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ABSTRACT

Data on accumulation of persistent organochlorine pollutants (POPs) in lower trophic 
level organisms, particularly in the Antarctic, are scarce. In addition, no studies have 
documented the presence of brominated flame retardants (brominated diphenyl ethers 
(BDEs)) in Antarctica. This study investigated the presence of various POPs, including 
HCB (hexachlorobenzene), a- and y-HCH (hexachlorocyclohexanes), heptachlor, 
heptachlor epoxide, o,p’ and p,p’ DDT and their metabolites o,p’ and p,p’ DDD, and p,p’ 
DDE, and BDEs (BDE-47, -99, and -100) in sea ice algae, water column plankton, 
juvenile krill foraging on ice algae, and adult krill, in the Palmer Long Term Ecological 
Research (LTER) region west of the Antarctic Peninsula during late austral winter and 
midsummer, 2001-2002. HCB and BDEs were most frequently detected. BDEs were 
present in ice algae at concentrations between 2 and 3 orders of magnitude higher than 
HCB. High levels of HCB and BDEs in ice algae indicate the importance of sea ice as a 
vector for entry of POPs into the Antarctic marine ecosystem. HCHs, heptachlor 
epoxide, and the DDT compounds were not quantifiable in ice algae samples. 
Concentrations of HCB and BDEs were significantly higher in ice algae than in summer 
plankton. HCHs, heptachlor, heptachlor epoxide, and the DDT compounds were below 
the level of quantification in more than half of plankton samples. No biomagnification 
was found in juvenile or adult krill for HCB or BDEs. y-HCH and heptachlor were 
quantified in juvenile krill; a- and y-HCH were quantified in adult krill. DDT 
compounds were not quantifiable in either juveniles or adults. The presence of HCB, 
heptachlor, and BDEs in ice algae and juvenile krill suggests transfer of contaminants 
directly from ice algae to foraging juvenile krill. Sea ice therefore contributes 
contaminants to higher trophic levels directly via feeding by juvenile krill on ice algae.
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INTRODUCTION

A few decades ago, it was generally assumed that polar regions were unaffected by the 

increases in industrialization that have occurred over the past century in tropical and 

temperate regions. Since that time, persistent organic pollutants (POPs) have been found 

in ecosystems far from areas of production and use, including Antarctica. Furthermore, 

these contaminants tend to accumulate in polar environments (Wania and Mackay, 1996).

Persistent organic pollutants (POPs) are a class of chemicals, primarily produced and 

used in low and mid latitudes, which share four characteristics (Voldner and Li, 1995). 

POPs are toxic, long-lived, lipophilic contaminants that have a tendency to evaporate and 

travel long distances through the atmosphere. A large number of POPs are highly 

chlorinated, synthetically produced pesticides and insecticides, belonging to a class of 

chemicals known as organochlorines. These compounds are carcinogenic and endocrine 

disrupting chemicals that can have harmful effects on both humans and animals, 

including impaired reproductive success and immune response, and neurological and 

behavioral abnormalities (Bard, 1999). Such effects occur even at very low 

concentrations (Schafer, 2002).

Persistent organochlorines (POCs) remain in the environment for extended periods of 

time before breaking down. Their stability stems from strong chlorine-carbon bonds, 

which make them resistant to natural degradation processes by light, chemical reactions,
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or biological processes. These compounds are hydrophobic, and generally have low 

solubilities and high octanol-water partition coefficients (log KqW > 4) (Swackhamer and 

Skoglund, 1991). POCs are also lipophilic, or fat soluble, which results in efficient 

assimilation by organisms (Larsson et al., 2000). Because of their persistence, POCs are 

able to remain in body tissue for years or decades before breaking down. The 

combination of these two factors allows POCs to accumulate in the body fat of living 

organisms and become concentrated (biomagnified) as they move up the food web via 

ingestion by higher consumers. Twelve compounds, considered the most toxic of the 

POPs and referred to as the “Dirty Dozen,” are targeted for global elimination by an 

international treaty signed on May 21, 2001 at the Stockholm Convention (Schafer,

2002). Included in this list of chemicals are several POCs of focus in my study, including 

DDT (dichlorodiphenyltrichloroethane), hexachlorobenzene (HCB), and heptachlor.

Like the chlorinated POPs described above, brominated diphenyl ethers (BDEs) are 

another class of persistent, lipophilic, bioaccumulative organic chemicals that travel 

through the atmosphere, and have an environmental dispersion similar to that of PCBs 

(polychlorinated biphenyls) and DDT (de Wit, 2002). BDEs are brominated organic 

compounds, similar in structure to PCBs, that have been produced for use as flame 

retardants in plastics, textiles, electronic circuitry and other materials since the early 

1970’s (de Boer and Cofino, 2002; de Wit, 2002). These compounds, like those in the 

“Dirty Dozen,” are speculated to exhibit a number of harmful effects in humans and 

animals at low-level exposures. Although the toxological impacts are still being 

assessed, effects of BDEs on thyroid function in animals appear to be similar to adverse
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effects reported for PCBs (Alaee and Wenning, 2002). Evidence also suggests BDE- 

mediated production of pseudoestrogens in humans, neurotoxic effects in mammals, liver 

toxicity and a reduction in spawning success in fish, and endocrine disruption in aquatic 

life (de Wit, 2002; Ikonomou et al., 2002). Three general BDE-based flame retardant 

technical products are produced. Though not the most abundant of these, pentaBDE 

(PeBDE), containing tetra- through hexa- BDEs, has the highest potential toxicological 

effects, based on the lower degree of bromination of its congeners. PeBDEs are easily 

bioaccumulated, and are frequently found in biological and environmental samples. 

PeBDE products contain a number of lower brominated BDE congeners, including BDE- 

47 (2,2’,4,4’-TeBDE), BDE-99 (2,2’,4,4’,5-PeBDE), and BDE-100 (2,2’,4,4’,6-PeBDE), 

which are the BDEs of focus in my study. Unlike the POCs in the “Dirty Dozen,” BDEs 

have not been targeted for elimination by international treaty. BDEs are in current use, 

and are being commercially produced in large quantities.

As mentioned above, both POCs and the BDEs have a tendency for atmospheric 

transport. This characteristic has led to their presence in ecosystems far from areas of 

release. The majority of research on atmospherically transported POCs has been done in 

the Arctic. There, the accumulation of contaminants has been detected not only in high 

trophic level seals and polar bears (Oehme et al., 1996; Norstrom et al., 1998; Bard, 

1999), but also in breast milk of northern human populations, which have traditionally 

lived and hunted marine mammals within the Arctic (Bard, 1999). Antarctic sampling 

programs have also detected the presence of contaminants derived from sources outside 

Antarctica. The first cases of organochlorine contamination in Antarctica were reported



in the 1960's with the discovery of DDT and other organochlorine pesticides in Antarctic 

regions (Sladen et al., 1966; Tatton and Ruzicka, 1967). Since that time, a number of 

studies on Antarctic organochlorine contamination have been conducted, particularly on 

high trophic level predators. POCs have been detected in Antarctic fish (Larsson et al., 

1992), seabirds (Van den Brink, 1997), penguins (Inomata et al., 1996), Weddell seals 

(Luckas et al., 1990), in the eggs of both penguins and skuas (Weichbrodt et al., 1999), 

and in Minke whales (Aono et al., 1997). POCs have also been detected in air, water, 

snow, ice, aquatic sediments, soils, mosses, and lichens, (Peterle, 1969; Tanabe et al., 

1983; Calamari et al., 1991).

Although studies on BDEs in the environment, particularly in polar regions, are far fewer 

and relatively recent compared to those on POCs, BDEs have been detected in a number 

of samples in ecosystems far from areas of release. BDEs were first discovered in the 

Arctic and hypothesized to be global contaminants in 1987, when they were found in 

tissue samples of fish-eating birds and the ringed seal (Phoca hispida) from the Arctic 

Ocean (Jansson et al., 1987). Since then, BDEs have been reported in the ringed seal by 

a number of studies (Ikonomou et al., 2002; Ikonomou et al., 2000; Alaee et al., 1999), in 

Beluga whales (Alaee et al., 1999), and in Arctic air samples (Alaee et al., 1999). 

However, no studies have been published to date on the presence of BDEs in Antarctica.

Although global elimination of the “Dirty Dozen,” as well as the HCHs, is well under 

way, the BDEs have only begun to be targeted for banning, and only in countries within 

the European Union (de Wit, 2002). The result is that while levels of POCs have
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decreased in concentration in marine mammals, aquatic wildlife, and human breast milk 

over the past few decades, levels of BDEs have sharply increased (Li et al., 1998; Alaee 

and Wenning, 2002; de Wit, 2002). Despite the restricted use of many of the POCs, 

continuing research on these contaminants is especially important in Antarctica because 

use of certain compounds, such as DDT, still continues in developing countries, 

particularly in the tropical regions of the southern hemisphere. Also, even with decreases 

in the production and use of POCs, these contaminants still enter the Antarctic 

environment due to evaporation of residues from soils in low latitude regions (Bard, 

1999).

Atmospheric Transport o f POPs

POPs reach high latitude regions primarily via long-range atmospheric transport (Wania 

and MacKay, 1996). Though this transport process has long been accepted for POCs, it 

was only more recently suggested for BDEs (Watanabe et al., 1992 in Alaee and 

Wenning, 2002). Because of their high volatility in warm climates, POPs evaporate from 

the surface of tropical and subtropical regions where they are produced and used. 

However, cooler temperatures favor condensation and deposition from the atmosphere 

onto soil and water. POPs therefore migrate to higher latitudes in a series of jumps, 

known as the “grasshopper effect,” by migrating, accumulating, and migrating again in 

phase with seasonal temperature changes, both as vapor-phase chemicals, and in 

condensed form adsorbed to atmospheric particles (Wania and MacKay, 1996).
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During this global-scale migration of POPs, fractionation occurs in which individual 

compounds separate in the atmosphere and are deposited at different latitudes. Highly 

volatile compounds migrate through the atmosphere faster and remain airborne longer 

than those with lower volatility. This process results in an accumulation of relatively 

high volatility persistent pollutants at high latitudes (Wania and MacKay, 1996). While 

the concentrations of atmospheric POPs decline with distance from low latitude source 

regions to polar regions (Tanabe et al., 1983), concentrations of relatively mobile POPs 

condensed in seawater increase over the same distance. Thus, an inverted concentration 

gradient is established, with low concentrations in tropical regions, and high 

concentrations in polar regions. Global atmospheric transport of POPs is a chronic 

source of pollutants, which has led to an accumulation of contaminants in polar regions 

(Kennicutt and McDonald, 1996).

My study documents the presence of POPs in lower trophic levels of the Antarctic marine 

food web, and investigates the mode of introduction of these contaminants into the food 

web.

BACKGROUND

POPs in the Antarctic Marine System 

Deposition o f POPs onto sea ice

The ice sheet that covers 98% of the Antarctic continent is the main sink for atmospheric 

pollution reaching Antarctica (Wolff, 1992). During winter the coastal regions



surrounding Antarctica are covered with seasonal sea ice, which acts as a lid on the 

surface of the ocean, accumulating contaminants following deposition from the 

atmosphere (Pfirman et al., 1995). For the most part, deposition of atmospheric 

contaminants is not directly onto sea ice, but onto the overlying snow cover. This 

deposition can occur in the form of both wet (rain/snow) and dry deposition, or via 

diffusive gas exchange with the overlying snow pack.

Snow is an efficient scavenger of both particulate and vapor phase atmospheric POPs, 

and is likely the primary transport mechanism for POPs to the ice surface in Antarctic 

regions. More than 80% of atmospheric deposition of persistent pollutants in the Arctic 

happens in the form of snow (Burkow and Kallenbom, 2000). The depositional 

capability of snow has been seen in the Canadian Arctic, where a single long-range 

atmospheric transport event deposited thousands of tonnes of fine particulates containing 

semivolatile organic pollutants (EDDT, EHCH) in “brown snow” (Welch et al., 1991). 

Contaminants scavenged by falling snow are subsequently contained in accumulating 

snow packs (Wania, 1997).

Dry deposition, the direct transfer of contaminants in gaseous form or adsorbed to 

particles, is another possible method of transport for contaminants to the snow and ice 

surface (Pfirman et al., 1995; Chernyak et al., 1996; Wania et al., 1998). Gregor and 

Gummer (1989) observed the accumulation of atmospherically transported compounds in 

the snow pack in a number of sites in the Canadian Arctic, which they propose to be the 

result of both wet and dry deposition. Diffusive gas exchange may also account for the
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transfer of contaminants to the snow cover, particularly during periods of very low 

temperature (Hoff et al., 1995; Wania, 1997; Wania et al., 1998).

Incorporation of organic contaminants into the snow pack has been well documented, 

particularly in Arctic regions and other northern high latitude sites (Wania et al., 1998). 

Several studies also document concentrations of POPs (DDTs, PCBs, HCHs) dissolved in 

Antarctic snow (Peterle, 1969; Peel, 1975; Risebrough et al., 1976; Tanabe et al., 1983).

Incorporation into ice

Wania (1997) suggests that non-polar organic chemicals partition into one of four pools 

in a glacial snow pack, including the air filling the pore spaces, liquid water, organic 

material, or the air-ice interface. This partitioning depends on physical-chemical 

characteristics, with the more water soluble contaminants (HCH, dieldrin) in the aqueous 

phase, and the less soluble ones (DDT) in the particulate phase (Welch et al., 1991; 

Wania, 1997). Contaminant transport within the snow pack occurs via diffusion in the air 

and water contained in pore spaces (Wania, 1997). Unlike glacier ice underlying a 

glacial snow pack, sea ice is a dynamic medium, constantly shifting and cracking. 

Contaminants contained in the snow pack overlying sea ice likely percolate into the 

underlying ice during cracking and seawater flooding. These processes transport organic 

contaminants deposited on the snow throughout winter into the underlying sea ice.

In ice, organic contaminants are generally found in the dissolved phase, unless a high 

content of biological material is present (Wania et al., 1998), suggesting that ice algal
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cells are important in accumulating POPs within the ice column. The percolation process 

described above likely causes partitioning of POPs to algal cells in the ice column. 

Enhanced association of POPs with particulate matter has been observed in a number of 

studies, particularly for those contaminants with higher KoW (DDTs, PCBs), compared to 

those with low KqW (HCHs). High levels of DDT and a PCB isomer were noted in sea ice 

containing appreciable amounts of particles (Gaul, 1989), while ice samples with low 

particle content yielded low levels of organochlorines (Hargrave et al., 1988). Also, 

HCB, DDT, DDE, and PCBs were detected in particulate matter collected from the 

bottom 10 cm of Arctic pack ice, comprised almost entirely of ice algae, including 

diatoms and dinoflagellates, while no detectable concentrations were observed in the ice 

itself (Hargrave et al., 1988; 1992). Other studies also reported contaminant levels in sea 

ice diatoms, the particulate fraction, and ice algae of Antarctic sea ice, and a high rate of 

contaminant accumulation in sea ice was suggested (Lukowski and Ligowski, 1988; 

Desideri et al., 1991; Green et al., 1992).

Ice melt input

Few studies have assessed the fate of contaminants entering sea ice. Chernyak et al. 

(1996) found maximum concentrations of atmospherically transported pesticides in 

Arctic water samples in regions closest to the ice edge, where ice melt occurs. Similarly, 

a factor of two increase in PCB content was observed in the surface layer in Terra Nova 

Bay, Antarctica, following pack ice melting (Fuoco et al., 1994). The introduction of 

contaminants to surface waters can occur both directly and indirectly. HCHs and other 

soluble compounds are likely released with draining melt water (Wania, 1997), while
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chemicals with a lower solubility, such as DDT, are released on organic particles. 

Volatility increases with temperature, and relatively volatile contaminants, such as HCB, 

may be volatilized back into the atmosphere during snow and ice melt (Barrie et al.,

1992; Pfirman et al., 1995; Wania, 1997). Due to the steep air-water concentration 

gradient and cool temperature of surface waters following ice melt, these contaminants 

may condense back into the water column, being introduced indirectly into surface 

waters.

Summer atmospheric input

In addition to the pulsed input of contaminants from sea ice melt, atmospheric input 

continues as a source of POPs to the upper water column throughout spring and summer, 

making these two sources the major inputs of POPs to the upper water column. Wet and 

dry deposition are likely lower during summer than winter (Larsson et al., 1992), but air- 

water exchange may also play a role in introducing POPs into the water column, though 

volatilization of contaminants from water to air may also occur. Because this exchange is 

a function of the concentration gradient between the vapor and dissolved phases of the 

contaminant, as well as wind speed, water temperature, and the physical and chemical 

properties of the contaminant (Hombuckle et al., 1994), the direction of air-water transfer 

is uncertain.
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Contaminant recycling

While a portion of contaminants released with ice melt is likely lost due to sedimentation 

and volatilization during spring and summer, some remain in the upper water column via 

recycling.

During degradation and mineralization of organic matter, organic contaminants, 

particularly those of higher solubility, are released into solution (Baker et al., 1991). 

Similarly, efficient recycling of lower molecular weight PCB congeners (3-, 4- and 5- 

chlorines) has been found in lakes (Jeremiason et al., 1999). Contaminant release is often 

seen during settling of solids through the water column (Baker et al., 1991), but studies 

describing the recycling of organic contaminants in the upper water column of lakes or 

the ocean are lacking.

Both microbial respiration and grazing by zooplankton, particularly protozoa, are 

important in remineralization of organic matter. The presence of a microbial food web, 

and the importance of grazing and in situ remineralization processes (i.e., POM 

recycling) during and after the spring bloom in Antarctic coastal regions (Karl et al.,

1991; Karl et al., 1996; Serrett et al., 2001; Bode et al., 2002) supports the idea that a 

portion of contaminants in the mixed layer following ice melt are retained in the euphotic 

zone due to recycling in the upper water column. Recycled contaminants would be 

released into solution, and re-distributed into the available particulate pool. In this way 

persistent contaminants may remain absorbed to phytoplankton in the upper water 

column, despite multiple generations of phytoplankton between spring and summer.
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Antarctic Ecology 

Water Column Processes

The Antarctic ecosystem is dominated by the marine environment, with scarce terrestrial 

life on the continent. The primary food web exists in the marine ecosystem, where life is 

based almost entirely on microscopic organisms (Friedmann and Thistle, 1993). The 

coastal environment west of the Antarctic Peninsula is dominated by the seasonal 

formation and retreat of sea ice, which regulates highly productive phytoplankton blooms 

(Smith et al., 1995; Smith et al., 1996; Smith et al., 1998a). Vertical stratification 

induced by the melting of sea ice during spring and summer results in the retention of 

organisms in a high light and nutrient-rich environment, resulting in increased 

abundance, biomass, and productivity of phytoplankton (Smith and Nelson, 1986; Smith 

et al., 1998a). In this region, maximal ice coverage generally occurs during austral late 

winter/early spring (Sept.-Oct.), with minimal ice coverage during the summer months 

(Feb.-Mar.) (Smith et al., 1995).

West of the Antarctic Peninsula, phytoplankton accumulate from November to February. 

During this time chl-a concentrations average 5 mg m' , with maximum values of 38 mg 

m'3 in regions of large blooms (Smith et al., 1996). During winter, very low chi-a 

concentrations (< 0.05 mg m*) are found throughout the water column (Smith et al., 

1996). Phytoplankton abundance is also generally low in ice-covered waters during 

spring (Bidigare et al., 1996). In the immediate vicinity of Palmer Station, biomass 

begins to accumulate during mid-November. Strong blooms usually develop from 

December through January, with a relatively large spring bloom during
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December/January, and a smaller secondary bloom in February/March (Smith et al., 

1998b).

Coastal Antarctic regions are characterized by a dominance of large plankton, particularly 

chain-forming diatoms (> 20 pm), as well as dinoflagellates, flagellates, and Phaeocystis 

spp., during the spring and summer seasons (Kottmeier and Sullivan, 1987; Bidigare et 

a l, 1996; Prezelin et al., 2000). Chain-forming diatoms generally dominate during 

bloom periods in the Palmer Long Term Ecological Research (LTER) area, while smaller 

diatoms and flagellates dominate during non-bloom periods (Smith et al., 1995). In the 

Bellingshausen Sea, located west of the Antarctic Peninsula, phytoplankton sampled at 

the ice edge during October were dominated by Phaeocystis spp., but were replaced by a 

diatom-dominated community at the beginning of November (Bidigare et al., 1996).

Larger zooplankton (> 0.2 mm in length) are the main trophic link between primary 

producers and apex predators in the Southern Ocean (Ross et al., 1996). The Antarctic 

krill, Euphausia superha, is the most important macrozooplankton consumer in the 

Antarctic pelagic food web (Garrison et al., 1986). All Antarctic marine vertebrates 

depend either directly or indirectly on krill. The predominance of krill in the diets of 

many species, particularly its importance in the diet of seabirds, seals, and penguins, 

make it a keystone species in the region west of the Antarctic peninsula (Ross and 

Quentin, 1986; Ross et al., 1996). Phytoplankton blooms support large populations of 

these predominantly herbivorous grazers (Holm-Hansen and Huntley, 1984), which are 

often the most abundant macrozooplankton species within the Palmer-LTER study area
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(Quetin et al., 1996). Adult krill tend to form aggregations and are present year round in 

the upper 120 m, with an increase in number during late summer/early fall (February 

through April) (Ross et al., 1996).

Sea Ice Processes

Sea ice is also a site of high biological productivity (Kottmeier and Sullivan, 1987). The 

bottom surfaces and interstices of sea ice serve as a microhabitat colonized by bacteria, 

algae, heterotrophic protozoans, and small metazoans, referred to as sea ice microbial 

communities (SIMCO) (Garrison et al., 1986, Garrison, 1991; Garrison and Mathot, 

1996), or ice algae. These communities may be inoculated with plankton organisms in 

the water column during ice formation in the austral autumn (Ackley and Sullivan, 1994). 

Most algal groups present in the plankton community, in particular diatoms, are also 

found in sea ice (Palmisano and Garrison, 1993). Sea ice, in turn, is hypothesized to 

provide an important seed stock to developing planktonic populations of ice edge blooms 

during spring ice melt (Garrison et al., 1986; Garrison, 1991; Ackley and Sullivan, 1994).

Sea ice biota are an important and highly concentrated food resource for over wintering 

juvenile krill (Holm-Hansen and Huntley, 1984; Ross and Quetin, 1986; Kottemeier and 

Sullivan, 1987; Stretch et al., 1988; Daly, 1998). Juvenile krill are often observed 

associated with the undersides of sea ice, and have been found to enter channels within 

ice floes, which may enable them to forage on biota in the interior of the sea ice (Garrison 

et al., 1986). Euphausia suberba spawns during summer, and it has been shown that 

larvae and juveniles cannot survive over winter at ambient food concentrations in the
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water column, and may be dependent on sea ice biota to survive (Smith et al., 1995; Daly, 

1998). Observations of adult krill associated with the undersides of sea ice, in contrast, 

are relatively rare, suggesting that adult krill are not strongly linked with the undersides 

of the sea ice during winter (Quetin et al., 1996). Evidence suggesting biological 

production in sea ice to be an important seasonal food resource for juvenile krill indicates 

an important role for ice biota in the Antarctic food web, and suggests that both SIMCO 

and water column plankton play a role in forming the energy base of the Antarctic marine 

food web (Garrison, 1991; Smith et al., 1998a).

Contaminants and the food chain

The introduction of POPs into surface waters with ice melt coincides with the time of the _ 

spring phytoplankton bloom, and a time when stratification induced by the melting of sea 

ice will concentrate POPs in the upper water column. This could lead to efficient transfer 

of the pollutants to phytoplankton, and subsequently to higher trophic level zooplankton, 

with sea ice providing a controlling vector for entry of POPs into the Antarctic 

ecosystem.

Hydrophobic contaminant concentrations in aquatic organisms are magnified by trophic 

interactions, beginning with phytoplankton (Taylor et al., 1991). Due to the hydrophobic 

nature of organic pollutants, and the lipid-rich characteristics and relatively large surface 

area of plankton, POPs exhibit an enhanced association with these cells (Swackhamer 

and Skoglund, 1991, 1993; Bard, 1999). Uptake of POPs by phytoplankton occurs via 

concentration dependent surface adsorption, and subsequent diffusive absorption and
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partitioning to intracellular lipids (Joiris and Overloop, 1991; Swackhamer and Skoglund, 

1991; del Vento and Dachs, 2002). Contaminants sorbed to phytoplankton cells are 

available for consumption by grazing zooplankton, which comprise the next trophic level 

in aquatic ecosystems. Upon grazing, contaminants are partitioned to lipid-rich 

organelles and tissues (Hargrave et al., 1988 in Bard, 1999), resulting in bioaccumulation 

of the pollutants. POPs are transferred with high efficiency between trophic levels, 

leading to biomagnification with each level (Larsson et al., 2000), expressed as an 

increase in contaminant concentration on a lipid basis. Both POCs and BDEs are subject 

to high assimilation and biomagnification through the food web, and have been referred 

to as “bioaccumulative chemicals of concern” (Wania and MacKay, 1996).

Pfirman et al. (1995) suggest a similar scenario for the Arctic, where pollutants released 

from ice melt may easily enter the food chain. Organisms feeding on the spring bloom in 

regions where first year ice melts may be subject to elevated levels of contaminants 

released from the ice. This mode of contaminant release could have such detrimental 

effects as contaminating Arctic shore fisheries and bird feeding areas. Although no 

studies have measured the accumulation of contaminants directly from melting sea ice, 

high concentrations of contaminants in phytoplankton located in areas fed with water 

from melting glaciers or old melting icebergs in Antarctica (Lukowski and Ligowski, 

1987, 1988) suggest a similar mechanism.
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Importance and Rationale

Work on the accumulation of POPs in polar biota has focused primarily on higher trophic 

level organisms. Less research has been conducted on lower trophic level organisms, 

particularly in the Antarctic. Few studies contain information on contamination of 

Antarctic phytoplankton by POPs (Lukowski and Ligowski, 1987, 1988; Joiris and 

Overloop, 1991). Information on the accumulation of atmospherically transported POPs 

by Antarctic sea ice microbial communities is also scarce, and limited to two studies 

(Lukowski and Ligowski, 1988; Desideri et al., 1991). Information on organochlorine 

contamination in Antarctic krill is more abundant (Risebrough et al., 1976; Lukowski, 

1978; Gupta et al., 1996; Corsolini et al., 2002), but is still limited, and there is no 

previous documentation on the transfer of pollutants directly from ice algae to foraging 

juvenile krill. In addition, information on the presence of BDEs in Antarctica is severely 

lacking, and no investigations on the presence of BDEs in lower trophic levels in general 

have been published.

An understanding of the physical and biological processes involved in the input, 

accumulation, and mobilization of POPs into food webs in polar marine environments is 

important in predicting the impacts of these contaminants on polar ecosystems. More 

research on POPs has been done in Arctic environments, and an increased understanding 

of the processes controlling the fate of these pollutants in Antarctic regions is needed.

The time scale over which remote ecosystems can recover from exposure to these 

chemicals is still unknown (Bard, 1999), and further research and understanding of the
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physical and biological processes regulating pollutant fate in polar ecosystems is 

essential.

HYPOTHESES

My thesis focuses on the role of both ice algae and phytoplankton in providing the first 

step in pollutant transport up the food chain.

1). I  hypothesize that POPs incorporated into sea ice throughout winter preferentially 

absorb to and accumulate in ice algal cells. Following accumulation during winter, 

POPs are released to surface waters with the seasonal melting o f snow and sea ice 

during the austral spring, and are accumulated by plankton cells in the water column.

2). I  hypothesize that during winter ice cover, POPs are passed to juvenile krill feeding 

on ice algae, and are potentially biomagnified between these two trophic levels.

Likewise, POPs are transferred from phytoplankton to adult krill at the next trophic level, 

with a potential biomagnification between these trophic levels.

MATERIALS AND METHODS 

Winter Sample Collection

Ice and juvenile krill samples were collected in Austral late winter/early spring during the 

2001 Palmer-LTER Ice Cruise (September 7 -  October 26) aboard the RVIB NathanielB.
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Palmer. Samples were collected at ice stations located west of the Antarctic Peninsula, 

southwest of Adelaide Island, at ca. 69°W, 6 8 ° S (Figure 1).

Sea ice was sampled using a 1 meter (3 inch diameter) barrel corer. Cores were taken 

after clearing the overlying snow from a ca. 2 m 2 area to expose the sea ice. Due to the 

variability in sea ice thickness and structure, and under rafting of the ice, not all cores 

reached the maximum thickness of the ice. Ice cores were cut into pieces, placed into 

closed (air and water tight) 60 L, solvent rinsed, stainless steel containers, and transported 

back to the ship. Subsequently, ice samples were melted by placing the containers in a 

warm water bath, and filtered to collect particulate matter on a pre-ashed (4 hrs @ 400 

°C) 142 mm diameter glass fiber filter (Gelman Type A/E). The filtrate was passed 

through an Amberlite XAD-2 (Supleco) resin column (35 cm x 25 mm i.d.) to collect 

dissolved phase pollutants a t»100 L/min. The XAD-2 resin was previously cleaned 

following procedures outlined in Dickhut and Gustafson (1995). Melted ice from three 

60 L containers (»100-130 L) were combined into one sample (n = 4). Filters were 

packed in pre-washed and ashed (4 hrs @ 400° C) Qorpak glass jars and frozen at -80° C 

until analysis.

Juvenile krill were collected with clean aquarium nets from the undersides and between 

rafted surfaces of the sea ice by divers (n = 2). Samples were frozen in pre-cleaned glass 

jars at -80° C until analysis.
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Figure 1. Locations of sea ice particulate matter and juvenile krill sampling stations 
(numbered 1-6) during the 2001 Palmer-LTER Ice Cruise, September 7 -  October 26, 
aboard the RV1B Nathaniel B. Palmer, and adult krill sampling stations (circles), during 
the Palmer-LTER summer cruise, January, 2002, west of the Antarctic Peninsula.
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Summer Sample Collection

Summer sampling took place between January 7 and March 14, 2002, in the vicinity of 

Palmer Station, Antarctica (64.7° S, 64.0° W), located in the southwest region of Anvers 

Island (Figure 2).

Net tows were used to collect representative samples of plankton from the surface water 

community. Plankton samples (n = 24) were collected weekly at 3 stations on the LTER 

inshore sampling grid (Figure 2), located within 2 miles of Palmer Station. Tows were 

done via Zodiak using a 153 jjm  net, followed by a 2 mm sieve to separate out krill and 

other large, higher trophic level organisms. The net clogged during tows, and it is 

possible that microzooplankton and small phytoplankton (< 153 fjm) were present in tow 

samples. A subsample of plankton was identified under 10-20x magnification using a 

compound microscope following each tow. Plankton samples were found to be 

composed mainly of diatoms, with a large proportion of Thalassiosira cells. Plankton 

samples were frozen in pre-cleaned glass jars at -80° C until analysis.

Snow samples (melted -80-140 L; n = 5) were collected from islands and the glacier in 

the vicinity of Palmer Station (Figure 2) using solvent rinsed stainless steel shovels, and 

processed following the methods described above for sea ice samples. Glacier ice from 

the top of the glacier behind Palmer Station (Figure 2) was sampled (melted -120-160 L; 

n = 3) using a 1 meter (3 inch diameter) barrel corer, and processed as described above 

for sea ice samples. Surface water runoff was collected from a site at the water’s edge 

-50 feet from Palmer Station (Figure 2). Runoff samples (-90 L; n = 2) were processed
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Figure 2. Plankton, glacier ice, runoff and snow sampling sites in the vicinity of Palmer 
Station, Antarctica (64.7° S, 64.0° W), January 10 - March 14, 2002.
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following the above procedures for melted sea ice. Snow, glacier, and runoff filters were 

packed in pre-washed and ashed (4 hrs @ 400 °C) Qorpak glass jars and frozen at -80° C 

until analysis.

Adult krill were collected at stations on the Palmer-LTER regional grid (Figure 1) using a 

505 jam, 2 m ring net during the LTER summer cruise (Jan, 2002) (n = 3). Krill were 

frozen in pre-cleaned glass jars at -80° C until analysis.

Contaminant Analyses

Plankton, krill, and sea ice particulate matter (ice algae) were extracted following 

identical procedures, but preparation of each type for extraction differed. Plankton 

samples were centrifuged at 1800 rpm for 30 minutes and the supernatant was decanted 

to remove excess water prior to extraction. Krill samples were homogenized using a 

Virtis 45 homogenizer prior to extraction. Filters containing sea ice particulate matter 

were tom into pieces using clean stainless steel forceps prior to extraction.

Each plankton sample (40 - 100 g wet weight), krill sample (-14-15 g wet weight), and 

filter sample was thoroughly mixed with pre-ashed (4 hrs @ 450° C) hydromatrix 

(Manufacturer) to remove water, and extracted with 65%:35% dichloromethane 

(DCM):methanol via accelerated solvent extraction (2000 psi; 100° C; Dionex ASE 200 

Accelerated Solvent Extractor) following addition of a surrogate standard mixture 

containing deuterated a-HCH and 2,2’,3,4,4’,5,6,6’-octachlorobiphenyl (OCB). For each 

sample, the extract was brought to 1:1:0.9 DCM:methanol:water by addition of methanol
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and 20% NaCl in hexane-extracted water, and back extracted 3 times into hexane via 

agitation for 3 minutes. Four of the snow sample filters were Soxhlet extracted for 24 hr 

each with acetone and DCM instead of ASE extracted after the addition of the surrogate 

standard. For these samples the acetone fraction was back extracted into hexane as 

described above and combined with the DCM fraction for solvent reduction.

The hexane/DCM extracts were reduced in volume to 5 ml by turbo- and/or roto- 

evaporation, followed by blow down with purified N2 . The total lipid extract (TLE) was 

determined gravimetrically for each sample in triplicate by weighing the 5 ml extract, and

0.1 ml (=20%) of the extract before and after solvent evaporation at 65° C. The 

remaining =5 ml fraction was vortexed with 1 ml H2 SO4  to remove lipids, and the hexane 

layer was removed after settling. Approximately 2 ml hexane were added to the 

remaining extract/acid mixture and the procedure repeated 3 times. A second H2 SO4  

clean-up was done on most samples. The acidified hexane fraction was blown down 

under ultra-high purity N2  to 1  ml and passed through a column containing 1 0  g pre­

cleaned (Soxhlet extraction with DCM for 24 hrs) deactivated silica (mesh size 100-200), 

topped with 1 inch pre-ashed (4 hrs @ 450 C) NaSCU, for further removal of interfering 

substances. Both 25 ml hexane and 40:10 ml DCM:hexane eluents were collected and 

reduced by roto-evaporation followed by nitrogen blow down to 1 ml. An internal 

standard containing deuterated lindane was added, and the extract further reduced to 1 0 0  

Jill under N2 for analysis.
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Samples were analyzed via gas chromatography/negative chemical ionization mass 

spectrometry (Hewlett Packard 6890 Series GC system/Hewlett Packard 5973 Mass 

Selective (MS) Detector) using a J&W DB-35MS wide bore capillary column (30 m 

length, 0.25 mm diameter, 0.25 jam film thickness) and selective ion monitoring. Method 

parameters for pesticide and BDE analyses are as follows: GC temperature program for 

pesticide analysis: 70° C, initial hold time of 1 min; 70-150° C @ 20° C min'1; 150-280° 

C @ 4° C min'1, hold for 15 min; 280-295° C @ 5° C min'1, hold for 2 min; source 

temperature 150° C. Temperature program for BDE analysis: 50° C, initial hold time of 

1 min; 50-130° C @ 20° C min'1; 130-300° C @ 5° C min'1, hold for 6 min; source 

temperature 150° C. Carrier gas for both methods: Helium at 1.0 ml min'1 with a 

velocity of 39 cm s'1.

Calculations and Statistical Comparisons

POPs were quantified relative to surrogate standards and contaminant concentrations are 

reported per unit of lipid biomass (ng/gupid)- NQ (not quantifiable) in tables 1-4 refers to 

levels that were below 3 times the field blank (SIMCO filters) or lab blank (plankton and 

krill). Nd refers to compounds that were not detected on the GCMS. Average values (± 

standard error) were only reported if compounds were quantified in at least two thirds of 

the samples. Average HCB concentration in plankton was calculated substituting a lipid 

normalized blank value for NQ values (Table 2, Figures 4 & 6). Average y-HCH 

concentration in adult krill was calculated using a value of zero for NQ (Table 4, Figure 

7), because this compound was not detected in blanks. Unpaired or paired (where 

appropriate) t-tests were performed on log transformed data to compare average values.
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RESULTS AND DISCUSSION

I. POPs in sea ice algae

Concentrations of HCB and BDE-47, -99, and -100 averaged 15.9 ± 6.2, 5459 ± 3840, 

7112 ± 5913, and 1350 ± 1074 ng/gnpid, respectively, in sea ice particulate matter (Table 

1). In contrast, HCB was not quantifiable in the dissolved phase of the sea ice, and BDEs 

were only quantifiable in one sample, and may have been due to breakthrough of small 

particulate material (at or below 3x blank, unpublished). These results suggest that 

atmospherically transported POPs that are deposited on sea ice during winter partition 

onto SIMCO cells.

BDE compounds were present in ice algae at concentrations between 100-1000 times 

higher than HCB (p < 0.05; d.f .= 3). One possible reason for this difference lies in the 

current production and use of these two compounds. BDEs are currently in use and are 

commercially produced in large quantities. In 1992, the total world production of 

brominated flame retardants was estimated at 150,000 metric tons/year (de Wit, 2002).

In comparison, HCB is not currently manufactured or used as a commercial end product 

in the United States, though it is formed as a by-product in the production of several 

chlorinated chemicals, and is a contaminant in some pesticides. Given the current high 

production and use of BDEs, atmospheric transport and deposition onto the sea ice is 

likely higher than for HCB. Moreover, HCB has a higher vapor pressure and was 

detected in relatively high concentrations in winter air samples compared to the other
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pesticides during my study period (Cincinelli and Dickhut, 2003). The lower vapor 

pressures of BDEs versus HCB render the former more easily condensed out of the 

atmosphere (Wania and Mackay, 1996).

Concentrations of a and y-HCH, heptachlor epoxide, and the DDT compounds were 

below the level of quantification in sea ice particulate matter, and heptachlor was only 

quantified (12 ng/guPid) in one of four samples (Table 1). Non-quantifiable 

concentrations of these POCs are likely a reflection of reductions in use in lower latitude 

regions, leading to low atmospheric concentrations and deposition onto sea ice. Lower 

atmospheric DDT concentrations (Larsson et al., 1992; Bidleman et al., 1993) compared 

to those reported a decade earlier indicated that atmospheric DDT levels over the 

Southern Ocean had dropped in the previous decade. DDTs were not found in air 

samples taken during my study (Cincinelli et al., unpublished). Likewise, concentrations 

of p,p’ DDE and SDDT were higher in sea ice diatoms during the 1986-87 season in the 

Antarctic Peninsula region (Lukowski and Ligowski, 1988) than DDT concentrations in 

sea ice algae in my study, which were not quantifiable.

A decrease in use in recent decades (Li et al., 1998) is probably the reason for low levels 

of HCHs, particularly the a isomer, in my ice samples as well. This decrease is supported 

by the decrease in SHCH air concentrations over Antarctica (Cincinelli and Dickhut, 

2003). Similarly, although heptachlor is no longer produced or used in the United 

Nations Economic Commission for Europe (UNECE) region, and was banned in the US 

in 1988, limited use of this compound is still permitted. Heptachlor is also a constituent
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of chlordane, which was still made in the US for export as of 1998. Heptachlor was 

detected in higher levels in winter air than y or a-HCH (Cincinelli and Dickhut, 2003), 

and the limited use of heptachlor may account for its presence in one ice algal sample. 

Due to the limited detection of heptachlor in samples, the absence of its oxidation 

product, heptachlor epoxide, is not surprising.

II. POPs in summer plankton

Concentrations of HCB and BDE-47, -99, and -100 averaged 2.5 ± 0.4, 22.9 ± 3.5, 22.3 ± 

3.4 and 4.5 ± 0.7 ng/guPid, respectively, in plankton collected during austral summer 

(January -  early March) at Palmer Station (Table 2). HCHs, heptachlor, heptachlor 

epoxide, and the DDT compounds were below the level of quantification in more than 

half of the samples; thus, average concentrations were not calculated. The presence of 

POPs in plankton suggests recycling of POPs introduced during snow and ice melt and/or 

atmospheric deposition of these contaminants during summer, and subsequent uptake by 

plankton. However, BDEs were only ~2 - 10 times higher than HCB in summer 

plankton, suggesting lower atmospheric deposition and bioaccumulation of these POPs in 

summer compared to winter.
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III. Comparisons between winter and summer plankton 

HCB and BDEs

A significant decrease was seen between the concentrations of HCB and BDEs (jLtg/gapid) 

in summer plankton vs ice algae (p < 0.05; d.f. = 26) (Figure 3). This difference can be 

attributed to a number of processes, including:

Particle flux

One mechanism responsible for the decrease of POPs in algae from winter to summer is 

removal, or scavenging, of POPs from the euphotic zone between the winter and summer 

sampling periods, via sedimentation of particles following ice retreat.

Phytoplankton blooms in the marginal ice zone around the Antarctic Peninsula are 

followed by high rates of POC export (Anadon et al., 2002). The region surrounding the 

Antarctic Peninsula exhibits extreme seasonality in particle flux (Karl et al., 1991), and in 

the Bransfield Strait, more than 90% of the annual sedimentation is concentrated in a 

short period during December and January (Wefer et al., 1988; Wefer, 1989).

Although removal of contaminants on sinking particles has not been documented in 

Antarctica, vertical sinking of particle-associated pollutants is considered to be a major 

sequestration process of POPs in marine environments (Dachs et al., 2000). Both settling 

particles and fecal pellets are important for selectively concentrating and removing 

contaminants from surface waters, shown by 10-100 times higher PCB concentrations on



33

Figure 3. Average lipid normalized concentrations of HCB and BDEs in wintertime sea 
ice algae (n = 4) and summer plankton (n = 24) samples. HCB average in plankton was 
calculated from 21 samples; 3 samples = NQ (not quantifiable) and a lipid normalized 
blank value was used for calculation. * = p < 0.05 for difference between ice algae and 
plankton (t-test on log transformed data). Error bars represent standard error.
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settling than suspended particles (Baker et al., 1991), and up to 21 times higher 

concentrations in fecal pellets than in the microzooplankton food source (Elder and 

Fowler, 1977). In the Mediterranean Sea, the seasonality of PCB flux corresponded with 

cycles of zooplankton biomass and primary productivity in surface waters (Bums et al., 

1985). Given the seasonal flux of particulate matter in the Antarctic Peninsula region, a 

large portion of POPs deposited onto sea ice is likely removed in a relatively short period 

of time following ice melt.

Biomass dilution

Higher standing stocks are observed in the summer in the water column (up to -300 mg 

m'2 chl-a integrated over the euphotic zone between January and March; Smith et al., 

1996) than in the winter ice column (up to 23 mg m*2chl-a for sea ice algae; Kottmeier 

and Sullivan, 1987). The higher biomass during summer likely plays a role in the 

decrease of HCB and BDEs between winter and summer samples, through biomass 

dilution. In this process, an increase in the biomass of plankton cells leads to a decrease 

in contaminant concentration on a per mass basis (Taylor et al., 1991; Olsson and Jensen, 

1975; Larsson et al., 2000). Contaminants recycled in the upper water column until 

summer, and those added via atmospheric input during spring and summer, were diluted 

in comparison to concentrations in ice algal communities, resulting in lower levels of 

POP/giipid plankton in summer than in winter samples.
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Air flux

Lower atmospheric deposition fluxes or efflux out of surface waters during spring and 

summer may also contribute to the lower levels observed in phytoplankton during that 

period. Total aerosol particle fallout is lower during summer (Larsson et al., 1992), and 

higher air temperatures will result in less condensation of atmospheric pollutants during 

summer as well (Wania and Mackay, 1996). Volatilization of contaminants from the 

water to the air may also occur in the absence of sea ice. Although this process is more 

likely for the more volatile HCB, it may also be possible for the lower brominated BDE 

congeners. Hargrave et al. (1997) reported an outgassing of HCB during the ice-free 

period in the Arctic that could have removed 20% of the surface layer inventory of this 

compound, and noted, in particular, a high potential for sea to air flux following ice melt 

in the Arctic in June. Gregor (1991) suggested volatilization as a mechanism responsible 

for the summer-time loss of a major portion of the organochlorines deposited in the 

Arctic snow-pack during winter. Thus, lower atmospheric deposition or volatilization of 

POPs in summer may in part be responsible for the lower POP concentrations observed in 

summer plankton than in ice algae.

DDTs, HCHs and heptachlor

a- and y- HCH, heptachlor and heptachlor epoxide, and the DDTs were present in 

quantifiable levels in a portion of summer plankton samples (Table 2), while they were 

below the level of quantification (with the exception of heptachlor, which was quantified 

in one ice algal sample) in ice algal samples (Table 1). a- and y- HCH and heptachlor 

were all found in air and surface waters of the region (Cincinelli and Dickhut, 2003;
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Dickhut et al., unpublished), indicating continued cycling of these POPs between air and 

water, and promoting accumulation by plankton. However, DDTs were not detected in 

air or water (Cincinelli et al., unpublished; Dickhut et al., unpublished), suggesting some 

other source to summer plankton.

Glacier melt input

One possibility for the presence of DDTs in plankton collected near shore, but not in ice 

algae samples, is the input of these compounds to surface waters during summer in 

glacial ice melt. Glaciers accumulate atmospherically deposited contaminants (Gregor et 

al., 1995; Donald et al., 1999), and melting glacial ice provides a source of contaminant 

input to surface waters during the spring and summer seasons (Lukowski and Ligowski, 

1987, 1988; Blais et al., 2001). In Antarctica, Lukowski and Ligowski (1987) 

documented higher HCH and DDT concentrations in plankton close to melting glaciers 

and icebergs, than in areas removed from glacier melt influence. Lukowski and Ligowski 

(1988) also found increased concentrations of y-HCH, p,p DDE and SDDT in 

phytoplankton sampled in areas more heavily covered in glacier ice. In my study, the 

highest levels of a- and y- HCH, heptachlor and heptachlor epoxide, and the DDTs in 

summer plankton were measured during the first sampling week (Jan. 15, 2002) at station 

A (Table 2), =5 m from shore in Author Harbor, an area directly influenced by glacier ice 

melting during summer.

In surface glacier core samples (0-1 m) collected in conjunction with my study, only 

heptachlor (dissolved phase) and BDEs (particulate and dissolved) were found at
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quantifiable levels (see Appendix). However, this does not mean that glacier runoff is 

not a source of DDTs to near shore plankton. Glaciation rates and the age of ice in the 

top 1 meter where samples were collected are unknown. Therefore, it is possible that 

DDTs, which were deposited in high amounts during the 1960’s (Lukowski and 

Ligowski, 1987), and the other pesticides, are located deeper in the glacier than the 

sample depth. Indeed, a previous study, conducted in 1975 in the vicinity of Anvers 

Island, found the highest amounts of DDT in ice layers from 1.5 to 6.0 m below the 

surface (Risebrough et al., 1976). In glacier runoff, DDTs, and to a lesser extent, a- and 

y-HCH, were found largely in the dissolved phase (see Appendix). Glacial runoff may 

originate from the surface of the glacier, or from older glacial ice (Blais et al., 2001). 

Origination of runoff from a source of old glacier ice contaminated with DDTs could 

have resulted in the presence of DDT compounds in runoff and near shore plankton 

samples, even though they were not found in upper glacier ice samples.

IV. Spatial and Temporal Trends

Spatial analysis o f POPs in plankton

Analysis of spatial variations in POP concentrations between the three stations at which 

summer plankton samples were collected, and the proximity of station A to the source of 

glacier runoff, can provide insight into the dominant sources of POPs to Antarctic coastal 

waters. No significant difference was found between any of the stations for 

concentrations of BDEs or HCB (p > 0.05; d.f. = 14), supporting the hypothesis of 

deposition via atmospheric input, rather than input via glacial melt. Current atmospheric
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input of these compounds is also supported by their presence in ice algae and in air 

samples (Cincinelli and Dickhut, 2003; Cincinelli et ah, unpublished). In addition, 

current atmospheric input of BDEs is supported by the presence of BDEs in snow 

samples from Palmer Station, deposited during the sampling year (see Appendix).

DDTs and the other pesticides were not found in a sufficient number of summer plankton 

samples to allow a statistical analysis of spatial trends. However, as noted above, the 

increased concentrations of DDTs in near shore plankton samples does implicate glacier 

ice melt water as the current source of these compounds. It is interesting to note that the 

ratio of the DDT isomers o,p’ and p,p’ DDT in plankton samples (Table 2) is close to 1.0. 

The technical mixture of DDT contains 80% p,p’ DDT and 20% o,p’ DDT (Kannan et 

al., 1995). Thus, o,p’ DDT is generally found in significantly lower proportion to p,p’ 

DDT in the environment. For example, o,p’ DDT averaged 17% of the sum of o,p’ and 

p,p’ DDT in fish samples from countries in tropical Asia and Australia (Kannan et al., 

1995 in Garrison et al., 2000). No comparisons of o,p’ to p,p’ DDT exist for Antarctic 

phytoplankton, although the ratio of o,p- to p,p’ DDT in Antarctic air collected during 

1994-’95 was 0.71 (Kallenbom et al., 1998). These data may indicate a preferential loss 

of p,p’- relative to o,p’ DDT during atmospheric transport to the Antarctic.

POP Temporal trends in Antarctic plankton

Values for y-HCH, heptachlor epoxide, p,p’ DDT and p,p’ DDE in plankton were 

quantifiable in a lower proportion of my samples than in plankton samples taken during 

1987 in the Indian Ocean sector of the Antarctic (Joiris and Overloop, 1991). Also,



average concentrations for those samples in which compounds were quantified are almost 

two orders of magnitude lower than concentrations reported by Joiris and Overloop 

(1991). The reduced frequency of occurrence and concentrations of these compounds 

can be attributed to decreases in use and atmospheric concentrations over the past few 

decades, which were reflected also in ice algal concentrations discussed above. A similar 

trend was seen between my data and concentrations of a- and y-HCH and the DDTs 

measured by Lukowski and Ligowski (1987, 1988) in the Antarctic Peninsula region 

during the 1983-‘84 and 1986-‘87 seasons. Figure 4 shows the decline in ZHCH (a- + y- 

HCH) over time, yielding an estimated half-life for HCHs in Antarctic plankton of 2 

years.

V. POPs in Krill 

Juvenile krill

Average concentrations of HCB (10.3 ±1.4 ng/gupid) and BDEs (568 ± 209, 622 ± 253, 

and 128 ± 50.5 ng/gupid for BDE-47, 99, and 100, respectively) in juvenile krill (Table 3) 

were not significantly different from those found in ice algae (p > 0.05; d.f. = 4) (Figure 

5), suggesting uptake of these compounds by juvenile krill feeding on ice algae, but no 

biomagnification between trophic levels. y-HCH and heptachlor were also quantified in 

juvenile krill, at average concentrations of 1.3 ± 0.5 and 14.2 ± 12.9 ng/guPid, respectively 

(Table 3). Heptachlor was quantified in one ice algal sample at a similar concentration as 

in juvenile krill (12 ng/guPid), but otherwise, levels of y-HCH and heptachlor were not 

quantifiable in ice algae (Table 1).
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Figure 4. E-HCH (a- + y-HCH) concentrations in plankton collected in the vicinity of 
Palmer Station, 2002 and previous studies. Average value for current study was 
calculated using only those samples in which a- or y-HCH was quantifiable (Table 2). 
Therefore, the calculated half-life is a conservative estimate.
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Figure 5. Average lipid normalized concentrations of pesticides and BDEs in wintertime 
sea ice algae (n = 4) and juvenile krill (n = 2) samples. Heptachlor was detected in 1 ice 
algae sample (12 ng/guPid), but was not quantifiable in other samples. y-HCH was not 
quantifiable in ice algae samples. All p values > 0.05 for difference between ice algae 
and juvenile krill (t-test on log transformed data). Error bars represent standard error.
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Adult krill

The average concentration of HCB (3.8 ± 0.3) ng/gupid) in adult krill (Table 4) was not 

significantly different from that in summer plankton (p > 0.05; d.f. = 25) (Figure 6). 

Average concentrations of BDEs in adult krill (2.0 ± 0.5, 2.5 ± 0.6, and 0.5 ±0.1 ng/giiPjd 

for BDE-47, 99, and 100, respectively; Table 4), in comparison, were significantly lower 

than in plankton (p < 0.05; d.f. = 25). As with juvenile krill and ice algae, no 

biomagnification was found between plankton and adult krill, a- and y-HCH were also 

both quantified in adult krill (Table 4). Interestingly, a-HCH was more concentrated 

than y-HCH in adult krill, whereas the opposite was true for phytoplankton (Table 2) and 

juvenile krill (Table 3).

Juvenile versus adult krill

Concentrations of HCB and BDEs were significantly lower (p < 0.05; d.f. = 3) in adult 

than juvenile krill (Figure 7). Heptachlor was also detected in juvenile krill (Table 3), but 

it was below quantifiable levels in adult krill (Table 4). Therefore, POP accumulation by 

juvenile krill during their first year when they are feeding on ice algae appears to exceed 

that for adult krill. Concentrations of HCB and BDEs were significantly higher on a per 

lipid basis in ice algae compared to summer water column plankton (p < 0.05; d.f. = 26) 

(Figure 3), and the significant difference between juvenile and adult krill may be a 

reflection of contaminant levels in their food source, or of acquisition of contaminants 

during the egg stage.
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Figure 6. Average lipid normalized concentrations of HCB and BDEs in summer 
plankton (n = 24) and adult krill (n = 3) samples. HCB average in plankton was 
calculated from 21 samples; 3 samples = NQ (not quantifiable) and a lipid normalized 
blank value was used for calculation. * = p < 0.05 for difference between plankton and 
adult krill (t-test on log transformed data). Error bars represent standard error.
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Figure 7. Average lipid normalized concentrations of pesticides and BDEs in juvenile (n 
= 2) and adult (n = 3) krill samples. a-HCH was not quantifiable in juvenile krill 
samples, and heptachlor was not quantifiable in adult krill samples. y-HCH in adult krill 
was detected in 2 samples; 1 sample = NQ (not quantifiable) and a value of zero was used 
for calculation. * = p < 0.05 for difference between juvenile and adult krill (t-test on log 
transformed data). Error bars represent standard error.
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Eggs of zooplankton are lipid-rich, and PCB concentrations in Acartia tonsa eggs have 

been found to be ~4 times higher than the original concentration in the body of the female 

(McManus et al., 1983). Juvenile stages of zooplankton generally have high 

organochlorine levels after yolk absorption, and higher levels of hydrocarbons have been 

found in juvenile Euphausia superba compared to adult males, on a wet weight basis 

(Cripps, 1990). Thus, some portion of contaminant in juvenile krill may have been 

acquired during the egg stage, rather than by accumulation via consumption or 

absorption.

The average HCB concentration (0.11 ng/g wet weight) in my adult krill samples is 

comparable with the HCB concentration (0.2 ng/g wet weight) found by Corsolini et al. 

(2002) in Euphausia superba from the Ross Sea, Antarctica. However, the average 

concentration of EHCH (0.009 ng/g wet weight) in my adult krill samples was much 

lower than that (0.71 ng/g wet weight, converted using 0.216 wet:dry ratio (Hofmann and 

Lascara, 2000)) found by Gupta et al. (1996). This difference may be due to differences 

in the sampling region or time. HCH concentrations in air close to the sampling site of 

Gupta et al. (1996) on the east side of the continent (Larsson et al., 1992) were 10 times 

higher than observed for simultaneously collected air samples during this study 

(Cincinelli and Dickhut, 2003). The decline in Antarctic HCH concentrations with time 

is also reflected in plankton data (Figure 4).

While a number of studies have shown biomagnification between plankton and fish 

(Harding et al., 1997; Evans et al., 1991), increases in contaminant concentrations within 

lower planktonic trophic levels are less often seen. For example, Hargrave et al. (2000)



48

found no biomagnification of organochlorines (a- and y- HCH, HCB, DDTs) between 

plankton size classes in the Arctic. However, few studies have investigated 

biomagnification between krill and their food, or between krill life stages. Fowler and 

Elder (1978 in Harding, 1986) found no trophic magnification in a microzooplankton- 

euphausiid-shrimp food chain in the Mediterranean. However, these authors did not 

compare values on a lipid weight basis. Harding et al. (1997) found an increase in PCB 

concentration with age for organisms with a life span greater than 1 year (fish), and 

longer life-spans have been suggested to lead to increased biomagnification in fish (Kidd 

et al., 1998) and other marine organisms (Hargrave et al., 1992). Given the long life span 

of krill (6-7 years) compared to other zooplankton (Quetin et al., 1996), I expected to see 

biomagnification, particularly in adult krill. My findings of no biomagnification between 

ice algae and juvenile krill, or between plankton and adult krill, were therefore surprising.

The absence of biomagnification for HCB is more likely than for the BDEs, given the 

physical-chemical characteristics of this compound. Bioaccumulation and 

biomagnification through the food web are partly dependent on the physical-chemical 

characteristics of pollutants, primarily the octanol-water partition coefficient (KqW) 

(Stange and Swackhamer, 1994). Although POPs in general are hydrophobic and 

lipophilic, within this class of compounds, characteristics that affect bioaccumulation 

through the food web vary. Russell et al. (1999) found that chemicals with log KqW > 6.3 

biomagnified in a food web containing zooplankton, benthic invertebrates and fish, while 

chemicals with log KoW <5.5 (including HCB, log KoW= 5.5) did not. Hargrave et al. 

(1992) also found that HCHs (log KqW =3.8) and HCB, despite being the most abundant
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organochlorines in air and seawater samples from the Canadian Arctic, were present in 

low concentrations in biota. In a food web study from the Baltic Sea, HCHs were found 

to have biomagnification factors around 1, indicating no biomagnification between 

trophic levels, and values for HCB were low compared to the other organochlorines 

studied (Strandberg et al., 1998). Similar to my results, Hargrave et al. (2000) also 

found meso- and macrozooplankton to contain similar amounts of a-HCH as ice algae 

and phytoplankton, on a per lipid basis, and found HCHs to be the least bioaccumulated 

of the organochlorines studied.

Lack of biomagnification for HCB may reflect the uptake mechanisms of the 

contaminants. Zooplankton, including crustaceans, can become contaminated through 

ingestion of contaminated food, or by passive accumulation from water in internal lipid 

pools (Joiris et al., 1997). The mode of uptake varies depending on the characteristics of 

each contaminant, with lower KqW, more water soluble compounds bioavailable via 

passive uptake from water. If krill accumulate contaminants solely by equilibrium 

absorption into their lipids from water, we would expect to see similar concentrations in 

plankton and adult krill on a per lipid basis. HCB was present in similar concentrations 

per lipid in plankton and adult krill, suggesting passive uptake by equilibrium partitioning 

as the primary mechanism of uptake of this contaminant by krill.

Despite no difference in BDE concentrations between ice algae and juvenile krill (Figure 

5), equilibrium partitioning of these contaminants between water and juvenile krill is 

unlikely because of their high KqW values. The lower solubility and higher KqW (log KqW
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> 6.5) of BDEs does not suggest a high dissolved under-ice or water column 

concentration for these compounds. Instead, BDEs would likely be more bioavailable 

absorbed to ice algae or plankton, and would be taken up by juvenile and adult krill via 

ingestion. Biomagnification would therefore be more likely for BDEs. Also, since 

biomagnification increases with age, it would be more likely in adult krill. Still, a 

number of factors can be hypothesized to account for the lack of biomagnification for 

BDEs between ice algae and juvenile krill, and especially for the significant decrease in 

BDE concentrations between plankton and adult krill.

First, it is important to note that my sampling method may have led to higher contaminant 

concentrations in ice algae than were actually present in the ice column. Because melted 

ice samples were passed through a GFF filter for particulate matter collection, dissolved 

phase compounds in ice may have absorbed to particles during filtration, causing an over­

representation of the fraction associated with ice algae. However, this potential over­

collection would only occur if contaminant partitioning between ice and ice algae were 

not already at equilibrium. Swackhamer and Skoglund (1993) showed that under low 

temperature, slow growth conditions, algae reached equilibrium with PCBs in water after 

about 20 days. Given the environmental conditions associated with sea ice it is likely that 

the ice algae were under slow growth conditions, and had presumably reached 

equilibrium with contaminants in sea ice prior to our sampling at the end of winter. Thus, 

it is unlikely that the measured ice algae concentrations were influenced by the collection 

method. Moreover, this potential sampling artifact would not have been a factor



51

controlling the significantly lower BDE concentrations in adult krill compared to 

phytoplankton (Figure 6).

Increasing lipid content in adult krill during summer could lead to biodilution of 

contaminants during trophic transfer. In the Arctic, zooplankton synthesize lipids during 

summer as energy reserves (Kattner and Graeve, 1990 in Joiris et al., 1997). Seasonal 

accumulation of lipids during summer by Antarctic krill has also been observed (Hagen 

et al., 1996). An increase in lipid reserves in Arctic zooplankton has been hypothesized 

to lead to a dilution of PCBs, and was suggested to explain lower PCB concentrations in 

Arctic zooplankton than particulate matter on a lipid weight basis (Joiris et al., 1997). 

Delbeke et al. (1990) also attributed a lower PCB concentration in zooplankton compared 

to particulate matter on a lipid weight basis to a dilution of contaminants in autogenically 

formed lipids. Since these lipids are contaminant free, an increase in lipid reserves at a 

faster rate than contaminant uptake by krill feeding on plankton may have played a role 

in diluting contaminants, particularly the BDEs, during this initial trophic transfer. 

Accumulation of lipid reserves in adult krill during summer may also explain the 

observed dilution of BDEs in adult compared to juvenile krill collected in winter (Figure 

7).

Growth dilution is a similar explanation for the decreases in POP concentrations between 

juvenile and adult krill. Growth dilution of POPs has been described for phytoplankton, 

and occurs when the individual growth rate of phytoplankton cells is faster than the 

uptake rate of POPs, resulting in a dilution of the pollutant in the growing biomass of the
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cell, and a decreased concentration per unit of lipid biomass (Andersson et al., 1998; 

Larsson et al., 2000). Growth dilution has been suggested as an explanation for the 

inverse relationship between krill (.Euphausia superba) length and mercury concentration 

(Palmer Locamini and Presley, 1995). This mechanism is similar to the dilution by 

production of lipid reserves described above, which offered an explanation for the 

decrease in BDEs between plankton and adult krill.

Biomagnification factors less than one also occur when the rate of elimination exceeds 

that of uptake of a compound. Such elimination could have played a role in decreasing 

levels of BDEs in adult krill compared to plankton, or in leading to similar BDE 

concentrations between ice algae and juvenile krill rather than biomagnification. 

Organisms at higher trophic levels (i.e., mammals) generally have a higher capacity to 

metabolize persistent organochlorines (Strandberg et al., 1998). This capability is also 

suggested for longer-lived plankton (Hargrave et al., 1992), such as copepods (Harding, 

1986), and may be likely for krill given their relatively long life span. It can be 

hypothesized that this process would be more important for elimination of BDEs 

compared to HCB, since BDEs have vicinal C-H pairs that would allow for 

biodegradation via the monooxygenase pathway (Porte and Albaiges, 1993), whereas 

HCB does not. However, if metabolism of BDEs by krill were significant, a greater 

difference would be expected between plankton and krill for BDE-47 compared to BDE- 

99 and -100 concentrations, as the former has twice as many vicinal C-H pairs, and thus a 

greater potential for elimination via metabolism. This was not observed. Also, BDE-47 

and -99 have been shown to be poorly metabolized by rats (Hardy, 2002).
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Egestion is another mechanisms by which zooplankton can eliminate contaminants. PCB 

concentrations in krill fecal pellets were higher than in euphausiid bodies or molts (Elder 

and Fowler, 1977). Feces have accounted for 14 and 43% of elimination of BDE 47 and 

99, respectively, in rats (Hardy, 2002). These results, and the similarity of BDE structure 

to PCBs, suggest that egestion may account for some of the decrease I observed for BDEs 

in adult krill compared to their food source, and for the lack of biomagnification between 

ice algae and juvenile krill.

Finally, it may also be hypothesized that BDEs are too large to be efficiently taken up by 

krill, thus leading to significantly lower levels in adult krill compared to plankton. The 

molecular configuration of a chemical is known to affect the bioaccumulation of organic 

contaminants (e.g. Stange and Swackhamer, 1994). However, I analyzed for tetra- and 

penta- BDEs, which have a relatively high potential for bioaccumulation as previously 

demonstrated (Hardy, 2002).

CONCLUSIONS

Despite limited sample sizes, my results provide valuable information on levels of POPs 

in lower Antarctic trophic levels, including BDEs, for which no results from Antarctica, 

or on phytoplankton or zooplankton anywhere, have been published. My results provide 

insight into uptake of contaminants by juvenile krill feeding on ice algae, which has not 

been previously investigated. These results suggest that sea ice does contribute 

contaminants to higher trophic levels in polar food webs, a question which was posed for



the Arctic by Pfirman et al. (1995). In the Antarctic, the contribution of contaminants to 

higher trophic levels by sea ice occurs directly via feeding by juvenile krill on ice algae, 

but may also include contaminant uptake by plankton and adult krill following ice melt. 

By both of these mechanisms, therefore, sea ice does appear to provide a controlling 

vector for entry of POPs into the Antarctic environment and food web.

The absence of POP biomagnification between plankton and krill samples was surprising, 

given the long life span of these organisms. The significant decrease for BDEs between 

plankton and adult krill was particularly surprising, given the high potential (log KqW > 

6.5) for biomagnification of these compounds. It is also interesting that while the average 

BDE concentration was significantly higher than HCB concentration in ice algae and 

plankton (p < 0.05; d.f. = 3 and 23, respectively), this contrast was not the case in 

juvenile or adult krill. BDEs may not be transferred to higher trophic levels in any higher 

concentrations than pesticides such as HCB, despite the significantly higher input of 

BDEs to the Antarctic coastal ecosystem, and their higher concentration than pesticides 

in the lowest trophic levels.
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