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ABSTRACT

Bonamia species (Haplosporidia), protistan parasites of oysters, are notorious for 
causing devastating mortality in commercially important oyster species such as Ostrea 
edulis and Ostrea chilensis. Described species were originally thought to have fairly 
circumscribed host and geographic ranges: Bonamia exitiosa infecting O. chilensis in 
New Zealand, Bonamia roughleyi infecting Saccostrea glomerata in Australia, and 
Bonamia ostreae infecting O. edulis in Europe and North America. The discovery of a B. 
exitiosa-like parasite in experimental Crassostrea ariakensis in North Carolina, and the 
observation of this parasite and a novel species, Bonamia perspora, in non-commercial 
Ostrea equestris there, altered this perception and prompted a wider evaluation of the 
global diversity of Bonamia parasites in heretofore uncharacterized oyster hosts. Samples 
of 14 oyster species from 21 locations were screened for Bonamia spp. by polymerase 
chain reaction (PCR), and small subunit (SSU) and internal transcribed spacer (ITS) 
regions of Bonamia sp. ribosomal DNA were sequenced from PCR-positive individuals. 
Infections were confirmed histologically. Phylogenetic analyses using parsimony and 
Bayesian methods revealed one species, B. exitiosa, to be a host generalist with a 
cosmopolitan distribution: it was found in nine oyster species from Australia, New 
Zealand, Argentina, the southeastern and western coasts of the USA, and Tunisia. The 
more limited host and geographic distributions of B. ostreae and B. perspora were 
confirmed, but nothing genetically identifiable as B. roughleyi was found in Australia or 
elsewhere. Newly discovered diversity included a Bonamia sp. in Ostrea sandvicensis 
from Hawaii that is basal to the other Bonamia species, but which has not been observed 
to display spores despite its basal position; and a Bonamia sp. in O. edulis from Tomales 
Bay, California, that is closely related to B. exitiosa and the previously observed Bonamia 
sp. from O. chilensis in Chile.

In order to better understand how B. exitiosa reached its current distribution, TCS 
gene genealogies were constructed using ITS region rDNA sequencing data. The analyses 
revealed population structure in the form of four well-defined clusters of sequences, three 
corresponding to geographic regions (temperate Atlantic and Pacific waters of the 
Southern Hemisphere, California, and the western Atlantic along the coast of the 
Americas), and the fourth cosmopolitan in distribution. Dispersal of the southern 
hemispheric cluster among New Zealand, Australia, and South America B. exitiosa 
sequences may plausibly reflect natural dispersal via rafting with oyster hosts. The 
California cluster, conversely, may reflect a limited anthropogenic introduction. Wide 
distribution of B. exitiosa parasites in the cosmopolitan and Atlantic coast groups may 
relate partly to both natural and anthropogenic dispersal with one host, O. stentina, which 
is conspecific with O. auporia and O. equestris and is distributed from the eastern 
Americas to the Mediterranean and African coast to New Zealand— that is, in most 
regions where B. exitiosa has been found to occur. These analyses highlight the utility 
and importance of ITS region rDNA sequencing for studies of Bonamia parasites, though 
development of additional loci for the study of Bonamia phylogenetics and 
phylogeography remains essential.
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INTRODUCTION

Taxonomy and Life History

Bonamia species (phylum Haplosporidia) are protozoan parasites of oysters 

whose characteristic cell form is a uninucleate, 2- to 3-pm “microcell” (Pichot et al.

1980) associated with the disease bonamiasis. There are four described species, which 

were described from four different oyster hosts: Bonamia ostreae Pichot et al., 1980 in 

Ostrea edulis L., Bonamia roughleyi (Farley et al. 1988) in Saccostrea glomerata (Gould, 

1850), Bonamia exitiosa Hine et al., 2001 in Ostrea chilensis Philippi, 1845, and 

Bonamia perspora Carnegie et al., 2006 in Ostrea equestris Say, 1834.

Taxonomically, Bonamia species are within the phylum Haplosporidia, which is a 

small group of endoparasitic protists of mainly marine invertebrates. There are about 38 

recognized species in the phylum, which contains three other genera, Urosporidium, 

Haplosporidium, and Minchinia (Sprague 1979). Additional species have been reported 

in a number of invertebrate hosts, though they have not yet been identified specifically 

(Burreson and Ford 2004). Morphologically, haplosporidians parasitizing molluscs are 

characterized by having 1) multinucleate plasmodia and 2) ovoid, walled spores lacking 

polar filaments or polar tubes with an orifice at one pole, which is covered either by a 

hinged operculum externally or an internal flap made of wall material (Burreson and Ford 

2004). Bonamia species were suspected by Perkins (1987) to be haplosporidians based 

ultrastructurally on the presence of haplosporosomes (membrane-bound organelles with 

an unknown function), but at that time spores had yet to be observed in any described 

Bonamia species (Perkins 2000). The placement of the genus Bonamia in the 

Haplosporidia was later confirmed molecularly using SSU rDNA (Carnegie et al. 2000;
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Cochennec-Laureau et al. 2003; Reece et al. 2004) and actin gene (Lopez-Flores et al. 

2007) sequences in phylogenetic analyses. Then, in 2006, further morphological support 

for the placement of Bonamia in the phylum Haplosporidia came with the description of 

B. perspora, which exhibits sporogony (Carnegie et al. 2006). Carnegie et al. (2006) 

suggested that other Bonamia species might also be able to produce spores, but perhaps 

only under certain conditions or only within their primary hosts.

Still, Bonamia parasites are atypical haplosporidians, as they tend to display only 

small (< 5 pm), uninucleate cells as opposed to multinucleate plasmodia, and unlike 

typical haplosporidians, which are usually extracellular in their hosts, parasitize host 

hemocytes. Additionally, typical haplosporidians are presumed to have indirect life 

cycles with intermediate hosts, while both B. exitiosa and B. ostreae are presumed to be 

directly transmitted among oyster hosts (Hine et al. 1996, Elston et al. 1987); though it is 

not certain that direct transmission fully characterizes their life histories.

The type species of the genus is B. ostreae. The first presumed observation o f this 

parasite was in 1969 by Katkansky et al. with their report of a “microceH” disease in O. 

edulis in California, USA (Elston et al. 1986). It was not until 1979, when the parasite 

caused massive mortalities in native French O. edulis, that the parasite was named 

(Pichot et al. 1980). Bonamia ostreae has since been attributed to catastrophic mortality 

in other European O. edulis populations from the British Isles to Spain (Van Banning 

1982, Bucke et al. 1984, Polanco et al. 1984, Rogan et al. 1991, Grizel et al. 1988) and 

has also been detected in Italy (Narcisi et al. 2010). In North America, in addition to 

California, B. ostreae has been reported in O. edulis from Washington State, British 

Columbia, and Maine (Elston et al. 1986, Marty et al. 2006, Friedman and Perkins 1994).
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Bonamia ostreae has also been detected in other oyster species including Ostrea 

puelchana (Kroeck and Montes 2005) and O. chilensis (Bucke and Hepper 1987) in 

France, Ostrea lutaria (= O. chilensis) in the United Kingdom (Bucke and Hepper 1987), 

and Crassostrea gigas in Ireland and Spain (Lynch et al. 2010), indicative of a potentially 

wide host range.

Bonamia perspora is the most recently described Bonamia species. It was 

discovered in Bogue Sound, North Carolina, USA in O. equestris— a little-studied, non

commercial oyster species that inhabits euhaline to polyhaline waters from North 

Carolina south to Argentina (Carnegie et al. 2006). Burreson et al. (2004) were 

examining a bonamiasis epizootic in Crassostrea ariakensis in Bogue Sound, North 

Carolina, and while doing so, evaluated O. equestris as a possible source and/or reservoir 

for the Bonamia sp. observed in C. ariakensis (Carnegie et al. 2006). They found O. 

equestris to be co-infected by the C. ariakensis-pathogenic Bonamia sp. and a second, 

novel Bonamia species. This novel species, named B. perspora, displays more typical 

haplosporidian characters than that of the other Bonamia species, including the presence 

of an ornamental spore with an orifice covered by a hinged operculum as mentioned 

above (Carnegie et al. 2006). Bonamia perspora is rarely observed within hemocytes 

and instead seems to reside extracellularly in connective tissues. It also exhibits a wide 

diversity of cell forms that are not seen in other Bonamia species including sporonts, 

sporocysts, and spores. Carnegie et al. (2006) also postulated that after systemically 

invading the connective tissues as uninucleate or small plasmodial forms, B. perspora 

appears to sporulate synchronously like another oyster parasite, Haplosporidium costale. 

Despite these more typical haplosporidian traits, phylogenetic parsimony analysis of SSU
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rDNA data supported the monophyly of the Bonamia genus with 100% jackknife support 

for the inclusion of B. perspora in the clade. Results also suggested that B. perspora may 

be sister to the type species of the genus, B. ostreae (Carnegie et al. 2006).

Bonamia roughleyi (Farley et al. 1988) is the presumed causative agent of winter 

mortality of Sydney rock oysters, Saccostrea glomerata, in southeastern Australia, which 

has occurred since at least 1924 (Roughley 1926). Winter mortality is greatest in higher 

salinity waters (30-35 ppt) with mortality occurring primarily in oysters greater than three 

years old (Farley et al. 1988). Bonamia roughleyi was initially placed in the genus 

Mikrocytos, an unrelated genus of microcell parasites, based on gross pathology and host 

specificity (Farley et al. 1988). Mikrocytos parasites were said to be associated with focal 

lesions in the gill, connective, and gonadal tissues and to occur in crassostreid oysters, as 

opposed to Bonamia species, which were thought to be associated with “systemic, non

abscess type disease manifestations” in ostreid oyster hosts (Farley et al. 1988). These 

characteristics, however, were insufficient to distinguish the two genera. With the advent 

o f molecular techniques, Cochennec-Laureau et al. (2003) set out to clarify the taxonomic 

relationship between M  roughleyi and other microcell parasites. They sequenced part of 

the SSU rRNA gene of M  roughleyi and found 95.2% sequence similarity to B. ostreae 

and 98.4% similarity to B. exitiosa (Cochennec-Laureau et al. 2003). Furthermore, 

parsimony analysis showed 100% bootstrap support for the inclusion of M  roughleyi in 

the Bonamia clade (Cochennec-Laureau et al. 2003). Based on this molecular evidence, 

Cochennec-Laureau et al. (2003) suggested the species be reclassified as a Bonamia 

species. Recently, Hill et al. (2010) argued that there was no molecular, morphological,
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or ultrastructural basis for delineating species boundaries between B. roughleyi and B. 

exitiosa.

Bonamia exitiosa was described by Hine et al. in 2001 and has caused large-scale 

mortalities in O. chilensis occurring in Foveaux Strait, New Zealand since 1964 (Hine et 

al. 2001). Again, ultrastructurally and morphologically, B. exitiosa is indistinguishable 

from other described species, but molecular analysis o f SSU rDNA suggests that B. 

exitiosa is distinct (Hine et al. 2001).

Few studies have examined the transmissibility of Bonamia parasites, but it 

appears that they pass from an infected oyster into the water column, and then nearby 

oysters ingest the parasite while feeding (Elston et al. 1986; Lynch et al. 2006). Both B. 

ostreae and B. exitiosa can be detected throughout the year, but prevalence and intensity 

of infection peak post-spawn in September/October for B. ostreae (Lynch et al. 2006). 

Studies done in the late 1990s by Culloty and colleagues demonstrated direct 

transmission in a cohabitation study in which nai've oysters became infected upon 

exposure to B. ostreae-mfQQ,tQ& oysters (Lynch et al. 2006). By 4-6 weeks post-exposure, 

infections could be observed (Lynch et al. 2006). For B. exitiosa, parasites are presumed 

to be released from dead and dying oysters’ tissues (gonad, kidney, gills, gut) (Hine 

1991a, 1991b). Half of these particles are thought to survive for about 48 hours in 18°C 

seawater and during this time are ingested by nearby oysters (Diggles and Hine 2002). 

Once the parasite enters an oyster host, it is phagocytosed by hemocytes. Here, the 

parasite avoids destruction via an unknown mechanism and proliferates via cell division. 

The hemocytes eventually lyse releasing the microcells into the cytoplasm where the 

microcells are then phagocytosed by new hemocytes and the cycle begins again. As
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infection intensities increase, host cell membranes degrade. The host can no longer 

remain turgid or extend its gills for feeding and dies (Hine 1996).

Direct transmissibility could facilitate and expedite the spread of these parasites to 

other ecosystems. Parasites with assumed indirect life cycles, like typical 

haplosporidians, would require the presence of a series of hosts at each location in order 

to establish successful populations of the parasite. Therefore, these parasites with indirect 

life cycles might not be as easily distributed as those with direct life cycles, especially if 

the directly transmissible parasites are host generalists. Species like B. ostreae and B. 

exitiosa, then, may be a cause for greater concern in this respect given their presumed 

direct transmission and history of devastating oyster populations. Incorporate 

anthropogenic and other natural processes that aid in the movement of oyster hosts, and 

the probability o f parasite dispersal likely increases.

Bonamia exitiosa and B. exitiosa-like parasites, in particular, have been observed 

in a wide range of hosts and locations. They have been detected in Ostrea angasi from 

New South Wales, Australia (Corbeil et al. 2006); O. puelchana from Argentina (Kroeck 

and Montes 2005; Kroeck et al. 2008); O. chilensis from Chile (White 2008); O. edulis 

from Spain (Abollo et al. 2008), Italy (Narcisi et al. 2010), and the Mediterranean coast 

of France (Arzul et al. 2010); O. equestris from North Carolina (Burreson et al. 2004); 

and Ostrea stentina from Tunisia (Hill et al. 2010). Additionally, B. exitiosa and B. 

exitiosa-likc parasites have been detected in experimental C. gigas in Spain (Lynch et al. 

2010) and experimental C. ariakensis (=Crassostrea rivularis) from North Carolina 

(Burreson et al. 2004) and France (Cochennec et al. 1998). Many of these oyster species,
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with the exception of O. stentina and O. equestris, are important for fisheries, 

aquaculture, and/or restoration activities.

Emerging Perspectives: Bonamia Species Distribution and Diversity

Crassostrea ariakensis was recently being considered for use in restoration and 

aquaculture in the mid-Atlantic region of the United States and in particular the 

Chesapeake Bay (STAC 2004). Because of the apparent susceptibility of C. ariakensis to 

bonamiasis (Cochennec et al. 1998), the introduction prompted concern, especially since 

B. ostreae is already present in Maine in O. edulis populations (Burreson et al. 2004). In 

2003, small (<25 mm), pathogen-free, triploid C. ariakensis deployed to upweller 

systems in Bogue Sound, North Carolina displayed high mortality after only a month 

(Burreson et al. 2004). Histopathological analysis revealed the presence of 2-3 pm 

intrahemocytic microcells resembling those of Bonamia species, and both partial 

sequence of SSU rDNA and in situ hybridization (ISH) analysis confirmed this 

identification (Burreson et al. 2004). Phylogenetic analysis of partial SSU rDNA revealed 

that this Bonamia sp. was less closely related to B. ostreae, however, and more closely 

related to B. exitiosa (Burreson et al. 2004).

Until this observation, it was thought that the three described Bonamia species 

were more or less confined to their respective hosts and geographic locations—B. ostreae 

in O. edulis in the temperate Northern Hemisphere, and closely related B. exitiosa and B. 

roughleyi in the temperate Southern Hemisphere. Therefore, finding a B. exitiosa-Yike 

parasite in the Northern Hemisphere challenged earlier perceptions of the parasites’ 

limited geographical ranges. At the same time, our perception of Bonamia diversity 

changed with the description of B. perspora, a more typical haplosporidian. As



mentioned above, bonamiasis has been implicated in epizootics in commercially 

important oyster species such as O. edulis, S. glomerata, and O. chilensis, and in each 

case, the disease has caused both ecological and economic harm. Epizootics such as these 

also restrict aquaculture production, which in turn negatively affects the economy of 

affected countries (Berthe et al. 1999); therefore it is imperative to better understand the 

dispersal and distribution of these parasites.

Historically, oyster species have been intentionally introduced to novel locations 

worldwide, usually in an effort to restore a fishery diminished by overfishing and/or 

disease (for summary see Ruesink et al. 2005). One of the ecological implications of 

these translocations has been the introduction of pathogens, such as B. ostreae and the 

notorious eastern oyster (Crassostrea virginica) parasite, Haplosporidium nelsoni. Elston 

et al. (1986) proposed that B. ostreae was introduced to Europe via infected O. edulis 

seed from the West Coast of the United States in the late 1970s. Seed O. edulis from 

supposed B. ostreae-Qnzootic areas was imported into both France and Spain, where the 

parasite spread and caused catastrophic mortality from the British Isles to Spain (Elston 

et al. 1986). It is thought that H. nelsoni, a parasite native to Asia that has devastated 

native C. virginica populations along the Mid-Atlantic coast of the USA, was introduced 

via the experimental introduction of C. gigas sometime prior to 1957 (Burreson et al. 

2000).

Similar theories with respect to the movement of oyster hosts exist regarding the 

introduction of B. exitiosa to supposed non-enzootic areas. Abollo et al. (2008) detected a

B. exitiosa-like parasite in O. edulis in Galicia, Spain and hypothesized that the parasite 

could have been inadvertently introduced through the legal or illegal importation of
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oysters from B. exitiosa-endemic areas. The authors also suggested the possibility of a 

recent introduction via the ballast water and outer hulls of ships, which was a hypothesis 

suggested by Bishop et al. (2006) regarding the possible introduction of the B. exitiosa- 

like species found in North Carolina. However, with increasing observations of Bonamia 

species around the world, the origin of the parasite is becoming less clear— challenging 

some of these widely-accepted dispersal hypotheses.

Morphological examination, while being extremely useful, has its limitations. 

Morphological phylogenetic analyses for haplosporidians, for example, have been 

unsuccessful in determining placement of these taxa among other protists (Flores et al. 

1996), and the above findings emphasize and expose the limitations of histopathological 

methods for discriminating species of microcell parasites, like Bonamia species. 

Morphology also is limited in its ability to distinguish differing cell forms of the same 

species. Plasticity of cell forms occurs in space and time: differing among hosts (primary 

vs. alternate) or during times of stress or poor environmental conditions, e.g. spores. 

Presence or absence of spores as a character, therefore, might not be best for 

classification. Ultrastructural methods also have their limits, because some important 

ultrastructural characters used to classify protists (e.g., haplosporosomes) appear to have 

arisen several times during evolution (Cochennec-Laureau et al. 2003), which could 

confound morphological phylogenies.
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Using Molecular Tools to Discover Bonamia Species Distribution, Diversity, and 

Evolution

Molecular analyses have been increasingly used to characterize and classify 

closely related taxa. DNA analyses have limitations as well, but when taxa are 

indistinguishable morphologically such as Bonamia species, great strides can be made in 

the clarification of taxonomy and phylogenetics using these techniques. Regarding B. 

roughleyi in particular, ultrastructural analysis placed this species within Mikrocytos, but 

analysis of SSU rDNA sequence revealed this species’ evident placement within the 

genus Bonamia (Cochennec-Laureau et al. 2003). Genomic DNA sequences also do not 

vary with life stage or developmental phase or with varying hosts and/or tissue locations 

(Berthe et al. 1999). These analyses are less subjective compared to morphological and 

ultrastructural methods and would therefore decrease the chances of misidentification (as 

shown above with the application of ISH).

The rRNA gene complex has been used most commonly in examining the 

relationships of members within the phylum Haplosporidia (Flores et al. 1996; Carnegie 

et al. 2000; Reece and Stokes 2003; Cochennec-Laureau et al. 2003; Reece et al. 2004; 

Burreson and Reece 2006; Carnegie et al. 2006). This gene complex comprises both 

conserved and variable regions, reflecting variation in rates of molecular evolution (Hillis 

and Dixon 1991). The small-subunit (SSU), large-subunit (LSU), and 5.8S ribosomal RNA 

(rRNA) genes are relatively well conserved as they encode functional RNAs, while the 

internal (ITS-1, ITS-2) and external (ETS) transcribed spacer regions and non-transcribed 

or intergenic spacers (NTS or IGS) are more variable (Hillis and Dixon 1991) (Figure 1).
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Also, rRNA genes are multi-copy genes, often making them the targets of diagnostics 

because the many copies will help ensure sensitivity (Berthe et al. 1999). For Bonamia 

parasites, the SSU rRNA gene has been the target of polymerase chain reaction (PCR) 

diagnostics (Carnegie et al. 2000) and in situ hybridization probes (Cochennec et al. 

2000), and further used to determine relationships between Bonamia species and other 

haplosporidians (Carnegie et al. 2000; Cochennec-Laureau et al. 2003; Reece et al. 2004; 

Abollo et al. 2008). However, because the SSU rRNA gene is relatively well-conserved 

analyses based on this region may not resolve relationships at the species level.

Increasingly, spacer regions of the rRNA gene complex are used to develop 

phylogenies of closely related taxa (e.g., Litaker et al. 2007). These regions are more 

variable due to significant divergence during speciation (Hillis and Dixon 1991; Litaker 

et al. 2007), and because of this variability, the relationships of more closely related taxa 

can be examined using the ITS, ETS, and NTS regions (Hillis and Dixon 1991). In 

W hite’s Masters thesis (2008), the ITS-1, 5.8S rRNA gene, and ITS-2 (collectively the 

ITS rDNA region) was used to construct a molecular phylogeny of Bonamia in order to 

determine the relationships between the Bonamia species observed in C. ariakensis in 

North Carolina, O. chilensis in Chile, O. puelchana in Argentina, and O. angasi in 

Australia. Based on SSU rDNA parsimony analysis, she found that all of these species 

fell within the same clade as B. exitiosa (White 2008). However, ITS rDNA analysis 

revealed that while most were still within the B. exitiosa clade, the Bonamia sp. found in 

O. chilensis from Chile appeared to be distinct (White 2008; Hill et al. 2010), 

demonstrating the usefulness of this region for phylogenetic analysis. This question 

remains: are all of the Bonamia species found within variable hosts and locations and

12



within the B. exitiosa clade conspecific? If so, how did the parasite achieve its current 

distribution?

Prompted by emerging insights regarding the distribution and diversity of all 

Bonamia species, the objective of Chapter One of my thesis project was to assess the 

global distribution of Bonamia parasites and determine interspecific evolutionary 

relationships to better understand their origins and evolution using molecular markers. 

Chapter Two presents a description of a novel species discovered during this global 

survey. Chapter Three presents results of analyses on the intraspecific genetic variation 

and the geographic distribution of B. exitiosa genotypes. Bonamia exitiosa ITS region 

rDNA sequences from multiple hosts and locations around the world were examined 

using statistical parsimony/networking models to 1) determine if phylogeographic 

population structure exists, and if so 2) to develop dispersal hypotheses regarding how B. 

exitiosa came to achieve its wide distribution. By analyzing population structure, 

phylogeographic hypotheses can be developed, enabling us to better understand the 

current distribution of ecologically, and sometimes economically, important parasites.

In summary, the overall goal of my thesis was to develop a better understanding 

of the origins, dispersal, and evolution of the haplosporidian parasites of oysters in the 

genus Bonamia. By assessing and understanding the relatedness and dispersal of 

Bonamia species, we can better understand the origins of the parasites, which could 

ultimately help in management of bonamiasis. With new Bonamia parasites being 

observed outside of their type localities, this study should continue to alter the current 

view of Bonamia parasites’ geographic and host ranges and will lead to additional, and 

perhaps alternative, hypotheses on the dispersal of Bonamia species.
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CHAPTER ONE: Phylogenetics of Bonamia Species Based on Small Subunit 

Ribosomal DNA (SSU rDNA) and Internal Transcribed Spacer (ITS) Region rDNA

Sequence Data
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OBJECTIVES

Objective 1: Assess the global distribution and diversity of Bonamia parasites in hosts 

and locations worldwide.

Objective 2 : Develop a better understanding of the origins and evolution of the genus 

Bonamia through phylogenetic analyses of small subunit (SSU) ribosomal DNA (rDNA) 

and internal transcribed spacer (ITS) region rDNA sequences.
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INTRODUCTION

Bonamia species are protozoan parasites of oysters within the phylum 

Haplosporidia whose characteristic cell form is a 2-3 pm “microcell” (Pichot et al. 1980). 

There are four described species, which were described from four different oyster hosts: 

Bonamia ostreae Pichot et al., 1980 in Ostrea edulis L., Bonamia roughleyi (Farley et al. 

1988) in Saccostrea glomerata (Gould, 1850), Bonamia exitiosa Hine et al., 2001 in 

Ostrea chilensis Philippi, 1845, and Bonamiaperspora Carnegie et al., 2006 in Ostrea 

equestris Say, 1834. Species boundaries between B. roughleyi and B. exitiosa, however, 

were questioned in Hill et al. 2010, who concluded that there was no morphological, 

ultrastructural, or molecular basis for the distinction of these two species.

Other questions regarding the diversity of Bonamia species were also raised in 

conjunction with new discoveries of the geographic and host ranges o f these parasites. 

Prior to 2004, it was thought that Bonamia species were more or less confined to their 

respective hosts and geographic locations— B. ostreae in O. edulis in the temperate 

Northern Hemisphere, and closely related B. exitiosa and B. roughleyi in the temperate 

Southern Hemisphere. However, this perspective was found to be suspect when Burreson 

et al. (2004) found a B. exitiosa-like species infecting experimental Crassostrea 

ariakensis (Fujita, 1913) in Bogue Sound, North Carolina. This parasite was subsequently 

observed infecting native oyster O. equestris in North Carolina, and this oyster was 

additionally found to be infected by a second, novel species that was described as B. 

perspora (Carnegie et al. 2006, Hill et al. 2010). Earlier perceptions of the host range, 

geographic distribution, and diversity of Bonamia species were, therefore, considerably 

altered.
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A phylogeographic study of Bonamia parasites is important given the ecological 

and economic destruction these parasites can cause in oyster hosts. Bonamia ostreae, for 

example, contributed greatly to the collapse of O. edulis populations and fisheries in 

Europe (Grizel et al. 1988), and B. exitiosa has devastated O. chilensis populations in 

New Zealand (Hine et al. 2001). The objective of the research presented in this chapter 

was to assess the global distribution of Bonamia parasites by collecting potential oyster 

hosts from around the world to better understand the geographic and host ranges and the 

genetic diversity of these parasites. Separate phylogenies were constructed based on the 

small subunit ribosomal RNA gene (SSU rDNA) and internal transcribed spacer (ITS) 

region rDNA (defined as ITS-1 rDNA, the 5.8S rRNA gene, and ITS-2 rDNA) to better 

understand the evolutionary relationships of Bonamia species that were found in nearly 

every oyster host and every location examined.

MATERIALS AND METHODS

Sample Collection

Fourteen oyster species were collected from twenty-one locations around the 

world (Table 1.1). Most oysters were collected from natural habitats, however samples of

C. ariakensis from North Carolina and Florida, USA were cultured and experimentally 

deployed to these locations; Ostrea denselamellosa from the Okayama Prefecture, Japan 

were cultured as part of a restoration program; and O. angasi from Australia, S. 

glomerata from Australia, and one sample of O. chilensis from Chile were obtained from 

commercial culture. Oysters were shucked, and small pieces of gill and mantle tissue (~3- 

5 mm3) were either preserved individually in 95% ethanol or placed directly in lysis
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solution (QIAamp DNA Kit; QIAGEN, Valencia, CA) for molecular analyses. The only 

exceptions were O. edulis and 2004 Ostrea conchaphila tissue samples collected from 

California. Tissues from O. conchaphila individuals were stored at -80°C in pools of 

three or four oysters/tube, then preserved in 100% ethanol for shipping. The California O. 

edulis samples were preserved in 95% ethanol, but again pooled: fourteen pools of four 

individuals, and one pool of two individuals in one sample. All instruments used for 

dissection were sterilized with 95% ethanol and flamed between each sample.

Gill, mantle, and visceral mass tissues were fixed in Davidson’s fixative (Shaw 

and Battle 1957) for standard histopathology in most cases. Exceptions were the 

Isognomon sp. from Florida, O. edulis from the Netherlands, O. chilensis from Chile, and 

the 2006 Ostrea sandvicensis samples, in which tissues were collected for molecular 

analyses only.

DNA Extraction

Genomic DNA from each oyster sample was extracted using a QIAamp DNA Kit 

(QIAGEN). DNA was eluted from the QIAGEN column in 100-225 pi of elution buffer 

and stored at 4°C. For the pooled O. edulis samples from California, each pool was 

divided into 2 individuals per extraction (except one pool that had larger pieces of tissue 

allowing for division of the 4 individuals into 4 individual extractions). This was done in 

order to obtain a better estimate of prevalence. After each extraction, DNA was 

quantified using a GeneQuant pro  spectrophotometer (Amersham Biosciences, 

Piscataway, NJ).
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Bonamia-generic PCR

Oysters were screened for Bonamia spp. DNA using either generic PCR primers 

BON-319F and BON-524R (Hill et al. 2010), which target a 206-bp portion of Bonamia 

spp. SSU rDNA, or generic primers Cpand Cr (Carnegie et al. 2000), which amplify a 

760-bp portion of Bonamia spp. SSU rDNA. For the BON-319F + BON-524R PCR, a 

25-pl total volume reaction contained lx  PCR buffer (Applied Biosystems, Carlsbad, 

CA), 1.5mM MgCC, 0.2mM dNTPs, 0.4 pg/pl bovine serum albumin (BSA), 0.25pM 

primer mix, 0.024 units/pl AmpMTaq DNA polymerase (Applied Biosystems) and 200- 

250 ng (=0.5-1.6 pi) template DNA. A 4-min initial denaturation at 94° C was followed 

by 35 cycles of denaturation at 94°C for 30 s, annealing at 60°C for 30 s, and extension at 

72°C for 1 min, and then by a final extension at 72°C for 7 min. Products were 

electrophoresed on 2.5% agarose gels (100 V, 30 min), subsequently stained with 

ethidium bromide, and visualized under a UV light.

The 25-pl C f  + C r  reaction contained the same reagents and concentrations, but 

the thermal cycling program differed slightly: a 4-min initial denaturation at 94°C was 

followed by 35 cycles of denaturation at 94°C for 1 min, annealing at 59°C for 1 min, and 

extension at 72°C for 1 min, and then by a final extension at 72°C for 10 min. These 

products were electrophoresed on 2% agarose gels (100 volts, 30 minutes), stained with 

ethidium bromide, and visualized under UV light.

Bonamia spp. SSU rRNA Gene Sequencing

PCR products from infected oysters were used to generate Bonamia spp. SSU 

rDNA sequence. In order to generate sequence for the entire SSU rDNA region, which is
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approximately 1750 bp in length, multiple PCR amplifications had to be performed. 

Several primer pairs were tested, and the pair that yielded a single amplicon of 

appropriate size was used for subsequent cloning reactions. In order to amplify the 5' end 

of Bonamia spp. SSU rDNA region, a reverse Bonamia-generic primer (either Bon-745R, 

Bon-927R, Bon-990R, Bon-1110R, or Bon-1050R) was paired with primer 16S-A 

(Medlin et al. 1988), a universal SSU rDNA-specific primer that amplifies eukaryotic 

rDNA (Table 1.2, Figure 1.1). The 3' end of Bonamia spp. SSU was generated using a 

forward Bonamia-generic primer (Bon-925F, or Bon-1310F) paired with primer 16S-B 

(Medlin et al. 1988) (Table 1.2). In most cases, a third PCR had to be done in order to 

complete the SSU rDNA region. Either C f +  C r  or Bon-319F + Bon-990R primer pairs 

were used to generate sequencing data for the gap (Table 1.2). For the Bonamia sp. found 

in O. sandvicensis in Hawaii, however, a new primer, HIBon-620F, had to be designed in 

order to obtain the middle portion of the SSU rDNA sequence (Table 1.2). HIBon-620F 

was designed using Mac Vector 8.0 (Oxford Molecular Ltd., Oxford, UK) and was paired 

with Bon-1110R (White 2008). For each PCR, a 25-pl total reaction volume contained 

the same reagents at the same concentrations as the C f +  C r P C R  described above. For 

these PCRs (except the C f +  C r  reactions, which were done as described above), a 4- 

minute initial denaturation was followed by 35 cycles of denaturation at 94°C for 45 s, 

annealing at 54-5 8°C for 45 s, extension at 72°C for 1 min (for products < ~ 800 bp) or 

1.5 min (for > ~ 800-bp products), and then by a final extension at 72°C for 6 min. The 

selected amplification products from triplicate PCR reactions were pooled and purified 

using a QIAquick PCR purification kit (QIAGEN).
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The only exceptions to the above were the reactions to obtain the Bonamia sp. 

SSU rDNA found in O. edulis from California. A 25-pl total reaction volume contained 

lx  PCR buffer (Invitrogen Corporation, Carlsbad, CA), 2mM M gCf, 0.2mM dNTPs,

0.25pM forward primer, 0.25pM reverse primer, and 0.05 units/pl Platinum Taq DNA 

polymerase (Invitrogen), and 200-250 ng template DNA. The thermal cycling program 

was as stated above. Duplicate reactions were individually purified; amplification 

products were not pooled as for other samples.

Purified PCR products were cloned into the plasmid vector pCR4-TOPO using 

the TOPO TA Cloning kit (Invitrogen), and then transformed into One Shot TOP 10 

competent E. coli cells (Invitrogen). The transformed cells were plated onto Luria Bertani 

(LB) agar plates containing 50 pg/ml ampicillin for selection of successful recombinant 

cells and incubated overnight at 37°C.

Colonies were screened using either phenol/chloroform/isoamyl-alcohol (PCI) 

extractions or PCR analyses. For screening by PCI extraction, a toothpick scraping from 

a single colony re-streak was placed in a microcentrifuge tube containing 40 pi lx  STE 

(lOOmM NaCl, 20mM Tris (pH =7.5), lOmM EDTA) using a sterile toothpick. Forty 

microliters of PCI (50% phenol/48% chloroform/2% isoamyl-alcohol) was added, and 

samples were vortexed briefly and then centrifuged at 13,000 rpm (5 min). The aqueous 

(top) layer was then removed to a clean tube. One microliter of RNase A (1 mg/ml) was 

added to 15 pi of lysate, which was then incubated for ~ 2 min at room temperature. Two 

microliters of gel loading dye was added to each sample, and the samples were loaded 

onto a 1.5% agarose gel. The products were electrophoresed (100 V, 60-75 min), stained
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in ethidium bromide, and visualized under UV light to determine which selected clones 

contained inserts of appropriate size.

For direct screening using PCR, M l3 Forward (5'-GTAAAACGACGGCCAG-3') 

and M l3 Reverse (5'-CAGGAAACAGCTATGAC-3') primers (Invitrogen), which flank 

the vector cloning site, were used. A toothpick scraping of a single colony re-streak was 

placed into 50 pi PCR dEbO and boiled at 100°C (10 min). One microliter of this “boiled 

prep” was used in a 25-pl reaction containing lx  PCR buffer (Applied Biosystems), 

1.5mM M gCf, 0.2mM dNTPs, 0.4 pg/ml BSA, 0.2pM M13 Forward, 0.2pM M13 

Reverse, and 0.024 units/pl AmpliTaq DNA polymerase (Applied Biosystems). A 2-min 

initial denaturation at 94°C was followed by 30 cycles of denaturation at 94°C for 30 s, 

annealing at 54°C for 30 s, and extension at 72°C for 1 min, and then by a final extension 

at 72°C for 5 min. PCR products were loaded onto 1.5% or 2% agarose gels, and 

subsequently electrophoresed (100 V, 30 min), stained with ethidium bromide, and 

visualized using UV light.

Clones with inserts of desired size were cultured in 4 ml 2x YT media plus 

ampicillin (0.05 mg/ml) overnight in a 37°C shaking water bath. The plasmids were 

extracted using the QIAprep Spin Miniprep Kit protocol (QIAGEN), and sequenced on 

either a LI-COR 4200L (LICOR, Lincoln, NE) or a 16-capillary Applied Biosystems 

3130x1 Genetic Analyzer.

For sequencing on the LI-COR 4200L, the concentration of each plasmid was 

determined using a DyNA Quant 200 fluorometer (Hoefer Pharmacia Biotech Inc., San 

Francisco, CA). Simultaneous bidirectional cycle-sequencing reactions were performed 

using a Thermo Sequenase Sequencing Kit (Amersham Biosciences) and M l3 forward
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and reverse infrared-labeled primers (LI-COR) following the manufacturer’s protocol. 

Products of the sequencing reactions were electrophoresed and detected on the LI-COR 

sequencer.

For sequencing on the Applied Biosystems 3130x/ Genetic Analyzer, plasmids 

underwent bidirectional sequencing reactions using a BigDye® Terminator v3.1 cycle 

sequencing kit (Applied Biosystems) using 1/8 of the reaction size recommended by the 

manufacturer’s instructions with unlabelled M13/pUC forward or reverse sequencing 

primers (New England Biolabs, Ipswich, MA). The products of the sequencing reactions 

were cleaned using an ethanol/sodium acetate protocol (ABI User Bulletin, April 11, 

2002). The precipitated sequences were re-suspended in 20 pL of Hi-Di formamide 

(Applied Biosystems). Ten microliters of resuspended DNA was added to a 96-well plate 

and electrophoresed on the sequencer. Sequencing Analysis 5.2 software (Applied 

Biosystems) was used for base calling.

Bonamia spp. Internal Transcribed Spacer (ITS) Region rDNA Sequencing

PCR products from oysters that tested positive for Bonamia spp. were used to 

determine the sequence of Bonamia sp. ITS region rDNA from each host species using 

primers HaploITSf (Hill et al. 2010) and ITS-B (= reverse primer D, Goggin 1994)

(Table 1.2). This primer pair amplifies partial SSU rDNA (-220 bps of the 3' end of the 

SSU rRNA gene), complete ITS-1, 5.8S, and ITS-2 region rDNA, and partial large 

subunit (LSU) rDNA of most haplosporidians. Prior to June 2008, cloning reactions were 

done in triplicate and pooled as described above for SSU rDNA sequencing. These 

reactions were done using Applied Biosystems reagents at the same concentrations as
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described above for the C f +  C r  PCR. After June 2008, duplicate reactions were 

performed on each individual or pool of individuals, so that each reaction could be 

individually sequenced and compared. A 25-pl total reaction contained lx  PCR Buffer 

(Invitrogen), 2-2.5mM M gCf, 0.2mM dNTPs, each primer at 0.25pM, 0.05 U/pl 

Platinum Taq DNA polymerase (Invitrogen), and 200-250 ng (=0.5-1.6 pi) template 

DNA. Regardless of reagents used, a 7-min initial denaturation was followed by 35 

cycles of denaturation at 95°C for 1 min, annealing between 55-61 °C for 1 min, and 

extension at 72°C for 1.5 min, and then by a final extension at 72°C for 7 min. These 

products were purified, cloned, transformed, screened, and sequenced as in the above 

description of SSU rDNA sequencing.

Oyster Mitochondrial 16S Ribosomal RNA Gene Sequencing

All oysters were presumptively identified based on morphological characteristics 

and sample locations. In some cases, universal primers 16Sar and 16Sbr (Kessing et al. 

1989; Table 1.2) were used to amplify a portion of the mitochondrial 16S (m tl6S) rRNA 

gene of Bonamia-positive host species to confirm oyster identity: Ostrea auporia from 

New Zealand, O. conchaphila and O. edulis from California, O. equestris from 

Argentina, O. stentina from Tunisia, and O. sandvicensis from Hawaii. A 25-pl total 

reaction contained lx  PCR Buffer (Applied Biosystems), 1.5mM M gCf, 0.2mM dNTPs, 

0.4 pg/pl BSA, 0.20pM primer mix, 0.024 units/pl AmpliTaq DNA polymerase (Applied 

Biosystems), and 200-250 ng (=0.5-2.5 pi) template DNA. Initial denaturation at 95°C 

for 4 min was followed by 38 cycles of denaturation at 95°C for 1 min, annealing at 52°C 

for 1 min, and extension at 72°C for 2 min, and by a final extension at 72°C for 7 min.
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Products were electrophoresed and visualized as above. PCR products were purified 

using a QIAquick PCR Purification Kit (QIAGEN) and quantified using either a DyNA 

Quant 200 fluorometer (Hoefer Pharmacia Biotech Inc.) or a NanoDrop 2000 (Thermo 

Fisher Scientific Inc., Waltham, MA) as per manufacturers’ instructions. Three to ten 

nanograms of the purified PCR product was then added to the reagents from a BigDye® 

Terminator v3.1 cycle sequencing kit (using 1/8 of the reaction size recommended by the 

manufacturer’s instructions) and the 16Sar and 16Sbr primers (Kessing et al. 1989). 

Reactions were then cleaned, precipitated, and sequenced as above. Primers were cropped 

from the resulting sequences, and complementary sequences were compared to one 

another and to their chromatograms using Mac Vector 8.0 (Oxford Molecular Ltd.,

Oxford, UK) or CodonCode Aligner (CodonCode Corp., Dedham, MA). These were then 

compared, using the Basic Local Alignment Search Tool (BLAST) (Altschul et al. 1997), 

to the National Center for Biotechnology Information (NCBI) GenBank database. Ostrea 

equestris samples from Argentina were sequenced by Dr. Ami Wilbur at the University 

of North Carolina Wilmington using the same primer set.

Bonamia spp. Sequence Alignments and Molecular Phylogenetics

Primers were removed from the resulting sequences, and complementary 

sequences were compared to one another and to their chromatograms using Mac Vector 

8.0 or CodonCode Aligner. For SSU rDNA sequences, a consensus sequence was 

generated for each Bonamia sp. found in a host species. Because the SSU rDNA had to 

be sequenced in two or three fragments, the consensus sequence for each segment was 

pieced together by aligning the sequences in MacVector 8.0 to generate a single SSU
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rDNA sequence for each presumptive Bonamia sp. found in an oyster host. These were 

then compared to the NCBI GenBank database using BLAST. The newly generated SSU 

rDNA Bonamia spp. sequences from O. edulis and O. conchaphila from California, O. 

equestris from Argentina, S. glomerata from Australia, O. auporia and O. chilensis from 

New Zealand, C. ariakensis from Florida, and O. sandvicensis from Hawaii were then 

aligned with published SSU rDNA sequences. These included B. ostreae (GenBank 

accession numbers AF262995 and A F192759), B. exitiosa (AF337563), B. roughleyi 

(AF508801), and B. perspora (DQ356000); the Bonamia spp. from O. stentina from 

Tunisia (GQ385242), C. ariakensis from North Carolina (AY542903), O. edulis from 

Spain (EUO16528) and Italy (EU598800 and EU598801), O. angasi from Australia 

(DQ312295 and JF495408), O. chilensis from Chile (AY860060 and GQ366703), and O. 

puelchana from Argentina (JF495409); and outgroup species Minchinia tapetis 

(AY449710), Minchinia teredinis (U20319), Minchinia chitonis (AY449711), and 

Minchinia mercenariae (FJ518816). Minchinia spp. were chosen for the outgroup 

because Minchinia is sister to Bonamia in the haplosporidian phylogeny (Reece et al. 

2004). Alignments were generated using MAFFT v. 6 (Katoh and Toh 2008) using the 

automatic setting (which determines the best algorithm given the dataset).

Bonamia spp. ITS region rDNA sequences amplified from C. ariakensis from 

Florida, O. angasi and S. glomerata from Australia, O. auporia and O. chilensis from 

New Zealand, O. chilensis from Chile, O. conchaphila and O. edulis from California, O. 

edulis from the Netherlands, O. equestris and O. puelchana from Argentina, O. equestris 

from North and South Carolina, O. stentina from Tunisia, and O. sandvicensis from 

Hawaii were aligned with VIMS Shellfish Pathology Laboratory archival Bonamia spp.
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ITS region rDNA sequences from C. ariakensis from North Carolina, O. angasi from 

Australia, O. chilensis from New Zealand and Chile, B. ostreae from O. edulis from 

Maine, and from B. perspora from O. equestris from North Carolina. GenBank-published 

sequences from Bonamia sp. from O. edulis from the Adriatic Sea (EU672891), Bonamia 

sp. from O. chilensis from Chile (AY539840), B. exitiosa (DQ312295), and B. ostreae 

(AF162097, AF262995) were too short; these were not used so as to not affect 

subsequent phylogenetic and distance analyses. All sequences were bidirectional except 

the archival Bonamia sp. sequences from O. angasi, and some of these sequences were 

missing part of the 5.8S rDNA gene. The alignment was done using the automatic setting 

in MAFFT v. 6 (Katoh and Toh 2008).

Parsimony analysis o f SSU rDNA sequence data was conducted using PAUP* 

4.0b 10 (Swofford 2002). One thousand bootstrap replicates with 100 random additions 

were performed. Gaps were treated as missing. Parsimony analysis of ITS region 

sequence data was done using TNT v. 1.1 (Tree analysis using New Technology; 

Goloboff, Farris, and Nixon 2008) made available with the sponsorship of the Willi 

Hennig Society. A new technology search was completed with 100 bootstrap replicates 

and 10 random additions. A 50% majority rule unrooted consensus tree was generated 

using PAUP* 4.0b 10.

Bayesian inference analyses of SSU and ITS region rDNA sequence data were 

conducted using MrBayes v. 3.1.2 (Ronquist and Huesenbeck 2003). MrModeltest v. 2.3 

was used to determine the best model for each dataset. Are We There Yet? (AWTY; 

Wilgenbusch et al. 2004) was used to determine if stationarity had been reached for the
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SSU rDNA dataset. Fifty percent majority rule consensus trees were generated using 

PAUP*4.0bl0 (Swofford 2002).

Distance Analyses

Distance analyses were done using MEGA v. 4 (Tamura et al. 2007). Incomplete 

sequences were removed from the above alignments so that all sequences spanned 

identical gene regions. For the ITS region rDNA alignment, the SSU rDNA portion of the 

amplicon produced by the HaploITSf + ITS-B primer set was removed. The datasets were 

then realigned using MAFFT v. 6 (Katoh and Toh 2008). For the Bonamia spp. SSU 

rDNA dataset, uncorrected p-distances were calculated between the different Bonamia 

clades that were indicated by the parsimony and Bayesian analyses. Gaps and missing 

data were only eliminated in pairwise sequence comparisons (pairwise deletion option). 

Standard error estimates were determined by a bootstrap procedure (1000 replicates). For 

the ITS region rDNA dataset, uncorrected p-distances were calculated between and 

within each Bonamia clade, again as indicated by the parsimony and Bayesian analyses 

of the ITS region rDNA sequences. Again, the pairwise deletion option was used and 

standard error estimates were determined by a bootstrap procedure (1000 replicates).

In Situ Hybridization

Standard, chromogenic in situ hybridization (ISH) assays were performed on 

tissue sections of C. ariakensis from Florida, O. auporia from New Zealand, and O. 

conchaphila and O. edulis from California that were PCR-positive for a Bonamia sp. The 

assays relied on a cocktail of three digoxigenin-labeled, B. exitiosa-specific anti-sense
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probes, CaBon461, CaBonl66, and CaBonl704 (Hill et al. 2010; Table 1.2), and a newly 

designed B. ostreae-specific probe, Bostl71 (Table 1.2). For each sample, experiments 

included the following treatments applied to serial histological sections: a no probe 

control (25 pi hybridization buffer only), a positive control, and a standard experimental 

treatment using CaBon probes (Hill et al. 2010) and/or Bostl71 (Table 1.2). The protocol 

was modified from Stokes and Burreson (2001). Paraffin-embedded tissue sections (6 

pm) were de-paraffmized in xylene for 10 minutes, re-hydrated in a series of ethanol 

washes (100% ethanol x 2 for 10 min; then 95%, 80%, 70% ethanol for 1 min each), and 

then placed in tap water for 1 min. Slides were then equilibrated in phosphate-buffered 

saline (PBS, 2 x 5  min) and subsequently treated with proteinase K (50 pg/ml in PBS, 18 

min at 37°C). In order to stop proteolysis, the slides were then washed with 0.2% glycine 

in PBS (5 min at room temperature) followed by a 10-min incubation in 2x SSC (3M 

NaCl, 0.3M sodium-citrate, pH 7.0) at room temperature.

Slides were subsequently placed in a slide mailer box filled with 16 ml pre

warmed prehybridization solution (4x SSC, 50% formamide, 5x Denhardf s solution, 0.5 

mg/ml yeast tRNA, 0.5 mg/ml salmon sperm DNA, distilled water) for 1 h at 42°C. The 

slides were removed from the boxes and carefully wiped to remove any excess solution. 

A PAP pen was used to encircle the tissue, creating a reservoir for the digoxigenin- 

labeled oligonucleotide probe cocktail (50 pi total volume; 2 ng/pl each of CaBon461, 

CaBon 166, and CaBon 1704 for the B. exitiosa-specific ISH, and 3 ng/pl of Bostl71 for 

the B. ostreae-spQc\f\c ISH), which was subsequently pipetted onto the tissue section and 

covered with a plastic cover slip. The slides were incubated in a thermocycler equipped 

with a slide holder at 90°C for 12 min and then cooled on ice for 1-2 min. A humid

29



chamber was prepared by using a plastic, airtight container and placing 4x SSC + 50% 

formamide solution-saturated 3MM paper in the bottom. The slides were then placed on 

wooden applicator sticks inside the humid chamber and sealed in the chamber for 

incubation overnight at 42°C.

The next morning, cover slips were removed, and then the slides were treated 

with a descending series of SSC washes (2x SSC, 2 x 5  min at room temperature; lx  

SSC, 2 x 5  min at room temperature; 0.5x SSC, 2 x 1 0  min at 42°C or 45°C for the 

Bostl71 probe and CaBon probe cocktail, respectively). The slides were then placed in 

buffer 1 (lOOmM Tris-HCl, 150mM NaCl, pH 7.5; 1 min at room temperature) and then 

in a slide mailer box filled with 16 ml of blocking solution (buffer 1, 0.3% Triton, 2% 

normal sheep serum; 30 min at room temperature). The anti-digoxigenin alkaline 

phosphatase conjugate (Roche Applied Science, Indianapolis, IN) was then diluted 1:500 

with antibody solution (buffer 1, 0.3% Triton, 1% normal sheep serum), and 50 pi of the 

diluted antibody was placed on each slide and coverslipped with a plastic cover. The 

slides were placed in the humid chamber (with fresh 3MM paper saturated with water and 

new wooden applicator sticks) for 3 h at room temperature.

After the 3-h incubation, the cover slips were removed, and slides were washed in 

buffer 1 (2 x 5 min), then in buffer 2 (lOOmM Tris-HCl, lOOmM NaCl, 50mM MgCfi, 

pH 9.5; 2 x 5 min). Then the slides were added to a slide mailer box filled with 16 ml of 

color solution (buffer 2, 74.2 mg/ml nitroblue tetrazolium (NBT), 50 mg/ml 5-bromo-4- 

chloro-3-indolyl phosphate (BCIP) solution, 24 mg/ml levamisole). The slide box was 

covered with foil for a 2-h incubation at room temperature. Slides were placed in TE 

(lOmM Tris-HCl, ImM EDTA, pH 8; 5 min at room temperature) in order to stop the
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color reaction, and then carefully rinsed in distilled water. After staining in 0.05% 

Bismarck Brown Y (filtered with Whatman 4 filter paper) for 2 min, the slides were 

rinsed with distilled water (3 x). An aqueous-based mounting medium was used for 

coverslipping. After the slides were dry, they were examined on an Olympus BX51 light 

microscope.

A fluorescent in situ hybridization (FISH) assay was used to detect the Bonamia 

sp. found in O. sandvicensis. Anti-sense probes HIBon-167 (5'- 

CTAATATGCACAGCCGCCAG-3') and HIBon-634 (5'-

CGATTATGGCCTCTCTCCAC-3') tagged with Alexa Fluor 488 labels (purchased from 

Invitrogen) were designed in Mac Vector 8.0 to specifically target this parasite’s SSU 

rRNA. The assay was optimized and tested for specificity against known Bonamia 

species (B. exitiosa, B. perspora, and B. ostreae). Slides were treated with HIBon- 

167+HIBon-634 (each at 10 ng/pl), and a no probe control (hybridization buffer only) 

and a positive control for ensuring general probe accessibility to oyster tissue (Oe-309 at 

10 ng/pl, 5'-TCATGCTCCCTCTCCGG-3') were also used.

The FISH assay was performed as in Carnegie et al. (2006) except a descending 

ethanol series was used for rehydration instead of a descending isopropanol series. Tissue 

sections were deparaffinized in xylene (3 x for 2 min) and subsequently rehydrated in the 

descending ethanol series (100% ethanol, 3 x 30 s; then 80%, 50%, 30% for 30 s each) 

into tap water (1 min). The tissue was then equilibrated in PBS (1 min) and digested with 

Proteinase K (100 pg/ml in PBS) for 10 min at 37°C. This was followed by a wash in 

PBS plus 0.2% (w/v) glycine (5 min) and acetylation using acetic anhydride (5% [v/v] in 

0.1M triethanolamine-HCl, pH 8.0; 10 min at room temperature), a wash in PBS (5 min),
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and equilibration in 5x SET (750mM NaCl, 6.4mM EDTA, lOOmM Tris pH 8; 5 min at 

room temperature). Slides were flooded with hybridization buffer (5x SET, 0.02 mg/ml 

BSA, 0.025% [w/v] SDS; 10 min at 42°C) and drained of excess buffer. Then, 25 pi of 

hybridization buffer containing HIBon-167 and HIBon-634 (each at 10 ng/pl) was added 

to each slide. After the slides were covered with plastic or paraffin coverslips, they were 

incubated overnight at 42°C in a humid chamber. The next day, they were washed with 

0.2x SET (3 x at 42°C for 2.5 min total), air dried, mounted with glycerol-in-PBS 

medium, and coverslipped. Slides were then evaluated on an Olympus Pro vis 

epifluorescence microscope equipped with a red-green dual bandpass filter.

RESULTS

Bonamia-generic PCR

Putative Bonamia spp. were detected in 11 out of 14 oyster species examined, 

with Isognomon sp. from Florida, O. denselamellosa from Japan, and Saccostrea 

cucullata from New Zealand being exceptions (Table 1.1). A putative Bonamia sp. was 

also not found in S. glomerata from Whangarei Harbour, New Zealand or in O. 

conchaphila from Drakes Estero, California or British Columbia, Canada. However, 

these oyster species were positive for a Bonamia sp. at other locations: S. glomerata in 

New South Wales, Australia and in O. conchaphila from Elkhom Slough, California 

(Table 1.1).

PCR prevalence of Bonamia spp. parasitism ranged from 0.5-88.3% overall 

(Table 1.1). Bonamia spp. were detected in experimentally deployed C. ariakensis in 

North Carolina and Florida (PCR prevalence range 35.3-42.1%), wild O. equestris
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collected in North and South Carolina (2.0-4.0%), O. conchaphila from Elkhom Slough, 

California in 2004 (21.7-86.7%) and 2009 samples (88.3%), O. edulis from California 

(20.7-82.0%), O. sandvicensis from Hawaii in 2006 (65.8%) and 2007 samples (70.0%), 

O. angasi from Australia (2.4%), S. glomerata from Australia (0.5%), O. auporia from 

New Zealand in 2007 (9.1%) and 2009 samples (5.6%), O. chilensis from New Zealand 

(5.0%), O. chilensis from Chile (18.8%), O. puelchana from Argentina (10.5%), and O. 

stentina from Tunisia (10.6%). Other samples were sent to our laboratory as confirmed 

Bonamia sp. positive as determined by histopathology: O. equestris from Argentina, O. 

edulis from the Netherlands and Maine, and O. chilensis from Chile and New Zealand 

(indicated by a single * in Table 1.1).

Alignment Results

For the SSU rDNA alignment, MAFFT v.6 chose L-INS-i, which is an iterative 

refinement method that aligns a set of sequences containing one alignable domain, and in 

the pair-wise alignment, flanking sequences are ignored by the Smith-Waterman 

algorithm. For the ITS rDNA alignment, MAFFT v. 6 chose the standard strategy, FFT- 

NS-i iterative refinement method (max. 2 iterations).

SSU rDNA Sequencing Results

Complete SSU rDNA sequences of putative Bonamia sp. parasites were found in 

C. ariakensis from Florida (GenBank accession number JF831807), O. auporia from 

New Zealand (JF831806), O. edulis and O. conchaphila from California (JF831804 and 

JF831805, respectively), O. equestris from Argentina (JF831801), S. glomerata from
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Australia (JF831802), and O. sandvicensis from Hawaii (JF831803). One to three PCR- 

positive oysters, two to three primer sets, and three to 10 clones per primer set were used 

to obtain complete SSU rDNA sequences (Table 1.3). Putative Bonamia spp. SSU rDNA 

consensus sequences ranged from 1749 to 1766 bp in length. The putative Bonamia sp. 

SSU rDNA sequences found in C. ariakensis from Florida, O. auporia from New 

Zealand, S. glomerata from Australia, O. conchaphila from California, and O. equestris 

from Argentina were 99-100% identical to the SSU rDNA sequences of B. exitiosa from 

Australia (DQ312295) and New Zealand (AF337563), B. roughleyi (AF337563), 

Bonamia sp. in O. stentina from Tunisia (GQ385242), and Bonamia sp. in C. ariakensis 

from North Carolina (AY542903).

Two putative Bonamia spp. were detected in O. edulis from California. The 

SSU rDNA sequence of one was 99% identical to B. exitiosa (DQ312295) and B. 

roughleyi (AF337563). Sequence from the other was 99% identical to B. ostreae SSU 

rDNA (AF262995 and A F192759).

The putative Bonamia sp. SSU rDNA sequence found in O. sandvicensis from 

Hawaii was 90-91% similar to that of B. exitiosa (DQ312295), B. roughleyi (AF337563), 

the Bonamia sp. from O. stentina (GQ385242), the Bonamia sp. from C. ariakensis from 

North Carolina (AY542903), B. ostreae (AF262995), and B. perspora (DQ356000).

ITS Region rDNA Sequencing Results

Putative Bonamia sp. ITS region rDNA sequences were found in all hosts from 

which putative Bonamia sp. SSU rDNA sequences were characterized, including C. 

ariakensis from Florida (JF712867 -  JF712871), O. equestris from North and South
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Carolina (JF831575 -  JF831602), O. equestris from Argentina (JF831556 -  JF831574), 

O. puelchana from Argentina (JF831603 -  JF831638), O. stentina from Tunisia 

(JF831684-JF831718), O. auporia from New Zealand, (JF831658 -  JF831677), O. 

chilensis from New Zealand (JF831639 -  JF831657), O. angasi from Australia 

(JF831678 -  JF831680), glomerata from Australia (JF831681 -  JF831684), O. 

conchaphila from California (JF831719 — JF831800), O. chilensis from Chile (JF831849 

-  JF831856), O. edulis from California (JF831808 -  JF831848), O. sandvicensis from 

Flawaii (JF831863 -  JF831879), and O. edulis from the Netherlands (JF831857 -  

JF831862). GenBank accession numbers for each unique sequence found per oyster host 

species and used in subsequent ITS region rDNA distance and phylogenetic analyses are 

listed in Table 1.4. One to 29 clones per individual were sequenced (with one to seven 

Bonamia spp. PCR-positive individuals sequenced per oyster host) (Table 1.4).

Most Bonamia sequences were 98-100% similar to B. exitiosa ITS region rDNA 

sequences (Table 1.5). “Type” B. exitiosa ITS region rDNA sequences were designated 

as such since they came from the type host, O. chilensis, and type location, New Zealand. 

The two most commonly found sequences matched those of accession numbers 

EU709070 and EU709073. Two sets of putative Bonamia sp. ITS region rDNA 

sequences, Bonamia sp. sequences from Chile and Bonamia sp. sequences in O. edulis 

from California, were only 83-85% similar to B. exitiosa; although 99-100% similarity to 

B. exitiosa SSU rDNA was observed. These sequences were only 83-86% similar to each 

other.

Both sets of putative B. ostreae ITS region rDNA sequences found in O. edulis 

from California and the Netherlands showed similarity to B. ostreae from Maine
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(EU709108 and EU709110): 90-99% and 95-98%, respectively. When a BLAST search 

was performed on putative Bonamia sp. ITS region rDNA sequences from O. 

sandvicensis from Hawaii, Bonamia spp., Haplosporidium costale, and Haplosporidium 

nelsoni sequences were the only ones to produce significant alignments. However, these 

were aligning only in the SSU rDNA portion of the amplicon; there were no identical or 

close matches to the ITS region rDNA.

Phylogenetic Analyses o f  Bonamia spp. SSU rDNA

For the Bayesian analyses, MrModeltest v. 2.3 chose GTR + I + T (General Time 

Reversible model with a proportion of invariable sites and a gamma-shaped distribution 

o f rates across sites) was chosen for the SSU rDNA data. Ten thousand trees were 

generated (10,000,000 generations; sample frequency = 1,000), and the first 25% were 

removed as bumin.

Parsimony and Bayesian analyses of the SSU rDNA sequences yielded trees with 

similar topologies (Figures 1.2 and 1.3). The Bonamia sp. found in O. sandvicensis 

(GenBank accession number JF831803) was basal to other Bonamia lineages, with 100% 

bootstrap support in the parsimony analysis and a posterior probability of 100 in the 

Bayesian analysis for its inclusion in the Bonamia spp. clade. All of the following 

sequences formed a monophyletic clade with B. exitiosa (AF337563 and DQ312295) and 

B. roughleyi (AF508801) in both analyses (bootstrap support = 78%, posterior probability 

= 99): the Bonamia spp. from O. edulis and O. conchaphila from California (JF831804 

and JF831805, respectively), O. chilensis from Chile (GQ366703 and AY860060), O. 

puelchana and O. equestris from Argentina (JF495409 and JF831801, respectively), O.
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stentina from Tunisia (GQ385242), O. edulis from Spain (EUO16528), O. auporia from 

New Zealand (JF831806), O. angasi and S. glomerata from Australia (JF495408 and 

JF831802, respectively), C. ariakensis from North Carolina and Florida (AY542903 and 

JF831807, respectively), O. chilensis from New Zealand (JF495410), and two partial 

Bonamia sp. SSU rDNA sequences from O. edulis from Italy (EU598800 and 

EU598801). Parsimony analysis portrayed this large clade as a strongly supported sister 

clade to the B. ostreae-B. perspora clade (bootstrap support = 100%), whereas Bayesian 

analysis indicated a less clear relationship between these two clades (posterior probability 

= 76). A B. perspora-B. ostreae clade was only weakly supported (bootstrap support =

51, posterior probability = 79).

Phylogenetic Analyses o f  Bonamia spp. ITS Region rDNA

Parsimony analysis of the ITS region rDNA data produced six well-supported 

clades in an unrooted 50% majority rule consensus tree (Figure 1.4). All o f the Bonamia 

sp. sequences found in O. sandvicensis from Hawaii formed a monophyletic clade 

(bootstrap support = 100) and in the analysis appeared sister to the monophyletic clade of

B. perspora (bootstrap support = 100). The B. ostreae sequences from Maine, California, 

France, and the Netherlands also formed a monophyletic clade (bootstrap support = 96) 

and appeared sister to the clade containing the Hawaiian Bonamia sp. sequences and B. 

perspora (bootstrap support =100). Sister to the B. ostreae clade (bootstrap support =

100) was a monophyletic clade containing all sequences that grouped with B. exitiosa/B. 

roughleyi in the SSU analyses (bootstrap support =100). Within this clade, the Bonamia 

sp. ITS region rDNA sequences found in O. edulis from California formed a distinct
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clade separate from the Bonamia sp. sequences found in O. chilensis from Chile. Each of 

these formed monophyletic clades (bootstrap support = 100) and a sister relationship 

between these sequences was weakly supported (bootstrap support = 77). This entire 

clade was sister to a monophyletic clade (bootstrap support = 88) of “type’"’ B. exitiosa 

ITS region rDNA sequences and Bonamia sp. sequences found in C. ariakensis from 

North Carolina and Florida, O. equestris from North Carolina and South Carolina, O. 

equestris and O. puelchana from Argentina, O. conchaphila from California, O. angasi 

and S. glomerata from Australia, O. auporia and O. chilensis from New Zealand, and O. 

stentina from Tunisia. Within the B. exitiosa clade, a weakly supported subclade 

(bootstrap = 70) contained sequences found only in O. conchaphila from California.

For the Bayesian analysis, MrModeltest v. 2.3 chose GTR + 1 + T (General Time 

Reversible model with a proportion of invariable sites and a gamma-shaped distribution 

of rates across sites) for the ITS region rDNA data. Forty million generations were 

performed (sample frequency = 1000), resulting in forty thousand trees with the first 

34,999 trees removed in order to compute the consensus. A 50% majority rule Bayesian 

consensus tree was generated based on the remaining 5,001 trees (Figure 1.5), and as in 

the parsimony analysis, there were six well-supported, monophyletic clades (posterior 

probabilities = 100). The topology, however, differed somewhat: the B. exitiosa clade 

appeared sister to the clade containing Bonamia sp. sequences found in O. edulis from 

California, and together appeared sister to the clade containing Bonamia sp. sequences 

found in O. chilensis from Chile (though this sister relationship was not supported, 

posterior probability = 69); and all of the Bonamia sp. sequences found in O.
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sandvicensis from Hawaii appeared sister to the monophyletic clade of B. ostreae 

sequences (posterior probability of sister relationship = 100).

Distance Analyses

Uncorrected p-distances, or the total number of base differences per site averaged 

over all sequence pairs, between Bonamia spp. clades as indicated by the SSU rDNA 

phylogenetic analyses are shown in Table 1.6. 1670 positions were analyzed in the final 

dataset. Uncorrected p-distances were comparable, ranging from 0.025 -  0.031, except 

between all described Bonamia spp. and the Hawaiian Bonamia sp. (0.084 — 0.086).

Table 1.7 shows the mean uncorrected p-distances, or number o f base 

substitutions per site averaged over all sequence pairs, within each Bonamia clade as 

indicated by the ITS rDNA phylogenetic analyses. The greatest uncorrected p-distance 

was among B. ostreae sequences and among the Hawaiian Bonamia sp. sequences. Mean 

uncorrected p-distances between each Bonamia clade as indicated by the ITS rDNA 

phylogenetic analyses is shown in Table 1.8. Estimates of divergence range from 0.094 to 

0.324. 717 total positions were analyzed in the ITS region rDNA final dataset containing 

242 B. exitiosa sequences, 27 Bonamia sp. sequences from Chilean O. chilensis, 17 

Hawaiian Bonamia sp. sequences, 19 Bonamia sp. from Californian O. edulis, 17 B. 

perspora sequences, and 315 . ostreae sequences.

Host Species Confirmation

Mitochondrial 16S rDNA sequencing of infected host species confirmed the 

morphological identifications of oysters. BLAST searches revealed that the O. edulis
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m tl6S rDNA sequence from California was identical to the O. edulis 16S rDNA 

sequences in GenBank (DQ093488 and DQ280032). The mtl6S rDNA sequence of O. 

auporia was 99% similar to O. equestris (AY376603) and O. auporia (AF052064). The 

O. conchaphila m tl6S rDNA sequence from California was identical to that o f Ostrea 

lurida from British Columbia, Canada (FJ768589), and molecular analyses suggest these 

may be synonymous (Poison et al. 2009). The O. sandvicensis m tl6S region rDNA was 

99% similar to the fingerprint oyster, Dendostrea crenulifera (syn. to Pustulostrea 

tuberculata Lamarck 1804 as reported in Carriker and Gaffney 1996; EU815984 and 

EU815985) and 94-95% similar to Alectryonella plicatula Gmelin 1790 (AF052072). 

There were no O. sandvicensis sequences in GenBank. Dr. Ami Wilbur at the University 

o f North Carolina Wilmington confirmed the identity of infected and Bonamia spp. PCR- 

positive O. equestris from Argentina, and the identity of O. stentina was confirmed in 

Hill et al. (2010).

Histopathology and In Situ Hybridization

Microcells were observed in at least one individual from each oyster host that was 

PCR-positive for Bonamia spp. except O. auporia from New Zealand. The histological 

presentation of the parasite in each host was typical: microcells characteristic of Bonamia 

spp. were found both extracellularly and within hemocytes, with no observation of more 

conventionally haplosporidian forms such as spores or large multinucleate plasmodia. 

Infections were light to moderate in intensity except in C. ariakensis, which can be 

heavily infected (Burreson et al. 2004), and light to moderate hemocytosis was typically 

observed as a host response. Disruption of tissue was only modest (Figures 1.6 -  1.8).
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In situ hybridization using digoxigenin-labeled probes was also performed on four

C. ariakensis from Florida, four O. conchaphila from California (three individuals from 

the 2004 sample and one individual from the 2009 sample), four O. edulis from 

California, and three O. auporia from New Zealand. Hybridization to the B. exitiosa/B. 

exitiosa-like specific probes, which target SSU rRNA, was observed in at least one of the 

oysters examined (Figures 1.9 and 1.10) from each species except for in O. auporia. Most 

infections were light. The O. conchaphila and O. edulis samples from California showed 

no hybridization to the B. ostreae-specific probe. All positive and negative controls 

performed as expected.

Fluorescent in situ hybridization was performed on O. sandvicensis from Hawaii 

using anti-sense probes HIBon-167 and HIBon-634 (Table 1.2) specific to this particular 

species. Hybridization was observed in one oyster that was diagnosed as a moderate, 

systemic infection by histopathology (Figure 1.10). The no-probe control showed no 

hybridization, and hybridization did not occur in samples infected with other known 

Bonamia species.

DISCUSSION

From this study, it is apparent that Bonamia species have a wider geographic and 

host distribution and are more diverse than first appreciated. Bonamia spp. were detected 

by PCR, histopathology, and ISH in almost every oyster host and location examined 

(Table 1.1). Bonamia exitiosa appears to be particularly widespread, infecting a variety of 

oyster hosts around the world; while B. ostreae and B. perspora seem to be host 

specialists maintaining well-defined geographic ranges. Cryptic Bonamia species
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diversity was also uncovered in Hawaiian O. sandvicensis and California O. edulis hosts, 

while B. roughleyi was not detected in any samples.

Bonamia exitiosa and Bonamia exitiosa-like species

BLAST searches (Altschul et al. 1997) and phylogenetic analyses of SSU and ITS 

region rDNA revealed the affinity of most Bonamia sp. sequences, found in hosts around 

the world, to B. exitiosa. In all phylogenetic analyses (Figures 1.2 -  1.4), Bonamia 

sequences found in C. ariakensis from Florida and North Carolina, O. equestris from 

North Carolina, South Carolina, and Argentina, O. puelchana from Argentina, O. 

conchaphila from California, O. angasi and S. glomerata from Australia, O. auporia 

from New Zealand, O. chilensis from New Zealand, and O. stentina from Tunisia 

appeared in the same clade as B. exitiosa (and B. roughleyi in the SSU rDNA 

phylogenetic analyses). Bonamia sequences from O. edulis from California and O. 

chilensis from Chile appeared in the B. exitiosa/B. roughleyi clade in SSU rDNA 

phylogenetic analyses (Figures 1.2 and 1.3), but had divergent ITS region rDNA 

sequences (Figures 1.4 and 1.5). Histological presentation of these divergent parasites 

was similar in all cases, as expected given the lack of morphological differentiation even 

between described species, so histopathology was not a useful for delineating these 

cryptic species. However, molecular data such as ITS region rDNA was useful for 

revealing diversity, and provide a guideline for what should be considered B. exitiosa and 

what is divergent. All the Bonamia sp. sequences appearing in the same clade as B. 

exitiosa in both the SSU and ITS region rDNA phylogenetic analyses should thus be 

considered B. exitiosa.

42



Because the Bonamia sp. in O. edulis from California and the Bonamia sp. in O. 

chilensis from Chile were only divergent from B. exitiosa in the ITS region rDNA (83- 

85% similarity, Table 1.5; 83-86% similarity to each other), but not in the SSU rDNA, I 

feel that it is appropriate for these species, and any other B. exitiosa species that have 

been identified based solely on SSU rDNA, to be considered exitiosa-Wko’’’ until 

additional loci have been characterized. A monophyletic clade with 100% bootstrap 

support in the parsimony analysis and a posterior probability of 100 in the Bayesian 

analysis unrooted consensus trees (Figures 1.4 and 1.5) contained B. exitiosa sequences 

as well as sequences from these two samples. Within this clade, there appear to be three 

distinct clades: the Bonamia sp. in O. edulis from California (bootstrap support = 100, 

posterior probability = 100), the Bonamia sp. in O. chilensis from Chile (bootstrap 

support = 100, posterior probability = 100), and B. exitiosa (bootstrap support = 88, 

posterior probability = 100). In the uncorrected p-distances analysis between Bonamia 

species in the ITS region rDNA, these three clades are more divergent from other 

Bonamia clades than from one another (Table 1.8). Because of this affinity, it is possible 

that these may be strains of B. exitiosa. However, it is possible that these species may be 

novel. Given the variability of ITS region rDNA, sequence alignments are not easy to 

verify. So, while the alignments and subsequent analyses are the best they can be, I would 

caution the use of this marker for phylogenetic analyses, especially since the parsimony 

and Bayesian analyses resulted in differing topologies. The usefulness of this marker lies 

in confirmation of species identity. As mentioned above, it is imperative that additional 

loci be developed for phylogenetic and distance analyses. The B. exitiosa clade also 

contains a weakly supported subclade in the parsimony analysis (bootstrap support = 70)
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that is composed entirely of sequences found in O. conchaphila from California (Figure 

1.4), which may represent incipient speciation of a lineage within B. exitiosa. This clade 

does not appear in the Bayesian analysis consensus tree (Figure 1.5); instead, B. exitiosa 

sequences from O. conchaphila are distributed throughout the clade.

A B. exitiosa-like parasite has never been documented in California prior to this 

study, but preliminary ISH data from our laboratory suggested that a B. exitiosa-like 

parasite was present in archival O. edulis tissue from 1968 (unpublished data). 

Experimental O. edulis were “fed” tissues of moribund O. edulis from Pigeon Point, 

California, and a microcell parasite was detected by histopathology and identified based 

on its morphology as B. ostreae (Farley et al. 1988). Reexamination of this same 

material using ISH found these microcells to instead be a B. exitiosa-like parasite. Based 

on the results from the archival material, it was not surprising to find a parasite whose 

morphology and SSU rDNA sequence was similar to B. exitiosa in contemporary O. 

edulis. This archival material, though, was the same material upon which the 

hypothesized introduction of B. ostreae from California to Europe was based (Katkansky 

et al. 1969). Because Bonamia species are nearly impossible to differentiate 

morphologically, we must question the validity of identifications that have been done 

previously based on morphology alone. Furthermore, we must question established 

hypotheses that have possible misidentifications as their basis.

Bonamia ostreae sequences, along with these B. exitiosa-\i)sQ sequences, were 

detected in O. edulis sampled in 2005. These data provide molecular confirmation of a 

contemporary presence of B. ostreae in California as documented morphologically by 

Friedman et al. (1989). However, there is no molecular evidence to date of the presence
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of B. ostreae prior to the 1970s when the introduction to Europe was proposed to occur 

(Elston et al. 1986). In addition, the current study found B. exitiosa, and not B. ostreae 

infecting the native California oyster, O. conchaphila, in Elkhom Slough— the proposed 

location of origin of B. ostreae. Finding no indication of B. ostreae in Elkhom Slough in 

these samples gives further cause to question the origins of this parasite and the source 

for its introduction to Europe— expecting that the native oyster would harbor the parasite 

if, in fact, it were endemic.

Histopathology and ISH provided visual confirmation of infections for all B. 

exitiosa and B. exitiosa-like species (Figures 1.6 and 1.7), except for the Bonamia sp. 

found in O. auporia from New Zealand. For these particular samples, there was 

considerable tissue loss during the slide washing process, so it is possible that Bonamia 

cells were lost along with the tissue. Because of this, the experiment was repeated several 

times and multiple sections/slides had to be cut from a block where Bonamia cells were 

detected by PCR. Thus, a localized infection could have been missed when subsequent 

ISH experiments were performed. Ostrea auporia, however, appears to be conspecific to 

O. equestris and O. stentina (Shilts et al. 2007), and the specific probes did exhibit 

hybridization to the Bonamia sp. within these species’ tissues. Therefore, it is quite 

plausible that B. exitiosa also infects O. auporia in New Zealand.

Furthermore, the conspecificity of these three hosts present in nonadjacent 

geographic locations— O. equestris along the western Atlantic coast, O. auporia in New 

Zealand, and O. stentina in the Mediterranean—may help explain the near cosmopolitan 

distribution of the parasite. However, it also appears that B. exitiosa has developed a host 

generalist strategy and perhaps this has also aided its dispersal around the world.
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Bonamia sp. in Ostrea sandvicensis from  Hawaii

As mentioned above, SSU rDNA sequences do not provide sufficient resolution to 

distinguish some Bonamia species, but sequence similarity and phylogenetic analyses 

based on this region do suggest that the species found in O. sandvicensis from Hawaii is a 

novel species.

It was expected that the putative Bonamia sp. SSU rDNA sequence found in O. 

sandvicensis would be yet another observation of a B. exitiosa-like species, since a B. 

exitiosa-\ike parasite was detected by ISH in archival C. gigas tissue sections taken in 

1972 from Hawaii (unpublished data). However, when contemporary sequences were 

compared to those from other described Bonamia spp., they were only 90-91% similar, 

when the identity between currently described Bonamia species only varies between 94 

and 98%, and it was 85% similar to SSU rDNA of M  tapetis (AY449710) and M  

mercenariae (FJ518816), species within the sister genus to Bonamia in the 

haplosporidian phylogeny (Reece et al. 2004). The variability in SSU rDNA between 

Bonamia species is minimal when compared to other closely related taxa, such as 

Minchinia species, where similarity ranges from 86 to 91% between SSU rDNA 

sequences of differing species within the genus (from BLAST results). Based on SSU 

rDNA sequencing data alone, then, it is unlikely that the Bonamia sp. from Hawaii is B. 

exitiosa or any other described species, but appears to be a novel Bonamia or Minchinia 

species. The morphology of the parasite, though, fits the description of a typical Bonamia 

species: a 2-3-pm, uninucleate cell predominantly associated with hemocytes (Figure 

1.8), while the morphology of Minchinia species is distinct. Therefore, while this
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Bonamia sp. is more unlike other Bonamia species than currently described Bonamia 

species are to one another, the morphology supports its inclusion in the genus Bonamia.

Furthermore, in SSU rDNA sequence phylogenetic analyses, the Hawaiian 

Bonamia sp. appears at the base of the clade containing the other Bonamia species 

sequences, with strong support for its inclusion in the Bonamia clade (Figures 1.2 and 

1.3). The ITS region rDNA analyses give further support for this being a distinct species 

as the Bonamia sp. sequences obtained from O. sandvicensis form a distinct 

monophyletic clade in unrooted trees (Figures 1.4 and 1.5). The basal position of this 

novel species in the SSU rDNA analyses poses the question: did Bonamia parasites, 

known for inhabiting oysters in more temperate climates, evolve from more tropical 

origins?

The oyster host itself, O. sandvicensis, may provide further support for a tropical 

origin of Bonamia parasites as well. Sequencing partial 16S host mtDNA produced a 

surprising result: O. sandvicensis appears to have a closer affinity to Lophinae genera 

(Lopha, Alectryonella, and Dendostrea) than to Ostreinae genera (Ostrea, Ostreola, 

Cryptostrea, and Teskeyostrea). Members of the subfamily Lophinae are thought to be 

older evolutionarily than those comprising Ostreinae based on paleontological (Stenzel 

1971) and molecular evidence (partial 28S rDNA in Littlewood 1994 and 16S mtDNA in 

Jozefowicz and O Foighil 1998). Therefore, the SSU rDNA phylogenetic analyses’ 

placement of the Hawaiian Bonamia sp. at the base of the entire Bonamia clade might be 

correct, and a tropical origin of Bonamia species may be plausible. Additional loci, such 

as COI or actin, need to be developed for Bonamia species and additional tropical oyster 

species need to be examined in order to determine if this hypothesis is supported at
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multiple loci. However, these results give some insight as to where to direct future 

research efforts in order to further explore the origins of Bonamia.

Bonamia ostreae and Bonamia perspora

Based on the locations surveyed and previous studies, it appears that both B. 

ostreae and B. perspora are host specialists and maintain limited geographic ranges 

compared to that of B. exitiosa. Bonamia ostreae has only been detected in O. edulis, and 

this study proved no different. Putative Bonamia sp. SSU and ITS region rDNA 

sequences found in O. edulis from the Netherlands and some sequences found in O. 

edulis from California are within the same clade as B. ostreae from Maine and France 

(Figures 1.2 -  1.5). This study did not examine southern hemispheric O. edulis, which 

have been reported to occur in Australia (Morton et al. 2003) and in South Africa (Haupt 

et al. 2010; FAO 2007). Therefore, it is possible that B. ostreae is present within its type 

host in the Southern Hemisphere. A host specialist strategy and a potential inability to 

survive variable environmental conditions (i.e., requiring cool, temperate climates) may 

provide barriers to dispersal for this particular species.

The data collected to date suggest that B. perspora, like B. ostreae, is also a host 

specialist, but has an even more limited geographic distribution. Bonamia perspora has 

only been detected in O. equestris from North Carolina (Carnegie et al. 2006). Despite 

the conspecificity of O. auporia and O. stentina to O. equestris (Shilts et al. 2007) as 

mentioned earlier, B. perspora was not found within these hosts in New Zealand or 

Tunisia, respectively. One explanation could be that B. perspora has only been found at 

very low prevalence (<5.6% prevalence; Carnegie et al. 2006), so perhaps larger sample
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sizes will be needed in order to find this parasite elsewhere. Alternatively, B. perspora 

could have been established in North Carolina O. equestris after the geographic 

disjunction of the conspecific hosts. More sampling would need to be done in order to 

test either hypothesis.

The phylogenetic relationship between these two species, however, is as yet 

unresolved. In the SSU rDNA analyses, the clade containing B. ostreae and B. perspora 

is sister to the entire B. exitiosa/B. roughleyi/B. exitiosa-like clade (Figures 1.2 and 1.3). 

However, neither the Bayesian or parsimony analyses of the SSU rDNA sequences 

resolve the relationship between B. ostreae and B. perspora sequences (bootstrap support 

= 51, Figure 1.2; posterior probability = 79; Figure 1.3). The unrooted parsimony 

consensus tree of ITS region rDNA analysis shows an alternative hypothesis with B. 

ostreae sister to a clade containing both B. perspora and the Hawaiian Bonamia sp. 

(bootstrap support = 100; Figure 1.4), while the Bayesian analysis suggests that B. 

perspora is sister to a clade containing both B. ostreae and the Hawaiian Bonamia sp. 

(posterior probability = 100; Figure 1.5). Again, additional loci should be developed in 

order to determine this interspecific relationship. The phylogenetic relationships between 

species in the ITS region DNA analysis should especially be regarded cautiously given 

the variability in this region.

No Detection o f  Bonamia Species

There were some hosts and locations where Bonamia spp. were not detected by 

PCR (Table 1.1). Saccostrea glomerata from New Zealand were all PCR negative for 

Bonamia spp., and this was somewhat surprising since B. exitiosa was detected in O.
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auporia in the Tamaki Estuary, just 150-200 km south of Whangarei Harbour where the 

S. glomerata samples screened for this study were collected. Furthermore, B. exitiosa was 

found in other S. glomerata samples from Australia (Table 1.1). Bonamia spp. were not 

detected in O. conchaphila from Drakes Estero, California or from Lemmens Inlet,

British Columbia, while B. exitiosa was detected in O. conchaphila at other locations in 

this study. Because Bonamia spp. are known to infect both S. glomerata and O. 

conchaphila, it is possible that the parasite is simply not present at these specific 

locations. However, the sample sizes may have been too small to detect the parasite(s) if 

the prevalence was low.

Bonamia spp. were also not detected by PCR in an Isognomon sp. from Florida, 

Ostrea denselamellosa from Japan, or S. cucullata from New Zealand. Bonamia spp. 

have never been documented in these hosts, so perhaps Bonamia parasites do not infect 

these oyster species, the parasite(s) are not present at these locations, and/or the sample 

sizes were too small to capture a parasite at low prevalence, particularly since PCR 

prevalence of some samples was very low (e.g., 0.5% in a sample of 200 S. glomerata 

from Australia).

The type B. roughleyi SSU rDNA sequence was also not found in any sample at 

any location. As mentioned earlier, Hill et al. (2010) questioned the validity of this 

species, and not finding it, even after screening 200 S. glomerata in Australia, its type 

host and locality, during the peak of disease (August 2007), makes the legitimacy of B. 

roughleyi even more suspect.
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Conclusions

The diversity of Bonamia species is far greater than previous studies indicated. By 

examining little-studied oyster hosts from around the world, we revealed one new species 

in Hawaii, and perhaps two new species or subspecies in Chile and California (based on 

the ITS region rDNA parsimony analysis). The Hawaiian Bonamia sp. appears basal to 

all other Bonamia sp. in SSU rDNA analyses, suggesting that Bonamia parasites may 

have evolved from more tropical locations. SSU rDNA, however, does not provide 

sufficient resolution of all Bonamia species diversity, and therefore should not be used 

for absolute identification of species. Instead, the ITS region rDNA, which seems to 

provide a means of providing distinction between some currently defined species, like B. 

exitiosa, would be useful for species delineation. Developing ISH probes that target ITS 

region rDNA— knowing that there is potential variation within B. exitiosa or even distinct 

species— may be part of the solution. Additional loci need to be developed as well in 

order to confirm or refute the hypotheses suggested by the SSU and ITS region rDNA 

phylogenetic analyses in this study.
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TABLE 1.4

Bonamia
species

Sampling
Location Host species GenBank Accession Nos.

B. exitiosa FL, USA C. ariakensis JF712867- JF712869

B. exitiosa NC, USA C. ariakensis
EU709024 - EU709031, EU709037, EU709038, 
EU709043 - EU709045, EU709051, EU709053

B. exitiosa NC & SC, USA 0 . equestris
JF831575 - JF831580, JF831585 - JF831590, 
JF831592 - JF831594, JF831596 - JF831599, 

JF831601,JF831602

B. exitiosa ARG 0. equestris JF831556, JF831557, JF831559 - JF831563, 
JF831565-JF831574

B. exitiosa ARG 0. puelchana

EU709055, EU709057, EU709058, EU709060, 
EU709061, EU709063, EU709064, EU709067, 
EU709068, JF831603 - JF831615, JF831617 - 

JF831624, JF831627 -JF831638

B. exitiosa NZL O. chilensis
EU709069, EU709071, EU709073 - EU709075, 

JF831639 -JF831657
B. exitiosa NZL 0. auporia JF831658 - JF831669, JF831671 - JF831677
B. exitiosa AUS 0. angasi EU780688 - EU780692, JF831678 - JF831680
B. exitiosa AUS S. glomerata JF831681 - JF831684

B. exitiosa TUN 0. stentina
GU356032 - GU356035, JF831685 - JF831689, 

JF831691 - JF831713, JF831715 - JF831718

B. exitiosa CA, USA 0. conchaphila

JF831719 - JF831738, JF831740, JF831741, 
JF831743 - JF831761, JF831763 - JF831767, 
JF831769 - JF831774, JF831776, JF831778 - 
JF831788, JF831790, JF831792 - JF831800

B. ostreae CA, USA 0. edulis JF831830 - JF831840, JF831842 - JF831848
B. ostreae ME, USA 0. edulis EU709105 - EU709111
B. ostreae NLD 0. edulis JF831857- JF831862

B. perspora NC, USA O. equestris
EU709112, EU709115 - EU709121, 

EU709123 - EU709129
Bonamia sp. HI, USA O. sandvicensis JF831863 -JF 831879

Bonamia sp. CA, USA O. edulis
JF831808 - JF831818, JF831820, JF831821, 
JF831823 - JF831825, JF831827 - JF831829

Bonamia sp. CHL 0. chilensis

EU709079, EU709080. EU709082, EU709084, 
EU709086, EU709087, EU709091, EU709093, 

EU709095, EU709098, EU709102, 
JF831849 - JF831856

GenBank accession numbers of Bonamia spp. ITS region rDNA sequences.
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TABLE 1.5

Bonamia  sp. host and location Percent Sim ilarity to B. exitiosa 
ITS region rDNA

C. ariakensis (Florida) 98%
O. equestris (North & South Carolina) 98-99%

O. equestris (Argentina) 98-100%
O. puelchana (Argentina) 98-100%
O. auporia (New Zealand) 98-100%

O. angasi (Australia) 98-99%
S. glomerata (Australia) 99-100%

O. conchaphila (California) 98-99%
O. chilensis (Chile) 83-85%

O. edulis (California) 84-85%

Percent sequence similarity in the ITS region rDNA among Bonamia exitiosa

and B. exitiosa-like species as determined by SSU rDNA sequencing and phylogenetic

analyses.
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TABLE 1.6

Group
Bonamia
exitiosa

Hawaiian 
Bonamia sp.

Bonamia
ostreae

Bonamia
perspora

Minchinia
spp.

Bonamia exitiosa -

Hawaiian Bonamia sp. 0.086 -

Bonamia ostreae 0.031 0.086 -

Bonamia perspora 0.025 0.084 0.029 -

Minchinia spp. 0.125 0.153 0.131 0.128 -

Mean uncorrected p-distances among Bonamia spp. means and the outgroup Minchinia 

spp. for the SSU rDNA dataset. Numbers in gray indicate the standard error estimates

obtained by 1000 bootstrap replicates.
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TABLE 1.7

Bonamia  clade p-distance
No. of sequences 

analyzed
B. exitiosa 0.005 242

Chilean Bonamia sp. in O. chilensis 0.007 27
Hawaiian Bonamia sp. in O. sandvicensis 0.020 17
Californian Bonamia sp. from O. edulis 0.004 19

B. perspora 0.005 17
B. ostreae 0.020 31

Mean uncorrected p-distances within Bonamia clades for the ITS region rDNA dataset.

TABLE 1.8

Group
Bonamia
exitiosa

Bonamia sp. 
(HI, USA)

Bonamia sp. 
(CHI)

Bonamia sp. 
(CA, USA)

Bonamia
perspora

Bonamia
ostreae

Bonamia exitiosa -

Bonamia sp. (HI, USA) 0.298 - ".9J.2 i 1'.1 ! 2 o. o:u

Bonamia sp. (CHI) 0.094 0.284 - ■! i1.! 1 1 ! i:?;

Bonamia sp. (CA, USA) 0.104 0.324 0.169 -

Bonamia perspora 0.275 0.259 0.295 0.292 -

Bonamia ostreae 0.263 0.313 0.292 0.286 0.281

Mean uncorrected p-distances among Bonamia spp. for the ITS region rDNA dataset. 

Numbers in gray indicate the standard error estimates obtained by 1000 bootstrap

replicates.
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FIGURE 1.1

Ribosomal RNA Gene Complex

ETS

SSU

ITS-1 ITS-2 

|  5.8S | LSU

NTS-1 NTS-2

. I j l I

SSU
-1750  bp

ITS-1 mmm ITS-2 LSU

16S-A Bon-319F Bon-745R Bon-925F Bon-1310F 16S-B

Bon-524R Bon-927R Bon-990R haplo-ITSf 

CF Bon-1110R CR

ITS-B

Hypothetical, schematic depiction of the ribosomal RNA gene complex of Bonamia 

species. Arrows indicate PCR primer binding sites. Forward primers (F) were matched 

with reverse primers (R), and colors indicate which primers were used in combination.
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FIGURE 1.2

— 10 changes
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I Bonamia sp. (O. edulis, CA. USA; JF831804) 

Bonamia sp (O puelchana. ARG; JF495409) 

Bonamia sp. (O. stentina, TUN; GQ385242) 

Bonamia sp. (O. edulis. SPA; EU016528)

Bonamia sp. (O. conchaphila. CA, USA; JF831805) 

Bonamia sp. (O. auporia, NZL; JF831806)

Bonamia sp. (O. angasi, AUS; JF495408)

Bonamia sp. (S. glomerata. AUS; JF831802) 

Bonamia sp (C. ariakensis. FL, USA; JF831807) 

Bonamia sp. (O. edulis. ITA; EU598801)

Bonamia sp. (O. edulis. ITA; EU598800)

I  Bonamia sp. (O. chilensis, CHI; GQ366703) 

Bonamia sp. (C. ariakensis. NC. USA; AY542903) 

g4 Bonamia sp. (O. chilensis. CHI: AY860060) 

Bonamia roughleyi (AUS; AF508801)

Bonamia sp. (O. eQuestris. ARG; JF831801) 

Bonamia exitiosa (DQ312295)

Bonamia exitiosa (AF337563)

Bonamia exitiosa (NZL; JF495410) 

gg r Bonamia ostreae (ME. USA AF262995)

I Bonamia ostreae (FRA; AF192759)

 Bonamia perspora (DQ356000)

------------Bonamia sp. (O. sandvicensis. HI. USA; JF831803)

--------------------------  Minchinia teredinis (U20319)

Minchinia chitonis (AY449711)

Minchinia mercenariae (FJ518816)

-------------  Minchinia tapetis (AY449710)

B onam ia  spp. SSU rDNA consensus phylogram. Parsimony analysis (1000 bootstrap replicates with 

100 random additions) based on 285 informative characters performed in PAUP* 4.0bl0 (Swofford 2002) 

following alignment of Bonamia spp. SSU rDNA sequences using MAFFT v. 6 (Katoh and Toh 2008). 

Gaps were treated as missing. Minchinia species were chosen as the outgroup. Colors indicate distinct

Bonamia lineages.
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FIGURE 1.3
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Bonamia sp. in O. edulis (CA. USA; JF831804) 

Bonamia sp. in O chilensis (CHL; GQ366703) 

Bonamia sp. in O. puelchana (ARG; JF495409) 

Bonamia sp. in O. stentina {TUN; GQ385242) 

Bonamia sp. in O. edulis {SPA; EU016528)

Bonamia sp. in O. conchaphila (CA. USA; JF831805) 

Bonamia sp. in O. auporia (NZL; JF831806)

Bonamia sp. in O. angasi (AUS; JF495408)

Bonamia sp. in S. glomerata (AUS; JF831802) 

Bonamia sp. in C. ariakensis (FL. USA; JF831807) 

Bonamia sp. in O. edulis {ITA; EU598801)

Bonamia sp. in O. edulis (ITA; EU598800)

Bonamia sp. in C. ariakensis (NC. USA; AY542903) 

Bonamia sp. in O. chilensis (CHL; AY860060) 

Bonamia roughleyi (AUS; AF508801)

Bonamia sp. in O. equestris (ARG; JF831802)

8. extoosa (AUS; DQ312295) 

a  exitiosa (NZL; JF495410)

B exitiosa (NZL; AF337563)

8. ostreae (ME. USA; AF262995)

8. ostreae (FRA. AF192759)

S. perspora (NC. USA; DG356000)

Bonamia sp. (HI, USA; JF831803)

Minichinia tendinis (MTU20319)

Mtnichima chitonis (AY449711)

Minchinia mercenariae (FJ518816)

Minchinia tapetis (AY449710)

B onam ia  spp. SSU rDNA Bayesian 50% majority rule consensus tree. Bayesian inference analysis 

conducted in MrBayes v. 3.1.2 (Ronquist and Huesenbeck 2003) using model GTR + I + T, as determined 

by MrModeltest v. 2.3, following alignment using MAFFT v. 6 (Katoh and Toh 2008) of Bonamia spp. 

SSU rDNA sequences. Ten thousand trees were produced (10,000,000 generations, sample freq. = 1000), 

with 25% removed as bumin. The consensus tree was generated using PAUP *4.0bl0 (Swofford 2002) 

using Minchinia species as the outgroup. Colors indicate distinct Bonamia lineages.
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FIGURE 1.4

a

B onam ia  spp. ITS region rDNA unrooted parsimony consensus tree (50% majority rule). 

Parsimony analysis (100 bootstrap replicates with 10 random additions) conducted using a new technology 

search in TNT v. 1.1 (Goloboff, Farris, and Nixon 2008) following alignment in MAFFT v. 6 (Katoh and 

Toh 2008) of Bonamia spp. ITS region rDNA sequences. The consensus tree was generated using 

PAUP*bl0 (Swofford 2002). Colors indicate distinct Bonamia lineages.

Bonamia sp. from O. sandvicensis (HI, USA)

Bonamia sp. in O. edulis 
(CA, USA)

B. perspora

ostreae

B. exitiosa Bonamia sp. in O. chilensis 
(CHI)
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FIGURE 1.5

B. ostreae

Bonamia sp. from O. sandvicensis 
(HI. USA)

B. exitiosa
Bonamia sp. in O. edulis 

(CA, USA)

S. perspora
Bonamia sp. in O. chilensis 

(CHI)

Bonamia spp. ITS region rDNA unrooted Bayesian consensus tree (50% majority rule). Bayesian 

inference analysis conducted in MrBayes v. 3.1.2 (Ronquist and Huesenbeck 2003) using model GTR + 1 + 

T, as determined by MrModeltest v. 2.3, following alignment using MAFFT v. 6 (Katoh and Toh 2008) of 

Bonamia spp. ITS region rDNA sequences. Forty thousand trees were produced (40,000,000 generations, 

sample freq. = 1000), with the first 34,999 trees removed in order to compute a consensus tree. A 

consensus of the remaining 5,001 trees was generated using PAUP*bl0 (Swofford 2002). Colors indicate

distinct Bonamia lineages.
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FIGURES 1 .6 -1 .8

Light microscopy of Bonamia spp. in H & E-stained oyster tissue sections. 1.6. Bonamia 

exitiosa microcells (arrows) in an Ostrea conchaphila section from California. 1.7. 

Bonamia exitiosa-like sp. microcell (arrow) in an Ostrea edulis section from California. 

1.8. Bonamia sp. microcell (arrow) in the gills of an Ostrea sandvicensis section from 

Hawaii.

FIGURES 1 .9 -1 .1 1  

1.9 1.10 1.11

1 . ’ ; ":

In situ hybridization (ISH) images for molecular confirmation of histopathological 

diagnoses. 1.9. Hybridization of digoxigenin-labeled probes to Bonamia exitiosa in 

Ostrea conchaphila from California. 1.10. Hybridization of digoxigenin-labeled probes to 

a Bonamia exitiosa-\ike sp. in O. edulis from California. 1.11. Fluorescent in situ 

hybridization to the Bonamia sp. in O. sandvicensis from Hawaii.
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CHAPTER TWO: Observation of a Novel Bonamia sp. (Haplosporidia) Infecting 

Ostrea sandvicensis Sowerby, 1871 in Hawaii, USA
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INTRODUCTION

Protistan parasites of oysters within the genus Bonamia (Haplosporidia) are being 

observed in an increasing number of locations and hosts around the world (Chapter One). 

Bonamia exitiosa appears to have a near-global distribution, while Bonamia ostreae and 

Bonamia perspora seem to be confined to their type hosts, Ostrea edulis and Ostrea 

equestris, respectively, within the Northern Hemisphere. The relationships between these 

described species have yet to be fully resolved, however, and the evolutionary origins of 

Bonamia species are still unknown.

Most disease studies focus on commercially important oyster species, and thus 

our knowledge revolves around what we know about parasites and disease in these few 

species. Non-commercial oyster species are little studied, but could play an important 

role in the evolution of oyster parasites, such as Bonamia species, and help fill in 

phylogenetic gaps.

Ostrea sandvicensis Sowerby, 1871 is a small, non-commercial oyster that 

inhabits brackish to mixoeuhaline waters of the Hawaiian Islands and is commonly found 

on reefs in Kaneohe Bay and Ala Moana, Oahu, Hawaii (Carriker and Gaffney 1996). In 

an effort to better understand the host and geographic distribution of the genus Bonamia 

(Chapter One), this little-studied oyster species was examined. Histopathology revealed 

the presence of a microcell parasite that is identical morphologically to B. exitiosa. 

However, molecular techniques (PCR, sequencing of the SSU rDNA gene, and in situ 

hybridization) revealed the presence of a novel Bonamia species. Results of phylogenetic 

analyses that include this Hawaiian Bonamia sp. shed light on the origins of Bonamia 

parasites.
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MATERIALS AND METHODS

Sample Collection

Ostrea sandvicensis were collected by snorkeling in June 2006 (n=120) and 

October 2007 (n=60) from coral reefs in Kaneohe Bay, Hawaii—just a few meters from 

the shore of Coconut Island where the Hawaiian Institute of Marine Biology is located 

(Figure 1). Shell heights were measured, and oysters were shucked, with small pieces of 

gill and mantle tissue (—3-5 mm ) preserved in 95% ethanol for molecular analyses. For 

the 2007 sample, sections of remaining gill, mantle and digestive gland tissues were fixed 

for standard histopathology in Davidson’s fixative (Shaw and Battle 1957), and then 

transferred to 70% ethanol. All instruments used for dissection were sterilized with 95% 

ethanol and flamed between each sample. Samples were brought back to the Shellfish 

Pathology Laboratory at the Virginia Institute of Marine Science for further processing.

Histology, DNA extraction and Bonamia-generic PCR, Bonamia sp. SSU and ITS 

region rDNA sequencing, sequence alignments, distance analyses, molecular 

phylogenetics, fluorescent ISH, and oyster host mitochondrial 16S sequencing were done 

as in Chapter One.

RESULTS

Bonamia-generic PCR

Evaluation of 120 O. sandvicensis from Kaneohe Bay, Hawaii, sampled June 

2006, revealed 79 oysters (65.8%) PCR-positive for a Bonamia sp. using the Bon- 

319F/Bon-524R assay. Evaluation of 60 O. sandvicensis from the same location sampled 

in October 2007 revealed similar results, with 42 oysters (70.0%) PCR-positive for a 

Bonamia sp. using the same Bonamia-generic assay.
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SSU rDNA Sequencing and Phylogenetic Results

PCR-cloning and DNA sequencing of the SSU rDNA from the Bonamia sp. 

infecting O. sandvicensis produced a 1766-bp sequence: a consensus of one to seven 

clones from two individual oysters. This sequence was submitted to GenBank and given 

accession number JF831803, and has an ambiguity at base 114 where four clones had a T 

and four had an A. This sequence was aligned with SSU rDNA sequences from GenBank 

and other sequences generated in Chapter One, and then analyzed by parsimony and 

Bayesian methods using species from the genus Minchinia, which is sister to Bonamia in 

the haplosporidian phylogeny, as an outgroup. Both trees converged on similar topologies 

(Figures 1.2 and 1.3), where the Bonamia sp. from Hawaii appeared basal to the entire 

Bonamia clade (bootstrap support = 100; posterior probability = 100).

ITS Region rDNA Sequencing and Phylogenetic Results

PCR-cloning and DNA sequencing of the parasite’s ITS rDNA region produced 

17 unique sequences from 17 clones that differed greatly, ranging from 79.2 to 99.7% 

similarity to one another. Length varied from 615-616 to 712-720 bps (GenBank 

Accession numbers JF831863 -  JF831879). Parsimony and Bayesian analyses showed 

the sequences from this Bonamia sp. to be monophyletic (Figures 1.4 and 1.5).

Histopathology and Fluorescent ISH

Subsequent histopathological examination of 25 oysters from the October 2007 

PCR-positive samples confirmed the presence of small numbers of uninucleate Bonamia 

sp. cells (three oysters had rare, multifocal infections; three oysters had rare, local

68



infections; one oyster had a moderate, systemic infection; and no Bonamia sp. microcells 

were found in 18 oysters). Heavy hemocyte infiltration was observed in the oyster with a 

moderate, systemic infection (Figure 1.8) as well as the disintegration of gill connective 

tissue. Digestive tubules appeared atrophied, and the epithelium seemed to be sloughing 

off into the lumen. Microcells were located within the digestive gland and in the gills. Bi- 

nucleate, tri-nucleate, and multinucleate cell forms were observed, and most microcells 

were found within hemocytes, though a few were found in the connective tissue. Some 

microcells also had a vacuole in the center with marginalized chromatin.

Fluorescent in situ hybridization on the Bonamia sp.-infected O. sandvicensis 

section was positive, indicating the presence of the unique SSU rDNA of this Bonamia 

sp. (Figure 1.11).

Host Species Confirmation

DNA sequencing of the m tl6S region of the oyster host generated a 439-486 bp 

product. Performing a BLAST (Altschul et al. 1990) search of these sequences showed 

99% maximum identity to Dendostrea crenulifera (syn. to Pustulostrea tuberculata 

(Lamarck 1804) (Carriker and Gaffney 1996)) (89-93% query coverage; GenBank 

accession numbers EU815984 and EU815985) and 94-95% maximum identity to 

Alectryonellaplicatula (Gmelin 1790), the fingerprint oyster (91-94% query coverage, 

GenBank accession number AF052072). There are no O. sandvicensis sequences in 

GenBank.
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Genetic Distance

Uncorrected p-distances, or the total number of base differences per site averaged 

over all sequence pairs, between the Hawaiian Bonamia sp. clade and other Bonamia 

species as indicated by the SSU rDNA phylogenetic analyses is shown in Table 1.6. 1670 

positions were analyzed in the final dataset. Uncorrected p-distances among all described 

Bonamia spp. and the Hawaiian Bonamia sp. ranged from 0.084 -  0.086, while 

uncorrected p-distances among all described species ranged from 0.25 -  0.031.

DISCUSSION

Bonamia sp. in Ostrea sandvicensis

Diagnosis. Infections were found mainly within hemocytes, though some cells were 

found in connective tissue. Uninucleate and binucleate cells were common, and some 

multinucleate plasmodia were present. The cells were almost exclusively contained inside 

hemocytes, in all tissues and organs (i.e., there was no particular tissue tropism). Nuclei 

were central to slightly eccentric—not strongly eccentric, like B. ostreae. Cell diameters 

were measured (n = 30) in the one host in which the parasite was abundant (moderate 

infection by histopathology) and the mean diameter (+/- 1 SEM) was 2.83 ± 0.07 pm), 

ranging from 2.19-3.91 pm. This one individual displayed some general hemocytosis, but 

this could have related partly to co-infection by cestodes.

DNA nucleotide sequences. In phylogenetic analyses, nucleotide sequences from the 

SSU rRNA gene and ITS region rDNA form distinct monophyletic clades, separate from 

those of other known Bonamia species including B. exitiosa/B. roughleyi, B. ostreae, and 

B. perspora.
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Reference m aterial deposited. Replicate H&E-stained histological sections from 

infected O. sandvicensis oysters that were confirmed by PCR and ISH assays to be 

infected with Bonamia sp. will be deposited as reference materials with the United States 

Department of Agriculture National Parasite Collection (USNPC) and with the Office 

Intemationaldes Epizooties (OIE) genus Bonamia reference collection at IFREMER, 

Laboratoire de Genetique Aquaculture et Pathologie. Nucleotide sequences of the SSU 

rRNA gene and ITS region rDNA were deposited in GenBank under accession numbers 

JF831803 and JF831863 -  JF831879, respectively.

Type host. Ostrea sandvicensis.

Type locality. Kaneohe Bay, Hawaii, USA (19°43' 46" N, 155°4' 7" W).

A novel Bonamia species was detected in O. sandvicensis in Hawaii based on 

SSU and ITS region rDNA sequencing data. Morphologically, the predominant cell form 

is identical to the small, uninucleate microcell typical of B. exitiosa infections. However, 

when SSU rDNA data is examined, this parasite clearly forms a monophyletic clade—  

separate from other Bonamia species, but clearly within the genus. Bonamia ostreae, B. 

perspora, B. exitiosa, and now this novel species vary sufficiently in the SSU rDNA to 

produce separate, monophyletic clades (Figures 1.2 and 1.3). Furthermore, the Hawaiian 

Bonamia sp. forms a distinct, monophyletic clade in the ITS region rDNA phylogenetic 

analysis (Figures 1.4 and 1.5), and thereby provides further justification for the 

designation of the Hawaiian Bonamia sp. as a new species. While morphology remains 

quintessential to taxonomical classification, its usefulness is limited for the genus 

Bonamia as morphological distinctions at the species level are not evident using light
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microscopy or transmission electron microscopy. Therefore, molecular methods of 

divergence must be employed.

By definition Bonamia parasites are small (2-3 pm), uninucleate “microcells” 

(Pichot et al. 1980). Because these cell forms are indistinguishable at the species and 

even genus level {Bonamia species vs. Mikrocytos species), misidentifications have 

occurred— emphasizing and exposing the limitations of histopathological methods for 

discriminating species o f microcell parasites, Bonamia specifically. A microcell parasite 

was detected in C. gigas from Hawaii in 1972 (Farley et al. 1988), and reexamination of 

the tissue using in situ hybridization revealed that it was a Bonamia exitiosa-like species 

based on SSU rDNA probes, not Mikrocytos mackini, another microcell parasite, as 

originally identified using histopathology. It was surprising, then, to find a cryptic 

Bonamia sp. in O. sandvicensis, though more sampling is needed to determine if the B. 

exitiosa-Mke species is contemporarily present.

The presence/absence of certain cell forms also cannot serve as morphological 

indicators of Bonamia species since production of certain cell forms, such as spores, 

could vary due to stress or other environmental conditions. Until the observation of 

spores in B. perspora (Carnegie et al. 2006), it was thought that Bonamia was a genus of 

non-spore formers within a phylum of spore-forming protists. Using characters that may 

be influenced by processes other than evolution have the potential to confound 

phylogenetic analyses. So, ultrastructural characters were often used to define species of 

Bonamia, such as diameter of cells, nuclei, or haplosporosomes. However, these 

dimensions overlap for all species (see Table 4 in Carnegie et al. 2006), rendering
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ultrastructure problematic for species designation as well. Less confounding methods for 

determining species boundaries and relatedness must therefore be considered.

Molecular analyses have been increasingly used to characterize and classify 

closely related taxa. DNA analyses have limitations as well, but when taxa are 

indistinguishable morphologically such as Bonamia species, great strides can be made in 

the clarification of taxonomy and phylogenic relationships using these techniques: 

including “safeguarding against duplicate taxonomic descriptions” (Tautz et al. 2002). 

Genomic DNA sequences also do not vary with life stage or developmental phase or with 

varying hosts and/or tissue locations (Berthe et al. 1999). These analyses are also less 

subjective and would therefore decrease the chances of misidentification.

The rRNA gene complex has been used most commonly in examining the 

relationships o f members within the phylum Haplosporidia (Flores et al. 1996; Carnegie 

et al. 2000, Reece and Stokes 2003; Cochennec-Laureau et al. 2003; Reece et al. 2004; 

Burreson and Reece 2006; Carnegie et al. 2006). SSU rDNA is also used in barcoding (e.g., 

Chantangsi and Leander 2010). Here, the SSU rRNA gene is used to reconstruct the 

phylogeny of Bonamia parasites, and allows for identification of a novel Bonamia species 

when paired with histopathological confirmation.

Further support for the Hawaiian Bonamia sp. being novel lies in the identity of 

the host, which most likely belongs to the subfamily Lophinae. Partial O. sandvicensis 

16S mtDNA was sequenced, and a BLAST search revealed similarity to Dendostrea and 

Alectryonella species, which belong to the subfamily Lophinae within the family 

Ostreidae. This molecular evidence suggests that O. sandvicensis has a closer affinity to
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lophine genera (Lopha, Alectryonella, and Dendostrea) than to ostreine genera (Ostrea, 

Ostreola, Ciyptostrea, and Tes key ostrea). Bonamia species are typically associated with 

members of the ostreid oysters (Farley et al. 1988), but Bonamia sp. have since been 

detected in crassostreid species: Crassostrea angulata (Katkansky et al. 1969), 

Crassostrea rivularis (syn. ariakensis) (Cochennec et al. 1998), and Crassostrea 

ariakensis (Burreson et al. 2004); and saccostreid species, Saccostrea glomerata 

(Cochennec-Laureau et al. 2003; Chapter One). However, no association with lophine 

species has been documented to date.

Members of the subfamily Lophinae are thought to be older evolutionarily than 

those comprising Ostreinae based on paleontological (Stenzel 1971) and molecular 

evidence (partial 28S rDNA in Littlewood 1994 and 16S mtDNA in Jozefowicz and O 

Foighil 1998). A lophine species, then, should appear basal in an oyster phylogeny 

containing Ostreinae and Lophinae species. Both phylogenetic analyses of SSU rDNA 

produced topologies where the Hawaiian Bonamia sp. is placed basal to the entire 

Bonamia clade— suggesting that this Bonamia sp. is ancestral to other described Bonamia 

species. Additional genetic loci need to be examined, such as actin or COI mtDNA, to 

determine if this topology is constant across more than one locus. However, if Farenholz’ 

rule, which states that “parasite phylogeny mirrors host phylogeny” (Brooks 1979) is 

regarded, then the placement of this Bonamia sp. at the base of the Bonamia tree may be 

correct. Subsequent investigators should address the placement of O. sandvicensis in the 

genus Ostrea, and a co-evolutionary study involving both host and parasite, could further 

illuminate the origin of Bonamia species.
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If the Hawaiian Bonamia sp. is indeed ancestral, we might expect to see a spore 

stage since this is a character that defines all haplosporidians, and B. perspora, which is 

known to produce spores, appears to evolve from the Hawaiian Bonamia sp. according to 

the SSU rDNA tree topology. No evidence of spores was observed in the Hawaiian 

Bonamia sp., though. If the SSU rDNA phylogeny is correct, and the Hawaiian Bonamia 

sp. does not produce spores, then perhaps sporulation was abandoned twice during the 

evolution of Bonamia species— once with the Hawaiian Bonamia and again with species 

derived after B. perspora. Alternatively, all or some Bonamia species may have the 

ability to sporulate under certain conditions (perhaps due to environmental stressors) or 

switch reproductive strategies, and we have only been able to capture this in B. perspora. 

Additional histopathology will need to be done in order to determine if either hypothesis 

is correct.

Did Bonamia species, which are best known as inhabiting oysters of more 

temperate and cold-water climates, originate from tropical waters? Or will the 

examination of other loci support an alternative and more parsimonious hypothesis with 

respect to spore evolution: showing B. perspora as ancestral to all other Bonamia species 

based on the observation of sporulation (Carnegie et al. 2006) and its more typical 

haplosporidian cell cycle? As mentioned above, additional loci need to be examined and 

more samples from tropical regions need to be obtained in order to address these 

questions. The impact of this parasite on oysters in Hawaii is also unknown, as O. 

sandvicensis are not harvested commercially. However, the knowledge of the parasite’s 

presence is important when considering importation of species into Hawaii for 

aquaculture. As has been made evident in Europe and in Australia and New Zealand,
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other Bonamia species have the potential to cause disease and devastating mortality in 

oyster populations.
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FIGURE 2.1

H a w a ii , U S A

Google Earth images of the collection site (indicated by the star) in Kaneohe Bay, 

Hawaii, USA near the Hawaii Institute of Marine Biology.
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CHAPTER THREE: Phylogeography of Bonamia exitiosa Based on Internal 

Transcribed Spacer (ITS) Region Ribosomal DNA (rDNA) Sequence Data
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OBJECTIVES

Objective 1: Evaluate sequence variation in the ITS region rDNA of B. exitiosa among 

all known hosts and locations to infer differences in population structure.

H 0: ITS region rDNA variation of B. exitiosa is homogenous among populations, and 

therefore, this particular marker is not suitable to distinguish populations of B. exitiosa. 

Ha: ITS region rDNA variation of B. exitiosa is heterogeneous among populations, and 

thus produces a geographic signal upon which dispersal hypotheses can be based.

Objective 2 : Based on network analyses o f the ITS region rDNA (Objective 1), develop 

dispersal hypotheses regarding how B. exitiosa came to achieve its wide distribution.

Hp Bonamia exitiosa achieved its current distribution through multiple anthropogenic 

introductions of infected host species such as transplantation of oysters for aquaculture or 

fisheries restoration or via ship hulls or ballast water.

H 2: Bonamia exitiosa was dispersed with its oyster hosts naturally via rafting or other 

non-anthropogenic means.

H 3: Dispersal of the parasite occurred via vicariance, i.e. the separation of continuous 

ancestral populations or taxa by environmental events such as the breakup of continents 

(Avise 2000).

H 4: A combination of the above events led to the current distribution of B. exitiosa.
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INTRODUCTION

Bonamia exitiosa (Hine et al. 2001) is a protistan parasite of oysters within the 

phylum Haplosporidia (Sprague 1979). It was originally observed in Ostrea chilensis in 

New Zealand (Dinamani et al. 1987), but since its description (Hine et al. 2001), it has 

been observed in several oyster hosts in various locations around the world as found in 

Chapter One (Table 3.1). It infects O. chilensis from New Zealand, and also potentially 

Ostrea auporia from New Zealand based on PCR results. However, there is no 

histological evidence for the latter (Chapter One). It also infects Ostrea angasi and 

Saccostrea glomerata in Australia; Ostrea puelchana and Ostrea eqnestris from 

Argentina; wild O. eqnestris and experimental C. ariakensis along the southeastern USA; 

Ostrea conchaphila in California; and Ostrea stentina in Tunisia (Chapter One). Even 

though it is not yet clear how bonamiasis impacts some populations, especially with 

respect to non-commercial hosts, understanding how it came to achieve its wide 

distribution is important since this parasite has caused severe mortality in some oyster 

populations (Doonan et al. 1994, Burreson et al. 2004, Cranfield et al. 2005). If the most 

recent observations of B. exitiosa are the results of contemporary introductions, and not 

of long, established presences that have gone unnoticed, it is imperative that preventative 

measures be taken to obviate similar economic and ecological losses due to accidental 

introductions elsewhere.

Phylogeography explores the principles and processes involved in the 

geographical distributions of genealogical lineages, especially those within and among 

closely related species (Avise 2000). The internal transcribed spacer (ITS) region 

ribosomal DNA (rDNA), defined as ITS-1 and ITS-2 region rDNA and the intervening

80



5.8S rRNA gene, has been useful in distinguishing Bonamia at the species level with the 

discovery of cryptic Bonamia species diversity in O. edulis from California and O. 

chilensis from Chile (Chapter One). Is there enough variability in the ITS region rDNA, 

then, to determine the population structure of a single species like B. exitiosal 

Furthermore, can the diversity of sequences provide information regarding approximate 

timing of introduction (i.e., recent vs. not-recent) in order to better understand when, and 

perhaps lead to hypotheses of how, current populations were established?

Some dispersal hypotheses have already been put forth. For example, B. exitiosa 

purportedly reached Australia from its presumed origins in New Zealand through 

shipment of live, commercial-sized oysters, which were held in Victorian and Tasmanian 

waters in the early 1990s (Hine and Jones 1994, Hine 1996). Additionally, Abollo et al. 

(2008) detected a B. exitiosa-like species in O. edulis in Galicia, NW Spain, and they 

hypothesize that the parasite could have been inadvertently introduced through the legal 

or illegal importation of oysters from B. ex/Y/asa-endemic areas. The authors also suggest 

the possibility of an introduction via the ballast water and outer hulls of ships, which was 

a hypothesis proposed by Bishop et al. (2006) regarding the presence of B. exitiosa in 

North Carolina. I aimed to test the validity of these standing hypotheses and develop 

additional hypotheses regarding the dispersal of B. exitiosa using network analyses to 

examine ITS region rDNA sequences of B. exitiosa found in New Zealand, Australia, 

Argentina, Tunisia, and along the east and west coasts of the United States.
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M ATERIAL AND M ETHODS

Sequence Alignment

Bonamia exitiosa sequences obtained in Chapter One and from the VIMS 

Shellfish Pathology Laboratory archives were aligned using the automatic setting in 

MAFFT v. 6 (Katoh and Toh 2008). Two alignments were performed: one containing 

complete B. exitiosa ITS region rDNA sequences (defined as complete ITS-1, the 5.8S 

rRNA gene, ITS-2, and -20  bp of large subunit (LSU) rDNA at the 3' end of each 

sequence) and an expanded alignment containing complete ITS region rDNA sequences 

and partial SSU rDNA (-220 bp at the 5' end of each sequence); the amplicon generated 

in PCR by the HaploITSf + ITS-B primers (Hill et al. 2010). To date, the identified SSU 

rDNA sequences of B. exitiosa vary by less than 1%, but there are some polymorphisms 

present. Network analyses were done with the inclusion and exclusion of this portion to 

see if the polymorphisms present affected the resulting topologies.

Before the alignments were performed, clones from a single individual were 

compared. When there were identical clones from a single individual, a consensus 

sequence was used in the alignment. The GenBank accession numbers of the sequences 

used for each alignment are listed in the Appendix. Once each alignment was produced, 

the ends were trimmed so that all sequences were of equal length.

The total number of unique sequences per total number of clones with respect to 

geographic location was calculated (Table 3.2). Because the number of clones per region 

varied, the number of unique clones was standardized to 12 clones per individual oyster 

in order to compare diversity at each region on a more even scale (Table 3.3 and Figure 

3.3).
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Network Analyses

Both alignments of B. exitiosa sequences described above were analyzed using 

TCS (Clement et al. 2000), which estimates gene genealogies and is also known as 

statistical parsimony. Gaps were treated as a fifth state and the program calculated 

maximum connection steps at 95%.

RESULTS

Sequence Alignment

For the ITS region rDNA alignment, 265 B. exitiosa sequences, representing two 

to 19 unique sequences obtained from an individual host, found among a total of 447 

PCR fragments (503 bp) whose sequences were determined from a total of 9 oyster host 

species were aligned. Two hundred ninety B. exitiosa sequences representing two to 13 

unique sequences obtained from an individual host were found among a total of 410 

cloned PCR fragments (720 bp) whose sequences were again determined from a total of 9 

oyster host species. These 292 sequences were included in the expanded alignment (See 

Appendix). Note that the additional sequences represented in the expanded dataset only 

had polymorphisms in the SSU rDNA portion.

Information regarding the number of individual oysters per geographic region 

from which B. exitiosa sequences were obtained and other information regarding clone 

number and averages per geographic location are presented in Table 3.2. Bonamia 

exitiosa sequences were obtained from two to 12 and two to 11 oysters in the ITS region 

rDNA analysis and the expanded dataset analysis, respectively. The number of clones per 

individual varied from three to 28, and the number of unique sequences per individual
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ranged from two to 20 (Table 3.2). The total number of clones per region ranged from 24 

(Australia) to 106 (California) in the ITS region rDNA analysis (Table 3.2a) and from 14 

(Australia) to 104 (California) in the expanded dataset (Table 3.2b), with the total number 

of unique sequences ranging from 13 (Australia) to 62 (California) and seven (Australia) 

to 82 (California), respectively. The ratio of unique sequences per oyster host to the total 

number of clones obtained per region ranged from 0.33 (North Carolina, South Carolina, 

Florida) to 0.58 (California) for the ITS region rDNA analysis and 0.5 (Australia) to 0.79 

(California) for the expanded dataset.

TCS Analysis

The resulting networks from the TCS analyses are shown in Figures 3.1 and 3.2. 

Individual sequences are represented by either solid ovals or pie charts, if the specific 

sequence was found in more than one location, which are described in more detail below. 

Colors represent sampling locations from which sequences were obtained.

TCS Analysis o f  IT S  Region rDNA. O f the 265 B. exitiosa ITS region rDNA sequences 

analyzed, 195 unique sequences were found overall among all hosts and locations. The 

resulting network is in Figure 3.1. There appear to be four reasonably well-defined 

clusters: (1) the “Cosmopolitan Group,” which includes B. exitiosa sequences from 

almost all sampling locations except California; (2) the “Atlantic Coast” group, which 

represents sequences from North and South Carolina, Florida, Argentina, and one 

sequence from Tunisia and is the least distinct of the clusters; (3) the “Southern 

Hemisphere” group, which is composed mostly of sequences from Argentina, New
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Zealand, Australia; and (4) the “California” Group, which includes sequences found only 

in California.

The most common sequence (represented in Figure 3.1 by the large pie chart 

within the “Cosmopolitan Group”) was found at every sampling location where B. 

exitiosa ITS region rDNA sequences were obtained except in California, and in every 

oyster host species except O. conchaphila from California, S. glomerata from Australia, 

and O. chilensis from New Zealand. This sequence was found in a total of 25 individuals: 

four O. stentina from Tunisia (four oysters from Tunisia of 25 total oysters from which 

this sequence was obtained or 16% of the pie chart), four O. puelchana and three O. 

eqnestris from Argentina (28%), one O. auporia from New Zealand (4%), one O. angasi 

from Australia (4%), five O. equestris and seven C. ariakensis from North Carolina, 

South Carolina, and/or Florida (48%). The pie chart seen extending down in the 

“Cosmopolitan Group” region of the network (Figure 3.1) represents a sequence found in 

five individuals: one O. stentina from Tunisia (20%), two O. puelchana from Argentina 

(40%), and two C. ariakensis from North Carolina (40%).

The second most common sequence (represented in Figure 3.1 by the large pie 

chart at the bottom of the “Southern Hemisphere” group) was found in nine individuals: 

two O. puelchana from Argentina (22%), three O. chilensis and three O. auporia from 

New Zealand (66.7%), and one S. glomerata from Australia (11.1%). The small, orange 

and yellow pie chart extending from this larger pie chart represents a sequence found in 

two individuals: one O. chilensis from New Zealand (50%) and one O. puelchana from 

Argentina (50%). The other large pie chart found near the top of the “Southern 

Hemisphere” group in Figure 3.1, represents a sequence found in four individuals: three
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O. chilensis from New Zealand (75%) and one O. eqnestris from Argentina (25%). A 

smaller, orange and red pie chart extends from this and represents a sequence found in 

two individuals: one O. equestris from Argentina (50%) and one O. stentina from Tunisia 

(50%).

The third most common sequence (represented in Figure 3.1 as the large blue oval 

at the top of the “Atlantic Coast” group, marked with an asterisk) was only found in 

North and South Carolina in a total of eight individuals: four O. eqnestris and four C. 

ariakensis. The next most common sequence (represented in Figure 3.1 by the large blue 

oval in the “Atlantic Coast” group marked with two asterisks) was only found in North 

Carolinian oysters. This sequence was found in three O. equestris and three C. ariakensis 

(a total of six individual oysters). Also within the “Atlantic Coast” group (Figure 3.1), the 

larger oval extending from the single-asterisked blue oval represents a sequence found in 

two O. eqnestris and one C. ariakensis from North and South Carolina (a total of three 

individual oysters, as indicated by a “3” in Figure 3.1). At the center of the small network 

extending from the double-asterisked blue oval (found at the bottom of the “Atlantic 

Coast” group, Figure 3.1) is a blue oval representing a sequence found in one O. equestris 

and one C. ariakensis from North Carolina. The blue oval above a “2” in the “Atlantic 

Coast” group (Figure 3.1) represents two O. eqnestris from North Carolina.

Each of the two, large green ovals seen in the “California” group (Figure 3.1) 

represents a different sequence (1 bp difference). Both sequences were found in a total of 

five individuals each and were only found in O. conchaphila from California. The yellow 

and green pie chart that is seen between the “California” and “Southern Hemisphere” 

groups (Figure 3.1) represents a sequence found in four individuals: two O. auporia and
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one O. chilensis from New Zealand (75%) and one O. conchaphila from California 

(25%).

TCS Analysis o f  the Expanded Dataset. Of the 290 B. exitiosa SSU-ITS region rDNA 

sequences analyzed, 234 unique sequences were present. The resulting network can be 

found in Figure 3.2. Again, four reasonably well-defined clusters emerged, as above in 

the ITS region rDNA analysis.

The most common sequence (represented in Figure 3.2 by the large pie chart 

within the “Cosmopolitan Group”) was found at every sampling location where B. 

exitiosa was detected by PCR, again except in California, and in every oyster host species 

except O. conchaphila from California, S. glomerata from Australia, and O. chilensis 

from New Zealand. This sequence was found in a total of 23 individuals: four O. stentina 

from Tunisia (four oysters from Tunisia of 23 total oysters from which this sequence was 

obtained or 17.4% of the pie chart), four O. puelchana and three O. equestris from 

Argentina (40.4%), one O. auporia from New Zealand (4.3%), one O. angasi from 

Australia (4.3%), and five O. equestris and five C. ariakensis from North Carolina, South 

Carolina, and/or Florida (43.4%o). The smaller pie chart within the “Cosmopolitan” 

grouping in Figure 3.2 represents a sequence found in four individuals: one O. stentina 

from Tunisia (25%), two O. puelchana from Argentina (50%), and one C. ariakensis 

from North Carolina (25%).

The second most common sequence (represented in Figure 3.2 by the large pie 

chart at the bottom of the “Southern Hemisphere” group) was found in seven individuals: 

one O. puelchana from Argentina (14.2%), two O. chilensis and three O. auporia from 

New Zealand (71.4%), and one S. glomerata from Australia (14.2%). The smaller, yellow
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and orange pie chart in the center of the small network within the “Southern Hemisphere” 

group (Figure 3.2) represents three individuals: two O. chilensis from New Zealand 

(66.7%) and one O. equestris from Argentina (33.3%). Two pie charts branch from this 

one: the orange and red pie graph represents one O. stentina from Tunisia (50%) and one 

O. equestris (50%) from Argentina; the yellow and green pie chart represents one O. 

chilensis and one O. auporia from New Zealand (66.7%) and one O. conchaphila from 

California (33.3%). The slightly larger yellow oval (marked with a “2” in the “Southern 

Hemisphere” group in Figure 3.2) represents a sequence that came from two O. chilensis 

from New Zealand.

The third most common sequence was found only in North and South Carolina (as 

represented by the largest blue oval marked by an asterisk in the “Atlantic Coast” group 

in Figure 3.2). This sequence was found in six individuals: four O. equestris and two C. 

ariakensis. The blue oval with two asterisks (Figure 3.2, “Atlantic Coast” group) 

represents a sequence found in two O. equestris and two C. ariakensis from North 

Carolina. The blue oval marked with a “3” represents a sequence found in two O. 

equestris and one C. ariakensis from North and South Carolina, and the blue oval marked 

with a “2” is a sequence that was found in two O. equestris— one from North Carolina 

and one from South Carolina.

As in Figure 3.1, each of the two large green ovals seen in the “California” 

grouping in Figure 2 represents a different sequence (1 bp different from one another, as 

above). Again, both sequences were found in five individuals each and were only found 

in O. conchaphila from California. All other sequences throughout the networks are



represented by small ovals of the same size in Figures 3.1 and 3.2 and were found only 

once in one individual oyster.

DISCUSSION

TCS network analysis (Clement et al. 2000) was performed using an alignment 

containing B. exitiosa ITS region rDNA and an expanded alignment, containing ITS 

region rDNA and partial SSU rDNA. Both alignments produced similar networks, though 

the analysis of the expanded dataset had more unique sequences as expected given the 

point mutations found in the SSU rDNA region. However, it appears that including or 

excluding the ~220-bp SSU rDNA portion did not fundamentally change the topography 

of the network.

The results of the analyses reveal that there is population structure among B. 

exitiosa ITS region rDNA sequences, demonstrating that while some sequences appear to 

be confined to particular geographic areas, others are cosmopolitan in their distribution. 

Both networks display a strong geographic signal in the distribution of B. exitiosa 

sequences. Each comprises four reasonably well-defined clusters: (1) the Cosmopolitan 

Group, which represents B. exitiosa sequences from almost all sampling locations except 

California, (2) the Atlantic Coast group, which represents sequences from North and 

South Carolina, Florida, and Argentina (and one from Tunisia), (3) the Southern 

Hemisphere group, which is composed mostly of sequences from Argentina, New 

Zealand, Australia, and (4) the California Group, which only includes sequences found in 

California. Phylogeographic patterns such as these likely indicate that historical as well 

as contemporary factors shaped the current distribution of B. exitiosa.
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The predominant cell form of B. exitiosa in host tissue is a naked, uninucleate 

microcell less than 5 pm in size, but unfortunately it is unknown what form the parasite 

takes when released from the host and into the environment. Spores or other long-lived 

life stages, however, have never been observed in B. exitiosa infections. The duration of 

B. exitiosa survival outside of the host is also unknown, but Arzul et al. (2009) found that 

purified B. ostreae cells from host tissue, which are similar morphologically to B. 

exitiosa, had a clear preference for specific environmental conditions such as temperature 

(<25°), salinity (euhaline), and perhaps pH. Additionally, the percentage of B. ostreae 

cells producing esterase activity (a measure of cell viability) decreased, significantly at 

most salinities, after being in suspension for 48 h (Arzul et al. 2009). Therefore, it seems 

unlikely that the parasite could disperse great distances, traveling through inconsistent 

environments, on its own. Without evidence o f spores or other long-lived life stages of 

the parasite or other apparent physical barriers of protection from varying environmental 

conditions, then, co-dispersal o f the parasite and host(s) seems most likely.

In general, dispersal and distribution of oysters can be placed into two categories: 

anthropogenic or non-anthropogenic/natural. At least since Roman times, oyster species 

have been intentionally transplanted to novel locations worldwide (Andrews 1980), 

usually in an effort to supplement a fishery locally diminished by overfishing and/or 

disease (for summary see Ruesink et al. 2005). As a result, many pathogens have been 

introduced to new locales and to naive, native hosts (Bishop et al. 2006)— with 

translocation of aquatic organisms being a major underlying cause of molluscan disease 

outbreaks (Berthe et al. 1999). Whether intentional, as with introduction for aquaculture 

or fisheries restoration, or not, such as with hitchhiker species—human intervention has
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shaped the current geographic distribution of oysters, and likely the distribution of 

infecting parasites.

Of course, natural mechanisms have also influenced the current distribution of 

oysters and their parasites. Beyond range expansion via transmission from one oyster to 

the next in juxtaposing populations, other mechanisms facilitate dispersal of hosts and 

their parasites. Such mechanisms include rafting on substrata such as plants, wood, and 

volcanic pumice along oceanic currents (Barber et al. 1959, O Foighil et al. 1999, Thiel 

and Gutow 2005), as well as vicariance, the separation of continuous ancestral 

populations or taxa by environmental events, e.g. the breakup of a continental landmass 

severing populations (Avise 2000). In some cases it is impossible to distinguish between 

anthropogenic and natural means of dispersal. In others, resulting data and historical 

context provide a clearer indication of one or the other. Based on the geographic patterns 

resulting from the TCS network analyses, as well as the diversity of the sequences at each 

location, I discuss potential distribution hypotheses of B. exitiosa. A summary of these 

hypotheses can be found in Table 3.4.

Southern Hemisphere Sequences

Some B. exitiosa sequences seem to be restricted to the Southern Hemisphere, as 

depicted in the “Southern Hemisphere” network in Figures 3.1 and 3.2. Thirty-eight 

sequences for the ITS region rDNA analysis and 44 sequences for the expanded dataset 

analysis were found only in Argentina, New Zealand, and Australia, with two exceptions: 

one sequence from California that is identical to a sequence found in New Zealand, and 

another sequence found in Tunisia that is identical to a sequence also found in Argentina.
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Because of the geographic disjunction between these particular sequences, it is possible 

that these are evidence of convergent evolution/homoplasy. However, it is also possible 

that the identical sequences originated from one locale or the other and were 

subsequently distributed via an unknown mechanism (perhaps anthropogenic facilitation 

given the geographic distance) at an unknown time. Unfortunately, there is no way to 

distinguish between these two possibilities given these data.

With respect to all other sequences found in this network, it appears that some 

mechanism is allowing for gene flow to occur between populations of B. exitiosa in the 

Southern Hemisphere. A likely mechanism is the rafting of oysters infected with B. 

exitiosa in surface currents such as the Antarctic Circumpolar Current. While the surface 

currents are complex and do vary depending on season (especially in the Indian and 

western Pacific Ocean) the predominant flow is eastward (Wright 1989), linking all the 

southern hemispheric sampling sites. Volcanic pumice is one particular substrate that 

follows along this trajectory— from the South Sandwich Islands (off the coast of 

Argentina) on to Australia and New Zealand (Coombs and Landis 1966), and from New 

Zealand to Chile (referenced in O Foighil et al. 1999) and can stay afloat for months to 

several years (Thiel and Gutow 2005). Furthermore, O Foighil et al. (1999) discuss that 

rafting on volcanic pumice most likely facilitated the trans-Pacific dispersal of host, O. 

chilensis, from New Zealand to Chile, ruling out vicariance and human introduction. Bull 

kelp (Durvillaea antarctica) rafts are also abundant in the Southern Ocean (Smith 2002), 

and Donald et al. (2005) argued that perhaps this substratum is what transported O. 

chilensis from New Zealand to Chile instead of pumice since this species commonly lives 

in bull kelp holdfasts (Powell 1979 in Donald et al. 2005). Either substratum certainly
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provides a means of transport for the host, which could conceivably transport the parasite 

B. exitiosa.

Bonamia exitiosa proper has yet to be found infecting O. chilensis in Chile. 

However, a cryptic B. exitiosa-likQ species that has an identical SSU rDNA sequence, but 

divergent ITS region rDNA sequence has been found in Chilean O. chilensis (White 

2008, Chapter One). Perhaps B. exitiosa was not found in Chile because the sample size 

was too low (n = 32), especially if the parasite occurs in low prevalence. Nevertheless, 

overall the data support the connectivity of the southern hemispheric B. exitiosa 

populations. To further validate this hypothesis additional samples from Chile and from 

the African coasts would need to be collected. O f course, other dispersal factors may be 

involved as well, but the resulting geographic signal from the ITS region rDNA network 

analyses, along with indication of natural dispersal of a oyster host species, supports, at 

least in part, natural dispersal of B. exitiosa in the Southern Hemisphere via rafting.

Californian Sequences

Fifty-nine B. exitiosa sequences from the ITS region rDNA analysis and 71 

sequences from the expanded dataset from O. conchaphila from California were not 

found at any other sampling location, with the exception of two (Figure 3.1) or three 

identical clones (Figure 3.2) from New Zealand. Additionally, sequences from other 

regions were not found in the California cluster. Based on this analysis, it appears that 

there is little or no connectivity between California B. exitiosa populations and those of 

other regions. It is difficult to speculate as to what makes California unique compared to 

other sampling locations in this study, but one host that appears to be present at all
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locations, but not in California, is O. stentina. A recent phylogenetic study of Ostrea 

species using nuclear ITS-1 and mitochondrial 16S and cytochrome c oxidase subunit I 

(COI) loci found O. stentina, O. eqnestris, and O. anporia to be conspecific (Shilts et al. 

2007). All are known hosts of B. exitiosa, and occur in nearly every geographic region 

from which B. exitiosa has been detected: New Zeal and/ Australia, the southeastern USA, 

and the Mediterranean Sea, with the exception of California (unless it is present 

cryptically). Therefore, it is possible that B. exitiosa co-dispersed with this single host, 

providing a possible explanation for connectivity among sequences found at all sampling 

sites, except California, in the Cosmopolitan Group (Figures 3.1 and 3.2). For California, 

though, I hypothesize that the presence o f B. exitiosa may reflect a limited invasion 

event, perhaps from the Southern Hemisphere or the Atlantic Coast (Figures 3.1 and 3.2). 

It could be that B. ex/V/ara-infected O. stentina/O. auporia/O. equestris were introduced 

and subsequently transmitted the parasite to the native oyster, O. conchaphila, but did not 

establish populations, or again, perhaps this oyster species is present cryptically.

In Elkhom Slough, California alone, 38 of 58 known marine invasive species 

were likely introduced through oyster culture (referenced in Ruesink et al. 2005), so if not 

O. stentina, another host could have introduced the parasite. Crassostrea gigas, for 

instance, is one of the most cosmopolitan macroscopic marine invertebrates (Ruesink et 

al. 2005) and has been hypothesized to be a carrier or reservoir for B. exitiosa (Lynch et 

al. 2010). Bonamia exitiosa ITS region rDNA sequences from C. gigas were not obtained 

for this study, but should be considered in future efforts to better understand the patterns 

seen here.
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The presence of B. exitiosa in California does not appear to be a recent invasion 

based on the high amount of sequence diversity compared to the standardized number of 

unique sequences from the other regions examined, especially when compared to 

Australian and Argentinean sequences (Table 3.3 and Figure 3.3). Evidence of a recent 

introduction would likely show a network dominated by a single sequence.

Unfortunately, because there is no molecular clock, timing of introduction cannot be 

addressed in a more systematic and specific manner.

Additionally, California B. exitiosa sequences were unique and not found 

elsewhere. Because O. conchaphila/O. lurida populations have been so depleted due to 

overfishing of natural beds in the last half of the 19th century with continued decline in 

the mid-1920s (Andrews 1980), there is limited movement of this host species. Assuming 

a tight dispersal association with host and parasite, limited movement of the host would 

thereby limit the dispersal of the parasite.

As discussed in Chapter One, Bonamia species diversity appears to be great in 

California relative to other sampling regions— with observations of a cryptic B. exitiosa- 

like species in O. edulis, B. ostreae, and B. exitiosa. Could this diversity somehow be 

related to the isolation of these parasites as indicated by the lack of connectivity of B. 

exitiosa ITS region rDNA sequences from California?

Cosmopolitan Sequences

The “Cosmopolitan Group” in Figures 3.1 and 3.2 represents sequences found in 

all sampling locations except in California. Perhaps this is representative of dispersal 

over some unknown time period of a lineage particularly adaptable to new hosts and
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environments, or it may reflect recent extensive anthropogenic dispersal. Mechanisms of 

distribution probably vary, but anthropogenic means (e.g. intentional and unintentional 

introduction or transplantation of oysters for aquaculture or fisheries restoration, or via 

ship hulls or ballast) seem most likely given the geographic disjunction of these 

sequences.

As mentioned above, Shilts et al. (2007) recently synonymized O. stentina, O. 

equestris, and O. auporia. Each of these oyster species were described in the 1800s: O. 

stentina Payraudeau in 1826, O. equestris Say 1834, and while O. auporia was described 

in 1981 by Dinamani and Beu, it is synonymous with Ostreola virescens Angas 1868 

(Cook 2010). Thus, this oyster species has been established in its various locales for over 

142 years, making it possible for B. exitiosa to have been established for at least this 

long. Therefore, introduction via natural or anthropogenic means in recent decades 

cannot fully explain the distribution of this single host and this parasite. Without a 

molecular clock and more genetic data of the hosts themselves, it is difficult to say 

exactly when this distribution occurred. Conspecificity of other oyster hosts may have led 

to the current distribution of parasites, but there is still some discrepancy as to the 

phylogeny of the oysters themselves. As Carriker and Gaffney (1996) report: the 

taxonomy and systematics of oysters are far from being resolved.

Wooden ships during the Age of Exploration traveling from the Mediterranean 

and the Antipodes on to west and east coasts of North and South America fouled with a 

small oyster, such as O. stentina, could have provided transport of B. exitiosa. Wooden 

ships and vessels had little or no antifouling treatment during the Age of Exploration 

(referenced in Carlton and Hodder 1995), so shipping traffic during this time could have
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played an important role in influencing gene flow of B. exitiosa among these regions. 

This impact could be historically important as ships and vessels inadvertently provided 

recurrent and perhaps continuous transport between isolated environments (Carlton and 

Hodder 1995)—perhaps extending the range and facilitating the establishment of new 

populations of oyster hosts when physical barriers might prohibit natural dispersal, and 

meanwhile, helping to expand the range of B. exitiosa as well. While this could be 

influencing gene flow currently (as of the 20th century), it probably is doing so to a lesser 

degree: faster boats allow for decreased retention of fouling organisms, decreased port 

residency times allow for decreased fouling accumulations, the use and efficacy of 

antifouling treatments has increased, and vessels are better maintained (Carlton and 

Scanlon 1985; Carlton 1992). The building material of ships themselves also effect 

fouling: wood is more favorable to settle upon than steel (Allen 1953).

Bishop et al. (2006) suggested that recent anthropogenic dispersal via ballast 

waters may explain how B. exitiosa came to be in North Carolina. However, the ITS 

region sequence diversity that we see in North Carolina, South Carolina, and Florida, is 

not indicative of a recent introduction. Again, if it were recent, I would expect for the 

data to demonstrate a founder effect.

Atlantic Coast Sequences

Network analyses of B. exitiosa ITS region rDNA also reveals a more loosely 

defined cluster of sequences that are closely related to the “Cosmopolitan group,” but 

appear to be restricted to the western Atlantic Coast (North Carolina, South Carolina, 

Florida, and Argentina; Figures 3.1 and 3.2), found in wild O. puelchana and O.
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equestris, and experimental C. ariakensis. Ostrea equestris (syn. O. stentina (Shilts et al. 

2007)) is thought to extend from North Carolina south to Argentina (Harry 1985), and if, 

in fact, a continuous population of this host exists, it is reasonable to assume that the 

“Atlantic Coast” B. exitiosa dispersed naturally through direct transmission. With oyster 

populations in close proximity, other non-anthropogenic facilitation mechanisms such as 

hydrodynamics and topographical features may also affect the distribution of the parasite 

through the water column (Cranfield et al. 2005). In this case, it is possible that the 

distribution of B. exitiosa along the Atlantic Coast may have little to do with the transport 

of hosts. Though, natural co-dispersal with a host or hosts is also a possibility and 

difficult to distinguish from the former.

Potential anthropogenic impacts also cannot be discounted. Being a small, non

commercial species (Harry 1985), it is unlikely that O. equestris were intentionally 

moved for aquaculture or restoration purposes. However, it is possible that these small 

oysters were one of the many culprits of ship fouling as mentioned above, or they could 

have been hitchhikers, attached to commercially important species. Meanwhile, oyster 

transplantations could have allowed for transport of B. exitiosa along the Atlantic Coasts 

of North and South America as well.

Future work should include determining if there is a continuous range of 

susceptible hosts along the North and South American Atlantic coastlines and if most B. 

exitiosa sequences found from North Carolina to Argentina continue to cluster with the 

Atlantic coast group.
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Origins o f  Bonamia exitiosa

With increasing observations of B. exitiosa around the world, the origin of the 

parasite is becoming less clear. Unfortunately these results do not indicate an origin. 

Because B. exitiosa was first observed histologically in O. chilensis from Foveaux Strait 

New Zealand in 1964 (Hine and Jones 1994), it has been hypothesized that the parasite is 

enzootic to this region (Corbeil et al. 2006 call it “antipodean;” Hine 1996). Based on the 

results of this study, however, one could argue that it could have South American origins, 

as sequences from Argentina are the most widely distributed throughout the networks. 

Could this be an indication of origin? More clones were available for analysis from 

Argentina (106) than from Australia/New Zealand (60), but the standardized number of 

unique sequences per individual oyster is smallest in Australia compared to other regions 

(Table 3.2, Figure 3.3), which could be an indication of less diversity and therefore, a 

more recent introduction to Australia.

The SSU rDNA phylogeny from Chapter One suggests that Bonamia species may 

have evolved from tropical regions. Exploration of more tropical locations from 

additional non-commercial host species may provide further insight to the derivation of 

B. exitiosa.

Future Work

In order to better understand the current distribution and historical dispersal of 

Bonamia species, more samples need to be obtained to fill geographic gaps: South Africa, 

Asia, and the Caribbean, in particular. These hypotheses are based on a limited number of 

data obtained, so undersampling may have occurred. Sample sizes were small in
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Australia and New Zealand, where B. exitiosa is thought to have originated, as stated 

above. Therefore, the results may be biased.

Also, in order to better understand how B. exitiosa came to achieve its current 

distribution, it is essential to understand how its hosts were distributed. The most likely 

hypothesis is that parasite distribution is heavily influenced by the distribution of hosts, 

and perhaps that of one widely distributed host, O. stentina. Subsequent investigators 

should test this hypothesis by developing multiple genetic loci o f oyster hosts and B. 

exitiosa, and further, develop a molecular clock. This could help elucidate 

phylogeographic patterns and dispersal timing of the various hosts and the parasite and 

perhaps lend to insight into the question of origin.
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TABLE 3.3

Region

Standardized Mean No. of Unique 
Sequences per Oyster

(± SD)
NC/SC/FL 7.17 ±2.20

ARG 7.00 ± 2.45
TUN 8.00 ±2.69
NZL 6.56 ±2.51
AUS 5.33 ±2.91
CA 7.98 ± 1.53

Standardized mean number o f unique sequences per oyster with respect to region. 

Standardized to 12 clones per oyster to compensate for differences in number of clones 

per region (for the ITS region rDNA dataset). Corresponds to Figure 3.3.

TABLE 3.4

Geographical
Grouping

Introduction
Hypothesis

Proposed Mechanism

Cosmopolitan anthropogenic & natural Dispersal of O. stentina
Western Atlantic 

Coast
anthropogenic & natural Ship fouling, ballast water, 

oyster transplantation; natural 
transmission from host to host

Southern Hemisphere likely natural Rafting with host(s) on 
substrata via surface currents 

such as the Antarctic 
Circumpolar Current

California likely anthropogenic Transplantation of oysters?

Summary of dispersal hypotheses based on the results o f the TCS network analyses.
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FIGURE 3.1

Argentina: O. puelchano, O. equestris 
New Zealand: O. chilensis, O. auporia 
Australia: O. angasi, S. glomerata 
Tunisia: O. stentina
NC/SC/FL, USA: C. ariakensis, O. equestris 
CA, USA: O. conchaphila

Cosmopolitan Group

California
Atlantic Coast

Southern Hemisphere

TCS network of the B. exitiosa ITS region rDNA dataset. Generated using TCS v. 1.21 

(Clement et al. 2000) where gaps were treated as a fifth state and maximum connection 

steps were calculated at 95%. The network was modified using Adobe Illustrator.
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FIGURE 3.2

Atlantic
Coast

California

Cosmopolitan Group

Southern Hemisphere

Argentina: O. puelchana, O. equestris 
«m> New Zealand: O. chilensis, O. auporia 
mm* Australia: O. angasi, S. glomerata 
mm* Tunisia: O. stentina

NC/SC/FL, USA: C. ariakensis, O. equestris 
CA, USA: O. conchaphila

TCS network of the B. exitiosa expanded dataset (partial SSU + ITS region rDNA). 

Generated using TCS v. 1.21 (Clement et al. 2000) where gaps were treated as a fifth 

state and maximum connection steps were calculated at 95%. Network was modified

using Adobe Illustrator.
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FIGURE 3.3

NC/SC/FL ARG TUN NZL AUS CA

Region

Average number of unique sequences observed per individual in each sampling region 

from the ITS region rDNA dataset. Standardized to 12 clones/individual given unequal 

mean sequence numbers/per individual (Table 3.3). Error bars indicate standard

deviation.
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APPENDIX A.

GenBank Accession Numbers for the ITS region rDNA Alignment (Chapter Three)

Sampling
Location Host species Individual/Case No.

Total No. of 
Clones 

Represented
GenBank 

Accession No.
FL, USA C. aria kens is FLHB416-16 3 JF712868

1 JF712867
C. aria ken sis FLHB614Ca-10 1 JF712871

JF712870
1 JF712869

NC, USA C. aria ken sis 2828-6 EU709054
1 EU709038
1 EU709051
1 EU709053
1 pending

C. aria kens is 2927-5 1 EU709045
EU709026

1 EU709044

C. aria kens is 3114-2 1 EU709025
EU709037

1 EU709028
1 EU709029
1 EU709024

EU709031
1 EU709030
1 EU709027

C. ariakensis 3139-17 1 EU709034
EU709039
EU709033

1 EU709036
1 EU709035
2 EU709032

C. ariakensis 3218-22 3 EU709040
5 pending
1 EU709041
1 EU709042

1 pending

SC, USA O. equestris 3526-49 1 JF831601
7 JF831594

O. equestris 3526-53 3 JF831595
1 JF831585
2 JF831596
1 JF831597
1 JF831599
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Sampling
Location Host species Individual/Case No.

Total No. of 
Clones 

Represented
GenBank 

Accession No.

NC, USA 0. equestris 2810-21 1 JF831575
1 JF831592
1 JF831577

JF831578
1 JF831576
1 JF831579
1 JF831580

0. equestris 2845-40 1 JF831581
JF831582

1 JF831583
1 JF831584

O. equestris 2845-41 1 JF831586
1 JF831587
1 JF831588
1 JF831589
1 JF831590

JF831591
JF831600

1 JF831602

ARG 0. equestris LI 19-1 JF831574
1 JF831573
1 JF831572
1 JF831570

0. equestris LI 19-2 1 JF831569
JF831568

1 JF831567
1 JF831566
1 JF831565
1 JF831563

0. equestris LI 19-3 1 JF831562
1 JF831561
1 JF831560
1 JF831559
2 JF831558
1 JF831557

2 JF831556

ARG O. puelchana L99-12 4 EU709064
5 pending
1 EU709067
1 EU709068
4 JF831614
1 JF831619
1 pending
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Sampling
Location Host species Individual/Case No.

Total No. of 
Clones 

Represented
GenBank 

Accession No.
1 pending
1 pending
1 JF831612
1 JF831613

O. puelchana L99-31 1 JF831617
JF831638

1 JF831622
JF831607

1 JF831633
JF831615

1 JF831610
1 JF831628
1 JF831608
1 JF831606
1 JF831609

O. puelchana L99-37 1 EU709058
EU709056

1 EU709057
1 EU709055
1 EU709061
1 EU709060
1 JF831605
1 JF831632

0. puelchana L99-53 JF831616
1 JF831603
1 JF831635
1 JF831634
1 JF831623
1 JF831631
1 JF831630
1 JF831620
1 JF831636
1 JF831629
1 JF831625
1 JF831618

O. puelchana L101-31 EU709059

1 EU709063

NZL 0. chilensis Hine JF831656
1 EU709074
1 EU709071

EU709073
1 EU709075

O. chilensis Ochil7 1 JF831651
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Sampling
Location Host species Individual/Case No.

Total No. of 
Clones 

Represented
GenBank 

Accession No.
3 pending
1 pending
1 JF831646
1 JF831652
1 JF831647
1 JF831640
1 JF831653

O. chilensis Ochil 37 1 JF831648
JF831643

1 JF831657
1 JF831642
1 JF831649
1 JF831655

0. auporia Oa9 JF831658
1 JF831659

O. auporia Oal8 JF831664
1 JF831665

0. auporia Oa39 1 JF831666
1 JF831667
1 JF831669

JF831670
1 JF831671

0. auporia 5393-65 JF831672
1 JF831673
1 JF831674
1 JF831675
1 JF831676

1 JF831677
AUS O. angas i 0 .  angasi 1 EU780688

1 EU780690
EU780689

1 EU780687
1 EU780692
1 EU780691
1 EU780686

JF831678
1 JF831679

1 JF831680

AUS S. glomerata GR-176 JF831681
1 JF831682

1 JF831683
TUN O. stentina Os/4890-58 13 GU356032

2 GU356033
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Sampling
Location Host species Individual/Case No.

Total No. of 
Clones 

Represented
GenBank 

Accession No.
1 GU356034
1 JF831685
1 JF831686
1 JF831687
1 GU356035

O. stentina Os/4890-73 1 JF831688
1 JF831689

JF831690
1 JF831691
1 JF831692

JF831693
1 JF831694
1 JF831695
1 JF831696
1 JF831698

0 . stentina Os/4890-78 1 JF831699
1 JF831701

JF831702
1 JF831703
1 JF831705
1 JF831706
1 JF831707
1 JF831708
1 JF831709

0. stentina Os/4890-79 JF831710
1 JF831712
1 JF831713

JF831714
1 JF831715
1 JF831716
1 JF831717

1 JF831718

CA, USA O. conchaphila OconES-6 JF831719
1 JF831720
1 JF831721
1 pending
1 pending
1 JF831722
1 JF831723
1 JF831724
1 JF831725
2 JF831726
1 JF831728
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Sampling
Location Host species Individual/Case No.

Total No. of 
Clones 

Represented
GenBank 

Accession No.
1 JF831729
1 JF831730
1 JF831731
1 JF831733
1 JF831735
1 JF831736
1 JF831734
1 JF831738

O. conchaphila OconES-12 JF831739
1 JF831740
1 JF831741

JF831742
1 JF831743
1 JF831744
1 JF831746
1 JF831748
1 JF831749
1 JF831750
1 JF831751
1 JF831752
1 JF831753
1 JF831755
1 JF831756

O. conchaphila OconES-14 1 JF831757
1 JF831758
1 JF831759
1 JF831760

JF831761
JF831762

1 JF831763
1 JF831765
1 JF831766
1 JF831767
1 JF831769
1 JF831771
1 JF831772

O. conchaphila SF09-33-16 1 JF831773
JF831774
JF831777

1 JF831778
1 JF831779
1 JF831780
1 JF831781
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Sampling
Location Host species Individual/Case No.

Total No. of 
Clones 

Represented
GenBank 

Accession No.
1 JF831782
1 JF831783
1 JF831784
1 JF831785
1 JF831786
1 JF831787
1 JF831788

0 . conchaphila SF09-33-39 JF831789
1 JF831790

JF831791
1 JF831794
1 JF831795
1 JF831796
1 JF831797
1 JF831799
1 JF831800
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APPENDIX B.

GenBank Accession Numbers for the Expanded dataset (Chapter Three)

Sampling
Location Host species

Individual/Case
No.

Total No. 
Clones 

Represented
GenBank 

Accession No.
FL, USA C. ariakensis FLHB416-16 3 JF712868

1 JF712867
C. ariakensis FLHB614Ca-10 1 JF712871

JF712870
1 JF712869

NC, USA C. ariakensis 2927-5 1 EU709045
1 EU709043
1 EU709026
1 EU709044

C. ariakensis 3114-2 1 EU709025
EU709037

1 EU709028
1 EU709029
1 EU709024

EU709031
1 EU709030
1 EU709027

C. ariakensis 3139-17 1 EU709034
EU709039
EU709033

1 EU709036
1 EU709035

EU709032
C. ariakensis 3218-22 EU709040

1 EU709041
1 EU709042

SC, USA O. equestris 3526-49 1 JF831601
JF831594

1 JF831593
O. equestris 3526-53 JF831595

1 JF831585
JF831596

1 JF831597
1 JF831598
1 JF831599

NC, USA O. equestris 2810-21 1 JF831575
1 JF831592
1 JF831577
1 JF831576
1 JF831578
1 JF831579
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Sampling
Location Host species

Individual/Case
No.

Total No. 
Clones 

Represented
GenBank 

Accession No.
1 JF831580

0. equestris 2845-40 1 JF831581
8 JF831582
1 JF831583
1 JF831584

O. equestris 2845-41 1 JF831586
1 JF831587
1 JF831588
1 JF831589
1 JF831590
2 JF831591
3 JF831600
1 JF831602

ARG O. equestris LI 19-1 4 JF831574
1 JF831573
1 JF831572
1 JF831571
1 JF831570

0 . equestris LI 19-2 1 JF831569
1 JF831568
1 JF831567
1 JF831566
1 JF831565
1 JF831564
1 JF831563

O. equestris LI 19-3 1 JF831562
1 JF831561
1 JF831560
1 JF831559
2 JF831558
1 JF831557
2 JF831556

ARG 0. puelchana L99-12 2 EU709064
1 JF831611
1 EU709067
1 JF831604
1 JF831626
2 JF831614
1 JF831619
1 JF831612
1 JF831613

O. puelchana L99-31 1 JF831617
1 JF831637
3 JF831638
1 JF831622
2 JF831607
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Sampling
Location Host species

Individual/Case
No.

Total No. 
Clones 

Represented
GenBank 

Accession No.
1 JF831633
1 JF831615
1 JF831610
1 JF831628
1 JF831608
1 JF831606
1 JF831609

O. puelchana L99-37 1 EU709058
EU709056

1 EU709057
1 EU709055
1 EU709061
1 EU709060
1 JF831627
1 JF831605
1 JF831624
1 JF831632

0 . puelchana L99-53 JF831616
1 JF831603
1 JF831635
1 JF831621
1 JF831634
1 JF831623
1 JF831631
1 JF831630
1 JF831620
1 JF831636
1 JF831629
1 JF831625
1 JF831618

O. puelchana L101-31 EU709059
1 EU709063

NZL O. ch Hens is Hine 1 JF831656
1 EU709074
1 JF831641

EU709069
1 EU709071

EU709073
1 EU709075

0. chi lens is Ochil7 1 JF831651
1 JF831650
1 JF831639
1 JF831645
1 JF831644
1 JF831646
1 JF831652
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Sampling
Location Host species

Individual/Case
No.

Total No. 
Clones 

Represented
GenBank 

Accession No.
1 JF831647
1 JF831640
1 JF831653

O. chi lens is Ochil 37 1 JF831648
JF831643

1 JF831654
1 JF831657
1 JF831642
1 JF831649
1 JF831655

NZL 0. auporia Oa9 1 JF831658
1 JF831659

JF831660
1 JF831661
1 JF831662
1 JF831663

0 . auporia Oal8 JF831664
1 JF831665

O. auporia Oa39 1 JF831666
1 JF831667
1 JF831668
1 JF831669

JF831670
1 JF831671

O. auporia 5393-65 JF831672
1 JF831673
1 JF831674
1 JF831675
1 JF831676
1 JF831677

AUS O. angasi 0 .  angasi JF831678
1 JF831679
1 JF831680

AUS S. glomerata GR-176 JF831681
1 JF831682
1 JF831683
1 JF831684

TUN O. s ten tin a Os/4890-58 13 GU356032
GU356033

1 GU356034
1 JF831685
1 JF831686
1 JF831687
1 GU356035

0. stentina Os/4890-73 1 JF831688
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Sampling
Location Host species

Individual/Case
No.

Total No. 
Clones 

Represented
GenBank 

Accession No.
1 JF831689
2 JF831690
1 JF831691
1 JF831692
1 JF831693
1 JF831694
1 JF831695
1 JF831696
1 JF831697
1 JF831698

0. stentina Os/4890-78 1 JF831699
1 JF831700
1 JF831701
1 JF831702
1 JF831703
1 JF831704
1 JF831705
1 JF831706
1 JF831707
1 JF831708
1 JF831709

0 . stentina Os/4890-79 1 JF831710
1 JF831711
1 JF831712
1 JF831713
4 JF831714
1 JF831715
1 JF831716
1 JF831717
1 JF831718

CA, USA 0. conchaphila OconES-6 7 JF831719
1 JF831720
1 JF831721
1 JF831722
1 JF831723
1 JF831724
1 JF831725
1 JF831726
1 JF831727
1 JF831728
1 JF831729
1 JF831730
1 JF831731
1 JF831732
1 JF831733
1 JF831735
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Total No.
Sampling Individual/Case Clones GenBank
Location Host species No. Represented Accession No.

1 JF831736
1 JF831734
1 JF831737
1 JF831738

0. conchaphila OconES-12 JF831739
1 JF831740
1 JF831741

JF831742
1 JF831743
1 JF831744
1 JF831745
1 JF831746
1 JF831747
1 JF831748
1 JF831749
1 JF831750
1 JF831751
1 JF831752
1 JF831753
1 JF831754
1 JF831755
1 JF831756

O. conchaphila OconES-14 1 JF831757
1 JF831758
1 JF831759
1 JF831760
1 JF831761
1 JF831762
1 JF831763
1 JF831764
1 JF831765
1 JF831766
1 JF831767
1 JF831768
1 JF831769
1 JF831770
1 JF831771
1 JF831772

0. conchaphila SF09-33-16 1 JF831773
1 JF831774

JF831775
1 JF831776

JF831777
1 JF831778
1 JF831779
1 JF831780
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Sampling
Location Host species

Individual/Case
No.

Total No. 
Clones 

Represented
GenBank 

Accession No.
1 JF831781
1 JF831782
1 JF831783
1 JF831784
1 JF831785
1 JF831786
1 JF831787
1 JF831788

0 . conchaphila SF09-33-39 JF831789
1 JF831790

JF831791
1 JF831792
1 JF831793
1 JF831794
1 JF831795
1 JF831796
1 JF831797
1 JF831798
1 JF831799
1 JF831800
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