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ABSTRACT

Until the 1930s, bay scallop populations persisted in the seaside lagoons of Chesapeake 
Bay. Their decline is attributed to overexploitation, habitat loss, degraded water quality, 
and recruitment limitations. Individual bay scallops still exist in the lower Bay, though no 
restoration efforts have been attempted. This study was designed to examine the survival 
and growth o f transplanted southern bay scallops, Argopecten irradians concentricus, 
within the Lynnhaven River sub-estuary. Scallop survival was significantly higher in 
Zostera marina (97.8 %) and Gracilaria spp. (90.0 %) than in rubble and oyster shell. 
Scallop growth differed significantly by location (0.76-1.22 mm/week), though not by 
substrate type.

We used a mesocosm experiment to assess the survival of several scallop size classes as a 
function o f female blue crab, Callinectes sapidus, predation as it varied by habitat type 
(oyster shell, sand, macroalgae) and predator size (>140 mm, <140 mm carapace width). 
Scallop survival was significantly lower in the large predator treatment (F = 11.67,7 ? = 
0 .0 0 1 ), and significantly higher in the oyster shell treatment than in the other substrates 
(F = 3.29,/? = 0.044).

We also conducted a small-scale tethering experiment designed to assess the effects of 
predation on juvenile scallops (< 30 mm SH) in the field. We observed a significant 
effect o f location (two-way ANOVA: F = 3.71,/? = 0.020), which also emerged as the 
strongest predictor o f survival (using Akaike’s Information Criterion; AIC). In a large- 
scale field tethering experiment, we detected a significant interaction between location 
and habitat (GLM, F = 5.19,p  < 0 .0 0 1 ), and the model including the interaction term 
emerged as the strongest predictor of scallop survival (AIC).

Based on our results, we conclude that bay scallops are able to survive and grow in the 
absence o f predators in the Lynnhaven River. Scallop seed planting in structured 
substrates, such as oyster shell and Gracilaria spp., that offer protection against 
predation, will likely increase the potential for establishment of bay scallop populations. 
With the results presented herein, we are encouraged that scallop restoration within 
Chesapeake Bay is feasible.

ix



CHAPTER 1

Substrate effects on the survival and growth of the Bay Scallop, Argopecten 
irradians concentricus (Say 1822), in the Lynnhaven River, Virginia



ABSTRACT

Populations of bay scallops {Argopecten irradians) persisted in the seaside lagoons of 
Chesapeake Bay until the 1930s, after which they experienced dramatic declines. Efforts 
to re-establish bay scallop populations in the seaside lagoons of the Chesapeake Bay have 
been initiated, but no restoration efforts on the bayside have been attempted. In recent 
years, low and sporadic abundances of bay scallops have been observed in the lower 
bayside areas of the Chesapeake Bay. This study was designed to examine the survival 
and growth of the southern bay scallop, Argopecten irradians concentricus, in different 
vegetated and non-vegetated substrates in the Lynnhaven River sub-estuary of the 
Chesapeake Bay, Virginia, while considering the feasibility for bay scallop re
establishment. Manipulative field experiments were conducted over six weeks, and we 
evaluated the survival and size increase o f transplanted, caged adult scallops in various 
substrate types {Zostera marina L, Gracilaria spp., oyster shell, and rubble) at three 
locations (Linkhom Bay, Broad Bay, Pleasure House Creek) within the Lynnhaven River 
system. After 3 weeks, there was a significant difference in scallop survival among 
substrates (two-way ANOVA); it was highest in the Z. marina habitat, followed by 
Gracilaria spp., averaging 97.8 % and 90.0 %, respectively, and survival in rubble and 
oyster shell was lowest. Cumulative scallop size increase differed significantly by 
location, though not substrate type, where it was significantly greater at Pleasure House 
Creek (1.22 mm/week) and Broad Bay (1.09 mm/week) than at Linkhom Bay (0.76 
mm/week). Our examination of bay scallop survival and size increase o f transplanted 
adult scallops into the Lynnhaven River revealed that they are still able to survive and 
grow in the absence of predators. With the results presented herein we are encouraged 
that scallop restoration within Chesapeake Bay is feasible.
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INTRODUCTION

1.1 Current Status of the Bay Scallop

The current state of global fisheries has prompted worldwide interest in the 

preservation, restoration, and conservation o f commercially and recreationally important 

species. In the case o f the Chesapeake Bay blue crab fishery, baywide reductions from 

1992 to 2000 were estimated to be approximately 70 % as compared to the previous 

decade (Lipcius and Stockhausen 2002). The case of the blue crab fishery is 

representative o f the greater trend observed in all o f the northeastern U.S. near-shore 

fisheries, with U.S. near-shore fisheries being defined by the National Marine Fisheries 

Service (NMFS; 1999) to be “those coastal and estuarine species found in the 0-3 nautical 

mile zone of the coastal state waters.”

The bay scallop, Argopecten irradians, fishery is no exception to the global trends 

towards decline. The bay scallop is particularly sensitive to environmental perturbations 

and has suffered tremendous losses in population abundances; the cause of the decline is 

a product o f the synergistic interaction o f multiple stressors including: habitat 

degradation, overharvesting, and harmful algal blooms (NMFS 1999, Greenawalt- 

Boswell et al. 2007). However, beginning in the 1930s, the loss of essential habitat for 

the bay scallop in the Virginia coastal bays is recognized as one the leading contributors 

to their population decline (Orth et al. 2006, Orth et al. 2010). In recent years, low and 

sporadic abundances o f bay scallops have been observed in the lower bayside areas o f the 

Chesapeake Bay (P. Freeman, pers. comm.), even though their primary habitat, Zostera 

marina L. (Belding 1910, Thayer and Stuart 1974, Garcia-Esquivel and Bricelj 1993,
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Irlandi et al. 1999), has been absent since the 1930s (Orth and Moore 1984, Fonseca and 

Uhrin 2009).

Seagrass beds, particularly those consisting of eelgrass (Zostera marina L.), serve 

as the optimal nursery habitat, in part because they provide significant refuge from 

benthic predators (Ambrose and Irlandi 1992, Pohle et al. 1991) as well as protection 

from siltation associated with the bottom (Castagna 1975, Thayer and Stuart 1974). In 

spite o f this, bay scallops have also been abundant in natural habitats devoid o f eelgrass 

(Marshall 1947, Marshall 1960) and are known to attach to other substrates, such as small 

branching algal species, shells, rocks, or sessile animals (Ingersoll 1886, Marshall 1960, 

Thayer and Stuart 1974, Smith et al. 1988). Preference for structured habitats may be a 

function of size. In a previous mesocosm experiment, young bay scallops (<15 mm SH) 

equally preferred cobble, algal, and eelgrass habitats, all o f which were selected over 

sand habitats; however, older bay scallops (> 25 mm SH) had no preference among 

cobble, algal, eelgrass, and sand habitats (Chintala et al. 2005).

With the current fluctuations in seagrass, we should consider the use o f alternative 

substrates for the establishment of bay scallops. This study was designed to assess the 

survival and growth of transplanted southern adult bay scallops, Argopecten irradians 

concentricus, in the Lynnhaven River sub-estuary of the Chesapeake Bay. Specifically, 

we sought to ( 1 ) assess the effect of habitat quality upon the scallop’s growth and 

survival by using various substrates (i.e. eelgrass, macroalgae, oyster shell, and rubble) 

and, (2 ) to assess the spatial variation in scallop growth and survival by replicating 

enclosures at three locations (Broad Bay, Linkhom Bay, and Pleasure House Creek).
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1.2 Distribution and Fishery

Three subspecies of Argopecten irradians are commonly distinguished according 

to geographical distribution (Fay et al. 1983) and shell morphology (Clarke 1965, Waller 

1969). These subspecies include: (1) A.i. irradians extending from Cape Cod to the mid- 

Atlantic region, (2) A.i. concentricus extending from the mid-Atlantic region to the 

Atlantic coast of Florida, and (3) A.i. amplicostatus, which extends farther into the Gulf 

o f Mexico (Clarke 1965, Wilbur and Gaffney 1997).

Bay scallops have long supported commercial and recreational fisheries (Fay et al. 

1983, Greenawalt-Boswell et al. 2007) dating as far back as 1858 (Ingersoll 1886). 

Beginning in the 1930s, significant decreases in bay scallop abundances along the eastern 

coast o f the U.S. were observed in conjunction with the decimation of eelgrass beds 

(McHugh 1989, Dreyer and Castle 1941) resulting from eel grass-wasting disease, 

eutrophication, and damage from the Storm King hurricane (Renn 1936, Castagna and 

Duggan 1971, Arnold et al. 1998, Goldberg et al. 2000, R. Lipcius, unpublished data). 

Recent declines in harvests may be attributed to recruitment limitation (Peterson and 

Summerson 1992, Peterson et al. 1996), which has been exacerbated by overharvesting, 

degraded water quality, habitat loss, coastal development, and the occurrence of harmful 

algal blooms (Arnold et al. 1998, Marelli et al. 1999, NMFS 1999, Arnold 2001, 

Tettelbach et al. 2002, Fegley et al. 2009).

1.3 Life History

A.i. concentricus, the subspecies of focus in this study, is a simultaneous 

protandrous hermaphrodite that fully matures and spawns at approximately one year of
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age (Fay et al. 1983, Minchin 2003, Blake and Shumway 2006). During the course o f its 

life, the southern bay scallop undergoes a single primary spawning event, which 

commences during the late fall in conjunction with decreasing water temperature (Gutsell 

1930, Sastry 1963, Barber and Blake 1983, Arnold et al. 2005, Blake and Shumway 

2006). However, in North Carolina, scallop undergo two spawning events, one in the 

spring and one in the fall, though it is predominately the fall spawn that survives to 

maturity (Bishop et al. 2006). Furthermore, a successful spawning event is also linked to 

the availability o f an adequate food supply prior to and during gonad growth and 

development, which is essential for invoking oocyte growth (Sastry 1966, Sastry and 

Blake 1971).

A.i. concentricus exhibits planktotrophic development (Arnold et al. 1998, Cragg 

2006) and its larval stage lasts about two weeks (Sastry 1965). During this stage, the 

distribution and eventual recruitment is determined primarily by the hydrodynamics of 

the estuary (Eckman 1987). Larvae metamorphose into juveniles (> 190 pm), a stage 

that is characterized by the appearance o f the post-veliger dissonconch shell (Fay et al. 

1983). The prodissoconchs settle onto a suitable substrate, typically attaching to seagrass 

blades, until they reach approximately 30 mm shell height (SH), at which point they 

unattach from the substrate, settle to the bottom and mature. Growth during the winter 

months is slow (Blake and Shumway 2006) and likely a function o f decreased 

metabolism and food availability during these months. However, by the early spring 20- 

25 mm SH scallops can be found on suitable substrates (Barber and Blake 1983). By 

summer and early winter scallops reach > 50 mm SH. The average longevity of a bay
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scallop is 12 to 18 months (Fay et al. 1983, Peterson and Summerson 1992), though in 

rare cases up to 26 to 30 months (Belding 1910).

1.4 Preferred Habitat

As its name implies, the bay scallop commonly exists in protected coastal bays, 

sounds, estuaries, and the inshore sides of barrier islands (Brand 2006). Within these 

areas, the populations are frequently found in association with submerged aquatic 

vegetation, which makes up their primary habitat (Belding 1910, Thayer and Stuart 1974, 

Garcia-Esquivel and Bricelj 1993, Irlandi et al. 1999). It is generally maintained that bay 

scallop larvae and young juveniles require structured nursery habitats for an increased 

chance of survival (Ingersoll 1886, Fay et al. 1983).

1.5 Restoration Efforts

Due to the declines o f scallop abundances, efforts to restore populations have 

been made, particularly in the coastal waters o f Florida (Arnold et al. 2005). Studies on 

the rearing of bay scallops in hatcheries and nurseries for natural population 

enhancements have also been conducted (Castagna and Duggan 1971, Castagna 1975, 

Widman and Rhodes 1991). Aquaculture o f the bay scallop has been successful in China, 

where broodstock was introduced from the United States. Scallop production from 

Chinese aquaculture is high and exceeded 50,000 tons live weight in 1988 (Guo et al. 

1999).

Locally, efforts to re-establish bay scallop populations in the seaside lagoons of 

the Chesapeake Bay have been initiated via experiments designed to inform upcoming 

restoration efforts (M. Luckenbach, pers. comm.). On the bayside o f Chesapeake Bay
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there has been no attempt at restoration, though in recent years, low and sporadic 

abundances o f bay scallops have been observed in the lower bayside areas o f the 

Chesapeake Bay (P. Freeman, pers. comm.).



MATERIALS AND METHODS

2.1 Scallop Collection and Transplantation

Scallops ranging from 27.7 to 54.6 mm SH were collected from the Middle Marsh 

in Back Sound near Beaufort, North Carolina, USA (34°41.940 N, 76°35.741 W; Fig. 1), 

and were transported in moist burlap sacks in coolers with ice packs to the Virginia 

Institute o f Marine Science (VIMS), in Gloucester Point, Virginia, USA (37° 14.891 N, 

76°30.030 W). The transportation method was chosen based on results from Peterson et 

al. (1996), which indicated that handling mortality was greatly reduced using this 

method. In North Carolina, scallops were collected in highly saline water (32 psu). Upon 

arrival, the scallops were gradually adjusted to local salinities of approximately 2 0  psu. 

Salinities were dropped at a rate o f about 2 psu per day. Once the scallops had adapted to 

local salinities, they were translocated to enclosures at our three study locations in the 

Lynnhaven River system.

2.2 Site Selection

The Lynnhaven River system is the southern-most system in Chesapeake Bay, 

located within the City of Virginia Beach, Virginia. It consists of four main waterbodies: 

Broad Bay, Linkhom Bay, and the Eastern and Western Branches. This study was 

conducted at three sites: Broad Bay, Linkhom Bay, and Pleasure House Creek (Fig. 2). 

These locations were chosen based on the following criteria: (1) seagrass beds existed 

historically, (2 ) environmental conditions appeared suitable for bay scallop growth and 

survival, and (3) hydrodynamic conditions were predicted to be retentive of larvae, as 

indicated by a hydrodynamic model of the Lynnhaven River system. In the model, a large
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fraction of oyster larvae spawned in the system, and particularly those larvae spawned in 

Broad Bay, Linkhom Bay, and Pleasure House Creek were likely to remain in the system 

and provide larval replenishment to new populations (Lipcius et al. 2008). In contrast, 

larvae spawned at other locations in the Lynnhaven River system were more likely to be 

advected from the system and were not likely to subsidize the oyster metapopulation.

2.3 Experimental Design, Technical Approach, & Statistical Analyses

Manipulative field experiments using predator-exclusive enclosures were 

conducted at the three locations. Enclosures were constructed using thirty-two-gallon, 

cylindrical, Rubbermaid Brute plastic containers, with one container enveloped within 

another. Six equally spaced 12.7 cm x 35.6 cm sections were cut out and removed along 

the sides o f both the outer and inner containers and replaced with 0.64 cm mesh to allow 

for water flow through the enclosures. In addition, a 30 cm in diameter, circular mesh 

panel was created on the lid to maximize light penetration into the enclosures (Fig. 3).

Each individual enclosure was randomly assigned one o f four substrate 

treatments: Zostera marina L., Gracilaria spp., oyster shell, or rubble. At the time of 

deployment, there were no known existing seagrass beds within the Lynnhaven River 

system. Therefore, eelgrass was collected at Allen’s Island in the York River and was 

transplanted to the enclosures. Gracilaria spp., a branching macroalgae that is abundant 

in Lynnhaven, was collected on site and translocated to the enclosures. Oyster shell and 

rubble were also acquired from Lynnhaven and placed within randomly assigned 

enclosures.
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At each location, there were three blocks of four enclosures (one enclosure with 

each substrate treatment), for a total of 36 enclosures. All enclosures were deployed 

within the shallow sub-tidal zone such that water depth ranged from 1 - 2  m, and the lids 

o f the enclosures were slightly exposed at low tide. The blocks were placed 

approximately 80 m apart, and within each block, enclosures were spaced approximately 

3 m apart from one another (Fig. 4). In addition, three replicates o f two sets of controls, 

an environmental and a handling control, were established in Middle Marsh, North 

Carolina, and maintained for the duration of the experiment.

Adult scallops were placed in enclosures at natural densities. Natural densities of 

approximately 25/m2 were inferred from published studies (Cooper and Marshall 1963, 

Duggan 1973, Castagna 1975, Peterson et al. 1996), and our own field observations in 

North Carolina. Consequently, scallops were transferred to enclosures (0.25 m2) at 10 

adult scallops per enclosure and were divided into two subgroups: (1) five scallops 30-40 

mm SH and (2) five scallops 41-50 mm SH. The control enclosures in North Carolina 

were also populated with 1 0  scallops per enclosure, five from each subgroup.

In Lynnhaven, scallops were deployed on 27 June 2008 and survival and size 

increase were monitored weekly from 3 July 2008 to 7 August 2008 by quantifying dead 

scallops and measuring both height and width o f every scallop. Only those data collected 

through 17 July 2008 were used for analysis due to heavy cage fouling at the Linkhom 

Bay site after this date, which precluded accurate interpretation of the results. Scallops 

were not individually marked, thus it was not possible to determine individual growth 

rates; however, we were able to estimate mean growth o f scallops for each enclosure.
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Water quality parameters (dissolved oxygen, temperature, and salinity) were also 

observed weekly. The enclosures in Lynnhaven were scrubbed weekly to reduce fouling 

and to ensure that adequate water flow was maintained within each enclosure. In North 

Carolina controls, scallop survival was determined after 13 weeks (17 June 2008 to 18 

September 2008). In North Carolina, enclosures were scrubbed periodically. Several 

scallops that remained at the end o f the experiment were left in Lynnhaven over the 

winter to determine whether they could survive the winter.

Akaike’s Information Criterion (AIC), which allows for the comparison of 

multiple working hypotheses, was used to better ascertain which factor or factors had the 

most influence on survival and size increase (Anderson 2008). Location, substrate, and 

habitat type were all hypothesized to have an effect. Overall, five hypotheses (models) 

were derived and analyzed using binary logistic regressions in the case o f survival, and 

least-squares regressions for growth. From these analyses, we used the parameter 

estimates from each corresponding model to calculate the AIC values associated with 

each model, which represented a different combination of variables that described the 

observed differences in survival and size increase (Table 1). Using AIC, in cases 

involving small sample sizes, a second-order bias AIC correction (AICc) calcuation is 

necessary. For survival, AICc values were calculated for each of our five models using 

the log-likelihood values obtained from the corresponding binary logistic regression 

using the following equation:

AICc = -2  log (L(6)) + 2k+ 2k(k + l)
n - k - l
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where -21og(L(6))  is equal to the log o f the maximum likelihood value obtained from the 

binary logistic regressions, k is the number o f estimable parameters in the approximating 

model, and n is the sample size. For growth, AICc values were calculated for each o f our 

five models using the residual sum of squares (RSS) obtained from the corresponding 

least-squares regressions using the following equation:

and k  is the number of estimable parameters in the approximating model. AAlCc values 

were calculated for each model to rank the various models from most probable to least 

(i.e., low to high AIC values) using the following equation:

value of all the models. In calculating these values, the best model is defined as 

having AAICc = 0 . Model probabilities (w,), which indicate the relative probability that 

the model is the best among the whole set of candidate models, were calculated for each 

model using the following equation:

where ln((j2) is equal to the residual sum of squares (RSS) divided by the sample size (n)

AAICc = AICc. -  AI Cc .i  m in

where AICc . are the values for each of the i models and AICcmm is the lowest AICc
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where A . is equal to the AAICc values calculated in the previous equation and R is the 

number o f models in the pool of candidate models. The model probabilities, also known 

as Akaike weights, sum to one and can be used to directly compare the weight of 

evidence for one model over another.

Additionally, survival and size increase at three weeks of exposure were analyzed 

using two-way ANOVAs to determine the magnitude o f the main effects o f location 

and/or substrate type. A Student-Neuman-Keuls (SNK) post-hoc comparison test was 

used to determine where the differences occurred.
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RESULTS

3.1 Survival

Substrate and habitat type (vegetated vs. unvegetated) had the greatest influence 

on scallop survival, as indicated by the AICc model comparison, where models g2 

(substrate type alone) and g5 (habitat type alone; Table 1), emerged as the best-fit models 

with model probabilities of 0.32 and 0.30, respectively (Table 2). In general, models with 

Wj > 0.20 were considered likely models (Anderson 2008).

After three weeks, survival o f caged scallops differed significantly by substrate 

treatment, though there was no significant difference among locations, and there was no 

significant interaction between these two variables (two-way ANOVA: Table 3). Survival 

was highest in the Z. marina habitat, followed by Gracilaria spp., averaging 97.8 % and 

90.0 %, respectively (Fig. 5). There was significantly higher survival in the Z. marina 

treatment as compared to the rubble and oyster shell treatments (SNK,/? < 0.009), though 

not compared to the Gracilaria spp. treatment (SNKp  — 0.107; Fig. 5). A similar 

response in survival according to habitat type, defined as vegetated (Gracilaria spp. and 

Z. marina) and non-vegetated (rubble and oyster shell), was observed. For the two 

scallop size classes examined, there was a significant difference in survival by substrate, 

though not by location, and there were no significant interactions between the two or 

among the three variables (three-way ANOVA, Table 4). Salinity and temperature were 

similar among the three locations and overall averaged 22.1%o and 27.5°C, respectively.

No general caging or environmental effects were observed in the control cages in 

North Carolina—most of the scallops survived except in two cages with extenuating
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circumstances. Moreover, some enclosures contained more than the initial 10 scallops, 

indicating that enclosures had acquired recruits. Two o f the six enclosures, however, had 

nearly 100 % mortality of the scallops; one o f these enclosures was heavily fouled, had 

low water-flow, and was hypoxic, while the other enclosure experienced high predation 

on scallops as indicated by seven large predators that were found inside. A large break in 

the mesh had allowed three >100 mm carapace-length rock crabs and four very large 

oyster toadfish to enter the enclosure and prey on the scallops, as evidenced by shattered 

scallop shell fragments along the bottom of the enclosure.

3.2 Size In crease

Location was the primary factor influencing the rate of scallop size increase, as 

model g4 , including only location, was the best model and had strong support with a 

probability o f 0.71 (AIC; Table 5). Location and vegetation type were also important to 

scallop size increase, as model g3 including those variables had a probability of 0.24.

Cumulative scallop size increase differed significantly by location, though not 

substrate type, and there was no significant interaction o f the two variables (two-way 

ANOVA: Table 6). Scallop size increase was significantly higher at Pleasure House 

Creek (1.22 mm/week) and Broad Bay (1.09 mm/week) than at Linkhom Bay (0.76 

mm/week; SNK test,/? < 0.001; Fig 6).
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DISCUSSION

The bay scallop was able to survive and grow in the Lynnhaven River tributary of 

the Chesapeake Bay and there were some differences according to habitat and location. 

Differences in adult scallop survival were apparent only among habitat substrate 

treatments and not locations. Overall survival was high, with highest survival in Z. 

marina (97.8 %), closely followed by that in the macroalgae Gracilaria spp. (90.0 %). 

Conversely, survival was lowest in the unvegetated habitats rubble (75.6 %) and oyster 

shell (78.9 %).

Numerous studies have been conducted under the well-established notion that 

eelgrass is the bay scallops’ preferred habitat (Pohle et al. 1991, Ambrose and Irlandi 

1992, Garcia-Esquivel and Bricelj 1993, Irlandi et al. 1995, Bologna and Heck 1999, 

Irlandi et al. 1999). Although previous work has recognized the scallop’s ability to utilize 

a variety o f substrates (Ingersoll 1886, Marshall 1947, Marshall 1960, Thayer and Stuart 

1974), few have examined the direct effects of various substrates on bay scallop survival 

(Carroll et al. 2010) or growth, or effects on other scallop species (Bourgeois et al. 2006, 

Pacheco and Stotz 2006). Our findings resemble those from mesocosm experiments with 

bay scallops where habitat preferences were seen in juvenile scallops; however, 

differences were not seen in adult bay scallops; there was no significant difference in 

habitat preference among sand, cobble, eelgrass, and Codium (macroalgae) treatments for 

> 25 mm SH scallops (Chintala et al. 2005). Although in our study we did not focus on 

habitat preference by size class, rather habitat effects on survival, we found significant
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differences in survival according to substrate treatments, which may have been driven by 

the smaller size class.

Our high survival of bay scallops in the Gracilaria spp. treatment, with survival 

similar to that in Z. marina, suggests that this substrate may provide similar ecological 

benefits to scallops as Z. marina. Eelgrass is thought to be a more important habitat for 

juvenile and larval stages of the bay scallop than for the adult phase; it provides an 

elevated surface for the larvae to attach and escape predators and sediment burial (Thayer 

and Stuart 1974, Castagna 1975). We suggest that for adult scallops, eelgrass as well as 

macroalgae serve as an important habitat for scallops, by not only providing a refuge 

from predators, as a result o f the heterogeneous and protective nature of structured 

habitats, but also because o f effects on food delivery for these suspension feeders. We 

suggest that Gracilaria spp. may provide the bay scallop with similar ecological benefits 

as eelgrass as a result o f its large size, complex structure, and adaptability to 

environmental stressors (Thomsen et al. 2009). Increased rates o f scallop survival in 

vegetated habitats were confirmed by the AIC model results, which indicated that both 

substrate type and its nature (vegetated vs. non-vegetated) were the most probable 

explanatory variables for the observed trends in scallop survival.

Eelgrass meadows are recognized as enhancing food resources for numerous 

benthic invertebrates (Orth 1973, Stoner 1980, Orth et al. 1984), including scallops, 

because they are able to alter the surrounding physical environment and create a 

depositional pool of organic matter, which becomes available to filter-feeding organisms 

for growth and survival (Eckman 1987, Cahalan et al. 1989). In addition, increased

18



survival in vegetated habitats may arise from the complex structure serving to elevate the 

scallops off of the bottom enough to avoid clogging of gills with suspended sediment.

Our translocated scallops appeared to grow well in the Lynnhaven River system, 

with mean scallop size increases o f 0.76 to 1.22 mm/week. Unlike survival, differences 

in relative size increases did not appear to be a function of habitat treatment, but rather 

location. Growth was significantly lower at Linkhom Bay (0.76 mm/week) than at 

Pleasure House Creek (1.22 mm/week) and Broad Bay (1.09 mm/week). Furthermore, 

AIC model results suggested that location was the primary variable influencing scallop 

size increase in addition to habitat type (vegetated vs. non-vegetated) also influenced size 

increase.

We hypothesize that the observed differences in size increase by location were 

related to changes in water flow among sites, as water flow has been documented to 

affect scallop growth (Kirby-Smith 1972, Eckman 1987, Cahalan et al.1989, Eckman et 

al. 1989, Arsenault et al. 1997). Water velocity was not specifically quantified for any of 

the locations; however, we observed differences in water flow as well as differences in 

fouling o f the mesh on cages in the field during scallop monitoring. Linkhom Bay had 

low and inadequate water flow, allowed development of fouling organisms on cage mesh, 

and consequently was not capable o f sustaining normal scallop growth rates. Without 

sufficient water flow, there would be insufficient delivery of food to these suspension 

feeders as well as a decreased rate o f water exchange (Kirby-Smith 1972). It is possible 

that slightly lower growth rates at the Broad Bay location, as compared to those in 

Pleasure House Creek, may be attributed to its characteristic strong current conditions,
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which may have adverse affects on scallop growth when optimal feeding current 

velocities are exceeded (Bricelj and Shumway 1991, Wildish and Saulnier 1993, 

Bourgeois et al. 2006). Pleasure House Creek tends to have high currents, which 

apparently supported scallop growth while not inhibiting it.

Our examination of bay scallop survival and size increase of transplanted adult 

scallops into an environment that once supported sustainable populations of this species 

revealed that they are still able to survive and grow in the absence of predators. Initial 

concerns revolving around the salinity barrier the scallops would have to overcome, as 

well as questions regarding scallop survival in the absence o f seagrass, were addressed 

and neither issue appeared to be a barrier to successful scallop restoration. The notion 

that bay scallops can successfully survive and grow in alternative habitats, such as 

macroalgae, gives promise to the idea of restoring bay scallop populations in the 

Lynnhaven River sub-estuary, where seagrass is currently negligible; however, this 

would require taking into account the physiological, hydrodynamic, and environmental 

aspects of various locations. Other potential deterrents, such as predation pressure and 

recruitment limitation, which are known to affect the success of restoration and 

enhancement, must be taken into consideration when further exploring the potential for 

bay scallop restoration. The next step in assessing the feasibility o f scallop restoration 

within Chesapeake Bay, in locations devoid of seagrass, will involve a quantitative 

assessment of predation on scallops in various available substrates. Ongoing studies on 

predator-prey interactions between blue crabs and bay scallops (Hernandez Cordero et 

al., in prep.), both in the field and in the laboratory, will shed light on these issues. With
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the results presented herein documenting survival and growth of caged scallops in the 

Lynnhaven River system, we are encouraged that scallop restoration within Chesapeake 

Bay is feasible.
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Table 1. The five models (g;) developed to describe the observed difference in scallop 
survival. If a p is present in a particular column, then that variable was included in that 
model. Number of parameters in each model is denoted by k.

Variables
Po Pi P2 P3 P4 p5 p6

Model Parameters
Constants: 
Z. marina & 

Linkhorn Bay
Gracilaria Rubble Oyster

Shell
Broad
Bay

PJeasure House 
Creek

Habitat
Type

(g) (k) (Z) & (LB) (G) (R ) (OS) (BB) (PHC) (Veg)
9i 7 Po Pi P2 P3 P4 P5
g2 5 Po Pi P2 P3
g3 5 Po P4 p5 p6
g4 4 Po P4 p5
g5 3 Po P6
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Table 2. Results from AICc calculations, in descending order, for scallop survival based
on the models designed to describe the observed differences in survival (see table 1).

Model Log-Likelihood K AICc AAIC Wj

9 2

(Substrate)
-135.29 5 282.58 0.00 0.32

9 s

(Veg)
-137.99 3 282.72 0.14 0.30

9 i

(Global)
-132.82 7 283.63 1.05 0.19

g3
(Location)

-135.84 5 283.68 1.10 0.19

9 4

(Loc & Veg)
-147.21 4 303.71 21.13 0.00
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Table 3. Analysis o f variance for scallop survival (arcsine-transformed) by two factors:
(I) substrate treatment, and (II) location.

Source df SS MS F P
Location 2 0.226 0.113 1.14 0.337
Substrate 3 1.763 0.588 5.93 0.004
Interaction 6 0.902 0.150 1.52 0.215
Error 24 2.380 0.099
Total 35 5.270

30



Table 4. Analysis o f variance for scallop survival by three factors: (I) size class, (II)
substrate treatment, and (III) location.

Source df SS MS F P
Size class (SC) 1 1.149 1.149 8.26 0.006
Location (Loc) 2 0.342 0.171 1.23 0.302
SC * Loc 2 0.137 0.069 0.49 0.614
Substrate (Sub) 3 2.742 0.914 6.57 0.001
SC * Sub 3 0.615 0.205 1.47 0.234
Loc * Sub 6 1.337 0.223 1.60 0.167
SC * Loc * Sub 6 0.156 0.026 0.19 0.979
Error 48 6.677 0.139
Total 71 13.154
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Table 5. Results from AICc calculations, in descending order, for scallop size increase
based on the models designed to describe the observed differences in growth.

Model RSS a2 K AICc AAIC Wi

9 4

(Location)
16.44 0.46 4 -19.06 0.00 0.71

9 3

(Loc & Veg)
16.49 0.46 5 -16.90 2.15 0.24

9 i

(Global)
16.04 0.45 7 -13.82 5.24 0.05

g2
(Substrate)

29.28 0.81 5 3.76 22.82 0.00

9 s

(Veg)
29.68 0.82 3 0.18 19.23 0.00
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Table 6. Analysis o f variance for scallop size increase by two factors: (I) substrate
treatment, and (II) location.

Source df SS MS F P
Location 2 13.241 6.621 11.23 0.000
Substrate 3 0.454 0.151 0.26 0.856
Interaction 6 1.886 0.314 0.53 0.778
Error 24 14.153 0.590
Total 35 29.734
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Atlantic Ocean

Bogue Sound

Back
Sound

Kilometers

Figure 1. Map of the Beaufort-Morehead City, NC region illustrating the scallop 
collection site in the Middle Marsh (34°41.940 N, 76°35.741 W) (indicated by the star)
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Chesapeake Bay

Broad Bay 
(BB)

Kilom eters

Figure 2. Map of the sites of field experiments (stars) in the Lynnhaven River system 
within three locations: (1) Pleasure House Creek (PHC), (2) Broad Bay (BB), and (3) 
Linkhorn Bay (LB).
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Water

Sediment

Figure 3. Schematic o f cage (55.9 cm diameter x 69.2 cm height). Arrow indicates the 
section that was placed below the sediment-water interface. Gray indicates mesh panels 
for water flow.
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OS OSOS

3 m 3 m3 m

Figure 4. Diagram of caged field blocks that were present at each location. Each circle 
represents an individual enclosure that contained one of the four randomly assigned 
substrates: Gracilaria spp. (G), Zostera marina L. (SG), Rubble (R), and Oyster Shell 
(OS). Arrows and measurements indicate distances between enclosure and blocks.
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c/) 70

Rubble Oyster Shell Gracilaria Zostera

Figure 5. Patterns of survival of caged scallops for each substrate type at each of the 
three locations. Bars show mean cumulative survival and error bars are one SE. 
Significant differences at a = 0.05 as determined by a two-way ANOVA and SNK are 
indicated by different letters above the bars.
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5 i

LHB BB PHC

Figure 6. Patterns of cumulative size increase of caged scallops over three weeks for 
each location (Linkhorn Bay (LHB), Broad Bay (BB), Pleasure House Creek (PHC)) with 
pooled substrate treatments. Bars show mean cumulative size increase and error bars are 
one SE. Significant differences at a  = 0.05 as determined by a two-way ANOVA and 
SNK are indicated by different letters above the bars.
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Chapter 2

Blue Crab, Callinectes sapidus, predation on the Bay Scallop, Argopecten irradians 
concentricus (Say 1822): mesocosm and field experiments in the Lynnhaven River,

Virginia



ABSTRACT

Predation by crabs and other benthic predators in estuarine systems is an important 
source of natural mortality for a variety of benthic organisms. We assessed predation on 
bay scallops (Argopecten irradians concentricus) in mesocosm and field experiments. In 
laboratory mesocosm experiments, we assessed the survival of bay scallops Argopecten 
irradians concentricus o f various sizes (10-20 mm, 21-30 mm, 31-40 mm, and 41-50 mm 
shell height; SH) as a function of female blue crab Callinectes sapidus predation as it 
varied among treatments of habitat type (oyster shell, sand, macroalgae) and predator size 
(>140 mm, <140 mm carapace width). A balanced two-by-three factorial experimental 
design was used to evaluate the probability of scallop survival. There was a significant 
difference in the proportion o f scallops surviving by habitat treatment and predator size 
(two-way ANOVA). Large female crabs exerted greater predation pressure on scallops o f 
all size categories compared to smaller females (F = 11.67,/? = 0.001), whereas oyster 
shell habitat provided the highest degree o f structural refuge from crab predation (F = 
3.29, p  = 0.044). Differences in predation as a function o f predator size may be attributed 
to differences in claw strength and crushing capabilities of the two predator size groups. 
Differences in survival among habitats may be a function o f increasing habitat 
complexity and structural refuge. A series of field-tethering experiments (one small-scale 
and one large-scale) designed to assess the survival o f tethered juvenile scallops (< 30 
mm SH) in the Lynnhaven River sub-estuary o f the Chesapeake Bay demonstrated 
significant effects o f location within the sub-estuary, habitat, and/or their interaction 
depending on the scale o f the experiment. Two-way ANOVAs and an information 
theoretic approach (Akaike’s Information Criterion analysis; AIC) were used for the 
analysis of the data. For the small-scale experiment, there was a significant effect of 
location (two-way ANOVA: F = 3.71,/? = 0.020), which also emerged as the strongest 
predictor o f survival (AIC). In the large-scale experiment, the interaction between the two 
variables (location and habitat) was significant (GLM, F = 5.79,/? < 0.001) and also a 
strong predictor o f scallop survival (AIC). Survival was significantly higher in Gracilaria 
spp. treatment (SNK,/? < 0.007) and at Alanton’s Cove (SNK,/? < 0.04). Overall, 
survival was not very high under all circumstances, which could present complications in 
restoring sustainable scallop populations to the area. However, a proper combination of 
efforts, such as seed planting in structured substrates that offer protection against 
predation, such as oyster shell and Gracilaria spp., will likely increase the success of 
restoration efforts.
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INTRODUCTION

Predation by crabs in estuarine systems is an important source o f natural mortality 

for a variety o f benthic organisms, particularly during the larval and juvenile phases 

(Jensen and Jensen 1985, Juanes 1992, Strieb 1995). Numerous studies have 

demonstrated the crab’s ability to regulate bivalve population dynamics and community 

structure (Vimstein 1977, Holland et al. 1980, Arnold 1984). Bivalve prey can coexist 

alongside their predators with a reduced risk of mortality if  (1) they reach a partial or 

total size refuge at adult sizes, (2) exist in a habitat inaccessible to predators, or (3) 

develop heavy shell morphology (Blundon and Kennedy 1982a, 1982b). Increased habitat 

complexity also provides spatial refuge from predators, particularly during the early 

stages o f bivalve development (Arnold 1984, Talman et al. 2004).

The blue crab, Callinectes sapidus (Rathbun), is an ecologically and 

commercially important large epibenthic predator found along the eastern seaboard of 

North America (Hill et al. 1989, Eggleston 1992). In Chesapeake Bay, the blue crab is 

one o f the dominant predators, reaching high abundances with vigorous foraging activity 

from late spring through autumn (Lipcius and Hines 1986, Eggleston 1992, Moody 

1994). Blue crabs consume fish, crabs, detritus, shrimp, aquatic plants, conspecifics, and 

mollusks (Hill et al. 1989, Lipcius et al. 2007); however, bivalve mollusks form a major 

fraction o f their diet (Laughlin 1982, Hines et al. 1990, Seitz et al. 2001).

Three subspecies o f bay scallops, Argopecten irradians, are commonly 

distinguished according to geographical distribution (Fay et al. 1983) and shell 

morphology (Clarke 1965, Waller 1969). They include: (1) A.i. irradians extending from
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Cape Cod to the mid-Atlantic region, (2) A.i. concentricus extending from the mid- 

Atlantic region to the Atlantic coast o f Florida, and (3) A.i. amplicostatus, which extends 

farther into the Gulf of Mexico (Clarke 1965, Wilbur and Gaffney 1997).

Beginning in the 1930s, significant decreases in southern bay scallop, A.i. 

concentricus, abundances were observed in Virginia in conjunction with the decimation 

o f eelgrass beds (McHugh 1989, Dreyer and Castle 1941) resulting from eelgrass-wasting 

disease, eutrophication, and damage from the storm king hurricane (Renn 1936, Castagna 

and Duggan 1971, Arnold et al. 1998, Goldberg et al. 2000, R. Lipcius, unpublished 

data). Recent declines in harvests may be attributed to recruitment limitation (Peterson 

and Summerson 1992, Peterson et al. 1996), which has been exacerbated by 

overharvesting, degraded water quality, habitat loss, coastal development, and the 

occurrence of harmful algal blooms (Arnold et al. 1998, Marelli et al. 1999, NMFS 1999, 

Arnold 2001, Tettelbach et al. 2002, Fegley et al. 2009). Efforts to re-establish bay 

scallop populations in the seaside lagoons o f the Chesapeake Bay have been initiated via 

experiments designed to inform upcoming restoration efforts (M. Luckenbach, pers. 

comm.), although no experiments or restoration efforts on the bayside have been 

attempted. In recent years, sporadic abundances of bay scallops have been observed in 

the lower bayside areas o f the Chesapeake Bay (P. Freeman, pers. comm.).

Bay scallops are simultaneous protandrous hermaphrodites with an average life 

span of 12 to 18 months (Fay et al. 1983, Peterson and Summerson 1992), though in rare 

cases may reach up to 26 to 30 months (Belding 1910). Within their southern range, they 

undergo a single primary spawning event, which commences during the late fall in
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conjunction with decreasing water temperature, increased food availability, and minimal 

risk of predatory mortality (Gutsell 1930, Sastry 1963, Barber and Blake 1983, Arnold et 

al. 2005, Blake and Shumway 2006). It is generally maintained that bay scallop larvae 

and young juveniles require structured nursery habitats for increased chances of survival 

(Ingersoll 1886, Fay et al. 1983).

Seagrass beds, particularly those consisting o f eelgrass (Zostera marina L.), serve 

as the preferred nursery habitat for bay scallops, in part, because they provide significant 

refuge from benthic predators (Pohle et al. 1991, Ambrose and Irlandi 1992) as well as 

protection from siltation associated with the bottom (Thayer and Stuart 1974, Castagna 

1975). In spite of this, bay scallop populations are also abundant in natural habitats 

devoid of eelgrass (Marshall 1947, Marshall 1960) and are known to attach to other 

substrates, such as small branching algal species, shells, rocks, or sessile animals 

(Ingersoll 1886, Marshall 1960, Thayer and Stuart 1974, Smith et al. 1988). Preference 

for structured habitats may be a function of size. In a previous mesocosm experiment, 

young bay scallops (<15 mm shell height; SH) equally preferred cobble, algal, and 

eelgrass habitats, all o f which were selected over sand habitats; older bay scallops (> 25 

mm SH) had no preference among cobble, algal, eelgrass, and sand habitats (Chintala et 

al. 2005).

The present study assessed predation on bay scallops (Argopecten irradians 

concentricus) in mesocosm and field experiments. In mesocosm experiments, we 

quantified the impacts of female blue crab predation on juvenile and adult bay scallops 

(10-19 mm, 20-29 mm, 30-39 mm, 40-49 mm shell height; SH) as it varied among
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treatments o f habitat type (oyster shell, sand, Gracilaria spp.) and predator size (> 140 

mm, < 140 mm carapace width; CW). In the field, we examined predation by conducting 

two field experiments (small-scale and large-scale) using scallop tethering at various 

locations and habitats within the Lynnhaven River sub-estuary of the Chesapeake Bay, 

Virginia (Figure 3).
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MATERIALS AND METHODS

2.1. Mesocosm Experiments

2.1.1. Experimental Design and Technical Approach

Scallops ranging from 12.3 to 44.7 mm SH were obtained from an 18 m x 29 m 

shore-side mesocosm pond at the UNC Institute of Marine Sciences (IMS) in Morehead 

City, NC (34°43.354 N, 76°45.146 W). They were transported in moist burlap sacks in 

coolers with ice packs to the Virginia Institute of Marine Science (VIMS), in Gloucester 

Point, Virginia, USA (37° 14.891 N, 76°30.030 W). The transportation method was 

chosen based on results from Peterson et al. (1996), which indicated that handling 

mortality was greatly reduced using this method. Upon arrival, the scallops were 

gradually adjusted to local salinities over one week. Female blue crabs ranging from 

112.0 to 167.7 mm CW were obtained from the annual VIMS Blue Crab winter dredge 

survey. Only female crabs were used in this experiment to avoid sex-related biases in 

feeding behavior and cheliped morphology (Eggleston 1990b, Barbeau and Scheibling 

1994, Nadeau and Cliche 1998).

Mesocosm experiments were conducted to examine the effect of predator size, 

prey size, and habitat complexity on the survivorship o f bay scallops. The experiments 

were conducted in seven 69.9 x 40.6 cm circular tanks (155.7 liters). We used a 2 x 3 

balanced factorial experimental design where each tank represented a single data point 

(Fig. 1). Six tanks included one of the three habitat treatments (oyster shell, sand, 

Gracilaria spp.), one o f the two predator sizes (large: >140 mm CW; small: < 140 mm 

CW) and a total of eight scallops (two from each size class: 10-19 mm, 20-29 mm, 30-39
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mm, 40-49 mm shell height; SH). The seventh tank was used to control for handling 

mortality; therefore, it did not include a predator or habitat treatment.

Crabs were acclimated and starved for 48 hours prior to each trial to standardize 

hunger levels. To maintain sampling independence, each crab was used only once. We 

conducted a total of 11 feeding trials (N = 66) each lasting 24 hours. Water temperature 

o f the experimental and holding tanks was maintained at 20.0°C to ensure normal blue 

crab feeding activity. The numbers of scallops eaten were recorded following each 

experimental trial.

2.1.2. Statistical Analyses

Scallop survival data was analyzed using a two-way analysis of variance 

(ANOVA) to determine the effects o f habitat type and predator size. To meet 

assumptions o f normality and homogeneity of variance, the survival data were arcsine 

transformed. Multiple comparisons were performed with a Student-Neuman-Keuls 

(SNK) test. Prey-size preference was analyzed using a general multivariate analysis of 

variance (MANOVA).

2.2. Field Experiments: Small-Scale

2.2.1. Site Selection

The Lynnhaven River system is the southern-most system in Chesapeake Bay, 

located within the City o f Virginia Beach, Virginia. It consists o f four main water bodies: 

Broad Bay, Linkhom Bay, and the Eastern and Western Branches o f the Lynnhaven 

River. This study was conducted at four locations in the Lynnhaven River system: Broad 

Bay, Pleasure House Creek, First Landing State Park, and Linkhom Bay (Fig. 2). In
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addition to the blue crab, potential predators o f scallops in Lynnhaven include: oyster 

toadfish, flounder, mud crabs, and whelks.

2.2.2. Predation Mortality

We used tethering experiments to test for differences in mortality of juvenile bay 

scallops among three habitat types and four locations. The three habitats included oyster 

shell, Gracilaria spp., and sand, which were artificially created in 1 m x l m  plots 

approximately six meters from shore and three meters apart 24 hours prior to scallop 

deployment. Mean water depth ranged from 1-1.5 m at MLW. Each plot generally 

included two tethered scallops, but most sand plots included only one tethered scallop. 

Survival estimates were based on the mean survival of scallops per plot.

Juvenile bay scallops ranging between 13.1 and 25.9 mm SH (20.1 ± 0.3 mm) 

were tethered by gluing a 20-cm-long monofilament fishing line to the umbo area o f the 

upper valve. This area was cleaned and thoroughly dried prior to gluing to facilitate 

attachment. The tethered scallops were held in an outdoor flow-through seawater tank for 

48 hours prior to deployment to ensure the tether was securely attached.

The tethered scallops were transported to the study locations in petri dishes (10 

scallops per dish) lined with wet paper towels placed inside a cooler with moist burlap 

and ice packs on 16 September 2009. This technique enhanced scallop survival during 

transportation by reducing the risk o f valve opening and, thus, gill desiccation. In the 

field, the free end o f the fishing line (tether) was tied to a metal plant stake. For the plots 

that contained two scallops per plot, the stakes were inserted at diagonally opposite ends 

o f the quadrat to ensure no chance o f scallop entanglement.
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Tethered scallops were left at each study location for 4 hours and 15 minutes at 

which point their status was recorded and the experiment was terminated. In a pilot study 

conducted two weeks prior, we estimated that tethered scallop survival in the field was 

approximately 50 % after 4 hours and 15 minutes using sand treatments only.

Additionally, on 9 September 2009, trawl data was collected at each location to 

compare relative predator abundances. For this, we used a 2 m-wide, 4.9 m -long otter- 

trawl net, with a 0.95 cm mesh size, to sample along the shoreline. The trawl net was 

pulled behind the boat for two consecutive minutes at 11 rpms. This was done twice, 

once with the current and once against the current. All species collected were identified, 

measured to the nearest millimeter (total length), counted, and recorded.

2.2.3. Statistical A n alyses

Survival o f tethered scallops was predicted to be a function of location, habitat, 

and their interaction. Akaike’s Information Criterion (AIC), which allows for the 

comparison o f multiple working hypotheses, was used to determine which factor or 

factors were the strongest predictors of survival among the variables examined (Anderson

2008). Overall, four hypotheses (models) were derived and analyzed using binary logistic 

regressions and ranked according to how well the model fit the data using AIC. Each 

model represented a different combination o f variables that described the observed 

differences in survival (Table 1). Using AIC, in cases involving small sample sizes, a 

second-order bias AIC correction (AICc) calcuation is necessary. AICc was calculated 

for each of our four models using the log-likelihood values obtained from the 

corresponding binary logistic regression using the following equation:
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AICc = -2  log (L(0)) + 2k+  2k(~k + 
n - k - l

where log(L(6))  is equal to the log of the maximum likelihood value obtained from the 

binary logistic regressions, k  is the number of estimable parameters in the approximating 

model, and n is the sample size. AAICc values were calculated for each model to rank the 

various models from most probable to least (i.e., low to high AIC values) using the 

following equation:

AAICc = AICc -  AICc

where AICci are the values for each of the / models and A I C c ^  is the lowest AICc value 

of all the models. In calculating these values, the best model is defined as 

having AAICc = 0 . Model probabilities (w,-), which indicate the probability that the model 

is the best among the whole set of candidate models, were calculated for each model 

using the following equation:

J-YiAi)
™ i = - F -----------------Xe'-V-1

V— 1

where A. is equal to the AAICc values calculated in the previous equation and R is the 

number of models in the pool o f candidate models. The model probabilities, also known 

as Akaike weights, sum to one and can be used to directly compare the weight of 

evidence for one model over another.

Scallop survival was also analyzed using two-way ANOVAs on square-root-
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transformed data to determine if  there was an interaction effect as well as to gage the 

magnitude o f the effects of location and/or habitat type. A Student-Neuman-Keuls (SNK) 

post-hoc comparison test was used to determine where the differences occurred.

2.3. Field Experiments: Large-Scale

2.3.1. Site Selection

This study was conducted at three locations within the Lynnhaven River system: 

Broad Bay, Alanton’s Cove, and Pleasure House Creek (Fig. 3). As in the previous 

experiment, we aimed to test for differences in mortality of juvenile bay scallops among 

three habitat types. In this case we were interested in minimizing the confounding effect 

o f creating artificial plots of structured habitat that might attract predators seeking refuge 

or favorable foraging areas. Therefore, our study locations were chosen based on the 

natural availability o f large and established Gracilaria spp. beds, oyster reefs, and sand 

habitats all within the same vicinity, where predator abundances would remain similar 

within a location and through time.

2.3.2. Predation Mortality

Juvenile bay scallops ranging between 12.6 and 30.9 mm SH (19.5 ± 0.3 mm) 

were tethered in the same manner as the scallops used for the small-scale field study. The 

tethered scallops were held in an outdoor flow-through seawater tank for 48 hours prior 

to deployment.

On 28 October 2009, the tethered scallops were transported to the study locations 

in petri dishes (10 scallops per dish) lined with wet paper towels placed inside a cooler 

with moist burlap and ice packs to enhance species survival, similar to procedures in the
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prior experiment. In the field, the free end o f the fishing line (tether) was tied to a swivel 

attached to a cable tie that was attached to a ~1 m tall PVC pole. The cable tie was 

clasped around a hole drilled into the PVC pole about 30 cm from the bottom. The pole 

was then inserted into the sediment to where the point of scallop attachment was about 2 

cm off the sediment surface. This was done to mimic the natural setting of the scallops on 

the sediment surface and to allow for complete range o f motion within the length of the 

tether.

At Pleasure House Creek and Broad Bay, 20 tethered scallops were haphazardly 

placed per habitat treatment for a total of 60 tethered scallops per location. Each PVC 

stake was placed at least 2 m apart from its closest neighbor. Due to time limitations, only 

10 scallops per habitat treatment were placed at Alanton’s Cove. Since this experiment 

was conducted in late October when predator foraging was reaching a minimum, the 

tethered scallops were left out in the field for 48 hours and monitored every 24 hours.

To control for potential mortality associated with tethering and transportation, an 

additional 20 scallops were tethered and placed in 244 x 91 cm outdoor flow-through 

seawater tanks without predators, along with another 20 untethered scallops 48 hours 

prior to the experiment. All scallops, experimental and control, were treated equally with 

regard to the transportation procedure. They were placed in the petri dishes (10 scallops 

per dish) lined with wet paper towels placed inside a cooler with moist burlap and ice 

packs. After two hours the scallops were removed from the cooler and the free ends o f 

the lines of the 20 tethered scallops were attached to the sides of the experimental tanks 

(5 tanks, 4 scallops/tank) about 2 cm off the bottom. Untethered scallops were also placed
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in a separate experimental tank for the duration of the experiment. No scallops from the 

tanks were ever found dead, missing, or unattached verifying that handling had no effect 

on survivorship and that tethers were securely attached.

Tethering is considered the simplest and least time-consuming method for 

measuring predation potential (Aronson and Heck 1995). However, results must be 

interpreted cautiously since they may not represent true measurements of natural 

mortality. To assess the potential artifacts associated with tethering, we conducted 

another series of experiments in the lab where tethered and untethered scallops were held 

in 69.9 x 40.6 cm circular tanks including one o f the three habitats (Gracilaria spp., 

oyster shell, sand) and a predator (blue crab). Experiments lasted 48 hours and were 

monitored every 24 hours. The tanks were maintained at 20° C to ensure normal feeding 

activity and also to mimic the ambient environmental conditions observed and recorded 

during the field tethering experiments.

2.3.3. Statistical A n alyses

Survival o f tethered scallops was predicted to be a function of location, habitat, 

and their interaction. We used AIC to determine which factor or factors were the 

strongest predictors of survival among the variables examined. We derived four 

hypotheses (models), each representing a different combination o f the variables, which 

were analyzed using binary logistic regressions (Table 2). AICc and model probability 

values were calculated for each model to determine which candidate model best fit the 

data.

Scallop survival was also analyzed using two-way ANOVAs on untransformed
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data to determine if  there was an interaction effect, as well as to gage the magnitude of 

the location and/or habitat type effects. A Student-Neuman-Keuls (SNK) post-hoc 

comparison test was used to determine where the differences occurred.
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RESULTS

3.1 Mesocosm Experiment

The proportion of scallops surviving varied significantly by habitat and predator 

size; there was no significant interaction between these two variables (two-way ANOVA: 

Table 3). Survival was highest in the oyster shell habitat (0.61) and lower in both the 

Gracilaria spp. and sand treatments (0.41 and 0.42, respectively; Student-Neuman-Keuls; 

Fig. 4). Survival was also significantly higher with smaller predators (Fig. 5).

Large and small blue crabs showed preference for scallops < 30 mm SH as well as 

a significant effect o f habitat treatment; no interaction between the two variables was 

observed (MANOVA: Table 4). For both predator treatments, in the sand and Gracilaria 

spp. treatments, we observed significantly lower survival o f the <30  mm SH scallops 

compared to larger (>30 mm SH) scallops (Figs. 6a, b). Conversely, we saw no 

significant difference in scallop survival by size class in the oyster shell treatment for 

both predator sizes (Figs. 6a, b). Overall, survival was highest in the oyster shell 

treatment for all scallop size classes for both predator size treatments (Fig. 4), though as 

would be expected, overall scallop survival was lower for the large predator size 

treatment (Fig. 5).

3.2 Field Experiment: Small-scale

Location emerged as the strongest predictor of scallop survival, as indicated by 

the AICc model comparison (Table 5). In general, models with w; >0.10 were considered 

likely models (Anderson 2008). After exposure to predators (4 hours and 15 mins), 

survival o f tethered scallops differed significantly by location, though not by habitat, and
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there was no significant interaction between the variables observed (two-way ANOVA: 

Table 6). Survival was highest at Broad Bay, followed by Linkhom Bay, and lowest at 

Pleasure House Creek and First Landing State Park (Fig. 7). Post-hoc multiple 

comparisons indicated significant differences in survival between Broad Bay and 

Pleasure House Creek (SNK,/? = 0.043), Broad Bay and First Landing State Park (SNK, 

p  = 0.042), though not between Broad Bay and Linkhom Bay (SNK,/? = 0.468). All other 

pair-wise comparisons were non-significant (SNK,/? > 0.084).

Predator abundances varied by location: Broad Bay had the fewest potential 

scallop predators, followed by Pleasure House Creek, First Landing State Park, and 

finally, Linkhom Bay (Table 7).

3.3 Field Experiment: Large-scale

The global model, which included all variables and interaction terms, emerged as 

the strongest predictor o f scallop survival, as indicated by the AICc model comparison 

(Table 8). After 48 hours o f predator exposure, survival o f tethered scallops differed 

significantly by habitat, though not by location, and a significant interaction between the 

variables was observed (two-way ANOVA: Table 9). Survival was significantly high at 

Alanton’s Cove compared to Pleasure House Creek (SNK,/? = 0.054) and Broad Bay 

(SNK,/? = 0.039). There was no significant difference in survival between Pleasure 

House Creek and Broad Bay (SNK,/? = 0.599; Fig. 8).

In the mesocosm study designed to address the artifacts associated with tethering, 

we saw no significant difference among the three habitat treatments for the tethered 

scallops. We did, however, find a difference in survival among the habitats for the

56



untethered scallops, though they were non-significant (p > 0.05). Patterns of survival 

show highest survival in oyster shell (0.5) and Gracilaria spp. (0.4) and lowest in sand 

(0 .2).
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DISCUSSION

Our study yielded important results regarding the natural mortality of juvenile bay 

scallops in both mesocosms as well as in the field in the Lynnhaven River tributary of the 

Chesapeake Bay. Mesocosm experiments demonstrated significant differences in scallop 

survival among habitat treatments and with respect to predator size. Proportional survival 

was highest in oyster shell and lowest in the macroalgae Gracilaria spp., where survival 

was similar to sand. Both large and small predators preferred the two smallest size classes 

(10-19 and 20-29 mm SH) in all habitat treatments, though the preference was less 

pronounced and statistically non-significant in the oyster shell treatment. This suggests 

that oyster shell habitat may provide all sizes of bay scallops with structural benefits 

associated with heterogeneous habitat, such as providing refuge from predation.

In our experiments, blue crabs showed selection for the smaller prey sizes. 

Predation on bivalves such as Mercenaria mercenaria (MacKenzie 1977, Arnold 1984), 

Crassostrea virginica (Bisker and Castagna 1987, Eggleston 1990a) and Geukensia 

demissa (Seed 1980, Seed 1982, Hughes and Seed 1981) by blue crabs has been well 

documented. In these studies, blue crabs preferred small prey in spite o f their ability to 

consume larger prey. Observed preference for the smaller scallops (<30 mm SH) by blue 

crabs may be explained by their relative ease with which they handle the smaller prey. 

Prey that are too large with substantial shell strength, measured as the force required to 

achieve fracture (Juanes 1992), will increase a crab’s handling time by requiring that they 

adopt techniques such as edge clipping and prying the valves apart (Seed and Hughes 

1995, Aronhime and Brown 2009). Outright crushing of smaller prey is less time
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consuming, allowing feeding crabs to maximize their net rate of energy intake (Hughes 

and Seed 1981). Furthermore, a predator’s probability of suffering non-lethal injury, such 

as claw damage, increases with the shell strength of its prey (Juanes 1992) and likely 

influences observed patterns of preferred smaller bivalve prey.

Although we detected a clear preference for small scallops in both predator 

treatments (small and large), we also observed crabs preying on scallops o f up to 49 mm 

SH. Blue crabs are one o f the dominant predators in the Chesapeake Bay that are able to 

regulate bivalve population dynamics and community structure (Vimstein 1977, Holland 

et al. 1980, Arnold 1984). Therefore, a prey’s ability to obtain a spatial or size refuge 

from crab predation is important, possibly required, for maintaining a sustainable 

population. Our study showed increasing survival o f scallops with an increase in size 

(shell length), which is related to shell strength. This increasing trend in survival with 

increasing scallop size may indicate a scallop’s ability to achieve a size refuge from blue 

crabs above our maximum experimental scallop size (49 mm SH). Our results also 

suggest that in the absence of seagrass, which provides juvenile scallops with a spatial 

refuge from predation, oyster shell habitat may provide an adequate habitat refuge, 

particularly for the smaller scallop sizes, through heterogeneity and inaccessibility.

In the small-scale field tethering experiment, differences in scallop survival varied 

significantly among location, though not habitat. We do not suggest that the differences 

in scallop survival among locations could be explained by the relative predator 

abundances found at each location. Although predator abundances were lowest at our 

Broad Bay location, which was the location with the significantly highest level of scallop
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survival, the survival data for the remaining locations does not coincide with the relative 

predator abundances. The high abundances o f potential predators in Linkhom Bay and 

First Landing State Park appear to be driven by the high abundances o f spot (Leiostomus 

xanthurus), which may not be a likely predator o f bay scallops. Consequently, it may be 

that predator abundances do not vary enough to explain the observed differences in 

survival. However, it is still important to consider and direct scallop restoration in areas 

with fewer predators, such as in Broad Bay in the Lynnhaven River System.

It is likely then, that in creating the artificial plots for the small-scale study 24 

hours prior to the beginning of the experiment, we attracted predators seeking refuge or 

favorable foraging areas. Therefore, we believe that the large-scale tethering study offers 

a more realistic account of rates of scallop predation. Since the habitats were well 

established, we would expect predator abundances not to fluctuate substantially as a 

function o f habitat formation and prey addition.

Differences in scallop survival for the large-scale experiment varied significantly 

among habitats, though not locations, and there was a significant interaction between the 

two variables. Survival was highest for the Gracilaria spp. treatment and was low for 

both the sand and oyster shell treatments. Although a marginally significant difference 

was observed for location (p = 0.059), the trends was toward highest survival in 

Alanton’s Cove, followed by Pleasure House Creek, and then Broad Bay. The Alanton’s 

Cove location was particularly complex and unique, as compared to the other locations, 

in that the oyster reef mounds created elevation differences. This likely presented the
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scallops with a greater advantage, which resulted in elevated survival levels, suggesting 

that complex habitats are advantageous to scallop survival.

The high survival o f bay scallops in the Gracilaria spp. treatment suggests that 

this substrate may provide similar ecological benefits to scallops as Z. marina. Eelgrass is 

an important habitat for juvenile and larval stages o f the bay scallop as it provides an 

elevated surface to which the larvae can attach and escape predators and burial by 

sediment (Thayer and Stuart 1974, Castagna 1975). Its benefits could also result from its 

large size, complex structure, and adaptability to environmental stressors (Thomsen et al.

2009). Conversely, the macroalgal blooms of Gracilaria spp. could also impose negative 

impacts to the ecosystem.

The emergence o f dense canopies of various benthic macroalgal species, 

including Gracilaria spp., is a growing phenomenon along many of the world’s 

coastlines, primarily associated with human activity (Valiela et al. 1997). In 1995, Taylor 

et al. suggested that in coastal waters with high nutrient enrichment, we observe a 

conversion from seagrass to macroalgal habitats, which is commonly considered a 

degradation o f coastal environments. After an expansive bloom of Gracilaria spp. the 

accumulation of the plant detritus may result in low oxygen and high sulfide conditions 

within the sediments (Martinez-Luscher and Holmer, in press), having adverse effects on 

the benthic community. In the case o f the Lynnhaven River system, expansive Gracilaria 

spp. mats that could impose such conditions have been observed in Alanton’s Cove, 

Linkhom Bay, and within the shallow coves o f Lynnhaven proper (R. Lipcius, pers. 

comm.).
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Previous work has indicated that translocated scallops are able to survive and 

grow in the Lynnhaven River system, though the scallop’s ability to do so depends on 

location or habitat (Hernandez Cordero et al., in prep.) Combined results from the 

research herein point to significant differences in survival of juvenile bay scallops, as a 

function of habitat complexity, predator abundance and size, and, potentially, location. 

We suggest that restoration be focused primarily on oyster shell habitats in locations with 

low large predator densities.

The establishment of bay scallop populations in Lynnhaven River may be more 

successful if  previously used strategies are taken account. For example, in 2001, Arnold 

reported on a strategy that led to the successful restoration of bay scallops in the coastal 

lagoons o f Florida. His strategy was to concentrate spawning scallops, thereby increasing 

fertilization success, larval supply, and the availability of competent recruits. In North 

Carolina Fegley et al. (2009) reported that maintaining high enough adult scallop 

densities promotes effective spawning (> 2 scallops/m2, Peterson and Summerson 1992), 

even when cownose ray predation pressure is at its peak. High adult densities were 

maintained through the erection o f protective stockades (10 m wide x 27 m long), which 

successfully inhibited high scallop mortality from predation.

The Lynnhaven River system is a fairly large system (~ 67 square miles in area 

and ~ 150 miles o f shoreline), comparable in size to the study systems of the 

aforementioned studies. As such, we would benefit from employing similar strategies of 

restoration. It would also be to our advantage to time these efforts accordingly. From my 

work we saw that blue crabs preferentially feed on the smaller size classes ( <  30 mm
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SH). We also recognize that predation is highest in the summer months and that scallops 

spawn in the fall. Therefore, caging juvenile (~ 30 mm SH) scallops in concentrated 

stocks in the spring and allowing them to acclimate, grow and later spawn, would result 

in the availability o f competent recruits. Moreover, placing these concentrated stocks 

near areas o f structured habitat (e.g. oyster reefs) would provide the recruits with 

protective habitat, thus increasing their chances of survival.

The notion that bay scallops can successfully find refuge from predation in 

alternative habitats, such oyster shell, gives promise to the idea of restoring bay scallop 

populations in the Lynnhaven River sub-estuary, where seagrass is currently negligible. 

For successful restoration to take place, a thorough account o f other potential deterrents 

to successful restoration, such as recruitment limitation and environmental stressors, must 

be taken into account.
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Table 1. The four models (g j)  developed to describe the observed difference in scallop 
survival for the small-scale field tethering experiment. If a (3 located in a particular 
column, then that variable was included in that model. Number of parameters in each 
model is denoted by k.
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Table 2. The four models (g j )  developed to describe the observed difference in scallop 
survival for the large-scale field tethering experiment. If a p located in a particular 
column, then that variable was included in that model. Number of parameters in each 
model is denoted by k.
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Table 3. Analysis of variance of mesocosm experiments for scallop survival (arcsine-
transformed) by two factors: (I) predator size, and (II) habitat type.

Source df SS MS F P
Predator Size 1 1.031 1.031 11.67 0.001
Habitat 2 0.581 0.291 3.29 0.004
Interaction 2 0.153 0.077 0.87 0.425
Error 60 5.304 0.088
Total 65 7.070
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Table 4. Multivariate analysis of variance (MANOVA) results of mesocosm experiment 
for scallop prey size-selection by two factors: (I) predator size, and (II) habitat type.

Statistic Value F df P
Wilks' lambda 0.779 4.191 4, 59 0.005
Lawley-Hotelling 0.284 4.191 4, 59 0.005
Pillai's 0.221 4.191 4, 59 0.005
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Table 5. Results from AICc calculations, in descending order, for scallop survival of the
small-scale field tethering experiment based on the models designed to describe the
observed differences in survival (see table 1).

Model Log-Likelihood k AICc AAIC w,
93

(Location)
-39.269 5 89.967 0.000 0.915

92
(Loc & Hab)

-39.070 7 94.940 4.973 0.076

94
(Habitat)

-45.243 4 99.416 9.450 0.008

91
(Global)

-33.432 13 103.570 13.603 0.001

76



Table 6. Analysis o f variance of the small-scale field tethering experiment for scallop
survival by two factors: (I) habitat type, and (II) location.

Source df SS MS F P
Habitat 2 0.033 0.017 0.13 0.877
Location 3 1.303 0.464 3.71 0.020
Interaction 6 1.168 0.195 1.56 0.188
Error 36 3.438 0.095
Total 47 5.453
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Table 7. Total number of benthic predators collected in trawls at the four locations used 
for the small-scale field tethering study.

S p e c ie s  Nam e Com m on Nam e Broad Bay P leasu re  H ouse Creek First Landing S tate Park Linkhorn Bay

B id y a n u s  b id y a n u s Silver Perch 4

C a ll in e c te s  s a p id u s Blue Crab 1 1

C e n tr o p r is t is  s tr ia ta Black S ea b a ss 2

C h ilo m y c te r u s  s c h o e p f i Spiny Burrfush 1

D o r o s o m a  c e p e d ia n u m Gizzard Shad 5

E u c in o s to m u s  a r g e n te u s Spotfin Mojarra 1 1

L e io s to m u s  x a n th u ru s Spot 1 15 55

L u tja n u s  g r is e u s Grey Snapper 1

M u gil c e p h a lu s Mullet 1

O p s a n u s  ta u Oyster Toadfish 1

O rth o p r is t is  c h r y s o p te r a Pigfsh 1

P a r a iy c h th y s  d e n ta tu s Summer Flounder 1

P o g o n ia s  c r o m is Black Drum 1

S p h o e r o id e s  m a c u la tu s Northern Puffer 1 3

TOTAL NUMBER OF PREDATORS: 6 8 18 65
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Table 8. Results from AICc calculations, in descending order, o f the large-scale field
tethering experiment for scallop survival based on the models designed to describe the
observed differences in survival (see table 2).

Model Log-Likelihood k AICc AAIC w,
9i

(Global)
-80.950 10 183.483 0.000 0.997

92
(Loc & Hab)

-91.834 6 196.255 12.773 0.002

94
(Habitat)

-98.658 4 196.986 13.503 0.001

93
(Location)

-33.432 4 205.592 22.109 0.000
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Table 9. Analysis o f variance o f the large-scale field tethering experiment for scallop 
survival by two factors: (I) location, and (II) habitat type, including the interaction 
between factors.

Source df SS MS F P
Location 2 1.117 0.558 2.890 0.059
Habitat 2 3.160 0.654 3.380 0.037
Interaction 4 4.473 1.118 5.790 0.000
Error 141 27.250 0.193
Total 149 36.000
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Predator: 
SM = Small (<140m m ) 
LG = Large (>140m m )

Control No substrate 
No predator

Substrates: 
OS = Oyster Shell 
Grac. =  Gracilaria  
Sand = Sand

Figure 1. 2x3 Factorial design of mesocosm experiments. Each circle represents an 
individual tank, containing one o f two predator types (LG vs. SM) and one of three 
habitat treatments (OS vs. Grac. vs. Sand)
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Chesapeake Bay
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Linkhorn Bay 
(LBC)

K ilom eters

Figure 2. Map of field sites of small-scale tethering experiments (stars) in the Lynnhaven 
River system within four locations: (1) Pleasure House Creek (PHC), (2) Broad Bay 
(BB), (3) First Landing State Park (LB-FL), and (4) Linkhorn Bay (LBC).
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Chesapeake Bay

Alanton’s Cove

K ilom eters

Figure 3. Map of field sites of large-scale tethering experiments (stars) in the Lynnhaven 
River system within three locations: (1) Pleasure House Creek (PHC), (2) Broad Bay 
(BB), and (3) Alanton’s Cove (AC).
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Figure 4. Patterns of scallop survival (± one SE) for each habitat treatment in mesocosm 
experiments. Bars show mean cumulative scallop survival and error bars are one SE. 
Significant differences at a = 0.05 as determined by a two-way ANOVA and SNK are 
indicated by different letters above the bars.
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Figure 5. Patterns of scallop survival (± one SE) for each predator size treatment in 
mesocosm experiments. Bars show mean cumulative scallop survival and error bars are 
one SE. Significant differences at a = 0.05 as determined by a two-way ANOVA.
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Figure 6 . Scallop survival (± one SE) in mesocosm experiment by size class (mm shell 
length) for (A) Small predators, and (B) Large predators.
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Figure 7. Small-scale field tethering experiment. Mean survival (± one SE) of tethered 
scallops by location (Pleasure House Creek (PHC); First Landing State Park (LB-FL); 
Linkhorn Bay (LBC); Broad Bay (BB)).
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Figure 8 . Large-scale field tethering experiment. Mean survival (± one SE) of tethered 
scallops by location (Broad Bay (BB); Pleasure House Creek (PHC); Alanton’s Cove 
(AC)). Significant differences at a = 0.05 as determined by a two-way ANOVA and SNK 
are indicated by different letters above the bars.
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