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ABSTRACT

Aquatic organisms often inhabit environments heavily contaminated with toxic 
chemicals (Weis & Weis, 1989). Mechanisms of survival in these organisms are thought 
to involve alteration in the biochemical processes responsible for detoxication and 
elimination of the xenobiotic compounds. In the Elizabeth River VA, mummichog 
(Fundulus heteroclitus) inhabit a site severely contaminated with polycyclic aromatic 
hydrocarbons (PAH) of creosote origin. Although chronic effects including hepatic 
neoplasms have been observed in adult mummichog (Vogelbein et al., 1990), the fish are 
resistant to the acute toxicity' of the contaminated sediments (Williams, 1994). Increased 
levels and activities of glutathione S-transferase (GST) in these fish (Van Veld et al., 
1991) may play a role in this resistance. GSTs are major enzymes involved in 
detoxication of cytotoxic and genotoxic compounds such as electrophilic metabolites of 
PAHs. Hepatic GSTs in resistant fish ffom a heavily contaminated site and in fish ffom a 
reference site were purified by S-hexylglutathione affinity chromatography. Monoclonal 
antibodies (MAb) were produced to a GST isoform with pi of 8.1 and subunit MW 
27.2kD. This form is elevated approximately 5.8-fold in resistant fish and 2.2-fold in fish 
ffom a moderately contaminated site relative to fish ffom a reference site. GST activity 
towards l-chloro-2,4-dinitrobenzene (CDNB) is elevated 4-fold in resistant fish and 2- 
fold in fish ffom the moderately contaminated site. There is a strong correlation between 
GST activity and protein levels in these fish. From SDS-PAGE gels, a 27.2 kD band 
corresponding to GSTs is also elevated in fish ffom the contaminated sites and appears to 
be a major cytosolic protein in resistant fish. The isoform has a blocked N-terminus but 
one MAb reacts with a Mu subunit ffom rat liver. These results indicate an elevation of 
GST levels and activity in fish ffom creosote contaminated sites and the monoclonal 
antibody recognizes a GST form which may contribute to resistance of fish to creosote 
associated contaminants.



ALTERED EXPRESSION OF A GLUTATHIONE S-TRANSFERASE ISOFORM IN 

CREOSOTE-RESISTANT MUMMICHOG. FUND ULUS HETEROCLITUS



INTRODUCTION

Biotxansformation of lipophilic xenobiotic compounds is often a stepwise process 

involving phase I and phase II enzymes (Di Giulio et al., 1995). Phase I enzymes are 

primarily cytochrome P450-mediated monooxygenases that add polar functional groups 

to lipophilic substrates through oxidation, reduction, or hydrolysis. The products of 

phase I metabolism are generally less toxic, more water soluble and therefore more 

readily excreted than the parent compound (Stegeman et al., 1992). However, some 

phase I metabolites are more toxic than the parent compound. Following introduction of 

polar functional groups, xenobiotics are susceptible to further metabolism by phase II 

enzymes that link the xenobiotic to water-soluble endogenous compounds within the cell. 

These conjugation reactions increase the solubility, elimination, and detoxication of the 

xenobiotic.

Glutathione S-transferases (GSTs) are an important family of phase II enzymes 

involved in the biotransformation of endogenous and xenobiotic compounds (Coles & 

Ketterer, 1990; George, 1994; Gulick & Fahl, 1995). They perform a major role in 

detoxication of many lipophilic compounds, including the highly reactive and 

carcinogenic metabolites of polycvclic aromatic hydrocarbons (PAH) in mammals and 

fishes (Hawkins et al., 1988; Hawkins et al., 1990; Hendricks et al., 1985). For example, 

the conversion of benzo(a)pyrene (BaP) into its ultimate carcinogenic form, BaP-7,8-diol-
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9,10-epoxide (BPDE) (Varanasi et al., 1986), is a three step process (Fig. 1). Some of 

the intermediate metabolites, as well as the ultimate form, are capable of covalently 

binding to critical cellular macromolecules including DNA (Kurelec et al., 1991; Schnitz 

et al.. 1992; Varanasi et al., 1986; Shugart et al., 1987). This formation of DNA adducts 

creates genetic mutations and may ultimately lead to the production of mutant gene 

products and carcinogenesis (Barbacid. 1987; Marshall et al., 1984; McMahon et al.,

1990). Some of the intermediate metabolites are also substrates for GSTs (Nemoto et al., 

1975; Hesse & Jemstrom, 1984; Funk et al., 1995) that catalyze the nucleophilic attack of 

the sulfur atom of glutathione (y-glutamylcysteinylglycine) on the electrophilic groups of 

reactive epoxides. These conjugation reactions prevent the epoxides ffom binding to 

cellular macromolecules (Hesse & Jemstrom. 1984; Quinn et al., 1990). The glutathione 

conjugates are transported out of the cell by an ATP-dependent export pump (Ishikawa, 

1992; Jedlitschky et al., 1994) and excreted (Boyland & Chasseaud, 1969).

GSTs also play a role in protection against oxidative stress (Ketterer et al., 1990; 

Hayes & Strange, 1995; Di Giulio et al., 1995). Oxidative stress is caused by reactive 

oxygen species, or oxyradicals (HO, Oy, H20 :) which are products of incomplete 

reduction of oxygen to water during aerobic metabolism. These oxyradicals oxidize 

membrane lipids, proteins and DNA. GSTs are believed to have arisen due to the 

emergence of oxygen and aerobic respiration in order to inactivate the toxic products of 

oxygen metabolism as well as inactivate toxic products produced by other organisms 

(Lee, 1991). While oxidative metabolism of endogenous substrates results in the natural 

occurrence of reactive electrophiles, exposure to xenobiotic compounds (Ahmad, 1995)
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Figure 1. Metabolism of benzo(a)pyrene (BaP). BaP is converted to a toxic metabolite 

by cytochrome P450 (P 450). The toxic metabolite may bind to critical cellular 

macromolecules, be detoxified by glutathione S-transferase (GST) mediated conjugation 

with glutathione or be further metabolized by epoxide hydrolase (EH) and P 450 to the 

ultimate carcinogenic form. Cellular macromolecules are protected ffom the ultimate 

carcinogenic form of BaP by GST-mediated conjugation with glutathione.
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and elevated oxygen conditions may increase the rate of production of these reactive 

compounds. For example, redox cycling of compounds such as quinones and diols 

(products of BaP metabolism) results in the formation of oxyradicals. An increase in 

oxyradical formation may then result in mitogenic effects, DNA damage, alteration of 

membrane fluidity, and cell damage and death. GSTs protect cells through conjugation 

of electrophiles produced from oxyradicals and peroxidation of DNA and lipid 

hydroperoxides.

In addition to their role in conjugation, GSTs detoxify xenobiotics by serving as 

carrier proteins, transporting toxicants between sites of storage or toxicity and sites of 

biotransformation (Hanson-Painton et al., 1983). GSTs also form covalent bonds with 

reactive electrophilic toxicants themselves (Schelin et al., 1983), further reducing the 

possibility of the compounds binding to cellular macromolecules.

GSTs have been identified in mammals, fishes and invertebrates (Fitzpatrick & 

Sheehan, 1993; Lee et al., 1988) but have been most extensively characterized in rats, 

mice, and humans (Habig et al., 1974; Jakobv, 1978; Mannervik, 1985; Mannervik & 

Danielson, 1988; Pickett & Lu, 1989; Rushmore & Pickett, 1993). The GSTs constitute a 

supergene family, being products of at least four gene families (Lai & Tu, 1986). Each 

enzyme or isoform is a dimeric protein composed of two subunits of 25-28 kDa. Each 

subunit contains a binding site for glutathione and a binding site for the substrate. The 

majority of GSTs are cytosolic although microsomal forms exist. They are found in all 

tissues and compose approximately ten percent of the soluble hepatic protein in the rat 

and three percent in humans (Jakobv, 1978). Isoform expression can vary within an
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organism depending on tissue (Tahir et al., 1988), age (Peters et al., 1989) and sex 

(Hayes et al., 1994), as well as between species (Mannervik et al., 1985) and strains 

(Egaas et al.. 1995). In mammals, the soluble GST isoforms are grouped into Alpha, Mu, 

Pi, (Mannervik et al.. 1985) and Theta (Meyer et al., 1991) classes based upon substrate 

specificity, immunological cross-reactivity, and protein sequence. There is a 70-80% 

identity in amino acid sequence between isoforms within the same class and less than 

30% identity between classes (Mannervik & Danielson, 1988). Most GST isoforms react 

with l-chloro-2,4-dinitrobenzene (CDNB), with the exception of Theta (Meyer et al.,

1991). Thus CDNB serves as a general substrate for measuring GST activity (Fig. 2).

The Mu class GSTs have the highest activity with epoxides, including benzo(a)pyrene- 

4,5-oxide (Mannervik. 1985) an intermediate metabolite of BaP. BPDE, the ultimate 

carcinogen of BaP, is a Mu class substrate but is a more efficient substrate for the Pi class 

(Robertson et al.. 1986a). The conjugation reaction for Mu and Pi with diol-epoxides of 

PAHs is selective towards the (-f)-enantiomer (Robertson & Jemstrom, 1986; Funk et al., 

1995).

GSTs can be induced in mammals using PAHs and PCBs. These compounds 

generally result in an induction of phase I enzymes followed by phase II enzymes. The 

induction of specific isoforms may also be strain- (McLellan et al., 1991), organism- 

(Foliot & Beaune, 1994), and sex-specific (Di Simplicio et al., 1989) and often involves 

induction of forms which are not constitutively expressed (McLellan et al., 1991; Hayes 

et al., 1991). Induction (Fig. 3) results in an increase in GST activity, GST protein levels, 

and GST mRNA (Clapper et al., 1994; Ding & Pickett, 1985). The regulation of GSTs is



7

Figure 2. Conjugation of glutathione (GSH) with l-chloro-2,4-dinitrobenzene (CDNB). 

Glutathione S-transferase (GST) catalyzes the nucleophilic attack of the sulfur atom of 

GSH on the electrophilic groups of reactive compounds.
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Figure 3. Mechanism of GST induction by different types of inducers. Modified ffom 

Prochaska & Talalay (1988). An inducer may enter a cell, bind to the Ah receptor, and 

the resultant complex activates transcription of the GST genes. The same type of inducer 

may enter a cell, undergo phase I metabolism and the resultant metabolite generates an 

electrophilic signal which stimulates transcription of GST genes. Another type of inducer 

may enter a cell and generate an electrophilic signal which activates transcription.



I n d u c e r

P450
M etabo l i sm

\ Ah R e c e p t o r ♦
T r a n s c r i p t i o n a l  

Act iva t ion

GST genes

Elec t rophi l i c  

S ig na l

GSTm R N As

I
GST Enzymes

I n d u c e r

<



9

not completeiy understood but there is evidence for several regulatory elements on the 

subunit genes (Hayes & Pulford, 1995). Planar aromatic compounds can activate gene 

transcription either through binding with the aryl hydrocarbon (Ah) receptor which 

interacts with the xenobiotic responsive element (XRE), or through an unknown 

interaction with the antioxidant-responsive element (ARE) which is independent of the 

Ah receptor (Rushmore et al.. 1990; Rushmore & Pickett, 1993).

GSTs have been identified in fishes and characterized in a few species (Foureman, 

1989; Nimmo, 1987; George, 1994) including carp (Dierickx, 1985a), little skate 

(Foureman & Bend. 1984), thorny-back shark (Sugiyama et al., 1981), plaice (George & 

Young, 1988; George & Buchanan. 1990). and rainbow trout (Ramage & Nimmo, 1984; 

Dierickx. 1985b). Fishes exhibit multiple isoforms in the liver, gut, gills and kidney. 

Isoforms have pi ranges of 5.2 - 9.5 and subunits range in size ffom 21.7-29.0 kDa. 

Reported activities of GSTs in hepatic tissues of fish using CDNB as a substrate range 

between 0.1 ^moles/min/mg in Atlantic salmon (George et al., 1989) and 3 

ptmoles/min/mg in sheepshead minnow (James et al., 1988). Activity may also vary with 

sex (George et al., 1990), season (Ramage et al., 1986; George et al., 1990; Mathieu et 

al., 1991), and organ (Lauren et al., 1989; Leaver et al., 1992; Perdu-Durand & Cravedi, 

1989).

A classification scheme for fish GSTs has not been developed although some 

evidence suggests that fish and other non-mammalian organisms possess isoforms similar 

to major mammalian isoforms. Immunochemical comparison of fish GSTs with 

mammalian isoforms has indicated that trout, salmon and cod express a subunit that is
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recognized by antiserum to the rat Pi class subunit (Dominey et al., 1991; George et al., 

1989). Dominey et al. (1991) also found that the subunits from a major GST isoform in 

salmon displayed 65% protein sequence identity with the subunits from the rat Pi class 

isoform. In contrast, flounder, turbot, sea trout and salmon express a subunit 

immunologically cross-reactive to an Alpha class rat subunit and cod, turbot and sea trout 

express a subunit cross-reactive to a Mu class subunit (George et al., 1989). Plaice liver 

has two major isoforms, one has an amino acid sequence with greatest similarity to 

mammalian Theta (Leaver et al.. 1993) and the other is immunologically reactive with 

Alpha (George & Buchanan, 1990). Toad (Bufo bnfo) embryos have a GST which is 

80% identical with mammalian Pi class (Di Ilio et al., 1992) and blue mussels (Mytilus 

edulis) have a GST which is 60% identical with mammalian Pi class GST (Fitzpatrick et 

al., 1995). Two isoforms isolated from the eyes of shrimp (Penaeus japonicus) exhibit 

57% and 40% identical with human Mu and Theta class GSTs respectively (Lin & 

Chuang, 1993). In two species of squid, GST sequences from the digestive gland showed 

greatest similarity to the rat Alpha class in Loligo vulgaris (Harris et al., 1991) and Pi in 

Ommastrephes sloani pacificus (Tomarev et al., 1993). Octopus (Octopus vulgaris) 

digestive gland also has a form most similar to Pi (Tang et al., 1994).

Induction of GST levels and activity by various environmental toxicants (eg. 

PAHs, PCBs) has been demonstrated in mammals (Ding & Pickett, 1985). However, 

studies using mammalian inducers with fishes have yielded inconsistent results. Some 

studies report increases (1.2-3 fold) of hepatic GST activity following treatment of fishes 

with PAHs and PCBs (Andersson et al., 1985; George & Buchanan, 1990; Zhang et al..
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1990; George & Young, 1986; Fair, 1986; Bemhoft et al., 1994; Scott et al., 1992; 

Chatterjee & Bhattacharya, 1984). In other studies, treatment of fishes with similar 

agents did not result in a significantly elevated response (James & Little, 1981; Ankley et 

al., 1986; Lemaire et al., 1992; Collier & Varanasi, 1991; Bemhoft et al., 1994; Goksoyr 

et al., 1987; Van Veld et al., 1991; James et al., 1988). The differences in responses seen 

in fishes to these classical mammalian inducers may be attributed to differences in 

species responsiveness, exposure period or other factors (Table 1).

Field studies have similarly led to inconsistent results with respect to GST 

induction. Some studies suggest that fishes collected from PAH or PCB contaminated 

sites exhibit elevated (2-fold) GST (Andersson et al., 1988; Collier & Varanasi, 1984; 

Monod et al., 1988) while other studies report no differences between clean and 

contaminated sites (Collier et al., 1992; Lindstrom-Seppa & Oikari, 1988). Bagnasco et 

al. (1991) found that annular seabream ffom a polluted site exhibited a depression of GST 

activity compared with control site fish. Perch collected ffom an oil spill site had 

elevated GST activity four months after the spill, but rainbow trout did not exhibit an 

elevation in activity after four days of exposure to the oil (Lindstrom-Seppa & Pesonen, 

1986).

Although there are no clear trends in the literature regarding induction of GSTs by 

environmental agents, species-specific differences in GST expression have been 

correlated with relative sensitivity to carcinogens. For example, a comparison of 

constitutive GST activity between channel catfish, a species with a low incidence of 

contaminant induced neoplasia, and brown bullhead, a species with a greater incidence of



Table 1. Responses of fish hepatic GSTs to inducers of mammalian GSTs.

Organism Inducer Dose Route Exposure Time Induction** Reference
Rainbow trout BNF 70 mg/kg i.p. 7 days N Goksoyr et al., 1987
Rainbow trout BNF 50 mg/kg i.p. 14 days Y Zhang eta l., 1990
Rainbow trout BNF 100 mg/kg i.p. 2 weeks Y Andersson e ta l., 1985
Rainbow trout PCB 1.5 mg oral 9 days Y Bemhoft et al., 1994
Rainbow trout PCB 1.5 mg oral 14 days N Bemhoft et al., 1994
Rainbow trout PB 50 mg/kg P- 7 days N Goksoyr et al., 1987
Atlantic cod BNF 100 mg/kg •P- 7 days N Goksoyr et al., 1987
Atlantic cod PB 50mg/kg ■P- 7 days N Goksoyr et al., 1987

Cod PCB 1.5 mg oral 9 & 14 days N Bemhoft eta l., 1994
Plaice PCB - •p. 12 days Y George & Buchanan, 1990
Plaice 3-MC - P- 12 days Y George & Buchanan, 1990
Plaice tSOx - -P- 12 days Y George & Buchanan, 1990
Plaice 3-MC 10 mg/kg •P- 2 days Y George & Young, 1986

Sea bass BaP 20 mg/kg P- 14 hours N Lemaire et al., 1992
Sea bass BaP 0.075-7.5 mgikg P- 3 days Y Fair, 1986

Catfish PCS 100 mg/kg •P- 8 days N Ankley e ta l., 1986
English sole PCB 100 mg/kg P- 72 hours N Collier & Varanasi, 1991
English sole PB 100 mg/kg P- 72 hours N Collier & Varanasi, 1991
English sole tSOx 500 mg/kg •P- 72 hours N Collier & Varanasi, 1991
English soie BaP 5 mg/kg •P- 72 hours & 14 days N Collier & Varanasi, 1991
English sole PAH* 0.52 & 1.04 mg/kg ■P- 72 hours & 14 days N Collier & Varanasi, 1991

Flounder 3-MC 20 mg/kg -P- 6 days N Scott e ta l., 1992
Flounder PCB 100 mg/kg P- 6 days Y Scott etal., 1992
Flounder tSOx 100 mg/kg •P- 6 days Y Scott e ta l., 1992

Mummichog BNF 12.5ug/kg feed 2 weeks N Van Veld e ta l., 1991

'Sedim ent extract containing PAHs

"Induction is measured a s  an increase in activity using CDNB as a substrate

BNF= beta-naphthoflavone 
PC8= polychlorinated biphenyl 
PB= phenobarbital 
3-MC= 3-methylcholanthrene 
BaP= benzo(a)pyrene 
tSOx= trans-stilbene oxide 
i.p .= intraperitoneal
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neoplasia (Hasspieler et al., 1994b), revealed that the channel catfish expressed both 

higher levels of hepatic glutathione (GSH) and GST activity than the brown bullhead.

The differences in GST activity between the two fish species suggests a role of the 

enzyme in protection against carcinogens. Similarly, a comparison of English sole and 

starry flounder from a PAH contaminated site (Collier et al., 1992) indicated that English 

sole had a greater prevalence of hepatic lesions along with lower GST activity than starry 

flounder. There were also differences in GST isoform expression between the two fish 

species. The flounder expressed two isoforms not found in the sole.

In addition to GST induction following environmental toxicant treatment, 

numerous studies have revealed GST elevation in chemically induced mammalian tumors 

(Buchmann et al., 1985). A comparison of the GST isoforms expressed in normal and 

neoplastic tissues indicates that Pi predominates in most tumors (Rushmore et al., 1988; 

Shea & Henner, 1987; Tsuchida & Sato, 1992) and drug-resistant cells (Batist et al.,

1986; Tew, 1994) while there is altered expression of other isoforms as well (Howie et 

al., 1990; Stalker et al., 1994; Castro et al., 1990; Schisselbauer et al., 1990). Farber 

(1991) has suggested that development of cancer is an adaptive response to xenobiotic 

exposure. According to Farber, rare hepatocytes containing a resistant phenotype are 

located throughout the liver and proliferate to form hepatocyte nodules in response to 

toxicant exposure. These nodules may confer resistance to the acute effects of toxicants; 

however, they may eventually develop into carcinomas. In support of this hypothesis, 

Harris et al. (1989) found that rats bearing carcinogen-initiated tumors were resistant to 

doses of carbon tetrachloride which induced mortality in all control animals. Common
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biochemical features believed to contribute to resistance in tumor cells are 1) over

expression of ATP-driven membrane pumps, such as P-glycoprotein (Pgp), that actively 

pump foreign compounds out of resistant cells (Gottesman & Pastan, 1993; Kartner & 

Ling, 1989); 2) decreased expression of the enzymes involved in toxicant activation (eg. 

cytochrome P-4501 A); and 3) increased expression of GSTs (Farber, 1990; Hayes &

Wolf. 1990; Wolf et al.. 1987).

GST expression patterns in fish tumors appear different than those observed in 

mammals. For example, Hayes et al. (1990) found reduced GST expression in pollutant- 

associated hepatic neoplasms in white suckers (Catostomus commersoni). Aflatoxin and 

PAH induced rainbow trout neoplasms were also deficient in GST expression (Kirby et 

al.. 1990b). Similarly. Stalker et al. (1991) found a decrease in GST subunit expression 

in hepatocellular adenomas, bile duct adenomas and carcinomas in PAH exposed white 

suckers. Stalker et al. (1991) concluded that neoplastic progression was due to loss of 

constitutive GSTs responsible for detoxication and elimination of PAHs in exposed fish.

Recently, a resistant population of mummichog (Fundulus heteroclitus) was 

discovered at a creosote-contaminated site (Atlantic Wood) in the Elizabeth River, VA 

(Williams, 1994). Although 93% of the mummichog exhibit hepatic lesions and 33% 

exhibit neoplasms (Vogelbein et al., 1990), this population appears to thrive in the harsh 

chemical environment. Atlantic Wood (AW") sediments are acutely toxic to mummichog 

from clean (reference) sites (Vogelbein & Van Veld, unpublished). Hyperplastic liver 

lesions (altered foci) and neoplasms have been observed mainly in adult AW fish while 

the majority of juveniles do not exhibit these lesions. However, these fish are resistant to
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the acute toxicity of the chemicals in their environment.

The biochemical mechanisms involved in the acute toxicity resistance of AW 

mummichog are an area of recent investigation. Van Veld et aL (1992) reported a 

depression of cytochrome P-4501A (CYP1A) in neoplastic and preneoplastic liver lesions 

of these fish. More recently, a general low constitutive level of CYP1A in non-neoplastic 

AW liver tissue was also reported (Van Veld & Westbrook, 1995). Cooper (unpublished) 

observed that levels of liver P-glycoprotein in AW fish were roughly similar to those 

found at reference sites. Although P-glycoprotein over-expression is believed to play a 

major role in chemical resistance in mammalian cells (Gottesman & Pastan, 1993;

Kartner & Ling, 1989), it does not appear to explain resistance in Atlantic Wood fish.

Perhaps the most remarkable of all biochemical differences observed between 

AW fish and reference fish is the consistent elevation of GST levels and activity in AW 

fish (Van Veld et al., 1991). While there were no apparent differences between GST 

activity in neoplastic and preneoplastic hepatic lesions and adjacent normal tissues, 

hepatic GST activity in these fish exceeded that of reference site fish by approximately 

three-fold. An inability to induce a similar level of induction in reference fish in the 

laboratory (Van Veld et al., 1991) suggests that the elevated GSTs in the resistant AW 

fish may represent a genetic adaptation. This would be consistent with the demonstrated 

genetic nature of acute toxicity resistance in mummichog inhabiting polluted 

environments (Weis & Weis, 1989; Williams, 1994). Although it is apparent that there 

are one or more isoforms of over-expressed GST in AW fish, no information is available 

on the nature of the isoform(s), their mechanisms of regulation, or the role they play in
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resistance.

The objectives of this project were to: 1) purify the glutathione S-transferases 

from Atlantic Wood (contaminated) and King Creek (reference) mummichog livers and 

compare the isoform composition in the two groups, 2) produce monoclonal antibodies to 

the elevated GST isoform(s) found in the AW mummichog, 3) quantify the relative 

amounts of elevated isoform in fish from three sample sites: control, moderately 

contaminated and heavily contaminated with PAHs of creosote origin, using monoclonal 

antibodies, and 4) identify the elevated isoform based upon immunological reactivity 

and/or protein sequence and physicochemical characteristics.
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MATERIALS and METHODS

Sample Sites and Collection

Male mummichog, Fundulus heteroclitus. weighing 5-20g, were collected from 

three sites (Fig. 4): 1) Atlantic Wood (AW), a heavily creosote-contaminated site in the 

Elizabeth River, VA adjacent to Atlantic Wood Industries, Inc., 2) Scuffletown Creek 

(SC), a moderately creoste-contaminated site across the river from AW, and 3) King 

Creek (KC), an uncontaminated site in Gloucester County, VA. Sediment PAH 

concentrations at these sites have been reported as 2200, 61 and 3mg PAH/kg dry 

sediment at AW. SC. and KC respectively (Vogelbein et al., 1990). Mummichog were 

caught in minnow traps and transported to the laboratory in coolers with iced estuarine 

water. Fish were sacrificed within 2 days of capture with an overdose of tricaine 

methanesulfonate (MS-222, Crescent, Phoenix, AZ). Livers were removed and frozen in 

liquid nitrogen before transfer to -80°C.

Cvtosol Preparation & Enzvme Purification

Livers were thawed and homogenized in homogenization buffer (0.25 M sucrose, 

25 miM HEPES, 1 mM EDTA, pH 7.5) using a Polvtron (Brinkmann, Westbury, NY) 

tissue homogenizer. The homogenate was centrifuged twice at 12,000g for 11 minutes 

and once at 100,000g for 60 minutes in a Sorvall RC 28S (DuPont, Wilmington, DE) 

centrifuge at 3°C. The supernatant (cytosolic fraction) was removed from the microsomal 

pellet and stored at -80°C.
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Figure 4. Map of mummichog, Fundulus heteroclitus, collection sites. The collection 

sites were: King Creek (KC), a clean, reference site, Scuffletown Creek (SC), a 

moderately creosote-contaminated site, and Atlantic Wood (AW), a heavily creosote- 

contaminated site adjacent to Atlantic Wood Industries, Inc. SC is approximately 600 m 

from AW.
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Purification of GSTs from the cytosol was performed at 4°C using S- 

hexylglutathione affinity chromatography (Mannervik & Guthenberg, 1981). Pooled 

cytosol was dialyzed overnight at 4°C in 3/4" Prepared Dialysis Tubing with 12-14kD 

molecular weight exclusion limit (Gibco BRL, Gaithersburg, MD) using three changes of 

three liters of loading buffer (lOmM Tris HC1. 50mM NaCl pH 7.8). Dialyzed cytosol 

(4-6ml) was passed over a column (1.5cm x 8.5cm) of S-hexylglutathione agarose 

(Sigma, St. Louis. MO) with 4 column volumes of loading buffer. The column was 

washed with 3.5 column volumes wash buffer (lOmM Tris HC1. 200mM NaCl, pH 7.8) 

and the enzyme eluted with 4 column volumes elution buffer (wash buffer with 5mM S- 

hexvlglutathione [Sigma, St. Louis, MO]). Fractions (2.0 ml) were collected using an 

ISCO Foxy fraction collector (Lincoln, NE) and analyzed for protein content at 280nm 

and for enzyme activity (see below). Eluted fractions with GST activity >1.0 units/ml 

and protein absorbance greater than 0.1 A2So were pooled and washed in 20mM sodium 

phosphate buffer. The pooled fractions were then concentrated to approximately 500- 

600/izl using a Centriprep-30 concentrator (Amicon, Inc., Beverly, MA) and stored at 

-80°C.

Enzvme Activity

Glutathione S-transferase activity was determined spectrophotometrically using 1- 

chloro-2,4-dinitrobenzene (CDNB) (Sigma. St. Louis, MO) as a substrate (Habig et al.* 

1974). The assay was conducted in a thermostated cell compartment in a Gilford 

RESPONSE spectrophotometer (Ciba-Coming, Oberlin, OH) at 25°C using 0.1M 

potassium phosphate buffer, pH 6.5, with ImM glutathione, ImM CDNB, and 10-20/fi
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cytosolic enzyme. Blanks consisted of assay buffer without cytosolic enzyme. Change in 

absorbance of substrate upon conjugation with GSH was monitored at 340nm over a 

period of 5 minutes. Enzyme activity is expressed in units which are defined as the 

formation of l/^mole product per minute. Specific activity is defined as the units of 

enzyme activity per mg protein. Total protein was estimated using the method of 

Bradford (1976) with bovine serum albumin as a standard.

Electrophoresis

Sodium dodecvl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed using 12% polyacrylamide gels (Laemmli, 1970) in a Bio-Rad Mini- 

PROTEAN II dual slab cell (Bio-Rad. Richmond, CA). SDS-PAGE was used for the 

determination of purity of the enzyme after purification, molecular weight estimation, and 

for western blot quantification of GST in samples from all sites.

Native (non-reducing) isoelectric focusing (IEF) was performed according to 

Robertson et #7.(1987) using a Hoefer Mighty Small II SE250 Vertical Slab Unit (Hoefer, 

San Francisco, CA). Native IEF was used to separate the GST isoforms, estimate their 

isoelectric points (pi), and to screen monoclonal antibodies (see below). Denaturing 

(non-native) IEF in urea was performed according to Killick (1991) in order to determine 

the subunit composition of the GST isoforms. Ampholytes (Bio-Rad, Richmond, CA) 

were used to create a pH gradient in both native and non-native IEF gels.

Estimation of molecular weights and isoelectric points were determined using 

electrophoresis protein standards (Bio-Rad, Richmond, CA) and purified rat liver 

glutathione S-transferase subunits of molecular weights 28 (Alpha), 26.5 (Mu), and 25
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(Alpha) kD (Sigma, St. Louis, MO). Protein standards used in SDS-PAGE gels were 

molecular weight markers and rat liver GST subunits (Sigma, St. Louis, MO). Standards 

used in IEF gels were IEF markers (Sigma, St. Louis, MO). Standards used in IEF-urea 

gels were 2-D markers (Bio-Rad, Richmond, CA). Gels were stained for protein using 

either silver stain (Polysciences. Inc.. Warrington, PA) or Coomassie brilliant blue R-250 

(Bio-Rad, Richmond, CA).

Western Blotting

Western blotting was performed according to ECL (Amersham Life Science, 

Buckinghamshire, England) Western blotting protocols . Proteins were transferred from 

SDS-PAGE and IEF gels to Immobilon PVDF Transfer Membrane (Millipore, Bedford. 

MA) for western blotting (Towbin et al., 1979) in a Bio-Rad Mini Trans-blot cell. Pre

chilled buffers were used for transfer (100V for lh, 4°C). The transfer buffer used with 

SDS-PAGE gels consisted of 25mM Tris, 192mM glycine, 20% methanol (pH 8.3). The 

transfer buffer used with IEF gels consisted of 0.7% acetic acid. The transfer buffer used 

with IEF-urea gels consisted of 0.7% acetic acid, 10% methanol. Following transfer of 

proteins to membranes, the membranes were stored overnight in TTBS (20mM Tris base, 

137mM NaCl, 3.8 mL 1M HC1 w/ 0.1% Tween-20, pH 8, per 1000 mL) at 4°C. The 

membranes were then incubated on a rocker (Reliable Scientific, Hernando, MS) with 

mouse anti-GST primary antibody (either polyclonal or monoclonal) diluted in TTBS for 

1 hour, rinsed in TTBS and incubated with the secondary antibody, horseradish 

peroxidase linked goat anti-mouse antibody (G«M-HRPO, IgG, IgM, H+L) (Jackson 

ImmunoResearch, West Grove, PA) for 1 hour. Detection of antibody bound to protein
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bands was performed using enhanced chemiluminescence with ECL (Amersham Life 

Science, Buckinghamshire, England) Western blotting detection reagents. The 

membranes were then stripped of antibody in stripping buffer (lOOmM 2- 

mercaptoethanol, 2% sodium dodecyl sulphate, 62.5mM Tris-HCl, pH 6.7) at 50°C for 30 

minutes and stained for total protein with colloidal gold (Bio-Rad, Richmond, CA). 

Monoclonal Antibody

Production of monoclonal antibodies was performed according to Goding (1983) 

with a few modifications (Fig. 5). Purified GST (antigen) from Atlantic Wood fish was 

emulsified in Freund's Complete Adjuvant (FCA) (Sigma, St. Louis, MO) and 

administered to four 5-week old female BALB C/J mice (Jackson Labs, Bar Harbor, ME). 

Each mouse received one subcutaneous and one intraperitoneal (ip) injection (approx. 

40/xg protein/100^1 FCAfrnouse). Serum was derived from each immunized mouse prior 

to immunization (pre-bleed) and one month after immunization (immune sera). Blood 

was collected from a tail vein and allowed to clot at room temperature for 2 hours or 

overnight at 4°C. After clotting, the blood was spun at 14,000g in an Eppendorf 5415 C 

centrifuge (Brinkmann, Westbury, NY) for 10 min. at 4°C and the sera was removed and 

stored at -80°C. The antibody response to the antigen was monitored (see below) in each 

mouse using the collected sera.

Mice exhibiting an immune response were challenged at 7 weeks post 

immunization with an intravenous dose of purified GST (5^g protein) in sterile phosphate 

buffered saline (PBS) (10 mM sodium phosphate, 150 mM NaCl, pH 7.2-7.4). After 4 

days, the mouse was killed by cervical dislocation and the spleen aseptically
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Figure 5. Monoclonal antibody production. A flow-chart illustrating the steps and time

frame for production of monoclonal antibodies
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removed and splenocytes harvested. Splenocytes were fused with SP 2/0 mouse 

myeloma cells (Shulman et al., 1978) using 50% polyethylene glycol. Fused cells were 

selected using medium containing azaserine-hypoxanthine (AH) (Foung et al., 1982) and 

were grown in 96 well tissue culture plates (Coming, Cambridge, MA). After 9 & 10 

days, the supernatants were screened for anti-GST antibodies using an ELISA (see 

below). Cells from positive wells were cloned by limiting dilution as well as expanded in 

24-well plates, followed by 25cm2 flasks, and then frozen in freezing medium (90% fetal 

bovine serum, 10% dimethylsulfoxide) at -80°C. Positive cells were then stored in liquid 

nitrogen. Positive cells went through at least one more round of cloning in order to be 

certain that the antibody producing cells were monoclonal.

Large quantities of antibody were collected as ascites fluid. Mice were primed 

with an ip injection of pristane (Sigma, St. Louis, MO) one month prior to injection of 

hybridoma cells. Hybridoma cells were grown in 75cm2 flasks until confluent. 

Approximately 5x1 CP cells suspended in PBS were injected ip into mice. When the 

mouse belly was fully distended with ascites fluid (after 2.5-8 weeks), the mouse was 

killed by cervical dislocation. The ascites was aspirated from the peritoneal cavity, then 

rinsed with 5ml sterile PBS. All fluid was once again removed. The ascites was spun at 

227lg for 30 min in a Sorvall RT 6000D centrifuge (Du Pont, Wilmington, DE). Any 

pellet formed was discarded. In some instances, due to time constraints, the ascites was 

allowed to sit overnight at 4°C before precipitation. The ascites fluid was sterile filtered 

and the antibody precipitated using saturated ammonium sulfate (SAS) (lOOg ammonium 

sulfate, 100ml milliQ water [Millipore, Bedford, MA], pH 6.7) (Harlow & Lane, 1988).
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While gently swirling the ascites on ice, a one-half volume of SAS was added over 30 

min. The ascites was spun at 3000g at 4°C for 30 min. The supernatant was removed and 

another volume of SAS equal to one-half the original volume of ascites was slowly added 

to the supernatant while gently swirling on ice. The sample was spun at 3000g for 30 

min, the supernatant discarded and the pellet resuspended in a volume of sterile PBS 

equal to 1/10 the original volume of ascites. The antibody was then dialyzed overnight in 

PBS, titered (see below), aliquoted and stored in cryovials (Coming, Cambridge, MA) at 

-20°C.

Screening Assavs

An enzvme-linked immunosorbent assay (ELISA) (Engvall & Perlman, 1971) 

was used as the primary method for screening mouse sera and hybridomas for anti-GST 

antibodies (Fig. 6). The assay was optimized for the least amount of coating antigen 

required to yield a significant reading for screening hybridomas. Briefly, a 96-well 

ELISA plate was coated with 0.25/^g purified AW GST in 100/A coating buffer (15mM 

Na2C 03, 35mM NaHC03, pH 9.6) per well overnight at 4°C. The plate was then washed 

3x with TTBS using a Titertek Microplate Washer/20 (ICN, Costa Mesa, CA), blocked 

with 250/A 1% BSA/TTBS, and then incubated for one hour at 37°C with either 100/A 

serum dilution or 10/A cell culture supernatants in 100/A 1% BSA/TTBS. Unbound 

antibody was washed away and the plate incubated with a secondary goat anti-mouse 

horseradish peroxidase labeled antibody (G«M-HRPO). A substrate solution of 18mM 

ABTS (azino-bis(ethylbenzthiazoline-6-sulfonic acid)) (Sigma, St. Louis, MO) and 

0.15% hydrogen peroxide in citric acid buffer (0.2% w/v citric acid, pH 4.0) was then
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Figure 6. ELISA screening assay. A flow-chart illustrating the steps for performing an 

enzyme-linked immunosorbent assay (ELISA).
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added to the plates. In the presence of HRPO, a chromogenic reaction occurs which was 

measured at 405 nm on a Titertek Multiscan MCC/340 (ICN, Costa Mesa, CA) plate 

reader. Plates which were not coated with antigen served as negative controls for 

nonspecific binding of the antibody. Serum titers are expressed in terms of units of 

antibody activity per volume of serum (units//H) (Arkoosh & Kaattari, 1990). One unit 

equals the volume of serum giving the 50% maximum OD (optical density).

Western blotting was used as a second screening method in order to determine 

which isoform(s) were being recognized by each antibody. After the isoforms were 

separated by IEF and transferred to membranes, strips of membrane were incubated with 

hybridoma supernatants. Detection of antibody bound to protein bands was performed 

using enhanced chemiluminescence as previously described.

N-terminal Amino Acid Sequencing & Amino Acid Analysis

Before the isoform was isolated for protein analysis, it was necessary to determine 

if it was a homodimer or heterodimer. Homodimers consist of two identical proteins 

(subunits) and heterodimers consist of two different polypeptides. It was necessary to 

know if the sample was pure (in the case of a homodimer) or impure (in the case of a 

heterodimer). Sequencing and amino acid analysis can only be performed on pure 

samples. The method of Killick (1991) was used to determine if the elevated isoform was 

a homo- or heterodimer. Purified AW cytosolic proteins were separated by urea-IEF.

Gels were stained for protein to visualize the number and intensity of the bands. Proteins 

were also transferred to PVDF membranes for western blotting to determine the number 

of bands which were recognized by the MAb. It was assumed that if the protein were a
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heterodimer, two bands would be visualized during western blotting if the antibody 

recognized the same epitope on each subunit. If the antibody did not recognize the same 

epitope, and only one band was visualized during western blot, then a second band of 

equal staining intensity should appear in the protein stain. If the protein were a 

homodimer, protein stain would reveal a single major protein band that would be 

visualized during western blotting.

Sample preparation for N-terminal sequencing was performed according to Hsieh 

et al. (1988). Briefly, purified AW GST isoforms were separated on a native IEF gel 

using ampholytes with pH ranges of 3-10 and 7-9. The gel was soaked in 200mi of 3.5% 

perchloric acid for 1 hour with a change of solution every 20 min. The ampholytes were 

then removed using a Southern blot apparatus for 3 hours using 2% acetic acid as a 

buffer. Proteins were transferred to Immobilon-P in 0.5% NP-40, 1.0% acetic acid buffer 

at 100V for 1 hour at 4°C. The membrane was stained briefly (less than 1 min.) with 

Coomassie blue, destained briefly (less than 1 min.), and rinsed several times in milliQ 

water. The target bands were cut from the membrane, dried, and shipped to the 

University of Nebraska Medical Center Protein Structure Core Facility (Omaha, NE) for 

N-terminal sequencing and amino acid analysis.

A comparison of amino acid compositions was conducted using the fractional 

content of each amino acid. The sum of the absolute values of the differences of each 

amino acid was multiplied by 50 to give the difference index (DI) (Metzger et al., 1968). 

Two proteins with the same amino acid composition have a DI of 0 and two proteins with 

no amino acids in common have a DI of 100. Amino acid composition for the
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mammalian isoforms was calculated using PC/GENE from sequences obtained from the 

SWISS-PROT database.

Field Study

The field study was a comparison of the GST activity and the relative amounts of 

the GST isoform in livers of individual mummichog from the three sample sites. GST 

activity was determined using CDNB as a substrate. Western blotting was used to 

determine the relative amounts of the isoform. The isoform was not purified so that the 

concentration of isoform in a given sample could not be determined.

To determine the relative amounts of isoform, a standard curve was developed for 

this study using pooled AW cytosolic proteins. The curve consisted of jug amounts of AW 

cytosolic proteins which, when blotted with the MAb and scanned, would give a linear 

increase in densitometric area with an increase in amount of protein. AW cytosolic 

proteins were titrated using MAb GST B2 C4 (see results). The results in Fig. 7 show a 

linear region (R2 = 0.98) from 0.125 to 2^g cytosol. A standard curve was therefore used 

that consisted of 0.125, 0.25, 0.5, 1, 2,ug pooled cytosolic proteins from AW fish.

The amount of protein used for each sample was 1-12/zg for KC, 1-2^g for SC, 

and 0.5-l^g for AW. Membranes were blotted using a 1:5000 dilution of monoclonal 

antibody GST B2 C4 (2.45,ug/ml protein) as the primary antibody. Samples and 

standards were analyzed using scanning densitometry with a CS-930 Chromato-Scanner 

(Shimadzu, Kyoto, Japan). Sample values were determined using the standard curve.

Each fxg of AW cytosol equals one GST unit. Each sample was then normalized by 

dividing the GST unit value by the ^g  of sample which was loaded in the lane.



30

Figure 7. Titration of AW cytosol using MAb GST B2 C4 (1:5000). Pooled AW hepatic 

cytosolic proteins were separated using SDS-PAGE and then blotted. The GST band 

which was recognized by the antibody was scanned at 550nm to determine the 

densitometric area. The area of each band was then plotted against the amount fug) of 

protein loaded. The region from 0.125-2 ^g is linear (R2 = 0.98). A standard curve was 

therefore developed using 0.125, 0.25, 0.5. 1 and 2 fj.g AW cytosolic proteins. This 

standard curve was used to calculate the relative amounts of GST isoform in livers of 

mummichog from the three sample sites.
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Sample values are expressed as GST units//ug protein (units/^g). Statistical significance 

between sample sites was determined by a Kruskal-Wallis analysis of variance because of 

the non-homogeneity of variances of the samples.
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RESULTS

GST Purification

Affinity purification of GST from hepatic cytosols of AW and KC fish resulted in 

approximately 28-fold and 45-fold GST purification, respectively. Purification of GSTs 

from Atlantic Wood fish was performed three times with 40%, 41% and 65% recovery of 

GST activity (Table 2A-C). Purification of GSTs from King Creek fish was performed 

once with 7.7% recovery of GST activity (Table 2D). At least 70% and 50% of GST 

activity adsorbed to the column and was recovered in the eluant during AW and KC 

purifications respectively. The remainder of the activity did not adsorb to the column and 

appeared in the load fractions. After concentration, 60-70% of the GST activity was 

recovered for AW while only 14% of the activity was recovered for KC. This low 

recovery for KC was probably due to leakage through a faulty concentrator membrane.

In each purification, GST activity was recovered as a single peak of activity and protein 

during elution (Fig. 8A & 8B). The purified protein consisted mainly of a band of 

approximately 27.2 kD (Fig. 9), which is in the molecular weight range of GSTs.

Native isoelectric focusing of the purified enzyme revealed four major bands at 

the basic end with apparent pis of 8.8, 8.7. 8.3, and 8.1 along with some minor bands at 

the acidic end (Fig. 10). The protein with pi of 8.1 appeared to be the major form and 

was possibly elevated in purified AW GST when compared with purified KC GST and 

was therefore targeted for monoclonal antibody production.



Table 2. Purification of hepatic glutathione S-transferases from Atlantic Wood and King Creek 
mummichog.

A. Atlantic Wood 

Purification S tep Protein (mg)
G ST Activity with 

CDNB (units)
GST Activity 

Recovered (%)
Cytosol 98.6 317.8
Dialyzed Cytosol 101.3 281.7 88.6
Sam ple Applied to Column 91.6 254.7
Pooled Fractions 2.4 196.3 77.1
C oncentrated Sam ple 1.2 115.2 58.7

% Total Activity Recovered 40.1
Purification 30x

B. Atlantic W ood 

Purification Step Protein (mg)
G ST  Activity with 

CDNB (units)
G ST Activity 

Recovered (%)
Cytosol 91.6 285.6
Dialyzed Cytosol 89.2 159.9 55.9
Sam ple Applied to Column 83.4 149.6
Pooled Fractions ND 171* 114.3
C oncentrated Sam ple 1.5 123.1 73.4

% Total Activity Recovered 
Purification

41 
26.5x

C. Atlantic Wood 

Purification Step Protein (mg)

GST Activity with 

CDNB (units)

GST Activity 

Recovered (%)
Cytosol 114.9 438
Dialyzed Cytosol 125.8 444 101.4
Sam ple Applied to Column 115.9 409
Pooled Fractions ND 452* 110.5
C oncentrated Sam ple 2.6 286.6

% Total Activity Recovered 65.4
Purification 29x

D. King C reek

Purification Step

G

Protein (mg)

ST Activity with 

CDNB (units)

G ST  Activity 

R ecovered (%)
Cytosol 71 74.3
Dialyzed Cytosol 58.1 86 115.7
Sam ple Applied to Column 54.5 80.6
Pooled Fractions ND 39.3* 48.8
Concentrated Sam ple 0.1 5.1 13.6

% Total Activity Recovered 7.7
Purification 44 .5x

‘Indicates value w as determ ined using sam ple volume instead of mg protein 

ND = <0.1 mg/ml
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Figure 8. S-hexylglutathione affinity purification of hepatic GSTs from Atlantic Wood 

(A) and King Creek (B) mummichog, Fundulus heteroclitus. A and B were loaded with 

83 mg and 55 mg protein, respectively. Fractions (2.0 ml) were collected and analyzed 

for protein (A280 nm) and GST activity with CDNB as a substrate. Load = fractions 1- 

25, wash = 26-47. elute = 48-72.
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Figure 9. SDS-PAGE analysis of purified mummichog, Fundulus heteroclitus, GSTs. 

Lane 1, molecular weight standards; lane 2, rat liver GST standards which consist of an 

Alpha class subunit (28 kD), a Mu class subunit (26.5 kD) and an Alpha class subunit (25 

kD); lane 3, AW hepatic cytosol (1 Mg); lane 4, S-hexylglutathione agarose affinity 

purified hepatic GST (0.1/^g) from AW mummichog. The purified protein consists of a 

band that is approximately 27.2 kD without any contaminating proteins. Protein bands 

are visualized with silver stain.
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Figure 10. IEF analysis of purified hepatic GSTs from AW and KC mummichog, 

Fundulus heteroclitus. Lane 1, IEF standards; lane 2, S-hexylglutathione agarose 

affinity purified GSTs from livers of AW mummichog, and lane 3, KC mummichog. The 

gel consisted of 3-10 ampholytes. Purified GSTs were loaded at 0.95/ig protein/lane. 

Protein bands were visualized with silver stain. There are four bands at the basic end 

with a few minor bands at the acidic end. The major band at the basic end has a pi of 

approximately 8.1 and appears to be elevated in the AW sample when compared with the 

KC sample.
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Monoclonal Antibody Production

Four mice (B, C, D, E) were immunized with purified AW GST. After one 

month, titers for each mouse were as follows: B= 67 units/[A, C= 180 units/^l, D= 100 

units/jul, E= 250 units//zl (Fig. 11). Western blot with serum from mouse B against 

purified AW GST and AW cytosolic proteins indicated that there was no cross-reactivity 

of the antibody with other cytosolic proteins (Fig. 12). A fusion was performed with 

mouse B which had a titer of 50 units/^l (Fig. 13) at the time of fusion.

The fused cells were distributed into four master 96-well cell culture plates 

(labeled GST 1-4). The master plates were screened on day 9 and four wells (labeled 

GST1 Dl l ,  GST2 A5. GST2 B6, GST4 H4) had a signal which was 2x the background. 

These wells were cloned and the master plates were rescreened for slow growing cells on 

day 11. Nine more wells were cloned for a total of 13 wells which were cloned during 

the first round. The first round clones were screened on day 10 and only one of 13 clone 

plates (GST1 Dl l )  had positive wells. Four wells on plate GST1 D ll came up positive 

(GST A2, GST B2, GST F2, GST A5), all were expanded and frozen, and three (A2, B2, 

F2) went through a second round of cloning. Supernatants from the first round clones 

were screened by western blot and all four clones recognized the target protein with pi of 

8.1 (Fig. 14). Western blot of SDS-PAGE separated proteins using first round clone 

supernatants indicated that the antibodies recognized a GST isoform which is elevated in 

cytosol and purified GSTs from AW fish when compared with cytosol and purified GSTs 

from KC fish (Fig. 15).

The second round clone plates were screened on day 6 and four positive wells
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Figure 11. Titration curves for pre-bleed and immune sera. Four mice (B,C,D,E) were 

immunized with purified AW GST (40/ug protein/mouse). At one month, the titers for 

each mouse were as follows: B= 67 units/^l, C= 180 units/^1, D= 100 units///l, E= 250 

units/jul. The horizontal line represents the 50% maximum OD.
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Figure 12. Western blot analysis of polyclonal antibody specificity for purified 

mummichog, Fundulus heteroclitus, hepatic GSTs. Lane 1, lyug AW cytosolic proteins; 

lane 2, 0.1 yug affinity purified GSTs from AW mummichog. Protein is visualized with 

colloidal gold stain. Lanes 3 and 4 are western blots of lanes 1 and 2, respectively. 

Membrane was incubated with a 1:2000 dilution of mouse B immune serum. The 

polyclonal antibody recognizes the 27.2 kD GST band and does not recognize other 

proteins in the cytosol.
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Figure 13. Titration curve for mouse B serum collected at time of fusion. Mouse B had a 

titer of 50 units/pd. Lines represent 50% maximum OD.
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Figure 14. Western blot screening during monoclonal antibody production. Affinity 

purified AW mummichog, Fundulus heteroclitus, hepatic GSTs were separated by native- 

IEF. Lane 1 is colloidal gold protein stain showing the four bands at the basic end with 

their pi values. Lane 2 was incubated with 1:20,000 polyclonal serum from mouse B.

The polyclonal antibody recognizes the 8.1. 8.3 and 8.7 pi bands but not the 8.8 pi band. 

Lanes 3-6 were incubated with tissue culture supernatant from first round clones: GST 

A2 (lane 3), GST A5 (lane 4), GST B2 (lane 5), GST F2 (lane 6). All first round clones 

recognize the major 8.1 pi band. Lane 7 was incubated with GST B2 C4 MAb. The 

MAb recognizes both the major 8.1 pi band and the 8.3 pi band. Lanes 1-6 contain 4^g 

protein, lane 7 contains 6fxg protein.
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Figure 15. Western blot analysis of hepatic cytosol and affinity purified GSTs from AW 

and KC mummichog, Fundulus heteroclitus. Proteins are separated by SDS-PAGE. A. 

Lane 1, KC cytosol; lanes 2 & 3, purified KC GSTs; lane 4, rat liver GST standards 

which consist of an Alpha class subunit (28 kD), a Mu class subunit (26.5 kD) and an 

Alpha class subunit (25 kD); lanes 5 & 6. purified AW GSTs; lane 7. AW cytosol. 

Protein loaded at l^g of cytosol, 0.1/zg pure GSTs. Protein is visualized with colloidal 

gold stain. B. Western blot of A. Membrane incubated with first round clone tissue 

culture supernatant from GST A2. The antibody recognizes a GST isoform which is 

elevated in AW cytosol and purified GSTs.
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from each plate were expanded and frozen. Cells from each second round clone (GST B2 

C4. GST A2 B9, GST F2 D8) as well as one first round clone (GST A5) were used for 

ascites production. Ascites titers from these clones were as follows: GST B2 C4 = 7 x 

102 units//zl, GST A2 B9 = 1.1 x 103 units/,ul, GST F2 D8 = 1.1 x 103units/^l, GST A5 = 

2.3 x 103units//il (Fig. 16). Although all four cell lines used in ascites production arose 

from the same well, they produce different antibodies as indicated by differences in their 

electrophoretic patterns (Fig. 17). GST A2 and F2 have the same electrophoretic pattern 

while GST B2 has a different pattern. GST A5 is probably a third antibody, which was 

not recognized by the G~M, IgG, IgM antibody although protein stain does indicate that 

protein was loaded in the lane (not shown).

Field Studv

Analysis of the 27.2 kD protein band corresponding to GSTs by scanning 

densitometry demonstrated an elevation of the protein in AW and SC fish compared with 

KC fish (Fig. 18) and represents a major protein in AW hepatic cytosol. There was a 

significant difference (p<.0001) in GST activity with CDNB between all three sample 

sites (Fig. 19) with 4-fold and 2.2-fold greater activity in AW and SC respectively than 

KC. There was also a significant difference (p<.0001) in GST isoform concentrations 

between all three sample sites (Fig. 19) with a 5.8-fold and 2.2-fold greater values for 

AW and SC than KC. Fig. 20 shows a comparison of the western blot results for an 

individual fish from the three sample sites. There was a strong correlation (r =.834, 

p<0001) between GST activity with CDNB and isoform concentration (Fig. 21). The 

strong correlation between enzyme activity and isoform concentration indicates that the
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Figure 16. Titration curves for ascites. Line represents the 50% maximum OD. The 

titers for the MAbs are as follows: GST A2 B9 = 1.1 x 103 units//zl, GST A5 = 2.3 x 103 

units/^l, GST B2 C4 = 7 x 102 units//^!, GST F2 D8 = 1.1 x 103 units/^l.
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Figure 17. Electrophoretic patterns of MAbs. Tissue culture supernatant (1.5^/g protein) 

from each MAb was separated by native-IEF and then blotted with G«M (IgG, IgM, 

H+L). Lane 1, GST B2 C4; lane 2, GST A2 B9; lane 3, GST F2 D8; lane 4, GST A5. 

GST A2 B9 and GST F2 D8 have the same electrophoretic pattern. GST B2 C4 has a 

unique pattern and GST A5 is not recognized by the G«M antibody although protein was 

loaded in the lane (not shown).
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Figure 18. Comparison of intensity of GST band in KC, SC and AW mummichog, 

Fundulus heteroclitus, hepatic cytosol separated by SDS-PAGE. A. Silver stained 

cytosolic proteins from KC (lane 1), SC (lane 2), and AW (lane 3) mummichog. Each 

lane contains 2/ug protein. B. Densitometric tracing of lanes in A.
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Figure 19. Comparison of GST activity and relative isoform concentrations in 

mummichog, Fundulus heteroclitus, from three sample sites. Isoform concentration is 

expressed in units/,ug. GST activity is expressed in units/mg. There is a significant 

difference in isoform concentrations between all sample sites (p<.0001, n=l 1) and a 

significant difference in activity between all sample sites (p<.0001, n=l 1). Bars represent 

means ± standard error.
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Figure 20. Comparison of intensity of the GST isoform in western blot analysis of KC, 

SC and AW mummichog, Fundulus heteroclitus, hepatic cytosol. A. Western blot o f 

SDS-PAGE separated proteins. Lane 1, purified GSTs; lane 2, cytosol from KC 

mummichog; lane 3, cytosol from SC mummichog; lane 4, cytosol from AW 

mummichog. All lanes contain 2 ;zg protein. Membrane was incubated with 1:5000 GST 

B2 C4 antibody. B. Densitometric tracings of bands in A.





Figure 21. Correlation between GST isoform concentration and GST activity 

mummichog, Fundulus heteroclitus, from three sample sites. n= 33.
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enzyme is CDNB reactive.

Dimeric Composition of Elevated Isoform

Protein stain of AW cytosolic proteins separated in an urea-IEF gel revealed a 

single major band with pi of approximately 8.3 and a few minor bands at the basic and 

acidic ends (Fig. 22). Western blot showed that the MAbs only recognize the major band. 

This suggests that the elevated isoform is a homodimer. If the protein were a 

heterodimer, the other subunit would have a different pi and two bands of similar size 

would appear with the protein stain and on the blot.

N-terminal Amino Acid Sequencing & Amino Acid Analysis

GSTs are characterized using substrate specificity, immunological cross

reactivity, and protein sequence. The most effective method for characterization, other 

than sequencing the entire protein, is by determining the N-terminal sequence. The N- 

terminal region is highly conserved and has been used in identifying GSTs from other 

organisms. For the elevated isoform in mummichog, the N-terminal amino acid sequence 

could not be determined because the N-terminus is blocked. Blocking occurs due to post- 

translational modification of the N-terminal amino group. The modification masks the N- 

terminus and the protein cannot be sequenced using the conventional methods of Edman 

degradation.

The amino acid composition was determined (Table 3) and is shown in 

comparison with the amino acid composition of mammalian isoforms in each class. A 

comparison of the amino acid composition of the mummichog GST with those of 

mammalian forms from rat and mouse as well as plaice, salmon, blue mussel and thorny-



51

Figure 22. Western blot analysis of urea-IEF separated affinity purified GSTs. Lane 1, 

4^g protein visualized with colloidal gold stain. Western blot of lane 1 in lanes 2-5. 

Lanes were blotted with 1:5000 dilution of MAb: lane 2, GST B2 C4; lane 3, GST F2 

D8; lane 4, GST A5; lane 5, GST A2 B9. All MAbs recognize the major protein band 

with approximate pi of 8.3.
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Table 3. Amino acid com position  o f se lec ted  glutathione S -transferases including  
the isoform  elevated in Atlantic W ood m um m ichog liver.

C om position (%)

Fundulus Thorny-back Alpha Mu Pi Theta
Amino Acid heteroclitus shark* Rat GSTA1** Rat GSTM1 R atG ST PI Rat GSTT2

Ala 7 7.1 7.2 5 6.1 9
Arg 4.2 3.1 4.9 5.9 4.2 5.7
Asx 10.6 9.9 9.4 11 11.8 6.4
Cys 0 0 0.9 1.3 1.9 1.2
Glx 12.4 14.3 11.2 10.1 9 13
Gly 11.8 12.4 4.5 4.1 8.5 5.7
His 2.5 2.5 1.3 1.8 1.9 2.4
lie 3.2 3.1 5.8 5.9 3.8 4.5

Leu 10.8 7.8 13.5 11.5 14.7 14.7
Lys 5.2 4.7 10.8 8.7 6.1 4.9
Met 1.8 2.8 4 3.6 1.4 2.4
Phe 5.4 3.7 4.9 5.5 3.3 3.6
Pro 5.6 5 4.5 5.5 5.2 5.7
Ser 9.2 9.6 4 5.5 5.2 4.9
Thr 4 3.7 3.6 3.2 3.8 3.2
Trp ND 2.5 0.4 1.8 0.9 1.6
Tyr 4 2.5 3.6 6.4 5.2 2.4
Val 2.4 5.3 4.5 2.3 6.1 7.7

*From Sugiyama et al. (1981).

**Rat isoforms calculated using PC/GENE from sequences obtained from SWISS-PROT 
database.

ND=Not determined.
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back shark are listed in Table 4. There is very little relation between the mummichog 

GST with any of the mammalian forms but it appears to be similar to the GST isolated 

from thorny-back shark and salmon. The MAb GST A2 B9 reacts only with the rat Mu 

subunit in the standards and not with the Alpha or Pi subunits (Fig. 23). The GST B2 C4 

MAb does not react with any of the rat subunits.

Dimeric Composition of a Minor Isoform

A comparison of western blots of IEF separated iso forms with polyclonal serum 

and MAb GST B2 C4 is illustrated in Fig. 14. The polyclonal antibody recognizes 

three of the four major basic bands. The MAb only recognizes the 8.1 (major) and 8.3 

(minor) pi bands. The minor isoform may either be a heterodimer consisting of one 

subunit in the major form, or the same homodimeric protein as the major isoform but 

with a slightly different pi due to post-translational modification or to being the product 

of a different allele of a polymorphic protein. There is some evidence of post- 

translational modification of some isoforms (Siegel et al., 1990) which would result in 

the same protein having a slightly different pi. The enzyme was purified from a group of 

fish in a wild population whose GST genotypes are unknown.



Table 4. Difference index values for comparison of the amino acid com position  
of the Fundulus heteroclitus GST with GSTs from other organism s.

F un dulus  T h o rny-back
h e te ro c litu s  sh a rk  R at GSTM1

R A T G STA 1" 18* 21.3 10.9
RAT GSTA2 18.4 20.9 10.4
RAT GSTA3 17.7 20.4 12.3
RAT GSTA5 18 20.6 11.2
Mouse GSTA1 18 20.5 12.6
M ouse GSTA2 17.7 20.7 11
M ouse GSTA3 17.2 20.2 12.3
Rat GSTM1 16.9 23.2 0
Rat GSTM2 16.5 21.9 3.7
Rat GST M3 17.5 23.2 6.4
Mouse GSTM1 17.3 23.6 3.8
Mouse GSTM2 16.4 22.3 3.2
Mouse GSTM3 16.6 21.9 6.4
Mouse GSTM5 20.3 25.9 8.7
Rat GSTP1 14.8 18.2 14.6
Mouse GSTP1 13.8 17 12.8
M ouse GSTP2 12.9 16.1 12.7
Pig G STP 13.3 16.9 12.2
Rat GSTT2 18.7 17.8 18
Mytilus edulisa 12.6 15.5 16.4
Thom y-back shark1 9.5 0 23.2
Salt-w ater salm on (Feb A)2 10.7 11.7 16.4
Plaice3 16.1 16.1 17.7

•Difference index calculated according to M etzger et al. (1968).

"M am m alian  isoforms calculated using PC/GENE from seq u en ces obtained from SW ISS-PR O T  da tab ase . 

0Fitzpatrick et al. (1995).

1Sugiyam a et al. (1981).

2R am age et al. (1986).

3Leaver et al. (1993).
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Figure 23. Western blot analysis of GST A2 B9 monoclonal antibody specificity for rat 

liver GST subunits. Lane 1, 1/̂ g affinity purified hepatic GST from AW mummichog, 

Fundulus heteroclitus; lane 2, rat Alpha (28 kD), Mu (26.5 kD), and Alpha (25 kD) GST 

subunits; lane 3, 1.7^g rat Pi GST subunit. Lanes 4-6 are western blot of lanes 1-3, 

respectively. The MAb recognizes the band corresponding to the rat Mu class GST 

subunit.
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DISCUSSION

In this study I have produced a monoclonal antibody to an elevated GST isoform 

in the liver of creosote-resistant mummichog. The antibody was used to measure GST 

isoform concentrations in fish from a clean site and moderately and highly polluted sites. 

There is a moderate (2.2-fold) and high (5.8-fold) increase in GST isoform concentrations 

in fish from the moderately and highly polluted sites relative to clean site fish. This is the 

first study to measure a change in GST isoform concentrations in fish from polluted sites. 

There was no apparent change in the pattern of isoforms expressed between AW and KC 

mummichog. indicating that the change in GST expression is due to a constitutively 

expressed isoform. GST activity was also measured in mummichog from the clean site, 

and moderately and highly polluted sites. There was a moderate (2-fold) and high (4- 

fold) increase in activity in fish from the moderately and highly contaminated sites 

respectively. These results agree with those of Van Veld et al. (1991). Other studies 

have reported either no increase (Collier et a l 1992) or modest (2-fold) increases (Collier 

& Varanasi, 1984; Monod et al., 1988) in activity in fish from polluted sites. This is the 

first report of such a large (4-fold) increase in activity in fishes from polluted sites.

In mammals, GST isoforms are grouped into Alpha, Mu, Pi and Theta classes 

based upon protein sequence, immunological cross-reactivity and substrate specificity. 

The Mu class is highly reactive with epoxides (Mannervik et al., 1985), including BPDE, 

the ultimate carcinogen of BaP. While Pi is more efficient at catalyzing the conjugation
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of BPDE and is highly selective toward the (-t-)-enantiomer (Funk et al., 1995; Robertson 

et al., 1986b), Mu is reactive towards both the (+)- and (-)-enantiomers (Robertson et al., 

1986a). Mu isoforms are induced by phenobarbital, 3-methylcholanthrene, trans- 

stilbene oxide (Ding and Pickett. 1985) and BaP (Soni et al., 1995). Mu enzymes 

conjugate DNA hydroperoxides, cumene hydroperoxide and tra/w-stilbene oxide, 

products of oxidative stress (Hayes & Strange, 1995). Mu is also believed to play a role 

in susceptibility to lung cancer. Smokers who lack the gene encoding one of the Mu 

isoforms are more susceptible to lung cancer than smokers who express the gene 

(Nakajima et al., 1995).

The elevated isoform in the mummichog is most closely related to the mammalian 

Mu class enzymes. The isoform was characterized using immunological reactivity, 

physicochemical properties and amino acid composition. A monoclonal antibody which 

recognizes the elevated mummichog isoform also recognizes the Mu class subunit in rat 

liver. Immunological cross-reactivity of fish GSTs with mammalian Mu class subunits 

has also been observed in cod and sea trout (George et al., 1989). Physicochemical 

properties of the enzyme include a basic isoelectric point (pi 8.1), similar to Mu class 

enzymes in mice and rats (Mannervik & Danielson, 1988). CDNB is a substrate for Mu 

class GSTs. A strong correlation between isoform concentration and GST activity with 

CDNB indicates that the mummichog GST isoform is also CDNB reactive. The N- 

terminus of the mummichog GST is also blocked, similar to basic GSTs in mammals 

(Mannervik et al., 1985).

While one of the monoclonal antibodies produced recognizes a rat Mu isoform.
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the amino acid analysis does not place the mummichog GST close to any mammalian 

GSTs. Similar results were observed with a GST isolated from mussel (Fitzpatrick et al 

1995). The amino acid analysis did not place the mussel GST close to any mammalian 

forms although the enzyme cross-reacted with, and had an N-terminal sequence that was 

close to. the mammalian Pi enzyme. Amino acid analysis places the mummichog GST 

relatively close to a GST in thorny-back shark (Sugiyama et al., 1981) and salmon 

(Ramage et a l 1986). The significance of this is unclear. The amino acid composition 

of the elevated isoform in the mummichog was not close to an isoform sequenced from 

plaice liver that is similar to mammalian Theta (Leaver et al., 1993). Amino acid 

composition has not been determined for any other fish species. It is my observation that 

amino acid analysis for the identification of proteins works well when comparing proteins 

from mammals but is not useful when comparing non-mammalian proteins with 

mammalian proteins, at least in identifying GSTs.

GSTs play a major role in detoxification of lipophilic xenobiotic compounds in 

vertebrates and invertebrates. GSTs provide protection in cells against electrophilic 

metabolites that may bind to critical cellular macromolecules, including DNA, and result 

in production of mutant gene products and carcinogenesis. GST catalyzed conjugation of 

BaP metabolites with glutathione reduces the formation of DNA adducts (Hesse et al.,

1990) and aids in excretion of the toxic compounds. In addition to their role in 

conjugation of xenobiotic metabolites, glutathione S-transferases detoxify the products of 

oxidative stress (Hayes & Strange, 1995; Di Giulio et al., 1995). Oxidative stress occurs 

due to the production of oxyradicals during aerobic metabolism of endogenous and
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xenobiotic compounds and results in oxidative damage to membrane lipids and DNA. In 

mammals, GSTs protect cells from oxyradical production and the products of oxidative 

stress through conjugation and peroxidase activity.

Fish exhibit signs of oxidative stress, which include an increase in lipid 

peroxidation and antioxidant activity, when exposed to PAH contaminated sediments (Di 

Giulio et a l 1993; Roberts et al., 1987). Hasspieler et al. (1994a) found differences in 

susceptibility to oxidative stress in two fish species that exhibited differences in 

susceptibility to pollutant-mediated neoplasia. Oxidative stress induced in rat liver cells 

resulted in down regulation of cytochrome P450 mRNA expression (Barker et al., 1994). 

This down-regulation may be an adaptive response to carcinogen exposure to minimize 

cell damage. A similar decrease in cytochrome P450 levels has been observed in AW 

mummichog (Van Veld & Westbrook, 1995), indicating that these fish may be 

undergoing oxidative stress due to exposure to creosote-laden sediments. While 

antioxidant enzyme activity and lipid peroxidation has not been measured in AW 

mummichog, oxidative stress may play a role in elevation of GST activity and tumor 

formation in these fish.

This study indicates a relationship between pollution level and GST 

concentrations and activity in mummichog liver. The relationship suggests that the 

elevated GST isoform may play a role in acute toxicity resistance of the mummichog to 

creosote-contaminated sediments. This result is not surprising because conjugation of 

PAH metabolites by GST is a major pathway of detoxification in fish from polluted and 

non-polluted sites (Kirby et al., 1990a). Increases in GST expression and activity have
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been associated with pesticide resistance in insects (Ku et al., 1994; Lagadic et al., 1993) 

and drug resistance in cancer cells (Tew, 1994; Mannervik et al., 1990). Differences in 

GST isoform expression have been associated with susceptibility to DNA damage (van 

Poppel et al., 1992; Wiencke et al., 1990) and development of cancer in mammals (Soni 

et al., 1995; Nakajima et al., 1995). Variations in GST activity (Hasspieler et al., 1994b; 

Collier et al., 1992) and isoform expression (Collier et al., 1992) are also believed to play 

a role in susceptibility to pollutant-mediated carcinogenesis seen in fishes from PAH- 

contaminated sites.

The site-dependent differences in GST levels in mummichog may result from 

physiological acclimation or genetic adaptation. While a dose-response relationship 

suggests that the differences in GST isoform levels and activity seen in the three 

populations studied is due to physiological acclimation, there is evidence to indicate that 

the response may also be genetic. Williams (1995) established that AW mummichog 

exhibit a genetic resistance to creosote laden sediments. Weis & Weis (1989) also 

observed a genetic resistance in mummichog exposed to metal contaminated sediments. 

Luoma (1977) suggested that resistance reflects the degree of contamination and greater 

resistance to a toxicant in a population from one location than a population from another 

location is direct evidence that the toxicant is exerting selective pressure. The Elizabeth 

River is a heavily industrialized area and the AW site has been polluted for years with 

several major creosote spills in the 1960s (Bieri et al., 1986). The mummichog is the 

most genetically variable species examined by Smith & Fujio (1982). High genetic 

variability within a population allows for some individuals to withstand the pollution and
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develop a resistant population.

Although the AW mummichog are resistant to the acute toxicity of the 

contaminated sediments (Vogelbein & Van Veld, unpublished), they are susceptible to 

the chronic effects. AW mummichog exhibit a high incidence of hepatic lesions 

including neoplasia while fish from SC and a control site do not exhibit these lesions 

(Vogelbein et al., 1990), indicating an association between exposure and formation of 

neoplasms. A similar pollutant associated formation of neoplasms has been observed in 

other fish species as well (Landahl et al., 1990). Altered expression of GST isoforms 

may occur in chemically induced tumors. Chemically induced hepatocellular carcinomas 

in rat expressed an increase in expression of Pi, Alpha and one Mu class enzyme, and a 

decrease in expression of another Mu class enzyme while the carcinomas expressed an 

overall increase in GST activity (Stalker et al., 1994). According to Farber (1991), the 

elevated expression of phase II enzymes may contribute to resistance in mammalian 

preneoplastic nodules to acute toxic injury.

Although over-expression of GST is commonly observed in mammalian tumors, 

over-expression of GST has not been reported in fish tumors. In fact, Stalker et al.

(1991) found that advanced neoplasms in white suckers from polluted sites exhibited a 

loss in GST expression compared with surrounding normal liver, instead of the increase 

which is observed in mammals. A decrease in GST expression was also observed in 

neoplasms induced by aflatoxin B, in rainbow trout (Kirby et al., 1990b). While GST 

induced foci were observed, they did not progress to neoplasms. The development of 

carcinomas in these fish may be due to the repeated exposure to carcinogens. Repeated
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exposure to carcinogens produces multiple genetic alterations and results in a higher rate 

of malignant conversion (Hennings et al., 1983). The loss of GST expression would 

make a cell more susceptible to damage. A similar effect may be occurring in AW 

mummichog. While Van Veld et al. (1991) did not detect any changes in GST activity in 

grossly visible neoplastic tissue, a MAb may be a more sensitive tool to determine if 

there are changes in GST expression in neoplastic versus non-neoplastic tissues.

Previous studies with fishes have focused primarily on the changes in GST 

activity upon exposure to xenobiotics. It is apparent that there is a difference in 

expression of constitutive GST isoforms between fish species, indicating that individual 

species will respond differently to toxicant exposure. Studies directed at the expression 

and properties of individual isoforms in fishes may help explain the present 

inconsistencies seen in different species upon exposure to contaminants. This study has 

attempted to gain an understanding of the role which GSTs may play in resistance of the 

mummichog by looking at changes in a major iso form in fish from creosote-contaminated 

sites, and partial classification of the isoform. Other factors, including cellular 

glutathione levels and additional enzymes involved in the xenobiotic metabolic process 

(Hasspieler et al., 1994b; Stein et al., 1992), may play a role in resistance in these fish. 

Further investigation into the biochemical mechanisms governing metabolism in the 

mummichog may render the fish an alternative as a vertebrate model to mammals for 

studying carcinogenesis (Calabrese et al., 1992) in addition to rainbow trout (Bailey et 

al., 1992).
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CONCLUSIONS

This study has shown a relationship between elevated expression of a GST 

isoform in mummichog liver and increasing environmental contamination. A similar 

relationship is observed with GST enzyme activity. This relationship suggests that GSTs, 

and more specifically, the elevated isoform, play a role in resistance of mummichog to 

creosote-contaminated sediments. Monoclonal antibodies were produced to the elevated 

isoform and have been shown to be a useful tool for estimation of relative amounts of the 

protein in mummichog hepatic cytosol using western blot analysis. This isoform has a 

blocked N-terminus but is most closely related to the rat Mu isoform based upon 

immunological cross-reactivity with the rat Mu subunit. Mummichog liver contains 

several GST isoforms that may be purified using affinity chromatography. The major 

isoforms have basic pis although there are some minor acidic isoforms.
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FURTHER RESEARCH

The ability of the mummichog to develop a genetic resistance suggests that the 

change in GST activity may be genetic, although there is no evidence to support this 

theory. In order to address this question, future studies need to 1) determine if GST 

levels decline and if tolerance to contaminated sediment changes when AW and SC fish 

are moved to an uncontaminated environment, and 2) conduct LD50 studies to see if AW 

fish are more resistant to toxic compounds than KC and SC fish. Also, further 

investigation into the specific properties of the elevated isoform in AW fish is required to 

determine the role it plays in creosote resistance. By conducting substrate studies, it will 

be possible to see if the components o f creosote are in fact substrates for the elevated 

isoform. It is also necessary to look at changes in expression of the other isoforms, for 

elevation or depression, and to characterize them. Since the N-terminus of the elevated 

isoform is blocked, the most effective way to classify the protein will be to determine the 

cDNA sequence. The antibodies will be useful for immunohistochemical studies with 

fish from the field and laboratory exposed fish. Immunohistochemistry may be able to 

detect changes in isoform expression in liver and liver lesions which cannot be measured 

by enzyme activity assays.
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