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ABSTRACT

Natural oyster populations in the Chesapeake Bay have become severely 
depleted in recent years due to a combination of overfishing, declining water quality, 
and diseases. Replenishment programs in the form of artificial reefs are currently in 
effect throughout most of the Chesapeake bay region. Shell Bar reef built in the Great 
Wicomico River, Virginia in 1996 was supplemented with reproductively active 
broodstock oysters from Tangier and Pocomoke Sounds. The Great Wicomico River 
was historically a high spatfall and seed producing river, but production in the river has 
decreased in recent years. Oyster larval concenttations (in the form of plankton tows), 
gonad development, and circulation data were collected in the Great Wicomico River 
throughout the 1997 reproductive season. The broodstock oysters spawned from mid 
June through mid August, with a peak occurring from mid June through mid July. 
Larval concentrations were several orders of magnitude higher than the highest reported 
in the literature for extant reefs in the James River. Larvae were significantly more 
abundant on the flood tidal stage, suggesting some vertical migration with change in 
tidal cycle, thus aiding in their retendon in the system. Setdement of larvae on 
shellstrings and on bottom substrate, was higher than in recent years. The most 
abundant setdement occurred near the reef and upriver of the reef. Circulation patterns 
observed are favorable for local retendon of larvae in the system and suggest that the 
river is a “trap-type” estuary. Reef building, and subsequent transplants of broodstock 
onto these artificial reefs, can be an effecdve management option provided the 
circulation patterns of the system are similar in nature to the Great Wicomico (i.e. larvae 
are “trapped” in the estuary).



OYSTER REEF BROODSTOCK ENHANCEMENT IN THE GREAT WICOMICO

RIVER, VIRGINIA



INTRODUCTION

The Eastern oyster, Crassostrea virginica (Gmelin), plays an important 

ecological role in the Chesapeake Bay and its tributaries as well as being the focus of a 

substantial commercial fishery. Oyster reefs developed in recent geological time as the 

current Chesapeake Bay was inundated by rising sea level. By early Colonial times, 

oyster reefs had become significant geological and biological features of the Bay. Since 

Colonial times, overfishing of this resource has resulted in the degradation of these 

reefs such that only two-dimensional “footprints” of these former reefs remain. Today, 

these “footprints” maintain drastically reduced oyster populations. A decline in water 

quality due to ever increasing land use since colonial times has only intensified the 

degradation of the oyster reefs. The past three decades have been defined by decline in 

the fishery production and the oyster resource under the added insult of two protistan 

parasites, Perkinsiis marimis ("Dermo") and Haplosporidium nelsoni ("MSX"). Since 

the disease organisms are active throughout most of the growing range of the oyster, 

there have been few sanctuaries in which to plant oysters or in which naturally 

occurring oysters could be found in appreciable quantities. Indeed, these parasites have 

effectively eliminated oysters from many sections of the Bay. Despite over 30 years of 

exposure to disease, the native oysters do not exhibit any recovery or resistance in 

disease endemic areas in Virginia. The oyster fishery is in severe decline and there is a 

recognized and urgent need to restore the oyster resource - not just for the commercial 

fishery but also to serve as both the benthic filter feeder that is so pivotal to the ecology 

of the Bay and the physical structure which provides habitat for a multitude of species,

2



3

including many of commercial interest.

The Commonwealth of Virginia, through the Virginia Marine Resources 

Commission (VMRC), supports an extensive replenishment program throughout most 

of their portion of the Bay. Traditional replenishment programs focused on spreading 

thin veneers of shell substrate for larval settlement over coastal and estuarine bottoms. 

The main purpose of this practice is to provide a suitable substrate for settlement at 

minimum cost. Ideally the end product is the retrieval of seed or market size oysters 

from these shell “plants”; however, these thin, two-dimensional carpets bear little 

resemblance to the intricate, three-dimensional reefs that once supported a large oyster 

population.

More recent replenishment programs have focused on the construction of three- 

dimensional reefs that resemble more closely what was found in Colonial times. Reefs 

have been constructed in the Piankatank, Great Wicomico, Coan, Yeocomico, and 

James Rivers, and Lynnhaven Bay. These reefs are built on the “footprint” of an old 

reef and consist of several mounds of shell that protrude out of the water at low tide. 

Essentially the reefs are built and allowed to mature naturally (i.e. no addition of 

broodstock to the reef). The basis of this practice was the premise that oysters would 

recruit to the reef from the plankton but, because there was no resident population of 

disease infected oysters, would develop as a predominantly disease free population. 

This was not the case on an artificial reef built in the Piankatank River, Virginia (Mann 

et al., 1996; Mann and Wesson, 1996). Endemic diseases did become established in 

the reef populations; however, the vertical relief of the reefs enhanced growth to such 

an extent that the oysters grew larger and faster than on adjacent “flat” oyster rocks. 

Relatively dense populations of oysters did develop, and recent surveys from fall, 1996 

of the Piankatank reefs showed population densities of 50-70 oysters m"2 compared 

with 200-350 m‘2 on the most commercially productive reefs (flat) in the James River 

system. While the value of 50-70 is better than many extant reefs in the James, it



4

illustrates that development of very dense and stable oyster communities on constructed 

reefs is very much a long term event. This is exemplified in the absence of initial 

stocking with broodstock, especially so in regions that now suffer poor natural 

recruitment.

The current study was prompted by the need to examine artificial reefs that were 

initially “seeded” with reproductively capable oyster populations in the Great Wicomico 

River. To estimate the impact of adding broodstock to the reef, four distinct objectives 

were investigated: (1) Estimate the maximum number of eggs that would be produced 

in one mass spawning event on the reef; (2) Determine if and when the transplanted 

oysters on the reef spawn; (3) Determine when and where larvae are most abundant in 

the water column; (4) Determine if the circulation is favorable for some local retention 

of larvae in the system.

A Historical Perspective of Ovster Stocks in the Great Wicomico River

To accurately investigate the impact of adding broodstock, something must be 

known about what was happening in the river in terms of oyster production and 

abundance prior to the building of the reef. For the past 30 years the Virginia Institute 

of Marine Science (VIMS) has participated in two stock monitoring programs in the 

Great Wicomico River, Virginia (Figure 1) in the form of spatfall surveys throughout 

the summer months and fall dredge surveys. The spatfall survey provides an estimate 

of the potential of a particular area for receiving a “strike” or set of oysters on the 

bottom and helps define the timing of the setting events. The fall dredge survey 

provides information about spatfall and recruitment, summer mortality, and inter-annual 

changes in abundance of seed and market-size oysters.

The spatfall survey has been completed yearly from 1964 to the present. The 

collectors used to monitor spatfall were oyster-shellstrings. These consist of 12 oyster 

shells of similar size (about 76 mm, max. dimension) drilled through the center and
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Figure 1: Map of the Chesapeake Bay outlining the location of the Great Wicomico 

River, Virginia.
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strung (inside of shell down) on heavy gauge wire. Shellstrings were hung 0.5 m off 

the bottom at each station (Figure 2). Up to sixteen stations have been used at various 

times throughout the history of the spatfall surveys. However, for consistency 

between years, I will focus on the six stations (Figure 2) that have been used yearly 

since 1964-65. Shellstrings are replaced after a one-week exposure (with occasional 

deviations), and the number of spat that attach to the smooth, underside of the middle 

10 shells counted with the aid of a dissecting microscope.

The following is a summary of the shellstring survey data from the VIMS 

database (VIMS archive). In the Great Wicomico River, spatfall from 1964 to 1971 

was relatively high with average weekly sets (number of larval oysters physically 

adhering to the substrate) ranging from 4 to 370 spat/shellface per week. In 1970 

nearly all stations received a moderate (20-50 spat/shellface) to heavy (> 50 

spat/shellface) peak set and the setting period extended over most of the season. In 

1971, the set occurred late in the season, with no significant set occurring until late fall. 

In 1972, due to Tropical Storm Agnes, spat set was nearly zero at all stations. This 

year marked the beginning of a major decline in spatfall in the river. The years 1973 

through 1978 were characterized by a very light set, usually less than one spat/shellface 

per week even during “pulse” setting time. In the 1980’s it appeared that oysters were 

returning to the Great Wicomico River. Starting in 1979, the sets became steadier 

(lasting throughout most of the season) and heavier (2 to 110 spat/shellface per week). 

This increase in the number of spat in the late 70’s and early 80’s, coincided with a 

heavy private “plant” (a large number of small (seed) oysters were placed into the 

system) (Cowart, pers. communication). These were harvested in the late 80’s and 

early 90’s and once again there was a decline in the number of spat observed. The 

latest signal in the river occurred during the 1997 setting season, after the artificial reef 

was built and stocked with broodstock oysters. In 1997 spatfall was recorded between
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Figure 2: Location of the historical shellstring deployment sites in the Great 

Wicomico River.
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the end of June and the beginning of September, with a peak set occurring in mid to late 

July. During this peak set, spatfall ranged from 0 to 29.3 spat/shellface per week, with 

the most intense sets occurring up river or immediately adjacent to the reef (Glebe 

Point, Hudnall, Haynie Point, and on the reef; Figure 2).

The fall dredge survey has been completed yearly from 1971 to the present 

excluding 1974-1976. Figure 3 shows the geographical locations of the bars sampled 

in the Great Wicomico River during this time. As with the shellstring data, only the 

most consistently sampled stations were used in the analysis. Only three stations (Fleet 

Point, Whaley’s East and Haynie Point) have been sampled since 1986. Three to four 

0.5 bushel samples of bottom material were taken at each bar using a 24-inch dredge 

having 4-inch teeth. For each sample the following were determined: number of 

market-size oysters (> 76 mm, max. dimension), number of small oysters (submarket 

size and yearlings), and the number of spat. From these samples either 0.5 or one 

bushel increments were used. In the case where only 0.5 bushels were counted, they 

were standardized to one bushel by doubling the counts.

The fall dredge data taken from the VIMS database (VIMS archive) can be 

summarized as follows: Between the years 1971 to 1987, the number of small oysters 

ranged from 90 to over 600 per bushel for all six stations (Figure 3). During this time 

the number of spat per bushel ranged from a low of 0 in 1973 (the year of Hurricane 

Agnes) to a high of 2,000 per bushel in 1987. For the three stations where data were 

available beyond 1987, this year marked the beginning of a slow decrease in the 

number of oysters in the system. For the past three years, numbers of small oysters 

have ranged from 30 to 150 per bushel. 1987 also marked the beginning of essentially 

the absence of market-size oysters in the system. Before 1987 there were 

comparatively more market oysters (0-128) per bushel than after (0-14 oysters per 

bushel). The number of spat recorded per bushel also started to decrease in the late
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Figure 3: Location of the historical fall dredge survey stations in the Great Wicomico 

River.
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80’s. For the five years prior to the building of the reef, spatfall averaged about 55 spat 

per bushel, whereas an average of 155 spat per bushel was recorded for the 1997 fall 

survey (almost a 3 fold increase in spatfall).

In the fall of 1995 and 1997, a collaborative survey effort between the Virginia 

Marine Resources Commission (VMRC) and the Virginia Institute of Marine Science 

(VIMS), resulted in a formal stock assessment on the oysters in the Great Wicomico 

River using patent tongs. Previously, Chai et al. (1992) evaluated the oyster sampling 

efficiency of patent tongs versus an oyster dredge and found patent tongs to be a much 

better sampling tool. Densities obtained from using patent tongs were not significantly 

different from diver-harvested quadrat surveys, whereas the dredge surveys were only 

2-32% of the diver estimates. Based on these findings patent tongs are the preferable 

sampling gear for conducting oyster stock assessment surveys. The five oyster reefs 

that were sampled in the Great Wicomico River in 1995 and 1997 are shown in Figure

4. For each reef a uniform grid was generated over a current reef boundary map. Each 

grid location had a reference which could be located electronically by LORAN from the 

research vessel. Grid references were assigned a sampling order from a random 

number table to generate a randomized sampling grid. Samples were collected using 

hydraulic patent tongs with an opening of one m2. All of the retained material was 

washed and counts of live oysters as spat (young of the year), small oysters (<76 mm, 

max. dimension), and market oysters (>76 mm, max. dimension) were taken. The 

volume of shell retrieved in each tong was also recorded as an index of the quantity of 

cultch material present at each station.

In 1995 the number of market oysters ranged from 0.3 m‘2 at Fleet Point to 1.6 

m'2 at Sandy Point. The number of small oysters ranged from 4 to 22 oysters m'2 with 

the lowest densities at Shell Bar and Fleet Point and the highest at Sandy Point. The 

number of spat m'2, ranged from 6.5 at Cranes Creek to 13.4 at Fleet Point. The 

overall average m'2 for the five rocks combined, was 0.7 market oysters, 10.2 small
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Figure 4: Location of patent tong stock assessment stations in the Great Wicomico 

River.
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oysters, and 9.7 spat. While the average number of market (1 to 5 m'2) and small (9 to 

36 m'2) oysters recorded in 1997 were similar to those recorded in 1995, the number of 

spat were considerably higher in 1997. Spat numbers ranged from 5 m'2 at Ingrams 

and Fleet Point to 102 m'2 at Shell Bar. On average this represented a three-fold 

increase in density of spat from 1995 to 1997.

Collectively, these survey data can be summarized as follows: Oysters were 

present in relatively great abundance in the Great Wicomico River until about 1971. 

The combined effects of Hurricane Agnes in 1971, and disease decimated the natural 

broodstock population in the system. This in turn led to a decrease in larval production 

and spat recruitment. For a brief time during the 1980’s, oysters appeared to be 

returning to the Great Wicomico, but this was found to be due to a large private plant 

that served as broodstock for the system. Once these oysters were harvested, 

recruitment once again plummeted. With the building of the three dimensional reef and 

the addition of broodstock on the reef, recruitment once again showed an increase from 

previous years.

Estimation of Egg Production, and Fertilization

To estimate the impact of adding broodstock, it is also necessary to have 

estimates of historical egg production (i.e. when adult oysters were still abundant in the 

river) to use as a comparison to egg production observed on the reef. There are no 

good historical stock assessment data for the Great Wicomico, but there are data for 

extant reefs in the James that are similar to historical conditions (comparison of dredge 

survey data and stock assessment data; Morales, unpublished data). I have therefore 

taken data from reefs in the James, where recent stock assessment data exists, and 

extrapolated to the historical conditions in the Great Wicomico using Baylor survey data 

(Haven et al., 1981) on reef area (see Figure 5 for reefs used from the Great Wicomico 

River). Since salinity plays a role in reproductive success, it is also necessary for the
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Figure 5: Location of the oyster reefs used to calculate per square meter and total egg 

production in the Great Wicomico River, during historical conditions.
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reefs being compared to have similar salinity regimes. Figure 6 shows the location and 

the salinity regimes (8.5, 10.5, and 13.5 ppt) of the reefs in the James River used in the 

comparison. Egg producdon was then estimated using the following protocol from 

Mann and Evans (in press).

Egg production or Fecundity (F, in millions) is sum of individual (Find) 

fecundity in size class intervals, here 5 mm length intervals. Length is considered as 

the maximum dimension measured from the hinge. Within each interval L = mid point 

of length (for convenience 3, 8, 13 mm and so on for 0-5, 5-10, and 10-15 mm size 

intervals is used). Size specific fecundity is estimated using the relationship:

Fecundity (Find) = 39.06 x Weight236

where F is in millions, and W is dry tissue weight in mg. This relationship is taken 

from Thompson et al. (1996) and based on a re-analysis of earlier data from Cox and 

Mann (1992) which eliminated all individuals in partially spawned or completely 

spawned condition.

Weight to Length (in mm) conversions were effected using data from James 

River collections (raw data from Rainer and Mann, 1992):

W = 0.000423 x L 17475

with the resultant size specific function relating fecundity to size class, egg production 

m*2(Ftot), can be estimated as the sum of the individual fecundities. Within a single 5 

mm size class the sum of the individual fecundities is (n, x Find) where n, is the number 

in the size class with mid point 1 in mm. The given formulation does not address the 

proportion of the population that is female. For convenience, Cox and Mann (1992)
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Figure 6: Location and salinity regimes of the extant oyster reefs in the James River, 

that were used to estimate total egg production in the Great Wicomico River, 

during historical conditions.
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suggest parity in sex ratio, and given the lack of other data a single sex ratio modifier is 

adopted, Fq, with the value arbitrarily set at 0.5 (50% female in all size classes).

Fecundity can be modified based on salinity effects. A modifier, Fs, can be 

employed to decrease F by a proportion, effected by multiplying by a value from 1.0 

(no effect) to 0.0 (total effect). The size specific fecundity relationship previously 

described was developed for material collected in 1988 at a mean salinity of 13.5. For 

the purpose of this study an estimate of the magnitude of Fs was made from the data of 

Mann et al. (1994). The lowest salinity at which viable eggs were found was 8.5 ppt. 

At values of salinity less than 8.0 ppt assume Fs = 0.0 (total compromise of eggs). 

There is no clear salinity - fecundity relationship in this limited data set. Nor is there a 

good data set from the literature for this salinity range. A tentative linear relationship is 

proposed from 8 to 13.5 ppt with the following estimators for Fs:

If Salinity (S) > 13.5, Fs =1.0 

If Salinity (S), 8.0<S<13.5 then Fs = {(S-8.0)/( 13.5 - 8.0)} x 1.0 = (S - 8.0)/5.5

If Salinity (S) < 8.0, Fs = 0

Fecundity can also be modified by disease that can be incorporated with a 

further modifier, Fd. This decreases fecundity in the same manner as Fs, ranging from 

1.0 to 0.0. Disease is described by a weighted prevalence value. No adequate data are 

available to provide a meaningful relationship between weighted disease prevalence and 

Fd. Therefore this value was fixed at 1.0 (no effect).

Fertilization efficiency is density dependent, and described as a multiplier, Ff. 

Values range from 1.0 (100% fertilization) to 0.0 (no fertilization). The following is 

rewritten from Levitan’s work on sea urchins (1991):

% fertilization = 0.49 x OD072



17

where OD is oyster density in oysters m'2. To provide a correction factor for the 

present application, the values must be expressed on a 0-1 range, rather than a 

percentage:

Ff= 0.0049 x OD0 72

Production of larvae (strictly speaking embryos or fertilized eggs), is therefore 

estimated by (Ftot x F qx F sx F dx Ff) in units of larvae m*2.

Using these formulae for fecundity, I estimated the total and per area egg 

production in the Great Wicomico (Table 1) in the following manor. I first obtained the 

number of eggs per unit area produced on each reef in the James River, based on the 

appropriate size frequency distribution. I then averaged these values across all of the 

reefs that pertained to each of the three salinity regimes (Figure 6 and Table 1; column 

3). These values were then applied to the area of the analogous reefs (i.e. the same 

salinity (Table 1; column 5) in the Great Wicomico to obtain a total egg estimate for the 

Great Wicomico reefs. Given that information, as well as the corrections for disease, 

salinity, and fertilization efficiency, the total number of fertilized eggs (strictly speaking 

embryos) in the Great Wicomico River is estimated at 7.1 X 1012. I then estimated the 

total egg production seen on Shell Bar reef (see next section for description of reef), 

after being enhanced with reproductively active oysters. Salinity used to calculate Fs 

was set at 10.8, giving a modifier value of 0.509. Reef area and oyster density used in 

the calculations were 3900 m2 and 300 oysters m'2 respectively (Olsen and Wesson, 

1997). Using these numbers, the fertilization modifier, Ff , was estimated to be 0.298. 

Taking size frequency distribution data, attained from measuring 150 oysters from the 

reef (Figure 7), I obtained an estimate of 5.4 X 1012 embryos (larvae) produced on the 

reef. These calculations suggest that by aggregating the broodstock oysters into very 

dense populations, such that fertilization efficiency is greatly improved, the production
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of larvae on the reef is similar to that of the entire Great Wicomico system in pre disease 

conditions (he. the order of magnitudes are the same).
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Figure 7: Size frequency distribution of broodstock oysters on Shell Bar reef

(n=150).
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1997 FIELD STUDIES

Study Site

The location selected for the study was Shell Bar Reef in the Great Wicomico 

River, Virginia. The Great Wicomico River, although small, was regularly identified 

as a region of high oyster spatfall prior to the decimation of resident oyster populations 

by the combined ravages of MSX and Perkinsus. The circulation of the river, like that 

of the Piankatank, served to retain planktonic oyster larvae originating within the river 

(Andrews, unpublished data). The lack of resident oysters in the river has resulted in 

siltation and partial burial of good oyster bottom in the river in recent years. As 

described earlier, VIMS has maintained oyster settlement monitoring (by shellstrings) 

and reef survey (by dredge) programs in the river for nearly three decades, and the data 

show a collapse of the local oyster resources in recent years. These data have recently 

been supplemented by quantitative patent tong surveys supported in part by federal 

funds from the NOAA Chesapeake Bay Stock Assessment Program. The low 

population density of oysters has been confirmed by such surveys. Given that very 

few oysters remain in the Great Wicomico, it was chosen as a site for reef placement in 

1995.

The reef was constructed in June of 1996, by deploying old oyster shells from 

a barge with a crane into a series of intertidal structures approximately 215 meters long 

and 18 meters wide. Broodstock oysters from the Tangier and Pocomoke Sound 

regions were planted on the reef in December of 1996. Oysters surviving as sparsely 

distributed individuals in many regions of the Bay are continually exposed to intense 

disease challenge and selection pressure. Consequently, they would be expected to
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have higher resistance to disease than low salinity populations where intermittent 

disease pressure fails to eradicate genetically susceptible individuals, which then 

continue to breed with more resistant individuals and thus fail to promote the process of 

developing uniformly high resistance. Tangier and Pocomoke Sounds, are such a 

location where higher salinities (25-30 ppt) occur, but densities are low (< 1 m‘2), thus 

failing to maximize the fertilization efficiency. If the intent of sanctuaries is to develop 

actively breeding populations with higher than typical resistance, there is good 

argument for aggregating the few remaining oysters from disease endemic areas where 

they are so sparse that fertilization efficiency of freely released eggs is minimal or 

absent.

Target Organism

The native Eastern oyster Crassostrea virginica , reproduce by releasing their 

eggs into the water column where they are externally fertilized. Individual females 

release anywhere from 100,000 (in poorly developed females) to 50 million eggs per 

spawning event, with 2-3 spawnings occurring per summer in a temperate bay such as 

the Chesapeake. Larvae are planktivorous for 2 to 3 weeks, during which time they are 

essentially passive drifters (Kennedy, 1996), at the mercy of the currents. Local 

retention of larvae in a system is brought about by a combination of water movement 

and larval behavior (Mann, 1988). Depending on the strength of the water movement 

in the system, this behavior can play an important role in aiding the retention of larvae 

by moving them further upstream each udal cycle.



METHODS

Field studies

Field studies were conducted bi-weekly from the 23rd of June through the 22nd 

of September 1997 (total of 8 field days). This time frame was chosen based on the 

historical timing of spat set in the system (i.e. to ensure that I caught any or all pulses 

of setting) and the estimated larval period of 2 to 3 weeks in the water column. To 

characterize tidal patterns of circulation and larval abundance in the system, all sampling 

was effected over one complete tidal cycle (approximately 12 hours).

Egg production

Estimates of egg/embryo production on the reef, using this information were 

calculated earlier in this document (see estimation of egg production and fertilization 

section). To briefly reiterate, oyster standing stock and density was obtained from 

VMRC records (Olsen and Wesson, 1997). According to these records, 2281 bushels 

of oysters were planted on the 3900 m2 reef in December of 1996. Estimating 500 

oysters per bushel (Wesson, personal communication), density of broodstock oysters 

on the reef was approximately 300 m‘2. Broodstock oyster size was obtained by 

measuring 150 random oysters collected with the aid of hand tongs, from the reef.

Reproductive Development

To follow reproductive development of the broodstock oysters on the reef, 200 

oysters were collected with hand tongs (25/sampling day). Sections of the gonad and 

visceral mass were cut and fixed in Bouin's solution. Following fixation specimens
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were dehydrated in alcohol, cleared in xylene, and embedded in paraffin wax. 

Specimens were sectioned at 7-10 |im, subsequently stained in Delafield's 

Hematoxylin, and counterstained in Eosin Y following the methodology of Humason 

(1962). Developmental stages were identified based on those originally described for 

C. virginica by Kennedy and Battle (1964) and for C. gigas by Mann (1979). In the 

present study, the stages of gonadal development were defined as follows:

Inactive.

No evidence of the presence of follicles peripheral to the digestive gland. Sex is 

essentially indeterminable.

Early active.

Male. Many follicles filled primarily with spermatogonia and spermatocytes. 

No spermatozoa.

Female. Eggs not well developed. A few nuclei in oocytes, but no nucleoli. 

Oocytes are still attached to the follicle wall.

Late active.

Male. Follicles predominately filled with spermatids. Characteristic swirling 

pattern of spermatozoa with tails oriented toward the center beginning to be evident, but 

follicle is not completely filled.

Female. Some free oocytes. Most have distinct nuclei, with fewer than 50% 

having distinct nucleoli.

Ripe.

Male. Classic swirling of tails in the middle of the follicle (similar to a pile of 

iron pilings in a magnetic field).

Female. Primarily free oocytes. Greater than 50% have a distinct nuclei and 

nucleoli. All of the oocytes are about the same size.



25

Spawning or spent.

Male. Most follicles are empty or partially so. Some phagocytes present.

Female. Granular looking eggs (ameobocyte activity). Eggs of varying sizes 

that appear to be breaking down. Follicles are empty or partially so.

Disease assays

Monthly assays to determine Perkinsus marinas and Haplosporidium nelsoni 

(MSX) infections were effected using oysters collected for the reproductive 

development portion of the study. Perkinsus infection and prevalence were measured 

by Fluid Thioglycollate assay (Ray, 1963). MSX infections were detected using 

paraffin histology as in Burreson et al. (1988).

Larval Production

Field protocols

A series of 36 zooplankton samples were taken on each sampling day (3 

replicates per site, per tidal stage). Samples were collected at three stations in the river 

(Figure 8). Plankton samples at GW-1 describe larval abundance near the reef, GW-2 

describes abundance in the main of the river, and GW-3 describes abundance near the 

sand spit. This sand spit is thought to be a barrier that affects and effects some local 

retention in the system.

All samples were collected using a 0.3 m diameter, 3:1 aspect ratio zooplankton 

net (Sea Gear Corporation, Melbourne, FL). The filtering surface consisted of an 80 

Ji m Nytex mesh cone attached to a PVC collection bucket lined with 80 Ji m mesh. The 

net was attached to a metal ring and towed by a three point bridal system attached to the 

ring. The net was towed 0.05 to 0.10 m below the water surface at approximately 1.5
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Figure 8: Location of zooplankton (GW 1-3) samples and water samples (N 1-3)

taken in the Great Wicomico River. R denotes the location of the reef. 9 & 

10 mark the main channel in the river.
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m sec'1 for 3.25 min. The nets used were calibrated in a separate study following the 

same protocol (Harding and Mann, in review). Samples were taken over a full tidal 

cycle (see Appendix I for details of the sampling days), to characterize the tidal cycle 

phases of larval movement. All samples were immediately preserved in 95% ethanol.

Laboratory protocols

Samples were split using a 0.5 L Folsom plankton splitter (Wilco Supply 

Company, Cass, MI). Final splits were filtered through a 400 |im Nytex mesh filter to 

remove large zooplankton (such as copepods), that interfered with the counting. To 

ensure no oyster larvae were lost in this process, samples were randomly chosen and 

counts were made before and after filtering. The difference between these counts was 

less than 1%. Non-enumerated splits as well as the filtrate from the final splits were 

archived.

Counts of umbo stage oyster veligers (larvae) in each sub-sample were made 

with the aid of a dissecting scope. To verify adequate mixing (i.e. a homogenous 

mixture of larvae within the sample), both halves of the final split were counted, and 

coefficients of variation (CV) were calculated following Van Guelpin et al. (1982). 

Acceptable CV's for invertebrate samples range from 5 to 20 %. Counting error of the 

total abundance of organisms within a sample was kept to 10% or less by ensuring 

(when possible) that at least 100 veligers were counted from each sub-sample. Total 

number of larvae per sample were obtained by multiplying the number of veligers in the 

split by the split number. The number of larvae per m3 was then obtained by dividing 

the total number per sample by the volume of water filtered. The average volume of 

water filtered, was determined to be 1.054 m3 in a separate net calibration study 

(Harding and Mann, in review).
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Temperature and Salinity

Surface temperature near the reef was measured (Station N l; in Figure 8) 

throughout the duration of the study. Temperature and salinity at the surface and 

bottom of the water column were obtained at three sites in the River (Figure 8) starting 

on July 28th (dates of collection coincided with the circulation study). Two samples 

per sampling day were taken, one at each end of the tidal cycle. Bottom water was 

collected using a Niskin bottle. Temperature was measured with an alcohol 

thermometer and salinity was measured with a refractometer.

Circulation

Simple surface drogues (drifters) were constructed after Davis et al. (1982) 

(Figure 9). This design was used to ensure the drifter was moved by the currents in the 

system with little input from the wind. The drifters were released at various sites 

around the reef and in the channel. The drifter locations were recorded approximately 

every hour using a hand held GPS system. The paths traveled were followed over one 

full tidal cycle. In the case that a drifter ran aground, it was repositioned to another 

location, with exact location depending on the stage of the tide. Throughout the course 

of the sampling season, a total of twenty-three drifter paths were obtained on five 

separate days. Drifter time and location information was loaded into the Geographical 

Information System / ArcView computer program in the Coastal Inventory Program at 

VIMS. The drifter paths were then plotted in Arcview and average current speeds were 

measured for each series of drifter recordings. These were then compared with 

predicted tidal flow for Sandy Point (the sand spit area) in the Great Wicomico River 

system (Tides and Currents for Windows, version 2.2, Nautical Software Inc).
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Figure 9: Design of surface drogue (drifter) used in the circulation studies (after 

Davis etal., 1982).
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RESULTS

Reproductive Development

By the beginning of the study, both males and females were either in the late 

active or ripe stage of development (Figure 10). Evidence of spawning (i.e. spent 

specimens) were first seen in the July 14th samples (Figure 10). Most of the specimen 

sampled were completely spawned out by early September, with a large majority of 

them returning to the inactive stage by the end of September.

Disease Assays

MSX was absent in all of the oysters examined. Perkinsus prevalence 

increased from 32% in June to 100% in July and continued at that level for the 

remainder of the study (Figure 11). Intensity of Perkinsus infection increased from 

June to September, with the highest percentage of highly infected oyster occurring 

toward the end of the study.

Larval Production

The number of observed oyster larvae in plankton samples ranged from a high 

of 37,362 ±  4,380 m'3 on June 23rd at station GW-2 to a low of 0 at all stations on 

several different sampling days. Larvae were most abundant at all stations on the 23rd 

and 30th of June, and on the 14th of July (Figure 12). From the 14th of July onward, 

there was a continuous decrease in the number of larvae seen in the water column. 

Coefficient of variation for most samples were within the accepted limits between 5 and 

20% (Van Guelpin et al., 1982). Higher CV’s were observed when larval abundances
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Figure 10: Seasonal changes in gonadal development by sex in Crassostrea virginica 

oysters collected on the reef from June 23 - September 22, 1997. Number 

of male and female oysters sampled on each day are represented by the 

numbers above and below each bar.
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Figure 11: Progression of Perkinsus infections in broodstock oysters over the 1997

reproductive season (n=25).



% 
of 

C.
 v

irg
in

ic
a 

in
fe

ct
ed

 
wi

th
 

Pe
rk

in
su

s

100

□  High 
B  Medium 
B  Low

80

60

20

0
June July Aug. Sept.

Date



33

r  LIBRARY \
Oi the;

VIRGINIA INSTITUTE 
of

. MARINE SCIENCE A

Figure 12: Log number of larvae m'3 averaged over each sampling day (averaged over 

all 4 stages of the tide).
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were below 10 m*3.

The total number of larvae m'3 was transformed to meet the assumptions of 

normality and homogeneity of variance. Differences in larval abundance between tidal 

stage and station were then compared with ANCOVA using day of the year as the 

covariate. The power transformation (X‘ = X 0'20), recommended by Downing et al. 

(1987) for use in estimating zooplankton populations was used. The use of this 

transformation met the assumptions of homogeneity of variance, but did not meet the 

assumptions of normality. Given that ANCOVA’s are generally robust to non­

normality (Underwood, 1997), this transformation was still used and the resulting data 

was utilized in performing the ANCOVA.

There was a significant difference in larval concentration between tidal stages 

(p<0.01) and stations (p<0.05), with no interaction between the two factors (p=0.55). 

Student Newman Keuls (SNK) multiple comparison test for station effect, showed 

there were significantly more larvae at GW-1 than at the other two stations (Table 2a). 

There was no difference in larval abundance between GW-2 and GW-3. The SNK for 

tidal stage, showed there were significantly more larvae during the flood tidal stage than 

during the ebb or slack onto flood stages. (Table 2b). No differences were found 

between any of the other tidal stages.

Temperature and Salinity

Surface temperature at the reef (station NT, Figure 8), reached a maximum of 

29.5 ° C on July 28th (Figure 13). The difference between the surface and bottom 

temperature increased in a down river direction (station N1 to N3) away from the reef 

(Figure 14). The maximum temperature difference occurred on July 28th for all 3 

stations. As with the temperature, the difference in salinity between the surface and 

bottom water increased down river (from N1 to N3; Figure 15). Salinity at the 3
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Figure 13: Surface temperature measured at station N1 (the reef) from June 23 - 

September 22, 1997.
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Figure 14: Surface and bottom temperature for all three stations (N1 - N3) measured 

from July 28 - September 22, 1997.
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Figure 15: Surface and bottom salinity for all three stations (N1 - N3) measured from

July 28 - September 22, 1997,
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stations ranged from 12 to 18 ppt. The maximum difference encountered was 3 ppt at 

station N2 and N3.

Circulation

The direction and average speeds traveled by the drifters on each sampling day, 

for each fix during the day, was recorded and calculated (see Appendix II for details). 

Tidal cycle was recorded as the stage/s of the tide occurring between a particular fix and 

the previous fix. For example, if the tide was ebbing for the first half, then changed to 

slack water for the second half, it was recorded as E-S. If the tide was flooding for the 

entire time, then tidal stage was recorded as F. Average speeds recorded by the drifters 

ranged between 0 and 15.9 cm/sec. Maximum predicted tidal current was between 10 

and 20  cm/sec on all sampling days.

Figure 16 A-D show the drifter tracks recorded on July 28. All of the drifters 

were released near the reef at the beginning of ebb tide. Due to lost data (GPS 

malfunction), several hours are missing from mid-day on tracks 1 and 4 (Figure 16 A 

&D). Both tracks follow the predicted tide down river on ebb and up river on flood. 

Drifter 3 (Figure 16 C), followed the ebb down river, until about 1100, then started 

back up river, despite the fact that the predicted tide was still ebbing. Drifter 2 (Figure 

16 B), ran aground several times and no pattern in movement was evident.

Figure 17 A-D show the drifter tracks recorded on August 11. The drifters 

were released near the reef at approximately the same time. Drifters 1, 2, and 4 show 

similar patterns of movement. Slack water occurred around 1400. Drifters 1, 2, and 4 

(Figure 17 A,B,&D), all started to turn in, away from the channel, 2-3 hours earlier 

around 1130. Drifter 3 ran aground several times (Figure 17 C), so no pattern of 

movement was discernible.

The 5 drifter tracks recorded on August 25, are shown in Figure 18 A-E. The 

drifters were released up river from the reef. Four of the 5 tracks show similar
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patterns. These 4 drifters traveled down river with the tidal current until about 1030, 

when they started to turn South / West away from the channel (Figure 18 B-E). As on 

the 11th of August, this “turning” occurred several hours prior to slack water. Drifter 1 

(Figure 18 A) had a dissimilar pattern from the other 4 tracks. It remained in the 

channel, and followed the tidal current, turning around 1300, when the predicted tidal 

flow changed from ebb to flood.

On September 8 , 3 of the 5 drifters showed similar patterns (Figure 19 A-E). 

All drifters were released up river from the reef, around maximum ebb flow. Drifters 

2-4 traveled down river, remaining South / West of the channel and remained there for 

the rest of the time, despite the turning of the tide from ebb onto flood (Figure 19 B-D). 

Drifter 1 ran aground several times, so no definitive pattern was evident (Figure 19 A). 

Drifter 5 (Figure 19 E) followed the ebb tide down river, then started back up river 

when the tide started flooding around 1200. It followed this pattern until about 1500 

(max. flood), when it completed a loop around the reef and started traveling back down 

river.

The drifter tracks obtained on September 22 only covered half of a tidal cycle 

(just after maximum ebb to just after maximum flood). All of the drifters were released 

up river or adjacent to the reef (Figure 20 A-E). There was a large 2 hour gap in GPS 

recordings during slack water, therefore the estimated distance traveled is not accurate 

for this sampling day. All 5 drifters tracks agreed with predicted tidal flow, but due to 

the scarcity of the GPS recordings, no definite pattern of movement is evident.

Settlement

As previously mentioned, VIMS maintains an oyster stock monitoring program 

in the Great Wicomico River. Spatfall estimates from shellstring data ranged from 1.42 

to 43.39 spat per week (Figure 21). Setting was first recorded at Hudnall’s dock in late 

June and continued until the end of August. The most intense setting period occurred
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throughout the month of July. Setting was most intense on, upriver, and adjacent to 

the reef. This pattern of setting was also evident in the patent tong survey data (Figure 

22). Spatfall estimates from patent tong surveys ranged from a high of 102.6 m*2 on 

Shell Bar to a low of 4.6 m'2 on Ingram reef. The most intense set occurred up river of 

the sand spit, near or adjacent to the artificial oyster reef. The general trend was a 

decrease in set as one moves downstream from the reef.
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Figure 16: Drifter tracks for July 28, 1997. (A-D) represent drifters 1-4 respectively. 

Inset shows predicted tidal currents for Sandy Point, with arrows 

representing approximate times of deployment (in) and retrieval (out) of 

the drifters. Time is reported as Eastern Standard (E.S.) Military time. R 

denotes the location of the reef and 9 and 10 mark the main channel in the 

river.
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Figure 17: Drifter tracks for August 11, 1997. (A-D) represent drifters 1-4

respectively. Inset shows predicted tidal currents for Sandy Point, with 

arrows representing approximate times of deployment (in) and retrieval 

(out) of the drifters. Time is reported as Eastern Standard (E.S.) Military 

time. R denotes the location of the reef and 9 and 10 mark the main 

channel in the river.
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Figure 18: Drifter tracks for August 25, 1997. (A-E) represent drifters 1-5

respectively. Inset shows predicted tidal currents for Sandy Point, with 

airows representing approximate times of deployment (in) and retrieval 

(out) of the drifters. Time is reported as Eastern Standard (E.S.) Military 

time. R denotes the location of the reef and 9 and 10 mark the main 

channel in the river.
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Figure 19: Drifter tracks for September 8, 1997. (A-E) represent drifters 1-5

respectively. Inset shows predicted tidal currents for Sandy Point, with 

arrows representing approximate times of deployment (in) and retrieval 

(out) of the drifters. Time is reported as Eastern Standard (E.S.) Military 

time. R denotes the location of the reef and 9 and 10 mark the main 

channel in the river.
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Figure 20: Drifter tracks for September 22, 1997. (A-E) represent drifters 1-5

respectively. Inset shows predicted tidal currents for Sandy Point, with 

arrows representing approximate times of deployment (in) and retrieval 

(out) of the drifters. Time is reported as Eastern Standard (E.S.) Military 

time. R denotes the location of the reef and 9 and 10 mark the main 

channel in the river.
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Figure 21: Location of shellstring stations in the Great Wicomico River, in 1997, 

showing the average number of spat /  week measured at each site.
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Figure 22: Location of patent tong survey stations in the Great Wicomico River, in 

1997, showing the average spat / m2 measured at each site.
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DISCUSSION

Egg Production

Egg production estimates on the reef were found to be similar to estimates of 

production seen throughout the entire system in historic times (when oysters were 

abundant in the river). While the important thing in these estimates is the similar orders 

of magnitude, the estimates themselves should be viewed with caution. One concern is 

the inability to offer good values for disease and salinity related modifiers of fecundity. 

These are both widely acknowledged in the literature as having major effects on the 

bioenergetics of oysters, and yet they are still poorly described in a quantitative sense.

The model used in the calculation of fertilization efficiency taken from Levitan’s 

work on echinoderms (1991), involves a series of assumptions concerning synchrony 

and completeness of spawning, half life of gametes in the water column, dispersal or 

dilution, and probability of fertilization given absolute concentrations of sperm and 

eggs. There are no good models for sessile bivalves in the literature describing 

fertilization efficiency. The current model was used based on the similarities in small 

scale hydrodynamic conditions seen in both Levitan’s model and estuarine oyster reefs. 

Other options for models are discussed by Levitan et al. (1991), Oliver and Babcock 

(1992), and Benzie et al. (1994). Based on the hydrodynamics of the Great Wicomico, 

contrasting models such as the one for high-energy environments seen in Denny and 

Shibata (1989) are inappropriate for use in the Great Wicomico system. The current 

model used (Levitan, 1991), assumes synchrony in spawning throughout the entire 

oyster population; however, local synchrony is more appropriate when discussing these 

populations. The lack of synchrony throughout the population is demonstrated by the

67
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variation in developmental stage seen in my study and variation in settlement (Haven 

and Fritz, 1985). Localized synchrony in spawning on the other hand is highly 

probable, so the cumulative effect of these localized events approximates in magnitude 

to that of a single synchronous spawning in the entire population. In other words, the 

cumulative output from multiple spawnings that occur throughout the reproductive 

season (2-3 per season) are within an order of magnitude of the single synchronous 

spawning event estimate of production.

Spawning

The transplanted broodstock oysters on the reef did spawn. Based on the larval 

abundance data, and the estimated 14 to 21 days spent in the water column by C. 

virginica larvae, inferences can be made about the timing of spawning. Oysters from 

the reef probably spawned continuously from mid-June to the end of July, with a few 

late spawnings occurring in the beginning of August. C. virginica populations in the 

Chesapeake Bay have been reported to spawn from June to August (Kennedy and 

Krantz, 1982). Gonad data from broodstock oysters on the reef support this 

observation. While evidence of spawning was not present until mid July, a percentage 

of both males and females were ripe by the middle of June (the beginning of our 

sampling period). Evidence of spawned individuals may not have been observed for 

several reasons. Given the large estimated number of broodstock oysters present on 

the reef (approximately 1.1 X 106, Olsen and Wesson, 1997), 25 oysters per sampling 

day is a very small proportion of the overall population. Also, a majority of the 

samples were taken from the same portion of the reef. Cox and Mann, (1992) 

demonstrated that asynchrony in gonadal development and spawning activity between 

individuals located on the same reef can occur. Combining all of these factors, the 

sample size used may not have been large enough to adequately estimate spawning 

activity, until a larger proportion of the animals had already spawned.
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Survival

Perkinsus infections progressed through the broodstock population throughout 

the summer, but did not result in catastrophic mortalities. The effect of Perkinsus on 

adult oysters, mainly reduced fecundity, increases as intensity of the disease increases 

(Choi et al., 1994). In the broodstock oysters, intensity was highest toward the end of 

the sampling season, after the majority of the spawning had already taken place. Given 

this, disease was probably not a limiting factor in the production of larvae.

Larval Abundance and Retention in an Estuary

Larval concentrations at the surface were found to be significantly higher during 

the flood tidal stage. This is important because it suggests the larvae are acting as more 

than just passive particles. By depth regulating with changes such as density and 

salinity, associated with a change in tidal stage, a net transport of larvae upriver is 

possible (Hidu and Haskin, 1978; Mann, 1988). On most of the sampling days in this 

study, there was some stratification occurring in the water column at stations N2 and 

N3 (in the channel). The apparent lack of stratification atNl  may have been due to the 

shallower depths at this station. Samples at N2 and N3 were taken at twice the depth of 

those found a tNl .  Despite the apparent lack of or reduced stratification at N l, the 

larvae still depth regulated with the changes in tidal stage. This is supported by the 

absence of a significant interaction between tidal stage and station.

It is believed that larval retention in a system and subsequent movement up river 

is brought about through a combination of passive transport and active larval swimming 

(Carriker, 1951; Kunkle, 1957; Haskin, 1964). Oyster larval concentrations reported 

in the literature over the past 75 years range from 12 m'3 to 660,000 m‘3 (Table 3). 

Wood and Hargis, (1971) report larval abundance at the surface during maximum flood 

tide in the James River, with concentrations of larvae ranging between 300 and 800 

m'3. They found that minimum concentrations (< 100 m'3) were encountered during
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slack water, following the ebb tide. The highest larval concentrations reported in the 

literature were recorded in Delaware Bay as 660,000 m'3 (Nelson and Perkins, 1931) 

and 125,500 m'3 (Nelson, 1927). While these numbers seem extremely large compared 

to concentrations found in this study, the date of the observations must be taken into 

account. In a more recent study by Mann, (1988) in the James River, much lower 

concentrations ranging between 12 and 113 m*3 were reported. Comparing the 

concentrations seen in recent years (after the onset of disease and decimation of 

broodstock oyster populations), the concentration of larvae found in my study is 

extremely high. While not of the same order of magnitude seen in historical times, the 

concentration of larvae in the Great Wicomico is still several orders of magnitude higher 

than that found in the James River, which is considered to be the most important oyster 

producing river in the Chesapeake Bay. While a few James River reefs have similar 

densities of broodstock oysters as that found on Shell Bar Reef (unpublished stock 

assessment data, 1993), the difference in larval abundance probably lies in the 

differences in size and fecundity between the two broodstocks. The average size of 

oysters found in the James is between 45 and 60 mm with only a few reaching above 

85 mm (unpublished stock assessment data, 1993). In contrast, average sizes found on 

Shell Bar Reef are between 85 and 95 mm. Given that fecundity and size have a non­

linear relationship (Mann and Evans, in press), small differences in broodstock size and 

hence fecundity can lead to vast differences in larval production.

Settlement

Higher settlement was found upriver of the sand spit in both the patent tong and 

shellstring surveys. The number of spat m'2 on the bottom recorded from the patent 

tong survey were at least 3 times higher at stations up river compared to the stations 

down river. There was also a difference seen in shellstring data, but the differences 

were not as great. However, as stated previously, patent tongs have been shown to be
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a more accurate predictor of stock size and an overall better stock assessment tool (Chai 

et al., 1992). The higher recruitment of larvae up river of the sand spit, suggests that 

some local retention of larvae produced by the broodstock oysters on the reef was 

occurring.

Circulation

While it has been shown that oyster larvae can depth regulate to aid in the 

retention in an estuary (Carriker, 1951; Wood and Hargis, 1971), the circulation of a 

system is also a critical component of the retention mechanism (Pritchard, 1953; 

Ruzecki and Hargis, 1989). The general trend of the current tracks in this study 

suggest that circulation in the system is favorable for the retention of larvae. The 

majority of the tracks had a tendency to turn away from the channel, prior to tidal 

current change, thus the drifters remained up river of the sand spit, in the general area 

of the reef. In several instances, at least one of the drifters started out traveling down 

the channel. On only one occasion however, did the drifter continue traveling in the 

channel toward the mouth of the river.

The Great Wicomico River, has historically been termed a trap-type estuary 

(Andrews, unpublished data), along with the Piankatank River also in Virginia and the 

St. Mary’s River in Maryland (Manning and Whaley, 1954). Andrews (1979), defines 

a trap-type estuary as one that has a low-flushing rate, small tidal amplitudes, and 

restricted entrances. While these characteristics are important, local circulation, dictated 

by both topography and tidal currents has been shown to be an important component of 

larval retention (Carter, 1967). Larval retention is not, however, limited to trap-type 

estuaries. The James River, for example, has proved to be a good seed producing 

river, with larvae that is produced in the lower reaches being moved upstream and 

subsequently settling on upstream oyster beds (Ruzecki and Hargis, 1989; Mann, 

1988). The James gyre-like circulation in Hampton Roads is the key to retention in that
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system. The retention of larvae in the James, occurs despite that its estuarine 

characteristics are in direct contrast to the “typical” trap-type estuary.

Impact of Broodstock Seeding from a Management Perspective

The addition of broodstock to the reef in the Great Wicomico River doubled the 

monetary cost (i.e. half of the cost was adding the broodstock), but the impact on 

replenishment was immediate. This impact is especially evident when compared with 

non-seeded areas. In just one year, settlement of spat was comparable to historic 

conditions. While this is ecologically important, an economic aspect involves the 

increase in private leases that occurred in 1998, due to the promising spatfall numbers 

in 1997. This “extra” money could be used to help pay for some of the initial seeding 

costs.

Recommendations for Management

While the typical definition of a trap-type estuary is useful, one should use 

caution in deciding where artificial oyster reefs and broodstock are going to be placed 

for replenishment purposes. The most important resource that should be utilized, is the 

knowledge of the location of historic oyster reefs. The fact that certain areas in the 

Chesapeake Bay and its tributaries were once productive oyster grounds, suggest that 

conditions (such as salinity, temperature, circulation ect.) in these areas are favorable 

for oysters. Beyond that, circulation studies of a system should become common 

practice when making these types of management decisions.

After the location of the reef is chosen, stocking density of broodstock on the 

reef needs to be considered. Based on calculations in this study, 300 m'2 seems like a 

reasonable density (i.e. the impact was immediate and comparable to historic 

conditions). Reproduction in the system should then be monitored to estimate the 

success of adding the broodstock.



CONCLUSIONS

1. The broodstock oysters were capable of spawning after transfer to the reef. 

Spawning occurred between mid-June and mid-August.

2. Mortality due to disease were at a minimum.

3. Larval abundance in the system was several orders of magnitude higher than that 

seen in recent years in natural systems.

4. The larvae in the system were actively swimming (depth regulating), thus aiding in 

the retention up river of the sand spit.

5. Settlement was highest upriver of the sand spit, suggesting some local retention.

6. Circulation in the system was favorable for retention of the larvae up river of the 

sand spit.

7. Caution should be used when choosing a site for reef placement and broodstock 

enhancement. Circulation, location of historic oyster reefs, and local topography 

should be considered.
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APPENDIX I

The following table summarizes the average hourly speeds (calculated as A distance / A 

time) and directions recorded by the drifters. “Fix” refers to GPS readings marking 

drifter locations taken at regular intervals. UD means the direction was indeterminable. 

See the text for derivation of tidal stage abbreviations.
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Date

28 July

11 August

Drifter # Fix Tidal stage Drifter speed Approximate
cm/s direction

1 S-E 7.93 170
2 E 11.17 165
3 E 2.58 200
4 E 0.65 200
5 reposition
6 S-F 5.03 000
7 F 4.45 310
1 S-E 12.38 160
2 E 1.79 145

3 E 8.36 170
4 E 3.36 190

5 reposition

6 E-S 7.13 345
7 reposition
8 F 11.84 325
9 reposition

10 F 15.89 330
1 S-E 10.33 160
2 E 14.29 160
3 E 3.47 170
4 E 1.83 300

5 E 2.61 020

6 E-S 0.84 020

7 S 3.35 020

8 S-F 4.16 010
9 F 7.49 345
10 F 5.05 290
i S-E 11.09 150
2 E 14.07 165
3 E 4.73 165
4 E 1.47 180

5 reposition
6 E-S 0.92 220
7 S 4.03 300
8 F 3.22 330
9 F 5.15 355
10 F 4.71 320
1 E 6.84 150
2 E 7.46 160

3 E 2.10 200
4 E-S 2.79 230

5 S 3.96 315

6 F 6.77 350
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Date

11 August

Drifter # Fix Tidal stage Drifter speed Approximate
cm/s direction

7 F 1.84 155
8 reposition

9 F 2.04 230
10 F 0.57 130
11 F 2.58 080
12 S 1.91 020
1 E 6.84 145
2 E 4.58 150

3 E 3.83 180
4 E-S 2.56 230

5 S 6.23 315
6 S-F 1.62 340

7 reposition

8 F 10.47 335
9 reposition
10 F 9.92 330
11 F 8.31 330
1 E 2.32 150
2 reposition

3 E 0.94 170
4 reposition

5 E 0.97 UD

6 E-S 1.28 340

7 reposition

8 S-F 8.30 330

9 F 13.75 330

10 F 2.14 010

11 reposition
12 F 8.57 325

13 F 8.33 335
14 F-S 2.69 005
1 E 11.75 150

2 E 8.21 160

3 E 4.49 175
4 E-S 2.99 240

5 S 5.85 310
6 S-F 5.91 255
7 F 0.10 UD

8 reposition

9 F 6.12 325

10 F 3.04 320

11 reposition

12 F 2.26 310
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Date

25 August

Drifter #  Fix Tidal stage Drifter speed Approximate
cm/s direction

1 S-E 7.55 13.0
2 E 7.98 165
3 E 15.28 140
4 E 9.23 110
5 E 4.75 110
6 E-S 7.60 060
7 S-F 5.95 000
8 F 8.69 320
9 F 7.40 290
1 S-E 4.75 135
2 E 11.07 165
3 E 16.78 150
4 E 7.77 150
5 E 1.73 190
6 E-S 2.84 220
7 S-F 5.92 225
8 F 4.54 290
9 F 1.84 050
1 E 14.93 160
2 E 16.52 160
3 E 8.35 155
4 E 4.68 175
5 E 4.22 225
6 S 4.42 245
7 S-F 2.70 260
8 F 2.61 315
9 F 0.48 UD
1 E 11.25 185
2 E 9.20 160
3 E 11.08 155
4 E 6.46 160
5 E 3.84 210
6 S 5.66 280
7 S 1.65 240
8 F 1.95 330
9 F 0.35 UD
1 E 11.23 170
2 E 11.10 165
3 E 6.36 160
4 E 3.51 235
5 E 3.58 235
6 S 3.93 330

7 S 4.61 340
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Date Drifter # Fix Tidal Stage Drifter speed 

cm/s
Approximate

direction

25 August 

8 September

8 F 1.85 030
9 F 0.21 UD
1 E 12.85 170
2 E 7.72 170
3 reposition
4 E-S 7.65 180
5 S 2.85 185
6 F 0.51 005
7 F 3.99 000
8 F 2.93 005
9 F 1.27 UD

10 F 2.34 180
1 E 14.47 160
2 E 13.91 170
3 E-S 8.78 180
4 S 8.06 190
5 S-F 1.06 220
6 reposition
7 F 3.00 200
8 F 3.37 140
9 reposition
10 F 2.68 010
11 F 3.57 225
1 E 13.05 150
2 E 12.97 170

3 E 10.16 170
4 S 7.68 175

5 F 6.25 205

6 F 1.12 240

7 reposition
8 F 0.73 UD
9 F 2.25 340
10 F 1.33 220
1 E 13.91 160
2 E 12.74 165

3 E-S 7.90 160
4 S 7.48 180

5 F 5.01 220

6 F 2.51 155

7 reposition

8 F 0.36 UD

9 F 1.16 250

1 E 9.82 155



80

Date

8 September

22 September

Drifter #  Fix Tidal Stage Drifter speed Approximate
cm/s direction

2 E 9.71 160

3 E-S 10.72 165
4 S 5.93 160

5 F 1.10 UD

6 F 6.87 335
7 F 4.48 290

8 F 4.05 235
9 F 2.46 205
1 E 11.81 165
2 S 2.25 260
3 F 1.33 325
4 F 3.46 325
5 F 0.00 UD
1 E 7.53 200
2 S 1.32 270

3 reposition

4 F 9.90 310
5 F 6.48 340

6 F 1.86 330
1 E-S 3.83 190
2 F 0.23 UD

3 F 0.00 UD
4 F 0.00 UD
1 E 5.61 210
2 S 1.22 280

3 reposition

4 F 8.90 320

5 F 8.01 350

6 F 1.63 005
1 E 5.32 175
2 S 0.41 UD

3 F 6.51 320
4 F 3.00 290
5 F 0.63 UD



APPENDIX II

The following are the field sampling schedules for June 23 - September 22, 1997 in the 

Great Wicomico River, Virginia.
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Field Schedule
Great Wicomico Trip #1

23-Jun-97

Time Tidal Stage Activity
0515 Meet @ VIMS, load truck etc.
0530 Leave VIMS
0800 Launch @ Public Ramp on Wicomico
0900 Max Ebb ZP Tows 1-9 (3 per site)
1015 Gather/Tong oysters for disease and gonad data
1130 Lunch
1200 Slack before Flood ZP Tows 10-18
1330 Deploy nest substrates on reef
1500 Flood ZP Tows 19-27
1700 Dinner
1800 Slack before Ebb ZP Tows 28-36
2200 Pull boat
0030 Return VIMS/clean boat etc.
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Field Schedule
Great Wicomico Trip #2

30-Jun-97

Time Tidal Stage Activity
0625 Meet @ VIMS, load truck etc.
0630 Leave VIMS
0845 Launch @ Public Ramp on Wicomico
0912 M ax F lood ZP T ow s 1-9 (3 per site)
1015 Gather/Tong oysters for disease and gonad data
1130 Lunch
1200 Slack before Ebb Z P  T ow s 10-18
1330 Deploy nest substrates on reef
1500 M ax Ebb ZP T ow s 19-27
1700 Dinner
1800 S lack  before F lood  ZP T ow s 28-36
1900 Pull boat
2130 Return VIMS/clean boat etc.
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Field Schedule
Great Wicomico Trip #3

14-Jul-97

Time Tidal Stage Activity
0515 Meet @ VIMS, load truck etc.
0530 Leave VIMS
0700 Launch @ new ramp off Wicomico
0730 M ax F lood ZP Tow s 1-9
0830 Gather/Tong oysters for disease and gonad data
1030 Slack before Ebb ZP T ow s 10-18
1130 Lunch
1215 Check nest substrates on reef
1345 M ax Ebb ZP T ow s 19-27
1700 Slack before F lood ZP T ow s 28-36
1830 Pull boat
2000 Return VIMS/clean boat etc.
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Field Schedule 
Great Wicomico Trip #4

28-Jul-97

Time Tidal Stage Activity
0515 Meet @ VIMS, load truck etc.
0530 Leave VIMS
0700 Launch @ new ramp off Wicomico
0730 Deploy drifters
0749 Max Flood ZP Tows 1-9
0830 Drifter check 1
0900 Tong for oysters
0930 Drifter check 2
1030 Drifter check 3
1045 Slack before Ebb ZP Tows 10-18

1130 Drifter check 4
1200 Lunch

1230 Drifter check 5
1330 Drifter check 6
1404 Max Ebb ZP Tows 19-27

1430 Drifter check 7
1530 Drifter check 8
1600 Check nest substrates on reef

1630 Drifter check 9
1715 Slack before Flood ZP Tows 28-36
1745 Drifter check 10
1830 Drifter check ll/recovery
1900 Pull boat
2100 Return VIMS
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Field Schedule
Great Wicomico Trip #5

ll-Aug-97

Time Tidal Stage Activity
0500 Meet @ VIMS, load truck etc.
0530 Leave VIMS
0700 Launch @ new ramp off Wicomico
0830 Deploy drifters
0900 Slack onto Ebb ZP Tows 10-18 
0930 Drifter check 1
1000 Tong for oysters

1030 Drifter check 2
1100 Pre-lunch
1115 Shell strings @ reef

1130 Drifter check 3
1145 Niskin bottles
1200 Max Ebb ZP Tows 19-27
1230 Drifter check 4
1300 Nest substrate check

1330 Drifter check 5
1400 Lunch/continued snacking

1430 Drifter check 6
1500 Slack onto Flood ZP Tows 28-36 

1530 Drifter check 7
1600 Niskin bottles

1630 Drifter check 8
1730 Drifter check 9
1823 Max Flood ZP Tows 37-45
1930 Drifter check 10/recovery
2000 Pull boat
2200 Return VIMS
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Field Schedule
Great Wicomico Trip #6

25-Aug-97

Time Tidal Stage Activity
0400 Meet @ VIMS, load truck etc.
0430 Leave VIMS
0600 Launch @ new ramp off Wicomico
0622 Max Flood ZP Tows 1-9
0700 Deploy drifters
0800 Drifter check 1
0830 Tong for oysters
0900 Drifter check 2
0930 Slack onto Ebb ZP Tows 10-18 
1000 Drifter check 3
1030 Niskin bottles

1100 Drifter check 4
1130 Shellstrings @ reef

1200 Drifter check 5
1215 Lunch
1238 Max Ebb ZP Tows 19-27

1300 Drifter check 6
1340 Nest substrate check

1400 Drifter check 7
1430 Niskin bottles

1500 Drifter check 8
1545 Slack onto Flood ZP Tows 28-36 

1600 Drifter check 9
1700 Drifter check 10/recovery
1730 Pull boat
1930 Return VIMS
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Field Schedule
Great Wicomico Trip #7

8-Sep-97

Time Tidal Stage Activity
0500 Meet @ VIMS, load truck etc.
0530 Leave VIMS
0700 Launch @ new ramp off Wicomico
0735 Slack onto Ebb ZP Tows 1-9 
0800 Deploy drifters
0900 Drifter check 1
0930 Tong for oysters / 75 to measure
1000 Drifter check 2
1020 Niskin bottles
1040 Max Ebb ZP Tows 10-18

1100 Drifter check 3
1130 Shellstrings @ reef

1200 Drifter check 4
1230 Lunch

1300 Drifter check 5
1320 Nest substrate check
1350 Slack onto Flood ZP Tows 19-27 
1400 Drifter check 6
1500 Drifter check 7
1530 Niskin bottles/GPS in channel markers

1600 Drifter check 8
1652 Max Flood ZP Tows 28-36

1700 Drifter check 9
1800 Drifter check 10/recovery
1830 Pull boat
2000 Return VIMS
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Field Schedule
Great Wicomico Trip #8

22-Sep-97

Time Tidal Stage Activity
0530 Meet @ VIMS, load truck etc.
0600 Leave VIMS
0730 Launch @ new ramp off Wicomico
0800 Deploy drifters
0810 Slack onto Ebb ZP Tows 1-9 
0900 Drifter check 1
0930 Tong for oysters / 75 to measure
1000 Drifter check 2
1030 Niskin bottles
1045 Snack

1100 Drifter check 3
1115 Max Ebb ZP Tows 10-18
1200 Drifter check 4
1230 Nest substrate check

1300 Drifter check 5
1400 Drifter check 6
1420 Slack onto Flood ZP Tows 19-27 
1500 Drifter check 7
1530 Late lunch

1600 Drifter check 8
1630 Niskin bottles

1700 Drifter check 9
1730 Max Flood ZP Tows 28-36

1830 Drifter check 10/recovery
1900 Pull boat
2030 Return VIMS
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