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ABSTRACT

Oyster parasites of the genus Bonamia have been described from Europe 
(Bonamia ostreae), Australia (B. roughleyi), New Zealand (B. exitiosa), and North 
America (B. perspora). In addition, various parasites have been observed in the 
following oysters on five continents: Ostrea angasi—NSW, Australia; O. puelchana— 
San Antonio Bay, Argentina; O. chilensis—Chiloe Island, Chile; and Crassostrea 
ariakensis—North Carolina, USA. Bonamia parasites are members of the phylum 
Haplosporidia and are generally characterized as intracellular microcells between 2-3 pm 
in diameter containing haplosporosomes and mitochondria. Previous studies have used 
the small subunit ribosomal RNA (SSU rRNA) gene to resolve the phylogenetic 
relationships among the characterized Bonamia spp. This study used the nucleotide 
sequences of the SSU rRNA gene, the internal transcribed spacer (ITS) regions, and the 
5.8S rRNA gene to examine the taxonomic relationships among previously characterized 
and recently discovered Bonamia parasites. A total of 1060 oysters were sampled from 
North Carolina, USA, Maine, USA, Argentina, Chile, New Zealand, and Australia. Of 
this total, parasite sequences from 22 sampled oysters were used for the phylogenetic 
study. Collectively, the described Bonamia parasites and the unnamed Bonamia parasites 
were sequenced using Bonamia-specific SSU primers, haplosporidian-specific ITS 
primes, and Bonamia-specific ITS primers. Sequences were aligned using ClustalW in 
MacVector and phylogenetically analyzed in PAUP*4.0bl0. Parsimony bootstrap and 
parsimony jackknife analyses of the SSU gene, the ITS region, and the combined 
SSU/ITS dataset suggest that a single Bonamia species may occur in New Zealand, 
Australia, Argentina, and North Carolina, USA. The Bonamia sp. infecting oysters from 
Argentina, Australia, and North Carolina, USA are phylogenetically indistinguishable 
from the New Zealand O. chilensis Bonamia sp. for the ITS and combined ITS/SSU data. 
There were some differences observed between the group of Bonamia spp. found in New 
Zealand, Australia, Argentina, and North Carolina, USA, and the B. exitiosa and B. 
roughleyi sequences for the SSU data. Results also suggest that a separate species of 
Bonamia might exist in Chile, although further study is necessary. Additionally, this 
study did not observe a correlation between winter mortality in Saccostrea glomerata in 
Australia and the presence of B. roughleyi, casting some doubt on B. roughleyi as the 
cause of winter mortality.

x
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INTRODUCTION

Farming and transporting oysters to new locations has been widely practiced 

across the globe in response to overharvesting and disease of local oyster stocks. The 

transport of Crassostrea gigas in 1970 into Europe in response to disease and mass 

mortality of Portuguese oysters, C. angulata, by an iridovirus is a more recent example 

(Comps et al. 1976 in Bougrier et al. 1986). In some instances, the introduction of non­

native oysters has led to transmission of parasites destructive to native stocks (Burreson 

et al. 2000). In the 1970s, European countries such as France, England, Ireland, the 

Netherlands, and Spain sought to increase their oyster stocks by importing Ostrea edulis 

(Comps et al. 1980, Balouet et al. 1983; Van Banning 1987; McArdle et al. 1991; Beare 

et al. 1998). Shortly thereafter, these countries experienced mortalities in their O. edulis 

stocks. By 1979, it was known that a Bonamia parasite had infected and caused mortality 

in O. edulis stocks from France. Originally, O. edulis seed oysters had been transported 

from California to France (Comps et al. 1980; Elston et al. 1986), and it is believed that 

these transported oysters were infected with Bonamia ostreae. Similarly, it was 

considered possible that the Bonamia parasite reported in O. edulis oysters grown in 

Maine in the early 1990s might have resulted from the transport of infected O. edulis 

oysters from California (Friedman and Perkins 1994). Currently the true source of B. 

ostreae introduction into Maine is not known since O. edulis has been introduced many 

times and from locations such as the Netherlands, France, and California (Heinig and 

Tarbox 1985; Friedman and Perkins 1994).
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Over the past two decades, molecular analyses have been increasingly applied to 

characterize and classify closely related organisms. Cochennec et al. (2000) write that 

phylogenetic relationships that are constructed solely using morphological and 

ultrastructural data can sometimes result in the taxonomic misplacement of a species, or 

the application of broad, generalized definitions of a group of organisms. In addition, 

there are very few homologous morphological characters that can be compared among a 

vast number of living organisms and used to determine phylogenetic relationships (Hillis 

and Dixon 1991). By contrast, there are a number of genes essential to all life forms that 

are present in all species, and can be analyzed to clarify phylogenetic relationships among 

closely related and morphologically similar organisms (Hillis and Dixon 1991). The 

ribosomal RNA (rRNA) gene complex has been used previously to address recent 

evolutionary events and formulate hypotheses about the origins of life (Mindell and 

Honeycutt 1990). Collectively, the rRNA genes and their spacer regions comprise the 

rRNA gene complex. One reason why the rRNA gene complex region is so useful in 

clarifying phylogenetic relationships is due to the conserved, semi-conserved, and non­

conserved domains within the complex (Hillis and Dixon 1991). The functional rRNA 

encoding regions, the small-subunit (SSU), large-subunit (LSU), and 5.8S rRNA genes, 

are comparatively well conserved, while the transcribed and non-transcribed spacers are 

quite variable. In addition, the rRNA gene complex is a multi-copy region, further 

increasing the sensitivity of detection methods that target this region of the genome 

(Sogin and Silberman 1998). The SSU rRNA gene has been commonly used as a target 

for polymerase chain reaction (PCR) primers and in situ hybridization probes (McCarroll 

et al. 1983; Siddal et al. 1995; Flores et al. 1996; Carnegie et al. 2000b; Cavalier-Smith



4

and Chao 2003; Cochennec-Laureau et al. 2003; Reece and Stokes 2003; Burreson et al. 

2004; Reece et al. 2004; Carnegie et al. 2006).

Molecular approaches have proven to be useful for reconstructing phylogeny 

(Hillis 1987). McCarroll et al. (1983) suggested that rRNA gene sequences appear to be 

better suited than cytochrome b sequences for revealing phylogenetic relationships 

because they are universally distributed across all living systems, and are functionally 

equivalent in each cell. In addition, pairwise comparisons of the SSU rRNA gene result 

in more reliable phylogenies because of the gene’s large size (1500-2000 bp), and 

because it contains numerous conserved functional domains (McCarrol et al. 1983). The 

SSU rRNA gene has been used numerous times before to assess phylogenetic 

relationships within and among protistan taxa, including molluscan parasites (McCarroll 

et al. 1983; Siddal et al. 1995; Flores et al. 1996; Carnegie et al. 2000a,b; Cochennec et 

al. 2000; Cavalier-Smith and Chao 2003; Reece and Stokes 2003; Cochennec-Laureau et 

al. 2003; Burreson et al. 2004; Reece et al. 2004; Carnegie et al. 2006; Corbeil et al. 

2006a,b).

In Bonamia species, the SSU rRNA gene consists of a few domains that are 

highly conserved amongst Bonamia species, but are distinct from the other 

haplosporidians. These highly conserved, yet distinctively unique, regions within the 

genus Bonamia have been used for design of genus-specific PCR primers as diagnostic 

tools for detection of Bonamia parasites in oyster tissue (Carnegie et al. 2000a; 

Cochennec et al. 2000). In the past decade, PCR amplification of the SSU rRNA gene 

became a commonly used method for rapid detection of Bonamia sp. DNA in oyster 

tissue, and SSU rDNA sequences were used to establish phylogenetic relationships
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between the genus Bonamia and other closely related haplosporidians (Carnegie et al. 

2000; Cochennec-Laureau et al. 2003). The SSU rRNA gene does have limitations, 

however. Because of its highly conserved nature, the SSU rRNA gene is less useful at 

evaluating phylogenetic relationships of taxa that diverged more recently. Pelandakis et 

al. (2000) determined that analysis of the SSU rRNA gene fragment could not 

differentiate two species of aquatic parasites in the genus Naegleria, indicating that 

variability in this gene region was insufficient to resolve relationships among these 

parasites. In contrast, the spacer regions, (internal transcribed spacer (ITS), non­

transcribed spacer (NTS), and external transcribed spacer (ETS)), have often been used to 

infer phylogeny among more closely related taxa due to the relatively rapidly evolving 

nature of these regions of the complex (Hillis and Davis 1986; Mindell and Honeycutt 

1990; Hillis and Dixon 1991). These non-coding regions are not under the same 

evolutionary pressures as the genes that encode functional RNAs, and therefore are less 

conserved than the rRNA coding genes and thus are more suitable for phylogentic 

characterization of closely related organisms than the conserved regions of the rRNA 

gene complex (Hillis and Dixon 1991; De Jonckheere 1998; Pelandakis et al. 2000;

Lange and Medlin 2002). Goggin (1994) used sequence data from the more variable ITS 

region of the rRNA gene complex, which includes ITS-1, ITS-2 and the 5.8S rRNA gene, 

to identify molluscan parasites in the genus Perkinsus originating from a variety of hosts 

and from various geographical locations. The non-coding ITS-1 and ITS-2 regions flank 

the relatively small 5.8S rRNA gene, which in Bonamia spp is roughly 150bp in length.
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Objectives

The objective of this research was to construct a molecular phylogeny of the 

genus Bonamia using the ITS-1/5.8S/ITS-2 region of the rRNA gene complex as well as 

the SSU rRNA gene. This project tests the following hypotheses: 1) the Bonamia sp. 

discovered in Crassostrea ariakensis oysters deployed for research studies in North 

Carolina is closely related to other Bonamia species found in the northern hemisphere 2) 

the Chilean and Argentinean Bonamia spp. are conspecific, and 3) the species of 

Bonamia infecting O. angasi oysters in Australia is a novel Bonamia sp.
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LITERATURE REVIEW 

Parasitic Diseases of oysters

Oyster farming has stimulated increased research on development of methods to 

rapidly identify and classify the types of parasites that infect oysters. Management of 

these parasites has important practical implications including management of mortality 

from parasitic diseases, and increasing the quality and appearance of a half-shell oyster 

(Elston 1997). Most serious oyster parasites are protists, which are generally unicellular, 

motile organisms measuring 1.0 pm to 5 pm in size, although some protistan taxa are 

known to exhibit complex multicellular forms (Sogin and Silberman 1998). Protists 

reproduce sexually or asexually, inhabit a large variety of environments, and are either 

autotrophs or heterotrophs (Sogin and Silberman 1998). The degree of variation among 

the protists is greater than that in any other eukaryotic kingdom. As such, no single trait 

is both universal and exclusive to all protists. Classifying these organisms solely on 

morphological characteristics is problematic (Sogin and Silberman 1998). The following 

genera contain protists that are molluscan parasites: Haplosporidium, Urosporidium, 

Minchinia, and Bonamia of the phylum Haplosporidia; Mikrocytos, Perkinsus, Marteilia, 

Marteilioides, Nematopsis, Sphenophrya, and Stegotricha. The phylum Haplosporidia 

will be the focus of this next section as it contains the genus Bonamia.

Phylum Haplosporidia

The phylum Haplosporidia represents a group of endoparasites that predominantly 

infect marine invertebrates (Perkins 2000). An exception is Haplosporidium pickfordi, a 

freshwater species that inhabits North American lakes and parasitizes snails (Burreson
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2001). Both freshwater and marine species of haplosporidians are found all across the 

globe in areas including Portugal, France, Australia, New Zealand, Japan, and the east 

and west coasts of the United States (Burreson and Ford 2004). The phylum 

Haplosporidia contains four genera: Urosporidium, Minchinia, Haplosporidium, and 

Bonamia (Burreson and Ford 2004). The phylum includes 36 recognized species, 

although many of these have not been identified or reported since their first description 

and some may not be valid species (Burreson and Ford 2004). Additionally, there are 

probably numerous undescribed species (Burreson and Ford 2004). Currently, 

haplosporidians are classified as a phylum, although the relationship of this group to 

other protists is not well understood (Reece et al. 2004).

Morphologically, members of the phylum Haplosporidia display mitochondria 

and haplosporosomes in cell forms that include multinucleate plasmodia, various 

sporogonic stages, and an ovoid spore. The spore stage has a thick wall and an anterior 

orifice protected by a hinged lid or a flap of cell wall material, but lacks polar filaments 

and capsules (Flores et al. 1996; Perkins 2000; Burreson and Ford 2004). It is generally 

accepted that spore ornamentation, tubular and filamentous projections on the external 

spore surface, is the best morphological characteristic for distinguishing species within 

the phylum (Burreson and Ford 2004). Perkins (1987) considered Bonamia to be a 

haplosporidian because it contains haplosporosomes, even though a spore stage had not 

been observed at the time. Recently, molecular data supported placement of the genus 

Bonamia in the phylum Haplosporidia (Carnegie et al. 2000b; Reece and Stokes 2003; 

Reece et al. 2004), and discovery of a spore stage with an orifice and lid in B. perspora 

(Carnegie et al. 2006) further supported this placement.
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Background on Bonamia spp.

Members of the genus Bonamia are protistan parasites that infect a wide range of 

oysters including O. edulis (Pichot et al. 1980; Friedman et al. 1989; McArdle et al.

1991), O. chilensis (=Tiostrea lutaria; O’ Foighil et al. 1999) (Dinamani et al. 1987;

Hine et al. 2001), O. angasi (Bougrier et al. 1986) C. ariakensis (= C. rivularis) 

(Cochennec et al. 1998; Burreson et al. 2004), Saccostrea glomerata (= S. commercialis) 

(Farley et al. 1988; Cochennec-Laureau et al. 2003), O. puelchana (Kroeck and Montes 

2005), and Ostreola equestris (Carnegie et al. 2006). Bonamia species are generally 

characterized as uninucleate, intrahemocytic “microcells” (Katkansky et al. 1969) that are 

less than 5 pm in diameter. Ultrastructurally unlike the superficially similar oyster 

parasite Mikrocytos mackini (Hine et al. 2001) Bonamia spp. posses both 

haplosporosomes and mitochondria (Pichot et al. 1980; Perkins 1987). Besides 

uninucleate forms, a binucleate stage, a multinucleate plasmodial stage, and in the case of 

B. perspora (Carnegie et al. 2006), a spore stage may also occur at a frequency depending 

on the Bonamia species (Dinamani et al. 1987; Bucke 1988; Hine 1991b, Hine et al.

2001; Carnegie and Cochennec-Laureau 2004; Carnegie et al. 2006). An intermediate 

host is likely necessary for those haplosporidian species, including B. perspora, that 

produce spores during their life cycle (Haskin and Andrews 1988; Powell et al. 1999). 

Most Bonamia species, however, are thought to be transmitted directly from one host to 

the next (Carnegie and Cochennec-Laureau 2004). Bonamia perspora is also unique 

among Bonamia spp. in infecting the connective tissues of its host O. equestris (Carnegie 

et al. 2006). Bonamia perspora can also be found parasitizing gut epithelial cells and 

hemolymph sinuses (Carnegie et al. 2006). Montes et al. (1994) reported a single record
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in which B. ostreae was found in the epithelial cells of gill tissue in an unspecified 

number of oysters with heavy infections. Although the significance of this finding is 

uncertain, the gill epithelium may serve as a portal of entry and exit into and out of the 

host (Carnegie and Cochennec-Laureau 2004).

Bonamia species are simple morphologically, and thus are extremely difficult to 

distinguish taxonomically using light microscopy (Carnegie and Cochennec-Laureau

2004). In addition, their small size makes them difficult to detect using standard 

histopathology and histocytology techniques (Carnegie and Cochennec-Laureau 2004). 

Previously, diagnosis of a Bonamia infection in a host consisted of preparing routine 

histological sections or staining smears of gill and heart tissue (Boulo et al. 1989). These 

methods, however, are not very reliable in detecting light infections (Culloty et al. 2003). 

Molecular diagnostic techniques such as PCR, real-time PCR, restriction fragment length 

polymorphism (RFLP) analysis, and in situ hybridization (ISH), have been used to detect 

Bonamia spp. nucleic acids in oyster tissues (Adlard and Lester 1995; Carnegie et al. 

1999; Carnegie et al. 2000a,b; Carnegie et al. 2001; Hine et al. 2001; Carnegie et al.

2003; Diggles 2003; Carnegie et al. 2006; Corbeil et al. 2006a,b).

The infection intensity, prevalence and seasonality of each Bonamia species vary, 

and are dependent on certain environmental and host conditions. Bonamia ostreae has its 

highest intensity and prevalence during the warmer months, but is infective year-round 

(Balouet et al. 1983; Carnegie and Cochennec-Laureau 2004). Bonamia roughleyi is 

present only for a short

period of time during the late austral winter from August to September (Adlard and 

Lester 1995). Bonamia exitiosa has its highest prevalence and intensity in April (Hine
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1991a). Within a population, the prevalence of each of the Bonamia parasites, however, 

is usually high and can range anywhere between 40% and 100% (Burreson et al. 2004; 

Cranfield et al. 2005). An exception is B. perspora, which has a prevalence of 1-2% in 

O. equestris (Carnegie et al. 2006).

Sequence data currently available for Bonamia species include complete and 

partial sequences for the SSU rRNA gene for B. roughleyi, B. perspora, B. ostreae, and 

B. exitiosa. Partial ITS data for B. ostreae, the O. chilensis Bonamia sp. in Chile, and the 

O. angasi Bonamia sp. in Australia are also available in GenBank.

Bonamia ostreae: History, Host Affiliation, and Geographic Distribution

Bonamia ostreae was the first identified and described species of Bonamia and is 

known to infect populations of the flat oyster, O. edulis found in California (Friedman et 

al. 1989), Washington (Elston 1986), Maine (Friedman and Perkins 1994; Zabaleta and 

Barber 1996), British Columbia (Marty et al. 2006), and Europe including Ireland, Spain, 

France, and the Netherlands (Comps et al. 1980; Pichot et al. 1980; Van Banning 1987; 

Bucke 1988; McArdle et al. 1991). Bonamia ostreae is believed to infect the following 

hosts experimentally: O. chilensis (Bucke and Hepper 1987; Grizel et al. 1983), O. 

denselamellosa (Le Borgne and Le Pennec 1983), O. angasi (Bougrier et al. 1986), O. 

puelchana (Pascual et al. 1991), and C. ariakensis (= C. rivularis) (Cochennec et al. 

1998).

In the late 1960s, a parasite described as a “microcell” was observed infecting 

stocks of O. edulis transported from Milford, Connecticut to Drakes Estero, Morro Bay, 

and Elkhom Slough in California, USA (Katkansky et al. 1969). Seed stocks of O. edulis
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grown in California were transported to France. Almost a decade later, mortality of 

European flat oyster, O. edulis, led researchers in Brittany, France to conclude that the 

parasite responsible for the disease outbreak was a microcell similar to the one described 

by Katkansky et al. (1969), and was given the name B. ostreae (Pichot et al. in 1980). It 

is currently accepted that the microcell found in O. edulis stocks transported from 

California was B. ostreae, and the transport of O. edulis stocks from California to France 

led to the introduction of this parasite into France (Elston et al. 1986). Limited 

documentation of O. edulis transportations in North America reveal that stocks of O. 

edulis have been transported between the following states and countries: from California 

to Washington, from France to Maine, from Maine to California, from California to 

Maine, and from the Netherlands to Maine by way of Milford, Connecticut and from 

Washington to British Columbia, Canada (Heinig and Tarbox 1985; Elston et al. 1986; 

Friedman and Perkins 1994; Marty et al. 2006). Incomplete data as it relates to infection 

of O. edulis by B. ostreae before each importation has made it difficult to determine the 

true origin of B. ostreae.

Bonamia ostreae became established in the Netherlands in 1980 when it was 

introduced to Dutch farms growing O. edulis in the Yerseke Bank (Van Banning 1987). 

Shortly after the introduction of the parasite, O. edulis stocks plummeted in that area. B. 

ostreae spread quickly to other oysters and persisted throughout the year and among low 

densities of oysters (Van Banning 1987). In Ireland, B. ostreae was present among O. 

edulis oyster stocks as early as 1986, when oysters from Cork Harbour were found to be 

infected (McArdle et al. 1991). The parasite quickly spread to other growing areas and
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was observed in Clew Bay oyster stocks in 1988 and Galway Bay oyster stocks the 

following year (McArdle et al. 1991).

Bonamia exitiosa: History, Host Affiliation, and Geographic Distribution

Between 1985 and 1993, massive mortality events occurred among the dredge 

oyster, O. chilensis, in Foveaux Strait, New Zealand (Hine et al. 2001). During the New 

Zealand autumn of 1986, Bonamia sp. infection was discovered in O. chilensis after 

oystermen reported dead, gaping, and moribund oysters, and mortality of 63% (Dinamani 

et al. 1987). In 1990, populations of the dredge oyster were reduced by 67%, and by 

1992, stocks had decreased to 91% of the oysters present in 1975 (Doonan et al. 1994).

In 1993, the fishery closed for a period of time, which had a tremendous impact on the 

economy of the local communities (Doonan et al. 1994). Bonamia exitiosa is now known 

to be the cause of the mortality events. This parasite has been present in Foveaux Strait 

since 1964 (Hine 1991a,b).

Bonamia roughleyi: History, Host Affiliation, and Geographic Distribution

Bonamia roughleyi infects the Sydney rock oyster, Saccostrea glomerata, and has 

been observed in the Georges River and other areas in New South Wales, Australia 

(Adlard and Lester 1995). Previously placed in the genus Mikrocytos (Farley et al.

1988), molecular data provided support for placement of this parasite in the genus 

Bonamia (Cochennec-Laureau et al. 2003). Bonamia roughleyi is thought to be 

associated with a disease syndrome in its host known as “winter mortality” (Farley et al. 

1988; Cochennec-Laureau et al. 2003; Diggles 2005). Since the 1920s, mortality of the
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three-year age class in S. glomerata oysters has been observed during the austral winter 

months (Roughley 1926). It was not until the discovery of B. roughleyi in the late 1980s 

that an agent of “winter mortality” was presumed to have been found (Farley et al. 1988; 

Adlard and Lester 1995). Farley et al. (1988) noted that the parasite thrives in salinities 

ranging from 30 to 35 ppt and is unknown in salinities below this range. High intensities 

of the parasite occur over narrow seasonal time intervals with an incubation period of 

about 2 months (Adlard and Lester 1995). Evidence also suggests that oyster mortality is 

strongly connected to environmental factors such as an increase in salinity and a decrease 

in temperature (Adlard and Lester 1995). Mortality has not been observed in animals less 

than 3 years of age (Farley et al. 1988). Bonamia roughleyi and its disease signs (focal 

lesions) are most often observed between August and September (Roughley 1926; Adlard 

and Lester 1995). It is not clear whether the parasite has a cryptic stage in oyster tissue 

during the summer months, or if there are other hosts serving as reservoirs for this 

parasite (Adlard and Lester 1995).

Bonamia perspora: History, Host Affiliation, and Geographic Distribution

Bonamia perspora is a recently described spore-forming species, and was first 

discovered in the crested oyster O. equestris in Morehead City and Wilmington, North 

Carolina USA (Carnegie et al. 2006). Ostreola equestris are found in euryhaline to 

polyhaline waters from North Carolina to Argentina, but are small and commercially 

unimportant (Harry 1985).
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Bonamia sp. in Crassostrea ariakensis in USA.

In 2003, juvenile C. ariakensis were transplanted from Gloucester Point, Virginia 

to Bogue Sound, North Carolina (Burreson et al. 2004). Oyster mortality was observed 

one month later (Burreson et al. 2004). Histological analysis of these samples indicated 

the presence of a large number of cells resembling Bonamia parasites (Burreson et al.

2004). DNA sequencing of part of the SSU rDNA gene from this parasite revealed an 

affinity not to B. ostreae but to two other Bonamia parasites already characterized—B. 

roughleyi and B. exitiosa, two species of Bonamia that have been described from the 

southern hemisphere. The question of whether the Bonamia sp. infecting C. ariakensis 

was one of the species described from the southern hemisphere or a third undescribed 

species was not resolved from this study.

Bonamia sp. in Ostrea chilensis in Chile

The farming of O. chilensis in Chile has developed considerably over the past 

several decades (Campalans et al. 2000). Nonetheless, very little attention has been paid 

to diseases affecting these molluscs, and even less information exists on the diseases that 

affect Chilean bivalve molluscs reared in aquaculture environments (Campalans et al. 

2000). Between late fall of 1996 and early summer of 1997, Campalans et al. (2000) 

conducted a study on Chiloe Island in Chile. A total of 167 oysters were collected from 

five aquaculture facilities, and tissue samples from the mantle, digestive gland, and gills 

were reserved for histological analysis (Campalans et al. 2000). Two of the oysters 

showed significant hemocytosis, with a number of parasites, 2-3 pm in size, observed in 

the cytoplasm of these hemocytes (Campalans et al. 2000). It was not possible to ascribe
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this organism to a particular genus although the authors stated that the organism 

resembled a Bonamia sp.

Bonamia sp. in Ostrea puelchana in Argentina

The practice of farming O. puelchana is fairly new in Argentina and began in the 

1980s. This oyster is found geographically from southern Brazil to northern Patagonia, 

Argentina. The commercial cultivation of O. puelchana oysters began in Banco Garzas 

of San Antonio Bay, Argentina, a protected site within the bay, between March 1995 and 

December 1997 (Kroeck and Montes 2005). The goal was to export these oysters to 

Europe. In 1997, a 33% mortality of O. puelchana was reported (Kroeck and Montes

2005). About 34 months from the initial time of culture, 95% of O. puelchana oysters 

had died. Histologic evaluation of moribund oysters indicated the presence of a 

Bonamia-like parasite associated with hemocytosis of the mantle, gill, and digestive 

gland although oysters generally showed no clinical signs of infection. Hemocytes 

contained between 1 and 8 parasites measuring 2-3 pm in diameter (Kroeck and Montes

2005). The characteristics of this parasite were similar to those of the parasite infecting 

O. chilensis in Chile and New Zealand, and O. angasi of Australia. Kroeck and Montes 

(2005) suggested that this parasite is a Bonamia sp., and should be treated as being 

different from B. ostreae, B. exitiosa, and the Australian Bonamia sp. until more studies 

can verify its taxonomic placement (Kroeck and Montes 2005).
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Bonamia sp. in Ostrea angasi in Australia

Organisms morphologically resembling Bonamia species have been associated 

with mortalities of O. angasi oysters from Port Philip Bay, Victoria (1991), Georges Bay, 

Tasmania (1992), and Albany, Western Australia (1993) (Hine and Jones 1994). 

Sequencing of the SSU rRNA gene from the Bonamia-like organism from Victoria and B. 

exitiosa from New Zealand suggest that the parasites from these two locations are 

identical (Hine and Jones 1994). Corbeil et al. (2006a) conducted a study using infected 

O. angasi collected from New South Wales (NSW), Australia to identify and characterize 

this Australian Bonamia isolate using molecular techniques that would presumably 

establish the relationship of this isolate to other described Bonamia species. The SSU 

rRNA gene and ITS-1 region of the rRNA gene complex were used in the analysis 

(Corbeil et al. 2006a). Comparison of three NSW Bonamia-like parasites with B. exitiosa 

and B. ostreae revealed a greater degree of nucleotide similarity between the NSW 

Bonamia-like parasites and B. exitiosa than was observed between the NSW Bonamia- 

like parasites and B. ostreae (Corbeil et al. 2006a).

It is possible that this parasite originated in New Zealand, but spread to Australia 

during the transport of commercial New Zealand dredge oysters to Victoria and 

Tasmania, Australia during attempts to replenish O. angasi stocks that had suffered from 

high mortality during the late 1800s (Diggles 2005: Corbeil et al. 2006a). There are no 

known movements of New Zealand oysters to Western Australia, however, which is 

another location wherein a Bonamia sp. has been described in O. angasi (Diggles 2005). 

This information may indicate that the Bonamia-like parasite infecting O. angasi is
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endemic to Australia, and might also explain the mortality of O. angasi in the late 1800s 

before the introduction of New Zealand oysters into Australian waters (Diggles 2005).
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MATERIALS AND METHODS 

Sample Collection

The following oyster species collected from the indicated locations (Figure 1), 

were used in this study: C. ariakensis (deployed to and collected from upweller systems 

located on Bogue Sound and a field site in Wilmington, North Carolina, USA), O. 

puelchana (San Antonio Bay, Argentina), O. chilensis (Chiloe Island, Chile and Foveaux 

Strait, New Zealand), O. edulis (Maine, USA), O. equestris (Bogue Sound, North 

Carolina, USA) O. angasi (Pambula River, NSW, Australia), and S. glomerata (Georges 

River and Port Stephens, NSW, Australia). All of the samples, except O. angasi and S. 

glomerata, were collected prior to 2006. Oyster sample sizes are listed in Table 1. In 

November 2006, 176 wild and hatchery-reared S. glomerata, 2-3 years of age, were 

collected from the Pambula River, NSW, Australia. Also collected at the time were 42 

O. angasi. The S. glomerata collected from Pambula River, NSW, Australia displayed 

some gross lesions, characteristic of “winter mortality”, although mortality was not 

observed during the time these oysters were sampled. A total of 218 S. glomerata and O. 

angasi were processed for DNA extraction. In August 2007, 200 S. glomerata were 

collected from Georges River, NSW, Australia, and 232 S. glomerata were collected 

from Port Stephens, NSW, Australia. These areas are “winter mortality”-enzootic, and 

sampling was conducted at the time of year when disease would typically peak. A total 

of 280 oysters—200 from Georges River and 80 from Port Stephens—were processed for 

DNA extraction.

Oysters were shucked, and roughly 25 mg of gill tissue was collected from each 

oyster and placed in a 1.5 mL microcentrifuge tube containing 1000 pi of 95% ethanol.
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The remaining tissue was fixed in Davidson’s (samples from 2006 and earlier) or 

Carson’s fixative (2007 samples) for histology. Scalpels and forceps were sterilized with 

95% ethanol and flamed in between each sample to minimize the potential for cross 

contamination of DNA.

Isolation o f DNA and Estimation o f  Concentration

To lyse the tissue, ethanol was pipetted from each tube and tissues were allowed 

to dry in their respective tubes with lids open for two hours. For tissue roughly 25mg in 

size, about 180 pi of lysis buffer and 20 pi of proteinase K was added to each sample.

For larger tissue, an additional 10 or 20 pi of proteinase K was added after tissue had 

been allowed to lyse for several hours. All samples were incubated overnight in a 56°C 

water bath. Total genomic DNA was extracted the following day using the QIAamp 

DNA Mini Kit tissue protocol (QIAGEN, Valencia, CA). DNA was re-dissolved in 100- 

150 pi of elution buffer and held at either 4°C for short-term storage, or -20°C for long­

term storage. AGeneQuant pro spectrophotometer (Amersham Biosciences, Piscataway, 

NJ) was used to determine the concentration of DNA in each sample.

Generic PCR Assay for Bonamia sp.

To verify the presence of Bonamia spp., two PCR protocols that target different 

portions of the SSU rRNA gene were used. The first protocol from Carnegie et al. (2000) 

and modified as described below results in a product size of 760 bp, and was used on the 

following oysters: C. ariakensis, O. puelchana, O. chilensis, O. equestris, and O. edulis. 

The 25-pl reaction contained 200-250 ng template DNA, 10X PCR buffer, dP^O, 10
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mg/ml BSA, 200 mM dNTPs, 100 pm/pl of primers Cf and Cr (Table 2, Figure 2), and 5 

U/pl of AmpliTa# polymerase (Applied Biosystems, Foster City, CA). PCR reaction 

conditions consisted of an initial denaturation at 94°C for 4 minutes followed by 35 

cycles of denaturation at 94°C for 1 minute, annealing at 59°C for 1 minute, and 

extension at 72°C for 1 minute followed by a final extension at 72°C for 10 minutes.

The second protocol (VIMS unpublished) also targets the DNA of Bonamia spp., 

but yields a 206 bp product and is more sensitive than the Carnegie et al. (2000) protocol 

(unpublished data). This PCR was performed on O. angasi and S. glomerata samples.

The 25-pl reaction volume consisted of 10X PCR buffer, dFhO, 10 mg/ml BSA, 200 mM 

dNTPs, 100 pm/pl of primers BON319F+ BON524R (Table 2, Figure 2), 5 U/pl of 

AmyAiTaq polymerase (Applied Biosystems), and 200-250 ng template DNA. PCR 

reaction conditions consisted of an initial denaturation at 94°C for 4 minutes followed by 

35 cycles of denaturation at 94°C for 30 seconds, annealing at 60°C for 30 seconds, and 

extension at 72°C for 30 seconds, followed by a final extension at 72°C for 7 minutes.

To visualize the PCR products, samples were loaded and electrophoresed on a 2% 

agarose gel at 100V for roughly 30 minutes, stained using ethidium bromide, and viewed 

under UV light exposure.

Bonamia SSU rDNA PCR

Amplifying the complete SSU rRNA gene required that the 5’ end of the 

sequence be amplified separately from the 3’ end of the sequence, and resulted in an 

overlap of about one hundred base pairs. The following primers were used to amplify the 

5’ end of the SSU rRNA gene and the 3’ end of the SSU rRNA gene for all of the
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Bonamia parasites except for the O. angasi Bonamia and the S. glomerata Bonamia: 

16S-A forward primer and BON-11 lOr reverse primer and BON-925f forward primer and 

16S-B reverse primer respectively (Table 2, Figure 2). The product of the first primer set 

yields anl 1 lObp amplicon, whereas the product of the second primer set yields an 850bp 

amplicon. Initially primers 16S-A, BON-11 lOr, BON-925f, and 16S-B (Table 2, Figure 

2) were used to attempt to amplify the complete SSU rRNA gene of the Bonamia sp. 

infecting O. angasi; however, only primers BON-925f and 16S-B resulted in 

amplification of the correct gene product. A number of other primer pairs were 

attempted before primers BON-319f and BON-990r were used to amplify the 5’ end of 

the O. angasi Bonamia SSU rRNA gene (Table 2, Figure 2). The use of primer BON- 

319f resulted in a loss of the first 319bp of the SSU rRNA gene sequence for the O. 

angasi Bonamia sp.

The 25-pi reaction volumes for each PCR mixture consisted of 10X PCR buffer, 

dFbO, 10 mg/ml BSA, 200 mM dNTPs, 100 pmol/pl of each primer, 5 U/pl of AmpliTaq 

polymerase, and 200 ng of template DNA. PCR reaction conditions were the same for 

each assay and consisted of the following: an initial denaturation at 94°C for 4 minutes, 

35 cycles of denaturation at 94°C for 30 seconds, annealing at 53°C for 30 seconds, and 

extension at 72°C for 1.5 minutes, and a final extension at 72°C for 5 minutes. PCR 

reaction conditions differed only for the O. angasi Bonamia sp. such that an annealing 

temperature gradient of 53-59°C was used to amplify the 5’ end of the SSU rRNA gene. 

PCR products were visualized as previously described.
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Bonamia ITS region PCR

To amplify the ITS-1 and ITS-2 regions and the 5.8S rRNA gene for the majority 

of the Bonamia parasites, the forward primer haploITSf (Table 2, Figure 2), which targets 

the 3’ end of the haplosporidian SSU rRNA gene was paired with a reverse primer 

BonITS-R3 (Table 2, Figure 2) that is specific to Bonamia species. The product of these 

primers is roughly 760 bp. As before, the 25-pl assay consisted of 10X PCR buffer, 

dFLO, 10 mg/ml BSA, 25 mM MgCh, 200 mM dNTPs, 100 pmol/pl of primers 

(haploITSf+BonITS-R3), 5 U/pl of AmpliTaq polymerase (Applied Biosystems), and 

200-250 ng of template DNA. PCR reaction conditions were as follows: initial 

denaturation at 95°C for 7 minutes followed by 35 cycles of denaturation at 95°C for 1 

minute, annealing at 51°C for 1 minute, extension at 72°C for 1.5 minutes succeeded by a 

final extension at 72°C for 7 minutes.

The O. angasi Bonamia sp. was the only Bonamia sp. for which two separate 

primer pairs were used to amplify the ITS region of the parasite’s genome. As with the 

SSU gene, difficulties arose when amplification of the ITS regions of the Bonamia sp. 

infecting O. angasi was attempted. After experimenting with a number of different 

primer pair arrangements and PCR conditions, it was discovered that by targeting the ITS 

regions 1 and 2 of the O. angasi Bonamia sp. separately, it was possible to amplify the 

parasite DNA. To amplify the ITS-1 region, the forward primer RA2 (Adlard and Lester 

1995) (Table 2, Figure 2) and the reverse primer 5.8SREV (this study) (Table 2, Figure 2) 

were used, while to amplify the ITS-2 region, the forward primer 5.8SFOR (Table 2, 

Figure 2) and the reverse primer ITS2.2 (Adlard and Lester 1995) (Table 2, Figure 2) 

were used. Both primer sets were used in the following PCR mixture: 1.5 mM of 10X
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PE Buffer, dlUO, 10 mg/ml BSA, 200 mM dNTPs, 100 pmol/pl of each primer, 5 U/pl of 

AmpliTa# polymerase (Applied Biosystems), and 200-250 ng of template DNA. PCR 

reaction conditions consisted of an initial denaturation at 95°C for 7 minutes followed by 

35 cycles of denaturation at 95 °C for 1 minute, annealing at 59°C for 1 minute, and 

extension at 72°C for 1.5 minutes followed by a final extension at 72°C for 7 minutes. 

PCR products were visualized as previously described. All PCR experiments were 

performed using the MJ Research PTC-200, DNA Engine/Peltier thermal cycler 

(Cambridge, MA). Unfortunately, both the reverse (5.8SREV) and forward (5.8SFOR) 

primers (Table 2, Figure 2) used to amplify the ITS regions anneal to the same region in 

the parasite’s DNA. Since primers were excised from all sequences prior to aligning 

them in MacVector, all clones contributing to the ITS sequence of the Bonamia sp. 

infecting O. angasi are missing 23 nucleotide bases representative of the 5’ end of the

5.8S gene. Nonetheless, it was still possible to align the O. angasi Bonamia sp. ITS 

sequences with the other Bonamia spp. sequences despite the missing data.

Sequencing o f SSU rDNA & the ITS-1/5.8S/ITS-2 region

Triplicate PCR amplicons of each infected sample were pooled and purified using 

the QIAquick PCR purification kit protocol (QIAGEN, Valencia, CA). Pooled and 

purified PCR products were ligated into the pCR4-TOPO plasmid vector using the TOPO 

TA Cloning Kit for Sequencing (Invitrogen, Carlsbad, CA). One Shot® TOP 10 

competent E. coli cells were chemically transformed to take up the plasmid vector 

(Invitrogen, Carlsbad, CA).
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Transformed cell mixtures were plated onto Luria Bertani (LB) agar plates 

containing ampicillin for selection of colonies that had successfully taken up recombinant 

plasmids, and were grown overnight in an incubator at 37°C. Roughly 15-20 colonies 

from each Bonamia-infected sample were additionally screened for plasmids that 

contained the correct-sized insert. Screening of the plasmids was accomplished by 

resuspending plasmid cells in 40 pi of TE solution, adding 40 pi of phenol chlorophorm 

isoamyl alcohol, vortexing for 30 seconds, and then centrifuging at high speed (13,000 

rpm) for 5 minutes. The centrifugation step helps to separate the bacterial and 

recombinant plasmid DNA from lipids, proteins, and other cell debris. Subsequently, the 

extracted DNA was electrophoresed on a 1.5% agarose gel to determine which of the 

selected clones contained the correct-sized insert. Clones containing the insert of interest 

were grown overnight at 37 °C in 4 mL of LB liquid broth media containing ampicillin. 

Recombinant plasmids were later isolated from the E. coli DNA and purified using the 

QIAprep Spin Miniprep Kit Protocol following the manufacturer’s instruction (QIAGEN, 

Valencia, CA). The concentration of plasmid DNA was determined using the DyNA 

Quant 200 fluorometer (Hoefer Pharmacia Biotech Inc., San Francisco, CA).

Recombinant plasmids were sequenced using the LI-COR or Applied Biosystems 

(ABI) automated sequencers. For the LI-COR protocol, plasmid preps underwent 

simultaneous bi-directional sequencing (SBS) using the Thermo Sequenase™ Primer 

Cycle Sequencing Kit (Amersham Biosciences, Piscataway, NJ). A master mix 

containing 1.5 pi each of the infrared (IR) labeled M l 3 forward and M l 3 reverse 

primers, plasmid DNA, and distilled water for a total reaction volume of 15 pi was made 

for each plasmid clone. A volume of 2 pi of the corresponding nucleotide base
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(A,T,G,C) was added individually to a strip tube containing four tubes. To each tube in a 

strip, 3.5 pi of the designated master mix was added. Sequencing reactions were 

accomplished using a thermal cycler and required the following PCR conditions: initial 

denaturation at 92°C for 2 minutes followed by 30 cycles of denaturation at 92°C for 30 

seconds, annealing at 54°C for 30 seconds, and an extension at 70°C for 30 seconds.

DNA fragments were separated via electrophoresis on a 4% acrylamide gel using the LI- 

COR Model 4200L automated sequencer.

Using the ABI protocol, recombinant plasmids were sequenced separately in both 

the forward and reverse directions using the following master mix: 0.25 pi of Big Dye® 

Terminator (Applied Biosystems), 0.875 pi of 5X Buffer, 0.16 pi M13 forward or M13 

reverse primer, and 2.715 pi of distilled water (dTLO). A volume containing 1 pi of 

plasmid DNA was added to 4 pi of the master mix for a total reaction volume of 5 pi. 

Sequencing reaction conditions were as follows: initial denaturation at 96°C for 1 minute 

followed by 25 cycles of denaturation at 96°C for 10 seconds, annealing at 50°C for 5 

seconds, and an extension at 60°C for 4 minutes. Each product from the sequencing 

reaction was precipitated using the following reagents and amounts: 0.75 pi of 3M 

sodium acetate (pH 5.2), 15.63 pi of nondenatured 95% ethanol, and 3.63 pi of sterile 

PCR water for a total volume per reaction of 20 pi. Following a series of centrifugation 

spins and the addition of 37.5 pi of 70% ethanol to each of the tubes, samples were 

resuspended in 20 pi Hi-Di formamide (Applied Biosystems). A volume of 10 pi of each 

resuspended sample was added to a 96-well plate and reactions were denatured for 2 

minutes. After denaturation, the 96-well plate was placed into the ABI PRISM® 3130 

Genetic Analyzer and sequenced by capillaries.
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Sequence Alignment/Editing

Initial PCR primers sequences (Table 2) were removed from both forward and 

reverse raw sequences using the MacVector® 8.02 software package (Oxford Molecular). 

Forward and reverse sequences were aligned using the AssemblyLIGN™ 1.0.9c software 

package, however, final consensus sequences were generated in MacVector® 8.02. 

Consensus sequences were uploaded into BLAST, which is a basic local alignment 

search tool, to verify that the sequenced DNA was that of a Bonamia parasite. Multiple 

alignments were generated for the SSU rRNA gene sequences and the ITS region 

sequences using the ClustalW algorithm (European Bioinformatics Institute) in 

MacVector® 8.02. The following default settings were used: pairwise alignment—open 

gap penalty (10.0), extended gap penalty (5.0)—multiple alignment—open gap penalty 

(10.0), extended gap penalty (5.0), delay divergent (40%), with transitions weighted. 

Clones that were sequenced from the same oyster host and contained the exact nucleotide 

sequence were represented as one sequence. Clones that had one or more nucleotide 

differences or polymorphisms from the rest of the clones in that group were considered to 

be single, distinct sequences. Each sequence generated in this study was also deposited 

into GenBank and assigned an accession number (EU709021-EU709133, EU723225- 

EU723231, EU780686-EU780692). The following GenBank sequences were also used 

in this study: AF337563 (accession number for B. exitiosa type sequence), AF508801 

(accession number for B. roughleyi type sequence), AF262995 (accession number for B. 

ostreae type sequence), DQ356000 (accession number for B. perspora type sequence), 

and AY542903 (accession number for C. ariakensis Bonamia). Pairwise distance
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measurements were constructed for both the SSU rRNA gene and the ITS-1/5.8S/ITS-2 

region.

Partition homogeneity test

A partitioned homogeneity test was used to test for compatibility between the ITS 

region and SSU rRNA gene data (Farris et al. 1995). Incongruence length differences 

(ILDs) were examined using a heuristic search of 1000 replicates and 100 random 

sequence additions to determine if there would be complications with combining the two 

datasets.

Phylogenetic Analysis

Phylogenetic relationships of the Bonamia parasites were hypothesized using 

independent maximum parsimony analyses of the SSU rRNA gene and the ITS- 

1/5.8S/ITS-2 region, and a combined analysis of the SSU rRNA gene sequence and the 

ITS-1/5.8S/ITS-2 region. All maximum parsimony analyses were conducted in 

PAUP*4.0bl0 (Swofford 2002). A heuristic search algorithm was conducted, and the 

tree-bisection reconnection (TBR) branch swapping algorithm was used to construct 

topologies. Two consensus trees, one generated using the bootstrap method and the other 

generated using the jackknife method, were constructed for each data set. All nucleotide 

positions were considered unordered, transitions and transversions were equally 

weighted, and all characters were given the same weights. Gaps in the data set were 

classified as missing data. For each bootstrap analysis 1,000 replicates with 100 random 

step-wise additions was conducted to produce a 50% majority rule, consensus tree. For
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each jackknife analysis, 10,000 replicates with 1000 random step-wise additions were 

completed. The percentage of characters deleted in each jackknife replicate equaled 25 

percent. Two Minchinia sequences (Accession numbers AY449711 and U20320) were 

chosen as outgroups for construction of the SSU tree only. Bonamia ostreae sequences 

were chosen as the outgroup for construction of the ITS region and the combined 

SSU/ITS region trees since there are currently no ITS region sequences available for 

Minchinia species; although, either B. ostreae or B. perspora sequences could have been 

used as the outgroup. Uncorrected (“p”) distances (Tables 3 and 4) were also calculated 

in PAUP*4.0bl0 for both the SSU rRNA gene and ITS region sequences using the 

pairwise distance option under the data analyses tab.
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Table 2. List of primer sequences used for identifying presence of Bonamia DNA (Cf, 
Cr, BON 319, BON 524), and those used to amplify Bonamia ITS-1,2 regions and the 
5.8S gene (haploITS-f, Bon-ITS-R3, Bon-ITS-F2, RA2-B, 5.8SREV, 5.8SFOR, and 
ITS2.2), along with the SSU rRNA gene (16S-A, BON-11 lOr, BON-319F, BON-925f, 
BON-990R and 16S-B).

Primer
Name

Sequence 5’-3’ Assay Reference

CF CGGGGGCATAATTCAGGAAC Bonamia- 
generic PCR

Carnegie et 
al. (2000)

C r CCATCTGCTGGAGACACAG Bonamia- 
generic PC R

Carnegie et 
al. (2000)

BON
319F

TTTGACGGGTAACGGGGAATGCG Bonamia- 
generic PC R

VIMS
unpublished

BON
524R

CTTGCCCTCCGCTGGAATTC Bonamia- 
generic PC R

VIMS
unpublished

haplo-
ITSf

GGGATAGATGATTGCAATTRTTC Haplosporidian- 
generic PCR

VIMS
unpublished

Bon-
ITS-F2

TTGAATAATGAGGTGAATTAGG Bonamia- 
generic PCR

VIMS
unpublished

Bon-
ITS-R3

CTTAAATTCAGCGGGTCGC Bonamia- 
generic PCR

VIMS
unpublished

RA2-B GTCCCTGCCCTTTGTACACA Bonamia- 
generic PCR

Adlard and 
Lester 
(1995)

5.8SREV GAGCCTAGTCATCCATTGCAAAG Bonamia- 
generic PCR

Corbeil et 
al. (2006)

16S-A AACCTGGTTGATCCTGCCA G T Universal SSU 
PCR primer

Medlin et. 
al. 1988

BON-
lllO r

CCTTTAAGTTTC ACTCTT GC G AG Bonamia- 
specific PCR

VIMS
unpublished

BON-
925f

ATTCCGGTGAGACTAACTTAT G Bonamia- 
specific PCR

VIMS
unpublished

BON-
990R

CTTAGTCGAC ATCGTTTATGGTT G G G Bonamia- 
specific PCR

VIMS
unpublished

16S-B G ATCCTTCCGC AGGTTC ACCT AC Generic PCR 
primer

Medlin et 
al. 1988

5.8SFOR CTTTGC AATGGATGACTAGGCT C Bonamia- 
specific PCR

This Study

ITS2.2 CCTGGTTAGTTTCTTTTCCTCCGC Bonamia- 
generic PCR

Adlard and 
Lester 
(1995)
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RESULTS 

Parasite prevalence

A total of 1060 oysters were used in this analysis with prevalence of parasite 

based on PCR amplification indicated in parentheses: 164 total C. ariakensis (prevalence 

between 32.0% and 82.0%), 116 O. puelchana (two samples with 1.7% and 10.5%), 32 

O. chilensis from Chile (18.2%), 1 O. chilensis from New Zealand (100%), 96 O. 

equestris (1.0%), 1 O. edulis (100%), 42 O. angasi (2.0%), and 608 S. glomerata (0.0%) 

(Table 1). Bonamia DNA was detected in some but not all animals in each sample using 

either one or both of the Bonamia genus PCR protocols. Bonamia sp. parasite sequences 

from 22 of the sampled oysters—7 C. ariakensis, 3 O. puelchana, 7 O. chilensis, 3 O. 

equestris, 1 O. edulis, and 1 O. angasi—were used in the phylogenetic study.

B. roughleyi PCR and Sequencing Results

Despite the appearance of gross physical signs such as green pustules on the 

mantle, erosion of the gills, abductor muscle lesions, and tissue emaciation among several 

S. glomerata collected in 2006, PCR assays were unable to identify the presence of B. 

roughleyi DNA. Likewise in 2007, PCR amplification of oysters collected during peak 

winter mortality season did not reveal the presence of B. roughleyi DNA.

Remaining Bonamia sp. PCR and Sequencing Results

Complete SSU rRNA gene sequences were generated prior to this study for the 

parasites infecting O. edulis, O. equestris, O. chilensis, O. puelchana, and C. ariakensis. 

PCR products and sequencing results of the above mentioned parasites indicated the
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amplified DNA closely resembled DNA from Bonamia parasites. Additionally, SSU 

rDNA PCR and sequencing results for the Bonamia sp. infecting O. angasi indicated that 

its DNA closely resembled DNA from a Bonamia parasite. Three of the parasites, B. 

ostreae in O. edulis from ME, USA, B. perspora in O. equestris from NC, USA, and the 

Bonamia sp. in C. ariakensis from NC, USA had their sequences submitted to GenBank 

by individuals associated with this project prior to this study, and are represented by the 

following accession numbers: AF262995, DQ356000, and AY542903 respectively.

Type sequences for B. roughleyi and B. exitiosa (accession numbers AF508801 and 

AF337563 respectively) were generated previously by individuals not associated with 

Virginia Institute of Marine Science and were submitted previously to GenBank. The 

remaining parasites had their SSU rDNA sequences submitted to GenBank during the 

time of this study and contain the following accession numbers: EU709021-EU709023, 

and EU709133).

Strong PCR products were obtained from all of the Bonamia-in£ected oyster 

samples using the ITS assays described above in the methods section. Most of the 

sequences that were produced from the PCR clones showed little to no ambiguity in their 

nucleotide bases for both the forward and reverse nucleotide strands. All of the samples 

that were used in this study contained 7-10 clones that could be used for further analyses; 

between 9 and 10 clones were originally sequenced for each sample. Internal transcribed 

spacer region sequences submitted to GenBank contain the following accession numbers: 

EU709024-EU709132, EU723225-EU723231, EU780686-EU780692).



34

SSU rDNA Sequence Alignment

In aligning the SSU rDNA sequences, two Minchinia sequences (accession 

numbers: AY449711 and U20320), a B. roughleyi sequence of 1000 bp (accession 

number: AF508801), and a B. exitiosa sequence of 1600 bp (accession number 

AF337563) were included. Additionally the O. angasi Bonamia from Australia 

(EU709133), the O. chilensis Bonamia from Chile (EU709021), the O. chilensis Bonamia 

from New Zealand (EU709023), the O. puelchana Bonamia from Argentina (EU709022), 

the C. ariakensis Bonamia from NC, USA (AY542903), B. ostreae (AF262995), and B. 

perspora (DQ356000) were also included in the SSU multiple alignment. Few 

adjustments were made when the SSU rRNA gene sequences were aligned using the 

ClustalW algorithm in MacVector ® 8.02. The Bonamia sp. detected in O. angasi did 

not have the first 300 bp of the SSU rRNA gene sequenced. Therefore, alignment 

adjustments were made such that the O. angasi Bonamia sp. sequence began 300 bp from 

the start of the alignment. Overall there were few differences between the Bonamia ssp. 

SSU rRNA gene sequences. A total of nine Bonamia consensus sequences were used in 

the SSU phylogenetic analysis in addition to the two outgroup sequences. Of the 1769 

characters, 1383 characters (78%) were constant, 196 characters (11%) were parsimony- 

uninformative, and 190 characters (11%) were parsimony-informative.

ITS Sequence Alignment

The ITS sequence alignment did, however, require some adjusting by eye. When 

the ITS sequences were first aligned using the default parameters in MacVector® 8.02, 

there was little consistency in the 5’ end of the sequence. The sequences were adjusted



so that homologous bases would align at the 5’ end of the sequence. A distinct sequence 

of base pairs, which represent the beginning of Bonamia ITS-1 (GATCATTA), were 

identified and used as an anchor to align the sequences in this region. Since two of the 

ITS primers used for this study annealed to the 5’ end of the 5.8S gene, this was used as 

an anchor point to determine the starting sequence for the 5.8S gene. Finally, the 

alignment was adjusted such that all of the sequences came into register near the LSU 

rRNA gene or the 3’end of the alignment. Some adjustments were made to the ITS-1 and 

ITS-2 to include gap insertions and/or a gap extensions. This was done so that the 

sequences would align at the SSU, 5.8S, and LSU rRNA gene locations. The Chilean 

Bonamia sp. sequences varied distinctly from the C. ariakensis Bonamia sp., the O. 

puelchana Bonamia sp., the O. angasi Bonamia sp., and the O. chilensis Bonamia 

sequence from New Zealand. In addition, the Chilean Bonamia sp. sequences did not 

match the B. perspora or the B. ostreae sequences. The C. ariakensis Bonamia sp., the 

O. puelchana Bonamia sp., the O. angasi Bonamia sp., and the O. chilensis Bonamia sp. 

from New Zealand, contained sequences that were highly similar to one another. A total 

of 116 distinct nucleotide sequences representing 565 characters of the ITS-1/5.8S/ITS-2 

region were used for the PAUP analysis. Of the 565 characters, 248 characters (44%) 

were constant, 32 variable characters (6%) were parsimony-uninformative, and 285 

characters (50%) were parsimony-informative.

Combined SSU and ITS Sequence Alignment

The combined ITS region and SSU rRNA gene data sets resulted in an alignment 

with 2337 positions (characters). A total of 1941 characters (83%) were constant, 30
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variable characters (1%) were parsimony-uninformative, and 366 characters (16%) were 

parsimony-informative.

SSU rDNA Phylogenetic and Distance Analyses

Phylogenetic analyses of the SSU rRNA gene, with Minchinia sequences 

indicated as outgroups, produced two main ingroup clades (Figure 3). The first clade 

connsisted of B. perspora and B. ostreae sequences. This clade had a relatively low 

bootstrap support of 71% and moderate jackknife support of 86%. The second clade 

consisted of sequences from the O. chilensis Bonamia sp. from Chile, the C. ariakensis 

Bonamia sp., the O. angasi Bonamia sp., the O. puelchana Bonamia sp., the O. chilensis 

Bonamia sp. from New Zealand, B. exitiosa type sequence, and B. roughleyi type 

sequence with bootstrap and jackknife support of 100%. Embedded within this larger 

clade was a subclade consisting of the B. roughleyi and the B. exitiosa type sequences 

with a low bootstrap and jackknife support values of 60% and 71% respectively. Support 

for the entire Bonamia clade was 100% for both bootstrap and jackknife analyses (Figure 

3).

Uncorrected (“p”) distances of 670 characters for the SSU Bonamia spp. 

sequences showed no divergence (p = 0.000) among the B. exitiosa-like group, which 

consisted of the Argentinean Bonamia sp., the C. ariakensis Bonamia sp., the O. angasi 

Bonamia sp., and the O. chilensis Bonamia sp. from New Zealand (Table 3). Between 

the Chilean Bonamia sp. sequence and the B. exitiosa-Xike group sequences, a p-value of 

0.00156 was measured (Table 3). Between the Chilean Bonamia sp. sequence and the B. 

exitiosa type sequence, the p-value was 0.00465. The distance between B. perspora and
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B. ostreae was 0.0261 (Table 3). The distance between B. roughleyi and the B. exitiosa- 

like group was 0.00772 (Table 3). Greater distances were observed, however between B. 

roughleyi and B. perspora (0.0437) and between B. roughleyi and B. ostreae (0.0422) 

(Table 3). The genetic distance between B. roughleyi and the Chilean Bonamia sp. was 

0.00931 (Table 3). Divergence between B. ostreae and the Chilean Bonamia sp. was 

0.0423 whereas divergence between the Chilean Bonamia sp. and B. perspora equaled 

0.0377 (Table 3). Distance values between B. perspora and the B. exitiosa-like group 

was 0.0359 and between B. ostreae and the B. exitiosa-like group a distance of 0.0406 

was recorded (Table 3). Distance values between the B. exitiosa type sequence and the B. 

exitiosa-like group was 0.00305. Difference between the B. exitiosa type sequence and

B. roughleyi type sequence was 0.00460. Divergence between B. ostreae and the B. 

exitiosa type sequence equaled 0.0433. Likewise the B. perspora sequence and the B. 

exitiosa type sequence differ by 0.0447.

ITS Phylogenetic and Distance Analyses

Phylogenetic analyses of the ITS region data resolved the Bonamia sequences into 

four main clades with a few sub clades in each group (Figure 4). Bonamia ostreae 

sequences were selected to serve as the outgroup in this analysis, and they formed a clade 

with support of 100 for both the bootstrap and jackknife analyses. The Bonamia 

perspora sequences formed a clade of their own with bootstrap and jackknife support of 

100 for the main clade. Falling sister to the B. perspora clade were the ITS sequences 

derived from the O. chilensis Bonamia sp. from Chile, and the B. exitiosa-like sequences 

which consisted of the C. ariakensis Bonamia sp., the O. puelchana Bonamia sp., the O.
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angasi Bonamia sp., and the O. chilensis Bonamia sp. from New Zeland (Figure 4). 

Within this larger clade, the Chilean Bonamia sp. sequences comprised their own clade, 

which fell sister to the clade containing the B. exitiosa-like sequences listed above 

(Figure 4). Support for the Chilean Bonamia sp. as well as the B. exitiosa-Wke sp. clades 

were both 100 for the bootstrap and jackknife analyses (Figure 4).

Uncorrected (“p”) distances (Table 4) were calculated in PAUP using 12 

sequences chosen to represent the 116 distinct ITS sequences that were used in the 

analysis, and ranged between 0.002 and 0.39 (Table 4). The greatest distance was 

observed between the B. exitiosa-like sequences and B. perspora, between the B. 

exitiosa-like sequences and B. ostreae, between the Chilean Bonamia sp. and B. ostreae, 

and between the Chilean Bonamia sp. and B. perspora with distances ranging between 

0.34 and 0.39 (Table 4). Additionally, distances between B. perspora and B. ostreae 

ranged from 0.35 and 0.37 (Table 4). Distances amongst the B. exitiosa-like sequences, 

the C. ariakensis Bonamia sp., the O. angasi Bonamia sp., the O. puelchana Bonamia sp. 

and O. chilensis Bonamia sp. from New Zealand, ranged between 0.002 and 0.006 (Table 

4). Distances between the Chilean Bonamia sp. and the B. exitiosa-like group equaled 

0.16 (Table 4). Distances among the Chilean Bonamia sp. sequences ranged between 

0.007 and 0.011.

Incongruence Test

The incongruence heterogeneity test yielded a p-value of 0.530000, which 

confirmed that the two datasets, both the SSU and the ITS datasets, shared enough
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congruency in their characters such that the phylogenetic information produced from both 

data sets would converge toward the same phylogenetic tree.

Combined SSU and ITS Phylogenetic Analyses

Phylogenetic trees that were produced from the combined SSU and ITS dataset 

(Figure 5) did not differ much from the trees that were produced from the ITS analysis 

(Figure 4). As in the ITS tree topology, support for the four main clades equaled 100 for 

both the bootstrap and the jackknife analysis. Support for the sub clades, however, 

ranged between 52% and 90% for the jackknife analysis and between 57% and 78% for 

the bootstrap analysis. The support values for the bootstrap and the jackknife analyses 

with the SSU/ITS combined dataset did not differ substantially from those obtained in the 

analyses based on the ITS dataset.
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Figure 1. World map of the sampling locations for the oysters collected for this study. 
The abbreviations stand for the following sites: NC (Bogue Sound and Wilmington, NC, 
USA), ME (Maine), CH (Chile), AR (Argentina), NZ (Foveaux Strait, New Zealand), and 
NSW/PS (New South Wales/ Port Stephens, Australia). Also represented are areas where 
Bonamia spp. have been identified, but were not included in this sampling experiment. 
What follows is a list of abbreviations: CA (California, USA), WA (Washington, USA), 
BC (British Columbia), SP (Spain), IR (Ireland), NE (Newtherlands), TA (Tasmania), 
and VC (Victoria).
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Figure 2: Diagram of the multi-copy ribosomal RNA gene complex indicating the 
location of the external transcribed spacer (ETS) region, the small subunit (SSU) 
ribosomal RNA (rRNA) gene, the internal transcribed spacer (ITS) regions 1 and 2, the
5.8S rRNA gene, the large subunit (LSU) rRNA gene, the non-transcribed spacer (NTS) 
regions 1 and 2, and the 5S rRNA gene. PCR primer binding sites for those used in this 
study are also indicated. (Dimensions are not drawn to scale).
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Figure 3: Maximum parsimony consensus tree resulting from bootstrap and jackknife 
analyses of small subunit ribosomal (SSU) RNA (rRNA) gene sequences from Bonamia 
spp. Each sequence is a consensus of Bonamia sp. sequences from a particular oyster 
host. 1,000 bootstrap pseudoreplicates with 100 random sequence additions were 
conducted as well as 1,000 jackknife pseudoreplicates with 100 random sequence 
additions, with 25% deletion of characters. Jackknife values are depicted above the 
bipartition and bootstrap values are depicted below the bipartition. Minchinia chitonis 
(AY449711) and M. teredinis (U20320) were used as outgroups for the analyses.
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Figure 4: Maximum parsimony consensus tree resulting from bootstrap and jackknife 
analyses of internal transcribed spacer (ITS) region sequences of Bonamia spp. Tree 
branch support was assessed using 1,000 bootstrap replicates and 100 random additions, 
and 10,000 jackknife replicates and 1,000 random additions with 25% deletion of 
characters in each replicate. Jackknife support values are shown above the bipartition 
whereas bootstrap support values are shown below the bipartition.



49

100
100

100
100

100
100

100
100

55
52

85
75

68
56

100
100

-74-
- 65-

73
63
74
60

"60"

-90-
80

|  C. ariakensis Bonamia, NC, USA 
- 0. angasi Bonamia Australia

C. ariakensis Bonamia, NC, USA

O. puelchana Bonamia, Argentina

O. angasi Bonamia Australia

C. ariakensis Bonamia, NC, USA 
O. puelchana Bonamia, Argentina
O. angasi Bonamia Australia
O. chilensis Bonamia, New Zealand

O. chilensis Bonamia, Chile

B. perspora, NC, USA

S. ostreae, ME, USA

03



50

Figure 5: Maximum parsimony consensus tree resulting from bootstrap and jackknife 
analyses of concatenated internal transcribed spacer (ITS) region and small subunit 
(SSU) ribosomal RNA (rRNA) gene sequences of Bonamia spp. Tree branch support 
was assessed using 1,000 bootstrap replicates and 100 random additions and 10,000 
jackknife replicates with 1,000 random additions with 25% of characters deleted in each 
replicate. Jackknife support values are shown above the bipartition, and bootstrap 
support values are shown below the bipartition.
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DISCUSSION

A phylogenetic analysis of the genus Bonamia was carried out in this study using 

information from the SSU gene and the ITS region of the ribosomal RNA (rRNA) gene 

complex. Phylogenetic relationships of the Bonamia parasites were inferred by 

examining the phylogenetic trees of each region of the rRNA gene complex separately, 

and also by assessing the relationship using the combined data. Both the ITS region 

analysis and the combined ITS/S SU analysis resulted in trees with similar topologies 

hypothesizing the same general relationships among the taxa. The SSU analyses gave 

strong support (100%) for the overall grouping of the B. exitiosa-like sequences, the 

Chilean Bonamia sequence, and the B. roughleyi and B. exitiosa type sequences. The 

SSU tree topologies gave low bootstrap support for the grouping of B. ostreae with B. 

perspora (71%), but yielded moderate support (86%) in the jackknife analysis. Also, by 

adding a Minchinia outgroup, the SSU tree topologies were able to support the placement 

of all of the experimental sequences within the genus Bonamia.

Small Subunit Ribosomal RNA gene

The multiple alignment of the Bonamia spp. SSU rRNA gene sequences depicted 

a few polymorphisms among the sequences; however, overall the sequences were highly 

conserved. The greatest differences among the SSU sequences occurred between the B. 

perspora sequence and the B. exitiosa-like group, the B. ostreae sequence and the B. 

exitiosa-like group, between the B. perspora sequence and the Chilean Bonamia sp. 

sequences, and between the B. ostreae and the Chilean Bonamia sp. sequences. There 

were also differences observed between the B. perspora and B. ostreae sequences. Slight
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differences were observed between the B. exitiosa type sequence and the B. exitiosa-like 

sequences, between the B. exitiosa type sequence and the B. roughleyi type sequence, 

between the B. roughleyi type sequence and the B. exitiosa-like sequences, between the 

Chilean Bonamia sp. sequence and the B. exitiosa-\ikQ sequences, between the Chilean 

Bonamia sp. sequence and the B. roughleyi type sequence, and between the Chilean 

Bonamia sp. sequence and the B. exitiosa type sequence.

There were, however, limitations to using the SSU rRNA gene, as was discovered 

by the lack of resolution between the Chilean Bonamia sequences and the B. exitiosa-like 

group (Figure 3). Apparent in both the jackknife and bootstrap analyses was a sub-clade 

consisting of B. roughleyi and B. exitiosa-type sequences; though there was extremely 

low support for this relationship (bootstrap support-60%, jackknife support-71%). 

Although the B. exitiosa type sequence did not group amongst the B. exitiosa-WkQ 

sequences in the main clade, the pairwise distance analysis suggests the B. exitiosa type 

sequence is more similar to the B. exitiosa-like sequences (difference of 0.31%) than the 

B. exitiosa type sequence is to the B. roughleyi type sequence (0.46%). It should be 

noted that the pairwise distance analysis is based on 668 characters, whereas the 

phylogenetic analyses are based on 1769 characters, which is likely the cause for the 

discrepancy. Nonetheless, both the bootstrap and jackknife analyses of the SSU rRNA 

gene produced similar tree topologies and differed only by their jackknife and bootstrap 

values (Figure 3). Hillis and Dixon (1991) suggested that SSU rDNA sequences are 

better at depicting divergences that took place nearly 500 million years ago during the 

Precambrian period or for more distantly diverged taxa. In addition, they suggested that 

regions most suitable for phylogenetic analyses are greater than 70 percent, but less than
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100 percent similar. Table 3 depicts uncorrected (“p”) distances for nine SSU Bonamia 

sequences. None of the Bonamia sequences differ from one another by more than 4.5%. 

Similarity among the B. exitiosa-like sequences is 100%. In addition, the Chilean 

Bonamia sp. sequence and the B. roughleyi sequence differ from the B. exitiosa-like 

group by only 0.16% and 0.77% respectively. Comparing B. perspora and B. ostreae to 

the B. exitiosa-like Bonamia spp. sequence led to differences of 3.6% and 4.1%, 

respectively. Comparing B. perspora and B. ostreae to the Chilean Bonamia sp. sequence 

resulted in differences of 3.8% and 4.2% respectively. The greatest pairwise distance 

values occurred between the B. exitiosa type sequence and B. perspora (4.5%) and 

between the B. exitiosa type sequence and B. ostreae (4.3%). When B. perspora and B. 

ostreae were compared to the B. roughleyi type sequence differences of 4.4% and 4.2% 

were observed. Comparison between B. ostreae and B. perspora resulted in a difference 

of 2.6%. With such a high degree of similarity between the B. exitiosa-Wks sequences 

and the Chilean Bonamia sequence, it is difficult to separate these sequences beyond the 

genus level. Nonetheless, the results from the SSU rRNA analyses and the pairwise 

distance values were sufficient to reject the hypothesis that the Bonamia sp. found in 

North Carolina is closely related to B. perspora and/or B. ostreae. The results of the SSU 

rRNA gene sequences were used in this study, however, to confirm, that the Bonamia- 

like parasites that were sequenced from varying locations of the world do share a 

common ancestor with the other identified Bonamia species and should be placed within 

the genus Bonamia.
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ITS regions 1 and 2 and the 5.8S gene

This study is the first time a broad-scale phylogenetic study has been conducted 

on the ITS region of Bonamia spp. infecting oysters. Only one previous study 

constructed a molecular phylogeny of the genus Bonamia using ITS-1 data (Corbiel et al. 

2006a). Corbiel et al (2006) identified the parasite infecting O. angasi oysters in 

Australia by sequencing the SSU rRNA gene and the ITS-1 region. In the present study, 

analyses of the ITS-1/5.8S/ITS-2 region for both characterized and uncharacterized 

Bonamia parasites indicate the Bonamia from North Carolina, Argentina, NSW,

Australia, and New Zealand are closely related to one another. As indicated by the 

results of the bootstrap and jackknife trees, the C. ariakensis, O. puelchana, O. chilensis 

from New Zealand, and O. angasi Bonamia spp. form a monophyletic clade. Support 

values for this grouping were 100 when both the jackknife and bootstrap trees were 

analyzed. Likewise, the ITS analyses indicate the Chilean Bonamia sp. is not as closely 

related to the O. chilensis Bonamia sp. from New Zealand as are the C. ariakensis 

Bonamia sp., the O. puelchana Bonamia sp., and the O. angasi Bonamia sp. The Chilean 

Bonamia sp. is also neither closely related to B. perspora or B. ostreae. What follows is 

a separate discussion of the ITS data of each of the Bonamia-like parasites that were 

analyzed in this study.

Bonamia sp. in Crassostrea ariakensis in NC, USA

This study indicates that the C. ariakensis Bonamia sp. ITS sequences are closely 

related to the O. chilensis B. exitiosa-Wke, sequence from New Zealand and to the other B. 

exitiosa-like ITS sequences. Bootstrap and jackknife branch support for the main B.
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exitiosa-like clade comprised of sequences from the Bonamia sp. infecting C. ariakensis, 

O. puelchana, O. angasi, and O. chilensis from New Zealand were 100%. Also, the B. 

exitiosa-like clade was distinct from the Chilean Bonamia sp., the B. perspora, and the B. 

ostreae clades, which further supports the close relationship between the C. ariakensis 

Bonamia sp. and the O. chilensis B. exitiosa-Wke sp. from New Zealand and not to either 

B. perspora or to B. ostreae, two Bonamia spp. that have been described from the 

northern hemisphere. The results of the phylogenetic trees, however, do support the 

observation that the C. ariakensis Bonamia sp. is closely related to a species of Bonamia 

that is found in the southern hemisphere.

Also, pairwise distances, of the ITS region sequences, between the C. ariakensis 

Bonamia sp. and the O. chilensis B. exitiosa-Wke sp. from New Zealand equaled 0.4%. 

Comparing this value with the values given by the pairwise distances between the C. 

ariakensis Bonamia sp. and B. ostreae (35. l%-36.3%) and between the C. ariakensis 

Bonamia sp. and B. perspora (36.0-36.5%%), it is apparent that the C. ariakensis 

Bonamia sp. is relatively closely related to the O. chilensis B. exitiosa-like sequence from 

New Zealand. Additionally, since the ITS region is a highly variable region in the rRNA 

gene complex, highly divergent sequences would be expected to have a distance value 

greater than 0.4% if in fact the sequences belonged to two different species (Hillis and 

Dixon, 1991; Pelandakis et al. 2000).

Bonamia sp. in Ostrea angasi in Australia

This study indicates that the O. angasi Bonamia sp. ITS sequences are more 

closely related to the New Zealand O. chilensis B. exitiosa-like sequence and to the other
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B. exitiosa-like ITS sequences than to any of the remaining Bonamia species ITS 

sequences. Based on the ITS tree topologies, the O. angasi Bonamia sp. groups with the 

B. exitiosa-like sequences, with bootstrap and jackknife support of 100%. There are also 

three locations within the B. exitiosa-like clade wherein O. angasi Bonamia sp. sequences 

can be found. Two of the O. angasi Bonamia ITS sequences fall out amongst the main 

clade, which contains the O. chilensis B. exitiosa-like sp. from New Zealand ITS 

sequences; however, 4 of the O. angasi Bonamia sp. ITS sequences fall within a sub 

clade that includes the O. puelchana Bonamia sp., the O. angasi Bonamia sp., and the C. 

ariakensis Bonamia sp. sequences and are supported by the relatively low bootstrap and 

jackknife values of 55% and 52%, respectively. Embedded in this clade is another clade 

that is comprised only of two O. angasi Bonamia sp. sequences and is supported by a 

bootstrap value of 65%, and a jackknife value of 74%. These relationships indicate the 

close resemblance of the O. angasi Bonamia sp. ITS sequences to the O. chilensis B. 

exitiosa-like sp. and other B. exitiosa-like ITS sequences. Thus, the results of the ITS 

phylogenetic analyses fail to support the third hypothesis in this study, which states that 

the Bonamia sp. infecting O. angasi oysters from Australia is a novel Bonamia sp.

Instead, the results of this study suggest that the O. angasi Bonamia sp. is closely related 

to the other B. exitiosa-like sequences used in this study, although further data from 

additional loci is needed to confidently make this assertion.

Pairwise distances (Table 4), also suggest that the O. angasi Bonamia sp. is 

closely related to the C. ariakensis Bonamia sp., the O. puelchana Bonamia sp., as well 

as to the New Zeland O. chilensis B. exitiosa-like sp. It has not yet been determined 

whether or not B. exitiosa was present in Australia prior to its initial observation in the
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1990s (Diggles 2005). Studies claim the parasite might have existed as far back as the 

late 1800s; however, no conclusive evidence exists to support this hypothesis (Diggles 

2005).

Bonamia sp. in Ostrea puelchana in Argentina

Kroeck and Montes (2005) described a Bonamia sp. infecting O. puelchana 

stocks in San Antonio Bay, Argentina. They described physical signs in oysters 

including hemocytic infiltration of connective tissue of the mantle, gills, and digestive 

gland and concluded that bonamiasis was the cause of mortality; however, they were 

unable to specifically identify the parasite. The molecular analyses of the SSU and ITS 

regions presented in this study, suggest that the Argentinean Bonamia parasite is more 

closely related to the B. exitiosa-like sequences than to any other formerly characterized 

Bonamia sp.

The clade that was comprised of the O. puelchana Bonamia sp., the New Zealand 

O. chilensis B. exitiosa-like sp., the C. ariakensis Bonamia sp., and the O. angasi 

Bonamia sp. ITS sequences was supported by a value of 100% for both bootstrap and 

jackknife analyses. Ostrea puelchana Bonamia sp. ITS sequences were only observed 

among the B. exitiosa-like clade, which is contrary to the hypothesis proposed in this 

thesis that the O. puelchana Bonamia sp. is closely related to the Chilean Bonamia sp.

Pairwise distance analysis of the ITS region also suggest the O. puelchana 

Bonamia sp. is more closely related to the O. chilensis B. exitiosa-like sp. with a distance 

of 0.6% than to the Chilean Bonamia sp, which has a distances of 15.5% andl5.7%. 

Pairwise distances between the O. puelchana Bonamia sp. and the O. angasi Bonamia
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sp., as well as between the O. puelchana Bonamia sp. and the C. ariakensis Bonamia sp., 

equaled 0.2% for each comparison. These results suggest that the O. puelchana Bonamia 

sp. ITS sequences are more similar to the C. ariakensis Bonamia sp. and to the O. angasi 

Bonamia sp. ITS sequences than to the O. chilensis B. exitiosa-\\kQ sp. ITS sequences 

although more sampling would need to be done to confirm this observation.

In summary, the Bonamia-Yikc sequences from C. ariakensis, O. puelchana, and 

O. angasi, are closely related to, or may even be the same species as the New Zealand O. 

chilensis B. exitiosa-Y\k.Q sp. To determine if the O. chilensis B. exitiosa-like 

sp.sequenced for this project is B. exitiosa, more molecular data is needed for the B. 

exitiosa type sequence. In addition, the recent discovery of a B. exitiosa-like parasite in 

O. edulis from Spain may further extend the range and host specificity of B. exitiosa, if 

these are all indeed the same species (Abollo et al. 2008).

Bonamia sp. in Ostrea chilensis in Chile

Previous analyses of complete ITS data have not been published for the Chilean 

Bonamia parasite, although partial sequence data for this species have been deposited in 

GenBank (accession number AY539840). Corbeil et al. (2006), suggested ITS-1 

sequence information for the Chilean Bonamia sp. was more similar to B. exitiosa and the 

O. angasi Bonamia sp. sequences than to a B. ostreae sequence.

Range extension of O. chilensis by rafting was hypothesized by O’ Foighil et al. 

(1999) for O. chilensis oysters. Several scenarios were proposed to explain how O. 

chilensis oysters arrived in Chile. Given that New Zealand O. chilensis populations are 

ancestral to those in Chile, that O. chilensis oysters lack an extended pelagic larval phase,
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and that Chile and New Zealand are separated by 7000km of open-ocean, it was 

hypothesized that oysters rafted on pumice from New Zealand to Chile (O’ Foighil et al. 

1999). This was thought to support claims that the Bonamia sp. in Chile is closely 

related to B. exitiosa found in New Zealand.

Based on these previous studies, I hypothesized that the Chilean Bonamia sp. 

would group with the other Bonamia spp. parasites that have been described from the 

southern hemisphere. Bootstrap and jackknife analyses, however, indicated that the 

Chilean Bonamia sp. forms a sister clade to the B. exitiosa-like clade. Support for the 

Chilean Bonamia sp. clade was 100% for both the bootstrap and jackknife analyses. 

Additionally, the Chilean Bonamia sp. sequences did not fall among the B. perspora 

clade.

Pairwise distances between the Chilean Bonamia sp. ITS sequences and the B. 

exitiosa-\\kQ ITS sequences are between 15.3% and 16.4%. However, if pairwise 

differences between the O. chilensis Bonamia sp. from Chile and B. ostreae and between 

the O. chilensis Bonamia sp. from Chile and B. perspora are compared, the differences 

are between 34.6% and 35.8% and between 38.2% and 39.0% respectively. This 

suggests that the Bonamia sp. infecting Chilean O. chilensis oysters is not closely related 

to B. perspora or B. ostreae. The results from this study also support rejection of the 

second hypothesis in which it was proposed the Chilean Bonamia sp. and the O. 

puelchana Bonamia sp. are closely related. The results do, however, support placement 

of the Chilean Bonamia sp. as a sister clade to the B. exitiosa-like clade.

Taking a further look at the hypothesis of range extension by rafting, O’ Foighil et 

al. (1999) hypothesized that post-metamorphic New Zealand O. chilensis oysters were
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rafted on pumice, which is thought to be a suitable substrate for long-distance transport of 

hard-bottom, suspension-feeding, epibenthic organisms. Radiocarbon dating of O. 

chilensis oysters from an oyster midden site in southern Chile estimates O. chilensis 

oysters were present 2998-3383 years ago, which predates human existence in the area 

and nullifies anthropogenic influences on the transport of O. chilensis oysters to Chile (O 

Foighil et al. 1999). If B. exitiosa has been present in New Zealand for thousands of 

years, it is possible that when O. chilensis oysters were rafted from New Zealand to 

Chile, they carried the parasite with them. Although this prediction is not entirely 

impossible, the ITS data from this study suggests that 3000 yrs is not nearly enough time 

for two populations of Bonamia to accumulate differences of 15.3% and 16.4% in the 

nucleotide sequences of their ITS regions (Kimura 1968). This evidence thus leads to 

rejection of the hypothesis of rafting of B. exitiosa from New Zealand to Chile by way of 

infected O. chilensis oysters.

The addition of B. roughleyi and B. exitiosa type ITS sequence information to this 

data set would help support any claims that the Chilean Bonamia sp. might in fact be a 

new species of Bonamia. Although there are clear differences in the SSU sequences of 

all three parasites, we cannot say that the Chilean Bonamia parasite represents a distinct 

species until more molecular information becomes available for both the B. roughleyi and 

B. exitiosa type species.

Bonamia roughleyi in Saccoslrea glomerata in Australia

Bonamia roughleyi DNA was not detected in any of the S. glomerata oysters 

sampled in this study, and it is worth determining if B. roughleyi is the actual cause for
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winter mortality of S. glomerata. Neither of two attempts to obtain B. roughleyi 

sequence information was successful. Even when oysters were sampled in August, when 

infections are expected to be most prevalent, no evidence of B. roughleyi was found. In 

addition, Adlard and Lester (1995) conceded that diagnosis of B. roughleyi is problematic 

because intensity of infection is low in natural infections. Our inabilities to detect B. 

roughleyi infection in oysters support the view that if the parasite is present in S. 

glomerata, it most likely occurs at very low intensity and prevalence. It is also possible 

that B. roughleyi is not the causative agent of winter mortality in S. glomerata.

Various other factors, not addressed in this study, might also be the source for 

winter mortality. Elevation in temperature has been documented to cause summer seed 

mortality of Crassostrea gigas grown in Tomales Bay, California (Burge et al. 2007). 

Additionally, mortality of marine organisms in Offatts Bayou in Galveston has been 

linked to dredging in the inner Bayou in conjunction with the incorporation of a chemical 

change, such as hydrogen sulfide, into the environment (Gunter, 1942). Samain et al. 

(2007) identified environmental stressors, to include hydrogen sulfide (H2S), ammonium 

(NH4+), and ammonia (NH3), which are present in the sediment, as potential sources of 

summer mortality of C. gigas in California. Just as in summer mortality, various 

environmental factors and stressors might also serve as potential sources for winter 

mortality in S. glomerata oysters in NSW, Australia; although additional research is 

needed to determine the exact source(s) of winter mortality.
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SUMMARY

This molecular study combined sequence information from the ITS region and the 

SSU rRNA gene to develop a phylogeny of haplosporidian oyster parasites belonging to 

the genus Bonamia. Previous molecular studies of this genus analyzed the complete SSU 

rDNA of the four recognized Bonamia species and various congeneric species. This is 

the first study that produced a phylogeny of the genus Bonamia using complete ITS 

region sequence data, including the 5.8S gene, combined with SSU data. The 

phylogentic trees that were generated indicated the ITS data were more useful than the 

SSU data at resolving the relationships among the Bonamia species. Future phylogenetic 

studies of this group might focus on developing sequences of the actin genes, the 

cytochrome oxidase 1 (COI) gene, and/or the non-transcribed spacer (NTS) region. Both 

the actin and the COI genes have been used successfully in the past to study relationships 

among closely related organisms (Reece et al. 1997; Otranto et al. 2003; Reece et al.

2004; Ames et al. 2006). The non-transcribed spacer (NTS) region has a much higher 

rate of evolutionary change than the ITS region, and might help resolve small genetic 

differences among members of the B. exitiosa-like clade (Hillis and Dixon 1991; Robledo 

et al. 1999). In addition, including more gene regions into a phylogenetic analysis helps 

to increase the support of certain relationships, especially if the information provided by 

different genes results in a consistent evolutionary signal (Mattern 2004). More 

importantly, future analyses of the genus Bonamia should integrate morphological and 

life cycle information with molecular data to provide a better understanding of the 

evolutionary relationships among Bonamia species.
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Molecular tools can provide a rapid and specific method for parasite detection. 

Bonamia perspora has a low prevalence in nature (between 1.0-2.0%). Current 

populations of O. edulis in Europe and in the United States have exhibited a lower 

prevalence of B. ostreae (26.0%) compared to historic populations (60.0%) (Elston et al. 

1987; Friedman et al. 1989). It is thought that a decline in the prevalence of B. ostreae 

might be due to advanced oyster culturing methods, or the development of resistance to 

the parasite (Friedman et al. 1989). It is also possible that S. glomerata has developed 

resistance to B. roughleyi, and that B. roughleyi is present in this oyster, but at very low 

prevalence levels. This statement might explain why no signal of B. roughleyi was found 

during the two times oysters from NSW, Australia were sampled and tested for B. 

roughleyi infections. In contrast, the B. exitiosa-Wke species that were found in C. 

ariakensis and O. puelchana oysters have a high level of intensity and prevalence of 

infection (Burreson et al. 2004; Kroeck and Montes 2005). An explanation for this 

observation may be that C. ariakensis and O. puelchana are recent hosts for Bonamia 

parasites, and so have not had much time to adapt to the Bonamia spp. parasites.

To revisit the Chilean Bonamia sp. sequences, this sequence showed differences 

in its nucleotide sequence relative to the other Bonamia sp. sequences. However, to 

provide an answer to the question of whether or not the Chilean Bonamia sp. is a novel 

species, one would have to look at multiple datasets to arrive at a conclusion with 

adequate data to support or refute such a statement.

To explain how several B. exitiosa-Wke, parasites have been found in multiple 

species of oysters from different locations, it is possible that commercial transport, 

cultivation and husbandry techniques, or even recreational activities might be
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contributing causes. There are many examples in the literature of unintentional 

introduction of a species (Raloff 1999; Mack et al. 2000; Elston 1986). As stated earlier, 

B. ostreae was introduced into Europe after infected O. edulis oysters were imported to 

help stabilize the dwindling native oyster populations (Elston 1986). In some instances, 

nonindigenous species are introduced via ballast water of commercial ships or through 

biofouling (Chesapeake Bay Commission, 1995). In order to determine if such a mode of 

dispersal is possible for Bonamia species, a thorough examination of the life cycle, traffic 

records of commercial vessels, and information concerning human importations of 

aquatic species is necessary.
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