (McCall & Rakocinski,

2007) or detritivores (Welsh, 1975), they also feed on small crustaceans such as amphipods 

(Nelson, 1979). Predator treatments each contained one pipefish and two grass shrimp. 

Predator treatments were systematically examined approximately once per week, to 

determine whether each contained a living pipefish, and dead individuals were replaced. 

Although it was not possible to locate the shrimp in the tanks during the course of the 

experiment, all grass shrimp were recovered successfully at the end of the experiment.

At the end of the experiment, all vegetation and macrofauna were removed from each 

tank and preserved by freezing. Samples were separated by taxon, including all organisms 

retained on a 500 pm sieve. Microalgae were separated from larger taxa by sieving and 

rinsing with freshwater. However, the biomass I have defined as microalgae may also 

contain other microscopic organisms mixed with the algal biofilm. Separated taxa were dried 

at 60°C, and then combusted at 400°C to determine ash free dry mass (AFDM). Final 

seagrass biomass was separated into above ground, below ground and detrital vegetation. 

Seagrass pieces that were no longer attached to shoots and had been detached long enough to 

turn completely brown were considered detrital. Biomass of the crustacean mesograzers was 

estimated based on their abundance and the size distribution using established equations 

(Edgar, 1990). Algae and fauna that recruited to the experiment through the flow-through 

seawater system were identified to the lowest taxonomic level feasible.

The effects of seagrass species, seagrass and mesograzer density treatment, and 

trophic treatment on the final biomass (AFDM) of seagrass, stocked grazers, and recruited
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algae and invertebrates, were analyzed using linear models including all variables and 

interactions. Diversity indices, including taxon richness, evenness, and Shannon-Weiner 

(H’) diversity were analyzed in the same manner for recruiting taxa. Data were Box-Cox 

transformed to improve normality and homogeneity of variances when necessary. The most 

abundant recruiting algae and invertebrates, which cumulatively accounted for over 99% of 

the final biomass in the experiment, were analyzed individually. All recruiting taxa were 

included in multivariate analyses. Statistical analyses using linear models were conducted 

using R version 2.10.1 (Copyright 2009, The R Foundation for Statistical Computing, 

www.r-project.org). To compare the composition of recruiting taxa by treatment, Non­

metric multidimensional scaling (NMDS) was performed using Bray-Curtis resemblances on 

log-transformed data, using PRIMER v6 (Clarke & Gorley, 2006). The NMDS minimum 2D 

stress of 0.13 occurred 20 times in 50 iterations.
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RESULTS

Seagrass biomass

Both seagrass species lost above ground biomass across all density treatments, as 

evidenced by the lack of correlation between remaining seagrass above ground biomass and 

initial density treatments (Table 2, Fig. 1). Below ground biomass was significantly 

correlated with initial biomass for Zostera but not for Ruppia (Table 2, Fig. 1). Overall, a 

greater proportion of the initial above- and below-ground biomass of Zostera remained at the 

end of the experiment relative to Ruppia maritima (Table 2, Fig. 1). This difference was 

primarily due to senescence of Ruppia during the last week of the experiment (personal 

observation). There was a marginally significant interaction between the effect of seagrass 

species and trophic treatment on final above ground seagrass biomass (P=0.07), due to 

contrasting effects of the grazer only treatment across the two seagrass species: Ruppia above 

ground biomass was lower in the presence of grazers, whereas Zostera biomass did not differ 

among the trophic treatments. Detrital seagrass, which consisted primarily of pieces of 

brown, detached seagrass leaf and root, was more abundant overall in Zostera treatments, and 

increased proportionally with initial density treatments in this seagrass (Table 2, Fig. 1).

Grazer abundance and trophic transfer

The final abundance of total stocked crustacean mesograzers seemed to increase with 

greater initial density in predator treatments, but decrease slightly with density in grazer
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treatments, as indicated by a significant interaction between trophic treatment and initial 

seagrass and grazer density treatment. There was no significant difference in the final 

abundance of total stocked mesograzers between the two seagrass species (Table 3, Fig. 2). 

The individual grazer species varied in their responses to predation. In particular, the two 

amphipod species appeared to differ in their relative competitive ability and resistance to 

predation: Gammarus mucronatus declined in predator treatments relative to grazer only 

treatments, particularly at low seagrass density, whereas Cymadusa compta increased in 

predator treatments relative to grazer only treatments (Table 3, Fig. 2). These differences 

resulted in lower overall abundance of Cymadusa than Gammarus in grazer only treatments 

(Fig. 2). Cymadusa showed a marginally non-significant trend towards higher overall 

abundance in Zostera compared to Ruppia. The isopod Erichsonella attenuata remained at 

low densities relative to the other species, and did not differ between trophic treatments, 

indicating resistance to predation. Final Erichsonella abundance was significantly correlated 

with its initial abundance (Table 3, Fig. 2). The effects of predation on mesograzers did not 

differ by seagrass species.

Community development and grazing effects on recruited taxa

The specific faunal taxa that recruited to the experiment via the flow-through 

seawater system differed between the two seagrass species. Grazers generally decreased the 

diversity (Shannon-Weiner index, H ’) of recruiting algal and invertebrate taxa, particularly at 

higher initial densities of seagrass and grazers, as evidenced by the significant interaction 

between these two factors (Table 4, Figure 3). Taxon diversity increased with seagrass and 

grazer density in grazer-only treatments, whereas this trend was not apparent in grazer +
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predator or no animal treatments. Diversity of recruiting taxa did not differ between seagrass 

species. Species richness and evenness did not differ significantly among treatments (Table 

4, data not shown). The results of non-metric multidimensional scaling (NMDS) demonstrate 

that the assemblages of recruiting species separate most clearly by trophic treatment rather 

than seagrass species, with grazer-only treatments being most different from no grazer 

treatments, and grazer + predator treatments having intermediate assemblages (Fig. 8). There 

also appears to be lower variation within the no grazer control and grazer + predator 

assemblages than in the grazer-only treatment.

Mesograzers strongly reduced the alga Ulva sp. in grazer-only treatments, but this 

effect was reduced through a trophic cascade in predator treatments (Table 5, Fig. 4).

Grazers alone also reduced microalgae abundance, with predators causing a trophic cascade 

(Table 4, Fig. 4), however the effects of trophic treatment and density on microalgae differed 

by seagrass species, based on a three-way interaction between these factors (Table 5). In 

Ruppia treatments, microalgae abundance decreased with increasing seagrass and grazer 

density in both grazer only and grazer + predator treatments, but showed no relationship with 

density in no grazer controls (Fig. 4). In Zostera vegetation, however, microalgae abundance 

was uniformly reduced across densities in the grazer only treatments, but decreased with 

increasing seagrass/grazer density treatments in both no animal controls and grazer + 

predator treatments (Fig. 4).

Grazers significantly reduced the abundance of the sessile tunicate Molgula 

manhattensis in grazer only treatments across seagrass species (Table 5, Fig.5). The 

recruiting amphipod Corophium sp. was also lower when grazers were present, yet it 

increased in abundance with increasing seagrass and grazer density, perhaps due to
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interactions with Gammarus, which had a lower final abundance in treatments with higher 

initial abundance (Table 5, Fig. 6). The abundance of the gastropod Haminoea solitaria was 

lower in the presence of grazers, and decreased significantly with increasing seagrass and 

grazer density (Table 5, Fig. 6). Haminoea was more abundant overall in Ruppia (Table 4, 

Fig. 6). Several of the recruiting fauna were more abundant in Zostera than in Ruppia. 

Barnacles Balanus spp. (Fig.5) and Nereid worms (Fig. 6) were significantly more abundant 

in Zostera (Table 5). Maldanid worms were more abundant in Zostera than Ruppia, and 

more abundant with grazers than without (Table 5, Fig. 7). Spiochaetopterid worms were 

more abundant in Zostera, and increased with increasing density in Zostera, but decreased 

with increasing density in Ruppia (Table 5, Fig. 7).
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DISCUSSION

Consumers had a larger impact on the overall diversity and composition of recruiting 

algae and invertebrates than did seagrass species. For the most part, the effects of 

mesograzers on recruiting fouling organisms did not differ between seagrass species and 

there were no differences in the effects of predation between the two seagrasses. However, 

the composition of recruiting invertebrate species differed by seagrass species. Five of the 

most abundant recruiting species differed significantly by seagrass species, with all but one 

having higher abundances in Zostera than in Ruppia.

Consumers tended to decrease diversity of recruiting taxa in both seagrass species, 

though this effect depended on seagrass and mesograzer density. This is not a surprising 

result, as previous mesocosm experiments have shown that crustacean mesograzers can have 

large effects on the abundance and composition of algae and fouling organisms in benthic 

communities (Duffy & Hay, 2000; Duffy & Harvilicz, 2001; Hughes et al., 2004; Duffy & 

Valentine, 2006). Non-metric multidimensional scaling (NMDS) also indicates that grazers 

determine the community structure of recruited fouling organisms (Fig. 8). The fact that the 

recruiting assemblages in the grazer-only treatment were more variable than within the no 

grazer control and grazer + predator assemblages suggests that grazing effects are more 

variable without predator control. The variable abundance of Gammarus across grazer only 

treatment tanks may have contributed to variation in the composition of the recruiting
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assemblages in this treatment. The significant effect of grazers on algae (Table 5, Fig. 4) is 

consistent with previous demonstrations of the importance of crustacean mesograzers in 

controlling algal abundance in seagrass communities (Duffy & Hay, 2000; Duffy & 

Harvilicz, 2001). Top-down effects of grazing are considered to be important in seagrass 

systems, because grazing of epiphytic algae on leaves can release seagrass from competition 

for light (Hughes et al., 2004; Duffy & Valentine, 2006). However, the evidence for top- 

down or bottom-up control in the western Chesapeake Bay based on field data is 

inconsistent, and predator abundance does not appear to depress mesograzers in this system, 

as it may in other locations (Douglass et al., 2010 and references therein). The nature of my 

experiment may have exaggerated cascading effects of predation and grazing, as the use of 

mesocosms created a relatively closed system with respect to mesograzers, and did not allow 

mesograzers to subsequently colonize to the experiment, or disperse from it, as would likely 

occur in natural seagrass beds (Vimstein & Curran, 1986).

Mesograzers also affected several of the most abundant recruiting invertebrate 

species. Grazing appeared to be the primary process determining abundance of the sessile 

tunicate Molgula manhattensis (Table 5, Fig. 5). The gastropod Haminoea solitaria was 

decreased in the presence of grazers and with increasing grazer and seagrass abundance 

(Table 4, Fig. 6), perhaps because they are outcompeted by mesograzers, which use some of 

the same food resources (Chester, 1993). Another explanation may be consumption of these 

snails by mesograzers. Haminoea has a well-developed mantle, which envelops their 

relatively thin shells. Thus it seems reasonable that these snails may be vulnerable to 

consumption, at least as juveniles when they are smaller in size relative to mesograzers. The 

recruiting amphipod Corophium sp. was also decreased in the presence of grazers, though its
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abundance was positively correlated with seagrass and grazer density (Table 5, Fig. 6). 

Corophium sp. is not considered to be an epifaunal grazer, but is primarily a filter-feeding 

detritivore (Gaston & Nasci, 1988). As both mesograzers and Corophium sp. may have been 

utilizing detritus as a food resource, the lower abundance in grazer treatments may reflect a 

competitive relationship with stocked grazers, particularly Gammarus, which had lower final 

abundance in higher initial density treatments. The greater abundance of Corophium sp. in 

higher initial seagrass density treatments may also have been due to a greater availability of 

plant-based detrital food with increasing initial seagrass biomass.

The significant interaction between trophic treatment and initial density for final 

abundance of total mesograzers (Table 3, Fig. 2) may have been due to different effects of 

predation at different seagrass and grazer densities. Mesograzers seemed to increase with 

greater initial density in predator treatments, but decrease with initial density in grazer 

treatments, an effect attributable to the final abundance of Gammarus in particular. 

Apparently cannibalism or other density dependent population processes cause a reduction in 

overall biomass of this grazer. The differences in predation effects among mesograzers 

(Table 3, Fig. 2) are consistent with morphological and behavioral differences between these 

species. Erichsonella has a long, thin body form, and relatively sedentary behavior (personal 

observation), which make it highly cryptic, potentially explaining the lack of predation effect 

on this species. Interestingly, this may suggest a mechanism for particularly high 

abundances of Erichsonella in the field during late summer, when small predator abundance 

is at its highest (Douglass et al., 2010). There appears to be a trade-off between competitive 

ability and predator avoidance in the interaction between Gammarus and Cymadusa, as 

predators reduced the abundance of Gammarus, but increased the abundance of Cymadusa.

56



Previous work has suggested that these mesograzers compete for common resources (Duffy 

& Harvilicz, 2001; Duffy et al., 2005), and it appears that Gammarus may be competitively 

dominant, but more vulnerable to predation, relative to Cymadusa. Cymadusa is a tube- 

dwelling species of amphipod, and is highly protected in the small nests that it builds 

(Nelson, 1979). In contrast, Gammarus does not build tubes, and is relatively active 

compared to the other species (personal observation), potentially increasing its vulnerability 

to predation.

There were no differences in predator effects on grazers between the two seagrass 

species, despite morphological differences that could influence predation rates. Ruppia has 

much thinner, shorter leaves, which I would expect to provide less refuge to crustacean 

mesograzers. The same amphipod species used in this experiment were more vulnerable to 

predation in Ruppia relative to Zostera in a set of controlled laboratory experiments (Moore, 

unpublished data). This greater vulnerability appeared to be due primarily to a higher 

encounter rate in Ruppia, likely attributable to its thin leaf structure. Any effects of such 

structural differences between seagrasses may be overshadowed in this experiment by the 

effect of the artificial structure of the mesocosms themselves, or by the use of recruiting 

macroalgae as refuge.

The patterns of above ground seagrass biomass at the end of the experiment do not 

reflect the planted biomass, most likely because of senescence during the final week of the 

experiment (Table 2, Fig. 1). This senescence was particularly pronounced for Ruppia. 

However, I did not observe similar senescence in the field, suggesting that this result was an 

artifact of the experimental conditions. The marginally significant trend toward lower above 

ground Ruppia biomass in treatments with grazers (Table 2, Fig. 1) suggests that Ruppia leaf
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tissue is more easily grazed than that of Zostera, but further experimentation is needed to 

confirm this pattern. Ruppia maritima can be subject to direct grazing by invertebrates 

(Verhoeven, 1978, In: Kantrud, 1991), as can its structurally similar congener Ruppia 

cirrhosa, which is grazed by gammarid amphipods (Menendez, 1989, In: Kantrud, 1991). 

Grazers effectively controlled microalgae abundance in Zostera in the absence of predators, 

regardless of seagrass and grazer density (Table 4, Fig. 4). In contrast, microalgae 

abundance decreased with increasing seagrass and grazer density when grazers were present 

in Ruppia. This may have been due to greater grazing of seagrass tissue and detritus in 

Ruppia (and therefore, presumably less grazing of microalgae), or may be related to 

behavioral differences in the way the mesograzers utilized the available habitat.

While seagrass species did not strongly affect community composition by 

multivariate measures (Table 4, Fig. 3, Fig. 8), seagrass species did affect several of the most 

abundant recruiting species, with all but the motile gastropod Haminoea having greater 

abundance in Zostera compared to Ruppia. The significantly greater abundance of barnacles 

Balanus spp. in Zostera (Table 5, Fig. 5) may have been due to the wide, flat leaves of 

Zostera, which are better equipped to support barnacles, whereas Ruppia has thinner leaves 

that may not support barnacles as they grow. This may have consequences for consumers of 

barnacles, in particular, the diamondback terrapin, Malaclemys terrapin, which appears to 

consume large amounts of barnacles in seagrass beds (D. Tulipani & R. Lipcius, unpublished 

data). This apparent difference in barnacle success between seagrass species suggests that 

the differing structure of the two seagrasses may affect community structure in trophically 

important ways.
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Infaunal maldanid and spiochaetopterid worms were also more abundant in Zostera 

than Ruppia (Table 5, Fig. 7). There was a significant interaction between seagrass species 

and seagrass and grazer density for spiochaetopterid worm abundance, with abundance 

increasing with density in Zostera but not in Ruppia. As both maldanid and spiochaetopterid 

worms were largely among the seagrass rhizomes (personal observation), the larger rhizomes 

and more complex root structure of Zostera may provide better habitat for the these worms. 

The positive correlation between initial density treatments of Zostera and spiochaetopterid 

worms would support the importance of the below ground structure in Zostera, as the final 

below ground biomass of this seagrass was significantly correlated with the initial density 

treatments (Table 2, Fig. 1). The significantly greater nereid worm abundance in Zostera 

treatments (Table 5, Fig. 6) may be another indication of differences in habitat provision 

between the two seagrasses.

In natural systems, the related effects of seagrass density, patch size, flow dynamics 

and sediment characteristics tend to influence infaunal diversity and abundance (Webster et 

al., 1998; Bowden et al., 2001). Thus, differences in faunal communities between Ruppia 

and Zostera may be more influenced by bed and canopy structure, rather than below ground 

structures. Seagrass beds experience higher larval settlement in general than unvegetated 

areas due to their ability to dampen flow velocity in marine environments (Koch et al., 2006), 

and seagrass species differ in their abilities to alter water flow, depending on their canopy 

structure (Fonseca & Fisher, 1986). Because Zostera has a taller canopy than Ruppia during 

most of the year (Orth & Moore, 1988; Moore et al., 2000), it seems probable that Zostera 

would have a greater baffling effect on water flow, perhaps leading to greater larval 

deposition, relative to Ruppia. Since altered water flow and deposition are unlikely to have
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played a role in the present experiment, it seems more likely that the increased rhizome 

structure present in Zostera provided a better habitat for the infauna recruiting to this 

experiment. A field experiment comparing infaunal colonization in artificial Ruppia and 

Zostera vegetation in the Baltic Sea indicates that colonization depends on complex 

interactions between seagrass species, density, and physical disturbance, such that loss of 

either seagrass would decrease faunal diversity in this system (Bostrom and Bonsdorff,

2000).

The specific characteristics of foundation species in various systems can influence 

their roles in ameliorating environmental conditions and influencing community composition 

(Bruno & Bertness, 2001, and references therein). Studies investigating the roles of invasive 

foundation species have demonstrated that differences in the physical structure of foundation 

species can influence faunal density (Brusati & Grosholz, 2006) and shifts in associated food 

webs (Levin et al., 2006). The loss of foundation species also impacts communities by 

altering nutrient cycling, trophic processes, and biodiversity (Ellison et al., 2005). Thus it 

seems likely that even if Ruppia and Zostera do have similar roles in supporting higher 

trophic levels, species loss or changes in relative abundance would affect seagrass 

ecosystems at a broader level. If Zostera were to decrease relative to Ruppia in the 

Chesapeake Bay, established differences in the morphology, distribution, and phenology of 

these species may affect their use by associated fauna, and alter ecosystem processes such as 

sediment stabilization and water flow. To the extent that overall seagrass biomass may be 

decreased by a reduction or loss of Zostera, it is unclear whether Ruppia would be able to 

compensate significantly to the overall functioning of these systems.
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TABLE 1. Experimental densities of seagrass and crustacean mesograzers. The initial 
densities of seagrass (added as wet weight equivalent to g dry mass), added to vegetated 
treatments and mesograzer density (as number of individuals) added to animal treatments. 
The initial grazer density added was equivalent to approximately 4 individuals per gram dry 
mass of seagrass.

D en sity  treatm ent G razers added  

i (no. m div ./tank)

! ; Seagrass added  

1 (g  dry m a ss /0 .2 8 m 2  tank) s

E quiva len t b io m a ss per  

square m eter

(g  dry m ass/m 2)

0 2 0 0 0

1 2 0 1..j................. ...... 5 j 17

2 4 0 ]"]........... .... ..........9............ | 33

3 6 0 14 50

4  ! 80 19 1 i 67

5 j 1 100 23 | 83

6 I 1 120 28  ! 100
1 ? > 13 j i
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TABLE 2. Results from linear models of seagrass species and predator treatment effects on 
final abundance (g AFDW) of seagrass and detrital matter. Abundances were Box-Cox 
transformed to improve normality and homogeneity of variances. Bold indicates significant 
effect at p<0.05. Values in parentheses are df.

Factors A bove ground seagrass : Below  ground seagrass i D etrital seagrass O ther Detritus

M S F ! P ! M S F p ! M S F P M S F P

S eagrass Species ( J ) 91.311 i 230.951 i <0.0001 181.130 541.549 <0.0001 43 .738 27.043 <0.0001 : 966.620 2.902 0.101 :

G rass D ensity  (1) 0 .137 i 0 .347 ! 0.561 12.068 36.082 <0.0001 15.353 9.493 0.005 36.960 i 0.111 ; 0.742 :

T rophic T reatm ent (2) ; i 0 .103 ! 0.261 ! 0.772 0 133 0.396 0.677 0.929 0.575 0.571 76.240 ; 0 .229 i 0 .797 i

Seagrass Species x G rass density  ( I ) 1.335 1 3 .377 1 0.079 9.228 27.592 <0.0001 ; 2 161 1.336 0.259 108.790 i 0 .327 ! 0.573

Trophic T reatm ent x G rass D ensity  (2) 0 .606 i 1.533 i  0.236 i i  0.165 0.493 0.617 i 0 .710 0.439 0.650 104.600 : 0 .314 : 0.733

Seagrass Species x Trophic T reatm ent ( 1.186 : 3 .000 ; 0 .069 ! 0  244 0.731 0.492 ; 1.394 0.862 0  435 i 248.510 i 0 .746 ; 0.485

Seagrass Species x G rass density  

x T rophic Treatm ent (2)

0 .039 ! 0.098 0.907 i 1 0.028 0.084 0 920 0.504 0.312 0.735 ; 705.240 : 2.117 0.142

Residual Error 0.395 1 1 0 .334 1.617 i  333.090
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TABLE 3. Results from linear models of seagrass species and predator treatment effects on 
final abundance (g AFDW) of amphipod and isopod crustaceans. Analysis excludes 
treatments without vegetation and to which grazers were not added. Biomass in g AFDW 
was calculated from size class abundance of individuals, using established allometric 
equations (Edgar, 1990). The crustacean mesograzers Cymadusa compta, Gammarus 
mucronatus and Erichsonella attenuata were added to animal treatments in proportion to 
initial seagrass density. Abundances were Box-Cox transformed to improve normality and 
homogeneity of variances with the exception of Erichsonella attenuata, which did not 
require transformation. Bold indicates significant effect at p<0.05. Values in parentheses are 
df.

Factors Cymadusa compta ! Gammarus mucronatus hrichsonulla attenuata All grazers

- j — ~ -------------------— --------------- ------ - MS F ........p ...... '"j MS ..F P MS ! F P MS Y ~ ~ " P

Seagrass Species f l ) 2 763 3.934 " 0.065 i 0.023 0.070 I 0.795 0.010 j 2.283 0.150 : 0.621 1433 0.249” ’

Grass Density (1) 0 149 0.211 0.652 ! 0.040 0.120 j  0.733 0.042 j 9.900 0.006 0.001 0.002 0.965

Trophic Treatment (2) 2 779 7 954 0.064 2.775 8.460 0.010 0.001 0 312 0.584 0.194 0.448 0 3 13

Seagrass Species x Grass density (1) I 0.104 i 0.148 0.706 : 0.211 0.644 1 0.434 0.014 3 398 0.084 i 0.002 0.005 0.946 !

Trophic Treatment x Grass Density (2) 0 259 0.369 0.552 i 2.699 8.230 0.011 , 0.004 i 1.067 0.317 : 2672 6.072 0.025  ;

Seagrass Species x Trophic Treatment (2) ; 0.264 1 0.375 0.549 | 0.041 0.126 0.727 j i 0.002 j 0.442 0.515 : 0.010 0.023 0.883 i

Seagrass Species x Grass density
1.657 1 2.358 0.144 ! 0.213 0.649 I 0.432 ! ! 0.000 ! 0.054 0.819 1 1.074 2.476 0.135

x Trophic Treatment (2)

Residual Error | 0.703 ! | 0.328 0 004 0.434
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TABLE 4. Results from linear models of seagrass species and predator treatment effects on 
diversity of recruiting taxa in treatments with vegetation. Shannon-Weiner Diversity and 
Species Evenness were Box-Cox transformed to improve normality. Bold indicates 
significant effect at p<0.05. Values in parentheses are df.

i Factors Species Richness : Shannon-Weiner Diversity < Species Evenness
(

S MS F P 1 MS i F P : MS F P

; Seagrass Species (2) 7 111 1.102 0.304 ] 0.035 j 0.494 0.489 i ; 0.000 0.000 0.996
| Grass Density (1) 24.070 3.731 0.065 | 0.025 I 0.354 0.557 i ; 0.009 3.260 0.084

■ Trophic Treatment (2) 0 750 0.116 0.891 1 0.317 j 4.489 0.022 i : 0.007 2.562 0 098

, Seagrass Species x Grass density ( 1) i 0.000 0.042 0.839 1 0.069 : 0.972 0.334 0.000 0.042 0.839
] Trophic Treatment x Grass Density (1) i 1.712 0.265 0.769 t 0.305 i 4.315 0.025 0.006 2.295 0 122

, Seagrass Species x Trophic Treatment (2) 12 694 1.968 0.162 | 0.008 : 0.106 0.900 i 0.003 1.106 0.347

; Seagrass Species x Grass density 2619 0.406 0.671 | 0.058 ) 0.823 0.451 1 0.001 0.428 0 657 !

| x Trophic Treatment (2)
; 1 j

*
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TABLE 5. Results from linear models of seagrass species and predator treatment effects on 
abundance (g AFDW) of recruiting taxa in treatments with vegetation. Abundances were 
Box-Cox transformed to improve normality and homogeneity of variances. Bold indicates 
significant effect at p<0.05. Values in parentheses are df.
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Figure 1. Final abundance of planted seagrass species Ruppia maritima (left panel) and 
Zostera marina (right panel) in remaining above ground (a), below ground (b), and detrital 
(c) biomass (g AFDM). Grass abundance plotted by trophic treatments of: no animals (open 
triangle), grazers (black circles), and both grazers and predators added (grey squares), 
respectively. Scatter plots show total biomass per tank vs. initial seagrass density, while 
adjacent bar plots give mean (± SE) across grass densities by trophic treatment.
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Figure 2. Final abundance (g AFDM) of stocked crustacean mesograzer species Cymadusa 
compta (a), Gammarus mucronatus (b), and Erichsonella attenuata (c) and all species (d) in 
seagrass treatments Ruppia maritima (upper panel) and Zostera marina (lower panel), 
separated by trophic treatments with: no animals (open triangle), grazers (black circles), and 
both grazers and predators added (grey squares), respectively. Scatter plots show total 
biomass per tank vs. initial seagrass density, while adjacent bar plots give mean (± SE) 
across grass densities by trophic treatment.
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Figure 3. Shannon-Weiner Diversity (FT) of recruiting organisms in Ruppia maritima (upper 
panel) and Zostera marina (lower panel) by initial grass density and separated by trophic 
treatments with: no animals (open triangle), grazers (black circles), and both grazers and 
predators (grey squares) added, respectively. Diversity calculations are based on biomass 
abundance (g AFDM). Bar plots show means (± SE) across grass densities by trophic 
treatment.
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Figure 4. Final abundance (g AFDM) of Algae recruiting to mesocosms. Shown in seagrass 
treatments Ruppia maritima (upper panel) and Zostera marina (lower panel), separated by 
trophic treatments with: no animals (open triangle), grazers (black circles), and both grazers 
and predators added (grey squares), respectively. Scatter plots show total biomass per tank 
vs. initial seagrass density, while adjacent bar plots give mean (± SE) across grass densities 
by trophic treatment.
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Figure 5. Final abundance (g AFDM) of sessile invertebrates recruiting to mesocosms.
Shown in seagrass treatments Ruppia maritima (upper panel) and Zostera marina (lower 
panel), separated by trophic treatments with: no animals (open triangle), grazers (black 
circles), and both grazers and predators added (grey squares), respectively. Scatter plots 
show total biomass per tank vs. initial seagrass density, while adjacent bar plots give mean (± 
SE) across grass densities by trophic treatment.
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Figure 6. Final abundance (g AFDM) of motile invertebrates recruiting to mesocosms.
Shown in seagrass treatments Ruppia maritima (upper panel) and Zostera marina (lower 
panel), separated by trophic treatments with: no animals (open triangle), grazers (black 
circles), and both grazers and predators added (grey squares), respectively. Scatter plots 
show total biomass per tank vs. initial seagrass density, while adjacent bar plots give mean (± 
SE) across grass densities by trophic treatment.
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Figure 7. Final abundance (g AFDM) of infaunal invertebrates recruiting to mesocosms. 
Shown in seagrass treatments Ruppia maritima (upper panel) and Zostera marina (lower 
panel), separated by trophic treatments with: no animals (open triangle), grazers (black 
circles), and both grazers and predators added (grey squares), respectively. Scatter plots 
show total biomass per tank vs. initial seagrass density, while adjacent bar plots give mean (± 
SE) across grass densities by trophic treatment.

79



Ruppia Zostera
maritima marina

No Animals <> o
Grazers ♦  •
Grazers + Pred. O ©

£00 # 
%

Figure 8. Results from Non-metric multidimensional scaling (NMDS) showing the 
composition of recruiting algae and invertebrates in experimental seagrass communities as a 
function of seagrass species and trophic treatment. NMDS was performed using Bray-Curtis 
resemblances on log-transformed data. The minimum 2D stress of 0.13 occurred 20 times in 
50 iterations.
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