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ABSTRACT

This study estim ates the potential risks posed to various cultural and  
n a tu ra l resources w ithin Cape H atteras National Seashore (CAHA) due to 
the physical processes associated with barrier island transgression. These 
processes include shoreline retreat, inlet formation, and overwash. The 
risk  estim ates used in this analysis are derived from readily available 
historical data and from data gathered in the field. The risk assessm ent 
was carried out using the Geographic Inform ation System (GIS) 
Arc/INFO.

Areas w ithin Cape H atteras National Seashore were evaluated for 
the relative m agnitude or probability of occurrence of shoreline re trea t, 
inlet formation, and overwash. This inform ation was used to estimate the 
overall risk to National Seashore cultural and natu ra l resources. The 
northern section of the N ational Seashore, including both Bodie Island and  
Pea Island National Wildlife Refuge, and the resources contained in these 
regions, were found to be a t high risk due to all three modeled processes. A 
sm all section of the park between the enclave of Avon and Cape H atteras 
was also found to be a t high risk. Potential m anagem ent strategies tha t the 
National Park  Service m ight adopt to deal w ith the risk  to park resources 
were evaluated as part of th is project.



RELATIVE RISK ASSESSMENT 

FOR CAPE HATTERAS NATIONAL SEASHORE



1. INTRODUCTION

Coastal b a rrie r islands are found in chains in m any places of the 

world; among the most fam iliar examples in the U.S. Atlantic Southeast are 

the O uter Banks of N orth Carolina and Assateague-Chincoteague on the 

Delm arva Peninsula. B arrie r island system s are characterized as fragile 

ecosystems, yet m any are among the most heavily developed of all n a tu ra l 

shorelines.

B arrier islands exhibit a wide range of morphologic features. This 

diversity in form is a function of the variations in sedim ent supply, tidal 

range, geographic orientation/exposure, and wave energy. B arrier islands 

along the central A tlantic coast of N orth America (e.g., the O uter Banks of 

North Carolina) are term ed microtidal because the tide range in this region is 

less than  2 meters. Microtidal barrier islands which are not in equilibrium 

are either regressive (prograding) or transgressive (eroding). The m ajority of 

the mid-Atlantic barrier islands are transgressive. They are storm-dominated 

and possess few inlets and m any washovers. In some local areas, the ra tes of 

shoreline retrea t exceed 8 m eters per year (Inman and Dolan, 1989).

The dynam ics of m id-A tlantic b a rrie r  island system s are driven 

prim arily by climatological forces (Dolan and Lins, 1987; Dolan et al., 1980). 

Storm events, particularly northeast storms, are responsible for the landw ard 

translation  of the islands as sea level rises. This m igration is effected most 

significantly through overwash and inlet formation.



In order to deal effectively w ith the projected impacts of global climate 

change on barrier island systems, the National P ark  Service has contracted 

the D epartm ent of Resource M anagement and Policy a t the Virginia Institu te  

of M arine Science to analyze the  potential risk  to cu ltural and n a tu ra l 

resources w ithin the coastal national parks of the U.S. A tlantic southeast. 

This thesis examines the potential risk posed to various cultural and natu ra l 

resources w ithin Cape H a tte ras  N ational Seashore (CAHA) due to the  

physical processes associated w ith barrier island transgression.



2. STUDY AREA

Cape H atte ras  N ational Seashore (Figure 1) was au thorized  by 

Congress in 1937, but funds were not made available for land acquisition 

(Schoenbaum , 1982). P riva te  m onetary  donations and m atching N orth  

Carolina sta te  funds enabled the physical creation of the national park  in 

1952. Cape H atteras National Seashore extends approximately one hundred 

tw enty kilom eters from W halebone Junction (just south of Nags Head) to 

Ocracoke Inlet. W ithin the boundaries of the National Seashore, the federal 

government has ownership of all lands from ocean to sound, except for those 

lands w ith in  U.S. Coast G uard ju risd ic tion  and the village enclaves of 

Rodanthe, Waves, Salvo, Avon, Buxton, Frisco, H atteras, and Ocracoke. On 

the oceanside of the enclaves, federal ownership is lim ited to 500 feet 

landward from m ean low w ater. Federal and state lands on the Outer Banks 

thus exist in close proximity to private commercial and residential lands. 

This close association leads to pred ictab le conflicts betw een p rivate  

landowners, developers, and resource protection agencies.

Several use conflict issues exist w ith in  Cape H atte ras  N ational 

Seashore. These use conflicts drive the managem ent practices of the National 

P ark  Service. Table 1 sum m arizes the  m ajor m anagem ent issues facing 

CAHA (NPS, 1993) and Table 2 outlines the National Park Service's goals for 

CAHA.
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The extrem e northern  end of CAHA consists of Bodie Island. Bodie 

Island is separated from H atteras Island by Oregon Inlet, a large, active inlet 

th a t is m aintained through dredging by the U.S. Army Corps of Engineers as 

the only shipping channel into and out of Pamlico Sound. Oregon In let was 

opened during a hurricane in 1846 (Fisher, 1962); the H erbert C. Bonner 

Bridge crosses the inlet and connects Bodie Island w ith Pea Island. The only 

“perm anent” inlet other than  Oregon Inlet th a t exists in CAHA is H atteras 

Inlet, which separates H atteras Island from Ocracoke Island.

South of the Bonner Bridge is Pea Island N ational Wildlife Refuge 

(PINWR), which is m ain ta ined  by the U.S. F ish  and Wildlife Service 

(USFWS). PINWR is an  im portan t nesting  and w in tering  ground for 

numerous species of waterfowl. The boundary between PINWR and CAHA is 

ju s t north  of Rodanthe. Historically, an in le t (New Inlet) near Rodanthe 

separated Pea Island from H atteras Island (Figure 2). The inlet has been 

known to reopen temporarily during severe storms (Inman and Dolan, 1989).

H istorically, the O uter Banks were thought to have been heavily 

forested (B irkm eier et al., 1984). The N ational P ark  Service presum ed 

logging and livestock grazing to be responsible for the denudation of the 

islands, and th a t an elevated, vegetated, stable dune line was necessary to 

prevent the perm anent erosion of the islands by wave action and storm  

activity. Thus, artificial dunes were constructed under the direction of the 

N ational P ark  Service along the O uter Banks beginning in the 1930’s 

(Birkmeier et al., 1984; DeKimpe et al., 1991). The in ten t of this project was 

to “re tu rn ” the O uter Banks to their “normal” forested state.
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Studies by Godfrey (1972) and Dolan (1972) conclude th a t the O uter 

Banks were not forested historically as had been assumed by the NPS and 

th a t therefore the “normal” sta te  of the O uter Banks was not actually known. 

These studies, plus the inability of shoreline stabilization efforts to bring 

erosion under control, reinforced the  growing view of b arrie r islands as 

system s in dynamic equilibrium . In  the early  1970’s, the N ational P a rk  

Service decided to abandon its efforts to m aintain the artificially constructed 

dune line. This decision to allow the O uter Banks to retu rn  to the ir na tu ra l 

condition of dynamic equilibrium, while consistent with general NPS policies, 

has resulted  in  a m anagem ent dilemma. Storm  damage to property and 

highways has increased in recent years (DeKimpe et al., 1991). The ability of 

the N ational P ark  Service to plan for changes in morphology w ithin CAHA 

boundaries requires inform ation regarding ra tes  of shoreline re tre a t and 

projections of risk to resources w ithin the park.

The National Park  Service m aintains numerous m an-m ade structures 

w ithin CAHA as unique cu ltu ral or historic sites (Figures 3a—3c). These 

structures are reflective of hum an history on the O uter Banks. The cultural 

site inventory for CAHA can be found in Table 3.

Several structu res th a t were p a rt of the United S tates Life Saving 

Service stand in Cape H atteras National Seashore. The NPS owns structures 

a t the  Bodie Island  S tation , th e  L ittle  K innakeet S tation , and th e  

Chicamacomico Station. M any of the existing structu res are in  need of 

refurbishm ent; however funds have not been identified for th is purpose. 

Nevertheless, the NPS is committed to preserving these historic sites. The 

Little K innakeet Lifesaving and Coast Guard Station was built in 1874, and 

was moved back from the beach to its present location in 1904 (NPS, 1993).
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The Chicamacomico boathouse was bu ilt in 1874, and the garage was 

constructed in 1911. The NPS does not own the land where these structures 

stand.

The most w ell-know n historic site w ithin  Cape H atteras N ational 

Seashore is the Cape H atte ras  Lighthouse complex, which originally was 

sited some 500 m eters from the shoreline. This complex includes Cape 

H atteras Lighthouse, a sm all brick oil house, the principle keeper's quarters 

and the double keeper's quarters. The lighthouse began operation in 1870. 

The oil house was built in  1894, the double keeper’s quarters were built in 

1854, and the principle keeper’s quarters were built in 1871. The complex is 

currently located approximately 50 m eters from the high w ater line. The NPS 

has determined th a t the Cape H atteras Lighthouse would be relocated when 

“the th rea t of loss of the structure to the sea equaled or exceeded the th rea t of 

possible loss by a move” (NPS, 1993). Four Civilian Conservation Corps 

cabins are located n ea r th e  lighthouse complex in Buxton. The o ther 

lighthouse complex located on the Outer Banks, the Bodie Island Lighthouse, 

is owned and m aintained by the U.S. Coast Guard.

N atural resources in Cape H atteras National Seashore are typical of a 

mid—Atlantic barrier island environment. The eco—physiographic zones th a t 

are found in CAHA are beach, dune, back-dune meadow and scrub—shrub, 

m aritim e forest, fre sh w ate r w etland , and back b a rr ie r  sa lt m arsh . 

M anagem ent practices w ith in  the park  have trem endous im pact on the 

ecological m ake-up of these habitats. For example, the m aintenance of an 

artificially high foredune line reduced overwash frequencies and allowed 

increased  scrub—sh ru b  d is trib u tio n . The p ark  service d iscon tinued  

m aintenance of the artificial dune line in the 1970s; as a result, one would
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expect increasing overwash w ith a re tu rn  to dominance of more salt—tolerant 

species.

Cape H atte ras  N ational Seashore serves as critical h ab ita t for 

numerous threatened and endangered species, most of which are birds. Bird 

species which utilize CAHA on either a temporary or perm anent basis include 

bald eagles, peregrine falcons, and piping plovers. Numerous species thrive in 

the b arrier island environm ent of CAHA but are  not endangered. These 

include a variety of terns, black ducks, brown pelicans, herons, ibis, and 

egrets. Cape H atte ras N ational Seashore also is the  no rthern  lim it of 

loggerhead turtle nesting; the loggerhead is a threatened species.

Several natural resource m anagem ent issues are presently unresolved 

w ithin  Cape H atteras N ational Seashore. One is the  effect th a t private 

development adjacent to the park  has on park w ater quality. Another is the 

effect of the use of off—road vehicles on the beach and rela ted  shorebird 

habitat.
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3. LITERATURE REVIEW

3.1 Storms and Barrier Island Processes

3.1.1 Sea Level Rise

The gradual rise in sea level over the past hundred years or so has 

been well-docum ented (Dolan and Lins, 1987; L eatherm an, 1988). The 

response of barrier islands to the overall rise was debated in the literature in 

the 1960’s and 1970’s. Recent research has focused more on the m agnitude of 

response to sea—level-rise com pared to other processes. Sanders (1963) 

proposed th a t sea—level-rise most often resulted in the “drowning” of barrier 

islands ra th e r than  landward migration. M igration of barriers was simply a 

function of overwash and inlet activity.

In a landm ark paper, B ruun (1962) calculated the theoretical response 

of a beach to a given rise in sea level; th is proposed link between sea—level- 

rise and landward m igration of barrier islands was termed “the Bruun Rule.” 

The B ruun Rule was su b stan tia ted  over the ensuing couple of decades 

(Leatherman, 1988a). Dubois (1990) constructed a model of beach erosion as a 

function of sea-level rise th a t he referred to as the “transgressive shoreface 

model.” Dubois’ model generally supported B ruun’s theory linking shoreline 

re trea t to sea—level rise, but contradicted B ruun’s Rule on one im portant 

point. B ruun’s Rule required  th a t m ateria l eroded from a shoreface be 

deposited offshore on the continental shelf; the transgressive shoreface model 

predicted most sediment would be deposited on the island itself or in lagoons
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(i.e., overwash). Dubois’ model yielded results close to the observed erosion 

rates for U.S. east coast.

At the n o rth ern  end of th e  Mid—A tlantic b a rr ie r  island  chain , 

Leatherm an (1983, 1988a) found sim ilar patterns a t Assateague Island and 

Ocean City. He calculated the shoreline re trea t a t Ocean City to be on the 

order of 75 m eters over the past century, which he attributed largely to se a -  

level—rise.

3.1.2 Overwash Processes

Overwash is the process by which storm waves push sand across the 

b arrier island and through breaches in dune lines (if dunes are present) 

(Leatherm an, 1988a). Overwash is viewed by some as highly destructive; 

however, continuing over long periods of time, overwash is a geologic process 

th a t is necessary for m ain ta in ing  the b arrie r island. The frequency of 

overwash is highly variable and depends on such factors as storm frequency, 

island exposure and topographic relief, tidal range, wave energy, and dune 

dimensions (Leatherm an, 1988a). Overwash contributes to the landw ard 

m igration of barrier islands by providing sand for vertical growth of dune 

fields and by moving volumes of sand toward the back barrier or sound side of 

the island.

There has been a fair am ount of controversy and debate regarding the 

re la tiv e  roles of overw ash and  aeo lian  tra n sp o rt in  th e  landw ard  

displacement of barrier islands (Leatherm an, 1988a). A 1977 study by Fisher 

and Stauble examined washover fans created by H urricane Belle (1976) a t 

Assateague Island. They concluded th a t only major storms (either tropical or 

extratropical) moved enough sedim ent via overwash to result in m easurable
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landward migration of the island. In addition, in the six months following the 

storm ’s passage, much of the  sand deposited in the  overwash fans was 

transported back to the shoreface through aeolian transport.

Several studies by Leatherm an (Leatherm an et al., 1977; Leatherm an, 

1979; Leatherm an and Zaremba, 1987) support the findings by F isher and 

S tauble (1977) and concluded th a t  except in unusually  severe cases, 

overwash is not a significant factor in b arrie r m igration due to aeolian 

deflation of the washover fans (i.e., re tu rn  of sedim ent to the shoreface by the 

wind).

Kochel and Dolan (1986) exam ined the sedim ent budgets for four 

washover sites on Assateague Island and found th a t a significant portion of 

the annual sediment transport for the island could be traced to a single storm 

event. Kochel and Dolan also found m inim al aeolian deflation of the fans, 

con trad icting  the  previous stud ies by L ea th erm an  and o thers (e.g., 

Leatherm an, 1979). They a ttrib u ted  the observed differences in aeolian 

redistribution to Leatherm an's site selection in the 1979 Assateague Island 

study. Kochel and Dolan pointed out th a t Leatherm an's sites were in the low- 

profile region of the island (the north end), whereas most of the island was 

dom inated by the presence of dunes. L eatherm an 's sites therefore were 

unrepresentative of Assateague Island as a whole.

Kochel and W ampler (1989) suggested th a t both the Leatherm an and 

the Kochel and Dolan studies were of limited value because they were of such 

short duration (two years in each case). They suggested th a t the importance 

of overwash versus deflation was linked to the variability of climatic factors; 

Leatherm an's data were collected during an unusually  non-stormy period.
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The tim ing of the study plus L eatherm an 's sites ' location in  a low-lying 

region m ay have accounted for th e  discrepancy in resu lts  betw een the 

studies. Kochel and W ampler encouraged completion of long-term (ten years 

or more) exam inations of sedim ent budgets to b e tter determ ine the relative 

influence of climate variability on overwash and aeolian transport.

Inm an and Dolan (1989) calculated the sediment budget for the O uter 

Banks of North Carolina and found the average ra te  of shoreline recession to 

be 1.4 m yr-1 betw een False Cape, V irginia and Cape H atte ras , N orth  

Carolina. Inm an and Dolan also calculated th a t Oregon Inlet is m igrating 

landward a t an average ra te  of 5 m y r 1 and southward at an average ra te  of 

23 m y r 1. Inm an and Dolan estim ated th a t sea—level-rise was responsible for 

21% of the average landw ard  m igration  of the O uter Banks, overwash 

processes (31%), longshore tran sp o rt out of the system  (17%), aeolian 

transport (14%), in let deposition (8%), and removal by dredging a t Oregon 

Inlet (9%).

3.1.3 Inlet Dynamics

Inlets are critical to a barrier island's ability to migrate landward. The 

presence of both perm anen t and ephem eral inlets usually resu lts in the 

construction of flood tidal deltas on the sound side of the inlet (some sediment 

is deposited on the ocean side in the form of an ebb tidal delta, but the net 

movement of sedim ent is alm ost always tow ard the sound (Leatherm an, 

1988). Flood tidal deltas provide a platform  for the development of sa lt 

m arshes after the  in let closes or m igrates downdrift in response to littoral 

currents (Leatherm an, 1988a). Effectively, th is resu lts in a w ider island.
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Island rollover may occur if  overwash deposits sand on the flood tidal delta 

salt m arshes, moving the entire island landward over time.

Pierce (1969, 1970) examined the formation of inlets and their role in  

barrier island m igration. In his earlier paper, which focused on the N orth 

Carolina O uter Banks, Pierce found inlet activity to be responsible for up to 

70% of the island's landw ard re trea t (a much larger contribution th an  in 

Inm an and Dolan's 1989 sedim ent budget). In the second paper, he described 

several mechanisms by which inlets could be created, the most spectacular of 

which was the breakout of w ater from the sound side of the island during 

hurricanes. N ortheast storms produced many overwash areas but few inlets, 

largely due to the lower storm surges and wind velocities compared to those 

of tropical systems.

Tem porary in le ts  were found by Armon (1979) and Armon and 

M cCann (1979) to account for up to 90% of the landw ard tran sp o rt of 

sedim ent along the Malpeque barrier in the Gulf of St. Lawrence, Canada. 

These barriers have fairly high dune relief, w ith exceptions occurring near 

the sites of relict inlets. Overwash and aeolian transport therefore were found 

to be relatively inconsequential in term s of barrier migration.

A series of papers by Leatherm an (1979, 1985, 1989) deals w ith the 

role of in lets in transg ressive  b a rrie r re trea t. He concluded th a t in le t 

dynamics was the m ajor force behind barrier re trea t a t Assateague Island 

and Fire Island, while overwash served prim arily to increase the islands' 

elevation.

A study by the U.S. Army Corps of Engineers (Everts et al., 1983) 

suggests th a t there is a general relationship between island width and the
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potential of inlet formation: the narrow er the island, the g reater the chance 

of inlet formation. According to this study, relict inlet sites often are indicated 

by anomalously wide sections of the island. These areas are generally not 

considered to be good candidates for new inlet formation. However, the 

authors point out th a t the general physical characteristics of the region th a t 

allowed for in le t form ation  probably have not changed significantly, 

particularly if an inlet was present relatively recently. For this reason, Everts 

et al. consider the general areas surrounding historical inlets as potential 

sites for new inlets.

3.2 Coastal Storm  Climatology

W ithout a doubt, hurricanes and tropical storms are the most studied 

coastal storms (Davis and Dolan, 1993). On the mid—Atlantic coast, tropical 

storm s are infrequent events. The O uter Banks experience a tropical storm 

once every year or two (Davis et al., 1992). In comparison, the Outer Banks 

experience the effects of an average of th irty  or more extratropical storms (or 

northeasters) per calendar year. W ith the exception of m ajor hurricanes, 

coastal damage due to tropical w eather systems is generally restricted to a 

sm all extent of the coastline. N ortheasters, on the other hand, can affect 

large stre tches of the  A tlan tic  coast. For example, the  so-called “Ash 

W ednesday S torm ” of 1962 produced significant changes in the coastal 

landscape along the  en tire  A tlantic coast (Dolan, 1987). Yet northeasters 

rem ain poorly studied; little research has been published on the climatology 

of extratropical storms and even less published specifically dealing with the 

storm  climatology of a p a rtic u la r  region of the  A tlantic coast. M ost 

climatological research either focuses on the macro-scale (or synoptic scale) or 

the micro-scale, as opposed to the meso-, or regional, scale.
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3.2.1 Northeast Storms versus Tropical Storms

Tropical storm s and hurricanes are low pressure system s (cyclones) 

th a t form over the tropical A tlantic ocean. They typically have a m aximum 

diam eter of 650 kilom eters or so, although th is is variable. The cen tral 

pressure of hurricanes is usually around 950 mb, although rare  storm s may 

have a central pressure of below 900 mb. H urricane force winds are defined 

as 74 miles per hour or g reater sustained, while tropical storm force winds 

are defined as 40—74 miles per hour sustained. Most people are fam iliar with 

the appearance of a hurricane: a tight counterclockwise spiral of cloud bands 

and thunderstorm s. The cloud tops in hurricanes may reach heights of 12,000 

meters or more; this illustrates the convective nature of tropical storms. This 

convection is fed by warm, tropical w ater. For this reason, hurricanes form 

primarily during the summ er and autum n months in the North Atlantic.

H urricanes generally are steered by upper level wind patterns. They 

may track into the Gulf of Mexico or they may veer northw ard and th rea ten  

the eastern  seaboard. H urricanes require an  extensive area of ocean w ater 

w ith surface tem perature greater than  26° C for formation. In addition, the 

presence of wind shear in the atm osphere will preclude developm ent of 

tropical storms (the convection cells get sheared apart). Tropical storm s may 

persist for 4-5 days, and hurricanes for 2-3 days. However, the storm usually 

moves the entire time it is in existence; it rarely threatens a single area  for 

more than  12 hours (Barry and Chorley, 1987).

N ortheasters also are low pressure systems, but with more variability 

than  hurricanes. N ortheasters are "cold core" systems while hurricanes and 

tropical storm s are "warm core" system s. N ortheasters therefore do not
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generate the  m assive convective cells seen in  hurricanes. N ortheasters 

actually intensify w ith increasing wind shear in the upper atmosphere, and 

are therefore linked to a strong je t stream . They often form along fronts (or 

baroclinic zones) where two air m asses of different tem peratures meet. When 

a surface baroclinic zone coincides w ith strong winds aloft, conditions are 

favorable for cyclogenesis. The stronger the tem perature differential between 

the air m asses and the stronger the winds aloft, the stronger the resulting 

northeaster. There appears to be a relationship between je t stream  position 

and northeaster formation. The prim ary northeaster season is from October 

through April. This is typically the time of year when the je t stream  follows a 

more southerly track.

N ortheasters do not necessarily  develop over w ater. Some of the 

strongest northeasters on record developed in the lee of the Rocky M ountains 

in the middle of North America (Davis et al., 1992).

Although northeasters can develop high winds, most coastal damage is 

caused by high surf. N ortheasters are much larger w eather system s th an  

hurricanes; the “Storm of the Century” in March of 1993 covered almost the 

entire east coast of the United States, from Maine to Georgia. These large low 

pressure system s can create winds th a t blow unim peded across several 

hundred kilom eters. N ortheasters also may persist for several days, often 

w ithout changing the ir position by more than  a few dozen kilometers. The 

long fetch of A tlantic coast northeasters, the sustained hurricane or n e a r-  

hurricane force wind speeds and the extended duration  of these storm s 

combine to generate large deep w ater waves, which can exceed 10 m eters in 

height (Davis and Dolan, 1993 and Davis et al., 1992). Davis et al. (1992)
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classified northeasters according to th e ir  synoptic characteristics. These 

characteristics are sum m arized in Table 4.

3.2.2 Implications for Cape Hatteras

Due to the geometry of the O uter Banks, specifically Cape H atteras, 

they receive wave energy from virtually all coastal storms th a t develop along 

the A tlantic coast. Onshore winds from any offshore direction will create 

wave conditions th a t im pact th is coast. For Cape H atte ras, winds from 

approxim ately 340° to 190° produce waves (Wayland, 1985). N orth of the 

Cape, critical wind directions are approximately 340° to 160°. Wayland (1985) 

analyzed the relationship between storm  track  and wave climate a t Cape 

H atteras and found th a t extra-tropical storm s which produce the largest 

waves have an average track of southwest to northeast, or roughly parallel to 

the Atlantic coastline. Storms th a t track  further east generate larger waves. 

W ayland also found th a t tropical storm s producing the largest waves track  

fairly close to Cape H atte ras  from the sou theast and then  veer to the  

northeast ju s t after passing H atteras. No reliable east-west variability in the 

tracks as they rela te  to wave climate could be discerned from W ayland's 

study due to the small num ber of tropical storms associated w ith the largest 

wave height category.

The offshore topography of Cape H atteras significantly contributes to 

the wave climate. Here the continental shelf is only about 40 km wide, 

compared to over 120 km wide off Cape Henry, to the north. The Gulf Stream  

therefore approaches w ithin 30 to 60 km of Cape H atteras. Strong currents 

like the Gulf Stream  (up to 4 knots) can cause an increase in overall wave 

height (Bascom, 1980). Offshore shoals are common along the length of the
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O uter Banks, and the infamous Diamond Shoals extend over 20 km seaw ard 

from Cape H atte ras. The shoals cause local wave refraction th a t has a 

significant impact on the velocities of littoral drift along the Outer Banks.

3.3 Shoreline Change Analysis

Typical sources of data  for the analysis of patterns of shoreline change 

through tim e include m aps, nautical charts, and aerial photographs. The 

methods used to quantify shoreline change are extensive and varied. All have 

lim itations and drawbacks (Crowell et al., 1991). Numerous authors have 

documented the difficulties associated w ith determining rates of change along 

dynamic shorelines (e.g., Sm ith  and Zarillo, 1990; Crowell et al., 1991; 

Fenster and Dolan, 1993; Fenster et al., 1993; Thieler and Danforth, 1994). A 

study by Dolan et al. (1991) based on data  for H atteras Island examined the 

methods most often used by researchers to gauge shoreline rates of change. A 

follow-up paper (Dolan et al., 1992) exam ined the influence of spa tia l 

sam pling on shoreline ra te  of change values. These reports are sum m arized 

below.

The most common method of shoreline change analysis is the so-called 

end-point-rate  or EPR m ethod (Dolan et al., 1991). This method uses two 

shoreline surveys only, w ith  the ra te  of change calculated as the to ta l 

distance of shoreline m ovem ent divided by the  tim e difference between 

survey years. The p rim ary  advan tage of th is  m ethod is its  ease of 

com putation. However, d a ta  available between the two survey years are 

frequently not used in the  analysis. The omission of this inform ation may 

result in im portant shoreline trends going undetected.
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The average-of-rates, or AOR method was first described by Foster and 

Savage (1989). It is a variation of the EPR method, but uses a minimum tim e 

criterion to reject data  of questionable accuracy. The minimum time criterion 

is defined as:

where E i and E2 are the m easurem ent errors for the two points (e.g., ± 10 m 

for USGS topographic maps), and Ri is the EPR of the longest time span for a 

particu lar transect. According to th is method, all data th a t survive th is 

criterion are considered long-term  ra tes. All long-term  ra tes are th en  

averaged. According to the Dolan et al. (1992) review, the advantages of th is 

method are th a t all “good” data  are used, short-term  variability is filtered 

out, and the method allows for calculations of time-dependent variance from 

the average of rates.

Linear regression is used to calculate a best fit line through the data  

points available, w ith the slope of the line being an estim ate of the m ean 

shoreline ra te  of change. L inear regression is advantageous because it uses 

all available data points. It is a straightforw ard statistical computation, and 

is in w idespread use w ith in  the  scientific community. However, linear 

regression does not deal well w ith clumped data.

Jackknifing  is a modification of the above method of linear regression. 

This method uses all possible combinations of regressions by omitting one 

data point for each iteration. A family of regression lines is generated, w ith 

the average slope being the estim ate of long-term shoreline change rate. The 

advantages to th is method are sim ilar to those of linear regression, w ithout
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being adversely affected by dum piness. The prim ary disadvantage is the time 

and effort required to perform the computations.

The study by Dolan et al. (1991) found the AOR method to be the most 

variable of the four methods in term s of the spatial distribution of calculated 

rates. For H atte ras  Island, linear regression and jackknifing produced 

sim ilar results. The greatest differences in calculated ra tes were between 

linear regression and AOR and between jackknifing and AOR.

The second study by Dolan e t al. (1992) used standard  sta tistica l 

methods (geostatistics) to determ ine the optimal sample size for shoreline 

ra te  of change calculations along H atteras Island. The authors found th a t 

their original transect spacing of 50 m could be increased to 265-625 m eter 

intervals with 95% confidence of the ra te  of change estim ates being w ithin ± 

1 m y r 1, or 160—315 m eter intervals w ith 99% confidence of the estim ates 

being within ± 1 m yr*1.

E rror analysis is an im portan t p a rt of shoreline change analysis. 

N um erous a ttem pts have been m ade to quantify  error associated w ith 

shoreline ra te  of change predictions. Crowell et al. (1991) summarized worst- 

case error estim ates of historical shoreline maps and air photos:

T-sheets (1:10,000 scale) mapped prior to use of aerial photography (1844—1880): 

error estim ate of digitized position of HWL = 8.9 m + sketching error 

T-sheets (1:10,000 scale) mapped prior to use of aerial photography (1880—1930: 

error estim ate of digitized position of HWL = 8.4 m + sketching error 

Recent NOS maps compiled from aerial photography:

error estim ate = 6.1 m + inaccurate interpretation of HWL

20



Sm ith and Zarillo (1990) estim ated  the  potential erro r associated w ith 

locating the HWL could be as high as ± 40 m eters. NOS m aps and USGS 

1:24,000 topographic maps have a  stated  error of ±10 meters.

3.4 R isk Assessment

H istorically, the te rm  “risk  assessm en t” has been applied to the 

examination of potential risk to hum an health  as a result of exposure to some 

introduced environm ental toxicant. As an  in te llectua l discipline, r isk  

assessm ent is in its infancy. W ithin the past couple of decades, considerable 

research has been accomplished in the fields of toxicology, industrial hygiene, 

environmental impact assessm ent, engineering, and epidemiology. The vast 

majority of the accessible literatu re  deals w ith such risk  events as radiation 

exposure as a result of an industrial accident, impact of hazardous m aterial 

on hum an health , impact of pesticides on hum an health , and oil spills. In 

recent years, a branch of risk  analysis has formed th a t deals prim arily w ith 

risks posed to the environm ent as a resu lt of hum an activity; th is type of 

analysis generally is referred to as “ecological risk  analysis.”

T raditional r isk  analysis deals p rim arily  w ith the hum an h ea lth  

concerns of various anthropogenic activities. Num erous protocols exist for 

estim ating the hum an hea lth  risk  associated w ith various environm ental 

toxins (e.g., Lilienfeld and Lilienfeld, 1980; Cohrssen and Covello, 1989; 

T ennant et al., 1987; Davis and Gusman, 1982; Travis and H atterm eyer— 

Frey, 1988). T raditional r isk  assessm ents are characterized by discrete 

events (e.g., an oil spill or the accidental release of a carcinogen into the 

environment) which result in a recognizable end-point (e.g., hum an death). 

Conversely, environmental stresses most often involve multiple stresses th a t
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affect a diversity of organism s or a num ber of ecosystems. For this reason, 

m any researchers find the  m ethods and assum ptions of trad itional risk  

analysis inappropriate to environm ental science (Harwell et al., 1992).

3.4.1 Ecological Risk Assessment

In con trast to trad itio n a l r isk  analysis, ecological risk  analysis 

attem pts to resolve risks to the environm ent as a result of hum an activity. It 

is a developing field w ith  few (if any) standard ized  approaches. Most 

ecological risk  analyses performed place em phasis on activities th a t have 

broad scale consequences (e.g., global climate change) ra th e r than  activities 

which introduce an environm ental contam inant into a relatively limited area. 

Conclusions based on ecological risk  assessm ents are often in direct conflict 

w ith public perception of environm ental risk and with the focus of the federal 

governm ent’s own agencies (Table 5). I t seems likely th a t ecological risk  

analysis w ill become a key e lem ent in  th e  fu tu re  developm ent of 

environmental policy a t all levels of government.

The paradigm  of trad itio n a l r isk  analysis (single s tre ss—̂single 

endpoint) has lim ited application in the  field of ecology. S ituations which 

involve the release of a toxin or pollutant into the environment might be well- 

suited  to trad itional approaches; however m any environm ental problems 

involve multiple stresses th a t affect m any components of an ecosystem. For 

example, an oil spill poses quantifiable risks to hum an populations, but the 

problem is more complex w ith  respect to the risks faced by the affected 

ecosystem. The ta sk  of hazard  identification takes on a whole new m eaning 

when dealing w ith  global clim ate change; an  increase in average global 

tem perature m ight favor some species, but adversely affect others.
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Only the most general of paradigm s are available for those in terested  

in quantifying ecological risk. Harwell et al. (1992) described this paradigm  

as a th ree -step  approach: 1) characterize the stress regime experienced by 

various components of the ecosystem; 2) characterize how ecosystems respond 

to stress; and 3) characterize how ecosystems recover from or adapt to stress.

The definition of stress includes chemical and physical exposure, and 

m ust consider the occurrence of nonchemical stress, spatial extent, frequency, 

intensity, and duration  of the stress event. Differential in tensities of the 

stress within the ecosystem, occurrence of other simultaneous anthropogenic 

stresses, and the  background n a tu ra lly —occurring stresses m ust also be 

integrated. Harwell et al. (1992) listed factors which limit researchers’ ability 

to predict ecosystem response to stress events. These include:

• diversity of ecosystem type 

•diversity of disturbance type 

•differential response of ecosystems to stresses 

•diversity in response according to scale

•lack of baseline inform ation on ecosystem function 

•fundam ental lim itations in ecological theory

• environmental variability and stochasticity

One m ethod of dealing  w ith  ecological risk  is a p rio ritiza tio n  

methodology described by Harwell et al. (1992). The authors began w ith a list 

of p redom inan tly  env ironm en ta l hum an  h ea lth  risks found in  EPA 

publications (EPA, 1987a and 1987b). They expanded this list to include a 

broad range of environm ental risks. Harwell et al. then created a m atrix  of
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environm ental stresses (e.g., acid deposition) and fundam ental ecosystem 

types (e.g., estuaries). This m atrix  was intended to include projections of 

recovery potential and m agnitude of ecological effects for each ecosystem as a 

function of a particular stress. A second m atrix  distinguishes between risks 

which can be differentiated by scale (global, regional, or local) and risks 

differentiated by transpo rt mechanism (air, w ater, or terrestrial). A th ird  

m atrix relates environm ental stresses to recovery time frames. The result of 

this is an “ecological risk prioritization m atrix (Table 6)”.

Gornitz et al. (1994) developed a coastal risk  assessm ent database for 

the southeast coast of the U.S. based on coastal vulnerability to sea-level rise. 

T heir coastal vu lnerab ility  index is based on th irteen  geophysical and 

clim atological v ariab les  inc lud ing  lithology, e levation , subsidence, 

erosion/accretion, tropical storm  probabilities of occurrence, and maximum 

storm surge. The th irteen  variables were grouped into three clusters using 

factor analysis: perm anen t inundation, episodic inundation, and erosion 

potential. The perm anen t inundation  factor incorporated elevation and 

relative sea level variables. The episodic inundation factor included climatic 

variables such as tropical storm  and hurricane probabilities, extratropical 

storm  frequencies, and storm  surge height. The erosion potential factor 

consisted of geology, shoreline displacem ent, and wave height variables. 

These three factors were used to calculate a coastal vulnerability index. The 

data were presented in grid form, w ith the grid cells equal to 7.5’ latitude by 

7.5’ longitude. Each cell was classified as being a t low, moderate, high, or 

very-high risk  due to sea level rise. Gornitz et al.’s (1994) study represents 

the cutting edge in term s of application of risk  assessm ent techniques to 

coastal m anagem ent strategies. Its major drawback is the relatively large
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scale (7.5* la titude by 7.5’ longitude). However, fu tu re  risk  assessm ent 

protocols developed for CAHA could certainly incorporate some elem ents of 

Gornitz et al.’s method.
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4. METHODS

The goal of this project is to develop a protocol to apply a coastal risk  

assessm ent model of physical processes influencing Cape H atteras N ational 

Seashore. This section outlines the methodology used to estim ate the spatial 

variation in m agnitude of th ree  components of barrier island transgression 

for Cape H atteras N ational Seashore: shoreline translation, probability of 

inlet formation, and overwash frequency. These processes were chosen as the 

basis for the protocol because of th e ir significant historic im pact upon the 

O uter Banks as well as the availability of historic data. O ther processes (e.g., 

littoral sedim ent transport or sedim ent removal via hum an activity) are key 

components of b arrier island  dynam ics but either could not be modeled 

w ithin the scope of this project or had no historic data available.

4.1 General Overview o f Protocol:

Using the geographic inform ation system (GIS) software ARC/INFO (v.

7.0.2), 338 shore—normal reference transects 250 m eters apart were identified 

from Bodie Island to southw est of Cape H atteras (Figure 4). Each transect 

was evaluated for the relative m agnitude or probability th a t each of the 3 

risk components would occur a t th a t site. Based on the evaluation, a score of 

1, 3, or 5 was assigned to each transect for each risk  component, w ith  1 

defined as low risk, 3 defined as m oderate risk, and 5 defined as high risk. 

The potential risk  to park resources was subsequently evaluated according to
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the natu re  of the resource. A variety of historical data were used to develop 

the risk assessment.

4.2 Generation o f Reference Transects:

The transects were generated using a macro program w ithin ARC/INFO 

( t r a n s e c t s  .am i). The macro allowed for detailed spatial placem ent of the 

transects. The transects were placed approxim ately perpendicular to the most 

recent shoreline while still considering the ir orientation relative to the historic 

shorelines (see below) which would be analyzed as part of this study. Transects 

spaced 250 m eters ap a rt were w ithin the optimal distance of 160—315 m eters 

used for conducting shoreline change analysis along the Outer Banks (Dolan et 

al., 1992). The transects were num bered sequentially from north  to south  

(Figure 4). The northern lim it of the transects was the park boundary on Bodie 

Island (Figures 1 and 4). The southern term inus was limited by the availability 

of reliable data  for a shoreline change analysis. The GIS coverage of the 

reference transects is superim posed on the shoreline re trea t coverage, in let 

formation coverage, and finally the historic overwash coverage. The transects 

then  were coded for each risk  param eter according to the protocol outlined 

below.

4.3 Historical Shoreline Analysis and Retreat R isk Determination:

Historical shoreline surveys for Cape H atteras National Seashore exist 

for 1852, 1917, 1946/1947 and 1980 (Figure 5). The source for these surveys is 

a series of 1:24000 scale m aps published  by the  NOAA/NOS-CERC 

Cooperative Shoreline M ovement S tudy (Everts et al., 1983). A 1993 

shoreline was surveyed by Harold Berquist of the VIMS Coastal Inventory
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Program using a high-precision GPS unit in situ  and traveling along the high 

w ater line on a falling tide.

The analysis of shoreline trends was perform ed using ARC/INFO. 

Each historic shoreline survey was digitized as a separa te  ARC/INFO 

coverage (Figure 5). Temporally sequential shoreline coverages were joined 

together (e.g., 1980 and 1993) to form single unioned coverages. Each of these 

coverages was then  joined w ith  a copy of the  coverage containing the  

transects. The distance along each transect betw een the two sequential 

shorelines was divided by the  tim e difference in  years between surveys, 

yielding approxim ate ra tes of change in shoreline position (m y r 1) a t 250 

m eter intervals along the shore. Each transect was characterized by four 

rates of change corresponding to a specific time interval (1852-1917, 1917— 

1946/1947, 1946/1947—1980, and 1980—1993). An overall mean rate of change 

a t each transect location was calculated over the study period (1852—1993) by 

averaging the interval rates computed above. These rates were applied in the 

risk assessment score (Appendix 1).

For computational purposes, transects were grouped according to their 

geographic location (e.g., Bodie Island, Pea Island, H atteras Island; Figure 4). 

The median re trea t ra te  (shoreline ra te  of change < 0 m yr-1) for each island 

was calculated for the interval 1852-1993 (Appendix 2). The risk of shoreline 

re trea t a t each location was defined relative to the m edian re trea t ra te  for 

th a t region.

The risk  of shoreline re trea t is defined as being either high, moderate, 

or low. A transect is assigned a high risk  score (risk = 5) if the mean ra te  of 

change is g reater th an  or equal to the appropriate m edian re trea t rate .
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Transects are defined as having a m oderate risk  of re trea t (risk = 3) if  the 

m ean ra te  of change is between 0 m eters per year (inclusive) and the median 

re trea t rate. All transects w ith positive m ean shoreline rates of change (i.e., 

prograding over time) are considered to have a low risk  of shoreline re trea t, 

and receive a risk score of 1.

4.4 Relative R isk o f Inlet Formation:

Relative risk of inlet formation is based on two sources of data: present 

island w idth and historic inlet positions. Historical inlet data are available 

from Fisher (1962). Everts et al. (1983) provides an accounting of historic 

in let activity along the O uter Banks based on Fisher's study. The authors 

suggest a relationship between previous inlet activity and potential for new 

inlet formation. Historic inlet locations (from Fisher, 1962 and Everts et al., 

1983) plus associated position error (±5” of latitude) were digitized into an 

ARC/INFO coverage (Figure 2). The E verts et al. study also suggests a 

relationship between island w idth and the probability of inlet formation; the 

narrow er the barrier, the h igher the  probability of in let formation. The 

critical w idth was defined as 1 kilom eter. Figure 6 shows areas of Cape 

H atteras National Seashore which are narrower than  1 kilometer.

Areas th a t are defined as having a high relative risk of inlet formation 

(risk = 5) are those th a t are narrow er than  1 kilometer and have experienced 

inlet activity in the past. Areas th a t are defined as having moderate risk  of 

inlet formation (risk = 3) are those th a t are either narrower than  1 kilom eter 

or have experienced inlet activity in the past. Sections of the O uter Banks 

th a t are wider th an  one kilom eter and have not experienced inlet activity
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w ithin the tim e period covered by the historic record are defined as having a 

low relative risk  of inlet formation (risk = 1).

4.5 Relative R isk o f Overwash:

Risk of overwash for any particular storm  event is difficult to quantify. 

Factors including local relief, wave height and storm  surge m agnitude 

determ ine where and w hether overwash or dune breach occur during storm  

events. Some authors (e.g., Pierce, 1969) suggest th a t over a 20 to 50 year 

tim e span the risk  of overwash is roughly equal all along the O uter Banks. 

Overwash risk can generally be assessed by analyzing the spatial distribution 

of past overwash events and the topography of the region. Fly-over video was 

available for conditions in the park  immediately following two storm events: 

the Christm as N ortheaster of 1992 and Hurricane Emily of 1993. Analysis of 

these videos allowed for a general assessm ent of those park  areas th a t are 

susceptible to overwash. Figures 7a—7d show the approximate extent and 

geographic d istribu tion  of overw ash for each of the two storm  events. 

Information on historic overwash frequency is found in a report by Boc and 

Langfelder (1977; Figure 8). Detailed topographic data specific to the study 

region is not curren tly  available; as a consequence, the relative risk  of 

overwash is characterized solely on the basis of historic information.

High risk  of overwash (risk = 5) is defined as those sections of the 

O uter Banks which have experienced total overwash at any point according 

to the historic and observational data. Moderate risk of overwash (risk = 3) is 

defined as those sections of the O uter Banks which have experienced only 

partia l overwash according to the historic and observational data. Low risk  of 

overwash is defined as those sections which have not experienced overwash
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in  any capacity  according to the  available data . W ith respect to the  

observational data, “to ta l overwash” is defined as overwash events which 

crossed Highway 12. “P artia l overwash” is defined as overwash events which 

breached the dune line but did not cross Highway 12.

4.6 Combined R isk Determination:

The risk  scores were averaged at each location to produce a mean, or 

combined, risk. For example, transect 70 received risk scores of 5, 3, and 3 for 

shoreline re trea t, in let formation, and overwash respectively (Appendix 1). 

The combined risk  is calculated to be 3.7. This method assumes th a t each 

physical process contributes equally to the overall risk a t any location.

4.7 Risk Assessment

The second component of this study involves projecting the risk  posed 

by shoreline re trea t, in let formation, and overwash to the various cultural 

sites and n a tu ra l resources w ithin Cape H atteras N ational Seashore. The 

risk  assessm ent assum es th a t both cultural sites and natu ra l resources are 

differentially susceptible to the three physical processes considered. The risk 

assessm ent protocol couples the susceptibility  of a site or resource to a 

process w ith the m agnitude or probability of occurrence of the process. The 

protocol allows for the determ ination of relative risk  to cultural sites and 

natural resources w ithin the National Seashore.

Table 3 lists the cultural sites located w ithin Cape H atteras N ational 

Seashore which were evaluated as p a rt of the risk  assessm ent. These sites 

include such well-known park  structures as the Cape H atteras Lighthouse 

and the Little K innakeet Life Saving Station (Figures 3a-3c). Each cultural

31



site was evaluated for its susceptibility  to im pacts from shoreline re trea t, 

in le t form ation, and overw ash. This susceptib ility  score (Table 7) is a 

qualitative m easure based on factors such as the geographic location and the 

general physical character of the site.

The risk  to resources posed by the th ree processes is assum ed to be a 

function of both susceptibility and opportunity. T hat is, a resource may be 

highly susceptible to a particular process, but if  the process does not occur a t 

th a t location then  the risk  to the  site is a ttenuated . To incorporate both 

susceptibility and process into the protocol, the susceptibility scores for a 

particu lar site are averaged w ith  the  risk  rankings of adjacent transects 

(Table 7) to produce resource risk  numbers for each param eter. If the cultural 

site is located proximal to a single transect, then  the risk  scores for th a t 

transect are used in the calculation. If the site is roughly equidistant from 

two transects, the m ean risk  scores for the two transects are used in the 

calculation. For example, the  L ittle  K innakeet Coast G uard S tation  is 

assigned susceptibility scores of 3 , 5, and 5 for shoreline re trea t, in let 

form ation and overwash respectively. The site is located approxim ately 

equidistant from transects 260 and 261. Therefore the m ean risk scores of the 

two transects are used to calculate the risk  num bers for this cultural site. 

The m ean re trea t risk  for both transects is 3.0, which is averaged w ith the 

re trea t susceptibility score for the station (i.e., 3.0) to yield a re trea t resource 

risk  num ber of 3.0. This process is repeated for in let formation risk  and 

overwash risk, which yield resource risk  num bers of 4.0 The three resource 

risk  scores (3.0, 4.0 and 4.0) are then  averaged to yield a combined resource 

risk score of 3.7.
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The final output is four risk  scores for each resource: one each for 

shoreline re trea t, in le t form ation, overwash and a m ean risk  score. The 

utility  of these num bers is th a t one can assess the relative overall risk  to a 

particular resource due to general processes operating on barrier islands. One 

also can examine the relative contribution of these processes in determ ining 

the combined risk (i.e., which risk param eter puts the resource most a t risk).

Evaluation of risk  to natu ra l resources w ithin the park  as a resu lt of 

barrier island dynamics was performed in essentially the same m anner as 

the cultural resources. This study evaluated the risk  to th rea tened  and 

endangered species and other biota w ithin the park  using two species, the 

least te rn  and the loggerhead turtle , as examples of how a risk assessm ent 

protocol might be applied to biological resources. Figures 9a—9c and Figures 

10a—lOd show the d istribu tion  of the least te rn  and loggerhead tu rtle , 

respectively, w ithin the park. These species were chosen because they rely on 

different hab ita ts  w ithin b arrier island environm ents in order to complete 

the ir life cycle. Terns build nests in dune fields, and re tu rn  to the sam e 

nesting sites every year. Loggerhead turtles nest on the beach, and are not 

known to specifically seek out previous nesting sites (NPS, 1993).

For each species, susceptib ility  to im pacts from the  th ree  r isk  

param eters is estim ated and used w ith risk  information to generate overall 

risk  estim ates (Tables 8 and 9). Both species are judged to be highly 

susceptible to in let form ation ( score = 5) and m oderately susceptible to 

re trea t and overwash (score = 3). In let formation is the only process th a t 

would literally remove available hab ita t as a discrete event. While overwash 

and shoreline re trea t are potentially dam aging to the species’ nesting sites, 

these processes act to move the island system as a whole. The determ ination
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of resource risk num bers for the least tern  and loggerhead tu rtle  is performed 

in the same m anner as the resource risk num bers for the cultured sites.

This study assum es th a t park  policy would allow changes in natu ra l 

resources w ithin park  boundaries as a resu lt of na tu ra l processes only; th a t 

is, park  officials would strive to elim inate the role of hum an activity in 

forcing ecosystem changes w ithin the park. In support of this goal, the risk 

assessm ent for the example species was conducted w ithin the framework of 

existing and stated National P ark  Service policies (NPS, 1993).
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5. RESULTS AND DISCUSSION

5.1 Shoreline Change Analysis:

Appendix 2 sum m arizes th e  calculated ra te s  of change a t each 

reference transect over all survey intervals. F igures 11a—l i d  show the 

frequency d istribu tions of the  ra te s  of change, while F igures 12a—12d 

graphically represent da ta  in Appendix 2. Table 10 sum m arizes the ra te  of 

change data by geographic region.

The data  show an  increase in not only the  overall m agnitude of 

shoreline re trea t in Cape H atteras National Seashore, but an increase in the 

am ount of shoreline affected by the re trea t as well. The in itia l survey 

in terval, F igure 12a, is characterized  by th ree  m ajor areas of shoreline 

re tre a t and two m ajor areas of shoreline advance. The areas experiencing 

recession are found on e ith e r side of Oregon Inlet, south  of New In let 

(transects 110—130), and imm ediately north of Cape H atteras (transects 270— 

304). A reas experiencing sign ifican t progradation  are  north  of Avon 

(transects 200-240) and south of Cape H atteras (transects 305-338). The 

second survey interval, shown in Figure 12b, is characterized by four major 

re trea t areas and only one major advance area. Both sides of Oregon Inlet, 

the New Inlet region, and the shoreline north of Cape H atteras are all again 

characterized by retrea t, w ith another major re trea t area ju s t north of Avon. 

The survey interval 1947—1980 (Figure 12c) is m arked by three major re trea t 

areas, one major advance area, and many local variations in shoreline change
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rates. Here again, the m ajor re tre a t areas are  north  and south of Oregon 

In let (although im m ediately north of the inlet, the shoreline is apparently  

accreting), the relict New Inlet region, and north of Cape H atteras. South of 

the  bend a t Cape H atteras, there  is shoreline advance. The m ost recent 

survey interval, 1980—1993 (Figure 12d), is characterized by shoreline re trea t 

throughout the park. Only the area imm ediately south of Cape H atteras and 

the north shore of Oregon Inlet are experiencing shoreline advance. The ra te  

of shoreline re trea t appears to be increasing along the northern shore of Pea 

Island N ational Wildlife Refuge (transects 70—110).The highest ra te s  of 

shoreline re trea t presently are found south of the Cape H atteras Lighthouse; 

the shoreline here is re trea tin g  a t approxim ately 20—25 m eters per year 

(transects 290—304). It is reasonable to relate this rapid loss of shoreline to 

the construction in 1969 of three 500—foot je tties immediately in front of the 

lighthouse. The je tties were built by the U.S. Army Corps of Engineers to 

help stabilize the shoreline and prolong the life of the lighthouse. M any 

coastal geologists (e.g., Dolan, 1972; Inm an and Dolan, 1989; Leatherm an, 

1988) have testified to the relationship between groin and je tty  placem ent 

along barrier coasts and accelerated loss of shoreline downdrift.

Figure 13 shows the output shoreline re trea t risk by transect for Cape 

H atteras National Seashore based on data  presented in Appendix 1. Virtually 

all of CAHA is characterized as being a t moderate risk or greater to shoreline 

retreat. The only areas th a t are a t low risk  are those th a t are on the accreting 

side of Oregon Inlet, a lim ited section of shoreline ju s t south of Rodanthe 

(transects 145—146) and an area ju s t south of Salvo (transects 162—180), and 

the reach immediately w est of Cape H atteras. Areas th a t are at high risk  of
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shoreline re trea t are north  of Oregon Inlet, almost all of Pea Island National 

Wildlife Refuge, and the entire shoreline from Avon to Cape H atteras.

5.2 Inlet Formation:

Figure 14 shows the output inlet formation risk  by transect for Cape 

H atteras National Seashore. Almost all of the park  is under a minimum of 

moderate risk of inlet formation. Local areas of low risk are found in sections 

of the park th a t are particularly  wide (e.g., near Avon). The greatest risk  of 

inlet formation appears to be in Pea Island National Wildlife Refuge north of 

Rodanthe and the extremely narrow section of H atteras Island between Avon 

and north of the Cape H atteras Lighthouse complex. Both of these areas are 

quite narrow (Figure 6) and have been characterized by inlet activity in the 

past, w ith New Inlet being located in Pea Island N ational Wildlife Refuge, 

and Chacandepeco and Buxton Inlets being located south of Avon.

5.3 Overwash Probability:

Figure 15 shows the  ou tpu t overwash risk  by tran sec t for Cape 

H atteras N ational Seashore. Most of the park  is under m oderate risk  of 

overwash, w ith the highest risks being found a t the northern  end of Pea 

Island  N ational W ildlife Refuge and n ear Cape H atte ras . PINWR in 

particu lar experiences overwash during even relatively minor storms. Some 

local areas are characterized as having a low overwash risk; these are found 

almost exclusively near the enclaves of Rodanthe, Waves, and Salvo. Some 

authors (Pilkey et al., 1980) have suggested th a t th is region of the O uter 

Banks is topographically higher than  other, more overwash—prone areas.
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5.4 Combined Risk:

Figure 16 illu s tra te s  the  combined risk  com puted for the th ree  

p aram eters . The p a ram ete rs  (shoreline re tre a t, in le t form ation, and  

overwash) are weighted equally to produce the combined or m ean risk  value. 

The values range from 1.0 (low) to 5.0 (high). The only low risk  section of the 

park  is immediately south of Rodanthe, although a small stretch of shoreline 

to the west of Cape H atteras is low risk  as well. The sections of CAHA most 

a t risk  are the southern end of Bodie Island, the northern end of Pea Island 

National Wildlife Refuge between Oregon Inlet and Rodanthe, and the area 

between Avon and Cape H atteras.

5.5 Calculated R isk to Cultural Resources:

Risk values were calculated for each cultural resource listed in the 

CAHA inventory. Each site received four scores: shoreline re trea t risk, inlet 

formation risk, overwash risk, and an  overall m ean risk  to the site. Table 7 

sum m arizes the risk  assessm ent inform ation for the cultural sites w ithin 

CAHA. The scores reflect a combination of the assum ed susceptibility of the 

site to the risk param eters and the calculated risk  a t the transect(s) nearest 

the site in question.

Risks to struc tu res w ith in  the Cape H atte ras Lighthouse complex 

ranged from 2.0 (moderate) to 5.0 (high). The Civilian Conservation Corps 

cabins received an overall risk  score of 3.0, w ith constituent scores of 4.0 

(shoreline retreat), 2.0 (inlet formation), and 3.0 (overwash). The oil house 

and two keepers’ quarters received overall risk scores of 4.0 w ith constituent 

scores of 5.0 (shoreline retreat), 3.0 (inlet formation), and 4.0 (overwash). The
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Cape H atteras Lighthouse received an overall score of 3.7, w ith constituent 

scores of 5.0 (shoreline retreat) and 3.0 (inlet formation and overwash). These 

structures are m ost a t risk  from shoreline re trea t, although overwash does 

pose a moderate risk.

C ultural sites a t the K innakeet and Chicamacomico sites received 

overall scores ranging  from 3.0 to 4.0. The Big K innakeet Tower Ruins 

received generally high risk scores (3.0, 5.0 and 4.0 for shoreline retreat, inlet 

formation, and overwash respectively) w ith an overall score of 4.0. All of the 

Little K innakeet sites (the Coast G uard Station, Kitchen, and Lifesaving 

Station) received overall risk  scores of 3.7 w ith moderate constituent scores 

(3.0, 4.0 and 4.0 for shoreline re tre a t, in le t form ation, and overw ash 

respectively). The Chicamacomico boathouse and garage received a high 

overall risk  score of 4.0, w ith a m oderate shoreline re trea t score (3.0) and 

high scores for in le t form ation and overwash (5.0 and 4.0). All of the  

structu res a t these sites are under relatively high risk  overall, w ith in let 

formation and overwash posing the g reatest th rea ts. R etreat of the A tlantic 

coast shoreline poses only a m oderate th rea t a t th is tim e since the cultural 

sites are located on the sound side of the island.

NPS—owned and operated sites on Bodie Island (the Bodie Island  

Lifesaving Station and the Bodie Island Coast Guard Station) received high 

overall risk scores of 4.3 with constituent scores of 5.0 (shoreline retreat), 4.0 

(inlet formation) and 4.0 (overwash). Although the facilities a t the Bodie 

Island Lighthouse complex are not m anaged by the NPS, they were included 

in the risk assessm ent. The Bodie Island Lighthouse and associated oil house 

received overall risk  scores of 3.0 w ith constituent scores of 3.0, 4.0 and 2.0 

for shoreline re trea t, inlet formation, and overwash respectively. The Bodie
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Island Lighthouse Keeper's Q uarters and Storehouse had shoreline re trea t 

risk  scores of 3.0, inlet formation risk  scores of 4.0 and overwash risk  scores 

of 2.0 w ith an overall risk  score of 3.0. The Bodie Island Lifesaving Station 

and Coast Guard S tation  are under high overall risk, particularly  due to 

shoreline retreat. The proximity of these structures to the shoreline places 

them  in eminent danger from all three barrier island processes considered in 

the risk assessment.

Table 11 shows the CAHA cultural sites ranked according to overall 

risk. The sites a t g reatest risk  are the Bodie Island Lifesaving and Coast 

G uard Stations, followed closely by the structu res a t the  Cape H atteras 

Lighthouse complex. However, the rankings for the  Bodie Island structures 

are probably somewhat overestimated due to the ir proximity to Oregon Inlet; 

the method for estim ating the likelihood of inlet formation favors locations 

near existing inlets as well as those locations near relict inlets. In any case, 

these  two sites are u nder m oderately high risk  due to b arrie r island  

processes, particularly shoreline retreat.

5.5.1 Management Considerations:

It is im portant to note th a t the risk assessm ent protocol does not make 

any judgm ents about how the NPS should prioritize its m anagem ent actions 

regarding the cultural sites. The consequences of loss or damage as a result of 

na tu ra l processes need to be considered when cultural sites are evaluated for 

protection. This study m akes no assum ptions regarding the subjective value 

of the various cultural sites to the N ational P ark  Service. However, it is 

obvious th a t some cultural sites are intrinsically more valuable than  others,
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for example one m ight surm ise th a t NPS would spend a great deal of money 

to m aintain the integrity of Cape H atteras Lighthouse.

There are a num ber of policy options the National P ark  Service m ight 

pursue in order to m aintain the  physical integrity of cultural resources in the 

face of dynamic geophysical conditions. These options include but are not 

limited to:

• shoreline stabilization through groin/jetty placement

• sea wall construction

• dune and road m aintenance

• beach replenishm ent

• placement of revetm ents around structures

• physical relocation of structures to more inland sites

The likelihood th a t any of these actions will be endorsed by the P ark  

Service is difficult to assess. Given the nation-w ide objective of NPS to allow 

n a tu ra l conditions to predom inate in national parks, one m ight predict th a t 

the  construction of physical b arriers  to island m igration (e.g., groins and 

jetties) is unlikely to occur barring extraordinary circumstances.

While groins were placed along the shoreline in front of Cape H atteras 

Lighthouse in 1969, there is no evidence to suggest th a t the N ational P ark  

Service desires a solution of th a t variety  elsewhere in the park. The only 

rem aining shoreline engineering solution is beach replenishm ent, which is by 

m any accounts expensive and  has an u n ce rta in  success ra te  (e.g., 

L eatherm an, 1988). In the past, a t least, the P ark  Service has shown a 

w illingness to engage in so-called  “soft engineering” efforts a t shoreline 

stabilization. In 1973, the NPS endorsed a shoreline nourishm ent project th a t
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pumped approximately 1.3 million cubic m eters of sand from Cape Point to a

3.3 kilom eter stretch  of beach north of the lighthouse (Pilkey, et al., 1980). 

The relative success of the $4.3 million project is difficult to assess.

It seems th a t the N ational P ark  Service should prepare for physical 

relocation of culturally significant structures as the only m anagem ent option 

available to them  which is consistent w ith  NPS policy. Relocation is an  

acceptable a lternative  to loss; the P a rk  Service has endorsed a p lan  to 

relocate the  Cape H atte ras  Lighthouse w hen it can be shown th a t the  

structure is in im m inent danger from the sea (NPS, 1993).

5.6 Calculated Risk to Natural Resources

Least te rn  nesting areas occur in an area south of Avon (Figures 9a— 

9c) th a t is covered by reference transects 267—271. Table 9 shows the risk  

calculation for the least tern. Tern nesting  areas were judged to be highly 

susceptible to in let formation (susceptibility = 5) and m arginally susceptible 

to shoreline re trea t and overwash (susceptibility = 3). Terns build seasonal 

nests in dune habitat, and thus are likely to be able to find suitable nesting 

sites even if the island retreats, as long as the dunes reestablish themselves. 

Inlet formation, on the other hand, would remove all available hab itat in the 

preferred nesting area . The least tern  resource risk  numbers for shoreline 

re trea t were calculated to be 4.0, 5.0, and 3.0 for retreat, inlet formation, and 

overwash respectively. The overall resource risk  num ber was calculated to be

4.0. According to Potter et al. (1980), least terns begin nesting in May. Along 

the O uter Banks, usually a single brood is born, although damage to the 

nests as a resu lt of storms may result in  num erous attem pts. Storm activity 

is typically h ighest along the O uter Banks during the m onths of October
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through M arch (Davis et al., 1992); least te rn  nesting  generally coincides 

with the least stormy tim e of year.

B ecause th e  d is tr ib u tio n  of loggerhead  tu r t le  n es tin g  s ite s  

encompasses all of Cape H atteras National Seashore (Figures 10a—lOd) south 

of Oregon Inlet, individual nesting  sites cannot be evaluated for potential 

risk. Therefore, the resource risk  num ber calculation for the loggerhead 

tu rtle  includes all possible combinations of risk  values. Table 9 shows the 

possible com binations of r isk  values for the  reference tran sec ts  w ith  

corresponding resource risk  num bers. While only high re trea t and overwash 

risk scores result in a high resource risk  num ber (4.0), even a m oderate inlet 

formation risk score results in a high resource risk num ber (4.0), and a high 

inlet formation risk  score produces a very high resource risk  num ber (5.0). 

T urtle  nesting  sites experience the g rea test r isk  when re trea t risk  or 

overwash risk  are  high, or in  areas of m oderate to high risk  of in le t 

formation. Unfortunately, th is is virtually  the entire park. Figure 17 shows 

the optimum loggerhead tu r tle  nesting  h ab ita t based on the calculated 

resource risk  num bers. O ptim al nesting  locations are  those locations 

characterized by low or m oderate (scores = 1, 3) risks of re tre a t and 

overwash, and by low (score = 1) risk of inlet formation. Poor nesting areas 

are those characterized by m oderate or high (score = 3, 5) risk  of in le t 

formation, or by high (score = 5) risk  of re trea t or overwash. All other areas 

(the vast majority of the park) are deemed satisfactory nesting area, at least 

w ith respect to the three param eters modeled in this study. Optimal nesting 

areas are lim ited to H atteras Bight, w est of Cape H atteras, and beaches in 

front and south of the Rodanthe—W aves-Salvo enclave (Figure 17). N esting 

areas a t high risk are those located in southern Bodie Island, northern  Pea
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Island, and between Avon and the Cape H atteras Lighthouse. The NPS 

currently  provides for relocation of loggerhead tu rtle  nests found in high 

hazard areas (NPS, 1993). The NPS should certainly continue to monitor sea 

tu rtle  nesting activity, particularly  in the high risk  areas mentioned above. 

C arr (1952) states th a t loggerheads typically nest from April to August, w ith 

the peak period in June. Like the least terns, the nesting period for the 

loggerhead thus takes place during the least stormy period of the year.

5.6.1 Management Considerations:

As w ith the cultural sites, the output resource risk  num bers only 

estim ate the potential risk to the natu ra l resource in question; the protocol 

does not address the a ttendan t m anagem ent issues. Although the example 

species were found to be prim arily influenced by inlet formation, shoreline 

re trea t and overwash do have risk  associated with them. This is significant in 

light of park m anagem ent practices. Any park  m anagem ent activity which 

interferes w ith the island's ability to m aintain  itse lf w ith rising  sea—level 

could impact the species in question, and presumably others as well.

For example, the N ational P a rk  Service has com m itted itse lf  by 

agreem ent w ith the s ta te  of N orth  C arolina (NPS, 1993) to allowing 

m aintenance of N orth Carolina S tate  Highway 12 (Figures 3a—3c), which 

runs the length of the park and connects the local communities on the island 

to one another and to the m ainland. As a general practice, sand which is 

deposited on the roadway during storm events is pushed either back into the 

prim ary dune line or onto the beach face. Little, if any, sediment is allowed to 

cross the island onto the m arsh  via storm  overwash. Less sand is thus 

available for vertical and horizontal adjustm ent of the barrier's position. The
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island’s ability to m aintain  itself in the face of rising sea level and potential 

clim ate change is thus restric ted . The im pact on n a tu ra l resources is 

potentially devastating. As the  shoreline re trea ts  toward Highway 12, the 

dune and beach area available for colonization by nesting shorebirds and/or 

sea tu rtles decreases. An alternative strategy m ight be to remove the sand 

from the roadway to the sa lt m arsh area of the backbarrier in such a fashion 

as to sim ulate natu ral washovers.

Another m anagem ent option th a t the NPS has enacted in the past is 

relocating Highway 12. In 1973, a severe storm washed over a section of the 

island  south  of Avon. In  response, the NPS endorsed the previously 

mentioned beach nourishm ent project and allowed re-routing  of Highway 12 

to a more inland location (Pilkey, 1980). The North Carolina D epartm ent of 

Transportation is currently relocating a section of the highway in Pea Island 

National Wildlife Refuge.
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6. CONCLUSION

In general, the shoreline w ith in  Cape H atteras N ational Seashore 

appears to be almost uniformly retreating, except for the area south of Cape 

H atteras and a local area south of Salvo. Moreover, the shoreline change 

frequency distributions show th a t recession rates are increasing along the 

shoreline over time. This trend  is particularly  evident im m ediately south of 

the Cape H atteras Lighthouse: re trea t rates here exceed 20 m eters per year. 

The other major area of rapid shoreline re trea t is northern Pea Island, where 

average re trea t rates approached 10 m eters per year from 1980—1993.

The risk of inlet formation w ithin the park generally is also m oderate 

to high. The only area  th a t appears to be a t relatively low risk  for in let 

form ation is im m ediately no rth  of Cape H atteras. The m ethod used to 

estim ated inlet formation risk  is based on historic information, however, and 

therefore tends to bias the assessm ent toward currently open inlets. As was 

pointed out in the literature review, this is not necessarily always a realistic 

assum ption. However, in le ts  have tended to open in th e  sam e spots 

repeatedly on the Outer Banks in the past.

The overwash risk most likely is underestim ated due to a lack of recent 

data  on the distribution and frequency of overwash events on the O uter 

Banks. Some authors suggest th a t all of the Outer Banks is essentially under 

the same long-term  (20 years or greater) risk of overwash (e.g., Pierce, 1969). 

There is a great need for fu rther observation in this area; fu rther refinement
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of th is p art of the  risk  assessm ent should be based on a more thorough 

trea tm en t of overwash p a tte rn s  w ith in  CAHA. Local topography greatly  

influences the relative m agnitude of a given overwash event. U nfortunately 

the physical n a tu re  of the b a rr ie r  island  system  hinders any a ttem p t to 

gather reliable topographic data; the relief simply changes too frequently in 

the dune and beach area for the data to be of much value.

Future versions of this risk  assessm ent protocol would benefit from the 

inclusion of a treatm ent of the seasonality of the processes involved. There is 

a clear seasonal com ponent to the  processes of shoreline re tre a t, in le t 

fo rm ation , and  overw ash. W in te r n o rth ea s te rs  drive m uch of th e  

physiography of the O uter B anks, and as a resu lt the probability of any 

single event (e.g., overwash) is not the sam e throughout the year. The 

tem poral variability also has consequences for the biota of the O uter Banks, 

as was noted previously.

The risks posed to various cultural and natural resources as a resu lt of 

the physical process of b arrier island rollover are difficult to quantify. This 

study explores the potential benefits to a particu lar resource m anagem ent 

area of a relative risk assessm ent, which attem pts to gauge the relative risk  

a t any geographic location. F igure 18 shows the combined risk  due to all 

th ree b arrier island processes for Cape H atteras National Seashore. The 

northern end of Pea Island is the most dynamic region of the park, w ith high 

rates of shoreline re trea t, frequent overwash and a high probability of in let 

formation.

NPS efforts to prevent storm s from depositing sand on Highway 12 

through sandbagging the dune line and removal of overwash deposits are
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likely to make m atte rs  worse for the P ark  Service in the long ru n  by 

restric ting  the delivery of sedim ent across the island. Sim ilar m anagem ent 

dilem m as exist north  of Cape H a tte ra s  n ea r the  lighthouse complex. 

Although inlet formation essentially  is a non-factor, and overwash only a 

m inimal problem, rates of shoreline re trea t in excess of 20 m eters per year 

will force park officials into a triage: which cultural sites are most valuable 

and need to be preserved, and a t w hat expense to the natu ral resources of the 

park?
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Table 1: Major m anagem ent issues and practices a t Cape H atteras
National Seashore (NPS, 1993)

W ater quality and quantity
Issues: degradation of w ater quality in m arsh and pond systems on Bodie Island, 
Buxton Woods; degradation of w ater quality in park areas adjacent to village 
enclaves; increasing groundwater withdrawal to provide potable water for village 
enclaves

M anagement response: w ater quality monitoring program; survey of Buxton Woods 
topography and hydrology

Global climate change
Issues: changes in species composition; accelerated loss of shoreline, barrier island 
transgression; hum an compensation for changes in coastal processes

Management response: none as yet

Toxic waste/Pollution
Issues: toxic materials and pollutants delivered to Seashore through variety of 
mechanisms; relict dump sites

Management response: NMFS and NPS marine debris survey; annual report of 
findings; proposed delineation and mitigation of toxic m aterial deposits project

Threatened and endangered species
Issues: dependence of threatened and endangered species (loggerhead sea turtles and 
piping plovers) on National Seashore natural resources

M anagement response: Nesting Beach Survey, turtle nest relocation; protection of 
plover nesting sites, plover production study

Exotic species
Issues: inhibition or supplantation of native species by exotics; feral cats preying 
upon piping plovers; potential gypsy moth colonization

M anagement response: direct population reduction measures for predatory exotics; 
monitoring for presence of gypsy moths; proposed project to monitor invasive species

Visitor impacts
Issues: large number of visitors to park annually (average of 1,890,428 during period 
1983-1992) assumed to degrade various natural resources; off-road vehicle (ORV) use 
on beach

M anagement response: informal assessment of visitor impacts pending funding of 
formal study; informal monitoring of ORV impacts



Table 1: Major m anagem ent issues and practices a t Cape H atteras
National Seashore (NPS, 1993)

Development
Issues: degradation of park resources through new construction; changes in 
vegetation in response to alteration of physical landscape due to new development

Management response: conditional perm it issuance for new construction; GIS-based 
land use/ land cover monitoring

Prescribed fire
Issues: fire used as a tool for habitat manipulation

Management response: CAHA has no formal Fire Plan currently

Coastal processes
Issues: maintenance of shipping channels through dredging; placement of dredged 
materials; erosion of turtle and bird nesting habitats

Management response: informal monitoring of dredge effects by CAHA staff; N PS- 
guided disposal of dredged m aterials for bird area enhancement

Oil and gas
Issues: existence of Outer Continental Shelf oil exploration sites within 30 miles of 
CAHA shoreline suggests potential adverse impacts to fauna

Management response: review of appropriate NEPA documentation for OCS projects 
by CAHA staff

Hunting
Issues: waterfowl hunting is a legislatively mandated activity at CAHA 

Management response: monitoring and management of waterfowl habitat



Table 2: NPS goals for Cape H atteras National Seashore (NPS, 1993)

1. Establishm ent of the N ational Seashore for the benefit and enjoyment 
of the public.

2. Preservation and protection of cultural resources.

3. Preservation and protection of na tu ra l resources.

4. Provide for residents to be allowed to fish commercially, subject to 
regulation of DOI, and to protect recreational use.

5. Develop certain areas for recreational use.

6. M anagement of the Seashore should be compatible with USFWS 
m anagem ent on refuge lands.

7. Provision for waterfowl hunting under rules and regulations of the 
Secretary in designated areas.

8. Provision for reserved rights-of-way to build and/or m aintain roads on 
lands deeded to NPS from the S tate of North Carolina.

9. Compliance with generic federal legislation and policy.



Table 3: Cultural Sites Inventory for Cape H atteras National Seashore

Cultural Site

CCCC Houses (4)

Cape H atteras Lighthouse 

Small Brick Oil House 

Principle Keeper’s Q uarters 

Double Keeper’s Quarters 

Big Kinnakeet Tower Ruins 

Little Kinnakeet Coast Guard Station 

Little Kinnakeet C.G. Station Kitchen 

Little Kinnakeet Life Saving Station 

Chicamacomico Boathouse and Garage 

Bodie Island Life Saving Station 

Bodie Island Coast Guard Station 

Bodie Island Lighthouse and Oil House 

Bodie Island Lighthouse Keeper’s Q uarters 

Bodie Island Storehouse

Location

Transects 290—291 

Transect 289 

Transect 289 

Transect 289 

Transect 289 

Transects 260—261 

Transects 221-222 

Transects 221—222 

Transects 221—222 

Transects 135—136 

Transects 21-22 

Transects 21-22 

Transect 29 

Transect 29 

Transect 29



Table 4: Synoptic characteristics of northeast storm sa

Synoptic Type

Bahamas Low

Florida Low 

Gulf Low

Coastal Plain Cyclogenesis 

H atteras Low 

Continental Low

Coastal Front

Anticyclone

Characteristics

Cyclogenesis in Atlantic between Florida coast 
and Bahamas. Blocking anticyclone in northeast 
U.S./southern Canada. Long fetch, slow-moving.

Sim ilar to Bahamas Low. Cyclogenesis over 
southeastern U.S. or off Florida coast. Blocking 
anticyclone usually present.

Cyclogenesis west of Florida along stationary 
front, usually in Gulf of Mexico. Blocking anticyclone 
absent. Track rapidly, long fetch.

Cyclogenesis occurs along cold or stationary front over 
mid-Atlantic or southeast U.S. Blocking anticyclone 
absent.

Secondary cyclone usually formed along warm or 
stationary front off coast of North Carolina. Highly 
variable in formation and intensity.

Cyclogenesis typically in lee of Rocky Mountains. Can 
develop long fetch if system stalls upon reaching 
Atlantic coast. Difficult to classify.

Weak cyclogenesis along stationary front parallel to 
E ast Coast. Generally short-lived with short fetches.

Storm winds and waves generated solely from a high 
pressure system.

•Baham as Lows, Florida Lows, Gulf Lows most potent. 

•Coastal Fronts, Gulf Lows, Anticyclones most common.

aFrom Davis et al., 1992



Table 5: Ecological risk  priorities vs. public perception of environmental risks5

Highest ecological risks

•global climate change 
•habitat alteration 
•stratospheric ozone depletion 
•biological depletion

Higher ecological risks

•herbicides and pesticides

High ecological risks

•toxics in surface waters 
•acid deposition 
•airborne toxics

Medium ecological risks

•nutrients
•BOD
•turbidity

Low ecological risks

•oil and petroleum products 
•groundwater contamination 
•radionuclides
•acid inputs to surface waters 
•solid wastes 
•thermal pollution

Public perception of environmental risks

•active hazardous waste sites 
•abandoned hazardous waste sites 
•water pollution from industrial sources 
•oil spills
•stratospheric ozone depletion 
•radiation from nuclear power plant accidents 
•chemicals from industrial accidents 
•radionuclides in nuclear waste 
•industrial air pollution
•groundwater contamination from leaking tanks 
•coastal pollution 
•solid waste
•water pollution from agricultural runoff 
•water pollution from sewage plants 
•vehicular air pollution 
•global climate change 
•wetland habitat alteration 
•acid deposition
•water pollution from urban runoff
•nonhazardous waste sites
•releases of genetically engineered organisms

bFrom Harwell et al., 1992.



Table 6: Ecological risk prioritization m atrixc

Extent o f stress M edium Recovery tim e

Environmental Stress Biosphere Regional Ecosystem Air Water Terrestrial Short M edium Long

1 Global climate HHH HHH HHH HHH X

Habitat alteration HH HHH HHH HHH HHH X X

Stratospheric ozone HHH HHH HHH HHH X

Biological depletion HH HHH HH HH X

2 Herbicides/pesticides M HH HH HH X

3 Toxics in surface waters M HH HH X

Acid deposition H H H X

Airborne toxics M HH HH HH X

4 Nutrients H H X

BOD M M X

Turbidity M M X

5 Oil L M M X

Groundwater L L L X

6 Radionuclides L L X

Acid inputs to surface waters H H X

Thermal pollution L L

cFrom Harwell, et al., 1992



Table 7: CAHA C ultural Sites Risk Assessm ent M atrices
CCCC H ousaa

Cap* Hattara* Lighthouse

Small Brick Oil Hous*

Susceplbikty Score Transect 290 Transect 291 Resource Risk

Shoreline Retreat 3 S 5 4.0
Inlet Formation 3 1 1 2.0
Overwash Frequency 3 3 3 3.0

Overall Resource Risk 
Number

3.0

Susceptibility Score Transact 289 Resource Risk Number

Shoreline Retreat 5 5 5.0
Inlet Formation 5 1 3.0
Overwash Frequency 3 3 3.0

Overall Resource Risk 
Number

3.7

Susceptibility Score Transect 289 Resource Risk Number

Shoreline Retreat 5 5 5.0
Inlet Formation 5 . 1 3.0
Overwash Frequency 5 3 4.0

Brick Principl* Keeper's 
Q uarte rs

Double Keeper’s  Q uarters

Big Kinnakeet Tower Ruins

Overall Resource Risk 
Number

Shoreline Retreat 
Inlet Formation 

Overwash Frequency

Overall Resource Risk 
Number

Shoreline Retreat 

Intel Formation 

Overwash Frequency

Overall Resource Risk 
Number

Shoreline Retreat 
Inlet Formation 

Overwash Frequency

Susceptibility Score 

5

Susceptibility Score

Susceptbiiity Score

Transect 289

5
1
3

4.0

Transect 260 

S

Resource Risk Number

5 .0

3.0

4.0

Resource Risk Number

5.0
3.0

4.0

Resource Risk Number

3.0

5.0
4.0

Overall Resource Risk 
Number

Little Kinnakeet C oast Guard Station

Shoreline Retreat 

Inlet Formation 

Overwash Frequency

Susceptibility Score Transect 222

3

3

3

Resource Risk Number

3.0

4.0

4.0

Little Kinnakeet Station Kitchen

Overall Resource Risk 
Number

Shoreline Retreat 

Inlet Formation 

Overwash Frequency

Susceptibility Score

3

5

5

Transect 222 Resource Risk Number

3.0

4.0

4.0

Overall Resource Risk 
Number

3.7



Little Kinnakeet Ufaeavtng 
Station

Susceptibility Score Transact 222 R esource Risk Number

Shorelne Retreat 

I mat Formation 

Ovatwash Frequency

3.0

4.0

4.0

Overall Resource Risk 
Number

Chicamacomico B oathouse and Garage
Susceptibility Scots Resource Risk Number

Shoreline Retreat 

InM Formation 

Overwash Frequency

3.0

5.0

4.0

Overall Resource Risk 
Number

Bodie Island Ufa Saving Station

Shoreline Retreat 

Inlet Formation 

Overwash Frequency

Susceptibility Score 

5

Resource Risk Number

SO 

4 0 

4.0

Overall Resource Risk 
Number

Bodie Island Coast Guard Station
Suscaptfcility Score Resource Risk Number

Shoreline Retreat 
Inlet Formation 

Overwash Frequency

5.0

4.0
4.0

Overall Resource Risk 
Number

Bodie Island Lighthouse and Brick Oil House
Susceptibility Score Resource Risk Number

Shoreline Retreat 

Inlet Formation 

Overwash Frequency

3.0
4 .0

2.0

Overall Resource Risk 
Number

Bodie Island L ighthouse Keeper's Quarters
Susceptbiiity Score Resource Risk Number

Shoreline Retreat 

Inlet Formation 

Overwash Frequency

3.0

4 .0

2.0

Overall Resource Risk 
Number

Bodie island Storehouse
Susceotfcility Score Resource Risk Number

Shoreline Retreat 

Inlet Formation 

Overwash Frequency

3.0

4.0

2 .0

Overall Resource Risk 
Number

3.0



Table 8: Least tern  resource risk  num ber calculation

Least Tern Nesting Sites Transects 267-271

Transect Retreat Risk Inlet Risk Overwash Risk Mean Risk

267 5 5 3 4.3
268 5 5 3 4.3
269 5 5 3 4.3
270 5 5 3 4.3
271 5 5 3 4.3

Mean 5 5 3 4.3

Retreat Risk Inlet Risk Overwash Risk Overall

Tern Susceptibility Scores 3 5 3

Tern Resource Risk Number 4 5 3 4.0



Table 9: Possible Risk Numbers for Loggerhead Turtle Nesting Sites

Retreat Risk Inlet Risk Overwash Risk Retreat Risk # Inlet Risk # Overwash Risk Overall Risk #

1 1 2 3 2 2.3
1 3 2 3 3 2.7
1 5 2 3 4 3.0
3 1 2 4 2 2.7
3 3 2 4 3 3.0
3 5 2 4 4 3.3
5 1 2 5 2 3.0
5 3 2 5 3 3.3
5 3 2 5 3 3.3
1 1 3 3 2 2.7
1 3 3 3 3 3.0
1 5 3 3 4 3.3
3 t 3 4 2 3.0
3 3 3 4 3 3.3
3 5 3 4 4 3.7
5 t 3 5 2 3.3
5 3 3 5 3 3.7
5 5 3 5 4 4.0
1 1 4 3 2 3.0
1 3 4 3 3 3.3
1 5 4 3 4 3.7
3 1 4 4 2 3.3
3 3 4 4 3 3.7
3 5 4 4 4 4.0
5 1 4 5 2 3.7
5 3 4 5 3 4.0
5 5 4 5 4 4.3

Loggerhead Turtle Susceptibility Scores

Retreat 3
Inlet Formation 5 
Overwash 3



Table 10: CAHA shoreline ra te  of change data  sum m arized by
geographic region

Entire Study Area

Bodie Island (transects 1-51)

Pea Island (transects 52-106)

Hatteras Island (transects 107-304)

Hatteras Bight (transects 305-338)

mean rate of change (m yr_l) -2.7
standard deviation 4.0
median retreat rate (m yr~l) -1.8

mean rate of change (m y r'l) 0.1
standard deviation 7.1
median retreat rate (m y r'l) -1.7

mean rate of change (m y r'l) -3.3
standard deviation 1.4
median retreat rate (m yr‘f) -3.1

mean rate of change (m y r'l) -2.1
standard deviation 2.8
median retreat rate (m yr'l) -1.5

mean rate of change (m y r 'l)  2.8
standard deviation 3.5
median retreat rate (m yr"l) -1.5



Table 11: Ranking of Cape H atteras National Seashore Cultural Sites by
Overall Resource Risk

Cultural Site

Bodie Island Lifesaving Station

Bodie Island Coast Guard Station

Cape H atteras Lighthouse Keepers' Quarters

Cape H atteras Lighthouse Brick Oil House

Big Kinnakeet Tower Ruins

Chicamacomico Boathouse and Garage

Cape H atteras Lighthouse

Little Kinnakeet Coast Guard Station

Little Kinnakeet Station Kitchen

Little Kinnakeet Lifesaving Station

Bodie Island Lighthouse Keeper’s Q uarters

Bodie Island Storehouse

Bodie Island Lighthouse

CCCC Houses .

Overall Resource Risk Number

4.3

4.3

4.0

4.0

4.0

4.0

3.7

3.7

3.7

3.7

3.0

3.0

3.0

3.0



Figure 1

Location of Study Area
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Historic Inlet Locations for 
Cape Hifteras National Seashore

\    Roanoke Inlet

Oregon Inlet 

—  Gunt Inlet

New Inlet

Chicamacomico Inlet

Loggerhead Inlet

Chacandapeco Inlet

Figure 2

From Everts et al, 1983
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Figure 4

Location and ^umbering of 
Reference Transects
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Historic Shorelines for 
Cape Hatteras National Seashore

852 Shoreline

917 Shoreline

947 Shoreline

980 Shoreline

993 Shoreline

Figure 5



Areas of CAL^A 
Less Than 1 Kilometer Wide

Figure 6
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Historic Ove^wash Events in 
Cape Hatteras National Seashore, 

19454974

No Over wash 
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Figure 8 0 5 to

From Boc and Langfelder, 1977
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Figure 11a: Frequency D istribution of Shoreline Retreat Rates, 1852-1917
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Figure lib :  Frequency Distribution of Shoreline Rates of Change, 1917-1947
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Figure 11c: Frequency Distribution for Shoreline Rates of Change, 1947-1980
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Figure l id :  Frequency Distribution of Shoreline Retreat Rates, 1980-1993
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Figure l ie :  Frequency D istribution of Shoreline Retreat Rates (1852-1993)
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Figure 12a: Shoreline Rates of Change: 1852-1917
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Figure 12b: Shoreline Rates of Change: 1917-1947
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Figure 12c: Shoreline Rates of Change: 1947-1980

5 0

4 0

30

20

10

0

0

-20

-30
O O O p O  o  O  O  O  o  v m io Is ® a,0'-c\jco 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

u )  CO I"- CO OT O  t— I M O ' t m i O s C O f f l O t - M t ' )
- * - T - i - ' - W ( i | C \ j C M t \ I W c M N W C M n n W C J

T ransect



Sh
or

el
in

e 
Ra

te
 

of 
C

ha
ng

e 
(m 

yr
A-

1)

Figurel2d: Shoreline Rates of Change: 1980-1993
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Figure 12e: Shoreline Rates of Change: 1852-1993
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Shoreline Retreat Risk for 
Cape Hatteras National Seashore
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Figure 13
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Loggerhead Turtle Management Areas 
in Cape Hatteras Rational Seashore
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Appendix 1: Summary of risk  information for CAHA, 1852-1993

Transect Retreat Inlet Overwash Combined 
Formation _______

1 3 3 3 3 .0

2 3 3 3 3 .0

3 3 3 3 3 .0

4 3 3 3 3 .0

5 3 3 3 3 .0

6 3 3 3 3 .0

7 3 3 3 3 .0

3 3 3 3 3 .0

9 3 3 3 3 .0

10 3 3 3 3 .0

11 3 3 3 3 .0

12 3 3 3 3 .0

13 3 3 3 3 .0

1 4 3 3 3 3 .0

15 3 3 3 3 .0

16 5 3 3 3 .7

1 7 3 3 3 3 .0

18 5 3 3 3 .7

19 5 3 3 3 .7

2 0 5 3 3 3 .7

21 5 3 3 3 .7

2 2 5 3 3 3 .7

2 3 5 3 3 3 .7

2 4 5 3 3 3 .7

2 5 5 3 3 3 .7

2 6 5 3 3 3 .7

2 7 5 3 3 3 .7

2 8 5 3 3 3 .7

2 9 5 3 3 3 .7

3 0 5 3 3 3 .7

31 5 3 3 3 .7

3 2 5 3 5 4 .3

3 3 5 3 5 4 .3

3 4 5 5 5 5 .0

3 5 5 5 5 5 .0

3 6 3 5 5 4 .3

3 7 3 5 5 4 .3

3 8 3 5 5 4 .3

3 9 5 5 5 5 .0

4 0 5 5 5 5 .0

41 3 5 5 4 .3

4 2 1 5 5 3 .7

4 3 1 5 5 3 .7

4 4 1 5 5 3 .7

4 5 1 5 5 3 .7

4 6 1 5 5 3 .7

4 7 1 5 5 3 .7

4 8 1 5 5 3 .7

Transect Retreat Inlet Overwash Combined 
Formation

4 9 1 5 5 3 .7

5 0 5 5 5 5 .0

51 5 5 5 5 .0

5 2 3 5 1 3 .0

5 3 5 5 1 3 .7

5 4 5 5 3 4 .3

5 5 5 5 3 4 .3

5 6 5 5 3 4 .3

5 7 5 5 3 4 .3

5 8 5 5 3 4 .3

5 9 5 5 3 4 .3

6 0 5 5 3 4 .3

61 3 3 3 3 .0

6 2 3 3 3 3 .0

6 3 3 5 5 4 .3

6 4 3 5 5 4 .3

6 5 3 5 5 4 .3

6 6 3 5 5 4 .3

6 7 5 3 5 4 .3

6 8 5 3 5 4 .3

6 9 5 3 5 4 .3

7 0 5 3 5 4 .3

71 5 3 5 4 .3

7 2 5 3 5 4 .3

7 3 5 5 5 5 .0

7 4 5 3 3 3 .7

7 5 5 3 3 3 .7

7 6 5 3 3 3 .7

7 7 5 3 3 3 .7

7 8 5 3 3 3 .7

7 9 5 3 3 3 .7

8 0 5 3 3 3 .7

81 5 3 5 4 .3

8 2 5 3 5 4 .3

8 3 5 3 5 4 .3

8 4 3 3 5 3 .7

8 5 3 3 3 3 .0

8 6 3 3 3 3 .0

8 7 3 3 3 3 .0

8 8 3 3 3 3 .0

8 9 3 3 3 3 .0

9 0 3 3 5 3 .7

91 3 3 5 3 .7

9 2 3 3 5 3 .7

9 3 3 3 5 3 .7

9 4 5 3 5 4 .3

9 5 5 5 5 5 .0

9 6 5 5 5 5 .0



Appendix 1: Summary of risk  information for CAHA, 1852-1993

Transect Retreat Inlet Overwash Combined 
Formation

9 7 3 5 5 4 .3

9 8 5 5 5 5 .0

9 9 3 5 5 4 .3

1 0 0 3 5 5 4 .3

101 3 5 5 4 .3

1 0 2 3 5 5 4 .3

1 0 3 3 5 5 4 .3

1 0 4 3 5 5 4 .3

1 0 5 3 5 5 4 .3

1 0 6 3 3 5 3 .7

1 0 7 3 3 5 3 .7

1 0 8 3 3 5 3 .7

1 0 9 3 5 5 4 .3

1 1 0 3 5 5 4 .3

111 5 5 5 5 .0

1 1 2 5 5 5 5 .0

1 1 3 5 5 5 5 .0

1 1 4 3 3 5 3 .7

1 1 5 5 3 5 4 .3

1 1 6 5 5 5 5 .0

1 1 7 5 5 5 5 .0

1 1 8 5 5 5 5 .0

1 1 9 5 5 5 5 .0

1 2 0 5 5 5 5 .0

121 5 5 3 4 .3

1 2 2 5 5 3 4 .3

1 2 3 5 5 3 4 .3

1 2 4 5 5 3 4 .3

1 2 5 5 5 3 4 .3

1 2 6 5 5 3 4 .3

1 2 7 5 5 3 4 .3

1 2 8 5 5 3 4 .3

1 2 9 5 5 3 4 .3

1 3 0 5 5 3 4 .3

131 5 5 3 4 .3

1 3 2 5 5 1 3 .7

1 3 3 5 5 3 4 .3

1 3 4 5 5 3 4 .3

1 3 5 5 5 3 4 .3

1 3 6 5 5 3 4 .3

1 3 7 5 3 3 3 .7

1 3 8 5 5 3 4 .3

1 3 9 5 5 3 4 .3

1 4 0 5 5 3 4 .3

141 5 5 3 4 .3

1 4 2 3 5 3 3 .7

1 4 3 3 5 3 3 .7

1 4 4 3 5 3 3 .7

Transect Retreat Inlet Overwash Combined
Formation

1 4 5 1 5 3 3 .0

1 4 6 1 5 1 2 .3

1 4 7 3 3 1 2 .3

1 4 8 3 3 1 2 .3

1 4 9 5 3 1 3 .0

1 5 0 5 3 3 3 .7

151 3 3 3 3 .0

15 2 3 1 1 1 .7

1 5 3 3 1 1 1 .7

1 5 4 3 1 1 1 .7

1 5 5 3 3 1 2 .3

1 5 6 3 1 1 1 .7

1 5 7 3 3 1 2 .3

1 5 8 3 3 1 2 .3

1 5 9 3 3 1 2 .3

1 6 0 3 3 1 2 .3

161 3 3 1 2 .3

1 6 2 3 3 3 3 .0

1 6 3 1 3 3 2 .3

1 6 4 3 3 3 3 .0

1 6 5 1 3 3 2 .3

1 6 6 1 3 3 2 .3

1 6 7 1 3 3 2 .3

1 6 8 1 1 3 1 .7

1 6 9 1 1 3 1 .7

1 7 0 1 1 3 1 .7

171 1 1 3 1 .7

1 7 2 1 1 3 1 .7

1 7 3

1 7 4

1

1

1 3

3

1 .7

2 .3

1 7 5 1 1 3 1 .7

1 7 6 1 1 1 1 .0

1 7 7 1 1 1 1 .0

1 7 8 1 1 1 1 .0

1 7 9 1 3 1 1 .7

1 8 0 1 3 3 2 .3

181 3 3 3 3 .0

1 8 2 3 3 3 3 .0

1 8 3 3 3 3 3 .0

1 8 4 3 3 3 3 .0

1 8 5 3 3 3 3 .0

1 8 6 3 3 3 3 .0

1 8 7 3 3 3 3 .0

1 8 8 5 3 3 3 .7

1 8 9 5 3 3 3 .7

1 9 0 5 3 3 3 .7

191 3 3 3 3 .0

1 9 2 3 3 3 3 .0



Appendix 1: Summary of risk  information for CAHA, 1852-1993

Transect Retreat Inlet Overwash Combined 
Formation

1 9 3 3 3 3 3 .0

1 9 4 3 3 3 3 .0

1 9 5 3 3 3 3 .0

1 9 6 3 3 3 3 .0

1 9 7 3 3 3 3 .0

1 9 8 3 3 3 3 .0

1 9 9 3 3 3 3 .0

2 0 0 3 3 3 3 .0

201 3 3 3 3 .0

2 0 2 3 3 3 3 .0

2 0 3 3 3 3 3 .0

2 0 4 3 3 3 3 .0

2 0 5 3 3 3 3 .0

2 0 6 3 3 3 3 .0

2 0 7 3 3 3 3 .0

2 0 8 3 3 3 3 .0

2 0 9 3 3 3 3 .0

2 1 0 3 3 3 3 .0

2 11 3 3 3 3 .0

2 1 2 3 3 3 3 .0

2 1 3 3 3 3 3 .0

2 1 4 3 3 3 3 .0

2 1 5 3 3 3 3 .0

2 1 6 3 3 3 3 .0

2 1 7 3 3 3 3 .0

2 1 8 3 3 3 3 .0

2 1 9 3 3 3 3 .0

2 2 0 3 3 3 3 .0

221 3 3 3 3 .0

2 2 2 3 3 3 3 .0

2 2 3 3 3 3 3 .0

2 2 4 3 3 3 3 .0

2 2 5 3 3 3 3 .0

2 2 6 3 3 3 3 .0

2 2 7 3 3 3 3 .0

2 2 8 3 3 3 3 .0

2 2 9 1 3 5 3 .0

2 3 0 1 3 5 3 .0

231 3 3 5 3 .7

2 3 2 3 3 3 3 .0

2 3 3 3 3 3 3 .0

2 3 4 3 3 3 3 .0

2 3 5 5 3 5 4 .3

2 3 6 3 3 5 3 .7

2 3 7 5 3 3 3 .7

2 3 8 5 3 3 3 .7

2 3 9 5 3 3 3 .7

2 4 0 3 3 3 3 .0

Transect Retreat Inlet Overwash Combined 
Formation

2 4 1 5 3 3 3 .7

2 4 2 5 3 3 3 .7

2 4 3 5 1 3 3 .0

2 4 4 5 3 3 3 .7

2 4 5 5 3 3 3 .7

2 4 6 5 3 3 3 .7

2 4 7 5 3 3 3 .7

2 4 8 3 3 3 3 .0

2 4 9 3 3 3 3 .0

2 5 0 3 3 3 3 .0

2 5 1 3 3 3 3 .0

2 5 2 3 3 3 3 .0

2 5 3 3 3 3 3 .0

2 5 4 3 3 3 3 .0

2 5 5 5 3 3 -3 .7

2 5 6 3 3 3 3 .0

2 5 7 3 3 3 3 .0

2 5 8 3 5 3 3 .7

2 5 9 5 5 3 4 .3

2 6 0 5 5 3 4 .3

2 6 1 5 5 3 4 .3

2 6 2 5 5 3 4 .3

2 6 3 5 5 3 4 .3

2 6 4 5 5 5 5 .0

2 6 5 5 5 5 5 .0

2 6 6 5 5 5 5 .0

2 6 7 5 5 5 5 .0

2 6 8 5 5 5 5 .0

2 6 9 5 5 5 5 .0

2 7 0 5 5 3 4 .3

2 7 1 5 5 3 4 .3

2 7 2 5 5 3 4 .3

2 7 3 5 5 3 4 .3

2 7 4 5 5 3 4 .3

2 7 5 5 5 5 5 .0

2 7 6 5 5 5 5 .0

2 7 7 5 5 5 5 .0

2 7 8 5 5 5 5 .0

2 7 9 5 5 5 5 .0

2 8 0 5 5 3 4 .3

2 8 1 5 5 3 4 .3

2 8 2 5 5 3 4 .3

2 8 3 5 5 3 4 .3

2 8 4 5 5 3 4 .3

2 8 5 5 1 3 3 .0

2 8 6 5 1 3 3 .0

2 8 7 5 1 3 3 .0

2 8 8 5 1 3 3 .0



Appendix 1: Summary of risk  information for CAHA, 1852-1993

Transect Retreat Inlet Overwash Combined 
Formation

2 8 9 5 3 3 .0

2 9 0 5 3 3 .0

2 9 1 5 3 3 .0

2 9 2 5 3 3 .0

2 9 3 5 3 3 .0

2 9 4 5 3 3 .0

2 9 5 5 3 3 .0

2 9 6 5 3 3 .0

2 9 7 5 3 3 .0

2 9 8 5 3 3 .0

2 9 9 5 3 3 .0

3 0 0 5 3 3 .0

30 1 5 3 3 .0

3 0 2 5 3 3 .0

3 0 3 5 3 3 .0

3 0 4 5 3 3 .0

3 0 5 1 3 1 .7

3 0 6 1 3 1 .7

3 0 7 1 3 1 .7

3 0 8 1 3 1 .7

3 0 9 1 3 1 .7

3 1 0 1 3 1 .7

3 1 1 1 3 1 .7

3 1 2 1 3 1 .7

3 1 3 1 3 1 .7

3 1 4 1 3 1 .7

3 1 5 1 3 1 .7

3 1 6 1 3 1 .7

3 1 7 1 3 1 .7

3 1 8 1 3 1 .7

3 1 9 1 3 1 .7

3 2 0 1 3 1 .7

32 1 1 1 1 .0

3 2 2 1 1 1 .0

3 2 3 1 1 1 .0

3 2 4 1 1 1 .0

3 2 5 1 1 1 .0

3 2 6 1 1 1 .0

3 2 7 1 1 1 .0

3 2 8 1 1 1 .0

3 2 9 1 1 1 .0

3 3 0 3 1 1 .7

3 3 1 3 1 1 .7

3 3 2 3 1 1 .7

3 3 3 3 3 2 .3

3 3 4 5 3 3 .0

3 3 5 5 3 3 .0

3 3 6 5 3 3 .0

Transect Retreat Inlet Overwash Combined 
Formation

3 3 7  5  1 3  3 .0

3 3 8  5  1 3  3 .0



Appendix 2: Shoreline rates of change for CAHA, 1852-1993

Transect 1852-1917 1917-1947 1947-1980 1980-1993 Mean Rate
1 -0.9 -2.3 0.0 No Data -1.1
2 -0.5 -2.6 0.0 No Data -1.0
3 -0.4 -2.2 -0.6 No Data -1.1
4 0.0 -2.3 0.0 No Data -0.8
5 0.0 -1.8 -1.0 No Data -0.9
6 0.2 -1.8 -1.0 No Data -0.9
7 0.3 -1.8 -0.9 -2.9 -1.3
8 0.5 -2.3 0.0 -3.9 -1.4
9 0.6 -2.4 -0.5 -3.0 -1.3
10 0.8 -2.7 -0.5 -3.7 -1.5
11 0.3 -1.2 -0.7 -4.6 -1.5
12 0.0 -0.9 -1.5 -2.2 -1.2
13 -0.4 -0.5 -0.9 -3.3 -1.3
14 -0.5 -0.7 -1.1 -3.7 -1.5
15 -0.6 -0.7 -1.3 -3.7 -1.6
16 -0.7 -0.9 -1.3 -3.8 -1.7
17 -1.2 0.0 -2.1 -2.5 -1.5
18 -1.5 0.0 -2.5 -3.0 -1.7
19 -1.7 0.0 -2.4 -3.7 -1.9
20 -1.8 0.0 -2.9 -3.5 -2.0
21 -2.2 0.8 -2.9 -4.2 -2.1
22 -2.0 0.0 -3.2 -3.6 -2.2
23 -2.6 0.0 -3.1 -3.6 -2.3
24 -2.7 -0.8 -3.2 -2.6 -2.3
25 -3.0 0.0 -3.5 -3.4 -2.5
26 -3.0 0.0 -3.9 -3.8 -2.7
27 -3.0 -0.6 -3.6 -4.2 -2.8
28 -3.2 -0.6 -4.2 -2.3 -2.6
29 -3.7 0.0 -4.8 -1.5 -2.5
30 -4.1 -0.7 -5.2 1.0 -2.2
31 -4.0 -1.5 -5.4 1.0 -2.5
32 -4.0 -2.2 -5.6 1.2 -2.7
33 -4.2 -3.4 -5.7 3.3 -2.5
34 -3.9 -4.2 -5.9 4.2 -2.5
35 -3.2 -6.7 -5.1 6.1 -2.2
36 -2.4 -8.4 -5.2 9.9 -1.5
37 No Data -10.5 -4.7 11.1 -1.4
38 No Data -12.3 -4.4 12.2 -1.5
39 No Data -14.0 -3.9 12.0 -1.9
40 No Data -14.6 -2.5 10.8 -2.1
41 No Data -12.0 -0.9 9.0 -1.3
42 No Data 1.6 1.3 4.5 2.5
43 No Data 4.8 4.4 0.0 3.1
44 No Data 8.2 7.3 -4.0 3.8
45 No Data No Data 8.3 -2.9 2.7
46 No Data No Data 4.7 4.7
47 No Data No Data No Data 39.1 39.1
48 -10.1 No Data No Data 45.2 17.5
49 -7.6 No Data No Data 46.9 19.6
50 -6.2 No Data No Data No Data -6.2



Appendix 2: Shoreline rates of change for CAHA, 1852-1993

Transect 1852-1917 1917-1947 1947-1980 1980-1993 Mean Rate
51 -5.8 No Data No Data No Data -5.8
52 -5.2 1.7 No Data No Data -1.8
53 -5.1 3.2 -13.9 No Data -5.3
54 -4.7 0.5 -6.4 No Data -3.5
55 -4.6 -1.2 -4.8 No Data -3.6
56 -4.1 -4.1 -2.8 -8.9 -5.0
57 -4.0 -5.4 -2.2 -7.7 -4.8
58 -3.4 -6.4 -2.0 -7.1 -4.7
59 -3.1 -6.7 -2.1 -7.8 -4.9
60 -2.9 No Data -1.5 -6.2 -3.6
61 No Data No Data -1.7 -2.0 -1.8
62 No Data No Data -2.2 0.0 -1.1
63 No Data No Data -2.3 0.0 -1.2
64 No Data No Data -2.9 0.0 -1.5
65 No Data No Data -3.2 0.0 -1.6
66 No Data No Data -3.8 -1.5 -2.6
67 No Data No Data -4.2 -2.4 -3.3
68 No Data No Data -3.7 -3.4 -3.5
69 No Data No Data -4.8 -3.6 -4.2
70 No Data No Data -4.8 -5.0 -4.9
71 No Data No Data -4.6 -6.3 -5.5
72 No Data No Data -4.0 -6.6 -5.3
73 No Data No Data -3.2 -7.1 -5.1
74 No Data No Data -3.1 -7.6 -5.4
75 No Data No Data -2.6 -9.0 -5.8
76 No Data No Data -2.7 -9.2 -5.9
77 No Data No Data -2.4 -8.7 -5.6
78 No Data No Data -2.1 -8.9 -5.5
79 No Data No Data -1.6 -8.3 -4.9
80 No Data No Data -1.4 -7.0 -4.2
81 No Data No Data -1.3 -6.0 -3.7
82 No Data No Data -0.9 -6.7 -3.8
83 No Data No Data 0.0 -6.5 -3.2
84 No Data No Data 0.0 -5.5 -2.7
85 No Data No Data 0.0 -5.8 -2.9
86 No Data No Data -0.6 -4.4 -2.5
87 No Data No Data -0.6 -4.2 -2.4
88 No Data No Data 0.0 -5.8 -2.9
89 No Data No Data -0.6 -4.0 -2.3
90 No Data No Data 0.0 -3.2 -1.6
91 No Data No Data -0.9 -2.1 -1.5
92 No Data No Data -1.3 -2.4 -1.8
93 No Data No Data -1.3 -4.5 -2.9
94 No Data No Data -0.9 -5.4 -3.1
95 No Data No Data -0.8 -6.3 -3.6
96 No Data No Data -1.2 -6.0 -3.6
97 No Data No Data -1.2 -4.9 -3.0
98 No Data No Data -1.9 -4.2 -3.1
99 No Data No Data -2.4 -3.1 -2.8
100 No Data No Data -1.7 -3.3 -2.5



Appendix 2: Shoreline rates of change for CAHA, 1852-1993

Transect 1852-1917 1917-1947 1947-1980 1980-1993 Mean Rate
101 No Data No Data -1.3 -3.4 -2.4
102 No Data No Data -0.9 -3.4 -2.1
103 No Data No Data 0.0 -4.1 -2.1
104 No Data No Data 1.0 -4.8 -1.9
105 No Data No Data 1.4 -4.2 -1.4
106 No Data No Data 1.6 -2.7 -0.5
107 No Data No Data 3.3 -4.6 -0.6
108 -2.3 No Data 3.7 -4.2 -0.9
109 -2.4 -0.7 2.3 0.0 -0.2
110 -2.3 -2.0 1.8 1.2 -0.3
111 -3.5 -3.2 2.1 -1.2 -1.5
112 -2.5 -3.0 2.0 -2.4 -1.5
113 No Data -3.7 2.8 -4.0 -1.7
114 No Data -3.8 2.0 -2.5 -1.4
115 No Data -3.1 ' 1.7 -4.1 -1.8
116 No Data -2.1 0.0 -2.5 -1.5
117 No Data -2.4 0.0 -2.9 -1.8
118 No Data -3.2 0.0 -2.5 -1.9
119 -3.1 -3.0 -0.5 -1.9 -2.2
120 -3.3 -3.1 0.0 -2.3 -2.2
121 -3.0 -4.0 0.0 -3.4 -2.6
122 -2.5 -5.4 0.0 -3.9 -2.9
123 -2.9 -5.5 -1.4 -3.6 -3.3
124 -3.6 -6.0 -3.0 0.0 -3.2
125 -4.3 -6.0 -2.7 -1.5 -3.6
126 -4.6 -6.0 -3.9 -2.0 -4.1
127 -5.6 -5.5 -3.9 -2.4 -4.3
128 -5.1 -4.8 -4.9 -2.3 -4.3
129 -3.5 -5.5 -4.1 -4.2 -4.3
130 -2.1 -5.3 -4.7 -2.4 -3.6
131 -0.6 -5.9 -4.5 -2.3 -3.3
132 -0.3 -5.6 -5.1 -2.5 -3.4
133 -0.5 -4.9 -4.7 -3.9 -3.5
134 -1.1 -2.9 -5.6 -2.8 -3.1
135 -1.5 -1.4 -5.0 -2.1 -2.5
136 -1.0 -1.6 -4.0 0.0 -1.6
137 -0.7 -2.0 -3.1 -1.4 -1.8
138 0.0 -2.1 -3.0 -4.2 -2.3
139 0.8 -2.1 -2.6 -8.2 -3.0
140 0.6 -1.7 -2.1 -6.4 -2.4
141 0.5 -2.6 0.0 -6.6 -2.2
142 0.3 -2.4 0.0 No Data -0.7
143 0.0 -0.6 -0.5 -4.5 -1.4
144 -0.5 0.9 -1.4 1.0 0.0
145 0.0 0.9 -2.5 5.6 1.0
146 -0.4 0.0 -1.6 4.4 0.6
147 -0.3 0.0 -1.0 1.0 -0.1
148 -0.6 -0.7 0.6 -2.7 -0.8
149 -0.9 -1.2 1.9 -6.0 -1.5
150 -0.9 -1.8 2.2 -5.3 -1.5



Appendix 2: Shoreline rates of change for CAHA, 1852-1993

T ransect 1852-1917 1917-1947 1947-1980 1980-1993 Mean Rate
151 -0.8 -1.9 2.3 -4.9 -1.3
152 -0.4 -1.2 1.7 -4.4 -1.1
153 0.0 -0.8 1.6 -4.4 -0.9
154 0.7 -0.4 1.4 -4.1 -0.6
155 1.0 -0.4 1.7 -5.1 -0.7
156 1.4 0.0 1.0 -4.1 -0.4
157 1.1 -0.8 0.0 -1.9 -0.4
158 0.8 -1.3 -0.5 0.0 -0.2
159 0.5 -1.7 -1.0 0.0 -0.6
160 0.0 -1.2 0.0 0.0 -0.3
161 0.0 0.0 -0.8 0.0 -0.2
162 0.0 -0.6 0.0 -0.9 -0.4
163 0.3 0.0 0.0 0.0 0.1
164 -0.4 0.5 0.0 -1.3 -0.3
165 -0.7 0.0 0.8 0.0 0.0
166 -0.8 0.0 1.2 0.0 0.1
167 -1.1 0.0 2.0 0.0 0.2
168 -1.2 0.6 1.8 1.9 0.8
169 -1.0 0.5 2.3 1.2 0.7
170 -0.4 -0.6 0.9 4.2 1.1
171 -0.3 0.0 0.5 3.9 1.0
172 -0.5 0.9 0.5 2.9 1.0
173 0.0 0.0 0.7 3.5 1.0
174 0.8 -0.7 1.1 1.3 0.6
175 0.7 0.0 1.2 0.0 0.5
176 0.3 1.1 0.6 0.0 0.5
177 -0.2 2.4 0.0 0.0 0.6
178 -0.6 2.7 0.0 -1.3 0.2
179 -0.2 2.2 0.0 -1.7 0.1
180 1.6 0.0 0.0 0.0 0.4
181 1.5 0.0 -0.5 -1.6 -0.1
182 1.0 0.0 -0.8 -1.6 -0.4
183 0.3 0.0 -0.5 -2.6 -0.7
184 0.8 -0.5 0.0 -2.4 -0.5
185 1.9 -2.9 0.0 -2.5 -0.9
186 2.2 -3.5 0.0 -2.7 -1.0
187 2.5 -4.5 0.0 -3.2 -1.3
188 2.6 -5.1 0.0 -3.6 -1.5
189 2.7 -5.4 0.8 -4.6 -1.6
190 2.1 -4.0 0.0 -5.1 -1.7
191 1.2 -2.8 0.0 -3.7 -1.3
192 1.0 -1.0 0.0 -4.5 -1.1
193 0.6 0.0 0.0 -4.2 -0.9
194 0.0 1.1 0.0 -4.1 -0.8
195 -0.5 1.4 0.0 -3.3 -0.6
196 -0.8 1.3 0.0 -2.7 -0.5
197 -0.5 1.4 -0.6 -3.0 -0.7
198 -0.7 1.1 -1.0 -2.6 -0.8
199 -0.5 0.6 -0.8 -4.5 -1.3
200 0.0 -0.5 -0.7 -3.1 -1.1



Appendix 2: Shoreline rates of change for CAHA, 1852-1993

Transect 1852-1917 1917-1947 1947-1980 1980-1993 Mean Rate
201 0.0 0.0 -1.7 -1.9 -0.9
202 0.0 -1.2 -1.1 -2.9 -1.3
203 0.5 -1.8 -1.6 -1.4 -1.1
204 0.9 -2.6 -1.5 -1.4 -1.1
205 1.0 -2.1 -1.7 -1.6 -1.1
206 1.6 -2.6 -2.0 -1.3 -1.1
207 2.0 -3.6 -1.5 -1.8 -1.2
208 2.0 -3.9 -1.3 -2.3 -1.4
209 2.0 -4.3 0.0 -5.5 -1.9
210 1.9 -4.6 0.0 -3.9 -1.6
211 1.8 -4.4 0.0 -3.5 -1.5
212 1.8 -4.6 0.0 -4.5 -1.8
213 1.5 -4.4 0.0 -2.9 -1.5
214 1.4 -4.6 0.0 -1.4 -1.1
215 1.2 -4.3 0.0 -2.3 -1.3
216 1.2 -3.9 0.0 -2.3 -1.2
217 1.3 -3.6 -0.9 -0.9 -1.0
218 1.6 -3.8 -0.8 -0.9 -1.0
219 1.6 -4.1 -0.9 -1.2 -1.1
220 1.6 -3.7 0.0 -2.1 -1.0
221 2.0 -4.1 0.0 -1.7 -0.9
222 2.3 -3.8 -0.9 -2.1 -1.1
223 2.4 -4.4 -0.5 -3.6 -1.5
224 2.9 -4.7 0.0 -4.0 -1.5
225 3.8 -5.6 0.0 -3.3 -1.3
226 4.1 -5.4 1.3 -4.5 -1.1
227 4.6 -4.9 1.7 -4.6 -0.8
228 5.6 -6.1 1.8 -2.8 -0.4
229 6.1 -5.7 1.3 0.0 0.4
230 6.1 -6.2 1.6 0.0 0.4
231 5.6 -7.0 1.6 -0.9 -0.2
232 5.4 -7.2 1.6 0.0 -0.1
233 4.8 -7.3 2.1 0.0 -0.1
234 4.8 -8.0 1.9 -3.7 -1.2
235 4.7 -8.8 2.2 -5.3 -1.8
236 4.0 -8.2 0.0 -1.4 -1.4
237 3.7 -10.3 1.8 -3.0 -2.0
238 3.6 -9.2 0.0 -2.8 -2.1
239 3.4 -9.1 0.0 -1.7 -1.8
240 2.5 -7.8 0.0 0.0 -1.3
241 2.0 -7.0 0.6 -2.0 -1.6
242 0.8 -5.0 0.0 -2.0 -1.5
243 0.9 -4.1 0.0 -3.9 -1.8
244 0.2 -3.3 0.0 -3.2 -1.6
245 0.0 -2.5 0.0 -5.0 -1.9
246 -0.2 -2.5 0.0 -4.7 -1.8
247 -0.6 -2.2 0.5 -4.3 -1.7
248 -0.5 -1.6 0.0 -3.1 -1.3
249 -0.3 -1.9 1.3 -4.8 -1.4
250 -0.3 -1.4 0.7 -4.4 -1.3



Appendix 2: Shoreline ra tes of change for CAHA, 1852-1993

Transect 1852-1917 1917-1947 1947-1980 1980-1993 Mean Rate
251 -0.2 -1.0 0.0 -3.2 -1.1
252 0.0 -0.9 0.0 -2.9 -1.0
253 0.0 -1.0 0.0 -3.7 -1.2
254 0.2 -1.3 -0.5 -3.8 -1.3
255 0.4 -1.3 -0.9 -4.1 -1.5
256 0.5 -1.9 -1.0 -2.8 -1.3
257 0.2 -2.1 -2.0 -0.9 -1.2
258 0.2 -2.9 -1.9 0.0 -1.2
259 0.3 -3.5 -1.4 -1.4 -1.5
260 0.2 -4.4 -0.9 -2.7 -2.0
261 0.0 -4.5 -1.4 -2.9 -2.2
262 0.0 -5.1 -1.2 -3.1 -2.4
263 0.0 -5.0 -1.6 -3.1 -2.4
264 -0.2 -5.2 -1.3 -3.3 -2.5
265 -0.5 -4.9 -1.3 -3.6 -2.6
266 -1.0 -4.9 -1.3 -2.9 -2.5
267 -0.9 -5.4 -1.3 -3.4 -2.8
268 -0.5 -6.1 -1.6 -3.7 -3.0
269 -0.8 -6.2 -1.4 -4.5 -3.3
270 -1.1 -5.5 -2.8 -3.5 -3.2
271 -1.9 -5.5 -3.1 -2.8 -3.3
272 -2.3 -5.1 -3.2 -3.4 -3.5
273 -2.6 -4.7 -3.4 -3.5 -3.5
274 -2.8 -5.0 -3.0 -4.7 -3.9
275 -3.4 -4.4 -3.4 -4.6 -4.0
276 -4.0 -4.0 -3.7 -3.6 -3.8
277 -4.5 -3.4 -3.6 -4.1 -3.9
278 -4.5 -3.4 -3.7 -4.2 -3.9
279 -4.5 -4.0 -3.0 -4.7 -4.0
280 -5.1 -3.0 -3.0 -4.9 -4.0
281 -4.7 -4.1 -2.9 -5.1 -4.2
282 -4.8 -4.8 -3.0 -4.8 -4.3
283 -5.4 -4.7 -3.0 -4.4 -4.4
284 -5.8 -5.4 -3.0 -3.4 -4.4
285 -6.5 -5.3 -2.3 -3.5 -4.4
286 -7.4 -4.6 -2.0 -3.6 -4.4
287 -8.2 -4.1 -1.4 -3.2 -4.2
288 -8.9 -3.6 -1.3 -2.4 -4.0
289 -9.4 -2.9 -0.6 -3.0 -4.0
290 -9.4 -3.2 -1.3 -3.6 -4.4
291 -9.0 -4.2 -3.2 -7.5 -6.0
292 -8.4 No Data -4.6 -6.9 -6.7
293 -8.5 -5.6 -6.4 -1.9 -5.6
294 -8.8 -5.7 -6.8 -1.1 -5.6
295 -8.7 -6.0 -5.6 -1.5 -5.4
296 -8.7 -6.0 -4.5 -3.1 -5.6
297 -8.1 -6.8 -3.0 -5.3 -5.8
298 -7.7 -8.4 -1.3 -6.7 -6.0
299 -4.8 -9.6 1.6 -10.2 -5.8
300 -3.5 -10.1 4.0 -12.7 -5.6



Appendix 2: Shoreline rates of change for CAHA, 1852-1993

Transect 1852-1917 1917-1947 1947-1980 1980-1993 Mean Rate
301 -2.1 -11.1 5.8 -15.7 -5.8
302 -2.4 No Data No Data -18.1 -10.3
303 No Data No Data No Data -22.6 -22.6
304 No Data No Data No Data -23.5 -23.5
305 15.3 3.8 9.4 7.2 8.9
306 15.5 7.0 5.3 7.9 8.9
307 14.4 9.8 3.3 7.3 8.7
308 12.6 12.9 2.2 4.8 8.1
309 11.2 13.7 1.6 3.0 7.4
310 No Data 13.9 0.7 3.7 6.1
311 No Data 13.7 0.0 3.2 5.6
312 No Data 13.3 0.7 1.5 5.2
313 No Data 11.7 1.0 1.3 4.6
314 No Data 10.8 0.5 2.5 4.6
315 No Data 10.1 ' 1.1 2.8 4.7
316 No Data 8.2 2.5 2.7 4.5
317 No Data 8.2 3.1 1.7 4.3
318 No Data 7.8 2.8 2.7 4.5
319 No Data 7.5 2.5 2.4 4.1
320 No Data 5.3 3.1 2.5 3.6
321 No Data 5.7 2.1 3.0 3.6
322 No Data 4.4 1.7 3.3 3.1
323 No Data 3.6 1.9 0.9 2.1
324 No Data 3.2 1.6 0.0 1.6
325 No Data 2.6 1.3 1.1 1.7
326 No Data 2.6 1.6 0.0 1.4
327 No Data 3.0 1.4 -1.3 1.0
328 No Data 2.7 1.5 -1.8 0.8
329 No Data 1.3 2.1 -3.6 0.0
330 No Data 0.9 1.1 -3.4 -0.5
331 No Data 0.5 1.2 -3.5 -0.6
332 No Data 0.0 1.1 -3.7 -0.8
333 No Data -1.4 1.0 -3.7 -1.4
334 No Data -1.4 1.1 -4.5 -1.6
335 No Data -2.5 1.5 -5.7 -2.2
336 No Data -2.0 1.2 -5.9 -2.3
337 No Data -2.5 0.9 -4.4 -2.0
338 No Data -1.5 1.4 -6.1 -2.1
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Appendix 3: CAHA Island W idth by Transect (m)

Island Width (m)

1970.182
2027.624
2133.388
2178.519
2228.83
2273.886
2262.39
2289.122
2283.952
2372.965
2501.247
2304.112
2193.121
2340.835
1977.171
1882.561
1719.744
1649.859
1720.53
1647.653
1662.975
1572.788
1399.374
1287.313
1236.301
2026.497
2024.262
1875.544
1697.235
1481.029
1567.921
1386.477
1213.091
1056.041
883.906
683.646
634.765
591.252
632.748
875.156
680.123

Transect Island Width (m)

42 481.928
43 619.131
44 805.158
45 630.371
46 316.289
47 284.272
48 505.118
49 325.351
50 352.481
53 569.662
54 724.478
55 719.279
56 564.066
57 763.71
58 622.653
59 689.602
60 886.651
61 1065.018
62 1036.6
63 819.504
64 712.395
65 735.273
66 1146.199
67 1245.42
68 1353.144
69 1464.533
72 1483.767
73 912.44
74 1101.139
75 1507.273
76 1355.021
77 1124.614
78 1119.607
79 1770.18
80 1369.257
81 1429.974
82 1645.809
83 1670.324
84 1669.631
85 1854.526
86 1399.962
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104
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110
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112
113
114
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117
118
119
120
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Appendix 3: CAHA Island W idth by Transect (m)

Island Width (m) Transect Island Width (m)

1509.363 128 596.016
1543.414 129 669.776
1290.184 130 561.792
1148.31 131 564.219
1235.361 132 645.811
1209.816 133 604.184
1435.94 134 585.553
1323.112 135 721.662
995.603 136 785.917
666.767 137 1018.792
470.217 138 821.416
615.646 139 875.729
466.494 140 749.879
432.658 143 808.771
338.972 144 762.072
273.676 145 676.053
424.378 146 889.518
847.389 147 765.235
739.018 148 760.676
1006.229 149 946.667
1187.36 150 783.685
1165.976 151 858.819
863.175 152 1019.506
663.249 153 1128.038
748.573 154 1035.011
840.475 155 858.87
791.047 156 1068.067
1111.724 157 872.06
1052.618 158 713.202
623.264 159 733.668
983.376 160 787.747
688.284 161 934.698
779.666 162 991.289
666.135 163 868.401
581.851 164 694.721
492.764 165 766.413
420.89 166 789.918
473.255 167 846.697
359.297 168 1277.5
369.851 169 1262.959
501.473 170 1379.425
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175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

Appendix 3: CAHA Island Width by Transect (m)

Island Width (m)

1398.248
1292.322
1238.181
900.216
692.643
1013.057
1109.928
1127.51
968.807 
728.078 
764.925 
590.841 
505.474 
564.701
522.87 
470.496 
360.26 
386.276 
643.494
523.087 
561.724 
447.922 
495.148 
415.145
389.502
425.502 
438.34 
411.518 
429.13 
370.245 
342.368 
411.487 
389.626 
404.726 
411.393 
436.976 
569.414 
580.174 
613.974
707.807 
593.911

Transect Island Width (m)

212 740.831
213 749.017
214 731.931
215 752.521
216 707.9
217 719.497
218 659.092
219 663.805
220 786.817
221 866.943
222 788.057
223 826.353
224 934.574
225 985.831
226 982.854
227 721.698
228 726.97
229 625.819
230 593.291
231 600.113
232 567.771
233 621.354
234 664.146
235 524.917
236 546.53
237 550.561
238 556.825
239 462.527
240 475.489
241 745.203
242 571.926
243 1288.911
244 1312.292
245 1371.456
246 1334.711
247 1293.252
248 1241.498
249 1260.848
250 1223.948
251 1202.799
252 1308.26



258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

Appendix 3: CAHA Island W idth by Transect (m)

Island Width (m)

1323.362
1283.019
1234.986
1136.968
1080.842
959.97
872.215
642.316
504.265
425.689
447.333
485.008 
667.774 
558.406 
418.185 
295.358 
337.81 
310.77 
239.388
236.008 
308.227 
239.667
269.87 
273.125 
256.287 
257.001
240.907 
231.356 
314.615
256.908 
248.597 
289.219 
2870.762 
3200.571
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