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ABSTRACT

Our research explored the usefulness of Digital Multispectral Video (DMSV) 
as a tool for monitoring wetlands by assessing its ability to ecologically discriminate 
classes. The site used for this research was a ten-acre created tidal oligohaline marsh 
located on Goose Creek, in the City of Suffolk, Virginia. Two hundred and eighty- 
three sample plots were randomly selected in the wetland and sampled using a i m 2 
quadrat. Plots were correlated using the geographic positioning system (GPS) to 
pixels collected by the DMSV in four bands: band 1 (770 nm - infrared), band 2 (450 
nm - blue), band 3 (550 nm - green), and band 4 (680 nm - red). The data was 
separated into three clusters using divisive hierarchical and k-means algorithms, 
methods common in the ‘traditional’ literature for clustering data, and which formed 
the basis for our ecological interpretation.

The data in each cluster were divided in half. Half of the data were used for 
accuracy assessment, while the other half were used to test the effect of effort on 
classification. Classifications were tested using the kappa statistic for significance 
from a random classification. Classifications were also tested pairwise to assess the 
impact of effort and the clustering algorithm on the classification.

We were not able to answer our question conclusively due to problems with 
our research that highlights the need for more advanced statistics in the field of 
remote sensing. While remote sensing holds promise as a tool for monitoring and 
assessment, traditional techniques should still be used as a baseline for wetlands 
monitoring. We also found that it is not possible to obtain some of the most common 
ecological measures, such as Simpson’s index, from remotely sensed data. We found 
that it was not possible to calculate diversity as applied to traditional techniques. 
However, there may be statistics that can be calculated using the imagery that can not 
be obtained from ground data, such as spatial diversity.

While we found no difference between unsupervised and supervised 
classifications, our work may suffer from Type I and Type II errors because, to our 
knowledge, the statistics to properly analyze our work do not exist. At best, we 
recommend extreme caution in using our work. We have greater trust in our ground 
data than in the thematic maps we produced. Further work remains to be done before 
we would trust remote sensing to be used as a tool, but it does hold great promise. 
Remote sensing has been shown to be extremely versatile in a number of other 
situations. We do not see anything so extraordinary about wetlands that they can not 
also be studied with this tool. However, the heterogeneity of wetland ecosystems and 
the needs of resource managers do pose unique challenges that require further 
statistical refinement before remote sensing can be fully utilized.

xi



ACCURACY ASSESSMENT OF REMOTE SENSING IN A TIDAL WETLAND



INTRODUCTION

Wetlands are a vital part of our ecosystem. They exist in forms ranging from 

tidal saltwater marshes to prairie potholes, and can be identified by their soils, 

hydrology, and vegetation (Mitsch and Gosselink 1993). Wetlands act as buffers 

against storm erosion by absorbing wave impacts that might otherwise damage the 

shoreline. They can absorb water like a sponge, reducing flood damage, and can also 

remove harmful impurities through water filtration. They serve as a habitat for 

numerous species, including many fish species vital to commercial fisheries.

Wetlands also provide recreation for people such as hunters, birders, and people 

seeking solitude (Mitsch and Gosselink 1993).

Remote sensing has been applied in recent years to purposes as wide-ranging 

as wetland delineations, land-use mapping, locating valuable minerals, and stress 

detection in vegetation (Lillesand and Kiefer 1994). It represents a potentially 

valuable tool for wetlands research. Collecting data for parameters such as species 

diversity and importance values from the ground can be a time-consuming and 

arduous process. Remote sensing might be able to collect the data needed to estimate 

these parameters more efficiently. However, its accuracy must be assessed in order to 

judge its effectiveness as a tool.

Many wetlands are located along or near coastlines, where they may face

conflicts with encroaching development (Mitch and Gosselink 1993). Careful

monitoring and development is vital if wetlands conservation is to be balanced with
2
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the needs of the growing population. We need to be certain that the tools we use and 

develop are capable of meeting the demands of those needs. The purpose of this 

study is to consider the advantages, and disadvantages, of studying marsh vegetation 

communities using traditional techniques and remote sensing for wetland studies.

This was accomplished by performing a land cover classification using traditional 

techniques of surveying and extensive site sampling and comparing that to 

classifications derived from remotely sensed imagery. Comparing these techniques 

should allow us to shed light on the usefulness of remote sensing as a tool for 

wetlands monitoring.

3



RESEARCH OBJECTIVES

This research explored the utility of using remote sensing as a tool for 

wetlands research by comparing it to ‘traditional’ ground-based techniques. Much 

remote sensing research has focused on the ability of remote sensing to provide 

thematic maps for further analysis or processing, such as their inclusion into a 

geographic information systems (GIS) database. Few studies, apart from its use in 

the study of change detection, have actually researched the issue of whether remote 

sensing can be used to provide information about important ecological data that can 

be used to describe the structure and composition of an ecosystem. While there is a 

great body of research on the statistical methods of testing remotely sensed imagery, 

there are relatively few studies that apply the mathematics to specific wetland 

applications. Our research tested several different hypotheses meant to explore that 

issue.

Hoi: Wetland classification parameters (importance value, diversity, and 

evenness) derived from traditional ground-based sampling techniques are not 

significantly different from those derived by digital multispectral video (DMSV).

We had initially believed that it was possible to test this hypothesis with our 

research, but later findings showed us that this was not possible. We will describe the 

problem we encountered in testing this hypothesis during our discussion of our

4
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research. However, we note and describe it in order to demonstrate its importance to 

the initial design of our experiment.

H02: Accuracy of the Digital Multispectral Video (DMSV) classification is not 

affected by the number of quadrats taken during the ground truthing stage.

The amount of field effort that goes into the classification stage of analyzing 

remotely sensed data may impact accuracy. Supervised classification involves 

providing the computer with specific pixels that the analyst already knows to be of a 

certain class. The computer then classifies the remaining scene, leaving the analyst 

free from having to do such intensive delineation through fieldwork. When the 

computer is provided with no reference information, it produces an unsupervised 

classification. We predict that as the computer is provided with more pixels in a 

supervised classification, the accuracy of the classification improves. We also predict 

that supervised classifications will be more accurate than unsupervised classifications 

because of the additional information used to create them. We will also examine 

briefly the user’s and producer’s accuracy of the remotely sensed imagery (Congalton 

1991).

H03: Using only dominant species to create training signatures does not affect 

the accuracy of the remotely sensed image.

The entire ground-truthed dataset will be compared with a dataset consisting 

only of dominant species in the marsh. The data can represent a ‘cloud’ in n-space, 

where n is the number of variables measured, such as the number of species or the
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number of bands. Clouds near each other may be separated in different ways 

depending on the multivariate analysis used to tell them apart. The amount of 

ground-truthed data may play a role in the results depending on how well the data 

describe the ‘shape’ of the cloud. Each band of the remotely sensed data adds to our 

understanding of what is happening across the marsh because of the different spectral 

reflectances that vegetation presents across the study site. The training data used to 

produce categories in a supervised classification are based upon features of interest, 

such as a particular species. If we are only interested in studying major trends across 

a wetland, such as separating the high from low marsh, nondominant species may 

negatively affect the classes produced through clustering by introducing unneeded 

variability and unnecessarily changing the shape of the clouds. To examine this 

hypothesis, the groundcover data were compared to a classification in which only 

dominant species were included.

Remotely sensed imagery may ‘see’ rare species with less accuracy than 

traditional techniques. Rare species may occur only once within a given plot. The 

chance of a rare species appearing in a ground plot is probably greater than the 

chance of it occurring in a large clump that the DMSV can observe. In order for the 

DMSV to observe a rare species that can be classified, it must be present in a large 

enough patch of vegetation to be visible to both the sensor and classification 

technique employed. However, a skilled observer in the field should be able to locate 

a rare species in a given plot if only one specimen is present. As a result, remote 

sensing should be better at detecting common species than rare ones.



LITERATURE REVIEW 

Sampling design for ground-based research in wetlands science has been well- 

described in the literature (e.g. Mueller-Dombois and Ellenberg 1974). Accuracy 

assessment of remotely sensed data has also received much attention (e.g. Congalton 

1991).

Ecological Parameters

Wetland studies, especially delineation work, focus on vegetation, soils, and 

hydrology (Environmental Laboratory 1987). These parameters are used to 

determine the current state of a plant community and may offer some predictive 

power on the future state of the ecosystem (Mitsch and Gosselink 1993). Quantitative 

field data can be collected on a variety of vegetative features. The most important in 

community sampling include density (number of individuals), frequency 

(presence/absence of a species), and cover (surface area of a species that ‘covers’ the 

ground) (Mueller-Dombois and Ellenberg 1974). Measures used to describe 

parameters, such as species diversity, can be calculated from the same data.

Density is a measure of abundance that describes how many individuals exist 

in a given area. Frequency refers to whether a species is found within a given area. 

Cover refers to how much surface area on the ground a given species shades from 

sunlight (Mueller-Dombois and Ellenberg 1974). These measures can be translated

7
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into relative values. The sum of these relative values is known as the importance 
value and are defined by Mueller-Dombois and Ellenberg (1974) as:

Relative density = number of individuals of species
 *  100

total number of individuals

Relative frequency = frequency of a species
--------------------------------------------------   * io o
sum of the total frequency from all species

Relative dominance = dominance of a species (species cover)
 * 100

dominance (cover) of all species

Importance value of a species = relative density + relative frequency + relative 
dominance

Cover (relative dominance) is generally regarded as being more useful than 

frequency because it provides a better estimate of biomass (Rice 1967, Daubenmire 

1968). Absolute measurements, measurements not made in proportion to other 

species, may also be used to reveal information about an ecosystem. For example, a 

particular species may have an absolute cover of 10%, yet if no other species are 

present, it will have a relative dominance of 100%. Thus, both measures should be 

used in deriving information about a community.

The two most commonly used diversity indices are the Shannon and Simpson 

indices (Magurran 1988). The Shannon index, H’, a measure of species richness, 

measures the degree of uncertainty of being able to predict the species in a 

community that were picked at random. It ranges from 0 (a single species -  

completely certain of what species will be picked) to very high values, and is defined 

by Zar (1984) as:
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H’ = n log n - Eki=i fj log fi

n

where
k = number of categories (species), 
n = sample size, and
fi = number of observations in category i.

Species evenness can be derived from H’ (Magurran 1988):

J’ = H’
” ~ 5

U m ax

where
J’ = evenness,
H’ = Shannon index, and
Hmax = maximum possible value of Shannon index (all observations divided into 
identical proportions in each category) which is calculated as log k.

The Simpson index, SI’, is based on the probability of drawing a pair of

individuals of the same species at random from a community. It represents a

dominance index, is weighted towards the most abundant species in a community,

and is defined as (Magurran 1988):

SI’ = Z Si=i [ni(nr l)] / [N(N-l)]

where
nj = number of individuals per species and 
N = total sample size.

Quantitative data on plant species and their numbers can be very extensive. 

Mathematical formulas, such as those used to calculate species cover and the 

Simpson index, provide a way to break the data down into a more interpretable form. 

Perry and Hershner (1999), for example, looked at species richness, evenness, and
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diversity in tidal freshwater marsh vegetation. Their results showed that, over time, 

all measures except the importance values did not change. However, the species 

comprising those measures did change, suggesting that more salt tolerant species 

were taking over the marsh. They concluded that an oligohaline ecosystem was 

developing in the marsh. Aerial imagery from years or decades prior could have been 

used to study temporal changes occurring in the same marsh and, possibly, may have 

added extra support for their conclusions.

‘Traditional' Wetland Sampling Techniques

Considerations in Wetland Sampling

Mueller-Dombois and Ellenberg (1974) discuss several features they regard as 

essential to selecting a proper sampling technique that can be used to measure the 

previously described measures. If a scientist is studying gradients, the ecosystem 

might be composed of different vegetative classes. A scientist could choose from a 

variety of classes to study, ranging from the broad to the specific, affecting the 

accuracy of a study utilizing remote sensing. The accuracy of remotely sensed data 

may improve as species are clumped together into broad classes (Rosenfield 1986). 

That is, if broad land cover classes are used for classification instead of classifying 

the map to the species level, then the map should be more accurate. The decision of 

how to clump different categories should be based on a goal defined by an 

experiment’s objective. If it is not necessary to study the difference between two or 

more plant species, and it is scientifically valid to clump them together, doing so 

could improve the accuracy of the study.
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Remote Sensing Techniques

Classification

The digital image collected by the DMSV is organized in the form of a matrix, 

where each cell of the matrix contains the brightness value of a particular pixel for a 

given band. Lillesand and Kiefer (1994) define a pixel as a 'discrete picture element.' 

When one views a digital image, one is actually looking at a large number of dots, or 

pixels, where each pixel represents a defined area on the ground. The amount of data 

depends on the number of bands and the type of sensor used. For a sensor such as the 

DMSV, each pixel in an image has four data associated with it; one datum for each of 

the four cameras on the DMSV. This results in four matrices, where the same cell in 

each matrix represents a different band for the same pixel.

The data can be used to classify each pixel. Classification is a process where 

the data is used to place a pixel into a category, or class. For example, each dot in 

Example 1 represents a combination of two brightness values (i.e. the blue and green 

wavelengths). If three brightness values had been used to characterize each pixel, the 

graph would be three-dimensional, with pixels appearing in ‘clouds.’ The four 

brightness values collected by the DMSV for each pixel can be represented in 4- 

dimensional space. The value of each pixel is determined by the reflectance 

characteristics of a particular object. It is assumed that the same type of object will 

have approximately the same reflectance values across a scene. For example, the 

eight pixels represented in the right side of Example 1 might be assumed to belong to 

the same object, or class. The number of classes depends on the type of classification 

used and the objective of the analyst. If we were viewing data from three bands, we
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might see several clouds of varying shapes and proximity to each other, much as 

Example 1 shows two-dimensional data.

Two types of classification are used in remote sensing. Unsupervised 

classification is performed with minimum analyst interference. The computer seeks 

out ‘natural’ groupings of pixels to separate into different classes. The analyst 

chooses the number of classes, and the computer mathematically separates out that 

number of categories from the data. Pixels that are closer together are assigned to the 

same class. There are a variety of algorithms that the computer can use to separate 

out classes, which can lead to different classifications (Lillesand and Kiefer 1994).

For example, different algorithms might yield a number of different categories in 

Example 1. Note that the graph only ranges in brightness value from zero to ten. If 

the full range of the DMSV had been used, these values could have been spread from 

0 to 255. Pixels appearing in the range shown here could easily be interpreted as 

normal variation around one class, or just as easily deemed separable into multiple 

categories, depending on the algorithm used.

Supervised classification is more analyst-intensive. The analyst selects 

‘training pixels’ of a known class on an image based on their knowledge of the area in 

question. For example, they might select pixels belonging to trees that they know to 

be of a certain species. The computer derives the spectral attributes of a class based 

on the training areas that the analyst has chosen. The training pixels are used to 

identify the rest of the scene. Each pixel in the scene is placed into a class based on 

its similarity to the training pixels the analyst selected (Lillesand and Kiefer 1994).
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Supervised classification may allow for more precise results, as the computer has an 

additional guide to classification other than just the ‘raw’ spectral data.

The mathematical formula used may affect the classification. The formulas 

can change how different pixels are organized into different classes because there are 

a variety of means available from which to cluster samples together. Image 

processing packages, such as ERDAS Imagine, allow the analyst to select different 

mathematical techniques. The different algorithms may yield different 

classifications. Such software packages allow the training data to include either 

parametric or non-parametric signatures. A signature contains the training 

information the computer uses in assigning pixels to a given class. Non-parametric 

signatures are based on actual discrete objects drawn by the analyst on the original 

image, and define the boundaries of a given class. Parametric signatures, instead of 

using actual locations to classify pixels, are based on statistics, such as the mean, that 

describe the training data (Smith et al. 1994). The values of unknown pixels are 

compared to the parametric signatures in order to decide which class they should be 

assigned to. Once parametric signatures have been collected, the computer has a 

choice of options of how to assign a particular pixel to a certain class. Mathematical 

functions available in ERDAS include the minimum distance, Mahalanobis distance, 

and maximum likelihood decision rules.

The minimum distance decision rule “calculates the spectral distance between 

the measurement vector for the candidate pixel and the mean vector for each 

signature” (Smith et al. 1994). It is similar to Euclidean distance in that a given pixel 

is assigned to the particular category with which it has the closest similarity of
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spectral values. It is calculated as follows (from Smith et al. 1994, referring to Swain 

and Davis 1978):

SDXyC = V ( Z " i - l  ( H d  -  Xxyi)2), 

where
n = number of bands, 
i = a particular band, 
c = a particular class,
Xxyj = data file value of pixel x,y in band I,
Pci = mean of data file values in band i for the sample for class c, and 
SDxyc = spectral distance from pixel x,y to the mean of class c.

SDXyc is computed for all available classes, as determined by the analyst. A 

given pixel is assigned to whichever class provided the lowest SDxyc. Minimum 

distance assigns every pixel in the area of interest to one, and only one, class, with no 

unclassified pixels emerging from the classification (Smith et al. 1994). The 

likelihood of the spectral distance being equal for an unknown pixel to two or more 

categories is highly improbable. However, it is possible that a pixel may exist in a 

scene that does not truly belong to any of the available classes. The minimum 

distance decision rule will always result in a pixel being assigned to one of the classes 

identified by the analyst. As a result, it is extremely important that the classes 

incorporate all available possibilities that might occur in a scene. Otherwise, the 

analyst should perform more complex analyses in order to improve the accuracy of 

the supervised classification. A second problem with using the minimum distance 

decision rule is that it does not account for the variability of the individual classes. 

Variance of the different classes may not be the same. If a pixel is, therefore, an 

outlier of a given class, it may actually be closer to the mean spectral value for 

another class that has a tighter variance (Smith et al. 1994).
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The Mahalanobis distance decision rule uses a covariance matrix, rather than 

the spectral distance, to assign pixels to classes. Using the covariance matrix reduces 

the problem that variance can cause in the minimum distance decision rule. It is 

calculated as (Smith et al. 1994):

D = (X-Mc)t  (Covc-') (X-Mc) 

where
D = Mahalanobis distance, 
c = a particular class,
X = the measurement vector of the candidate pixel,
Mc = the mean vector of the signature of class c,
Covc = the covariance matrix of the pixels in the signature of class c,
Cove'1 = inverse of Covc, and 
T = transposition function.

Analogous to the minimum distance decision rule, a pixel is assigned to the 

class for which D is smallest. While using Mahalanobis distance as a decision rule is 

somewhat more accurate than using the minimum distance rule, since it takes the 

variability of the classes into account, it may still suffer from large inaccuracies if the 

signatures have large values in the covariance matrix. Another potential problem 

with Mahalanobis distance is that it is a true parametric rule. Data collected for each 

band must have a normal distribution (Smith et al. 1994).

Like the Mahalanobis rule, maximum likelihood also assumes that the bands 

follow a normal distribution. In addition, it assumes that the probability of a pixel 

belonging to a particular class is the same as for any other class. It is calculated 

(Smith et al. 1994) as follows:

D = ln(ac) - [0.5 In (|Covc|)] - [0.5(X-Mc)T(Covc'1)(X-Mc)] 

where
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D = weighted distance (likelihood), 
c = a particular class,
X = the measurement vector of the candidate pixel,
Mc = the mean vector of the sample of class c,
ac = percent probability that any candidate pixel is a member of class c (1, or based 
upon a priori knowledge),
Covc = the covariance matrix of the pixels in the sample of class c,
|Covc| = determinant of Cove,
Covc'1 = inverse of Covc, and 
T = transposition function

As before, D is calculated for each band and the pixel is assigned to the class 

for which D is the smallest. The maximum distance classifier is regarded as the most 

accurate available to ERDAS since it takes the most variables into account (Smith et 

al. 1994). By using the covariance matrix, it avoids the variance problem that affects 

the minimum distance decision rule. However, it suffers the same problem that 

affects the Mahalanobis decision rule in that it tends to overclassify categories 

(attribute more pixels to a given class than what exists in reality) that have large 

values in the covariance matrix (Smith et al. 1994).

Unsupervised classification is often useful for preliminary work, but 

supervised classification should be used to ensure more accurate results. All remotely 

sensed imagery needs to be verified with field data. For example, the computer may 

produce a thematic map containing five classes, when the analyst, who has visited the 

scene and knows what to expect, may see only two. Conversely, the computer may 

accidentally combine classes together into one class, or misclassify pixels of one class 

into another. The issue of accuracy in remote sensing is extremely important, as users 

of the data must have some measure of confidence in their data.
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Accuracy o f Remote Sensing

Discrete Nature of Remotely Sensed Data

Data collected through remote sensing is discrete, not continuous. A sensor 

can not record a brightness value of 142.29 for a given pixel; it must record 142 or 

143. The sensor’s ability to discriminate shades, or levels of brightness, determines 

its dynamic range. The dynamic range of the DMSV is 0-255. Each pixel, depending 

on its brightness, is assigned a value of 0, 1, 2, 3, 4, 5...255, where 0 means that the 

DMSV recorded no light, and 255 means that the sensor was saturated. The discrete 

nature of the data is important as only discrete multivariate methods must be used to 

analyze the data. Statistical tests such as ANOVA, which assume a continuous 

distribution, should not be used.

Description of the Error Matrix

A tool commonly used to assess the accuracy of remotely sensed data is the 

error matrix (Congalton 1991). An error matrix is a table that shows the number of 

pixels that have been correctly identified within a scene and allows an estimate to be 

made of the effectiveness of remote sensing in classifying an image. It is derived 

from a sample of pixels rather than from an evaluation of every single pixel in an 

image. Therefore, there would be 235 pixels in Example 2. Example 2 provides a 

case where an imaginary scene consisting of water (W), roads (R), trees (T), and 

shrubs (S).

The columns refer to the reference categories -  what the pixels are as 

observed through ground-truthing. Of the 235 pixels that were ground-truthed, 72 are
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water and 112 are trees. The rows refer to the classified categories from the sampled 

pixels from the classified image. For example, from the 235 sample pixels, 55 appear 

as water and 125 appear as trees. From Example 2, one can determine which 

categories were correctly or mistakenly classified. For Example 2, 50 pixels were 

correctly classified as water, five pixels that were classified as water are actually 

trees, and twenty pixels that should have been classified as water were misclassified 

as trees. Seventy-two of the 235 total pixels in the scene are truly water; however, 

only 55 pixels were classified as such.

Producer’s and User’s Accuracy

The most commonly used measure of accuracy in remote sensing is total 

accuracy (Congalton 1991). It takes into account only the major diagonal of the error 

matrix. It is the number of pixels that are correctly identified divided by the total 

number of pixels sampled in the error matrix. In example 2, the total accuracy is 

(50+25+100+20)/235 = 82.98%. Total accuracy is regarded as a poor measure of 

accuracy (Congalton and Green 1999). A user may believe that the 82.98% accuracy 

applies to all categories equally, which may not be the case. This discrepancy has led 

to the development of errors of omission (producer’s accuracy) and commission 

(user’s accuracy) as additional measures of accuracy (Congalton 1991).

Producer’s accuracy measures how many pixels are left out of a correct 

classification (Congalton 1991). Producer’s accuracy measures how many pixels that 

truly should have been identified as one class were mislabeled as another. It is 

calculated by dividing the correct number of pixels by the column total. Example 2 

contains 72 pixels that represent water (note that only 55 pixels are actually seen as
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water on the ‘real’ image). Out of those 72 pixels, 22 were misclassified and 50 were 

classified correctly. The producer’s accuracy is thus calculated as (50/72) = 69.4%. 

The producer’s accuracy for shrubs is (20/20) = 100%. From the producer’s 

perspective, every pixel that truly was a shrub was identified as a shrub.

The error of commission is found by dividing the correct number of pixels in a 

category by the row total (Congalton 1991). In Example 2, water has a user’s 

accuracy of (50/55)=90.91% while the user’s accuracy for shrubs is (20/28) =

71.43%. The producer is only interested in knowing how many pixels are not being 

included in a given class, i.e. pixels that are omitted. A user, someone working from 

the map that a producer provides, is more interested in how many pixels are included 

in a given class.

The calculated values for errors of omission and commission are very 

different for water and shrubs in Example 2. While a producer is 100% certain that a 

shrub on the ground will be included in the ‘shrub’ classification, someone using the 

map can only be 71.43% certain that what they are looking at is, in fact, a shrub. A 

tree may be misclassified as a shrub. Conversely, while a producer may not be able 

to capture every pixel of water correctly, the category ‘water’ is not very likely to 

include pixels from other categories. Due to the differences between producer’s and

user’s accuracy, Story and Congalton (1986) recommended reporting both measures.
/

Kappa Statistic

Another method that has been proposed to measure accuracy is the KHAT 

statistic. It is meant to determine whether classifications improve the accuracy of the
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data, or if the results are no different from a random classification. Lillesand and 

Kiefer (1994) describe the KHAT (k’) statistic, which calculates the probability that a 

computed classification is better than a random assignment of classes.

Conceptually,

k’ = observed accuracy -  chance agreement 

1 -  chance agreement

As the chance that the matrix could have been randomly created drops to zero, 

k’ approaches 1. It decreases as the probability that the classifications could have 

been randomly assigned increases. The upper limit of this statistic is 1, but there is no 

lower limit (Rosenfield and Fitzpatrick-Lins 1986). Negative values of k’ are 

possible if the classification is very poor, but the magnitude of negative values is less 

important than the sign (Lillesand and Kiefer 1994). Kappa can be tested for 

significance by estimating its variance and using a Z test. A classification can be 

tested to see if it is significantly different from random, or different classifications can 

be compared to each other (Lillesand and Kiefer 1994, Congalton 1991). 

Mathematically, k’ is calculated as

k’ = N*Er i=iXii - Zr i=i (xi+ * x+i)

N2 - I ri=i (xi+*x+i)

where
r = number of rows in the error matrix,
Xii = number of observations in row i and column i (on the major diagonal),
Xj+ = total of observations in row i,
x+i = total of observations in column i, and
N = total number of observations included in the matrix (Lillesand and Kiefer 1994).
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For example, using Example 2,

Ix* = (50+25+100+20) = 195
E(xi+ * x+j) = (55*72) + (27*31) + (125*112) + (28*20) = 19357

k’ = (235*195)- 19357
-----------------------= 0.7379, or 73.79% better than random chance.
2352-  19357

While k’ applies to the entire error matrix, Rosenfield and Fitzpatrick-Lins 

(1986) quote Bishop et al. (1975), who describes a conditional kappa for an 

individual category instead of the entire error matrix. They state that k’ and 

conditional k’ are the most statistically sound measures of accuracy. They base this 

statement on a comparison of other measures (e.g. Short 1982 and Turk 1979). 

Conditional Kappa is defined in Rosenfield and Fitzpatrick-Lins (1986) as:

Kj =  pii - pi+p+i

Pi+ -  Pi+P+i 

where
Pii = proportion of pixels in a given cell,
Pi+ = proportion of pixels in a given row, and 
p + i = proportion of pixels in a given column

Calculating Significance of the Kappa Statistic

A Kappa statistic can be tested to see whether it is significantly different from 

a randomly produced classification, and whether it is significantly different from 

another error matrix (Congalton and Green 1999). Congalton and Green (1999) 

report that the Delta method can be used to calculate the approximate large sample 

variance:
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var. k ’ = [01(1 -01)/(1 -02)2 + 2(1-00(20102 - 03)/(l-02)3 + ( l-0 1)2(04-4022)/(l-02)4] / 
n,

where
0i = 1/n Z !i=i nii,
02 =  1/n2 Z*i=i (ni+ * n+i),
03 = 1/n3 S 1i=i nii(ni+ + n+i),
04 = 1/n3 Z 1i = i n y  (nj+ + n+i)2;

and

njj = cell in row i and column i, 
ni+ = sum of all cells in row i, 
n+i = sum of all cells in column i, and 
nj+ = sum of all cells in row j.

The estimate of Kappa can then be tested for significance by calculating a Z- 

score as follows: Z = kVV(var. k’). The test assumes a two-tailed Z test and infinite 

degrees of freedom. Two Kappa statistics can be compared to one another using a 

similar Z-test: Z = |kT - k2’| / V(var. k i’ + var. k2 ’), where kT and k2’ represent the 

desired Kappa scores one wishes to test.

Other Accuracy Measures

Kappa and conditional Kappa are only two of several measures that have been 

proposed for assessing the accuracy of remotely sensed data. Aronoff (1985) 

developed two statistics similar to user’s and producer’s accuracy. Together they 

form the minimum accuracy value, which is “the lowest expected accuracy of a 

thematic map given an observed accuracy test result and the user selected consumer 

risk.” It is used to determine whether a map is accurate enough to meet an 

individual’s needs. Consumer risk measures the probability that “a map of 

unacceptable accuracy will pass the accuracy test” (Aranoff 1985). It is different



from k’ is used to reveal whether the classification is significantly different from 

random. The minimum accuracy value test provides more of a confidence interval 

than a test for significance by providing a measure of the uncertainty surrounding an 

accuracy value (for example, saying that an individual is 95% certain that a 

classification is 80% accurate). Aranoff s measures, which date back to the early 

stages of remote sensing accuracy analysis, do not seem to have been adopted by the 

remote sensing community since they were proposed, based on a literature search by 

the authors.

Another measure of accuracy is the t statistic (Ma and Redmond 1995). The 

tau statistic resembles the Kappa statistic:

x  =  P c -  S q k=l PkP+k 

1 -  Z q k=l Pkp+k

where
Pc = overall accuracy,
Pk = the a priori probability, set by the user, that a given pixel belongs in class k, and 
q = total number of classes.

Kappa uses proportions derived from the map to assess accuracy, while tau 

uses probabilities set by the analyst. They both attempt to determine whether a 

classified scene is different from one which was randomly produced.

Stehman (1997) analyzed the usefulness of the kappa and tau statistics, and 

stated that they are not good measures because a user is only interested in knowing 

whether a given pixel is correctly identified. A randomly classified pixel classified 

correctly is in the same class as if the computer had performed an accurate 

classification based on a mathematical technique. “If the overall map accuracy is
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80%, the user holds a map for which a randomly selected area has an 80% chance of 

being correctly classified” (Stehman 1997). However, he ignores the value that kappa 

provides to the producer of the map. An analyst is striving to produce the best 

product possible. A measure such as kappa, which reveals how much better the 

image is over a random classification, can serve as a guide in evaluating classification 

techniques. For the user however, Stehman has a point when he states that overall, 

user’s, and producer’s accuracy “are more relevant accuracy parameters because of 

their direct interpretation as probabilities characterizing data quality[.]”

Sampling and Analysis Effects on Accuracy

Several studies have considered the effects of sampling collection and 

different data analyses on accuracy. Ginnevan (1979) suggested that a sampling 

procedure should have a low probability of generating a poor (low accuracy) map, a 

high probability of generating a good (high accuracy) map, and require some 

minimum number of ground samples.

Sampling Scheme

Hay (1979) recommended that at least 50 samples should be collected for each 

category for which accuracy information is desired. Simple random sampling may be 

inefficient in areas where some categories have small coverages, because pixels are 

randomly chosen until all categories have at least 50 pixels sampled. Areas with 

large coverages will probably have many more than the 50 pixels needed to 

efficiently test the accuracy of that category. Hay (1979) recommends two 

alternatives to this method. The overall data is stratified into known (or suspected)
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categories and 50 pixels are selected from each class, or random samples are drawn 

until one category has 50 pixels, when the overall sample is treated as complete. 

Sampling continues, but selected samples that fall into completed categories are 

rejected. The proportions of the initial sample may not necessarily match the 

proportions of the ground coverage. It is likely that Hay intended the initial set of 

data (where pixels are selected until one category has 50 pixels) to be used in 

computing the overall accuracy, while the subsampling allows categorical accuracy to 

be determined. Hay (1979) used these separate error matrices to determine whether 

categorical accuracy was over- or under-estimated.

Hay (1979) also used this sampling scheme to determine whether errors found 

within a category were randomly distributed or not, using the binomial and Poisson 

distributions. The binomial distribution is used under the assumption that errors are 

distributed evenly among all cells. With this assumption, the probability that a given 

cell contained y  errors could be calculated. The likelihood thaty errors is within the 

realm of random chance can be approximated using the Poisson distribution. The 

mean number of errors in a given category is then calculated. Hay then consulted 

Poisson tables for the distribution given this mean. The distribution gives the 

probability that a given cell will contain a certain number of errors. The likelihood 

that a cell will contain y or more errors can be calculated from the Poisson 

distribution. A subjective measure of probability can be used to evaluate whether the 

number of errors in a certain cell is random or not. This can be used to determine 

whether a misclassification between categories is random or if one category is 

repetitively classified as another.
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Congalton (1988) calculated error matrices based on simple random sampling, 

stratified random sampling, cluster sampling, systematic sampling, and stratified 

systematic unaligned sampling for three sets of data of varying complexity. He 

reported that simple and stratified random sampling are the best procedures for 

accuracy assessment. Stratified random sampling is important when the user is 

interested in small areal coverages, such as diversity studies of heterogeneous areas. 

Congalton (1988) recommended that stratified systematic unaligned sampling and 

systematic sampling should not be used for error analysis because of spatial 

autocorrelation effects. Congalton (1991) recommends stratified random sampling in 

areas where a minimum number of samples are collected. He notes that the Kappa 

statistic assumes a multinomial sampling model, which only simple random sampling 

satisfies completely. The effect of using a different sampling effort on the Kappa 

statistic is unknown (Congalton 1991).

Sample Size

Early research focused on the use of the binomial distribution to compute the 

pixel size required to obtain a desired accuracy (i.e. Hay 1979). For purposes of time 

and efficiency, one may sample only a few pixels. However, it is possible for all 

sampled pixels to be accurate when the accuracy of the entire image is not 100%

(Hay 1979). For example, if a given map has an accuracy of 85%, and 10 pixels are 

sampled, the probability that 9 or 10 pixels will be 100% accurate is 55%. Hay 

(1979) provided equations for determining the appropriate sample size without giving 

a formal explanation for their use. He reported that the overall sample size required 

should be calculated as
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N« 100 * n

Sm ax

where
N = overall sample size, 
n = minimum sample size for a category, and 
Smax = the percent of land in the largest category.

Hay (1979) reported that Smax is usually inversely related to the number of categories. 

As the number of categories rise, so will N, which might lead to the overall accuracy 

being greater than the accuracy of individual categories (Hay 1979). Small errors 

within each category would be masked by the overall dataset in calculating the 

overall accuracy.

Hay (1979) reported that some authors had attempted to use the standard error 

equation for binomial data to calculate a 95% confidence interval:

SE%= V ( (p% * q%) / n)

where
SE = standard error, 
p = percentage correct, 
q = 1 -  p, and 
n = sample size.

The equation can be used as long as the assumption that the errors are 

distributed normally is not violated, and that p and q are large. Hay (1979) does not 

explain what happens when p is large, since this would imply by definition that q is 

small. Based on this equation, and without explanation, he states that the sample size 

for each category must be greater than 50 if this equation is to be used with any 

certainty.



Rosenfield et al. (1982) used the cumulative binomial distribution and a 

preliminary estimate of the accuracy of the map to derive the number of sample 

points required to achieve a desired accuracy with a 95% confidence interval. As the 

true accuracy of the map increases, the number of points needed to verify that 

accuracy declines (Rosenfield et al. 1982). Rosenfield et al. (1982) also provide a 

description of a hypothesis test that allows one to test whether, given a specified 

number of sample pixels, a category’s accuracy meets or exceeds some desired 

accuracy level. Their hypothesis test is performed for a desired accuracy level of 

85% (H0 : p > p0 = 0.85). They also provide a list of critical values, i.e. points that 

must be correctly classified given a specified number of sample points, for a second 

hypothesis test (H0 : p < 0.85). Their discussion is not developed enough to allow the 

reader to determine the critical values for other potentially desirable accuracy, such as

0.95.

Rosenfield et al. (1982) regard the hypothesis test for category accuracy as 

different from overall accuracy. Testing for overall accuracy is more than simply 

combining hypothesis tests for different categories because the boundary of a 

classification is important to the overall task of classifying a pixel into one class or 

another. They state that stratified systematic unaligned sampling is an effective 

procedure to use for determining the total accuracy (as defined earlier) of the entire 

map because it is area-weighted. In a sense, total accuracy is area-weighted because 

it can be represented not only by (the total number of pixels correctly classified / 

total number of pixels in the image), but also by (the total area correctly 

classified / total area in the image). Sampling pixels (points) is simply an allowable
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approximation to sampling areas. They describe mathematical procedures for 

computing the variance and mean of this overall accuracy measure. It was not clear 

to us how the procedures they describe could be used to determine the number of 

pixels needed to sample an area, or how to test those pixels for accuracy after they 

had been collected.

Congalton (1991) found several methods for determining the required sample 

size to be flawed because they did not consider the confusion in an error matrix. 

Misclassified pixels fall into the off-diagonals of an error matrix. Collecting too few 

pixels may result in many cells of an error matrix with values of 0, which may not 

itself be accurate of the entire classification. Rosenfield et al. (1982) did not consider 

this possibility. Congalton and Green (1999) recommend that 50 pixels be ground- 

truthed for every class present in a thematic map, an approach adopted by other 

authors (such as Lillesand and Kiefer 1994). Congalton and Green (1999) note that if 

the region or number of categories being studied are especially large, then 75-100 

samples per category should be collected. He also notes that the sampling number 

can be rearranged depending on the needs of the user and the variability of the data. 

Fewer pixels may need to be ground- truthed for less variable regions.

Congalton (1988) recommended that 1% of the total pixels in a scene be 

sampled to develop an error matrix. One would assume that, given a choice of 

sampling 50 pixels per category or 1% of the total pixels, the larger of the two values 

would be preferable for accuracy analysis. Dicks and Lo (1990, quoting Fitzpatrick- 

Lins 1981) recommended that the following equation be used to determine the 

number of pixels needed:
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N=(Z2*P*q) / (E2)

where

N = the sample size, 
p = the expected percent accuracy, 
q = 100-p,
E = the allowable error, and
Z = 1.96 (“the standard normal deviate for the 95 percent two-sided confidence 
interval”).

However, this equation would appear to be questionable because it does not take into 

account the number of pixels in the image under study. As the image size increased, 

it seems that more pixels would need to be collected to generate the same given 

accuracy. Fitzpatrick-Lins (1981, quoting Snedecor and Cochran 1967), report the 

95% lower confidence limit of the true accuracy value as:

Pl = p’ -  (1.645 * V(p’qVii) + (50/n)}, 

where
Pl = the lower limit o f the accuracy (expressed as a percent), 
p’ = total accuracy as defined previously, 
q’ = 1 0 0 - p ’, and 
n = sample size.

Fitzpatrick-Lins (1981) did not report the upper boundary surrounding the confidence 

limit as she did not consider errors of omission. It is not made clear why such errors 

would not affect the lower limit if they had affected the upper limit.

The size of the sample used will also affect the power of the statistical test. 

Stehman (1997) discussed other studies where extremely large sample sizes 

(n=62727) resulted in finding kappa values as low as 0.077 significant. Conversely, 

small sample sizes may not be enough to detect whether kappa is significant, even 

when it is large. It should also be noted that authors who have expounded on the
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notion of at least 50 pixels per classified category have violated this minimum 

requirement on occasion. Congalton and Green (1993), for example, provided 

accuracy measurements for three categories (big old growth, little old growth, and 

other) in an old growth forest using only 40 pixels instead of at least 150 as 

Congalton (1991) might have suggested. They did note the small sample size and its 

statistical effect on the error matrix, and suggested that collecting the recommended 

sample size would have defeated the purpose for initially using remotely sensed 

imagery, that of saving time and effort. Congalton and Green (1999), based on 

studies such as these, recommended as a ‘rule-of-thumb’ that fifty pixels be acquired 

for each desired class in testing an error matrix.

Classification Scheme

Several studies have addressed the issue of whether different classification 

schemes, or different analysts classifying an image, might affect the final result. 

Congalton (1991) compared supervised versus unsupervised classifications using the 

Kappa statistic and found no difference. However, a modified approach that 

combined elements of supervised and unsupervised classifications resulted in a higher 

accuracy.

Stehman (1997) provided other examples. One such paper, Congalton et al. 

(1983) calculated overall accuracy and the kappa statistic for four different 

classification algorithms. In each case, the z-statistic computed to compare 

algorithms did not change. However, the study by Congalton et al. (1983) did 

compare algorithms pairwise. While not affecting the conclusion of whether a
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particular algorithm was significant, it could have led to significance being found 

between algorithms, much for the same reasons that an ANOVA is preferred to 

multiple t-tests. The study found that, if one ranked each algorithm by its accuracy, 

there was a slight difference depending on whether overall accuracy or kappa was 

used. Another report quoted by Stehman (1997), Jakubauskas et al. (1992), reported 

the same results. As in the paper by Congalton et al. (1983), the order of most to 

least accurate changed slightly, but only occurred when the differences between 

classification algorithms were initially slight. Stehman (1997) did report that 

differences between overall accuracy and kappa were possible between images if the 

scenes being classified had very different land-cover structure. However, as he 

pointed out, “[W]hat objective motivates a comparison of accuracy for...very different 

regions?”



METHODS

Site Description

The site used for this research is a ten-acre created tidal oligohaline marsh 

located on Goose Creek, in the City of Suffolk,Virginia (Figure 1). The predominant 

vegetation on the site is comprised of Phragmites australis, Amaranthus cannibina, 

Scirpus robustus, Spartina alterniflora, Spartina cynosuroides, Aster spp., and Typha 

spp., though heterogeneous patches of other vegetation also exist on the site. The 

property is divided approximately ‘50-50’ into high and low marsh (Barnard, pers. 

comm.).

Model for Determining the Experimental Procedure from a Remote Sensing 

Perspective

I. Identifying the object o f interest

The sensors we used were selected based on our knowledge of the area, as 

some sensors work better in some environments than others. The part of the 

electromagnetic spectrum (EMS) to be studied will also be determined by the 

environment in question. For example, the 400-2500 nm range of the EMS includes 

most of the incident radiation of the solar spectrum, and is therefore most widely used 

for remote sensing of vegetation (Carter 1993). Other characteristics, such as fog or 

water turbidity, may also restrict the sensors available for use (Lillesand and Kiefer 

1994).

33
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II. Considering the scientific goal

Different sensors provide different accuracy and precision. Accuracy refers to 

the ability of the sensor to detect the true value of the reflectance or other parameter 

being measured, while precision refers to the ability of the sensor to obtain the same 

value over repeated samples of the same area (Anderson, pers. comm.). An 

individual interested in a preliminary survey for coastline changes due to erosion or 

development may be able to accomplish their goals using aerial photographs 

(Hardisky et al. 1986, Environmental Laboratory 1987). Someone interested in 

detecting stress over a wide area might want to consider using a tool such as the 

DMSV, which covers four bands in the EMS. To determine the effects of stress on a 

previously unstudied species, one might consider using the spectroradiometer, which 

collects data from a much larger portion of the EMS than the DMSV. The 

spectroradiometer collects data from a fixed point, essentially one pixel, across a 

broad range of the EMS. The DMSV, on the other hand, collects data representing 

many pixels from only a few selected points in the EMS.

III. Acquisition o f data

There are different ways to acquire data. The energy required for detection, 

whether to use a space or aerial platform, and the sensor orientation are all issues that 

need to be addressed when carrying out a study. Digital imagery, for example, often 

requires more time to process than film. Film, while it may be more sensitive to 

particular wavelengths, may not reflect the exact mix of wavelengths present at a site. 

Film emulsion, age, exposure, and processing technique also need to be considered
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when examining photographic data (Murtha 1992). Spacebome platforms are 

typically used to acquire data from larger areas than aerial platforms (Lillesand and 

Kiefer 1994).

There are many types of digital sensors. Examples include Landsat, Thermal 

Infrared Multispectral Sensor (TIMS), SPOT, and the DMSV (Lillesand and Kiefer 

1994). The DMSV is comprised of four cameras, each of which can record data from 

a desired portion of the EMS. The DMSV is sensitive from 350-950 nm (Anderson, 

pers. comm.). The entire desired range of vegetative study in the EMS is 400-2500 

nm (Lillesand and Kiefer 1994). Much of the higher part of the range is used to study 

vegetative stress. For example, the EMS from 1300-2500 nm can be used to study 

water loss from plant leaves (Carter 1991). Data from the blue, green, red, and near 

infrared wavelengths were considered sufficient for our study. While the 

spectroradiometer can collect more data across the EMS than the DMSV, it is very 

time-consuming. The information from four bands that the DMSV examines is 

sufficient for many studies. At present, sensors are not capable of collecting data 

from across the entire range of the EMS for all the pixels in a scene because of the 

time it takes to measure spectral data and the computer memory required. The 

spectroradiometer works well when data is only needed for a few points. Sensors 

such as the DMSV are more desirable when information needs to be gathered from a 

wide area. (Anderson 1997).
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IV. Classification and error analysis o f digital data 

There are several techniques that can be used to classify and assess the 

accuracy of digital data. Someone interested in just the overall picture of a thematic 

map might use an overall accuracy technique, such as taking the number of correctly 

identified pixels in a scene, and dividing by the total number of pixels in a scene 

(Congalton 1991). Someone interested in categorical data might need to consider 

errors of omission or commission, errors that describe changes in a specific category 

rather than the overall scene (Congalton 1991).

Collection o f Ground Data

Field data were collected using a\ simple random design. The target goal was 

to collect fifty samples for every class to be analyzed. All sample points were located 

in the marsh to precisely correspond with remotely sensed imagery using transects 

placed by T. Barnard and W. Priest. Five parallel transects were located within the 

marsh. Each transect was 30 meters apart and laid out along an angle of 

approximately 42 degrees. Pipes were placed at ten meter intervals along each 

transect (Figure 2). Each pipe marked the center of a rectangle five by fifteen meters 

long. The goal of sampling was to collect 500 data plots, which were enough to 

analyze five classes. Half of the points were to be used for error matrix calculations, 

while the other half were to be used for supervised classification. Microsoft Excel 

was used to generate the random points. Pipes were randomly assigned a number and 

randomly selected. Next, a number between zero and five, and another number 

between zero and fifteen were selected. Positive and negative (0 or 1) numbers were
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generated for the latter two to indicate direction away from the selected pipe. The 

direction of plots from the pipe were converted to a compass heading and distance 

using trigonometry. Plots were then located in the field.

Vegetation cover data was collected in the field. The imagery collected was 

to provide data at % and 1-meter resolution, so two quadrats were used to collect 

data corresponding to these sizes. When a sample point was located, the center of the 

quadrat was placed over the end of the transect tape, and the quadrats were aligned 

parallel to the transect. Vegetation cover was measured by including only the area 

within the quadrat, and by counting plants that would have received sunlight when the 

sun was directly overhead. For example, an area of a particular plant shadowed by a 

taller plant was not included in the cover estimate. The same researcher collected all 

ground cover to ensure consistency. Due to aerial problems, only one-meter 

resolution was obtained from the DMSV. As a result, we ignored the data collected 

using the % meter quadrat in our study.

Field collection of the data started on July 17, 1999 and continued until 

August 22, 1999, while imagery was acquired on July 27, 1999. If data had been 

collected at the beginning of the summer, and the imagery was taken at the end, the 

imagery would not have accurately reflected the data being collected from the ground 

as ground cover could have changed. The heat wave that occurred during this time 

made data collection difficult. There were several days when the excessive heat made 

it too dangerous for fieldwork. Goose Creek could also only be sampled during low 

tide so sampling during hours when the heat was not oppressive was not always 

possible. As a result, sampling proved more difficult than preliminary work had
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suggested. As a result, we reduced the sampling size and the number of classes. The 

outermost transects of Goose Creek (the ‘A’ and ‘E’ transects) were dropped, and 

effort was focused on the three inner transects, which provided a continuous sampling 

area. We dropped the number of classes to three, which meant that approximately 

300 points had to be collected. In all, 283 sample points were acquired for use in our 

study. The distribution of points between classes was not equal and a breakdown of 

fifty data points per category was not achieved.

The location of each sample point had to be precisely determined. Locations 

of several pipes were obtained from past research at Goose Creek (Berquist, unpub. 

data). The geographic coordinates of all of the pipes were not available, so 

differential geographic positioning system (GPS) equipment was used in the field to 

collect additional information. The collection of such data is time-consuming, so 

GPS data from each pipe were not collected. Instead, eleven pipes were selected in 

the field, according to ease of access, along the B, C, and D transects. Their 

coordinates were compared, when available, with those provided by Mr. Berquist. 

This allowed for verification that sample points were located near the correctly 

labeled pipe. The accuracy of the differential GPS data is within one meter (Berquist, 

pers. comm.). The software program Geocalc (Blue Marble Geographies) was used 

to calculate the coordinates of the other pipes and the sample points. All coordinates 

were computed to UTM geographic coordinates, using the NAD83 datum, so as to be 

compatible with the remotely sensed imagery correction.
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Collection o f Remotely Sensed Data

Imagery was collected using the Digital Multi-Spectral Video (DMSV) 

sensor. The DMSV collects information from 578*740 (427,720) pixels, which is the 

size of its digital image. Data were collected from four bands: band 1 (770 nm - 

infrared), band 2 (450 nm - blue), band 3 (550 nm - green), and band 4 (680 nm - 

red). These four bands are useful for vegetation classification (Anderson, pers. 

comm.).

The DMSV was supposed to be flown at two heights to provide imagery 

resolution of 1-meter2 and %-meter2. However, on the day the DMSV was flown, 

thermal currents hindered the airplane’s efforts to collect data at the Vi meter
'y

resolution. As a result, the data collected on the ground using the %-meter quadrat 

could not be used. Goose Creek was flown on July 27, 1999 during low tide. Ground 

targets had been placed on the ground prior to image collection. The targets were 1- 

meter2 pieces of styrofoam painted with various shades of gray, except for one white 

target. The targets allow for radiometric correction, as they have a known reflectance 

that can be compared to what the DMSV returns as a reflectance value. Five targets 

were initially placed, however only three were visible on the resulting imagery: white 

(reflectance of 83%), drover gray (reflectance of 45%), and universal gray 

(reflectance of 62%). GPS coordinates had been obtained for the seal gray target yet 

it was not observable on the imagery and had to be ignored. The last target, dark 

secret gray, was not visible on the imagery and also had to be ignored.
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Geometric and Radiometric Correction o f the Remotely Sensed Data

The scene was georectified before undergoing radiometric correction. All 

image processing was performed using Imagine (ERDAS 1994). The scene was 

subsampled, or cropped, to remove areas surrounding Goose Creek because 

georectification is more effective when the pixels used for the process are spread out 

across the scene. As Goose Creek was the only area of interest, we selected points 

from only that part of the original imagery. The image was georectified using an 

older image of Goose Creek that was accurate to within one meter (Berquist, unpub. 

data). While the vegetation characteristics of interest in this study had probably 

changed since the older data were acquired, features such as trees and markings on a 

nearby road were still visible. Seven ground correction points around the image were 

used to georectify the image. An affine geometric model for georectification was 

attempted, but for some unknown reason Imagine would not allow this model to be 

used. Instead, a polynomial geometric model with the following features was 

employed: UTM Projection, GRS 1980 Spheroid, Zone #18, and NAD83 Datum.

The total root mean square (RMS) value, which provides a measure of the precision 

for the georectification, equaled 0.2757.

The image was resampled using the nearest neighbor technique. In 

georectification, the computer fills a new grid, where each cell has a known 

geographic coordinate, with brightness values from the original image. In using the 

nearest neighbor technique, the computer assigns a brightness value to the new cells 

by choosing the digital number of the ‘old’ cell closest to the ‘new’ cell, if the two 

images were overlaid on top of one another. In order to produce an image that looks
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‘normal,’ one must click on the option marked ‘Ignore 0 in stats’ in the Imagine 

software for georectification. It is unknown why this is so. It does not pose a 

problem for this research as no zero brightness values were recorded by the DMSV.

The georectification was performed before the radiometric correction because 

the radiometric correction could alter brightness values. We wanted to ensure that the 

radiometric correction produced results that would not be altered. We had placed five 

targets in the field but were only able to see white, drover, and universal gray on the 

actual imagery. Each target was visible as several pixels in the image, rather than 

only one as was expected, presumably because the target was captured as a 

component of a group of pixels centered around the location of the actual target. The 

aerial platform may also have not exactly achieved 1-meter resolution accuracy. 

Unless the DMSV sampled one pixel exactly at the target’s location, the target would 

be a part of several pixels. As a result, digital numbers were collected for the 

brightest part of the target visible, which we assumed to be unaltered by surrounding 

vegetation. We also assumed, in collecting ground cover data that the measurements 

for each sample plot corresponded to one and only one pixel, and was not affected by 

surrounding vegetation. It is possible that each sample point may actually be a 

component of several pixels depending on the actual space that each pixel represents.

The radiometric correction was performed by regressing reflectance onto the 

digital number. The radiometric correction converts all of the digital numbers, which 

range from 0 to 255, to reflectance values ranging from 0 to 100. Our inital 

correction produced results with extreme bias and gain, suggesting that a dark target 

was needed (Anderson, pers. comm.). A pixel from the Elizabeth River, which
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contains many dark areas, was selected. The reflectance in the infrared band was

assumed to be 5% for the river (Anderson, pers. comm.). Rather than assume a

particular reflectance for the other bands for the dark pixel, the reflectance was

computed using the ratio (DN1/DN2 = Refi/Ref2), where DNi refers to the digital

number of water in each band, DN2 is the digital number of a given target, and Refi

and Ref2 refer to the reflectance of the water and target, respectively. Refi was

calculated using each target and the average was then computed to find the

reflectance for each band. The regressions were then recomputed to produce the

following results (Figure 3):

Band 1 (770 nm): y=0.4414x -  4.0393 
Band 2 (450 nm): y=0.2675x -  3.241 
Band 3 (550 nm): y=0.3223x -  8.5268 
Band 4 (680 nm): y=0.306x -  4.325

x=Brightness Value (0-255), y=Reflectance Value from (0-100)

Imagine separates the bands when it performs a radiometric correction into 

four separate images. The bands were recombined for further processing. Once a 

corrected image was produced, the reflectance values for each sample point were 

recorded. UTM coordinates of each sample point, as calculated using Geocalc, were 

input into a text file using Microsoft Notepad. This file was sent using File Transfer 

Protocol (FTP) to the Unix workstation where Imagine was being used. Arclnfo was 

used to convert the text file to a series of points that could be opened with Imagine. 

The sample points were opened with Imagine once they were converted, and the 

reflectance value for each sampled pixel was recorded individually for later possible
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use. This task was made easier by separating the data points into ten separate files, 

which allowed sample points to be located on the image with greater ease.

Processing the Ground Cover Data

The vegetation cover data were processed to yield the three categories to be 

used for comparison with the remotely sensed imagery. All data were entered into 

Excel and the sum of the cover within each quadrat was calculated to ensure that it 

equaled 100%. Plots that did not have 100% cover, due to errors during field 

collection, were eliminated from the data pool leaving 283 sample points.

The data were analyzed to yield the three classes that would be used using the 

software program S-Plus. Hierarchical and nonhierarchical clustering techniques 

were used for this study. Nonhierarchical clustering was accomplished using k- 

means clustering. S-Plus did not offer options to affect how this calculation was 

performed, apart from choosing the number of clusters to be derived from the data. 

Hierarchical clustering was performed using a divisive clustering technique. Divisive 

clustering was chosen over agglomerative clustering because agglomerative 

clustering tends to focus on random errors in data, while divisive clustering focuses 

more on trends (Gauche 1995). The divisive hierarchical cluster technique was 

performed using Euclidean dissimilarity to distinguish clusters from one another. We 

also attempted to cluster the data using Manhattan dissimilarity. The resulting 

clusters were compared to those derived using Euclidean dissimilarity and found to 

match. This resulted in three distinct classes using nonhierarchical and divisive 

hierarchical cluster algorithms.
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The data within each class needed to be divided into two sets: one set to 

produce the error matrix, and another set to be used as training data for the supervised 

classification. The classification dataset can not be used in the error matrix because 

training pixels would automatically be classified correctly, biasing the results from 

the error matrix. The data points within each class were divided in half. Matlab was 

used to divide points into training data and accuracy assessment data. The command 

‘randperm(x) > x/2,’ where x is equal to the number of datapoints in each category, 

randomly assigned each datum to either training or accuracy data. The command 

generates a list of x numbers of either 0 or 1. All numbers assigned a value of ‘O’ 

were used for accuracy assessment data, while data assigned a ‘ 1 ’ were used for 

training data. The command ensures that each set contains the same number of data, 

or only one more value than the other set, for the case of odd numbered datasets. 

Within the training data, another series of random numbers of 0 and 1 determined 

whether to use a datum for signatures incorporating half of the available data, or the 

entire data. Data randomly assigned ‘O’ were assigned to signatures using half of the 

available data as well as the signature comprised of all data, while data randomly 

assigned ‘ 1 ’ were used only when the entire available training dataset was used.

Classifying the Remotely Sensed Imagery and Accuracy Assessment

All image classification was performed using ERDAS Imagine. An Area-of- 

Interest (AOI) was generated prior to classification. As we described, the imagery 

was cropped for georectification. However, part of the remaining image shows how 

Goose Creek fits into the surrounding area, and was not needed for the classification.
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An AOI allows specific areas to be analyzed by the computer. The actual sample area 

is a little larger than the polygon that ‘connects the dots’ represented by each pipe in 

the field because each pipe marked the middle of a given sampling box. The 

extended area around each transect endpoint was calculated using Geocalc. Using 

Arcview, the endpoints were transformed into a vector that showed the comers of a 

polygon representing the study area. Connecting each point of the vector file created 

the AOI. The AOI was condensed slightly to reflect the actual area that could 

feasibly be sampled. For example, areas in the southern end of the marsh would have 

been included had they not been composed of forest vegetation which bordered the 

marsh, which was not included in this study. On the northern side of the marsh, the 

creek which fed into the Elizabeth River could not be crossed, therefore some areas 

otherwise considered available to the ‘D’ transect could not be sampled. As a result, 

the region that was classified is an irregular polygon. All data points were converted 

to vector format and opened in Imagine to verify that they all fell into the overall 

AOI.

AOI’s were used to create the signatures used for supervised classification. 

Data points were initially entered into Excel, then exported into ArcView using FTP 

and converted into a vector file that could be opened with Imagine. The points for 

one class were grouped together and saved as an AOI. The AOI could then be 

entered into the Signature utility available in Imagine. Three classes were saved 

together in one signature file for analysis during the supervised classification.

The unsupervised classification was performed on the AOI of Goose Creek.

As no pixels in our scene contained any zeros, we selected the option for Imagine not
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to classify zeros. We instructed Imagine to find 3 categories, with a maximum 

number of 50 iterations and an agreement of 0.98. We used the minimum distance 

parametric rule for the supervised classification, for reasons noted previously, and the 

Goose Creek AOI. As with the unsupervised classification, zeros were not classified.

Overall accuracy, user’s accuracy, and producer’s accuracy were computed as 

follows:

Overall accuracy = Correctly classified sample pixels

Total number of classified pixels

User’s Accuracy = Correctly classified sample points for a particular category

Number of pixels classified into a particular category

Producer’s Accuracy = Correctly classified sample points for a particular
category

Number of reference points available for a particular 
category

As we described earlier, we were interested in comparing the effect of 

signatures created by the entire ground-truthed dataset and one condensed to only 

include dominant species. To do this, the average cover was calculated for each 

species measured in the field. All species with an average cover of less than 15% in 

Goose Creek were removed. No sample points were lost due to the species reduction. 

The new dataset was analyzed according to the same procedures described above for 

the raw ground data. For example, three cover classes were generated using the 

spectral data and the accuracy assessment performed using these classes.
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The statistical analysis for accuracy was performed by calculating total, 

user’s, and producer’s accuracy for comparisons of the different error matrices. 

Kappa analysis was utilized to statistically test whether the different matrices are 

significantly different from one another. The Kappa statistic is defined as: 

k’ =  N * Z r i=iXii -  Z r i= i(x i+ * x +i)

N 2 - Z r i= i(x i+ * x +i)

where:
r = number of rows in the error matrix,
Xii = number of observations in row i and column i (on the major diagonal),
xh = total of observations in row i...,
x+i = total of observations in column i..., and
N = total number of observations included in matrix” (Lillesand and Kiefer 1994).

One potential problem we had with our statistical analysis was that only two 

error matrices can be compared at once, creating a problem analogous to performing 

multiple t-tests when an ANOVA would be appropriate (Zar 1984). As a result, the 

probability of Type I errors occurring increases in our research. An exhaustive 

literature search did not reveal a solution to this problem. Its effect on our research 

will be discussed below. As we are performing numerous statistical tests, we limited 

the number of tests we performed by restricting our analysis to only kappa accuracy 

assessment.

Diversity

During the initial design of our study, we believed it was possible to obtain 

diversity measures from the remotely sensed data. Consideration of the issue showed 

that this was not the case. We will explore this in more detail below.



RESULTS

Sample Point Precision

It was not possible to determine precisely how close the sample points 

actually were to their calculated UTM coordinates. We have previously discussed the 

issues surrounding the problem, such as the accuracy of the data provided by Mr. 

Berquist and the use of GPS data collected from transect pipes in the marsh. Despite 

not knowing this precision, we do feel that we controlled it enough to permit the use 

of the data in our research.

Ground Cover Data

S-Plus was used to divide the entire ground dataset into three categories using 

the k-means and divisive hierarchical clustering techniques. The results of this 

categorization are listed in Table 1.

Sixteen species were observed in the sampled area of Goose Creek. We 

should note that other species were observed in the A transect, which was not 

sampled. Goose Creek thus has a higher proportion of species than our data suggests. 

Table 1 shows the classes that resulted from clustering the data using the k-means and 

divisive hierarchical algorithms. All data represent percent cover, but as we are 

presenting averages the sum does not exactly equal 100%. Large standard deviations

48
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were observed in the data for several species. The mean percent cover and the 

standard deviation for each observed species are listed in Table 2.

As we described previously, the dataset was condensed so that only species 

with an average cover of more than 15% across the entire marsh were included. The 

following species remained: No Cover (which is being treated as a ‘species’ for the 

purposes of our work), Spartina alterniflora, S. cynosuroides, Phragmites australis, 

Scirpus spp., Amaranthus cannibina, Typha spp., and Aster spp. The condensed 

dataset was created in an attempt to remove variability that we believed less- 

important species would introduce into the clustering algorithms. The k-mean and 

divisive hierarchical clustering tools were run on the condensed data. The results of 

removing the less dominant species are listed below, next to their counterparts that 

used the entire dataset. There is very little difference in the percent cover of k-mean 

clustering between the entire dataset and the one that was condensed (Table 3), and 

none at all for the divisive hierarchical clustering algorithm. A side-by-side 

comparison of the sample points showed that only one sample point moved from 

group 1 to group 2 when the condensed dataset was processed using the k-mean 

algorithm. No points moved out of or into any group when the divisive hierarchical 

algorithm was used on the condensed data.

It is somewhat difficult to actually interpret what the classes represent by 

looking at the entire dataset, but since there is virtually no difference between the 

entire dataset and the condensed one in terms of how the sample points were 

distributed, we can focus on the eight species we have found. Class 2 in k-means 

clustered data is almost entirely dominated by Phragmites. Due to the low percent
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cover of this species in the other classes, and the relatively low cover of other species 

in class 2 (all almost an order of magnitude less), we can regard class 2 to consist 

almost exclusively of Phragmites vegetation. The low standard deviation for 

Phragmites, relatively speaking, supports the concept that class 2 is essentially only 

Phragmites. This result agrees with our field observations where Phragmites 

appeared to be a largely homogenous class. Sample points fitting into class 2 would 

have been easily distinguishable in the field as large patches of Phragmites were 

visible to the naked eye. Separating class 1 from class 3 was more difficult. In a 

sense, every sample point represents a distinct class as no two samples were precisely 

the same. Combining sample points into classes facilitates possible identification of 

trends across the marsh. We were restricted to the number of classes we could use by 

the requirements of the accuracy assessment of remotely sensed data. As. a result, 

class 1 and 3 may actually represent an amalgam of smaller, more distinct, classes 

that had to be placed into one or the other class because they were more similar to 

each other than they were to class 2 and Phragmites. As a result, it appears that class 

1 is comprised of a mixture of S. alterniflora and A. cannibina while class 3 is largely 

dominated by Scirpus spp. The large standard deviations, relative to average ground 

cover, may be important in discerning how distinguishable these classes are. The 

variation of class 2 appears to be larger than that of class 1. The breakdown agrees 

somewhat with subjective field observations. S. alterniflora and Scirpus were 

frequently observed together, as the standard deviations above suggest. A. cannibina 

was noticed more frequently with S. alterniflora than with Scirpus. Thus, we 

subjectively agree with these results, though there are differences across the marsh
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that we did notice that the clustering did not discern due to constraints on the number 

of classes allowed. For example, Typha did not appear on the northern side of the 

marsh while it was present in the southern side as a relatively frequent species. While 

we may have felt that there was a pattern present as one moved from north to south 

across the marsh, the data we have collected can not reflect this due to limitations 

created by the sampling needs.

Clustering using the divisive hierarchical clustering algorithm produced 

slightly different results (Table 4). As before, Phragmites appeared to separate out as 

a separate class by itself. In this case, S-Plus assigned it to class 3. The standard 

deviation and value appear to be comparable to that of class 2 calculated using the k- 

mean algorithm. Class 1 and 2, as determined by the divisive hierarchical 

classification, appear to be different from that calculated using the k-means 

classification scheme, however they still seem to be comprised of an amalgam of 

species. Class 1 appears to be most heavily dominated by Scirpus spp., while class 2 

has the greatest cover from S. alterniflora. Again, subjective field observations 

suggested this difference; patches of S. alterniflora were distinguishable from Scirpus 

spp. in Goose Creek. We should note that these coverages do have large standard 

deviations, as seen in Table 2. The presence of ‘no cover’ appeared to also play a 

role in discerning class 1 from class 2 in that its ‘presence’ is more than double in 

class 2. S. cynosuroides, A. cannibina, and Typha spp. are more common in class 1 

than class 2. Class 1 could be regarded as being more of a collection of species than 

class 2, which is largely dominated by No Cover, S. alterniflora, and to a smaller 

degree, A. cannibina.
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We would like to note that subjective field observations might have led to a 

different breakdown of classes based upon distance into Goose Creek. Phragmites 

was clearly a dominant species and would have been entered into its own class. The 

other two classes would have been divided into low marsh and high marsh.

The large standard deviations of our data suggest that the k-means and 

divisive hierarchical classification tools are imperfect classifications. As clustering 

tools, they can be used to separate the data, but they can not describe what is causing 

the trends that led to the clustering. Principal components analysis (PCA) was used 

for this purpose. Figure 4 shows the results of the PCA as calculated using 

CANOCO. Figure 5 shows the results of the PCA performed using S-Plus. If we 

assume that the PCA was calculated using the same parameters (it was not possible to 

set precise terms on the S-Plus calculation), the two outputs reveal the same results 

using a slightly different perspective. Figure 4 shows the output by species, while 

Figure 5 actually breaks apart the components. The variation appears to be largely 

driven by three factors: Phragmites, Scirpus spp., and S. alterniflora. In addition, S. 

cynosuroides and No Cover also appeared to explain variation within the data. Figure 

5 confirms this. The first five components explain over 95% of the variation in our 

data. The first component is driven almost entirely by Phragmites. Combined with 

the results of figure 4, which shows Phragmites separate from all the other species, it 

suggests that Phragmites is a stand alone species. The divisive hierarchical and k- 

means classification demonstrate this result, as Phragmites strongly appeared as its 

own class using both clustering tools. The second component, explaining an 

additional 15% of the variation, is caused by Scirpus spp. and S. alterniflora, which
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run in opposite directions. Figure 5 also demonstrates these results. The components 

attributed to Scirpus spp. and S. alterniflora are not as long as that of P. australis, but 

they are still the next two longest lines on the PCA diagram. They also are separated, 

suggesting that they will not be found together within a sample point. The results 

agree with the results produced by the k-means and divisive hierarchical clustering 

algorithms. The other trends appear less important but still reveal patterns in the data. 

The species we had separated out to form the condensed data set are the species that 

S-Plus found explained the greatest trends in the data. No Cover and S. alterniflora 

are slightly distinct from one another, as are A. cannibina and Scirpus spp. In 

addition, Typha spp. and A. cannibina are opposed to one another, suggesting that 

they are not frequently found together in the wetland. These results agree with our 

subjective field observations.

The k-mean and divisive hierarchical clustering techniques were also applied 

to the entire dataset to produce five distinct clusters, instead of the three described 

previously. While we did not perform classification and accuracy assessment on the 

expanded clusters, we did want to compare them with the data clustered in three 

categories.

The result of categorizing the data using k-means into five categories is 

provided in Table 5. If we focus on the species comprised of major cover, it appears 

that Class 1 is heavily dominated by P. australis. All cover in Class 1 is at least an 

order of magnitude below P. australis. Phragmites also appears to be important in 

Class 2. While it is not as dominant as it is in Class 1, it still has the largest percent 

cover of any plant species. No cover and S. alterniflora also appear to be significant
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components of class 2. No cover has its highest cover percentage in Class 2. Class 2 

could possibly be interpreted to be comprised largely of No Cover, S. alterniflora, 

and P. australis, with a little D. spicata as well. Class 3 is heavily dominated by S. 

alterniflora, while A. cannibina also has a high percentage of cover represented. No 

Cover also is an important component of class 3. S. cynosuroides and Scirpus spp. 

also appear to have higher cover in Class 3. Class 4 is almost entirely dominated by 

Typha spp. No Cover is also present, as it is in every other class. P. australis, S. 

alterniflora, and Scirpus spp. are also present. Class 5 appears to be heavily 

dominated by Scirpus spp. with smaller cover from No Cover, S. alterniflora, and S. 

cynosuroides all present.

The result of categorizing the data into five clusters using the divisive 

hierarchical clustering algorithm is given in Table 6. The composition of the clusters 

produced using the divisive hierarchical clustering algorithm appears to have 

produced different results from that of k-means clustering. Class 1 is largely 

dominated by Scirpus spp., but No Cover, S. alterniflora, S. cynosuroides, A. 

cannibina, and D. spicata all appear to also be a part of this class. Class 2 is largely 

dominated by S. alterniflora, with No Cover and A. cannibina also present to a lesser 

extent. Class 3 is dominated almost entirely by P. australis. Class 4 appears to be 

comprised mostly of patchy S. alterniflora, as the presence of No Cover is the 

dominating feature of this class. S. cynosuroides, P. australis, and Scirpus spp. are 

present as much smaller features. Class 5 is comprised largely of Typha spp. with 

some bare patches as demonstrated by the presence of No Cover.
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Importance Values

The data was analyzed according to ground cover because it is the only 

ecological measure actually assessed by remote sensing. Unless one is working at a 

very high resolution, it is impossible to count individual plants and determine relative 

density. Measuring frequency is only possible insofar as a given plant’s brightness 

value within a given pixel is strong enough that the pixel is classified to that given 

class containing the species in question. As a result, any maps produced, including 

supervised classifications, rely on cover. However, calculating the importance value, 

which neglects any influence from lack of cover, may allow additional information to 

be obtained about the ecology of the area. We had to use a modified importance 

value as we did not have time to collect data used for relative density. We note that 

these values may be slightly biased because not all plants were classified to the 

species level, such as the Scirpus, Aster, and Typha genuses.

Table 7 shows the results of calculating the importance value for the k-means 

and divisive hierarchical clustered data in three categories. The results appear similar 

to our dominant species determined based on cover. For k-means clustered data, S. 

alterniflora is the clear dominant in class 1, followed by A. cannibina. Other species 

that appear important to the composition of this class include Scirpus spp., P. 

australis, Aster spp., Typha spp., and S. cynosuroides. Class 2 is almost entirely 

dominated by P. australis, though Scirpus spp., S. alterniflora, and A. cannibina also 

appear to play a role. Class 3 is largely dominated by Scirpus spp., though S. 

alterniflora, S. cynosuroides, and A. cannibina also appear to be important to this
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class. The importance values we measured do appear to suggest the same dominant 

species for each class that we have calculated before.

We obtained similar results for data clustered using the divisive hierarchical 

technique (Table 7). Class 1 is again dominated by Scirpus spp., with S. 

cynosuroides, S. alterniflora, A. cannibina, and Typha spp. also common members of 

this class. Class 2 is largely dominated by S. alterniflora, with A. cannibina as noted 

before. Aster spp., S. cynosuroides, P. australis, and Scirpus spp. also appear to play 

a role in the composition of this class. Class 3 is dominated almost entirely by P. 

australis, with S. alterniflora, Scirpus spp., A. cannibina, and Typha spp. also present, 

though their importance values are much lower than that of P. australis. These 

findings appear to support our previous results based only on cover estimates, even 

with lack of ground cover not under consideration.

Table 8 shows the results of calculating the importance value for the k-means 

and divisive hierarchical clustered data in five categories. Like the data in three 

classes, there appear to be strong similarities between these results and the analysis 

done by examining ground cover alone (Tables 5 and 6). In the k-means clustered 

data, P. australis is the most dominant species, though Scirpus spp. and A. cannibina 

also appear in this class. Class 2 is an amalgam of species. P. australis and S. 

alterniflora are the most dominant. However, D. spicata, A. cannibina, Typha spp., 

Scirpus spp., and S. cynosuroides also appear to be less dominant, but still important, 

species in this class. Class 3 is dominated by S. alterniflora, but A. cannibina is also 

important. Scirpus spp., S. cynosuroides, and Aster spp. also appear to be important 

to the composition of this class. Class 4 is most heavily dominated by Typha spp.,
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but S. alterniflora, P. australis, and Scirpus spp. are also present. We should note 

that class 4 was comprised of only 4 sample points. Scirpus spp. is the most 

dominant species in class 5, but S. alterniflora, S. cynosuroides, and A. cannibina also 

contribute to this class. As before, these class distinctions are similar to those found 

from just examining the ground cover data.

The classes derived from the importance values calculated for the divisive 

hierarchical clustering to five classes also resemble those obtained from the 

examining only the ground cover data. Each class appears to be composed of one 

major dominant species and several minor dominant species. Class 1 is dominated 

by Scirpus spp., with the minor dominants including S. alterniflora, A. cannibina, and 

S. cynosuroides. S. alterniflora is the dominant species of Class 2, and lesser 

dominants include A. cannibina, Scirpus spp., Aster spp., P. australis, and S. 

cynosuroides. Class 3 is heavily dominated by P. australis, though Scirpus spp., A. 

cannibina, S. alterniflora, and Typha spp. appear to be minor dominant species in the 

class. Class 4 is an amalgam of many species. S. alterniflora is the major dominant 

species, but minor dominant species include A. cannibina, P. australis, Scirpus spp., 

Typha spp., S. cynosuroides, and Aster spp. Class 5 only contains four points but is 

heavily dominated by Typha spp., with S. alterniflora, P. australis, and Scirpus spp. 

present as minor dominants in the class.

Classification and Accuracy Assessment

The clusters describe the groups that were input into Imagine for classification 

and accuracy assessment. As described previously, half of the data was used to
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produce supervised classifications and half was used to test the accuracy of the 

remotely sensed data. The data used to produce the supervised classifications was 

again split in half to test the hypothesis that effort affects accuracy.

The classifications produced by ERDAS are presented in Figures 6-16. Each 

image was analyzed using the Kappa statistic to determine whether it was 

significantly different from a random classification. An error matrix was produced 

for each accuracy assessment. We have listed one in Table 9; the others produced 

during our study are provided in the Appendix. Kappa was calculated according to 

the formula described previously. Theta One, Two, Three, and Four were determined 

using Excel to allow the variance of the Kappa statistic to be measured, which was 

then used to calculate the Z-score. A Z-score greater than 1.96 suggests that Kappa 

value is significant at an alpha level of 0.05. In this case, the classification was 

significantly different from one produced randomly.

Only one unsupervised classification needed to be performed, as we were only 

interested in one image with three classes. The unsupervised image is based upon 

what the computer interprets as the natural separation of the brightness values for 

each pixel based upon some mathematical formula. The error matrix allows us to test 

that against what we perceive to be the ‘correct’ result. However, in this case we 

have four ‘correct’ accuracy datasets: divisive hierarchical clustering of the complete 

and condensed data, and k-means clustering of the complete and condensed data.

Each could potentially lead to a different Kappa value and accuracy assessment. 

Another factor to consider is that the classes produced by an unsupervised 

classification may not correspond to the classes produced for a supervised
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classification. The class dominated by Phragmites australis in our data may not 

appear as a class in the unsupervised classification. However, we are still interested 

in assessing whether the unsupervised classification is more accurate than one 

produced by random, without any mathematical consideration given to the separation 

of pixels. If we assume that the clusters produced from the k-mean and divisive 

hierarchical clustering will correspond to three classes produced in the unsupervised 

classification, we can use them to produce error matrices for the unsupervised 

classification. To simplify matters, we only used the complete dataset for the 

unsupervised accuracy assessment. Since class 1 of the unsupervised classification 

may not correspond to class 1 of the clustered data, we also assumed that the 

‘shuffling’ of the data that led to the best Kappa value was the correct one. In other 

words, class 1 from the k-means clustering corresponds to class 2 of the unsupervised 

classification if it helps achieve a higher Kappa value for the unsupervised 

classification.

The results of the Z-test for each of the error matrices computed are presented 

in Table 10. We described earlier how the complete and condensed datasets were 

separated into almost exactly the same clusters when run through the divisive 

hierarchical and k-means algorithms. However, Table 10 shows that the Kappa 

values and Z-scores are different for the error matrices produced for the complete and 

condensed datasets. The error matrices for classifications produced on the complete 

or condensed datasets do not yield precisely the same Kappa values or Z-scores 

because different subsamples of the data were used to produce them. As we 

described previously, we assigned random numbers to the data to determine whether
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each sample point was to be used for training or accuracy assessment. The random 

numbers were not assigned to the same sample points in the complete and condensed 

datasets. As a result, the error matrices were not evaluated according to the same 

values.

The kappa statistic produced for the complete dataset, k-means clustering, 

using only half of the available data, is the only insignificant result from all of the 

individual error matrices we analyzed. We found this result highly unusual. 

Verification of our methods failed to find an error in the production of the error 

matrix. We repeated the experiment by randomly selecting samples again and 

dividing them into accuracy/training data as well as randomly selecting half of the 

training data for use in signatures developed using half or all of the available training 

data. The retest was performed on the complete dataset clustered using the k-means 

algorithm, where the training signatures were created using half or all of the available 

training data. The results from this work are listed in Table 11. Table 11 shows that, 

for the retest, a significant result was obtained. That is, the classification produced 

from the complete dataset, clustered using the k-means algorithm, and using only half 

of the available data to create a training signature, is significantly different from a 

classification produced at random. However, an extensive verification showed that 

the original result, which suggested that the classification was not significant, is also 

valid. The effect of this on our work will be discussed in the next section.

We compared error matrices against one another (Table 12) to explore 

whether there were differences in how well they classified Goose Creek. The 

statistics do not allow us to determine what differences in the thematic maps may
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exist, only whether one map produced a significantly better-than-random result. We 

have used both kappa values (0.123 and 0.338) for tests involving ‘comkall’ and 

listed those values separately. The results in Table 12 show that the unsupervised 

classifications are not significantly different from classifications produced using 

training data. In fact, with the exception of only one test, all images are not 

significantly different from one another. The one test to produce a significant result 

was that of comkhalf and comdvhrhalf. The only difference between these two 

classifications is that one used k-mean clustering, and the other used divisive 

hierarchical clustering. We should note that there is no significant difference when 

the test is performed using the alternate kappa value for the k-means classification, 

obtained during the verification of results.

User’s and Producer’s Accuracy

While the error matrix as a whole can be tested for significance, it is also 

possible to examine the features of each class within a given classification separately 

as well. Due to the number of statistical tests that we have already performed, we are 

not going to test the user’s and producer’s accuracy from each classification we have 

produced, as such a description would be unwieldly. However, we will briefly 

examine two error matrices for discussion purposes. We have selected the 

classifications produced using k-means and divisive hierarchical clustering, with all 

available data used to create the training signatures.

The results from the k-mean clustering (Table 13) show an overall accuracy of 

approximately 50%, which means that about half the time the computer was able to
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correctly classify a given pixel. Since there were only three classes, if the computer 

were randomly assigning pixels to classes we would expect it to make the correct 

assignment about 30% of the time. There are notable differences between the user’s 

and producer’s accuracy. The user’s accuracy for class 1 is 70% but falls to 30% for 

the producer’s accuracy. Class 3 shows an opposite trend. Its user’s accuracy is 

28%, much less than its producer’s accuracy of 65%. The kappa values are all 

different from the overall kappa value for this error matrix, 0.29. Class 1 appears to 

be much more significant, while class 3 would appear to be much less.

The results from the divisive hierarchical clustering (Table 14) also show an 

overall accuracy of approximately 50%. The differences between user’s and 

producer’s accuracy do not appear to be as prominent but are still present. The user’s 

accuracy for class 1, 43%, is less than its producer’s accuracy of 70%. The 

producer’s accuracy for class 2, however, is less than its user’s accuracy. The 

difference between user’s and producer’s accuracy for class appears to be closer.

The overall kappa value for this error matrix was 0.34. Class 1 appears to have the 

lowest kappa value while class 2 has the highest. As we not performing statistical 

tests on each class, it is unknown precisely whether these differences are significant.



DISCUSSION

The objective of our research was to explore the usefulness of remote sensing 

as a tool for wetlands research by comparing it to ground-based, ‘traditional,’ 

techniques. Our results suggest that more work remains in determining protocols for 

collecting remotely sensed data. There are numerous mathematical steps required to 

process and analyze remotely sensed data. It appears that a small change at one of 

those steps can have a large effect on the final outcome on the classification produced 

using remotely sensed data. In addition, the statistics available for analyzing 

remotely sensed data are still developing. While much progress has been made in this 

field (e.g. Congalton and Green 1999), our work has highlighted problems that still 

exist. We thus suggest that remote sensing be used as a tool concurrently with, rather 

than instead of, traditional methods. Remote sensing can highlight trends not 

immediately obvious with the ‘traditional’ methods we employed in our study. 

However, to obtain additional information that remote sensing can provide, traditional 

methods must be employed first, even if only as a preliminary survey, to collect data 

in the field.

Clustering Analysis

The data we collected in the field was analyzed by using the k-means and 

divisive hierarchical clustering algorithms. Clustering allows individual sample 

points to be collected in such a way that data within one class are more similar to

63
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other points in the same class. A variety of mathematical procedures exist that can be 

used to determine how similarity between samples is to be measured (e.g. SAS 

Institute, Inc. 1994). Our experiment used two clustering techniques, k-means and 

divisive hierarchical, that have been used in the traditional literature for ecological 

analysis (Gauche 1995). K-means clustering is anon-hierarchical technique.

Clusters computed using k-means are exclusive of one another. As calculated by S- 

Plus, the software used in our experiment, the centroid for each group is determined 

and each datum is assigned to the nearest centroid (MathSoft, Inc. 1999). Divisive 

hierarchical clustering works by dividing the data set into successively smaller 

clusters until the desired number of clusters is achieved. Divisive hierarchical 

clustering is preferred to agglomerative hierarchical clustering because the latter 

procedure tends to focus on differences that could be due to random errors in 

individual data points.

We did not explore other options, such as fuzzy clustering, where sample 

points can be assigned fractionally to more than one group. While such techniques 

have been applied to remote sensing, we wanted to test our hypotheses as simply as 

possible. Using just the k-means and divisive hierarchical techniques showed that 

even simple tests produced complex results. From an ecological perspective, fuzzy 

clustering might have been useful in our experiment. Combining different species 

into mutually exclusive categories can be a questionable procedure. By their very 

nature, wetlands represent a transitional zone between uplands and coastal waters. As 

a result, species may not fall easily into one and only one class.
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The clusters produced from our data appear to support these ideas. We opted 

to divide the data into only three clusters because of the needs of the remotely sensed 

data. As such, we expected the clusters to reveal only very general trends across 

Goose Creek. It was interesting to note that the ground cover data alone appeared to 

provide similar results to the modified importance value measure, which included 

relative frequency and relative dominance. Results from both techniques appeared to 

highlight the most dominant species of each class. The importance value does appear 

to provide a better way of separating out the dominant species in the clusters by 

utilizing more information, frequency, which ground cover data alone can not. In 

addition, the importance value ignores ground cover and compares vegetative species 

relative to one another. Remotely sensed data can not ignore lack of cover, as it may 

exist as a component of a class visible to the sensor, as it did in our experiment. This 

is why we used ground cover alone in creating our condensed dataset. However, the 

similarity between classes obtained from ground cover data alone and the importance 

value suggests that studies using remotely sensed data to derive classes could use 

either measure. However, we do not know what effect adding relative density to our 

modified importance value would have had on our research. While it was not tested 

in our experiment, it would also be interesting to see what effect, if any, exists in 

using frequency alone to determine classes. If only frequency information was 

needed, substantial time might be saved in the field since frequency is one the easiest 

parameters to measure. One minor problem with using the importance value is that it 

does not provide information on class variability, which we were able to determine 

using the ground cover data.
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Summarizing our results, the clusters appeared to reveal the following 

dominant trends in Goose Creek:

K-Means Clustering -  Three Classes

Class 1: S. alterniflora (main dominant), A. cannibina, Scirpus (not as 
prominent as in Class 3), P. australis

Class 2: P. australis,
Class 3: Scirpus spp. (main dominant), S. alterniflora, S. cynosuroides, A. 

cannibina

As we noted in our results, separating class 1 from class 3 was difficult due to 

the variability of those classes. It is possible that class 1 and 3 actually represent an 

amalgam of smaller, more distinct, classes that had to be placed into one or the other 

class because they were more similar to each other than they were to class 2. The 

importance value calculations showed the same species in Class 1 and 3, except that 

the ranking of species appears to be much different. Lack of cover was more 

prominent in class 1 than it was in class 2 or 3. The breakdown agrees somewhat 

with subjective field observation. There were differences across the marsh we 

noticed that the clustering did not discern due to constraints on the number of classes 

allowed. For example, Typha did not appear on the northerly side of the marsh while 

it was present in the southern side as a relatively frequent species. Compiled into 

only one of three classes, the ‘signal’ from Typha was lost in the clustering. While 

we may have felt that there was a pattern present as one moved from north to south 

across the marsh, the data we have collected can not reflect this due to sampling 

limitations. While clustering is useful because it provides an objective way of
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looking at the data, we need to be aware of its limitations. Three categories may not 

be the ideal number of classes to separate the Goose Creek wetland. In addition, the 

analyst must still decide how each class is distinguished from the other classes. Tools 

like PC A can add further objective input to this process.

Applying divisive hierarchical clustering revealed the following dominant 

trends in Goose Creek:

Divisive Hierarchical -  Three classes
Class 1: Scirpus spp., S. cynosuroides, A. cannibina, Typha spp.
Class 2: S. alterniflora, No Cover more prominent, A. cannibina
Class 3: P. australis

As before, Phragmites appeared to separate out strongly as a separate class. 

Classes 1 and 2 still appear to be comprised of an amalgam of species. Class 1 

appears to be most heavily dominated by Scirpus spp., while class 2 has the greatest 

cover from S. alterniflora. Again, subjective field observations suggested this 

difference; patches of S. alterniflora were distinguishable from Scirpus spp. in Goose 

Creek. Lack of vegetation is once again important; the ‘presence’ of No Cover is 

more than twice that in class 1. S. cynosuroides, A. cannibina, and Typha spp. are 

more common in class 1 than class 2. Class 1 could be regarded as being more of a 

collection of species than class 2, which is largely dominated by No Cover, S. 

alterniflora, and to a smaller degree, A. cannibina.

The differences between the k-mean and divisive hierarchical clustering 

reflect the mathematical differences in how they are calculated, but ecological 

interpretation of these results is possible. The dominant species indicate features
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about the Goose Creek wetland. Goose Creek is a created tidal oligohaline marsh.

The species we have found represent both saltwater and freshwater tolerant species. 

Scirpus spp., for example, is found in brackish or freshwater wetlands. Scirpus 

americanus, one of the Scirpus species we found, grows well in tidal wetlands 

(Silberhom 1982). A. cannibina is a species able to grow well in brackish waters and 

is usually a less dominant species in marshes than what we observed (Barnard, pers. 

comm.). S. cynosuroides is another species that grows well in salt or freshwater 

wetlands (Silberhom 1982). S. alterniflora is a species also able to survive in 

freshwater and saltwater wetlands. However, it is adapted for handling salt 

conditions that other plants can not (Silberhom 1982). Our data show S. alterniflora 

clustered with other species. If the marsh were experiencing heavy saltwater 

inundation, we would have expected S. alterniflora to be found largely in its own 

cluster, with much lower dominance by other species. As we have not found this, we 

can surmise that S. alterniflora must compete with the other plants for available 

resources in the marsh. The rarer species we found also indicate features of the 

Goose Creek marsh. For example, D. spicata and S. patens, which were observed as
J

less dominant, are frequently found in brackish wetlands or saltmarshes (Silberhom 

1982). It is also possible that the topography of the Goose Creek marsh may be 

affecting the type of vegetation through changes on tide level and sediment 

accumulation in the marsh (Barnard, pers. comm.).

Our results show that P. australis is able to outcompete other plants. Even 

with the other class differences found between the k-means and divisive hierarchical 

clustering, the signal from P. australis was strong enough to stand largely alone as the
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only dominant in its class, even with only three classes produced during clustering. P. 

australis was found in the other two classes when another species was dominant, but 

the converse was not true. This suggests that once P. australis establishes itself, other 

species are not able to compete for space. Whether P. australis is beginning to 

dominate where it is found with other species, or is unable to outcompete due to 

environmental conditions in those parts of the marsh is not immediately clear. P. 

australis tends to grow in freshwater marshes and in areas where wave action is low 

(Marks et al. 1994). The salinity range for P. australis has been reported as 12 ppt to 

29 ppt (Marks et al. 1994). This might explain why it is has not yet dominated Goose 

Creek. S. alterniflora and other species tolerant of brackish water might be better 

able to withstand the tidal action and salt water influx coming into Goose Creek. As 

a result, these species may persist only where P. australis is unable to outcompete 

them. As the marsh is oligohaline, which tends to range in lower salinities, there 

might be other unknown factors explaining the movement of P. australis across 

Goose Creek. The maps generated from the remotely sensed data will shed additional 

light on this issue, described below.

The results from clustering indicate that our data contain some variability. 

There is no reason for preferring either the k-means or the divisive hierarchical 

clustering technique to the other. They both show that P. australis is a strongly 

dominant species in Goose Creek. It was not one of the original species planted in 

the mitigation bank, suggesting that it has been able to invade with remarkable 

success (Barnard, Jr. et al. 1997). The other feature in common with both clustering 

techniques is that S. alterniflora was associated with a higher proportion of No Cover
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than the other classes were. The reason for this is unclear. S. alterniflora may not be 

as successful at colonizing as other species. We have noted that the species grows 

where other species can not. The converse of this is that it is probably outcompeted 

in other areas. There may be other reasons as well. Young plants may have trouble 

establishing because of the conditions S. alterniflora inhabits.

Tables 5, 6, and 8 show the result from producing five clusters using the k- 

means and divisive hierarchical techniques. Our description from the results is 

summarized below:

K-Means - Five Classes
Class 1: P. australis
Class 2: P. australis (much less than Class 1 but still notable), No Cover, S. 

alterniflora
Class 3: S. alterniflora, S. cynosuroides, Scirpus spp. (the importance value 

calculations also would suggest A cannibina is a dominant).
Class 4: Typha (main dominant), P. australis, S. alterniflora, Scirpus spp.
Class 5: Scirpus spp. (main dominant), S. alterniflora, S. cynosuroides, A. 

cannibina, No Cover

Divisive Hierarchical Clustering -  Five Classes
Class 1: Scirpus spp. (main dominant), No Cover, S. alterniflora, S, 

cynosuroides, A. cannibina, and D. spicata also common
Class 2: S. alterniflora (main dominant), No Cover and A. cannibina
Class 3: P. australis
Class 4: No Cover dominates, S. alterniflora (main dominant species), A. 

cannibina
Class 5: Typha

We can infer many of the same conclusions from these results that we have 

just derived about Goose Creek. The inclusion of Typha into its own class is an 

interesting addition. However, it should be noted that only four sample plots from the 

entire dataset were included in this class. We did not classify the remotely sensed
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imagery into five classes because of limits in testing the accuracy and do not want to 

dwell long on these results. However, they highlight that adding classes to cluster 

analysis can possibly change the interpretation of trends in a marsh. Previously 

Typha was included into other classes. We now find that, by slightly expanding the 

scope of investigation, Typha is prominent enough to fall into its own class. One 

must therefore be very careful in deciding what classes to use for remote sensing.

Diversity

We had initially wanted to test whether remotely sensed data produces 

diversity index values similar to those obtained from data collected on the ground. 

While it is possible to use the class or brightness values for the diversity equations, 

we realized late in the experiment that it would be irrational to do so. Diversity 

measures the richness, evenness, or both, of an ecosystem (Magurran 1998).

Richness refers to the number of species found in the ecosystem of interest, while 

evenness refers to the balance of the number of individuals among the species found 

(Magurran 1998). A variety of measures exist that allow richness and evenness to be 

estimated separately, or that combine the two into a given mathematical formula 

(Magurran 1988).

We initially believed that diversity could be calculated from remotely sensed 

data. The classes from a thematic map produced by a classification, or the raw 

brightness values themselves, could be used. We decided that diversity should not be 

calculated from either. While using the classes may not appear to be an improper 

way to calculate diversity, examining the composition of the classes reveals why they
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should not be used. It is impossible for us to break apart the composition of the 

classes simply by looking at them. They represent conditions found on the ground.

In our study, each class represents components created by applying k-means or 

divisive hierarchical clustering to the data, which is not a new concept. Mueller- 

Dombois and Ellenberg (1974) discuss how classification can answer general 

questions about features such as ecosystem habitat or function. Similar species 

combinations often recur, and classification allows us to categorize those changes, 

which can help to explain them. However, in calculating diversity one needs to be 

able to get to the actual ‘numbers’ describing the scene. It is impossible to get that 

information from a thematic map unless the scene was classified to the level for 

which diversity was desired. For example, we wanted diversity information at the 

species level for our experiment. As we described previously, it was impossible to 

gather enough ground data to allow such precision. In addition, the heterogeneity of 

Goose Creek would have caused misclassification of many pixels in the final thematic 

map. We can look within each cluster to see the individual species from each sample 

point. This is not possible with the remotely sensed data.

One might argue, as we initially did, that there is a possible relationship in 

diversity measurements between ground data and the brightness values obtained 

through remote sensing. However, the definition of richness and evenness, as applied 

to ecological monitoring, make their application to remotely sensed data very 

difficult. The problem with richness is that the number of bands is set before the 

experiment begins. One might perform an experiment to see how many species are 

present in an area. The exact number is undetermined before sampling actually
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begins. With remote sensing, the number of bands is already set. Any attempt to 

correlate richness with remotely sensed data is therefore impossible because the 

analyst ‘interferes.’ We would argue that an area with ten species is more diverse 

than an area with two. We do not believe that it is really analogous, and therefore 

legitimate, to say that five bands are more diverse than two. Depending on the scene 

of interest and the equipment available, it might be better to only use two bands in a 

given experiment.

Evenness is also invalid because there is no equivalent analogy that would 

permit us to use it. We tend to think of areas with ten individuals in each of four 

species as more diverse than an area where three species have one individual and the 

other species has 36. In remotely sensed imagery the digital number does not signal 

diversity. A brightness value of 100 is not necessarily stronger than a brightness 

value of 2, except insofar as it affects the actual sensor. The combination of 

brightness values across bands is used to distinguish and classify features in a scene.

A high ecological diversity could be obtained from many scenes and yet, depending 

on the nature of the area in question, the brightness values across bands could be 

substantially different.

While richness and evenness are not plausible measures that can be calculated 

from remotely sensed data, one should discount diversity altogether. Other measures 

of diversity, such as spatial diversity are possible (Robinove 1986). These measures 

examine the edge of classes and how many other different classes they border. Areas 

with high spatial diversity, for example, border many classes while areas with lower 

spatial diversity are more homogeneous. While we did not calculate such diversity



74

with our data, they do show that features can be calculated from remotely sensed data 

that can not be estimated using ground-truthed data collected as we did in our study.

Accuracy

We must examine the accuracy of our data before addressing what ecological 

information we can obtain from the remotely sensed imagery. Our statistical results 

are unclear and almost contradictory. A substantial problem with our research was 

that the significance of each error matrix had to be tested separately. Each desired 

comparison of error matrices also had to be performed individually. This is 

analogous to performing multiple t-tests when using an ANOVA is preferable. The 

probability of committing a Type I error, rejecting the null hypothesis when it is in 

fact true, increases as the number of means being compared increases (Zar 1984).

Our research tested the significance of 10 kappa values, not including the two that 

were resampled and recalculated, and we performed 16 tests to compare various error 

matrices with each other. Zar (1984) notes that given an alpha of 0.05, the probability 

of committing a Type I error by using multiple t-tests to calculate the significance 

between 10 means is 63%. For 20 means, the probability increases to 92%. Based on 

these findings, it is more than likely that our work suffers from Type I errors. When 

we obtained the kappa of 0.123 for the error matrix produced using the complete 

dataset, k-means clustering, and only half of the available data for training, that may 

have been reflecting the true result. The results from the verification rejected the null 

hypothesis. This was the only error matrix to produce a nonsignificant result, and the 

two different kappa values for the same classification lead to highly different
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interpretations of the effectiveness of remote sensing. We will examine both 

interpretations and attempt to reconcile them.

Interpretation 1

The first interpretation is based upon the kappa values we obtained from the 

verification test we performed, which is simpler to interpret than that using the 

nonsignificant result. The results showed that every error matrix was significantly 

different from one produced by randomly assigning each pixel to a given class. Each 

pair of classifications we tested also yielded insignificant results, suggesting that no 

one classification was better than the others. The results do not imply that the 

interpretations of the images would be the same, only that one classification is not 

better than the other in terms of being able to separate the pixels into one of the three 

classes we set.

These results suggest that the mathematical formula used to classify the data 

and the effort spent ground-truthing are not important. The unsupervised 

classification yielded equally significant results when its accuracy was tested against 

the data produced using both the k-means and divisive hierarchical clustering 

techniques. We also obtained insignificant results when we compared classifications 

produced using the same amount of training data, but the accuracy standard was 

based on either the k-means or divisive hierarchical clustering technique. This 

suggests that the clustering techniques are similar enough to each other that Imagine 

can produce a thematic map that is interpretable using either procedure. The results 

do not suggest that the interpretation of each thematic map would be the same, as
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there are slight differences in the composition of each class depending upon whether 

the k-means or divisive hierarchical clustering technique was used.

The unsupervised classifications were not significantly different from the 

supervised classifications, which used two levels of training data (half and all 

available data) to form their signatures. We had expected that accuracy would 

improve as the amount of data used to create spectral signatures was increased. It is 

possible that we obtained this result because the training signatures consisted of a 

small number of pixels. If we had used 500 pixels instead of only 142 to create the 

training signatures, we might have found accuracy improves as training sample 

increases. However, obtaining extra data imposes extra costs and time in the field. 

Whether such effort is necessary is a decision left to the user of the data who must 

decide how comfortable they feel with the accuracy of the data. One should not 

assume that these results imply that ground-truthing is not necessary. At the least, 

field collection of data allows the user to know what classes produced by the 

classification represent. Wetlands such as Goose Creek are comprised of plants that 

can change dominance over a season due to the growth patterns of annuals and 

biannuals. Applying our results to the next growing season may produce a faulty 

imagery assessment. One should be very careful in interpreting imagery that has not 

been ground-truthed. However, our results do suggest that a minimum of ground- 

truthing can be performed to identify classes, which can lead to savings in time and 

money.

As we described before, the condensed dataset and the complete dataset were 

comprised of almost exactly the same sample points. It is therefore not surprising
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that we obtained similar results for analogous tests between them (comparing 

complete and half training signatures, for example). These results suggest that one 

could save time during analysis by focusing only on dominant species. In the field, 

all species would still need to be recorded for each plot, as the data could be analyzed 

to reflect species trends across the marsh. Such results could demonstrate 

characteristics such as diversity and functional changes across the marsh. If one is 

interested in rare species, such information is also critical.

Interpretation 2

The first interpretation of the data suggested that there was no difference 

between classifying the data using either the k-means or divisive hierarchical 

technique, and that the amount of effort used in classification was unimportant. 

Changing the kappa value from 0.123 to 0.382 for the one error matrix we described, 

however, changes the interpretation of the data. If we assume that the results for the 

other error matrices are correct (e.g. no other Type I errors were committed), the 

interpretation changes. Instead of our results being ‘simple,’ we now appear to have 

interactive effects between the cluster technique and the amount of data used to 

produce the training signatures. The only error matrix that is not significantly 

different from one produced randomly is the classification based on the complete 

dataset, k-means clustering, and using half of all available training data. Another 

classification performed with the same features, except for using the condensed 

dataset, is still significant. We randomly selected different samples from our dataset 

for the complete and condensed dataset accuracy assessments. The results suggest
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that the subsample of our data that we selected is itself important to the outcome of 

the results. It is impossible for us to tell which result is truly the correct one.

Comparing individual error matrices yielded even more unusual results. One 

possible interpretation of the data is that there is an interaction between clustering 

technique and effort. All classifications produced using divisive hierarchical 

clustering were significantly different from randomly produced classifications. The 

unsupervised classification, compared to the results provided by the k-means 

clustering technique, was also significantly different from a randomly produced 

classification. However, when half of the available data were used to produce a 

training signature, the accuracy actually declined, producing an insignificant result. 

Increasing the training pixels appeared to improve the accuracy of the classification. 

The results showed that the classifications produced using half of the available data 

for training signatures (k-means and divisive hierarchical clustering) are significantly 

different from each other. This result was expected. If the classification produced 

using training signatures based on k-means clustering was insignificant, and the 

classification produced using training signatures based on divisive hierarchical 

clustering was significant, then we expect these two classifications, when tested 

against each other, to be significantly different. We found this to be the case.

However, the unsupervised classification and supervised classification, which 

used training signatures based on the k-means clustering, were found not to be 

significantly different from the classification produced using half of the available data 

for a training signature. In other words, two classifications, by themselves 

significantly different from random, are not significantly different from another



classification that is itself not significantly different from random. This result is 

completely unexpected. Based on our prior discussion, one explanation is that we are 

witnessing a complication arising from a Type I error. It is possible that the 

classifications are not significant and yet we have rejected that null hypothesis for 

both individual classifications. Our kappa values ranged around 0.3. For most 

remote sensing applications, a kappa value of at least 0.6 is desired (Slocum, pers. 

comm.). As kappa increases, the thematic map produced using the classification 

becomes more reliable. Our kappa values appear to be relatively low. It is possible 

that the classifications are not significant even though we have found otherwise. It is 

also possible that we have committed a Type II error. We found that the 

classification produced using k-means clustering of the complete data set, with only 

half of available training data, was not significant. However, our condensed dataset, 

and our work in verifying the kappa value of 0.123, both yielded significant results.

It is possible that we are not rejecting the null hypothesis when, in fact, we should be.

Reconciling the Two Interpretations

We have presented two very different interpretations of the statistical meaning 

of our data without actually considering their actual consequences on our research. 

While we recognize the statistical risk we took in performing the equivalent of 

multiple t-tests, a more suitable statistical option did not present itself. Remote 

sensing is a relatively new field; accuracy assessment is even newer. The true 

statistics needed to answer questions such as those we have posed in this research are 

not yet available, and developing them is outside our ability at the moment. Our
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work highlights the need to exercise extreme caution when working with the DMSV, 

and perhaps such caution may need to be applied to other sensors used for remote 

sensing. The accuracy of remotely sensed imagery is supposed to increase as 

categories are combined into others (Congalton and Green 1999). We only worked 

with three classes in our research. Resource managers who use remote sensing to 

describe many categories need to be aware that accuracy falls off as the number of 

categories increases. Our experiment would have benefited by collecting more data 

in the field. This would have allowed us to provide stronger training signatures and 

more data for the accuracy assessment. Another potential problem we encountered 

involved our radiometric calibration. As Figure 3 shows, and as we discussed 

previously, we had to use the Elizabeth River as a dark target to correct for bias and 

gain in our data. This affected the correlation in our data. In addition, we might have 

benefited from not using the blue band, since interaction with atmospheric particles 

causes the blue band of the EMS to be scattered more than other visible or IR 

frequencies (Lillesand and Kiefer 1994). This interaction could have possibly 

affected the accuracy of our classifications by distorting the data, or expanding its 

variability, collected by the DMSV in the blue band.

As we described before, we have an uncovered an inconsistency in our data 

that can only be explained by assuming that either a Type I or Type II error exists in 

our data. Based on our subjective experience in the field, we are inclined to believe 

that a Type II error was committed, and that the classification is indeed significant.

We may have failed to reject the null hypothesis when it is in fact false. This is based 

upon our observations that the k-means and divisive hierarchical clustering
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procedures did yield classes that appear to be correct in an ecological sense. In 

addition, as we shall discuss below, the thematic maps produced from the remotely 

sensed imagery appear to have a structure that is different from one we would expect 

to be produced at random. In addition, there are differences in the user’s and 

producer’s accuracies that exist that may highlight where the confusion in the error 

matrices is being derived.

Interpretation o f User’s and Producer’s Accuracy

Before we address how the remotely sensed imagery can contribute to the 

understanding of the ecology in Goose Creek, we need to be aware of the problems 

we will have in reading the thematic maps produced by the classification. We have 

already addressed the issues of significance affecting each classification. While 

kappa reveals whether or not a classification is significant and how it compares to 

other classifications, it does not reveal information about the classes themselves. 

User’s and producer’s accuracy serve to fill this void. The producer’s accuracy 

measures how many pixels are left out of a correct classification (Congalton 1991). 

The class as shown on a thematic map may be much larger because other pixels from 

other classes are being incorrectly identified. From the perspective of the producer, 

high accuracy is achieved if the representation of that class still includes all true 

members of the class. User’s accuracy approaches the thematic map from a different 

perspective. A user, working from the map provided by a producer, is more 

interested in how many pixels are included in a given class. If they point to a
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particular pixel on the map, a user needs to know how certain they can be that it truly 

is a member of the class the map says it is.

While we did not perform a detailed statistical analysis of the user’s and 

producer’s accuracy, we believe our two examples (Tables 13 and 14) show that the 

user’s and producer’s accuracy can vary greatly. For example, in examining the k- 

means clustered data we see that class 1, which we identified as the S. alterniflora /A. 

cannibina composite, has a producer’s accuracy of 30% but a user’s accuracy of 70%. 

From the perspective of an analyst making the map, the accuracy is very low because 

points belonging to this class are being misclassified as other classes. However, from 

the perspective of a manager using the map, the accuracy is very high because they 

can be reasonably certain that if they use the map in the field, 70% of the areas 

identified as the S. alterniflora / A. cannibina composite are truly those areas.

If one class has a high user’s accuracy but low producer’s accuracy, it seems 

reasonable that another class must compensate. Points misclassified into other 

categories will appear as other classes on a thematic map, affecting the user’s 

accuracy. The exact nature of the effect depends on how points were classified for 

each class and the number of classes. In our case, class 3, the Scirpus spp. dominated 

class, we see that the user’s accuracy is much lower, 28%, while the producer’s 

accuracy is 65%. Class 2, which is dominated by P. australis, has user’s and 

producer’s accuracies which are very similar, 63% and 73% respectively. Examining 

the error matrix suggests that the sample data for class 1 is being evenly misclassified 

into class 2 and 3. In fact, more pixels that truly belong to class 1 are being 

misclassified into other categories than are correctly classified. Out of the 63 sample
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points collected that were included in class 1, only 19 were correctly classified as 

class 1. Twenty-four were classified as class 2, and 20 were classified as class 3.

This might suggest that we made an error and that we should really be referring to the 

pixels in class 1 as class 2, where most of the pixels were correctly identified. The 

reason we have not done so is because the vast majority of sample points in class 2 

were correctly identified as class 2. In actually creating the thematic map, we sought 

to maximize the producer’s accuracy. Class 1 would still have had a low producer’s 

accuracy if we had made this change, while serving to also dramatically lower the 

classification of P. australis. After creating the map, we use user’s accuracy to 

understand how the map should be interpreted. In this case, we can be reasonably 

certain of class 1 and 2, but must be careful of what class 3 shows on the map.

Understanding why the classes are misclassified depends less on the actual 

ground cover values we collected as it does on the distribution of the brightness 

values and how the software performs the classification. Table 2 shows the mean 

values and standard deviation for the ground cover data we collected. Class 1 and 3 

appear subjectively to resemble each other more closely than class 1 and class 2. Yet, 

while class 1 has a low user’s accuracy and misclassified almost a third of its pixels 

into class 3, fewer pixels were misclassified into class 1 from class 3. It is possible 

that the shape of the cloud described by the brightness values for class 1 is much 

broader than that of class 2 and 3, which might explain the variation we are 

observing.

This same discussion also applies to the classification obtained from using 

divisive hierarchical clustering, except that the differences between the user’s and
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producer’s accuracy appear to be slimmer than they were for the classification 

derived from k-means clustering. Class 1, the composite of Scirpus spp., S. 

cynosuroides, A. cannibina, and Typha spp has the lowest user’s accuracy. It appears 

that class 2, largely comprised of S. alterniflora and No Cover, is misclassified into 

the other two classes relatively evenly. Class 3, P. australis, is heavily misclassified 

into class 1. Again, the distribution of the brightness values across the four bands and 

how the computer performed the classification account for the accuracy. While we 

did not observe it, we still suspect that adding extra data to the training signatures 

may improve accuracy. However, the cost required to do so may be prohibitive, 

based upon our findings that doubling the number of sample points appeared to have 

no effect.

Ecological Interpretation o f Remotely Sensed Data

Despite the problems we have described with our data, we can still cautiously 

attempt to interpret our results. Remote sensing has the potential to identify the 

distribution of vegetation within a given scene. One could accomplish the same task 

by examining our groundcover data for specific areas within the scene. However, 

compiling data increases the risk that dissimilar areas will be pooled together. In 

other words, we may be putting together samples that are not related to each other. 

Remote sensing separates each pixel into a given class so that the risk is lessened, as 

long as one is certain that the classes being used are distinct. As we have described, 

the use of only three categories to separate Goose Creek vegetation may not have 

been the most appropriate choice. However, we believe that we can still draw some
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general conclusions about patterns in the wetland, even with the inaccuracies we have 

in our data.

The most obvious trend is that P. australis, which appeared to separate out as 

a separate class using both the k-means and divisive hierarchical clustering tools, 

dominates the center of the marsh. The other classes are all composites of other 

species. It would be very difficult to discern that P. australis has had such an 

influence on Goose Creek with traditional methods, such as those used in our study, 

other than outright surveying. For one species to dominate a marsh in this way, 

where conditions might otherwise suggest a more diverse habitat, is unusual. It 

supports the view of P. australis as an invasive species that is highly adapted to 

outcompeting other species (Marks and Randall 1994). The shape of the distribution 

appears to be approximately the same throughout each of the classifications we have 

produced. The results from the imagery do not explain why P. australis has the 

observed distribution. P. australis was not one of the original species planted in the 

Goose Creek wetland when it was created (Barnard et al. 1997). It is unknown what 

conditions have emerged over the twenty years since the wetland was created that 

have allowed P. australis to invade and thrive.

Our work only shows a rough outline of the distribution of P. australis when 

it is the dominant vegetation in a given area of the marsh. The clear signal that we 

observed with our research, however, suggests that remote sensing might be useful 

for monitoring P. australis invasions over time. If one assumes that the brightness 

values describing P. australis will not change over time (i.e. the signal this year is the 

same as the signal that would be obtained next year), one could use our data to train
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imagery collected during subsequent years, with all other vegetation falling into the 

‘Not P. australis’ class. P. australis is a hardy species. If the data is collected at 

approximately the same time and under similar conditions, it is unlikely that another 

species would have replaced P. australis in Goose Creek. One must still exercise 

caution. The marsh is changing over time. We do not know if our observations show 

P. australis invading into further areas of Goose Creek, or declining from some 

greater coverage it may have had in past years. Collecting time series data, or 

examining past vegetation studies, could help resolve this question. It is possible that 

conditions of water salinity or soil stability are restricting the movement of P. 

australis throughout Goose Creek, or aiding its invasion. Further research is required 

in order to answer these questions. Nonetheless, the imagery is useful in showing the 

extent of invasion by P. australis in the Goose Creek wetland. As the only clear 

dominant in any given class, it is apparent that this species is diminishing the value of 

Goose Creek as a mitigation bank. While P. australis is considered a native part of 

European wetlands, it is regarded along the eastern shore of the United States as an 

exotic that decreases the value of wetlands it invades (Marks and Randall 1994). As 

such, its presence in Goose Creek lowers the value of the system and may make it 

unusable as a mitigation bank.

As more classes were created, the signal from P. australis appeared to get lost 

because it is incorporated into other classes as a component. In other words, when 

classes are combined, the signal due to P. australis appeared to become clearer. For a 

manager who is only interested in following the spread of Phragmites, our work 

appears to suggest that fewer classes might be more successful at monitoring the
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The ecology of P. australis as an invasive species indicates that it is going to be 

found in homogenous patches such as those found in our thematic maps. As a result, 

a classification consisting of the classes ‘P. australis ’ and ‘not P. australis’ might 

produce needed results for monitoring this species. One potential problem for 

monitoring P. australis using only remote sensing is that we do not know the ‘critical 

mass’ at which the plant becomes visible to the sensor. For someone interested in 

monitoring for the first sign of the species, remote sensing may not be an effective 

tool. However, it could be useful for monitoring widespread populations to see if 

eradication measures are effective over time.

The other classes, due to their composite nature, are more difficult to interpret. 

We noted previously that the accuracy of the unsupervised classifications was not 

significantly different from the supervised classifications when tested against the data 

clustered using both the k-means and divisive hierarchical clustering. The 

unsupervised image will therefore yield two slightly different interpretations, as the 

classes derived from k-means and divisive hierarchical clustering are different, even 

though the thematic map produced are the same.

K-Means

While the accuracy of the unsupervised classification was not significantly 

different from the supervised classifications we produced, there does appear to be a 

difference in the interpretation of the images. The unsupervised image (Figure 6) 

appears to suggest that the S. alterniflora / A. cannibina mix (Class 1) surrounds P.
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class (Class 3), on the other hand, appears to surround P. australis on the southern 

side of the marsh. This trend is not apparent in the supervised classifications.

Figures 7-10 show the thematic maps produced using the k-means clustering 

technique. Class 1 and 3 appear to be more closely intertwined, though they still 

appear in discrete patches. Based on our previous discussion of the user’s and 

producer’s accuracy, Class 3 is more often than not, not what we think it is. In other 

words, in most cases (more than 50%) Class 3 has been misclassified because other 

pixels from classes 1 and 2 are being included into it. Based on the distribution of P. 

australis, we hypothesize that the error is not random and that pixels are being 

misclassified based on the actual distributions of the classes in the field. In other 

words, pixels at the interface between Class 1 and 3 on the image are probably Class 

1 and not Class 2. Pixels at the interface between class 2 and 3 that are classified as 

Class 3 are probably P. australis.

This assumption is based on what we know about the ecology of the system. 

P. australis clearly appears clumped in the middle of the marsh. Goose Creek 

contains species adapted for conditions ranging from saltwater to brackish. It would 

appear that P. australis is not able to compete with other species in other parts of the 

marsh, or it has not yet had time to invade the rest of the marsh. While it is possible 

and does occur in patches of Goose Creek, we believe that a pixel reflecting Class 3 

on the northerly and southerly edges of Goose Creek is more likely going to be 

represent S. alterniflora / A. cannibina than P. australis, because the ecology of these 

different classes seems to suggest that it is more likely. Salinity and other
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measurements from the ground could be used to confirm this new hypothesis. In 

either case, it is more reasonable to assume that the low user’s accuracy of Class 3, if 

only for the one k-means clustered error matrix that we assessed (the others are 

available in the Appendix), is caused by variability in brightness values between the 

interface of two classes as one class became another, than it is to assume that a stray 

patch of another class was present.

As presented in Figures 7-10, the thematic maps produced from the k-mean 

clustered training signatures, do not appear to immediately reveal obvious features 

about the Goose Creek marsh. Pixels belonging to the same class are clumped 

together, which is not unexpected. The classifications produced using half or all 

available training data are similar but do have some differences (Figures 7-14), as do 

classifications performed as verification of the original results when the low kappa 

value was first produced from the data (Figures 15 and 16). Imagery produced using 

only half of all available training data appears to show Class 1 (S. alterniflora /  A. 

cannibina) running throughout more of Goose Creek in small patches. It is possible 

that spatial diversity tests, such as those suggested by Robinove (1986), might reveal 

a pattern to our subjective observations and suggest further ways in which remotely 

sensed data can be analyzed. The most obvious ecological feature is that Classes 1 

and 3 are not as homogeneous as Class 2. The boundaries between S. alterniflora, A. 

cannibina, and Scirpus are not as precisely defined as the Phragmites boundary. We 

noted previously the high variability we observed for classes 1 and 3. This may be 

expressing itself through the amalgam of pixels we are observing in the imagery. In 

our experience on the ground, for example, A. cannibina was found most prominently



90

in the middle of the marsh at the interface between P. australis, S. alterniflora, and 

Scirpus. We did not believe it to be a dominant species in the northerly or southerly 

region of Goose Creek. However, as we only had three classes available A. cannibina 

had to be included into a larger cluster . Our cluster data noted that A. cannibina was 

most commonly found with S. alterniflora, but it still appeared in Class 3 with 

Scirpus spp. As a result, we can not draw definitive conclusions about this species 

from the thematic map. It would be equally difficult to draw conclusions about other 

species

The classifications produced for verification purposes relied on a different 

subset of the original data for training. As a result, the thematic maps do not exactly 

resemble those of their counterparts produced the first time. However, they are very 

similar. The most notable difference appears to be that a patch of P. australis in the 

northerly side of Goose Creek has been reclassified as S. alterniflora / A. cannibina 

(Class 1). Other differences appear to be minor. Despite this, our work showed the 

first image to be not significantly different from random, while the image produced 

for the verification is significant. This serves as visual demonstration of our belief 

that we have either Type I or Type II errors in our data, unless our maps border at the 

significant/not significant level. Given our low Kappa values, such a conclusion is 

not out of the question.

Divisive Hierarchical

The classifications produced using the divisive hierarchical clustering 

algorithm are similar to those produced using the k-means but there are some
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differences suggesting a slightly different ecological interpretation. The differences 

center not on the differences between individual thematic maps produced from the 

divisive hierarchical clustered dataset. Instead, the focus is on the differences in 

thematic maps treated the same except for how the data were clustered. P. australis, 

class 3, appears as a distinct, very solid, class located principally in the center of the 

marsh in each thematic map (Figures 11-14). This feature is the same as that 

observed in the k-mean clustered data thematic maps. In addition, there appear to be 

only minor differences between thematic maps produced using signatures 

incorporating half or all of all available data. The maps produced using the complete 

dataset, and the condensed data, also appear very similar. The minor differences 

noted most likely can be attributed to random variations derived from which subset of 

the data was used.

The general feature that appears to run through each of the divisive 

hierarchical clustered data thematic maps is that Class 1 (Scirpus spp., S. 

cynosuroides, A. cannibina, and Typha) is separated from P. australis on the 

northerly side of Goose Creek by a buffer zone created by Class 2 (S. alterniflora, No 

Cover, A. cannibina less prominent), but the reverse is true on the southerly side of 

the marsh. In the k-means clustered data, the buffer zone is less obvious. Again, we 

must be wary of the user’s accuracy, which is low for Class 1. It appears that pixels 

from class 2 and class 3 are being included into class 1 with roughly equal frequency. 

As we stated before for the k-means data, we believe that misclassifications result 

from the edge effect created at the interface of classes, rather than a random 

misclassification.
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The reason for the difference in the images produced using the divisive 

hierarchical and k-means clustering technique is difficult to discern. The central 

difference between k-means and divisive hierarchical clustered data is that the 

Scirpus spp. dominated class in the divisive hierarchical clustered data appears to be 

more inclusive, also being dominated by S. cynosuroides, A. cannibina (more 

dominantly than in k-means Class 3), and Typha spp. The P. australis class appears 

to have the same general shape throughout all of the thematic maps, so one might 

hypothesize that the distribution of rare species throughout the marsh is enough to 

cause the change. However, the condensed dataset thematic maps we produced have 

very similar results to the thematic maps produced using the complete dataset. It is 

also possible that the subset of the data used for accuracy assessment and signature 

training affected the classifications, but the reverification tests we performed on the 

k-mean clustered data produced similar results to the original data (kappa values 

notwithstanding).

Based on the elimination of what it is not, the only option we see is that subtle 

differences in the clusters led to the changes. It is difficult to decipher our data 

simply because Goose Creek is very heterogenous. Aside from P. australis, the 

clusters are composed of a large number of species with similar attributes. The 

variance within each cluster for the species that comprise it is large (Table 2). We 

believe it likely that we have uncovered, in a sense, different homogeneous patches of 

heterogeneous species. Further work within each of these patches could yield 

answers as to whether there is an actual difference in vegetation, and if so what is the 

ecological basis for the difference. Based on this, and also on the kappa values we
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obtained from our data, we are extremely hesitant to draw definitive conclusions from 

our data regarding the distribution of species within the marsh. If one is interested in 

simply monitoring the invasion of P. australis, our data should be classified to only 

two classes: ‘P. australis’ and ‘not P. australis.’ We believe our data would be 

suitable for this purpose. For others interested in ecological surveys, our data need to 

be broken into further classes, which would require additional fieldwork if it was to 

be analyzed using remote sensing techniques.



CONCLUSIONS

We have attempted in our research to explore the usefulness of the DMSV as 

a tool for wetlands research by comparing it to ground-based, ‘traditional,’ 

techniques. As the demand for resources grows along the coastline, the need to 

monitor, study, and manage those natural resources becomes more important.

Remote sensing has shown promise as an additional tool in the scientist’s and 

manager’s arsenal. We had hoped to determine whether one technique was better 

than the other for assessing the ecology of wetlands, and in particular Goose Creek, 

the mitigation bank that we studied. We were not able to answer this question 

conclusively. Instead, we found that remote sensing holds promise as a tool for 

monitoring and assessment. While it can provide additional information, the 

traditional techniques should still be used as a baseline for any wetland monitoring. 

While some studies (e.g. Hinson et al. 1994) have shown remote sensing to be a good 

tool for classifying wetlands, our work suggests that extreme caution is still needed 

and that there are many statistical questions which need to be answered before remote 

sensing should truly become a common tool.

One important result we obtained is that it is not possible to obtain some of 

the most common ecological measures from remotely sensed data. We had initially 

believed that it was possible to calculate diversity, such as Simpson’s index, from 

remotely sensed data. We were interested in knowing whether a correlation existed 

between the diversity calculated from data collected on the ground and the remotely

94
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sensed imagery. We found that it was not possible to calculate diversity as applied to 

traditional techniques. However, there may be statistics that can be calculated using 

the imagery that can not be obtained from ground data, such as spatial diversity.

Such measures can provide additional information about an area of interest, perhaps 

leading to further ecological understanding by providing information on how different 

features of the environment interact. For example, calculating spatial diversity could 

have yielded information about the interface between P. australis and S. alterniflora 

patches in Goose Creek. We did not explore other correlations that might exist. For 

example, PCA breaks apart the variance in the ecological data. It is possible that this 

variance could be correlated to the variance in the brightness values obtained from the 

remotely sensed imagery. We hypothesize that if classes are composed of a given 

number of species, then there will be a relationship between the variation of that 

given class and the variation in the brightness values for that class. Such a 

hypothesis, if supported by future research, could be used to minimize ground- 

truthing in the future.

The composition of our classes appears to be highly variable. With only three 

classes available for analysis, assessing a heterogeneous marsh such as Goose Creek 

proved to be very difficult. The choice of clustering technique does not appear to 

affect the accuracy of the classified maps. However, differences did exist, depending 

on whether k-means or divisive hierarchical clustering was applied. The differences 

appeared to be minor and did not change our view of the processes occurring in 

Goose Creek. Attempting to condense the dataset by focusing on dominant species 

had no effect on the final outcome, suggesting that in the future we might be able to
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ignore rare species in remote sensing research. Of course, the corollary is that remote 

sensing may not be an effective tool for studying rare species.

It was interesting that P. australis emerged as a lone dominant in both 

clustering techniques. The P. australis species appeared to demonstrate its traits as 

an exotic very well in our marsh. Remote sensing appears to offer potential for 

monitoring future invasions of P. australis by taking advantage of the species’ ability 

to outcompete others. The large variability we encountered in the other classes was 

not surprising, but does make ecological assessment difficult beyond broad 

generalizations about Goose Creek’s structure.

Our research focused largely on the accuracy of remote sensing. A key 

finding was that accuracy of the thematic maps we produced did not appear to change 

depending on how much effort was put into obtaining data for training signatures. 

Unsupervised classifications were not significantly different from classifications 

produced with a season’s worth of data. It is important to note that we would not 

have known what the classes were if the fieldwork component had not been 

completed. However, if the composition of the classes in Goose Creek remains 

constant, the ecosystem could be monitored using our data in the future. The 

temporal aspect of accuracy was not explored in our research but remains open as a 

future question for exploration. While our research showed supervised classification 

is not necessary, we do not suggest that this finding should be applied to other 

studies. Our classifications all produced low kappa values. While the maps we 

produced were significant, we believe higher kappa scores could have been achieved 

had we obtained enough data to allow more classes to be obtained with our data.
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While accuracy is supposed to increase as the number of classes decreases (Congalton 

and Green 1998), we believe the variability caused by combining classes together 

may have actually caused a decline in the overall accuracy. However, if classes had 

been combined to provide the P. australis /  not P. australis distinction, the 

homogeneity of that species might have improved overall accuracy.

While it appears that there was no difference between unsupervised and 

supervised classifications, our work probably suffers from Type I and Type II errors 

because, to our knowledge, the statistics to properly analyze our work do not exist.

At best, we recommend extreme caution in using our work. We have greater trust in 

our ground data than in the thematic maps we produced. We recommend using the 

maps only as an introduction to Goose Creek. Further work remains to be done 

before we would trust remote sensing to be used as a tool for monitoring the 

mitigation bank, but it does hold great promise. Remote sensing has been shown to 

be extremely versatile in a number of other situations (Lillesand and Kiefer 1994).

We do not see anything so extraordinary about wetlands that they can not also be 

studied with this tool. However, the heterogeneity of wetland ecosystems and the 

needs of resource managers do pose unique challenges that require further statistical 

refinement before remote sensing can be fully utilized.



Table 1. Mean of All Species Vegetative Cover for K-Means and Divisive
Hierarchical Clustering

Species
KM- 

Mean 1
KM- 

Mean - 2
KM- 

Mean - 3
DH- 

Mean 1
DH - 

Mean 2
DH- 

Mean 3
No Cover 30.13 10.53 18.43 16.45 35.68 11.52
Spartina alterniflora 32.52 1.50 11.83 12.22 40.89 1.96
Spartina cynosuroides 4.10 0.06 5.83 7.18 2.96 0.08
Spartina patens 0.00 0.04 0.00 0.00 0.00 0.04
Phragmites australis 5.90 81.32 1.13 2.09 3.76 77.98
Scirpus spp. 4.92 1.87 49.88 34.00 3.68 1.79
Amaranthus cannibina 11.60 1.66 5.83 14.55 7.69 1.75
Atriplex patula 1.13 0.23 0.30 1.25 0.76 0.24
Pluchea purperescens 0.77 0.28 0.13 0.13 0.61 0.56
Typha spp. 3.73 1.19 2.48 6.03 1.26 1.52
Distichlis spicata 3.09 1.00 2.88 4.78 1.08 1.62
Samolus parviflorus 0.52 0.02 0.00 0.03 0.14 0.42
Lythrum linaere 0.32 0.04 0.50 0.45 0.09 0.21
Juncus spp. 0.00 0.00 0.45 0.27 0.00 0.00
Solidagospp. 0.00 0.02 0.00 0.00 0.00 0.02
Aster spp. 1.13 0.25 0.38 0.55 1.27 0.28
Iva frutescens 0.16 0.00 0.00 0.03 0.17 0.02

KM = K-Means clustered data
DH = Divisive Hierarchical clustered data



Table 2. Mean and Standard Deviation for Vegetative Cover for K-Means and
Divisive Hierarchical Clustering

k-means data KM Mean 1 Std. Dev. 1 KM Mean 2 Std. Dev. 2 KM Mean 3 Std. Dev. 3
No Cover 30.13 21.85 10.53 9.03 18.43 9.39
Spartina alterniflora 32.52 24.52 1.50 3.85 11.83 12.38
Spartina cynosuroides 4.10 11.80 0.06 0.33 5.83 10.21
Spartina patens 0.00 0.00 0.04 0.46 0.00 0.00
Phragmites australis 5.90 10.95 81.32 16.14 1.13 4.31
Scirpus spp. 4.92 7.68 1.87 3.15 49.88 20.98
Amaranthus cannibina 11.60 16.14 1.66 3.85 5.83 10.10
Atriplex patula 1.13 4.12 0.23 1.25 0.30 1.34
Pluchea purperescens 0.77 4.16 0.28 0.94 0.13 0.40
Typha spp. 3.73 14.12 1.19 3.33 2.48 6.95
Distichlis spicata 3.09 12.32 1.00 4.54 2.88 12.02
Samolus parviflorus 0.52 4.51 0.02 0.18 0.00 0.00
Lythrum linaere 0.32 2.01 0.04 0.33 0.50 3.16
Juncus spp. 0.00 0.00 0.00 0.00 0.45 2.85
Solidago spp. 0.00 0.00 0.02 0.18 0.00 0.00
Aster spp. 1.13 2.55 0.25 0.86 0.38 2.37
Iva frutescens 0.16 1.37 0.00 0.00 0.00 0.00

Divisive Hierarchical DH Mean 1 Std. Dev. 1 DH Mean 2 Std. Dev. 2 DH Mean 3 Std. Dev. 3
No Cover 16.45 8.85 35.68 22.87 11.52 9.96
Spartina alterniflora 12.22 11.07 40.89 23.72 1.96 4.77
Spartina cynosuroides 7.18 13.70 2.96 9.67 0.08 0.41
Spartina patens 0.00 0.00 0.00 0.00 0.04 0.45
Phragmites australis 2.09 5.65 3.76 7.71 77.98 19.79
Scirpus spp. 34.00 25.83 3.68 7.02 1.79 3.06
Amaranthus cannibina 14.55 19.48 7.69 10.61 1.75 3.91
Atriplex patula 1.25 4.82 0.76 2.72 0.24 1.23
Pluchea purperescens 0.13 0.46 0.61 3.30 0.56 3.23
Typha spp. 6.03 18.98 1.26 4.31 1.52 3.96
Distichlis spicata 4.78 16.79 1.08 5.88 1.62 6.33
Samolus parviflorus 0.03 0.24 0.14 1.37 0.42 4.37
Lythrum linaere 0.45 2.57 0.09 0.84 0.21 1.81
Juncus spp. 0.27 2.20 0.00 0.00 0.00 0.00
Solidago spp. 0.00 0.00 0.00 0.00 0.02 0.18
Aster spp. 0.55 2.33 1.27 2.74 0.28 0.85
Iva frutescens 0.03 0.24 0.17 1.58 0.02 0.27



Table 3. Complete and Condensed Cover Comparison for K-Means Data

K-mean Clustering- 
Percent Cover

Mean 1 
Entire

Mean 1 
Condensed

Mean 2 
Entire

Mean 2 
Condensed

Mean 3 
Entire

Mean 3 
Condensed

No Cover 30.13 30.08 10.53 10.75 18.43 18.43
Spartina alterniflora 32.52 32.78 1.50 1.49 11.83 11.83
Spartina cynosuroides 4.10 4.14 0.06 0.06 5.83 5.83
Phragmites australis 5.90 5.63 81.32 80.97 1.13 1.13
Scirpus spp. 4.92 4.94 1.87 1.87 49.88 49.88
Amaranthus cannibina 11.60 11.66 1.66 1.68 5.83 5.83
Typha spp. 3.73 3.73 1.19 1.21 2.48 2.48
Aster spp. 1.13 1.13 0.25 0.25 0.38 0.38



Table 4. Complete and Condensed Cover Comparison for Divisive Hierarchical Data

Divisive Hierarchical -  
Percent Cover

Mean 1 
Entire

Mean 1 
Condensed

Mean 2 
Entire

Mean 2 
Condensed

Mean 3 
Entire

Mean 3 
Condensed

No Cover 16.45 16.45 35.68 35.68 11.52 11.52
Spartina alterniflora 12.22 12.22 40.89 40.89 1.96 1.96
Spartina cynosuroides 7.18 7.18 2.96 2.96 0.08 0.08
Phragmites australis 2.09 2.09 3.76 3.76 77.98 77.98
Scirpus spp. 34.00 34.00 3.68 3.68 1.79 1.79
Amaranthus cannibina 14.55 14.55 7.69 7.69 1.75 1.75
Typha spp. 6.03 6.03 1.26 1.26 1.52 1.52
Aster spp. 0.55 0.55 1.27 1.27 0.28 0.28



Table 5. Producing Five Clusters with K-means

K-mean -  
Percent Cover Mean -1 Mean - 2 Mean - 3 Mean - 4 Mean - 5
No Cover 9.41 44.25 21.26 13.75 18.43
Spartina alterniflora 0.95 14.71 44.00 3.75 11.83
Spartina cynosuroides 0.04 2.62 4.99 0.00 5.83
Spartina patens 0.05 0.00 0.00 0.00 0.00
Phragmites australis 83.55 17.21 2.13 2.50 1.13
Scirpus spp. 1.87 2.42 6.48 2.00 49.88
Amaranthus cannibina 1.50 2.88 17.36 0.75 5.83
Atriplex patula 0.14 0.83 1.45 0.00 0.30
Pluchea purperescens 0.26 1.60 0.23 0.00 0.13
Typha spp. 1.22 2.88 0.26 76.25 2.48
Distichlis spicata 0.73 7.81 0.26 0.00 2.88
Samolus parviflorus 0.02 1.27 0.00 0.00 0.00
Lythrum linaere 0.05 0.77 0.00 0.00 0.50
Juncus spp. 0.00 0.00 0.00 0.00 0.45
Solidago spp. 0.02 0.00 0.00 0.00 0.00
Aster spp. 0.21 0.75 1.39 0.50 0.38
Iva frutescens 0.00 0.06 0.19 0.50 0.00



Table 6. Producing 5 Clusters with Divisive Hierarchical Clustering

Divisive Hierarchical -  
Percent Cover Mean -1 Mean - 2 Mean - 3 Mean - 4 Mean - 5
No Cover 16.62 20.87 11.52 57.89 13.75
Spartina alterniflora 12.76 52.69 1.96 23.19 3.75
Spartina cynosuroides 7.63 3.28 0.08 2.47 0.00
Spartina patens 0.00 0.00 0.04 0.00 0.00
Phragmites australis 2.06 3.56 77.98 4.06 2.50
Scirpus spp. 36.03 4.19 1.79 2.92 2.00
Amaranthus cannibina 15.43 10.44 1.75 3.56 0.75
Atriplex patula 1.33 1.20 0.24 0.08 0.00
Pluchea purperescens 0.14 0.89 0.56 0.19 0.00
Typha spp. 1.57 0.65 1.52 2.17 76.25
Distichlis spicata 5.08 0.37 1.62 2.14 0.00
Samolus parviflorus 0.03 0.00 0.42 0.36 0.00
Lythrum linaere 0.48 0.00 0.21 0.22 0.00
Juncus spp. 0.29 0.00 0.00 0.00 0.00
Solidago spp. 0.00 0.00 0.02 0.00 0.00
Aster spp. 0.56 1.61 0.28 0.75 0.50
Iva frutescens 0.00 0.28 0.02 0.00 0.50



Table 7. Importance Value Results for K-Means and Divisive Hierarchical Data
Three Categories

K-means Cluster 1 Cluster 2 Cluster 3
Spartina alterniflora 71.47 10.26 33.70
Spartina cynosuroides 13.42 1.25 24.74
Spartina patens 0.00 0.34 0.00
Phragmites australis 17.83 125.49 4.58
Scirpus spp. 20.08 23.99 93.14
Amaranthus cannibina 34.21 13.69 19.94
Atriplex patula 6.66 1.74 1.97
Pluchea purperescens 4.76 5.05 3.35
Typha spp. 9.91 9.32 7.83
Distichlis spicata 7.39 3.78 6.72
Samolus parviflorus 1.66 0.31 0.00
Lythrum linaere 1.60 0.64 1.41
Juncus spp. 0.00 0.00 1.35
Solidago spp. 0.00 0.31 0.00
Aster spp. 10.08 3.83 1.26
Iva frutescens 0.91 0.00 0.00

Divisive Hierarchical Cluster 1 Cluster 2 Cluster 3
Spartina alterniflora 33.86 93.45 14.90
Spartina cynosuroides 24.40 10.64 1.07
Spartina patens 0.00 0.00 0.04
Phragmites australis 7.20 14.73 120.81
Scirpus spp. 66.75 17.10 19.58
Amaranthus cannibina 33.23 29.75 11.74
Atriplex patula 5.35 6.16 2.22
Pluchea purperescens 2.72 5.22 6.49
Typha spp. 11.49 5.51 10.49
Distichlis spicata 8.71 3.81 3.78
Samolus parviflorus 0.46 0.58 0.48
Lythrum linaere 1.82 0.49 0.24
Juncus spp. 0.75 0.00 0.00
Solidago spp. 0.00 0.00 0.51
Aster spp. 2.80 11.93 7.14
Iva frutescens 0.46 0.61 0.51



Table 8. Importance Value Results for K-Means and Divisive Hierarchical Data
Five Categories

K-means Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Spartina alterniflora 8.87 43.86 86.07 19.73 33.70
Spartina cynosuroides 0.69 10.69 15.35 0.00 24.74
Spartina patens 0.38 0.00 0.00 0.00 0.00
Phragmites australis 128.05 47.34 7.80 18.28 4.58
Scirpus spp. 25.19 12.84 24.31 17.70 93.14
Amaranthus cannibina 13.06 19.17 42.83 8.56 19.94
Atriplex patula 1.13 5.98 7.73 0.00 1.97
Pluchea purperescens 5.18 7.86 3.04 0.00 3.35
Typha spp. 9.49 13.67 0.72 119.18 7.83
Distichlis spicata 3.08 20.49 1.11 0.00 6.72
Samolus parviflorus 0.35 4.27 0.00 0.00 0.00
Lythrum linaere 0.70 3.88 0.00 0.00 1.41
Juncus spp. 0.00 0.00 0.00 0.00 1.35
Solidago spp. 0.35 0.00 0.00 0.00 0.00
Aster spp. 3.49 9.34 10.39 8.27 1.26
Iva frutescens 0.00 0.60 0.64 8.27 0.00

Divisive Hierarchical Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Spartina alterniflora 34.76 97.25 10.79 83.65 19.73
Spartina cynosuroides 25.90 10.96 1.39 10.63 0.00
Spartina patens 0.00 0.00 0.30 0.00 0.00
Phragmites australis 6.55 12.45 120.85 20.11 18.28
Scirpus spp. 69.90 16.65 22.28 18.35 17.70
Amaranthus cannibina 34.79 31.95 13.93 24.63 8.56
Atriplex patula 5.67 7.77 1.83 3.06 0.00
Pluchea purperescens 2.89 5.67 5.31 4.27 0.00
Typha spp. 4.60 1.96 10.28 12.76 119.18
Distichlis spicata 9.26 1.60 5.21 8.89 0.00
Samolus parviflorus 0.49 0.00 1.25 1.81 0.00
Lythrum linaere 1.93 0.00 1.28 1.48 0.00
Juncus spp. 0.80 0.00 0.00 0.00 0.00
Solidago spp. 0.00 0.00 0.28 0.00 0.00
Aster spp. 2.48 12.83 4.73 10.35 8.27
Iva frutescens 0.00 0.92 0.29 0.00 8.27



Table 9. Accuracy Assessment- Divisive Hierarchical Classification, All Available 
Training Data, Complete Dataset

Divisive Hierarchical Classification, All Available Training 
Data, Complete Dataset

Class 1 Class 2 Class 3 Row  Totals
C lass 1 23 12 19 54
Class 2 5 19 7 31
Class 3 5 14 37 56
Column Totals 33 45 63 141

Kappa 0.3365209

Theta One 0.5602837
Theta Two 0.3372567
Theta Three 0.3947488
Theta Four 0.5173484

Kappa Var. 0.0040608
Z (one matrix) 5.2808497



Table 10. Results of the Z-test for Each of the Error Matrices Computed

Kappa Kappa Variance z
Unsupervised, k-means, 
complete 0.273 0.005 4.063
Unsupervised, Div. Hier., 
complete 0.294 0.004 4.449

Comkall 0.294 0.004 4.532
Comkhalf 0.123 0.004 1.897
Comdvhrall 0.337 0.004 5.281
Comdvhrhalf 0.312 0.004 4.926

Ecodivallsup 0.291 0.004 4.552
Ecodivhalfsup 0.270 0.004 4.136
Ecokallsup 0.303 0.004 4.701
Ecokhalfsup 0.278 0.004 4.315

Com = Dataset clustered using all species
Eco = Dataset clustered using only dominant species
K = k-means clustered data
Dvhr = divisive hierarchical clustered data
All = All available training data used to create signatures
Half = Half of available training data used to create signatures

Table 11. Verification of Results

VERIFICATION Kappa Kappa Var z
Comkall 0.338 0.004 5.321
Comkhalf 0.382 0.004 6.135



Table 12. Error Matrices Compared Against Each Other

Z-score Alternate Z-Score
Unsup., k-means v. Unsup. 
Dvhr 0.228
Unsup., k-mean v. Comkall 0.227
Unsup., k-mean v. Comkhalf 1.608 1.195
Unsup., dvhr v. Comdvhrall 0.461
Unsup., dvhr v. Comdvhrhalf 0.194

Comkall v. Comkhalf 1.867 0.981
Comdvhrhall v. Comdvhrhalf 0.274

Ecodivallsup v. Ecodivhalfsup 0.228
Ecokallsup v. Ecokhalfsup 0.272

Comkall v. Comdvhrall 0.470
Comkhalf v. Comdvhrhalf 2.089 0.789

Ecodivallsup v. Ecokallsup 0.125
Ecodivhalfsup v. Ecokhalfsup 0.082

Com = Dataset clustered using all species
Eco = Dataset clustered using only dominant species
K = k-means clustered data
Dvhr = divisive hierarchical clustered data
All = All available training data used to create signatures
Half = Half of available training data used to create signatures



Table 13. User’s and Producer’s Accuracy Estimates -  K-Means

K-Means Class 1 Class 2 Class 3
Row
Totals

Class 1 19 3 5 27
Class 2 24 43 2 69
Class 3 20 13 13 46
Column Totals 63 59 20 142

Overall Accuracy 0.53
User's Accuracy Producer's Accuracy
Class 1 0.70 Class 1 0.30
Class 2 0.62 Class 2 0.73
Class 3 0.28 Class 3 0.65

Conditional Kappa Values
Class 1 0.47
Class 2 0.36
Class 3 0.17



Table 14. User’s and Producer’s Accuracy Estimates -  Divisive Hierarchical

Divisive
Hierarchical Class 1 Class 2 Class 3

Row
Totals

Class 1 23 12 19 54
Class 2 5 19 7 31
Class 3 5 14 37 56
Column Totals 33 45 63 141

Overall Accuracy 0.56
User's Accuracy Producer's Accuracy
Class 1 0.43 Class 1 0.70
Class 2 0.61 Class 2 0.42
Class 3 0.66 Class 3 0.59

Conditional Kappa Values
Class 1 0.25
Class 2 0.43
Class 3 0.39



Figure 1. Location of Study Site in Suffolk County, Virginia (from Barnard, Jr. et al.
1997).
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Figure 2. Outline of Study Site Highlighting Locations of Transect Pipes Used to
Locate Sample Plots.
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Figure 3. Radiometric Correction Results.
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Figure 4. Principal Components Analysis (PCA) as Calculated Using CANOCO
Software.
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Figure 5. Principal Components Analysis (PCA) as Calculated Using S-Plus.
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Figure 6. Unsupervised Classification,



Figure 7. Supervised Classification Produced Using K-Means Clustered Data, Half 
of Available Training Data, Complete Dataset.
Blue = Class 1 (S. altemiflora (main dominant), A. cannibina, Scirpus (not as 

prominent as in Class 3), P. australis)
Green = Class 2 (P. australis)
Red = Class 3 (Scirpus spp. (main dominant), S. altemiflora, S. cynosuroides, A. 

cannibina)



Figure 8. Supervised Classification Produced Using K-Means Clustered Data, Half 
of Available Training Data, Condensed Dataset.
Blue = Class 1 (S. altemiflora (main dominant), A. cannibina, Scirpus (not as 

prominent as in Class 3), P. australis)
Green = Class 2 (P. australis)
Red = Class 3 (Scirpus spp. (main dominant), S. altemiflora, S. cynosuroides, A. 
cannibina)



Figure 9. Supervised Classification Produced Using K-Means Clustered Data, All of 
Available Training Data, Complete Dataset.
Blue = Class 1 (S. altemiflora (main dominant), A. cannibina, Scirpus (not as 

prominent as in Class 3), P. australis)
Green = Class 2 (P. australis)
Red = Class 3 (Scirpus spp. (main dominant), S. altemiflora, S. cynosuroides, A. 
cannibina)



Figure 10. Supervised Classification Produced Using K-Means Clustered Data, All 
of Available Training Data, Condensed Dataset.
Blue = Class 1 (S. altemiflora (main dominant), A. cannibina, Scirpus (not as 

prominent as in Class 3), P. australis)
Green = Class 2 (P. australis)
Red = Class 3 (Scirpus spp. (main dominant), S. altemiflora, S. cynosuroides, A. 
cannibina)



Figure 11. Supervised Classification Produced Using Divisive Hierarchical Clustered 
Data, Half of Available Training Data, Complete Dataset.
Blue = Class 1 (Scirpus spp., S. cynosuroides, A. cannibina, Typha spp.)
Green = Class 2 (S. altemiflora, No Cover more prominent, A. cannibina)
Red = Class 3 (P. australis)



Figure 12. Supervised Classification Produced Using Divisive Hierarchical Clustered 
Data, Half of Available Training Data, Condensed Dataset.
Blue = Class 1 (Scirpus spp., S. cynosuroides, A. cannibina, Typha spp.)
Green = Class 2 (S. altemiflora, No Cover more prominent, A. cannibina)
Red = Class 3 (P. australis)



Figure 13. Supervised Classification Produced Using Divisive Hierarchical Clustered 
Data, All of Available Training Data, Complete Dataset.
Blue = Class 1 (Scirpus spp., S. cynosuroides, A. cannibina, Typha spp.)
Green = Class 2 (S. altemiflora, No Cover more prominent, A. cannibina)
Red = Class 3 (P. australis)



Figure 14. Supervised Classification Produced Using Divisive Hierarchical Clustered 
Data, All of Available Training Data, Condensed Dataset.
Blue = Class 1 (Scirpus spp., S. cynosuroides, A. cannibina, Typha spp.)
Green = Class 2 (S. altemiflora, No Cover more prominent, A. cannibina)
Red = Class 3 (P. australis)



Figure 15. Supervised Classification Produced Using K-Means Clustered Data, All 
Available Training Data, Complete Dataset as a Verification of Results.
Blue = Class 1 (5. altemiflora (main dominant), A. cannibina, Scirpus (not as 

prominent as in Class 3), P. australis)
Green = Class 2 (P. australis)
Red = Class 3 (Scirpus spp. (main dominant), S. altemiflora, S. cynosuroides, A. 
cannibina)



Figure 16. Supervised Classification Produced Using K-Means Clustered Data, All 
Available Training Data, Complete Dataset as a Verification of Results.
Blue = Class 1 (S. altemiflora (main dominant), A. cannibina, Scirpus (not as 

prominent as in Class 3), P. australis)
Green = Class 2 (P. australis)
Red = Class 3 (Scirpus spp. (main dominant), S. altemiflora, S. cynosuroides, A. 
cannibina)



Example 1. Sample Classification Distribution

Band 1



Example 2. Sample Error Matrix

Reference
Data

(Ground-
truthed)

W R T S
Row
Total

W 50 0 5 0 55
(Pixel) R 2 25 0 0 27

Classified
Data T 20 5 100 0 125

S 0 1 7 20 28
Column

Total 72 31 112 20 235



APPENDIX

Unsupervised Classification Assessed with K-Means Clustered Data

Reference
Class 1 Class 2 Class 3 Row Totals

Class 1 14 31 26 71
Classified Class 2 6 21 0 27

Class 3 0 11 33 44
Column Totals 20 63 59 142

Kappa 0.27 Overall Accuracy 0.48

Theta One 0.48
Theta Two 0.28

Theta Three 0.33
Theta Four 0.62

Kappa Var. 0.00
Z score 4.06

User's Accuracy Producer's Accuracy
Class 1 0.20 Class 1 0.70
Class 2 0.78 Class 2 0.33
Class 3 0.75 Class 3 0.56



Unsupervised Classification Assessed with Divisive Hierarchical Clustered Data

Reference
Class 1 Class 2 Class 3 Row Totals

Class 1 24 20 26 70
Classified Class 2 5 17 5 27

Class 3 4 8 32 44
Column Totals 33 45 63 141

Kappa 0.29 Overall Accuracy 0.52

Theta One 0.52
Theta Two 0.32
Theta Three 0.36
Theta Four 0.56

Kappa Var. 0.00
Z score 4.45

User's Accuracy Producer's Accuracy
Class 1 0.34 Class 1 0.73
Class 2 0.63 Class 2 0.38
Class 3 0.73 Class 3 0.51



Supervised classification produced using k-means clustered data, half of available
training data, complete dataset

Reference
Class 1 Class 2 Class 3 Row Totals

Class 1 14 13 12 39
Classified Class 2 24 40 1 65

Class 3 25 6 7 38
Column Totals 63 59 20 142

Kappa 0.12 Overall Accuracy 0.43

Theta One 0.43
Theta Two 0.35

Theta Three 0.34
Theta Four 0.58

Kappa Var. 0.00
Z score 1.90

User's Accuracy Producer's Accuracy
Class 1 0.36 Class 1 0.22
Class 2 0.62 Class 2 0.68
Class 3 0.18 Class 3 0.35



Supervised classification produced using k-means clustered data, half of available
training data, condensed dataset

Reference
Class 1 Class 2 Class 3 Row Totals

Class 1 27 6 7 40
Classified Class 2 21 39 4 64

Class 3 14 14 9 37
Column Totals 62 59 20 141

Kappa 0.28 Overall Accuracy 0.53

Theta One 0.53
Theta Two 0.35

Theta Three 0.41
Theta Four 0.58

Kappa Var. 0.00
Z score 4.31

User's Accuracy Producer's Accuracy
Class 1 0.68 Class 1 0.44
Class 2 0.61 Class 2 0.66
Class 3 0.24 Class 3 0.45



Supervised classification produced using k-means clustered data, all available
training data, complete dataset

Reference
Class 1 Class 2 Class 3 Row Totals

Class 1 19 3 5 27
Classified Class 2 24 43 2 69

Class 3 20 13 13 46
Column Totals 63 59 20 142

Kappa 0.29 Overall Accuracy 0.53

Theta One 0.53
Theta Two 0.33

Theta Three 0.40
Theta Four 0.62

Kappa Var. 0.00
Z score 4.53

User's Accuracy Producer's Accuracy
Class 1 0.70 Class 1 0.30
Class 2 0.62 Class 2 0.73
Class 3 0.28 Class 3 0.65



Supervised classification produced using k-means clustered data, all available
training data, condensed dataset

Reference
Class 1 Class 2 Class 3 Row Totals

Class 1 23 6 4 33
Classified Class 2 20 41 4 65

Class 3 19 12 12 43
Column Totals 62 59 20 141

Kappa 0.30 Overall Accuracy 0.54

Theta One 0.54
Theta Two 0.34

Theta Three 0.40
Theta Four 0.58

Kappa Var. 0.00
Z score 4.70

User's Accuracy Producer's Accuracy
Class 1 0.70 Class 1 0.37
Class 2 0.63 Class 2 0.69
Class 3 0.28 Class 3 0.60



Supervised classification produced using divisive hierarchical clustered data, half
of available training data, complete dataset

Reference
Class 1 Class 2 Class 3 Row Totals

Class 1 20 15 19 54
Classified Class 2 9 21 9 39

Class 3 4 9 35 48
Column Totals 33 45 63 141

Kappa 0.31 Overall Accuracy 0.54

Theta One 0.54
Theta Two 0.33

Theta Three 0.37
Theta Four 0.49

Kappa Var. 0.00
Z score 4.93

User's Accuracy Producer's Accuracy
Class 1 0.37 Class 1 0.61
Class 2 0.54 Class 2 0.47
Class 3 0.73 Class 3 0.56



Supervised classification produced using divisive hierarchical clustered data, half
of available training data, condensed dataset

Reference
Class 1 Class 2 Class 3 Row Totals

Class 1 21 21 22 64
Classified Class 2 5 14 4 23

Class 3 7 10 37 54
Column Totals 33 45 63 141

Kappa 0.27 Overall Accuracy 0.51

Theta One 0.51
Theta Two 0.33

Theta Three 0.37
Theta Four 0.56

Kappa Var. 0.00
Z score 4.14

User's Accuracy Producer's Accuracy
Class 1 0.33 Class 1 0.64
Class 2 0.61 Class 2 0.31
Class 3 0.69 Class 3 0.59



Supervised classification produced using divisive hierarchical clustered data, all
available training data, complete dataset

Reference
Class 1 Class 2 Class 3 Row Totals

Class 1 23 12 19 54
Classified Class 2 5 19 7 31

Class 3 5 14 37 56
Column Totals 33 45 63 141

Kappa 0.34 Overall Accuracy 0.56

Theta One 0.56
Theta Two 0.34

Theta Three 0.39
Theta Four 0.52

Kappa Var. 0.00
Z score 5.28

User's Accuracy Producer's Accuracy
Class 1 0.43 Class 1 0.70
Class 2 0.61 Class 2 0.42
Class 3 0.66 Class 3 0.59



Supervised classification produced using divisive hierarchical clustered data, all
available training data, condensed dataset

Reference
Class 1 Class 2 Class 3 Row Totals

Class 1 20 18 18 56
Classified Class 2 5 15 5 25

Class 3 8 12 40 60
Column Totals 33 45 63 141

Kappa 0.29 Overall Accuracy 0.53

Theta One 0.53
Theta Two 0.34

Theta Three 0.39
Theta Four 0.55

Kappa Var. 0.00
Z score 4.55

User's Accuracy Producer's Accuracy
Class 1 0.36 Class 1 0.61
Class 2 0.60 Class 2 0.33
Class 3 0.67 Class 3 0.63



Supervised classification produced using k-means clustered data, all available training
data, complete dataset as a verification of results

Reference
Class 1 Class 2 Class 3 Row Totals

Class 1 23 7 2 32
Classified Class 2 19 44 5 68

Class 3 21 8 13 42
Column Totals 63 59 20 142

Kappa 0.34 Overall Accuracy 0.57

Theta One 0.56
Theta Two 0.34

Theta Three 0.43
Theta Four 0.60

Kappa Var. 0.00
Z score 5.32

User's Accuracy Producer's Accuracy
Class 1 0.72 Class 1 0.37
Class 2 0.65 Class 2 0.75
Class 3 0.31 Class 3 0.65



Supervised classification produced using k-means clustered data, half of available
training data, complete dataset as a verification of results

Reference
Class 1 Class 2 Class 3 Row Totals

Class 1 26 5 3 34
Classified Class 2 18 44 3 65

Class 3 19 10 14 43
Column Totals 63 59 20 142

Kappa 0.38 Overall Accuracy 0.60

Theta One 0.59
Theta Two 0.34

Theta Three 0.44
Theta Four 0.58

Kappa Var. 0.00
Z score 6.13

User's Accuracy Producer's Accuracy
Class 1 0.76 Class 1 0.41
Class 2 0.68 Class 2 0.75
Class 3 0.33 Class 3 0.70



LITERATURE CITED

Anderson, J.E. 1997, January 16. Course Lecture for MS 592: Remote Sensing of 
Aquatic Resources.

Anderson, J.E. 1997, January 23. Course Lecture for MS 592: Remote Sensing of 
Aquatic Resources

Aronoff, S. 1985. The Minimum Accuracy Value as an Index of Classification
Accuracy. Photogrammetric Engineering and Remote Sensing 51(1): 99-111.

Barnard, Jr., T.A., C.H. Hershner, and M. Greiner. 1997. The Oldest Operating
Wetland Mitigation Bank in the U.S. Wetlands Program Technical Report 97- 
7. Virginia Institute of Marine Science. College of William and Mary.

Bishop, Y.M.M., S.E. Feinberg, and P.W. Holland, (from Rosenfield and Fitzpatrick- 
Lins 1986). 1975. Discrete Multivariate Analysis-Theory and Practice. 
Cambridge, Mass., The MIT Press.

Carter, G.A. 1991. Primary and secondary effects of water content on the spectral 
reflectance of leaves. American Journal o f Botany 78(7): 916-924.

Congalton, R.G., Oderwald, R.G., and R.A. Mead. 1983. Assessing Landsat 
classification accuracy using discrete multivariate analysis statistical 
techniques. Photogrammetric Engineering and Remote Sensing 49: 1671- 
1678.

Congalton, R.G. 1988. A Comparison of Sampling Schemes Used in Generating
Error Matrices for Assessing the Accuracy of Maps Generated from Remotely 
Sensed Data. Photogrammetric Engineering and Remote Sensing 54(5): 593- 
600.

Congalton, R.G. and K. Green. 1993. A Practical Look at the Sources of Confusion 
in Error Matrix Generation. Photogrammetric Engineering and Remote 
Sensing 59(5): 641-644.

Congalton, R.G. 1991. A Review of Assessing the Accuracy of Classifications of 
Remotely Sensed Data. Remote Sensing o f the Environment 37: 35-46.

142



143

Congalton, R.G. and K. Green. 1999. Assessing the Accuracy of Remotely Sensed 
Data: Principles and Practices. New York: Lewis Publishers. 137 p.

Daubenmire, R.F. 1968 (referenced from Mueller-Dombois and Ellenberg 1974). 
Plant communities: A textbook of plant synecology. Harper & Row. New 
York. 300 p.

Dicks, S.E. and T.H.C. Lo. 1990. Evaluation of Thematic Map Accuracy in a Land- 
Use and Land-Cover Mapping Program. Photogrammetric Engineering and 
Remote Sensing 56(9): 1247-1252.

Environmental Laboratory. 1987. “Corps of Engineers Wetlands Delineation 
Manual,” Technical Report Y-87-1, US Army Engineer Waterways 
Experiment Station, Vicksburg, Miss.

Fitzpatrick-Lins, K. 1981. Comparison of Sampling Procedures and Data Analysis for 
a Land-Use and Land-Cover Map. Photogrammetric Engineering and Remote 
Sensing 41 (3): 343-351.

Gauch, Jr., H.G. Multivariate Analysis in Community Ecology. 1995. Cambridge 
University Press, New York, New York. 298 p.

Ginnevan, M.E. 1979. Testing Land-Use Map Accuracy: Another Look.
Photogrammetric Engineering and Remote Sensing 45(10): 1371-1377.

Hardisky, M.A., M.F. Gross, and V. Klemas. 1986. Remote Sensing of Coastal 
Wetlands. Bioscience 36(7): 453-460.

Hay, A.M. 1979. Sampling Designs to Test Land-Use Map Accuracy.
Photogrammetric Engineering and Remote Sensing 45(4): 529-533.

Hinson, J.M., C.D. German, and W. Pulich, Jr. 1994. Accuracy Assessment and
Validation of Classified Satellite Imagery of Texas Coastal Wetlands. Marine 
Technology Society Journal 28(2): 4-9.

Jakubauskas, M.E., Whistler, J.L, Dillworth, M.E., and E.A. Martinko. 1992.
Classifying remotely sensed data for use in an agricultural nonpoint-source 
pollution model. Journal o f Soil Water Conservation 47: 179-183.

Lillesand, T.M. and R.W. Kiefer. 1994. Remote Sensing and Photo Interpretation. 
John Wiley & Sons: New York, NY, USA.

Ma, Z. and R.L. Redmond. 1995. Tau coefficients for accuracy assessment of
classification of remote sensing data. Photogrammetric Engineering and 
Remote Sensing 61: 435-439.



144

Magurran, A.E. 1988. Ecological Diversity and Its Measurement. Princeton 
University Press: New Jersey. 179 p.

Marks, M., B. Lapin, and J. Randall. 1994. P. australis (P. communis): Threats, 
Management, and Monitoring. Natural Areas Journal 14(4): 285-294.

MathSoft, Inc. May 1999. S-Plus User’s Guide. Seattle: MathSoft, Inc. 558 p.

Mitsch, W. and J.G. Gosselink. 1993. Wetlands. Van Nostrand Rhinehold, New York, 
NY, USA.

Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation 
Ecology. John Wiley & Sons, NY, USA.

Murtha, P. A. 1982. Detection and analysis of vegetation stress. In: Johannson, C. & J. 
Sanders (eds.). Remote Sensing for Resource Management. SCSA. Ankeny. 
IA, USA.

Perry, J. and C. Hershner. (in press). Temporal Changes in the Vegetation Pattern in 
a Tidal Freshwater Marsh. Wetlands.

Rice, R.L. 1967 (referenced from Mueller-Dombois and Ellenberg 1974). A
statistical method of determining quadrat size and adequacy of sampling. 
Ecology A8: 1047-1049.

Robinove, C.J. 1986. Spatial Diversity Index Mapping of Classes in Grid Cell Maps. 
Photogrammetric Engineering and Remote Sensing 52(8): 1171-1173.

Rosenfield, G.H. 1986. Analysis of Thematic Map Classification Error Matrices. 
Photogrammetric Engineering and Remote Sensing 52(5): 681-686.

Rosenfield, G.H. and K. Fitzpatrick-Lins. 1986. A Coefficient of Agreement as a
Measure of Thematic Classification Accuracy. Photogrammetric Engineering 
and Remote Sensing 52(2): 223-227.

Rosenfield, G.H., K. Fitzpatrick-Lins, & H.S. Ling. 1982. Sampling for Thematic 
Map Accuracy Testing. Photogrammetric Engineering and Remote Sensing 
48(1): 131-137.

SAS Institute, Inc. 1994. SAS/STAT User’s Guide, v. 2 (version 6). Cary, North 
Carolina: SAS Institute, Inc. 1686 p.

Short, N.M. 1982 (from Rosenfield and Fitzpatrick-Lins 1986). 1982. The Landsat 
Tutorial Workbook— Basics o f Satellite Remote Sensing: Greenbelt, Md., 
Goddard Space Flight Center, NASA Reference Publication 1078.



145

Silberhom, G.M. 1982. Common Plants of the mid-Atlantic Coast: A Field Guide. 
Baltimore: Johns Hopkins University Press. 256 p.

Smith, C., N. Pyden, and P. Cole. 1994. ERDAS Field Guide, 3ld ed. Atlanta:
ERDAS, Inc.

Snedecor, G.W. and W.F. Cochran. 1967. Statistical Methods. State University Press, 
Ames, Iowa.

Stehman, S.V. 1997. Selecting and Interpreting Measures of Thematic Classification 
Accuracy. Remote Sensing and the Environment 62:77-89.

Story, M. & R.G. Congalton. 1986. Accuracy Assessment: A User’s Perspective. 
Photogrammetric Engineering and Remote Sensing 52(3): 397-399.

Swain, P.H. and S.M. Davis (referenced from Smith et al. 1994). 1978. Remote 
Sensing: The Quantitative Approach. New York: McGraw Hill Book 
Company.

Turk, G. (from Rosenfield and Fitzpatrick-Lins 1986). 1979. GT Index: A measure of 
the success of prediction: Remote Sensing o f Environment 8: 65-75.

Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice Hall: New Jersey. 718 p.



VITA

Jason Samuel Goldberg

Bom in Syracuse, New York, 25 August 1974. Graduated valedictorian from 
Ridgewood High School in 1992. Earned B.S. in Marine Science and Biology, 
magna cum laude, from University of Miami, Florida, in 1996. Spent 1995 studying 
abroad at James Cook University in Townsville, Queensland, Australia. Entered M.S. 
program in College of William and Mary, School of Marine Science in 1996. Entered 
M.P.P. program in College of William and Mary, Thomas Jefferson Program in 
Public Policy, in 1997. Received Knauss Sea Grant Fellowship in 2000 with 
Congressman Neil Abercrombie (D-HI). Trying to boldly go where a few have gone 
before, as well as a few new places.

146


	Accuracy Assessment of Remote Sensing in a Tidal Wetland
	Recommended Citation

	tmp.1539724688.pdf.ehOrt

