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A b s t r a c t

Ocean margins are dynamic systems linking the terrestrial and ocean realms. 
These transitional environments determine the fate o f  land-derived materials as they enter 
the ocean. While ocean margins are a relatively small part o f the global ocean area (less 
than - 1 0 % for continental shelves), they comprise a disproportionately large fraction o f  
ocean primary productivity ( - 2 0 %) and receive significant inputs o f organic and 
inorganic river-borne materials from land. The complexity and variability o f individual 
ocean margin systems therefore requires that a variety o f  factors be assessed when 
considering the relevant sources and fates o f carbon and organic matter (OM), and the 
transfer o f these materials through margins to the open oceans. In addition, physical and 
biogeochemical processes must be evaluated on relevant spatial and temporal scales in 
ocean margins in order to establish the net trophic status o f  these systems.

In the present study, a regional-scale geochemical approach was used to assess 
OM sources and utilization in the South Atlantic Bight (SAB). The primary tools used 
include: 1) elemental composition and stoichiometry to assess sources and recycling o f  
OM, 2) natural abundance carbon isotopes to examine sources and ages o f OM in the 
SAB, as well as adjacent rivers, estuaries and salt marshes, and 3) experimental dark 
incubations to evaluate the time frames o f  dissolved OM (DOM) decomposition in the 
SAB, and the elemental and isotopic changes that occur during DOM remineralization.
In this way, a more integrated assessment o f  the sources and cycling o f OM in the SAB 
ocean margin may be made compared to using any o f  these approaches by themselves.

Inner shelf stations received significant inputs o f  dissolved and particulate organic 
carbon (DOC and POC, respectively) from river, estuarine and marsh sources as seen in 
the across-shelf concentration gradients and isotopic signatures o f  both o f these bulk 
pools. The dominant pattern o f DOC sources across the SAB was younger terrestrial 
forms on the inner shelf, grading to older marine forms offshore. In contrast, the 
dominant pattern o f  POC sources across the SAB was older terrestrial forms inshore, 
transitioning to younger marine forms in mid- and outer-shelf waters. In addition, DOM 
in the SAB was significantly depleted in N and P compared to the Redfield ratio, 
suggesting significant DOM recycling throughout the SAB. Distributions and isotopic 
signatures o f carbon and OM were used in a dual isotope mass balance model to estimate 
relative contributions o f  different potential sources. These estimates suggest that river 
and salt marsh materials measurably influenced the composition o f  DOC, POC and DIC 
(up to 80%, 50% and 50%, respectively) pools and their cycling on the inner SAB shelf.

Results from this study also illustrate year-round across-shelf gradients in other 
carbon and OM distributions and associated parameters, and OM recycling in surface 
waters. In addition, temporal changes in the magnitudes and sources o f terrestrial inputs 
to surface waters o f  inner shelf sites from winter/spring (March) to summer/fall (July and 
October) may also affect C and OM processing differently on the mid- and outer shelf 
compared to the nearshore SAB. Finally, several lines o f  evidence presented in the 
current study are consistent with the classification o f the SAB as a heterotrophic ocean 
margin as well as with the “marsh CO2 pump’’ hypothesis.

x



ELEMENTAL AND ISOTOPIC CHARACTERIZATION 
OF ORGANIC MATTER AND CARBON 
IN THE U. S. SOUTH ATLANTIC BIGHT



I n t r o d u c t i o n  &  B a c k g r o u n d

The Role o f Ocean Margins in the Ocean Carbon Cycle

Continental shelf and slope environments play a critical role in the transfer and 

transformation o f  carbon and organic matter between land and ocean, and may support 

as much as half o f  the ocean’s biogeochemical fluxes in this region (Walsh 1991). At 

present, the amounts and forms o f  carbon entering the open ocean from ocean margins 

are poorly constrained and inadequately incorporated into models and budgets o f  the 

ocean and global carbon cycles (Gattuso et al. 1998). In addition, autochthonous 

production in margins is supplemented by terrestrial materials, both as inorganic nutrient 

and allochthonous organic matter (OM) inputs (Hedges 1992; Gattuso et al. 1998;

Jickells 1998). Riverine organic C inputs (ranging from -0 .4  to 0.8 Gt C yr'1; Meybeck 

1993; Richey 2004) are approximately equal to the amount o f  new production (-0 .8  Gt C 

yr'1) in ocean margins and contribute -13%  o f  the C to primary production (6.2 Gt C yr'1) 

occurring in these systems (Chen 2004). However, the stoichiometry, character, age and 

reactivity o f  allochthonous forms o f OM in ocean margins are likely to be very different 

(Hopkinson et al. 1998), and may be represent key factors controlling the net trophic 

status o f  a given margin (Smith and Hollibaugh 1993).

The diverse nature o f  land-ocean boundaries requires that a number o f  different 

types o f  ocean margin systems (representing a variety o f  physical, nutrient, 

climatological regimes, etc.) be examined in order to assess both the magnitudes o f  the 

relevant fluxes, as well as the processes regulating these fluxes (Gattuso et al. 1998; 

Ducklow and McCallister 2004; Borges 2005; Cai et al. 2006). Recently, ocean margins 

have been classified on the basis o f their productivity, fluxes o f materials, stratification, 

regional geomorphology, or latitude (i.e., tropical, temperate or polar/sub-polar systems; 

Borges 2005; Borges et al. 2005; Cai et al. 2006). Thus, single-system estimates may be 

neither representative o f all margin systems nor sufficient for ocean carbon budgets and 

models (Smith and Hollibaugh 1993; Borges 2005).
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Net Trophic Status and Ocean Margin Carbon Fluxes

The net trophic status o f an ecosystem describes the balance o f  net production or 

consumption o f organic C by a system (Smith and Mackenzie 1987) and may be 

evaluated by comparing rates o f OM production (P) and respiration (R) through time as 

they are sustained by the supply o f  metabolites, inorganic nutrients or allochthonous OM 

(Smith and Mackenzie 1987; Smith and Hollibaugh 1993; Ducklow and McCallister 

2004). Net heterotrophic environments consume more OM than they produce and tend to 

act as a source o f  CO2 to the atmosphere, while net autotrophic systems produce more 

OM than is respired and usually act as a sink for atmospheric CO2. The direction o f the 

air-sea CO2 flux is determined by the partial pressure (pCOi) gradient between the two 

media, and is complicated by the increasing anthropogenic CO2 enrichment in the 

atmospheric pool (Gattuso et al. 1998; Ducklow and McCallister 2004). In order to 

measure organic metabolism on continental shelves globally, information on both the 

rates o f  primary production and respiration are needed (Smith and Mackenzie 1987; 

Ducklow and McCallister 2004). Smith and Hollibaugh (1993) estimated that these rates 

are approximately equal on the continental shelves, while Gattuso et al. (1998) have 

calculated shelves to be net autotrophic systems, exporting -2.1 Gt C yr' 1 OM.

In order to assess the factors contributing to net trophic status and the balance o f P 

vs. R, the sources and reactivity o f  allochthonous sources o f  OM must also be considered 

(Gattuso et al. 1998; Duarte and Prairie 2005). Global fluvial export o f  dissolved and 

particulate organic carbon (DOC and POC, respectively) to the coastal oceans is currently 

estimated at -0 .4 -0 .8  Gt C yr' 1 (Meybeck 1993; Hedges et al. 1997; Richey 2004) with 

total carbon (organic plus inorganic) inputs estimated at -1.1 Gt C yr' 1 (Gattuso et al. 

1998; Sabine et al. 2004). The fates o f this allochthonous OM include burial in deltaic 

and shelf sediment (i.e., POC), respiration to inorganic components, or export to the open 

ocean (Smith and Hollibaugh 1993; Hedges et al. 1997; Opsahl and Benner 1997). These
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coastal inputs would be predicted to affect the balance o f  P:R and hence, the trophic 

status o f  margin systems locally, if  not globally (Smith and Hollibaugh 1993). The 

composition and structure o f  marine microbial communities may play a role in regulating 

the accumulation and subsequent remineralization o f OM o f both allochthonous and 

autochthonous origin (Carlson 2002). Biogeochemical cycles in the coastal zone are 

altered by anthropogenic increases o f  organic matter and nutrients via river discharge 

resulting in losses o f C, N, and P from land and a gain o f  C, N, and P in the coastal and 

open ocean reservoirs (Rabouille et al. 2001; Andersson and Mackenzie 2004; Lerman et 

al. 2004).

However, there is still much uncertainty about the reactivity o f  allochthonous 

terrestrial and riverine OM (Hedges et al. 1997; Moran et al. 1999; Raymond and Bauer 

2001b), as well as the turnover processes controlling the elemental stoichiometry o f OM 

in margin environments (Hedges et al. 1997; Hopkinson et al. 2002). For example, the 

“quality” o f OM, e.g., its stoichiometry and biochemical composition, may affect the 

trophic balance o f the system, in that OM with a higher C:N:P will release relatively 

more C when remineralized than lower C:N:P OM which would release proportionately 

more N and P that would be available for additional phytoplankton growth. Similarly, 

certain biomolecules (e.g., amino acids, proteins, nucleic acids, etc.) have been found to 

be relatively more reactive than others (e.g., carbohydrates, lipids, etc.) and tend to be 

preferentially utilized by heterotrophic bacteria (Benner 2002; Killops and Killops 2005).

Present Assessment of Trophic Status for Different Ocean Margins

As a result o f  the diversity and complexity o f shelf systems, their role(s) in the 

carbon cycle has yet to be quantified with any certainty (Chen 2004). Recently, studies 

have shifted to using sea surface CO2 uptake or release as an indicator o f  system level 

trophic status (Smith and Hollibaugh 1993; Ducklow and McCallister 2004), in contrast 

to previous studies that employed production (P) and respiration (R) rate measurements
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solely (del Giorgio et al. 1997; Duarte and Agusti 1998; Williams 1998). Air-sea fluxes 

o f  CO2 indicate if  a region is acting as a net source or sink o f CO2 to the atmosphere and 

also may accurately reflect the metabolic balance between P and R in some regions 

(Frankignoulle and Borges 2001; Duarte and Prairie 2005). However, because the air-sea 

flux is influenced by physical processes (e.g., temperature), biological processes 

(production or consumption o f OM), inputs and export o f  both organic and inorganic 

carbon with neighboring systems as well as accumulation o f  anthropogenic CO2, this 

interpretation should be used with care for evaluating net trophic status (Ducklow and 

McCallister 2004). Presently, synthesis o f air-sea CO2 fluxes in margin systems is based 

on regional differences and comparisons, such as adjacent coastal systems, margin 

morphologies, ocean circulation patterns, and latitudinal divisions (Borges 2005; Cai et 

al. 2006). On the basis o f  these types o f  evaluations, both Borges (2005) and Cai et al. 

(2006) conclude that in general, the coastal ocean acts as a net CO2 sink in high and 

temperate latitudes, and as a net CO2 source in tropical latitudes on an annually integrated 

basis.

Borges (2005) further examined differences between systems by comparing the 

carbon budgets o f  the South Atlantic Bight (SAB) and the North Sea. He concluded that 

while both are heterotrophic systems, respiring more OM than they produce, the SAB is a 

source o f  CO2 to the atmosphere because it is permanently well mixed in contrast to the 

North Sea which is a sink for atmospheric CO2 because it is seasonally stratified and can 

export DIC more efficiently to the ocean (Borges 2005). Such a finding is a reminder o f  

the necessity to consider both physical and biological factors, as well as the variability o f  

A/7CO2 in time and space (Ducklow and McCallister 2004). The need for a more 

extensive spatial and temporal observational network o f  margin systems is also evident 

from findings such as these (Cai et al. 2006).
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Evaluating Organic Matter Sources and Cycling in Ocean Margins

A number o f  approaches have been developed for tracing the sources and fates o f  

autochthonous and allochthonous OM in marine systems, including elemental 

composition and stoichiometry (Jackson and Williams 1985; Hopkinson et al. 1997), 

organic biomarkers (Meyers-Schulte and Hedges 1986; Macko 1994; Hedges et al. 1997; 

Benner 2004), and stable and radio-isotope natural abundances (Fry and Sherr 1984; 

Michener and Schell 1994; Bauer 2002). It should be noted that each o f  these approaches 

has advantages and disadvantages, depending on the processes and time scales being 

examined.

With respect to elemental stoichiometry, the extent o f coupling between dissolved 

organic C, N, and P is critical to evaluating the inputs, decomposition and transport o f  

OM throughout a given system (Hopkinson et al. 2002). In the ocean, terrestrial OM is 

thought to be rapidly degraded, but identifying the processes and the associated factors 

controlling them has proved challenging (Hedges et al. 1997). Stoichiometric variations 

o f OM composition in the coastal ocean are believed to be related to its sources 

(terrestrial vs. marine), as well as decomposition by biotic (bacterial remineralization) 

(Hopkinson and Vallino 2005), abiotic (photochemical; Miller and Zepp 1995), or a 

combination o f both processes (Amon and Benner 1996; Miller and Moran 1997; 

Obemosterer and Benner 2004; McCallister et al. 2006).

Vascular plants exhibit many bulk chemical and isotopic properties that 

distinguish them from marine organisms (Hedges et al. 1997). Organic substances 

unique to vascular land plants characteristically contain high concentrations o f nitrogen- 

free biomacromolecules, such as lignin (Hedges et al. 1997; Killops and Killops 2005). It 

is possible to trace the fate o f  terrestrial organic matter in marine ecosystems based on the 

presence o f lignin-derived compounds, thus providing evidence on the presence and 

quantitative importance o f land-derived vascular plant detritus in marine systems (Moran 

et al. 1991; Mannino and Harvey 2000). The application o f  lipid biomarker compounds
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can provide further source-specific information about allochthonous and autochthonous 

inputs and the diagenetic states o f  DOM and POM in coastal systems (Shi et al. 2001; 

McCallister et al. 2006).

Natural abundance isotope signatures may also provide an excellent means o f  

tracing sources o f bulk OM (both particulate and dissolved pools) in ocean margin waters 

(Hedges et al. 1997; Peterson 1999), as well as the DIC derived from its respiration 

(Coffin et al. 1994). 5 ,3C is useful for determining dominant sources to an OM pool, 

such as upland C3 plants (S13C=-26 to -30%o), C4 marsh grasses (513C=-13 to -17%o), and 

marine phytoplankton (813C=-20 to-22%o; Fry and Sherr 1984; Boutton 1991b; Coleman 

and Fry 1991; Libes 1992; Michener and Schell 1994). Natural radiocarbon (A14C) 

provides an additional degree o f  sensitivity to end member identification as it has a much 

greater dynamic range o f  values as well as adding a time element to the sources and aging 

OM (Raymond and Bauer 2001c; Bauer 2002; McCallister et al. 2004). A dual carbon 

isotope approach (i.e., using A14C and S13C) allows C pools to be traced even more 

specifically than single isotopes or by using stable isotopes o f multiple elements (e.g., C, 

N, and S) which may “generalize” OM pool sources (Raymond and Bauer 2001c; Bauer 

2002). A14C may further provide information on the residence times o f  OM and when 

combined with 8  13C isotope data, and may help to overcome problems associated with 

source overlap from using S13C exclusively (Raymond and Bauer 2001c; Bauer 2002).

In a similar manner, the dual isotope method may also more accurately identify 

sources o f respired OM contributing to DIC. For example, both 8 13C-DIC and A14C-DIC, 

when plotted against a conservative tracer such as salinity, may be used to generate a 

conservative isotopic mixing model, against which observed S13C-DIC and A14C-DIC 

may be compared (Spiker 1980; Coffin et al. 1994; Raymond and Bauer 2001c). 

Deviations from the mixing line may be used to infer net heterotrophy or autotrophy, as 

well as the isotopic signatures o f OM respired in different systems (Spiker 1980; Coffin 

et al. 1994).
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In the present study, a regional-scale geochemical approach was used to assess 

OM sources and utilization in the SAB. The primary tools used include: 1) OM 

elemental composition and stoichiometry, 2 ) dual carbon isotopes to examine changes in 

the geochemical reactivity o f  OM being exported to and utilized in the SAB ocean 

margin, and 3) experimental dark incubations to evaluate the timeframes o f DOC 

decomposition in the SAB, and the elemental and isotopic changes that occur during 

decomposition. In this way, a more integrated assessment o f  the sources and cycling o f  

OM in ocean margins may be made compared to using any o f these approaches alone.
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R e s e a r c h  O b j e c t iv e s

The primary objective o f  this study was to assess the potential factors contributing 

to net heterotrophy in the SAB ocean margin by examining the spatial and temporal 

biogeochemical variability in the carbon and OM pools there using: i) C, N, and P 

distributions, ii) elemental stoichiometry o f  OM, and iii) natural abundance carbon 

isotope ( ,3C and 14C) distributions in bulk organic and inorganic carbon pools. Three 

hypotheses were posed in an attempt to address these issues:

Hypothesis 1

The concentrations and elemental ratios o f  DOM and POM in the SAB will vary as a 

function of: i) terrestrial and marsh sources being transported offshore and mixing with 

autochthonous shelf-derived OM, and ii) differences in the relative remineralization o f  

the C, N and P components o f  OM in different areas o f the SAB.

• C:N and C:P ratios in DOM and POM will increase as N- and P-depleted OM 

from rivers and marshes mixes with N- and P-enriched material offshore, and as 

heterotrophic bacteria preferentially remineralize the more reactive N and P 

components o f  OM.

Hypothesis 2

The 5 13C and A14C signatures o f DOM, POM and DIC will vary spatially and temporally 

as a function o f  the changing end member sources and remineralization o f  DOM and 

POM throughout the SAB.

• 8 ljC signatures o f  the major carbon pools will exhibit greater contributions from 

C3 and C4 terrestrial plant materials in shallower, fresher inshore waters, while 

offshore and deeper waters will have a stronger marine planktonic isotopic signal. 

The A!4C signature will reflect similar source signatures as well as the relative

9



ages o f  materials as younger river and marsh derived DOM is degraded and 

mixed with older marine DOM (the opposite trend is predicted for POM).

Hypothesis 3

The relative reactivity o f  DOM will vary across the SAB shelf due to differences in OM 

source composition and age.

•  Dark decomposition experiments utilizing SAB surface waters will establish a 

link between the origin o f DOC (i.e., through its A14C and 5 ,3C signatures and 

C:N:P), its reactivity (i.e., through its rates and extents o f  DOC decomposition) 

and the preferences o f free-living bacteria (i.e., through their utilization o f  

isotopically unique DOC components).
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M a t e r ia l s  &  M e t h o d s

The South Atlantic Bight Study Region -  Physical and Biological Setting

The area defined by the SAB extends from Cape Canaveral, FL to Cape Hatteras, 

NC, and the width o f the continental shelf is variable, ranging from 5 to 120 km offshore 

(Figure 1). A notable bathymetric feature is the Charleston Bump where the 500 m 

isobath extends to about 200 km offshore. This irregularity has been found to interfere 

with Gulf Stream flow causing recirculation eddies in its lee (Lee et al. 1991; Boicourt et 

al. 1998), allowing for nutrient rich meanders to intrude onto the SAB shelf. The mean 

circulation in the SAB is primarily driven by seasonal atmospheric variations and 

fluctuations in the position o f  the Gulf Stream (Boicourt et al. 1998). Tidal range is ~ l-3  

m with the maximum range observed o ff Georgia, and this tidal forcing controls seawater 

flow on the inner shelf (Atkinson and Menzel 1985). The SAB shelf is weakly stratified 

in the summer and fall months, while in the winter and spring it is well mixed (Menzel 

1993).

Mixing o f  water masses in the SAB occurs in two dynamic frontal zones 

(Pomeroy et al. 2000). The first occurs over the inner shelf around thel5 m isobath, and 

is defined by the mixing o f  estuarine water with more saline coastal ocean water (Menzel 

1993; Pomeroy et al. 2000). This creates turbid particle-rich waters where enhanced OM 

remineralization may occur (Yoder 1985; Menzel 1993). Beyond this mixing zone are 

nutrient-poor waters on the mid- and outer shelves, bordered by the Gulf Stream to the 

east and a second frontal zone (Pomeroy et al. 2000). Nutrient-rich Gulf Stream waters 

occasionally intrude onto the shelf due to baroclinic instability, acting as a “nutrient 

pump” and allowing mesoscale phytoplankton blooms to occur (Lee et al. 1991). Lee et 

al. (1991) calculated that these blooms were responsible for -4 .3  Tg C yr' 1 in new 

production on the outer shelf. It was also suggested that there is a cascade removal 

process o f  the upwelled water mass during the winter due to cooling via heat exchange
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with the atmosphere and subsequent density increases o f the water mass, thus removing 

the phytoplankton C o ff the shelf to the Gulf Stream (Yoder and Ishimaru 1989).

Because the SAB is a subtropical ocean margin with weakly stratified conditions, 

it does not undergo a typical, distinct spring bloom like more highly stratified temperate 

margins, such as the Mid Atlantic Bight (MAB; Menzel 1993). Also in contrast to the 

MAB, benthic primary production (BPP) in the SAB is significant (averaging -400  mg C 

m'2 d'1) on the mid shelf and accounts for almost half o f  the total primary production 

(averaging -1082 mg C m'2 d'1) occurring in the system (Jahnke et al. 2000). In 

subsequent studies, this same group determined that sediments are responsible for half o f  

the total metabolic carbon turnover, implying that sedimentary metabolism is a major 

component o f overall SAB shelf biogeochemical cycling (Jahnke et al. 2005).

Water column primary production in the inner SAB has been measured as -73%  

o f  community metabolism (759 g C m'2 yr'1; Hopkinson 1985), indicating that sources o f  

OM other than autochthonously produced material must supplement respiration there 

(Hopkinson 1985; Menzel 1993; Cai et al. 2003). Stratified conditions further allow for 

increased production o f bacterioplankton biomass in SAB surface waters (Hanson et al. 

1988), which coincides with increased DOC concentrations (Moran et al. 1991).

Bacterial growth efficiency (BGE) in the SAB decreases with increasing distance 

offshore; however, similar isotope dilution studies report a variety o f  BGE values. 

Extremely high BGE values, ranging from 91% on the mid-shelf to relatively low 

efficiencies (55%) close to the Gulf Stream were reported by Pomeroy et al. (2000; 3H- 

leucine incorporation experiments); while Griffith et al. (1990) reported much lower BGE 

measurements, varying from 11 % in Georgia estuaries, to 2% in shelf waters (3H- 

thymidine incorporation experiments). Free-living bacteria in coastal waters are 

estimated to be responsible for 80-99% o f  the pelagic community respiration (Griffith et 

al. 1990). The combined effect o f  high bacterial efficiency and low phytoplankton
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biomass results in a generally smaller number o f trophic levels in the waters o f the SAB 

than expected (Pomeroy et al. 2000).

Trophic Status of the South Atlantic Bight -  Current Understanding

The Georgia coastal system has been well studied for over 50 years by a number 

o f  researchers. Early studies in the 1960’s resulted in the controversial “outwelling 

hypothesis” by Odum (1968), which proposed that salt marsh-dominated estuaries export 

significant quantities o f  nutrients and organic detritus to the inner shelf. Several studies 

have attempted to evaluate the export o f  salt marsh POM to the SAB using stable 

isotopes, but results suggested instead the dominance o f  marine phytoplankton sources 

(Haines 1976; Peterson and Howarth 1987). POM from tidal creeks and estuaries was 

further found to be derived from both salt marshes and marine phytoplankton, but not 

neighboring upland vegetation and soils (Peterson and Howarth 1987).

Dissolved lignin phenols in SAB shelf waters were found to have a negative 

linear correlation with salinity, implying that terrestrial OM that is exported to the shelf 

may behave conservatively in this system (Moran et al. 1991; Hopkinson et al. 1998). 

Moran et al. (1991) also suggested that less than one third o f the bulk DOC in the SAB is 

terrestrially derived based on the lignin phenol concentrations, but this value is 

significantly influenced by freshwater discharge. Thus, in contrast to the stable isotope 

findings, the lignin phenol findings are consistent with Odum’s (1968) “outwelling 

hypothesis”. Part o f  the discrepancy may be the relatively narrow dynamic range o f 5 13C 

as an indicator o f terrestrial, marsh and shelf sources o f organic matter as well as
1 *3overlapping 6  C signatures o f  these sources.

In the 1980’s, studies o f carbon flow within SAB marshes and nearshore waters 

found that on an annual basis more carbon was respired (759 g C m ') than was fixed by 

primary producers (539 g C m'2) and that only in November did photosynthesis exceed 

respiration (Figure 2; Hopkinson 1985). The data further showed a relationship between
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respiration and temperature, but not between respiration and photosynthesis which has 

been interpreted as suggesting a dependence on allochthonous OM in the SAB nearshore 

region (Hopkinson 1985).

More recently, research on the trophic status in this region has focused not only 

on the flux o f OM, but on the transfer o f  dissolved inorganic carbon (DIC), alkalinity, 

and pH from salt marshes to the coastal ocean (Cai and Wang 1998; Wang and Cai 2004; 

Wang et al. 2005). Work in the Duplin River, a marsh dominated estuary, quantified the 

inorganic carbon mass balance and led to the idea o f a “marsh CO2 pump”, referring to 

the annual process o f CO2 accumulation and release in marshes and associated apparent 

net heterotrophy in the estuary (Wang and Cai 2004). This seasonal CO2 cycle in the 

SAB “begins” in the spring and early summer with the accumulation o f  primary producer 

biomass via photosynthesis in salt marshes, followed by an export phase in the late 

summer and fall when primary production decreases and respiration increases, releasing 

DIC and DOC to the adjacent estuaries (Wang and Cai 2004). A similar seasonal cycle is 

evident in the air-sea CO2 fluxes in the coastal waters o f the central SAB (Figure 3; Cai et 

al. 2003). From these and other findings, a carbon transport model was developed for the 

region, indicating that the SAB is net heterotrophic during these studies, acting as a 

source o f  CO2 to the atmosphere and exporting DIC (and possibly DOC) to the adjacent 

open ocean (Cai et al. 2003; Wang et al. 2005).

2005 South Atlantic Bight Field Program: Whole-Shelf Sampling

In order to address the objective and hypotheses for this project, three research 

cruises were conducted in 2005 in the SAB. In March and July, work was conducted on 

the R/VCapeH atteras, while the R/VF.G. Walton Smith served as the platform for the 

October cruise. Sampling was conducted at three stations along each o f  five cross-shelf 

transects (Table 1 and Figure 4) and stations were chosen to be generally representative 

o f  the inner- and mid shelves, and outer shelf/inner slope waters. A SBE 32 Carousel
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Water Sampler (rosette), equipped with 10% HCl-cleaned 30L Niskin bottles with 

external spring closures was used to collect water samples from a series o f depths 

(approximately 2, 50, 150, 300, 500 m depth, and ~5 m above the seafloor) while a 

SeaBird CTD collected continuous hydrographic information.

All seawater samples were processed in a clean van located on the deck o f  the 

ship. Whole, unfiltered water samples were collected for dissolved inorganic carbon 

(DIC) isotopes in duplicate gas-tight 125 mL’ serum bottles (Wheaton) poisoned with 

HgCh and stored in the dark at room temperature. The remainder o f the sample was 

filtered through pre-cleaned 47 mm Whatman QMA quartz fiber filters (baked at 500°C 

for 4 hours) for DOC (i.e., OM in the filtrate) and POC (i.e., OM collected on filters) 

isotopic analyses. Duplicate DOC isotope samples were filtered into 1L pre-cleaned 

glass amber bottles (baked at 500°C for 4 hours), and frozen at -20°C. The volume o f  

water filtered was recorded and all DOC and POC samples were frozen at -20°C until 

analysis. At mid- and outer shelf stations, only one filter was needed per depth due to the 

low particulate loads, however, at inshore stations where there were increased particulate 

loads, multiple filters were necessary. Filtered samples for nutrient (NOx\  NH4+, DON, 

PO4 5', and DOP) and DOC concentrations were collected in duplicate in 125 mL acid 

pre-cleaned Nalgene HDPE bottles and also preserved by freezing at -20°C.

DOM Dark Decomposition Experiments

Surface water samples from central SAB transect C were collected in duplicate 

(designated as A and B) on all cruises and immediately filtered through QMA filters 

(baked at 500°C for 4 hours) into clean 20L polycarbonate carboys (Diamond Springs 

distilled water containers). The carboys were subsequently maintained in the dark at a 

stable room temperature (~22°C) and sampled periodically. Triplicate sub-samples for 

DOC concentrations were collected weekly for the first month, and subsequently 

collected monthly for six months and bimonthly for up to a year or until the DOC
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concentration decreases by ~ 10 -2 0 % or more o f  the original concentration (Hopkinson et 

al. 1997) in order to allow for robust decay rate coefficients and isotopic mass balances to 

be calculated. At the conclusion o f the incubations, final nutrient samples were collected 

in duplicate to quantify the percent o f DON and DOP utilized, calculated as the 

difference between initial and final sample concentrations divided by the initial 

concentration (Hopkinson et al. 1997), and final DOC isotope samples were collected in 

duplicate to determine the isotopic signatures o f  the reactive and refractory DOC 

components (Raymond and Bauer 2001a). Decay rate coefficients (k) were calculated as 

a first order reaction, where concentration is related to the decay rate and time by the 

equation:

C = C0 * e 'kt (Eqn. 1)

Where Co is the initial concentration, t is time, and k is the decay rate coefficient 

(Hopkinson et al. 1997).

2006 Field Program: River and Marsh End-Member Sampling

In order to use dual isotope mixing models for assessing the sources contributing 

to the OM and C pools in the SAB, the isotopic composition o f appropriate major end 

members must be sufficiently constrained (Raymond and Bauer 2001c; Bauer 2002). 

“Terrestrial” end members chosen for evaluation in this study included six rivers and two 

sites in a Georgia coastal salt marsh system. Rivers were sampled in July 2006, and 

included the St. Johns (FL), Altamaha (GA), Savannah (GA), Cooper (SC), Pee Dee 

(SC), and Cape Fear (NC) Rivers. These rivers were chosen on the basis o f their high 

(i.e., relative to other SAB rivers) yearly discharges (Menzel 1993); USGS streamflow 

statistics (http://www.usgs.gov/) were used to observe seasonal trends in discharge 

(shown in Figure 5A-D). The Altamaha, Savannah, Pee Dee and Cape Fear Rivers are 

considered to be piedmont rivers, characterized by high carbonate contents and higher pH 

values (Menzel 1993; Dame et al. 2000). However, the Cooper and St. Johns Rivers are

16

http://www.usgs.gov/


characterized as “blackwatef’" rivers with lower pH values and high humic concentrations 

(Moran et al. 1999; Dame et al. 2000).

Sample sites for terrestrial sources, both riverine and salt marsh, are listed in 

Table 2. Samples for POC, DOC, and DIC isotope measurements, as well as dissolved 

inorganic and organic nutrient samples, were collected from these rivers at sites upstream 

from the point o f  saltwater intrusion and away from any major industrial activities. The 

Savannah and Great Pee Dee Rivers were sampled in completely fresh water portions (S 

<1), while the Cape Fear, Altamaha and St. Johns Rivers were moderately saline (S < 1 0 ). 

Due to limited accessibility to the Cooper River at upstream portions, an estuarine sample 

(S -25 ) was collected from Charleston Harbor. Coastal salt marshes o f  GA were 

characterized using water samples obtained from tidal salt marsh creeks on the Sapelo 

River and Hudson Creek (at the “Marsh Landing”, Georgia Coastal Ecosystems LTER 

research site). All river and marsh tidal creek samples were collected from docks or 

bridges using a combination o f  carboy and pump sampling methods. Water samples were 

processed in the same manner as described above for SAB cruise samples.

The other major end-members used in this study included shelf primary 

production and Gulf Stream waters. The isotopic signature o f contemporary shelf 

primary production was estimated using the DIC isotopic signatures after correcting for 

,3C isotope fractionation by phytoplankton (-19%o; Bauer et al. 2002). Benthic diatoms 

were also considered as a potential end member to this system, but collection o f these 

organisms was not possible during the shelf cruises in 2005. It was assumed that benthic 

plankton would have a similar isotopic signature to water column phytoplankton if  they 

are utilizing water column DIC. However, if  benthic plankton utilize porewater DIC, 

then they may have an isotopically distinct signature from water column phytoplankton 

and this represents a potential source o f  error to the isotopic mass balance analyses. The 

Gulf Stream signature o f DOC and POC was characterized by deep outer shelf/slope 

waters (>-400 m) collected during the regular cruise periods.
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Laboratory and Analytical Methods

Samples for AI4C and 5 13C measurements o f  DOC were processed in the VIMS 

Radiocarbon Laboratory by oxidizing 100-150 mL o f  sample to CO2 using high energy 

UV irradiation. Prior to oxidation, samples were acidified with phosphoric acid to a pH 

o f  2.5 and sparged with ultra high purity Helium gas to remove DIC, followed by 10 

minutes o f  sparging with ultra-high purity O2 gas. Samples were then irradiated with a 

medium pressure mercury arc UV lamp (2400 W) for 3 hours (Bauer 2002; Bauer et al. 

2002). The resulting CO2 gas from the oxidized DOC was then isolated and purified 

cryogenically on a vacuum extraction line, quantified using a calibrated Baratron absolute 

pressure gauge (MKS Industries), and collected in a 6  mm Pyrex break seal tube. The 

vacuum system blank and known DOC isotopic standards (including NIST oxalic acid 

(OX-II) and acetanilide dissolved in UV-irradiated water) were checked regularly using 

the same UV oxidation procedure.

For POC isotopes, filters were thawed, dried for several hours at 35°C and 

exposed for 1-2 days to fresh concentrated HC1 to remove carbonates, and then 

thoroughly dried. The POC filters were then oxidized using CuO and elemental Cu metal 

at 850°C in 9 mm evacuated sealed quartz tubes (Sofer 1980; Raymond and Bauer 

2 0 0 1 c). The evolved CO2 was quantified using the vacuum extraction line procedure 

described above. Filter blanks were also measured periodically to determine background 

levels o f  C, and solid-phase oxalic acid (OX-II) and acetanilide isotopic standards were 

checked regularly for both C recoveries and isotopic signatures using the same sealed 

tube combustion methodology.

Serum bottles containing samples for DIC isotopic analysis were acidified to pH 

2.5 using 85% phosphoric acid (Boutton 1991a). The resulting C 0 2 was stripped from 

the sample by sparging with ultra high purity Helium, collected cryogenically, and 

purified on a vacuum extraction line (Bauer et al. 2002). Quantification and collection o f
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the CO2 was performed on the same vacuum extraction line as described above for DOC, 

but split 10:1 into two separate 6  mm Pyrex break seal tubes. The larger portion was 

analyzed for A14C and the smaller portion for 5 13C. A laboratory inter-calibration 

between the UGA and VIMS laboratories was conducted to ensure high-quality DIC 

concentration data from independent quantification methods used in each lab as part o f  

this study (i.e., vacuum line extractions at VIMS and Li-Cor 6252 H2O/CO2 analyzer at 

UGA).

Samples for A14C were measured by accelerator mass spectrometry (AMS) at the 

NSF AMS Facility at the University o f  Arizona. AMS analytical errors for this study 

were typically ~±5 to 10%o. Average standard deviations o f A,4C o f  replicate samples for 

the different sample types were ±15%o for A14C-DOC, ±1 l%o for AI4C-POC, and ±6%o 

for A14C-DIC. 5 13C analyses were performed on a Thermo-Finnegan Delta Plus isotope 

ratio mass spectrometer (IRMS) at Ohio State University having an analytical error 

typically o f  ±0.1 %o or better, and used to correct the A14C measurements for fractionation 

effects Average standard deviations o f  S13C o f  replicate samples for the different sample 

types were ±0.5%o for 5 13C-DOC, ±0.2%o for 5 13C-POC, and ±0.1%o for 5 !3C-DIC.

Dissolved inorganic N (DIN, as NCV + NCVand NFU*), total dissolved N (TDN), 

dissolved inorganic P (DIP, as PO43'), and total dissolved P (TDP) were measured at the 

VIMS Analytical Service Center using a SKALAR nutrient auto analyzer. Standard 

reference materials were used as independent checks o f the instrument calibration. DIN 

and DIP concentrations were subtracted from persulfate-oxidized TDN and TDP values, 

respectively, to obtain the corresponding DON and DOP concentrations. Method 

detection limits for inorganic components were 0.20 pM for NH4+, 0.27 pM NO2' + NO3', 

and 0.18 pM PO43'. Average standard deviations o f duplicate samples for inorganic 

analytical methods were ±0.12 pM for NH4+, ±0.16 pM for NO2* + NO3', and ±0.04 pM 

for PO43'. For the TDN and TDP pools, method detection limits were 0.76 pM and 0.28 

pM, respectively, and average standard deviations o f duplicate samples were ±0.31 pM
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and ±0.05 pM, respectively. Propagated errors for the DON and DOP results resulted in 

averages o f ±0.45 pM and ±0.07 pM, respectively. A Shimadzu TOC-5000A was used 

for DOC analyses using high temperature Pt-catalyzed oxidation. The method detection 

limit for DOC analysis was 10.0 pM and the mean analytical error o f the method was 

±1.4 pM. The instrument was checked periodically for accuracy using University o f  

Miami DOC reference samples (provided by the laboratory o f Dr. Dennis Hansell; Sharp 

2 0 0 2 ). In addition to analyses o f all duplicate samples collected, instrument precisions o f  

both the SKALAR and Shimadzu were measured by analyzing replicates o f 10% o f the 

samples; spikes o f  1 0 % o f  the samples were analyzed to further assess instrument 

accuracy.

Methodological problems (salinity o f the SAB shelf samples mixing with reagents 

created a high background signal) were encountered in the March 2005 ammonium 

analyses and these values were not used in calculating DON. An alternate method for 

ammonium analysis which allowed for high salinity samples was used for all other 

analyses after this time. Instead, for the March 2005 samples, NH4+ values were 

estimated later from a subset o f  March samples (water from 20 DOC isotope sample 

bottles, -80%  surface waters and -20%  deep water, - 4  stations per transect), which were 

re-analyzed in December 2006. Results were averaged by transect, resulting in a 

maximum standard deviation o f  ±0.33 pM for N H / and a maximum propagated error in 

DON o f  ±1 . 8 6  pM for the March samples.

Data Analysis and Modeling

Changes in SAB surface concentrations o f various analytes are presented using 

plots made in MATLAB. Regression analysis o f various OM and nutrient properties 

against salinity were used to interpret distributions as well as the level o f  conservative vs. 

non-conservative input and/or removal occurring in the SAB. Property-property 

correlations (including both isotopic and non-isotopic data) were also assessed and
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evaluated in a similar manner where appropriate (Jackson and Williams 1985; Hopkinson 

et al. 1997; Raymond et al. 2004). Following the identification o f major spatial and 

temporal features using these graphs, t-tests and one-way ANOVA (calculated using 

Excel and MiniTab) were used to identify significant regional and seasonal trends. T- 

tests were also used for data sets which did not meet the assumption o f equality o f  

variance for ANOVAs. For data sets which were not normally distributed, no statistical 

analysis was conducted beyond reporting o f  means and standard deviations.

Mixing relationships between fresh water and marine end members may provide 

insights to the conservative vs. non-conservative behaviors o f different solutes. For non­

isotopic parameters, the conservative relationship between marine and freshwater end- 

members is described by a line. However, the conservative distributions o f  isotope ratios 

as a function o f  salinity are described by the equation:

Xs = ((Fr*Xr*[DOC]r) + (Fm*Xm*[DOC]m)) / [DOC]s ( Eqn. 2)

where X is the isotopic composition (A14C or 5 13C) o f  river (r) and marine (m) end 

members and at a given salinity (s) (Spiker 1980; Fry 2002; Wang et al. 2004); Fr and Fm 

represent the riverine and marine fractions which can be calculated based on salinity (Fr + 

Fm=l); and [DOC]r, [DOC]m, and [DOC]s are the DOC concentrations at riverine and 

marine end members, and at a given salinity. The [DOC]s is calculated based on Fr and 

Fm. The resulting conservative mixing relationships for 5 13C and A,4C are curved 

because o f the weighting o f  the solute concentrations by the isotopic ratios (i.e., 13C/12C 

and 14C/I2C) used in the 5 and A conventions, respectively.

The carbon isotope data were further used in both single and dual isotopic mass 

balance mixing models to estimate the relative contributions o f different OM sources to a 

given sample and region o f  the SAB (Kwak and Zedler 1997; Peterson 1999; Raymond 

and Bauer 2001c; Bauer 2002). Similarly, DIC isotopes were assessed for the 

contributions o f  different sources and ages o f  respired OM contributing to this pool. In 

order for the isotopic mass balances to be effective, the major end members o f  the system

21



must be identified or reasonably assumed, and their isotopic compositions established 

(Raymond and Bauer 2001c).

For a single isotope 2-source model, the general equation is:

X = f]Xfi + f 2Xf2 (Eqn.3)

where X is the isotopic composition (A,4C or 8 I3C) o f  components 1 (ft) and 2 (f2) and 

where f]+f2=l (Kwak and Zedler 1997); the equations are then solved for fi and f2.

The generalized equation for a two-isotope, 3-source mass balance model is:

X = f,Xn + f2XQ + (l-f,-f2)Xf3 (Eqn. 4)

where X is the isotopic composition (A,4C or 5 ,3C) and where f]+f2+f3=l (Kwak and 

Zedler 1997; Bauer 2002). The A,4C and 5 13C equations are then solved simultaneously 

for f], f2, and fj.
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R e s u l t s

General Hydrographic Features o f the SAB

Sampling stations for each o f  the three 2005 cruises are shown along with 

relevant site information and general physical and hydrographic conditions in Table 1. 

During the March 2005 cruise, physical conditions o f  the water column, such as water 

temperatures, were typical o f winter conditions, rather than early spring conditions 

(Menzel 1993). Surface water temperatures across the shelf showed an onshore-offshore 

gradient, with cooler waters inshore (~10°C), and warmer temperatures offshore (~25°C; 

Table 1), reflecting the presence o f  Gulf Stream waters. Offshore temperatures decreased 

with depth (> -100  m) indicating the permanent thermocline (Table 1). In July 2005, 

surface water temperatures were uniform, creating a smooth, seasonal thermocline profile 

in deeper shelf and slope waters (Table 1). The upper -100  m o f  the water column was 

relatively homogeneously mixed during the October 2005 cruise. Below this depth, the 

thermocline was maintained, and was more similar to July than March conditions (Table 

1).

Salinity varied continuously across the SAB shelf as mixing occurred between the 

riverine and marine end members. The inner shelf region was characterized by a 

relatively large range o f salinities (-30  to 36; Table 1) and showed prominent seasonal 

variations. In March and October 2005, inner shelf stations had the lowest salinity values 

(-30), while in July inner shelf salinities ranged from -3 2  up to 36. Mid- and outer shelf 

stations had higher salinities (-34  to 36, and -36 , respectively; Table 1). In deep shelf 

and slope waters, salinity decreased slightly to -35  where Gulf Stream waters were 

intruding on to the shelf and slope, similar to conditions observed in previous studies 

(Lee et al. 1991).

23



DOC and POC Distributions in the SAB

DOC concentrations in SAB surface waters (upper -2  m) during 2005 ranged 

from a maximum o f 240 pM on the inner shelf o f C transect in October to -8 0  pM on the 

outer shelf throughout the year (Table 3; Figures 6 A-C). In surface waters o f the outer 

shelf, DOC tended to remain at this background concentration during all three sampling 

periods (Figures 6 A-C). For all 2005 cruises (Figures 6 A-C), across-shelf DOC 

concentrations showed significant decreases from inner shelf sites (mean = 145 ± 46 pM, 

n=28) to outer shelf sites (mean = 82 ± 7 pM, n=33; t-test, PO .01). The inner shelf o f  C 

transect, especially station C01 adjacent to the outflow o f  the Sapelo River, was typically 

the site o f highest DOC concentrations, resulting in an across-shelf decrease for all 

cruise dates (Figures 6 A-C). A temporal difference was also evident where DOC 

concentrations at inner shelf stations (specifically station C01) increased throughout the 

year, averaging 130 ±  24 pM in March (n=9) and up to 170 ±  45 pM in October (n=10; 

one-way ANOVA; P=0.03). DOC profiles for selected stations showed a consistent 

decrease to a mean o f  57 ±  9 pM (n = 110) at depths >100 m for all sampling periods 

(Figures 7A-C).

Similar to DOC, surface (upper -2  m) POC concentrations also showed strong 

across-shelf decreases (Figures 8 A-C). The highest concentrations o f  POC occurred on 

the inner shelf, ranging from a high o f  698 pg/L at C01 in October to background average 

o f  44 ± 35 pg/L (n = 10) at outer shelf surface stations. In March (Figure 8 A), the 

highest shelf POC concentration, 269 pg/L, occurred at station DO 1. These elevated POC 

concentrations at D01 were extended across the shelf (95 pg/L at station D 11), creating a 

non-continuous across-shelf distribution (Figure 8 A), that differed from than the other 

sample dates where high concentrations originated from station C01 (Figures 8 B-C). In 

July and October, POC followed a similar and more “typical” spatial distribution to the 

DOC concentrations, where POC decreased rapidly from the inner shelf maximum at 

station C01 towards the mid- and outer shelf stations, resulting in concentrations o f  -2 0
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to 50 fig/L at those stations (Figures 8 B-C). Also similar to DOC, there was an increase 

in the overall POC concentration throughout the year (Figures 8 A-C) with lowest 

concentrations in March (even though river discharge was highest during this sample 

time, Figures 5A-D) and highest concentrations in October.

DOC and POC Isotopic Signatures in the SAB

Generally, DOC isotopic signatures showed more consistent across-shelf changes 

than the POC isotopes, which were more variable (Table 4; Figures 9A-C, 10A-C, 11A- 

C, and 12A-C). Throughout 2005, 5 13C-DOC tended to be more depleted (mean = -24.0 

±  0.7%o, n=12) at inner shelf stations (Figures 9A-C), while at mid- and outer shelf 

stations 5 I3C-DOC signatures tended to be significantly heavier (mean = -22.1 ± 0.6%o, 

n=22; one-way ANOVA, PO .O l). No distinct seasonal variability in S ,3C-DOC between 

the three sampling periods was noted (Figures 9A-C).

AI4C-DOC displayed strong across-shelf decreases (Figures 10A-C) with inner 

shelf stations being more enriched (mean = -43 ±  65%o, n=T2) than mid- and outer shelf 

stations (mean = -199 ±  55%o, n=22; one-way A NO VA, PO .O l). In March and July the 

Ai4C-DOC signature o f inner shelf stations ranged from -111 %o to -6%o while outer shelf 

stations were less variable, having A14C-DOC signatures between -281%o and -242%o 

(Figures 10A-B). During the October sampling, inner shelf stations o f  transects B and C 

had similar and relatively enriched A,4C-DOC values (41 %o to 52%o), although station 

D01 had a more depleted value (-1 10%o; Figure 10C). Similar results were found at the 

outer shelf stations in October where A,4C-DOC signatures were more enriched along 

transects B and C (-135%o to -133%o) than on D transect (-248%o; Figure 10C).

A14C and S13C values o f POC (Table 4; Figures 11A-C and 12A-C) were much 

more variable than for DOC. There were no clear spatial patterns in POC isotopic 

composition in surface waters, most likely due to the heterogeneous nature o f  POC and 

its susceptibility to processes such as resuspension in shallow SAB shelf waters
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(Nittrouer and Wright 1994). In surface waters, 5 ,3C-POC ranged from -23.3%o to - 

18.5%o (Figures 11A-C), with these two extremes occurring at nearby stations during the 

March cruise. At inner shelf stations, 8 13C-POC became significantly more depleted over 

the course o f  the year, averaging at -21.9 ±  0.4%o in March (n=4) and -20.9 ±  0.3%o in 

October (n=4; one-way ANOVA, P O .O l). Overall, S13C-POC exhibited a relatively 

small range o f  values and variable spatial distributions.

The A14C-POC distributions allowed for some generalizations about spatial and 

temporal distributions to be identified (Figures 12A-C). In March, inner shelf A14C-POC 

tended to be more depleted (mean = -25 ±  15%o, n=4), while mid- and outer shelf stations 

were overall more enriched with bomb-14C (mean = 21 ± 40%o, n=5; Figure 12A). In 

July and October, this distribution was reversed, where inner shelf POC tended to be 

more enriched in 14C than on the outer shelf (Figures 12B-C). In July, A14C-POC 

signatures on C transect ranged from 36%o on the inner shelf to 12%o on the outer shelf 

(Figure 12B). A14C-POC signatures in October were more depleted than in March and 

July, ranging from a high o f  -3%o on the inner shelf (mean = -28 ± 17%o, n=4) to a low o f  

-91%o on the outer shelf (mean = -66 ±  33%o, n=4; Figure 12C). One striking feature o f  

the October A14C-POC data was that on the mid shelf signatures were modem and bomb 

14C-enriched, i.e., up to +2%o. The outer shelf stations displayed a significant seasonal 

change in the A14C-POC signature; in March outer shelf samples were enriched (mean = 

21 ±  40%o, n=5) while in October they were more depleted (mean = -66 ±  33%o, n=4; 

one-way ANOVA, P=0.01).

Deep outer shelf and slope waters (>~400 m) were collected on all cruises, and 

selected samples were analyzed for isotopic signatures in order to characterize the Gulf 

Stream as a potential end member (Table 4). DOC concentration was ~50 pM in these 

deeper waters while POC concentration was <~6 pg/L (Table 3). The 5 13C o f  DOC 

averaged -22.0 ± 0.6%o (n=4), while A14C-DOC averaged -379 ±  16%o (n=4; Table 4).
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The isotopic composition o f Gulf Stream POC was also depleted, with 513C averaging - 

26.6 ±  2.0%o (n=3), and A14C averaging -395 ± 128%o (n=3; Table 4).

N  and P Distributions in the SAB

DON and DOP concentrations, which are the forms o f the nutrient elements o f  

greatest interest to the present study, are presented in Figures 13A-C, 14A-C, 15A-C, and 

16A-C and Table 3. In addition, Appendix Table 1 lists all inorganic and organic nutrient 

data for all samples from the three 2005 SAB cruises (i.e., N H /, N 0 2 * + N 0 3 *, P 0 4‘, 

TDN, TDP). Surface concentrations o f DON in the inner SAB were ~2-3-fold higher 

than mid- and outer shelf stations (Table 3; Figures 13A-C and 14A-C). Typically, the 

largest decrease in DON occurred in surface waters between the inner- and mid shelf 

regions, while smaller decreases occurred between the mid- and outer shelves (Figures 

13A-C). Concentrations o f  DON in surface waters during the March cruise showed the 

lowest range o f  values o f  all three cruises (2-8 pM; Figure 13A). In July and October 

2005, surface concentrations o f  DON ranged from -15  pM on the inner shelf at station 

C01 to - 6  pM at outer shelf stations (Figures 13B-C). Depth profiles in March show a 

doubling o f DON concentrations at depths >~ 100m at outer shelf stations, ranging from 

-5  pM in surface waters to - 9  pM at depth (Figure 14A). However, in July and October, 

DON concentrations decreased or showed little change at depth (remaining at - 4  pM at 

outer shelf stations; Figures 14B and C, respectively).

Throughout 2005, DOP concentrations in surface waters were consistently low (< 

-0 .3  pM) making it difficult to identity any consistent spatial or temporal patterns using 

the present analytical method and limitations (Table 3; Figures 15A-C and 16A-C). DOP 

concentrations at depths >100 m showed similar general distributions to the DON 

concentrations, where there was an increase in March (from <0.1 pM at the surface to 

-0 .7  pM at depth; Figure 16A). However, in July and October, DOP either decreased or 

showed little change over the water column (Figures 16B-C). At depths > 100 m, any P
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present was usually entirely in the inorganic form, resulting in estimated DOP 

concentrations that were below detection (Figures 16A-C).

In March, there appeared to be anomalous distributions o f  DON and DOP in 

deeper waters (>100 m). DON in surface waters was relatively high ( ~ 8  pM) at inner 

shelf stations, and considerably lower (-2  pM) at the mid and outer shelf stations, 

especially along the northernmost transect (E; Figure 13A). E transect had the highest 

concentrations o f  DOP in surface waters in March (~0.2 pM; Figure 15A). Perhaps most 

intriguing, however, was during March in deep outer shelf waters (>150 m), when 

concentrations o f DOC remained at background levels (-50  pM), there was a large 

concomitant increase in DON and DOP concentrations up to -1 4  pM and -0 .7  pM, 

respectively (Table 3; Figures 14A and 16A).

Distributions and Isotopic Signatures o f DIC in the SAB

Concentrations o f  DIC in surface waters (<50 m water depth; Table 5; Figures 

17A-C) were generally lower on the inner shelf (mean = 2022 ±  6 6  pM, n=30) o f the 

SAB than the mid- and outer shelf regions (mean = 2076 ± 44 pM, n=80; t-test, P<0.01). 

The lowest concentrations o f  DIC were often found at station C01. Each sampling period 

had unique and differentiable surface distributions o f DIC (Figures 17A-C). In March, an 

across-shelf gradient was observed, but in July and October, DIC concentrations had 

stronger north-south differences. Throughout the year, DIC concentrations also increased 

in deeper waters (>50 m) o f  the outer shelf region (Figures 18A-C).

In March 2005, DIC concentrations displayed an across-shelf distribution, with 

concentrations highest on the mid-shelf (2135 pM) and lowest on the inner shelf (2040 

pM; Figure 17A). During the summer sampling period, in July, surface water samples 

had a smaller range o f DIC concentrations (from 2000 pM to 2120 pM; Figure 17B). At 

this time, there appeared to be a north-south gradient in DIC, where the highest 

concentrations were observed along B transect at the inner and mid shelf stations and
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lower concentrations o f  DIC along C and D transects (Figure 17B). Surface water DIC 

from the October cruise (Figure 17C) was lowest along C transect (ranging from 1950 

pM at C01 to 2020 pM at Cl 5), while increasing up to 2170 pM at outer shelf stations to 

both the north and south (Figure 17C).

Generally, the isotopic signatures o f DIC in surface waters (upper - 2  m) 

displayed an across-shelf increase in 5 I3C, but not in A,4C. 5 13C-DIC was depleted at 

inner shelf stations throughout the year, averaging -0.1 ±  0.9%o (n=30) in surface waters, 

and enriched at mid- and outer shelf stations, averaging 1.1 ±  0.4%o (n=80; t-test, PO.Ol; 

Table 5; Figures 19A-C). At inner shelf stations, § 13C-DIC became significantly more 

depleted as the year progressed (Figures 19A-C), averaging 0.1 ± 0.5%o in March (n=10) 

and -0.6 ± 0.7%o (n=10) in October (one-way ANOVA, P=0.03). In outer shelf stations 

throughout 2005, there were slight significant shifts in 5 13C-DIC signatures, resulting in 

decreases from a mean o f  1.2 ±  0.4%o in the upper water column (< -5 0  m, n=33) to a 

mean o f 0.8 ± 0.2%o in deeper water (> -5 0  m, n=43; t-test, PO .O l; Figures 20A -C). 

A14C-DIC in the upper water column (< -5 0  m) ranged from 50%o to 100%o (Table 5; 

Figures 21A-C and 22A-C). Bomb-,4C was evident in all waters < -5 0 0  m depth, and 

there was a dramatic decrease in A,4C-DIC in deeper waters with values ranging from -74 

to -33%o (Figures 22A-C).

In addition, three samples o f  deep slope water (> -9 0 0  m) were collected and 

analyzed (one from each o f  the three cruises) to characterize the Gulf Stream component. 

These values were consistent between the three cruises, with DIC concentrations varying 

by < 25 pM (range o f  2250 to 2275 pM) and the 8 13C-D1C and A,4C-DIC signatures 

averaging 1.0 ±  0%o and -32 ±  5%o (n = 3), respectively (Table 5).

SAB Shelf DOM Dark Decomposition Experiments

The DOM dark decomposition experiments were not always successful in that 

there were problems with contamination in several o f  the 20L containers, particularly in
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the early parts o f  this study, resulting in increases in DOC concentration over time. As a 

consequence, these results are not included here. In the March 2005 incubations, all 

containers appeared to have been exposed to an unknown source o f contamination after 

180 days and no final samples were collected. Therefore, results from the first 152 days 

o f the experiment only were used to calculate the DOC decay rate coefficients for March. 

For all other experiments, the full time series o f the incubations was used to calculate 

DOC decay rate coefficients (Table 6 ).

The DOC decay rate coefficients were calculated from changes in DOC 

concentrations over the course o f  the experiments (Table 6 ; Figures 23A-C). In March 

the DOC decay rate coefficient (k) on the inner shelf was 0.00049 day' 1 (n=l) and 

increased toward the outer shelf (mean k = 0.00118 ± 0.00011 day'1, n=2; Table 6  and 

Figure 23A). This pattern was reversed in October, where higher decay rate coefficients 

were observed on the inner shelf (Table 6 ). The July incubation series showed relatively 

small and inconsistent changes in DOC concentration over the course o f the experiment 

(Figures 23B and 24A), except at the inner shelf station where an average o f  22 pM o f  

DOC was lost (mean k = 0.00033 ± 0.00001 day'1, n=2; Table 6 ). The most dramatic 

changes o f these experiments occurred in the October incubations (Figures 23 C and 

24C). Losses o f DOC over 216 days averaged 48pM on the inner shelf (mean k = 

0.00085 ± 0 day'1, n=2), while the mid shelf lost an average o f 16 pM DOC (mean k = 

0.00065 ± 0 day*1, n=2) and the outer shelf gained an average o f  137 ±  16 pM DOC (n=2; 

Figures 23C and 24C).

Results from the final nutrient samples for the July and October incubations 

(Appendix Table 2 displays all nutrient concentrations measured) showed that -40-70%  

o f the initial DON was utilized (Table 6 ; Figures 24B and D), while only -5-20%  o f  the 

initial DOC was utilized (o f experiments where there was a decrease in both replicates; 

Table 6 ; Figures 24A and C). In July, mid- and outer shelf stations utilized a slightly 

larger percentage o f the DON (mean = 6 8  ±  6 %, n=4) than the inner shelf (mean = 57 ±
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0%, n=2; Table 6 ), although these mid- and outer shelf waters had smaller initial 

concentrations o f DON, and net DOC decreases did not occur in those experiments 

(Figures 24A-B). In October, the mid-shelf incubation utilized the largest portion o f  

DON, average -67%  (Table 6 ). Even in containers that experienced an increase in DOC, 

the DON concentration still decreased, such as the October outer shelf stations (Figures 

24C-D).

Inner- and mid shelf incubations in October 2005 were considered the most 

successful as they had the lowest replicate errors and showed the largest DOC decrease; 

therefore, these samples were chosen for DOC isotopic analyses. Results from inner- and 

mid shelf waters showed minimal changes in 8 13C-DOC (mean = 0.9 ±  0.8%o, n=4;

Figure 25A). In contrast, there was a large and significant (t-test, P<0.05) decrease in 

A14C-DOC at both sites following decomposition (Figure 25B). The remaining, 

undegraded (i.e., refractory) DOC was more depleted in ,4C than the starting material. 

Inner shelf DOC decreased by an average o f  -87 ± 9%o (n=2; Figure 25B), while the mid 

shelf station had a larger shift, decreasing by an average o f -167 ±  20%o (n=2; Figure 

25B).

River and Salt Marsh End Members

Increases in river discharge are likely to affect the physical and chemical 

properties o f  inner shelf stations, most notably salinity distributions. Relative to the 

median daily statistic (ranging between 6  and 60 years depending on the specific river), 

mean daily discharge during the period o f  this project tended to be above average in 2005 

and below average in 2006 (Figures 5A-D). The 2005 spring peak in river discharge 

occurred later than normal, beginning during the March cruise, while in July 2005 there 

was an atypical peak in river discharge that was well above the median daily flow  

statistic (Figures 5A-D). Interestingly, this was not reflected in shelf salinity or nutrient 

anomalies, which showed the lowest variation during this time. Another peak in river
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flow (Figures 5A-D) was evident during the October 2005 cruise, potentially increasing 

the export o f  terrestrial materials. During the end member sampling trip in July 2006, 

river discharge in the Altamaha and Savannah Rivers was lower than the median daily 

flow statistic (Figures 5A-D).

Sample sites for terrestrial sources are listed in Table 2, along with key physical 

parameters measured; results o f  nutrient analyses are contained in Appendix Table 3.

Not all rivers sampled were analyzed for DOC and POC isotopic composition due to time 

and cost constraints. Based on location and discharge, the Altamaha, Savannah, and 

Great Pee Dee Rivers were chosen for OC isotopic characterization. In these rivers, both 

the DOC and POC isotopes were indicative o f  modem, terrestrial materials (Table 4).

The 5 13C-DOC averaged -28.3 ±  0.2%o (n=3), and the A,4C-DOC averaged 69 ±  28%o 

(n=3) for the three rivers. The isotopic composition o f POC was similar at all riverine 

sites, with 5 13C averaging -30.6 ±  2.1 %o (n=4), and the A14C averaging -26 ±  22%o (n=4; 

Table 4).

5 13C-DOC from salt marsh tidal creeks ranged from -22.7%o to -20.4%o, while 

5 13C-POC ranged from -24.7%o to -22.9%o (Table 4). Radiocarbon results from duplicate 

samples at the Sapelo River site indicated that both DOC and POC were modem and 

recently produced, with average values o f  16 ± 26%o and -1  ± 17%o (n = 2), respectively 

(Table 4). The radiocarbon results from Hudson Creek were unusual in that both DOC 

and POC were relatively depleted in 14C compared to the other sites, resulting in A14C 

signatures o f -38%o and -321%o (n = 1), respectively (Table 4).

DIC concentrations in the salt marsh creeks sampled exceeded those o f  all other 

samples in this study (>2400 pM), and had depleted 5 IjC signatures (mean = -3.3 ±

0.4%o; n=3), and bomb-enriched A14C (mean = 28 ±  7%o; n=3; Table 5). River samples 

were more variable in DIC concentrations and isotopic compositions, but appeared to 

separate into two general groups based on salinity. The Savannah, Great Pee Dee, and 

Cape Fear Rivers had lower concentrations o f  DIC (<600 pM), and were more depleted
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in 5 13C (ranging from - \ 5 % o  to -1 \ %o) and A14C (ranging from -72%o to -1%<>; Table 5). 

The St. Johns, Altamaha, and Cooper Rivers had much greater concentrations o f DIC 

(>1200 pM), were enriched 5 13C (-5.1%o to -2.4%o) and had a smaller range o f  depleted 

A14C signatures (ranging -70%o to -37%o; Table 5). These groupings were not based on 

river type, i.e., piedmont and blackwater rivers, as initially expected, but instead may be 

related to the salinity o f each particular sample, where salinity and estuarine mixing 

processes may have affected the DIC concentrations and isotopic compositions. The 

Savannah and Great Pee Dee Rivers were sampled in completely fresh water portions (S 

<1) and will be referred to as “fresh water rivers'', while the Cape Fear, Altamaha and St. 

Johns Rivers were moderately saline (S<10), and the Cooper River was estuarine (S ~25) 

and will be referred to as “estuarine rivers" when referring to DIC parameters (Table 5).
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D i s c u s s io n

In the present study, elemental distributions and carbon isotope signatures were 

measured, and DOM dark decomposition experiments were conducted in the SAB during 

three periods in 2005. These characteristics are now examined as a function o f both shelf 

region (i.e., across-shelf and along-shelf distributions) and time o f  year (i.e., across the 

three cruises) in an attempt to evaluate the sources and cycling o f  organic materials in the 

SAB.

Elemental stoichiometric relationships are used to identify sources o f  OM 

(terrestrial and marine; Meyers-Schulte and Hedges 1986; Hedges et al. 1997; Benner 

2002) as well as to assess whether different components (i.e., DOC, DON, or DOP) are 

preferentially remineralized in the SAB as has been found in other systems (Hopkinson et 

al. 1997; Loh and Bauer 2000). Dual isotope mass balance models are also employed for 

DOC, POC and DIC to estimate the relative inputs o f  different carbon sources to the SAB 

for each o f  these major carbon pools (Raymond and Bauer 2001c; Bauer et al. 2002).

Relationships between various organic and isotopic parameters and salinity (i.e., 

to examine physical mixing vs. non-conservative behavior) are further examined through 

a number o f  regressions (Bauer et al. 2002; Wang et al. 2004). Correlation analyses are 

used to identity major temporal and regional differences between pairs o f  dependent 

DOM parameters. However, these correlative relationships were mainly confined to the 

DOM results, as the DOM pool was most extensively examined in this study, and 

because fewer parameters were measured for the POM and DIC pools.

These findings are compared to analogous OM and isotopic distributions and 

DOM decomposition findings for the adjacent Middle Atlantic Bight, the only other 

ocean margin where a similar type o f large-scale study o f this nature has been conducted. 

Finally, a conceptual model o f  the interactions between and cycling o f organic and 

inorganic carbon components for the SAB is developed in an attempt to integrate the 

results and findings from this study.
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General Organic Matter and Isotopic Distributions in the SAB

Regional Variability

DOC concentrations were greatest in shallow surface waters (upper -2  m), with 

surface maxima occurring inshore near the coastal salt marshes o f  GA (e.g., station C01) 

and decreasing sequentially at mid and outer shelf sites (Figures 6 A-C). This is hereafter 

considered the “typical’ across-shelf distribution. Surface DOC concentrations during 

this study ranged from a maximum on the inner shelf o f 240 pM in October to a 

background level o f -8 0  pM in outer shelf waters (Figures 6 A-C). A similar DOC 

concentration range (-275 pM on the inner shelf and -75  pM on the mid shelf) and 

inner- to mid shelf decreases were previously reported for the SAB by Moran (1991). 

DOC across-shelf decreases in SAB surface waters were also similar to findings in the 

mid-1990s for the Mid Atlantic Bight (MAB), where surface concentrations were highest 

on the inner shelf (-150 pM) and decreased sequentially to -5 0  pM in outer shelf waters 

(Vlahos et al. 2002). However, it is important to note that the SAB had overall higher 

concentrations o f DOC in surface waters than the MAB o f  both inner shelf stations (-100  

pM higher) and outer shelf stations (-25  pM higher).

Surface POC concentrations in this study also had an inner shelf maximum o f up 

to 698 pg/L and decreased to a background level o f -2 0  pg/L at outer shelf stations 

(Figures 8 A-C). POC concentrations in the SAB reported by Griffith et al. (1990) were 

similar to results from this study for inner shelf stations (-1,000 pg/L), but higher at mid 

shelf stations (-100 pg/L). In the MAB, surface POC concentrations had generally lower 

concentrations but similar across-shelf decreases to the SAB. Similar to DOC, the MAB 

had a smaller range in POC (27 to 336 pg/L; Bauer et al. 2002) than the SAB (-20  to 698 

pg/L).

DON concentrations in the SAB also showed across-shelf decreases (Figures 

13A-C), while DOP concentrations were more spatially variable (Figures 15A-C). At 

outer shelf stations (A08, B11,C 15, D l l ,  and El 1) and in deep waters (>-100 m), DOC,
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DON and DOP generally decreased sharply (Figures 7A-C, 14A-C and 16A-C), as DIN 

and DIP increased (Appendix Table 1 and Appendix Figure 1), with the exception o f  

certain sites in March 2005 which are discussed in detail below. These inner shelf 

maxima in DOC, POC, and DON concentrations suggest a source o f DOM and POM to 

the SAB shelf at the land-ocean margin. The absence o f  these materials on the mid- and 

outer shelves further suggests that they were rapidly recycled on the inner shelf region 

(Yoder 1985).

Throughout 2005, 5 13C-DOC in SAB surface waters tended to be significantly 

more depleted (one-way ANOVA, P<0.01; Figures 9A-C) at inner (mean = -24.0 ±

0.7%o, n=12) compared to mid- and outer shelf stations (mean = -22.1 ± 0.6%o, n=22), 

possibly suggesting a greater contribution o f terrestrial C3 plant material in the nearshore 

zone. Significantly enriched A14C-DOC signatures (one-way ANOVA, P O .O l; Figures 

10A-C) at inner shelf stations (mean = -43 ± 65%o, n=12) compared to mid- and outer 

shelf stations (mean = -199 ± 55%o, n=22), further suggest that younger, more recently

13produced sources o f OM dominate the DOC pool closer to land. 5 C-DOC in surface 

samples had a slightly larger range in the SAB (-24.8%o to -21.0%o; Figures 9A-C) than 

the MAB (-23.7%o to -21.8%o; Bauer et al. 2002), possibly indicating a greater range in 

the relative contributions o f  terrestrial vs. marine DOM to the entire SAB on an annual 

basis. A14C-DOC tended to be more enriched, or “younger” in the SAB (-281 %o to 54%o; 

Figures 10A-C) than the MAB (-306%o to -29%o; Bauer et al. 2002), indicating either that 

sources o f DOC to the SAB are dominated by younger average material than the MAB, 

or that DOC cycling in these two margins occurs on different time scales.

In contrast to DOC, POC isotopic signatures were much more variable both 

regionally and throughout 2005, and did not show any clear spatial across-shelf changes 

in surface waters during this study (Figures 11A-C and 12A-C). In surface waters o f  the 

SAB, 5 13C-POC values ranged from -23.3%o to -18.5%o (Table 4; Figures 11A-C) and 

A,4C-POC values ranged from -109%o to 61%o (Table 4; Figures 12A-C). Relatively
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similar ranges were found in MAB upper water column, however, 5 13C-POC values 

there were somewhat lower, ranging from -24.8%o to -19.9%o, and A14C-POC values 

were somewhat elevated -68%o to 78%o (Bauer et al. 2002) compared to the SAB. These 

results indicate that POC was not comprised o f  completely modern material derived from 

shelf primary production in either region (Bauer et al. 2002), but rather consisted o f  

significant amounts o f aged, presumably refractory, material having significant terrestrial 

5 13C character.

Relative to the “typical’' across-shelf OM distributions, DIC concentrations 

showed a reverse across-shelf distribution for all sample periods in 2005, where the 

lowest concentrations typically occurred on the inner shelf (mean = 2006 ± 61 pM, n=21) 

and increased towards the outer shelf (< -50  m, mean = 2073 ± 35 pM, n=33; Figures 

17A-C). As expected, DIC also increased with depth (> -50 m, mean = 2222 ±  48 pM, 

n=43; Figures 18A-C) at all stations where deeper samples were collected. This across- 

shelf increase and shelf DIC concentrations (-1900 to 2100 pM) are consistent with 

results previously reported by Cai et al. (2003) and Wang et al. (2005) for surveys 

conducted in the SAB (in 2000 and 2002). In the MAB, DIC concentrations were 

generally similar to those in the SAB, ranging from 1847 pM to 2113 pM in the upper 

water column (<-50 m; Bauer et al. 2002).

Throughout the year, 5 13C-DIC values in the upper water column (< -50  m) were 

significantly depleted (t-test, PO .Ol; Figures 19A-C and 20A -C) at inner shelf stations 

(mean = -0.1 ±  0.9%o, n=30) than at mid- and outer shelf stations where the isotopic 

signature was more enriched (mean = 1.1 ±  0.4%o, n=80). These 5 13C-DIC signatures 

suggest the importance o f  river and terrestrial sources o f DIC, fueled by heterotrophic 

processes in rivers, estuaries and/or on the inner shelf. Conversely, autotrophic processes 

on the mid- and outer shelf likely dominate the enriched 5 ,JC-DIC signature there (Spiker 

1980; Coffin et al. 1994). In MAB shelf waters, 8 13C- ranged from 0.0 to 2.0%o (Bauer et 

al. 2002), suggesting a possible greater prevalence o f  autotrophic conditions in the MAB
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compared to the SAB (Spiker 1980; Coffin et al. 1994). A,4C-DIC was similarly 

enriched throughout surface waters in both the SAB (<~50 m; 48%o to 94%o; Figures 

21A-C) and MAB (<~100 m; 31 to 80%o; Bauer et al. 2002) indicating the dominance o f  

modem sources o f  DIC from a combination o f  OM respiration and air-sea exchange 

along the entire US east coast ocean margin.

In deep waters (>~500 m) o f  the outer shelf/slope o f the SAB, DIC concentrations 

increased (mean = 2251 ± 26 pM, n=17; Figures 18A-C), and both 5 ,JC-D1C (mean = 0.8 

±  0.2%o, n=l 7; Figures 20A -C ) and A,4C-DIC signatures (mean = -40 ±28%o, n=9; 

Figures 22A -C) decreased, suggesting the presence o f  deeper, older Gulf Stream waters 

(Severinghaus et al. 1996). DIC in deeper waters (>~300 m) o f the MAB had a similar

13increase in concentration (up to 2205 pM), while 5 C-DIC had a similar range as surface 

waters (0.6 to 1.2%o) and A14C-DIC was depleted (-51 to 5%o; Bauer et al. 2002).

Temporal Variability

For the majority o f the year, net alongshore SAB water circulation is typically 

south to north (Lee et al. 1991; Menzel 1993). Mean circulation in the nearshore region 

reverses in the fall (i.e., October) due to changes in wind direction, resulting in a net 

southward alongshore water flow (Lee et al. 1991). This change in nearshore mean flow 

direction was evident in surface distributions o f several o f  the chemical parameters 

during the October 2005 cruise. Specifically, the inner shelf o f B transect (station B01) 

had very similar concentrations o f  DOC, DON and DOP and DOC isotopic compositions 

as the inner shelf maxima o f C transect (station C01; Figures 6C, 9C, 10C, 13C, and 

15C). This suggests that terrestrial DOM was being transported southward during this 

time period, potentially affecting inner shelf nutrient recycling processes and the 

composition o f  materials exported across the SAB shelf to the ocean (Lee et al. 1991).

OM concentrations remained relatively constant throughout the year in mid- and 

outer shelf surface waters (~2 m; DOC mean = 86 ± 14 pM, n=63; DON mean = 5.8 ±
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1.5 pM, n=66, POC mean = 55 ± 37 jj.g/L, n=T7). However, temporal increases were 

noted for DOC (Figures 6A-C), DON (Figures 13A-C) and POC (Figures 8A-C) in 

surface waters (~2 m) o f  inner shelf stations from March to October 2005. Surface water 

DOC for inner shelf stations increased from a mean o f  130 ± 24 pM (n=9) in March 2005 

(Figure 6A) to 170 ± 45 pM (n=10) in October (Figure 6C); concomitantly, DON 

increased in surface waters o f inner shelf stations from a mean o f 6.7 ± 0.9 pM (n=12) in 

March (Figure 13A) to a mean o f  11.0 ± 1.9 pM (n=10) in October (Figure 13C). Inner 

shelf surface water POC concentrations also increased throughout the year, particularly at 

station C01, with lower concentrations in March (208 pg/L; Figure 8A) and the highest in 

October (698 pg/L; Figure 8C). These findings suggest that the magnitude o f terrestrial 

DOM and POM sources increased as the year progressed. However, the increases in 

DOM and POM throughout 2005 in the nearshore SAB were not directly related to river 

runoff (Figures 5A-D). By comparison, temporal variations in DOM and POM in the 

MAB were notably different from the SAB in that DOC concentrations varied little (~5 to 

10 pM; Bauer et al. 2002; Vlahos et al. 2002), and POC concentrations were higher in 

March than August 1996 (Bauer et al. 2002), presumably due to the well-established 

spring phytoplankton bloom in the MAB.

Few significant temporal changes were found in the DOC isotopic composition at 

inner- and outer shelf stations (Figures 9A-C and 10A-C). Mean 513C-DOC was -24.0 ±  

0.7%o (n=12) at inner shelf stations and -22.1 ± 0.6%o (n=22) at mid- and outer shelf 

stations (Figures 9A-C), suggesting that sources o f DOC to these regions o f the SAB did 

not change over 2005. In contrast, A,4C-DOC exhibited seasonal enrichment from March 

to October 2005 (Figures 10A-C). At inner shelf stations, A,4C-DOC increased from a 

mean o f  -72 ± 33%o (n=6) in March (Figure 10A) to a mean o f -15 ± 87%o (n=5) in 

October (Figure 10C) suggesting that in the spring, when river discharge to the SAB was 

highest (Figures 5A-D) older DOC was exported to the shelf. At mid- and outer shelf 

stations, A,4C-DOC also increased significantly (one-way ANOVA, PO .O l) from a mean
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o f -222 ± 33%o (n=12) in March (Figure 1OA) up to a mean o f -150 ±  61%o (n=7) in 

October (Figure 10C), possibly suggesting an accumulation o f young, phytoplankton 

derived material further out on the SAB shelf in summer and fall. Similar temporal 

variations in carbon isotopic signatures were found for the MAB shelf, where S1 "C-DOC 

signatures showed little temporal changes, but A14C-DOC signatures increased from 

March to August 1996 (Bauer et al. 2002).

Inner shelf station exhibited significant temporal changes in 513C-POC and A,4C- 

POC signature (Figures 11A-C and 12A-C). 513C-POC at inner shelf stations became 

significantly enriched (one-way ANOVA, PO .O l) as the year progressed, from a mean 

o f  -21.9 ± 0.4%o (n=4) in March 2005 (Figure 11 A) to a mean o f -20.9 ±  0.3%o (n=4) in 

October 2005 (Figure 11C). In contrast, at outer shelf stations 5 ljC-POC became more 

depleted from March (mean = -20.4 ± 1.9%o; n=5; Figure 11 A) to October (mean = -21.6 

±  0.3%o; n=4; Figure 11C). A14C-POC signatures showed little change at inner shelf 

stations throughout 2005, with a mean o f -14 ± 30%o (n=10; Figures 12A-C). Outer shelf 

stations exhibited a significant temporal decrease in A14C-POC signatures (one-way 

ANOVA, P=0.01); in March, A,4C-POC was enriched (mean = 21 ± 40%o, n=5; Figure 

12A), while in October, samples were 14C-depleted (mean = -66 ± 33%o, P=0.01; Figure 

12C). These findings indicate that while inner shelf source POC age was not changing 

during the year, the age o f POC on the outer shelf region decreased, possibly due to a 

relative loss o f younger forms o f  POC (e.g., from primary production), or relative 

increases in older forms o f POC (e.g., from sediment resuspension, or preferential 

utilization o f the younger POC components).

This study found no significant temporal variations in concentrations o f  DIC at 

inner shelf stations (ranging from 1834 to 2140 pM; Table 5; Figures 17A-C and 18A-C). 

This is consistent with previous studies by Cai et al. (2003) and Wang et al. (2005) which 

also found no seasonal temporal increase in DIC concentrations on the SAB shelf. In 

contrast to the previous studies which found no significant changes at outer shelf stations
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throughout the year (Wang et al. 2005), in the present study upper water column (<~50 

m), outer shelf stations showed decreases in DIC as the year progressed, from a mean o f  

2086 ± 26 pM (n=8) in March, to a mean o f  2052 ± 35 pM (n=6) in July, and 2038 ± 29 

pM (n=6) in October (Figures 17A-C and 18A-C). These contrasting findings between 

the different studies may be a result o f the earlier studies focusing exclusively on central 

C transect (Figure 4), whereas this study included results from three transects (B, C, and 

D). In addition, there are several possible physical and biological explanations for these 

temporal decreases at outer shelf stations, such as temperature and solubility effects as 

well as the balance between auto- and heterotrophic processes (Rau et al. 1992).

The isotopic composition o f DIC in shelf surface waters (<~50 m) exhibited

changes in SI3C signatures between the sampling periods, but little change in A14C was
1 ^

observed in these data (Table 5). At inner shelf stations, 5 C-DIC became significantly 

more depleted as the year progressed (one-way ANOVA, P=0.03), from a mean o f  0.1 ± 

Q.5%o (n=9) in March (Figure 19A) to a mean o f  -0.6 ± 0.7%o (n=8) in October 2005 

(Table 5; Figure 19C). However, in July, DIC signatures at the inner shelf station were 

most depleted with a mean o f -1.3 ± 0.9%o (n=4; Table 5; Figure 19B). These changes in 

5 ,3C-DIC signatures suggest a relative increase in heterotrophic processes (i.e., greater 

respiration o f  13C-depleted OM) in July and October at inner shelf stations (Spiker 1980; 

Coffin et al. 1994). At outer shelf stations, 5 13C-DIC signatures in surface waters (<~50 

m) were more depleted in March (mean =  1.2 ±  0.2%o, n=8) than in July (mean = 1.7 ±

0.1 %o, n=6) and October 2005 (mean = 1.5 ±  0.1%o, n=6; Table 5; Figures 19A-C), 

suggesting possible relative increases in either autotrophic processes or atmospheric 

exchange at outer shelf stations in the summer and fall (Spiker 1980; Coffin et al. 1994). 

Throughout 2005, A,4C-DIC was enriched in surface waters (<~50 m), ranging from 48 

to 94%o in all regions o f the SAB (Figures 21A -C) indicating the presence o f  modem DIC 

throughout the region.
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These general spatial and temporal distributions are explored in greater detail 

below by comparing surface distributions to potential end member sources and by using 

isotope mass balance models to estimate the relative contributions o f  different sources to 

the major carbon pools in different parts o f  the SAB and at different times o f  the year.

Elemental Ratios o f DOM

Elemental stoichiometry may integrate the relative concentrations o f  different OM 

constituents (e.g., DOC, DON, and DOP) to reveal subtle changes in regional or temporal 

biogeochemical features such the production or preferential remineralization o f  different 

elements comprising the OM (Jackson and Williams 1985; Hopkinson et al. 1997). The 

relationships between DOC, DON, and DOP concentrations exhibited significant 

variability across this study (Figures 26A-C), however, an important general feature o f  

nearly all samples in this study is that they fell significantly above Redfield ratios (i.e., 

C:N = 6.6, C:P = 106, and N:P = 16), with the exception o f  several outer shelf deep water 

stations in March 2005. Generally, DOC:DON deviated from Redfield in that samples 

were depleted in N relative to C (Figure 26A). Similarly, DOC:DOP and DON:DOP 

relationships deviated from Redfield where samples were depleted in P relative to C and 

N, respectively (Figures 26B and C). These relationships suggest preferential 

remineralization o f  DON and DOP relative to DOC in the SAB as a whole.

Consequently, we would predict that relatively more DOC than DON and DOP is 

exported to the ocean from the SAB region (Hopkinson and Vallino 2005), and that more 

organic N and P is recycled on the SAB. Similar elemental relationships for DOM have 

been reported in the MAB (Hopkinson et al. 1997; Hopkinson and Vallino 2005) as well 

as in open ocean waters (Loh and Bauer 2000).

As noted above, there are several samples which fell below the Redfield ratio 

lines, all o f  which were collected from deep (>150 m) outer shelf/slope stations (D 11 and 

E l2) in March 2005 (Table 3; Figures 26A-C). These samples had relatively high DON
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and DOP concentrations (up to -1 4  pM and 0.7 pM, respectively) relative to their DOC 

concentrations (~50 to 75 pM; Table 3), suggesting a possible decoupling o f  

production/consumption processes at this time in this regions o f  the SAB. Elemental 

ratios including DOP are not discussed further here as their very low concentrations 

(frequently below detection) resulted in artificially high elemental ratios that were 

impossible to interpret (Appendix Table 1 lists DOC:DOP and DON:DOP ratios for 

stations where they are >0).

Surface distributions o f  DOC:DON (Figures 27A-C) displayed subtle regional 

and temporal differences that were not obvious in the depth profiles (Figures 28A-C). In 

surface waters, DOC:DON ranged from -11 to 34 (Table 3 and Figures 27A-C), while in 

deep waters it had a much larger range from - 4  to 45 (Table 3 and Figures 28A-C), 

indicating the greater relative inputs o f N-rich material to surface waters, and 

remineralization o f DON relative to DOC in deep waters. Throughout 2005, surface 

water DOC:DON was higher at the inner shelf o f C transect, ranging from -15  to 22 

(Figures 27A-C), and was likely indicative o f  terrestrial OM inputs such as vascular plant 

debris (Hedges et al. 1997). In surface waters at mid- and outer shelf stations,

DOC:DON decreased to -1 0  (Figures 27A-C) suggesting that marine phytoplankton 

became a relatively more important influence on stoichiometry in these regions o f  the 

SAB (Hedges et al. 1997; Hopkinson et al. 1997).

In March 2005, surface distributions o f DOC, DON, and DOP followed the 

typical across-shelf pattern (Figures 6A, 13A, and 15A, respectively), but the relative 

across-shelf change for each differed, resulting in higher DOC:DON ratios (>-20) at 

inner shelf stations than at mid and outer shelf stations (Figure 27A). A large anomaly in 

surface DOCiDON ratios occurred at station E07 (Figure 27A), where the ratio increased 

up to -3 4  due to unusually low DON concentrations (-2  pM; Figure 13A). During the 

July 2005 cruise, DOCiDON ratios in all surface water samples ranged from -11 on the 

inner shelf o f  A and B transects up to -1 8  at station El 1, and displayed a south-north
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rather than an across-shelf gradient (Figure 27B). October 2005 DOC:DON ratios in 

surface water samples showed relatively high DOC:DON values all along C transect in 

October, as well as extending along the inner shelf region (Figure 27C). In surface 

waters o f the outer shelf stations, excluding C transect, the DOC:DON ratio decreased 

below 15, potentially indicating a shift towards phytoplankton dominating the DOM.

DOC Sources and Behavior in the SAB

DOC-Salinity Mixing Relationships

Mixing relationships between fresh water and marine end members may provide 

insights as to the conservative or non-conservative behavior o f  solutes, and may elucidate 

net sources or sinks along a salinity gradient in a system. These relationships were used 

in this study to assess potential DOC inputs and sinks throughout the SAB. DOC 

concentration, 8 13C-DOC and A14C-DOC o f  SAB surface samples and potential end 

members were plotted as a function o f  salinity along with the calculated conservative 

distributions based on mixing between riverine and marine end members (Figures 29A- 

C). While DOC concentrations were highest in rivers (mean = 608 ± 427 pM, n=3) and 

salt marsh creeks (mean = 713 ± 303 pM, n=2; Figure 29A), riverine DOC was chosen as 

the end member for conservative mixing since this source represented a larger volume 

and could entrain salt marsh material en route (i.e., acting as an internal source) to the 

shelf region. The marine end member was represented by high salinity outer shelf 

surface water samples.

Surface shelf water DOC, which was limited to the upper portion o f the salinity 

range (S>~28), appeared to mix relatively conservatively as the linear regression line for 

all surface samples (red dotted line) closely follows the conservative mixing line (solid 

black line; Figure 29A). This suggests that on the timescales relevant to mixing o f river, 

estuarine and shelf waters, physical processes were mainly responsible for the across- 

shelf DOC concentration gradient and that any sources or sinks o f  DOC were acting at
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similar magnitudes in the SAB. Moran et al. (1991) used lignin phenols as a tracer o f  

terrestrial DOC in the inner shelf o f the SAB and found that the behavior o f these 

compounds was also largely conservative within the residence time o f water on the shelf 

(-1-2  months). However, DOC concentrations alone may not be a sensitive index for 

determining net source/sink dynamics.

The distribution o f  DOC isotopes vs. salinity, again using SAB river waters as the 

low-salinity end-member (Figures 29B-C), suggests that DOC (or specific components o f  

DOC) may have behaved less conservatively than suggested by the DOC concentration- 

salinity relationship (Figure 29A). At lower salinity stations (S <~32), 8 ljC-DOC 

signatures were heavier than predicted by the conservative mixing curve (solid black line; 

Figure 29B); this is evident in the deviation between the linear regression line for all 

surface samples (red dotted line) and the conservative mixing line (black solid line;

Figure 29B). This deviation suggests the potential influence o f  isotopically heavier salt 

marsh creek OM on inner shelf 5 13C-DOC (Figure 29B). At the higher salinity stations 

(S>~32) o f  the mid- and outer shelf region, 5 13C-DOC generally followed the predicted 

mixing curve (black solid line) as seen by the linear regression line (red dotted line) 

nearing the conservative mixing line (black solid line; Figure 29B).

Similar features were observed for A14C-DOC vs. salinity (Figure 29C) for SAB 

surface waters, where A14C-DOC was enriched at lower salinity inner shelf stations (S 

<~32) and the linear regression line (red dotted line) deviates from the conservative 

mixing curve (black solid line; Figure 29C). At higher salinity stations, the linear 

regression line (red dotted line) more closely follows the conservative mixing line (black 

solid line; Figure 29C). Again, the salt marsh source, which was enriched in A14C, is 

speculated to be the source o f the elevated A14C-DOC in the inner shelf region. March 

samples appeared to follow the A14C-DOC conservative distributions to a greater degree 

than July and October samples (Figure 29C) suggesting an increase in the A,4C-DOC 

isotopic composition o f  terrestrial sources was changing as the year progressed.
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Relationships Between DOC Properties

Surface SljC-DOC and A14C-DOC signatures were examined as a function o f  the 

corresponding DOC concentrations for each cruise period (Figures 30A and B, 

respectively). Lower concentrations o f  DOC (<~100 pM) were observed from mid- and 

outer shelf stations, while higher DOC concentrations (>—100 pM) occurred at inner shelf 

stations (Table 3). For all three sampling times in 2005, negative relationships were 

evident for S13C-DOC vs. DOC concentration (Figure 30A). At higher DOC 

concentrations, the 8 13C-DOC signature was more depleted, suggestive o f a terrestrial 

DOC source, while enriched 5 13C-DOC at correspondingly lower DOC concentrations 

(<~100 pM) is indicative o f greater contributions from a marine source o f DOC (Fry and 

Sherr 1984; Michener and Schell 1994). The slopes o f the correlation lines (± standard 

error) increased from March (-0.031 ± 0.004) to October (-0.016 ± 0.004; Figure 30A), 

due to the disproportionate increase in DOC concentration from March to October at 

inner shelf stations versus outer shelf stations. Y-intercepts o f the lines (± standard error) 

ranged from -21.1 ± 0 .7  in July to -19.8 ± 0.4 in March (Figure 30A) suggesting that 

there was little temporal variability in the low-concentration marine end-member S13C- 

DOC signature over time. The decreases in slopes and relatively small changes in y- 

intercepts between sample periods suggest that while DOC concentrations were 

increasing throughout the year, source 5 13C-DOC signatures were relatively invariant 

throughout the SAB over the course o f  this study.

In contrast to the negative correlation o f  S13C-DOC vs. DOC concentration, a 

positive correlation was observed between A14C-DOC and DOC concentration for all 

sample periods (Figure 30B). At higher DOC concentrations (>~100 pM), the A14C- 

DOC signatures were enriched indicating “younger” DOC was present on the inner shelf 

(Figure 30B), while at lower concentrations (<~100 pM) in the mid- and outer shelf 

regions, A14C-DOC was depleted indicating a relative dominance o f  “older” DOC. This
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may also be viewed as a relative absence o f  14C-enriched DOC in mid and outer shelf 

waters. The slope o f the correlation line (± standard error) for A14C-DOC vs. DOC 

concentration decreased from a high o f 2.1 ±  0.2 in March to 1.5 ± 0.3 in both July and 

October (Figure 30B). This, combined with the offsets in the y-intercepts for the 

different months, suggests that there was a generally greater enrichment in for A14C-DOC 

in October than the other two sample periods. The greater slope in March indicates that 

there was a more rapid change in the A14C-DOC signature over a smaller range o f DOC 

concentrations, whereas in July and October relatively proportional changes occurred 

between these parameters (Figure 30B).

Increases in the y-intercepts (± standard error) o f the correlation lines from March 

(-384.6 ±  22.6) to July (-351.4 ± 29.1) to October (-286.2 ±  38; Figure 30B) suggest that 

the marine A14C-DOC end-member signature became more enriched (i.e., became 

younger) as the year progressed. These temporal changes in slopes and y-intercepts 

correspond with previously shown significant temporal increases from March to October 

in A14C-DOC at inner shelf and mid- and outer shelf stations and illustrate the temporal 

whole shelf increases in AI4C-DOC which occurred between March and October 2005.

Surface DOC:DON ratios were also examined as a function o f  the corresponding 

8 13C-DOC and A14C-DOC signatures for each cruise period (Figures 31A-B) in order to 

further evaluate temporal changes in sources and characteristics o f OM in the SAB. 

Throughout 2005, a negative relationship was observed in DOC:DON vs. 8 13C-DOC 

(Figure 31 A). Stations with depleted 5 ,3C-DOC signatures had relatively higher 

DOC:DON ratios, suggesting that the DOM at these stations had greater terrestrial 

character than more offshore waters (Meyers-Schulte and Hedges 1986; Hedges et al. 

1997). Conversely, stations with enriched 5 13C-DOC signatures had relatively lower 

DOC:DON ratios suggesting a greater marine influence on the bulk DOM pool (Hedges 

et al. 1997; Benner 2002). DOC:DON was notably elevated in March compared to July 

and October ratios, suggesting either a more N-enriched form o f terrestrial/riverine DOM

47



than expected, or greater contributions from shelf production in July and October 2005. 

The slope o f the correlation lines (± standard error) for DOC:DON vs. 6 13C-DOC 

increased from March (-1.740 ±  0.696) to October (-0.090 ±  0.410; Figure 31 A) 

indicating that proportionally larger changes in DOC:DON ratios as a function o f  5 13C- 

DOC occurred in March than in July and October. The y-intercepts (± standard error) o f  

these lines range from a low o f  -21.5 ± 15.8 in March, to a high o f -1.0 ± 6.3 in July and 

an intermediate value o f -5.7 ± 9.2 in October (Figure 31 A) further supporting the idea 

that the SAB had a much stronger terrestrial/riverine DOM signal in March. These 

ranges o f  slopes and y-intercepts further illustrate the temporal changes in DOM 

composition in the SAB (Figure 31 A) which was not evident in the 8 13C-DOC signatures 

alone (Figures 9A-C) due to their relatively low dynamic range. In March terrestrial 

materials with higher DOC:DON ratios dominated the shelf, while in July and October, 

the terrestrial signal was mixed with another source, most likely o f  marine origin.

In contrast to the negative correlation for DOC:DON vs. 5 13C-DOC, DOC:DON 

vs. A14C -DOC was positively correlated (Figure 3 IB), reflecting the contributions and 

admixing o f younger, N-depleted terrestrial DOM with older but N-enriched marine 

DOM across the SAB. In comparison, stations with depleted A14C-DOC signatures had 

relatively lower DOC:DON ratios (Figure 31B). Similar to the DOC:DON vs. 5 ljC-DOC 

relationship (Figure 31 A), the DOC:DON vs. A14C-DOC relationships are dominated by 

the more highly N-depleted March DOM, leading to a greater DOC:DON riverine end- 

member contribution (i.e., y-intercept) and a concomitant more depleted range A14C- 

DOC during this time. Overall, these differences in slopes and y-intercepts for 

DOCrDON vs. A,4C-DOC again illustrate the dominance o f relatively more highly aged, 

N-poor terrestrial materials in the DOM pool during March, than in July and October.

A14C-DOC v s . 8 13C-DOC for all SAB surface samples in 2005 (Figure 32A) were 

negatively correlated. Inner shelf stations were characterized by depleted 8 13C-DOC 

(mean = -24.0 ± 0.7%o, n=12) and enriched A14C-DOC (mean = -43 ± 65%o, n=12), while
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mid- and outer shelf stations were enriched in 5 13C-DOC (mean = -22.1 ± 0.6%o, n=22) 

and depleted in A14C-DOC (mean = -199 ± 55%o, n=22; Figure 32A). These differences 

between inner shelf stations and mid- and outer shelf station isotopic compositions (5 ,3C- 

DOC and A14C-DOC) were statistically different for all 2005 samples (one-way ANOVA, 

PO .O l). These findings are further evidence for the presence o f  significant amounts o f  

terrestrial DOC, characterized by depleted 5 13C-DOC and enriched A14C-DOC at inner 

shelf stations and a shift to greater relative amounts o f  marine DOC at mid- and outer 

shelf sites, characterized by more enriched 5 13C and depleted or “older”' A14C-DOC. It 

also appears that the mixing o f isotopically unique DOM is relatively constant across 

shelf regions, as evidenced by the near-continuous relationship between A14C-DOC and 

8 13C-DOC. While 5 13C-DOC appeared to have a similar range for each o f  the three 

cruises in this study, temporal changes in the A,4C-DOC were apparent (Figure 32A). 

March and July DOC samples had a more depleted A14C signature (mean = -174 ± 83%o, 

n=22) than the October samples which were relatively more enriched in A14C (mean = - 

94 ± 98%o, n=T2), suggesting that shelf DOC originated from a more modem source in 

Fall 2005.

DOC Isotopic Mass Balances

The A14C-DOC v s . 5 13C-DOC relationship was further evaluated in relation to 

potential sources o f  DOC to the SAB (Figure 32B) using a dual isotope mass balance 

modeling approach. Potential sources o f  DOC to SAB surface waters include 

autochthonous microalgal production (in the water column), Gulf Stream intrusions, and 

terrestrial sources (both riverine and salt marsh exports). While the latter end members 

were measured directly, the isotopic composition o f autochthonous SAB microalgal OC 

was estimated from the DIC isotopic composition o f surface waters (<~50 m; Table 5) 

correcting for a -19%o fractionation (Bauer et al. 2001; Bauer et al. 2002), and resulting in 

a mean 5 13C o f -18.2 ±  0.8%o (n=l 13) and a mean A,4C o f 67 ± 9%o (n=68). These 5 13C
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values are similar to others reported in literature for marine phytoplankton (Peterson and 

Howarth 1987), however, a number o f  environmental factors (such as temperature, CO2 

concentration and 5 ,3C-D1C signature) have been shown to affect isotopic fractionation 

by primary producers, resulting in a larger range o f 513C values for microalgae (Fogel et 

al. 1992; Currin et al. 1995; Laws et al. 1995).

While some DOC end members to the SAB had very distinct isotopic signatures, 

such as riverine and deep Gulf Stream waters (>~400 m) (Figure 32B), overlap between 

the salt marsh creek DOC and the phytoplankton-derived DOC end-member isotopic 

compositions must be reconciled before the contributions o f these can be unequivocally 

delineated. The salt marsh creek samples most likely represent a composite o f multiple 

primary producers, including emergent C3 and C4 plants, phytoplankton, and benthic 

micro- and macroalgae sources. Similar ambiguities were also encountered in previous 

studies, where overlap between the isotopic signatures o f  benthic micro- and macroalgae 

and salt marsh plants resulted in ambiguity in the contributions from these end-members 

to POM exported from salt marshes (Haines 1976; Peterson and Howarth 1987).

Based on the earlier consideration o f  salinity-isotope relationships (Figures 29 A- 

C) and DOM property-property plots (Figures 30A-B and 31A-B), the data suggest that 

inner shelf stations were influenced by both riverine and salt marsh end members. These
1 3inner shelf samples had higher DOC:DON ratios, depleted 5 C-DOC values and 

enriched A14C-DOC signatures (Figures 29A-C, 30A-B, 31A-B, and 32A) -  attributes 

suggesting greater relative contributions from river and marsh material than from 

phytoplankton. In contrast, mid- and outer shelf stations were characterized as having 

relatively lower DOC:DON ratios and enriched 5 ,3C-DOC signatures (Figures 29A-B, 

30A-B, 31A-B, and 32A) that are more reflective o f planktonic contributions. Therefore, 

when calculating the dual isotope mass balance, which can only solve for contributions 

from the three most likely sources at a time, SAB shelf surface samples were separated 

into inner shelf stations, and mid- plus outer shelf stations. The inner shelf solution was
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calculated using salt marsh, river, and Gulf Stream sources o f  DOC, while the mid- and 

outer shelf stations were assumed to derive their DOC primarily from rivers, Gulf Stream 

waters and shelf phytoplankton sources. However, this represents a potential source o f  

uncertainty to the model solutions, in that it allows for the presence o f riverine DOC at 

mid- and outer shelf stations, but not salt marsh DOC. Nonetheless, on the basis o f  the 

existing information, the three end-member chosen for each region (inner and mid plus 

outer shelf) appear to be the best fits.

Results o f the DOC dual isotope mass balance calculations are summarized in 

Table 7. At inner shelf stations in March and July, the DOC was estimated to be 

composed o f -2 6  to 51% riverine, -2 5  to 44% salt marsh, and -11 to 39% offshore Gulf 

Stream sources, while mid- and outer shelf samples during these two periods were 

estimated to consist o f -53  to 78% Gulf Stream, -11 to 33% phytoplankton, and - 7  to 

26% riverine DOC sources (Table 7). In October 2005, when it is hypothesized that OM 

exports from salt marshes were highest (Wang and Cai 2004), estimates o f  sources 

contributing to inner shelf DOC were -5 0  to 80% salt marsh and -2 0  to 50% riverine 

DOC materials at stations C01 and B01. At station D02, DOC was comprised o f -45%  

salt marsh, -25%  riverine, and -30%  Gulf Stream DOC, indicating this station was more 

similar to outer shelf stations during this particular time o f year. These findings for D02 

are also consistent with the reversal o f  water flow in the during fall in the SAB (Lee et al. 

1991). Finally, outer shelf stations in October were estimated to be comprised o f  up to 

-3 5  to 71% Gulf Stream, -1 9  to 49% phytopiankton and - 9  to 26% riverine DOC 

sources. While a similar dual isotopic mass balance approach has been used previously 

for the MAB (Bauer et al., 2000; 2002), the notable absence o f  a significant marsh source 

to the MAB resulted in the dominance o f  the DOC pool by river, offshore and shelf 

phytopiankton sources only. Thus, the presence and persistence o f  a marsh component to 

the DOM pool and other pools (see below) in the SAB may be a significant defining 

feature o f  this ocean margin system.
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POC Sources and Behavior in the SAB

POC-Salinity Mixing Relationships

The physical and chemical factors affecting the distributions and C isotopic 

characteristics o f  DOC and POC are likely unique for each o f  these two pools o f OM. 

Previous observations o f  5 13C- and AI4C- DOC and POC indicate that they have highly 

disparate sources and residence times as a result o f their physical and chemical properties 

and biogeochemical processing (Hedges et al. 1997; Bauer et al. 2002). POC 

concentrations followed a similar across-shelf decreases as DOC concentrations, with the 

highest values (up to 698 pg/L) on the inner shelf, and decreasing at mid- and outer shelf 

stations (to lows o f  -2 0  pg/L) (Figures 8A-C). This inner shelf maximum is likely due to 

riverine inputs o f  terrestrial and marsh-derived materials (Wang et al. 2004) as well as 

resuspension o f  bottom sediment in shallow shelf waters (Nittrouer and Wright 1994). 

Farther out on the shelf, as estuarine and oceanic waters mix in the frontal zone, POC 

concentrations decreased (Yoder 1985).

Similar to DOC concentrations, highly elevated POC concentrations were present 

in both river (mean = 1232 ±  778 pg/L, n=4) and salt marsh creeks (mean = 1720 ± 322 

pg/L, n=3) waters. Again, for consistency, riverine and marine sources were chosen as 

the end members for POC-salinity mixing relationships. POC concentrations were not 

strongly correlated with salinity (Figure 33A), but instead suggested a number o f  

different sources o f  POC throughout the SAB as seen in the deviation between the linear 

regression line for all surface samples (red dotted line) and the conservative mixing line 

(black solid line). Samples above the conservative mixing line indicate a source o f  POC 

to the SAB, most likely originating from salt marsh creeks, and which also lay above the 

conservative mixing line (Figure 33A).

5 ljC-POC vs. salinity relationship also exhibited deviations from the conservative 

mixing curve (black solid line), as evidenced by the position o f the linear regression line
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for all surface samples (red dotted line; Figure 33B). Stations with S<~35 were enriched
• 1 3 *with C relative to the predicted conservative riverine end member mixing curve (Figure 

33B), again most likely due to salt marsh POC sources. Samples from higher salinity 

stations (S>~35) generally followed the conservative mixing curve (Figure 33B) 

suggesting that mid- and outer shelf stations were influenced to a greater extent by 

marine POC sources rather than salt marsh POC sources.

For A14C-POC vs. salinity, the linear regression line for all surface samples (red 

dotted line) closely follows the conservative mixing curve between riverine and marine 

end members (black solid line; Figure 33C) suggesting conservative mixing processes. 

Lower salinity stations (S<~35) generally followed the conservative mixing line, as did 

the salt marsh creek end member with the exception o f  one unique salt marsh sample, 

which was highly 14C-depleted (-321%o). It is suspected this sample may have been 

influenced by aged peat that may have eroded from the surrounding marsh (Raymond and 

Hopkinson 2003). In contrast, higher salinity (S>~35) outer shelf samples tended to be 

depleted in 14C, indicating a potential G ulf Stream influence on POC isotopic 

composition at these stations (Figure 33C), or resuspension o f aged sediment particles as 

has been observed in the MAB (Bauer et al. 2002). The influence o f  these aged sources 

o f  POC was most pronounced at high salinity stations in October 2005 (Figure 33C).

Relationships Between POC Properties

In contrast to the A14C vs. 5 13C relationship for DOC (Figure 32A), A14C-POC vs. 

5 ljC-POC for all SAB surface samples were positively correlated (Figure 34A). These 

findings suggest that terrestrial and riverine sources o f  DOC and POC, while both 

relatively enriched in 13C, show the opposite pattern in 14C distributions. That is, 

terrestrial/riverine DOC is modem and 14C enriched, while terrestrial/riverine POC is 

slightly depleted in 14C. Conversely, enriched S ,3C-POC also tended to correspond to 

enriched A14C-POC (Figure 34A) implying that POC o f  marine origin tends to be more
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modem. While POC isotopic signatures did not show any consistent spatial changes, 

there were significant temporal variations previously discussed in specific shelf regions 

for specific C isotopes. Generally, in the POC component, March and July surface 

samples had “younger” A14C signature (mean o f all March and July 15 ±  35%o, n=17) and 

a larger range o f  S13C values (-18.5%o to -22.6%o; Figure 34A) suggesting that a variety 

o f  modem sources were contributing to POC at that time. In contrast, October samples 

were generally more depleted o f 14C (A14C mean o f all October -36 ±  33%o, n=l 1) and 

had more similar 5 13C values (-20.5%o to -22.1 %o; Figure 34A) suggesting that POC 

sources were “older” and less variable during this period possibly indicating greater 

terrestrial exports. In an manner analogous to the similarity in A14C-DOC vs. 5 13C-DOC 

in both the SAB and MAB (see above), the A14C-POC vs. 5 13C-POC in the MAB (Bauer 

et al. 2002) showed a similar positive relationship to that for the SAB, further suggesting 

that the source and age distributions o f this pool o f organic matter may be a common 

feature across temperate shelves having significant terrestrial/riverine inputs.

POC Isotopic Mass Balance

Further evaluation o f the relationship between A14C-POC vs. SljC-POC requires 

inclusion o f  potential end member sources to the POC pool (Figure 34B). Phytopiankton 

values were estimated from DIC A14C and 8 13C values, as described above for the DOC 

isotopic mass balance. Also similar to the DOC isotopic mass balances, there was 

overlap between two o f  the POC end members, where salt marsh and riverine POC 

sources had similar 14C isotopic signatures (Figure 34B). Instead o f attempting to 

differentiate between these sources, a river/marsh mean was used to describe the 

terrestrial component in the isotopic mass balance calculations (where mean S'^C = -27.8 

±  3.9%o, n=7; and mean AI4C = -18 ± 22%o, n=6). The salt marsh POC sample from 

Hudson Creek (A14C=-321 %o) was excluded from the A,4C mean due to its highly 

anomalous nature relative to the other marsh samples, and because this sample also
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overlaps with the Gulf Stream end member, further complicating the mass balance 

analysis. The mean terrestrial 5 13C-POC signature was similar to 5 13C-POC signatures o f  

~28% o reported by Otero et al. (2000) for fresh water portions o f the Altamaha and 

Satilla Rivers (Georgia, USA).

Results o f the POC dual isotope mass balance calculations are summarized in 

Table 7. Phytopiankton sources dominated the POC isotopic composition throughout the 

year, and especially at outer shelf stations (Table 7, Figure 34B). At inner shelf stations, 

POC was estimated to be composed o f  - 2  to 29% terrestrial, ~0 to 37% Gulf Stream and 

-5 8  to 77% phytopiankton POC sources. At mid- and outer shelf regions, POC 

composition was calculated as - 0  to 51% terrestrial, -0  to 40% Gulf Stream and -4 9  to 

100% phytopiankton POC sources. The somewhat elevated levels o f  terrestrial materials 

in certain POC samples at mid- and outer shelf stations may be a result o f periodic 

sediment particle resuspension that has been found to be a common feature o f such shelf 

environments (Nittrouer and Wright 1994).

DIC Sources and Behavior in the SAB

DIC-Salinitv Mixing Relationships

DIC concentrations vs. salinity (Figure 35A) showed significant deviations from 

conservative mixing between freshwater and marine end members throughout the SAB, 

as evidenced by the linear regression line (dotted red line) for all upper water column 

samples (< -50  m) which lies above the conservative mixing line (solid black line) 

indicating that there was excess DIC on the SAB shelf in 2005. Deeper shelf/slope 

waters (> -50  m) were also distributed above the conservative mixing line further 

indicating excess DIC (Figure 35A) to these waters. In addition, both salt marsh and 

estuarine sources were above the conservative mixing line suggesting that these systems 

may be sources o f DIC to the SAB shelf (Figure 35 A). An alternative analysis using one 

o f  these sources as the end member instead o f  the freshwater rivers would yield different
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results, such as more conservative mixing if  the estuarine end member was used or 

possibly a sink for DIC if the salt marsh end member was used. For simplicity and 

consistency, the freshwater riverine end member was again chosen for all mixing 

relationships.

DIC isotopic mixing curves can be used as an indicator o f net-heterotrophic or 

net-autotrophic processes in a system, since deviations from the mixing line may reflect 

biological activity and/or atmospheric exchange (Spiker 1980; Coffin et al. 1994). In the 

5 13C-DIC vs. salinity relationship (Figure 35B), SAB shelf samples consistently fell 

below the conservative mixing curve (solid black line) and as shown by the linear 

regression line (dotted red line) for all upper water column samples (< -50 m). This 

suggests a possible significant addition o f  biogenic CO2 (i.e., from heterotrophic 

processes; Spiker 1980; Coffin et al. 1994). Estuarine samples plotted both above and 

below the conservative mixing curve with one higher salinity (-25) sample consistent 

with inner shelf § 13C-DIC values (Figure 35B). Salt marsh sources were — 2%o depleted 

in 5 13C-DIC relative to inner shelf samples (Figure 35B), suggesting that marsh DIC 

influences the 5 13C-DIC signature on the inner shelf.

In the A,4C-DIC vs. salinity relationship, deviations from conservative mixing 

will vary as a function o f equilibrium with atmospheric CO2, and carbonate mineral 

dissolution (Spiker 1980). Similar to the 5 13C-DIC vs. salinity relationship, the vast 

majority o f  SAB shelf samples were A14C depleted relative to the conservative mixing 

curve (solid black line) and as shown by the linear regression for all surface samples 

(< -50  m; red dotted line; Figure 35C). Deep waters (> -50  m depth) o f  slope stations had 

a large range o f A14C values, some more enriched than surface waters (~87%o) and others 

which were depleted (—75%o) and had A14C-DIC values lower than the Gulf Stream end 

member (—30%o; Figure 35C); these deep water samples could not be adequately 

assessed by the isotopic mass balance approach used here due to uncertainties in the most 

appropriate end members for these waters. Salt marsh creek samples were depleted in
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A14C relative to the conservative mixing line (Figure 35C), suggesting that these may 

have been contributing to shelf DIC. Estuarine end members were more highly depleted 

in ,4C relative to the conservative mixing line (Figure 35C), suggesting that other 

processes, possibly carbonate mineral dissolution, was contributing to the A14C 

signatures in this region (Spiker 1980).

Relationships Between DIC Properties

The A,4C-DIC vs. 5 13C-DIC relationship for all SAB samples shows additional 

differences between upper (<~50 m) and deep (>~50 m) water masses (Figure 36A). The 

correlation for all surface samples yields a positive relationship (Figure 36A). Upper 

water column samples (<~50 m) with depleted 5 13C-DIC were also relatively depleted in 

A14C-DIC, suggesting possible contributions from respiration o f  slightly older 14C- 

depleted materials (Spiker 1980). Upper water column samples (<~50 m) with enriched 

5 1jC-D1C signatures were also relatively more enriched with A14C-DIC (Figure 36A). 

Deep water samples (>~50 m) had similar 5 13C-DIC signatures (mean = 0.9 ± 0.2%o, 

n=43) and a large range o f  A14C-DIC signatures, from -74 to 87%o (Figure 36A) with the 

more depleted A14C-DIC signatures indicating the presence o f “older” Gulf Stream 

waters (Severinghaus et al. 1996).

DIC Isotopic Mass Balance

The relevant isotopic end-members for carbon sources potentially contributing to 

the DIC in the SAB (Figure 36B) suggest that SAB surface waters are relatively well- 

constrained by air-sea exchange o f CO2, river, estuarine and salt marsh sources and 

deeper offshore waters that mix with slope and shelf waters. The air-sea exchange term 

was bounded for A14C by using the known A,4C o f 2005 atmospheric CO2 for the eastern 

U.S. (55 to 66%o; Hsueh et al. 2007) corrected for equilibrium isotopic fractionation 

(Stuiver and Polach 1977). The 513C for atmospheric CO2 in 2005 was estimated to have
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a signature o f ~8.5% o. Estimating the 5 ,3C o f  seawater DIC resulting from atmospheric 

exchange has a range o f  uncertainty due to equilibrium fractionation, which varies 

primarily as a function o f  water temperature; for the temperature range o f SAB waters, a 

fractionation factor o f  -8 to -10%o (mean o f ~9% o) is appropriate (Broecker and Peng 

1982). All other isotopic signatures o f  potential DIC sources were measured directly as 

part o f  this study (Table 5; Figure 36B).

Based on the known or identified end members and DIC-salinity relationships 

(Figures 35A-C), relative contributions to the DIC pool were estimated using salt marsh 

creeks, surface ocean CO2 exchange and deep Gulf Stream (>900 m) waters as end 

members. For purposes o f simplification, it was assumed that marsh creek waters would 

also contain river and estuarine components, and thus serve as a better integrated end- 

member o f  all three o f these potential sources. While this may not adequately reflect all 

processes occurring in the DIC pool on the SAB shelf in 2005, it was felt to be the best 

estimate based on the constrained parameters. It is also important to note that a number 

o f the samples have A,4C-DIC values that exceed the atmospherically equilibrated DIC 

source (Figure 36B). One possibility for these elevated values is the preferential 

respiration o f  14C enriched riverine or marsh DOC in SAB shelf waters. However, these 

DOC components are not included due to the complexity o f  the seawater DIC system and 

limitations o f  the three-end member approach.

Isotopic mass balance results for SAB DIC surface samples are summarized in 

Table 7. On the inner shelf, especially at station C01, there was an increase in the 

relative contribution o f salt marsh sources as the year progressed. In March and July 

2005, inner shelf waters were calculated to be comprised o f  -5 0  to 66%  modern DIC in 

equilibrium with atmospheric CO2, -23  to 49% salt marsh DIC and up to -16%  offshore 

Gulf Stream DIC. At mid- and outer shelf stations during this same time, there was a 

calculated decrease in the relative contribution o f  salt marsh DIC (up to -20% ) as the
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relative Gulf Stream and atmospheric source strengths increased (up to -30%  and 66 to 

100%, respectively).

The “marsh CO2 pump hypothesis’' states that in the fall, there is a large efflux o f  

CO2 and DIC and possibly organic matter from the coastal salt marshes into the SAB 

shelf (Wang and Cai 2004). Evidence for this was found from the dual isotope mass 

balance estimates for the inner shelf during October 2005, where salt marsh DIC sources 

contributed up to -52%  o f the total DIC pool, while atmospherically equilibrated 

seawater DIC contributed -53  to 87%, and the Gulf Stream influence was up to -18%  

(Table 7). However, the impact o f  salt marsh inputs on the isotopic composition o f  DIC 

did not persist into the mid- and outer shelf surface waters. At these locations, DIC was 

instead estimated to be comprised predominantly o f atmospherically equilibrated 

seawater DIC ( -7 7  to 87%, Table 7), with smaller contributions from deep Gulf Stream 

waters (-10-20% ) and no more than -13%  salt marsh DIC.

Shelf DOM Dark Decomposition Experiments

DOC Decay Rates and Stoichiometry

While not all o f  the dark incubation experiments were successful due to 

contamination o f some o f the nearly year-long time series (data not shown), the majority 

o f the incubations (Figures 23A-C) showed consistent time-dependent decreases in DOC 

concentrations. Results from the March 2005 decomposition time series (Figure 23A) 

displayed the highest DOC decay rate coefficients (mean k=0.00118 ± 0.00011 day'1 

n=2; Table 6) at the outer shelf station. Inner shelf stations during this time showed 

essentially no change, which suggests that the DOC originating from river or marsh 

sources during this period o f  high discharge may have been largely unreactive.

In July and October 2005, however, larger decreases in DOC concentrations 

occurred at the inner compared to mid shelf stations (Figures 23 B and C, respectively), 

yielding higher decay rate coefficients (inner shelf means for July and October,
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k=0.00032 ± 0.00001 day'1 and k=0.00085 ±  0 day'1 respectively, n=2; Table 6), and 

indicating that terrestrial sources o f  DOC may have been a source o f relatively reactive 

material during the summer and fall. Mid- and outer shelf stations in the summer were 

deduced to be comprised primarily o f  a background, and presumably refractory, DOC 

pool, since there were no net changes in DOC concentration in these containers (Figures 

23B and 24A). The October outer shelf time series, where large and consistent increases 

in DOC concentration occurred (Figures 23C and 24C), suggest that there may have been 

micro-organisms present in these waters with the ability to fix CO2 in the absence o f  light 

and produce DOC. In all July and October 2005 experiments, concentrations o f DON 

decreased (Figures 24B and D), indicating the preferential remineralization o f this 

component.

DOC:DON ratios o f  the initial and final samples for July and October (Figures 

37A-B) offer further evidence o f preferential DON utilization during DOM 

decomposition in the SAB. All incubations exhibited an increase in DOC:DON, albeit to 

different extents. At inner shelf stations where there were the largest decreases in DOC 

concentration and moderate decreases in DON concentration, the DOC:DON showed the 

smallest change (Figures 37A-B), although it was still significantly different from initial 

DOC:DON (one-way ANOVA, PO .O l, n=4, for both July and October series). At mid­

shelf stations during both experiments, there was little change in DOC concentration and 

the largest decrease in DON concentration (Figures 24A-D), resulting in a larger increase 

in DOC:DON ratio (Figures 37A-B; one-way ANOVA, PO .O l, n=4, for both July and 

October series).

The outer shelf station in October showed a dramatic increase in DOCiDON (one­

way ANOVA, PO .O l, n=4,) due to the simultaneous decreases in DON concentration 

and increases in DOC concentration (Figures 24C-D). While it is difficult to envision the 

mechanisms responsible for preferential production o f  DOC and loss o f  DON, they 

would presumably need to rely on the utilization o f substrates in which C and N are
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uncoupled from one another. Finally, these results suggest that in July and October, 

reactive DOC was recycled on the inner shelf, while on the mid- and outer shelf regions 

DOC was relatively refractory and DON was the preferred component utilized by 

heterotrophic bacteria in the SAB (Table 6; Figures 37A-B).

Similar dark decomposition experiments have been conducted previously in the 

MAB where the spatial and stoichiometric patterns o f  DOC, DON, and DOP reactivity 

were examined (Hopkinson et al. 1997; Hopkinson et al. 2002). Time series plots o f  

DOC utilization in the MAB showed similar logarithmic decreases (Hopkinson et al. 

1997; Hopkinson et al. 2002) to the SAB decomposition experiments (Figures 23A-C). 

However, DOC decay rate coefficients in surface waters o f  the MAB were about two-fold 

higher than in the SAB (up to 0.0025 day'1 for MAB vs. 0.00118 day’1 in the SAB), with 

the highest rates occurring at inner shelf stations and the lowest rates at outer shelf and 

deep water stations in both regions (Hopkinson et al. 1997). AH MAB incubations 

resulted in increases in DOC:DON ratios, similarly indicating preferential 

remineralization o f  DON to DOC (Hopkinson et al. 1997; Hopkinson and Vallino 2005).

Several studies in the SAB have shown that photodegradation may be a 

significant sink for DOM and may increase both the rate and extent o f  bacterial 

decomposition (Miller and Zepp 1995; Miller and Moran 1997; Obemosterer and Benner 

2004). For example, Miller and Moran (1997) found that photochemical reactions may 

“condition'” DOM in SAB surface waters and stimulate bacterial decomposition, 

ultimately controlling the rate o f  biological consumption o f  the more refractory 

components o f  the DOM pool. Using the decay rate coefficients calculated from the 

DOM decomposition experiments in this study as an indicator o f reactivity o f  DOM in 

the absence o f photodegradation processes (Table 6), it appears that during the summer 

and fall months DOC was relatively reactive at inner shelf stations and relatively 

refractory at mid shelf stations. In the winter, and possibly spring, months, the calculated 

decay rate coefficients (Table 6, Figure 23A) suggest that DOC may be more refractory
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along the inner shelf during periods when greater amounts o f  riverine materials were 

exported onto the shelf and more reactive at mid- and outer shelf regions where 

phytopiankton sources were more dominant.

Those samples that exhibited decreases in DOC from heterotrophic bacterial 

activity may have been further limited by low inorganic nutrient concentrations or a lack 

o f bioavailable DOC substrates. Results from short term incubations o f  Altamaha and 

Savannah River water, for example, suggest that the biochemical composition o f  riverine 

DOM may affect its utilization by bacteria, rather than inorganic nutrient availability 

(Sun et al. 1997; Moran et al. 1999; Wiegner et al. 2006). It has also been suggested that 

in rivers DON degrades relatively more rapidly and supports more bacterial production 

than DOC (Wiegner et al. 2006). Results from these SAB shelf experiments are therefore 

consistent with findings in other coastal and river systems that the relative amount o f  

DON utilized tends to be greater than that for DOC, leading to significant increases in the 

DOC.DOC o f  the remaining, more refractory material (Table 6; Figures 24A-D and 

37A-B).

A14C-DOC Changes and Mass Balances During DOM Dark Decomposition

In order to isotopically characterize the component o f  DOC utilized by 

heterotrophic bacteria and help establish its source, simple isotopic mass balance 

calculations were conducted using the initial and final DOC concentrations and A14C 

isotopic signatures. This exercise was not attempted on the 5 ,3C results as these showed 

nominal changes during the course o f  DOC decomposition (Figure 25 A). However, 

calculated A14C values o f the utilized fractions (Table 8) were significantly enriched over 

either the starting or ending DOC, with a mean o f 405 ± 100%o (n=2) at the inner shelf 

site and 1029 ± 41 l%o (n=2) at the mid shelf site. These highly enriched values indicate 

that heterotrophic bacteria preferentially utilized components o f the bulk DOC with A,4C 

values indicative o f significant bomb 14C, and, in the most enriched case, these values
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were similar to the maximum atmospheric bomb A14C signal attained in the period 

immediate following nuclear weapons testing (Keeling et al. 1995; Krakauer et al. 2006), 

and which would have imparted these same elevated signatures to terrestrial plant 

materials. These highly enriched A,4C signatures for the utilized DOC components may 

also be in part a result o f  limitations o f the simple 2-end member isotopic mass balance 

model that is traditionally used in these types o f  calculations.

Few similar DOC utilization experiments exist with which to compare these SAB 

findings. However, in the upper, low salinity (S<4) portion o f the York River estuary, 

VA, Raymond and Bauer (2001a) calculated similarly A14C-enriched values o f utilized 

DOC fractions (385%o to 698%o). These workers were also unable offer a specific 

process or mechanism that would result in calculated utilized DOC components having 

A14C signatures greater than ~450%o. However, the occurrence o f  this phenomenon in 

several systems would appear to warrant a closer examination o f  both the microbial 

processes and sources o f  DOC that could lead to such a highly A14C-enriched utilized 

fraction.

Sources and Cycling o f Carbon and Organic Matter in the SAB

The SAB ocean margin has been previously characterized as being a net 

heterotrophic system (Hopkinson 1985; Cai et al. 2003; Wang et al. 2005). The “marsh 

CO2 pump” hypothesizes that in the spring and early summer, coastal salt marshes o f  

Georgia accumulate CO2 from the atmosphere by assimilating it into organic matter via 

photosynthesis (Wang and Cai 2004). It further hypothesizes that as summer progresses, 

marsh primary production decreases and respiration increases, resulting in marsh export 

o f  inorganic and organic carbon to adjacent estuaries and coastal waters (Wang and Cai 

2004), potentially fueling heterotrophic conditions in the SAB (Wang et al. 2005). 

Similarly, Hopkinson (1985) noted a seasonal relationship between respiration and
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temperature, but not respiration and photosynthesis, suggesting the importance o f  

allochthonous materials in the nearshore region.

Several lines o f  evidence presented in the current study are consistent with the 

classification o f the SAB as a heterotrophic margin (Hopkinson 1985; Cai et al. 2003) as 

well as the “marsh CO2 pump’- hypothesis (Wang and Cai 2004). Results from this study 

illustrate year-round across-shelf gradients in carbon and organic matter distributions and 

associated parameters and OM recycling in surface waters. In addition, temporal 

changes in the magnitudes and sources o f  terrestrial inputs to surface waters o f inner shelf 

sites from winter/spring (March) to summer/fall (July and October) may also may affect 

C and OM processing differently on the mid- and outer shelf compared to the nearshore 

SAB.

Regional Differences in C Sources and Cycling in the SAB

Inner shelf stations received significant inputs o f  DOC and POC from terrestrial 

sources as seen in the across-shelf concentration gradients (Figures 6A-C and 8A-C) and 

isotopic signatures (Figures 9A-C, 10A-C, 11A-C, and 12A-C) o f  both o f  these bulk 

pools. While DOC concentration-salinity plots suggested quasi-conservative mixing 

between riverine and marine end members (Figure 29A), the distributions o f DOC 

isotopes vs. salinity suggested that there were additional sources o f  isotopically enriched 

DOM (i.e., for both S13C-DOC and A14C-DOC) at lower salinity shelf stations (S<~32; 

Figures 29B-C), which isotopically most resembled salt marsh creek DOM.

Inner shelf stations were generally characterized by depleted 8 13C-DOC and 

enriched A]4C-DOC (Figures 9A-C, 10A-C, and 32A) suggesting the presence and 

persistence o f  modern terrestrial derived DOC there. In contrast, mid- and outer shelf 

stations were characterized by greater relative amounts o f 5 ,3C-enriched and A14C- 

depleted DOC (Figures 9A-C, 10A-C, and 32A) indicating the presence o f  greater 

relative amounts o f aged, marine DOC. Dual isotope mass balance estimates for the
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DOC component further suggested a prevalence o f terrestrial materials, both riverine and 

salt marsh sources, at inner shelf stations (Table 7; Figure 32B). Outer shelf stations, in 

contrast, tended to be dominated by marine phytoplankton and Gulf Stream sources 

(Table 7; Figure 32B). However, these results are still somewhat inconclusive as a result 

o f isotopic similarity o f  the salt marsh creek and phytoplankton end members.

POC did not appear to mix conservatively between riverine and marine end 

members across the SAB shelf (Figure 33A) and was likely influenced by organic matter 

sources that isotopically also resembled salt marsh materials. Further evidence for a salt 

marsh source o f POC to shelf waters was found in the 5 13C-POC vs. salinity mixing 

curve (Figure 33B) where both lower salinity (S<~35) shelf and salt marsh samples were 

depleted in 5 ljC relative to the conservative mixing line between riverine and marine end 

members. In part due to the relatively small range o f A,4C-POC values in surface waters 

(Table 4), A14C-POC vs. salinity appeared to mix quasi-conservatively across the SAB 

shelf (Figure 33C), except at a few high salinity stations (S>~35) where Gulf Stream 

influences were likely influencing the A.14C signature.

The overall isotopic composition o f POC on the SAB shelf was suggestive o f a 

combination of'■‘older’ terrestrial sources and “younger” marine sources (Figures 11A-C, 

12A-C, and 34A). This is essentially opposite to the age-source contributions to the DOC 

pool in SAB waters, which was comprised predominantly o f young terrestrial and old 

marine sources (Figures 9A-C, 10A-C, and 32A). Results o f dual isotope mass balance 

o f the POC pool suggested the dominance o f  recently produced phytoplankton sources 

throughout surface waters o f the SAB (Table 7; Figure 34B). Thus, the general sources 

and ages o f DOC and POC isotopic signatures are opposing each other in the SAB 

illustrating the highly disparate sources and processes affecting the cycling o f  each o f  

these pools.

To further consider across-shelf changes in the cycling o f  DOC and POC, DIC 

concentrations and isotopic signatures m aybe useful as indicators o f  biological activity
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and atmospheric exchange (Spiker 1980; Coffin et al. 1994). DIC concentration 

gradients in the upper water column (<~50 m) from this study did not suggest a terrestrial 

source o f  DIC to the shelf region (Figures 17A-C and 18A-C). Instead, the DIC 

concentration vs. salinity mixing relationship indicated that excess DIC was present on 

the SAB shelf relative to the conservative mixing line between freshwater riverine and 

marine end members (Figure 35A). 5 13C-DIC in surface waters (<~50 m) was depleted 

on the inner shelf and increased at mid- and outer shelf stations (Figures 19A-C and 20A- 

C), suggesting that heterotrophic processes on the inner shelf, possibly driving some o f  

the DIC excess (e.g., respiration o f  exported river and marsh organic matter exported to 

the SAB), and equilibrium exchange with the atmosphere at outer shelf stations (Spiker 

1980; Coffin et al. 1994) are the dominant processes there.

Additionally, DIC isotope-salinity mixing relationships for both 5 I3C-DIC and 

A,4C-DIC were strongly depleted relative to the conservative mixing distributions 

between freshwater riverine and marine end members (Figures 35B-C). These findings 

further suggest either a) the influence o f salt marsh sources which also were depleted in 

both isotopes relative to the conservative mixing curve, b) heterotrophic processes 

depleting the DIC isotopic signatures, or c) a combination o f both. Generally, in surface 

waters (<~50 m) o f  the SAB, lighter 5 ljC-DIC signatures corresponded with depleted 

(but still modem) A14C-DIC signatures and conversely, heavier 5 13C-DIC signatures 

corresponded with enriched A,4C-DIC signatures (Figure 36A). Dual isotope mass 

balances for the DIC pool suggested that at inner shelf stations, the DIC pool was 

comprised o f  relatively similar portions o f  salt marsh creek and seawater CO2 sources 

(Table 7; Figure 36B). The DIC concentration gradient would, however, appear to argue 

against a significant export term o f 13C- and 14C-depleted DIC from rivers, estuaries and 

marshes to the SAB. Thus, we speculate that respiration o f some combination o f  river, 

estuarine and marsh-derived DOC and POC is the most likely mechanism for generating 

the observed DIC isotopic distributions in the SAB, especially the inner shelf.
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In summary, the distributions o f  carbon and organic matter, their respective 

isotopic distributions and mass balances, used to calculate the relative contributions o f  

carbon and organic matter sources, all suggest that terrestrial and salt marsh materials had 

a measurable influence on the composition o f  DOC, POC and DIC pools on the inner 

shelf o f  the SAB (Table 7).

Heterotrophy and Organic Matter Alterations in the SAB

To evaluate potential coupling between organic matter and DIC in the SAB via 

autotrophic and heterotrophic processes, DIC and DOC concentrations and 5 13C isotopic 

signatures were plotted as a function o f  one another (Figures 38A and B; Raymond et al. 

2004). DIC vs. DOC concentrations were negatively correlated for all sampling periods 

(Figure 38A), suggesting that, overall, the processes producing and consuming the two, 

such as photosynthesis and heterotrophic respiration were inversely related. In contrast to 

concentrations, 5 ,3C-DIC vs. 5 13C-DOC for surface samples were positively correlated 

(Figure 38B). Stations with depleted 5 13C-DOC also were depleted in 5 13C-DIC (Figure 

38B) suggesting the respiration o f  terrestrial sourced DOC. Similarly, stations with 

enriched 8 1jC-DOC also tended to be enriched 5 13C-DIC (Figure 38B) further suggesting 

a coupling between the DOC and DIC pools via autotrophic and heterotrophic processes. 

In the SAB ocean margin, this coupling may be further exemplified by the strong across- 

shelf gradients, where heterotrophic processes dominate water column processes and 

hence, carbon and organic matter distributions and characteristics at inner shelf stations 

(Hopkinson 1985; Wang and Cai 2004), while at mid- and outer shelf stations, the system 

is closer to being metabolically balanced (Cai et al. 2003).

Significant temporal changes in carbon and organic matter distributions and 

elemental and isotopic characteristics in the SAB further suggest that the above general 

features may reflect important seasonal and climatological forcings that drive not only the 

inputs and characteristics o f  these materials, but ultimately their role in helping establish
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the metabolic status o f  the SAB. This will be controlled not only by the reactive forms of  

allochthonous organic matter exported from landward o f  the land-ocean interface, but by 

the export (or import) o f inorganic carbon as well (Ducklow and McCallister 2004; 

Borges 2005; Cai et al. 2006). Some o f  the strongest anomalies in organic matter 

distributions and both isotopic and elemental characteristics were observed for March 

2005 when compared to July and October 2005 (Figures 26A-C, 30A-B, 31A-B, 32A-B, 

and 34A-B). March was also the highest river discharge period o f the three cruises 

(Figures 5A-D), resulting in a flux o f  terrestrial organic matter in inner shelf waters 

during this part o f the year.

Interestingly, much o f the ri ver, estuarine and/or salt marsh material that was 

exported to the inner SAB in spring did not appear to be particularly reactive, at least to 

dark heterotrophic processing (Table 6; Figure 23A). Instead, perhaps due to warmer 

summer and fall temperatures (Hopkinson 1985; Pomeroy et al. 2000), or “conditioning” 

o f  DOM by exposure to photochemical or other processes (Miller and Zepp 1995; Miller 

and Moran 1997; Obemosterer and Benner 2004), DOM reactivity in inner shelf waters 

appeared to be greatest in fall (Table 6; Figures 23C and 24C-D). In addition, the sources 

and ages o f DOM supporting heterotrophic respiration on the inner and mid-shelf, if  the 

October incubations are representative o f  the system in general, suggest that: a) a 

modem, bomb-enriched component(s) o f  DOM (Table 8), most closely resembling the 

14C-enriched river and marsh DOM (Table 4), is in part supporting the heterotrophy, and 

hence, production o f excess CO2 and DIC in the SAB (Cai et al. 2003; Wang and Cai 

2004; Wang et al. 2005); b) the remineralization o f this bomb 14C-enriched DOM is 

uncoupled to a significant extent from DON remineralization (Figures 37A-B), allowing 

for a greater recycling o f  the river- and marsh-derived DON components in SAB waters, 

and presumably supplementing new shelf production o f  both phytoplankton and benthic 

microalgae (Yoder 1985; Jahnke et al. 2005); and c) the river and marsh-derived DOM is 

effectively stripped o f  both its younger C and more N-rich components in the SAB
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(Figures 25B and 37A-B), leaving a highly aged and N-poor form o f DOM for export to 

the greater North Atlantic.

A conceptual model o f carbon cycling based on the findings o f this study is 

depicted in Figure 39 to illustrate the basic inputs and transformations o f  OM on the SAB 

shelf. Terrestrial inputs o f both organic and inorganic carbon to the inner shelf region are 

dominated by river and/or salt marsh-derived materials. Heterotrophic conditions may 

therefore dominate in the nearshore SAB due to inputs o f this young, allochthonous OM 

which are rapidly remineralized, as shown by concentration gradients o f  DOC and POC 

as well as from findings from the dark DOM decomposition experiments. As a result o f  

this and factors such as physical mixing o f  offshore materials, the terrestrial OM isotopic 

signal is not apparent at outer shelf stations, but rather reflects the presence o f  more 

typically marine OM on the basis o f its concentrations, 6 13C and A14C signatures. The 

,4C-enriched respired component o f the DOM o f  river and marsh origin is therefore 

inferred to be the component that drives the net CO2 air-sea efflux from SAB waters on 

the inner and perhaps mid-SAB shelf. The more refractory 14C-depleted component 

remaining after DOM degradation is then available for export from the SAB shelf to the 

open ocean for long term storage, and contributing to the continental shelf pump. It is 

thus possible that preferential degradation o f  DOM in ocean margins is responsible for 

both molecularly transforming and “pre-aging’'’ previously young terrestrial OM inputs 

such that they more closely resemble the aged and presumably refractory DOM o f  the 

deep open ocean, prior to its shelf export.

DOM (as DOC) fluxes from ocean margins have been speculated to be one o f  the 

most globally important sources o f material supporting the steady-state inputs o f  the 

aged, N-poor DOM reservoir o f the deep open ocean (Bauer and Druffel 1998; Duarte 

and Prairie 2005). Both the age and DOC:DON o f the residual, non-metabolized DOM 

from the October mid-shelf incubations closely resemble the steady-state ages and 

DOC:DON ratios o f  mixed-layer and mesopelagic DOM from the contiguous Sargasso
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Sea (Bauer and Druffel 1998; Bauer et al. 2001; Loh et al. 2004), suggesting that both 

terrestrial and shelf material in margins may be “pre-aged'"’ during decomposition, and 

constitute a potentially important form o f  pre-aged refractory DOM to the open ocean. 

Indeed, ocean margins, if  represented by the SAB in general, may primarily serve as 

“reaction zones”, not only converting land-derived organic materials to CO2 and 

supporting a net heterotrophic metabolic balance there, but also simultaneously 

increasing the age, and reducing the N content and presumably the reactivity o f  DOM 

exported to the open ocean.
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C o n c l u s i o n s

The SAB ocean margin has previously been characterized as a net heterotrophic 

system potentially fueled by the adjacent coastal salt marshes o f the southeastern USA. 

The findings from the present study are consistent with this classification, displaying 

year-round across-shelf gradients in carbon and OM distributions and associated 

parameters as well as OM recycling in surface waters. In addition, temporal changes in 

the magnitudes and sources o f  terrestrial inputs to surface waters o f  inner shelf sites from 

winter/spring (March) to summer/fall (July and October) may also affect C and OM 

processing differently on the mid- and outer shelf compared to the nearshore SAB. 

Respiration o f some combination o f  river, estuarine and marsh-derived DOC and POC is 

speculated to be the most likely mechanism for generating the observed OM and DIC 

isotopic distributions in the SAB.

In the SAB ocean margin, strong across-shelf gradients as well as the 

relationships between various parameters suggest coupling between OM and DIC pools. 

At inner shelf stations, terrestrial inputs o f  OM and heterotrophic processes dominate the 

water column processes, and hence, carbon and OM distributions and characteristics. In 

contrast, at mid- and outer shelf stations, the system appears to be closer to being 

metabolically balanced, even though allochthonous terrestrial OM was often present. If 

the SAB is representative o f  ocean margins in general, these findings suggest that these 

dynamic, transitional environments may primarily serve as “reaction zones”, converting 

land-derived, allochthonous organic materials to inorganic components, while 

simultaneously increasing the age and reducing the N content, and presumably the 

reactivity, o f DOM exported to the open ocean.
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Table 6. DOM dark decomposition results for SAB surface waters.

M arch July O ctober
incubation duration (days) 

DOC Decay Coefficients, k (day '1)3
152 289 216

Inner Shelf A 0.00049 0.00033* 0.00085*
Inner Shelf B - 0.00032 0.00085*
Mid Shelf A 0.00123* - 0.00065
Mid Shelf B 0.00065 - 0.00065

Outer Shelf A 0.00127* - -0.00442*
Outer Shelf B 0.00110’ - -0.00518*

Fraction of DOC Utilized M arch July O ctober
Inner Shelf A 0.21 0.09 0.17
Inner Shelf B - 0.12 0.22
Mid Shelf A 0.11 - 0.12
Mid Shelf B 0.08 - 0.17

Outer Shelf A 0.15 - -1.46
Outer Shelf B 0.12 - -1.68

Fraction  of DON Utilized M arch July O ctober
Inner Shelf A nsb 0.56 0.41
Inner Shelf B ns 0.58 0.44
Mid Shelf A ns 0.66 0.61
Mid Shelf B ns 0.73 0.73

Outer Shelf A ns 0.73 0.39
Outer Shelf B ns 0.61 0.43

a Decay rate coefficients (k) were calculated as a first order reaction. 
* P<0.01 for decay rate coefficients. 
b ns- no sample
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Table 8. A14C-DOC isotopic mass balance results for DOM dark decomposition 
experiments, October 2005.

Initial Final A14C-DOC (%o) of
Site A,4C-DOC (%«) A,4C-DOC ( % o )  fraction utilized

Inner Shelf A 41 ± 8  -52 ± 7  475 ±11
Inner Shelf B 41 ± 8  -40 ± 7  334 ±11

Mid Shelf A -103 ± 13 -284 ± 8  1319 ± 15
Mid Shelf B -103 ± 13 -256 ± 8 738 ± 1 5
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Figure 1. Bathymetric map o f  the South Atlantic Bight (from Menzel 1993).
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Figure 2. Metabolic balance in the nearshore SAB (from Hopkinson 1985).
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Figure 3. p C O2 distributions along transect C in 2000 and 2002 in the SAB (from Cai et 
al. 2003).
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Figure 4. Locations o f sampling transects and stations for the March, July and October
2005 cruises to the SAB.
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Figure 5. USGS graphs o f river discharge (http://vvww.usgs.govA) for selected rivers 
(representing the largest inputs to the SAB) discharging to the SAB for 2005-2006: A) 
Altamaha River, B) Savannah River, C) Pee Dee River, D) Cooper River. Approximate 
cruise and end member sample trip dates are highlighted in yellow.

116

http://vvww.usgs.govA


p u o o a s  j a d  q a a }  o x q n o  ' a S j e q o s x n  A 1 IH Q

b o o b  5 S© o  a  B 3  <=CD CO O CD O IN
? S S H
p u o o a s  j a d  q a a j  o x q n o  < a 3 j a q a s i o  A 1 I H 0p u o o a s  j a d  q a a j  o x q n o  ' a S j e q o s T Q  A H IH Q



Figure 6. Surface DOC concentrations for A) March, B) July, and C) October 2005
cruises to the SAB. Note different scales for each panel.
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Figure 7. DOC depth profiles for A) March, B) July, and C) October 2005 cruises to the
SAB. Error bars represent the standard deviation o f duplicate bottles analyzed.
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Figure 8. Surface POC concentrations for A) March, B) July, and C) October 2005 
cruises to the SAB. In July 2005, only three stations along C transect were selected for 
POC analysis and results were not contoured. Note different scales for each panel.
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Figure 9. Surface 5 13C-DOC distributions for A) March, B) July, and C) October 2005
cruises to the SAB.
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Figure 10. Surface A14C-DOC distributions for A) March, B) July, and C) October 2005
cruises to the SAB.

126



March 2005 A14C(%.) of DOC
36

35

34

33
y-218
-24732

[■57J79
31 -245

•111 -28130 -189
29

20

27
-02 -80 -78 -76 -74

Longitude

July 2005 A14C(%.) of DOC
36

35

34

33

32
-169

-24231

30

29

20

27'-84 -82 -80 -78 -76 -74
Longitude

October 2005 A14C(%«) of DOC
36

35

34

33

32
-103

31 -135

30 -133-104
29

20

27
-84 -82 -80 -78 -76 -74

Longitude

127



Figure 11. Surface S1 JC-POC distributions for A) March, B) July, and C) October 2005
cruises to the SAB.
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Figure 12. Surface Al4C-POC distributions for A) March, B) July, and C) October 2005
cruises to the SAB.
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Figure 13. Surface DON distributions for A) March, B) July, and C) October 2005
cruises to the SAB.
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Figure 14. DON depth profiles for A) March, B) July, and C) October 2005 cruises to the 
SAB. Error bars represent the propagated errors o f duplicate sample analyses.
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Figure 15. Surface DOP distributions for A) March, B) July, and C) October 2005
cruises to the SAB.
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Figure 16. DOP depth profiles for A) March, B) July, and C) October 2005 cruises to the 
SAB. Error bars represent the propagated errors o f duplicate sample analyses.
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Figure 17. Surface DIC distributions for A) March, B) July, and C) October 2005 cruises
to the SAB.
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Figure 18. DIC depth profiles for A) March, B) July, and C) October 2005 cruises to the
SAB.
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Figure 19. Surface 5 13C-DIC distributions for A) March, B) July, and C) October 2005
cruises to the SAB.
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Figure 20. 5 ,3C-DIC depth profiles for A) March, B) July, and C) October 2005 cruises
to the SAB.
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Figure 21. Surface A,4C-DIC distributions for A) March, B) July, and C) October 2005
cruises to the SAB.
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Figure 22. A14C-DIC depth profiles for A) March, B) July, and C) October 2005 cruises
to the SAB.
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Figure 23. DOM dark decomposition experiment time series changes in DOC 
concentrations for A) March, B) July, and C) October 2005 cruises to the SAB. “A” and 
“B” in treatment categories on X axis refer to duplicate 20-L polycarbonate carboy 
incubations. Error bars represent the standard deviation o f triplicate DOC analyses.
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Figure 24. DOM dark decomposition experiment initial and final concentrations for A) 
July DOC, B) July DON, C) October DOC, and D) October DON. “A” and “B” in 
treatment categories on X axis refer to duplicate 20-L polycarbonate carboy incubations. 
Error bars on DOC plots indicate the standard deviation o f  triplicate DOC analyses. For 
DON plots, error bars represent propagated errors o f duplicate sample analyses.
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Figure 25. DOM dark decomposition experiment results for A) 5 ,JC-DOC, and B) A14C- 
DOC at t=0 and the conclusion o f incubations in October 2005. “A” and in 
treatment categories on X axis refer to duplicate 20-L polycarbonate carboy incubations. 
Error bars represent analytical errors.
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Figure 26. Relationships between A) DOC:DON, B) DOC:DOP, and C) DON:DOP for 
all samples collected during March, July, and October 2005 cruises to the SAB. Dashed 
lines represent Redfield stoichiometry.
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Figure 27. Surface DOC:DON distributions for A) March, B) July, and C) October 2005
cruises to the SAB. Note different scales for each panel.
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Figure 28. DOC:DON depth profiles for A) March, B) July, and C) October 2005 cruises
to the SAB. Error bars represent propagated errors o f duplicate sample analyses.
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Figure 29. Salinity mixing relationships for A) DOC concentration, B) 5 1 JC-DOC and C) 
A14C-DOC for surface samples only from March, July and October 2005 cruises to the 
SAB. Solid lines or curves indicate the predicted conservative distributions between the 
average o f August 2006 riverine end members (S<3) and yearly averaged outer shelf 
surface marine end members (at S=~36). Red dashed lines represent linear regressions 
for all surface samples.
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Figure 30. Surface DOC property-property relationships for A) 8 ljC- DOC vs. DOC 
concentration and B) A14C-DOC vs. DOC concentration for surface samples from March, 
July and October 2005 cruises to the SAB. Lines represent linear correlations between 
parameters and colors correspond to the three sampling periods.
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Figure 31. Surface DOC property-property relationships for A) DOC:DON vs. 5 13C-DOC 
and B) DOC:DON vs. A14C-DOC for surface samples from March, July and October 
2005 cruises to the SAB. Lines represent best-fit linear correlations between parameters 
and colors correspond to the three sampling periods.
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Figure 32. AI4C-DOC vs. 5 I3C-DOC from March, July, and October 2005 cruises to the
SAB for A) surface samples and B) surface samples and potential end members. Solid
line represents best-fit linear correlation for all surface samples.
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Figure 33. Salinity mixing relationships for A) POC concentration, B) 5 13C-POC,and C) 
A14C-POC for surface samples only from March, July and October 2005 cruises to the 
SAB. Solid lines or curves indicate the predicted conservative distributions between the 
average o f  August 2006 riverine end members (S<3) and yearly averaged outer shelf 
surface marine end members (at S=~36). Red dashed lines represent linear regressions 
for all surface samples from March, July and October.
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Figure 34. A14C-POC vs. 5 ,JC-POC from March, July, and October 2005 cruises to the
SAB for A) surface samples and B) surface samples and potential end members. Solid
line represents best-fit linear correlation for all surface samples.
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Figure 35. Salinity mixing relationships for A) D1C concentration, B) 5 I3C-DIC, and C) 
A14C- for surface and deep samples from March, July and October 2005 cruises to the 
SAB. Lines or curves represent conservative distributions between the average o f  August 
2006 freshwater end members (at S=0) and yearly averaged outer shelf marine end 
members (at S=~36). Red dashed lines represent linear regressions for all surface 
samples from March, July and October.
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Figure 36. A14C-DIC vs. 5 ljC-DIC from March, July, and October 2005 cruises to the
SAB for A) surface and deep samples and B) surface and deep samples plus potential end
members. Solid line represents best-fit linear correlation for all surface samples.
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Figure 37. DOC:DON stoichiometry for DOM dark decomposition experiments in A) 
July and B) October 2005 at t=0 and conclusion o f incubations. “A” and “Bv in 
treatment categories on X axis refer to duplicate 20-L polycarbonate carboy incubations. 
Error bars represent propagated error o f  duplicate sample analyses.
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Figure 38. Relationships between A) DIC vs. DOC concentrations and B) 5 ,JC-DIC vs. 
5 ljC-DOC for all surface samples from March, July and October 2005 cruises to the 
SAB. Lines represent linear correlations between parameters and colors correspond with 
the three sampling periods.
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Figure 39. Conceptual Carbon cycling model for the SAB.
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Appendix Figure 1. Distributions o f A) total dissolved inorganic nitrogen (DIN) and B) 
dissolved inorganic phosphorus (DIP) as a function o f salinity for March, July, and 
October 2005 cruises to the SAB.
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