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ABSTRACT

The “Brownie’' tagging models are commonly used for estimating survival rates from 
multi-year tagging studies in which cohorts o f tagged animals are released at the start of 
each year. Brownie models can be reparameterized in terms of instantaneous rates of 
fishing and natural mortality, and these models are referred to as instantaneous rates 
models. Typically the recaptures o f tagged animals are tabulated on the same periodicity 
as that of tagging, typically a year. This thesis shows two situations in which tabulating 
the tag recaptures by part of the year rather than full year proves to be advantageous: a 
Brownie-type model for the case when tag visibility of newly tagged cohorts is different 
from previously tagged cohorts (referred to as model O’) and an instantaneous rates 
model for delayed mixing of newly tagged animals with previously tagged animals that 
lasts part of the year (referred to as delayed pyt model).

Model (Tallows for newly tagged animals to have a different tag recovery rate than 
previously tagged ones. It makes use of a known fouling time (or change in visibility 
time), the time it takes for newly tagged animals to have the same visibility as previously 
tagged animals, to divide the year into two parts. During the first part of the year, newly 
tagged animals are more visible than previously tagged ones while in the second part all 
tagged animals have the same visibility. Dividing the year into parts and recording 
recaptures in each part avoids the failure of the assumption that the reporting rate is 
constant for all tagged animals, achieves greater precision (smaller standard errors), and 
provides estimates of the survival rate at the end of the 2nd year instead of after the 3rd 
year. The superiority of model O’ is demonstrated through Monte Carlo simulation.

Hoenig et al. described instantaneous rates models that assume full mixing and others that 
allow for the newly tagged population to become fully mixed in less than one year. The 
delayed pyt model divides the year into parts and tag returns are tabulated by parts of the 
year rather than a full year. This is beneficial when there is delayed mixing because it 
achieves greater precision and provides estimates of the instantaneous rate of fishing 
mortality in the first year, which cannot be estimated when tag returns are tabulated by 
full year. The new model can be used at little or no extra cost. The superiority of the 
delayed pyt model is demonstrated through Monte Carlo simulation.
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Chapter 1 

Introduction and Motivation



Introduction

One way to evaluate the status o f a stock of exploited animals is to estimate the 

survival rate (or its complement, mortality rate, which is equal to one minus the survival 

rate). The survival rate can then be explained in terms of its components, the exploitation 

rate (fishing mortality) and natural death rate (mortality due to all other causes). These 

can be used to solve for the instantaneous rates of fishing and natural mortality using 

information on how the fishery functions during the course of the year. Instantaneous 

rates of fishing mortality may also be used as a means of evaluating the status of fish 

stocks. Survival rates and the components of mortality can be estimated from a tagging 

study in which animals are captured, tagged or marked with unique identifying numbers, 

and released. From the recovery of tags from the harvest (fishery) one can estimate 

survival rates and components of mortality. This thesis describes two advancements in 

tagging theory involving tabulation of tag returns by part of the year rather than full year. 

The first is a model that addresses the problem when the tag visibility for the first part of 

the first year a tagged cohort is at liberty is different from the tag visibility of previously 

released tagged cohorts. This model is called model O’. The second model addresses 

delayed mixing of the newly tagged cohort with the population at large that lasts the first 

part of the first year a tagged cohort is at liberty. This model is called the partial-year 

tabulation for delayed mixing model (delayed pyt model).

Definitions

Survival rate, represented by S, is defined as the fraction of the population alive at 

the start o f a time period (typically a one-year interval) that is still alive at the end of the

4



time period. The relationship between survival rate and the total instantaneous mortality 

rate, Z, is:

(1) S = e -Z\  

which implies

(2) Zt = - l n S ,

where t denotes the length of a time interval. Here, Z has units of time'1 and, if not 

specified, / is assumed to be one time unit. Total instantaneous mortality rate refers to 

mortality due to all causes combined. The product -ZtN represents the amount by which 

a population would change due to deaths in a short period of time, /, where N  is the 

population size at the start of the time interval.

The instantaneous total mortality rate can be split into two components, natural 

mortality, M , and harvest mortality, F  (in the case of fisheries, fishing mortality) (e.g., 

Ricker 1975). Thus,

(3) Z = F  + M ,

where fishing and natural mortality are both instantaneous rates. The relationship 

between annual survival rate (/ = 1) and the instantaneous rate o f total mortality can be 

rewritten as:

(4) S  = e ' (F+M).

The annual mortality rate A is the fraction of the population alive at the start of the 

year that dies during the year. It is the complement of the annual survival rate S  and thus 

can be specified as:

(5) A = \ - S ,  

implying
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(6) S = \ - A .

Note that A and S  are finite rates and are unitless. The death rate can be split into the 

finite death rate from fishing, or the exploitation rate, denoted by u, and the finite death 

rate due to natural causes, denoted by v. Thus:

(7) A = u + v ,

where u is the exploitation rate, which is the fraction of the population alive at the start 

of year that dies due to harvest during the year and v is the fraction of the population alive 

at the start of the year that dies due to natural causes during the year.

It is necessary to know the timing of the fishery during the year in order to relate 

the exploitation rate to the instantaneous rates of fishing and natural mortality. Fisheries 

can be conveniently described as either a type I or type II fishery (e.g., Ricker 1975), 

depending on the placement of fishing mortality during the year. A type I fishery is a 

pulse fishery, meaning that all the fishing effort is concentrated at the start of the fishing 

year, and during the rest of the year no fishing mortality takes place. A type II fishery is 

a continuous fishery in which fishing mortality takes place during the entire year at a 

constant intensity. More generally, a characteristic of a type II fishery is that the ratio of 

fishing to natural mortality is constant over the entire year. Depending on the type of 

fishery, the exploitation rate and death rate due to natural causes can be expressed in 

terms o f instantaneous rates o f fishing and natural mortality.

For a pulse fishery, the year is divided into two parts: during the fishery and 

during the rest of the year. During the fishery u and v can be expressed as:

(8a) u = \ - e ~ !'

and
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(8b) v = 0 ;

during the rest o f the year

(9a) u = 0

and

(9b) v = \ - e ~ M.

For a continuous fishery:

and

(11) v — M  ( \ - e~{F+M)) (see Ricker 1975).
F  + M x '

The exploitation rate, u, can also be expressed for an arbitrary fishing pattern over the 

year (Floenig et al. 1998a).

Tagging models

Multi-year, single recapture tagging studies provide a method o f estimating 

survival rates, components o f mortality, and the annual exploitation rates (e.g., Brownie 

et al. 1978; Pollock et al. 1991; Hoenig et al. 1998a). Another method is to perform a 

capture-recapture study (e.g. Jolly 1965; Seber 1965), where it is possible to have 

multiple resightings of a marked individual. This work will focus on tagging studies in 

which recaptures come from harvested animals, thus only one resighting (i.e., the harvest) 

o f each marked animal is possible. The methods of Brownie et al. (1978, 1985) are 

widely used to estimate survival rates from such studies. Brownie models are 

parameterized in terms of annual survival rates, but Hoenig et al. (1998a,b) provided
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formulations that permit estimation o f instantaneous rates of fishing and natural mortality 

from the Brownie models. All o f these models tabulate tag recaptures over periods which 

correspond to the intervals between tag releases, which are typically a year. This means 

that estimates of survival rates, for Brownie et al. (1978, 1985) models, and components 

of natural mortality, in the Hoenig et al (1998a,b) formulations, cannot be calculated until 

the end o f a full time period.

Brownie Models

Model 1

Brownie et al. (1978, 1985) described a suite of models that enables the user to 

estimate age- and year-specific survival rates from multi-year tagging studies from which 

tag recoveries are recorded. The basic age-invariant model is known as model 1. At the 

start of each time period, here assumed to be a year, a sample of the population is 

captured, tagged, and released for a given number of years. It is assumed that the tagged 

sample is representative of the population of interest. The tagged sample is termed a 

cohort; during each additional year a new cohort is tagged and released. Throughout the 

year, the animals experience mortality due to natural causes and from harvest. A fraction 

of the tagged animals that are harvested will be reported. It is assumed that the tag 

reporting rate will not vary among cohorts within one year. In a two year tagging study, 

recaptures during the second year of the cohorts tagged in the first and second year can be 

used to estimate survival during the first year. The number of recaptures in the second 

year from the cohort tagged in the first year is the number tagged in year one multiplied 

by the fraction that survived the first year, multiplied by the fraction that is caught and



reported in the second year. Similarly, the number of recaptures in the second year from 

the cohort tagged in the second year will be the number tagged in the second year 

multiplied by the fraction that is caught and reported. Thus, the fraction of tags recovered 

from the first cohort should equal the fraction from the second cohort except for the fact 

that the first cohort has experienced an extra year o f mortality, thereby reducing the 

number o f potential tag returns from the first cohort. More formally, the expected 

recaptures in year two from animals tagged in year one, E(Rj2), can be modeled as: 

E(Rn ) = N , S J 2,

where N  is the number tagged, Sj  is the survival rate in year one an d /is  the tag recovery. 

In contrast, the expected recaptures in year two from animals tagged in year two, E(7?22), 

can be modeled as:

e {R2, )  = n j 2.

Thus the ratio o f recaptures is an estimate o f Si by the method of moments. The 

complete mathematical formulation for Model 1 is presented in Chapter 2.

Model 2

If survival is constant across years, model 2 may be used (Brownie et al. 1978,

1985). Because the model has fewer parameters to estimate, model 2 may be more 

precise. However, if survival varies from year to year then model 2 will be biased. Note 

that model 2 is nested within model 1, because S\ = SS = .. • = Sj.\ , where J  is the number 

of years of recoveries.
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Model 0

Model 0 is a more generalized version of model 1 (Brownie et al. 1978, 1985). 

This model allows tag-recovery ra te s ,/ to vary between newly tagged and previously 

tagged animals and thus affords some protection from bias. Note that model 1 is nested 

within model 0.

New Model: Model O'

One way in which the tag-recovery rates for newly tagged and previously tagged 

animals differs is as a result of different tag visibilities. For a variety of tagging studies, 

tag fouling over time (Dicken et al. 2006; Lowry and Suthers 1998; Tarbath 1999; 

Verweij and Nagelkerken 2007) has been reported to be prominent and this tag fouling 

could affect tag visibility and, thus, reporting rate (Figure 1). The problem of differing 

tag visibility between a newly tagged and previously tagged cohort in a given year 

applies to more general situations than just tag fouling. For example, tagging studies 

with visible implant elastomer tags have reported skin thickening resulting in reduced 

visibility (Curtis 2006; Reeves and Buckmeier 2009).

If tag fouling or some other mechanism affects tag visibility, and thus reporting 

rates, model 0 might be more appropriate than model 1 by accounting for this difference 

in reporting rates for the first year a tagged cohort is at liberty. But, model 0 can be 

considered an inefficient model, as it requires three years of observations before the first 

estimate of survival rate can be made, compared to model 1 which takes two. Model 0 

also has more parameters than model 1 which tends to lead to less precision (larger 

standard errors). Because tagging studies can be expensive and time consuming, and
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management agencies can be anxious for results, models which make better use of the 

data are desirable. If tag visibility changes quickly, and the lapsed time is obtainable, one 

can make better use of the data by dividing the year into two parts. As will be seen in 

Chapter 2, this allows one to obtain estimates of the survival rates a year sooner than with 

model 0. In terms o f fisheries and wildlife management, such as setting catch limits and 

evaluating stock status, the ability to produce estimates in the first part o f a year, instead 

of waiting a full year, could prove advantageous. I will investigate the benefits of the 

application of a tagging model, called model O’, for which the recaptures are tabulated 

over two parts of the year, rather than tabulating over an entire year.

Instantaneous Rates Models

Fully Mixed Model

The Brownie models can be re-expressed in terms of instantaneous rates of 

fishing and natural mortality given an arbitrary pattern of fishing effort over the year 

(Hoenig et al. 1998a,b). The basic models assume that the tagged population mixes 

completely with the population at large prior to the start o f the fishery.

Delayed Mixing Model

The assumption o f immediate full mixing is not necessary and instead an extra 

parameter can be included in the model to account for a delay in mixing. This is 

accomplished by allowing newly tagged animals to have an abnormal fishing mortality 

rate, i.e., one that is different from that experienced by previously tagged animals.

Hoenig et al. (1998b) described a model that allowed for the tagged animals to be fully
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mixed with the untagged population after an entire year at liberty, as well as a model that 

allowed for the tagged animals to be fully mixed after part of a year has elapsed. A delay 

in mixing could result in the newly tagged cohorts experiencing different fishing 

mortality than previously tagged cohorts within a given year. The problem of delayed 

mixing o f newly tagged cohorts may be one o f the largest problems facing tagging 

studies as it is hard to ensure tagged cohorts fully mix into the population at large prior to 

the start o f fishing. Because recaptures are tabulated by year, there are confounded 

parameters and the model parameterization does not allow for an estimate of the 

instantaneous rate of fishing mortality in the first year.

New Model: partial-vear tabulation for delayed mixing model

I will investigate extensions o f the instantaneous rates models with partial year 

tabulation, which accounts for delayed mixing lasting less than a year, and this model is 

referred to as the partial-year tabulation for delayed mixing model (delayed pyt model). 

Partial year tabulation allows for: parameter estimates after only part of the year has 

passed, increased precision, and additional parameter estimation.

Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) provides a general method to obtain 

estimates for unknown model parameters based on the observed data. MLE methods 

consist o f writing an expression, called the likelihood function, for the probability of 

having obtained the observed data; the likelihood is written in terms of the unknown 

parameters of interest. The values of the parameters which maximize the likelihood
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function are called the maximum likelihood estimates. Maximum likelihood estimators 

have the following desirable asymptotic properties under very general regularity 

conditions (particularly that the likelihood function is twice differentiable, which is the 

case for this thesis): unbiased, unique, consistent, minimum variance, and normally 

distributed (e.g., Hogg et al. 2005; Wackerly et al. 2002).

The freely available statistical package R (R Development Core Team 2008) will 

be used to calculate maximum likelihood estimates. Both Brownie models and 

instantaneous rates models can be expressed as the product of independent multinomial 

distributions of tag returns over time. For each tagged cohort, the cell counts of 

recaptures and tags never seen again are assumed to follow a multinomial distribution. 

The general form of the likelihood function A for product multinomial models can be 

expressed as:

where the symbol cc means “is proportional to,’' /  is the number of years during which 

tagging occurs, J  is the number of years for which recaptures are observed, Pl} is the cell 

probability of observing an animal tagged in year /' and recaptured in yeary, TV, is the 

number tagged in year /, and r l} is the observed recaptures in year j  from the cohort 

tagged in year /. The P l}'s are functions of S  and/ for Brownie models and M  and F  for 

the instantaneous rates models. These functions are substituted for the P ,/s  in the 

likelihood function and the likelihood is maximized with respect to these substituted 

parameters. The likelihood function is proportional to the product of all cell probabilities

./

I f  J  rv V J
j= i

j=i V J=i A  j=i y
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for year / raised to the power of observed recaptures in the corresponding cell over all 

years during which tagging occurs (/' = 1 , I). The right hand portion of the equation 

involving one minus a sum is the expression for the animals in a cohort that are never 

seen again after tagging.

The variance-covariance matrix can be estimated using the inverse of the Fisher 

information matrix (Burnham and Anderson 2002; Hogg et al. 2005; and Seber 2002). 

When there are k parameters9x,92,...,9k, the Fisher information matrix, 7, is the k x k

matrix with elements equal to the negative of the expectation of the mixed partial second 

derivatives of the natural logarithm of the likelihood function (given in equation 26). 

Thus, the resulting matrix is:

d 2 In A _a 2 lnA~
E ... E

39 x 39,39k

3 2 In A~ 3 2 In AE . . .  £
39,39, .  2  _

where E[] denotes the expectation operator, the symbol 3 denotes the partial derivative, 

and A is the likelihood function (given in equation 26). Estimates of the variance- 

covariance matrix can be made using the observed information. The vector of maximum 

likelihood estimates (9x,92,...,9k) is substituted for the vector of parameters ( 9x,92....,9k )

and then the inverse of the matrix is computed to obtain the variance-covariance matrix. 

When this substitution is made, the expectation is no longer taken and instead the 

expression uses the observed information.
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Simulation Methods:

Program SURVIV enables users to create, and maximize, likelihood functions for 

product multinomial models (White 1983, 1992) and is available from the USGS 

Patuxent Wildlife Research Center website (www.mbr-

wrc.usgs.gov/software/survive.html). The online version of SURVIV will be used for 

preliminary evaluation of the performance of model O’.

The statistical package R will be used for model evaluation since it offers more 

flexibility than SURVIV. To evaluate the performance of model O’, simulated tag- 

recapture data will be generated and each of the three models (one, zero, and zero prime) 

will be fit to the data. For the instantaneous rates delayed mixing models, data will be 

generated and then fit with the Hoenig et al. (1998b) partial year model and the delayed 

pyt model, the new model in which tag-recaptures are tabulated by part o f the year. 

Additionally, lake trout (Salvelinus namaycush) tag-recapture data from Cayuga Lake, 

New York (Youngs and Robson 1975), will be modified and used as an example to 

demonstrate how one would select between models allowing for changing tag visibility 

and delayed mixing (Thesis Appendix A and Thesis Appendix B, respectively). For the 

simulations, since the true parameter values are known, the parameter estimates will be 

compared in terms of:

1) bias,

2 ) bias of the estimated standard error, and

3) root mean squared error (RMSE).
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Thesis Structure

This thesis will evaluate the performance of these partial year tabulation tagging 

models. The structure of the thesis is as follows:

Chapter I. Introduction

Chapter II. Tagging models for estimating survival rates when tag visibility
changes over time: partial year tabulation of recaptures
a. Model specifications
b. Simulation in R (comparison to models 1 and 0)
c. Discussion

Chapter III. Instantaneous rates tagging models allowing for delayed mixing of 
newly tagged cohorts: partial year tabulation of recaptures
a. Model specifications
b. Simulation in R (comparison to Hoenig et al. (1998b) model)
c. Simulation in R (comparison to Hoenig et al. (1998a) fully mixed 

model)
d. Discussion

Appendix A. Choosing between models 0, O’, and 1: Lake trout example

Appendix B. Choosing between an instantaneous rates model with full mixing 
and delayed mixing: Lake trout example
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Figure 1. Tagged blacklip abalone (Haliotis rubra) from Tasmania (photo provided by 

David Tarbath, Tasmanian Aquaculture and Fisheries Institute, University o f Tasmania). 

The arrow highlights tag position.
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Chapter 2

Tagging Models for Estimating Survival Rates when Tag Visibility Changes Over Time:

partial year tabulation of recaptures
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Abstract

The “Brownie” tagging models are commonly used for estimating survival rates from 

multiyear tagging studies. The basic model, model 1, assumes that all tags have the same 

tag recovery rate. An alternative, model 0, allows for newly tagged animals to have a 

different tag recovery rate than previously tagged animals. This might be necessary 

because new tags are less fouled and more visible than previously applied tags and thus 

the new tags have a higher tag reporting rate. Model 0 accommodates this problem 

through the use o f an additional parameter which leads to less precision (larger standard 

errors) than model 1. Model O’, a new model, also allows for newly tagged animals to 

have a different tag recovery rate than previously tagged ones. It makes use o f a known 

fouling time (or change in visibility time), the time it takes for newly tagged animals to 

have the same visibility as previously tagged animals, to divide the year into two parts. 

During the first part o f the year, newly tagged animals are more visible than previously 

tagged ones while in the second part all tagged animals have the same visibility. Dividing 

the year into parts and recording recaptures in each part avoids the failure of the 

assumption that the reporting rate is constant for all tagged animals, achieves greater 

precision (smaller standard errors), and provides estimates o f the survival rate at the end 

o f the 2nd year instead o f after the 3rd year (as in model 0). The superiority of model O’ 

over models 0 and 1 is demonstrated for a number of important cases using Monte Carlo 

simulation.

22



Introduction

In multi-year tagging studies, a sample of the population, termed a cohort, is 

captured, tagged, and released at the start o f each of several years. Brownie et al. (1978, 

1985) described a suite o f models that enables the user to estimate age- and year- specific 

survival rates from tag recoveries which are tabulated by year. Annual survival rate, 

represented by S, is defined as the fraction o f the population alive at the start o f the year 

that is still alive at the end of the year. Additionally, Brownie models enable one to get 

estimates of the fraction o f tagged animals that are caught and reported, termed the tag- 

recovery rate and denoted by f

The basic age-invariant and year-specific model is known as model 1.

Alternative Brownie models enable the user to impose year-specific constraints on the 

parameters/ and S and to allow for newly tagged animals to have a different tag-recovery 

rate than previously tagged animals.

The assumptions o f Brownie models are well documented (e.g., Brownie et al. 1978, 

1985; Pollock and Raveling 1982) and for model 1 include:

1. The tagged sample is representative of the target population;

2. There is no long-term tag loss;

3. The long-term survival is not affected by tagging or handling processes;

4. The fate o f each tagged animal is independent o f other tagged animals (no 

pseudo-replication);

5. All animals within a tagged cohort experience the same S and/ within a time 

period; this is known as homogeneous survival and tag-recovery rates;

6 . The tag-recovery rate, f  does not vary among cohorts within a given year.
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Various models have been proposed which allow for violations of model l ’s 

assumptions. For example, Hoenig et al. (1998b) described a model for delayed mixing 

o f newly tagged animals -  a violation o f assumption (1) and thus assumption (5).

Brownie et al. (1978) described a model, model 0, which allows for the violation of 

assumption (6 ), that is, when a newly tagged cohort has a different tag-recovery ra te ,/  

than previously tagged cohorts.

Tagged cohorts might not be subject to the same tag-recovery ra te ,/  during a 

time period for a variety of reasons: if  tag-reporting varies among cohorts because tags 

become unreadable or are shed after some years, or, if exploitation varies among cohorts 

within one time period (this also affects survival rates, see Hoenig et al. 1998b).

The tag-recovery ra te ,/  can be expressed as a product of its components (Pollock 

et al. 1991; Hoenig et al. 1998a):

(1) /  = ^ « ,

where ^ is a composite factor representing the effective number of tags released, here 

defined as a combination of short term survival rate from tagging and short term 

probability o f tag retention; A is the tag-reporting rate, or the probability that a tag will be 

reported if the fish is recaptured; and u is the exploitation rate, or the expected fraction of 

the population alive at the start o f the year that dies due to harvesting during the year.

The tag-reporting rate, A , can further be thought o f as a combination of a variety of 

factors which affect the probability a tag is reported if the animal is recaptured, including 

the visibility o f the tag.

If  the visibility o f the tag is constant over time and does not vary within cohorts, 

then visibility is of little interest except inasmuch as low visibility may cause a low rate
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of tag returns. If tag visibility changes with time-at-liberty, this will affect the tag- 

reporting rate differently among cohorts, and thus the tag-recovery rate, which introduces 

bias into parameter estimates. One way in which tag visibility could change over time is 

through tag fouling. In a variety of tagging studies, tag fouling has been reported to be 

prominent (Dicken et al. 2006; Lowry and Suthers 1998; Tarbath 1999; Verweij and 

Nagelkerken 2007). The use o f antifouling materials to prevent fouling on tags may 

alleviate the problem of reduced tag visibility but such materials could introduce 

additional problems. Antifouling materials, which could be used to coat the tags, are 

costly and may potentially harm the tagged animal. Other studies have reported issues 

with tag visibility over time. Tagging programs using visible implant elastomer tags have 

reported diminishing tag visibility over time as a result o f thickening o f the skin 

overlying the tags (Curtis 2006; Reeves and Buckmeier 2009). The problem of tag 

visibility varying with time-at-liberty may be more prevalent than discussed in the 

literature for a variety of reasons including poor communication between fishers and 

scientists, and researchers not knowing how to incorporate the change o f tag visibility 

into the models and choosing simply to ignore it, or not understanding the bias it may 

introduce in the parameter estimates.

Brownie et al. (1978, 1985) introduced a model, model 0, that can deal with the 

tag-recovery rate o f new tags being different from older tags for the entire first year each 

cohort is at liberty (note this is equivalent to the tag visibility being different for the entire 

first year a cohort is at liberty). Under this model, all cohorts at liberty for more than one 

year have the same tag reporting rate (within a given year), and thus the same tag 

visibility. If  it takes new tags less than one year to have the same visibility as previously
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tagged animals, better use can be made of the data by partitioning the year into parts.

The tag returns can be tabulated by portions of the year, which coincide with this change 

in visibility. I present such a model, model O’, and study its properties by Monte Carlo 

simulation. Model O’ is compared with model 1 and model 0 in order to provide 

guidance as to which model(s) should be applied based on the availability o f information 

on tag fouling. Additionally, the importance o f the degree to which tag visibility (and 

thus tag-reporting) affects model performance is evaluated in order to highlight the 

benefit o f including fouling in the model when it occurs.

Brownie Models

Model 1

The age-invariant and year-specific model described by Youngs and Robson 

(1975) and Brownie et al. (1978, 1985) is known as model 1. The data consist o f an 

upper triangular or trapezoidal array made up o f observed r,/s , which are the realizations 

o f R / s ,  the random variable representing the number of animals tagged in year i ( i =  1,2

, ...,1) and recaptured in year j , j  = i ,  , J  with J  > I. The expected recaptures of

animals tagged in year i and recaptured in year j  is

•V,./, • i j
(2) E(R„) = {

where the expression E( •) denotes the expected value o f the variable within the 

parentheses, Ry is as defined above, Ni is the number tagged and released at the start of

year /, / = 1 , ..... , I, Sj is the fraction o f the population alive at the start of year j  that is

still alive at the end of year j ,  for /  = 1, ......., J-1, and fj  is the tag-recovery rate in year y,
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for /  = 1 , ........> J- Note that there is an implicit category for all animals o f a cohort that

are never seen again, denoted 7,. This can be expressed as:

J

(3) Y, =  A  .
k=i

Note that J > I ,  and that if  J  = I  the data form a triangular array.

Maximum likelihood estimation (MLE) is frequently used to obtain estimates for 

unknown model parameters based on the observed data. MLE methods consist of writing 

an expression, in terms o f the unknown parameters, for the probability of having obtained 

the observed data and this is called the likelihood function. Then, the parameter values 

which maximize the value o f the likelihood function are found, and these parameter 

values are the maximum likelihood estimates. Maximum likelihood estimators have the 

following desirable asymptotic properties (under regularity conditions): unbiased, unique, 

consistent, minimum variance, and normally distributed (e.g., Hogg et al. 2005; Wackerly 

et al. 2 0 0 2 ).

Brownie type models can be expressed as the product of independent multinomial 

distributions o f tag returns over time, with each tagged cohort giving rise to a 

multinomial distribution. The general form of the likelihood function A for product 

multinomial models can be expressed as

where the symbol oc means “is proportional to,” Py is the cell probability of recovering 

a tagged animal in year j  given that it was tagged in year /, that is,
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_ I(5) Py -   ̂ V/  ̂

and the other symbols are as defined previously. For model 1, the cell probabilities, Py, 

are found by substituting equation (2) into equation (5). The likelihood function is 

proportional to the product o f the cell probabilities raised to the power of the number of 

observed recaptures. The right hand portion o f the equation involving one minus a sum is 

the expression for the animals in a cohort that are never seen again after tagging.

Model 0

Brownie et al. (1978, 1985) described a generalized version o f model 1 known as 

model 0 (Table 1). It pertains to the case where the tag-recovery rate is different for the 

first year a cohort is at liberty compared with previously tagged cohorts within a given 

time period. The model incorporates an additional parameter fj  * for each cohort, which is 

the tag-recovery rate in year j ,  for newly tagged animals, with the * indicating the 

fraction reported is for a cohort in its first year at liberty during which the tag visibility is 

greater than the tag visibility o f previously released cohorts. Allowing the tag-recovery 

rates to be different for the first year a cohort is at liberty leads to more parameters than 

model 1, which leads to less precision than the use of model 1. However, the unequal 

recovery ra te s ,/1* and f  for newly tagged and previously tagged cohorts, respectively, 

means model 0 affords protection from bias due to model misspecification. Note that 

model 1 is a special case o f model 0 .

In order to estimate the survival rate in the first year, three years o f tag returns are 

needed, instead o f just two years o f tag returns needed for model 1. If  recoveries are 

made for J  years, then for the cohort tagged in year i, there will be J-i-l moment
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estimates o f Si. For example for the cohort tagged in year one, an estimate o f S] is not 

possible in the second year (there will be three equations and four unknowns). This can 

be seen by looking at the moment estimate formed by the ratio o f expectations (using R 12 

and R22 compared to R 13 and R2 3)

e ( r J _ s j 2
(6 a)

£ ( * 2 2 ) A *

S lS * A  c  

m iUQ=- s j r =s'-13

Thus, for an example with three years of tagging and four years o f recoveries, there will 

be J-2 = 2 estimates of Sj, survival during the first year formed by the ratio in (6 b) and by 

the ratio of expectations of R 14/R2 4 .

In practice, maximum likelihood estimates are found by maximizing equation (4) 

with appropriate cell probabilities obtained by substituting values in Table 1 for the 

values in equation (5).

New Model: Model 0’

The year can be divided into two parts; in the first part, part (a), newly tagged 

cohorts have new and highly visible tags, and in the second part, part (b), the tags are 

fouled and have the same visibility as fouled tags from animals released in previous 

years. The tag returns can be tabulated separately for parts (a) and (b) of the year (Table 

2).

For previously tagged cohorts there is a tag-recovery rate parameter for each part 

of the year, and fjb, for parts (a) and (b), respectively of year j .  Similar to model 0,

model O’ has an additional parameter in the form o f an /ja* for the first part of the first
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year that cohort z is at liberty. In the second part of the first year a cohort is at liberty, the 

tag-recovery rate is the same as for previously tagged cohorts, i.e., there is no * on the 

recovery parameter (Table 3). Since the year is divided into two parts, an estimate of 

survival can be made at the end o f the second year as seen with the ratio of expectations

e(Ri2„) s ts 2af 2t, f ,

( ’ e (R 2U) S 2J 2b

This is in contrast to the situation for model 0 where an estimate can only be obtained 

after the end o f the third year (equation 6 b).

The likelihood is constructed as before using the cell probabilities from Table 3. 

The recapture cell representing the tagged animals which are never seen again can be 

given by

J

wi = n i - ' £  S  rijk
'  '  J ~ l

where r,y* are the observed number o f recaptures of animals tagged in year z (z-1 ,2 ,.. .,7)

and recaptured in part k, k g {a, b}, o f year j , j  = i ,  , J  with J > I. Thus the likelihood

can be expressed

(9)

I  (  J  Y  J  YA*nnnv*
i =1 \  j= i ke{a,b} j=i ke{a,b] J

where Pyk is the cell probability o f recovering a tagged animal in part k of year j  given

that it was tagged in year z, that is, Pijk -  ^ / N  anc* ot^er Parameters are as

defined previously. Estimates for the parameters can be found by maximizing equation

(9).
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Model evaluation by simulation

To evaluate the performance o f model O’, I used Monte Carlo simulation to 

generate data repeatedly under models 1 (no fouling), 0 (fouling that takes a year), and O’ 

(fouling that takes only part o f the year) and then fit all three models to each dataset. The 

simulations consisted o f three years o f tagging and four full years of recaptures, that is, 

recaptures for periods la, lb, 2a, 2b, 3a, 3b, 4a, and 4b for model O’ and periods 1, 2, 3, 

and 4 for model 1 and model 0. Ten thousand datasets were simulated for each scenario. 

Computations were done using the statistical language R (R Development Core Team 

2008) as described below. Parallel computations were done for some scenarios using 

program SURVIV (White 1983, 1992) to check for program errors and numerical 

problems. Program SURVIV is available on the internet (http://www.mbr- 

pwrc.usgs.gov/software/ survive.html).

The function ‘rmu binomial’ (Chasalow 2005) in the R package ‘combinat’ was 

used to generate multinomial datasets with specified sample sizes and cell probabilities. 

The function ‘nlm’ was used to minimize the negative log likelihood functions (R 

Development Core Team 2008). Standard errors were estimated by inverting the Hessian 

matrix using the R function ‘solve’. The true standard error was determined from the 

variability of the 10,000 estimates o f each parameter. The output from the Monte Carlo 

simulations includes: estimates o f the parameters for each simulated dataset as well as the 

bias, % bias of the average estimate (referred to as % bias), standard errors, and bias of 

the estimated standard errors. Additionally, the root mean square error (RMSE) for each 

parameter was calculated using
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(10) RMSE = Vbias2 + variance -  ;̂=1________
T

(see Hogg et al. 2005) where T is the number o f simulated datasets (10,000) and 6 i is the

estimate o f the parameter whose true value is O.

If the combined short-term survival rate from tagging and short-term probability 

o f tag retention, ̂ , is assumed to be 1 , then equation ( 1 ) becomes

(11) f  = Xu.

With the year split in two parts, there is a tag-recovery parameter for each part o f the 

year, given b y /a and/b for model 1 and f a* and/b for model O’. These tag-recovery 

parameters can be modeled as:

(12) f a = A f U a,

(13) f a* = Xc ua, 

and

(14) f b =Af  ub

where Xf  is the tag-reporting rate when the tags are fouled, when the tags are clean and 

becoming fouled, ua is the exploitation rate during part (a) of the year, Ac is the tag- 

reporting rate during part (a) o f the first year each cohort is at liberty, and ub is the 

exploitation rate during part (b) of the year. Additionally, the exploitation rates are 

constrained by

(15) ua + ub < 1 -5 ”.
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By varying the values o f /a and/b, a multitude of situations are simulated. Since fb 

is a product o f kf  and ub, a high uh may correspond to a variety of situations (Figure 1).

For example, a high exploitation rate in part (b) o f the year, Ub, is possible when the tag- 

recovery rate,/z>, is high. Another situation that leads to a high ub is when the tag-

recovery rate is low and the tag-reporting rate is also low. That is, if ub is high, and Xf  is

also high,/b would be high, but/b would be low if  Xf  is low.

Data generated under model 0 base scenario

The parameters for the first set o f simulations were loosely patterned after data 

from the queen conch (Strombus gigas L.) fishery of the Turks and Caicos Islands,

British West Indies. The queen conch fishery was chosen because tag fouling is known 

to be a problem and the possibility of a tagging program was being explored. The 

exploitation rate, u = 0 .2 , was based on the ratio o f the annual harvest plus local 

consumption to the estimated biomass at the start o f the year, as determined from a 

surplus production model (Kathy Lockhart, The Department of Environment and Coastal 

Resources, Turks and Caicos Islands, British West Indies, personal communication). For 

these simulations it was assumed that tagging would occur during the summer when the 

conch fishery is closed. The tags were assumed to take six months to foul completely, 

thus the year was split in half, with part (a) running from July to December, and part (b) 

running from January to June. The percentage of the fishing effort occurring in part (a) 

was set at fifty percent and fifty percent in (b) to reflect the seasonal distribution of the 

harvest.
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The survival rates were calculated from the exploitation rate, u = 0.2, and a 

natural mortality rate of M =  0.3 (SEDAR 2007), using Baranov’s catch equation which 

relates the exploitation rate, u, to the components of instantaneous mortality rates, F  and 

M:

f + m k ’

and

(17) S = e~{F+M).

The survival rate in the first year, Si = 0.57, comes from solving for F given M using 

equation (15) and then calculating S from (16). The survival rate in the second year, S2 = 

0.62, was altered from the survival rate in the first year in order to allow the years to have 

different survival rates.

A preliminary tag fouling study was conducted in the Turks and Caicos Islands on 

queen conch. The conch were tagged with custom-made tags (Hallprint custom code 

T6230) and vinyl tubing (spaghetti) tags (Floytag) secured around the spires o f the conch. 

Fouling was observed on both tag types. Conch fishermen typically free-dive in less than 

10m of water working off small boats with 50-65hp engines and the conch are collected 

by hand (see Medley and Ninnes 1999). The meats are removed from the shell by the 

boat driver while the divers continue collecting conch; the shell is knocked (hammered) 

in the same location as the tag placement on the shell. Based on the nature of the fishery 

and the proposed tag reward, US$5 for the return of a tag to a fish processing plant, the 

tag-reporting rate for newly tagged animals, Ac, was set at 1.0. Information on the tag- 

reporting rate for fouled animals, 2/, was unavailable so the initial value o f 0.5 was used 

for the first example and then varied in later examples.
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In order to compare model O’ to model 1 and model 0 it was necessary to generate 

data for two parts of each year, part (a) and (b), and then combine the data from parts of 

the year into full years to analyze datasets with model 1 and model 0. All parameters 

were initially defined for parts o f the year, and then collapsed for use in other models 

(Table 4), using the relationships:

(18) / > = / , .  + « . . / , M

( 1 9 ) / 2 = / 2„ + S 2„ / 2i,

( 2 0  ) f , = f „ + S 3J 3b> 

and

(21 ) S J t = S J t a + S , S iJ tb.

Note that some parameters are confounded and cannot be estimated; rather, the products 

are estimated (see Table 4).

The various models’ performance are described in terms of the bias, root mean 

squared error, true standard error, and mean estimated standard error for the survival rates 

during the first and second year and the recovery rates in the second and third year. These 

four parameters were chosen for comparison because they are the only parameters in 

common when data are analyzed under all three models (the fifth parameter in common is 

S3 f4 , a confounded parameter).

In order to determine what effect the tag-reporting rate for fouled animals, /I/, has 

on model performance, the effect o f tag fouling on tag visibility was varied in additional 

scenarios. In all cases, the tag-reporting rate for clean, newly tagged animals, Xc, was 

kept at 1.0. Simulations were run using values for 2/ o f 0.25, 0.5 (base scenario), and 

0.75.
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Data generated under model 1

The purpose o f this scenario is to evaluate the penalty for applying model O’ when 

model 1 is correct. Data were generated using parameters based on the queen conch 

fishery in the Turks and Caicos Islands (Table 4), assuming fouling was not a problem; 

that is, the tag-reporting rate for newly tagged animals was equal to that o f previously 

tagged animals.

Data generated under model 0

Under model 0, it takes a full year for newly tagged animals to have the same tag 

visibility (and thus reporting rate) as previously tagged animals. For this simulation the 

parameters were again based on information from the queen conch fishery o f the Turks 

and Caicos Islands (see description of data from model O’ and Table 4). The tag-reporting 

rate for clean, newly tagged animals, Xc, remained 1 .0 , and the tag-reporting rate for 

fouled animals, Xf was 0.5. In other words, the tag-recovery rate of fouled animals was 

equal to half the value o f the tag recovery rate of clean animals, 0.5{fj) =fj*.

Additional simulations were conducted to evaluate the models’ performance when 

the effect of fouling on tag visibility, and thus tag-reporting rate, varies. Simulations 

were run with the tag-reporting rate for fouled tags, Xf, set at 0.25, 0.50 (base case) and 

0.75.
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Simulation Results

Data generated under model 0 base scenario

As expected, using data generated when tag fouling affects tag-reporting and 

takes less than a year to fully foul (the case o f model O’ being appropriate), parameter 

estimates for Si, S2 , f 2 , and / j  were essentially unbiased whether estimated by model 0 

(all parameters with % bias < 2.50%) or model O’ (all parameters with % bias < 1%) 

(Table 5). Analysis with model 1 produced biased estimates for all four parameters: 

survival rates are underestimated (% bias for Si = -18% and % bias for S 2 = -26%) and 

the fraction caught and reported in years two and three, f 2 and / j ,  are overestimated (% 

bias f o r = 37% and % bias for/ 3  = 61%). The estimates from analysis with model O’ 

have the lowest standard error and root mean squared error. Model 1 has the lowest 

estimated standard error for all four parameters but is not an attractive estimator because 

o f the high bias and thus high RMSE.

When tag fouling has a large effect on tag visibility, making the reporting rate of 

previously tagged animals much lower than that o f newly tagged animals, model O’ is the 

most appropriate model (Table 6). As the effect of change in visibility on reporting rate 

decreases, model 1 begins to yield smaller root mean squared errors than model O’ for Sj 

and f 2 (Figure 2); this is because the estimates from model 1 are becoming closer to being 

essentially unbiased (Table 6 ,2 /=  0.75, % bias for S i  is -5%, % bias for S 2 is -13%, % 

bias for f 2 is 9%, and % bias for f$ is 23%) and have better precision than model O’ as a 

result o f having less parameters.
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Data generated under model 1

Using data generated with tag fouling having no effect on the tag-reporting rate 

(model 1 is appropriate) yields essentially unbiased estimates o f Sj, S2 , f 2 , an d /j under 

all three models (Table 7). Model 1 produces estimates with the smallest standard error 

of the estimate and root mean squared error. Model 0 produces estimates with the largest 

RMSEs. Thus model 0 performs the worst.

Data generated under model 0

When data are generated under model 0, where tag fouling affects tag-reporting 

rate and it takes one full year for the tags to become fouled, and the tag-reporting rate for 

fouled animals is half that of clean animals, only model 0 produces essentially unbiased 

results for estimates o f Sj, S2 , f 2 , and / j  (Table 8). Model 0 has the lowest RMSE for 

every parameter. Model O’ outperforms model 1 by producing estimates with both a 

smaller bias and RMSE.

Since the value o f tag-reporting rate for clean tags, Xc, was set at 1.0, discussion 

of the value of tag-reporting rate for fouled tags, Xf, or the ratio of fouled tags to clean 

tags represents the same idea. As expected when the reporting rate for fouled tags is 0.25 

model 0 produces estimates of Si, S2 , f 2 , and fo with the lowest biases and RMSE. Model 

O’ outperforms model 1 because model O’ results in estimates of Si, $ 2 , f 2 , and fo with 

lower RMSEs and lower biases than the estimates from model 1 (Table 9). For 

estimating Si and S2 , the most appropriate model changes from model 0 to model O’ as 

the ratio of reporting rates (fouled:clean) gets large (Figure 3). Note that model 0 

produces estimates o f f 2 and / j  with the lowest RMSEs.

38



Discussion

There are three important factors to consider when choosing between models 1, 0, 

and O’. First, the time period that must elapse for new tags to have the same tag-reporting 

rate as older tags, that is, the length of part (a), must be bounded, i.e., known to be less 

than some specified period of time. When part (a) is neither very short nor close to a full 

year, I recommend model O’. As part (a) of the year becomes shorter in duration, I 

recommend using model 1 and as part (a) becomes longer (close to 1 year) then I 

recommend applying model 0. If  part (a) takes longer than one year, then a new model 

should be parameterized to account for this.

Second, the timing o f the fishery relative to the timing of the fouling (which 

determines part (a) and part (b) o f the year) must be known. When fishing occurs in both 

parts (a) and (b) of the year, model O’ should remain appropriate (given fouling lasting 

less than a year). However, if all the fishing effort takes place in period (b), then the 

recaptures for all (a) periods will be zero and model 1 will be a more appropriate model. 

If  all the fishing effort takes place in period (a), then model 0 should be the most 

appropriate model.

Finally, the magnitude of the change in visibility affects which model is the most 

appropriate. I f  the change in visibility is extremely small, that is tag visibility does not 

greatly vary between cohorts in a given part o f a year, then the proportion of recaptured 

individuals reported in period (a) should be equal to the proportion of recaptured 

individuals reported in period (b). Thus, when the change in visibility is approximately 

zero, model 1 is more appropriate than model O’ or model 0.
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If  tag fouling is known to occur in much less than a year and affects the reporting rate 

greatly, then model O’ will outperform model 1 (Figure 2), and model O’ and model 0 will 

both provide unbiased estimates. Even when it takes a full year for the tags to foul model 

O’ can outperform model 0 (in terms o f lower RMSE) as the influence o f tag fouling on 

tag-reporting rate becomes smaller, making 1/ closer in value to Xc (Figure 3). 

Furthermore, when fouling takes less than a year model O’ can outperform model 1 and 

model 0 .

As the change in visibility due to tag fouling becomes smaller, model 1 produces 

smaller root mean squared errors when tag fouling takes a year (model 0 ) and when tag 

fouling takes less than a year (model O’). This emphasizes the importance of considering 

the magnitude of change in visibility when selecting a model. As the ratio of the tag- 

reporting rate for fouled tags to new tags becomes closer to one, model 1 becomes the 

more appropriate model (Figures 2 and 3).

If  fouling is known to affect reporting rate, but the time necessary for a tag to 

become fouled has not been determined, then model O’ and model 0 are valid candidates 

since they provide unbiased estimates when tag fouling takes less than a year. If 

possible, a study should be done to determine the time to tag fouling. Such a study may 

be inexpensive and require only modest effort, and may provide key information in 

choosing between model 0 and O’.

The problem of changing tag visibility is similar to that of tag loss. Model O’ is 

parameterized such that the change in tag visibility takes an appreciable amount of time, 

which is less than a year, and then the tag visibility remains constant over time. Thus, 

one can think of two time periods: when the visibility is constant over time and when it is
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not. In contrast, tag loss is o f two types. Type I, or short-term, which occurs so rapidly 

that it occurs before fishing begins (Beverton and Holt 1957). Short-term tag loss 

essentially modifies the effective number tagged. Type II, or long-term, tag loss is 

similar to changing visibility over time except that it is usually described as occurring 

progressively, rather than leveling off. I f  it can be assumed that the rate o f tag loss 

declines to zero in less than a year, then model O’ would be appropriate. However, most 

o f the literature supports the idea of progressive tag loss.

Tabulating the recaptures by part of a year rather than a full year should not be a 

problem. It has been shown by Pollock and Raveling (1982) that when conducting a 

tagging study it is important to determine the date of tag recapture since even for 

Brownie model 1 it is important to know the year of recapture for each tag return to avoid 

biased estimates. Thus knowing whether the tag return is from part (a) or part (b) o f the 

year should add little or no additional cost to the study.

For cases where tag fouling occurs, takes less than a year, and causes a change in 

the tag-reporting rate, model O’ can greatly improve the efficiency of the tagging study 

(in terms o f smaller standard errors). Furthermore, model O’ provides the first estimate of 

survival during the first year, S], at the end o f the second year which is a full year before 

model 0  provides an estimate.

This is the first work to demonstrate the value o f tabulating tag returns with a 

greater periodicity than the periodicity of tagging (e.g., tabulating by parts o f the year 

when tagging occurs annually). Another example of the value of tabulating recaptures 

this way is given in Waterhouse (2010, chapter three) where partial year tabulation is 

used for dealing with delayed mixing o f newly tagged animals with the population at
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large. It is yet to be seen what additional applications can be found for tabulating tag 

returns with greater periodicity than that o f tagging, and what generalizations can be 

made from the model.
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Table 1. Expected recaptures under Brownie model 0, where Nt is the number tagged and

released at the start o f year i , i = \ , ..... , 3 ; Sj is the fraction of the population alive at the

start o f year j  that is still alive at the end o f year j ,  for /  = 1 ,  ,J - l  (J=4); fj is the

expected fraction o f the tagged population (at large at the start o f year j )  that is caught

and reported during year j ,  for /  = 1 , ........ , 4; and fj*  is the expected fraction o f the newly

tagged animals (that is tagged in year j )  that is caught and reported in year j ,  with the * 

indicating the fraction reported is different for the first year a cohort is at liberty (than for 

previously tagged cohorts) as the tags are still new and unfouled.

Expected # recaptured in year

Year # tagged 1 2  3 4

1 Ni N jfj*  N iS if 2 N !SiS 2 f3 Nj Si S2 S3ft

2 n 2 N 2 f2* N 2 S2 f3 N 2 S2 S3 f4

3 n 3 _ N 3 f3* N 3 S3 f4
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Table 2. Observed recaptures under the new model O’. The year is divided into two 

parts, (a) and (b). In the first part o f the year, part (a), newly tagged animals are more 

visible than previously tagged animals but in the second part o f the year, part (b), the 

visibility of new and previously tagged animals is equal. The observations consist of 

counts, Yijk, realizations (i.e., observations) o f the random variables Ri;k, i.e., the observed 

number of recaptures of those animals tagged in year i, i=  1,.. ..,3, that were recaptured 

in year j , j =  1,..,4 and period k, k e {a,b}.

Observed # recaptured in period

ear # Tagged la lb 2a 2b 3a 3b 4a 4b

1 Ni 1*1 la r  i ib 1" 12a 1" 12b 1* 13a r  13b 1* 14a 1* 14b

2 n 2 — — I*22a I*22b l*23a I*23b l*24a l*24b

3 n 3 — — — — l*33a l*33b l*34a l*34b
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Table 4. Parameter values used in the simulations. All three models were parameterized 

with the year split into two parts, in order to make analysis with model O’ possible, but 

for models zero and one the parameters shown in the table are collapsed back into their 

form for a full year, which is as they appear in the actual model parameterizations. Some 

parameters are confounded with others and therefore cannot be estimated on their own. 

For example, in model 0 and model 1, survival in the third year and the tag-recovery rate 

in the fourth year, £ 3/ 4 , are confounded. Parameters that are confounded appear as a 

product in the table.

Parameters & Values Used for Data Generation Under:

Model 1 Model 0’ Model 0

/ 0.092 / l a * 0 . 1 0 0 / 1* 0.178

Si 0.570 S l / i b 0.040 Si 0.57

h 0.091 0.570 h 0.091

Si 0.620 / 2a 0.050 s2 0.62

h 0.086 S 2J 2 b 0.041 h 0.086

S 3 u 0.050 S 2 0.620 S 3 U 0.05

/ 3 a 0.048 / 2 * 0.17

*S W 3b 0.038 / 3 * 0.186

^ a 0.028

«S3«sW4b 0.023

/ 2 a * 0.090

/ 3 a * 0 . 1 1
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Table 5. Simulation results for estimating survival rates in the first two years, Sj and S2 , 

and the expected fraction that is caught and reported in years two and three, f 2 and / j ,  

under the base scenario when tag fouling occurs and takes half a year (data generated 

with model O’). Fouled tags have visibility that is 50% of new tags. Values for all 

parameters appear in Table 4. The smallest values for bias, % bias, standard error of the

A

estimates, and root mean squared error (RMSE) are in bold. Mean SE refers to the mean 

o f the 10,000 estimated standard errors which come from the square root o f the variance, 

calculated by solving the inverse o f  the hessian. SE of estimates refers to the true 

standard error (i.e., the standard deviation) o f the 10,000 estimates o f each parameter.

Mean
Model
Fitted Parameter

True
Value

Mean
estimate Bias % Bias

A

SE
SE of 

estimates RMSE
O' S! 0.57 0.575 5.19E-03 0.91% 0.082 0.082 0.083
1 S! 0.57 0.467 -1.03E-01 -18.15% 0.053 0.053 0.116
0 Si 0.57 0.577 7.01 E-03 1.23% 0.102 0.102 0.103
O' s 2 0.62 0.626 5.83E-03 0.94% 0.098 0.099 0.099
1 s 2 0.62 0.459 -1.61E-01 -26.01% 0.051 0.050 0.169
0 s 2 0.62 0.632 1.24E-02 2.00% 0.133 0.135 0.135
O' f2 0.091 0.092 5.97E-04 0.66% — 0.014 0.014
1 f2 0.091 0.125 3.38E-02 37.19% 0.010 0.010 0.035
0 f2 0.091 0.093 1.94E-03 2.13% 0.021 0.021 0.022
O' f3 0.086 0.087 7.19E-04 0.84% — 0.013 0.013
1 f3 0.086 0.139 5.28E-02 61.40% 0.010 0.010 0.054
0 f3 0.086 0.088 1.82E-03 2.11% 0.020 0.020 0.020
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Table 6. Simulation results for estimating survival rates in the first two years, S 1 and S2 , 

and the expected fraction caught and reported in years two and three, f 2 and when data 

are generated for tag fouling which takes half a year (data generated with model O’). The 

smallest values o f bias, % bias, standard error of the estimate, and root mean squared

A
error (RMSE) are in bold. Mean SE denotes the mean of the 10,000 estimated standard 

errors which come from the square root of the variance, calculated by solving the inverse 

of the hessian. SE of estimates refers to true standard error (i.e., standard deviation) of 

the 10,000 estimates o f each parameter. Tag-reporting rate for fouled tags is given by Af.

Mean
Model True Mean A S E of
Fitted Parameter Value estimate Bias % Bias SE estimates RMSE

Af = 0.25
O' St 0.57 0.579 0.009 1.61% 0.118 0.119 0.120
1 S t 0.57 0.329 -0.241 -42.33% 0.051 0.052 0.247
0 St 0.57 0.582 0.012 2.11% 0.143 0.147 0.147
O' s 2 0.62 0.633 0.013 2.17% 0.140 0.141 0.142
1 s 2 0.62 0.343 -0.277 -44.68% 0.049 0.048 0.281
0 s 2 0.62 0.644 0.024 3.90% 0.193 0.198 0.199
O' f2 0.043 0.044 0.001 1.85% — 0.010 0.010
1 f2 0.043 0.101 0.058 134.22% 0.009 0.010 0.058
0 f2 0.043 0.045 0.002 5.05% 0.015 0.015 0.015
O' f3 0.047 0.048 0.001 1.08% — 0.010 0.010
1 f3 0.047 0.122 0.075 158.71% 0.010 0.010 0.075
0 f3 0.047 0.049 0.002 4.53% 0.016 0.016 0.017

Af = 0.75
O' St 0.57 0.573 0.003 0.54% 0.064 0.065 0.065
1 St 0.57 0.541 -0.029 -5.04% 0.049 0.049 0.057
0 St 0.57 0.575 0.005 0.88% 0.080 0.080 0.081
O’ s 2 0.62 0.625 0.005 0.76% 0.076 0.076 0.076
1 s 2 0.62 0.540 -0.080 -12.94% 0.049 0.049 0.094
0 s 2 0.62 0.627 0.007 1.08% 0.105 0.106 0.106
O' f2 0.134 0.135 0.001 0.48% — 0.017 0.017
1 f2 0.134 0.146 0.012 9.24% 0.010 0.010 0.016
0 f2 0.134 0.136 0.002 1.19% 0.025 0.025 0.025
O' f3 0.135 0.135 0.000 0.24% — 0.016 0.016
1 f3 0.135 0.166 0.031 22.91% 0.011 0.011 0.033
0 f3 0.135 0.137 0.002 1.58% 0.025 0.026 0.026
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Table 7. Simulation results for estimating survival rates in the first two years, Sj and S2 , 

and the expected fraction that is caught and reported in years two and three, f 2 and / j ,  

when tag fouling does not affect visibility (data generated with model 1). Values for all 

parameters appear in Table 4. The smallest values for bias, % bias, standard error of the

A

estimates, and root mean squared error (RMSE) are in bold. Mean SE refers to the mean 

of the 10,000 estimated standard errors which come from the square root o f the variance, 

calculated by solving the inverse o f the hessian. SE o f estimates refers to the true 

standard error (i.e., the standard deviation) o f the 10,000 estimates o f each parameter.

Mean
Model True Mean A SE of
Fitted Parameter Value estimate Bias % Bias SE estimates RMSE

O' St 0.57 0.575 0.005 0.91% 0.082 0.082 0.083
1 St 0.57 0.574 0.004 0.65% 0.067 0.068 0.068
0 St 0.57 0.577 0.007 1.23% 0.102 0.102 0.103
O' s 2 0.62 0.626 0.006 0.94% 0.098 0.099 0.099
1 s 2 0.62 0.624 0.004 0.72% 0.077 0.077 0.077
0 s 2 0.62 0.632 0.012 2.00% 0.133 0.135 0.135
O' h 0.091 0.092 0.001 0.66% — 0.014 0.014
1 ^2 0.091 0.091 0.000 -0.11% 0.008 0.008 0.008
0 f2 0.091 0.093 0.002 2.13% 0.021 0.021 0.022
O' f3 0.086 0.087 0.001 0.84% — 0.013 0.013
1 f3 0.086 0.086 0.000 -0.10% 0.008 0.008 0.008
0 f3 0.086 0.088 0.002 2.11% 0.020 0.020 0.020
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Table 8. Simulation results for estimating survival rates in the first two years, Sj and S2 , 

and the expected fraction that is caught and reported in years two and three, f 2 and / j ,  for 

the situation where tag fouling occurs and takes a full year (data generated with model 0). 

Fouled tags have visibility that is 50% of that o f new tags. Values for all parameters 

appear in Table 4. The smallest values for bias, % bias, standard error o f the estimates,

A
and root mean squared error (RMSE) are in bold. Mean SE refers to the mean o f the 

10,000 estimated standard errors which come from the square root o f the variance, 

calculated by solving the inverse o f the hessian. SE of estimates refers to the true 

standard error (i.e., the standard deviation) o f the 10,000 estimates o f each parameter.

Mean
Model True Mean A SE of
Fitted Parameter Value estimate Bias % Bias SE estimates RMSE

O' St 0.57 0.438 -0.132 -23.19% 0.059 0.059 0.145
1 St 0.57 0.395 -0.175 -30.76% 0.043 0.043 0.181
0 St 0.57 0.577 0.007 1.23% 0.102 0.102 0.103
O' s 2 0.62 0.477 -0.143 -23.08% 0.067 0.066 0.158
1 s 2 0.62 0.404 -0.216 -34.83% 0.042 0.041 0.220
0 s 2 0.62 0.632 0.012 2.00% 0.133 0.135 0.135
O' f2 0.091 0.138 0.047 52.11% — 0.019 0.051
1 f2 0.091 0.159 0.068 74.95% 0.011 0.011 0.069
0 f2 0.091 0.093 0.002 2.13% 0.021 0.021 0.022
O' f3 0.086 0.137 0.051 59.19% — 0.018 0.054
1 f3 0.086 0.173 0.087 100.94% 0.011 0.012 0.088
0 f3 0.086 0.088 0.002 2.11% 0.020 0.020 0.020
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Table 9. Simulation results for estimating survival rates in the first two years, Sj  and S 2 , 

and the expected fraction caught and reported in years two and three, f 2 and / j ,  when it 

takes one year for the tags to fully foul (data generated with model 0). Tag-reporting rate 

for fouled tags is represented by Af. The smallest values for bias, % bias, standard error of

A

the estimates, and root mean squared error (RMSE) are in bold. Mean SE  refers to the 

mean o f the 10,000 estimated standard errors which come from the square root of the 

variance, calculated by solving the inverse of the hessian. SE o f estimates refers to the 

true standard error (i.e., standard deviation) o f the 10,000 estimates of each parameter.

Mean
Model True Mean A SE of
Fitted Parameter Value estimate Bias % Bias SE estimates RMSE

Af = 0.25
O' Si 0.57 0.288 -0.282 -49.51% 0.054 0.055 0.287
1 Si 0.57 0.230 -0.340 -59.62% 0.035 0.036 0.342
0 Sf 0.57 0.583 0.013 2.33% 0.149 0.153 0.153
O' S2 0.62 0.348 -0.272 -43.89% 0.063 0.061 0.279
1 S2 0.62 0.256 -0.364 -58.71% 0.035 0.034 0.366
0 s 2 0.62 0.645 0.025 4.10% 0.198 0.205 0.206
O' f2 0.043 0.120 0.077 179.73% — 0.021 0.080
1 f2 0.043 0.158 0.115 268.10% 0.011 0.012 0.116
0 f2 0.043 0.045 0.002 5.28% 0.015 0.016 0.016
O' f3 0.043 0.116 0.073 170.19% — 0.018 0.075
1 f3 0.043 0.173 0.130 303.43% 0.012 0.012 0.131
0 f3 0.043 0.045 0.002 4.83% 0.015 0.016 0.016

Af = 0.75
O' Si 0.57 0.518 -0.052 -9.10% 0.057 0.058 0.078
1 Si 0.57 0.503 -0.067 -11.75% 0.045 0.045 0.081
0 Si 0.57 0.575 0.005 0.86% 0.080 0.081 0.081
O' S 2 0.62 0.574 -0.046 -7.40% 0.068 0.068 0.082
1 s 2 0.62 0.519 -0.101 -16.35% 0.046 0.046 0.111
0 s 2 0.62 0.627 0.007 1.09% 0.105 0.106 0.106
O' f2 0.134 0.158 0.024 17.82% — 0.019 0.031
1 f2 0.134 0.164 0.030 22.46% 0.011 0.011 0.032
0 f2 0.134 0.136 0.002 1.26% 0.025 0.025 0.025
O' f3 0.133 0.155 0.022 16.78% — 0.018 0.029
1 f3 0.133 0.178 0.045 33.49% 0.011 0.011 0.046
0 f3 0.133 0.135 0.002 1.57% 0.025 0.025 0.025
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Figure 1. The relationship between Ub, the exploitation rate in part (b) of year, and Xf ,

the tag-reporting rate for fouled tags, and the resultant recovery rate,/b, in part (b) o f the 

year.
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Figure 2. The root mean squared errors (RMSE) for the estimates o f survival during the 

first year, Sj. Data are generated for the situation where tag fouling affects visibility and 

it takes a half year for tags to become fouled (data generated under model O’). The tag- 

reporting rate for clean tags was 1.0 and for fouled tags it was modeled at 0.25, 0.50, and 

0.75. Note that when the tag-reporting rate for fouled tags is 0.75, model 1 has a lower 

RMSE than both model 0 and model O’.
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Figure 3. The root mean squared errors (RMSE) for the estimates o f survival during the 

second year, S2 . Data are generated for the situation where tag fouling affects visibility 

and it takes a full year for tags to become fouled (data generated under model 0). The 

tag-reporting rate for clean tags was 1.0 and for fouled tags it was modeled at 0.25, 0.50, 

and 0.75. Note that when the tag-reporting rate for fouled tags is 0.75, model 0’ has a 

lower RMSE than model 0.
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Chapter 3

Instantaneous rates tagging models allowing for delayed mixing of newly tagged cohorts:

partial year tabulation of recaptures
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Abstract

Instantaneous rates tagging models can be used to estimate natural mortality and fishing 

mortality rates from multi-year tagging studies in which cohorts o f tagged animals are 

released at the start o f each year. The models can include additional parameters to 

account for a delay in mixing of newly tagged animals with previously tagged animals. 

One such model allows for the newly tagged population to become fully mixed in less 

than one year. Here a new model, referred to as the partial-year tabulation model for 

delayed mixing (delayed pyt model), is proposed in which the year is divided into parts 

and tag returns are tabulated by parts of the year rather than a full year. This is beneficial 

when there is delayed mixing because it achieves greater precision and provides estimates 

o f the instantaneous rate of fishing mortality in the first year, which cannot be estimated 

when tag returns are tabulated by full year. The new model can be used at little or no 

extra cost. The superiority of the delayed pyt model is demonstrated through Monte 

Carlo simulation.
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Introduction

Multi-year tagging studies are often used to obtain estimates of survival rates and 

instantaneous rates o f fishing and natural mortality. Modem, multiyear tagging models 

were first described by Seber (1970) and Robson and Youngs (1971). Brownie et al. 

(1978, 1985) popularized the approach by describing a suite of models that enables the 

user to estimate age- and year-specific survival rates and the models are now commonly 

referred to as Brownie models.

The biggest difficulty in conducting tagging studies is to ensure that the tagged 

population is thoroughly mixed with the population at large so that recaptures of tagged 

animals reflect what is happening to the untagged population. Unfortunately, the 

Brownie models cannot accommodate a lack o f mixing of newly tagged animals into the 

population (Youngs and Robson 1975). Hoenig et al. (1998a,b) used additional 

information about the timing o f the fishery within the year to reparameterize the Brownie 

models in terms of instantaneous rates of fishing and natural mortality. This enables one 

to estimate the components o f mortality. Significantly, this approach can accommodate 

delayed mixing of newly tagged animals into the untagged population (Hoenig et al. 

1998b).

At the start o f each of several successive time periods a sample of the population, 

termed a cohort, is captured, tagged, and released. Recaptures o f tagged animals are 

tabulated by period, which is typically a year. In this paper annual tagging periodicity is 

assumed. The data consist of counts ry ,  which are the realizations of (i.e., observations 

on) the random variables Ry, i.e., the ry are the observed number o f recaptures o f animals
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tagged in year / (/ = 1,2, ..., 7) and recaptured in year j  (j = i, ..., J, with J  > I). The 

estimates of rates of natural and fishing mortality are calculated using full years o f data.

For models parameterized in terms o f instantaneous rates, parameters can be 

included to allow for a delay in the mixing of the newly tagged animals with the untagged 

and previously tagged population (Hoenig et al. 1998b). One of the Hoenig et al. (1998b) 

models allows for the newly tagged animals to be mixed after a full year at liberty and 

another formulation assumes mixing is complete after a partial year. For both models, an 

estimate o f the normal instantaneous rate o f fishing mortality during the first year o f the 

study is not possible due to confounding of parameters.

If newly tagged animals fully mix with the population in less than a year, the 

tabulation of recoveries by year results in a loss o f efficiency (in terms of larger standard 

errors for every parameter). In this paper, we present a new model, the partial year 

tabulation model for delayed mixing (delayed pyt), in which recoveries are tabulated by 

portion of the year. The year is split in parts such that in the first part o f the year, part (a), 

the newly tagged animals are not fully mixed with the population at large and in part (b), 

the second part of the year, the newly tagged animals have fully mixed with the 

population at large. The data consist o f an upper trapezoidal array where the cells 

contain counts ryu, which are the realizations (i.e., observations) of the random variables 

Ryk, i.e., the observed numbers of recaptures of animals tagged in year i (i = 1,2, . . . , / )  

and recaptured in part k, k e {a,b}, o f year j j  = i ,  , Jw ith  J >  I.

The performance o f the delayed pyt model will be evaluated by Monte Carlo 

simulation. The new model will be compared to the models of Hoenig et al. (1998 a,b). I 

will show that, by making better use o f the available information, an estimate of the
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instantaneous rate o f fishing mortality in the first year is possible and there is an increase 

in the overall efficiency of estimation.

Instantaneous Rates Tagging Models

Hoenig et al. (1998a) formulated the Brownie model in terms of instantaneous 

rates of fishing and natural mortality given information on the timing o f the fishery. The 

Brownie models are parameterized in terms of the survival rate in year j ,  Sj, and the tag 

recovery rate in year j , f j .  The survival rate, denoted Sj, is defined as the expected 

fraction o f the population alive at the start o f year j  that is still alive at the end of the year. 

The survival rate in year j  can be expressed in terms of the instantaneous rates o f fishing 

(Fj, y r "') and natural mortality (M, y r _1) by,

(1 )5 ,  = e x p ( -F ,-A /) .

This holds regardless o f the relative timing o f the fishing and natural mortality. The tag 

recovery rate in year j , f j ,  can be expressed as a product of its components (Pollock et al. 

1991; Hoenig et al. 1998a)

(2) f .  = 0  A uj,

where ^ is a combination of short term survival rate from tagging and short term 

probability of tag retention, Uj is the exploitation rate, or the expected fraction of the 

population alive at the start o f the year that dies due to harvesting during the year, and X is 

the tag reporting rate, or the probability that a tag will be reported if  the fish is 

recaptured.

It is necessary to know the timing o f the fishery during the year in order to relate 

the exploitation rate to the instantaneous rates of fishing and natural mortality as will be
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shown below. Hoenig et al. (1998a) provided a general model formulation which allows 

for an arbitrary fishing pattern throughout the year. When there is constant fishing 

intensity throughout the year, exploitation in year j  can be expressed:

o f the parameters in parentheses. It is possible to fit a model where M  varies over time 

but here it is assumed to be constant both within and over years. If the year is split into 

two parts, part (a) and part (b), then the exploitation rates in part (a) and (b) for year j ,  uja 

and up, are given by,

where pj  is the proportion o f the fishing mortality occurring in part (a) o f the year, qj is 

the proportion of the fishing mortality occurring in part (b) o f the year (note qj=l~Pj), y  

is the fraction of the year that elapses in part (a), and F  and M are as defined previously. 

The value of p  is determined under the assumption that the fraction o f fishing mortality 

occurring is part (a) is proportional to the fraction of fishing effort that occurs in part (a) 

(if determining relative effort in the parts o f a year is difficult one can use relative catch, 

as suggested by Hoenig et al. 1998a). This assumption is generally not critical unless the 

natural mortality rate, M, is high (Hoenig et al. 1998a). The exploitation rate in year j  is 

the sum of the exploitation rates in parts (a) and (b), i.e.,

(5) U j Ujq  U j b '

(3) Ut  = u t  {FJ, M ) = (l -  exp(- F, -  m )) .

The notation o f a u followed by parentheses is used for brevity to indicate u is a function

(l -  exp(- qjFj -  (1 -  /)M ))exp(- pjFj -  yM)
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Note that under this formulation, the fishing mortality is assumed to be constant with 

time within a time period but may vary among periods.

The recapture data (ry) can be explained by modeling the expected cell counts in 

terms o f survival rates and exploitation rates which are themselves functions of the 

fishing and natural mortality rates. It is then a straightforward matter to construct the 

likelihood function for the data in order to estimate the parameters.

Fully Mixed Case

When the tagged cohort is fully mixed with the population at large prior to the 

start of fishing, the expected recovery from the cohort tagged in year i and recovered in 

year j, E(RtJ), can be expressed:

where Nl is the number tagged and released in year i and the other parameters are as 

defined previously. There is an implicit category for all animals of a cohort that are 

never seen again, 7,-. This can be expressed as:

Maximum likelihood estimation (MLE) is generally used to obtain estimates for 

the model parameters based on the observed data. MLE methods consist o f writing an 

expression, called the likelihood function, for the probability o f having obtained the 

observed data; the likelihood is written in terms of the unknown parameters o f interest.

h=i

J
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The values o f the parameters which maximize the likelihood function are called the 

maximum likelihood estimates. Generally, numerical methods are used to solve for the 

maxmimum likelihood estimates. Maximum likelihood estimators have the following 

desirable asymptotic properties (under the regularity conditions): unbiased, unique, 

consistent, minimum variance, and normally distributed (e.g., Hogg et al. 2005; Wackerly 

et al. 2002).

The likelihood function for instantaneous rates models can be expressed as the 

product o f independent multinomial distributions of tag returns over time, with each 

tagged cohort giving rise to a multinomial distribution. The general form o f the 

likelihood function A for product multinomial models can be expressed as:

where the symbol oc means “is proportional to,” Py is the cell probability o f recovering 

a tagged animal in year j  given that it was tagged in year z,

and the other quantities are as defined previously. The likelihood function is proportional 

to the product o f the cell probabilities raised to the power o f observed recaptures. The 

right hand portion of the equation involving one minus a sum is the expression for the 

animals in a cohort that are never seen again after tagging, that is, the cell probability of 

never being seen again raised to the power of the number of tagged animals which are 

never seen again, given by 7, (Equation 7).

7
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Delayed Mixing Lasting a Full Year

Hoenig et al. (1998b) extended the instantaneous rates models to allow for the 

newly tagged animals to not fully mix with the previously tagged population until either a 

full year or partial year has elapsed. As a result o f this delay, the newly tagged animals in 

year j  experience an abnormal instantaneous rate of fishing mortality, F /,  for the first 

year at liberty (F /  is considered abnormal because it does not reflect the mortality which 

previously tagged animals experience as the newly tagged cohort has not yet fully 

mixed). Values of F /  are generally not of interest but are included in the model to avoid 

bias in the estimates o f the F /  s. For a fishery with constant fishing intensity over the 

year the exploitation rate, u*, for the first year a cohort is at liberty is now expressed as,

(10) u," = « / ( f / , m ) = - £ —  ( l - e x p ( - F /  - A / ) ) .
Ff + M

The asterisk is used here to denote that the rate o f fishing mortality is abnormal which 

causes the exploitation rate to be different from that o f previously tagged animals. The 

expected recoveries from the cohort tagged in year i and recovered in year j  can be 

expressed,

(11)

NrfXuj' { F '  , M)  , j  = i 

N,4>XUj (F,  M)S" , j  = i + 1

N,lpXuj { F , M ) S ' f [ S h , j > i  + 1
h=i+1

where S*  is the abnormal survival rate in year i for the cohort tagged in year / that has not 

fully mixed with the previously tagged population,
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( 1 2 ) S /= e x p ( - M - ,F / )

and the other parameters are the same as described previously.

Delayed Mixing Lasting Part o f  the Year

As shown by Hoenig et al. (1998b), if  the newly tagged animals fully mix in less 

than a year, the year can be split into two parts, part (a) and part (b), such that animals are 

fully mixed into the population at large by the end of part (a). The exploitation rates in 

part (a) and (b) for the first year each cohort is at liberty are given by uia* and u&

F*  (the abnormal fishing mortality rate in part (a) of year /).

I f  newly tagged animals are assumed to be fully mixed after part o f the year, 

rather than the full year, the expected recaptures change to:

(13a) = u la'(F’, M ) =  P'f'  (l~exp(— p ,F'  — yM))
p,F, +yM

The asterisk on mb occurs because the exploitation rate in part (b) of year / depends on

(14) E(R„ ) = N J X  {uja (Fj, M ) +  uJb (F,, U p , ’ , 7  = 1 + 1

where S* is the abnormal survival rate for the first year each cohort is at liberty given by

(15) S ’ = e x p (-p (Ff* - q , F i —m ).
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Note that the abnormal survival rate in the year of tagging, S*, is specified differently in 

equations 12 and 15. For equation (12) delayed mixing lasts a full year and thus animals 

must survive the abnormal instantaneous rate o f fishing mortality, F*, for the full first 

year at liberty, year /. For equation (15) animals experience an abnormal instantaneous 

rate of fishing mortality, F*, for only part of year i, the first year the cohort is at liberty, 

and experience the normal rate of fishing mortality, Fif for the remainder of the year.

Note that under the delayed mixing model, where the delay in mixing lasts part of 

the year, for year / = 1 there is no separate Fj and F j * ; instead there is only Fj* because 

the parameters are not separably estimable (Hoenig et al. 1998b). Logically, in year one 

of a tagging study, all o f the animals are newly tagged so there are no previously tagged 

animals from which to estimate the normal rate o f fishing mortality.

As before, maximum likelihood estimation methods can be used to estimate the 

parameters because the likelihood under delayed mixing is o f the same form as found in 

Equation 8.

New Model: partial year tabulation for delayed mixing lasting part of year

A new model, called the delayed pyt model, is now developed for the case where 

delayed mixing occurs but the newly tagged cohort fully mixes with the untagged and 

previously tagged population in less than a year. As before, the year is divided into parts 

such that in part (a) of the year, the newly tagged cohort is not fully mixed with the 

population at large, and by part (b) of the year the cohort is fully mixed with the 

population at large and experiencing the same rate of fishing mortality as previously 

tagged cohorts. The key feature o f the delayed pyt model is that tag recaptures are
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tabulated separately for parts (a) and (b) of every year. The expected recaptures, from the 

cohort tagged in year / and recaptured in part (a) of year j ,  can be expressed as:

(16a) E(Rlp) =

N ^ X u ^ F ' , m ) , i = j

n j a .uj. ( f j , m )s i' , j  = i + 1

A r> A « * (F ,,J l / ) s ,* n s *  , j > i  + 1
h=i+\

and for part (b) of year j ,

N^Plu^ F ' , F „ m ) , i  = j

Nj f a  ujb (Fj ,m )s ' , j  = i + 1

N ^ X u ^ F ^ M ^ f i S , ,  J > i  + 1
h=i+\

where uia* and u^*are given by equations (13a) and (13b), respectively, uja and are 

given by equations (4a) and (4b), respectively, and the remaining parameters are as 

defined previously. Note that equations (16a) and (16b) differ from equation (14) in that 

the tabulations are done by parts o f the year for the delayed pyt model and by full year in 

equation (14).

The likelihood is constructed similarly to equation (8), but with the year broken 

into parts (a) and (b) and the tag recaptures tabulated by parts. The recapture cell 

representing the tagged animals which are never seen again is given by

J

(17)
W. = N. £ ? AJ~l k e {a ,b }

ijk
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Thus the likelihood can be expressed

i r j V j Y„,**nnnv >-i in.
i - l y j= i ke{a,b} yy j=i ke{a,b} j

where Pyt is the cell probability o f recovering a tagged animal in part k, k e  {a,b}, of 

year j  given that it was tagged in year i,

(19) ijk ^  ,

and the remaining parameters are as defined previously.

Simulations

Methods

Monte Carlo simulations were performed to evaluate the performance o f the 

delayed pyt model and to compare the results with those from the partial-year delayed- 

mixing model described by Hoenig et al. (1998b) using simulated data reflecting delayed 

mixing lasting part o f the year. The simulations consisted o f three years o f tagging (years 

1, 2, and 3) and four full years o f recaptures, that is, recaptures for periods la, lb, 2a, 2b, 

3a, 3b, 4a, and 4b for the new model and years 1, 2, 3, and 4 for the Hoenig et al. (1998b) 

delayed mixing model. One thousand animals were tagged each year and two thousand 

product multinomial datasets were simulated for each scenario. The scenarios simulated 

delayed mixing lasting for half a year. That is, after half of a year has passed the newly 

tagged animals were fully mixed with the untagged population as well as with the 

previously tagged animals. Note that $ and X are confounded and cannot be estimated
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separately. For the purpose o f the Monte Carlo simulations the product o f (f>X was set to 

1.0, indicating the tag reporting rate was one-hundred percent, no tags were shed 

immediately after tagging, and there was no short-term tag-induced mortality.

The parameters used to generate the datasets under two scenarios are given in 

Tables 1 and 2. For each dataset the fraction o f fishing effort and thus, by assumption, 

fishing mortality in part (a) is equal to that in part (b) (p= q). One dataset (Table 2) had 

values of the rates o f fishing mortality close to each other (0.22 to 0.28) and the other 

(Table 1) had a wider range o f rates of fishing mortality (0.20 to 0.45).

The following two models were fitted to each o f the datasets:

1) Delayed mixing model, as described by Hoenig et al. (1998b), in which mixing is 

assumed after half a year; data are tabulated by year.

2) Delayed pyt model (new model), in which mixing occurs after half a year; data 

are tabulated by half year.

Computations were done using the statistical language R (R Development Core Team 

2008) as described below.

A second group of simulations was conducted in order to evaluate how well a 

model selection criterion would perform in choosing the best fitting model. Two models 

were compared: the delayed pyt model and a fully mixed model in which the tag 

recaptures were tabulated by parts o f the year (referred to as the fully mixed pyt model). 

The formulation for the fully mixed pyt model is similar to that o f the delayed pyt model, 

except anywhere an Fj* appears it is replaced by Fj. Tabulating recaptures by parts of 

the year does not increase the precision of the fully mixed pyt model relative to the fully
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mixed model with tag recaptures by year, but it does allow for model comparison 

between models with immediate and delayed mixing of newly tagged animals.

A commonly used model selection criterion is Akaike’s Information Criterion 

(AIC) (Anderson 2008). AIC is defined as:

(20) AIC = -2  loge (a )  + 2k,

where A is the value of the maximum for the likelihood function for the model and k is

the number o f parameters in the model. The model which has the lower AIC value is

considered the better fitting model. Additionally, one can define A AIC, which is the

difference in AIC values between an alternative model and the best fitting model. A

general rule o f thumb is that a model with a AAIC of less than two or three is considered

a plausible alternative to the best fitting model (Anderson 2008).

For the second group o f simulations, the values o f fishing mortality and natural

mortality were those in Table 1. The values o f the abnormal rates of fishing mortality,

$
Fja ’s, relative to the normal rates of fishing mortality FJa's (note Fja=0.5Fj) were varied 

in order to see what effect the magnitude of this difference had on model performance 

and on AIC for model selection (Tables 3, 4, 5 and Figure 1). Parameter estimates and 

standard errors were calculated for an ‘AIC-selected model’, that is, for each simulation 

the estimates for the parameters from the model (fully mixed pyt or delayed pyt models) 

which had the lower AIC value were used, and then these 10,000 model-selected 

estimates were averaged (Tables 3, 4, and 5).

The function ‘rmultinomial’ (Chasalow 2005) in the R package ‘combinat’ was 

used to generate multinomial datasets with specified sample sizes and cell probabilities. 

The function ‘nlm’ was used to minimize the negative log likelihood function and obtain
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the Hessian (R Development Core Team 2008). Standard errors were estimated by 

inverting the Hessian matrix using the R function ‘solve’. The true standard error was 

determined from the variability (standard deviation) o f the two thousand estimates for 

each parameter. The output from the Monte Carlo simulations includes: estimates of the 

parameters for each simulated dataset and the bias, standard error, and bias of the 

estimated standard error. Additionally the root mean square error (RMSE) for each 

parameter was calculated using

parameter whose true value is O. The parameters estimated for the new model are: Fj,

F2 , F3, F4 , Fia , F2a*, and F3a . The parameters estimated for the Hoenig et al. (1998b) 

model are F 2 ,  F 3 ,  F 4 ,  F 1 * , F 2 a  , and F 3 a *. (Hoenig et al. (1998b) parameterized the

Simulation Results

In the first set of simulations, when the F f  s vary greatly from year to year (range

(1998b) yield essentially unbiased estimates o f the F / s  ( j  -  2,...,4) and F j a * ' s ( i  =  2 ,  3) 

(Table 1). For all the F / s  and Fja>s, the delayed pyt model produces estimates with 

smaller standard deviations and smaller RMSE’s. Only the delayed pyt model yields an

(21) RMSE = si bias2 + variance =  ̂—— —----- ,

A thwhere T is the number o f simulated datasets (2,000) and 0i is the / estimate of the

model in terms o f Ft * ’s, but the simulations here were done with Fia*'s and the 

relationship is pF* = Fia). There is no F 4a since tagging occurred for just three years.

0.20 to 0.45), both the delayed pyt model and the delayed mixing model of Hoenig et al.
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estimate o f Fj: meanFj = 0.200 (F j = 0.20) with a RMSE of 0.023. Both models yield 

essentially unbiased estimates o f the standard errors.

When the F / s  are close in value to each other, both the delayed pyt model and the 

delayed mixing model of Hoenig et al. (1998b) yield essentially unbiased estimates of the 

F / s  (j = 2, . . .,4) and Fja*’s (j = 2, 3) (Table 2). The delayed pyt model produces an 

unbiased estimate of M  while the delayed mixing model of Hoenig et al. (1998b) is

negatively biased (% bias for M  = -9%). Only the delayed pyt model produces an 

estimate of Fj.  However it is worth noting that the delayed pyt model produces a mean 

estimate ofFj = 0.220 (Fj = 0.22) and thus is unbiased, with a RMSE of 0.033. Both 

models yield essentially unbiased estimates of the standard errors.

When the data are generated with the values of the F / s  being closer together than 

the previous simulation (Table 2), the performance of the delayed pyt model improves 

relative to the Hoenig et al. model by having lower RMSE’s for the estimates of M, F / s  

(/ = 1,2, 3), and Fja*’s (j = 1,2, 3).

For the second set of simulations, in which the data was such that the tag 

recaptures were tabulated by parts of the year, the percentage of the 10,000 simulations in 

which the delayed pyt model had a lower AIC value than the fully mixed pyt model 

varied depending on the multiplier between F /  and Fj (Figure 1). In fact, when the data 

come from a case of full mixing (Table 3) and one uses AIC as the model selection 

criterion, the wrong model is only selected 10.66% of the time. Hence, uncertainty about 

model selection is low. In fact, bias of the estimates under model selection is essentially 

zero (as with the fully mixed and delayed pyt models). The RMSE is slightly higher 

when model selection is used than when the fully mixed pyt model is used. This is
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because for 10.66% of the 10,000 simulations the less precise model (delayed pyt model) 

was selected.

When the data come from a case of slight delayed mixing, i.e, F /  = 1.1 Fj, the 

delayed pyt model is selected 27.21% of the time (Figure 1). Thus, the incorrect model, 

the fully mixed pyt model, is selected 72.79% of the time, yielding parameter estimates 

with larger biases than the delayed pyt model (Table 5). Interestingly, for four of the five 

parameters (F 2 , F 3, F 4, and M) the AJC-selected model has the lowest RMSE. This is 

because 72.79% of the time a more precise model (the fully mixed pyt model) is selected 

and 27.21% of time the essentially unbiased model (the delayed pyt model) is selected, 

resulting in estimates that have lower RMSE’s than using either model alone.

If  the data come from a stronger case o f delayed mixing, i.e., Fj* = 0.75Fj, the 

delayed pyt model is selected 93.1% of the time (Figure 1). Now, the AJC-selected 

model is tied for the lowest RMSE for just two of the parameters (Fj and F 3) and the 

delayed pyt model has the lowest RMSE for all parameters (including the two ties) (Table 

4).

Discussion

In order to determine if it is appropriate to apply the delayed pyt model it must 

first be determined if delayed mixing is a problem. If a model for delayed mixing is 

applied when the newly tagged cohorts fully mix with the previously tagged, the delayed 

pyt model will likely still outperform the delayed mixing model of Hoenig et al. (1998b) 

by yielding estimates closer to those found when fitting the fully mixed model and the 

delayed pyt model will have smaller standard errors for each parameter (Tables 1, 2).

75



However, the delayed pyt model will likely be less precise than the fully mixed model 

since the additional parameters reduce precision.

When delayed mixing does occur for part o f the year, the delayed pyt model 

provides more precise estimates o f the rates of fishing mortality and natural mortality 

compared to the delayed mixing model of Hoenig et al. (1998b). Furthermore, if the fully 

mixed model is applied when delayed mixing occurs, the estimates may be biased for all 

parameters. In fact, whether there is full mixing or delayed mixing for part o f a year, the 

delayed pyt model will generally outperform the delayed mixing model o f Hoenig et al. 

(1998b) by providing estimates with smaller estimated standard errors and provide an 

estimate of the rate of fishing mortality in the first year (which the Hoenig et al. (1998b) 

model does not provide).

In order to use the delayed pyt model, it is necessary to determine the value ofp, 

the proportion of fishing mortality occurring in part (a) of the year. The assumption of p  

is not critical for the estimation of any value except for Fj (Hoenig et al. 1998b). It is 

critical for F} because the value of p  determines the multiplier used to relate fishing 

mortality estimated for part (b) of the year to the fishing mortality over the whole year.

Additionally, the degree to which the rate of fishing mortality varies across the 

years will affect the precision of the estimates o f the normal and abnormal rate of fishing 

mortality as shown by the simulations (c.f. Tables 1, 2). The greater the variability in the 

rate of fishing mortality the more precise the estimates will be.

Tabulating the recaptures on a finer scale than the periodicity of tagging should 

not be costly. Pollock and Raveling (1982) showed that when conducting a tagging study 

it is important to determine the date of tag recapture in order to avoid biased estimates of
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survival. Thus, assuming the advice o f Pollock and Raveling is followed, knowing 

whether the tag return is from part (a) or part (b) o f the year should add little or no 

additional cost to the study.

For these simulations the product of (pX was assumed to be one. In practice one 

would either use the data to estimate (pX or use additional information to obtain an outside 

estimate. With a large dataset, i.e., high numbers of recaptures and many years of 

tagging and recaptures, it is possible to estimate (pX from the observed information. It is 

also possible to obtain an outside estimate of (pX using methods such as high-reward 

tagging studies or planted tag studies (Hoenig et al. 1998a). Thus, the delayed pyt model 

can be used in a much more general setting in which there is an outside estimate of (pX or 

when (pX is estimated from the observed information.

This is only the second study to show that tabulating tag recoveries on a finer 

scale than the periodicity of tagging can be advantageous. The other study, by 

Waterhouse (2010), described a generalization of Brownie model zero (Brownie et al. 

1978, 1985) to address tag fouling occurring in the first part of the first year a cohort is at 

liberty with the result that newly tagged animals are more visible than previously tagged 

ones. It is yet to be seen what further benefits can accrue from tabulating recapture data 

on a finer scale than the tagging periodicity.
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Table 1. Simulation results for estimating the instantaneous rate of fishing mortality in 

years one through four (Fj, F2 , F3 , F4), the abnormal instantaneous rate of fishing 

mortality in part (a) o f years two and three (F2a*, F3 a*), and the instantaneous rate of 

natural mortality (M). Data were generated with contrasting F /s  across years and w ithp  

= q, that is with 50% of Fj occurring in part (a) of year j .  RMSE is root mean squared

A  *

error. Mean SE refers to the mean of the 2,000 standard errors, calculated by inverting 

the Hessian. SE o f estimates refers to the true standard error, i.e., the standard deviation, 

of the 2,000 estimates of each parameter. Hoenig et al. refers to the delayed mixing 

model of Hoenig et al. (1998b) with recaptures tabulated by year and delayed pyt refers 

to the new model in which recaptures are tabulated by parts o f the year. The smaller 

value for each performance measure for each parameter is in bold.

Mean
Model Fitted Parameter True

Value
Mean

estimate Bias
A

SE
SE of 

estimates RMSE

Delayed pyt F 1 0.20 0.200 0.0002 0.023 0.023 0.023
Delayed pyt f 2 0.30 0.300 0.0002 0.023 0.023 0.023
Delayed pyt f 3 0.25 0.251 0.0006 0.021 0.021 0.021
Delayed pyt f 4 0.45 0.453 0.0035 0.048 0.046 0.046
Delayed pyt F 1 a* 0.05 0.050 -0.0001 0.007 0.007 0.007
Delayed pyt f 2 : 0.60 0.600 0.0004 0.030 0.029 0.029
Delayed pyt F  3 a * 0.15 0.150 -0.0003 0.013 0.013 0.013
Delayed pyt M 0.20 0.200 0.0002 0.028 0.027 0.027

Hoenig et al. F 1 0.20 -- - - - -
Hoenig et al. f 2 0.3 0.300 -0.0004 0.029 0.029 0.029
Hoenig et al. f 3 0.25 0.252 0.0017 0.030 0.030 0.030
Hoenig et al. f 4 0.45 0.456 0.0061 0.057 0.055 0.055
Hoenig et al. F  i a = p F - i 0.05 -- -- -- - --
Hoenig et al. F 2a = p F 2 0.6 0.602 0.0019 0.036 0.035 0.035
Hoenig et al. F 3a  =  p F  3 0.15 0.150 -0.0004 0.021 0.021 0.021
Hoenig et al. M 0.2 0.202 0.0016 0.033 0.032 0.032
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Table 2. Simulation results for estimating the instantaneous rate of fishing mortality in 

years one through four ( F j ,  F 2 ,  F 3 ,  F 4 ) ,  the abnormal instantaneous rate of fishing 

mortality in part (a) of years two and three {F2a*, F3a*), and the instantaneous rate of 

natural mortality (M). Data were generated with similar F /s  across years and w ithp  = q, 

that is the proportion of Fj occurring in part (a) of year j  equals 50%. RMSE is root mean

A

squared error. Mean SE refers to the mean o f the 2,000 standard errors, calculated by 

inverting the Hessian. SE of estimates refers to the true standard error, i.e., the standard 

deviation, of the 2,000 estimates of each parameter. Hoenig et al. refers to the delayed 

mixing model of Hoenig et al (1998b) with recaptures tabulated by year and delayed pyt 

refers to the new model in which recaptures are tabulated by parts o f the year. The 

smaller value for each performance measure for each parameter is in bold.

Mean
True Mean

A
SEof

Model Fitted Parameter Value estimate Bias SE estimates RMSE

Delayed pyt F 1 0.22 0.220 -0.0002 0.033 0.033 0.033
Delayed pyt f 2 0.28 0.281 0.001 0.030 0.030 0.030

Delayed pyt f 3 0.25 0.251 0.001 0.030 0.031 0.031

Delayed pyt f 4 0.23 0.233 0.003 0.039 0.040 0.040

Delayed pyt F u 0.62 0.621 0.0012 0.031 0.031 0.032
Delayed pyt F 2a 0.6 0.600 0.000 0.031 0.030 0.030

Delayed pyt F 3a' 0.68 0.680 0.000 0.034 0.034 0.034

Delayed pyt M 0.2 0.199 -0.001 0.045 0.044 0.044

Hoenig et al. F 1 0.22 -- - - - -
Hoenig et al. f 2 0.28 0.282 0.002 0.043 0.044 0.044
Hoenig et al. f 3 0.25 0.246 -0.004 0.040 0.040 0.040
Hoenig et al. f 4 0.23 0.223 -0.007 0.042 0.043 0.043
Hoenig et al. F  i a = p F i 0.62 -- -- - - -
Hoenig et al. F 2a = p F  2 0.6 0.596 -0.004 0.037 0.035 0.035
Hoenig et al. F 3a -  p F 3 0.68 0.676 -0.004 0.037 0.037 0.038
Hoenig et al. M 0.2 0.182 -0.018 0.050 0.050 0.054
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Table 3. Simulation results for estimating the instantaneous rate o f fishing mortality in 

years one through four (Fj, F2, F 3 ,  F 4) and natural mortality (M). Data were generated 

with contrasting F / s  across years and with p  =  q,  that is with 50% of Fj  occurring in part 

(a) of year j .  Here Fj* = 1.0 Fj,  i.e., full mixing. RMSE is root mean squared error. SE of 

estimates refers to the true standard error, i.e., the standard deviation, of the 10,000 

estimates of each parameter. AlC-selected refers to the mean estimate calculated using 

parameter estimates for the model having the smaller AIC for each simulated dataset.

For each parameter, the smallest value for SE of estimates and RMSE is in bold.

Model fitted Parameter True Value Mean Estimate Bias SE of estimates RMSE

Delayed pyt F1 0.2 0.200 0.0001 0.024 0.024

Delayed pyt F2 0.3 0.300 -0.0001 0.022 0.022

Delayed pyt F3 0.25 0.250 0.0000 0.020 0.020

Delayed pyt F4 0.45 0.452 0.0016 0.047 0.047

Delayed pyt M 0.2 0.200 -0.0004 0.028 0.028

Fully mixed pyt F1 0.2 0.200 -0.0001 0.016 0.016

Fully mixed pyt F2 0.3 0.300 0.0000 0.017 0.017

Fully mixed pyt F3 0.25 0.250 0.0000 0.015 0.015

Fully mixed pyt F4 0.45 0.452 0.0016 0.043 0.043

Fully mixed pyt M 0.2 0.200 -0.0001 0.025 0.025

AlC-selected F1 0.2 0.200 0.0000 0.019 0.019

AlC-selected F2 0.3 0.300 0.0000 0.018 0.018

AlC-selected F3 0.25 0.250 0.0001 0.017 0.017

AlC-selected F4 0.45 0.452 0.0017 0.044 0.044

AlC-selected M 0.2 0.200 -0.0002 0.026 0.026
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Table 4. Simulation results for estimating the instantaneous rate o f fishing mortality in 

years one through four (Fj, F2 , F3, F4) and the instantaneous rate of natural mortality 

(M). Data were generated with contrasting F / s  across years and withp  = q, that is with 

50% of Fj  occurring in part (a) of year j .  Here Fj* = J 5Fj.  RMSE is root mean squared 

error. SE of estimates refers to the true standard error, i.e., the standard deviation, of the 

10,000 estimates of each parameter. AlC-selected refers to the mean estimate calculated 

using the parameter estimates for the model having the smaller AIC for each simulation. 

For each parameter, the smallest value for SE of estimates and RMSE is in bold.

Model fitted Parameter True Value Mean Estimate Bias SE of estimates RMSE

Delayed pyt F1 0.2 0.200 0.0001 0.024 0.024

Delayed pyt F2 0.3 0.300 -0.0001 0.022 0.022

Delayed pyt F3 0.25 0.250 0.0000 0.020 0.020

Delayed pyt F4 0.45 0.452 0.0016 0.047 0.047

Delayed pyt M 0.2 0.200 -0.0004 0.028 0.028

Fully mixed pyt F1 0.2 0.170 -0.0305 0.014 0.034

Fully mixed pyt F2 0.3 0.265 -0.0354 0.015 0.038

Fully mixed pyt F3 0.25 0.220 -0.0297 0.014 0.033

Fully mixed pyt F4 0.45 0.400 -0.0505 0.039 0.064

Fully mixed pyt M 0.2 0.163 -0.0373 0.026 0.045

AlC-selected F1 0.2 0.199 -0.0012 0.024 0.024

AlC-selected F2 0.3 0.299 -0.0012 0.023 0.023

AlC-selected F3 0.25 0.249 -0.0008 0.020 0.020

AlC-selected F4 0.45 0.450 0.0002 0.048 0.048

AlC-selected M 0.2 0.199 -0.0014 0.029 0.029
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Table 5. Simulation results for estimating the instantaneous rate of fishing mortality in 

years one through four (Fj, F2, F 3 ,  F 4) and the instantaneous rate of natural mortality 

(M). Data were generated with contrasting F / s  across years and withp  = q, that is with 

50% of Fj  occurring in part (a) of year j .  Here Fj* = 1.1 Fj.  RMSE is root mean squared 

error. SE of estimates refers to the true standard error, i.e., the standard deviation, o f the 

10,000 estimates of each parameter. AlC-selected refers to the mean estimate calculated 

using the parameter estimates for the model having the smaller AIC for each simulation. 

For each parameter, the smallest value for SE o f estimates and RMSE is in bold.

Model fitted Parameter True Value Mean Estimate Bias SE of estimates RMSE

Delayed pyt F1 0.2 0.200 0.0002 0.024 0.024

Delayed pyt F2 0.3 0.300 -0.0001 0.022 0.022

Delayed pyt 
♦

F3 0.25 0.250 0.0001 0.020 0.020

Delayed pyt F4 0.45 0.452 0.0021 0.047 0.047

Delayed pyt M 0.2 0.200 -0.0003 0.028 0.028

Fully mixed pyt F1 0.2 0.212 0.0125 0.017 0.021

Fully mixed pyt F2 0.3 0.315 0.0146 0.017 0.023

Fully mixed pyt F3 0.25 0.262 0.0123 0.016 0.020

Fully mixed pyt F4 0.45 0.473 0.0234 0.045 0.051

Fully mixed pyt M 0.2 0.214 0.0137 0.025 0.029

AlC-selected F1 0.2 0.200 -0.0002 0.023 0.023

AlC-selected F2 0.3 0.300 -0.0002 0.021 0.021

AlC-selected F3 0.25 0.250 0.0004 0.019 0.019

AlC-selected F4 0.45 0.452 0.0018 0.045 0.045

AlC-selected M 0.2 0.200 -0.0002 0.027 0.027
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Figure 1. The percentage o f the 10,000 simulations for which the delayed pyt model is 

selected as a result of having the lower AIC value (solid line) or when the AIC value of 

the delayed pyt model is at least two smaller than the fully mixed model (dashed line). 

Both models used data with tag recaptures tabulated by parts of the year. The values of 

the F / s  can be found in Table 3. The value of Fj* was specified as a multiple of F} in 

order to see how this affected model performance.
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APPENDIX A 

Choosing between models 0, 0% and 1: Lake trout example

In practice, when choosing which model best fits the data it is common to use a 

measure of goodness-of-fit such as Akaike’s Information Criterion (AIC) (Anderson 

2008). AIC is defined as:

(1) AIC = -21oge (a )+  2k,

where A is the likelihood function for the model (here, as defined in Thesis Chapter 2) 

and k is the number o f parameters in the model. The model which has the lowest AIC 

value is considered the best fitting model. Additionally, one can define AAIC which is 

the difference in AIC values between the alternative model and the best fitting model. A 

general rule of thumb is that a model with a AAIC of less than two or three is considered 

a plausible alternative to the best fitting model (Anderson 2008).

With multinomial count data it is not uncommon to find more variation than can 

be explained by the model, that is overdispersion, and one can calculate an 

overdispersion parameter (Anderson 2008). If  the overdispersion parameter is large (>1), 

one can use quasilikelihood AIC (QAIC) to select among alternative models and adjust 

standard errors.

Since AIC is based on maximum likelihood techniques, an important rule when 

comparing models is that they must all use the same data. When the data are tabulated by 

parts of the year, the data are no longer the same as when they are tabulated by full year 

in that the value of the maximum of the likelihood function is changed. Therefore, when 

using AIC to select models, the models must all have tag recaptures tabulated on the 

same time scale.
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Here AIC will be used to choose between model 1 (where tag visibility is 

assumed constant across cohorts in a given year), model O’ (new model, where tag 

visibility is different from previously tagged cohorts for the first half o f the first year a 

cohort is at liberty), and model 0 (where tag visibility is different from previously tagged 

cohorts for the entire first year). All model specifications can be found in Thesis Chapter 

2. Models 1 and 0 will be reparameterized to reflect tag recaptures by parts of the year 

rather than full year.

Model 1 tag recaptures by part of the year

The Brownie formulation o f model 1 has tag recaptures tabulated on the same 

periodicity as that of tagging, which is typically a year. If  recaptures are tabulated 

separately for each of two parts of the year, the expectations of model 1 can be expressed:

' N , f jk k = a, j  = i

k = a, j  > i
h=i

ff .Sj. fj t k = b, j  -  i

v . r k s v ,
h=i

II i3
"4

V

where k represents the part o f the year, k e {a, b}, and the other parameters are as defined 

in Chapter 2. Note there is an implicit category of those tagged animals which are never 

seen again. The likelihood is constructed from the expected values in the same was as 

described in chapter 2.



Model 0 tag recaptures by part of the year

Similarly, if  recaptures are tabulated separately for each o f two parts o f the year, 

the expectations o f model 0, in which the tag visibility is different for newly tagged 

cohorts from previously tagged cohorts for the entire first year, can be expressed:

in Chapter 2. Note there is an implicit category of those tagged animals which are never 

seen again. The likelihood is constructed from the expected values in the same was as 

described in chapter 2.

Lake trout example

Youngs and Robson (1975) described a tagging study o f lake trout (Salvelinus 

namaycush) in Cayuga Lake, New York, that included 10 years o f tagging and 10 years 

o f recaptures. Following the methods o f Hoenig et al. (1998a), I use the first five years of 

tagging and recaptures in the following examples and assume the product ofyU is known 

to be 0.18. These data are believed to represent the case where the tag reporting rate for 

the first year a cohort is at liberty is equal to the tag reporting rate o f previously tagged 

cohorts within the same year. The dataset was modified in the following ways to create 

two examples.

N i f jk* k = a , j  = i

N i T l Shfjk k = a, j  > i

where k represents the part o f the year, k e  {a,b}, and the other parameters are as defined
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The first example consisted of modifying the original dataset (Table 1) from 

Youngs and Robson (1975) to give recaptures by half year (Table 2). The exploitation 

rate for the first half o f the year using:

part being half a year). The values of Fj and M used here (Table 4) were those from 

fitting the instantaneous rates model that assumes the animals are fully mixed to the 

original data (tabulation by year) in Table 1. The recaptures in part (a) of the year, rija, 

were calculated by taking the yearly recaptures (Table 1) and multiplying by the fraction 

o f the exploitation rate occurring in part (a), i.e., uja / Uj, and then rounding to the nearest 

whole number. The recaptures in part (b) o f the year, r,#, were calculated by subtracting 

the recaptures in part (a) from the total recaptures, ry, that is,

The recaptures tabulated by parts o f the year are in Table 2.

For the second example, the data were modified to reflect higher tag visibility 

(thus higher tag recovery rates) for the first part of the first year each cohort was at 

liberty. This was done by modifying the tag recaptures by parts of the year (Table 2).

For each cohort, the first cell (that is, part (a) recaptures for the first year each cohort is at 

liberty) was multiplied by 2.5 to reflect a tag visibility that is 2.5 times that o f tags that 

have been at liberty for more than half a year. The cells to the right of the first cell were 

left alone and the tag recaptures are shown in Table 3.

M  and F  are divided by two to account for the fact the year was divided into parts (each

(3) r ,jb  = r ii ~ r i j a ‘
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Three different models were applied to each dataset as follows:

1) Model 1 by parts (Brownie et al. 1978, 1985), in which the tag reporting rate is 

assumed to be equal for all cohorts within a given year, data are tabulated by parts 

of the year.

2) Model O’ (Thesis Chapter 2), in which the tag reporting rate for the first half of 

the first year a cohort is at liberty is different from previously tagged cohorts, data 

are tabulated by parts o f the year

3) Model 0 by parts (Brownie et al. 1978, 1985), in which the tag reporting for the 

entire first year a cohort is at liberty is assumed to be different from previously 

tagged cohorts, data are tabulated by parts of the year.

The likelihoods were maximized using the same methods described for the Monte Carlo 

simulations and the models were evaluated using the same metrics as described for the 

Monte Carlo simulations (Thesis Chapter 2). The fit o f models 0, O’, and 1 were 

compared using AIC and AAIC since they all have recaptures tabulated by parts of the 

year.

Results

All three models should provide essentially unbiased estimates when data arise 

from a process where tag visibility is equal across cohorts within a given year. Using 

AIC as the model selection criteria we see that model 1 has the smallest AIC (Table 5). 

The overdispersion parameter was calculated for the full model, model 0 by parts, and 

found to be less than 1, so QAIC did not need to be used. The AAIC values for models O’ 

and 0 are more than 2 AIC units larger, implying that these models are not good
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candidates for this observed information. All three models produce similar estimates for 

the survival rates. Furthermore, model 1 has the smallest standard errors. Model O’ 

appears to outperform model 0 in that it has a smaller AIC value and has smaller standard 

errors for each estimate of survival. Additionally, model O’ provides each estimate of 

survival one year sooner than model 0 (thus, no estimate o f S4 using model 0 with only 

five years of tagging).

For the second lake trout dataset, which was modified to reflect a higher tag 

visibility for newly tagged cohorts compared to the previously tagged animals for the first 

part of the first year each cohort is at liberty, it is expected that both models O’ and 0 will 

provide unbiased estimates of survival (see Monte Carlo simulation results, Thesis 

Chapter 2). In fact, model O’ is the most appropriate model as it has the smallest AIC 

value (Table 6). Again the overdispersion parameter was calculated for the full model, 

model 0 by parts, and found to be less than one so QAIC was not necessary. The AAIC 

values for models 0 and 1 are both above 2. The estimates o f survival rates from model 0 

are closer to those from model O’ than the estimates of survival from model 1, which is 

expected since model 1 does not allow for a change in tag recovery rate as a result of 

different tag visibilities. Model O’ also has smaller standard errors than model 0. 

Furthermore, model O’ provides estimates of survival rates one year sooner than with 

model 0.
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Table 1. Lake trout (Salvelinus namaycush) recapture data published by Youngs and 

Robson (1975) from Cayuga Lake, New York.

Year Number Year recaptured

tagged Tagged j 2 3 4 5

1 1048 72 44 8 9 4

2 844 74 30 20 7

3 989 54 48 13

4 971 74 24

5 863 48

94



Table 2. Modified lake trout {Salvelinus namaycush) recapture data from Table 1. 

Recaptures for each year have been split into two parts o f the year, with the recaptures 

being allocated by the exploitation rate for the portion of the year. It was assumed that 

half o f the instantaneous fishing and natural mortality takes place in each half of the year. 

The estimate o f exploitation rate was calculated using estimates o f instantaneous rates of 

fishing and natural mortality estimated from the first five years of tagging and recaptures 

(Table 4, column 2).

Year Number Year of Recapture

Tagged Tagged la lb , 2a 2b 3a 3b 4a 4b 5a 5b

1 1048 42 30 26 18 5 3 5 4 2 2

2 844 44 30 17 13 12 8 4 3

3 989 31 23 29 19 7 6

4 971 44 30 14 10

5 863 27 21
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Table 3. Lake trout (Salvelinus namaycush) recapture data originally published by 

Youngs and Robson (1975) from Cayuga Lake, New York, modified to reflect a tag 

visibility for the first part of the first year each cohort is at liberty that is 2.5 times greater 

than the tag visibility of tagged cohorts that have been at liberty for a longer period of 

time.

Year Number Year of Recapture

Tagged Tagged la lb 2a 2b 3a 3b 4a 4b 5a 5b

1 1048 105 30 26 18 5 3 5 4 2 2

2 844 110 30 17 13 12 8 4 3

3 989 78 23 29 19 7 6

4 971 110 30 14 10

5 863 68 21
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Table 4. Estimates of instantaneous rates o f fishing and natural mortality from the fully 

mixed model for lake trout data published by Youngs and Robson (1975). See Table 1 

for cell recapture values.

Parameter

Estimate 

Fully Mixed Model

F1 0.568

F2 0.670

F3 0.403

F4 0.628

F5 0.350

M 0.114
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Table 5. Estimates and their standard errors, for survival rates from the three models, for 

lake trout data (Youngs and Robson 1975) modified to have tag recaptures tabulated by 

parts o f year. See Table 2 for cell recapture values. Note that there is no estimate o f S4 

for model 0 by parts. This is because only five years of recaptures were used. The bold 

values indicate the estimates for the model that is presumed to be most appropriate based 

on lowest AIC. Model 1 p denotes model 1 by parts and model 0 p denotes model 0 by 

parts.

Estimate Estimated Standard Error

Parameter Model 1 p Model O' Model 0 p Model 1 p Model O' Model 0 p

Si .40 .36 .30 .06 .07 .08

s2 .53 .54 .56 .08 .10 .12

S 3 .60 .60 .59 .09 .12 .18

s4 .44 .44 — .09 .14 —

AIC 4944 4951 4956

AAIC 0 7 12

98



Table 6. Estimates and their standard errors, for survival rates from the three models, for 

lake trout data (Youngs and Robson 1975) modified to reflect a tag visibility for the first 

part of the first year a cohort is at liberty that is 2.5 times that of the tag visibility for 

cohorts that have been at liberty longer, with tag recaptures tabulated by parts of the year. 

See Table 3 for cell recapture values. Note that there is no estimate of S4 for model 0 by 

parts. This is because only five years of recaptures were used. The bold values indicate 

the estimates for the model that is presumed to be most appropriate based on lowest AIC. 

Model 1 p denotes model 1 by parts and model 0 p denotes model 0 by parts.

Estimate Estimated Standard Error

Parameter Model 1 p Model O' Model 0 p Model 1 p Model O' Model

Si .27 .36 .30 .04 .07 .08

S2 .42 .54 .56 .06 .10 .12

S3 .41 .60 .59 .05 .12 .18

S 4 .30 .44 — .05 .14 —

AIC 6398 6375 6379

AAIC 23 0 4
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APPENDIX B 

Choosing between an instantaneous rates model with full mixing and delayed 

mixing: Lake trout example

In practice, when choosing which model best fits the data it is common to use a 

measure o f goodness-of-fit such as Akaike’s Information Criterion (AIC) (Anderson 

2008). AIC is defined as:

(1) AIC = -21oge (a )+  2k,

where A is the likelihood function for the model (here, as defined in Thesis Chapter 3) 

and k is the number of parameters in the model. The model which has the lowest AIC 

value is considered the best fitting model. Additionally, one can define AAIC which is 

the difference in AIC values between the alternative model and the best fitting model. A 

general rule of thumb is that a model with a AAIC of less than two or three is considered 

a plausible alternative to the best fitting model (Anderson 2008).

With multinomial count data it is not uncommon to find more variation than can 

be explained by the model, that is overdispersion, and one can calculate an 

overdispersion parameter (Anderson 2008). I f  the overdispersion parameter is large (>1), 

one can use quasilikelihood AIC (QAIC) to select among alternative models and adjust 

standard errors.

Since AIC is based on maximum likelihood techniques, an important rule when 

comparing models is that they must all use the same data. When the data are tabulated by 

parts of the year, the data are no longer the same as when they are tabulated by full year 

in that the value o f the maximum of the likelihood function is changed. Therefore, when
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using AIC to select models, the models must all have tag recaptures tabulated on the 

same time scale.

Here AIC will be used to choose between the fully mixed model (described in 

Thesis Chapter 3) and the model with delayed mixing lasting part o f the year of Hoenig et 

al. (1998a, b) (described in Thesis Chapter 3). Additionally, the partial year tabulation 

for delayed mixing lasting part o f year model (delayed pyt model) will be fit to the data, 

but this model will not be compared in terms o f AIC since the tag recaptures are tabulated 

by parts of the year rather than full year. All model specifications can be found in Thesis 

Chapter 3.

Lake trout data example

Youngs and Robson (1975) described a tagging study of lake trout (Salvelinus 

namaycush) in Cayuga Lake, New York, that included 10 years of tagging and 10 years 

o f recaptures. Following the methods o f Hoenig et al. (1998b), I use the first five years 

o f tagging and recaptures in the following examples and assume the product o f <f)A, is 

known to be 0.18. The dataset was modified in the following ways to create two 

examples.

The first example consisted o f using the original dataset (Table 1) from Youngs 

and Robson (1975) as well as modifying the data to give recaptures by half year (Table

2). These data are believed to represent full mixing o f newly tagged animals into the 

population at large (Hoenig et al. 1998b). The data were split into parts of the year by 

calculating the exploitation rate for the first half of the year using:
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M  and F  are divided by two to account for the fact the year was divided into parts (each 

part being half a year). The values o f Fj and M used above (Table 4, column 2) were 

those from fitting the instantaneous rates model that assumes the animals are fully mixed 

to the original data (tabulation by year) in Table 1. The recaptures in part (a) o f the year, 

rlja, were calculated by taking the yearly recaptures (Table 1) and multiplying by the 

fraction o f the exploitation rate occurring in part (a), i.e., uja / and then rounding to the 

nearest whole number. The recaptures in part (b) o f the year, r ^ ,  were calculated by 

subtracting the recaptures in part (a) from the total recaptures, rtJ, that is,

(3) rtb =r,s - r ija.

The recaptures tabulated by parts of the year are in Table 2.

For the second example, the data were modified to reflect delayed mixing lasting 

half o f a year, following methods similar to those of Hoenig et al. (1998b). Using the 

modified lake trout dataset, which is assumed to represent full mixing, with the year split 

in parts (Table 2), the recaptures for the first part o f the first year each cohort is at liberty 

(the rua recapture cells) were adjusted to two thirds of the original value to reflect a lower 

exploitation rate as a result o f delayed mixing. The cells to the right o f the first cell o f 

recaptures for each cohort had to be adjusted to reflect this increase in survival rate (a 

decrease in exploitation is equivalent to an increase in survival). By adjusting for this 

increase in survival rate the estimates of the F /  s, the normal rates of fishing mortality, 

should remain roughly the same as those obtained with the fully mixed model fitted to the 

original data. The estimates of Fj and M  (Table 4), from fitting the frilly mixed model, 

were used to calculate the exploitation rate for the first part of the first year each cohort 

was at liberty (Equation 2). The abnormal instantaneous rate of fishing mortality for part
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(a) o f the year, 0.5i7,*, which results in a two-thirds reduction in the calculated 

exploitation rate was solved iteratively. That is, the left hand side of equation (2) was 

multiplied by two-thirds and then the value of Fj* that made the right hand side equal to 

the left was solved for iteratively (with M held constant). The cells to the right were 

adjusted, to reflect the increase in the survival rate, by multiplying each recapture cell 

(the cells to the right of the rlia recapture cell), r,#, by exp(0.5F, -  0.5T7*) where Ft and 

Ft * are from the fully mixed model and the iterative search, respectively. The recaptures 

were rounded to the nearest whole number and are shown in Table 3. Parts o f the year 

were added together to give recaptures over the whole year.

Three different models were applied to each dataset as follows:

4) Fully mixed model, as described by Hoenig et al. (1998a), data are tabulated by 

year. This model is an instantaneous rates model which assumes the newly 

tagged animals fully mix with the untagged and previously tagged population 

before the fishing takes place.

5) Hoenig et al. model, as described by Hoenig et al. (1998b), in which mixing is 

assumed after half a year; data are tabulated by year.

6) Delayed pyt model, as described in Thesis Chapter 3, in which mixing is assumed 

after half a year; data are tabulated by half year.

The likelihoods were maximized using the same methods described for the Monte Carlo 

simulations (Thesis Chapter 3). The models were evaluated using the same metrics as 

described for the Monte Carlo simulations (Thesis Chapter 3), including estimates o f the 

parameters for each dataset and estimated standard errors. The fit o f the fully mixed 

model and the Hoenig et al. model were compared using AIC and AAIC since they both
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have recaptures tabulated by full year. No AIC or AAIC analysis was done for the 

delayed pyt model since tag recaptures are by part of the year.

Results

All three models should provide essentially unbiased estimates when data arise 

from a process where all cohorts are fully mixed into the population at large immediately 

after tagging. Under complete mixing, the fully mixed model should be the most 

efficient. In fact, when the models are fitted to data presumed to represent full mixing 

(Tables 1, 2), all three models produce similar estimates with the fully mixed model 

producing the smallest estimated standard errors for all parameters (Table 4). The fully 

mixed model has the lowest AIC and the Hoenig et al. model is five AAIC units away, 

meaning the only model that should really be considered of the two is the fully mixed 

model. Interestingly, the delayed pyt model has smaller estimated standard errors than 

the Hoenig et al. model (1998b) for each parameter. As expected, the estimates o f Fj* 

are approximately equal to the estimates o f the corresponding Fj for the new model and 

the delayed mixing model o f Hoenig et al. (1998b) since the data presumably represent 

full mixing. For eight o f the ten parameters, the new model provides estimates closer to 

the estimates from the fully mixed model which are presumed to be closest to the truth. 

The new model outperforms the delayed mixing model o f Hoenig et al. (1998b) by better 

reproducing the results o f the fully mixed model, yielding smaller estimated standard 

errors for all parameters, and providing an estimate for F / (which the delayed mixing 

model does not provide).
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For the second modified lake trout dataset (Table 3), where delayed mixing 

occurs for the first part o f the first year each cohort is at liberty, both the new model and 

the delayed mixing model o f Hoenig et al. (1998b) should yield unbiased parameter 

estimates. As expected, the fully mixed model’s estimates of F j ,  F 2 ,  F  3 ,  F 4 ,  F 5 ,  and M  

(Table 5) are different from those of the other two models, as the model incorrectly 

assumes for the first year at liberty a newly tagged cohort experiences the same 

instantaneous rate of fishing mortality (and thus survival) as previously tagged cohorts. 

The delayed pyt model’s and Hoenig et al. model’s estimates of Fj, F 2 ,  F 3 ,  F 4 ,  F 5 ,  and 

M are approximately equal to the values expected (bold values in Table 5 correspond to 

bold values in Table 4). These values were expected to be equal because the data were 

modified (decrease in exploitation for first half o f first year and cells to the right 

increased to reflect higher survival) in such a way that the normal rates o f fishing 

mortality and natural mortality (F’s and M) should be equal to their values from the fully 

mixed case (Table 4). Note that the fully mixed model yields estimates with the smallest 

standard errors, so if the estimates were believed to be accurate this would result in one 

assuming high precision for incorrect estimates. The Hoenig et al. model has the lower 

AIC value, and the AAIC value for the fully mixed model is four units, which means of 

the two models only the Hoenig et al. model should be considered. As with the previous 

lake trout example, the fully mixed model provides the smallest estimates o f standard 

errors for all parameters, followed by the delayed pyt model, and the Hoenig et al. model 

yields the largest estimated standard errors for all parameters. The delayed pyt model 

outperforms the Hoenig et al. model by better reproducing the expected parameter 

estimates (bold values in Table 4).
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Table 1. Lake trout (Salvelinus namaycush) recapture data published by Youngs and 

Robson (1975) from Cayuga Lake, New York.

Year Number Year recaptured

tagged Tagged j 2 3 4 5

1 1048 72 44 8 9 4

2 844 74 30 20 7

3 989 54 48 13

4 971 74 24

5 863 48
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Table 2. Modified lake trout (Salvelinus namaycush) recapture data from Table 1. 

Recaptures for each year have been split into two parts o f the year, with the recaptures 

being allocated by the exploitation rate for the portion o f the year. It was assumed that 

half of the instantaneous fishing and natural mortality takes place in each half of the year. 

The estimate of exploitation rate was calculated using estimates of instantaneous rates of 

fishing and natural mortality estimated from'the first five years of tagging and recaptures 

(Table 4, column 2).

Year Number Year of Recapture

Tagged Tagged la lb 2a 2b 3a 3b 4a 4b 5a 5b

1 1048 42 30 26 18 5 3 5 4 2 2

2 844 44 30 17 13 12 8 4 3

3 989 31 23 29 19 7 6

4 971 44 30 14 10

5 863 27 21
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Table 3. Lake trout (Salvelinus namaycush) recapture data originally published by 

Youngs and Robson (1975) from Cayuga Lake, New York, modified using methods 

similar to those o f Hoenig et al. (1998b) to show delayed mixing o f each cohort for the 

first part o f the first year at liberty. Recaptures from parts of the year, (a) and (b), can be 

added together for yearly recaptures.

Year Number Year of Recapture

Tagged Tagged la  lb  2a 2b 3a 3b 4a 4b 5a 5b

1 1048 28 33 30 20 5 4 1 4 2 2

2 844 30 34 18 14 13 9 4 3

3 989 20 25 32 22 8 6

4 971 30 34 14 11

5 863 18 22
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Table 4. Estimates and their standard errors, for instantaneous rates o f fishing and 

natural mortality from the three models, for lake trout data published by Youngs and 

Robson (1975). See Tables 1 and 2 for cell recapture values. Note that the delayed 

mixing model of Hoenig et al. (1998b) for recaptures tabulated by year does not allow for 

an estimate o f Fj.  Also note that there are no estimates o f the F j * ’s  from the fully mixed 

model because these parameters do not exist in the model. The bold values indicate the 

estimates for the model that are presumed to be most appropriate.

Estimate Standard error

Fully

Mixed Hoenig et Delayed Fully Mixed Hoenig et Delayed 

Parameter Model al. Model pyt Model Model al. Model pyt Model

F1 0.568 0.569 0.076 0.110

F2 0.670 0.698 0.696 0.071 0.121 0.091

F3 0.403 0.449 0.414 0.048 0.094 0.060

F4 0.628 0.693 0.641 0.078 0.172 0.093

F5 0.350 0.414 0.391 0.050 0.146 0.076

M 0.114 0.135 0.132 0.040 0.055 0.043

F1* 0.568 0.565 0.077 0.075

F2* 0.667 0.663 0.099 0.070

F3* 0.392 0.407 0.064 0.050

F4* 0.602 0.629 0.095 0.076

F5* 0.399 0.393 0.069 0.060

AIC 4216 4221 AAIC 0 5
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Table 5. Estimates and their standard errors, for instantaneous rates of fishing and natural 

mortality from the three models, for lake trout data modified to represent delayed mixing 

during the first part of the first year each cohort is at liberty. See Table 3 for cell 

recapture values. Note that the delayed mixing model of Hoenig et al. (1998b) does not 

allow for an estimate o f Fj.  Also note that there are no estimates of the F j * ’s  from the 

fully mixed model because these parameters do not exist in the model. The bold values 

indicate the values that are presumed to be the best estimates since they are 

approximately equal to the estimates from the unmodified data (see Table 4).

Estimate Standard error

Fully Fully

Mixed Hoenig et Delayed Mixed Hoenig et Delayed

Parameter Model al. Model pyt Model Model al. Model pyt Model

F1 0.462 0.588 0.066 0.108

F2 0.610 0.798 0.761 0.066 0.130 0.094

F3 0.345 0.505 0.429 0.042 0.098 0.060

F4 0.544 0.796 0.651 0.067 0.187 0.089

F5 0.298 0.495 0.390 0.042 0.175 0.072

M 0.112 0.158 0.149 0.039 0.052 0.042

F1* 0.480 0.476 0.069 0.067

F2* 0.550 0.587 0.084 0.063

F3* 0.315 0.337 0.054 0.042

F4* 0.508 0.526 0.082 0.064

F5* 0.325 0.323 0.060 0.051

AIC 4054 4050 AAIC 4 0
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