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ABSTRACT

Aquatic organisms often inhabit environments heavily contaminated with toxic
chemicals (Weis & Weis, 1989). Mechanisms of survival in these organisms are thought
to involve alteration in the biochemical processes responsible for detoxication and
elimination of the xenobiotic compounds. In the Elizabeth River VA, mummichog
(Fundulus hereroclitus) inhabit a site severely contaminated with polycyclic aromatic
hydrocarbons (PAH) of creosote origin. Although chronic effects including hepatic
neoplasms have been observed in adult mummichog (Vogelbein et al., 1990), the fish are
resistant to the acute toxicity of the contaminated sediments (Williams, 1994). Increased
levels and activities ot glutathione S-transferase (GST) in these fish (Van Veld et al.,
1991) may play a role in this resistance. GSTs are major enzymes involved in
detoxication of cytotoxic and genotoxic compounds such as electrophilic metabolites of
PAHs. Hepatic GSTs in resistant fish from a heavily contaminated site and in fish from a
reference site were purified by S-hexylglutathione affinity chromatography. Monoclonal
antibodies (MAb) were produced to a GST isotorm with pl of 8.1 and subunit MW
27.2kD. This form is elevated approximately 5.8-fold in resistant fish and 2.2-fold in fish
from a moderately contaminated site relative to tish from a reference site. GST activity
towards 1-chloro-2,4-dinitrobenzene (CDNB) is elevated 4-fold in resistant fish and 2-
fold in fish from the moderately contaminated site. There is a strong correlation between
GST activity and protein levels in these tish. From SDS-PAGE gels, a 27.2 kD band
corresponding to GSTs is also elevated in fish trom the contaminated sites and appears to
be a major cytosolic protein in resistant fish. The isoform has a blocked N-terminus but
one MAD reacts with a Mu subunit from rat liver. These results indicate an elevation of
GST levels and activity in fish from creosote contaminated sites and the monoclonal
antibody recognizes a GST form which may contribute to resistance of fish to creosote
associated contaminants.
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INTRODUCTION

Biotranstormation of lipophilic xenobiotic compounds is often a stepwise process
involving phase I and phase II enzymes (D1 Giulio et al., 1995). Phase [ enzymes are
primarily cytochrome P450-mediated monooxygenases that add polar functional groups
to lipophilic substrates through oxidation. reduction, or hydrolysis. The products of
phase [ metabolism are generally less toxic, more water soluble and therefore more
readily excreted than the parent compound (Stegeman er al., 1992). However, some
phase I metabolites are more toxic than the parent compound. Following introduction of
polar functional groups. xenobiotics are susceptible to further metabolism by phase II
enzymes that link the xenobiotic to water-soluble endogenous compounds within the cell.
These conjugation reactions increase the solubility, elimination, and detoxication of the
xenobiotic.

Glutathione S-transferases (GSTs) are an important family of phase II enzymes
involved in the biotransformation of endogenous and xenobiotic compounds (Coles &
Ketterer, 1990; George, 1994; Gulick & Fahl, 1995). They perform a major role in
detoxication of many lipophilic compounds, including the highly reactive and
carcinogenic metabolites of polycyclic aromatic hydrocarbons (PAH) in mammals and
fishes (Hawkins et al., 1988; Hawkins et al., 1990; Hendricks et al., 1985). For example,

the conversion of benzo(a)pyrene (BaP) into its ultimate carcinogenic form, BaP-7,8-diol-
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9,10-epoxide (BPDE) (Varanasi er al., 1986), is a three step process (Fig. 1). Some of
the intermediate metabolites, as well as the ultimate form, are capable of covalently
binding to critical cellular macromolecules including DNA (Kurelec et al., 1991; Schnitz
et al.. 1992: Varanasi et al., 1986; Shugart et al., 1987). This formation of DNA adducts
creates genetic mutations and may ultimately lead to the production of mutant gene
products and carcinogenesis (Barbacid. 1987; Marshall et al.. 1984; McMahon et al.,
1990). Some of the intermediate metabolites are also substrates for GSTs (Nemoto er al..
1975: Hesse & Jernstrom, 1984; Funk er a/., 1995) that catalyze the nucleophilic attack of
the sulfur atom of glutathione (y-glutamylcysteinylglycine) on the electrophilic groups of
reactive epoxides. These conjugation reactions prevent the epoxides from binding to
cellular macromolecules (Hesse & Jernstrom. 1984; Quinn er al., 1990). The glutathione
conjugates are transported out of the cell by an ATP-dependent export pump (Ishikawa,
1992; Jedlitschky et al.. 1994) and excreted (Boyland & Chasseaud, 1969).

GSTs also play a role in protection against oxidative stress (Ketterer et al., 1990;
Hayes & Strange, 1993; Di Giulio er al., 1995). Oxidative stress is caused by reactive
oxygen species, or oxyradicals (HO, O, H,O,) which are products of incomplete
reduction of oxygen to water during aerobic metabolism. These oxyradicals oxidize
membrane lipids. proteins and DNA. GSTs are believed to have arisen due to the
emergence of oxygen and aerobic respiration in order to inactivate the toxic products of
oxygen metabolism as well as inactivate toxic products produced by other organisms
(Lee, 1991). While oxidative metabolism of endogenous substrates results in the natural

occurrence of reactive electrophiles, exposure to xenobiotic compounds (Ahmad, 19953)



Figure 1. Metabolism of benzo(a)pyrene (BaP). BaP is converted to a toxic metabolite
by cytochrome P450 (P 450). The toxic metabolite may bind to critical cellular
macromolecules, be detoxified by glutathione S-transferase (GST) mediated conjugation
with glutathione or be further metabolized by epoxide hydrolase (EH) and P 450 to the
ultimate carcinogenic form. Cellular macromolecules are protected from the uitimate

carcinogenic form of BaP by GST-mediated conjugation with glutathione.
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and elevated oxygen conditions may increase the rate of production of these reactive
compounds. For example, redox cycling of compounds such as quinones and diols
(products of BaP metabolism) results in the formation of oxyradicals. An increase in
oxyradical formation may then result in mitogenic effects, DNA damage, alteration of
membrane fluidity, and cell damage and death. GSTs protect cells through conjugation
of electrophiles produced from oxyradicals and peroxidation ot DNA and lipid
hydroperoxides.

In addition to their role in conjugation. GSTs detoxify xenobiotics by serving as
carrier proteins. transporting toxicants between sites of storage or toxicity and sites of
biotransformation (Hanson-Painton er al., 1983). GSTs also form covalent bonds with
reactive electrophilic toxicants themselves (Schelin er al., 1983), further reducing the
possibility of the compounds binding to cellular macromolecules.

GSTs have been identified in mammals, fishes and invertebrates (Fitzpatrick &
Sheehan, 1993; Lee ef al., 1988) but have been most extensively characterized in rats,
mice, and humans (Habig er al., 1974; Jakoby, 1978; Mannervik, 1985; Mannervik &
Danielson, 1988; Pickett & Lu, 1989; Rushmore & Pickett, 1993). The GSTs constitute a
supergene family, being products of at least four gene families (Lai & Tu, 1986). Each
enzyme or isoform is a dimeric protein composed of two subunits of 25-28 kDa. Each
subunit contains a binding site for glutathione and a binding site for the substrate. The
majority of GSTs are cytosolic although microsomal forms exist. They are found in all
tissues and compose approximately ten percent of the soluble hepatic protein in the rat

and three percent in humans (Jakoby, 1978). I[soform expression can vary within an



organism depending on tissue (Tahir ez al., 1988), age (Peters ez al., 1989) and sex
(Hayes et ai., 1994), as well as between species (Mannervik et al., 1985) and strains
(Egaas er al., 1995). In mammals, the soluble GST isoforms are grouped into Alpha, Mu,
Pi, (Mannervik er al.. 1985) and Theta (Meyer et al., 1991) classes based upon substrate
specificity, immunological cross-reactivity, and protein sequence. There is a 70-80%
identity in amino acid sequence between isoforms within the same class and less than
30% identity between classes (Mannervik & Danielson, 1988). Most GST isoforms react
with 1-chloro-2.4-dinitrobenzene (CDNB), with the exception of Theta (Meyer et al.,
1991). Thus CDNB serves as a general substrate for measuring GST activity (Fig. 2).
The Mu class GSTs have the highest activity with epoxides, including benzo(a)pyrene-
4,5-oxide (Mannervik. 1983) an intermediate metabolite of BaP. BPDE, the ultimate
carcinogen of BaP, is a Mu class substrate but is a more efficient substrate for the Pi class
(Robertson et al., 1986a). The conjugation reaction for Mu and Pi with diol-epoxides of
PAHs is selective towards the (+)-enantiomer (Robertson & Jernstrém, 1986; Funk et al.,
1995).

GSTs can be induced in mammals using PAHs and PCBs. These compounds
generally result in an induction of phase I enzymes followed by phase II enzymes. The
induction of specific isoforms may also be strain- (McLellan ez al., 1991), organism-
(Foliot & Beaune, 1994), and sex-specific (D1 Simplicio er al., 1989) and often involves
induction of forms which are not constitutively expressed (McLellan ez al., 1991; Hayes
et al., 1991). Induction (Fig. 3) results in an increase in GST activity, GST protein levels,

and GST mRNA (Clapper et al., 1994; Ding & Pickett, 1985). The regulation of GSTs is



Figure 2. Conjugation of glutathione (GSH) with 1-chloro-2,4-dinitrobenzene (CDNB).
Glutathione S-transferase (GST) catalyzes the nucleophilic attack of the sulfur atom of

GSH on the electrophilic groups of reactive compounds.
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Figure 3. Mechanism of GST induction by different types of inducers. Modified from
Prochaska & Talalay (1988). An inducer may enter a cell, bind to the Ah receptor, and
the resultant complex activates transcription of the GST genes. The same type of inducer
may enter a cell, undergo phase I metabolism and the resultant metabolite generates an
electrophilic signal which stimulates transcription of GST genes. Another type of inducer

may enter a cell and generate an electrophilic signal which activates transcription.
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not completely understood but there is evidence for several regulatory elements on the
subunit genes (Hayes & Pulford, 1995). Planar aromatic compounds can activate gene
transcription either through binding with the aryl hydrocarbon (Ah) receptor which
interacts with the xenobiotic responsive element (XRE), or through an unknown
interaction with the antioxidant-responsive element (ARE) which is independent of the
Ah receptor (Rushmore er al.. 1990; Rushmore & Pickett, 1993).

GSTs have been identified in fishes and characterized in a few species (Foureman,
1989; Nimmo, 1987; George. 1994) including carp (Dierickx, 1985a), little skate
(Foureman & Bend. 1984). thomny-back shark (Sugiyama et al., 1981), plaice (George &
Young, 1988: George & Buchanan, 1990). and rainbow trout (Ramage & Nimmo, 1984;
Dierickx. 1985b). Fishes exhibit multiple isoforms in the liver, gut, gills and kidney.
Isoforms have pl ranges of 5.2 - 9.5 and subunits range in size from 21.7-29.0 kDa.
Reported activities of GSTs in hepatic tissues of fish using CDNB as a substrate range
between 0.1 umoles/min/mg in Atlantic salmon (George ef al., 1989) and 3
wmoles/min/mg in sheepshead minnow (James et al., 1988). Activity may also vary with
sex (George et al., 1990), season (Ramage et al., 1986; George et al., 1990; Mathieu et
al.. 1991), and organ (Laurén et al., 1989; Leaver et al.. 1992; Perdu-Durand & Cravedi,
1989).

A classification scheme for fish GSTs has not been developed although some
evidence suggests that fish and other non-mammalian organisms possess isoforms similar
to major mammalian isoforms. Immunochemical comparison of tish GSTs with

mammalian isoforms has indicated that trout. salmon and cod express a subunit that is
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recognized by antiserum to the rat Pi class subunit (Dominey et al., 1991; George et al.,
1989). Dominey er al. (1991) also found that the subunits from a major GST isoform in
salmon displayed 65% protein sequence identity with the subunits from the rat Pi class
isoform. In contrast. flounder, turbot, sea trout and salmon express a subunit
immunologically cross-reactive to an Alpha class rat subunit and cod, turbot and sea trout
express a subunit cross-reactive to a Mu class subunit (George ef al., 1989). Plaice liver
has two major isoforms, one has an amino acid sequence with greatest similarity to
mammalian Theta (Leaver et al., 1993) and the other is immunologically reactive with
Alpha (George & Buchanan, 1990). Toad (Bufo bufo) embryos have a GST which is
80% identical with mammalian P1 class (D1 [lio et al., 1992) and blue mussels (Mytilus
edulis) have a GST which 1s 60% identical with mammalian Pi class GST (Fitzpatrick e
al., 1995). Two isoforms isolated from the eyes of shrimp (Penaeus japonicus) exhibit
57% and 40% identical with human Mu and Theta class GSTs respectively (Lin &
Chuang, 1993). In two species of.squid, GST sequences from the digestive gland showed
greatest similarity to the rat Alpha class in Loligo vulgaris (Harris et al., 1991) and Pi in
Ommastrephes sloani pacificus (Tomarev et al., 1993). Octopus (Octopus vulgaris)
digestive gland also has a form most similar to Pi (Tang et al., 1994).

Induction of GST levels and activity by various environmental toxicants (eg.
PAHs, PCBs) has been demonstrated in mammals (Ding & Pickett, 1985). However,
studies using mammalian inducers with fishes have yielded inconsistent results. Some
studies report increases (1.2-3 fold) of hepatic GST activity following treatment of fishes

with PAHs and PCBs (Andersson et al., 1985; George & Buchanan, 1990; Zhang et al.,
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1990:; George & Young, 1986; Fair, 1986; Bernhoft et al., 1994; Scott et al., 1992;
Chatterjee & Bhattacharya, 1984). In other studies, treatment of fishes with similar
agents did not result in a significantly elevated response (James & Little, 1981; Ankley et
al., 1986; Lemaire et al., 1992; Collier & Varanasi. 1991; Bemnhoft et al., 1994; Goksoyr
etal., 1987; Van Veld er al., 1991; James e¢r al., 1988). The differences in responses seen
in tishes to these classical mammalian inducers may be attributed to differences in
species responsiveness, exposure period or other factors (Table 1).

Field studies have similarly led to inconsistent results with respect to GST
induction. Some studies suggest that tishes collected from PAH or PCB contaminated
sites exhibit elevated (2-fold) GST (Andersson et al., 1988: Collier & Varanasi, 1984;
Monod er al., 1988) while other studies report no differences between clean and
contaminated sites (Collier et al., 1992; Lindstrém-Seppd & Oikari, 1988). Bagnasco et
al. (1991) found that annular seabream from a polluted site exhibited a depression of GST
activity compared with control site fish. Perch collected from an oil spill site had
elevated GST activity four months after the spill, but rainbow trout did not exhibit an
elevation in activity after four days of exposure to the oil (Lindstrém-Seppd & Pesonen.
1986).

Although there are no clear trends in the literature regarding induction of GSTs by
environmental agents, species-specific differences in GST expression have been
correlated with relative sensitivity to carcinogens. For example, a comparison of
constitutive GST activity between channel catfish, a species with a low incidence of

contaminant induced neoplasia, and brown bullhead, a species with a greater incidence of



Table 1. Responses of fish hepatic GSTs to inducers of mammalian GSTs.

Organism Inducer Dose Route Exposure Time Induction** Reference
Rainbow trout BNF 70 mg/kg ip. 7 days N Goksoyr et al., 1987
Rainbow trout BNF 50 mgrkg i.p. 14 days Y Zhang et al., 1990
Rainbow trout BNF 100 mg/kg i.p. 2 weeks Y Andersson et al., 1985
Rainbow trout PCB 1.5mg oral 9 days Y Bernhoft et al., 1994
Rainbow trout PCB 1.5mg oral 14 days N Bernhott et al., 1994
Rainbow trout PB 50 mgrkg i.p. 7 days N Goksoyr et al., 1987
Atlantic cod BNF 100 mgrkg i.p. 7 days N Goksoyr et al., 1987
Atlantic cod PB 50mg/kg i.p. 7 days N Goksoyr et al., 1987
Cod PCB 1.5mg oral 9 & 14 days N Bernhoft et al., 1994
Plaice PCB - i.p. 12 days Y George & Buchanan, 1990
Plaice 3-MC - i.p. 12 days Y George & Buchanan, 1990
Plaice tSOx - ip. 12 days Y George & Buchanan, 1990
Plaice 3-MC 10 mg/kg i.p. 2 days Y George & Young, 1986
Sea bass BaP 20 mg/kg i.p. 14 hours N Lemaire et al., 1992
Sea bass BaP 0.075-7.5 mg/kg i.p. 3 days Y Fair, 1986
Catfish PC8 100 mg/kg i.p. 8 days N Ankley et al., 1986
English sole PCB 100 mg/kg i.p. 72 hours N Collier & Varanasi, 1991
English sole PB 100 mg/kg i.p. 72 hours N Collier & Varanasi, 1991
English sole tSOx 500 mg/kg i.p. 72 hours N Collier & Varanasi, 1991
English sole BaP 5 mg/kg i.p. 72 hours & 14 days N Collier & Varanasi, 1991
English sole PAH* 0.52 & 1.04 mg/kg i.p. 72 hours & 14 days N Collier & Varanasi, 1991
Flounder 3-MC 20 mg/kg i.p. 6 days N Scott et al., 1992
Flounder PCB 100 mg/kg i.p. 6 days Y Scott et al., 1992
Flounder tSOx 100 mg/kg i.p. 6 days Y Scott et al., 1992
Mummichog BNF 12.5 ug'kg feed 2 weeks N Van Veld et al., 1991

*Sediment extract containing PAHs
*"Induction is measured as an increase in activity using CONB as a substrate

BNF= beta-naphthoflavone
PCB= polychicrinated bipheny!
PB= phenobarbital

3-MC= 3-methyicholanthrene
BaP= benzo(a)pyrene

tSOx= trans-stilbene oxide
i.p.= intraperitoneal
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neoplasia (Hasspieler et al., 1994b), revealed that the channel catfish expressed both
higher levels of hepatic glutathione (GSH) and GST activity than the brown bullhead.
The differences in GST activity between the two fish species suggests a role of the
enzyme in protection against carcinogens. Similarly, a comparison of English sole and
starry flounder from a PAH contaminated site (Collier er al., 1992) indicated that English
sole had a greater prevalence of hepatic lesions along with lower GST activity than starry
flounder. There were also differences in GST isoform expression between the two fish
species. The flounder expressed two isoforms not found in the sole.

In addition to GST induction following environmental toxicant treatment,
numerous studies have revealed GST elevation in chemically induced mammalian tumors
(Buchmann ez al., 1985). A comparison of the GST isoforms expressed in normal and
neoplastic tissues indicates that Pi predominates in most tumors (Rushmore et al., 1988;
Shea & Henner, 1987; Tsuchida & Sato. 1992) and drug-resistant cells (Batist et al.,
1986; Tew, 1994) while there is altered expression of other isoforms as well (Howie et
al., 1990; Stalker et al., 1994; Castro er al., 1990; Schisselbauer et al., 1990). Farber
(1991) has suggested that development of cancer is an adaptive response to xenobiotic
exposure. According to Farber, rare hepatocytes containing a resistant phenotype are
located throughout the liver and proliferate to form hepatocyte nodules in response to
toxicant exposure. These nodules may confer resistance to the acute effects of toxicants;
however, they may eventually develop into carcinomas. In support of this hypothesis,
Harris er al. (1989) found that rats bearing carcinogen-initiated tumors were resistant to

doses of carbon tetrachloride which induced mortality in all control animals. Common
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biochemical features believed to contribute to resistance in tumor cells are 1) over-
expression of ATP-driven membrane pumps, such as P-glycoprotein (Pgp), that actively
pump foreign compounds out of resistant cells (Gottesman & Pastan, 1993; Kartner &
Ling, 1989); 2) decreased expression of the enzymes involved in toxicant activation (eg.
cytochrome P-4501A); and 3) increased expression of GSTs (Farber, 1990; Hayes &
Wolf. 1990; Wolfer al.. 1987).

GST expression patterns in fish tumors appear different than those observed in
mammals. For example, Hayes et al. (1990) tound reduced GST expression in pollutant-
associated hepatic neoplasms in white suckers (Catostomus commersoni). Aflatoxin and
PAH induced rainbow trout neoplasms were also deficient in GST expression (Kirby et
al.. 1990b). Similarly, Stalker er al. (1991) found a decrease in GST subunit expression
in hepatocellular adenomas, bile duct adenomas and carcinomas in PAH exposed white
suckers. Stalker er al. (1991) concluded that neoplastic progression was due to loss of
constitutive GSTs responsible for detoxication and elimination of PAHs in expoéed fish.

Recently, a resistant population of mummichog (Fundulus heteroclitus) was
discovered at a creosote-contaminated site (Atlantic Wood) in the Elizabeth River, VA
(Williams, 1994). Although 93% of the mummichog exhibit hepatic lesions and 33%
exhibit neoplasms (Vogelbein et al., 1990), this population appears to thrive in the harsh
chemical environment. Atlantic Wood (AW) sediments are acutely toxic to mummichog
from clean (reference) sites (Vogelbein & Van Veld, unpublished). Hyperplastic liver
lesions (altered foci) and neoplasms have been observed mainly in adult AW fish while

the majority of juveniles do not exhibit these lesions. However, these fish are resistant to
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the acute toxicity of the chemicals in their environment.

The biochemical mechanisms involved in the acute toxicity resistance of AW
mummichog are an area of recent investigation. Van Veld et al. (1992) reported a
depression of cytochrome P-4501A (CYP1A) in neoplastic and preneoplastic liver lesions
of these fish. More recently. a general low constitutive level of CYP1A in non-neoplastic
AW liver tissue was also reported (Van Veld & Westbrook, 1995). Cooper (unpublished)
observed that levels of liver P-glycoprotein in AW fish were roughly similar to those
tound at reference sites. Although P-glycoprotein over-expression is believed to play a
major role in chemical resistance in mammalian cells (Gottesman & Pastan. 1993;
Kartner & Ling, 1989), it does not appear to explain resistance in Atlantic Wood fish.

Perhaps the most remarkable ot all biochemical differences observed between
AW fish and reference fish is the consistent elevation of GST levels and activity in AW
fish (Van Veld et a/., 1991). While there were no apparent differences between GST
activity in neoplastic and preneoplastic hepatic lesions and adjacent normal tissues,
hepatic GST activity in these fish exceeded that of reference site fish by approximately
three-fold. An inability to induce a similar level of induction in reference fish in the
laboratory (Van Veld er al., 1991) suggests that the elevated GSTs in the resistant AW
fish may represent a genetic adaptation. This would be consistent with the demonstrated
genetic nature of acute toxicity resistance in mummichog inhabiting polluted
environments (Weis & Weis, 1989; Williams, 1994). Although it is apparent that there
are one or more isoforms of over-expressed GST in AW fish, no information is available

on the nature of the isoform(s), their mechanisms of regulation, or the role they play in
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resistance.

The objectives of this project were to: 1) purify the glutathione S-transferases
from Atlantic Wood (contaminated) and King Creek (reference) mummichog livers and
compare the isoform composition in the two groups, 2) produce monoclonal antibodies to
the elevated GST isoform(s) found in the AW mummichog, 3) quantify the relative
amounts of elevated isoform in fish trom three sample sites: control. moderately
contaminated and heavily contaminated with PAHs of creosote origin, using monoclonal
antibodies, and 4) identify the elevated isoform based upon immunological reactivity

and/or protein sequence and physicochemical characteristics.
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MATERIALS and METHODS

Sample Sites and Collection

Male mummichog, Fundulus heteroclitus. weighing 5-20¢g, were collected from
three sites (Fig. 4): 1) Atlantic Wood (AW), a heavily creosote-contaminated site in the
Elizabeth River, VA adjacent to Atlantic Wood Industries, Inc., 2) Scuffletown Creek
(SC), a moderately creoste-contaminated site across the river from AW, and 3) King
Creek (KC). an uncontaminated site in Gloucester County, VA. Sediment PAH
concentrations at these sites have been reported as 2200, 61 and 3mg PAH/kg dry
sediment at AW, SC, and KC respectively (Vogelbein et al., 1990). Mummichog were
caught in minnow traps and transported to the laboratory in coolers with iced estuarine
water. Fish were sacrificed within 2 days of capture with an overdose of tricaine
methanesulfonate (MS-222, Crescent, Phoenix, AZ). Livers were removed and frozen in
liquid nitrogen before transfer to -80°C.

Cvtosol Preparation & Enzvme Purification

Livers were thawed and homogenized in homogenization buffer (0.25 M sucrose,
25 mM HEPES. 1 mM EDTA. pH 7.5) using a Polytron (Brinkmann, Westbury, NY)
tissue homogenizer. The homogenate was centrifuged twice at 12,000g for 11 minutes
and once at 100,000g for 60 minutes in a Sorvall RC 28S (DuPont, Wilmington, DE)
centrifuge at 3°C. The supernatant (cytosolic fraction) was removed from the microsomal

pellet and stored at -80°C.
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Figure 4. Map of mummichog, Fundulus heteroclitus, collection sites. The collection
sites were: King Creek (KC), a clean, reference site, Scuffletown Creek (SC), a
moderately creosote-contaminated site, and Atlantic Wood (AW), a heavily creosote-
contaminated site adjacent to Atlantic Wood Industries, Inc. SC is approximately 600 m

from AW.
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Purification of GSTs from the cytosol was performed at 4°C using S-

hexylglutathione affinity chromatography (Mannervik & Guthenberg, 1981). Pooled
cytosol was dialyzed overnight at 4°C in 3/4" Prepared Dialysis Tubing with 12-14kD
molecular weight exclusion limit (Gibco BRL, Gaithersburg, MD) using three changes of
three liters of loading buffer (10mM Tris HCl. 50mM NaCl pH 7.8). Dialyzed cytosol
(4-6ml) was passed over a column (1.5cm x 8.5cm) of S-hexylglutathione agarose
(Sigma, St. Louis. MO) with 4 column volumes of loading buffer. The column was
washed with 3.5 column volumes wash buffer (10mM Tris HC1. 200mM NaCl, pH 7.8)
and the enzyme eluted with 4 column volumes elution buffer (wash buffer with SmM S-
hexvlglutathione [Sigma, St. Louis, MO]). Fractions (2.0 ml) were collected using an
ISCO Foxy fraction collector (Lincoln, NE) and analyzed for protein content at 280nm
and for enzyme activity (see below). Eluted fractions with GST activity >1.0 units/ml
and protein absorbance greater than 0.1 4,4, were pooled and washed in 20mM sodium
phosphate buffer. The pooled fractions were then concentrated to approximately 500-
600u1 using a Centriprep-30 concentrator (Amicon, Inc., Beverly, MA) and stored at
-80°C.

Enzvme Activitv

Glutathione S-transferase activity was determined spectrophotometrically using 1-
chloro-2.4-dinitrobenzene (CDNB) (Sigma. St. Louis, MO) as a substrate (Habig et al.,
1974). The assay was conducted in a thermostated cell compartment in a Gilford
RESPONSE spectrophotometer (Ciba-Corning, Oberlin, OH) at 25°C using 0.1M

potassium phosphate buffer, pH 6.5, with ImM glutathione, ImM CDNB, and 10-20ul
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cytosolic enzyme. Blanks consisted of assay buffer without cytosolic enzyme. Change in
absorbance of substrate upon conjugation with GSH was monitored at 340nm over a
period of 5 minutes. Enzyme activity is expressed in units which are defined as the
formation of 1umole product per minute. Specific activity is defined as the units of
enzyme activity per mg protein. Total protein was estimated using the method of
Bradford (1976) with bovine serum albumin as a standard.

Electrophoresis

Sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE) was
performed using 12% polyacrylamide gels (Laemmli, 1970) in a Bio-Rad Mini-
PROTEAN II dual slab cell (Bio-Rad. Richmond, CA). SDS-PAGE was used for the
determination of purity of the enzyme after purification, molecular weight estimation, and
for western blot quantification of GST in samples from all sites.

Native (non-reducing) isoelectric focusing (IEF) was performed according to
Robertson er al.(1987) using a Hoefer Mighty Small II SE250 Vertical Slab Unit (Hoefer,
San Francisco, CA). Native IEF was used to separate the GST isoforms, estimate their
isoelectric points (pI), and to screen monoclonal antibodies (see below). Denaturing
(non-native) IEF in urea was performed according to Killick (1991) in order to determine
the subunit composition of the GST isoforms. Ampholytes (Bio-Rad, Richmond, CA)
were used to create a pH gradient in both native and non-native IEF gels.

Estimation of molecular weights and isoelectric points were determined using
electrophoresis protein standards (Bio-Rad, Richmond, CA) and purified rat liver

glutathione S-transferase subunits of molecular weights 28 (Alpha), 26.5 (Mu), and 25
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(Alpha) kD (Sigma, St. Louis, MO). Protein standards used in SDS-PAGE gels were
molecular weight markers and rat liver GST subunits (Sigma, St. Louis, MO). Standards
used in IEF gels were [EF markers (Sigma, St. Louis, MO). Standards used in [EF-urea
gels were 2-D markers (Bio-Rad, Richmond. CA). Gels were stained for protein using
either silver stain (Polysciences. Inc., Warrington, PA) or Coomassie brilliant blue R-250
(Bio-Rad, Richmond, CA).

Western Blotting

Western blotting was performed according to ECL (Amersham Life Science,
Buckinghamshire, England) Western blotting protocols . Proteins were transferred from
SDS-PAGE and IEF gels to Immobilon PVDF Transfer Membrane (Millipore, Bedford.
MA) for western blotting (Towbin er al., 1979) in a Bio-Rad Mini Trans-blot cell. Pre-
chilled buffers were used for transfer (100V for 1h, 4°C). The transfer buffer used with
SDS-PAGE gels consisted of 25mM Tris, 192mM glycine, 20% methanol (pH 8.3). The
transfer buffer used with IEF gels consisted of 0.7% acetic acid. The transfer buffer used
with IEF-urea gels consisted of 0.7% acetic acid, 10% methanol. Following transfer of
proteins to membranes, the membranes were stored overnight in TTBS (20mM Tris base,
137mM NaCl, 3.8 mL IM HCI w/ 0.1% Tween-20, pH 8, per 1000 mL) at 4°C. The
membranes were then incubated on a rocker (Reliable Scientific, Hernando, MS) with
mouse anti-GST primary antibody (either polyclonal or monoclonal) diluted in TTBS for
1 hour. rinsed in TTBS and incubated with the secondary antibody, horseradish
peroxidase linked goat anti-mouse antibody (G«=M-HRPO, IgG, IgM, H+L) (Jackson

ImmunoResearch, West Grove, PA) for 1 hour. Detection of antibody bound to protein
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bands was performed using enhanced chemiluminescence with ECL (Amersham Life
Science, Buckinghamshire, England) Western blotting detection reagents. The
membranes were then stripped of antibody in stripping buffer (100mM 2-
mercaptoethanol, 2% sodium dodecy! sulphate, 62.5mM Tris-HCl, pH 6.7) at 50°C for 30
minutes and stained for total protein with colloidal gold (Bio-Rad, Richmond. CA).
Monoclonal Antibody

Production of monoclonal antibodies was performed according to Goding (1983)
with a few modifications (Fig. 5). Purified GST (antigen) from Atlantic Wood fish was
emulsified in Freund's Complete Adjuvant (FCA) (Sigma, St. Louis, MO) and
administered to four 3-week old female BALB C/J mice (Jackson Labs, Bar Harbor, ME).
Each mouse received one subcutaneous and one intraperitoneal (ip) injection (approx.
40ug protein/100u] FCA/mouse). Serum was derived from each immunized mouse prior
to immunization (pre-bleed) and one month after immunization (immune sera). Blood
was collected from a tail vein and allowed to clot at room temperature for 2 hours or
overnight at 4°C. After clotting, the blood was spun at 14,000g in an Eppendorf 5415 C
centrifuge (Brinkmann, Westbury, NY) for 10 min. at 4°C and the sera was removed and
stored at -80°C. The antibody response to the antigen was monitored (see below) in each
mouse using the collected sera.

Mice exhibiting an immune response were challenged at 7 weeks post
immunization with an intravenous dose of purified GST (3xg protein) in sterile phosphate
buffered saline (PBS) (10 mM sodium phosphate, 150 mM NaCl, pH 7.2-7.4). After 4

days, the mouse was killed by cervical dislocation and the spleen aseptically
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Figure 5. Monoclonal antibody production. A flow-chart illustrating the steps and time-

frame for production of monoclonal antibodies
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removed and splenocytes harvested. Splenocytes were tfused with SP 2/0 mouse
myeloma cells (Shulman et al., 1978) using 50% polyethylene glycol. Fused cells were
selected using medium containing azaserine-hypoxanthine (AH) (Foung et al., 1982) and
were grown in 96 well tissue culture plates (Corning, Cambridge, MA). After 9 & 10
days. the supernatants were screened for anti-GST antibodies using an ELISA (see
below). Cells from positive wells were cloned by limiting dilution as well as expanded in
24-well plates. followed by 25cm-” flasks, and then frozen in freezing medium (90% fetal
bovine serum, 10% dimethylsulfoxide) at -80°C. Positive cells were then stored in liquid
nitrogen. Positive cells went through at least one more round of cloning in order to be
certain that the antibody producing cells were monoclonal.

Large quantities of antibody were collected as ascites fluid. Mice were primed
with an ip injection of pristane (Sigma, St. Louis, MO) one month prior to injection of
hybridoma cells. Hybridoma cells were grown in 75cm? flasks until confluent.
Approximately 5x10° cells suspended in PBS were injected ip into mice. When the
mouse bellv was fully distended with ascites fluid (after 2.5-8 weeks), the mouse was
killed by cervical dislocation. The ascites was aspirated from the peritoneal cavity, then
rinsed with Sml sterile PBS. All fluid was once again removed. The ascites was spun at
2271¢ for 30 min in a Sorvall RT 6000D centrifuge (Du Pont, Wilmington, DE). Any
pellet formed was discarded. In some instances, due to time constraints, the ascites was
allowed to sit overnight at 4°C before precipitation. The ascites fluid was sterile filtered
and the antibody precipitated using saturated ammonium sulfate (SAS) (100g ammonium

sulfate, 100ml milliQ water [Millipore, Bedford, MA], pH 6.7) (Harlow & Lane, 1988).
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While gently swirling the ascites on ice, a one-half volume of SAS was added over 30
min. The ascites was spun at 3000g at 4°C for 30 min. The supernatant was removed and
another volume of SAS equal to one-half the original volume of ascites was slowly added
to the supernatant while gently swirling on ice. The sample was spun at 3000g for 30
min, the supernatant discarded and the pellet resuspended in a volume of sterile PBS
equal to 1/10 the original volume of ascites. The antibody was then dialyzed overnight in
PBS., titered (see below), aliquoted and stored in cryovials (Corning, Cambridge, MA) at
-20°C.

Screening Assavs

An enzyme-linked immunosorbent assay (ELISA) (Engvall & Perlman, 1971)
was used as the primary method for screening mouse sera and hybridomas for anti-GST
antibodies (Fig. 6). The assay was optimized for the least amount of coating antigen
required to yield a significant reading for screening hybridomas. Briefly, a 96-well
ELISA plate was coated with 0.25.g purified AW GST in 100wl coating buffer (15mM
Na,CO;, 35mM NaHCO;, pH 9.6) per well overnight at 4°C. The plate was then washed
3x with TTBS using a Titertek Microplate Washer/20 (ICN, Costa Mesa, CA), blocked
with 250ul 1% BSA/TTBS, and then incubated for one hour at 37°C with either 100l
serum dilution or 10l cell culture supernatants in 100ul 1% BSA/TTBS. Unbound
antibody was washed away and the plate incubated with a secondary goat anti-mouse
horseradish peroxidase labeled antibody (G=M-HRPO). A substrate solution of 18mM
ABTS (azino-bis(ethylbenzthiazoline-6-sulfonic acid)) (Sigma, St. Louis, MO) and

0.15% hydrogen peroxide in citric acid buffer (0.2% w/v citric acid, pH 4.0) was then
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Figure 6. ELISA screening assay. A flow-chart illustrating the steps for performing an

enzyme-linked immunosorbent assay (ELISA).
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added to the plates. In the presence of HRPO, a chromogenic reaction occurs which was
measured at 405 nm on a Titertek Multiscan MCC/340 (ICN, Costa Mesa, CA) plate
reader. Plates which were not coated with antigen served as negative controls for
nonspecific binding of the antibody. Serum titers are expressed in terms of units of
antibody activity per volume of serum (units/ul) (Arkoosh & Kaattari, 1990). One unit
equals the volume of serum giving the 50% maximum OD (optical density).

Western blotting was used as a second screening method in order to determine
which isoform(s) were being recognized by each antibody. After the isoforms were
separated by [EF and transterred to membranes, strips of membrane were incubated with
hybridoma supernatants. Detection ot antibody bound to protein bands was performed
using enhanced chemiluminescence as previously described.

N-terminal Amino Acid Sequencing & Amino Acid Analysis

Before the isoform was isolated for protein analysis, it was necessary to determine
if it was a homodimer or heterodimer. Homodimers consist of two identical proteins
(subunits) and heterodimers consist of two different polypeptides. It was necessary to
know if the sample was pure (in the case of a homodimer) or unpure (in the case of a
heterodimer). Sequencing and amino acid analysis can only be performed on pure
samples. The method of Killick (1991) was used to determine if the elevated isoform was
a homo- or heterodimer. Purified AW cytosolic proteins were separated by urea-IEF.
Gels were stained for protein to visualize the number and intensity of the bands. Proteins
were also transferred to PVYDF membranes for western blotting to determine the number

of bands which were recognized by the MAb. It was assumed that if the protein were a
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heterodimer, two bands would be visualized during western blotting if the antibody
recognized the same epitope on each subunit. If the antibody did not recognize the same
epitope, and only one band was visualized during western blot, then a second band of
equal staining intensity should appear in the protein stain. If the protein were a
homodimer. protein stain would reveal a single major protein band that would be
visualized during western blotting.

Sample preparation for N-terminal sequencing was performed according to Hsieh
et al. (1988). Brietly, purified AW GST isoforms were separated on a native [EF gel
using ampholytes with pH ranges of 3-10 and 7-9. The gel was soaked in 200ml of 3.5%
perchloric acid for 1 hour with a change of solution every 20 min. The ampholytes were
then removed using a Southern blot apparatus for 3 hours using 2% acetic acid as a
buffer. Proteins were transferred to Immobilon-P in 0.5% NP-40, 1.0% acetic acid buffer
at 100V for 1 hour at 4°C. The membrane was stained briefly (less than 1 min.) with
Coomassie blue, destained briefly (less than 1 min.), and rinsed several times in milliQ
water. The target bands were cut from the membrane, dried, and shipped to the
University of Nebraska Medical Center Protein Structure Core Facility (Omaha, NE) for
N-terminal sequencing and amino acid analysis.

A comparison of amino acid compositions was conducted using the fractional
content of each amino acid. The sum of the absolute values of the differences of each
amino acid was multiplied by 30 to give the difference index (DI) (Metzger et al., 1968).
Two proteins with the same amino acid composition have a DI of 0 and two proteins with

no amino acids in common have a DI of 100. Amino acid composition for the
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mammalian isoforms was calculated using PC/GENE from sequences obtained from the
SWISS-PROT database.

Field Study

The field study was a comparison of the GST activity and the relative amounts of
the GST isoform in livers of individual mummichog from the three sample sites. GST
activity was determined using CDNB as a substrate. Western blotting was used to
determine the relative amounts of the isoform. The isoform was not purified so that the
concentration of isoform in a given sample could not be determined.

To determine the relative amounts of isoform. a standard curve was developed for
this study using pooled AW cytosolic proteins. The curve consisted of g amounts of AW
cytosolic proteins which, when blotted with the MAb and scanned. would give a linear
increase in densitometric area with an increase in amount of protein. AW cytosolic
proteins were titrated using MAb GST B2 C4 (see results). The results in Fig. 7 show a
linear region (R? = 0.98) from 0.125 to 2ug cytosol. A standard curve was therefore used
that consisted of 0.125, 0.25, 0.5, 1. 2ug pooled cytosolic proteins from AW fish.

The amount of protein used for each sample was 1-12ug for KC, 1-2ug for SC,
and 0.5-1ug for AW. Membranes were blotted using a 1:5000 dilution of monoclonal
antibody GST B2 C4 (2.45.g/ml protein) as the primary antibody. Samples and
standards were analyzed using scanning densitometry with a CS-930 Chromato-Scanner
(Shimadzu, Kyoto, Japan). Sample values were determined using the standard curve.
Each ng of AW cvtosol equals one GST unit. Each sample was then normalized by

dividing the GST unit value by the ug of sample which was loaded in the lane.
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Figure 7. Titration of AW cytosol using MAb GST B2 C4 (1:5000). Pooled AW hepatic
cytosolic proteins were separated using SDS-PAGE and then blotted. The GST band
which was recognized by the antibody was scanned at 550nm to determine the
densitometric area. The area of each band was then plotted against the amount (ug) of
protein loaded. The region from 0.125-2 ug is linear (R? = 0.98). A standard curve was
therefore developed using 0.125, 0.25, 0.5. 1 and 2 ug AW cytosolic proteins. This
standard curve was used to calculate the relative amounts of GST isoform in livers of

mummichog from the three sample sites.
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Sample values are expressed as GST units/ug protein (units/ug). Statistical significance
between sample sites was determined by a Kruskal-Wallis analysis of variance because of

the non-homogeneity of variances of the samples.
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RESULTS
GST Purification

Affinity purification of GST from hepatic cvtosols of AW and KC fish resulted in
approximately 28-fold and 45-fold GST purification. respectively. Purification of GSTs
from Atlantic Wood fish was performed three times with 40%. 41% and 65% recovery of
GST activity (Table 2A-C). Purification of GSTs from King Creek fish was performed
once with 7.7% recovery of GST activity (Table 2D). At least 70% and 50% of GST
activity adsorbed to the column and was recovered in the eluant during AW and KC
purifications respectively. The remainder ot the activity did not adsorb to the column and
appeared in the load fractions. After concentration, 60-70% of the GST activity was
recovered for AW while only 14% of the activity was recovered for KC. This low
recovery for KC was probably due to leakage through a faulty concentrator membrane.

In each purification, GST activity was recovered as a single peak of activity and protein
during elution (Fig. 8A & 8B). The purified protein consisted mainly of a band of
approximately 27.2 kD (Fig. 9), which is in the molecular weight range of GSTs.

Native isoelectric focusing of the purified enzyme revealed four major bands at
the basic end with apparent pls of 8.8, 8.7. 8.3, and 8.1 along with some minor bands at
the acidic end (Fig. 10). The protein with pl of 8.1 appeared to be the major form and
was possibly elevated in purified AW GST when compared with purified KC GST and

was therefore targeted for monoclonal antibody production.



Table 2. Purification of hepatic glutathione S-transferases from Atlantic Wood and King Creek
mummichog.

A. Atlantic Wood
GST Activity with  GST Activity

Purification Step Protein (mg) CDNB (units) Recovered (%)
Cytosol 98.6 3178
Dialyzed Cytosal 101.3 281.7 88.6
Sample Applied to Column 91.6 254.7
Pooled Fractions 2.4 196.3 771
Concentrated Sample 1.2 115.2 58.7
% Total Activity Recovered 40.1
Purification 30x

B. Atlantic Wood
GST Activity with  GST Activity

Purification Step Protein (mg) CDNB (units) Recovered (%)
Cytosol 91.6 2856
Dialyzed Cytosol 89.2 159.9 55.9
Sampie Applied to Column 83.4 149.6
Pooled Fractions ND 171 1143
Concentrated Sample 1.5 1231 73.4
% Total Activity Recovered 41
Purification 26.5x

C. Atlantic Wood
GST Activity with  GST Activity

Purification Step Protein (mg) CDNB (units) Recovered (%)
Cytosal 114.9 438
Dialyzed Cytosol 1258 444 101.4
Sample Applied to Column 1159 409
Pooled Fractions ND 452* 110.5
Concentrated Sample 2.6 286.6
% Total Activity Recovered 65.4
Purification 29x
D. King Creek
GST Activity with  GST Activity
Purification Step Protein (mg) CDNB (units) Recovered (%)
Cytosol 71 74.3
Dialyzed Cytosot 58.1 86 115.7
Sample Applied to Column 545 80.6
Pooled Fractions ND 39.3* 488
Concentrated Sample 0.1 5.1 13.6
% Total Activity Recovered 7.7
Purification 44 5x

*Indicates value was determined using sample volume instead of mg protein

ND = <0.1mg/mi
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Figure 8. S-hexylglutathione affinity purification of hepatic GSTs from Atlantic Wood
(A) and King Creek (B) mummichog, Fundulus heteroclitus. A and B were loaded with
83 mg and 55 mg protein, respectively. Fractions (2.0 ml) were collected and analyzed

for protein (A280 nm) and GST activity with CDNB as a substrate. Load = fractions 1-

25, wash = 26-47, elute = 48-72.
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Figure 9. SDS-PAGE analysis of purified mummichog, Fundulus heteroclitus, GSTs.
Lane 1. molecular weight standards; lane 2, rat liver GST standards which consist of an
Alpha class subunit (28 kD), a Mu class subunit (26.5 kD) and an Alpha class subunit (25
kD); lane 3, AW hepatic cytosol (1xg); lane 4, S-hexylglutathione agarose affinity
purified hepatic GST (0.1ug) from AW mummichog. The purified protein consists of a
band that is approximately 27.2 kD without any contaminating proteins. Protein bands

are visualized with silver stain.
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Figure 10. IEF analysis of purified hepatic GSTs from AW and KC mummichog,
Fundulus heteroclitus. Lane 1, IEF standards; lane 2, S-hexylglutathione agarose
affinity purified GSTs from livers of AW mummichog, and lane 3, KC mummichog. The
gel consisted of 3-10 ampholytes. Purified GSTs were loaded at 0.95.¢g protein/lane.
Protein bands were visualized with silver stain. There are four bands at the basic end
with a few minor bands at the acidic end. The major band at the basic end has a pI of
approximately 8.1 and appears to be elevated in the AW sample when compared with the

KC sample.
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Monoclonal Antibody Production

Four mice (B, C, D, E) were immunized with purified AW GST. After one
month, titers for each mouse were as follows: B= 67 units/ul, C= 180 units/ul, D= 100
units/ul, E= 250 units/ul (Fig. 11). Western blot with serum from mouse B against
purified AW GST and AW cytosolic proteins indicated that there was no cross-reactivity
of the antibody with other cytosolic proteins (Fig. 12). A fusion was performed with
mouse B which had a titer of 50 units/ul (Fig. 13) at the time of fusion.

The fused cells were distributed into four master 96-well cell culture plates
(labeled GST1-4). The master plates were screened on day 9 and four wells (labeled
GST1 D11. GST2 A5. GST2 B6, GST+4 H4) had a signal which was 2x the background.
These wells were cloned and the master plates were rescreened for slow growing cells on
day 11. Nine more wells were cloned for a total of 13 wells which were cloned during
the first round. The first round clones were screened on day 10 and only one of 13 clone
plates (GST1 D11) had positive wells. Four wells on plate GST1 D11 came up positive
(GST A2, GST B2, GST F2, GST AS), all were expanded and frozen, and three (A2, B2,
F2) went through a second round of cloning. Supernatants from the tirst round clones
were screened by western blot and all four clones recognized the target protein with pl of
8.1 (Fig. 14). Western blot of SDS-PAGE separated proteins using first round clone
supernatants indicated that the antibodies recognized a GST isoform which is elevated in
cytosol and purified GSTs from AW fish when compared with cytosol and purified GSTs
from KC fish (Fig. 15).

The second round clone plates were screened on day 6 and four positive wells
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Figure 11. Titration curves for pre-bleed and immune sera. Four mice (B,C,D,E) were
immunized with purified AW GST (40ug protein/mouse). At one month, the titers for
each mouse were as follows: B_= 67 units/ul, C= 180 units/ul, D= 100 units/ul, E= 250

units/ul. The horizontal line represents the 50% maximum OD.
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Figure 12. Western blot analysis of polyclonal antibody specificity for purified
mummichog, Fundulus heteroclitus, hepatic GSTs. Lane 1, 1ug AW cytosolic proteins;
lane 2. 0.1ug affinity purified GSTs from AW mummichog. Protein is visualized with
colloidal gold stain. Lanes 3 and 4 are western blots of lanes | and 2, respectively.
Membrane was incubated with a 1:2000 dilution of mouse B immune serum. The
polyclonal antibody recognizes the 27.2 kD GST band and does not recognize other

proteins in the cytosol.
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Figure 13. Titration curve for mouse B serum collected at time of fusion. Mouse B had a

titer of 50 units/ul. Lines represent 30% maximum OD.
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Figure 14. Western blot screening during monoclonal antibody production. Affinity
purified AW mummichog, Fundulus heteroclitus, hepatic GSTs were separated by native-
[EF. Lane 1 is colloidal gold protein stain showing the four bands at the basic end with
their pl values. Lane 2 was incubated with 1:20,000 polyclonal serum from mouse B.
The polyclonal antibody recognizes the 8.1. 8.3 and 8.7 pI bands but not the 8.8 pI band.
Lanes 3-6 were incubated with tissue culture supernatant trom first round clones: GST

A2 (lane 3), GST A5 (lane 4), GST B2 (lane 5), GST F2 (lane 6). All first round clones
recognize the major 8.1 pl band. Lane 7 was incubated with GST B2 C4 MAb. The
MAD recognizes both the major 8.1 pl band and the 8.3 pl band. Lanes 1-6 contain 4.g

protein, lane 7 contains 6ug protein.
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Figure 15. Western blot analysis of hepatic cytosol and affinity purified GSTs from AW
and KC mummichog, Fundulus heteroclitus. Proteins are separated by SDS-PAGE. A.
Lane 1, KC cytosol; lanes 2 & 3, purified KC GSTs; lane 4, rat liver GST standards
which consist of an Alpha class subunit (28 kD), a Mu class subunit (26.5 kD) and an
Alpha class subunit (25 kD); lanes 5 & 6. purified AW GSTs: lane 7. AW cytosol.
Protein loaded at 1ug of cytosol. 0.1xg pure GSTs. Protein is visualized with colloidal
gold stain. B. Western blot of A. Membrane incubated with first round clone tissue
culture supernatant from GST A2. The antibody recognizes a GST isoform which is

elevated in AW cytosol and purified GSTs.
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from each plate were expanded and frozen. Cells from each second round clone (GST B2
C4. GST A2 B9, GST F2 D8) as well as one tirst round clone (GST AS5) were used for
ascites production. Ascites titers from these clones were as follows: GSTB2 C4=7x
10? units/ul, GST A2 B9 = 1.1 x 10° units/ul, GST F2 D8 = 1.1 x 10% units/ul, GST AS =
2.3 x 10° units/ul (Fig. 16). Although all four cell lines used in ascites production arose
from the same well, they produce different antibodies as indicated by differences in their
electrophoretic patterns (Fig. 17). GST A2 and F2 have the same electrophoretic pattern
while GST B2 has a different pattern. GST AS is probably a third antibody, which was
not recognized by the G=M, IgG. IgM antibody although protein stain does indicate that
protein was loaded in the lane (not shown).

Field Study

Analysis of the 27.2 kD protein band corresponding to GSTs by scanning
densitometry demonstrated an elevation of the protein in AW and SC fish compared with
KC fish (Fig. 18) and represents a major protein in AW hepatic cytosol. There was a
significant difference (p<.0001) in GST activity with CDNB between all three sample
sites (Fig. 19) with 4-fold and 2.2-fold greater activity in AW and SC respectively than
KC. There was also a significant difference (p<.0001) in GST isoform concentrations
between all three sample sites (Fig. 19) with a 5.8-fold and 2.2-fold greater values for
AW and SC than KC. Fig. 20 shows a comparison of the western blot results for an
individual fish from the three sample sites. There was a strong correlation (r =.834,
p<.0001) between GST activity with CDNB and isoform concentration (Fig. 21). The

strong correlation between enzyme activity and isoform concentration indicates that the
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Figure 16. Titration curves for ascites. Line represents the 50% maximum OD. The
titers for the MAbs are as follows: GST A2 B9 = 1.1 x 10° units/ul, GST A5 =2.3 x 10°

units/ul, GST B2 C4 = 7 x 10” units/ul. GST F2 D8 = 1.1 x 10° units/ul.
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Figure 17. Electrophoretic patterns of MAbs. Tissue culture supernatant (1.5ug protein)
from each MAb was separated by native-IEF and then blotted with G=M (IgG, IgM,
H+L). Lane I, GST B2 C4; lane 2, GST A2 B9; lane 3, GST F2 DS§; lane 4, GST AS.
GST A2 B9 and GST F2 D8 have the same electrophoretic pattern. GST B2 C4 hasa
unique pattern and GST A35 is not recognized by the G=M antibody although protein was

loaded in the lane (not shown).
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Figure 18. Comparison of intensity of GST band in KC, SC and AW mummichog,
Fundulus heteroclitus, hepatic cytosol separated by SDS-PAGE. A. Silver stained
cytosolic proteins from KC (lane 1), SC (lane 2), and AW (lane 3) mummichog. Each

lane contains 2ug protein. B. Densitometric tracing of lanes in A.
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Figure 19. Comparison of GST activity and relative isoform concentrations in
mummichog, Fundulus heteroclitus, from three sample sites. [soform concentration is
expressed in units/ug. GST activity is expressed in units/mg. There is a significant
difference in isoform concentrations between all sample sites (p<.0001, n=11) and a
significant difference in activity between all sample sites (p<.0001, n=11). Bars represent

means = standard error.
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Figure 20. Comparison of intensity of the GST isoform in western blot analysis of KC,
SC and AW mummichog, Fundulus heteroclitus, hepatic cytosol. A. Western blot of
SDS-PAGE separated proteins‘. Lane 1, purified GSTs; lane 2, cytosol from KC
mummichog; lane 3, cytosol from SC mummichog; lane 4, cytosol from AW
mummichog. All lanes contain 2 xg protein. Membrane was incubated with 1:5000 GST

B2 C4 antibody. B. Densitometric tracings of bands in A.






Figure 21. Correlation between GST isoform concentration and GST activity in
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mummichog, Fundulus heteroclitus, tfrom three sample sites. n= 33.
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enzyme is CDNB reactive.
Dimeric Composition of Elevated Isoform

Protein stain of AW cytosolic proteins separated in an urea-IEF gel revealed a
single major band with pl of approximately 8.3 and a few minor bands at the basic and
acidic ends (Fig. 22). Western blot showed that the MAbs only recognize the major band.
This suggests that the elevated isoform is a homodimer. If the protein were a
heterodimer, the other subunit would have a ditferent pIl and two bands of similar size

would appear with the protein stain and on the blot.

N-terminal Amino Acid Sequencing & Amino Acid Analvsis

GSTs are characterized using substrate specificity, immunological cross-
reactivity, and protein sequence. The most etfective method for characterization, other
than sequencing the entire protein, is by determining the N-terminal sequence. The N-
terminal region is highly conserved and has been used in identifying GSTs from other
organisms. For the elevated isoform in mummichog, the N-terminal amino acid sequence
could not be determined because the N-terminus is blocked. Blocking occurs due to post-
translational modification of the N-terminal amino group. The modification masks the N-
terminus and the protein cannot be sequenced using the conventional methods of Edman
degradation.

The amino acid composition was determined (Table 3) and is shown in
comparison with the amino acid composition of mammalian isoforms in each class. A
comparison of the amino acid composition of the mummichog GST with those of

mammalian forms from rat and mouse as well as plaice, salmon, blue mussel and thorny-
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Figure 22. Western blot analysis of urea-IEF separated affinity purified GSTs. Lane 1,
4ug protein visualized with colloidal gold stain. Western blot of lane 1 in lanes 2-5.
Lanes were blotted with 1:5000 dilution of MAb: lane 2, GST B2 C4; lane 3, GST F2
D8; lane 4, GST AS; lane 5, GST A2 B9. All MAbs recognize the major protein band

with approximate pl of 8.3.



Woc ivirim o1

IXRUREYN]

]
Si-- Vie:



Table 3. Amino acid composition of selected glutathione S-transferases including
the isoform elevated in Atlantic Wood mummichog liver.

Composition (%)

Fundulus Thorny-back Alpha Mu Pi Theta
Amino Acid heteroclitus shark* Rat GSTA1** Rat GSTM1 Rat GSTP1 Rat GSTT2

Ala 7 7.1 7.2 5 6.1 9
Arg 4.2 3.1 4.9 5.9 4.2 5.7
AsX 10.6 9.9 9.4 1 11.8 6.4
Cys 0 0 0.9 1.3 1.9 1.2
Gix 12.4 14.3 11.2 101 9 13
Gly 11.8 12.4 4.5 4.1 8.5 5.7
His 2.5 2.5 1.3 1.8 1.9 2.4
lle 3.2 3.1 5.8 5.9 3.8 4.5
Leu 10.8 7.8 13.5 11.5 14.7 14.7
Lys 52 4.7 10.8 8.7 6.1 4.9
Met 1.8 2.8 4 3.6 1.4 2.4
Phe 5.4 3.7 4.9 55 3.3 3.6
Pro 5.6 5 4.5 5.5 52 57
Ser 9.2 9.6 4 5.5 52 4.9
Thr 4 3.7 3.6 3.2 3.8 3.2
Trp ND 2.5 0.4 1.8 0.9 16
Tyr 4 2.5 3.6 6.4 52 2.4
Val 2.4 53 4.5 23 6.1 7.7

*From Sugiyama et al. (1981).

**Rat isoforms caiculated using PC/GENE from sequences obtained from SWISS-PROT
database.

ND=Not determined.
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back shark are listed in Table 4. There is very little relation between the mummichog
GST with any of the mammalian forms but it appears to be similar to the GST isolated
from thorny-back shark and salmon. The MAb GST A2 B9 reacts only with the rat Mu
subunit in the standards and not with the Alpha or Pi subunits (Fig. 23). The GST B2 C4
MADb does not react with any of the rat subunits.

Dimeric Composition of a Minor [soform

A comparison of western blots of IEF separated isoforms with polyclonal serum
and MAb GST B2 C4 is illustrated in Fig. 14. The polyclonal antibody recognizes
three of the four major basic bands. The MAb only recognizes the 8.1 (major) and 8.3
(minor) pl bands. The minor isoform may either be a heterodimer consisting of one
subunit in the major form, or the same homodimeric protein as the major isoform but
with a slightly different plI due to post-translational modification or to being the product
of a different allele of a polymorphic protein. There is some evidence of post-
translational modification of some isoforms (Siegel er al., 1990) which would result in
the same protein having a slightly different pI. The enzyme was purified from a group of

fish in a wild population whose GST genotypes are unknown.



Table 4. Difference index values for comparison of the amino acid composition
of the Fundulus heteroclitus GST with GSTs from other organisms.

Fundulus Thorny-back

heteroclitus shark Rat GSTM1

RAT GSTA1* 18* 21.3 10.9
RAT GSTA2 18.4 20.9 10.4
RAT GSTA3 17.7 20.4 12.3
RAT GSTAS 18 206 11.2
Mouse GSTA1 18 20.5 12.6
Mouse GSTA2 17.7 20.7 11
Mouse GSTA3 17.2 20.2 12.3
Rat GSTM1 16.9 23.2 0
Rat GSTM2 16.5 219 3.7
Rat GSTM3 17.5 23.2 6.4
Mouse GSTM1 17.3 23.6 3.8
Mouse GSTM2 16.4 223 3.2
Mouse GSTM3 16.6 21.9 6.4
Mouse GSTM5 20.3 25.9 8.7
Rat GSTP1 14.8 18.2 14.6
Mouse GSTP1 13.8 17 12.8
Mouse GSTP2 12.9 16.1 12.7
Pig GSTP 13.3 16.9 12.2
Rat GSTT2 18.7 17.8 18
Mytilus edulis® 12.6 15.5 16.4
Thomy-back shark® 9.5 0 23.2
Salt-water salmon (Feb A)? 10.7 11.7 16.4
Plaice® 16.1 16.1 17.7

*Difference index calculated according to Metzger et al. (1968).

*Mammalian isoforms calculated using PC/GENE from sequences obtained from SWISS-PROT database.
°Fitzpatrick et al. (1995).

'Sugiyama et al. (1881).

?Ramage et al. {1986).

3Leaver et al. (1993).
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Figure 23. Western blot analysis of GST A2 B9 monoclonal antibody specificity for rat
liver GST subunits. Lane 1, 1ug affinity purified hepatic GST from AW mummichog,
Fundulus heteroclitus; lane 2, rat Alpha (28 kD), Mu (26.5 kD), and Alpha (25 kD) GST
subunits; lane 3, 1.7ug rat Pi GST subunit. Lanes 4-6 are western blot of lanes 1-3,
respectively. The MAD recognizes the band corresponding to the rat Mu class GST

subunit.
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DISCUSSION

In this study I have produced a monoclonal antibody to an elevated GST isoform
in the liver of creosote-resistant mummichog. The antibody was used to measure GST
1soform concentrations in fish from a clean site and moderately and highly polluted sites.
There is a moderate (2.2-fold) and high (5.8-fold) increase in GST isoform concentrations
in fish from the moderately and highly polluted sites relative to clean site fish. This is the
first study to measure a change in GST isoform concentrations in fish from polluted sites.
There was no apparent change in the pattern of isoforms expressed between AW and KC
mummichog, indicating that the change in GST expression is due to a constitutively
expressed isoform. GST activity was also measured in mummichog from the clean site,
and moderately and highly polluted sites. There was a moderate (2-fold) and high (4-
fold) increase in activity in fish from the moderately and highly contaminated sites
respectively. These results agree with those of Van Veld er al. (1991). Other studies
have reported either no increase (Collier et al., 1992) or modest (2-fold) increases (Collier
& Varanasi, 1984; Monod et al., 1988) in activity in fish from polluted sites. This is the
first report of such a large (4-fold) increase in activity in fishes from polluted sites.

In mammals, GST isoforms are grouped into Alpha, Mu, Pi and Theta classes
based upon protein sequence, immunological cross-reactivity and substrate specificity.
The Mu class is highly reactive with epoxides (Mannervik ef al., 19853), including BPDE,

the ultimate carcinogen of BaP. While Pi is more efficient at catalyzing the conjugation
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of BPDE and is highly selective toward the (+)-enantiomer (Funk et al., 1995; Robertson
et al., 1986b), Mu is reactive towards both the (+)- and (-)-enantiomers (Robertson et al.,
1986a). Mu isoforms are induced by phenobarbital, 3-methylcholanthrene, trans-
stilbene oxide (Ding and Pickett. 1985) and BaP (Soni et al., 1995). Mu enzymes
conjugate DNA hydroperoxides, cumene hydroperoxide and trans-stilbene oxide,
products of oxidative stress (Hayes & Strange, 1995). Mu is also believed to play a role
in susceptibility to lung cancer. Smokers who lack the gene encoding one of the Mu
isoforms are more susceptible to lung cancer than smokers who express the gene
(Nakajima er al.. 1995).

The elevated isoform in the mummichog is most closely related to the mammalian
Mu class enzymes. The isoform was characterized using immunological reactivity,
physicochemical properties and amino acid composition. A monoclonal antibody which
recognizes the elevated mummichog isoform also recognizes the Mu class subunit in rat
liver. Immunological cross-reactivity of fish GSTs with mammalian Mu class subunits
has also been observed in cod and sea trout (George et al., 1989). Physicochemical
properties of the enzyme include a basic isoelectric point (pI 8.1), similar to Mu class
enzymes in mice and rats (Mannervik & Danielson, 1988). CDNB is a substrate for Mu
class GSTs. A strong correlation between isoform concentration and GST activity with
CDNB indicates that the mummichog GST isoform is also CDNB reactive. The N-
terminus of the mummichog GST is also blocked, similar to basic GSTs in mammals
(Mannervik et al., 1985).

While one of the monoclonal antibodies produced recognizes a rat Mu isoform.



58
the amino acid analysis does not place the mummichog GST close to any mammalian
GSTs. Similar results were observed with a GST isolated from mussel (Fitzpatrick et al.,
1995). The amino acid analysis did not place the mussel GST close to any mammalian
forms although the enzyme cross-reacted with, and had an N-terminal sequence that was
close to. the mammalian Pi enzyme. Amino acid analysis places the mummichog GST
relatively close to a GST in thorny-back shark (Sugiyama ef al., 1981) and salmon
(Ramage et al., 1986). The significance ot this is unclear. The amino acid composition
of the elevated isoform in the mummichog was not close to an isoform sequenced from
plaice liver that is similar to mammalian Theta (Leaver er al., 1993). Amino acid
composition has not been determined for any other fish species. It is my observation that
amino acid analysis for the identification of proteins works well when comparing proteins
from mammals but is not useful when comparing non-mammalian proteins with
mammalian proteins, at least in identifying GSTs.

GSTs play a major role in detoxification of lipophilic xenobiotic compounds in
vertebrates and invertebrates. GSTs provide protection in cells against electrophilic
metabolites that may bind to critical cellular macromolecules, including DNA, and result
in production of mutant gene products and carcinogenesis. GST catalyzed conjugation of
BaP metabolites with glutathione reduces the formation of DNA adducts (Hesse et al.,
1990) and aids in excretion of the toxic compounds. In addition to their role in
conjugation of xenobiotic metabolites, glutathione S-transferases detoxify the products of
oxidative stress (Hayes & Strange, 1995; Di Giulio er al., 1995). Oxidative stress occurs

due to the production of oxyradicals during aerobic metabolism of endogenous and
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xenobiotic compounds and results in oxidative damage to membrane lipids and DNA. In
mammals, GSTs protect cells from oxyradical production and the products of oxidative
stress through conjugation and peroxidase activity.

Fish exhibit signs of oxidative stress, which include an increase in lipid
peroxidation and antioxidant activity, when exposed to PAH contaminated sediments (Di
Giulio et al., 1993; Roberts et al., 1987). Hasspieler er al. (1994a) found differences in
susceptibility to oxidative stress in two fish species that exhibited differences in
susceptibility to pollutant-mediated neoplasia. Oxidative stress induced in rat liver cells
resulted in down regulation of cytochrome P450 mRNA expression (Barker er al., 1994).
This down-regulation may be an adaptive response to carcinogen exposure to minimize
cell damage. A similar decrease in cytochrome P450 levels has been observed in AW
mummichog (Van Veld & Westbrook, 1995), indicating that these fish may be
undergeing oxidative stress due to exposure to creosote-laden sediments. While
antioxidant enzyme activity and lipid peroxidation has not been measured in AW
mummichog, oxidative stress may play a role in elevation of GST activity and tumor
formation in these fish.

This study indicates a relationship between pollution level and GST
concentrations and activity in mummichog liver. The relationship suggests that the
elevated GST isoform may play a role in acute toxicity resistance of the mummichog to
creosote-contaminated sediments. This result is not surprising because conjugation of
PAH metabolites by GST is a major pathway of detoxification in fish from polluted and

non-polluted sites (Kirby e al., 1990a). Increases in GST expression and activity have
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been associated with pesticide resistance in insects (Ku et al., 1994; Lagadic et al., 1993)
and drug resistance in cancer cells (Tew, 1994; Mannervik et al., 1990). Differences in
GST 1soform expression have been associated with susceptibility to DNA damage (van
Poppel er al., 1992; Wiencke er al., 1990) and development of cancer in mammals (Soni
et al., 1995; Nakajima et al., 1995). Variations in GST activity (Hasspieler et al., 1994b;
Collier et al., 1992) and isoform expression (Collier er al., 1992) are also believed to play
a role in susceptibility to pollutant-mediated carcinogenesis seen in fishes from PAH-
contaminated sites.

The site-dependent differences in GST levels in mummichog may result from
physiological acclimation or genetic adaptation. While a dose-response relationship
suggests that the differences in GST isoform levels and activity seen in the three
populations studied is due to physiological acclimation, there is evidence to indicate that
the response may also be genetic. Williams (1995) established that AW mummichog
exhibit a genetic resistance to creosote laden sediments. Weis & Weis (1989) also
observed a genetic resistance in mummichog exposed to metal contaminated sediments.
Luoma (1977) suggested that resistance reflects the degree of contamination and greater
resistance to a toxicant in a population from one location than a population from another
location is direct evidence that the toxicant is exerting selective pressure. The Elizabeth
River is a heavily industrialized area and the AW site has been polluted for years with
several major creosote spills in the 1960s (Bieri ef al., 1986). The mummichog is the
most genetically variable species examined by Smith & Fujio (1982). High genetic

variability within a population allows for some individuals to withstand the pollution and
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develop a resistant population.

Although the AW mummichog are resistant to the acute toxicity of the
contaminated sediments (Vogelbein & Van Veld, unpublished), they are susceptible to
the chronic effects. AW mummichog exhibit a high incidence of hepatic lesions
including neoplasia while fish from SC and a control site do not exhibit these lesions
(Vogelbein et al., 1990), indicating an association between exposure and formation of
neoplasms. A similar pollutant associated formation of neoplasms has been observed in
other fish species as well (Landahl et al., 1990). Altered expression of GST isoforms
may occur in chemically induced tumors. Chemically induced hepatocellular carcinomas
in rat expressed an increase in expression of Pi, Alpha and one Mu class enzyme, and a
decrease in expression of another Mu class enzyme while the carcinomas expressed an
overall increase in GST activity (Stalker er al., 1994). According to Farber (1991), the
elevated expression of phase II enzymes may contribute to resistance in mammalian
preneoplastic nodules to acute toxic injury.

Although over-expression of GST is commonly observed in mammalian tumors,
over-expression of GST has not been reported in fish tumors. In fact, Stalker er al.
(1991) found that advanced neoplasms in white suckers from polluted sites exhibited a
loss in GST expression compared with surrounding normal liver, instead of the increase
which 1s observed in mammals. A decrease in GST expression was also observed in
neoplasms induced by aflatoxin B, in rainbow trout (Kirby et a/., 1990b). While GST
induced foci were observed, they did not progress to neoplasms. The development of

carcinomas in these fish may be due to the repeated exposure to carcinogens. Repeated
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exposure to carcinogens produces multiple genetic alterations and results in a higher rate
of malignant conversion (Hennings er al., 1983). The loss of GST expression would
make a cell more susceptible to damage. A similar effect may be occurring in AW
mummichog. While Van Veld et al. (1991) did not detect any changes in GST activity in
grossly visible neoplastic tissue. 2a MAb may be a more sensitive tool to determine if
there are changes in GST expression in neoplastic versus non-neoplastic tissues.

Previous studies with tishes have focused primarily on the changes in GST
activity upon exposure to xenobiotics. [t is apparent that there is a difference in
expression of constitutive GST isoforms between fish species, indicating that individual
species will respond differently to toxicant exposure. Studies directed at the expression
and properties of individual isoforms in fishes may help explain the present
inconsistencies seen in different species upon exposure to contaminants. This study has
attempted to gain an understanding of the role which GSTs may play in resistance of the
mummichog by looking at changes in a major isoform in fish from creosote-contaminated
sites, and partial classification of the isoform. Other factors, including cellular
glutathione levels and additional enzymes involved in the xenobiotic metabolic process
(Hasspieler er al., 1994b; Stein et al., 1992), may play a role in resistance in these fish.
Further investigation into the biochemical mechanisms governing metabolism in the
mummichog may render the fish an alternative as a vertebrate model to mammals for
studying carcinogenesis (Calabrese er al., 1992) in addition to rainbow trout (Bailey et

al., 1992).
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CONCLUSIONS

This study has shown a relationship between elevated expression of a GST
isoform in mummichog liver and increasing environmental contamination. A similar
relationship is observed with GST enzyme activity. This relationship suggests that GSTs,
and more specifically, the elevated isoform. play a role in resistance of mummichog to
creosote-contaminated sediments. Monoclonal antibodies were produced to the elevated
isoform and have been shown to be a useful tool for estimation of relative amounts of the
protein in mummichog hepatic cytosol using western blot analysis. This isoform has a
blocked N-terminus but is most closely related to the rat Mu isoform based upon
immunological cross-reactivity with the rat Mu subunit. Mummichog liver contains
several GST isoforms that may be purified using affinity chromatography. The major

isoforms have basic pls although there are some minor acidic isoforms.
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FURTHER RESEARCH

The ability of the mummichog to develop a genetic resistance suggests that the
change in GST activity may be genetic. although there is no evidence to support this
theory. In order to address this question, future studies need to 1) determine if GST
levels decline and if tolerance to contaminated sediment changes when AW and SC fish
are moved to an uncontaminated environment, and 2) conduct LD;, studies to see if AW
fish are more resistant to toxic compounds than KC and SC fish. Also, further
investigation into the specific properties ot the elevated isoform in AW fish is required to
determine the role it plays in creosote resistance. By conducting substrate studies, it will
be possible to see if the components of creosote are in fact substrates for the elevated
1soform. It is also necessary to look at changes in expression of the other isoforms, for
elevation or depression, and to characterize them. Since the N-terminus of the elevated
isoform is blocked, the most effective way to classify the protein will be to determine the
cDNA sequence. The antibodies will be useful for immunohistochemical studies with
fish from the field and laboratory exposed fish. Immunohistochemistry may be able to
detect changes in isoform expression in liver and liver lesions which cannot be measured

by enzyme activity assays.
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